WorldWideScience

Sample records for tidal flat sediments

  1. Sediment transport and deposition on a river-dominated tidal flat: An idealized model study

    Science.gov (United States)

    Sherwood, Christopher R.; Chen, Shih-Nan; Geyer, W. Rockwell; Ralston, David K.

    2010-01-01

    A 3-D hydrodynamic model is used to investigate how different size classes of river-derived sediment are transported, exported and trapped on an idealized, river-dominated tidal flat. The model is composed of a river channel flanked by sloping tidal flats, a configuration motivated by the intertidal region of the Skagit River mouth in Washington State, United States. It is forced by mixed tides and a pulse of freshwater and sediment with various settling velocities. In this system, the river not only influences stratification but also contributes a significant cross-shore transport. As a result, the bottom stress is strongly ebb-dominated in the channel because of the seaward advance of strong river flow as the tidal flats drain during ebbs. Sediment deposition patterns and mass budgets are sensitive to settling velocity. The lateral sediment spreading scales with an advective distance (settling time multiplied by lateral flow speed), thereby confining the fast settling sediment classes in the channel. Residual sediment transport is landward on the flats, because of settling lag, but is strongly seaward in the channel. The seaward transport mainly occurs during big ebbs and is controlled by a length scale ratio Ld/XWL, where Ld is a cross-shore advective distance (settling time multiplied by river outlet velocity), and XWL is the immersed cross-shore length of the intertidal zone. Sediment trapping requires Ld/XWL stratification and reducing tidal range both favor sediment trapping, whereas varying channel geometries and asymmetry of tides has relatively small impacts. Implications of the modeling results on the south Skagit intertidal region are discussed.

  2. On luminescence bleaching of tidal channel sediments

    DEFF Research Database (Denmark)

    Fruergaard, Mikkel; Pejrup, Morten; Murray, Andrew S.

    2015-01-01

    We investigate the processes responsible for bleaching of the quartz OSL signal from tidal channel sediment. Tidal dynamics are expected to play an important role for complete bleaching of tidal sediments. However, no studies have examined the amount of reworking occurring in tidal channels...... and on tidal flats due to the mixing caused by currents and waves. We apply bed level data to evaluate the amount of vertical sediment reworking in modern tidal channels and at a tidal flat. Cycles of deposition and erosion are measured with a bed level sensor, and the results show that gross sedimentation...... was several times higher than net sedimentation. We propose that tidal channel sediment is bleached either on the tidal flat before it is transported to the tidal channels and incorporated in channel-fill successions or, alternatively, on the shallow intertidal part of the channel banks. Based...

  3. Wave-induced Maintenance of Suspended Sediment Concentration during Slack in a Tidal Channel on a Sheltered Macro-tidal Flat, Gangwha Island, Korea

    Science.gov (United States)

    Lee, Guan-hong; Kang, KiRyong

    2018-05-01

    A field campaign was conducted to better understand the influence of wave action, in terms of turbulence and bed shear stress, on sediment resuspension and transport processes on a protected tidal flat. An H-frame was deployed in a tidal channel south of Gangwha Island for 6 tidal cycles during November 2006 with instrumentation including an Acoustic Doppler Velocimeter, an Acoustic Backscatter System, and an Optical Backscatter Sensor. During calm conditions, the current-induced shear was dominant and responsible for suspending sediments during the accelerating phases of flood and ebb. During the high-tide slack, both bed shear stress and suspended sediment concentration were reduced. The sediment flux was directed landward due to the scour-lag effect over a tidal cycle. On the other hand, when waves were stronger, the wave-induced turbulence appeared to keep sediments in suspension even during the high-tide slack, while the current-induced shear remained dominant during the accelerating phases of flood and ebb. The sediment flux under strong waves was directed offshore due to the sustained high suspended sediment concentration during the high-tide slack. Although strong waves can induce offshore sediment flux, infrequent events with strong waves are unlikely to alter the long-term accretion of the protected southern Gangwha tidal flats.

  4. A one-dimensional biomorphodynamic model of tidal flats: Sediment sorting, marsh distribution, and carbon accumulation under sea level rise

    Science.gov (United States)

    Zhou, Zeng; Ye, Qinghua; Coco, Giovanni

    2016-07-01

    We develop a biomorphodynamic model to investigate sediment and vegetation dynamics on a schematic intertidal flat characterized by an initially well-mixed sand-mud mixture. Major interactions between tides, wind waves, salt marshes, sediment transport and sea level rise (SLR) are taken into account. For a bare flat under only tidal action, the model predicts a convex cross-shore profile with the surficial distribution of mud and sand on the upper and lower part of the intertidal flat, respectively. When wind waves are strong, the intertidal flat is highly eroded resulting in a concave profile near the high water mark. This behavior is pronouncedly altered when the intertidal flat is vegetated with the presence of salt marshes. Numerical results suggest that a considerable amount of mud can still remain in the vegetated region even when wave action is strong. A steeper transition zone forms at the boundary between salt marshes and bare flats because of the differential sediment deposition in the two neighboring regions. The inclusion of wind waves is found to considerably enhance the size of the marsh-edge transition zone. For the numerical experiments designed in this study, the profile shape and sediment sorting behavior of tidal flats are not significantly modified by a gradual rising sea level. However, the impacts of SLR on vegetated tidal flats are still manifold: (a) driving the landward migration of intertidal zone and salt marshes; (b) enhancing sediment erosion on intertidal flats; and (c) drowning salt marshes under limited sediment supply with the constrain of seawalls. Finally, model results suggest that organic carbon accumulation on marshlands may be enhanced with an increasing SLR rate provided that salt marshes are not drowned.

  5. Land claim and loss of tidal flats in the Yangtze Estuary.

    Science.gov (United States)

    Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun

    2016-04-01

    Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world's largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km(2), a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics.

  6. Observations of ebb flows on tidal flats: Evidence of dewatering?

    Science.gov (United States)

    Rinehimer, J. P.; Thomson, J. M.; Chickadel, C.

    2010-12-01

    Incised channels are a common morphological feature of tidal flats. When the flats are inundated, flows are generally forced by the tidally varying sea surface height. During low tide, however, these channels continue to drain throughout flat exposure even without an upstream source of water. While the role of porewater is generally overlooked due to the low permeability of marine muds, it remains the only potential source of flows through the channels during low tide. In situ and remotely sensed observations (Figure 1) at an incised channel on a tidal flat in Willapa Bay from Spring 2010 indicate that dewatering of the flats may be driving these low tide flows. High resolution Aquadopp ADCP velocity profiles are combined with observations from tower-based infrared (IR) video to produce a complete time series of surface velocity measurements throughout low tide. The IR video observations provide a measurement of surface currents even when the channel depth is below the blanking distance of the ADCP (10 cm). As the depth within the channel drops from 50 cm to 10 cm surface velocities increase from 10 cm/s to 60 cm/s even as the tide level drops below the channel flanks and the flats are dry. As the drainage continues, the temperature of the flow rises throughout low tide, mirroring temperatures within the sediment bed on the tidal flat. Drainage salinity falls despite the lack of any freshwater input to the flat indicating that less saline porewater may be the source. The likely source of the drainage water is from the channel flanks where time-lapse video shows slumping and compaction of channel sediments. Velocity profiles, in situ temperatures, and IR observations also are consistent with the presence of fluid muds and a hyperpycnal, density driven outflow at the channel mouth highlighting a possible pathway for sediment delivery from the flats to the main distributary channels of the bay. Figure 1: Time series of tidal flat channel velocities and temperatures

  7. Colonies of Gyrosigma eximium: a new phenomenon in Arctic tidal flats

    Directory of Open Access Journals (Sweden)

    Józef Wiktor

    2016-10-01

    Full Text Available For the first time at Svalbard, a colonial form of the tube-dwelling diatom Gyrosigma eximium was found in summer 2010 in the tidal flats on Spitsbergen at 78°N. The colonies take the form of conical, green structures that are 1–2 cm high and are associated with other diatom taxa and cyanobacteria (Oscillatoriaceae. The diatom colonies were associated with rich meiofauna and apparently act as cohesive factors for the fine sediment. In the Arctic tidal flats, this represents the first observation of long-term sediment stabilization and biological enrichment. Since this first observation, this species has apparently colonized broader areas in Advenentelva's tidal flat.

  8. Effects of freshwater leaching on potential bioavailability of heavy metals in tidal flat soils.

    Science.gov (United States)

    Li, Hui; Lu, Jun; Li, Qu-Sheng; He, Bao-Yan; Mei, Xiu-Qin; Yu, Dan-Ping; Xu, Zhi-Min; Guo, Shi-Hong; Chen, Hui-Jun

    2016-02-01

    Leaching experiments were conducted to investigate the effects of desalination levels and sediment depths on potential bioavailability of heavy metal (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in tidal flat soils. The data showed that both the desalination levels (p soil depths (p toxicity to benthic organisms than high desalination treatment. Since these reclaimed tidal flats with low desalinisation are suitable for saline water aquaculture, transforming the present land use of reclaimed tidal flats from fresh water aquaculture into saline water aquaculture may reduce health risk of heavy metals remained in sediments. These results will also contribute to our understanding of the dynamic behavior of heavy metals in the reclamation of tidal flats during leaching and the role of the ratio of SEM/AVS predictions on assessing the ecological risks of reclaimed tidal flats.

  9. A new method for measuring bioturbation rates in sandy tidal flat sediments based on luminescence dating

    DEFF Research Database (Denmark)

    Madsen, Anni T.; Murray, Andrew S.; Jain, Mayank

    2011-01-01

    The rates of post-depositional mixing by bioturbation have been investigated using Optically Stimulated Luminescence (OSL) dating in two sediment cores (BAL2 and BAL5), retrieved from a sandy tidal flat in the Danish part of the Wadden Sea. A high-resolution chronology, consisting of thirty-six OSL...

  10. Remediation of muddy tidal flat sediments using hot air-dried crushed oyster shells.

    Science.gov (United States)

    Yamamoto, Tamiji; Kondo, Shunsuke; Kim, Kyung-Hoi; Asaoka, Satoshi; Yamamoto, Hironori; Tokuoka, Makoto; Hibino, Tadashi

    2012-11-01

    In order to prove that hot air-dried crushed oyster shells (HACOS) are effective in reducing hydrogen sulfide in muddy tidal flat sediments and increasing the biomass, field experiments were carried out. The concentration of hydrogen sulfide in the interstitial water, which was 16 mg SL(-1) before the application of HACOS, decreased sharply and maintained almost zero in the experimental sites (HACOS application sites) for one year, whereas it was remained at ca. 5 mg SL(-1) in the control sites. The number of macrobenthos individuals increased to 2-4.5 times higher than that in the control site. Using a simple numerical model, the effective periods for suppression of hydrogen sulfide were estimated to be 3.2-7.6 and 6.4-15.2 years for the experimental sites with 4 and 8 tons per 10 × 10 × 0.2m area, respectively. From these results, it is concluded that HACOS is an effective material to remediate muddy tidal flats. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Historical Transition of Eco-Structure in a Tidal Flat Caused by Expansion of Sewerage Treatment Area

    Directory of Open Access Journals (Sweden)

    Hideki Tatsumoto

    2004-01-01

    Full Text Available An artificial tidal flat was prepared for the mitigation tool on coastal environment. However, it is considered that most of the flat was not restored to the sufficient amenities for aquatic living things, migratory birds, etc. because none of the ecological mechanisms were understood or planned for. It is therefore investigated in this paper that historical transition factors in ecosystem structure are selected and traced with the diffusion of a public sewerage system, and with environmental factors such as water quality, sediment condition, and aquatic producers in the Yatsu Tidal Flat. As a result, it can be defined that the tidal flat, just like a lagoon, was formed artificially with reclamation and development of its circumference at the first step of transition; the water quality and sediment condition gradually became brackish water and muddy sediment conditions, interactively. The ecosystem pyramid forming orderly layers according to trophic level appeared as a high-bio-production potential in its tidal flat. In the second step, i.e., in recent years, the characteristics of water quality and sediment conditions evolved into a foreshore tidal flat, namely, conditions in the flat observed were that the progression of water included a high concentration of chloride ion as seawater and sediment conditions became sandy. Because of that, the inflowing fresh water and organic mater from the land area decreased with the improvement of the public sewerage system. The ecosystem pyramid was distorted into a chaos pyramid, with inversion of Ulva spp.

  12. Historical transition of eco-structure in a tidal flat caused by expansion of sewerage treatment area.

    Science.gov (United States)

    Tatsumoto, Hideki; Ishii, Yuichi; Machida, Motoi; Taki, Kazuo

    2004-05-11

    An artificial tidal flat was prepared for the mitigation tool on coastal environment. However, it is considered that most of the flat was not restored to the sufficient amenities for aquatic living things, migratory birds, etc. because none of the ecological mechanisms were understood or planned for. It is therefore investigated in this paper that historical transition factors in ecosystem structure are selected and traced with the diffusion of a public sewerage system, and with environmental factors such as water quality, sediment condition, and aquatic producers in the Yatsu Tidal Flat. As a result, it can be defined that the tidal flat, just like a lagoon, was formed artificially with reclamation and development of its circumference at the first step of transition; the water quality and sediment condition gradually became brackish water and muddy sediment conditions, interactively. The ecosystem pyramid forming orderly layers according to trophic level appeared as a high-bio-production potential in its tidal flat. In the second step, i.e., in recent years, the characteristics of water quality and sediment conditions evolved into a foreshore tidal flat, namely, conditions in the flat observed were that the progression of water included a high concentration of chloride ion as seawater and sediment conditions became sandy. Because of that, the inflowing fresh water and organic mater from the land area decreased with the improvement of the public sewerage system. The ecosystem pyramid was distorted into a chaos pyramid, with inversion of Ulva spp.

  13. Diatom-driven recolonization of microbial mat-dominated siliciclastic tidal flat sediments.

    Science.gov (United States)

    Pan, Jerónimo; Cuadrado, Diana G; Bournod, Constanza N

    2017-10-01

    Modern microbial mats and biofilms play a paramount role in sediment biostabilization. When sporadic storms affect tidal flats of Bahía Blanca Estuary, the underlying siliciclastic sediment is exposed by physical disruption of the mat, and in a few weeks' lapse, a microbial community re-establishes. With the objective of studying colonization patterns and the ecological succession of microorganisms at the scale of these erosional structures, these were experimentally made and their biological recolonization followed for 8 weeks, with replication in winter and spring. Motile pennate diatoms led the initial colonization following two distinct patterns: a dominance by Cylindrotheca closterium in winter and by naviculoid and nitzschioid diatoms in spring. During the first 7 days, cell numbers increased 2- to 17-fold. Cell densities further increased exhibiting sigmoidal community growth, reaching 2.9-8.9 × 106 cells cm-3 maxima around day 30; centric diatoms maintained low densities throughout. In 56 days after removal of the original mat, filamentous cyanobacteria that dominate mature mats did not establish a significant biomass, leading to the rejection of the hypothesis that cyanobacteria would drive the colonization. The observed dominance of pennate diatoms is attributed to extrinsic factors determined by tidal flooding, and intrinsic ones, e.g. motility, nutrient affinity and high growth rate. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Environmental change on tidal flat induced by anthropogenic effect around west coast of Korean Peninsula

    Science.gov (United States)

    Lee, Yoon-Kyung; Choi, Jong-Kuk; Ryu, Joo-Hyung; Eom, Jinah

    2014-05-01

    Tidal flats are valuable ecosystem by a productive flora and fauna which support large populations of birds, form nursery and feeding areas for coastal fisheries, provide intrinsic values such as aesthetics and education (Costanza et al., 1997; Goodwin et al., 2001). The half of the world's coastal wetlands will submerge during this century in response to sea level rise although salt marsh has a capacity to adjust to sea level rise change. However, tidal flats have been changed because of several coastal construction projects that had not been considered sustainable over the last 30 years in Korean Peninsula. The total area of tidal flats decreased from approximately 2,800 km2 in 1990 to 2,393 km2 in 2005 due to the land reclamations and dredging in South Korea. Many researchers investigated topography, sedimentation changes and local hydrodynamics for this area in the early 1990s. However, they are limited to the temporal and spatial scale because field surveys in the tidal flats are restricted due to the difficulties in accessing. The aim of this study was to examine environmental change in tidal flat in a large scale for long-term based on the remotely sensed data as well as in situ measurements. This study focused on the tidal flat that not only had been affected by reclamations on a large scale such as Ganghwa and Saemangeum but also had been indirectly affected by reclamations such as Hwang-do and Gomso-bay. In this study, changes in morphology and sedimentary facies in tidal flats were estimated. Digital elevation models (DEMs) in early 2000 and 2010 were generated based on the Landsat TM/ETM+ images using a waterline method. Morphological change was estimated based on the differences of DEMs and sedimentary facies was investigated based on the calculation of image-derived PCA coefficient. Results of the morphological change in tidal flats interestingly showed that large amount of areas had been deposited whereas the other areas were eroded. Area with

  15. Geometry of tidal inlet systems : A key factor for the net sediment transport in tidal inlets

    NARCIS (Netherlands)

    Ridderinkhof, W.; de Swart, H. E.; van der Vegt, M.; Alebregtse, N. C.; Hoekstra, P.

    2014-01-01

    The net transport of sediment between the back-barrier basin and the sea is an important process for determining the stability of tidal inlet systems. Earlier studies showed that in a short basin, tidal flats favor peak ebb-currents stronger than peak flood currents, implying export of coarse

  16. Punctuated sediment record resulting from channel migration in a shallow sand-dominated micro-tidal lagoon, Northern Wadden Sea, Denmark

    DEFF Research Database (Denmark)

    Fruergaard, M.; Andersen, T.J.; Nielsen, L.H.

    2011-01-01

    depositional environment, but tidal channel sediments dominate in the five sediment cores, making up 56% of the 15 mof sediment core. Sedimentation in the lagoon alternated between slow vertical aggradation of sand flats (1.5–2 mm yr-1) and very fast lateral progradation of point bars in tidal channels, which...... caused the formation of a punctuated lagoonal fill. Frequent and comprehensive reworking of the sand flat sediments by tidal channel migration entails loss of sedimentary structures and bioturbation related to sand flat deposits, and old sand flat sediments are only very sparsely preserved. We further...... conclude that long-term (millennial timescale) sediment accumulation in the lagoon was controlled by rising sea-level, whereas short-term (centurial timescale) sediment accumulation was controlled by local erosion and depositional events caused by lateral migration of channels. Records of short-term sea...

  17. Optical dating of young tidal sediments in the Danish Wadden Sea

    DEFF Research Database (Denmark)

    Madsen, Anni Tindahl; Murray, A. S.; Andersen, Thorbjørn Joest

    2007-01-01

    reliable and reproducible results in cores from sub-, inter- and supra-tidal sediments, ranging from only a few years up to ~1000 years old, confirming its value in the estimation of estuarine accretion rates. With OSL it is, for the first time, possible to date sediment cores from silty and sandy tidal...... flats, providing a new approach to the problem of evaluation of stability and calculation of sediment budgets for estuaries and coastal lagoons....

  18. Predicting long-term and short-term tidal flat morphodynamics using a dynamic equilibrium theory

    NARCIS (Netherlands)

    Hu, Z.; Wang, Z.B.; Zitman, T.J.; Stive, M.J.F.; Bouma, T.J.

    2015-01-01

    Dynamic equilibrium theory is a fruitful concept, which we use to systematically explain the tidal flat morphodynamic response to tidal currents, wind waves, sediment supply, and other sedimentological drivers. This theory stems from a simple analytical model that derives the tide- or wave-dominated

  19. Carbohydrate secretion by phototrophic communities in tidal sediments

    NARCIS (Netherlands)

    de Winder, B.; Staats, N.; Stal, L.J.; Paterson, D.M.

    1999-01-01

    Two different benthic phototrophic communities on tidal flats were investigated for their carbohydrate content and distribution. Carbohydrates were analysed as two operationally defined fractions, related to the difficulty of extraction from the sediment matrix. Water-soluble (colloidal) and EDTA-

  20. Sedimentary structures of tidal flats: A journey from coast to inner ...

    Indian Academy of Sciences (India)

    defined by the time available to move water masses. This, in turn, affects the development of sedi- mentary structures as well as the distribution of organisms in the intertidal zone and therefore, the animal-sediment relationship. Ever since the systematic study for the identi- fication of tidal flat environment in rock records.

  1. Remotely sensed evidence of the rapid loss of tidal flats in the Yellow Sea

    Science.gov (United States)

    Murray, N. J.; Phinn, S. R.; Clemens, R. S.; Possingham, H.; Fuller, R. A.

    2013-12-01

    In East Asia's Yellow Sea, intertidal wetlands are the frontline ecosystem protecting a coastal population of more than 150 million people from storms and sea-level rise. Despite widespread coastal change and severe modification of the region's major river systems, the magnitude and distribution of coastal wetland loss remains unquantified. We developed a novel remote sensing method to solve the difficult problem of mapping intertidal wetlands over large areas and mapped the extent of tidal flats, the region's primary coastal ecosystem, over 4000kms of coastline at two time periods: the 1980s and late 2000s. We used a regionally validated tide model to identify Landsat images acquired at high and low tides, allowing the area between the high and low tide waterlines to be mapped by differencing classified land-water images between the two tidal stages. Our analysis of the change in areal extent of tidal flats in the Yellow Sea indicates that of the 545,000 ha present in the 1980s, only 389,000 ha remained three decades later, equating to a net loss of 28% at a mean rate of 1.2 % yr-1. ). Comparing the three countries in our analysis, China lost more tidal flat and at a faster rate (39.8%, 1.8% yr-1) than South Korea (32.2%, 1.6% yr-1), and in North Korea minor gains of tidal flat were recorded at (8.5%, 0.3 yr-1). For the same mapped area, historical maps suggest that tidal flats occupied up to 1.14 million ha in the mid-1950s, equating to a potential net loss of up to 65% over ~50 years. Coastal land reclamation for agriculture, aquaculture and urban development is a major driver of tidal flat loss, particularly in China and South Korea, although region-wide declines in sediment replenishment from rivers is also occurring. To conserve the ecosystem services provided by tidal flats and ensure protection of the region's coastal biodiversity, conservation actions should target protection of tidal flats and encourage collaborative and properly planned development

  2. Genome-wide transcriptional responses of Alteromonas naphthalenivorans SN2 to contaminated seawater and marine tidal flat sediment.

    Science.gov (United States)

    Jin, Hyun Mi; Jeong, Hye Im; Kim, Kyung Hyun; Hahn, Yoonsoo; Madsen, Eugene L; Jeon, Che Ok

    2016-02-18

    A genome-wide transcriptional analysis of Alteromonas naphthalenivorans SN2 was performed to investigate its ecophysiological behavior in contaminated tidal flats and seawater. The experimental design mimicked these habitats that either added naphthalene or pyruvate; tidal flat-naphthalene (TF-N), tidal flat-pyruvate (TF-P), seawater-naphthalene (SW-N), and seawater-pyruvate (SW-P). The transcriptional profiles clustered by habitat (TF-N/TF-P and SW-N/SW-P), rather than carbon source, suggesting that the former may exert a greater influence on genome-wide expression in strain SN2 than the latter. Metabolic mapping of cDNA reads from strain SN2 based on KEGG pathway showed that metabolic and regulatory genes associated with energy metabolism, translation, and cell motility were highly expressed in all four test conditions, probably highlighting the copiotrophic properties of strain SN2 as an opportunistic marine r-strategist. Differential gene expression analysis revealed that strain SN2 displayed specific cellular responses to environmental variables (tidal flat, seawater, naphthalene, and pyruvate) and exhibited certain ecological fitness traits -- its notable PAH degradation capability in seasonally cold tidal flat might be reflected in elevated expression of stress response and chaperone proteins, while fast growth in nitrogen-deficient and aerobic seawater probably correlated with high expression of glutamine synthetase, enzymes utilizing nitrite/nitrate, and those involved in the removal of reactive oxygen species.

  3. Spatial and temporal variability of sediment accumulation rates on two tidal flats in Lister Dyb tidal basin, Wadden Sea, Denmark

    DEFF Research Database (Denmark)

    Madsen, Anni Tindahl; Murray, Andrew S.; Andersen, Thorbjørn Joest

    2010-01-01

    Depositional processes in intertidal areas are determined both by changes in sea-level and sediment supply. It is known on a millennial timescale that sedimentation normally keeps pace with sea-level rise in a subsiding tidal basin. However, little is known about whether the sedimentation can kee...

  4. Role of tidal flat in material cycling in the coastal sea

    OpenAIRE

    Yara, Yumiko; Yanagi, Tetsuo; Montani, Shigeru; Kuninao, Tada

    2007-01-01

    A simple tidal flat model with pelagic and benthic ecosystems was developed in order to analyze the nitrogen cycling in an inter-tidal flat of the Seto Inland Sea, Japan. After the verification of calculation results with the observed results in water quality and benthic biomasses, the role of this tidal flat in nitrogen cycling was evaluated from the viewpoint of water quality purification capability. When there is no suspension feeder in the tidal flat, the water quality purification capab...

  5. Measuring and modeling exposure from environmental radiation on tidal flats

    International Nuclear Information System (INIS)

    Gould, T.J.; Hess, C.T.

    2005-01-01

    To examine the shielding effects of the tide cycle, a high pressure ion chamber was used to measure the exposure rate from environmental radiation on tidal flats. A theoretical model is derived to predict the behavior of exposure rate as a function of time for a detector placed one meter above ground on a tidal flat. The numerical integration involved in this derivation results in an empirical formula which implies exposure rate ∝tan-1(sint). We propose that calculating the total exposure incurred on a tidal flat requires measurements of only the slope of the tidal flat and the exposure rate when no shielding occurs. Experimental results are consistent with the model

  6. Evaluation of metals and hydrocarbons in sediments from a tropical tidal flat estuary of Southern Brazil

    International Nuclear Information System (INIS)

    Costa, Eduardo S.; Grilo, Caroline F.; Wolff, George A.; Thompson, Anu; Figueira, Rubens Cesar Lopes; Neto, Renato Rodrigues

    2015-01-01

    Highlights: • Metals and hydrocarbons in estuary mouth showed indication of anthropogenic input. • Metals in estuary mouth were associated with petroleum-derivative hydrocarbons. • Metals were possibly associated with activities that use oil and its derivatives. • Copper was associated with domestic sewage. - Abstract: Although the Passagem Channel estuary, Espírito Santo State, Brazil, is located in an urbanized and industrialized region, it has a large mangrove system. Here we examined natural and anthropogenic inputs that may influence trace metal (Cd, Cr, Cu, Ni, Sc, Pb and Zn) and hydrocarbon (n-alkane and terpane) deposition in three sediment cores collected in the tidal flat zone of the estuary. The cores were also analyzed for carbonate, grain size and stable isotopic composition (δ 13 C org. and δ 15 N total ). Metal enrichment and its association to petroleum hydrocarbons in the surficial sediments of one of the cores, indicate crude oil and derivative inputs, possibly from small vessels and road run-off from local heavy automobile traffic. At the landward sites, the major contributions for metals and hydrocarbons are from natural sources, but in one case, Cu may have been enriched by domestic effluent inputs

  7. Inferring tidal wetland stability from channel sediment fluxes: Observations and a conceptual model

    Science.gov (United States)

    Ganju, Neil K.; Nidzieko, Nicholas J.; Kirwan, Matthew L.

    2013-12-01

    and climatic forces have modified the geomorphology of tidal wetlands over a range of timescales. Changes in land use, sediment supply, river flow, storminess, and sea level alter the layout of tidal channels, intertidal flats, and marsh plains; these elements define wetland complexes. Diagnostically, measurements of net sediment fluxes through tidal channels are high-temporal resolution, spatially integrated quantities that indicate (1) whether a complex is stable over seasonal timescales and (2) what mechanisms are leading to that state. We estimated sediment fluxes through tidal channels draining wetland complexes on the Blackwater and Transquaking Rivers, Maryland, USA. While the Blackwater complex has experienced decades of degradation and been largely converted to open water, the Transquaking complex has persisted as an expansive, vegetated marsh. The measured net export at the Blackwater complex (1.0 kg/s or 0.56 kg/m2/yr over the landward marsh area) was caused by northwesterly winds, which exported water and sediment on the subtidal timescale; tidally forced net fluxes were weak and precluded landward transport of suspended sediment from potential seaward sources. Though wind forcing also exported sediment at the Transquaking complex, strong tidal forcing and proximity to a turbidity maximum led to an import of sediment (0.031 kg/s or 0.70 kg/m2/yr). This resulted in a spatially averaged accretion of 3.9 mm/yr, equaling the regional relative sea level rise. Our results suggest that in areas where seaward sediment supply is dominant, seaward wetlands may be more capable of withstanding sea level rise over the short term than landward wetlands. We propose a conceptual model to determine a complex's tendency toward stability or instability based on sediment source, wetland channel location, and transport mechanisms. Wetlands with a reliable portfolio of sources and transport mechanisms appear better suited to offset natural and anthropogenic loss.

  8. Wave actions and topography determine the small-scale spatial distribution of newly settled Asari clams Ruditapes philippinarum on a tidal flat

    Science.gov (United States)

    Nambu, Ryogen; Saito, Hajime; Tanaka, Yoshio; Higano, Junya; Kuwahara, Hisami

    2012-03-01

    There are many studies on spatial distributions of Asari clam Ruditapes philippinarum adults on tidal flats but few have dealt with spatial distributions of newly settled Asari clam (physical/topographical conditions on tidal flats. We examined small-scale spatial distributions of newly settled individuals on the Matsunase tidal flat, central Japan, during the low spring tides on two days 29th-30th June 2007, together with the shear stress from waves and currents on the flat. The characteristics of spatial distribution of newly settled Asari clam markedly varied depending on both of hydrodynamic and topographical conditions on the tidal flat. Using generalized linear models (GLMs), factors responsible for affecting newly settled Asari clam density and its spatial distribution were distinguished between sampling days, with "crest" sites always having a negative influence each on the density and the distribution on both sampling days. The continuously recorded data for the wave-current flows at the "crest" site on the tidal flat showed that newly settled Asari clam, as well as bottom sediment particles, at the "crest" site to be easily displaced. Small-scale spatial distributions of newly settled Asari clam changed with more advanced benthic stages in relation to the wave shear stress.

  9. Facies architecture of heterolithic tidal deposits : The Holocene Holland Tidal Basin

    NARCIS (Netherlands)

    Donselaar, M.E.; Geel, C.R.

    2007-01-01

    The size, shape and spatial position of lithofacies types (or facies architecture) in a tidal estuarine basin are complex and therefore difficult to model. The tidal currents in the basin concentrate sand-sized sediment in a branching pattern of tidal channels and fringing tidal flats. Away from the

  10. Responses of water environment to tidal flat reduction in Xiangshan Bay: Part I hydrodynamics

    Science.gov (United States)

    Li, Li; Guan, Weibing; Hu, Jianyu; Cheng, Peng; Wang, Xiao Hua

    2018-06-01

    Xiangshan Bay consists of a deep tidal channel and three shallow inlets. A large-scale tidal flat has been utilized through coastal construction. To ascertain the accumulate influences of these engineering projects upon the tidal dynamics of the channel-inlets system, this study uses FVCOM to investigate the tides and flow asymmetries of the bay, and numerically simulate the long-term variations of tidal dynamics caused by the loss of tidal flats. It was found that the reduction of tidal flat areas from 1963 to 2010 slightly dampened M2 tidal amplitudes (0.1 m, ∼6%) and advanced its phases by reducing shoaling effects, while amplified M4 tidal amplitudes (0.09 m, ∼27%) and advanced its phases by reducing bottom friction, in the inner bay. Consequently, the ebb dominance was dampened indicated by reduced absolute value of elevation skewness (∼20%) in the bay. The tides and tidal asymmetry were impacted by the locations, areas and slopes of the tidal flats through changing tidal prism, shoaling effect and bottom friction, and consequently impacted tidal duration asymmetry in the bay. Tides and tidal asymmetry were more sensitive to the tidal flat at the head of the bay than the side bank. Reduced/increased tidal flat slopes around the Tie inlet dampened the ebb dominance. Tidal flat had a role in dissipating the M4 tide rather than generating it, while the advection only play a secondary role in generating the M4 tide. The full-length tidal flats reclamation would trigger the reverse of ebb to flood dominance in the bay. This study would be applicable for similar narrow bays worldwide.

  11. Sedimentary Facies Mapping Based on Tidal Channel Network and Topographic Features

    Science.gov (United States)

    Ryu, J. H.; Lee, Y. K.; Kim, K.; Kim, B.

    2015-12-01

    Tidal flats on the west coast of Korea suffer intensive changes in their surface sedimentary facies as a result of the influence of natural and artificial changes. Spatial relationships between surface sedimentary facies distribution and benthic environments were estimated for the open-type Ganghwa tidal flat and semi closed-type Hwangdo tidal flat, Korea. In this study, we standardized the surface sedimentary facies and tidal channel index of the channel density, distance, thickness and order. To extract tidal channel information, we used remotely sensed data, such as those from the Korea Multi-Purpose Satellite (KOMPSAT)-2, KOMPSAT-3, and aerial photographs. Surface sedimentary facies maps were generated based on field data using an interpolation method.The tidal channels in each sediment facies had relatively constant meandering patterns, but the density and complexity were distinguishable. The second fractal dimension was 1.7-1.8 in the mud flat, about 1.4 in the mixed flat, and about 1.3 in the sand flat. The channel density was 0.03-0.06 m/m2 in the mud flat and less than 0.02 m/m2 in the mixed and sand flat areas of the two test areas. Low values of the tidal channel index, which indicated a simple pattern of tidal channel distribution, were identified at areas having low elevation and coarse-grained sediments. By contrast, high values of the tidal channel index, which indicated a dendritic pattern of tidal channel distribution, were identified at areas having high elevation and fine-grained sediments. Surface sediment classification based on remotely sensed data must circumspectly consider an effective critical grain size, water content, local topography, and intertidal structures.

  12. Temporal bed level variations in the Yangtze tidal flats (abstract)

    NARCIS (Netherlands)

    Yan, H.; Van Prooijen, B.C.

    2013-01-01

    The Yangtze River is one of the largest rivers in the world and the longest one in Asia. Its estuary forms an important entrance for shipping, but is also a key ecological system. Especially the inter-tidal flats are valuable habitats. The health and integrity of the estuarine tidal flat are however

  13. Inferring tidal wetland stability from channel sediment fluxes: observations and a conceptual model

    Science.gov (United States)

    Ganju, Neil K.; Nidzieko, Nicholas J.; Kirwan, Matthew L.

    2013-01-01

    Anthropogenic and climatic forces have modified the geomorphology of tidal wetlands over a range of timescales. Changes in land use, sediment supply, river flow, storminess, and sea level alter the layout of tidal channels, intertidal flats, and marsh plains; these elements define wetland complexes. Diagnostically, measurements of net sediment fluxes through tidal channels are high-temporal resolution, spatially integrated quantities that indicate (1) whether a complex is stable over seasonal timescales and (2) what mechanisms are leading to that state. We estimated sediment fluxes through tidal channels draining wetland complexes on the Blackwater and Transquaking Rivers, Maryland, USA. While the Blackwater complex has experienced decades of degradation and been largely converted to open water, the Transquaking complex has persisted as an expansive, vegetated marsh. The measured net export at the Blackwater complex (1.0 kg/s or 0.56 kg/m2/yr over the landward marsh area) was caused by northwesterly winds, which exported water and sediment on the subtidal timescale; tidally forced net fluxes were weak and precluded landward transport of suspended sediment from potential seaward sources. Though wind forcing also exported sediment at the Transquaking complex, strong tidal forcing and proximity to a turbidity maximum led to an import of sediment (0.031 kg/s or 0.70 kg/m2/yr). This resulted in a spatially averaged accretion of 3.9 mm/yr, equaling the regional relative sea level rise. Our results suggest that in areas where seaward sediment supply is dominant, seaward wetlands may be more capable of withstanding sea level rise over the short term than landward wetlands. We propose a conceptual model to determine a complex's tendency toward stability or instability based on sediment source, wetland channel location, and transport mechanisms. Wetlands with a reliable portfolio of sources and transport mechanisms appear better suited to offset natural and

  14. Detecting areal changes in tidal flats after sea dike construction ...

    Indian Academy of Sciences (India)

    The main objective of this study was to estimate changes in the area of tidal flats that occurred after sea dike construction on the western coast of South Korea using Landsat-TM images. Applying the ISODATA method of unsupervised classification for Landsat-TM images, the tidal flats were identified, and the resulting areas ...

  15. Historical record of lead accumulation and source in the tidal flat of Haizhou Bay, Yellow Sea: Insights from lead isotopes

    International Nuclear Information System (INIS)

    Zhang, Rui; Guan, Minglei; Shu, Yujie; Shen, Liya; Chen, Xixi; Zhang, Fan; Li, Tiegang

    2016-01-01

    In order to investigate the historical records of lead contamination and source in coastal region of Haizhou Bay, Yellow Sea, a sediment core was collected from tidal flat, dated by 210 Pb and 137 Cs. Lead and its stable isotopic ratios were determined. The profiles of enrichment factor (EF) and Pb isotope ratios showed increasing trend upward throughout the core, correlating closely with the experience of a rapid economic and industrial development of the catchment. According to Pb isotopic ratios, coal combustion emission mainly contributed to the Pb burden in sediments. Based on end-member model, coal combustion emission dominated anthropogenic Pb sources in recent decades contributing from 48% to 67% in sediment. And the contribution of leaded gasoline was lower than 20%. A stable increase of coal combustion source was found in sediment core, while the contribution of leaded gasoline had declined recently, with the phase-out of leaded gasoline in China. - Highlights: •Pb contamination in tidal flat of Haizhou Bay was chronicled by a sediment core. •The coal combustion source dominated Pb contamination of Haizhou Bay. •Coal combustion source showed an increasing trend in four decades in Haizhou Bay.

  16. Environmentally associated spatial changes of a macrozoobenthic community in the Saemangeum tidal flat, Korea

    Science.gov (United States)

    Ryu, Jongseong; Khim, Jong Seong; Choi, Jin-Woo; Shin, Hyun Chool; An, Soonmo; Park, Jinsoon; Kang, Daeseok; Lee, Chang-Hee; Koh, Chul-Hwan

    2011-05-01

    Estuarine tidal flats are both ecologically and economically important, hence developing methods to reliably measure ecosystem health is essential. Because benthic fauna play a central role in the food web of tidal flats, in this study we set out to quantitatively describe the intertidal zonation of macro-invertebrates and their associations with specific environmental parameters along three transects in the Saemangeum tidal flat, Korea. The abundance and biomass of intertidal fauna with respect to five environmental parameters (i.e., shore level, mud content, coarse sand content, water content, and organic content) were measured, to identify environmental factors that influence macrofaunal distribution in intertidal soft bottom habitats. A total of 75 species were identified, with dominant species showing distinct zones of distribution along all transects. The number of species recorded in each transect was found to be dependent on sediment characteristics and salinity. Cluster analysis classified the entire study area into three faunal assemblages (i.e., location groups), which were delineated by characteristic species, including (A) ' Periserrula-Macrophthalmus', (B) ' Umbonium-Meretrix', and (C) ' Prionospio-Potamocorbula'. Four environmental variables (i.e., shore level, water content, mud content, and organic content) appeared to determine factors that distinguished the three faunal assemblages, based on the discriminant analysis. The faunal assemblage types of the sampled locations were accurately predicted from environmental variables in two discriminant functions, with a prediction accuracy of 98%. It should be noted that the zonation of benthos in the lower section (C) of Sandong had been affected by the construction of a nearby dike, while this parameter had remained essentially unchanged at the other two location groups (A-B). Overall, the zonation of benthos from the Saemangeum tidal flat was explained adequately by the measured environmental variables

  17. The influence of neap-spring tidal variation and wave energy on sediment flux in salt marsh tidal creeks

    Science.gov (United States)

    Lacy, Jessica; Ferner, Matthew C.; Callaway, John C.

    2018-01-01

    Sediment flux in marsh tidal creeks is commonly used to gage sediment supply to marshes. We conducted a field investigation of temporal variability in sediment flux in tidal creeks in the accreting tidal marsh at China Camp State Park adjacent to northern San Francisco Bay. Suspended-sediment concentration (SSC), velocity, and depth were measured near the mouths of two tidal creeks during three six-to-ten-week deployments: two in winter and one in summer. Currents, wave properties and SSC were measured in the adjacent shallows. All deployments spanned the largest spring tides of the season. Results show that tidally-averaged suspended-sediment flux (SSF) in the tidal creeks decreased with increasing tidal energy, and SSF was negative (bayward) for tidal cycles with maximum water surface elevation above the marsh plain. Export during the largest spring tides dominated the cumulative SSF measured during the deployments. During ebb tides following the highest tides, velocities exceeded 1 m/s in the narrow tidal creeks, resulting in negative tidally-averaged water flux, and mobilizing sediment from the creek banks or bed. Storm surge also produced negative SSF. Tidally-averaged SSF was positive in wavey conditions with moderate tides. Spring-tide sediment export was about 50% less at a station 130 m further up the tidal creek than at the creek mouth. The negative tidally-averaged water flux near the creek mouth during spring tides indicates that in the lower marsh, some of the water flooding directly across the bay--marsh interface drains through the tidal creeks, and suggests that this interface may be a pathway for sediment supply to the lower marsh as well.

  18. The effects of tidal range on saltmarsh morphology

    Science.gov (United States)

    Goodwin, Guillaume; Mudd, Simon

    2017-04-01

    Saltmarshes are highly productive coastal ecosystems that act simultaneously as flood barriers, carbon storage, pollutant filters and nurseries. As halophytic plants trap suspended sediment and decay in the settled strata, innervated platforms emerge from the neighbouring tidal flats, forming sub-vertical scarps on their eroding borders and sub-horizontal pioneer zones in areas of seasonal expansion. These evolutions are subject to two contrasting influences: stochastically generated waves erode scarps and scour tidal flats, whereas tidally-generated currents transport sediment to and from the marsh through the channel network. Hence, the relative power of waves and tidal currents strongly influences saltmarsh evolution, and regional variations in tidal range yield marshes of differing morphologies. We analyse several sheltered saltmarshes to determine how their morphology reflects variations in tidal forcing. Using tidal, topographic and spectral data, we implement an algorithm based on the open-source software LSDTopoTools to automatically identify features such as marsh platforms, tidal flats, erosion scarps, pioneer zones and tidal channels on local Digital Elevation Models. Normalised geometric properties are then computed and compared throughout the spectrum of tidal range, highlighting a notable effect on channel networks, platform geometry and wave exposure. We observe that micro-tidal marshes typically display jagged outlines and multiple islands along with wide, shallow channels. As tidal range increases, we note the progressive disappearance of marsh islands and linearization of scarps, both indicative of higher hydrodynamic stress, along with a structuration of channel networks and the increase of levee volume, suggesting higher sediment input on the platform. Future research will lead to observing and modelling the evolution of saltmarshes under various tidal forcing in order to assess their resilience to environmental change.

  19. Dynamics of intertidal flats in the Loire estuary

    Science.gov (United States)

    Kervella, Stephane; Sottolichio, Aldo; Bertier, Christine

    2014-05-01

    Tidal flats form at the edges of many tidal estuaries, and are found in broad climatic regions. Their evolution plays a fundamental role in maintaining the morphodynamic equilibrium of an estuary. The Loire estuary is one of the largest macrotidal systems of the french atlantic coast. Since 200 years, its geometry has been drastically modified through channeling, deepening, embanking, infilling of secondary channels, etc. These works altered many intertidal areas. In the recent years, efforts for the rectification of the morphology have been made in order to restore the ecology of the estuary. In this context, it is crucial to better understand the dynamics of intertidal flats, still poorly understood in this estuary. The aim of this work is to analyse a series of original observations conducted for the first time in two intertidal flats of the central Lore estuary between 2008 and 2010. The tidal flats are situated in the northern bank, at 12 and 17 km upstream from the mouth respectively. Six Altus altimeters were deployed at two cross shore transects, measuring continuously and at a high-frequency bed altimetry and water level, providing information on tide and waves. At the semi-diurnal tidal scale, the surficial sediment of intertidal flats is permanently mobilized. Altimetry variations are low, and their amplitude varies as a function of tides and river flow. At the scale of several months, the sedimentation is controlled by the position of the turbidity maximum (and therefore by the river flow) and also by the tidal amplitude. During low river flow periods, altimetry variations are only due to tidal cycles. During decaying tides, suspended sediment settle mainly on the lower part of the tidal flats, forming fluid mud layers of several cm thick, which can consolidate rapidly; under rising tides, the increasing of tidal currents promotes erosion. During periods of high river flow, the turbidity maximum shifts to the lower estuary. The higher suspended sediment

  20. Tidal and meteorological forcing of sediment transport in tributary mudflat channels.

    Science.gov (United States)

    Ralston, David K; Stacey, Mark T

    2007-06-01

    Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides.

  1. Pollution of HCHs, DDTs and PCBs in tidal flat of Hangzhou Bay 2009-2013

    Science.gov (United States)

    Zhao, Peng; Gong, Wenjie; Mao, Guohua; Li, Jige; Xu, Fenfen; Shi, Jiawei

    2016-05-01

    The concentration and distribution of three persistent organic pollutants (hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs) and polychlorinated biphenyls (PCBs)) was assessed in tidal flat sediments collected from the south bank of Hangzhou Bay, China from 2009 to 2013. Gas chromatography coupled to triple quadrupole mass spectrometry (GC-MS/MS) was used for analysis, based on United States Environmental Protection Agency methods EPA8080A, EPA8081B, and EPA3550B. The results showed that the levels of HCHs, DDTs and PCBs decreased in the order of DDTs transformer or electronic equipment in the south bank of Hangzhou Bay.

  2. Effect of environmental conditions on variation in the sediment-water interface created by complex macrofaunal burrows on a tidal flat

    Science.gov (United States)

    Koo, Bon Joo; Kwon, Kae Kyoung; Hyun, Jung-Ho

    2007-11-01

    We quantified the increase in the sediment-water interface created by the burrowing activities of the resident macrofaunal community and its variation with respect to the physical conditions of the habitat on a tidal fat. We investigated environmental factors and dimensions of macrofaunal burrows with respect to tidal height and vegetation during spring and summer at three sites. A resin-casting method was used to quantify the dimensions of all burrows at each site. The dimensions of macrofaunal burrows varied both temporally and spatially and the increase in the sediment-water interface reached a maximum of 311%, ranging from 20 to 255% under different habitat conditions. The sediment-water interface depended on the duration of exposure resulting from tidal height, increased temperatures resulting from seasonality, and marsh plant density. Burrows were deeper and more expansive at both higher tidal levels and higher temperatures in summer. Burrow dimensions were sharply reduced with the disappearance of adult macrofauna in areas where the roots of the marsh plant Suaeda japonica were dense. The significance of this study lies in quantifying the burrow dimensions of the entire macrofaunal community, rather than just a single population, and confirming their spatial and temporal variation with respect to physical conditions of the habitat. Environmental factors responsible for variation in burrow dimensions are discussed.

  3. Entamoeba marina n. sp.; a New Species of Entamoeba Isolated from Tidal Flat Sediment of Iriomote Island, Okinawa, Japan.

    Science.gov (United States)

    Shiratori, Takashi; Ishida, Ken-Ichiro

    2016-05-01

    The genus Entamoeba includes anaerobic lobose amoebae, most of which are parasites of various vertebrates and invertebrates. We report a new Entamoeba species, E. marina n. sp. that was isolated from a sample of tidal flat sediment collected at Iriomote Island, Okinawa, Japan. Trophozoites of E. marina were 12.8-32.1 μm in length and 6.8-15.9 μm in width, whereas the cysts were 8.9-15.8 μm in diam. and contained four nuclei. The E. marina cells contained a rounded nucleus with a small centric karyosome and uniformly arranged peripheral chromatin. Although E. marina is morphologically indistinguishable from other tetranucleated cyst-forming Entamoeba species, E. marina can be distinguished from them based on the combination of molecular phylogenetic analyses using SSU rDNA gene and the difference of collection sites. Therefore, we propose E. marina as a new species of the genus Entamoeba. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  4. High-Accuracy Tidal Flat Digital Elevation Model Construction Using TanDEM-X Science Phase Data

    Science.gov (United States)

    Lee, Seung-Kuk; Ryu, Joo-Hyung

    2017-01-01

    This study explored the feasibility of using TanDEM-X (TDX) interferometric observations of tidal flats for digital elevation model (DEM) construction. Our goal was to generate high-precision DEMs in tidal flat areas, because accurate intertidal zone data are essential for monitoring coastal environment sand erosion processes. To monitor dynamic coastal changes caused by waves, currents, and tides, very accurate DEMs with high spatial resolution are required. The bi- and monostatic modes of the TDX interferometer employed during the TDX science phase provided a great opportunity for highly accurate intertidal DEM construction using radar interferometry with no time lag (bistatic mode) or an approximately 10-s temporal baseline (monostatic mode) between the master and slave synthetic aperture radar image acquisitions. In this study, DEM construction in tidal flat areas was first optimized based on the TDX system parameters used in various TDX modes. We successfully generated intertidal zone DEMs with 57-m spatial resolutions and interferometric height accuracies better than 0.15 m for three representative tidal flats on the west coast of the Korean Peninsula. Finally, we validated these TDX DEMs against real-time kinematic-GPS measurements acquired in two tidal flat areas; the correlation coefficient was 0.97 with a root mean square error of 0.20 m.

  5. Intertidal deposits: river mouths, tidal flats, and coastal lagoons

    NARCIS (Netherlands)

    Eisma, D.; Boer, de P.L.; Cadee, G.C.; Dijkema, K.; Ridderinkhof, H.; Phillippart, C.

    1998-01-01

    Intertidal Deposits: River Mouths, Tidal Flats, and Coastal Lagoons combines the authors personal and professional experience with the mass of available literature to present a cohesive overview of intertidal deposits and the widely diverse conditions of their formation worldwide. This includes the

  6. Modified Principal Component Analysis for Identifying Key Environmental Indicators and Application to a Large-Scale Tidal Flat Reclamation

    Directory of Open Access Journals (Sweden)

    Kejian Chu

    2018-01-01

    Full Text Available Identification of the key environmental indicators (KEIs from a large number of environmental variables is important for environmental management in tidal flat reclamation areas. In this study, a modified principal component analysis approach (MPCA has been developed for determining the KEIs. The MPCA accounts for the two important attributes of the environmental variables: pollution status and temporal variation, in addition to the commonly considered numerical divergence attribute. It also incorporates the distance correlation (dCor to replace the Pearson’s correlation to measure the nonlinear interrelationship between the variables. The proposed method was applied to the Tiaozini sand shoal, a large-scale tidal flat reclamation region in China. Five KEIs were identified as dissolved inorganic nitrogen, Cd, petroleum in the water column, Hg, and total organic carbon in the sediment. The identified KEIs were shown to respond well to the biodiversity of phytoplankton. This demonstrated that the identified KEIs adequately represent the environmental condition in the coastal marine system. Therefore, the MPCA is a practicable method for extracting effective indicators that have key roles in the coastal and marine environment.

  7. Mussel beds are biological power stations on intertidal flats

    Science.gov (United States)

    Engel, Friederike G.; Alegria, Javier; Andriana, Rosyta; Donadi, Serena; Gusmao, Joao B.; van Leeuwe, Maria A.; Matthiessen, Birte; Eriksson, Britas Klemens

    2017-05-01

    Intertidal flats are highly productive areas that support large numbers of invertebrates, fish, and birds. Benthic diatoms are essential for the function of tidal flats. They fuel the benthic food web by forming a thin photosynthesizing compartment in the top-layer of the sediment that stretches over the vast sediment flats during low tide. However, the abundance and function of the diatom film is not homogenously distributed. Recently, we have realized the importance of bivalve reefs for structuring intertidal ecosystems; by creating structures on the intertidal flats they provide habitat, reduce hydrodynamic stress and modify the surrounding sediment conditions, which promote the abundance of associated organisms. Accordingly, field studies show that high chlorophyll a concentration in the sediment co-vary with the presence of mussel beds. Here we present conclusive evidence by a manipulative experiment that mussels increase the local biomass of benthic microalgae; and relate this to increasing biomass of microalgae as well as productivity of the biofilm across a nearby mussel bed. Our results show that the ecosystem engineering properties of mussel beds transform them into hot spots for primary production on tidal flats, highlighting the importance of biological control of sedimentary systems.

  8. Water and suspended sediment division at a stratified tidal junction

    NARCIS (Netherlands)

    Buschman, F.A.; Vegt, M. van der; Hoitink, A.J.F.; Hoekstra, P.

    2013-01-01

    Tidal junctions play a crucial role in the transport of water, salt, and sediment through a delta distributary network. Water, salt and sediment are exchanged at tidal junctions, thereby influencing the transports in the connecting branches and the overall dynamics of the system. This paper

  9. Bio-geomorphic feedback causes alternative stable landscape states: insights from coastal marshes and tidal flats

    Science.gov (United States)

    Temmerman, Stijn; Wang, Chen

    2014-05-01

    Many bio-geomorphic systems, such as hill slopes, river floodplains, tidal floodplains and dune areas, seem to be vulnerable to shifts between alternative bare and vegetated landscape states, and these shifts seem to be driven by bio-geomorphic feedbacks. Here we search for empirical evidence for alternative stable state behavior in intertidal flats and marshes, where bio-geomorphic interactions are known to be intense. Large-scale transitions have been reported worldwide between high-elevation vegetated marshes and low-elevation bare flats in intertidal zones of deltas, estuaries, and coastal embayments. It is of significant importance to understand and predict such transitions, because vegetated marshes provide significant services to coastal societies. Previous modeling studies suggest that the ecological theory of catastrophic shifts between alternative stable ecosystem states potentially explains the transition between bare flats and vegetated marshes. However, up to now only few empirical evidence exists. In our study, the hypothesis is empirically tested that vegetated marshes and bare tidal flats can be considered as alternative stable landscape states with rapid shifts between them. We studied historical records (1930s - 2000s) of intertidal elevation surveys and aerial pictures from the Westerschelde estuary (SW Netherlands). Our results demonstrated the existence of: (1) bimodality in the intertidal elevation distribution, i.e., the presence of two peaks in the elevation frequency distribution corresponding to a completely bare state and a densely vegetated state; (2) the relatively rapid transition in elevation when intertidal flats evolve from bare to vegetated states, with sedimentation rates that are 2 to 8 times faster than during the stable states; (3) a threshold elevation above which the shift from bare to vegetated state has a high chance to occur. Our observations demonstrate the abrupt non-linear shift between low-elevation bare flats and high

  10. Water and suspended sediment division at a stratified tidal junction

    NARCIS (Netherlands)

    Buschman, F.A.; Vegt, van der M.; Hoitink, A.J.F.; Hoekstra, P.

    2013-01-01

    [1] Tidal junctions play a crucial role in the transport of water, salt, and sediment through a delta distributary network. Water, salt and sediment are exchanged at tidal junctions, thereby influencing the transports in the connecting branches and the overall dynamics of the system. This paper

  11. A Tidally Averaged Sediment-Transport Model for San Francisco Bay, California

    Science.gov (United States)

    Lionberger, Megan A.; Schoellhamer, David H.

    2009-01-01

    A tidally averaged sediment-transport model of San Francisco Bay was incorporated into a tidally averaged salinity box model previously developed and calibrated using salinity, a conservative tracer (Uncles and Peterson, 1995; Knowles, 1996). The Bay is represented in the model by 50 segments composed of two layers: one representing the channel (>5-meter depth) and the other the shallows (0- to 5-meter depth). Calculations are made using a daily time step and simulations can be made on the decadal time scale. The sediment-transport model includes an erosion-deposition algorithm, a bed-sediment algorithm, and sediment boundary conditions. Erosion and deposition of bed sediments are calculated explicitly, and suspended sediment is transported by implicitly solving the advection-dispersion equation. The bed-sediment model simulates the increase in bed strength with depth, owing to consolidation of fine sediments that make up San Francisco Bay mud. The model is calibrated to either net sedimentation calculated from bathymetric-change data or measured suspended-sediment concentration. Specified boundary conditions are the tributary fluxes of suspended sediment and suspended-sediment concentration in the Pacific Ocean. Results of model calibration and validation show that the model simulates the trends in suspended-sediment concentration associated with tidal fluctuations, residual velocity, and wind stress well, although the spring neap tidal suspended-sediment concentration variability was consistently underestimated. Model validation also showed poor simulation of seasonal sediment pulses from the Sacramento-San Joaquin River Delta at Point San Pablo because the pulses enter the Bay over only a few days and the fate of the pulses is determined by intra-tidal deposition and resuspension that are not included in this tidally averaged model. The model was calibrated to net-basin sedimentation to calculate budgets of sediment and sediment-associated contaminants. While

  12. Suspended sediment transport trough a large fluvial-tidal channel network

    Science.gov (United States)

    Wright, Scott A.; Morgan-King, Tara L.

    2015-01-01

    The confluence of the Sacramento and San Joaquin Rivers, CA, forms a large network of interconnected channels, referred to as the Sacramento-San Joaquin Delta (the Delta). The Delta comprises the transition zone from the fluvial influences of the upstream rivers and tidal influences of San Francisco Bay downstream. Formerly an extensive tidal marsh, the hydrodynamics and geomorphology of Delta have been substantially modified by humans to support agriculture, navigation, and water supply. These modifications, including construction of new channels, diking and draining of tidal wetlands, dredging of navigation channels, and the operation of large pumping facilities for distribution of freshwater from the Delta to other parts of the state, have had a dramatic impact on the physical and ecological processes within the Delta. To better understand the current physical processes, and their linkages to ecological processes, the USGS maintains an extensive network of flow, sediment, and water quality gages in the Delta. Flow gaging is accomplished through use of the index-velocity method, and sediment monitoring uses turbidity as a surrogate for suspended-sediment concentration. Herein, we present analyses of the transport and dispersal of suspended sediment through the complex network of channels in the Delta. The primary source of sediment to the Delta is the Sacramento River, which delivers pulses of sediment primarily during winter and spring runoff events. Upon reaching the Delta, the sediment pulses move through the fluvial-tidal transition while also encountering numerous channel junctions as the Sacramento River branches into several distributary channels. The monitoring network allows us to track these pulses through the network and document the dominant transport pathways for suspended sediment. Further, the flow gaging allows for an assessment of the relative effects of advection (the fluvial signal) and dispersion (from the tides) on the sediment pulses as they

  13. Suspended-sediment trapping in the tidal reach of an estuarine tributary channel

    Science.gov (United States)

    Downing-Kunz, Maureen; Schoellhamer, David H.

    2015-01-01

    Evidence of decreasing sediment supply to estuaries and coastal oceans worldwide illustrates the need for accurate and updated estimates. In the San Francisco Estuary (Estuary), recent research suggests a decrease in supply from its largest tributaries, implying the increasing role of smaller, local tributaries in sediment supply to this estuary. Common techniques for estimating supply from tributaries are based on gages located above head of tide, which do not account for trapping processes within the tidal reach. We investigated the effect of a tidal reach on suspended-sediment discharge for Corte Madera Creek, a small tributary of the Estuary. Discharge of water (Q) and suspended-sediment (SSD) were observed for 3 years at two locations along the creek: upstream of tidal influence and at the mouth. Comparison of upstream and mouth gages showed nearly 50 % trapping of upstream SSD input within the tidal reach over this period. At the storm time scale, suspended-sediment trapping efficiency varied greatly (range −31 to 93 %); storms were classified as low- or high-yield based on upstream SSD. As upstream peak Q increased, high-yield storms exhibited significantly decreased trapping. Tidal conditions at the mouth—ebb duration and peak ebb velocity—during storms had a minor effect on sediment trapping, suggesting fluvial processes dominate. Comparison of characteristic fluvial and tidal discharges at the storm time scale demonstrated longitudinal differences in the regulating process for SSD. These results suggest that SSD from gages situated above head of tide overestimate sediment supply to the open waters beyond tributary mouths and thus trapping processes within the tidal reach should be considered.

  14. Quantitative Analysis of the Waterline Method for Topographical Mapping of Tidal Flats: A Case Study in the Dongsha Sandbank, China

    Directory of Open Access Journals (Sweden)

    Yongxue Liu

    2013-11-01

    Full Text Available Although the topography of tidal flats is important for understanding their evolution, the spatial and temporal sampling frequency of such data remains limited. The waterline method has the potential to retrieve past tidal flat topography by utilizing large archives of satellite images. This study performs a quantitative analysis of the relationship between the accuracy of tidal flat digital elevation models (DEMs that are based on the waterline method and the factors that influence the DEMs. The three major conclusions of the study are as follows: (1 the coverage rate of the waterline points and the number of satellite images used to create the DEM are highly linearly correlated with the error of the resultant DEMs, and the former is more significant in indicating the accuracy of the resultant DEMs than the latter; (2 both the area and the slope of the tidal flats are linearly correlated with the error of the resultant DEMs; and (3 the availability analysis of the archived satellite images indicates that the waterline method can retrieve tidal flat terrains from the past forty years. The upper limit of the temporal resolution of the tidal flat DEM can be refined to within one year since 1993, to half a year since 2004 and to three months since 2009.

  15. Topographic mapping on large-scale tidal flats with an iterative approach on the waterline method

    Science.gov (United States)

    Kang, Yanyan; Ding, Xianrong; Xu, Fan; Zhang, Changkuan; Ge, Xiaoping

    2017-05-01

    Tidal flats, which are both a natural ecosystem and a type of landscape, are of significant importance to ecosystem function and land resource potential. Morphologic monitoring of tidal flats has become increasingly important with respect to achieving sustainable development targets. Remote sensing is an established technique for the measurement of topography over tidal flats; of the available methods, the waterline method is particularly effective for constructing a digital elevation model (DEM) of intertidal areas. However, application of the waterline method is more limited in large-scale, shifting tidal flats areas, where the tides are not synchronized and the waterline is not a quasi-contour line. For this study, a topographical map of the intertidal regions within the Radial Sand Ridges (RSR) along the Jiangsu Coast, China, was generated using an iterative approach on the waterline method. A series of 21 multi-temporal satellite images (18 HJ-1A/B CCD and three Landsat TM/OLI) of the RSR area collected at different water levels within a five month period (31 December 2013-28 May 2014) was used to extract waterlines based on feature extraction techniques and artificial further modification. These 'remotely-sensed waterlines' were combined with the corresponding water levels from the 'model waterlines' simulated by a hydrodynamic model with an initial generalized DEM of exposed tidal flats. Based on the 21 heighted 'remotely-sensed waterlines', a DEM was constructed using the ANUDEM interpolation method. Using this new DEM as the input data, it was re-entered into the hydrodynamic model, and a new round of water level assignment of waterlines was performed. A third and final output DEM was generated covering an area of approximately 1900 km2 of tidal flats in the RSR. The water level simulation accuracy of the hydrodynamic model was within 0.15 m based on five real-time tide stations, and the height accuracy (root mean square error) of the final DEM was 0.182 m

  16. Mussel beds are biological power stations on intertidal flats

    NARCIS (Netherlands)

    Engel, Friederike G.; Alegria, Javier; Andriana, Rosyta; Donadi, Serena; Gusmao, Joao B.; van Leeuwe, Maria A.; Matthiessen, Birte; Eriksson, Britas Klemens

    2017-01-01

    Intertidal flats are highly productive areas that support large numbers of invertebrates, fish, and birds. Benthic diatoms are essential for the function of tidal flats. They fuel the benthic food web by forming a thin photosynthesizing compartment in the top-layer of the sediment that stretches

  17. Ichnological evidence of Megalosaurid Dinosaurs Crossing Middle Jurassic Tidal Flats

    Science.gov (United States)

    Razzolini, Novella L.; Oms, Oriol; Castanera, Diego; Vila, Bernat; Santos, Vanda Faria Dos; Galobart, Àngel

    2016-08-01

    A new dinosaur tracksite in the Vale de Meios quarry (Serra de Aire Formation, Bathonian, Portugal)preserves more than 700 theropod tracks. They are organized in at least 80 unidirectional trackways arranged in a bimodal orientation pattern (W/NW and E/SE). Quantitative and qualitative comparisons reveal that the large tridactyl, elongated and asymmetric tracks resemble the typical Late Jurassic-Early Cretaceous Megalosauripus ichnogenus in all morphometric parameters. Few of the numerous tracks are preserved as elite tracks while the rest are preserved as different gradients of modified true tracks according to water content, erosive factors, radial fractures and internal overtrack formations. Taphonomical determinations are consistent with paleoenvironmental observations that indicate an inter-tidal flat located at the margin of a coastal barrier. The Megalosauripus tracks represent the oldest occurrence of this ichnotaxon and are attributed to large megalosaurid dinosaurs. Their occurrence in Vale de Meios tidal flat represents the unique paleoethological evidence of megalosaurids moving towards the lagoon, most likley during the low tide periods with feeding purposes.

  18. Hourly and daily variation of sediment redox potential in tidal wetland sediments

    Science.gov (United States)

    Catallo, W. James

    1999-01-01

    Variation of electrochemical oxidation-reduction (redox) potential was examined in surface salt march sediments under conditions of flooding and tidal simulation in mesocosms and field sites. Time series were generated of redox potential measured in sediment profiles at 2-10 cm depth using combination Pt-Ag/AgCl (ORP) electrodes. Redox potential data were acquired at rapid rates (1-55 samples/h) over extended periods (3-104 days) along with similar times series of temperature (water, air, soil) and pH. It was found that redox potential vaired as a result of water level changes and was unrelated to diurnal changes in temperature or pH, the latter of which changed by 370 mV redox potential decrease in under 48 hours). Attenuatoin of microbial activity by [gamma] y-radiation and toxic chemicals elimintated this response. In tidal salt marsh mesocosms where the sediment-plant assemblages were exposed to a simulated diurnal tide, redox potenial oscillations of 40-300 mV amplitude were recoded that has the same periodicity as the flood-drain cycle. Periodic redoc potential time series were observed repeatedly in sediments receiving tidal pulsing but not in those sediments exposed to static hydrological conditions. Data collected over 12 days from a coastal marsh site experiencing diurnal tides showed similar fluctuations in redox potential. Data from the experimentents indicated that (a) redox potential can be a dynamic, nonlinear variable in coastal and estuarine wetland sediments over hourly and daily scales, and the designs of biogeochemical experiments should reflect this, (b) redox potential can change rapidly and signigicantly in coastal wetland sediments in response of flooding and draining, (c) microbial community processes are primarily determinants of the time course of redox potential in wetland sediments, and elimination of inhibition of microbial activity (e.g. by pollutants) can significantly alter that behavior, and (d) fast redox potential dynamics appear

  19. Biodiversity of Trichoderma Community in the Tidal Flats and Wetland of Southeastern China.

    Science.gov (United States)

    Saravanakumar, Kandasamy; Yu, Chuanjin; Dou, Kai; Wang, Meng; Li, Yaqian; Chen, Jie

    2016-01-01

    To investigate the biodiversity of Trichoderma (Hypocreaceae) and their relation to sediment physical and chemical properties, we collected a total of 491 sediment samples from coastal wetlands (tidal flat and wetland) in Southeast China. Further, we applied two types of molecular approaches such as culture dependent and independent methods for identification of Trichoderma spp. A total of 254 isolates were obtained and identified to 13 species such as T. aureoviride, T. asperellum, T. harzianum, T. atroviride, T. koningiopsis, T. longibrachiatum, T. koningii. T. tawa, T. viridescens, T. virens, T. hamatum, T. viride, and T. velutinum by the culture-dependent (CD) method of these, T. tawa was newly described in China. Subsequently, the culture indepented method of 454 pyrosequencing analysis revealed a total of six species such as T. citrinoviride, T. virens, T. polysporum, T. harzianum/Hypocrea lixii and two unknown species. Notably, T. citrinoviride and T. polysporum were not found by the CD method. Therefore, this work revealed that the combination of these two methods could show the higher biodiversity of Trichoderma spp., than either of this method alone. Among the sampling sites, Hangzhou, Zhejiang Province, exhibited rich biodiversity and low in Fengxian. Correlation and Redundancy discriminant analysis (RDA) revealed that sediment properties of temperature, redox potential (Eh) and pH significantly influenced the biodiversity of Trichoderma spp.

  20. Biodiversity of Trichoderma Community in the Tidal Flats and Wetland of Southeastern China

    Science.gov (United States)

    Saravanakumar, Kandasamy; Yu, Chuanjin; Dou, Kai; Wang, Meng; Li, Yaqian; Chen, Jie

    2016-01-01

    To investigate the biodiversity of Trichoderma (Hypocreaceae) and their relation to sediment physical and chemical properties, we collected a total of 491 sediment samples from coastal wetlands (tidal flat and wetland) in Southeast China. Further, we applied two types of molecular approaches such as culture dependent and independent methods for identification of Trichoderma spp. A total of 254 isolates were obtained and identified to 13 species such as T. aureoviride, T. asperellum, T. harzianum, T. atroviride, T. koningiopsis, T. longibrachiatum, T. koningii. T. tawa, T. viridescens, T. virens, T. hamatum, T. viride, and T. velutinum by the culture-dependent (CD) method of these, T. tawa was newly described in China. Subsequently, the culture indepented method of 454 pyrosequencing analysis revealed a total of six species such as T. citrinoviride, T. virens, T. polysporum, T. harzianum/Hypocrea lixii and two unknown species. Notably, T. citrinoviride and T. polysporum were not found by the CD method. Therefore, this work revealed that the combination of these two methods could show the higher biodiversity of Trichoderma spp., than either of this method alone. Among the sampling sites, Hangzhou, Zhejiang Province, exhibited rich biodiversity and low in Fengxian. Correlation and Redundancy discriminant analysis (RDA) revealed that sediment properties of temperature, redox potential (Eh) and pH significantly influenced the biodiversity of Trichoderma spp. PMID:28002436

  1. Biodiversity of Trichoderma Community in the Tidal Flats and Wetland of Southeastern China.

    Directory of Open Access Journals (Sweden)

    Kandasamy Saravanakumar

    Full Text Available To investigate the biodiversity of Trichoderma (Hypocreaceae and their relation to sediment physical and chemical properties, we collected a total of 491 sediment samples from coastal wetlands (tidal flat and wetland in Southeast China. Further, we applied two types of molecular approaches such as culture dependent and independent methods for identification of Trichoderma spp. A total of 254 isolates were obtained and identified to 13 species such as T. aureoviride, T. asperellum, T. harzianum, T. atroviride, T. koningiopsis, T. longibrachiatum, T. koningii. T. tawa, T. viridescens, T. virens, T. hamatum, T. viride, and T. velutinum by the culture-dependent (CD method of these, T. tawa was newly described in China. Subsequently, the culture indepented method of 454 pyrosequencing analysis revealed a total of six species such as T. citrinoviride, T. virens, T. polysporum, T. harzianum/Hypocrea lixii and two unknown species. Notably, T. citrinoviride and T. polysporum were not found by the CD method. Therefore, this work revealed that the combination of these two methods could show the higher biodiversity of Trichoderma spp., than either of this method alone. Among the sampling sites, Hangzhou, Zhejiang Province, exhibited rich biodiversity and low in Fengxian. Correlation and Redundancy discriminant analysis (RDA revealed that sediment properties of temperature, redox potential (Eh and pH significantly influenced the biodiversity of Trichoderma spp.

  2. Seasonal variations in suspended-sediment dynamics in the tidal reach of an estuarine tributary

    Science.gov (United States)

    Downing-Kunz, Maureen A.; Schoellhamer, David H.

    2013-01-01

    Quantifying sediment supply from estuarine tributaries is an important component of developing a sediment budget, and common techniques for estimating supply are based on gages located above tidal influence. However, tidal interactions near tributary mouths can affect the magnitude and direction of sediment supply to the open waters of the estuary. We investigated suspended-sediment dynamics in the tidal reach of Corte Madera Creek, an estuarine tributary of San Francisco Bay, using moored acoustic and optical instruments. Flux of both water and suspended-sediment were calculated from observed water velocity and turbidity for two periods in each of wet and dry seasons during 2010. During wet periods, net suspended-sediment flux was seaward; tidally filtered flux was dominated by the advective component. In contrast, during dry periods, net flux was landward; tidally filtered flux was dominated by the dispersive component. The mechanisms generating this landward flux varied; during summer we attributed wind–wave resuspension in the estuary and subsequent transport on flood tides, whereas during autumn we attributed increased spring tide flood velocity magnitude leading to local resuspension. A quadrant analysis similar to that employed in turbulence studies was developed to summarize flux time series by quantifying the relative importance of sediment transport events. These events are categorized by the direction of velocity (flood vs. ebb) and the magnitude of concentration relative to tidally averaged conditions (relatively turbid vs. relatively clear). During wet periods, suspended-sediment flux was greatest in magnitude during relatively turbid ebbs, whereas during dry periods it was greatest in magnitude during relatively turbid floods. A conceptual model was developed to generalize seasonal differences in suspended-sediment dynamics; model application to this study demonstrated the importance of few, relatively large events on net suspended-sediment flux

  3. The impacts of land reclamation on suspended-sediment dynamics in Jiaozhou Bay, Qingdao, China

    Science.gov (United States)

    Gao, Guan Dong; Wang, Xiao Hua; Bao, Xian Wen; Song, Dehai; Lin, Xiao Pei; Qiao, Lu Lu

    2018-06-01

    A three-dimensional, high-resolution tidal model coupled with the UNSW sediment model (UNSW-Sed) based on Finite Volume Coastal Ocean Model (FVCOM) was set up to study the suspended-sediment dynamics and its change in Jiaozhou Bay (JZB) due to land reclamation over the period 1935 to 2008. During the past decades, a large amount of tidal flats were lost due to land reclamation. Other than modulating the tides, the tidal flats are a primary source for sediment resuspensions, leading to turbidity maxima nearshore. The tidal dynamics are dominant in controlling the suspended-sediment dynamics in JZB and have experienced significant changes with the loss of tidal flats due to the land reclamation. The sediment model coupled with the tide model was used to investigate the changes in suspended-sediment dynamics due to the land reclamation from 1935 to 2008, including suspended-sediment concentrations (SSC) and the horizontal suspended-sediment fluxes. This model can predict the general patterns of the spatial and temporal variation of SSC. The model was applied to investigate how the net transport of suspended sediments between JZB and its adjacent sea areas changed with land reclamation: in 1935 the net movement of suspended sediments was from JZB to the adjacent sea (erosion for JZB), primarily caused by horizontal advection associated with a horizontal gradient in the SSC; This seaward transport (erosion for JZB) had gradually declined from 1935 to 2008. If land reclamation on a large scale is continued in future, the net transport between JZB and the adjacent sea would turn landward and JZB would switch from erosion to siltation due to the impact of land reclamation on the horizontal advection of suspended sediments. We also evaluate the primary physical mechanisms including advection of suspended sediments, settling lag and tidal asymmetry, which control the suspended-sediment dynamics with the process of land reclamation.

  4. Flow paths of water and sediment in a tidal marsh: relations with marsh developmental stage and tidal inundation height

    NARCIS (Netherlands)

    Temmerman, S.; Bouma, T.J.; Govers, G.; Lauwaet, D.

    2005-01-01

    This study provides new insights in the relative role of tidal creeks and the marsh edge in supplying water and sediments to and from tidal marshes for a wide range of tidal inundation cycles with different high water levels and for marsh zones of different developmental stage. Net import or export

  5. Estuaries as filters: the role of tidal marshes in trace metal removal.

    Directory of Open Access Journals (Sweden)

    Johannes Teuchies

    Full Text Available Flux calculations demonstrate that many estuaries are natural filters for trace metals. Yet, the underlying processes are poorly investigated. In the present study, it was hypothesized that intertidal marshes contribute significantly to the contaminant filter function of estuaries. Trace metal concentrations and sediment characteristics were measured along a transect from the subtidal, over an intertidal flat and marsh to a restored marsh with controlled reduced tide. Metal concentrations in the intertidal and restored marsh were found to be a factor two to five higher than values in the subtidal and intertidal flat sediments. High metal concentrations and high accretion rates indicate a high metal accumulation capacity of the intertidal marshes. Overbank sedimentation in the tidal marshes of the entire estuary was calculated to remove 25% to 50% of the riverine metal influx, even though marshes comprise less than 8% of the total surface of the estuary. In addition, the large-scale implementation of planned tidal marsh restoration projects was estimated to almost double the trace metal storage capacity of the present natural tidal marshes in the estuary.

  6. Estuaries as Filters: The Role of Tidal Marshes in Trace Metal Removal

    Science.gov (United States)

    Teuchies, Johannes; Vandenbruwaene, Wouter; Carpentier, Roos; Bervoets, Lieven; Temmerman, Stijn; Wang, Chen; Maris, Tom; Cox, Tom J. S.; Van Braeckel, Alexander; Meire, Patrick

    2013-01-01

    Flux calculations demonstrate that many estuaries are natural filters for trace metals. Yet, the underlying processes are poorly investigated. In the present study, it was hypothesized that intertidal marshes contribute significantly to the contaminant filter function of estuaries. Trace metal concentrations and sediment characteristics were measured along a transect from the subtidal, over an intertidal flat and marsh to a restored marsh with controlled reduced tide. Metal concentrations in the intertidal and restored marsh were found to be a factor two to five higher than values in the subtidal and intertidal flat sediments. High metal concentrations and high accretion rates indicate a high metal accumulation capacity of the intertidal marshes. Overbank sedimentation in the tidal marshes of the entire estuary was calculated to remove 25% to 50% of the riverine metal influx, even though marshes comprise less than 8% of the total surface of the estuary. In addition, the large-scale implementation of planned tidal marsh restoration projects was estimated to almost double the trace metal storage capacity of the present natural tidal marshes in the estuary. PMID:23950927

  7. Implications of tidally-varying bed stress and intermittent estuarine stratification on fine-sediment dynamics through the Mekong's tidal river to estuarine reach

    Science.gov (United States)

    McLachlan, R. L.; Ogston, A. S.; Allison, M. A.

    2017-09-01

    River gauging stations are often located upriver of tidal propagation where sediment transport processes and storage are impacted by widely varying ratios of marine to freshwater influence. These impacts are not yet thoroughly understood. Therefore, sediment fluxes measured at these stations may not be suitable for predicting changes to coastal morphology. To characterize sediment transport dynamics in this understudied zone, flow velocity, salinity, and suspended-sediment properties (concentration, size, and settling velocity) were measured within the tidal Sông Hậu distributary of the lower Mekong River, Vietnam. Fine-sediment aggregation, settling, and trapping rates were promoted by seasonal and tidal fluctuations in near-bed shear stress as well as the intermittent presence of a salt wedge and estuary turbidity maximum. Beginning in the tidal river, fine-grained particles were aggregated in freshwater. Then, in the interface zone between the tidal river and estuary, impeded near-bed shear stress and particle flux convergence promoted settling and trapping. Finally, in the estuary, sediment retention was further encouraged by stratification and estuarine circulation which protected the bed against particle resuspension and enhanced particle aggregation. These patterns promote mud export ( 1.7 t s-1) from the entire study area in the high-discharge season when fluvial processes dominate and mud import ( 0.25 t s-1) into the estuary and interface zone in the low-discharge season when estuarine processes dominate. Within the lower region of the distributaries, morphological change in the form of channel abandonment was found to be promoted within minor distributaries by feedbacks between channel depth, vertical mixing, and aggregate trapping. In effect, this field study sheds light on the sediment trapping capabilities of the tidal river - estuary interface zone, a relatively understudied region upstream of where traditional concepts place sites of deposition

  8. Characterization of sediment trapped by macroalgae on a Hawaiian reef flat

    Science.gov (United States)

    Stamski, Rebecca E.; Field, Michael E.

    2006-01-01

    Reef researchers studying community shifts in the balance between corals and fleshy macroalgae have noted that algae are often covered with sediment. This study characterizes sediment trapping by macroalgae within a Hawaiian reef habitat and constrains the controls on this process. Sediment-laden macroalgae were sampled and macroalgal cover was assessed on a wide (˜1 km) reef flat off south-central Molokai. Macroalgae trapped a mean of 1.26 (±0.91 SD) grams of sediment per gram of dry weight biomass and that sediment was dominantly terrigenous mud (59% by weight). It was determined that biomass, as a proxy for algal size, and morphology were not strict controls on the sediment trapping process. Over 300 metric tons of sediment were estimated to be retained by macroalgae across 5.75 km 2 of reef flat (54 g m -2), suggesting that this process is an important component of sediment budgets. In addition, understanding the character of sediment trapped by macroalgae may help constrain suspended sediment flux and has implications for nutrient dynamics in reef flat environments.

  9. Sediment transport and fluid mud layer formation in the macro-tidal Chikugo river estuary during a fortnightly tidal cycle

    Science.gov (United States)

    Azhikodan, Gubash; Yokoyama, Katsuhide

    2018-03-01

    The erosion and deposition dynamics of fine sediment in a highly turbid estuarine channel were successfully surveyed during the period from August 29 to September 12, 2009 using an echo sounder in combination with a high-resolution acoustic Doppler current profiler. Field measurements were conducted focusing on the tide driven dynamics of suspended sediment concentration (SSC), and fluid mud at the upstream of the macrotidal Chikugo river estuary during semidiurnal and fortnightly tidal cycles. Morphological evolution was observed especially during the spring tide over a period of two weeks. The elevation of the channel bed was stable during neap tide, but it underwent fluctuations when the spring tide occurred owing to the increase in the velocity and shear stress. Two days of time lag were observed between the maximum SSC and peak tidal flow, which resulted in the asymmetry between neap-to-spring and spring-to-neap transitions. During the spring tide, a hysteresis loop was observed between shear stress and SSC, and its direction was different during flood and ebb tides. Although both fine sediments and flocs were dominant during flood tides, only fine sediments were noticed during ebb tides. Hence, the net elevation change in the bed was positive, and sedimentation took place during the semilunar tidal cycle. Finally, a bed of consolidated mud was deposited on the initial bed, and the height of the channel bed increased by 0.9 m during the two-week period. The observed hysteretic effect between shear stress and SSC during the spring tides, and the asymmetrical neap-spring-neap tidal cycle influenced the near-bed sediment dynamics of the channel, and led to the formation of a fluid mud layer at the bottom of the river.

  10. Tidal wetland fluxes of dissolved organic carbon and sediment at Browns Island, California: initial evaluation

    Science.gov (United States)

    Ganju, N.K.; Bergamaschi, B.; Schoellhamer, D.H.

    2003-01-01

    Carbon and sediment fluxes from tidal wetlands are of increasing concern in the Sacramento-San Joaquin River Delta (Delta), because of drinking water issues and habitat restoration efforts. Certain forms of dissolved organic carbon (DOC) react with disinfecting chemicals used to treat drinking water, to form disinfection byproducts (DBPs), some of which are potential carcinogens. The contribution of DBP precursors by tidal wetlands is unknown. Sediment transport to and from tidal wetlands determines the potential for marsh accretion, thereby affecting habitat formation.Water, carbon, and sediment flux were measured in the main channel of Browns Island, a tidal wetland located at the confluence of Suisun Bay and the Delta. In-situ instrumentation were deployed between May 3 and May 21, 2002. Water flux was measured using acoustic Doppler current profilers and the index-velocity method. DOC concentrations were measured using calibrated ultraviolet absorbance and fluorescence instruments. Suspended-sediment concentrations were measured using a calibrated nephelometric turbidity sensor. Tidally averaged water flux through the channel was dependent on water surface elevations in Suisun Bay. Strong westerly winds resulted in higher water surface elevations in the area east of Browns Island, causing seaward flow, while subsiding winds reversed this effect. Peak ebb flow transported 36% more water than peak flood flow, indicating an ebb-dominant system. DOC concentrations were affected strongly by porewater drainage from the banks of the channel. Peak DOC concentrations were observed during slack after ebb, when the most porewater drained into the channel. Suspended-sediment concentrations were controlled by tidal currents that mobilized sediment from the channel bed, and stronger tides mobilized more sediment than the weaker tides. Sediment was transported mainly to the island during the 2-week monitoring period, though short periods of export occurred during the spring

  11. Tracing organic matter sources of estuarine tidal flat nematodes with stable carbon isotopes

    NARCIS (Netherlands)

    Moens, T.; Luyten, C.; Middelburg, J.J.; Herman, P.M.J.; Vincx, M.

    2002-01-01

    The present study explores the use of stable carbon isotopes to trace organic matter sources of intertidal nematodes in the Schelde estuary (SW Netherlands). Stable carbon isotope signatures of nematodes from a saltmarsh and 4 tidal flat stations were determined in spring and winter situations, and

  12. Oblique second-order sand transport pathways on an intertidal sand flat in a natural tidal inlet system

    DEFF Research Database (Denmark)

    Ernstsen, Verner Brandbyge; Lefebvre, Alice; Kroon, Aart

    2013-01-01

    tide, sand is transported along ESE-oriented pathways across the intertidal flat towards the inner tidal basin. During the late stages of ebb tide, sand is transported in drainage channels (WSWoriented) from the intertidal flat towards the inlet channel. During storm events with winds from SW, wave...

  13. Effects of discharge, wind, and tide on sedimentation in a recently restored tidal freshwater wetland

    NARCIS (Netherlands)

    Verschelling, Eelco; van der Deijl, Eveline; van der Perk, Marcel; Sloff, Kees; Middelkoop, Hans

    2017-01-01

    Sediment deposition is one of the key mechanisms to counteract the impact of sea level rise in tidal freshwater wetlands (TFWs). However, information about sediment deposition rates in TFWs is limited, especially for those located in the transition zone between the fluvially dominated and tidally

  14. Effects of discharge, wind, and tide on sedimentation in a recently restored tidal freshwater wetland

    NARCIS (Netherlands)

    Verschelling, Eelco; van der Deijl, Eveline; van der Perk, Marcel; Sloff, C.J.; Middelkoop, Hans

    2017-01-01

    Sediment deposition is one of the key mechanisms to counteract the impact of sea level rise in tidal freshwater wetlands (TFWs). However, information about sediment deposition rates in TFWs is limited, especially for those located in the transition zone between the fluvially dominated and tidally

  15. Suspended-sediment flux and retention in a backwater tidal slough complex near the landward boundary of an estuary

    Science.gov (United States)

    Morgan-King, Tara L.; Schoellhamer, David H.

    2013-01-01

    Backwater tidal sloughs are commonly found at the landward boundary of estuaries. The Cache Slough complex is a backwater tidal region within the Upper Sacramento–San Joaquin Delta that includes two features that are relevant for resource managers: (1) relatively high abundance of the endangered fish, delta smelt (Hypomesus transpacificus), which prefers turbid water and (2) a recently flooded shallow island, Liberty Island, that is a prototype for habitat restoration. We characterized the turbidity around Liberty Island by measuring suspended-sediment flux at four locations from July 2008 through December 2010. An estuarine turbidity maximum in the backwater Cache Slough complex is created by tidal asymmetry, a limited tidal excursion, and wind-wave resuspension. During the study, there was a net export of sediment, though sediment accumulates within the region from landward tidal transport during the dry season. Sediment is continually resuspended by both wind waves and flood tide currents. The suspended-sediment mass oscillates within the region until winter freshwater flow pulses flush it seaward. The hydrodynamic characteristics within the backwater region such as low freshwater flow during the dry season, flood tide dominance, and a limited tidal excursion favor sediment retention.

  16. Architectural elements from Lower Proterozoic braid-delta and high-energy tidal flat deposits in the Magaliesberg Formation, Transvaal Supergroup, South Africa

    Science.gov (United States)

    Eriksson, Patrick G.; Reczko, Boris F. F.; Jaco Boshoff, A.; Schreiber, Ute M.; Van der Neut, Markus; Snyman, Carel P.

    1995-06-01

    Three architectural elements are identified in the Lower Proterozoic Magaliesberg Formation (Pretoria Group, Transvaal Supergroup) of the Kaapvaal craton, South Africa: (1) medium- to coarse-grained sandstone sheets; (2) fine- to medium-grained sandstone sheets; and (3) mudrock elements. Both sandstone sheet elements are characterised by horizontal lamination and planar cross-bedding, with lesser trough cross-bedding, channel-fills and wave ripples, as well as minor desiccated mudrock partings, double-crested and flat-topped ripples. Due to the local unimodal palaeocurrent patterns in the medium- to coarse-grained sandstone sheets, they are interpreted as ephemeral braid-delta deposits, which were subjected to minor marine reworking. The predominantly bimodal to polymodal palaeocurrent trends in the fine- to medium-grained sandstone sheets are inferred to reflect high-energy macrotidal processes and more complete reworking of braid-delta sands. The suspension deposits of mudrocks point to either braid-delta channel abandonment, or uppermost tidal flat sedimentation. The depositional model comprises ephemeral braid-delta systems which debouched into a high-energy peritidal environment, around the margins of a shallow epeiric sea on the Kaapvaal craton. Braid-delta and tidal channel dynamics are inferred to have been similar. Fine material in the Magaliesberg Formation peritidal complexes indicates that extensive aeolian removal of clay does not seem applicable to this example of the early Proterozoic.

  17. Quantifying tidally driven benthic oxygen exchange across permeable sediments

    DEFF Research Database (Denmark)

    McGinnis, Daniel F.; Sommer, Stefan; Lorke, Andreas

    2014-01-01

    Continental shelves are predominately (approximate to 70%) covered with permeable, sandy sediments. While identified as critical sites for intense oxygen, carbon, and nutrient turnover, constituent exchange across permeable sediments remains poorly quantified. The central North Sea largely consists...... of permeable sediments and has been identified as increasingly at risk for developing hypoxia. Therefore, we investigate the benthic O-2 exchange across the permeable North Sea sediments using a combination of in situ microprofiles, a benthic chamber, and aquatic eddy correlation. Tidal bottom currents drive...... the variable sediment O-2 penetration depth (from approximate to 3 to 8 mm) and the concurrent turbulence-driven 25-fold variation in the benthic sediment O-2 uptake. The O-2 flux and variability were reproduced using a simple 1-D model linking the benthic turbulence to the sediment pore water exchange...

  18. Sediment discharge division at two tidally influenced river bifurcations

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.; Vermeulen, B.; Hidayat, H.

    2013-01-01

    [1] We characterize and quantify the sediment discharge division at two tidally influenced river bifurcations in response to mean flow and secondary circulation by employing a boat-mounted acoustic Doppler current profiler (ADCP), to survey transects at bifurcating branches during a semidiurnal

  19. On the Sediment Dynamics in a Tidally Energetic Channel: The Inner Sound, Northern Scotland

    Directory of Open Access Journals (Sweden)

    Jason McIlvenny

    2016-04-01

    Full Text Available Sediment banks within a fast-flowing tidal channel, the Inner Sound in the Pentland Firth, were mapped using multi-frequency side-scan sonar. This novel technique provides a new tool for seabed sediment and benthic habitat mapping. The sonar data are supplemented by sediment grab and ROV videos. The combined data provide detailed maps of persistent sand and shell banks present in the Sound despite the high energy environment. Acoustic Doppler Current Profiler (ADCP data and numerical model predictions were used to understand the hydrodynamics of the system. By combining the hydrodynamics and sediment distribution data, we explain the sediment dynamics in the area. Sediment particle shape and density, coupled with persistent features of the hydrodynamics, are the key factors in the distribution of sediment within the channel. Implications for tidal energy development planned for the Sound are discussed.

  20. A novel method for sampling the suspended sediment load in the tidal environment using bi-directional time-integrated mass-flux sediment (TIMS) samplers

    Science.gov (United States)

    Elliott, Emily A.; Monbureau, Elaine; Walters, Glenn W.; Elliott, Mark A.; McKee, Brent A.; Rodriguez, Antonio B.

    2017-12-01

    Identifying the source and abundance of sediment transported within tidal creeks is essential for studying the connectivity between coastal watersheds and estuaries. The fine-grained suspended sediment load (SSL) makes up a substantial portion of the total sediment load carried within an estuarine system and efficient sampling of the SSL is critical to our understanding of nutrient and contaminant transport, anthropogenic influence, and the effects of climate. Unfortunately, traditional methods of sampling the SSL, including instantaneous measurements and automatic samplers, can be labor intensive, expensive and often yield insufficient mass for comprehensive geochemical analysis. In estuaries this issue is even more pronounced due to bi-directional tidal flow. This study tests the efficacy of a time-integrated mass sediment sampler (TIMS) design, originally developed for uni-directional flow within the fluvial environment, modified in this work for implementation the tidal environment under bi-directional flow conditions. Our new TIMS design utilizes an 'L' shaped outflow tube to prevent backflow, and when deployed in mirrored pairs, each sampler collects sediment uniquely in one direction of tidal flow. Laboratory flume experiments using dye and particle image velocimetry (PIV) were used to characterize the flow within the sampler, specifically, to quantify the settling velocities and identify stagnation points. Further laboratory tests of sediment indicate that bidirectional TIMS capture up to 96% of incoming SSL across a range of flow velocities (0.3-0.6 m s-1). The modified TIMS design was tested in the field at two distinct sampling locations within the tidal zone. Single-time point suspended sediment samples were collected at high and low tide and compared to time-integrated suspended sediment samples collected by the bi-directional TIMS over the same four-day period. Particle-size composition from the bi-directional TIMS were representative of the array of

  1. Shallow stratigraphy of the Skagit River Delta, Washington, derived from sediment cores

    Science.gov (United States)

    Grossman, Eric E.; George, Douglas A.; Lam, Angela

    2011-01-01

    Sedimentologic analyses of 21 sediment cores, ranging from 0.4 to 9.6 m in length, reveal that the shallow geologic framework of the Skagit River Delta, western Washington, United States, has changed significantly since 1850. The cores collected from elevations of 3.94 to -2.41 m (relative to mean lower low water) along four cross-shore transects between the emergent marsh and delta front show relatively similar environmental changes across an area spanning ~75 km2. Offshore of the present North Fork Skagit River and South Fork Skagit River mouths where river discharge is focused by diked channels through the delta, the entire 5–7-km-wide tidal flats are covered with 1–2 m of cross-bedded medium-to-coarse sands. The bottoms of cores, collected in these areas are composed of mud. A sharp transition from mud to a cross-bedded sand unit indicates that the tidal flats changed abruptly from a calm environment to an energetic one. This is in stark contrast to the Martha's Bay tidal flats north of the Skagit Bay jetty that was completed in the 1940s to protect the newly constructed Swinomish Channel from flooding and sedimentation. North of the jetty, mud ranging from 1 to 2 m thick drapes a previously silt- and sand-rich tidal flat. The silty sand is a sediment facies that would be expected there where North Fork Skagit River sedimentation occurred prior to jetty emplacement. This report describes the compositional and textural properties of the sediment cores by using geophysical, photographic, x-radiography, and standard sediment grain-size and carbon-analytical methods. The findings help to characterize benthic habitat structure and sediment transport processes and the environmental changes that have occurred across the nearshore of the Skagit River Delta. The findings will be useful for quantifying changes to nearshore marine resources, including impacts resulting from diking, river-delta channelization, shoreline development, and natural variations in fluvial-sediment

  2. Major changes in the ecology of the Wadden Sea: human impacts, ecosystem engineering and sediment dynamics

    NARCIS (Netherlands)

    Eriksson, B.K.; van der Heide, T.; Van de Koppel, J.; Piersma, T.; Van der Veer, H.W.; Olff, H.

    2010-01-01

    Shallow soft-sediment systems are mostly dominated by species that, by strongly affecting sediment dynamics, modify their local environment. Such ecosystem engineering species can have either sediment-stabilizing or sediment-destabilizing effects on tidal flats. They interplay with abiotic forcing

  3. Organic matter accumulation and degradation in subsurface coastal sediments: a model-based comparison of rapid sedimentation and aquifer transport

    Directory of Open Access Journals (Sweden)

    J. M. Holstein

    2010-11-01

    Full Text Available The redox succession in shallow marine sediments generally exhibits a predictable pattern. Pore water profiles from a back barrier tidal flat in the German Wadden Sea depart from the expected redox zoning. Instead, a sulfate minimum zone associated with a sulfate-methane-sulfate double interface and a distinct ammonium peak at 1.5 m below sea floor (mbsf is displayed. Such evidence for significant degradation of organic matter (OM in subsurface layers is challenging our understanding of tidal flat biogeochemistry as little is known about processes that relocate reactive OM into layers far distant from the sediment-water interface. The objectives of our model study were to identify possible mechanisms for the rapid transport of organic matter to subsurface layers that cause the reversed redox succession and to constrain several important biogeochemical control parameters. We compared two scenarios for OM transfer: rapid sedimentation and burial of OM as well as lateral advection of suspended POM. Using a diagenetic model, uncertain process parameters, in particular those connected to OM degradation and (vertical or lateral transport, are systematically calibrated using field data.

    We found that both scenarios, advection and sedimentation, had solutions consistent with the observed pore water profiles. For this specific site, however, advective transport of particulate material had to be rejected since the reconstructed boundary conditions were rather improbable. In the alternative deposition set-up, model simulations suggested the deposition of the source OM about 60 yrs before cores were taken. A mean sedimentation rate of approximately 2 cm yr−1 indicates substantial changes in near coast tidal flat morphology, since sea level rise is at a much lower pace. High sedimentation rates most probably reflect the progradation of flats within the study area. These or similar morphodynamic features also occur in other coastal areas

  4. Mechanisms of Sediment Transport to an Abandoned Distributary Channel on the Huanghe (Yellow River) Delta, China

    Science.gov (United States)

    Kumpf, L. L.; Kineke, G. C.; Carlson, B.; Mullane, M.

    2017-12-01

    Avulsions on the fine-grained Huanghe delta have left it scarred with traces of abandoned distributary channels that become intertidal systems, open to water and sediment exchange with the sea. In 1996, an engineered avulsion of the Huanghe left a 30 km long abandoned channel to the south of the modern active river channel. Though all fluvial input was cut off, present-day sedimentation on the new tidal flats has been observed at rates around 2 cm/yr. The source must be suspended-sediment from the Bohai Sea conveyed by the tidal channel network, but the mechanisms promoting sediment import are unknown. Possible mechanisms include (A) import sourced from the sediment-rich buoyant coastal plume, (B) wave resuspension on the shallow shelf, (C) reverse-estuarine residual circulation in the tidal channel, and (D) tidal asymmetry in the channel. Over three summers, in situ measurements of current velocity, suspended-sediment concentration (SSC), and wave climate were made on the delta front, and measurements of velocity, SSC, and salinity were made within the tidal channel. Results suggest that the buoyant plume from the active Huanghe channel can transport sediment south toward the tidal channel mouth (A). Additionally, wave resuspension (B) takes place on the subaqueous topset beds when the significant wave height exceeds 1 m, providing potential sources of suspended-sediment to the tidal channel. Within the abandoned channel, the tidal channel can become hypersaline and exhibit reverse-estuarine circulation (C), which would promote import of turbid coastal water near the surface. Time-series of velocity in the tidal channel indicate that ebb currents are consistently higher than flood currents through the spring-neap cycle (D), with maximum velocities exceeding 1 m/s and corresponding maximum SSC reaching 2 g/L during spring tide. While ebb dominance would typically tend to flush the system of its sediment over time, sediment supplied to the tidal flats may not be

  5. Effects of causeway construction on vegetation and sedimentation in North Carolina tidal marshes

    Science.gov (United States)

    Knowlton, A.; Leonard, L.; Pricope, N. G.; Eulie, D.

    2017-12-01

    Causeways, especially those constructed to facilitate transportation across low lying tidal marshes, are known to affect tidal exchanges and thereby potentially influence geological and biological processes in these ecosystems. While these impacts have been documented in several expansive marsh systems with large tidal ranges, the extent of these impacts in smaller tidal creek watersheds is less understood. This study examined how the presence, absence, and removal of small causeways affected sedimentological processes and vegetation characteristics in two small tidal creek watersheds in Wilmington, NC. Surficial deposition rates, determined using petri-dish sediment traps, indicate that mean deposition landward of a small causeway (1.64 mg cm-2day-1) is significantly lower (pchanges adjacent to the causeway. Partial causeway removal in one of these systems in 2006 also provided the opportunity to evaluate how the marsh canopy responded to causeway removal. Using Juncus roemerianus and Spartina alterniflora as a proxy for changes in tidal exchange, spectroradiometer data and aerial imagery available in 2006 and 2016 will be used to quantify changes in canopy coverage subsequent to causeway removal. Although this study is ongoing, the preliminary results indicate that small causeways, similar to their larger counterparts, significantly affect the rate and characteristics of sediment delivered to landward marshes and also affect tidal exchanges that lead to changes in vegetation characteristics.

  6. Asymmetric fluxes of water and sediments in a mesotidal mudflat channel

    Science.gov (United States)

    Mariotti, G.; Fagherazzi, S.

    2011-01-01

    The hydrodynamics of a small tributary channel and its adjacent mudflat is studied in Willapa Bay, Washington State, USA. Velocity profiles and water levels are simultaneously measured at different locations in the channel and on the mudflat for two weeks. The above tidal flat and channel hydrodynamics differ remarkably during the tidal cycle. When the water surface level is above the tidal flat elevation, the channel is inactive. At this stage, the above tidal flat flow is predominantly aligned along the Bay axis, oscillating with the tide as a standing wave with peak velocities up to 0.3 m/s. When the mudflat becomes emergent, the flow concentrates in the channel. During this stage, current velocities up to 1 m/s are measured during ebb; and up to 0.6 m/s during flood. Standard equations for open-channel flow are utilized to study the channel hydrodynamics. From the continuity equation, a lateral inflow is predicted during ebb, which likely originates from the drainage of the mudflat through the lateral runnels. Both advective acceleration and lateral discharge terms, estimated directly from the velocity profiles, play a significant role in the momentum equation. The computed drag coefficient for bottom friction is small, due to an absence of vegetation and bottom bedforms in the channel. Sediment fluxes are calculated by combining flow and suspended sediment concentration estimated using the acoustic backscatter signal of the instruments. A net export of the sediment from the channel is found during ebb, which is not balanced by the sediment import during flood. When the mudflat is submerged, ebb-flood asymmetries in suspended sediment concentration are present, leading to a net sediment flux toward the inner part of the Willapa Bay. Finally, a residual flow is detected inside the channel at high slack water, probably associated with the thermohaline circulation.

  7. Remediation of saline-sodic soil with flue gas desulfurization gypsum in a reclaimed tidal flat of southeast China.

    Science.gov (United States)

    Mao, Yumei; Li, Xiaping; Dick, Warren A; Chen, Liming

    2016-07-01

    Salinization and sodicity are obstacles for vegetation reconstruction of coastal tidal flat soils. A study was conducted with flue gas desulfurization (FGD)-gypsum applied at rates of 0, 15, 30, 45 and 60Mg/ha to remediate tidal flat soils of the Yangtze River estuary. Exchangeable sodium percentage (ESP), exchangeable sodium (ExNa), pH, soluble salt concentration, and composition of soluble salts were measured in 10cm increments from the surface to 30cm depth after 6 and 18months. The results indicated that the effect of FGD-gypsum is greatest in the 0-10cm mixing soil layer and 60Mg/ha was the optimal rate that can reduce the ESP to below 6% and decrease soil pH to neutral (7.0). The improvement effect was reached after 6months, and remained after 18months. The composition of soluble salts was transformed from sodic salt ions mainly containing Na(+), HCO3(-)+CO3(2-) and Cl(-) to neutral salt ions mainly containing Ca(2+) and SO4(2-). Non-halophyte plants were survived at 90%. The study demonstrates that the use of FGD-gypsum for remediating tidal flat soils is promising. Copyright © 2016. Published by Elsevier B.V.

  8. Sedimentary structures of tidal flats

    Indian Academy of Sciences (India)

    Sedimentary structures of some coastal tropical tidal flats of the east coast of India, and inner estuarine tidal point bars located at 30 to 50 kilometers inland from the coast, have been extensively studied under varying seasonal conditions. The results reveal that physical features such as flaser bedding, herringbone ...

  9. Suspended-sediment dynamics in the tidal reach of a San Francisco Bay tributary

    Science.gov (United States)

    Shellenbarger, Gregory; Downing-Kunz, Maureen; Schoellhamer, David H.

    2015-01-01

    To better understand suspended-sediment transport in a tidal slough adjacent to a large wetland restoration project, we deployed continuously measuring temperature, salinity, depth, turbidity, and velocity sensors in 2010 at a near-bottom location in Alviso Slough (Alviso, California, USA). Alviso Slough is the downstream reach of the Guadalupe River and flows into the far southern end of San Francisco Bay. River flow is influenced by the Mediterranean climate, with high flows (∼90 m3 s−1) correlated to episodic winter storms and low base flow (∼0.85 m3 s−1) during the summer. Storms and associated runoff have a large influence on sediment flux for brief periods, but the annual peak sediment concentrations in the slough, which occur in April and May, are similar to the rest of this part of the bay and are not directly related to peak discharge events. Strong spring tides promote a large upstream sediment flux as a front associated with the passage of a salt wedge during flood tide. Neap tides do not have flood-directed fronts, but a front seen sometimes during ebb tide appears to be associated with the breakdown of stratification in the slough. During neap tides, stratification likely suppresses sediment transport during weaker flood and ebb tides. The slough is flood dominant during spring tides, and ebb dominant during neap tides. Extreme events in landward (salt wedge) and bayward (rainfall events) suspended-sediment flux account for 5.0 % of the total sediment flux in the slough and only 0.55 % of the samples. The remaining 95 % of the total sediment flux is due to tidal transport, with an imbalance in the daily tidal transport producing net landward flux. Overall, net sediment transport during this study was landward indicating that sediment in the sloughs may not be flushed to the bay and are available for sedimentation in the adjacent marshes and ponds.

  10. Tidal modulated flow and sediment flux through Wax Lake Delta distributary channels: Implications for delta development

    Directory of Open Access Journals (Sweden)

    K. Hanegan

    2015-03-01

    Full Text Available In this study, a Delft3D model of the Wax Lake Delta was developed to simulate flow and sediment flux through delta distributary channels. The model was calibrated for tidal constituents as well as velocity and sediment concentration across channel transects. The calibrated model was then used to simulate full spring–neap tidal cycles under constant low flow upstream boundary conditions, with grain size variation in suspended load represented using two sediment fractions. Flow and sediment flux results through distributary channel cross-sections were examined for spatial and temporal variability with the goal of characterizing the role of tides in sediment reworking and delta development. The Wax Lake Delta has prograded through channel extension, river mouth bar deposition, and channel bifurcation. Here we show that tidal modulation of currents influences suspended sand transport, and spatial acceleration through distributary channels at low tides is sufficient to suspend sand in distal reaches during lower flows. The basinward-increasing transport capacity in distributary channels indicates that erosive channel extension could be an important process, even during non-flood events.

  11. Settlement, mortality and growth of the asari clam (Ruditapes philippinarum) for a collapsed population on a tidal flat in Nakatsu, Japan

    Science.gov (United States)

    Tezuka, Naoaki; Kamimura, Satomi; Hamaguchi, Masami; Saito, Hajime; Iwano, Hideki; Egashira, Junichi; Fukuda, Yuichi; Tawaratsumida, Takahiko; Nagamoto, Atsushi; Nakagawa, Koichi

    2012-04-01

    Although fluctuation and decline in bivalve populations have been reported worldwide, the underlying processes are not yet fully understood. This lack of understanding is partly due to an absence of demographic information for the early post-settlement period. This is the case particularly for annual production of the asari clam (also commonly known as the Manila clam, Ruditapes philippinarum) in Japan, which has greatly decreased in recent years. A remarkable decrease has been observed in the Nakatsu tidal flat, where current yields are less than 0.02% of the maximum yield. Possible explanations for this decline are: 1. limitation on recruitment due to overfishing; and 2. the demographic processes of growth and mortality have been altered by environmental changes, such as rise in seawater temperature or decrease in phytoplankton abundance. However, because of a lack of demographic information (e.g., the initial densities of larval settlement and mortality and growth rates post-settlement), the reasons for the decline, and the relative importance of each period in the life cycle in determining population abundance, remain unclear. Despite the decline, we observed high levels of recruitment of 0-year-class clams on the Nakatsu tidal flat in spring 2005, where more than 10,000 individuals m- 2 3-5 mm in shell length, estimated to have settled during the previous autumn, were observed. To obtain demographic information on the Nakatsu clams, we investigated two factors. First, we investigated the distribution of the 0-year-class clams and their rate of change in density as a combination of mortality, emigration and immigration on the whole tidal flat after a year. Second, we investigated the rate of change in the density and growth of clams after settlement in the center of the flat for 3 years. The rate of decrease in the density of the 0-year-class clams over the whole tidal flat after a year was greater at the stations where the initial density was higher. This

  12. The use of modeling and suspended sediment concentration measurements for quantifying net suspended sediment transport through a large tidally dominated inlet

    Science.gov (United States)

    Erikson, Li H.; Wright, Scott A.; Elias, Edwin; Hanes, Daniel M.; Schoellhamer, David H.; Largier, John; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    Sediment exchange at large energetic inlets is often difficult to quantify due complex flows, massive amounts of water and sediment exchange, and environmental conditions limiting long-term data collection. In an effort to better quantify such exchange this study investigated the use of suspended sediment concentrations (SSC) measured at an offsite location as a surrogate for sediment exchange at the tidally dominated Golden Gate inlet in San Francisco, CA. A numerical model was calibrated and validated against water and suspended sediment flux measured during a spring–neap tide cycle across the Golden Gate. The model was then run for five months and net exchange was calculated on a tidal time-scale and compared to SSC measurements at the Alcatraz monitoring site located in Central San Francisco Bay ~ 5 km from the Golden Gate. Numerically modeled tide averaged flux across the Golden Gate compared well (r2 = 0.86, p-value

  13. Modeling Interactions between Backbarrier Marshes, Tidal Inlets, Ebb-deltas, and Adjacent Barriers Exposed to Rising Sea Levels

    Science.gov (United States)

    Hanegan, K.; Georgiou, I. Y.; FitzGerald, D.

    2016-02-01

    Along barrier island chains, tidal exchange between the backbarrier and the coastal ocean supports unique saltwater and brackish ecosystems and is responsible for exporting sediment and nutrients to the surrounding coast. Tidal prism, basement controls, and wave and tidal energy dictate the size and number of tidal inlets and the volume of sand sequestered in ebb-tidal deltas. The inlet tidal prism is a function of bay area, tidal range, and secondary controls, including flow inertia, basinal hypsometry, and frictional factors. Sea- level rise (SLR) is threatening coastal environments, causing mainland flooding, changes in sediment supply, and conversion of wetlands and tidal flats to open water. These factors are impacting basinal hypsometry and increasing open water area, resulting in enlarging tidal prisms, increased dimensions of tidal inlets and ebb-tidal deltas, and erosion along adjacent barrier shorelines. Although the effects of SLR on coastal morphology are difficult to study by field observations alone, physics-based numerical models provide a sophisticated means of analyzing coastal processes over decadal time-scales and linking process causation to long term development. Here, we use a numerical model that includes relevant features in the barrier/tidal basin system, linking back-barrier marsh degradation, inlet expansion, and ebb-delta growth to barrier erosion through long-term hydrodynamic and morphology simulations. Sediment exchange and process interactions are investigated using an idealized domain resembling backbarrier basins of mixed energy coasts so that the sensitivity to varying SLR rates, interior marsh loss, sediment supply, and hydrodynamic controls can be more easily analyzed. Model runs explore these processes over geologic time scales, demonstrating the vulnerability of backbarrier systems to projected SLR and marsh loss. Results demonstrate the links between changing basin morphology and shoreface sedimentation patterns that initiate

  14. Tidal and longshore sediment transport associated to a coastal structure

    Science.gov (United States)

    Cuadrado, Diana G.; Gómez, Eduardo A.; Ginsberg, S. Susana

    2005-01-01

    In order to understand the subtidal marine dynamics relative to the coastal engineering works in the Bahía Blanca Estuary (Argentina), the balance of sediment transport caused by tidal currents was estimated in the Puerto Rosales area and compared with the predicted potential littoral transport. The breaking wave height used in the littoral drift calculation was estimated after applying different wave transforming procedures over the deepwater wave which was predicted by the occurrence of predominant wind, blowing long enough in an essentially constant direction over a fetch. The effect of a breakwater on currents and circulation was studied by bathymetric and side-scan sonar records, sedimentology, and tidal current measurements. Different modes of transport occur on either sides of the breakwater. On the east side, longshore transport is the principal mode, and on the west side, tidal transport is predominant.

  15. The role of seasonal sediment storage in tidal channels on a mesotidal delta

    Science.gov (United States)

    Hale, R. P.; Wilson, C.; Bomer, J.; Goodbred, S. L., Jr.; Bain, R. L.

    2017-12-01

    The Sundarbans National Forest (SNF), located on the modern topset of the Ganges-Brahmaputra-Meghna (GBM) Delta, is the world's largest mangrove stand ( 10,000 km2), and provides a wide range of cultural, environmental, and economic benefits to the nation of Bangladesh. At present, sediment accretion in the SNF occurs at a rate comparable to that of the locally accelerated sea-level rise ( 1.1 cm/yr), despite substantial modification of the regional hydrodynamics via the construction of channel embankments to prevent inundation of agricultural areas. Approximately 50% of the sediment deposited in the SNF each year is recently delivered (water diversions associated with India's National River Linking Project raises serious concerns over the SNF's continued sustainability. Here, we examine: 1) the capacity for short-term sediment storage within tidal channels of varying dimensions, and 2) the hydrodynamic conditions responsible for resuspending this material and delivering it to the mangrove platform. We compare textural and radiochemical characteristics from short cores (<50 cm) collected along the intertidal channel banks, with those from the mangrove platform, to assess seasonal storage of GBM sediment within tidal channels, and the timeframe of its delivery to the SNF platform. We also present instrument data from multiple locations within a confined basin of the SNF, using an upward-looking acoustic Doppler current profiler, pressure sensors, and optical backscatter sensors, to document how transport conditions vary with distance away from the primary tidal inlet, and across the platform. This collection of physical and instrumental observations is then compared to an existing dataset of platform inundation hydroperiods and deposition rates, allowing us to address the threat of a reduced sediment supply to this region, as well as the capacity for this system to self-supply sediment to the platform.

  16. Long-term organic carbon sequestration in tidal marsh sediments is dominated by old-aged allochthonous inputs in a macrotidal estuary.

    Science.gov (United States)

    Van de Broek, Marijn; Vandendriessche, Caroline; Poppelmonde, Dries; Merckx, Roel; Temmerman, Stijn; Govers, Gerard

    2018-02-12

    Tidal marshes are vegetated coastal ecosystems that are often considered as hotspots of atmospheric CO 2 sequestration. Although large amounts of organic carbon (OC) are indeed being deposited on tidal marshes, there is no direct link between high OC deposition rates and high OC sequestration rates due to two main reasons. First, the deposited OC may become rapidly decomposed once it is buried and, second, a significant part of preserved OC may be allochthonous OC that has been sequestered elsewhere. In this study we aimed to identify the mechanisms controlling long-term OC sequestration in tidal marsh sediments along an estuarine salinity gradient (Scheldt estuary, Belgium and the Netherlands). Analyses of deposited sediments have shown that OC deposited during tidal inundations is up to millennia old. This allochthonous OC is the main component of OC that is effectively preserved in these sediments, as indicated by the low radiocarbon content of buried OC. Furthermore, OC fractionation showed that autochthonous OC is decomposed on a decadal timescale in saltmarsh sediments, while in freshwater marsh sediments locally produced biomass is more efficiently preserved after burial. Our results show that long-term OC sequestration is decoupled from local biomass production in the studied tidal marsh sediments. This implies that OC sequestration rates are greatly overestimated when they are calculated based on short-term OC deposition rates, which are controlled by labile autochthonous OC inputs. Moreover, as allochthonous OC is not sequestered in-situ, it does not contribute to active atmospheric CO 2 sequestration in these ecosystems. A correct assessment of the contribution of allochthonous OC to the total sedimentary OC stock in tidal marsh sediments as well as a correct understanding of the long-term fate of locally produced OC are both necessary to avoid overestimations of the rate of in-situ atmospheric CO 2 sequestration in tidal marsh sediments. © 2018 John

  17. Tidal-scale flow routing and sedimentation in mangrove forests: combining field data and numerical modelling

    NARCIS (Netherlands)

    Horstman, Erik; Dohmen-Janssen, Catarine M.; Bouma, T.J.; Hulscher, Suzanne J.M.H.

    2015-01-01

    Tidal-scale biophysical interactions establish particular flow routing and sedimentation patterns in coastal mangroves. Sluggish water flows through the mangrove vegetation and enhanced sediment deposition are essential to maintain these valuable ecosystems, thereby enabling their contribution to

  18. Tidal River Elbe - a sediment budget for the grain size fraction of medium sand

    Science.gov (United States)

    Winterscheid, Axel

    2016-04-01

    Human interventions have a historic and ongoing impact on estuarine sediment budgets across many estuaries worldwide. An early inference was the construction of embankments resulting in a constant loss of intertidal flats. Additionally, settlement activities and large scale land use changes in the upstream catchment areas had also an effect on sediment inflow rates. Today, the navigation channels in estuaries have been deepened for larger and more efficient vessels to reach a well-developed infrastructure of harbors and industrial areas often located far inland. In the past few years and just within the North-East Atlantic, the total annual amount of dredged sediments dumped at sea varied from 80 to 130 million tons (OSPAR Commission). In most estuaries across Europe the resulting human impact on the sediment fluxes and morphodynamics is significant. A good understanding of estuarine processes is essential for determining useful and meaningful measures to mitigate negative effects and to improve the current situation. Maintenance dredging and its environmental effects are therefore in the focus of public attention. Against this background, it is the aim of the presentation to identify and therefore to separate the particular effect that maintenance dredging has on sediment fluxes and budgets in the estuarine environment. Case study is the Tidal River Elbe in Germany, and here we set the focus on the grain size fraction of medium sand. In the past, river engineering measures forced the natural dynamics to form a concentrated stream flow along a fixed channel, except at a number of locations where side channels still exist. In addition to that, the main channel was deepened several times. The last deepening was in 1999/2000. The most significant deepening, however, took place from 1957 to 1962. Until then, an erosion-stable layer of marine clay (in German called "Klei") formed a flat bottom along most sections of the main channel. After removal of this layer of

  19. Transverse structure of tidal flow, residual flow and sediment concentration in estuaries: sensitivity to tidal forcing and water depth

    NARCIS (Netherlands)

    Huijts, K.M.H.|info:eu-repo/dai/nl/304831867; de Swart, H.E.|info:eu-repo/dai/nl/073449725; Schramkowski, G.P.; Schuttelaars, H.M.

    2011-01-01

    An analytical and a numerical model are used to understand the response of velocity and sediment distributions over Gaussian-shaped estuarine cross-sections to changes in tidal forcing and water depth. The estuaries considered here are characterized by strong mixing and a relatively weak

  20. Continuous monitoring bed-level dynamics on an intertidal flat: Introducing novel, stand-alone high-resolution SED-sensors

    NARCIS (Netherlands)

    Hu, Z.; Lenting, W.; Van der Wal, D.; Bouma, T.J.

    2015-01-01

    Tidal flat morphology is continuously shaped by hydrodynamic forces, resulting in a highly dynamic bed surface. The knowledge of short-term bed-level changes is important both for assessing sediment transport processes as well as for understanding critical ecological processes, such as vegetation

  1. Biogenic silica in tidal freshwater marsh sediments and vegetation (Schelde estuary, Belgium)

    NARCIS (Netherlands)

    Struyf, E.; van Damme, S.; Gribsholt, B.; Middelburg, J.J.; Meire, P.

    2005-01-01

    To date, estuarine ecosystem research has mostly neglected silica cycling in freshwater intertidal marshes. However, tidal marshes can store large amounts of biogenic silica (BSi) in vegetation and sediment. BSi content of the typical freshwater marsh plants Phragmites australis, Impatiens

  2. Contrasting sedimentation patterns in two semi-enclosed mesotidal bays along the west and south coasts of Korea controlled by their orientation to the regional monsoon climate

    Science.gov (United States)

    Hong, Seok Hwi; Chun, Seung Soo; Chang, Tae Soo; Jang, Dae Geon

    2017-08-01

    Sedimentation patterns of tidal flats along the Korean west coast have long been known to be largely controlled by the monsoon climate. On the other hand, much less is known about the effect of the monsoon on sedimentation in coastal embayments with mouths of different geographic orientations. Good examples are Hampyeong and Yeoja bays along the west and south coasts, respectively. Both have narrow entrances, but their mouths open toward the northwest and the south, respectively. With mean tidal ranges of 3.46 and 3.2 m, respectively, the two bays experience similar tidal regimes and are hence excellent candidates to compare the effect of different exposure to the same regional monsoon climate on their respective sediment distribution patterns. The winter monsoon, in particular, is characterized by strong northwesterly winds that directly impact the west coast, but blow offshore along the south coast. For the purpose of this study, surficial sediment samples were collected from intertidal and subtidal flats of the two bays, both in summer and winter. Grain-size analyses were carried out by sieving (sand fraction) and Sedigraph (mud fraction). In the case of Yeoja Bay, the sediments consist mostly of mud (mean grain sizes of 5.4 to 8.8 phi). Seasonal changes are very subtle, the sediments being slightly coarser in summer when silt-dominated sediments are supplied by two streams to the northern parts of the bay in response to heavy rainfall. With the exception of the deeper tidal channels, Yeoja Bay is characterized by a thick mud blanket the year round, which is modulated by processes associated with the summer monsoon that predominantly blows from the east. Textural parameters suggest severely restricted sediment mixing on the subtidal and intertidal flats, the overall low energy situation preventing sands from reaching the tidal flats. The sediments of Hampyeong Bay, by contrast, are characterized by a distinct shoreward fining trend. Mean grain sizes average

  3. Distribution and sediment production of large benthic foraminifers on reef flats of the Majuro Atoll, Marshall Islands

    Science.gov (United States)

    Fujita, K.; Osawa, Y.; Kayanne, H.; Ide, Y.; Yamano, H.

    2009-03-01

    The distributions and population densities of large benthic foraminifers (LBFs) were investigated on reef flats of the Majuro Atoll, Marshall Islands. Annual sediment production by foraminifers was estimated based on population density data. Predominant LBFs were Calcarina and Amphistegina, and the population densities of these foraminifers varied with location and substratum type on reef flats. Both foraminifers primarily attached to macrophytes, particularly turf-forming algae, and were most abundant on an ocean reef flat (ORF) and in an inter-island channel near windward, sparsely populated islands. Calcarina density was higher on windward compared to leeward sides of ORFs, whereas Amphistegina density was similar on both sides of ORFs. These foraminifers were more common on the ocean side relative to the lagoon side of reef flats around a windward reef island, and both were rare or absent in nearshore zones around reef islands and on an ORF near windward, densely populated islands. Foraminiferal production rates varied with the degree to which habitats were subject to water motion and human influences. Highly productive sites (>103 g CaCO3 m-2 year-1) included an ORF and an inter-island channel near windward, sparsely populated islands, and a seaward area of a reef flat with no reef islands. Low-productivity sites (<10 g CaCO3 m-2 year-1) included generally nearshore zones of lagoonal reef flats, leeward ORFs, and a windward ORF near densely populated islands. These results suggest that the distribution and production of LBFs were largely influenced by a combination of natural environmental factors, including water motion, water depth, elevation relative to the lowest tidal level at spring tide, and the distribution of suitable substratum. The presence of reef islands may limit the distribution and production of foraminifers by altering water circulation in nearshore environments. Furthermore, increased anthropogenic factors (population and activities) may

  4. Kinetics of trace metal removal from tidal water by mangrove sediments under different redox conditions

    International Nuclear Information System (INIS)

    Suzuki, K.N.; Machado, E.C.; Machado, W.; Bellido, A.V.B.; Bellido, L.F.; Osso, J.A.; Lopes, R.T.

    2014-01-01

    The extent in which redox conditions can affect the removal kinetics of 58 Co and 65 Zn from tidal water by mangrove sediments was evaluated in microcosm experiments, simulating a tidal flooding period of 6 h. The average half-removal time (t 1/2 ) of 58 Co from overlaying water was slightly higher (7.3 h) under an N 2 -purged water column than under an aerated water column (5.4 h). A lower difference was found for 65 Zn (1.9 h vs. 1.5 h, respectively). Average removals of 58 Co activities from water were 54.6% (N 2 treatment) and 43.5% (aeration treatment), whereas these values were 88.0% and 92.7% for 65 Zn, respectively. Very contrasting sorption kinetics of different radiotracers occurred, while more oxidising conditions favoured only a slightly higher removal. Average 58 Co and 65 Zn inventories within sediments were 30.4% and 18.8% higher in the aeration treatment, respectively. A stronger particle-reactive behaviour was found for 65 Zn that was less redox-sensitive and more efficiently removed by sediments than 58 Co. - Highlights: ► Radiotracer experiments evidenced the role of mangrove sediments in trapping trace metals. ► Very contrasting removal kinetics from tidal water were observed for 65 Zn and 58 Co. ► Nearly 40%–50% of 58 Co activities and nearly 90% of 65 Zn activities in overlying water were removed. ► 65 Zn showed a stronger particle-reactive behaviour than observed for 58 Co. ► 58 Co was more sensitive to redox conditions in tidal water than observed for 65 Zn

  5. Phytoremediation as a management option for contaminated sediments in tidal marshes, flood control areas and dredged sediment landfill sites.

    Science.gov (United States)

    Bert, Valérie; Seuntjens, Piet; Dejonghe, Winnie; Lacherez, Sophie; Thuy, Hoang Thi Thanh; Vandecasteele, Bart

    2009-11-01

    Polluted sediments in rivers may be transported by the river to the sea, spread over river banks and tidal marshes or managed, i.e. actively dredged and disposed of on land. Once sedimented on tidal marshes, alluvial areas or control flood areas, the polluted sediments enter semi-terrestrial ecosystems or agro-ecosystems and may pose a risk. Disposal of polluted dredged sediments on land may also lead to certain risks. Up to a few years ago, contaminated dredged sediments were placed in confined disposal facilities. The European policy encourages sediment valorisation and this will be a technological challenge for the near future. Currently, contaminated dredged sediments are often not valorisable due to their high content of contaminants and their consequent hazardous properties. In addition, it is generally admitted that treatment and re-use of heavily contaminated dredged sediments is not a cost-effective alternative to confined disposal. For contaminated sediments and associated disposal facilities used in the past, a realistic, low cost, safe, ecologically sound and sustainable management option is required. In this context, phytoremediation is proposed in the literature as a management option. The aim of this paper is to review the current knowledge on management, (phyto)remediation and associated risks in the particular case of sediments contaminated with organic and inorganic pollutants. This paper deals with the following features: (1) management and remediation of contaminated sediments and associated risk assessment; (2) management options for ecosystems on polluted sediments, based on phytoremediation of contaminated sediments with focus on phytoextraction, phytostabilisation and phytoremediation of organic pollutants and (3) microbial and mycorrhizal processes occurring in contaminated sediments during phytoremediation. In this review, an overview is given of phytoremediation as a management option for semi-terrestrial and terrestrial ecosystems

  6. Semi-isolated, flat-topped carbonate platform (Oligo-Miocene, Sardinia, Italy): Sedimentary architecture and processes

    Science.gov (United States)

    Andreucci, Stefano; Pistis, Marco; Funedda, Antonio; Loi, Alfredo

    2017-11-01

    separated by finer-grained ;drapes; or reactivation surfaces were observed, the prevailing processes acting over the platform are unidirectional, landward-directed currents possibly associated with longshore currents and/or wave actions. However, the resultant migration of the whole system onshore (landward) cannot be easily explained with storm or wind-related processes. Thus the studied flat-topped platform seems to be controlled by long term tidal regulation within a meso to macro tidal regime. In particular, such meso/macro tidal environments experience multiannual to multidecennial phases of stronger/weaker tidal range fluctuations resembling periods of relatively sea highs and lows with respect to the mean sea level (0 m). All the (wind, storm, wave and tidal) currents sweeping the flat-topped platform were maxima during phases of strong tidal fluctuations generating erosion and sediment transportation over the flat and accumulation on the landward slope (clinobeds). Conversely, during phases of weaker tidal range fluctuations overall currents were minima, clinoforms did not develop and factories widespread re-colonized the submerged flat. Therefore, the studied platform developed in a current-dominated and tidal modulated setting. Finally, the studied carbonates of Sardinia suggest that the Sardinian seaway and the incipient Provençal basin during the Chattian-Aquitanian were, locally, capable to generate meso to macro tidal conditions.

  7. Impact of intertidal area characteristics on estuarine tidal hydrodynamics: A modelling study for the Scheldt Estuary

    Science.gov (United States)

    Stark, J.; Smolders, S.; Meire, P.; Temmerman, S.

    2017-11-01

    Marsh restoration projects are nowadays being implemented as ecosystem-based strategies to reduce flood risks and to restore intertidal habitat along estuaries. Changes in estuarine tidal hydrodynamics are expected along with such intertidal area changes. A validated hydrodynamic model of the Scheldt Estuary is used to gain fundamental insights in the role of intertidal area characteristics on tidal hydrodynamics and tidal asymmetry in particular through several geomorphological scenarios in which intertidal area elevation and location along the estuary is varied. Model results indicate that the location of intertidal areas and their storage volume relative to the local tidal prism determine the intensity and reach along the estuary over which tidal hydrodynamics are affected. Our model results also suggest that intertidal storage areas that are located within the main estuarine channel system, and hence are part of the flow-carrying part of the estuary, may affect tidal hydrodynamics differently than intertidal areas that are side-basins of the main estuarine channel, and hence only contribute little to the flow-carrying cross-section of the estuary. If tidal flats contribute to the channel cross-section and exert frictional effects on the tidal propagation, the elevation of intertidal flats influences the magnitude and direction of tidal asymmetry along estuarine channels. Ebb-dominance is most strongly enhanced if tidal flats are around mean sea level or slightly above. Conversely, flood-dominance is enhanced if the tidal flats are situated low in the tidal frame. For intertidal storage areas at specific locations besides the main channel, flood-dominance in the estuary channel peaks in the vicinity of those areas and generally reduces upstream and downstream compared to a reference scenario. Finally, the model results indicate an along-estuary varying impact on the tidal prism as a result of adding intertidal storage at a specific location. In addition to known

  8. Seasonal variations of the composition of microbial biofilms in sandy tidal flats: Focus of fatty acids, pigments and exopolymers

    Science.gov (United States)

    Passarelli, Claire; Meziane, Tarik; Thiney, Najet; Boeuf, Dominique; Jesus, Bruno; Ruivo, Mickael; Jeanthon, Christian; Hubas, Cédric

    2015-02-01

    Biofilms, or microbial mats, are common associations of microorganisms in tidal flats; they generally consist of a large diversity of organisms embedded in a matrix of Extracellular Polymeric Substances (EPS). These molecules are mainly composed of carbohydrates and proteins, but their detailed monomer compositions and seasonal variations are currently unknown. Yet this composition determines the numerous roles of biofilms in these systems. This study investigated the changes in composition of carbohydrates in intertidal microbial mats over a year to decipher seasonal variations in biofilms and in varying hydrodynamic conditions. This work also aimed to assess how these compositions are related to microbial assemblages. In this context, natural biofilms whose development was influenced or not by artificial structures mimicking polychaete tubes were sampled monthly for over a year in intertidal flats of the Chausey archipelago. Biofilms were compared through the analysis of their fatty acid and pigment contents, and the monosaccharide composition of their EPS carbohydrates. Carbohydrates from both colloidal and bound EPS contained mainly glucose and, to a lower extent, galactose and mannose but they showed significant differences in their detailed monosaccharide compositions. These two fractions displayed different seasonal evolution, even if glucose accumulated in both fractions in summer; bound EPS only were affected by artificial biogenic structures. Sediment composition in fatty acids and pigments showed that microbial communities were dominated by diatoms and heterotrophic bacteria. Their relative proportions, as well as those of other groups like cryptophytes, changed between times and treatments. The changes in EPS composition were not fully explained by modifications of microbial assemblages but also depended on the processes taking place in sediments and on environmental conditions. These variations of EPS compositions are likely to alter different

  9. Effect of non-aqueous phase liquid on biodegradation of PAHs in spilled oil on tidal flat

    International Nuclear Information System (INIS)

    Kose, T.; Miyagishi, A.; Mukai, T.; Takimoto, K.; Okada, M.

    2003-01-01

    Biodegradation rates of polycyclic aromatic hydrocarbons (PAHs) in spilled oil stranded on tidal flats were studied using model reactors to clarify the effects of NAPL on the biodegradation of PAHs in stranded oil on tidal flat with special emphasis on the relationship between dissolution rates of PAHs into water and viscosity of NAPL. Biodegradation of PAHs in NAPL was limited by the dissolution rates of PAHs into water. Biodegradation rate of chrysene was smaller than that for acenaphthene and phenanthrene due to the smaller dissolution rates. Dissolution rates of PAHs in fuel oil C were smaller than those in crude oil due to high viscosity of fuel oil C. Therefore, biodegradation rates of PAHs in fuel oil C were smaller than those in crude oil. Biodegradation rates of PAHs in NAPL with slow decrease rate like fuel oil C were slower than those in NAPL with rapid decrease like crude oil. The smaller decrease rate of fuel oil C than crude oil was due to higher viscosity of fuel oil C. Therefore, not only the dissolution rate of PAHs but also the decrease rates of NAPL were important factors for the biodegradation of PAHs. (author)

  10. Influence of geologic structure on alluvial sedimentation in northwestern Yucca Flat, Nye County, Nevada

    International Nuclear Information System (INIS)

    Wagoner, J.L.

    1983-01-01

    Using downhole photography, alluvial sediments are described in 5 emplacement holes in northwestern Yucca Flat. The holes are located on or near the Grouse Canyon fan. The 3 most proximally located holes contain the coarsest sediments and display a general decrease in grain size in the downfan direction. The 2 most distally located holes contain fine-grained distal facies sediment in the upper parts of the holes and coarse-grained proximal facies gravels lower in the holes. The proximal gravels in the lower half of the sections were derived from the gravity high, a north-south-trending horst which was exposed early during the history of Yucca Flat basin. Alluvial sedimentation eventually exceeded uplift of the horst, which was buried by distal facies sediments, derived from the western basin margin

  11. impact of vegetation on flow routing and sedimentation patterns : three-dimensional modeling for a tidal marsh

    NARCIS (Netherlands)

    Temmerman, S.; Bouma, T.J.; De Vries, M.B.; Wang, Z.B.; Govers, G.; Herman, P.M.J.

    2005-01-01

    A three-dimensional hydrodynamic and sediment transport model was used to study the relative impact of (1) vegetation, (2) micro-topography, and (3) water level fluctuations on the spatial flow and sedimentation patterns in a tidal marsh landscape during single inundation events. The model

  12. Impact of vegetation on flow routing and sedimentation patterns : three-dimensional modeling for a tidal marsh

    NARCIS (Netherlands)

    Temmerman, S.; Bouma, T.J.; Govers, G.; Wang, Z.B.; de Vries, M.B.; Herman, P.M.J.

    2005-01-01

    A three-dimensional hydrodynamic and sediment transport model was used to study the relative impact of (1) vegetation, (2) micro-topography, and (3) water level fluctuations on the spatial flow and sedimentation patterns in a tidal marsh landscape during single inundation events. The model

  13. Variability of residual fluxes of suspended sediment in a multiple tidal-inlet system : the Dutch Wadden Sea

    NARCIS (Netherlands)

    Sassi, M.; Duran-Matute, M.; van Kessel, Th.; Gerkema, Th.

    2015-01-01

    In multiple tidal-inlet systems such as the Dutch Wadden Sea, the exchange of sediments between the coastal lagoon and the adjacent sea is controlled by the combined effect of the tides, wind-driven flows, and density-driven flows. We investigate the variability of residual (tidally averaged) fluxes

  14. Heterogeneous distribution of prokaryotes and viruses at the microscale in a tidal sediment

    DEFF Research Database (Denmark)

    Carreira, Cátia; Larsen, Morten; Glud, Ronnie

    2013-01-01

    In this study we show for the first time the microscale (mm) 2- and 3-dimensional spatial distribution and abundance of prokaryotes, viruses, and oxygen in a tidal sediment. Prokaryotes and viruses were highly heterogeneously distributed with patches of elevated abundances surrounded by areas of ...

  15. Tidal Creek Morphology and Sediment Type Influence Spatial Trends in Salt Marsh Vegetation

    DEFF Research Database (Denmark)

    Kim, Daehyun; Cairns, David M.; Bartholdy, Jesper

    2013-01-01

    that by shaping major geomorphic features and providing sediments to the adjacent sites, fluvial-geomorphic processes of tidal creeks exert fundamental controls on the cross-channel distribution of abiotic and biotic factors. These results point to a need for biogeomorphic and landscape ecological perspectives...

  16. Isolation of perchlorate-reducing Azospira suillum strain JB524 from tidal flats of the Yellow Sea

    Directory of Open Access Journals (Sweden)

    Nirmala Bardiya

    2016-11-01

    Full Text Available Objective: To isolate and identify perchlorate-reducing bacterium from an enriched consortium from tidal flats of the Yellow Sea. Methods: A perchlorate-enriched consortium from tidal flats of the Yellow Sea was used to isolate Azospira suillum (A. suillum strain JB524. The strain was identified based on partial 16S rDNA sequencing. Perchlorate reduction by the strain was tested with acetate as the e - donor in the presence of NaCl, nitrate and at different growth temperatures using standard anaerobic techniques. The complete enzymatic destruction of perchlorate was confirmed as evolution of O2 by chlorite dismutase in the absence of acetate. Results: Strain JB524 shared 100% 16S rDNA sequence similarity with the type strain A. suillum PST isolated from a swine waste treatment lagoon. Perchlorate reduction coincided with concomitant increase in cell density. Although, acclimatization of the strain PST at suboptimal temperature for perchlorate reduction is not reported, the newly isolated strain could rapidly reduce perchlorate at 22 °C after brief acclimatization. Conclusions: Reduction of perchlorate by A. suillum strain JB524 was negatively affected in the presence of NaCl, suboptimal temperature, presence of nitrate, and limiting amount of acetate as the e-donor.

  17. Assessment of propeller and off-road vehicle scarring in seagrass beds and wind-tidal flats of the southwestern Gulf of Mexico

    Science.gov (United States)

    Martin, S.R.; Onuf, C.P.; Dunton, K.H.

    2008-01-01

    We used aerial photography and GIS to establish a quantitative baseline of propeller and off-road vehicle (ORV) scarring in seagrass and wind-tidal flats of the upper Laguna Madre in the Padre Island National Seashore (Texas, USA). We also examined scar recovery through comparison of recent (2002, 2005) and historical (1967) aerial photographs of the study area. Scarring intensity was calculated using two different methods. In the first, polygons were visually drawn around groups of scars on digital images. Scarring intensity was estimated as light (20%), based on the total coverage of scars within each polygon (taking into account the length, width, and density of scars). We developed a more objective method that employed creation of vector grid cells and buffers that incorporated the localized ecological impact of scars. Results of spatial and temporal analysis revealed that the polygon approach greatly underestimated the magnitude of scarring. For example, in a single photograph, 7% of seagrass area was lightly scarred according to the polygon method; but light scarring increased to 51% according to grid analysis of the same image. Our results also indicated that propeller scars in Halodule wrightii beds appear to recover in less than three years and ORV tracks have persisted in the wind-tidal flats for at least 38 years. Our approach provides resource managers with procedures for a more objective and efficient assessment of physical disturbances to seagrass and wind-tidal flats caused by boats and ORVs. ?? 2008 by Walter de Gruyter.

  18. Sediment source, turbidity maximum, and implications for mud exchange between channel and mangroves in an Amazonian estuary

    Science.gov (United States)

    Asp, Nils Edvin; Gomes, Vando José Costa; Ogston, Andrea; Borges, José Carlos Corrêa; Nittrouer, Charles Albert

    2016-02-01

    The tide-dominated eastern sector of the Brazilian Amazonian coast includes large mangrove areas and several estuaries, including the estuary associated with the Urumajó River. There, the dynamics of suspended sediments and delivery mechanisms for mud to the tidal flats and mangroves are complex and were investigated in this study. Four longitudinal measuring campaigns were carried out, encompassing spring/neap tides and dry/rainy seasons. During spring tides, water levels were measured simultaneously at 5 points along the estuary. Currents, salinity, and suspended sediment concentrations (SSCs) were measured over the tidal cycle in a cross section at the middle sector of the estuary. Results show a marked turbidity maximum zone (TMZ) during the rainy season, with a 4-km upstream displacement from neap to spring tide. During dry season, the TMZ was conspicuous only during neap tide and dislocated about 5 km upstream and was substantially less apparent in comparison to that observed during rainy season. The results show that mud is being concentrated in the channel associated with the TMZ especially during the rainy season. At this time, a substantial amount of the mud is washed out from mangroves to the estuarine channel and hydrodynamic/salinity conditions for TMZ formation are optimal. As expected, transport to the mangrove flats is most effective during spring tide and substantially reduced at neap tide, when mangroves are not being flooded. During the dry season, mud is resuspended from the bed in the TMZ sector and is a source of sediment delivered to the tidal flats and mangroves. The seasonal variation of the sediments on the seabed is in agreement with the variation of suspended sediments as well.

  19. Literature Review of Unconsolidated Sediment in San Francisco Bay and Nearby Pacific Ocean Coast

    Directory of Open Access Journals (Sweden)

    Barry R. Keller

    2009-09-01

    Full Text Available A review of the geologic literature regarding sedimentation in the San Francisco Bay estuarine system shows that the main part of the bay occupies a structural tectonic depression that developed in Pleistocene time. Eastern parts, including San Pablo Bay and Suisun Bay, have had sedimentation throughout late Mesozoic and Tertiary. Carquinez Strait and the Golden Gate may represent antecedent stream erosion. Sedimentation has included estuarine, alluvial, and eolian deposition. The ages of estuarine deposition includes the modern high sea level stand and earlier Pleistocene interglacial periods. Sediment sources can be generally divided into the Coast Ranges, particularly the Franciscan Complex, and “Sierran.” Much of the estuarine system is floored by very fine sediment, with local areas of sand floor. Near the Golden Gate, sediment size decreases in both directions away from the deep channel. Bedforms include sand waves (submarine dunes, flat beds, and rock and boulders. These are interpreted in terms of dominant transport directions. Near the Golden Gate is an ebb-tidal delta on the outside (including San Francisco bar and a flood-tidal delta on the inside (parts of Central Bay. The large tidal prism causes strong tidal currents, which in the upper part of the estuary are normally much stronger than river currents, except during large floods. Cultural influences have altered conditions, including hydraulic mining debris, blasting of rocks, dredging of navigation channels, filling of the bay, and commercial sand mining. Many of these have served to decrease the tidal prism, correspondingly decreasing the strength of tidal currents.

  20. Observations of transitional tidal boundary layers and their impact on sediment transport in the Great Bay, NH

    Science.gov (United States)

    Koetje, K. M.; Foster, D. L.; Lippmann, T. C.

    2017-12-01

    Observations of the vertical structure of tidal flows obtained in 2016 and 2017 in the Great Bay Estuary, NH show evidence of transitional tidal boundary layers at deployment locations on shallow mudflats. High-resolution bottom boundary layer currents, hydrography, turbidity, and bed characteristics were observed with an acoustic Doppler current profiler (ADCP), an acoustic Doppler velocimeter (ADV), conductivity-depth-temperature (CTD) sensors, optical backscatter sensors, multibeam bathymetric surveys, and sediment grab samples and cores. Over the 2.5 m tidal range and at water depths ranging from 0.3 m to 1.5 m at mean lower low water, peak flows ranged from 10 cm/s to 30 cm/s and were primarily driven by the tides. A downward-looking ADCP captured the velocity profile over the lowest 1 m of the water column. Results consistently show a dual-log layer system, with evidence of a lower layer within 15 cm of the bed, another layer above approximately 30 cm from the bed, and a transitional region where the flow field rotates between that the two layers that can be as much as 180 degrees out of phase. CTD casts collected over a complete tidal cycle suggest that the weak thermohaline stratification is not responsible for development of the two layers. On the other hand, acoustic and optical backscatter measurements show spatial and temporal variability in suspended sediments that are dependant on tidal phase. Current work includes an examination of the relationship between sediment concentrations in the water column and velocity profile characteristics, along with an effort to quantify the impact of rotation and dual-log layers on bed stress.

  1. Evidence of tidal processes from the lower part of the Witwatersrand Supergroup, South Africa

    Science.gov (United States)

    Eriksson, Kenneth A.; Turner, Brian R.; Vos, Richard G.

    1981-08-01

    A 1600-m succession of quartz arenites and associated shaley deposits comprising the Hospital Hill Subgroup at the base of the Witwatersrand Supergroup is considered to have been deposited largely under the influence of tidal processes. Facies analysis indicates that deposition occurred in the following environments: (1) marine shalf; (2) shallow subtidal to intertidal; (3) intertidal flat; and (4) tidal inlet. The presence of strong tidal currents implies that the Witwatersrand Basin was open to an ocean basin, at least during the early stages of its evolution. Palaeocurrent trends and isopach data suggest that this probably lay to the southwest, an area now occupied by the high grade Natal—Namaqua metamorphic belt. The contrast between the supermature quartz arenites of the Hospital Hill Subgroup and the overlying gold-bearing immature subgreywackes, feldspathic quartzites and conglomerates of fluvial origin is believed to be a function of tidal reworking of sediments.

  2. Coastal marsh degradation: modeling the influence of vegetation die-off patterns on flow and sedimentation

    Science.gov (United States)

    Schepers, Lennert; Wang, Chen; Kirwan, Matthew; Belluco, Enrica; D'Alpaos, Andrea; Temmerman, Stijn

    2014-05-01

    Coastal marshes are vulnerable ecosystems that provide ecosystem functions such as storm protection and carbon sequestration. However, degradation of vegetated marshes into bare tidal flats or open water has been reported as a worldwide phenomenon, threatening their valuable wetland functions. Moreover, tidal marshes and bare flats are considered as alternative stable ecosystem states, which implies that, once vegetated marshes have degraded to bare flats, the (re)conversion from bare flats to marsh vegetation may be very difficult. Recent aerial photo analysis has demonstrated that the degradation or die-off of a marsh area is a spatial process, whereby vegetation is typically replaced by non-vegetated areas in the form of interior marsh pools, also known as ponds or marsh basins. On a small scale, these pools have similar characteristics among different marshes worldwide: pools that are located further away from tidal channels and with broad channel connections to the tidal channel system appear to have low surface elevations and a low probability for marsh recovery (this is re-establishment of vegetation on the surface). Interior pools located closer to, but that are not connected to channels on the other hand, are positioned on higher elevations and are more likely to recover. These findings may have important implications for the restoration potential of degraded marshes and their functions. We hypothesize that bio-geomorphologic interactions are the main mechanisms causing these differences in elevation and recovery potential of interior marsh pools: pools that are not connected to the channel system, are separated from the channel by vegetation, which reduces the flow velocity, increases sedimentation and may explain our observation of higher surface elevation of this type of pools. In contrast, pools that are connected with the channel system are not protected by vegetation and will experience higher flow velocities and lower sedimentation rates or even

  3. Sediment Accretion, Carbon Sequestration, and Resilience to Sea Level Rise in Natural and Recently Restored Tidal Marshes

    Science.gov (United States)

    Poppe, K.; Rybczyk, J.; Parr, L.; Merrill, A.

    2017-12-01

    Tidal marshes are typically productive and depositional environments potentially conducive to high rates of carbon sequestration. Though they have been recognized globally for their ability to store "blue carbon", there is a paucity of comprehensive site-scale data from the Pacific Northwest U.S. Here we report carbon stocks and sequestration rates for an existing and a recently restored brackish marsh in the Stillaguamish River Estuary, in Puget Sound, Washington. The Stillaguamish River discharges into the Port Susan Bay Preserve which contains a 150-acre tidal marsh restoration site that was reintroduced to the tidal regime in 2012 from its previous use as diked and drained farmland. We hypothesized that the restoration would not only maximize carbon storage in former tidal wetlands but also, through the accumulation of organic and mineral matter, enhance these systems' resilience to rising sea levels. We collected sediment cores from 13 sites across the estuary, within and outside of the restoration area, to determine bulk density, organic and carbon content with depth, long-term accretion rates, and belowground biomass. We also measured aboveground net primary productivity. Carbon stocks at each site were partitioned into three components as recommended by the IPCC: aboveground biomass, belowground biomass, and sediment carbon. We additionally measured elevation change with surface elevation tables (SETs). Mean sediment carbon stocks in the upper 30 cm of sediment within the restoration area (6.45 kg C/m2) were similar to those measured in the adjacent natural marsh (6.82 kg C/m2). However, mean elevation change, as measured by SETs, were substantially higher in the restoration area (3.10 cm/yr) than in the natural marsh sites (0.79 cm/yr). As a result, carbon accumulation rates were also higher in the restoration area (821 g C/m2/yr) compared to the natural marsh sites (195 g C/m2/yr).

  4. Iron plaque formation and heavy metal uptake in Spartina alterniflora at different tidal levels and waterlogging conditions.

    Science.gov (United States)

    Xu, Yan; Sun, Xiangli; Zhang, Qiqiong; Li, Xiuzhen; Yan, Zhongzheng

    2018-05-30

    Tidal flat elevation in the estuarine wetland determines the tidal flooding time and flooding frequency, which will inevitably affect the formation of iron plaque and accumulations of heavy metals (HMs) in wetland plants. The present study investigated the formation of iron plaque and HM's (copper, zinc, lead, and chromium) accumulation in S. alterniflora, a typical estuarine wetland species, at different tidal flat elevations (low, middle and high) in filed and at different time (3, 6, 9, 12 h per day) of waterlogging treatment in greenhouse conditions. Results showed that the accumulation of copper, zinc, lead, and chromium in S. alterniflora was proportional to the exchangeable fraction of these metals in the sediments, which generally increased with the increase of waterlogging time, whereas the formations of iron plaque in roots decreased with the increase of waterlogging time. Under field conditions, the uptake of copper and zinc in the different parts of the plants generally increased with the tidal levels despite the decrease in the metals' exchangeable fraction with increasing tidal levels. The formation of iron plaque was found to be highest in the middle tidal positions and significantly lower in low and high tidal positions. Longer waterlogging time increased the metals' accumulation but decreased the formation of iron plaque in S. alterniflora. The binding of metal ions on iron plaque helped impede the uptake and accumulation of copper and chromium in S. alterniflora. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Microplastics in Freshwater River Sediments in Shanghai, China: A Case Study of Risk Assessment in Mega Cities

    Science.gov (United States)

    Peng, G.; Xu, P.

    2017-12-01

    Microplastics are plastics that measure less than 5 mm, which attracted exponential interest in recent years. Microplastics are widely distributed in water, sediments, and biotas. Most of distribution studies focus on the marine environment, yet methods to conduct risk assessment are limited. Widespread of microplastics has raised alarm for the well-being of marine living resources because of its negative ecological effects that has been proved. To understand the distribution of microplastics in urban rivers and source of marine microplastics, we investigated into river sediments in Shanghai, the biggest city in China. Seven sampling sites covered most of city central districts including one sampling site from a tidal flat. Density separation, microscopic inspection and identification were conducted to analyze microplastic abundance, shape and color. It is found that pellets were the most prevalent shape, followed by fiber and fragment. White microplastics were the most common type in terms of color. White foamed microplastic pellets were widely distributed in urban river sediments. Microplastic abundance from rivers was one to two orders of magnitude higher than that from the tidal flat. The significant difference between river and tidal flat samples lead to the conclusion that coastal rivers may be the source of microplastics, therefore in situ data and legitimate estimation should be considered by policy-makers. Seven types of microplastics were identified by μ-FT-IR analysis, indicating a secondary source. Comparison between two types of μ-FT-IR instruments was summarized. Framework for environmental risk assessment for microplastics in sediments was proposed. Indicators and ranks were select for the assessment of microplastic in sediments. It is recommended to select the index, integrate statistical data, follow expert opinions extensively and construct comprehensive evaluation method and ecological risk assessment system for the Chinese context.

  6. CHARACTERISTICS OF RICE SOILS FROM THE TIDAL FLAT AREAS OF MUSI BANYUASIN, SOUTH SUMATRA

    Directory of Open Access Journals (Sweden)

    B.H. Prasetyo

    2016-10-01

    Full Text Available Tidal flats in the Musi Banyuasin region that cover more than 200,000 ha are the largest area for agricultural development in South Sumatra Province. Only about a half of this has been used for tidal swamp rice fields, therefore, the other half needs to be developed. To obtain a better understanding of their properties for appropriate soil management, soil characteristics of the area need to be studied. To characterize the soil, thirty-four soil samples from seven soil profiles were analyzed for their chemical and mineralogical composition at the laboratories of the Center for Soil and Agroclimate Research and Development. The results indicate that soils from the tidal flat areas have an aquic soil moisture regime, the upper parts of the soils are mostly ripe, and most of the pedons show the presence of sulfidic materials below 65 cm of the mineral soil surface. The soils are classified as Sulfic Endoaquept (P1, P2, Histic Sulfaquent (P3, Typic Sulfaquept (P4, Fluvaquentic Endoaquept (P5, and Sulfic Hydraquent (P6, P7. Mineral composition of the sand fraction is dominated by quartz, while the clay minerals consist of predominantly kaolinite, mixed with small amount of smectite, illite, quartz, and crystoballite. Organic carbon content is high to very high, potential phosphate content of most pedons ranges from very low to medium, while potential potassium content varies from very low to medium in the upper layers and medium to very high in the bottom layers. Phosphate retention of topsoil sample varies from 56 to 97%, and is positively correlated (r2 = 0.73 with aluminum from amorphous materials. Exchangeable cations are dominated by Mg cation, and in all pedons cation exchange capacity values are medium to very high, and seem to be influenced by organic carbon. Specific chemical properties, particularly soil pH and content of exchangeable aluminum exhibit a significant change about 1-2 months after soil samples were taken from the field

  7. Low-angle dunes in the Changjiang (Yangtze) Estuary: Flow and sediment dynamics under tidal influence

    Science.gov (United States)

    Hu, Hao; Wei, Taoyuan; Yang, Zhongyong; Hackney, Christopher R.; Parsons, Daniel R.

    2018-05-01

    It has long been highlighted that important feedbacks exist between river bed morphology, sediment transport and the turbulent flow field and that these feedbacks change in response to forcing mechanisms. However, our current understanding of bedform dynamics is largely based on studies of steady flow environments and cohesionless bed conditions. Few investigations have been made under rapidly changing flows. Here, we examine flow and sediment dynamics over low-angle dunes in unsteady flows in the Changjiang (Yangtze) Estuary, China. Topography, flow and sediment data were collected over a reach ca 1.8 km long through a semi-diurnal tidal cycle in a moderate tide of flood season. The results show that: (1) roughness length derived from the upper flow changes little with the flow reversing and displays the same value on both the ebb and flood tide. Moreover, the variability of individual bedform features plays an important role in roughness length variation. (2) Shear stress over the crest of low-angle dunes roughly represents the total spatially averaged stress over dunes in this study area, which has significant implications for advancing numerical models. (3) Changes in morphology, flow and sediment dynamics over dunes through time reveal how low-angle dunes evolve within a tidal cycle. (4) The clockwise hysteresis loops between flow dynamics and bedform features (height and aspect ratio) are also observed. The combination of suspended sediment transport and bedload transport on dune transformation and migration attributes to the clockwise hysteresis. The specific sediment composition of the riverbed, in some extent, affects the mechanism of sediment transport related to the exchange between suspended sediment and riverbed, but further investigation is needed to figure out the mechanism behind this for extended series of tides, such as spring/neap tide and tides in flooding and dry season.

  8. Modelling lateral entrapment of suspended sediment in estuaries : The role of spatial lags in settling and M4 tidal flow

    NARCIS (Netherlands)

    Yang, Zhongyong; de Swart, Huib E.; Cheng, Heqin; Jiang, Chenjuan; Valle-Levinson, Arnoldo

    2014-01-01

    The effect of the joint action of M2 and M4 tidal flow, residual flow and spatial settling lag on the lateral entrapment of sediment is examined in tidally dominated estuaries with an idealized model that assumes along-estuary uniform conditions. Approximate solutions are obtained for arbitrary

  9. Radiocarbon reservoir effect from shell and plant pairs in Holocene sediments around the Yeongsan River in Korea

    International Nuclear Information System (INIS)

    Nakanishi, Toshimichi; Hong, Wan; Sung, Ki Suk; Lim, Jaesoo

    2013-01-01

    The marine reservoir effect was measured by comparing the radiocarbon ages of shell and plant pairs obtained from the same horizons of a sediment core around the Yeongsan River in the southwestern part of the Korean Peninsula. The Holocene sediment formed in five environments: tidal flat, inner bay, shallow marine, flood plain, and embankment from bottom to top. The tidal flat and shallow marine sediments should be good indicators of marine reservoir effect, as they formed in coastal environments where it was easy to access not only marine shells but also terrestrial plants. Some old detritus could be identified and removed, based on reliable accumulation curves and sedimentological interpretation. Hence, the age differences between the plants and shells could be successfully evaluated, and they indicated that the marine reservoir effect varied over time between 0 and 500 years. There was an increase of this effect at ca. 8000 cal year BP and a decrease at ca. 5000 cal year BP, possibly linked with coastal environment changes induced by sea level changes and by changes in the circulation of seawater.

  10. Radiocarbon reservoir effect from shell and plant pairs in Holocene sediments around the Yeongsan River in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Toshimichi [Korea Institute of Geoscience and Mineral Resources, Gwahang-no 124, Yuseong-gu, Daejeon (Korea, Republic of); Hong, Wan, E-mail: whong@kigam.re.kr [Korea Institute of Geoscience and Mineral Resources, Gwahang-no 124, Yuseong-gu, Daejeon (Korea, Republic of); Sung, Ki Suk; Lim, Jaesoo [Korea Institute of Geoscience and Mineral Resources, Gwahang-no 124, Yuseong-gu, Daejeon (Korea, Republic of)

    2013-01-15

    The marine reservoir effect was measured by comparing the radiocarbon ages of shell and plant pairs obtained from the same horizons of a sediment core around the Yeongsan River in the southwestern part of the Korean Peninsula. The Holocene sediment formed in five environments: tidal flat, inner bay, shallow marine, flood plain, and embankment from bottom to top. The tidal flat and shallow marine sediments should be good indicators of marine reservoir effect, as they formed in coastal environments where it was easy to access not only marine shells but also terrestrial plants. Some old detritus could be identified and removed, based on reliable accumulation curves and sedimentological interpretation. Hence, the age differences between the plants and shells could be successfully evaluated, and they indicated that the marine reservoir effect varied over time between 0 and 500 years. There was an increase of this effect at ca. 8000 cal year BP and a decrease at ca. 5000 cal year BP, possibly linked with coastal environment changes induced by sea level changes and by changes in the circulation of seawater.

  11. Sediment diatom species and community response to nitrogen addition in Oregon (USA) estuarine tidal wetlands

    Science.gov (United States)

    Sediment microalgae play an important role in nutrient cycling and are important primary producers in the food web in Pacific Northwest estuaries. This study examines the effects of nitrogen addition to benthic microalgae in tidal wetlands of Yaquina Bay estuary on the Oregon c...

  12. 40 CFR 230.42 - Mud flats.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Mud flats. 230.42 Section 230.42... Aquatic Sites § 230.42 Mud flats. (a) Mud flats are broad flat areas along the sea coast and in coastal rivers to the head of tidal influence and in inland lakes, ponds, and riverine systems. When mud flats...

  13. Annual sediment flux estimates in a tidal strait using surrogate measurements

    Science.gov (United States)

    Ganju, N.K.; Schoellhamer, D.H.

    2006-01-01

    Annual suspended-sediment flux estimates through Carquinez Strait (the seaward boundary of Suisun Bay, California) are provided based on surrogate measurements for advective, dispersive, and Stokes drift flux. The surrogates are landward watershed discharge, suspended-sediment concentration at one location in the Strait, and the longitudinal salinity gradient. The first two surrogates substitute for tidally averaged discharge and velocity-weighted suspended-sediment concentration in the Strait, thereby providing advective flux estimates, while Stokes drift is estimated with suspended-sediment concentration alone. Dispersive flux is estimated using the product of longitudinal salinity gradient and the root-mean-square value of velocity-weighted suspended-sediment concentration as an added surrogate variable. Cross-sectional measurements validated the use of surrogates during the monitoring period. During high freshwater flow advective and dispersive flux were in the seaward direction, while landward dispersive flux dominated and advective flux approached zero during low freshwater flow. Stokes drift flux was consistently in the landward direction. Wetter than average years led to net export from Suisun Bay, while dry years led to net sediment import. Relatively low watershed sediment fluxes to Suisun Bay contribute to net export during the wet season, while gravitational circulation in Carquinez Strait and higher suspended-sediment concentrations in San Pablo Bay (seaward end of Carquinez Strait) are responsible for the net import of sediment during the dry season. Annual predictions of suspended-sediment fluxes, using these methods, will allow for a sediment budget for Suisun Bay, which has implications for marsh restoration and nutrient/contaminant transport. These methods also provide a general framework for estimating sediment fluxes in estuarine environments, where temporal and spatial variability of transport are large. ?? 2006 Elsevier Ltd. All rights

  14. Sediment transport and development of banner banks and sandwaves in an extreme tidal system: Upper Bay of Fundy, Canada

    Science.gov (United States)

    Li, Michael Z.; Shaw, John; Todd, Brian J.; Kostylev, Vladimir E.; Wu, Yongsheng

    2014-07-01

    Multibeam sonar mapping and geophysical and geological groundtruth surveys were coupled with tidal current and sediment transport model calculations to investigate the sediment transport and formation processes of the complex seabed features off the Cape Split headland in the upper Bay of Fundy. The Cape Split banner bank, composed of coarse to very coarse sand, is a southwest-northeast oriented, large tear-drop shaped sand body with superimposed sand waves that show wavelengths from 15 to 525 m and heights from 0.5 to 19 m. Isolated and chains of barchan dunes occur on top of a shadow bank to the southeast of the banner bank. The barchan dunes are composed of well-sorted medium sand and are oriented northwest-southeast. Their mean height and width are 1.5 and 55 m, respectively. A gravel bank, with an elongated elliptical shape and west-east orientation, lies in the Minas Passage erosional trough east of the headland to form the counterpart to the sandy Cape Split banner bank. The southern face is featureless but the northern face is covered by gravel megaripples. Tidal model predictions and sediment transport calculations show that the formation of the banner bank and the gravel bank are due to the development of the transient counter-clockwise and clockwise tidal eddies respectively to the west and east of the headland. The formation of barchan dunes is controlled by the nearly unidirectional flow regime in outer Scots Bay. Sand waves on the flanks of the Cape Split banner bank show opposite asymmetry and the barchan dunes are asymmetric to the northeast. The tidal current and sediment transport predictions corroborate bedform asymmetry to show that sand wave migration and net sediment transport is to southwest on the northern flank of the banner bank but to northeast on the southern bank. Long-term migration of the Scots Bay barchan dunes is to the northeast. Spring-condition tidal currents can cause frequent mobilization and high-stage transport over the

  15. Temporal changes in carbon and nitrogen stable isotope ratios of macrozoobenthos on an artificial tidal flat facing a hypertrophic canal, inner Tokyo Bay

    International Nuclear Information System (INIS)

    Kanaya, Gen; Nakamura, Yasuo; Koizumi, Tomoyoshi; Yamada, Katsumasa; Koshikawa, Hiroshi; Kohzu, Ayato; Maki, Hideaki

    2013-01-01

    Highlights: • Temporal changes in food web structure were analyzed in a tidal flat in a hypertrophic coastal bay. • Microphytobenthos mainly supported the benthic food web throughout seasons. • Phytoplankton and terrestrial detritus were utilized after red tides and urban runoffs. • Seasonal changes in consumer-δ 15 N was much larger in inner Tokyo Bay than in other estuaries. • This study showed specific characteristics of benthic food web in highly urbanized estuaries. -- Abstract: Temporal changes in benthic food web structure were analyzed in an artificial tidal flat in inner Tokyo Bay, Japan, using carbon and nitrogen stable isotope ratios (δ 13 C and δ 15 N). Microphytobenthos were the most important food sources of macrozoobenthos, due to high microphytobenthic biomass on the tidal flat, while phytoplankton in canal water (canal POM PP ), terrestrial materials from urban surface runoff (canal POM TM ), and marsh plants were less important. Dietary contribution of microphytobenthos was highest in April to June, while decreased towards December owing to the supply of canal POM PP and canal POM TM following red tides and heavy rainfall events in summer to fall. Temporal changes in δ 15 N (Δδ 15 N) of consumer corresponded well to the 15 N-enrichment in canal POM PP in summer. A meta-analysis showed that the consumer-Δδ 15 N was considerably larger in inner Tokyo Bay than those in other estuaries, which may be a specific characteristic of benthic food web in highly urbanized estuaries

  16. Estuarine Sediment Deposition during Wetland Restoration: A GIS and Remote Sensing Modeling Approach

    Science.gov (United States)

    Newcomer, Michelle; Kuss, Amber; Kentron, Tyler; Remar, Alex; Choksi, Vivek; Skiles, J. W.

    2011-01-01

    Restoration of the industrial salt flats in the San Francisco Bay, California is an ongoing wetland rehabilitation project. Remote sensing maps of suspended sediment concentration, and other GIS predictor variables were used to model sediment deposition within these recently restored ponds. Suspended sediment concentrations were calibrated to reflectance values from Landsat TM 5 and ASTER using three statistical techniques -- linear regression, multivariate regression, and an Artificial Neural Network (ANN), to map suspended sediment concentrations. Multivariate and ANN regressions using ASTER proved to be the most accurate methods, yielding r2 values of 0.88 and 0.87, respectively. Predictor variables such as sediment grain size and tidal frequency were used in the Marsh Sedimentation (MARSED) model for predicting deposition rates for three years. MARSED results for a fully restored pond show a root mean square deviation (RMSD) of 66.8 mm (<1) between modeled and field observations. This model was further applied to a pond breached in November 2010 and indicated that the recently breached pond will reach equilibrium levels after 60 months of tidal inundation.

  17. Measurements of gaseous mercury exchanges at the sediment-water, water-atmosphere and sediment-atmosphere interfaces of a tidal environment (Arcachon Bay, France).

    Science.gov (United States)

    Bouchet, Sylvain; Tessier, Emmanuel; Monperrus, Mathilde; Bridou, Romain; Clavier, Jacques; Thouzeau, Gerard; Amouroux, David

    2011-05-01

    The elemental mercury evasion from non-impacted natural areas is of significant importance in the global Hg cycle due to their large spatial coverage. Intertidal areas represent a dynamic environment promoting the transformations of Hg species and their subsequent redistribution. A major challenge remains in providing reliable data on Hg species variability and fluxes under typical transient tidal conditions found in such environment. Field experiments were thus carried out to allow the assessment and comparison of the magnitude of the gaseous Hg fluxes at the three interfaces, sediment-water, sediment-atmosphere and water-atmosphere of a mesotidal temperate lagoon (Arcachon Bay, Aquitaine, France) over three distinct seasonal conditions. The fluxes between the sediment-water and the sediment-atmosphere interfaces were directly evaluated with field flux chambers, respectively static or dynamic. Water-atmosphere fluxes were evaluated from ambient concentrations using a gas exchange model. The fluxes at the sediment-water interface ranged from -5.0 to 5.1 ng m(-2) h(-1) and appeared mainly controlled by diffusion. The occurrence of macrophytic covers (i.e.Zostera noltii sp.) enhanced the fluxes under light radiations. The first direct measurements of sediment-atmosphere fluxes are reported here. The exchanges were more intense and variable than the two other interfaces, ranging between -78 and 40 ng m(-2) h(-1) and were mostly driven by the overlying atmospheric Hg concentrations and superficial sediment temperature. The exchanges between the water column and the atmosphere, computed as a function of wind speed and gaseous mercury saturation ranged from 0.4 to 14.5 ng m(-2) h(-1). The flux intensities recorded over the intertidal sediments periodically exposed to the atmosphere were roughly 2 to 3 times higher than the fluxes of the other interfaces. The evasion of elemental mercury from emerged intertidal sediments is probably a significant pathway for Hg evasion in

  18. Sediment budgets, transport, and depositional trends in a large tidal delta

    Science.gov (United States)

    Morgan, Tara; Wright, Scott A.

    2016-01-01

    The Sacramento-San Joaquin Delta is the largest delta on the west coast of the United States. It is formed where the confluence of California’s two largest rivers (the Sacramento and San Joaquin) meet the ocean tides and has a significant physical gradient from fluvial to tidal. It is a semidiurnal system (two high and two low tides per day). Today, the Delta is one of the most manipulated in the United States. Once composed of many shallow, meandering and braided dendritic channels and dead-end sloughs and wetlands, it is now a network of leveed canals moving clear water around subsided islands. It historically has supported a biologically diverse tidal wetland complex, of which only 3% remains today (Whipple et al., 2012). It has also witnessed a collapse in the native fish populations. The Delta provides critical habitat for native species, however the hydrology and water quality are complicated by manipulations and diversions to satisfy multiple statewide objectives. Today water managers face co-equal goals of water supply to Californians and maintenance of ecosystem health and function. The Delta is a hub for both a multi-hundred-million dollar agricultural industry and a massive north-to-south water delivery system, supplying the primary source of freshwater to Central Valley farmers and drinking water for two-thirds of California’s population. Large pump facilities support the water demand and draw water from the Delta, further altering circulation patterns and redirecting the net flow toward the export facilities (Monsen et al., 2007). Fluvial sedimentation, along with organic accumulation, creates and sustains the Delta landscape. Hydraulic mining for gold in the watershed during the late 1800s delivered an especially large sediment pulse to the Delta. More recently, from 1955 to the present, a significant sediment decline has been observed that is thought to have been caused mostly by the construction of water storage reservoirs that trap the upstream

  19. Sediment Transport and Infilling of a Borrow Pit on an Energetic Sandy Ebb Tidal Delta Offshore of Hilton Head Island, South Carolina

    Science.gov (United States)

    Wren, A.; Xu, K.; Ma, Y.; Sanger, D.; Van Dolah, R.

    2014-12-01

    Bottom-mounted instrumentation was deployed at two sites on an ebb tidal delta to measure hydrodynamics, sediment transport, and seabed elevation. One site ('borrow site') was 2 km offshore and used as a dredging site for beach nourishment of nearby Hilton Head Island in South Carolina, and the other site ('reference site') was 10 km offshore and not directly impacted by the dredging. In-situ time-series data were collected during two periods after the dredging: March 15 - June 12, 2012('spring') and August 18 - November 18, 2012 ('fall'). At the reference site directional wave spectra and upper water column current velocities were measured, as well as high-resolution current velocity profiles and suspended sediment concentration profiles in the Bottom Boundary Layer (BBL). Seabed elevation and small-scale seabed changes were also measured. At the borrow site seabed elevation and near-bed wave and current velocities were collected using an Acoustic Doppler Velocimeter. Throughout both deployments bottom wave orbital velocities ranged from 0 - 110 m/s at the reference site. Wave orbital velocities were much lower at the borrow site ranging from 10-20 cm/s, as wave energy was dissipated on the extensive and rough sand banks before reaching the borrow site. Suspended sediment concentrations increased throughout the BBL when orbital velocities increased to approximately 20 cm/s. Sediment grain size and critical shear stresses were similar at both sites, therefore, re-suspension due to waves was less frequent at the borrow site. However, sediment concentrations were highly correlated with the tidal cycle at both sites. Semidiurnal tidal currents were similar at the two sites, typically ranging from 0 - 50 cm/s in the BBL. Maximum currents exceeded the critical shear stress and measured suspended sediment concentrations increased during the first hours of the tidal cycle when the tide switched to flood tide. Results indicate waves contributed more to sediment mobility at

  20. Pore water studies reef flat sediments, Kaneohe Bay, Oahu, HI (NODC Accession 0000271)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Geochemical behavior of the upper 70 cm of permeable reef flat sediments on Checker Reef, Oahu, Hawaii was examined using spatial and temporal changes in pore water...

  1. Environmental consequences of tidal power in a hyper-tidal muddy regime: the Severn estuary

    International Nuclear Information System (INIS)

    Kirby, R.

    1997-01-01

    Muddy hyper-tidal regimes, such as the Severn Estuary in the UK, are especially difficult for plants and animals. The difficulties stem from the semi-diurnal and semi-lunar energy fluctuations. On spring tides entrained fine sediment induces elevated suspended sediment concentrations such that photosynthesis is inhibited. On neap tides much of the entrained fine sediment is deposited on the sub-tidal bed over periods of several days to form ephemeral dense layers, which reach in excess of 100 G/l and rapidly become anaerobic on stagnation. Such occasional bed faunas as develop are characterised by very large numbers of immature individuals of a few species. One of the few organisms able to cope with the extreme conditions is the siliceous reef-building worn Sabellaria. Arising from the long term suppression in its calcareous fauna, erosion and winnowing of these Holocene clays fails to give rise to lag shell deposits, called chenier ridges, found elsewhere in eroding muddy inter-tidal systems. A tidal power barrage would shift the regime from hyper-tidal to macro-tidal decrease in turbidity would permit photosynthesis and phytoplankton growth, so stimulating the higher food chain. Ironically, perhaps, cleaning up the sewage discharges in the estuary, in the absence of barrage construction would lead to a wading bird crash whereas barrage construction would lead to an improved carrying capacity. (author)

  2. Sedimentation rate and lateral migration of tidal channels in the Lagoon of Venice (Northern Italy)

    Science.gov (United States)

    Donnici, Sandra; Madricardo, Fantina; Serandrei-Barbero, Rossana

    2017-11-01

    Tidal channels are crucial for the functioning of highly valuable coastal environments, such as estuaries and lagoons. Their properties, however, are currently less understood than those of river systems. To elucidate their past behaviour, an extensive geophysical investigation was performed to reconstruct the evolution of channels and tidal surfaces in the central part of the Lagoon of Venice (Italy) over the past 5000 years. Comparing high-spatial-resolution acoustic data and sedimentary facies analyses of 41 cores, 29 of which were radiocarbon dated, revealed the sedimentation rates in different lagoonal environments and allowed the migration of two large meanders to be reconstructed. The average sedimentation rate of the study succession in the different sedimentary environments was 1.27 mm yr-1. The lateral migration rates were 13-23 m/century. This estimate is consistent with the lateral migration rates determined by comparing aerial photographs of recent channels. Comparing the buried channels with historical and current maps showed that, in general, the number of active channels is now reduced. Their morphology was sometimes simplified by artificial interventions. An understanding of the impact of the artificial interventions over time is useful for the management and conservation of tidal environments, particularly for the Lagoon of Venice, where management authorities are currently debating the possible deepening and rectification of large navigation channels.

  3. Suspended sediment load in the tidal zone of an Indonesian river

    Directory of Open Access Journals (Sweden)

    F. A. Buschman

    2012-11-01

    Full Text Available Forest clearing for reasons of timber production, open pit mining and the establishment of oil palm plantations generally results in excessively high sediment loads in tropical rivers. The increasing sediment loads pose a threat to coastal marine ecosystems, such as coral reefs. This study presents observations of suspended sediment loads in the Berau River (Kalimantan, Indonesia, which debouches into a coastal ocean that is a preeminent center of coral diversity. The Berau River is relatively small and drains a mountainous, still relatively pristine basin that receives abundant rainfall. In the tidal zone of the Berau River, flow velocity was measured over a large part of the river width using a horizontal acoustic Doppler current profiler (HADCP. Surrogate measurements of suspended sediment concentration were taken with an optical backscatter sensor (OBS. Averaged over the 6.5 weeks covered by the benchmark survey period, the suspended sediment load was estimated at 2 Mt yr−1. Based on rainfall-runoff modeling though, the river discharge peak during the survey was supposed to be moderate and the yearly averaged suspended sediment load is most likely somewhat higher than 2 Mt yr−1. The consequences of ongoing clearing of rainforest were explored using a plot-scale erosion model. When rainforest, which still covered 50–60% of the basin in 2007, is converted to production land, soil loss is expected to increase with a factor between 10 and 100. If this soil loss is transported seaward as suspended sediment, the increase in suspended sediment load in the Berau River would impose a severe stress on this global hotspot of coral reef diversity.

  4. Microphytobenthic biomass on a subtropical intertidal flat of Paranaguá bay (Southern Brazil: spatio-temporal distribution and the influence of environmental conditions

    Directory of Open Access Journals (Sweden)

    Alessandra Larissa D'Oliveira Fonseca

    2013-06-01

    Full Text Available Seasonal and spatial dynamics of the microphytobenthic biomass on a subtropical intertidal sand flat (25°32'S; 48°24'W was investigated monthly from September 1995 to July 1996. Chlorophyll-a and Phaeophytin-a contents, temperature, salinity, inorganic nitrogen and phosphate pore water concentrations and sediment characteristics were assessed in the upper (HW, middle (MW and lower (LW sections of the flat. Microphytobenthic biomass content showed a conspicuous seasonal and spatial gradient. Higher chlorophyll-a contents were registered in the HW section of the tidal flat (from 11.78 µg.gsed-1 to 38.18 µg.gsed-1 decreasing towards the LW section (from 6.23 µg.gsed-1 to 18.23 µg.gsed-1. Microphytobenthic seasonality was determined mainly by turbulence of the water column, which was influenced by atmospheric events. The sediment properties and nutrient concentrations had a significant effect on the spatial and seasonal distribution of pigments on the intertidal flat.

  5. The coupling of bay hydrodynamics with sediment supply and micro-tidal wetland stability under high rates of relative sea level rise

    Science.gov (United States)

    Wang, J.; Xu, K.; Restreppo, G. A.; Bentley, S. J.; Meng, X.; Zhang, X.

    2017-12-01

    Due to global sea level rise, local subsidence and sediment deficit, the Mississippi River (MR) deltaic plain has lost a total of 25% of coastal Louisiana's wetlands during the last century, leading to huge losses of ecological services, economic and social crises. Ecosystem-based restoration strategies which rely on coastal system processes and feedbacks are urgently needed. Understanding linkages between estuarine and coastal systems and the adjacent marshlands will help the designing strategies. To investigate bay hydrodynamics and its impacts on the adjacent micro-tidal wetland stability, hourly measurements of wave, tidal current, and benthic sediment concentration in summer, winter, and spring of 2015-2016 were conducted in Fourleague Bay, Louisiana, USA. The bay-marsh system has been stable for almost 80 years under high relative sea level rising rate, which is 11 km southeast of the Atchafalaya River mouth, with a water depth of 1-3 m. High-temporal resolution data indicate that benthic sediment resuspension is mainly caused by wind-driven waves with a dominant periodicity of 4.8 d. The sediment flux reaches 28 g·m-1·s-1 per unit depth in cm during the events. Net sediment transport is northwestward in summer, and southeastward in winter and spring. Sediment flux available for surrounding marsh varies from 0-500 g·m-1·s-1. An optimal inundation depth of 50 cm is estimated by the equilibrium wetland elevation change model under high relative sea level rising rate of 1.57 cm·yr-1. Seasonal variations of river discharge and wind direction (particularly speeds >3 m·s-1) greatly impact potential sediment contribution from bay to the surrounding wetlands. Three sediment transport regimes are concluded based on the seasonal variations of river discharge and wind direction: the `bypassing' season, the resuspension-accumulation season, and the combined `bypassing' and resuspension-accumulation season. The bay hydrodynamic processes and their impacts on the

  6. Coupled penetrometer, MBES and ADCP assessments of tidal variations of the surface sediment layer along active subaqueous dunes, Danish Wadden Sea

    DEFF Research Database (Denmark)

    Stark, Nina; Hanff, Henrik; Svenson, Christian

    2011-01-01

    In-situ geotechnical measurements of surface sediments were carried out along large subaqueous dunes in the Knudedyb tidal inlet channel in the DanishWadden Sea using a small free-falling penetrometer. Vertical profiles showed a typical stratification pattern with a resolution of ~1 cm depicting...... a thin surface layer of low sediment strength and a stiffer substratum below (quasi-static bearing capacity equivalent: 1–3 kPa in the top layer, 20–140 kPa in the underlying sediment; thickness of the top layer ca. 5–8 cm). Observed variations in the thickness and strength of the surface layer during...... a tidal cycle were compared to mean current velocities (measured using an acoustic Doppler current profiler, ADCP), high-resolution bathymetry (based on multibeam echo sounding, MBES) and qualitative estimates of suspended sediment distributions in the water column (estimated from ADCP backscatter...

  7. Spatial variability of sediment transport processes over intra‐ and subtidal timescales within a fringing coral reef system

    Science.gov (United States)

    Pomeroy, Andrew; Lowe, Ryan J.; Ghisalberti, Marco; Winter, Gundula; Storlazzi, Curt D.; Cuttler, Michael V. W.

    2018-01-01

    Sediment produced on fringing coral reefs that is transported along the bed or in suspension affects ecological reef communities as well as the morphological development of the reef, lagoon, and adjacent shoreline. This study quantified the physical process contribution and relative importance of incident waves, infragravity waves, and mean currents to the spatial and temporal variability of sediment in suspension. Estimates of bed shear stresses demonstrate that incident waves are the key driver of the SSC variability spatially (reef flat, lagoon, and channels) but cannot not fully describe the SSC variability alone. The comparatively small but statistically significant contribution to the bed shear stress by infragravity waves and currents, along with the spatial availability of sediment of a suitable size and volume, is also important. Although intra‐tidal variability in SSC occurs in the different reef zones, the majority of the variability occurs over longer slowly varying (subtidal) time scales, which is related to the arrival of large incident waves at a reef location. The predominant flow pathway, which can transport suspended sediment, consists of cross‐reef flow across the reef flat that diverges in the lagoon and returns offshore through channels. This pathway is primarily due to subtidal variations in wave‐driven flows, but can also be driven alongshore by wind stresses when the incident waves are small. Higher frequency (intra‐tidal) current variability also occur due to both tidal flows, as well as variations in the water depth that influence wave transmission across the reef and wave‐driven currents.

  8. A Circa-decadal Change in the Gastropod Fauna on a Tidal Flat in an Island Mangrove Estuary(Ecology)

    OpenAIRE

    Shun-ichi, Ohgaki; Takeharu, Kosuge; Ishigaki Tropical Station, Seikai National Fisheries Research Institute

    2005-01-01

    An investigation on gastropod fauna was carried out on a tidal flat in the Nagura Estuary on Ishigaki Island, the Ryukyu Islands in 1989 and 1998 using similar methods. 470-480 guadrats covering ca. 1900m^2 were surveyed during low tides from February to April in each year. Of the total 19 species recorded, the range of eight species had varied significantly between the two surveys, with six species expanding their range and two species contracting their range. Percentage in abundance of mudd...

  9. Improving Sediment Transport Prediction by Assimilating Satellite Images in a Tidal Bay Model of Hong Kong

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2014-03-01

    Full Text Available Numerical models being one of the major tools for sediment dynamic studies in complex coastal waters are now benefitting from remote sensing images that are easily available for model inputs. The present study explored various methods of integrating remote sensing ocean color data into a numerical model to improve sediment transport prediction in a tide-dominated bay in Hong Kong, Deep Bay. Two sea surface sediment datasets delineated from satellite images from the Moderate Resolution Imaging Spectra-radiometer (MODIS were assimilated into a coastal ocean model of the bay for one tidal cycle. It was found that remote sensing sediment information enhanced the sediment transport model ability by validating the model results with in situ measurements. Model results showed that root mean square errors of forecast sediment both at the surface layer and the vertical layers from the model with satellite sediment assimilation are reduced by at least 36% over the model without assimilation.

  10. Response of suspended sediment concentration to tidal dynamics at a site inside the mouth of an inlet: Jiaozhou Bay (China

    Directory of Open Access Journals (Sweden)

    S. L. Yang

    2004-01-01

    Full Text Available Observations of fair weather currents and suspended sediment concentrations (SSC were made using an acoustic Doppler current profiler and two YSI turbidity sensors over a neap to spring time cycle at a site near the inner mouth of a semi-enclosed mesotidal-macrotidal embayment (Jiaozhou Bay to examine the influence of tidal dynamics on concentration and transport of suspended sediment. During the investigation, SSC varied from about 3 to 16 mg L–1 at the surface and about 6 to 40 mg L–1 close to the bed, while the current velocity reached 79 cm s–1 at the surface and 61 cm s–1 near the bed. SSC was tidally cyclic. The near-bed instantaneous SSC was closely related to current velocity with almost no time lag, indicating that the variability of SSC was governed by current-induced settling/resuspension. At the surface, however, instantaneous SSC was poorly related to instantaneous current velocity because the peak SSC tended to occur around ebb slack water. This suggests that the surface SSC was controlled by horizontal advection from landward higher concentration areas. Both at the surface and near the bed, on the other hand, tidally-averaged SSC was well correlated to tidal range and current speed. Current velocity and SSC were flood-dominated for all the tides investigated, which resulted in significant landward residual suspended sediment transport at the study site. The observed flood dominance was mainly attributed to the location of the study site on the landward side of the bay’s inlet where flow separation is favoured during flood tide. It was concluded that tides are the dominant hydrodynamic component controlling the variability of SSC during fair weather at the study area. Keywords: sediment, concentration, suspension, advection, currents, shoalling effect, Jiaozhou Bay, China

  11. Radiocaesium, plutonium and americium partitioning and solid speciation in sized, inter-tidal sediments from Strangford Lough

    International Nuclear Information System (INIS)

    Ledgerwood, F.K.; Larmour, R.A.; Mitchell, P.I.; Leon Vintro, L.; Ryan, R.W.

    1999-01-01

    Fine-grained surface (0-2 cm) sediment was collected at an inter-tidal site (Mahee Island) in Strangford Lough, on the NE coast of Ireland in September 1997. The sediment was wet-sieved into standard sized fractions using Endecott test sieves and the fractions assayed for 137 Cs, 239,240 Pu and 241 Am content. Sub-samples of each fraction were measured with a Malvern 2600 laser diffraction analyser, which confirmed that >90% of the particles in each fraction was in the defined size range

  12. Widespread infilling of tidal channels and navigable waterways in human-modified tidal deltaplain of southwest Bangladesh

    Directory of Open Access Journals (Sweden)

    Carol Wilson

    2017-12-01

    Full Text Available Since the 1960s, ~5000 km2 of tidal deltaplain in southwest Bangladesh has been embanked and converted to densely inhabited, agricultural islands (i.e., polders. This landscape is juxtaposed to the adjacent Sundarbans, a pristine mangrove forest, both well connected by a dense network of tidal channels that effectively convey water and sediment throughout the region. The extensive embanking in poldered areas, however, has greatly reduced the tidal prism (i.e., volume of water transported through local channels. We reveal that >600 km of these major waterways have infilled in recent decades, converting to land through enhanced sedimentation and the direct blocking of waterways by embankments and sluice gates. Nearly all of the observed closures (~98% have occurred along the embanked polder systems, with no comparable changes occurring in channels of the Sundarbans (<2% change. We attribute most of the channel infilling to the local reduction of tidal prism in poldered areas and the associated decline in current velocities. The infilled channels account for ~90 km2 of new land in the last 40–50 years, the rate of which, ~2 km2/yr, offsets the 4 km2/yr that is eroded at the coast, and is equivalent to ~20% of the new land produced naturally at the Ganges-Brahmaputra tidal rivermouth. Most of this new land, called ‘khas’ in Bengali, has been reclaimed for agriculture or aquaculture, contributing to the local economy. However, benefits are tempered by the loss of navigable waterways for commerce, transportation, and fishing, as well as the forced rerouting of tidal waters and sediments necessary to sustain this low-lying landscape against rising sea level. A more sustainable delta will require detailed knowledge of the consequences of these hydrodynamic changes to support more scientifically-grounded management of water, sediment, and tidal energy distribution.

  13. Turning the tide: effects of river inflow and tidal amplitude on sandy estuaries in laboratory landscape experiments

    Science.gov (United States)

    Kleinhans, Maarten; Braat, Lisanne; Leuven, Jasper; Baar, Anne; van der Vegt, Maarten; van Maarseveen, Marcel; Markies, Henk; Roosendaal, Chris; van Eijk, Arjan

    2016-04-01

    Many estuaries formed over the Holocene through a combination of fluvial and coastal influxes, but how estuary planform shape and size depend on tides, wave climate and river influxes remains unclear. Here we use a novel tidal flume setup of 20 m length by 3 m width, the Metronome (http://www.uu.nl/metronome), to create estuaries and explore a parameter space for the simple initial condition of a straight river in sandy substrate. Tidal currents capable of transporting sediment in both the ebb and flood phase because they are caused by periodic tilting of the flume rather than the classic method of water level fluctuation. Particle imaging velocimetry and a 1D shallow flow model demonstrate that this principle leads to similar sediment mobility as in nature. Ten landscape experiments recorded by timelapse overhead imaging and AGIsoft DEMs of the final bed elevation show that absence of river inflow leads to short tidal basins whereas even a minor discharge leads to long convergent estuaries. Estuary width and length as well as morphological time scale over thousands of tidal cycles strongly depend on tidal current amplitude. Paddle-generated waves subdue the ebb delta causing stronger tidal currents in the basin. Bar length-width ratios in estuaries are slightly larger to those in braided rivers in experiments and nature. Mutually evasive ebb- and flood-dominated channels are ubiquitous and appear to be formed by an instability mechanism with growing bar and bifurcation asymmetry. Future experiments will include mud flats and live vegetation.

  14. On the sedimentation problems in water abstraction channels at power plant sites at tidal estuaries

    International Nuclear Information System (INIS)

    Jensen, J.; Arns, A.; Frank, T.; Meiswinkel, R.; Richei, A.

    2010-01-01

    The required cooling water supply of a nuclear power plant the required flow deepness in the water abstraction channels has to be provided. Since the abstraction channels are usually in main stream orientation of the river periodic sedimentation occur, that have to be removed by dredging techniques. Especially in tidal estuaries the complex flow situation induces transport mechanisms that have to be studied in order to develop cost saving and effective measures and procedures to reduce the sedimentation and pollutants deposition. The authors recommend experimental determinations of the sold material transport and numerical hydrodynamic transport modeling to identify the transport pathways.

  15. Variability of O2, H2S, and pH in intertidal sediments measured on a highly resolved spatial and temporal scale

    Science.gov (United States)

    Walpersdorf, E.; Werner, U.; Bird, P.; de Beer, D.

    2003-04-01

    We investigated the variability of O_2, pH, and H_2S in intertidal sediments to assess the time- and spatial scales of changes in environmental conditions and their effects on bacterial activities. Measurements were performed over the tidal cycle and at different seasons by the use of microsensors attached to an autonomous in-situ measuring device. This study was carried out at a sand- and a mixed flat in the backbarrier area of Spiekeroog (Germany) within the frame of the DFG research group "Biogeochemistry of the Wadden Sea". Results showed that O_2 variability was not pronounced in the coastal mixed flat, where only extreme weather conditions could increase O_2 penetration. In contrast, strong dynamics in O_2 availability, pH and maximum penetration depths of several cm were found at the sandflat. In these highly permeable sediments, we directly observed tidal pumping: at high tide O_2-rich water was forced into the plate and at low tide anoxic porewater drained off the sediment. From the lower part of the plate where organic rich clayey layers were embedded in the sediment anoxic water containing H_2S leaked out during low tide. Thus advective processes, driven by the tidal pump, waves and currents, control O_2 penetration and depth distribution of H_2S and pH. The effects of the resulting porewater exchange on mineralization rates and microbial activities will be discussed.

  16. Source and dispersal of suspended sediment in the macro-tidal Gulf of Kachchh

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaswamy, V.; Nath, B.N.; Vethamony, P.; Ilangovan, D.

    and transport of carbon, minerals and pollutants to the oceans (Eisma, 1981; McKee, 2003). Macro-tidal areas are usually associated with high SSC because of higher energy conditions with sediments getting resuspended and transported depending on the harmonics... International 104, 69–86. Chandrasekharam, D., Mahoney, J.J., Sheth, H.C., Duncan, R.A., 1999. Elemental and Nd–Sr–Pb isotope geochemistry of flows and dikes from the Tapi rift, Deccan flood basalt province. India Journal of Volcanology and Geothermal Research...

  17. Bedform Dimensions and Suspended Sediment Observations in a Mixed Sand-Mud Intertidal Environment

    Science.gov (United States)

    Lichtman, I. D.; Amoudry, L.; Peter, T.; Jaco, B.

    2016-02-01

    Small-scale bedforms, such as ripples, can profoundly modify near-bed hydrodynamics, near-bed sediment transport and resuspension, and benthic-pelagic fluxes. Knowledge of their dimensions is important for a number of applications. Fundamentally different processes can occur depending on the dimensions of ripples: for low and long ripples, the bed remains dynamically flat and diffusive processes dominate sediment entrainment; for steep ripples, flow separation occurs above the ripples creating vortices, which are far more efficient at entraining sediment into the water column. Recent laboratory experiments for mixtures of sand and mud have shown that bedform dimensions decrease with increasing sediment mud content. However, these same experiments also showed that mud is selectively taken into suspension when bedforms are created and migrate on the bed, leaving sandy bedforms. This entrainment process, selectively suspending fine sediment, is referred to as winnowing. To improve our understanding of bedform and entrainment dynamics of mixed sediments, in situ observations were made on intertidal flats in the Dee Estuary, United Kingdom. A suite of instruments were deployed collecting co-located measurements of the near-bed hydrodynamics, waves, small-scale bed morphology and suspended sediment. Three sites were occupied consecutively, over a Spring-Neap cycle, collecting data for different bed compositions, tide levels and wind conditions. Bed samples were taken when the flats became exposed at low water and a sediment trap collected suspended load when inundated. This study will combine these measurements to investigate the interactions between small-scale bed morphology, near-bed hydrodynamics and sediment entrainment. We will examine bedform development in the complex hydrodynamic and wave climate of tidal flats, in relation to standard ripple predictors. We will also relate the variability in small-scale bedforms to variation in hydrodynamic and wave conditions

  18. Virus Dynamics Are Influenced by Season, Tides and Advective Transport in Intertidal, Permeable Sediments.

    Science.gov (United States)

    Vandieken, Verona; Sabelhaus, Lara; Engelhardt, Tim

    2017-01-01

    Sandy surface sediments of tidal flats exhibit high microbial activity due to the fast and deep-reaching transport of oxygen and nutrients by porewater advection. On the other hand during low tide, limited transport results in nutrient and oxygen depletion concomitant to the accumulation of microbial metabolites. This study represents the first attempt to use flow-through reactors to investigate virus production, virus transport and the impact of tides and season in permeable sediments. The reactors were filled with intertidal sands of two sites (North beach site and backbarrier sand flat of Spiekeroog island in the German Wadden Sea) to best simulate advective porewater transport through the sediments. Virus and cell release along with oxygen consumption were measured in the effluents of reactors during continuous flow of water through the sediments as well as in tidal simulation experiments where alternating cycles with and without water flow (each for 6 h) were operated. The results showed net rates of virus production (0.3-13.2 × 10 6 viruses cm -3 h -1 ) and prokaryotic cell production (0.3-10.0 × 10 5 cells cm -3 h -1 ) as well as oxygen consumption rates (56-737 μmol l -1 h -1 ) to be linearly correlated reflecting differences in activity, season and location of the sediments. Calculations show that total virus turnover was fast with 2 to 4 days, whereas virus-mediated cell turnover was calculated to range between 5-13 or 33-91 days depending on the assumed burst sizes (number of viruses released upon cell lysis) of 14 or 100 viruses, respectively. During the experiments, the homogenized sediments in the reactors became vertically structured with decreasing microbial activities and increasing impact of viruses on prokaryotic mortality with depth. Tidal simulation clearly showed a strong accumulation of viruses and cells in the top sections of the reactors when the flow was halted indicating a consistently high virus production during low tide. In

  19. Morphodynamic Modeling of Tidal Mud Flats

    National Research Council Canada - National Science Library

    Winterwerp, Johan C

    2008-01-01

    The objective of the current research proposal is to develop and test a numerical model to simulate and predict the seasonal morphodynamic evolution of intertidal mud flats in macrotidal environments...

  20. Outstanding Universal Values of the Korean Archipelago Getbol: Its potential for World Heritage Nomination

    Science.gov (United States)

    Woo, K. S.; Chun, S. S.; Moon, K. O.

    2017-12-01

    The `Korean Archipelago Getbol (KAG; Getbol means tidal flat deposits in Korean)' has developed due to the decreasing accommodation space during the Holocene sea-level rise on the broad epicontinental shelf of the southeastern part of the Yellow Sea. Sedimentation and evolution show a variety of quite distinctive tidal flat patterns with intertidal and subtidal drainage systems depending upon the location and orientation of rocky shores. The following KAG`s Outstanding Universal Values are suggested to support the WH: 1) It is the unique coastal sedimentary environment formed by special geological and oceanographic setting in the world. It is the only place in the world where tide-controlled sedimentation processes have produced special tidal flats surrounding numerous rocky islands on a broad epicontinental shelf near convergent tectonic boundary. Macrotidal currents combined with waves and typhoons in this semi-closed oceanographic setting have provided unique geological and oceanographic conditions for their formation. 2) It diplays the most dynamic and complicated, but stable coastal depositional system in the world. Even though the property has been constantly influenced by strong microtidal currents combined with East Asian Monsoon climate (winter erosion and summer deposition) with occasional typhoons during summer, Getbol has maintained its stable depositional system and tidal flat sediments have been accumulated for the past 9,000 years. Sufficient supply of suspended load through Geumgang River provides sustainable depositional system within the property. Complicated island-topography also produced the most complicated and divese depositional systems as well as the deepest tidal channels in the world. (3) The KAG shows the thickest tidal flat sediments protected by numerous islands. Aggradation of tidal sediments has caught up with the rapid Holocene sealevel rise and produced the thickest tidal flat sediments in the world. As a results, numerous former

  1. Fine sediment transport into the hyperturbid lower Ems River : The role of channel deepening and sediment-induced drag reduction

    NARCIS (Netherlands)

    Van Maren, D.S.; Winterwerp, J.C.; Vroom, J.

    2015-01-01

    Deepening of estuarine tidal channels often leads to tidal amplification and increasing fine sediment import. Increasing fine sediment import, in turn, may lower the hydraulic drag (due to a smoother muddy bed and/or sediment-induced damping of turbulence), and therefore, further strengthen tidal

  2. Massive sediment bypassing on the lower shoreface offshore of a wide tidal inlet: Cat Island Pass, Louisiana

    Science.gov (United States)

    Jaffe, B.E.; List, J.H.; Sallenger, A.H.

    1997-01-01

    Analysis of a series of historical bathymetric and shoreline surveys along the Louisiana coast west of the Mississippi River mouth detected a large area of deposition in water depths of 2.0–8.5 m offshore of a 9-km-wide tidal inlet, the Cat Island Pass/Wine Island Pass system. A 59.9 · 106 m3 sandy deposit formed from the 1930s–1980s, spanning 27 km in the alongshore direction, delineating the transport pathway for sediment bypassing offshore of the inlet on the shoreface. Bypassing connected the shorefaces of two barrier island systems, the Isles Dernieres and the Bayou Lafourche.The processes responsible for formation of this deposit are not well understood, but sediment-transport modeling suggests that sediment is transported primarily by wind-driven coastal currents during large storms and hurricanes. Deposition appears to be related to changes in shoreline orientation, closing of transport pathways into a large bay to the east and the presence of tidal inlets. This newly documented type of bypassing, an offshore bypassing of the inlet system, naturally nourished the immediate downdrift area, the eastern Isles Dernieres, where shoreface and shoreline erosion rates are about half of pre-bypassing rates. Erosion rates remained the same farther downdrift, where bypassing has not yet reached. As this offshore bypassing continues, the destruction of the Isles Dernieres will be slowed.

  3. Turning the tide: comparison of tidal flow by periodic sea level fluctuation and by periodic bed tilting in scaled landscape experiments of estuaries

    Science.gov (United States)

    Kleinhans, Maarten G.; van der Vegt, Maarten; Leuven, Jasper; Braat, Lisanne; Markies, Henk; Simmelink, Arjan; Roosendaal, Chris; van Eijk, Arjan; Vrijbergen, Paul; van Maarseveen, Marcel

    2017-11-01

    . Smaller flumes of a few metres in length, on the other hand, are much more dominated by friction than natural systems, meaning that sediment suspension would be impossible in the resulting laminar flow on tidal flats. Where the Reynolds method is limited by small sediment mobility and high tidal range relative to water depth, the tilting method allows for independent control over the variables flow depth, velocity, sediment mobility, tidal period and excursion length, and tidal asymmetry. A periodically tilting flume thus opens up the possibility of systematic biogeomorphological experimentation with self-formed estuaries.

  4. Turning the tide: comparison of tidal flow by periodic sea level fluctuation and by periodic bed tilting in scaled landscape experiments of estuaries

    Directory of Open Access Journals (Sweden)

    M. G. Kleinhans

    2017-11-01

    metres long, which is impractical. Smaller flumes of a few metres in length, on the other hand, are much more dominated by friction than natural systems, meaning that sediment suspension would be impossible in the resulting laminar flow on tidal flats. Where the Reynolds method is limited by small sediment mobility and high tidal range relative to water depth, the tilting method allows for independent control over the variables flow depth, velocity, sediment mobility, tidal period and excursion length, and tidal asymmetry. A periodically tilting flume thus opens up the possibility of systematic biogeomorphological experimentation with self-formed estuaries.

  5. [Effect of water storage and aquaculture on Oncomelania hupensis control in tidal flats wetlands of islet-beach type area of Dantu section of lower reaches of Yangtze River].

    Science.gov (United States)

    Li, Ye-fang; Huang, Yi-xin; Wang, He-sheng; Hang, De-rong; Chen, Xiang-ping; Xie, Yi-feng; Zhang, Lian-heng

    2015-12-01

    To evaluate the effect and the benefits of the projects of water storage and aquaculture on Oncomelania hupensis snail control in the tidal flats wetlands of islet-beach type area of lower reaches of the Yangtze River. The projects of water storage and aquaculture on 0. hupensis snail control were implemented in the tidal flats wetlands of islet-beach type of lower reaches of the Yangtze River. The breed situation of the snails was investigated by the conventional method before and after the project implementation and the effect of control and elimination of the snails by the projects were evaluated. At the same time, the cost-benefit analysis of two projects among them was performed by the static benefit-cost ratio method. All of 0. hupensis snails were eliminated in the first year after the implementation of seven water storage and aquaculture projects. The costs of detection and control of snails saved by each project was 69.20 thousand yuan a year on average. The annual net benefits of the "Nanhao Group 10 beach" project and "Wutao Group 6-14 beach" project were 2 039.40 thousand yuan and 955.00 thousand yuan respectively, and the annual net benefit-cost ratios were 1.09: 1 and 1.07: 1 respectively. The O. hupensis snails could be rapidly eliminated by the water storage and aquaculture, and the economic benefit is obvious, but the wetland ecological protection and flood control safety should be considered in the tidal flats wetlands of islet-beach type area of lower reaches of the Yangtze River.

  6. Tidal River Management (TRM and Tidal Basin Management (TBM: A case study on Bangladesh

    Directory of Open Access Journals (Sweden)

    Talchabhadel Rocky

    2016-01-01

    Full Text Available Bangladesh is the biggest delta of the world. Construction of numbers of polders is one of the flood resilient approach. But the presence of coastal polders de-linked the flood plain. The siltation in river causes riverbeds to become higher than the adjacent crop lands, and vast area under the polders became permanently water logged rendering large tract of land uncultivable. The current practice is temporarily de-poldering by cutting embankment. This is a natural water management process with very little human interventions but it needs strong participation and consensus with a great deal of sacrifice by the stakeholders for a specific period (3 to 5 years or even more[1]. An attempt has been made to study the phenomena of tidal basin management reviewing some secondary data and processes involved in successfully operated tidal basins of Bangladesh. And preliminary laboratory experiments are carried out to precisely look into the suspended sediment transport. With varying outflow discharge and sediment supply, the transport processes are investigated. 3D sediment transport model developed using openFOAM has good agreement with experimental result and can be used to better understand effectiveness of tidal basin management.

  7. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency.

    Science.gov (United States)

    Schile, Lisa M; Callaway, John C; Morris, James T; Stralberg, Diana; Parker, V Thomas; Kelly, Maggi

    2014-01-01

    Tidal marshes maintain elevation relative to sea level through accumulation of mineral and organic matter, yet this dynamic accumulation feedback mechanism has not been modeled widely in the context of accelerated sea-level rise. Uncertainties exist about tidal marsh resiliency to accelerated sea-level rise, reduced sediment supply, reduced plant productivity under increased inundation, and limited upland habitat for marsh migration. We examined marsh resiliency under these uncertainties using the Marsh Equilibrium Model, a mechanistic, elevation-based soil cohort model, using a rich data set of plant productivity and physical properties from sites across the estuarine salinity gradient. Four tidal marshes were chosen along this gradient: two islands and two with adjacent uplands. Varying century sea-level rise (52, 100, 165, 180 cm) and suspended sediment concentrations (100%, 50%, and 25% of current concentrations), we simulated marsh accretion across vegetated elevations for 100 years, applying the results to high spatial resolution digital elevation models to quantify potential changes in marsh distributions. At low rates of sea-level rise and mid-high sediment concentrations, all marshes maintained vegetated elevations indicative of mid/high marsh habitat. With century sea-level rise at 100 and 165 cm, marshes shifted to low marsh elevations; mid/high marsh elevations were found only in former uplands. At the highest century sea-level rise and lowest sediment concentrations, the island marshes became dominated by mudflat elevations. Under the same sediment concentrations, low salinity brackish marshes containing highly productive vegetation had slower elevation loss compared to more saline sites with lower productivity. A similar trend was documented when comparing against a marsh accretion model that did not model vegetation feedbacks. Elevation predictions using the Marsh Equilibrium Model highlight the importance of including vegetation responses to sea

  8. Imprint of past and present environmental conditions on microbiology and biogeochemistry of coastal Quaternary sediments

    Directory of Open Access Journals (Sweden)

    M. Beck

    2011-01-01

    Full Text Available To date, North Sea tidal-flat sediments have been intensively studied down to a depth of 5 m below seafloor (mbsf. However, little is known about the biogeochemistry, microbial abundance, and activity of sulfate reducers as well as methanogens in deeper layers. In this study, two 20 m-long cores were retrieved from the tidal-flat area of Spiekeroog Island, NW Germany. The drill sites were selected with a close distance of 900 m allowing to compare two depositional settings: first, a paleo-channel filled with Holocene sediments and second, a mainly Pleistocene sedimentary succession. Analyzing these cores, we wanted to test to which degree the paleo-environmental imprint is superimposed by present processes.

    In general, the numbers of bacterial 16S rRNA genes are one to two orders of magnitude higher than those of Archaea. The abundances of key genes for sulfate reduction and methanogenesis (dsrA and mcrA correspond to the sulfate and methane profiles. A co-variance of these key genes at sulfate-methane interfaces and enhanced ex situ AOM rates suggest that anaerobic oxidation of methane may occur in these layers. Microbial and biogeochemical profiles are vertically stretched relative to 5 m-deep cores from shallower sediments in the same study area, but still appear compressed compared to deep sea sediments. Our interdisciplinary analysis shows that the microbial abundances and metabolic rates are elevated in the Holocene compared to Pleistocene sediments. However, this is mainly due to present environmental conditions such as pore water flow and organic matter availability. The paleo-environmental imprint is still visible but superimposed by these processes.

  9. Sediment reworking by a polychaete, Perinereis aibuhitensis, in the intertidal sediments of the Gomso Bay, Korea

    Science.gov (United States)

    Koo, Bon Joo; Seo, Jaehwan

    2017-12-01

    Bioturbation, especially sediment reworking by the activities of macroinvertebrates, such as feeding and burrowing, is one of the major processes that affect the physical, chemical, and biological characteristics of marine sediments. Given the importance of sediment reworking, this study was designed to evaluate the sediment reworking rate of a polychaete, Perinereis aibuhitensis, which is dominant in the upper tidal flats on the west coast of Korea, based on quantification of pellet production during spring and fall surveys. The density of individuals was higher in fall than in spring, whereas, due to a difference in the proportion of adults between the two seasons, the morphometric dimensions of the worm and its pellets were significantly longer and heavier in the spring. Hourly pellet production per inhabitant and density were closely related, with pellet production gradually decreasing as density increased. Daily pellet production was much higher in spring than in fall, mostly due to an increase in daytime production. The sediment reworking rate of Perinereis was similar in the two seasons in which observations were made and depended on its density and the sediment reworking rate per individual. The overall sediment reworking rate of Perinereis was 31 mm yr-1 based on its density in the study area.

  10. Hard science is essential to restoring soft-sediment intertidal habitats in burgeoning East Asia.

    Science.gov (United States)

    Lee, Shing Yip; Khim, Jong Seong

    2017-02-01

    Intertidal soft-sediment ecosystems such as mangrove, saltmarsh, and tidal flats face multiple stresses along the burgeoning East Asia coastline. In addition to direct habitat loss, ecosystem structure, function, and capacity for ecosystem services of these habitats are significantly affected by anthropogenic loss of hydrologic connectivity, introduction of invasive exotic species, and chemical pollution. These dramatic changes to ecosystem structure and function are illustrated by four case studies along the East Asian coast: the Mai Po Marshes in Hong Kong, the Yunxiao wetlands in Fujian, China, and the Lake Sihwa and Saemangeum tidal flats in Korea. While investment in restoration is increasing significantly in the region, the lack of key basic knowledge on aspects of the behaviour of intertidal soft-sediment ecosystems, particularly those in Asia, impairs the effectiveness of these efforts. The relationship between biodiversity and ecosystem function for relatively species-poor mangrove, seagrass, and saltmarsh systems has implications for restoration targeting monospecific plantations. The trajectory of recovery and return of ecosystem function and services is also poorly known, and may deviate from simple expectations. As many introduced species have become established along the East Asian coast, their long-term impact on ecosystem function as well as the socio-economics of coastal communities demand a multidisciplinary approach to assessing options for restoration and management. These knowledge gaps require urgent attention in order to inform future restoration and management of intertidal soft-sediment ecosystems in fast-developing East Asia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Tidal-Flat Macrobenthos as Diets of the Japanese Eel Anguilla japonica in Western Japan, with a Note on the Occurrence of a Parasitic Nematode Heliconema anguillae in Eel Stomachs.

    Science.gov (United States)

    Kan, Kotaro; Sato, Masanori; Nagasawa, Kazuya

    2016-02-01

    Dietary items of the Japanese eel Anguilla japonica inhabiting estuaries were examined by analyses of the gut (stomach and intestine) contents in two areas in Kyushu, western Japan. In a small estuary in Kagoshima Bay, where seven eel guts were examined, almost all of the dietary organisms consisted of Hemigrapsus crabs and Hediste polychaetes, both of which commonly occurred on tidal flats of this site during our survey on the macrobenthic fauna. In another large estuary in the innermost part of the Ariake Sea, where 14 eel guts were examined, 11 macrobenthic species (nine crustaceans, a polychaete, and a gastropod) were found in the gut contents, mostly consisting of mudflat-specific species. The dietary items are almost completely different not only between the two estuaries, but also among three neighboring sites within the large estuary in the Ariake Sea. These results show that Japanese eels feed on various macrobenthic invertebrates inhabiting estuarine tidal flats at each site. The variety of the prey species occupying different habitats indicates that their foraging areas extend to a wide range of estuarine tidal flats from the upper to lower littoral zones. The physalopterid nematode Heliconema anguillae was found parasitic in eel stomachs in both estuaries. The prevalence of the nematode was higher in the estuary in Kagoshima Bay (100%) than that in the Ariake Sea (43%), although the intensity in the former (4-94 nematodes per infected stomach) was comparable to that of the latter (2-96). The relationship between the nematode infection and the dietary items of Japanese eels is discussed.

  12. Residual circulation and suspended sediment transport in the Dutch Wadden Sea

    Science.gov (United States)

    Duran-Matute, Matias; Sassi, Maximiliano; de Boer, Gerben; Grawë, Ulf; Gerkema, Theo; van Kessel, Thijs; Cronin, Katherine

    2014-05-01

    The Dutch Wadden Sea (DWS), situated between continental Europe and the Dutch Wadden Islands, is a semi enclosed basin connected to the North Sea by a series of tidal inlets and composed mainly of tidal flats and sea gullies. The DWS is of high ecological importance due to its biodiversity and has been declared a World Heritage site by UNESCO. It is a dynamic area subject to regional relative sea level rise due to global sea level rise, postglacial rebound and gas exploitation. For intertidal areas to continue to serve as feeding ground for migratory birds, a net import of sediment is required. Observations are crucial but provide only scarce information in space and time. Hence, to estimate the net influx of suspended sediment into the DWS, realistic high resolution three-dimensional numerical simulations have been carried out using the General Estuarine Transport Model (GETM). The hydrodynamics are mainly governed by the tides, the fresh water discharge from several sluices into the DWS and wind variability. It is expected that the transport of suspended particulate matter (SPM) is governed by the same factors, too, in combination with sediment sink and source terms. For validation, the results are compared against different observational data sets, such as tidal gauges, temperature and salinity at a fixed station, and the volumetric flux rate through one of the inlets obtained from an acoustic Doppler current profiler (ADCP) attached to a ferry. SPM transport is modeled for four different sediment classes each of which is defined by the critical shear stress and the settling velocity. Results show a clear net import of SPM through one of the inlets, which is in agreement with the observations. First estimates of the total sediment fluxes through the different inlets are presented together with an analysis on their variability and sensibility to the external forcing. Of particular importance is the net export of SPM during storms as well as the role of storms on

  13. Electrical Resistivity Imaging of Tidal Fluctuations in the Water Table at Inwood Hill Park, Manhattan

    Science.gov (United States)

    Kenyon, P. M.; Kassem, D.; Olin, A.; Nunez, J.; Smalling, A.

    2005-05-01

    Inwood Hill Park is located on the northern tip of Manhattan and has been extensively modified over the years by human activities. In its current form, it has a backbone of exposed or lightly covered bedrock along the Hudson River, adjacent to a flat area with two tidal inlets along the northern shore of Manhattan. The tidal motions in the inlets are expected to drive corresponding fluctuations in the water table along the borders of the inlets. In the Fall of 2002, a group of students from the Department of Earth and Atmospheric Sciences at the City College of New York studied these fluctuations. Electrical resistivity cross sections were obtained with a Syscal Kid Switch 24 resistivity meter during the course of a tidal cycle at three locations surrounding the westernmost inlet in the park. No change was seen over a tidal cycle at Site 1, possibly due to the effect of concrete erosion barriers which were located between the land and the water surrounding this site. Measurements at Site 2 revealed a small, regular change in the water table elevation of approximately 5 cm over the course of a tidal cycle. This site is inferred to rest on alluvial sediments deposited by a small creek. The cross sections taken at different times during a tidal cycle at Site 3 were the most interesting. They show a very heterogeneous subsurface, with water spurting between blocks of high resistivity materials during the rising portion of the cycle. A small sinkhole was observed on the surface of the ground directly above an obvious plume of water in the cross section. Park personnel confirmed that this sinkhole, like others scattered around this site, is natural and not due to recent construction activity. They also indicated that debris from the construction of the New York City subways may have been dumped in the area in the past. Our conclusion is that the tidal fluctuations at Site 3 are being channeled by solid blocks in the construction debris, and that the sinkholes currently

  14. Tidal controls on river delta morphology

    Science.gov (United States)

    Hoitink, A. J. F.; Wang, Z. B.; Vermeulen, B.; Huismans, Y.; Kästner, K.

    2017-09-01

    River delta degradation has been caused by extraction of natural resources, sediment retention by reservoirs, and sea-level rise. Despite global concerns about these issues, human activity in the world’s largest deltas intensifies. Harbour development, construction of flood defences, sand mining and land reclamation emerge as key contemporary factors that exert an impact on delta morphology. Tides interacting with river discharge can play a crucial role in the morphodynamic development of deltas under pressure. Emerging insights into tidal controls on river delta morphology suggest that--despite the active morphodynamics in tidal channels and mouth bar regions--tidal motion acts to stabilize delta morphology at the landscape scale under the condition that sediment import during low flows largely balances sediment export during high flows. Distributary channels subject to tides show lower migration rates and are less easily flooded by the river because of opposing non-linear interactions between river discharge and the tide. These interactions lead to flow changes within channels, and a more uniform distribution of discharge across channels. Sediment depletion and rigorous human interventions in deltas, including storm surge defence works, disrupt the dynamic morphological equilibrium and can lead to erosion and severe scour at the channel bed, even decades after an intervention.

  15. Modern sedimentary environments in a large tidal estuary, Delaware Bay

    Science.gov (United States)

    Knebel, H.J.

    1989-01-01

    Data from an extensive grid of sidescan-sonar records reveal the distribution of sedimentary environments in the large, tidally dominated Delaware Bay estuary. Bathymetric features of the estuary include large tidal channels under the relatively deep (> 10 m water depth) central part of the bay, linear sand shoals (2-8 m relief) that parallel the sides of the tidal channels, and broad, low-relief plains that form the shallow bay margins. The two sedimentary environments that were identified are characterized by either (1) bedload transport and/or erosion or (2) sediment reworking and/or deposition. Sand waves and sand ribbons, composed of medium to coarse sands, define sites of active bedload transport within the tidal channels and in gaps between the linear shoals. The sand waves have spacings that vary from 1 to 70 m, amplitudes of 2 m or less, and crestlines that are usually straight. The orientations of the sand waves and ribbons indicate that bottom sediment movement may be toward either the northwest or southeast along the trends of the tidal channels, although sand-wave asymmetry indicates that the net bottom transport is directed northwestward toward the head of the bay. Gravelly, coarse-grained sediments, which appear as strongly reflective patterns on the sonographs, are also present along the axes and flanks of the tidal channels. These coarse sediments are lag deposits that have developed primarily where older strata were eroded at the bay floor. Conversely, fine sands that compose the linear shoals and muddy sands that cover the shallow bay margins appear mainly on the sonographs either as smooth featureless beds that have uniform light to moderate shading or as mosaics of light and dark patches produced by variations in grain size. These acoustic and textural characteristics are the result of sediment deposition and reworking. Data from this study (1) support the hypothesis that bed configurations under deep tidal flows are functions of current

  16. Increasing species richness of the macrozoobenthic fauna on tidal flats of the Wadden Sea by local range expansion and invasion of exotic species

    Science.gov (United States)

    Beukema, J. J.; Dekker, R.

    2011-06-01

    A 40-y series of consistently collected samples (15 fixed sampling sites, constant sampled area of 15 × 0.95 m2, annual sampling only in late-winter/early-spring seasons, and consistent sieving and sorting procedures; restriction to 50 easily recognizable species) of macrozoobenthos on Balgzand, a tidal flat area in the westernmost part of the Wadden Sea (The Netherlands), revealed significantly increasing trends of species richness. Total numbers of species annually encountered increased from ~28 to ~38. Mean species density (number of species found per sampling site) increased from ~13 to ~18 per 0.95 m2. During the 40 years of the 1970-2009 period of observation, 4 exotic species invaded the area: (in order of first appearance) Ensis directus, Marenzelleria viridis, Crassostrea gigas, and Hemigrapsus takanoi. Another 5 species recently moved to Balgzand from nearby (subtidal) locations. Together, these 9 new species on the tidal flats explained by far most of the increase in total species numbers, but accounted for only one-third of the observed increase in species density (as a consequence of the restricted distribution of most of them). Species density increased particularly by a substantial number of species that showed increasing trends in the numbers of tidal flat sites they occupied. Most of these wider-spreading species were found to suffer from cold winters. During the 40-y period of observation, winter temperatures rose by about 2°C and cold winters became less frequent. The mean number of cold-sensitive species found per site significantly increased by almost 2 per 0.95 m2. Among the other species (not sensitive to low winter temperatures), 6 showed a rising and 2 a declining trend in number of occupied sites, resulting in a net long-term increase in species density amounting to another gain of 1.6 per 0.95 m2. Half of the 50 studied species did not show such long-term trend, nor were invaders. Thus, each of 3 groups (local or alien invaders

  17. Understanding Reef Flat Sediment Regimes and Hydrodynamics can Inform Erosion Mitigation on Land

    Directory of Open Access Journals (Sweden)

    Lida Tenkova Teneva

    2016-01-01

    Full Text Available Coral reefs worldwide are affected by excessive sediment and nutrient delivery from adjacent watersheds. Land cover and land use changes contribute to reef ecosystem degradation, which in turn, diminish many ecosystem services, including coastal protection, recreation, and food provisioning. The objectives of this work were to understand the role of coastal oceanic and biophysical processes in mediating the effects of sedimentation in shallow reef environments, and to assess the efficacy of land-based sediment remediation in the coastal areas near Maunalei reef, Lāna’i Island, Hawai’i. To the best of our knowledge, this was the first study of sediment dynamics on an east-facing (i.e., facing the trade winds reef in the Hawaiian Islands. We developed ridge-to-reef monitoring systems at two paired stream bed-to-reef sites, where one of the reef sites was adjacent to a community stream sediment remediation project. We found that the two reef sites were characterized by different processes that affected the sediment removal rates; the two sites were also exposed to different amounts of sediment runoff. The community stream sediment remediation project appeared to keep at least 77 tonnes of sediment off the reef flat in one wet season. We found that resuspension of sediments on this reef was similar to that on north-facing and south-facing reefs that also are exposed to the trade winds. We posit that sites with slower sediment removal rates due to slower current velocities or high resuspension rates will require more-robust sediment capture systems on land to reduce sediment input rates and maximize potential for reef health recovery. This suggests that interventions such as local sediment remediation and watershed restoration may mitigate sediment delivery to coral reefs, but these interventions are more likely to be effective if they account for how adjacent coastal oceanographic processes distribute, accumulate, or advect sediment away from

  18. Lagoon Sediment Dynamics: A Coupled Model to Study a Medium-Term Silting of Tidal Channels

    Directory of Open Access Journals (Sweden)

    Marco Petti

    2018-04-01

    Full Text Available The silting of tidal channels is a natural process that affects several shallow lagoons and makes it difficult to navigate, requiring regular maintenance interventions. This phenomenon is the result of the complex non-linear interaction between tidal currents and wave motion. In this work, the morphodynamic evolution of the Marano and Grado lagoon is investigated by means of a two-dimensional horizontal (2DH morphological-hydrodynamic and a spectral coupled model. An innovative procedure to reproduce the overall bathymetric changes in the medium term and, in particular, the volumes deposited inside channels, is presented. An average year with a sequence of winds and tides acting over that time was reconstructed, carrying out cross correlation techniques and spectral analyses of measured data. The predicted morphological evolution matches the annual dredged volumes in the lagoon critical branches and shows the distribution of erosion and deposition of cohesive sediments according to spatially variable values of critical shear stress.

  19. Microplastics in freshwater river sediments in Shanghai, China: A case study of risk assessment in mega-cities.

    Science.gov (United States)

    Peng, Guyu; Xu, Pei; Zhu, Bangshang; Bai, Mengyu; Li, Daoji

    2018-03-01

    Microplastics, which are plastic debris with a particle diameter of less than 5 mm, have attracted growing attention in recent years. Its widespread distributions in a variety of habitats have urged scientists to understand deeper regarding their potential impact on the marine living resources. Most studies on microplastics hitherto are focused on the marine environment, and research on risk assessment methodology is still limited. To understand the distribution of microplastics in urban rivers, this study investigated river sediments in Shanghai, the largest urban area in China. Seven sites were sampled to ensure maximum coverage of the city's central districts, and a tidal flat was also included to compare with river samples. Density separation, microscopic inspection and μ-FT-IR analysis were conducted to analyze the characteristics of microplastics and the type of polymers. The average abundance of microplastics in six river sediment samples was 802 items per kilogram of dry weight. The abundance in rivers was one to two orders of magnitude higher than in the tidal flat. White microplastic spheres were most commonly distributed in river sediments. Seven types of microplastics were identified, of which polypropylene was the most prevailing polymers presented. The study then conducted risk assessment of microplastics in sediments based on the observed results, and proposed a framework of environmental risk assessment. After reviewing waste disposal related legislation and regulations in China, this study conclude that in situ data and legitimate estimations should be incorporated as part of the practice when developing environmental policies aiming to tackle microplastic pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Use of an ADCP to compute suspended-sediment discharge in the tidal Hudson River, New York

    Science.gov (United States)

    Wall, Gary R.; Nystrom, Elizabeth A.; Litten, Simon

    2006-01-01

    Acoustic Doppler current profilers (ADCPs) can provide data needed for computation of suspended-sediment discharge in complex river systems, such as tidal rivers, in which conventional methods of collecting time-series data on suspended-sediment concentration (SSC) and water discharge are not feasible. Although ADCPs are not designed to measure SSC, ADCP data can be used as a surrogate under certain environmental conditions. However, the software for such computation is limited, and considerable post-processing is needed to correct and normalize ADCP data for this use. This report documents the sampling design and computational procedure used to calibrate ADCP measures of echo intensity to SSC and water velocity to discharge in the computation of suspended-sediment discharge at the study site on the Hudson River near Poughkeepsie, New York. The methods and procedures described may prove useful to others doing similar work in different locations; however, they are specific to this study site and may have limited applicability elsewhere.

  1. Tidal pumping facilitates dissimilatory nitrate reduction in intertidal marshes

    Science.gov (United States)

    Zheng, Yanling; Hou, Lijun; Liu, Min; Liu, Zhanfei; Li, Xiaofei; Lin, Xianbiao; Yin, Guoyu; Gao, Juan; Yu, Chendi; Wang, Rong; Jiang, Xiaofen

    2016-01-01

    Intertidal marshes are alternately exposed and submerged due to periodic ebb and flood tides. The tidal cycle is important in controlling the biogeochemical processes of these ecosystems. Intertidal sediments are important hotspots of dissimilatory nitrate reduction and interacting nitrogen cycling microorganisms, but the effect of tides on dissimilatory nitrate reduction, including denitrification, anaerobic ammonium oxidation and dissimilatory nitrate reduction to ammonium, remains unexplored in these habitats. Here, we use isotope-tracing and molecular approaches simultaneously to show that both nitrate-reduction activities and associated functional bacterial abundances are enhanced at the sediment-tidal water interface and at the tide-induced groundwater fluctuating layer. This pattern suggests that tidal pumping may sustain dissimilatory nitrate reduction in intertidal zones. The tidal effect is supported further by nutrient profiles, fluctuations in nitrogen components over flood-ebb tidal cycles, and tidal simulation experiments. This study demonstrates the importance of tides in regulating the dynamics of dissimilatory nitrate-reducing pathways and thus provides new insights into the biogeochemical cycles of nitrogen and other elements in intertidal marshes. PMID:26883983

  2. Gold-bearing fluvial and associated tidal marine sediments of Proterozoic age in the Mporokoso Basin, northern Zambia

    Science.gov (United States)

    Andrews-Speed, C. P.

    1986-07-01

    The structurally defined Mporokoso Basin contains up to 5000 m of continental and marine clastic sediments and minor silicic volcanics which together form the Mporokoso Group. These rocks overlie unconformably a basement of silicic-intermediate igneous rocks and accumulated within the interval 1830-1130 Ma. This sedimentological study was restricted to the eastern end of the basin and was part of an assessment of the potential for palaeoplacer gold in the Mporokoso Group. At the base of the Mporokoso Group, the Mbala Formation consists of 1000-1500 m of purple sandstones and conglomerates deposited in a braided-stream system overlain by 500-1000 m of mature quartz arenites deposited in a tidal marine setting. A general coarsening-upward trend exists within the fluvial sediments. Sandy, distal braided-stream facies passes upwards into more proximal conglomeratic facies. In proximal sections, poorly sorted conglomerates form the top of the coarsening-up sequence which is 500-700 m thick. The overlying fluvial sediments fine upwards. The tidal marine sandstones at the top of the Mbala Formation resulted from reworking of fluvial sediments during a marine transgression. Well-exposed sections with fluvial conglomerates were studied in detail. Individual conglomerate bodies form sheets extending for hundreds of metres downstream and at least one hundred metres across stream, with little sign of deep scouring or channelling. They are generally matrix-supported. The whole fluvial sequence is characterised by a paucity of mud or silt. These conglomerates were deposited by large velocity, sheet flows of water which transported a bed-load of pebbles and sand. Most fine material settling out from suspension was eroded by the next flow. The great lateral and vertical extent and the uniformity of the fluvial sediments suggest that the sediments accumulated over an unconfined alluvial plain and that the tectonic evolution of the source area was relatively continuous and not

  3. Classification of tidal inlets along the Central east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, N.A.; Vikas, M.; Rao, S.; JayaKumar S.

    ) as long as the alongshore sediment bypasses the tidal inlet. Classification of coastal systems in a broader view is necessary for the management of tidal inlets. There are several methods to classify tidal inlets based on different perspectives namely geo...

  4. Coupled Landscape and Channel Dynamics in the Ganges-Brahmaputra Tidal Deltaplain, Southwest Bangladesh

    Science.gov (United States)

    Bomer, J.; Wilson, C.; Hale, R. P.

    2017-12-01

    In the Ganges-Brahmaputra Delta (GBD) and other tide-dominated systems, periodic flooding of the land surface during the tidal cycle promotes sediment accretion and surface elevation gain over time. However, over the past several decades, anthropogenic modification of the GBD tidal deltaplain through embankment construction has precluded sediment delivery to catchment areas, leading to widespread channel siltation and subsidence in poldered landscapes. Amongst the current discussion on GBD sustainability, the relationship between tidal inundation period and resultant sedimentation in natural and embanked settings remains unclear. Moreover, an evaluation of how riparian sedimentology and stratigraphic architecture changes across the GBD tidal-fluvial spectrum is notably absent, despite its critical importance in assessing geomorphic change in human-impacted transitional environments. To provide local-scale, longitudinal trends of coupled landscape-channel dynamics, an array of surface elevation tables, groundwater piezometers, and sediment traps deployed in natural and embanked settings have been monitored seasonally over a time span of 4 years. This knowledge base will be extended across the GBD tidal-fluvial transition by collecting sediment cores from carefully selected point bars along the Gorai River. Sediments will be analyzed for lithologic, biostratigraphic, and geochemical properties to provide an integrated framework for discerning depositional zones and associated facies assemblages across this complex transitional environment. Preliminary comparisons of accretion and hydroperiod data suggest that inundation duration strongly governs mass accumulation on the intertidal platform, though other factors such as mass extraction from sediment source and vegetation density may play secondary roles.

  5. Applicability of a numerical model to predict vertical distribution of suspended sediment concentration along the depth in Dithmarschen Bight

    Science.gov (United States)

    Rahbani, M.

    2012-04-01

    A three dimensional numerical model of Delft3d-flow was developed to simulate the current velocity and sediment transport of Piep tidal channel system. This channel system is part of Dithmarschen Bight located in the German North Sea coast. It consists of two main channel namely Norderpiep, and Süderpiep. These two channels conjunct together to form Piep channel near the land on tidal flat. The source of the required field data for this study was those collected under "Prediction of Medium Term Coastal Morphodynamics", known as the PROMORPH project. It was executed during the period May 1999 to June 2002. Those measured data used for calibration and validation of the model were current velocity and suspended sediment concentration (SSC). Current velocities were collected using ADCP devise. Suspended sediment concentration data was prepared by converting the measured values of light transmission. These data was collected using transmissometer. On the basis of some in situ mechanical sampler data an equation was developed to convert light transmission to the SSC. Field data were carried out at several stations along the width of three cross sections from the surface to the bottom, taking into account the limitations. To verify the performance of the calibrated model, its results were compared with the field data. The comparison between the modeled and measured current velocity shows an accuracy of about 0.2 m/s. Factor of two of measured SSC were used to evaluate the performance of the model regarding these values. Some dissimilarity was found between the modeled SSC and those of the field data.To verify the cause of this dissimilarity, two comparing procedures were carried out. First the evolution of the vertical profile of the SSC from the model and those from the field were prepared and compared. In another procedure the snapshot of distribution of SSC at each cross section during different phases of a tidal cycle were prepared using the model results and

  6. Bedload transport in an inlet channel during a tidal cycle

    DEFF Research Database (Denmark)

    Ernstsen, V. B.; Becker, M.; Winter, C.

    2007-01-01

      Based on high-resolution swath bathymetry measurements at centimetre-scale precision conducted during a tidal cycle in a dune field in the Grådyb tidal inlet channel in the DanishWadden Sea, a simple tool to calculate bedload transport is presented. Bedload transport was related to simultaneous...... variations in grain-size composition of the mobilised sediment should be taken into account by sediment transport formulae....

  7. Recording of the Holocene sediment infilling in a confined tide-dominated estuary: the bay of Brest (Britanny, France)

    Science.gov (United States)

    Gregoire, Gwendoline; Le Roy, Pascal; Ehrhold, Axel; Jouet, Gwenael; Garlan, Thierry

    2016-04-01

    Modern estuaries constitute key areas for the preservation of sedimentary deposits related to the Holocene period. Several previous studies using stratigraphic reconstructions in such environments allowed to characterise the major parameters controlling the Holocene transgressive sequence and to decipher their respective role in the sedimentary infill: (1) the evolution of main hydrologic factors (wave or tide-dominated environment), (2) the sea level fluctuation and (3) the morphologies of the bedrock and the coastline. Nevertheless, the timing of the transgressive deposits and the detailed facies need to be precise in regard to the stratigraphic schemes. The Bay of Brest (Western Brittany, France) offers the opportunity to examine these points and to compare with previous studies. It constitutes an original tide-dominated estuary that communicates to the open sea (Iroise Sea) by a narrow strait. Two main rivers (Aulne and Elorn) are connected to a submerged paleovalleys network that was incised in the Paleozoic basement during lowstands and still preserved in the present morphology. It delineates the central basin surrounded by tidal flat located in sheltered area. The analysis of high and very-high resolution seismic lines recorded through the whole bay combined with sediment cores (up to 4.5 m long) and radiocarbon dating allow to precise the architecture and the timing of the thick Holocene coastal wedge. It is preserved from the valley network to the shore and presents a longitudinal variability (downstream-upstream evolution). The infill is divided into two successive stages (corresponding to the transgressive and highstand system tracts) which laterally evolve from the paleo-valley to the coast. Two units constitute the transgressive system tract. The oldest, dated from 8200 to 7000 cal B.P. is composed of fine-grained, organic-rich tidal flat deposits located in the sheltered area and organised in levees on the terrace bordering the paleo-valley. A tidal

  8. Loads of suspended sediment and nutrients from local nonpoint sources to the tidal Potomac River and Estuary, Maryland and Virginia, 1979-81 water years

    Science.gov (United States)

    Hickman, R. Edward

    1987-01-01

    Loads of suspended sediment, phosphorus, nitrogen, biochemical oxygen demand, and dissolved silica discharged to the tidal Potomac River and Estuary during the !979-81 water years from three local nonpoint sources have been calculated. The loads in rain falling directly upon the tidal water surface and from overflows of the combined sewer system of the District of Columbia were determined from available information. Loads of materials in the streamflow from local watersheds draining directly to the tidal Potomac River and Estuary downstream from Chain Bridge in Washington, D.C., were calculated from samples of streamflow leaving five monitored watersheds. Average annual yields of substances leaving three urban watersheds (Rock Creek and the Northwest and Northeast Branches of the Anacostia River) and the rural Saint Clements Creek watershed were calculated either by developing relationships between concentration and streamflow or by using the mean of measured concentrations. Yields calculated for the 1979-81 water years are up to 2.3 times period-of-record yields because of greater than average streamflow and stormflow during this 3-year period. Period-of-record yields of suspended sediment from the three urban watersheds and the Saint Clements Creek watershed do not agree with yields reported by other studies. The yields from the urban watersheds are 17 to 51 percent of yields calculated using sediment-concentration data collected during the 1960-62 water years. Previous studies suggest that this decrease is at least partly due to the imposition of effective sediment controls at construction sites and to the construction of two multipurpose reservoirs. The yield calculated for the rural Saint Clements Creek watershed is at least twice the yields calculated for other rural watersheds, a result that may be due to most of the samples of this stream being taken during the summer of the 1981 water year, a very dry period. Loads discharged from all local tributary

  9. Combined tide and storm influence on facies sedimentation of miocene Miri Formation, Sarawak

    International Nuclear Information System (INIS)

    Yuniarta Ulfa; Nasiman Sapari; Zuhar Zahir Tuan Harith

    2011-01-01

    This study was conducted on the sedimentary rocks belonging to the Miri Formation (Middle - Late Miocene). The primary objective of the present study is to provide additional interpretation on the stratigraphy of the Miri Formation in the Miri Field based on the new information gathered from new outcrops in the area. Five outcrops were examined in detail on sedimentology and stratigraphy. Based on lithology, sedimentary structures, bedding geometry and traces fossil, the sediments of the Miri Formation were grouped into fourteen lithofacies. Influence of tide and storm during the depositional processes of the formation were indicated by the group of two main facies associations which are: (i) tide-dominated estuary; and (ii) wave-and-storm dominated facies associations. The tide-dominated estuary system of the Miri Formation are includes variety of sub environments: estuary mouth or tidal channel and sand bars (characterized by trough cross-stratified sandstone with mud drapes facies), estuary channel or upper flow regime of sand flat (characterized by parallel stratified sandstone with mud-laminas facies), mixed-tidal flat (characterized by wavy and flaser bedded sandstone facies), and mud-tidal flat (characterized by rhythmic stratified sandstone-mudstone and lenticular bedding facies). The wave-and-storm dominated varied from lower to middle shore face (characterized by hummocky cross-stratified sandstone and rhythmic parallel stratified sandstone and laminated siltstone facies), upper shore face (characterized by swaley cross-stratified sandstone), lower shore face inter bedded to bioturbated sandstone and siltstone facies), and offshore transitional (characterized by bioturbated sandstone and mudstone inter bedding with parallel to hummocky cross-stratified sandstone facies). (author)

  10. Flow and sediment transport in an Indonesian tidal network

    NARCIS (Netherlands)

    Buschman, F.A.

    2011-01-01

    The Berau river, situated in east Kalimantan (Indonesia), drains a relatively small catchment area and splits into several interconnected tidal channels. This tidal network connects to the sea. The sea is host to extremely diverse coral reef communities. Also the land side of the region is

  11. Selected contributions from the 9th International Conference on Tidal Sedimentology, November 2015, Puerto Madryn, Patagonia, Argentina: an introduction

    Science.gov (United States)

    Scasso, Roberto A.; Cuitiño, José I.

    2017-08-01

    This special issue of Geo-Marine Letters presents selected contributions from the 9th International Conference on Tidal Sedimentology held on 17-19 November 2015 in Puerto Madryn, Chubut Province, Patagonia, Argentina. The guest editors are the conference organizers Roberto A. Scasso and José I. Cuitiño. Gerardo M. Perillo was the head of the Scientific Committee. The conferences on tidal sedimentology have been traditionally held every 4 years. However, only 3 years separated the last conference held in Caen (France, 2012) from this conference. Increasing numbers of contributions and the growing interest in tidal sedimentation have been the reasons for shortening the inter-conference period. The 2015 conference served as a discussion forum focusing on advances in modern and ancient tidal sedimentation at different locations worldwide. The papers presented in this Special Issue provide a selective view of the latest research results, the main topics dealing with tidal hydrodynamics and sediment transport, tidal coastal morphodynamics, modern and ancient tidal sedimentation, geotechnical processes in tidal environments, and tidal basins, facies and reservoirs.

  12. The effect of lithology on valley width, terrace distribution, and coarse sediment provenance in a tectonically stable catchment with flat-lying stratigraphy

    Science.gov (United States)

    Amanda Keen-Zebert,; Hudson, Mark R.; Stephanie L. Shepherd,; Evan A. Thaler,

    2017-01-01

    How rock resistance or erodibility affects fluvial landforms and processes is an outstanding question in geomorphology that has recently garnered attention owing to the recognition that the erosion rates of bedrock channels largely set the pace of landscape evolution. In this work, we evaluate valley width, terrace distribution, and sediment provenance in terms of reach scale variation in lithology in the study reach and discuss the implications for landscape evolution in a catchment with relatively flat2

  13. Organic geochemistry in Pennsylvanian tidally influenced sediments from SW Indiana

    Science.gov (United States)

    Mastalerz, Maria; Kvale, E.P.; Stankiewicz, B.A.; Portle, K.

    1999-01-01

    Tidal rhythmites are vertically stacked small-scale sedimentary structures that record daily variations in tidal current energy and are known to overlie some low-sulfur coals in the Illinois Basin. Tidal rhythmites from the Pennsylvanian Brazil Formation in Indiana have been analyzed sedimentologically, petrographically, and geochemically in order to understand the character and distribution of organic matter (OM) preserved in an environment of daily interactions between marine and fresh waters. The concentration of organic matter (TOC) ranges from traces to 6.9% and sulfur rarely exceeds 0.1% in individual laminae. Angular vitrinite is the major organic matter type, accounting for 50-90% of total OM. The C/S ratio decreases as the verfical distance from the underlying coal increases. A decreasing C/S ratio coupled with decreases in Pr/Ph, Pr/n-C17, Ph/n-C18 ratios and a shift of carbon isotopic composition towards less negative values suggest an increase in salinity from freshwater in the mudflat tidal rhythmite facies close to the coal to brackish/marine in the sandflat tidal rhythmite facies further above from the coal. Within an interval spanning one year of deposition, TOC and S values show monthly variability. On a daily scale, TOC and S oscillations are still detectable but they are of lower magnitude than on a monthly scale. These small-scale variations are believed to reflect oscillations in water salinity related to tidal cycles.Tidal rhythmites are vertically stacked small-scale sedimentary structures that record daily variations in tidal current energy and are known to overlie some low-sulfur coals in the Illinois Basin. Tidal rhythmites from the Pennsylvanian Brazil Formation in Indiana have been analyzed sedimentologically, petrographically, and geochemically in order to understand the character and distribution of organic matter (OM) preserved in an environment of daily interactions between marine and fresh waters. The concentration of organic matter

  14. Physical processes affecting turbidity in a tidal marsh across a range of time scales

    Science.gov (United States)

    Arnold, W.; Poindexter, C.

    2016-12-01

    The direction of net suspended sediment flux, whether into or out of a tidal marsh, can determine whether a marsh is aggrading or eroding. Measuring net suspended sediment fluxes or attributing trends in these fluxes to a particular physical processes is challenging because suspended sediment concentrations are highly variable in time. We used singular spectrum analysis for time series with missing data (SSAM) to observe the relative effects on turbidity of physical processes occurring on different time scales at the Rush Ranch Open Space Preserve. This Preserve covers the largest contiguous area of full-tidal marsh remaining within Suisun Bay, the eastern most subembayment of San Francisco Bay. A long-term monitoring station at First Mallard Slough within the Preserve measures turbidity. Our analysis of of this turbidity record isolated the contribution to total variance from different tides and from annual cycles of San Francisco Bay freshwater inflow, sediment deposition and wind-driven sediment resuspension. Surprisingly, the contribution from diurnal and semidiurnal tidal constituents (30%) was smaller than the contribution from annual cycles of freshwater inflow, sediment deposition and resuspension (38%). This result contrasts with the original implementation of SSAM to suspended sediment concentration, which was conducted in the central San Francisco Bay. This previous work indicated a significant yet smaller contribution (13%) to total suspended sediment concentration variance from annual cycles (Schoellhamer, D. H., 2002, Continental Shelf Research., 22, 1857-1866). The reason for the contrast relates in part to the location of the First Mallard Slough more than 10 km along the tidal channel network from Suisun Bay. At this location, the lowest frequency variation in suspended sediment is accentuated. Annual peaks in turbidity at First Mallard depend not only on spring and summer wind-driven resuspension of sediment in San Pablo Bay but also its co

  15. A life-cycle model for wave-dominated tidal inlets along passive margin coasts of North America

    Science.gov (United States)

    Seminack, Christopher T.; McBride, Randolph A.

    2018-03-01

    A regional overview of 107 wave-dominated tidal inlets along the U.S. Atlantic coast, U.S. Gulf of Mexico coast, and Canadian Gulf of St. Lawrence coast yielded a generalized wave-dominated tidal inlet life-cycle model that recognized the rotational nature of tidal inlets. Tidal inlets are influenced by concurrently acting processes transpiring over two timescales: short-term, event-driven processes and long-term, evolutionary processes. Wave-dominated tidal inlets are classified into three rotational categories based on net longshore sediment transport direction and rotation direction along the landward (back-barrier) portion of the inlet channel: downdrift channel rotation, updrift channel rotation, or little-to-no channel rotation. Lateral shifting of the flood-tidal delta depocenter in response to available estuarine accommodation space appears to control inlet channel rotation. Flood-tidal delta deposits fill accommodation space locally within the estuary (i.e., creating bathymetric highs), causing the tidal-inlet channel to rotate. External influences, such as fluvial discharge, pre-existing back-barrier channels, and impeding salt marsh will also influence inlet-channel rotation. Storm events may rejuvenate the tidal inlet by scouring sediment within the flood-tidal delta, increasing local accommodation space. Wave-dominated tidal inlets are generally unstable and tend to open, concurrently migrate laterally and rotate, infill, and close. Channel rotation is a primary reason for wave-dominated tidal inlet closure. During rotation, the inlet channel lengthens and hydraulic efficiency decreases, thus causing tidal prism to decrease. Tidal prism, estuarine accommodation space, and sediment supply to the flood-tidal delta are the primary variables responsible for tidal inlet rotation. Stability of wave-dominated tidal inlets is further explained by: stability (S) = tidal prism (Ω) + estuarine accommodation space (V) - volume of annual sediment supply (Mt

  16. Improving the characterization of fish assemblage structure through the use of multiple sampling methods: a case study in a subtropical tidal flat ecosystem.

    Science.gov (United States)

    Contente, Riguel Feltrin; Del Bianco Rossi-Wongtschowski, Carmen Lucia

    2017-06-01

    The use of multiple sampling gears is indispensible to obtain robust characterizations of fish assemblage structure in species-rich subtropical ecosystems. In this study, such a dependence was demonstrated by characterizing the structure of the high-tide fish assemblage in a subtropical tidal flat ecosystem (the Araçá Bay, southeastern Brazil) using eight different gears along five seasonal surveys and estimating the bay's fish species richness, combining these data with those from local tide pool fish surveys. The high-tide fish assemblage was spatially structured, contained five threatened species, and was dominated by persistent and large populations of Eucinostomus argenteus and of the fisheries species Mugil curema and Diapterus rhombeus that intensively use the bay throughout their life cycles. Large, small-bodied fish populations supported a regular use of the bay by piscivores. The autumn-winter peak in abundance of juvenile fishes caused a subsequent increase in piscivore abundance, and both events explained the bulk of the seasonal variability of the fish assemblage. The estimated richness revealed that the combination of sampling methods was enough for sampling the bulk of the local richness, and the bay may hold a surprisingly high richness compared to other costal ecosystem of the region. This faunal characterization, only viable using multiple gears, will be critical to support the implementation of a future study to monitor the impacts on local fish biodiversity of an imminent port expansion over the tidal flat.

  17. A preliminary investigation of the distribution of heavy metals in surface sediments of the Cona tidal marsh (Venice Lagoon)

    International Nuclear Information System (INIS)

    Bernardi, S.; Costa, F.; Vazzoler, S.; Zonta, R.

    1988-01-01

    Data are from the two series of surface sediment sampling in an interface area between the Venice Lagoon and the mainland. The distribution of heavy metals gives a correlation with polluted sourcesites-identified in the channel systems with a highly polluted input-and allows us to identify the localities of accumulation. Restricted to the estuary of the river tributary transporting a high concentration of pollutants into a tidal marsh area of the lagoon, the study shows the effect of the fresh water forcing to distribute heavy metals on surface sediments. Within the scope of this preliminary investigation, indications from sampling identify a sector of the 'palude of Cona' in this estuary, which is highly suitable for detailed studies on precesses affecting heavy-metal distributions in bottom surface sediments of shallow-water areas

  18. Assessing saltmarsh resilience to sea-level rise by examining sediment transport trends in the Great Marsh, MA.

    Science.gov (United States)

    Hughes, Z. J.; Georgiou, I. Y.; Gaweesh, A.; Hanegan, K.; FitzGerald, D.; Hein, C. J.

    2017-12-01

    Under accelerating sea-level rise (SLR), marshes are vulnerable to increased inundation, dependent on their ability to accrete vertically or expand into upland areas. Accretion is a function of organic and inorganic contributions from plant biomass and suspended sediment deposition, respectively. Along the east coast of the US, present rates of SLR are higher than they have been for over 1000 years and are expected to increase in the near future. To predict the resilience of saltmarshes, we urgently need improved understanding of spatial patterns of sediment transport and deposition within these systems. This study examines time-series of suspended sediment concentration and flow collected using ADCP-OBS units, deployed throughout the Great Marsh System. We compare the data to model results and observations of short and long term deposition throughout the system. Field observations show that tidal amplitude and phase vary throughout the Great Marsh. Tidal asymmetry increases inland from the estuary mouth, and the maximum phase lag is 2 hours. This effect is strongest during low slack tide; with a delay of only 30-45 minutes at high tide. Tidal velocities exhibit strong asymmetry, reflected in pulses of sediment movement. Sediment transport initiates at mid ebb, peaking 1.5-2.5 hours later, decreasing through low slack tide for 7-9 hours until high slack tide. The results have broad implications for the potential input of inorganic sediment to the marsh platform. Results from a validated Delft3D model reproduce field observations and expand spatial sediment transport trends. We experiment by releasing sediment in different parts of the estuary, mimicking marsh edge or tidal flat erosion, and tracking mud and sand transport trajectories. Sands remains proximal to the erosion site, whereas mud is more mobile and travels farther, reaching the inlet within days of erosion. Longer simulations suggest that despite higher mobility, muds remain mostly in the channels and

  19. A Summary of the San Francisco Tidal Wetlands Restoration Series

    Directory of Open Access Journals (Sweden)

    Larry R. Brown

    2003-10-01

    Full Text Available The four topical articles of the Tidal Wetlands Restoration Series summarized and synthesized much of what is known about tidal wetlands and tidal wetland restoration in the San Francisco Estuary (hereafter “Estuary”. Despite a substantial amount of available information, major uncertainties remain. A major uncertainty with regard to fishes is the net benefit of restored tidal wetlands relative to other habitats for native fishes in different regions of the Estuary given the presence of numerous invasive alien species. With regard to organic carbon, a major uncertainty is the net benefit of land use change given uncertainty about the quantity and quality of different forms of organic carbon resulting from different land uses. A major challenge is determining the flux of organic carbon from open systems like tidal wetlands. Converting present land uses to tidal wetlands will almost certainly result in increased methylation of mercury at the local scale with associated accumulation of mercury within local food webs. However, it is unclear if such local accumulation is of concern for fish, wildlife or humans at the local scale or if cumulative effects at the regional scale will emerge. Based on available information it is expected that restored tidal wetlands will remain stable once constructed; however, there is uncertainty associated with the available data regarding the balance of sediment accretion, sea-level rise, and sediment erosion. There is also uncertainty regarding the cumulative effect of many tidal restoration projects on sediment supply. The conclusions of the articles highlight the need to adopt a regional and multidisciplinary approach to tidal wetland restoration in the Estuary. The Science Program of the CALFED effort provides an appropriate venue for addressing these issues.

  20. Polycyclic aromatic hydrocarbon (PAH) contamination of surface sediments and oysters from the inter-tidal areas of Dar es Salaam, Tanzania

    International Nuclear Information System (INIS)

    Gaspare, Lydia; Machiwa, John F.; Mdachi, S.J.M.; Streck, Georg; Brack, Werner

    2009-01-01

    Surface sediment and oyster samples from the inter-tidal areas of Dar es Salaam were analyzed for 23 polycyclic aromatic hydrocarbons (PAHs) including the 16 compounds prioritized by US-EPA using GC/MS. The total concentration of PAHs in the sediment ranged from 78 to 25,000 ng/g dry weight, while oyster concentrations ranged from 170 to 650 ng/g dry weight. Hazards due to sediment contamination were assessed using Equilibrium Partitioning Sediment Benchmarks and Threshold Effect Levels. Diagnostic indices and principle component analysis were used to identify possible sources. Interestingly, no correlation between sediment and oyster concentrations at the same sites was found. This is supported by completely different contamination patterns, suggesting different sources for both matrices. Hazard assessment revealed possible effects at six out of eight sites on the benthic communities and oyster populations. The contribution of PAH intake via oyster consumption to carcinogenic risks in humans seems to be low. - PAH contamination may pose hazards to benthos but limited risks to humans

  1. Polycyclic aromatic hydrocarbon (PAH) contamination of surface sediments and oysters from the inter-tidal areas of Dar es Salaam, Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Gaspare, Lydia; Machiwa, John F. [Department of Aquatic Environment and Conservation, University of Dar es Salaam, P.O. Box 60091, Dar es Salaam (Tanzania, United Republic of); Mdachi, S.J.M. [Department of Chemistry, University of Dar es Salaam, P.O. Box 35062, Dar es Salaam (Tanzania, United Republic of); Streck, Georg [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig (Germany); Brack, Werner [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig (Germany)], E-mail: werner.brack@ufz.de

    2009-01-15

    Surface sediment and oyster samples from the inter-tidal areas of Dar es Salaam were analyzed for 23 polycyclic aromatic hydrocarbons (PAHs) including the 16 compounds prioritized by US-EPA using GC/MS. The total concentration of PAHs in the sediment ranged from 78 to 25,000 ng/g dry weight, while oyster concentrations ranged from 170 to 650 ng/g dry weight. Hazards due to sediment contamination were assessed using Equilibrium Partitioning Sediment Benchmarks and Threshold Effect Levels. Diagnostic indices and principle component analysis were used to identify possible sources. Interestingly, no correlation between sediment and oyster concentrations at the same sites was found. This is supported by completely different contamination patterns, suggesting different sources for both matrices. Hazard assessment revealed possible effects at six out of eight sites on the benthic communities and oyster populations. The contribution of PAH intake via oyster consumption to carcinogenic risks in humans seems to be low. - PAH contamination may pose hazards to benthos but limited risks to humans.

  2. Can barrier islands survive sea level rise? Tidal inlets versus storm overwash

    Science.gov (United States)

    Nienhuis, J.; Lorenzo-Trueba, J.

    2017-12-01

    Barrier island response to sea level rise depends on their ability to transgress and move sediment to the back barrier, either through flood-tidal delta deposition or via storm overwash. Our understanding of these processes over decadal to centennial timescales, however, is limited and poorly constrained. We have developed a new barrier inlet environment (BRIE) model to better understand the interplay between tidal dynamics, overwash fluxes, and sea-level rise on barrier evolution. The BRIE model combines existing overwash and shoreface formulations [Lorenzo-Trueba and Ashton, 2014] with alongshore sediment transport, inlet stability [Escoffier, 1940], inlet migration and flood-tidal delta deposition [Nienhuis and Ashton, 2016]. Within BRIE, inlets can open, close, migrate, merge with other inlets, and build flood-tidal delta deposits. The model accounts for feedbacks between overwash and inlets through their mutual dependence on barrier geometry. Model results suggest that when flood-tidal delta deposition is sufficiently large, barriers require less storm overwash to transgress and aggrade during sea level rise. In particular in micro-tidal environments with asymmetric wave climates and high alongshore sediment transport, tidal inlets are effective in depositing flood-tidal deltas and constitute the majority of the transgressive sediment flux. Additionally, we show that artificial inlet stabilization (via jetty construction or maintenance dredging) can make barrier islands more vulnerable to sea level rise. Escoffier, F. F. (1940), The Stability of Tidal Inlets, Shore and Beach, 8(4), 114-115. Lorenzo-Trueba, J., and A. D. Ashton (2014), Rollover, drowning, and discontinuous retreat: Distinct modes of barrier response to sea-level rise arising from a simple morphodynamic model, J. Geophys. Res. Earth Surf., 119(4), 779-801, doi:10.1002/2013JF002941. Nienhuis, J. H., and A. D. Ashton (2016), Mechanics and rates of tidal inlet migration: Modeling and application to

  3. Temporal variation in fish assemblage composition on a tidal flat

    Directory of Open Access Journals (Sweden)

    Henry L. Spach

    2004-03-01

    Full Text Available Annual variation in the fish assemblage characteristics on a tidal flat was studied in coastal Paraná, in southern Brazil. Fish were collected between August 1998 and July 1999, during the diurnal high tide and diurnal and nocturnal low tide of the syzygial (full moon and quadrature (waning moon tides, to characterize temporal change in assemblage composition. A total of 64,265 fish in 133 species were collected. The average number of species and individuals, biomass, species richness, diversity (mass and equitability varied significantly over time . The dissimilarity of the assemblage was greatest in August, September and October in contrast with the period from November to January, with the lowest dissimilarity. The combined action of water temperature, salinity and wind intensity had a great influence over the structure of the fish assemblage.Os peixes de uma planície de maré da praia Balneário de Pontal do Sul, Paraná, foram coletados, na preamar diurna e na baixa-mar diurna e noturna das marés de sizígia e de quadratura, visando caracterizar as mudanças temporais entre agosto de 1998 e julho de 1999. As coletas totalizaram 64.265 peixes de 133 espécies. Foram observadas diferenças significativas na captura média em número de espécies e de peixes, peso total e nos índices de riqueza, diversidade (H' peso e eqüitatividade entre os meses de coleta. A dissimilaridade da ictiofauna foi maior entre os meses de agosto, setembro e outubro em comparação com o período de novembro a janeiro. A ação combinada da temperatura da água, salinidade e intensidade do vento, influenciaram mais sobre a estrutura da assembléia de peixes.

  4. Understanding the controls on sediment-P interactions and dynamics along a non-tidal river system in a rural–urban catchment: The River Nene

    International Nuclear Information System (INIS)

    Tye, A.M.; Rawlins, B.G.; Rushton, J.C.; Price, R.

    2016-01-01

    The release of Phosphorus (P) from river sediments has been identified as a contributing factor to waters failing the criteria for ‘Good Ecological Status’ under the EU Water Framework Directive (WFD). To identify the contribution of sediment-P to river systems, an understanding of the factors that influence its distribution within the entire non-tidal system is required. Thus the aims of this work were to examine the (i) total (P_T_o_t_a_l) and labile (P_L_a_b_i_l_e) concentrations in sediment, (ii) the sequestration processes and (iii) the interactions between sediment P and the river water in the six non-tidal water bodies of the River Nene, U.K. Collection of sediments followed a long period of flooding and high stream flow. In each water body, five cores were extracted and homogenised for analysis with an additional core being taken and sampled by depth increments. Comparing the distribution of sediment particle size and P_T_o_t_a_l data with soil catchment geochemical survey data, large increases in P_T_o_t_a_l were identified in sediments from water body 4–6, where median concentrations of P_T_o_t_a_l in the sediment (3603 mg kg"−"1) were up to double those of the catchment soils. A large proportion of this increase may be related to in-stream sorption of P, particularly from sewage treatment facilities where the catchment becomes more urbanised after water body 3. A linear correlation (r = 0.8) between soluble reactive phosphate (SRP) and Boron in the sampled river waters was found suggesting increased STW input in water bodies 4–6. P_L_a_b_i_l_e concentrations in homogenised cores were up to 100 mg kg"−"1 PO_4–P (generally < 2% of P_T_o_t_a_l) and showed a general increase with distance from the headwaters. A general increase in Equilibrium Phosphate Concentrations (EPC_0) from an average of 0.9–∼1.7 μm L"−"1 was found between water bodies 1–3 and 4–6. Fixation within oxalate extractable phases (Al, Fe and Mn) accounted

  5. Sedimentary phosphate and associated fossil bacteria in a Paleoproterozoic tidal flat in the 1.85 Ga Michigamme Formation, Michigan, USA

    Science.gov (United States)

    Hiatt, Eric E.; Pufahl, Peir K.; Edwards, Cole T.

    2015-04-01

    products of bacterial communities. But unlike younger analogs, which accumulated across subtidal shelves and shelf margins, these ancient deposits formed only in tidal flat settings where phosphogenic redox processes could be established in the sediment. From this early beginning, the zone of phosphogenesis likely migrated into deeper water settings as oxygen and sulfate levels rose, expanding the zone of chemosynthetic bacterial and associated phosphogenesis across the shelf.

  6. Transport processes in intertidal sand flats

    Science.gov (United States)

    Wu, Christy

    2010-05-01

    Methane rich sulfate depleted seeps are observed along the low water line of the intertidal sand flat Janssand in the Wadden Sea. It is unclear where in the flat the methane is formed, and how it is transported to the edge of the sand flat where the sulfidic water seeps out. Methane and sulfate distributions in pore water were determined along transects from low water line toward the central area of the sand flat. The resulting profiles showed a zone of methane-rich and sulfate-depleted pore water below 2 m sediment depth. Methane production and sulfate reduction are monitored over time for surface sediments collected from the upper flat and seeping area. Both activities were at 22 C twice as high as at 15 C. The rates in sediments from the central area were higher than in sediments from the methane seeps. Methanogenesis occurred in the presence of sulfate, and was not significantly accelerated when sulfate was depleted. The observations show a rapid anaerobic degradation of organic matter in the Janssand. The methane rich pore water is obviously transported with a unidirectional flow from the central area of the intertidal sand flat toward the low water line. This pore water flow is driven by the pressure head caused by elevation of the pore water relative to the sea surface at low tide (Billerbeck et al. 2006a). The high methane concentration at the low water line accumulates due to a continuous outflow of pore water at the seepage site that prevents penetration of electron acceptors such as oxygen and sulfate to reoxidize the reduced products of anaerobic degradation (de Beer et al. 2006). It is, however, not clear why no methane accumulates or sulfate is depleted in the upper 2 m of the flats.

  7. Cesium, manganese and cobalt water-sediment transfer kinetics and diffusion into mangrove sediments inferred by radiotracer experiments

    International Nuclear Information System (INIS)

    Machado, E.C.; Machado, W.; Patchineelam, S.R.

    2012-01-01

    A study on the trace elements transfer from tidal water to mangrove sediments from Guanabara Bay (southeastern Brazil) was performed in laboratory microcosms. Sediment cores were covered with tidal water spiked with 137 Cs, 54 Mn and 57 Co during 5-h experiments, and water samples were taken at regular intervals to measure uptake kinetics at the sediment-water interface. At the end of the experiments, the uptake and diffusional penetration into the sediments was evaluated. Half-removal times from water to sediments were slightly higher for 137 Cs (3.4 ± 1.7 h) than observed for 54 Mn (2.3 ± 0.2 h) and 57 Co (2.6 ± 1.1 h). After these experiments, all radioisotopes presented decreasing activities with increasing sediment depth, being the distribution of 137 Cs indicative of higher diffusion within the upper 2 cm. This study on the removal of 137 Cs, 54 Mn and 57 Co from tidal water by mangrove sediments suggests that while 57 Co and 54 Mn presented closer behaviors, there was a slightly higher mobility of 137 Cs. (author)

  8. The Role of Infragravity Waves in Near-Bed Cross-Shore Sediment Flux in the Breaker Zone

    Directory of Open Access Journals (Sweden)

    Samantha Kularatne

    2014-08-01

    Full Text Available Results from a series of field experiments, conducted to investigate the influence of infragravity waves (from wave groups, ripple type and location relative to the breaker line on cross-shore suspended sediment flux close to the sea bed in nearshore environments, are presented. The field data were collected from Cable Beach (Broome and Mullaloo Beach in Western Australia and Chilaw in Sri Lanka. These beaches experience different incident wave, tidal and morphological conditions, with Cable Beach having a 10-m spring tidal range, whilst the other two beaches have tidal ranges <1.0 m. Measurements included simultaneous records of surface elevation, two-dimensional horizontal current velocities and suspended sediment concentrations, together with half-hourly observations of the seabed topography. Although most of the data sets were obtained just outside of the surf zone, a few results from inside of the surf zone were also included. A significant correlation between wave groups and suspended sediment concentration was found at all of the measurement sites, either with or without bed ripples. The direction and magnitude of cross-shore suspended sediment flux varied with location with respect to the breaker line; however, other parameters, such as bed ripples and velocity skewness, could have influenced this result. In Broome, where the measurement location with respect to the breaker line varied with the tidal cycle, the cross-shore sediment flux due to swell waves was shoreward inside and just outside of the surf zone and seaward farther offshore of the breaker line. Further, sediment flux due to swell waves was onshore when the seabed was flat and offshore over post-vortex ripples. Sediment flux due to swell waves was onshore when the normalised velocity skewness towards the shore was high (positive; the flux was offshore when the skewness was lower, but positive, suggesting the influence of other parameters, such as ripples and grain size. The

  9. Concentrations and Fractionation of Carbon, Iron, Sulfur, Nitrogen and Phosphorus in Mangrove Sediments Along an Intertidal Gradient (Semi-Arid Climate, New Caledonia

    Directory of Open Access Journals (Sweden)

    Jonathan Deborde

    2015-02-01

    Full Text Available In mangrove ecosystems, strong reciprocal interactions exist between plant and substrate. Under semi-arid climate, Rhizophora spp. are usually predominant, colonizing the seashore, and Avicennia marina develops at the edge of salt-flats, which is the highest zone in the intertidal range. Along this zonation, distribution and speciation of C, Fe, S, N, and P in sediments and pore-waters were investigated. From the land-side to the sea-side of the mangrove, sediments were characterized by I/ increase in: (i water content; (ii TOC; (iii mangrove-derived OM; II/ and decrease in: (i salinity; (ii redox; (iii pH; (iv solid Fe and solid P. Beneath Avicennia and Rhizophora, TS accumulated at depth, probably as a result of reduction of iron oxides and sulfate. The loss of total Fe observed towards the sea-side may be related to sulfur oxidation and to more intense tidal flushing of dissolved components. Except the organic forms, dissolved N and P concentrations were very low beneath Avicennia and Rhizophora stands, probably as a result of their uptake by the root systems. However, in the unvegetated salt-flat, NH4+ can accumulate in organic rich and anoxic layers. This study shows: (i the evolution of mangrove sediment biogeochemistry along the intertidal zone as a result of the different duration of tidal inundation and organic enrichment; and (ii the strong links between the distribution and speciation of the different elements.

  10. A NEW SAR CLASSIFICATION SCHEME FOR SEDIMENTS ON INTERTIDAL FLATS BASED ON MULTI-FREQUENCY POLARIMETRIC SAR IMAGERY

    Directory of Open Access Journals (Sweden)

    W. Wang

    2017-11-01

    Full Text Available We present a new classification scheme for muddy and sandy sediments on exposed intertidal flats, which is based on synthetic aperture radar (SAR data, and use ALOS-2 (L-band, Radarsat-2 (C-band and TerraSAR-X (X-band fully polarimetric SAR imagery to demonstrate its effectiveness. Four test sites on the German North Sea coast were chosen, which represent typical surface compositions of different sediments, vegetation, and habitats, and of which a large amount of SAR is used for our analyses. Both Freeman-Durden and Cloude-Pottier polarimetric decomposition are utilized, and an additional descriptor called Double-Bounce Eigenvalue Relative Difference (DERD is introduced into the feature sets instead of the original polarimetric intensity channels. The classification is conducted following Random Forest theory, and the results are verified using ground truth data from field campaigns and an existing classification based on optical imagery. In addition, the use of Kennaugh elements for classification purposes is demonstrated using both fully and dual-polarization multi-frequency and multi-temporal SAR data. Our results show that the proposed classification scheme can be applied for the discrimination of muddy and sandy sediments using L-, C-, and X-band SAR images, while SAR imagery acquired at short wavelengths (C- and X-band can also be used to detect more detailed features such as bivalve beds on intertidal flats.

  11. Understanding the Influence of Retention Basin on Tidal Dynamics in Tidal Estuaries

    Science.gov (United States)

    Kumar, Mohit; Schuttelaars, Henk; Roos, Pieter

    2014-05-01

    Both the tidal motion and suspended sediment concentration (SSC) in tidal embayments and estuaries are influenced by anthropogenic (e.g. deepening ) and natural changes. An example of such an estuary is the Ems estuary, situated on the border of the Netherlands and Germany. The mean tidal range towards the end of the Ems estuary has increased from 1.5m in the 1950s to more than 3m in the 1990s while the suspended concentration has increased by a factor 10. To possibly reduce these negative effects, the construction of retention basin(s) (RB) is considered. In this contribution, the influence of location and geometry of RBs on tidal dynamics and SSC is investigated. For this purpose, a three-dimensional semi-analytic idealized model is developed. This model is an extension of the model proposed by Winant (2007) to arbitrary domain and realistic bathymetry with partial slip boundary condition at the bottom. The sea surface elevation (SSE) is calculated numerically using a finite element method. Next, the three-dimensional velocities are calculated by combining the analytically calculated vertical profiles and the gradients of the SSE which are obtained numerically. Firstly, the influence of a RB on the tidal dynamics in an infinitely long, rectangular, frictionless estuary is considered. The SSE decreases when the RB is located between a node and a landward antinode, consistent with the work of Alebregtse et al. (2013). Secondly, an estuary of finite length is connected to a sea. By varying the width of the sea, not only the effect of the distance of the RB to the landward end plays a role, but also the distance to the open sea becomes important. Finally, we discuss the influence of a RB on the tidal motion and initial sediment transport, considering the Ems estuary with realistic bathymetry. Results show that the SSE at the landward end of the Ems estuary decreases for all locations of the RBs. This decrease is most pronounced for the RB which is closest to the end

  12. Organo chlorine pesticides (OCPs) contaminants in sediments from Karachi harbour, Pakistan

    International Nuclear Information System (INIS)

    Khan, N.; Khan, S.H.; Amjad, S.; Muller, J.; Nizamani, S.; Bhanger, M.I.

    2010-01-01

    Mangrove swamps, inter tidal mud flats and creeks of backwaters represent main feature of Karachi harbour area. Karachi harbour sediment is under continuous influence of untreated industrial effluents and domestic waste discharged into the Harbour area via Lyari River. Sediment samples from sixteen locations were collected to evaluate the levels of contamination of organo chlorine pesticides (OCPs) in Karachi harbour and adjoining areas. It has been observed that residual concentrations of various organo chlorine pesticides were considerably higher in the semi-enclosed area of the upper Harbour in the vicinity of the discharge point of Lyari River. The residue of DDT mainly its metabolites (DDE and DDD) were widely distributed and have been detected in most of the sediment samples in relatively higher concentrations as compared to other OCPs. The higher levels of the DDTs would attribute to low tidal flushing of the area. The high proportion of pp'-DDE in the most sediment sampled (41-95%) suggested old inputs of DDTs in the environment. Ratio of sigma DDT and DDT was in the range of 0.04 - 0.24 at all locations which also reflects that the discharges of DDT were negligible in the Harbour area. This may be due to the restrictions being implemented on the use of DDTs and Pakistan has also switched over to natural pest control or using safer formulas. The data obtained during the study showed that concentration levels of other pesticides such as HCHs, HCB and Cyclodienes in the sediment were generally lower than the threshold levels known to harm wildlife by OCPs. The results clearly indicate that elevated concentration of organo chlorine pesticides (OCPs) in the marine sediment of Karachi harbour and adjoining area was localized and much lower than the concentrations reported from neighbouring and regional countries which suggests/confirms that the present use of pesticide in Pakistan is environmentally safe. (author)

  13. On the possibility of high-velocity tidal sterams as dynamic barriers to longshore sediment transport: evidence from the continental shelf off the Gulf of Kutch, India

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, R.R.; Hashimi, N.H.; Rao, V.P

    and clay minerals. The distinct differences have resulted because the high-velocity (2 to 2.5 knots) tidal stream at the gulf mouth acts as a dynamic barrier inhibiting sediment transport across the month. Differences in the distribution of sand size...

  14. Three Conservation Applications of Astronaut Photographs of Earth: Tidal Flat Loss (Japan), Elephant Impacts on Vegetation (Botswana), and Seagrass and Mangrove Monitoring (Australia)

    Science.gov (United States)

    Lulla, Kamlesh P.; Robinson, Julie A.; Minorukashiwagi; Maggiesuzuki; Duanenellis, M.; Bussing, Charles E.; Leelong, W. J.; McKenzie, Andlen J.

    2000-01-01

    NASA photographs taken from low Earth orbit can provide information relevant to conservation biology. This data source is now more accessible due to improvements in digitizing technology, Internet file transfer, and availability of image processing software. We present three examples of conservation-related projects that benefited from using orbital photographs. (1) A time series of photographs from the Space Shuttle showing wetland conversion in Japan was used as a tool for communicating about the impacts of tidal flat loss. Real-time communication with astronauts about a newsworthy event resulted in acquiring current imagery. These images and the availability of other high resolution digital images from NASA provided timely public information on the observed changes. (2) A Space Shuttle photograph of Chobe National Park in Botswana was digitally classified and analyzed to identify the locations of elephant-impacted woodland. Field validation later confirmed that areas identified on the image showed evidence of elephant impacts. (3) A summary map from intensive field surveys of seagrasses in Shoalwater Bay, Australia was used as reference data for a supervised classification of a digitized photograph taken from orbit. The classification was able to distinguish seagrasses, sediments and mangroves with accuracy approximating that in studies using other satellite remote sensing data. Orbital photographs are in the public domain and the database of nearly 400,000 photographs from the late 1960s to the present is available at a single searchable location on the Internet. These photographs can be used by conservation biologists for general information about the landscape and in quantitative applications.

  15. Influence of tidal regime on the distribution of trace metals in a contaminated tidal freshwater marsh soil colonized with common reed (Phragmites australis)

    International Nuclear Information System (INIS)

    Teuchies, J.; Deckere, E. de; Bervoets, L.; Meynendonckx, J.; Regenmortel, S. van; Blust, R.; Meire, P.

    2008-01-01

    A historical input of trace metals into tidal marshes fringing the river Scheldt may be a cause for concern. Nevertheless, the specific physicochemical form, rather than the total concentration, determines the ecotoxicological risk of metals in the soil. In this study the effect of tidal regime on the distribution of trace metals in different compartments of the soil was investigated. As, Cd, Cu and Zn concentrations in sediment, pore water and in roots were determined along a depth profile. Total sediment metal concentrations were similar at different sites, reflecting pollution history. Pore water metal concentrations were generally higher under less flooded conditions (mean is (2.32 ± 0.08) x 10 -3 mg Cd L -1 and (1.53 ± 0.03) x 10 -3 mg Cd L -1 ). Metal concentrations associated with roots (mean is 202.47 ± 2.83 mg Cd kg -1 and 69.39 ± 0.99 mg Cd kg -1 ) were up to 10 times higher than sediment (mean is 20.48 ± 0.19 mg Cd kg -1 and 20.42 ± 0.21 mg Cd kg -1 ) metal concentrations and higher under dryer conditions. Despite high metal concentrations associated with roots, the major part of the metals in the marsh soil is still associated with the sediment as the overall biomass of roots is small compared to the sediment. - Pore water metal concentrations and metal root plaque concentration are influenced by the tidal regime

  16. Properties of active tidal bedforms

    DEFF Research Database (Denmark)

    Winter, Christian; Lefebvre, Alice; Becker, Marius

    2016-01-01

    Bedforms of various shapes and sizes are ubiquitous in tidal channels, inlets and estuaries. They constitute a form roughness which has a large scale effect on the hydrodynamics and sediment transport of coastal environments. It has been shown that this form roughness can be expressed in terms...

  17. Assessing the impacts of bait collection on inter-tidal sediment and the associated macrofaunal and bird communities: The importance of appropriate spatial scales.

    Science.gov (United States)

    Watson, G J; Murray, J M; Schaefer, M; Bonner, A; Gillingham, M

    2017-09-01

    Bait collection is a multibillion dollar worldwide activity that is often managed ineffectively. For managers to understand the impacts on protected inter-tidal mudflats and waders at appropriate spatial scales macrofaunal surveys combined with video recordings of birds and bait collectors were undertaken at two UK sites. Dug sediment constituted approximately 8% of the surveyed area at both sites and is less muddy (lower organic content) than undug sediment. This may have significant implications for turbidity. Differences in the macrofaunal community between dug and undug areas if the same shore height is compared as well as changes in the dispersion of the community occurred at one site. Collection also induces a 'temporary loss of habitat' for some birds as bait collector numbers negatively correlate with wader and gull abundance. Bait collection changes the coherence and ecological structure of inter-tidal mudflats as well as directly affecting wading birds. However, as β diversity increased we suggest that management at appropriate hectare/site scales could maximise biodiversity/function whilst still supporting collection. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  18. OU3 sediment dating and sedimentation rates

    International Nuclear Information System (INIS)

    Blair, R.B.; Wolaver, H.A.; Burger, V.M.

    1994-01-01

    Environmental Technologies at Rocky Flats Environmental Technology Site (RFS) investigated the sediment history of Standley Lake, Great Western Reservoir, and Mower Reservoir using 137 Cs and 239,240 Pu global fall-out as dating indicators. These Colorado Front Range reservoirs have been the subject of study by various city, state and national agencies due to suspected Department of Energy Rocky Flats Plant impacts. We performed sediment dating as part of the RCRA Facility Investigation/Remedial Investigation Report for Operable Unit 3. A sediment chronology profile assists scientist in determining the year of sedimentation for a particular peak concentration of contaminants. Radioisotope sediment dating for the three reservoirs indicated sedimentation rates of 0.7 to 0.8 in./yr. for Standley Lake (SL), 0.9 in./yr. for Great Western Reservoir (GWR), and 0.3 in./yr. in Mower Reservoir (MR). RFS sediment dating for Operable Unit 3 compared favorably with the Hardy, Livingston, Burke, and Volchok Standley Lake study. This report describes the cesium/plutonium sediment dating method, estimates sedimentation rates for Operable Unit 3 reservoirs, and compares these results to previous investigations

  19. Longitudinal variation in lateral trapping of fine sediment in tidal estuaries: observations and a 3D exploratory model

    Science.gov (United States)

    Chen, Wei; de Swart, Huib E.

    2018-03-01

    This study investigates the longitudinal variation of lateral entrapment of suspended sediment, as is observed in some tidal estuaries. In particular, field data from the Yangtze Estuary are analysed, which reveal that in one cross-section, two maxima of suspended sediment concentration (SSC) occur close to the south and north sides, while in a cross-section 2 km down-estuary, only one SSC maximum on the south side is present. This pattern is found during both spring tide and neap tide, which are characterised by different intensities of turbulence. To understand longitudinal variation in lateral trapping of sediment, results of a new three-dimensional exploratory model are analysed. The hydrodynamic part contains residual flow due to fresh water input, density gradients and Coriolis force and due to channel curvature-induced leakage. Moreover, the model includes a spatially varying eddy viscosity that accounts for variation of intensity of turbulence over the spring-neap cycle. By imposing morphodynamic equilibrium, the two-dimensional distribution of sediment in the domain is obtained analytically by a novel procedure. Results reveal that the occurrence of the SSC maxima near the south side of both cross-sections is due to sediment entrapment by lateral density gradients, while the second SSC maximum near the north side of the first cross-section is by sediment transport due to curvature-induced leakage. Coriolis deflection of longitudinal flow also contributes the trapping of sediment near the north side. This mechanism is important in the upper estuary, where the flow due to lateral density gradients is weak.

  20. Effects of conversion of mangroves into gei wai ponds on sediment heavy metals accumulation in tidal flat estuary, South China

    Science.gov (United States)

    Li, R.; Qiu, G.; Chai, M.; Li, R.

    2017-12-01

    Gei wai ponds act as important component in mangrove ecosystem, but the conversion of mangroves into gei wai ponds and its ecological function on heavy metal accumulation is still not clear. The study quantified the sediment heavy metal concentration and speciation in gei wai pond, Avicennia marina marsh and mudflat in Futian mangrove wetlands, South China. The results showed that gei wai pond acidified the sediment and reduced its fertility due to reduced pH, electronic conductivity (EC) and total organic carbon (TOC) compared to A. marina marsh and mudflat. The concentrations of Cd, Cu, Zn and Pb at all depth in gei wai pond sediment were also lower than other sites, indicating reduced storage function on heavy metals. Multiple analysis implied that heavy metals in all sites could be attributed to anthropogenic sources, with Cr as natural and anthropogenic sources in gei wai pond. Gei wai pond sediment had lower heavy metal pollution based on multiple evaluation methods, including potential ecological risk coefficient (Eir), potential ecological risk index (RI), geo-accumulation index (Igeo), mean PEL quotients (m-PEL-q), pollution load index (PLI), mean ERM quotients (m-ERM-q) and total toxic unit (∑TU). Heavy metal speciation analysis indicated that gei wai pond improved the conversion from the immobilized Cd and Cr to the mobilized fraction. SEM-AVS analysis indicated no adverse toxicity occurred in all sites, and the role of TOC in relieving sediment heavy metal toxicity of gei wai pond is limited.

  1. In situ erosion of cohesive sediment

    International Nuclear Information System (INIS)

    Williamson, H.J.; Ockenden, M.C.

    1993-01-01

    There has been increasing interest in tidal power schemes and the effect of a tidal energy barrage on the environment. A large man-made environmental change, such as a barrage, would be expected to have significant effects on the sediment distribution and stability of an estuary and these effects need to be assessed when considering a tidal barrage project. This report describes the development of apparatus for in-situ measurements of cohesive sediment erosion on inter-tidal mudflats. Development of the prototype field erosion bell and field testing was commissioned on behalf of the Department of Trade and Industry by the Energy Technology Support Unit (ETSU). This later work commenced in August 1991 and was completed in September 1992. (Author)

  2. Recent sediment dynamics in hadal trenches: Evidence for the influence of higher-frequency (tidal, near-inertial) fluid dynamics

    Science.gov (United States)

    Turnewitsch, Robert; Falahat, Saeed; Stehlikova, Jirina; Oguri, Kazumasa; Glud, Ronnie N.; Middelboe, Mathias; Kitazato, Hiroshi; Wenzhöfer, Frank; Ando, Kojiro; Fujio, Shinzou; Yanagimoto, Daigo

    2014-08-01

    In addition to high hydrostatic pressure, scarcity of food is viewed as a factor that limits the abundance and activity of heterotrophic organisms at great ocean depths, including hadal trenches. Supply of nutritious food largely relies on the flux of organic-rich particulate matter from the surface ocean. It has been speculated that the shape of hadal trenches helps to ‘funnel' particulate matter into the deeper parts of the trench, leading to sediment ‘focussing' and improved benthic food supply. Here we investigate for five Northwest Pacific trenches the efficiency of sediment focussing by evaluating ratios of measured (sediment-derived) and expected (water-column-derived) sedimentary inventories of the naturally occurring and radioactive particulate-matter tracer 210Pbxs. The sites comprise a broad range of surface-ocean productivity and physical-oceanographic regimes. Across the five trench-axis settings the inventory ratio varies between 0.5 and 4.1, with four trench-axis settings having ratios>1 (sediment focussing) and one trench-axis setting a ratiowinnowing). Although the fluid- and sediment-dynamical forcing behind sediment focussing remains unclear, this study finds evidence for another mechanism that is superimposed on, and counteracts, the focussing mechanism. This superimposed mechanism is related to higher-frequency (tidal, near-inertial) fluid dynamics. In particular, there is evidence for a strong and negative relation between the intensity of propagating internal tides and the extent of sediment focussing in the trench-axis. The relation can be approximated by a power function and the most intense drop in sediment focussing already occurs at moderate internal-tide intensities. This suggests that propagating internal tides may have a subtle but significant influence on particulate-matter dynamics and food supply in hadal trenches in particular, but possibly also in the deep seas in general. A mechanism for the influence of internal tides on

  3. Review of sediment stabilisation techniques

    International Nuclear Information System (INIS)

    1992-01-01

    The best sites for tidal power schemes are found in estuaries with high tidal ranges which have complex ecosystems and include a wide and diverse range of habitats. If the tidal power is to be developed, therefore, it is important to determine the likely effect on the environment and any ameliorative measures which may be necessary. One possible change is likely to be the erosion of material from the bed or shoreline of the estuary, and possibly the adjacent coast. This is of particular concern if intertidal sandflats, mudflats and saltmarsh are affected, as these are important wildlife habitats. Moreover, largescale movement of sediments would be undesirable. Results of a desk study of methods of preventing the erosion of sediment deposits in or near an estuary in the conditions that may occur following the construction of a tidal power barrage are presented. (author)

  4. Initial formation of channels and shoals in a short tidal embayment

    NARCIS (Netherlands)

    Schuttelaars, H.M.; Swart, H.E. de

    1997-01-01

    It is demonstrated by using a simple model that bedforms in a short tidal embayment can develop due to a positive feedback between tidal currents sediment transport and bedforms The system is forced by a prescribed free surface elevations at the entrance of the embayment The water motions are

  5. Algal stabilisation of estuarine sediments

    International Nuclear Information System (INIS)

    1992-01-01

    The presence of benthic microalgae can increase the stability of intertidal sediments and influence sediment fluxes within an estuarine environment. Therefore the relative importance of algal stabilisation needs to be understood to help predict the effects of a tidal barrage. The objectives of this study are: to assess the significance of stabilisation of sediments by algae, in relation to the changes in hydrodynamic and sedimentological regimes arising from the construction of tidal power barrages; to identify a reliable and meaningful method of measuring the effectiveness, including duration, of algal binding on sediment stability, and to relate this method to other methods of measuring critical erosion velocity and sediment shear strength; to undertake a series of field experiments investigating the effect of algae on binding sediments and the parameters which could potentially influence such binding and to develop a predictive method for the assessment of sediment stabilisation by algal binding. This report contains plates, figures and tables. (author)

  6. Insights into the establishment of the Manila clam on a tidal flat at the southern end of an introduced range in Southern California, USA.

    Directory of Open Access Journals (Sweden)

    Drew M Talley

    Full Text Available Coastal ecosystem modifications have contributed to the spread of introduced species through alterations of historic disturbance regimes and resource availability, and increased propagule pressure. Frequency of occurrence of the Manila clam (Venerupis phillipinarum, Veneridae in Southern California estuaries has increased from absent or sparse to common since the mid-1990s. Potential invasion vectors include seafood sales and aquaculture, and spread from established northern populations over decades. The clam's post-settlement habitat preferences are, however, uncertain in this region. Our project aimed to identify factors associated with established patches of the clam within a bay toward the southern end of this introduced range. During summer 2013, we sampled 10 tidal flat sites in Mission Bay, San Diego; each containing an area with and without hard structure (e.g., riprap, boulders. We measured likely environmental influences (e.g., sediment variables, distance to ocean. Manila clam densities across the bay were most strongly associated with site, where highest densities were located in the northern and/or back halves of the bay; and weakly correlated with lower porewater salinities. Within sites, Manila clam density was enhanced in the presence of hard structure in most sites. Prevailing currents and salinity regimes likely contribute to bay wide distributions, while hard structures may provide suitable microhabitats (refuge from predators and physical stress and larval entrapment within sites. Results provide insights into decisions about future shoreline management efforts. Finally, we identify directions for future study to better understand and therefore predict patterns of establishment of the Manila clam in the southern portion of its introduced range.

  7. The significance of radionuclides and trace elements in a back barrier tidal area: Results from the German Wadden

    International Nuclear Information System (INIS)

    Schnetger, B.; Hinrichs, J.; Dellwig, O.; Brumsack, H.-J.; Shaw, T.

    2000-01-01

    Coastal areas like the German Wadden Sea are characterised by processes occurring on short (tides) seasonal (winter/summer), and long (sea level rise) timescales. This causes fluctuations in biological, chemical and physical parameters. In the geological past these parameters were driven by natural mechanisms whereas in the last centuries anthropogenic influences (coastal protection, agriculture) became important. It is more or less unknown how the different processes forming the German Wadden Sea interact together. We investigated the dissolved and particulate phase of the waters of the a back barrier tidal area of the East Frisian Islands. Intertidal and seasonal variations in radionuclides, alkalinity and redox-sensitive trace metals give us evidence to several important sources and processes going on in this area. In summer, spring and autumn, alkalinity as well as Mn concentrations in the dissolved phase are high during low tide and low during high tide. In winter, alkalinity and Mn concentration in the dissolved phase is lower. In the suspended particulate material a high and variable Mn/Al ratio during tidal cycles was found in summer and autumn. A low ratio close to average shale with minor variations during low and high tide was found in winter and spring. Stable sulphur isotopes measured in porewater draining the tidal flats during low tide indicate intense diagenesis by sulphate reducing bacteria. These observations point to a seasonal, microbially driven release of dissolved Mn and carbon species from the subsurface anoxic Wadden Sea sediments. Another source, adding dissolved components to the water of the back-barrier area, can be identified by short lived radium isotopes. 223 Ra and 224 Ra were found to vary by a factor of two during tidal cycles. Most possibly, the source for Ra are the subterranean sands, which are drained during low tide and replenished during high tide. The geochemical comparison between present day and Holocene tidal flat

  8. Removal efficiency of 75Se, 51Cr and 60Co from tidal water by mangrove sediments from Sepetiba Bay (SE Brazil)

    International Nuclear Information System (INIS)

    Suzuki, K.N.; Lopes, R.T.; Machado, E.C.; Machado, W.; Osso, J.A.Jr.

    2014-01-01

    Mangrove sediment cores sampled from Sepetiba Bay (SE Brazil) were covered with tidal water spiked with 75 Se, 51 Cr and 60 Co to evaluate the removal efficiency of these radiotracers by underlying sediments. Variable time-evolution trends were observed along 115 h experiments, with significant differences between removal efficiencies of all radiotracers observed only after 70 h ( 51 Cr > 60 Co > 75 Se). After an event of 60 Co release back to overlying water, there was a general trend of lower 60 Co removal than observed for other radiotracers during the period from 20 to 54 h. After this event, alternated periods of higher 60 Co and higher 75 Se removal trends were observed, attributed to behavioural differences expected for such anionic and cationic radiotracers. While 75 Se and 51 Cr showed uniform time-evolution curves, as typically found in the literature for most radiotracers, 60 Co removal rates presented oscillations, probably due to sensitivity to changes in redox conditions within underlying sediments. Results evidenced the role of mangrove sediments as trace element sinks, which have implications for coastal water quality and for possible uses of such sediments in wastewater treatment systems. (author)

  9. Suspended sediment and sediment-associated contaminants in San Francisco Bay

    Science.gov (United States)

    Schoellhamer, D.H.; Mumley, T.E.; Leatherbarrow, J.E.

    2007-01-01

    Water-quality managers desire information on the temporal and spatial variability of contaminant concentrations and the magnitudes of watershed and bed-sediment loads in San Francisco Bay. To help provide this information, the Regional Monitoring Program for Trace Substances in the San Francisco Estuary (RMP) takes advantage of the association of many contaminants with sediment particles by continuously measuring suspended-sediment concentration (SSC), which is an accurate, less costly, and more easily measured surrogate for several trace metals and organic contaminants. Continuous time series of SSC are collected at several sites in the Bay. Although semidiurnal and diurnal tidal fluctuations are present, most of the variability of SSC occurs at fortnightly, monthly, and semiannual tidal time scales. A seasonal cycle of sediment inflow, wind-wave resuspension, and winnowing of fine sediment also is observed. SSC and, thus, sediment-associated contaminants tend to be greater in shallower water, at the landward ends of the Bay, and in several localized estuarine turbidity maxima. Although understanding of sediment transport has improved in the first 10 years of the RMP, determining a simple mass budget of sediment or associated contaminants is confounded by uncertainties regarding sediment flux at boundaries, change in bed-sediment storage, and appropriate modeling techniques. Nevertheless, management of sediment-associated contaminants has improved greatly. Better understanding of sediment and sediment-associated contaminants in the Bay is of great interest to evaluate the value of control actions taken and the need for additional controls. ?? 2007 Elsevier Inc. All rights reserved.

  10. A coupled geomorphic and ecological model of tidal marsh evolution.

    Science.gov (United States)

    Kirwan, Matthew L; Murray, A Brad

    2007-04-10

    The evolution of tidal marsh platforms and interwoven channel networks cannot be addressed without treating the two-way interactions that link biological and physical processes. We have developed a 3D model of tidal marsh accretion and channel network development that couples physical sediment transport processes with vegetation biomass productivity. Tidal flow tends to cause erosion, whereas vegetation biomass, a function of bed surface depth below high tide, influences the rate of sediment deposition and slope-driven transport processes such as creek bank slumping. With a steady, moderate rise in sea level, the model builds a marsh platform and channel network with accretion rates everywhere equal to the rate of sea-level rise, meaning water depths and biological productivity remain temporally constant. An increase in the rate of sea-level rise, or a reduction in sediment supply, causes marsh-surface depths, biomass productivity, and deposition rates to increase while simultaneously causing the channel network to expand. Vegetation on the marsh platform can promote a metastable equilibrium where the platform maintains elevation relative to a rapidly rising sea level, although disturbance to vegetation could cause irreversible loss of marsh habitat.

  11. Understanding processes controlling sediment transports at the mouth of a highly energetic inlet system (San Francisco Bay, CA)

    Science.gov (United States)

    Elias, Edwin P.L.; Hansen, Jeff E.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    San Francisco Bay is one of the largest estuaries along the U.S. West Coast and is linked to the Pacific Ocean through the Golden Gate, a 100 m deep bedrock inlet. A coupled wave, flow and sediment transport model is used to quantify the sediment linkages between San Francisco Bay, the Golden Gate, and the adjacent open coast. Flow and sediment transport processes are investigated using an ensemble average of 24 climatologically derived wave cases and a 24.8 h representative tidal cycle. The model simulations show that within the inlet, flow and sediment transport is tidally dominated and driven by asymmetry of the ebb and flood tides. Peak ebb velocities exceed the peak flood velocities in the narrow Golden Gate channel as a result of flow convergence and acceleration. Persistent flow and sediment gyres at the headland tips are formed that limit sediment transfer from the ebb-tidal delta to the inlet and into the bay. The residual transport pattern in the inlet is dominated by a lateral segregation with a large ebb-dominant sediment transport (and flow) prevailing along the deeper north side of the Golden Gate channel, and smaller flood dominant transports along the shallow southern margin. The seaward edge of the ebb-tidal delta largely corresponds to the seaward extent of strong tidal flows. On the ebb-tidal delta, both waves and tidal forcing govern flow and sediment transport. Wave focusing by the ebb-tidal delta leads to strong patterns of sediment convergence and divergence along the adjacent Ocean Beach.

  12. Flow Convergence Caused by a Salinity Minimum in a Tidal Channel

    Directory of Open Access Journals (Sweden)

    John C. Warner

    2006-12-01

    Full Text Available Residence times of dissolved substances and sedimentation rates in tidal channels are affected by residual (tidally averaged circulation patterns. One influence on these circulation patterns is the longitudinal density gradient. In most estuaries the longitudinal density gradient typically maintains a constant direction. However, a junction of tidal channels can create a local reversal (change in sign of the density gradient. This can occur due to a difference in the phase of tidal currents in each channel. In San Francisco Bay, the phasing of the currents at the junction of Mare Island Strait and Carquinez Strait produces a local salinity minimum in Mare Island Strait. At the location of a local salinity minimum the longitudinal density gradient reverses direction. This paper presents four numerical models that were used to investigate the circulation caused by the salinity minimum: (1 A simple one-dimensional (1D finite difference model demonstrates that a local salinity minimum is advected into Mare Island Strait from the junction with Carquinez Strait during flood tide. (2 A three-dimensional (3D hydrodynamic finite element model is used to compute the tidally averaged circulation in a channel that contains a salinity minimum (a change in the sign of the longitudinal density gradient and compares that to a channel that contains a longitudinal density gradient in a constant direction. The tidally averaged circulation produced by the salinity minimum is characterized by converging flow at the bed and diverging flow at the surface, whereas the circulation produced by the constant direction gradient is characterized by converging flow at the bed and downstream surface currents. These velocity fields are used to drive both a particle tracking and a sediment transport model. (3 A particle tracking model demonstrates a 30 percent increase in the residence time of neutrally buoyant particles transported through the salinity minimum, as compared to

  13. Bathymetric and sediment facies maps for China Bend and Marcus Flats, Franklin D. Roosevelt Lake, Washington, 2008 and 2009

    Science.gov (United States)

    Weakland, Rhonda J.; Fosness, Ryan L.; Williams, Marshall L.; Barton, Gary J.

    2011-01-01

    The U.S. Geological Survey (USGS) created bathymetric and sediment facies maps for portions of two reaches of Lake Roosevelt in support of an interdisciplinary study of white sturgeon (Acipenser transmontanus) and their habitat areas within Franklin D. Roosevelt Lake, Washington. In October 2008, scientists from the USGS used a boat-mounted multibeam echo sounder (MBES) to describe bathymetric data to characterize surface relief at China Bend and Marcus Flats, between Northport and Kettle Falls, Washington. In March 2009, an underwater video camera was used to view and record sediment facies that were then characterized by sediment type, grain size, and areas of sand deposition. Smelter slag has been identified as having the characteristics of sand-sized black particles; the two non-invasive surveys attempted to identify areas containing black-colored particulate matter that may be elements and minerals, organic material, or slag. The white sturgeon population in Lake Roosevelt is threatened by the failure of natural recruitment, resulting in a native population that consists primarily of aging fish and that is gradually declining as fish die and are not replaced by nonhatchery reared juvenile fish. These fish spawn and rear in the riverine and upper reservoir reaches where smelter slag is present in the sediment of the river lake bed. Effects of slag on the white sturgeon population in Lake Roosevelt are largely unknown. Two recent studies demonstrated that copper and other metals are mobilized from slag in aqueous environments with concentrations of copper and zinc in bed sediments reaching levels of 10,000 and 30,000 mg/kg due to the presence of smelter slag. Copper was found to be highly toxic to 30-day-old white sturgeon with 96-h LC50 concentrations ranging from 3 to 5 (u or mu)g copper per liter. Older juvenile and adult sturgeons commonly ingest substantial amounts of sediment while foraging. Future study efforts in Lake Roosevelt should include sampling of

  14. Impact of vegetation die-off on spatial flow patterns over a tidal marsh

    NARCIS (Netherlands)

    Temmerman, S.; Moonen, P.; Schoelynck, J.; Govers, G.; Bouma, T.J.

    2012-01-01

    Large-scale die-off of tidal marsh vegetation, caused by global change, is expected to change flow patterns over tidal wetlands, and hence to affect valuable wetland functions such as reduction of shoreline erosion, attenuation of storm surges, and sedimentation in response to sea level rise. This

  15. The ecology, behaviour and physiology of fishes on coral reef flats, and the potential impacts of climate change.

    Science.gov (United States)

    Harborne, A R

    2013-09-01

    Reef flats, typically a low-relief carbonate and sand habitat in shallow water leeward of the reef crest, are one of the most extensive zones on Pacific coral reefs. This shallow zone often supports an abundant and diverse fish assemblage that is exposed to more significant variations in physical factors, such as water depth and movement, temperature and ultraviolet (UV) radiation levels, than most other reef fishes. This review examines the characteristics of reef flat fish assemblages, and then investigates what is known about how they respond to their biophysical environment. Because of the challenges of living in shallow, wave-exposed water, reef flats typically support a distinct fish assemblage compared to other reef habitats. This assemblage clearly changes across tidal cycles as some larger species migrate to deeper water at low tide and other species modify their behaviour, but quantitative data are generally lacking. At least some reef flat fish species are well-adapted to high temperatures, low oxygen concentrations and high levels of UV radiation. These behavioural and physiological adaptations suggest that there may be differences in the demographic processes between reef flat assemblages and those in deeper water. Indeed, there is some evidence that reef flats may act as nurseries for some species, but more research is required. Further studies are also required to predict the effects of climate change, which is likely to have multifaceted impacts on reef flats by increasing temperature, water motion and sediment load. Sea-level rise may also affect reef flat fish assemblages and food webs by increasing the amount of time that larger species are able to forage in this zone. The lack of data on reef flats is surprising given their size and relative ease of access, and a better understanding of their functional role within tropical marine seascapes is urgently required. © 2013 The Fisheries Society of the British Isles.

  16. Coarse sediment oil persistence laboratory studies and model

    International Nuclear Information System (INIS)

    Humphrey, B.; Harper, J.R.

    1993-01-01

    To gain understanding of the factors which affect the fate of stranded oil on coarse sediment beaches, a series of oil penetration and tidal flushing experiments was conducted in columns containing sediments of two grain sizes: granules and pebbles. The experiments included changing oil properties by weathering and by emulsification. Factors examined included permeability, effective porosity, and residual capacity of the sediment for oil. The laboratory data provided input to an oil persistence model for coarse sediment beaches, and the model was modified on the basis of the new data. The permeability measurements suggest that the permeability of pebble/granule mixtures is close to that of the smaller component. For low viscosity oils, the permeability in coarse sediments is rapid enough to match the fall and rise of tidal water. Effective porosity of the pebbles was ca 90% of the measured porosity, but for both the granules and a 50-50 pebble/granule mixture, the effective porosity was ca 75% of measured porosity. Results of tidal flushing simulation imply that flushing may be rapid but not efficient. The emulsion completely entered the sediment in the case of pebbles only. 2 refs., 6 figs., 3 tabs

  17. Hydrologically mediated iron reduction/oxidation fluctuations and dissolved organic carbon exports in tidal wetlands

    Science.gov (United States)

    Guimond, J. A.; Seyfferth, A.; Michael, H. A.

    2017-12-01

    Salt marshes are biogeochemical hotspots where large quantities of carbon are processed and stored. High primary productivity and deposition of carbon-laden sediment enable salt marsh soils to accumulate and store organic carbon. Conversely, salt marshes can laterally export carbon from the marsh platform to the tidal channel and eventually the ocean via tidal pumping. However, carbon export studies largely focus on tidal channels, missing key physical and biogeochemical mechanisms driving the mobilization of dissolved organic carbon (DOC) within the marsh platform and limiting our understanding of and ability to predict coastal carbon dynamics. We hypothesize that iron redox dynamics mediate the mobilization/immobilization of DOC in the top 30 cm of salt marsh sediment near tidal channels. The mobilized DOC can then diffuse into the flooded surface water or be advected to tidal channels. To elucidate DOC dynamics driven by iron redox cycles, we measured porewater DOC, Fe(II), total iron, total sulfate, pH, redox potential, and electrical conductivity (EC) beside the creek, at the marsh levee, and in the marsh interior in a mid-latitude tidal salt marsh in Dover, Delaware. Samples were collected at multiple tide stages during a spring and neap tide at depths of 5-75cm. Samples were also collected from the tidal channel. Continuous Eh measurements were made using in-situ electrodes. A prior study shows that DOC and Fe(II) concentrations vary spatially across the marsh. Redox conditions near the creek are affected by tidal oscillations. High tides saturate the soil and decrease redox potential, whereas at low tide, oxygen enters the sediment and increases the Eh. This pattern is always seen in the top 7-10cm of sediment, with more constant low Eh at depth. However, during neap tides, this signal penetrates deeper. Thus, between the creek and marsh levee, hydrology mediates redox conditions. Based on porewater chemistry, if DOC mobilization can be linked to redox

  18. Long-term and high resolution measurements of bed level changes in a temperate, microtidal coastal lagoon

    DEFF Research Database (Denmark)

    Andersen, Thorbjørn J.; Pejrup, Morten; Nielsen, Allan Aasbjerg

    2006-01-01

    of a nearby tidal channel are presented. Short-term changes in bed level are one or two orders of magnitude larger than the annual net-deposition rate, which shows that the environment is highly dynamic with respect to erosion, transport and deposition of fine-grained sediment. Some seasonality in the bed...... deposition and erosion was observed. The time-series showed that some of the material eroded from the mudflat was not exported to the open sea, but instead temporarily deposited in a nearby shallow tidal channel and later returned to the mudflat during calmer weather conditions. These findings support...... previously published hypothesis and results of modelling studies. Based on the observed abundance of fine-grained sediment at the study sites and the high accretion rates generally found on fine-grained tidal flats in the Danish Wadden Sea area, it is argued that these fine-grained tidal flats...

  19. The Role of Relative Sea Level Changes in Diagenetic Processes and Stacking Pattern of Kangan Formation Sediments in one of the Persian Gulf Fields

    Directory of Open Access Journals (Sweden)

    حسن اشراقی

    2016-01-01

    Full Text Available The Lower to Middle Triassic aged Kangan Formation is one of the most significant carbonate gas reservoirs in Iranian territory. In this study, thin sections data were used to recognize microfacies, sedimentary environments and the interaction between diagenetic processes and facies stacking pattern in a sequence stratigraphic framework. Petrographic studies leaded to recognition of eight microfacies related to three facies belts including tidal flat, lagoon and shoal. Moreover, the observed microfacies patterns indicate a ramp carbonate platform as depositional environment for this carbonate succession. The main diagenetic processes of Kangan Formation include micritization, isopachous and fibrous cements (primary marine diagenesis, dissolution and moldic porosity (meteoric diagenesis, compaction and stylolitization (secondary diagenesis. Based on facies changes, two third-order sequences were specified, each of which could be divided into two systems tracts including transgressive systems tract (TST and highstand systems tract (HST. In addition, sequence boundaries were identified with bedded, massive and nodular anhydrite. These facies, that are indicative of maximum sea level fall, were deposited in hypersaline lagoons. There is a close association between diagenetic processes and relative sea level changes of Kangan Formation, so that diagenetic processes of studied succession have been controlled by sediments stacking patterns during transgression and regression of sea level. During the transgression, the main diagenetic processes in shoal facies are marine cementation and dolomitization in lagoon and tidal flat facies. However, during the sea level fall, these processes include dissolution in shoal facies and dolomitization, anhydrite nodule formation and cementation in lagoon and tidal flat settings.

  20. Environmental impact assessment of Kachchh tidal power project

    International Nuclear Information System (INIS)

    Yadav, Ramanand; Lal, B.B.

    1995-01-01

    The Kachchh tidal power development project is a single-basin, single -effect and ebb generation development by construction of a tidal power barrage of about 3.25 km length across Hansthal creek. The project may disturb the ecosystem of the region. The paper deals in detail the environmental impacts of the project on climate, water velocity, flow and sedimentation pattern, water quality, flora and fauna, fishery, tourism and recreation, wild life, public health and socio-economic conditions. (author). 4 refs., 1 fig., 2 tabs

  1. Phase lag control of tidally reversing mega-ripple geometry and bed stress in tidal inlets

    Science.gov (United States)

    Traykovski, P.

    2016-02-01

    Recent observations in the Columbia River Mouth, New River Inlet, and Wasque Shoals have shown that tidally reversing mega-ripples are an ubiquitous bedform morphology in energetic tidal inlets. As the name implies, these bedforms reverse asymmetry and migration direction in each half tidal cycle. With wavelengths of 2 to 5 m and heights of 0.2 to 0.5 m, these bedforms are larger than current formed ripples, but smaller than dunes. Unlike dunes which have a depth dependent geometry, observations indicate the tidally reversing mega-ripples geometry is related to the time dependent tidal flow and independent of depth. Previous empirical relations for predicting the geometry of ripples or dunes do not successfully predict the geometry of these features. A time dependent geometric model was developed that accounts for the reversal of migration and asymmetry to successfully predict bedform geometry. The model requires sufficient sediment transport in each half tidal cycle to reverse the asymmetry before the bedforms begin to grow. Both the observations and model indicate that the complete reversal of asymmetry and development of a steep lee face occurs near or after maximum flow in each half tidal cycle. This phase lag in bedform response to tidal forcing also has important implications for bed stress in tidal inlets. Observations of frictional drag in the Columbia River mouth based on a tidal momentum balance of surface slope over 10 km regressed against quadratic near bed velocity show drag coefficients that fall off as CD U-1.4. Reynolds stress measurements performed using the dual ADV differencing technique show similar relations. The Reynolds stress measurements also show a dramatic asymmetry between accelerating flows and decelerating flows with a factor of 5 increase during deceleration. Pulse coherent Doppler profiles of near bed turbulence indicate that the turbulence is dominated by energetic fluctuations in separation zones downstream of steep lee faces. The

  2. Review of sediment stabilisation techniques. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    The best sites for tidal power schemes are found in estuaries with high tidal ranges which have complex ecosystems and include a wide and diverse range of habitats. If the tidal power is to be developed, therefore, it is important to determine the likely effect on the environment and any ameliorative measures which may be necessary. One possible change is likely to be the erosion of material from the bed or shoreline of the estuary, and possibly the adjacent coast. This is of particular concern if intertidal sandflats, mudflats and saltmarsh are affected, as these are important wildlife habitats. Moreover, largescale movement of sediments would be undesirable. Results of a desk study of methods of preventing the erosion of sediment deposits in or near an estuary in the conditions that may occur following the construction of a tidal power barrage are presented. (author).

  3. A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization

    International Nuclear Information System (INIS)

    Feng Huan; Han, Xiaofei; Zhang Weiguo; Yu Lizhong

    2004-01-01

    Three short sediment cores ( 210 Pb and 7 Be. The 210 Pb xs profile shows a non-steady-state sedimentation pattern in the study area and 7 Be is only found in the upper 1 cm layer of sediment in high and middle tidal flats. In this study, we found that Cu, Pb and Zn contaminants are present in the upper 20 cm of the tidal flat sediment and, after normalizing with Al, the contamination is more striking in the upper ∼5 cm sediment. Relationships between the metal (Cu, Pb and Zn) enrichment factor and 210 Pb xs activity suggest that contamination increases with time. Factor analyses shows that differences in sediment grain size have insignificant effects on Cu and Pb concentrations, but have some influence on Zn concentration in the study area. This preliminary study shows that urbanization and recent coastal wetland reclamation have had an environmental impact on this area

  4. Sediment sorting along tidal sand waves: A comparison between field observations and theoretical predictions

    Science.gov (United States)

    Van Oyen, Tomas; Blondeaux, Paolo; Van den Eynde, Dries

    2013-07-01

    A site-by-site comparison between field observations and theoretical predictions of sediment sorting patterns along tidal sand waves is performed for ten locations in the North Sea. At each site, the observed grain size distribution along the bottom topography and the geometry of the bed forms is described in detail and the procedure used to obtain the model parameters is summarized. The model appears to accurately describe the wavelength of the observed sand waves for the majority of the locations; still providing a reliable estimate for the other sites. In addition, it is found that for seven out of the ten locations, the qualitative sorting process provided by the model agrees with the observed grain size distribution. A discussion of the site-by-site comparison is provided which, taking into account uncertainties in the field data, indicates that the model grasps the major part of the key processes controlling the phenomenon.

  5. On deriving transport pathways and morphodynamics in a tidal inlet from high-resolution MBES and LiDAR surveys: the Knudedyb tidal inlet in the Danish Wadden Sea

    DEFF Research Database (Denmark)

    Ernstsen, Verner Brandbyge; Lefebvre, Alice; Fraccascia, Serena

    and topobathymetric surveys using high-resolution red and green Light Detection And Ranging (LiDAR), respectively. Detailed digital elevation models with a grid cell size of 1 m x 1 m were generated and analysed geomorphometrically. The analyses reveal a main ebb-directed net sand transport in the main channel......; however, due to the geometry of the main channel, displaying a confluent meander bend, confined areas in the main channel are characterised by an opposite-directed net sand transport. In the inter-tidal areas the main net sand transport is flood-directed. However, also here the analyses reveal...... that during storm events with winds from SW, sand is transported from the inlet channel to the intertidal flat. Hence, in addition to the typical main sand transport directions with net export in the inlet channel and net import over the adjacent inter-tidal flats, these investigations suggest an exchange...

  6. Long-term divergent tidal flat benthic community recovery following hypoxia-induced mortality

    NARCIS (Netherlands)

    Colen, van C.; Montserrat, F.; Vincx, M.; Herman, P.M.J.; Ysebaert, T.; Degraer, S.

    2010-01-01

    Macrobenthos recovery after hypoxia-induced mass mortality was assessed in an estuarine tidal mudflat during 3 years. During the first 2 years, a Pearson-Rosenberg type of community recovery took place along with the improving bottom water oxygen conditions. After 3 months, spionid polychaetes

  7. Predominant Nearshore Sediment Dispersal Patterns in Manila Bay

    Directory of Open Access Journals (Sweden)

    Fernando Siringan

    1997-12-01

    Full Text Available Net nearshore sediment drift patterns in Manila Bay were determined by combining the coastal geomorphology depicted in 1 : 50,000scale topographic maps and Synthetic Aperture Radar (SAR images, with changes in shoreline position and predominant longshore current directions derived from the interaction of locally generated waves and bay morphology.Manila Bay is fringed by a variety of coastal subenvironments that reflect changing balances of fluvial, wave, and tidal processes. Along the northern coast, a broad tidal-river delta plain stretching from Bataan to Bulacan indicates the importance of tides, where the lateral extent of tidal influences is amplified by the very gentle coastal gradients. In contrast, along the Cavite coast sandy strandplains, spits, and wave-dominated deltas attest to the geomorphic importance of waves that enter the bay from the South China Sea.The estimates of net sediment drift derived from geomorphological, shoreline-change, and meteorological information are generally in good agreement. Sediment drift directions are predominantly to the northeast along Cavite, to the northwest along Manila and Bulacan, and to the north along Bataan. Wave refraction and eddy formation at the tip of the Cavite Spit cause southwestward sediment drift along the coast from Zapote to Kawit. Geomorphology indicates that onshore-offshore sediment transport is probably more important than alongshore transport along the coast fronting the tidal delta plain of northern Manila Bay. Disagreements between the geomorphic-derived and predicted net sediment drift directions may be due to interactions of wave-generated longshore currents with wind- and tide-generated currents.

  8. Gulf of Mexico Integrated Science - Tampa Bay Study - Characterization of Tidal Wetlands

    Science.gov (United States)

    McIvor, Carole

    2005-01-01

    Tidal wetlands in Tampa Bay, Florida, consist of mangrove forests and salt marshes. Wetlands buffer storm surges, provide fish and wildlife habitat, and enhance water quality through the removal of water-borne nutrients and contaminants. Substantial areas of both mangroves and salt marshes have been lost to agricultural, residential, and industrial development in this urban estuary. Wetlands researchers are characterizing the biological components of tidal wetlands and examining the physical factors such as salinity, tidal flushing, and sediment deposition that control the composition of tidal wetland habitats. Wetlands restoration is a priority of resource managers in Tampa Bay. Baseline studies such as these are needed for successful restoration planning and evaluation.

  9. Sequential development of tidal ravinement surfaces in macro- to hypertidal estuaries with high volcaniclastic input: the Miocene Puerto Madryn Formation (Patagonia, Argentina)

    Science.gov (United States)

    Scasso, Roberto A.; Cuitiño, José I.

    2017-08-01

    The late Miocene beds of the Puerto Madryn Formation (Provincia del Chubut, Argentina) are formed by shallow marine and estuarine sediments. The latter include several tidal-channel infills well exposed on the cliffy coast of the Peninsula Valdés. The Bahía Punta Fósil and Cerro Olazábal paleochannels are end members of these tidal channels and show a fining-upward infilling starting with intraformational channel lag conglomerates above deeply erosional surfaces interpreted as fluvial ravinement surfaces (the erosion surface formed in the purely fluvial or the fluvially dominated part of the estuary, where erosion is driven by fluvial processes). These are overlain and eventually truncated (and suppressed) by the tidal ravinement surface (TRS), in turn covered with high-energy, bioclastic conglomerates mostly formed in the "tidally dominated/fluvially influenced" part of an estuary. Above, large straight or arcuate point bars with alternatively sandy/muddy seasonal beds and varying trace and body fossil contents were deposited from the freshwater fluvially dominated to saline-water tidally dominated part of the estuary. The upper channel infill is formed by cross-bedded sands with mud drapes and seaward-directed paleocurrents, together with barren, volcaniclastic sandy to muddy heterolithic seasonal rhythmites, both deposited in the fluvially dominated part of the estuary. Volcanic ash driven by the rivers after large explosive volcanic eruptions on land resulted in sedimentation rates as high as 0.9 m per year, preserving (through burial) the morphology of tidal channels and TRSs. The channel deposits were formed in a tide-dominated, macrotidal to hypertidal open estuary with well-developed TRSs resulting from strong tidal currents deeply scouring into the transgressive filling of the channels and eventually cutting the fluvial ravinement surface. The TRSs extended upstream to the inner part of the estuary during long periods of low sedimentation rates

  10. Lessons learned from comparisons of mesotidal sand- and mudflats

    Science.gov (United States)

    Nittrouer, Charles A.; Raubenheimer, Britt; Wheatcroft, Robert A.

    2013-06-01

    Tidal flats with limited vegetation provide valuable opportunities to investigate the linkages of hydrodynamics and sediment dynamics. A mudflat in southern Willapa Bay and a sandflat in Skagit Bay (both Washington state, USA) are characterized by processes with many similarities, but some differences. In particular, one imports mud and the other exports mud. Classic intertidal mechanisms (e.g., flood/ebb asymmetry, settling/scour lags) cause net landward transport onto the southern Willapa tidal flat, and the details of the interlinked processes are complex. Meandering channels with dendritic planform are the circulatory system for this site, and are entrenched in cohesive clayey silt. Tidal range and wind/wave conditions are similar in the two areas, but the direct discharges of fluvial freshwater and sediment are much greater for Skagit Bay. When coupled with the other processes operating there, mud export from the Skagit tidal flat is the net result. Braided channels dominate the Skagit site, and migrate freely through non-cohesive fine sand. An integrated summary is presented here for a multi-investigator study of these two areas, and the detailed results are described by the papers that follow.

  11. Sedimentation and response to sea-level rise of a restored marsh with reduced tidal exchange: Comparison with a natural tidal marsh

    Science.gov (United States)

    Vandenbruwaene, W.; Maris, T.; Cahoon, D.R.; Meire, P.; Temmerman, S.

    2011-01-01

    Along coasts and estuaries, formerly embanked land is increasingly restored into tidal marshes in order to re-establish valuable ecosystem services, such as buffering against flooding. Along the Scheldt estuary (Belgium), tidal marshes are restored on embanked land by allowing a controlled reduced tide (CRT) into a constructed basin, through a culvert in the embankment. In this way tidal water levels are significantly lowered (ca. 3 m) so that a CRT marsh can develop on formerly embanked land with a ca. 3 m lower elevation than the natural tidal marshes. In this study we compared the long-term change in elevation (ΔE) within a CRT marsh and adjacent natural tidal marsh. Over a period of 4 years, the observed spatio-temporal variations in ΔE rate were related to variations in inundation depth, and this relationship was not significantly different for the CRT marsh and natural tidal marsh. A model was developed to simulate the ΔE over the next century. (1) Under a scenario without mean high water level (MHWL) rise in the estuary, the model shows that the marsh elevation-ΔE feedback that is typical for a natural tidal marsh (i.e. rising marsh elevation results in decreasing inundation depth and therefore a decreasing increase in elevation) is absent in the basin of the CRT marsh. This is because tidal exchange of water volumes between the estuary and CRT marsh are independent from the CRT marsh elevation but dependent on the culvert dimensions. Thus the volume of water entering the CRT remains constant regardless of the marsh elevation. Consequently the CRT MHWL follows the increase in CRT surface elevation, resulting after 75 years in a 2–2.5 times larger elevation gain in the CRT marsh, and a faster reduction of spatial elevation differences. (2) Under a scenario of constant MHWL rise (historical rate of 1.5 cm a-1), the equilibrium elevation (relative to MHWL) is 0.13 m lower in the CRT marsh and is reached almost 2 times faster. (3) Under a scenario of

  12. A study on arrangement characteristics of microparticles in sedimentation on flat and round substrates

    Science.gov (United States)

    Yeo, Eunju; Son, Minhee; Kim, Kwanoh; Kim, Jeong Hwan; Yoo, Yeong-Eun; Choi, Doo-Sun; Kim, Jungchul; Yoon, Seok Ho; Yoon, Jae Sung

    2017-12-01

    Recent advances of microfabrication techniques have enabled diverse structures and devices on the microscale. This fabrication method using microparticles is one of the most promising technologies because it can provide a cost effective process for large areas. So, many researchers are studying modulation and manipulation of the microparticles in solution to obtain a proper arrangement. However, the microparticles are in sedimentation status during the process in many cases, which makes it difficult to control their arrangement. In this study, droplets containing microparticles were placed on a substrate with minimal force and we investigated the arrangement of these microparticles after evaporation of the liquid. Experiments have been performed with upward and downward substrates to change the direction of gravity. The geometry of substrates was also changed, which were flat or round. The results show that the arrangement depends on the size of particles and gravity and geometry of the substrate. The arrangement also depends on the movement of the contact line of the droplets, which may recede or be pinned during evaporation. This study is expected to provide a method of the fabrication process for microparticles which may not be easily manipulated due to sedimentation.

  13. On effects produced by tidal power plants upon environmental conditions in adjacent sea areas

    International Nuclear Information System (INIS)

    Nekrasov, A.V.; Romanenkov, D.A.

    1997-01-01

    Consideration is given to the change in natural (oceanographic) environmental conditions due to the transformation of the tidal oscillations structure resulting from erection and operation of tidal power plants (TPP). The relevant transformation of tidal movements encompasses practically all its main characteristics: amplitudes, phases and spectral composition of sea level oscillations, as well as the similar parameters of tidal currents and also the intensity and positioning of extremes zones. The changes in positioning and width of the inter-tidal zone, the inter-tidal zone regime, mutual arrangement of mixed, stratified and transient frontal zones, transportation of suspended matter and bottom sedimentation, owing to residual tidal currents, sea ice characteristics, air these changes can be estimated on the basis of mathematical predictive modelling of tidal characteristics transformed by a contemplated tidal power plant. Some results are presented for the Russian large-scale TPP projects in the White and Okhotsk seas. (author)

  14. Quantifying biologically and physically induced flow and tracer dynamics in permeable sediments

    Directory of Open Access Journals (Sweden)

    F. J. R. Meysman

    2007-08-01

    Full Text Available Insight in the biogeochemistry and ecology of sandy sediments crucially depends on a quantitative description of pore water flow and the associated transport of various solutes and particles. We show that widely different problems can be modelled by the same flow and tracer equations. The principal difference between model applications concerns the geometry of the sediment-water interface and the pressure conditions that are specified along this boundary. We illustrate this commonality with four different case studies. These include biologically and physically induced pore water flows, as well as simplified laboratory set-ups versus more complex field-like conditions: [1] lugworm bio-irrigation in laboratory set-up, [2] interaction of bio-irrigation and groundwater seepage on a tidal flat, [3] pore water flow induced by rotational stirring in benthic chambers, and [4] pore water flow induced by unidirectional flow over a ripple sequence. The same two example simulations are performed in all four cases: (a the time-dependent spreading of an inert tracer in the pore water, and (b the computation of the steady-state distribution of oxygen in the sediment. Overall, our model comparison indicates that model development for sandy sediments is promising, but within an early stage. Clear challenges remain in terms of model development, model validation, and model implementation.

  15. Impact of the tidal power dam in the Rance estuary: geomorphological changes, hydrosedimentary processes and reconstructions plans

    Science.gov (United States)

    Susperregui, A.

    2010-12-01

    The Rance basin (France) offers potential to make a full-scale assessment of the environmental impact of a tidal power station after 50 years of operation. Consequences on biology, hydrodynamics and sedimentology were observed and nowadays, some of these changes are still acting on the natural system. The tidal dynamic was completely artificialised by the dam construction. The two main consequences are the reduction of exundation area and the extension of slack duration. Sedimentary dynamic depending on hydrodynamics conditions, changes in sediment distribution were also observed. Before the tidal power station construction, sands lined the gravel bed channel, recovered the bottom and formed beaches and banks. Coves and the upstream part of the estuary were dominated by a fine sedimentation, forming mudflats in a classical configuration slikke/schorre. Nowadays, mudflats extended to the center of the basin and all coves are occupied. The important inertia induced by the slack extension caused a slowing down on currents velocities, making easier the fine suspension deposit. The siltation is most important upstream, were the turbidity maximum was shifted, generating problems for navigation and banks access. A solution of sediment management was envisaged from 2001, by the digging of a sediments trap of 91 000 m3, near the Châtelier Lock. Sedimentation monitoring in this trap shows an intense filling over the first two years of functioning, then a slowing down leading to a complete filling from 2005. This trap also showed a beneficial interest on the sedimentation rates of the mudflats closed to it, which decreased. To understand how fine sediment is eroded and transported into this maritime area, an optical backscatter sensor was installed 1.5 km upstream of the tidal power station. During spring tides, the tidal power station functions in a “double-acting” cycle. This particular working leads to an important increase of turbidity during the artificial tidal

  16. Quantification of tidal inlet morphodynamics using high-resolution MBES and LiDAR

    DEFF Research Database (Denmark)

    Ernstsen, Verner Brandbyge; Lefebvre, Alice; Fraccascia, Serena

    -bathymetric surveys using high-resolution red and green Light Detection And Ranging (LiDAR). Detailed digital elevation models with a grid cell size of 1 m x 1 m were generated and analysed geomorphometrically. The analyses reveal a main ebb-directed net sand transport in the main channel; however, due...... to the geometry of the main channel, displaying a confluent meander bend, confined areas in the main channel are characterised by an opposite-directed net sand transport. In the inter-tidal areas the main net sand transport is flood-directed. However, also here the analyses reveal the existence of oblique second...... is transported from the inlet channel to the intertidal flat. Therefore, in addition to the typical main sand transport directions with net export in the inlet channel and net import over the adjacent inter-tidal flats, these investigations suggest an exchange and possible recirculation of sand between the inlet...

  17. Intertidal sediments and benthic animals of Roebuck Bay, Western Australia

    NARCIS (Netherlands)

    Pepping, M.; Piersma, T.; Pearson, G.; Lavaleye, M.

    1999-01-01

    Roebuck Bay near Broome (NW Australia) is with itsextensive tidal flats one of the foremost internationallyimportant sites for shorebirds in the Asia-Pacificflyway system. It is home to 150,000 shorebirds (or‘waders’) in the nonbreeding season, which suggeststhat the intertidal flats of the bay have

  18. The origin of neap-spring tidal cycles

    Science.gov (United States)

    Kvale, E.P.

    2006-01-01

    The origin of oceanic tides is a basic concept taught in most introductory college-level sedimentology/geology, oceanography, and astronomy courses. Tides are typically explained in the context of the equilibrium tidal theory model. Yet this model does not take into account real tides in many parts of the world. Not only does the equilibrium tidal model fail to explicate amphidromic circulation, it also does not explain diurnal tides in low latitude positions. It likewise fails to explain the existence of tide-dominated areas where neap-spring cycles are synchronized with the 27.32-day orbital cycle of the Moon (tropical month), rather than with the more familiar 29.52-day cycle of lunar phases (synodic month). Both types of neap-spring cycles can be recognized in the rock record. A complete explanation of the origin of tides should include a discussion of dynamic tidal theory. In the dynamic tidal model, tides resulting from the motions of the Moon in its orbit around the Earth and the Earth in its orbit around the Sun are modeled as products of the combined effects of a series of phantom satellites. The movement of each of these satellites, relative to the Earth's equator, creates its own tidal wave that moves around an amphidromic point. Each of these waves is referred to as a tidal constituent. The geometries of the ocean basins determine which of these constituents are amplified. Thus, the tide-raising potential for any locality on Earth can be conceptualized as the result of a series of tidal constituents specific to that region. A better understanding of tidal cycles opens up remarkable opportunities for research on tidal deposits with implications for, among other things, a more complete understanding of the tidal dynamics responsible for sediment transport and deposition, changes in Earth-Moon distance through time, and the possible influences tidal cycles may exert on organisms. ?? 2006 Elsevier B.V. All rights reserved.

  19. Will Restored Tidal Marshes Be Sustainable?

    Directory of Open Access Journals (Sweden)

    Michelle Orr

    2003-10-01

    Full Text Available We assess whether or not restored marshes in the San Francisco Estuary are expected to be sustainable in light of future landscape scale geomorphic processes given typical restored marsh conditions. Our assessment is based on a review of the literature, appraisal of monitoring data for restored marshes, and application of vertical accretion modeling of organic and inorganic sedimentation. Vertical accretion modeling suggests that salt marshes in San Pablo Bay will be sustainable for moderate relative sea level rise (3 to 5 mm yr-1 and average sediment supply (c. 100 mg L-1. Accelerated relative sea level rise (above 6 mm yr-1 and/or reduced sediment supply (50 mg L-1 will cause lowering of the marsh surface relative to the tide range and may cause shifts from high to low marsh vegetation by the year 2100. Widespread conversion of marsh to mudflat-"ecological drowning"-is not expected within this time frame. Marshes restored at lower elevations necessary to aid the natural development of channel systems (c. 0.5 m below mean higher high water are predicted to accrete to high marsh elevations by the year 2100 for moderate relative sea level rise and sediment supply conditions. Existing rates of sediment accretion in restored fresh water tidal marshes of the Delta of greater than 9 mm yr-1 and slightly lower drowning elevations suggest that these marshes will be resilient against relatively high rates of sea level rise. Because of higher rates of organic production, fresh water marshes are expected to be less sensitive to reduced sediment availability than salt marshes. The ultimate long-term threat to the sustainability of tidal marshes is the interruption of coastal rollover-the process by which landward marsh expansion in response to sea level rise compensates for shoreline erosion. Bay front development now prevents most landward marsh expansion, while shoreline erosion is expected to accelerate as sea level rises.

  20. Organism-Sediment Interactions Govern Post-Hypoxia Recovery of Ecosystem Functioning

    Science.gov (United States)

    Van Colen, Carl; Rossi, Francesca; Montserrat, Francesc; Andersson, Maria G. I.; Gribsholt, Britta; Herman, Peter M. J.; Degraer, Steven; Vincx, Magda; Ysebaert, Tom; Middelburg, Jack J.

    2012-01-01

    Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning. PMID:23185440

  1. The dirt on sediments

    Science.gov (United States)

    Smith, Loren M.; Euliss, Ned H. "Chip"

    2010-01-01

    In the wetland science field, sediment deposition is often thought of as being beneficial especially when one thinks of coastal estuarine systems. For example, sediments deposited from streams and rivers are necessary to naturally build and maintain tidal marshes. These sediments come from eroded upland soils in the interior of the continent. When these sediments are diverted from natural coastal deposition areas, such as occurs from river channelization, we lose marshes through subsidence as is happening throughout coastal Louisiana. However, the value of eroded soils is all a matter of hydrogeomorphic perspective.

  2. Delayed recolonization of foraminifera in a suddenly flooded tidal (former freshwater) marsh in Oregon (USA): Implications for relative sea-level reconstructions

    Science.gov (United States)

    Milker, Yvonne; Horton, Benjamin P.; Khan, Nicole S.; Nelson, Alan R.; Witter, Robert C.; Engelhart, Simon E.; Ewald, Michael; Brophy, Laura; Bridgeland, William T.

    2016-04-01

    Stratigraphic sequences beneath salt marshes along the U.S. Pacific Northwest coast preserve 7000 years of plate-boundary earthquakes at the Cascadia subduction zone. The sequences record rapid rises in relative sea level during regional coseismic subsidence caused by great earthquakes and gradual falls in relative sea level during interseismic uplift between earthquakes. These relative sea-level changes are commonly quantified using foraminiferal transfer functions with the assumption that foraminifera rapidly recolonize salt marshes and adjacent tidal flats following coseismic subsidence. The restoration of tidal inundation in the Ni-les'tun unit (NM unit) of the Bandon Marsh National Wildlife Refuge (Oregon), following extensive dike removal in August 2011, allowed us to directly observe changes in foraminiferal assemblages that occur during rapid "coseismic" (simulated by dike removal with sudden tidal flooding) and "interseismic" (stabilization of the marsh following flooding) relative sea-level changes analogous to those of past earthquake cycles. We analyzed surface sediment samples from 10 tidal stations at the restoration site (NM unit) from mudflat to high marsh, and 10 unflooded stations in the Bandon Marsh control site. Samples were collected shortly before and at 1- to 6-month intervals for 3 years after tidal restoration of the NM unit. Although tide gauge and grain-size data show rapid restoration of tides during approximately the first 3 months after dike removal, recolonization of the NM unit by foraminifera was delayed at least 10 months. Re-establishment of typical tidal foraminiferal assemblages, as observed at the control site, required 31 months after tidal restoration, with Miliammina fusca being the dominant pioneering species. If typical of past recolonizations, this delayed foraminiferal recolonization affects the accuracy of coseismic subsidence estimates during past earthquakes because significant postseismic uplift may shortly follow

  3. The role of the smooth cordgrass Spartina alterniflora and associated sediments in the heavy metal biogeochemical cycle within Bahia Blanca estuary salt marshes

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, M. [Dept. of Environmental Process Engineering, International Graduate School Zittau, Zittau (Germany); Botte, S.E. [Area de Oceanografia Quimica, Inst. Argentino de Oceanografia (IADO), CCT-CONICET, Bahia Blanca (Argentina); Dept. de Biologia, Bioquimica y Farmacia (DBBF), Univ. Nacional del Sur (UNS), Bahia Blanca (Argentina); Negrin, V.L.; Chiarello, M.N. [Area de Oceanografia Quimica, Inst. Argentino de Oceanografia (IADO), CCT-CONICET, Bahia Blanca (Argentina); Marcovecchio, J.E. [Area de Oceanografia Quimica, Inst. Argentino de Oceanografia (IADO), CCT-CONICET, Bahia Blanca (Argentina); Facultad Regional Bahia Blanca (UTN-FRBB), Univ. Tecnologica Nacional, Bahia Blanca (Argentina); Univ. FASTA, Mar del Plata (Argentina)

    2008-10-15

    Background, aim, and scope Bahia Blanca estuary is characterized by the occurrence of large intertidal areas, including both naked tidal flats and salt marshes densely vegetated with Spartina alterniflora. The estuary is strongly affected by human activities, including industrial and municipal discharges, harbor maintenance, cargo vessels and boat navigation, oil storage and processing, etc. Even numerous studies have reported the occurrence and distribution of heavy metals in sediments and biota from this estuary, although the function of the halophyte vegetation on metals distribution was at present not studied. The main objective of the present study was to understand the potential role of the salt marshes as a sink or source of metals to the estuary, considering both the obtained data on metal levels within sediments and plants from the studied areas at naked tidal as well as vegetated flats. Conclusions and recommendations Considering the comments on the previous paragraphs, salt marshes from Bahia Blanca estuary are sources or sinks for metals? It can be sustained that both are the case, even if it is often stated that wetlands serve as sinks for pollutants, reducing contamination of surrounding ecosystems (Weis and Weis, Environ Int 30:685-700, 2004). In the present study case, the sediments (which tend to be anoxic and reduced) act as sinks, while the salt marshes can become a source of metal contaminants. This is very important for this system because the macrophytes have been shown to retain the majority of metals in the underground tissues, and particularly in their associated sediments. This fact agreed well with previous reports, such as that from Leendertse et al., (Environ Pollut 94:19-29, 1996) who found that about 50% of the absorbed metals were retained in salt marshes and 50% was exported. Thus, keeping in mind the large spreading of S. alterniflora salt marshes within Bahia Blanca estuary, it must be carefully considered as a redistributor of

  4. Observations on the redistribution of plutonium and americium in the Irish Sea sediments, 1978 to 1996: concentrations and inventories

    International Nuclear Information System (INIS)

    Kershaw, P.J.; Denoon, D.C.; Woodhead, D.S.

    1999-01-01

    The distribution of plutonium and americium in the sub-tidal sediments of the Irish Sea is described following major surveys in 1978, 1983, 1988 and 1995. Concentrations in surface sediments have declined near the source at Sellafield since 1988. Time-series of inter-tidal surface sediment concentrations are presented from 1977 onwards, revealing the importance of sediment reworking and transport in controlling the evolution of the environmental signal. The surface and near-surface sediments, in the eastern Irish Sea 'mud-patch', are generally well mixed with respect to Pu (α) and 241 Am distributions but show increasing variability with depth - up to 4 orders of magnitude in concentration. The inventories of 239,240 Pu and 241 Am in the sub-tidal sediments have been estimated and compared with the reported decay-corrected discharges. These amounted to 360 and 545 TBq respectively, in 1995, about 60% of the total decay-corrected discharge. Part of the unaccounted fraction may be due to unrepresentative sampling of the seabed. It is speculated that some tens of TBq of plutonium and 241 Am reside undetected in the large volumes of coarse-grained, sub-tidal and inter-tidal sediment which characterise much of the Irish Sea. This has been due to the inability of the available corers to penetrate to the base of contamination in these mobile sediments. Further observations are needed to verify and quantify the missing amount. A budget of plutonium-α and 241 Am has been estimated based on published observations in the three main compartments: water column, sub-tidal and inter-tidal sediments. This amounts to 460-540 TBq and 575-586 TBq respectively, or 64-75% and 60-61%, of the decay-corrected reported discharge. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. Water and suspended sediment dynamics in the Sungai Selangor estuary

    International Nuclear Information System (INIS)

    Abdul Kadir Ishak; Kamarudin Samuding; Nazrul Hizam Yusoff

    2000-01-01

    Observations of salinity, temperature, suspended sediment concentration (SSC) and tidal current velocity were made in the lower and along the longitudinal axis sungai Selangor estuary over near-spring cycles. The variations of these parameters at the measurement stations and along the channel are presented to illustrate the water and sediment dynamics in the estuary. The results shows that the Sungai Selangor estuary changes from a partially-mixed type during neaps to a well-mixed one during springs. promoted by stronger tidal energy during the higher tidal ranges. The strong neap density stratification is also promoted by the high river discharges during the measurement period maximum concentration of suspended sediment 2000 mg,'/) occurs during maximum current velocities both during flood and ebb. The maximum salinity was achieved during high water slack but the salt water was totally flushed out of estuary during low water springs. The longitudinal axis measurement indicates that a partially-developed zone of turbidity maximum with a sediment concentration over 1000 mg/l was observed at the limit of salt water intrusion in salinity range less than 1 ppt. Tidal pumping as oppose to the estuarine circulation is the more dominant factor in the maximum formation as the salt water is totally excluded at low water. (author)

  6. Time-Resolved Quantitative Analysis of the Diaphragms During Tidal Breathing in a Standing Position Using Dynamic Chest Radiography with a Flat Panel Detector System ("Dynamic X-Ray Phrenicography"): Initial Experience in 172 Volunteers.

    Science.gov (United States)

    Yamada, Yoshitake; Ueyama, Masako; Abe, Takehiko; Araki, Tetsuro; Abe, Takayuki; Nishino, Mizuki; Jinzaki, Masahiro; Hatabu, Hiroto; Kudoh, Shoji

    2017-04-01

    Diaphragmatic motion in a standing position during tidal breathing remains unclear. The purpose of this observational study was to evaluate diaphragmatic motion during tidal breathing in a standing position in a health screening center cohort using dynamic chest radiography in association with participants' demographic characteristics. One hundred seventy-two subjects (103 men; aged 56.3 ± 9.8 years) underwent sequential chest radiographs during tidal breathing using dynamic chest radiography with a flat panel detector system. We evaluated the excursions of and peak motion speeds of the diaphragms. Associations between the excursions and participants' demographics (gender, height, weight, body mass index [BMI], smoking history, tidal volume, vital capacity, and forced expiratory volume) were investigated. The average excursion of the left diaphragm (14.9 ± 4.6 mm, 95% CI 14.2-15.5 mm) was significantly larger than that of the right (11.0 ± 4.0 mm, 95% CI 10.4-11.6 mm) (P <0.001). The peak motion speed of the left diaphragm (inspiratory, 16.6 ± 4.2 mm/s; expiratory, 13.7 ± 4.2 mm/s) was significantly faster than that of the right (inspiratory, 12.4 ± 4.4 mm/s; expiratory, 9.4 ± 3.8 mm/s) (both P <0.001). Both simple and multiple regression models demonstrated that higher BMI and higher tidal volume were associated with increased excursions of the bilateral diaphragm (all P <0.05). The average excursions of the diaphragms are 11.0 mm (right) and 14.9 mm (left) during tidal breathing in a standing position. The diaphragmatic motion of the left is significantly larger and faster than that of the right. Higher BMI and tidal volume are associated with increased excursions of the bilateral diaphragm. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  7. Temporal variation of aerobic methane oxidation over a tidal cycle in a wetland of northern Taiwan.

    Science.gov (United States)

    Lee, T. Y.; Wang, P. L.; Lin, L. H.

    2017-12-01

    Aerobic methanotrophy plays an important role in controlling methane emitted from wetlands. However, the activity of aerobic methanotrophy regulated by temporal fluctuation of oxygen and methane supply in tidal wetlands is not well known. This study aims to examine the dynamics of methane fluxes and potential aerobic methane consumption rates in a tidal wetland of northern Taiwan, where the variation of environmental characteristics, such as sulfate and methane concentration in pore water has been demonstrated during a tidal cycle. Two field campaigns were carried out in December of 2016 and March of 2017. Fluxes of methane emission, methane concentrations in surface sediments and oxygen profiles were measured at different tidal phases. Besides, batch incubations were conducted on surface sediments in order to quantify potential microbial methane consumption rates and to derive the kinetic parameters for aerobic methanotrophy. Our results demonstrated temporal changes of the surface methane concentration and the methane emission flux during a tidal cycle, while the oxygen flux into the sediment was kept at a similar magnitude. The methane flux was low when the surface was exposed for both shortest and longest periods of time. The potential aerobic methane oxidation rate was high for sample collected from the surface sediments exposed the longest. No correlation could be found between the potential aerobic methane oxidation rate and either the oxygen downward flux or methane emission flux. The decoupled relationships between these observed rates and fluxes suggest that, rather than aerobic methanotrophy, heterotrophic respirations exert a profound control on oxygen flux, and the methane emission is not only been affected by methane consumption but also methane production at depths. The maximum potential rate and the half saturation concentration determined from the batch incubations were high for the surface sediments collected in low tide, suggesting that aerobic

  8. Ecological observations of major Salicornia beds from highly saline coastal wetlands of India

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.; Bhosale, S.H.; Nagle, V.L.

    along the Tamilnadu coast due to greater (0.83-7.2 m) tidal amplitude and flat topography. The sediments from beds of the Gulf of Kutchchh were rich (4.9-16.9% dry weight) in organic matter. The salt content in the sediments from Tamilnadu was relatively...

  9. How do how internal and external processes affect the behaviors of coupled marsh mudflat systems; infill, stabilize, retreat, or drown?

    Science.gov (United States)

    Carr, J. A.; Mariotti, G.; Wiberg, P.; Fagherazzi, S.; McGlathery, K.

    2013-12-01

    Intertidal coastal environments are prone to changes induced by sea level rise, increases in storminess, and anthropogenic disturbances. It is unclear how changes in external drivers may affect the dynamics of low energy coastal environments because their response is non-linear, and characterized by many thresholds and discontinuities. As such, process-based modeling of the ecogeomorphic processes underlying the dynamics of these ecosystems is useful, not only to predict their change through time, but also to generate new hypotheses and research questions. Here, a three-point dynamic model was developed to investigate how internal and external processes affect the behavior of coupled marsh mudflat systems. The model directly incorporates ecogeomorphological feedbacks between wind waves, salt marsh vegetation, allochthonous sediment loading, tidal flat vegetation and sea level rise. The model was applied to examine potential trajectories of salt marshes on the Eastern seaboard of the United States, including those in the Plum Island Ecosystems (PIE), Virginia Coast Reserve (VCR) and Georgia Coastal Ecosystems (GCE) long term ecological research (LTER) sites. While these sites are undergoing similar rates of relative sea level rise (RSLR), they have distinct differences in site specific environmental drivers including tides, wind waves, allochthonous sediment supply and the presence or absence of seagrass. These differences lead to the emergence of altered behaviors in the coupled salt marsh-tidal flat system. For marsh systems without seagrass or significant riverine sediment supply, conditions similar to those at PIE, results indicated that horizontal and vertical marsh evolution respond in opposing ways to wave induced processes. Marsh horizontal retreat is triggered by large mudflats and strong winds, whereas small mudflats and weak winds reduce the sediment supply to the salt marsh, decreasing its capability to keep pace with sea level rise. Marsh expansion and

  10. Pore water composition of Permeable reef flat sediments on Checker Reef in Kaneohe Bay, Oahu, Hawaii from 07 October 1996 to 03 July 1997 (NODC Accession 0000271)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Geochemical behaviour of the top 70 cm of permeable reef flat sediments on Checker Reef, Oahu, Hawaii was examined using spatial and temporal changes in pore water...

  11. The comparison of heavy metals (Pb and Cd) in the water and sediment during spring and neap tide tidal periods in Popoh Bay, Indonesia

    Science.gov (United States)

    Yona, D.; Febriana, R.; Handayani, M.

    2018-04-01

    This study attempted to investigate different concentration of lead (Pb) dan cadmium (Cd) in the water and sediment during spring and neap tidal periods in the Popoh Bay, Indonesia. Water and sediment samples were taken during spring and neap tides from eight sampling stations in the study area. The result shows higher concentration of Pb than the concentration of Cd in both spring and neap tides due to higher input of Pb from the oil pollution by boat and fisheries activities. Pb concentrations were doubled during neap tide in both water and sediments with the value of 0.51 and 0.28 ml/L in the water during neap and spring tide, respectively; and 0.27 ppm and 0.16 mg/kg in the sediment during neap and spring tide, respectively. On the other hand, Cd concentrations in the water were found in almost similar values between spring and neap tide (0.159 and 0.165 ml/L in spring tide and neap tide, respectively), but in the sediment, the concentration was a little higher during spring tide (0.09 and 0.05 mg/kg during spring and neap tide, respectively). This study shows that water movement during spring and neap tides has significant effect on the distribution of heavy metals.

  12. Siltation rate and main anthropic impacts on sedimentation of the São Luís tidal inlet - State of Maranhão, Brazil

    Directory of Open Access Journals (Sweden)

    James Werllen de Jesus Azevedo

    2016-03-01

    Full Text Available Abstract In recent decades, intense human intervention in the coastal zone has given rise to severe siltation and erosion problems. This scenario is located the São Luís tidal inlet, formed by the mouths of the Anil and Bacanga rivers which due to various kinds of interference have been changing their sediment transport and deposition processes. With these changes in mind, this study sought to evaluate the evolution of the siltation and sedimentation rates in this area, as well as the main anthropogenic influences associated with this process. The methodology consisted in verifying the morphological evolution on the basis of the scanning and vectorization of nautical charts of 1947 and 1966, bathymetric surveys conducted in 2006, and aerial photos dating from 2011. The results show a silting up process coincident with interventions that occurred in the Anil and Bacanga river basins, with a volume of silt estimated at 8.5x106 m3, over the period from 1944 to 2011 (64 years, at a rate of 1.6 cm.yr-1. These processes are associated mainly with the construction of the Bacanga dam and land reclamation projects undertaken for the purpose of providing new areas for urban expansion. The evaluation of the results showed intense and advanced silting up of the São Luís tidal inlet, at rates proportionally greater than those of other estuaries, calling for corrective actions and the implementation of coastal management policies for this area.

  13. Large-scale risk assessment of polycyclic aromatic hydrocarbons in shoreline sediments from Saudi Arabia: environmental legacy after twelve years of the Gulf war oil spill.

    Science.gov (United States)

    Bejarano, Adriana C; Michel, Jacqueline

    2010-05-01

    A large-scale assessment of polycyclic aromatic hydrocarbons (PAHs) from the 1991 Gulf War oil spill was performed for 2002-2003 sediment samples (n = 1679) collected from habitats along the shoreline of Saudi Arabia. Benthic sediment toxicity was characterized using the Equilibrium Partitioning Sediment Benchmark Toxic Unit approach for 43 PAHs (ESBTU(FCV,43)). Samples were assigned to risk categories according to ESBTU(FCV,43) values: no-risk (1 - 2 - 3 - 5). Sixty seven percent of samples had ESBTU(FCV,43) > 1 indicating potential adverse ecological effects. Sediments from the 0-30 cm layer from tidal flats, and the >30 - oiled halophytes and mangroves had high frequency of high-risk samples. No-risk samples were characterized by chrysene enrichment and depletion of lighter molecular weight PAHs, while high-risk samples showed little oil weathering and PAH patterns similar to 1993 samples. North of Safaniya sediments were not likely to pose adverse ecological effects contrary to sediments south of Tanaqib. Landscape and geomorphology has played a role on the distribution and persistence in sediments of oil from the Gulf War. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Recent sediment dynamics in hadal trenches: Evidence for the influence of higher-frequency (tidal, near-inertial) fluid dynamics

    DEFF Research Database (Denmark)

    Turnewitsch, Robert; Falahat, Saeed; Stehlikova, Jirina

    2014-01-01

    finds evidence for another mechanism that is superimposed on, and counteracts, the focussing mechanism. This superimposed mechanism is related to higher-frequency (tidal, near-inertial) fluid dynamics. In particular, there is evidence for a strong and negative relation between the intensity...... but significant influence on particulate-matter dynamics and food supply in hadal trenches in particular, but possibly also in the deep seas in general. A mechanism for the influence of internal tides on sediment dynamics is proposed. (C) 2014 Elsevier Ltd. All rights reserved.......In addition to high hydrostatic pressure, scarcity of food is viewed as a factor that limits the abundance and activity of heterotrophic organisms at great ocean depths, including hadal trenches. Supply of nutritious food largely relies on the flux of organic-rich particulate matter from...

  15. Three-Dimensional Sediment Dynamics in Well-Mixed Estuaries: Importance of the Internally Generated Overtide, Spatial Settling Lag, and Gravitational Circulation

    Science.gov (United States)

    Wei, Xiaoyan; Kumar, Mohit; Schuttelaars, Henk M.

    2018-02-01

    To investigate the dominant sediment transport and trapping mechanisms, a semi-analytical three-dimensional model is developed resolving the dynamic effects of salt intrusion on sediment in well-mixed estuaries in morphodynamic equilibrium. As a study case, a schematized estuary with a converging width and a channel-shoal structure representative for the Delaware estuary is considered. When neglecting Coriolis effects, sediment downstream of the estuarine turbidity maximum (ETM) is imported into the estuary through the deeper channel and exported over the shoals. Within the ETM region, sediment is transported seaward through the deeper channel and transported landward over the shoals. The largest contribution to the cross-sectionally integrated seaward residual sediment transport is attributed to the advection of tidally averaged sediment concentrations by river-induced flow and tidal return flow. This contribution is mainly balanced by the residual landward sediment transport due to temporal correlations between the suspended sediment concentrations and velocities at the M2 tidal frequency. The M2 sediment concentration mainly results from spatial settling lag effects and asymmetric bed shear stresses due to interactions of M2 bottom velocities and the internally generated M4 tidal velocities, as well as the salinity-induced residual currents. Residual advection of tidally averaged sediment concentrations also plays an important role in the landward sediment transport. Including Coriolis effects hardly changes the cross-sectionally integrated sediment balance, but results in a landward (seaward) sediment transport on the right (left) side of the estuary looking seaward, consistent with observations from literature. The sediment transport/trapping mechanisms change significantly when varying the settling velocity and river discharge.

  16. STUDY ON THE EFFECTS OF TIDE ON SEDIMENTATION IN ESTUARIES OF THE NIGER DELTA, NIGERIA

    Directory of Open Access Journals (Sweden)

    Charles Chizom Dike

    2012-12-01

    Full Text Available Niger Delta Estuary Nigeria is influenced by tidal currents due to its proximity to the Atlantic Ocean. Tides in the region are mostly semidiurnal, having two high and low water levels each day, with tidal prism ranging from 0.4 to 1.5m. The effects of tidal current reduces with distance inland and are strongest at the inlets with velocity varying from 2.0 to 5.0m/sec. The depth of the Estuary Rivers is controlled by the strength of the tidal currents; areas very close to ocean with stronger tidal effect are very deep; while shallow rivers predominates the hub of the estuary. Tidal current provides the steady supply of energy that moves sediments in and out of the estuaries from the seashore thus determing river bathymetric shapes through modification of existing morphology by eroding or depositing of sediments along the river course, while further sediment deposition is curtailed at the bottom as the estuary gets shallower due to the increasing stirring by waves. Despite all the sediment coming into the estuaries, many canals in the region have remained as open-water bodies, even after some thousand years. This suggests that, the interaction between the tide and the shape of the canal floor helps to regulate long-term sedimentation. However, the Dredged Canals in the Niger Delta estuaries have suffered high siltation rates because of excessive supply of sediments generated by storm/flood waters from upland and disposal of spoils from dredging activities into the water bodies, which causes some imbalance in the estuarine self-cleaning mechanism. Sediment loads entering the mangrove swamp environment are essentially polycentric; suspended fines enter the system both from the sea and the rivers. A mathematical model was formulated to predict and study the behavior of the sea bed levels, tidal heights and currents, in other to understand how they interact with each other. The model was calibrated using data obtained from local field observations

  17. Coastal Water Quality Modeling in Tidal Lake: Revisited with Groundwater Intrusion

    Science.gov (United States)

    Kim, C.

    2016-12-01

    A new method for predicting the temporal and spatial variation of water quality, with accounting for a groundwater effect, has been proposed and applied to a water body partially connected to macro-tidal coastal waters in Korea. The method consists of direct measurement of environmental parameters, and it indirectly incorporates a nutrients budget analysis to estimate the submarine groundwater fluxes. Three-dimensional numerical modeling of water quality has been used with the directly collected data and the indirectly estimated groundwater fluxes. The applied area is Saemangeum tidal lake that is enclosed by 33km-long sea dyke with tidal openings at two water gates. Many investigations of groundwater impact reveal that 10 50% of nutrient loading in coastal waters comes from submarine groundwater, particularly in the macro-tidal flat, as in the west coast of Korea. Long-term monitoring of coastal water quality signals the possibility of groundwater influence on salinity reversal and on the excess mass outbalancing the normal budget in Saemangeum tidal lake. In the present study, we analyze the observed data to examine the influence of submarine groundwater, and then a box model is demonstrated for quantifying the influx and efflux. A three-dimensional numerical model has been applied to reproduce the process of groundwater dispersal and its effect on the water quality of Saemangeum tidal lake. The results show that groundwater influx during the summer monsoon then contributes significantly, 20% more than during dry season, to water quality in the tidal lake.

  18. Recent scientific advances and their implications for sand management near San Francisco, California: the influences of the ebb tidal delta

    Science.gov (United States)

    Hanes, Daniel M.; Barnard, Patrick L.; Dallas, Kate; Elias, Edwin; Erikson, Li H.; Eshleman, Jodi; Hansen, Jeff; Hsu, Tian Jian; Shi, Fengyan

    2011-01-01

    Recent research in the San Francisco, California, U.S.A., coastal region has identified the importance of the ebb tidal delta to coastal processes. A process-based numerical model is found to qualitatively reproduce the equilibrium size and shape of the delta. The ebb tidal delta itself has been contracting over the past century, and the numerical model is applied to investigate the sensitivity of the delta to changes in forcing conditions. The large ebb tidal delta has a strong influence upon regional coastal processes. The prominent bathymetry of the ebb tidal delta protects some of the coast from extreme storm waves, but the delta also focuses wave energy toward the central and southern portions of Ocean Beach. Wave focusing likely contributes to a chronic erosion problem at the southern end of Ocean Beach. The ebb tidal delta in combination with non-linear waves provides a potential cross-shore sediment transport pathway that probably supplies sediment to Ocean Beach.

  19. Environmental Effects of Sediment Transport Alteration and Impacts on Protected Species: Edgartown Tidal Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Stephen B; Schlezinger, David, Ph.D; Cowles, Geoff, Ph.D; Hughes, Patricia; Samimy,; Roland, I; and Terray, E, Ph.D.

    2012-12-29

    potential for biofouling and foundation scouring. Woods Hole Oceanographic Institution, cooperating with SMAST, developed an oceanographic model to predict changes in sediment transport as a result of the proposed tidal energy project. Provincetown Center for Coastal Studies prepared background material on protected species - including whales, seals, and sea turtles - in the project area and implemented an initial tagging program to record location specific information on seals and sea turtles. HMMH communicated research plans and findings with local stakeholder groups, state and federal resource agency staff, and the ocean power industry. The information is being used to prepare environmental permit applications and obtain approvals for project construction.

  20. Rapid evolution of a marsh tidal creek network in response to sea level rise.

    Science.gov (United States)

    Hughes, Z. J.; Fitzgerald, D. M.; Mahadevan, A.; Wilson, C. A.; Pennings, S. C.

    2008-12-01

    In the Santee River Delta (SRD), South Carolina, tidal creeks are extending rapidly onto the marsh platform. A time-series of aerial photographs establishes that these channels were initiated in the 1950's and are headward eroding at a rate of 1.9 m /yr. Short-term trends in sea level show an average relative sea level rise (RSLR) of 4.6 mm/yr over a 20-year tide gauge record from nearby Winyah Bay and Charleston Harbor (1975-1995). Longer-term (85-year) records in Charleston suggest a rate of 3.2 mm/yr. RSLR in the SRD is likely even higher as sediment cores reveal that the marsh is predominantly composed of fine-grained sediment, making it highly susceptible to compaction and subsidence. Furthermore, loss in elevation will have been exacerbated by the decrease in sediment supply due to the damming of the Santee River in 1939. The rapid rate of headward erosion indicates that the marsh platform is in disequilibrium; unable to keep pace with RSLR through accretionary processes and responding to an increased volume and frequency of inundation through the extension of the drainage network. The observed tidal creeks show no sinuosity and a distinctive morphology associated with their young age and biological mediation during their evolution. Feedbacks between tidal flow, vegetation and infauna play a strong role in the morphological development of the creeks. The creek heads are characterized by a region denuded of vegetation, the edges of which are densely populated and burrowed by Uca Pugnax (fiddler crab). Crab burrowing destabilizes sediment, destroys rooting and impacts drainage. Measured infiltration rates are three orders of magnitude higher in the burrowed regions than in a control area (1000 ml/min and 0.6 ml/min respectively). Infiltration of oxygenated water enhances decomposition of organic matter and root biomass is reduced within the creek head (marsh=4.3 kg/m3, head=0.6 kg/m3). These processes lead to the removal and collapse of the soils, producing

  1. The influence of groundwater depth on coastal dune development at sand flats close to inlets

    Science.gov (United States)

    Silva, Filipe Galiforni; Wijnberg, Kathelijne M.; de Groot, Alma V.; Hulscher, Suzanne J. M. H.

    2018-05-01

    A cellular automata model is used to analyze the effects of groundwater levels and sediment supply on aeolian dune development occurring on sand flats close to inlets. The model considers, in a schematized and probabilistic way, aeolian transport processes, groundwater influence, vegetation development, and combined effects of waves and tides that can both erode and accrete the sand flat. Next to three idealized cases, a sand flat adjoining the barrier island of Texel, the Netherlands, was chosen as a case study. Elevation data from 18 annual LIDAR surveys was used to characterize sand flat and dune development. Additionally, a field survey was carried out to map the spatial variation in capillary fringe depth across the sand flat. Results show that for high groundwater situations, sediment supply became limited inducing formation of Coppice-like dunes, even though aeolian losses were regularly replenished by marine import during sand flat flooding. Long dune rows developed for high sediment supply scenarios which occurred for deep groundwater levels. Furthermore, a threshold depth appears to exist at which the groundwater level starts to affect dune development on the inlet sand flat. The threshold can vary spatially depending on external conditions such as topography. On sand flats close to inlets, groundwater is capable of introducing spatial variability in dune growth, which is consistent with dune development patterns found on the Texel sand flat.

  2. The secret gardener: vegetation and the emergence of biogeomorphic patterns in tidal environments.

    Science.gov (United States)

    Da Lio, Cristina; D'Alpaos, Andrea; Marani, Marco

    2013-01-01

    The presence and continued existence of tidal morphologies, and in particular of salt marshes, is intimately connected with biological activity, especially with the presence of halophytic vegetation. Here, we review recent contributions to tidal biogeomorphology and identify the presence of multiple competing stable states arising from a two-way feedback between biomass productivity and topographic elevation. Hence, through the analysis of previous and new results on spatially extended biogeomorphological systems, we show that multiple stable states constitute a unifying framework explaining emerging patterns in tidal environments from the local to the system scale. Furthermore, in contrast with traditional views we propose that biota in tidal environments is not just passively adapting to morphological features prescribed by sediment transport, but rather it is 'The Secret Gardener', fundamentally constructing the tidal landscape. The proposed framework allows to identify the observable signature of the biogeomorphic feedbacks underlying tidal landscapes and to explore the response and resilience of tidal biogeomorphic patterns to variations in the forcings, such as the rate of relative sea-level rise.

  3. Miocene-Recent sediment flux in the south-central Alaskan fore-arc basin governed by flat-slab subduction

    Science.gov (United States)

    Finzel, Emily S.; Enkelmann, Eva

    2017-04-01

    The Cook Inlet in south-central Alaska contains the early Oligocene to Recent stratigraphic record of a fore-arc basin adjacent to a shallowly subducting oceanic plateau. Our new measured stratigraphic sections and detrital zircon U-Pb geochronology and Hf isotopes from Neogene strata and modern rivers illustrate the effects of flat-slab subduction on the depositional environments, provenance, and subsidence in fore-arc sedimentary systems. During the middle Miocene, fluvial systems emerged from the eastern, western, and northern margins of the basin. The axis of maximum subsidence was near the center of the basin, suggesting equal contributions from subsidence drivers on both margins. By the late Miocene, the axis of maximum subsidence had shifted westward and fluvial systems originating on the eastern margin of the basin above the flat-slab traversed the entire width of the basin. These mud-dominated systems reflect increased sediment flux from recycling of accretionary prism strata. Fluvial systems with headwaters above the flat-slab region continued to cross the basin during Pliocene time, but a change to sandstone-dominated strata with abundant volcanogenic grains signals a reactivation of the volcanic arc. The axis of maximum basin subsidence during late Miocene to Pliocene time is parallel to the strike of the subducting slab. Our data suggest that the character and strike-orientation of the down-going slab may provide a fundamental control on the nature of depositional systems, location of dominant provenance regions, and areas of maximum subsidence in fore-arc basins.

  4. Linking human impacts within an estuary to ebb-tidal delta evolution

    Science.gov (United States)

    Dallas, Kate L.; Barnard, Patrick L.

    2009-01-01

    San Francisco Bay, California, USA is among the most anthropogenically altered estuaries in the entire United States, but the impact on sediment transport to the coastal ocean has not been quantified. Analysis of four historic bathymetric surveys has revealed large changes to the morphology of the San Francisco Bar, an ebb-tidal delta at the mouth of the San Francisco Bay. From 1873 to 2005 the bar eroded an average of 80 cm, which equates to a total volume loss of 100 + 65 x 106 m3 of sediment. Comparison of the surveys indicates the entire ebb delta has contracted radially while its crest has moved landward an average of 1 km. Compilation of historic records reveals that 130 x 106 m3 of sediment has been permanently removed from the San Francisco Bay and adjacent coastal ocean. Constriction of the bar is hypothesized to be from a decrease in sediment supply from San Francisco Bay, a reduction in the tidal prism of the estuary, and/or a reduction in the input of hydraulic mining debris. Changes to the morphology of the San Francisco Bar have likely altered wave refraction and focusing patterns on adjacent beaches and may be a factor in persistent beach erosion occurring in the area.

  5. Response of reef corals on a fringing reef flat to elevated suspended-sediment concentrations: Moloka‘i, Hawai‘i

    Science.gov (United States)

    Jokiel, Paul L.; Rodgers, Ku'ulei S.; Storlazzi, Curt D.; Field, Michael E.; Lager, Claire V.; Lager, Dan

    2014-01-01

    A long-term (10 month exposure) experiment on effects of suspended sediment on the mortality, growth, and recruitment of the reef corals Montipora capitata and Porites compressa was conducted on the shallow reef flat off south Molokaʻi, Hawaiʻi. Corals were grown on wire platforms with attached coral recruitment tiles along a suspended solid concentration (SSC) gradient that ranged from 37 mg l−1 (inshore) to 3 mg l−1(offshore). Natural coral reef development on the reef flat is limited to areas with SSCs less than 10 mg l−1 as previously suggested in the scientific literature. However, the experimental corals held at much higher levels of turbidity showed surprisingly good survivorship and growth. High SSCs encountered on the reef flat reduced coral recruitment by one to three orders of magnitude compared to other sites throughout Hawaiʻi. There was a significant correlation between the biomass of macroalgae attached to the wire growth platforms at the end of the experiment and percentage of the corals showing mortality. We conclude that lack of suitable hard substrate, macroalgal competition, and blockage of recruitment on available substratum are major factors accounting for the low natural coral coverage in areas of high turbidity. The direct impact of high turbidity on growth and mortality is of lesser importance.

  6. The Integration of Environmental Constraints into Tidal Array Optimisation

    Science.gov (United States)

    du Feu, Roan; de Trafford, Sebastian; Culley, Dave; Hill, Jon; Funke, Simon W.; Kramer, Stephan C.; Piggott, Matthew D.

    2015-04-01

    It has been estimated by The Carbon Trust that the marine renewable energy sector, of which tidal stream turbines are projected to play a large part, could produce 20% of the UK's present electricity requirements. This has lead to the important question of how this technology can be deployed in an economically and environmentally friendly manner. Work is currently under way to understand how the tidal turbines that constitute an array can be arranged to maximise the total power generated by that array. The work presented here continues this through the inclusion of environmental constraints. The benefits of the renewable energy sector to our environment at large are not in question. However, the question remains as to the effects this burgeoning sector will have on local environments, and how to mitigate these effects if they are detrimental. For example, the presence of tidal arrays can, through altering current velocity, drastically change the sediment transport into and out of an area along with re-suspending existing sediment. This can have the effects of scouring or submerging habitat, mobilising contaminants within the existing sediment, reducing food supply and altering the turbidity of the water. All of which greatly impact upon any fauna in the affected region. This work pays particular attention to the destruction of habitat of benthic fauna, as this is quantifiable as a direct result of change in the current speed; a primary factor in determining sediment accumulation on the sea floor. OpenTidalFarm is an open source tool that maximises the power generated by an array through repositioning the turbines within it. It currently uses a 2D shallow water model with turbines represented as bump functions of increased friction. The functional of interest, power extracted by the array, is evaluated from the flow field which is calculated at each iteration using a finite element method. A gradient-based local optimisation is then used through solving the

  7. Depositional environment of the San Miguel lignite deposit in Atascosa and McMullen Counties, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Gowan, S.W.

    1985-01-01

    An analysis of the environment of deposition of the San Miguel lignite deposit was carried out in order to understand newly discovered characteristics of the deposit. The environment of deposition of the overburden and underburden was evaluated through an interpretation of three continuous cores. Four coal cores and a highwall section were carefully described to determine the depositional environmental of the coal seams and partings. These studies were supplemented by the construction of seam and parting isopachs, and the analysis of the distribution of sulfur isotopes, sulfur, forms, and total sulfur within the coal. The sedimentary package is composed of a basal prograding barrier that beach, dune, and back-barrier sands. This unit correlates with a downdip sand that was also interpreted as a prograding barrier by other authors. The barrier is overlain by a series of slit and clay deposits of lagoonal, tidal flat, and tidal channel origin. These deposits are capped by restricted lagoon sediments composed of green, calcareous clays that occasionally contain shell layers. The restricted lagoon deposits formed when the barrier closed the lagoon off from the sea. Peat forming freshwater swamps eventually became established behind the barrier and on top of the restricted lagoon sediments. The parting isopachs reveal a reticulate morphology similar to the mangrove swamps located lateral to the modern Niger River Delta. The partings represent vegetated tidal flat deposits that formed during periodic invasions by the sea that killed the swamp and inundated the peat with sulfate rich water. The lignite interval is capped by open lagoon and tidal flat sediments.

  8. Large-scale risk assessment of polycyclic aromatic hydrocarbons in shoreline sediments from Saudi Arabia: Environmental legacy after twelve years of the Gulf war oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Adriana C., E-mail: ABejarano@researchplanning.co [Research Planning Inc., 1121 Park St., Columbia, SC 29201 (United States); Michel, Jacqueline [Research Planning Inc., 1121 Park St., Columbia, SC 29201 (United States)

    2010-05-15

    A large-scale assessment of polycyclic aromatic hydrocarbons (PAHs) from the 1991 Gulf War oil spill was performed for 2002-2003 sediment samples (n = 1679) collected from habitats along the shoreline of Saudi Arabia. Benthic sediment toxicity was characterized using the Equilibrium Partitioning Sediment Benchmark Toxic Unit approach for 43 PAHs (ESBTU{sub FCV,43}). Samples were assigned to risk categories according to ESBTU{sub FCV,43} values: no-risk (<=1), low (>1-<=2), low-medium (>2-<=3), medium (>3-<=5) and high-risk (>5). Sixty seven percent of samples had ESBTU{sub FCV,43} > 1 indicating potential adverse ecological effects. Sediments from the 0-30 cm layer from tidal flats, and the >30-<60 cm layer from heavily oiled halophytes and mangroves had high frequency of high-risk samples. No-risk samples were characterized by chrysene enrichment and depletion of lighter molecular weight PAHs, while high-risk samples showed little oil weathering and PAH patterns similar to 1993 samples. North of Safaniya sediments were not likely to pose adverse ecological effects contrary to sediments south of Tanaqib. Landscape and geomorphology has played a role on the distribution and persistence in sediments of oil from the Gulf War. - Risk Assessment of PAHs in shoreline sediments 12 years after the Gulf War oil spill.

  9. Large-scale risk assessment of polycyclic aromatic hydrocarbons in shoreline sediments from Saudi Arabia: Environmental legacy after twelve years of the Gulf war oil spill

    International Nuclear Information System (INIS)

    Bejarano, Adriana C.; Michel, Jacqueline

    2010-01-01

    A large-scale assessment of polycyclic aromatic hydrocarbons (PAHs) from the 1991 Gulf War oil spill was performed for 2002-2003 sediment samples (n = 1679) collected from habitats along the shoreline of Saudi Arabia. Benthic sediment toxicity was characterized using the Equilibrium Partitioning Sediment Benchmark Toxic Unit approach for 43 PAHs (ESBTU FCV,43 ). Samples were assigned to risk categories according to ESBTU FCV,43 values: no-risk (≤1), low (>1-≤2), low-medium (>2-≤3), medium (>3-≤5) and high-risk (>5). Sixty seven percent of samples had ESBTU FCV,43 > 1 indicating potential adverse ecological effects. Sediments from the 0-30 cm layer from tidal flats, and the >30-<60 cm layer from heavily oiled halophytes and mangroves had high frequency of high-risk samples. No-risk samples were characterized by chrysene enrichment and depletion of lighter molecular weight PAHs, while high-risk samples showed little oil weathering and PAH patterns similar to 1993 samples. North of Safaniya sediments were not likely to pose adverse ecological effects contrary to sediments south of Tanaqib. Landscape and geomorphology has played a role on the distribution and persistence in sediments of oil from the Gulf War. - Risk Assessment of PAHs in shoreline sediments 12 years after the Gulf War oil spill.

  10. Research on Local Scour at Bridge Pier under Tidal Action

    Directory of Open Access Journals (Sweden)

    Wang Jianping

    2015-01-01

    Full Text Available Through the local scour test at bridge pier under tidal action in a long time series, this paper observes the growing trend of the deepest point of local scour at bridge pier under tidal conditions with different characteristic parameters, analyzes the impact of repeat sediment erosion and deposition in the scouring pit caused by reversing current on the development process of the scouring pit, and clarifies the relation between the tide and local scouring depth at bridge pier under steady flow conditions, so as to provide a scientific basis for bridge design and safe operation of estuary and harbor areas.

  11. Decalcification of benthic foraminifera due to "Hebei Spirit" oil spill, Korea.

    Science.gov (United States)

    Lee, Yeon Gyu; Kim, Shin; Jeong, Da Un; Lee, Jung Sick; Woo, Han Jun; Park, Min Woo; Kim, Byeong Hak; Son, Maeng Hyun; Choi, Yang Ho

    2014-10-15

    In order to determine the effects on foraminifera due to spilled crude oil in the "Herbei Spirit" incident, a study of benthic foraminiferal assemblages was carried out on sediment samples collected from the Sogeunri tidal flat, Taean Peninsula, Korea. Breakages of the chambers in the Ammonia beccarii and Elphidium subincertum species of the Sogeunri tidal flat with a low pH (6.98 on average) were marked. These chamber breakages occurred in 71.6% of A. beccarii and are thought to be caused by decalcification due to the fall in pH resulting from the "Hebei Spirit" oil spill. The factors that affect breakage of the chamber in benthic foraminifera under low pH condition may be not only deto decalcification but also to exposure duration of substrata in the tidal flat spilled crude oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Numerical Simulations of the Effects of a Tidal Turbine Array on Near-Bed Velocity and Local Bed Shear Stress

    Directory of Open Access Journals (Sweden)

    Philip A. Gillibrand

    2016-10-01

    Full Text Available We apply a three-dimensional hydrodynamic model to consider the potential effects of energy extraction by an array of tidal turbines on the ambient near-bed velocity field and local bed shear stress in a coastal channel with strong tidal currents. Local bed shear stress plays a key role in local sediment dynamics. The model solves the Reynold-averaged Navier-Stokes (RANS equations on an unstructured mesh using mixed finite element and finite volume techniques. Tidal turbines are represented through an additional form drag in the momentum balance equation, with the thrust imparted and power generated by the turbines being velocity dependent with appropriate cut-in and cut-out velocities. Arrays of 1, 4 and 57 tidal turbines, each of 1.5 MW capacity, were simulated. Effects due to a single turbine and an array of four turbines were negligible. The main effect of the array of 57 turbines was to cause a shift in position of the jet through the tidal channel, as the flow was diverted around the tidal array. The net effect of this shift was to increase near-bed velocities and bed shear stress along the northern perimeter of the array by up to 0.8 m·s−1 and 5 Pa respectively. Within the array and directly downstream, near-bed velocities and bed shear stress were reduced by similar amounts. Changes of this magnitude have the potential to modify the known sand and shell banks in the region. Continued monitoring of the sediment distributions in the region will provide a valuable dataset on the impacts of tidal energy extraction on local sediment dynamics. Finally, the mean power generated per turbine is shown to decrease as the turbine array increased in size.

  13. Field studies of hydrodynamic conditions and fine-sediment suspension in the Kapar coastal region, Malaysia

    International Nuclear Information System (INIS)

    Abdul Kadir Ishak

    2006-01-01

    Field studies to determine the hydrodynamics and fine-sediment transport were carried out at the Kapar coastal region, on the west coast of the Malaysian Peninsula. Several observation stations were established to measure near-bed tidal currents, suspended sediment concentration (SSC), water temperature, salinity and tidal elevation. It was found that resuspension (erosion) and deposition of fine sediment occurred during every tidal cycle, with greater transport occurred during the ebb than the flood. This become the major source of fine sediment that contribute to the siltation problem in this region. The high resuspension and entrainment of sediment into the flow column was due to a high near-bed current velocity which was at its peak at 1.3 m/s (during spring tides) and easily-eroded fine particles recently settled during previous tidal cycles. Significant erosion (and deposition) took place during the spring tides but little erosion was observed during the neap. The secondary source of fine sediment is from Sungai Kelang transported to the area by ebb currents in particular during spring tides. The measurement data also showed that the current flows around an industrial construction, the Kapar power station, had been modified and greatly reduced, which had resulted in a significant siltation problem in this region. This study contributes to a better understanding of the influence of hydrodynamics on the physical processes relating to the resuspension, transport and deposition of the fine-sediment in this region. (Author)

  14. Modelling Watershed and Estuarine Controls on Salt Marsh Distributions

    Science.gov (United States)

    Yousefi Lalimi, F.; Marani, M.; Murray, A. B.; D'Alpaos, A.

    2017-12-01

    The formation and evolution of tidal platforms have been extensively studied through observations and models, describing landform dynamics as a result of the local interactions and feedbacks among hydrodynamics, vegetation, and sediment transport. However, existing work mainly focuses on individual marsh platforms and, possibly, their immediate surrounding, such that the influence and controls on marsh dynamics of inland areas (through fluvial inputs) and of exchanges with the ocean have not been comprehensively and simultaneously accounted for. Here, we develop and use a process-based model to evaluate the relative role of watershed, estuarine, and ocean controls on salt marsh accretionary and depositional/erosional dynamics and define how these factors interact to determine salt marsh resilience to environmental change at the whole-estuary scale. Our results, in line with previous work, show that no stable equilibrium exists for the erosional dynamics of the marsh/tidal flat boundary. In addition, we find that under some circumstances, vertical accretion/erosion dynamics can lead to transitions between salt marsh and tidal flat equilibrium states that occur much more rapidly than marsh/tidal flat boundary erosion or accretion could. We further define, in the multidimensional space of estuarine-scale morphodynamic forcings, the basins of attractions leading to marsh-dominated and tidal-flat-dominated estuaries. The relatively slow dynamics asymptotically leading to marsh- or tidal-flat- dominance in many cases suggest that estuaries are likely to be found, at any given time, in a transition state dictated by temporal variations in environmental forcings.

  15. Factor-cluster analysis and enrichment study of Mangrove sediments - An example from Mengkabong, Sabah

    International Nuclear Information System (INIS)

    Praveena, S.M.; Ahmed, A.; Radojevic, M.; Mohd Harun Abdullah; Aris, A.Z.

    2007-01-01

    This paper examines the tidal effects in the sediment of Mengkabong mangrove forest, Sabah. Generally, all the studied parameters showed high value at high tide compared to low tide. Factor-cluster analyses were adopted to allow the identification of controlling factors at high and low tides. Factor analysis extracted six controlling factors at high tide and seven controlling factors at low tide. Cluster analysis extracted two district clusters at high and low tides. The study showed that factor-cluster analysis application is a useful tool to single out the controlling factors at high and low tides. this will provide a basis for describing the tidal effects in the mangrove sediment. The salinity and electrical conductivity clusters as well as component loadings at high and low tide explained the tidal process where there is high contribution of seawater to mangrove sediments that controls the sediment chemistry. The geo accumulation index (T geo ) values suggest the mangrove sediments are having background concentrations for Al, Cu, Fe and Zn and unpolluted for Pb. (author)

  16. A water-quality study of the tidal Potomac River and Estuary: An overview

    Science.gov (United States)

    Callendar, Edward; Carter, Virginia; Hahl, D.C.; Hitt, Kerie; Schultz, Barbara I.

    1984-01-01

    The U.S. Geological Survey began a 5-year interdisciplinary study of the tidal Potomac River and Estuary in October of 1977. The objectives of the study are: (1) to provide a basic understanding of physical, chemical, and biological processes; (2) to develop flow and transport models to predict the movement and fate of nutrients and algaes and (3) to develop efficient techniques for the study of tidal rivers and estuaries. The ultimate goal is to aid water-quality decision-making for the tidal Potomac River and Estuary. The study is being conducted by scientists from many disciplines involved in 14 interrelated studies. These scientists are addressing five major problem areas: nutrient enrichment, algal blooms, dissolved oxygen, sedimentation, and effects of water quality on living resources. Preliminary results show that treatment of sewage has reduced the concentration load of organic carbon and phosphorus below that of the 1960's and 1970's, and changed the form of dissolved nitrogen in the tidal river. Concentrations of chlorophyll a during the study period were lower than those experienced during the massive algal blooms of the 1960's. Dissolved oxygen concentrations fluctuate in response to changes in algal populations, but remain above the Environmental Protection Agency limits during the summer low-flow period. Sedimentation rates have accelerated during the past 50-70 years due to urbanization and farming. Asian clams have recently invaded the tidal river; submersed aquatic vegetation has declined since the early 1900's, but conditions may now favor its return.

  17. Effects of Cohesive Sediment on Estuarine Morphology in Laboratory Scale Experiments

    Science.gov (United States)

    Braat, L.; Leuven, J.; Lokhorst, I.; Kleinhans, M. G.

    2017-12-01

    Mud plays a major role in forming and filling of river estuaries. River estuaries are typically build of sand and flanked by mudflats, which affect channel-shoal dynamics on time scales of centuries to millennia. In our research we aim to study the effects of mud on the shape and evolution of estuaries and where the largest effects occur. Recently a 20 m by 3 m flume (the Metronome) was developed at Utrecht University for tidal experiments. Complete estuaries are simulated in the Metronome by driving tidal flow by periodically tilting of the flume to counteract scaling problems. To simulate the effects of cohesive mud we supply nutshell grains to the system together with the river discharge. Three scenarios were tested, one with only sand, one with a low supply concentration of nutshell and one with a high concentration (left to right in figure).Estuaries that developed from an initial convergent shape are self-formed through bank erosion, continuous channel-shoal migration and bar and mud flat sedimentation (figure shows development over 15000 tilting cycles). The cohesive sediment deposits occur mainly on bars, but also on the flanks of the estuary and in abandoned channels. Due to its different erosional and depositional characteristics, the nutshell increases the elevation of the bars, which reduces storage and ebb-dominance and causes reduction of bar mobility and short cuts. These results agree with numerical model results. The large-scale effect is less widening of the estuary in the presence of mud and a decrease in channel-shoal migration, suggesting that mud confines estuary width in a similar manner as river floodplains.

  18. Modeling Evaluation of Tidal Stream Energy and the Impacts of Energy Extraction on Hydrodynamics in the Taiwan Strait

    Directory of Open Access Journals (Sweden)

    Ming-Hsi Hsu

    2013-04-01

    Full Text Available Tidal stream speeds in straits are accelerated because of geographic and bathymetric features. For instance, narrow channels and shallows can cause high tidal stream energy. In this study, water level and tidal current were simulated using a three-dimensional semi-implicit Eulerian-Lagrangian finite-element model to investigate the complex tidal characteristics in the Taiwan Strait and to determine potential locations for harnessing tidal stream energy. The model was driven by nine tidal components (M2, S2, N2, K2, K1, O1, P1, Q1, and M4 at open boundaries. The modeling results were validated with the measured data, including water level and tidal current. Through the model simulations, we found that the highest tidal currents occurred at the Penghu Channel in the Taiwan Strait. The Penghu Channel is an appropriate location for the deployment of a tidal turbine array because of its deep and flat bathymetry. The impacts of energy extraction on hydrodynamics were assessed by considering the momentum sink approach. The simulated results indicate that only minimal impacts would occur on water level and tidal current in the Taiwan Strait if a turbine array (55 turbines was installed in the Penghu Channel.

  19. Morphodynamics of Wadden Sea Areas – Field Measurements and Modeling

    Directory of Open Access Journals (Sweden)

    Thorsten Albers

    2010-09-01

    Full Text Available The Wadden Sea areas of the German North Sea coast are affected by intense morphodynamics. Especially in the mouths of the estuaries sedimentation and erosion occur on different temporal and spatial scales and therefore challenge the decision-makers. To satisfy the requirements, which modern maritime traffic demands, a sustainable concept for sediment management has to be developed to grant an economic and ecologic balanced system. To evaluate different actions and their effects, e.g. by means of numerical models, an improved knowledge of morphodynamic processes on tidal flats is required. The Institute of River and Coastal Engineering at the Hamburg University of Technology runs detailed measurements to collect hydrodynamic and morphodynamic data of tidal flats in the estuary Elbe, that is the approach to the port of Hamburg. Water levels, flow and wave parameters and concentrations of suspended sediments are recorded in high resolution. Furthermore, the bathymetry is determined in frequent intervals with a multi-beam echo sounder.

  20. Modelling of sediment transport at Muria peninsula coastal, Jepara

    International Nuclear Information System (INIS)

    Heni Susiati; Yarianto SBS; Wahyu Pandoe; Eko Kusratmoko; Aris Poniman

    2010-01-01

    Modelling of transport sediment modelling at Muria Peninsula have been done. In this study we had been used mathematical model that consist of hydrodynamics and sediment transport . Data input for modelling has been used tidal, monsoon wind, and river debit. Simulation result of sediment transport modelling showed that tides pattern and seasonal variations are the main causes of variations in the suspended sediment distribution in Muria Peninsula. (author)

  1. Landscape-scale flow patterns over a vegetated tidal marsh and an unvegetated tidal flat: implications for the landform properties of the intertidal floodplain

    NARCIS (Netherlands)

    Vandenbruwaene, W.; Schwarz, C.; Bouma, T.; Meire, P.; Temmerman, S.

    2015-01-01

    Vegetation is increasingly recognized as an important control on flow and landformpatterns inmany landscape types. Field studies on the landscape-scale effect of vegetation in fluvial and tidal floodplains are relatively scarce while insights are especially based on flume and numerical models.

  2. Salt Marsh Ecosystem Responses to Restored Tidal Connectivity across a 14y Chronosequence

    Science.gov (United States)

    Capooci, M.; Spivak, A. C.; Gosselin, K.

    2016-02-01

    Salt marshes support valuable ecosystem services. Yet, human activities negatively impact salt marsh function and contribute to their loss at a global scale. On Cape Cod, MA, culverts and impoundments under roads and railways restricted tidal exchange and resulted in salt marsh conversion to freshwater wetlands. Over the past 14 y, these structures have been removed or replaced, restoring tidal connectivity between marshes and a saltwater bay. We evaluated differences in plant community composition, sediment properties, and pore water chemistry in marshes where tidal connectivity was restored using a space-for-time, or chronosequence approach. Each restored marsh was paired with a nearby, natural salt marsh to control for variability between marshes. In each restored and natural salt marsh we evaluated the plant community by measuring species-specific percent cover and biomass and collected sediment cores for bulk density and pore water analyses. Plant communities responded rapidly: salt-tolerant species, such as Spartina alterniflora, became established while freshwater species, including Phragmites australis, were less abundant within 3 y of restoration. The number of plant species was generally greater in marshes restored within 10 y, compared to older and natural marshes. Sediment bulk density varied with depth and across sites. This likely reflects differences in site history and local conditions. Deeper horizons (24-30cm) generally had higher values in restored sites while surface values (0-3cm) were similar in restored and natural marshes. Porewater pH and sulfide were similar in restored and natural marshes, suggesting rapid microbial responses to seawater reintroduction. Overall, marsh properties and processes reflecting biological communities responded rapidly to tidal restoration. However, variability between study locations underscores the potential importance of site history, local hydrology, and geomorphology in shaping marsh biogeochemistry.

  3. The Importance of Wind-induced Sediment Fluxes on Tidal Flats

    NARCIS (Netherlands)

    Colosimo, I.; van Prooijen, Bram; van Maren, D.S.; Winterwerp, J.C.; Reniers, A.J.H.M.

    2017-01-01

    Port maintenance and nature preservation are two often conflicting aspects of coastal management. Within a Pilot Project in the Western Wadden Sea (the Netherlands - see Figure1a) we test a win-win solution that could reduce harbour siltation while simultaneously stimulate saltmarsh

  4. Detecting and Applying Thermal Signals in a Tidal Flats Environment

    Science.gov (United States)

    2010-05-19

    Guarini et al., 1997]. In addition, the biology can affect the heat content, as in the ventilation of mud flats by manicure crabs [Kim et al., 2009...the values of lf and cf resulting from changes in salinity are negligible. Values of ls = 8.6 W m −1 K−1 and cs = 0.8 kJ kg−1 K−1, based on the...intertidal mudflats of the forth estuary , Scotland, J. Climatol., 5, 472–485. Jackson, D. R., and M. D. Richardson (2002), Seasonal temperature gradi- ents

  5. Sediment Trapping in Estuaries

    Science.gov (United States)

    Burchard, Hans; Schuttelaars, Henk M.; Ralston, David K.

    2018-01-01

    Estuarine turbidity maxima (ETMs) are generated by a large suite of hydrodynamic and sediment dynamic processes, leading to longitudinal convergence of cross-sectionally integrated and tidally averaged transport of cohesive and noncohesive suspended particulate matter (SPM). The relative importance of these processes for SPM trapping varies substantially among estuaries depending on topography, fluvial and tidal forcing, and SPM composition. The high-frequency dynamics of ETMs are constrained by interactions with the low-frequency dynamics of the bottom pool of easily erodible sediments. Here, we use a transport decomposition to present processes that lead to convergent SPM transport, and review trapping mechanisms that lead to ETMs at the landward limit of the salt intrusion, in the freshwater zone, at topographic transitions, and by lateral processes within the cross section. We use model simulations of example estuaries to demonstrate the complex concurrence of ETM formation mechanisms. We also discuss how changes in SPM trapping mechanisms, often caused by direct human interference, can lead to the generation of hyperturbid estuaries.

  6. Dynamic surface water-groundwater exchange and nitrogen transport in the riparian aquifer of a tidal river

    Science.gov (United States)

    Sawyer, A. H.; Barnes, R.; Wallace, C.; Knights, D.; Tight, D.; Bayer, M.

    2017-12-01

    Tides in coastal rivers can propagate tens to hundreds of kilometers inland and drive large daily changes in water and nitrogen exchange across the sediment-water interface. We use field observations and numerical models to illuminate hydrodynamic controls on nitrogen export from the riparian aquifer to a fresh, tidal reach of White Clay Creek (Delaware, USA). In the banks, an aerobic zone with high groundwater nitrate concentrations occurs near the fluctuating water table. Continuous depth-resolved measurements of redox potential suggest that this zone is relatively stable over tidal timescales but moves up or down in response to storms. The main source of dissolved oxygen is soil air that is imbibed in the zone of water table fluctuations, and the source of nitrate is likely nitrification of ammonium produced locally from the mineralization of organic matter in floodplain soils. Much of the nitrate is removed by denitrification along oscillating flow paths towards the channel. Within centimeters of the sediment-water interface, denitrification is limited by the mixing of groundwater with oxygen-rich river water. Our models predict that the benthic zones of tidal rivers play an important role in removing new nitrate inputs from discharging groundwater but may be less effective at removing nitrate from river water. Nitrate removal and production rates are expected to vary significantly along tidal rivers as permeability, organic matter content, tidal range vary. It is imperative that we understand nitrogen dynamics along tidal rivers and their role in nitrogen export to the coast.

  7. Bars and spirals in tidal interactions with an ensemble of galaxy mass models

    Science.gov (United States)

    Pettitt, Alex R.; Wadsley, J. W.

    2018-03-01

    We present simulations of the gaseous and stellar material in several different galaxy mass models under the influence of different tidal fly-bys to assess the changes in their bar and spiral morphology. Five different mass models are chosen to represent the variety of rotation curves seen in nature. We find a multitude of different spiral and bar structures can be created, with their properties dependent on the strength of the interaction. We calculate pattern speeds, spiral wind-up rates, bar lengths, and angular momentum exchange to quantify the changes in disc morphology in each scenario. The wind-up rates of the tidal spirals follow the 2:1 resonance very closely for the flat and dark matter-dominated rotation curves, whereas the more baryon-dominated curves tend to wind-up faster, influenced by their inner bars. Clear spurs are seen in most of the tidal spirals, most noticeable in the flat rotation curve models. Bars formed both in isolation and interactions agree well with those seen in real galaxies, with a mixture of `fast' and `slow' rotators. We find no strong correlation between bar length or pattern speed and the interaction strength. Bar formation is, however, accelerated/induced in four out of five of our models. We close by briefly comparing the morphology of our models to real galaxies, easily finding analogues for nearly all simulations presenter here, showing passages of small companions can easily reproduce an ensemble of observed morphologies.

  8. Tidal asymmetry in a funnel-shaped estuary with mixed semidiurnal tides

    Science.gov (United States)

    Gong, Wenping; Schuttelaars, Henk; Zhang, Heng

    2016-05-01

    results show that the FDA exhibits a predominant tendency of shorter duration of low water slack, favoring the landward transport of fine sediment. The FVA demonstrates prevailing ebb dominance in the study period, favoring the seaward transport of coarse sediment. This ebb dominance is primarily induced by the interaction among the residual flow and the tidal constituents. The external TDA in the ocean experiences distinct cyclic variations with positive asymmetry when semidiurnal tides dominate and negative asymmetry during the periods when diurnal tides dominate. The funnel shape of the HE is advantageous for the development of positive tidal asymmetry as the semidiurnal tides are more amplified than the diurnal tides. The effect of river flow can enhance the ebb dominance, while the baroclinic effect is more complex. The existence of channel and shoals favors the development of residual pattern with seaward flow (ebb dominance) in the channel and landward flow (flood dominance) at the shoal when the tides are strong (semidiurnal tides dominate) and the residual pattern with landward flow (flood dominance) in the channel and seaward flow (ebb dominance) at the shoal when the baroclinic effect is dominant (diurnal tides dominate).

  9. Algal stabilisation of estuarine sediments

    International Nuclear Information System (INIS)

    1992-01-01

    The presence of benthic microalgae can increase the stability of intertidal sediments and influence sediment fluxes within an estuarine environment. Therefore the relative importance of algal stabilisation needs to be understood to help predict the effects of a tidal barrage. The biogenic stabilisation of intertidal estuarine sediments by epipelic diatom films and the macrophyte Vaucheria was studied at three sites on the Severn Estuary. The cohesive strength meter (CSM) was developed to measure surface critical shear stress with varied algal density. A number of techniques have been used to determine the general in situ erodibility of cohesive estuarine sediments. The measurements of sediment shear strength and critical erosion velocity were investigated. Field experiments were undertaken to investigate the effect of algae on binding sediments, and a predictive method for the assessment of sediment stabilisation by algal binding was developed. (author)

  10. The Effect of Source Suspended Sediment Concentration on the Sediment Dynamics of a Macrotidal Creek and Salt Marsh

    Science.gov (United States)

    Poirier, E.; van Proosdij, D.; Milligan, T. G.

    2017-12-01

    Seasonal variability in the sediment dynamics of a Bay of Fundy tidal creek and salt marsh system was analyzed to better understand the ecomorphodynamics of a high suspended sediment concentration intertidal habitat. Data were collected over 62 tides for velocity, suspended sediment concentration, deposition, and grain size at four stations from the creek thalweg to the marsh surface. Five topographic surveys were also conducted throughout the 14-month study. Deposition rates per tide varied spatially from 56.4 g·m-2 at the creek thalweg to 15.3 g·m-2 at the marsh surface. Seasonal variations in deposition in the creek and marsh surface were from 38.0 g·m-2 to 97.7 g·m-2 and from 12.2 g·m-2 to 19.6 g·m-2 respectively. Deposition and erosion were greatest in late fall and winter. This seasonal change, led by higher suspended sediment concentrations, was observed in the creek and at the marsh bank but notably absent from the marsh edge and marsh surface. Sediments were predominantly deposited in floc form (76-83%). Because of high floc content, higher suspended sediment concentrations led to more rapid loss of sediment from suspension. With increasing sediment concentration, deposition increased in the tidal creek and at the marsh bank but not at the marsh edge or marsh surface. This suggests that in highly flocculated environments the water column clears fast enough that very little sediment remains in suspension when the water reaches the marsh and that the sediment concentration during marsh inundation is independent of the initial concentration in the creek.

  11. Three-dimensional semi-idealized model for estuarine turbidity maxima in tidally dominated estuaries

    NARCIS (Netherlands)

    Kumar, Mohit; Schuttelaars, Henk M.; Roos, Pieter C.

    2017-01-01

    We develop a three-dimensional idealized model that is specifically aimed at gaining insight in the physical mechanisms resulting in the formation of estuarine turbidity maxima in tidally dominated estuaries. First, the three-dimensional equations for water motion and suspended sediment

  12. Modelling the impacts of sea level rise on tidal basin ecomorphodynamics and mangrove habitat evolution

    Science.gov (United States)

    van Maanen, Barend; Coco, Giovanni; Bryan, Karin

    2016-04-01

    The evolution of tidal basins and estuaries in tropical and subtropical regions is often influenced by the presence of mangrove forests. These forests are amongst the most productive environments in the world and provide important ecosystem services. However, these intertidal habitats are also extremely vulnerable and are threatened by climate change impacts such as sea level rise. It is therefore of key importance to improve our understanding of how tidal systems occupied by mangrove vegetation respond to rising water levels. An ecomorphodynamic model was developed that simulates morphological change and mangrove forest evolution as a result of mutual feedbacks between physical and biological processes. The model accounts for the effects of mangrove trees on tidal flow patterns and sediment dynamics. Mangrove growth is in turn controlled by hydrodynamic conditions. Under stable water levels, model results indicate that mangrove trees enhance the initiation and branching of tidal channels, partly because the extra flow resistance in mangrove forests favours flow concentration, and thus sediment erosion in between vegetated areas. The landward expansion of the channels, on the other hand, is reduced. Model simulations including sea level rise suggest that mangroves can potentially enhance the ability of the soil surface to maintain an elevation within the upper portion of the intertidal zone. While the sea level is rising, mangroves are migrating landward and the channel network tends to expand landward too. The presence of mangrove trees, however, was found to hinder both the branching and headward erosion of the landward expanding channels. Simulations are performed according to different sea level rise scenarios and with different tidal range conditions to assess which tidal environments are most vulnerable. Changes in the properties of the tidal channel networks are being examined as well. Overall, model results highlight the role of mangroves in driving the

  13. Temporal record of Pu isotopes in inter-tidal sediments from the northeastern Irish Sea

    Energy Technology Data Exchange (ETDEWEB)

    Lindahl, Patric, E-mail: patriclindahl@yahoo.com [School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Worsfold, Paul; Keith-Roach, Miranda [School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Andersen, Morten B. [Bristol Isotope Group, School of Earth Sciences, University of Bristol, Wills Memorial Building, Bristol BS8 1RJ (United Kingdom); Kershaw, Peter; Leonard, Kins [The Centre for Environment, Fisheries and Aquaculture Science, Lowestoft Laboratory, Pakefield Road, Suffolk NR33 0HT (United Kingdom); Choi, Min-Seok [Division of Earth and Environmental Science, Korea Basic Science Institute, 113 Gwahangno, Yusung-gu, Daejon 305-333 (Korea, Republic of); Boust, Dominique [Laboratoire de Radioecologie, Institut de Radioprotection et de Surete Nucleaire, BP 10, 50130 Cherbourg-Octeville (France); Lesueur, Patrick [University of Caen Basse Normandie, M2C UMR CNRS 6143, 14000 Caen (France)

    2011-11-01

    A depth profile of {sup 239}Pu and {sup 240}Pu specific activities and isotope ratios was determined in an inter-tidal sediment core from the Esk Estuary in the northeastern Irish Sea. The study site has been impacted with plutonium through routine radionuclide discharges from the Sellafield nuclear reprocessing plant in Cumbria, NW England. A pronounced sub-surface maximum of {approx} 10 kBq kg{sup -1} was observed for {sup 239+240}Pu, corresponding to the peak in Pu discharge from Sellafield in 1973, with a decreasing trend with depth down to {approx} 0.04 kBq kg{sup -1} in the deeper layers. The depth profile of {sup 239+240}Pu specific activities together with results from gamma-ray spectrometry for {sup 137}Cs and {sup 241}Am was compared with reported releases from the Sellafield plant in order to estimate a reliable sediment chronology. The upper layers (1992 onwards) showed higher {sup 239+240}Pu specific activities than would be expected from the direct input of annual Sellafield discharges, indicating that the main input of Pu is from the time-integrated contaminated mud patch of the northeastern Irish Sea. The {sup 240}Pu/{sup 239}Pu atom ratios ranged from {approx} 0.03 in the deepest layers to > 0.20 in the sub-surface layers with an activity-weighted average of 0.181. The decreasing {sup 240}Pu/{sup 239}Pu atom ratio with depth reflects the changing nature of operations at the Sellafield plant from weapons-grade Pu production to reprocessing spent nuclear fuel with higher burn-up times in the late 1950s. In addition, recent annual {sup 240}Pu/{sup 239}Pu atom ratios in winkles collected during 2003-2008 from three stations along the Cumbrian coastline showed no significant spatial or temporal differences with an overall average of 0.204, which supports the hypothesis of diluted Pu input from the contaminated mud patch. - Highlights: {yields} Depth profiles of {sup 239}Pu and {sup 240}Pu determined in a northeastern Irish Sea sediment. {yields

  14. Palaeogeographic evolution of the marine Middle Triassic marine Germanic Basin changements - With emphasis on the carbonate tidal flat and shallow marine habitats of reptiles in Central Pangaea

    Science.gov (United States)

    Diedrich, Cajus G.

    2009-01-01

    More than seventy-five vertebrate track-sites have been found in Central Europe in 243-246.5 m.y. old Triassic coastal intertidal to sabkha carbonates. In the western part of the very flat Triassic intracontinental Germanic Basin, the carbonate strata contain at least 22 laterally extensive track horizons (called megatracksites). In contrast, in the eastern part of the basin only six megatracksites extended to near the centre of the Basin during marine low stands. Marine ingression and the development of extensive coastal marine environments began during the Aegean (Anisian) stage. This incursion began in the region of the eastern Carpathian and Silesian gates and spread westward due to the development of a tectonically controlled intracratonic basin. The tectonic origin of this basin made it susceptible to tsunamis and submarine earthquakes, which constituted very dangerous hazards for coastal terrestrial and even marine reptiles. The shallow sea that spread across the Germanic Basin produced extensive tidal flats that at times formed extensive inter-peninsular bridges between the Rhenish and Bohemian Massifs. The presence of these inter-peninsular bridges explains the observed distribution and movement of reptiles along coastal Europe and the northern Tethys Seaway during the Middle Triassic epoch. Two small reptiles, probably Macrocnemus and Hescherleria, left millions of tracks and trackways known as Rhynchosauroides and Procolophonichnium in the Middle Triassic coastal intertidal zone. The great abundance of their tracks indicates that their trackmakers Macrocnemus and Hescherleria were permanent inhabitants of this environment. In sharp contrast, tracks of other large terrestrial reptiles are quite rare along the coastal margins of the Germanic Basin, for example the recently discovered archaeosaur tracks and trackways referable to Isochirotherium, which most probably were made by the carnivore Ticinosuchus. Smaller medium-sized predatory thecodont reptiles

  15. Holocene depocenter migration and sediment accumulation in Delaware Bay: A submerging marginal marine sedimentary basin

    Science.gov (United States)

    Fletcher, C. H.; Knebel, H.J.; Kraft, J.C.

    1992-01-01

    The Holocene transgression of the Delaware Bay estuary and adjacent Atlantic coast results from the combined effect of regional crustal subsidence and eustasy. Together, the estuary and ocean coast constitute a small sedimentary basin whose principal depocenter has migrated with the transgression. A millenial time series of isopach and paleogeographic reconstructions for the migrating depocenter outlines the basin-wide pattern of sediment distribution and accumulation. Upland sediments entering the basin through the estuarine turbidity maximum accumulate in tidal wetland or open water sedimentary environments. Wind-wave activity at the edge of the tidal wetlands erodes the aggraded Holocene section and builds migrating washover barriers. Along the Atlantic and estuary coasts of Delaware, the area of the upland environment decreases from 2.0 billion m2 to 730 million m2 during the transgression. The area of the tidal wetland environment increases from 140 million to 270 million m2, and due to the widening of the estuary the area of open water increases from 190 million to 1.21 billion m2. Gross uncorrected rates of sediment accumulation for the tidal wetlands decrease from 0.64 mm/yr at 6 ka to 0.48 mm/yr at 1 ka. In the open water environments uncorrected rates decrease from 0.50 mm/yr to 0.04 mm/yr over the same period. We also present data on total sediment volumes within the tidal wetland and open water environments at specific intervals during the Holocene. 

  16. Sediment Sources and Transport Pathway Identification Based on Grain-Size Distributions on the SW Coast of Portugal

    Directory of Open Access Journals (Sweden)

    Xiaoqin Du

    2015-01-01

    Full Text Available Espichel-Sines is an embayed coast in SW Portugal, consisting of two capes at both extremities, a tidal inlet and associated ebb tidal delta, a barrier spit, sandy beaches, sea cliffs, and a submarine canyon. Beach berm, backshore, near shore and inner shelf sediment samples were taken. Samples were analyzed for their grain-size compositions. This study ranks the hypothetical sediment sources influences on the sediment distributions in the study area using the multivariate Empirical Orthogonal Function (EOF techniques. Transport pathways in this study were independently identified using the grain size trend analysis (GSTA technique to verify the EOF findings. The results show that the cliff-erosion sediment is composed of pebbles and sand and is the most important sediment source for the entire embayment. The sediment at the inlet mouth is a mixture of pebbles, sand, silt, and clay, which is a minor sediment source that only has local influence. The overall grain-size distributions on the shelf are dominated by the sand except for the high mud content around the tidal delta front in the northern embayment. Sediment transport patterns on the inner shelf at the landward and north sides of the canyon head are landward and northward along the barrier spit, respectively. On the south side of the canyon head, the prevailing sediment transport is seaward. Sediment transport occurs in both directions along the shore.

  17. On the ecogeomorphological feedbacks that control tidal channel network evolution in a sandy mangrove setting

    Science.gov (United States)

    van Maanen, B.; Coco, G.; Bryan, K. R.

    2015-01-01

    An ecomorphodynamic model was developed to study how Avicennia marina mangroves influence channel network evolution in sandy tidal embayments. The model accounts for the effects of mangrove trees on tidal flow patterns and sediment dynamics. Mangrove growth is in turn controlled by hydrodynamic conditions. The presence of mangroves was found to enhance the initiation and branching of tidal channels, partly because the extra flow resistance in mangrove forests favours flow concentration, and thus sediment erosion in between vegetated areas. The enhanced branching of channels is also the result of a vegetation-induced increase in erosion threshold. On the other hand, this reduction in bed erodibility, together with the soil expansion driven by organic matter production, reduces the landward expansion of channels. The ongoing accretion in mangrove forests ultimately drives a reduction in tidal prism and an overall retreat of the channel network. During sea-level rise, mangroves can potentially enhance the ability of the soil surface to maintain an elevation within the upper portion of the intertidal zone, while hindering both the branching and headward erosion of the landward expanding channels. The modelling results presented here indicate the critical control exerted by ecogeomorphological interactions in driving landscape evolution. PMID:26339195

  18. Nitrogen dynamics in the tidal freshwater Potomac River, Maryland and Virginia, water years 1979-81: A water-quality study of the tidal Potomac River and estuary

    International Nuclear Information System (INIS)

    Shutz, D.J.

    1989-01-01

    On an annual basis, river supplied nitrate is the predominant form of N supplied to the tidal Potomac River from external sources. Much of the nitrate is associated with high flows that have rapid transit times through the tidal river. After the fall of 1980, initiation of advanced wastewater treatment at the Blue Plains Sewage Treatment Plant (STPP) reduced ammonia loading to the river by 90% and increased nitrate loading by a similar percentage. As a result, concentrations of ammonia during the 1981 low flow period were 1.50 mg/L as N. Despite the reduced availability of ammonia, 15-N uptake studies showed that phytoplankton preferred ammonia to nitrate unless ammonia concentrations were < 0.10 mg/L as N. Nitrification studies during 1981 using a 14-C uptake technique indicate that rates did not vary with sample location, except for one sample from the head of the tidal river, where the rates were much higher. Process models were used in conjunction with mass-balance determinations and individual process studies to estimate rates of processes that were not directly measured. It is estimated that denitrification removed 10 times as much nitrate from the water column during the summer of 1981 as during the summer of 1980. Sedimentation of particulate N is estimated to be the largest sink for N from the water column and was approximately equal to the external annual loading of all N constituents on a daily basis. In summer, when river flows usually are low, the tidal Potomac River appears to be a partially closed system rather than one dominated by transport. Nitrogen constituents, primarily from point sources, are taken up by phytoplankton converted to organic matter, and sedimented from the water column. Some of this N eventually becomes available again by means of benthic exchange. Removal, by transport, out of the tidal river is significant only during winter. 70 refs., 20 figs., 10 tabs

  19. Finite Element Barotropic Model for the Indian and Western Pacific OceanBasin: Tidal Model Data Comparisons and Sensitivities

    Science.gov (United States)

    2018-01-11

    sediments (oozes and clays) CJ is set to 2.5x10- 3 as a default roughness. Relative sediment density s = 1.722 (dry bulk density by mass of sand , Rijn...dso and relative density s for each sediment type used in the calculation of CJ Sediment Type Gravel and coarser Sand Silt Ash and volcanic sand ...FUGAWI navigational charts allowed the tidal elevation to reach close to the measured M2 amplitude. Clearly, greater availability and quality of

  20. Coatal salt marshes and mangrove swamps in China

    Science.gov (United States)

    Yang, Shi-Lun; Chen, Ji-Yu

    1995-12-01

    Based on plant specimen data, sediment samples, photos, and sketches from 45 coastal crosssections, and materials from two recent countrywide comprehensive investigations on Chinese coasts and islands, this paper deals with China’s vegetative tidal-flats: salt marshes and mangrove swamps. There are now 141700 acres of salt marshes and 51000 acres of mangrove swamps which together cover about 30% of the mud-coast area of the country and distribute between 18°N (Southern Hainan Island) and 41 °N (Liaodong Bay). Over the past 45 years, about 1750000 acres of salt marshes and 49400 acres of mangrove swamps have been reclaimed. The 2.0×109 tons of fine sediments input by rivers into the Chinese seas form extensive tidal flats, the soil basis of coastal helophytes. Different climates result in the diversity of vegetation. The 3˜8 m tidal range favors intertidal zone development. Of over 20 plant species in the salt marshes, native Suaeda salsa, Phragmites australis, Aeluropus littoralis, Zoysia maerostachys, Imperata cylindrica and introduced Spartina anglica are the most extensive in distribution. Of the 41 mangrove swamps species, Kandelia candel, Bruguiera gymnorrhiza, Excoecaria agallocha and Avicennia marina are much wider in latitudinal distribution than the others. Developing stages of marshes originally relevant to the evolution of tidal flats are given out. The roles of pioneer plants in decreasing flood water energy and increasing accretion rate in the Changjiang River delta are discussed.

  1. Sedimentary dynamics along the west coast of Bohai Bay, China, during the twentieth century

    DEFF Research Database (Denmark)

    Wang, Fu; Wang, Huang; Zong, Y.

    2014-01-01

    To investigate the most recent changes in sedimentation along the west coast of Bohai Bay, China, we collected twelve 1–2 m short cores of undisturbed sediment from tidal flats off the city of Tianjin, using an Eijkelkamp corer. Based on the excess or unsupported 210Pb and 137Cs activities measured...... important time boundaries are identified. As the Luanhe River had migrated northwards since 1915, sediment supply to the northern section of the coast had reduced. Around 1958, several rivers were dammed. Since 1985, the need for dredging the Tianjin Port has decreased. These actions have resulted...... in a decline of sediment supply from these rivers, including Haihe, to both the northern and southern sectors of the coast. Once the supply of sediment from rivers was reduced, tidal processes acted to modify sediment characteristics, and an upward-fining pattern is recorded in the majority of sediment cores...

  2. Cross-shore gradients of physical disturbance in mangroves: implications for seedling establishment

    NARCIS (Netherlands)

    Balke, T.; Bouma, T.; Herman, P.M.J.; Horstman, E.M.; Sudtongkong, C.; Webb, E.L.

    2013-01-01

    Mangroves may grow in an active sedimentary environment and are therefore closely linked to physical coastal processes. Seedlings colonize dynamic tidal flats, after which mangroves have the potential to change their physical environment by attenuating hydrodynamic energy and trapping sediments.

  3. Which future for the tidal sector in France? Towards a new model of territorial development

    International Nuclear Information System (INIS)

    Aelbrecht, Denis; Deroo, Luc; Le Visage, Christophe; Rabain, Antoine

    2017-01-01

    This document proposes a brief overview of works by a French national work-group of the SHF (French Hydro-technical Society) on the new tidal sector. It indicates recent and current development in the renewable marine energy sector: offshore wind farms along the French coasts, floating wind energy demonstrators, several tidal stream demonstrators, and other projects. British projects are also evoked. Then various aspects which could be success factors, are briefly discussed: the tidal potential, project configuration types (dams in estuary, coastal lagoons, offshore lagoons), interactions with the environment (sea and coastal ecosystems, sediments), opportunities of technological innovation (belt of the tidal basin, machine technology, exploitation mode), the concept of tidal garden, economic performance and viability (orientations for cost reduction and income increase). The issue of feasibility with respect with the NIMBY syndrome is finally addressed, and orientations and principles are briefly defined to evolve towards a YINBY (Yes in my back yard) syndrome

  4. An Introduction to the San Francisco Estuary Tidal Wetlands Restoration Series

    Directory of Open Access Journals (Sweden)

    Larry R. Brown

    2003-10-01

    Full Text Available Restoration of tidal wetlands may provide an important tool for improving ecological health and water management for beneficial uses of the San Francisco Estuary (hereafter “Estuary”. Given the large losses of tidal wetlands from San Francisco Bay and the Sacramento-San Joaquin Delta in the last 150 years, it seems logical to assume that restoring tidal wetlands will have benefits for a variety of aquatic and terrestrial native species that have declined during the same time period. However, many other changes have also occurred in the Estuary concurrent with the declines of native species. Other factors that might be important in species declines include the effects of construction of upstream dams, large and small water diversions within the Sacramento-San Joaquin Delta, agricultural pesticides, trace elements from industrial and agricultural activities, and invasions of alien species. Discussions among researchers, managers, and stakeholders have identified a number of uncertainties regarding the potential benefits of tidal wetland restoration. The articles of the Tidal Wetlands Restoration Series address four major issues of concern. Stated as questions, these are: 1. Will tidal wetland restoration enhance populations of native fishes? 2. Will wetland restoration increase rates of methylation of mercury? 3. Will primary production and other ecological processes in restored tidal wetlands result in net export of organic carbon to adjacent habitats, resulting in enhancement of the food web? Will the carbon produced contribute to the formation of disinfection byproducts when disinfected for use as drinking water? 4. Will restored tidal wetlands provide long-term ecosystem benefits that can be sustained in response to ongoing physical processes, including sedimentation and hydrodynamics? Reducing the uncertainty surrounding these issues is of critical importance because tidal wetland restoration is assumed to be a critical tool for

  5. Freshwater springs on intertidal sand flats cause a switch in dominance among polychaete worms

    NARCIS (Netherlands)

    Zipperle, A; Reise, K

    Effects of freshwater seepage on benthic macrofauna were investigated on the sandy tidal flats near the island of Sylt (German Wadden Sea) in 2002. Several permanent seepage areas (50 to 200 m offshore; up to 200 m 2 in area) were examined, in which salinity ranged from 22-29 outside to 0-16 psu

  6. Breakdown of Hydrostatic Assumption in Tidal Channel with Scour Holes

    Directory of Open Access Journals (Sweden)

    Chunyan Li

    2016-10-01

    Full Text Available Hydrostatic condition is a common assumption in tidal and subtidal motions in oceans and estuaries.. Theories with this assumption have been largely successful. However, there is no definite criteria separating the hydrostatic from the non-hydrostatic regimes in real applications because real problems often times have multiple scales. With increased refinement of high resolution numerical models encompassing smaller and smaller spatial scales, the need for non-hydrostatic models is increasing. To evaluate the vertical motion over bathymetric changes in tidal channels and assess the validity of the hydrostatic approximation, we conducted observations using a vessel-based acoustic Doppler current profiler (ADCP. Observations were made along a straight channel 18 times over two scour holes of 25 m deep, separated by 330 m, in and out of an otherwise flat 8 m deep tidal pass leading to the Lake Pontchartrain over a time period of 8 hours covering part of the diurnal tidal cycle. Out of the 18 passages over the scour holes, 11 of them showed strong upwelling and downwelling which resulted in the breakdown of hydrostatic condition. The maximum observed vertical velocity was ~ 0.35 m/s, a high value in a tidal channel, and the estimated vertical acceleration reached a high value of 1.76×10-2 m/s2. Analysis demonstrated that the barotropic non-hydrostatic acceleration was dominant. The cause of the non-hydrostatic flow was the that over steep slopes. This demonstrates that in such a system, the bathymetric variation can lead to the breakdown of hydrostatic conditions. Models with hydrostatic restrictions will not be able to correctly capture the dynamics in such a system with significant bathymetric variations particularly during strong tidal currents.

  7. Tidal Venuses: triggering a climate catastrophe via tidal heating.

    Science.gov (United States)

    Barnes, Rory; Mullins, Kristina; Goldblatt, Colin; Meadows, Victoria S; Kasting, James F; Heller, René

    2013-03-01

    Traditionally, stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here, we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high-enough levels to induce a runaway greenhouse for a long-enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets "Tidal Venuses" and the phenomenon a "tidal greenhouse." Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e., with negligible tidal heating) in the habitable zone (HZ). However, these planets are not habitable, as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulated the evolution of hypothetical planetary systems in a quasi-continuous parameter distribution and found that we could constrain the history of the system by statistical arguments. Planets orbiting stars with massesplanet orbiting a 0.3 MSun star at 0.12 AU. We found that it probably did not lose its water via tidal heating, as orbital stability is unlikely for the high eccentricities required for the tidal greenhouse. As the inner edge of the HZ is defined by the onset of a runaway or moist greenhouse powered by radiation, our results represent a fundamental revision to the HZ for noncircular orbits. In the appendices we review (a) the moist and runaway greenhouses, (b) hydrogen escape, (c) stellar mass-radius and mass-luminosity relations, (d) terrestrial planet mass-radius relations, and (e) linear tidal theories.

  8. Conceptual Site Model for Newark Bay—Hydrodynamics and Sediment Transport

    Directory of Open Access Journals (Sweden)

    Parmeshwar L. Shrestha

    2014-02-01

    Full Text Available A conceptual site model (CSM has been developed for the Newark Bay Study Area (NBSA as part of the Remedial Investigation/Feasibility Study (RI/FS for this New Jersey site. The CSM is an evolving document that describes the influence of physical, chemical and biological processes on contaminant fate and transport. The CSM is initiated at the start of a project, updated during site activities, and used to inform sampling and remediation planning. This paper describes the hydrodynamic and sediment transport components of the CSM for the NBSA. Hydrodynamic processes are influenced by freshwater inflows, astronomical forcing through two tidal straits, meteorological conditions, and anthropogenic activities such as navigational dredging. Sediment dynamics are driven by hydrodynamics, waves, sediment loading from freshwater sources and the tidal straits, sediment size gradation, sediment bed properties, and particle-to-particle interactions. Cohesive sediment transport is governed by advection, dispersion, aggregation, settling, consolidation, and erosion. Noncohesive sediment transport is governed by advection, dispersion, settling, armoring, and transport in suspension and along the bed. The CSM will inform the development and application of a numerical model that accounts for all key variables to adequately describe the NBSA’s historical, current, and future physical conditions.

  9. Sediment characteristics at intertidal regions across Yarada beach, East coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Yadhunath, E.M.; Raju, N.S.N.; Ganesan, P.; Gowthaman, R.; JayaKumar, S.

    Sediment samples were collected once a month at five different inter-tidal zones across Yarada beach during May-2009 to May-2010 These sediments are characterized by bimodal and unimodal behaviour and most of them are sorted as moderately as well...

  10. Prey distribution, physical habitat features, and guild traits interact to produce contrasting shorebird assemblages among foraging patches.

    Directory of Open Access Journals (Sweden)

    Beth M VanDusen

    Full Text Available Worldwide declines in shorebird populations, driven largely by habitat loss and degradation, motivate environmental managers to preserve and restore the critical coastal habitats on which these birds depend. Effective habitat management requires an understanding of the factors that determine habitat use and value to shorebirds, extending from individuals to the entire community. While investigating the factors that influenced shorebird foraging distributions among neighboring intertidal sand flats, we built upon species-level understandings of individual-based, small-scale foraging decisions to develop more comprehensive guild- and community-level insights. We found that densities and community composition of foraging shorebirds varied substantially among elevations within some tidal flats and among five flats despite their proximity (all located within a 400-m stretch of natural, unmodified inlet shoreline. Non-dimensional multivariate analyses revealed that the changing composition of the shorebird community among flats and tidal elevations correlated significantly (ρ(s = 0.56 with the spatial structure of the benthic invertebrate prey community. Sediment grain-sizes affected shorebird community spatial patterns indirectly by influencing benthic macroinvertebrate community compositions. Furthermore, combining sediment and macroinvertebrate information produced a 27% increase in correlation (ρ(s = 0.71 with shorebird assemblage patterns over the correlation of the bird community with the macroinvertebrate community alone. Beyond its indirect effects acting through prey distributions, granulometry of the flats influenced shorebird foraging directly by modifying prey availability. Our study highlights the importance of habitat heterogeneity, showing that no single patch type was ideal for the entire shorebird community. Generally, shorebird density and diversity were greatest at lower elevations on flats when they became exposed; these

  11. Short-term tidal asymmetry inversion in a macrotidal estuary (Beira, Mozambique)

    Science.gov (United States)

    Nzualo, Teodósio N. M.; Gallo, Marcos N.; Vinzon, Susana B.

    2018-05-01

    observed. While fortnightly inversion in the tidal duration asymmetry is explained by the presence of channels and sandbanks, at the same time, the tidal velocity asymmetry acts as a positive feedback mechanism for bank formation and sediment retention.

  12. Prehospital tidal volume influences hospital tidal volume: A cohort study.

    Science.gov (United States)

    Stoltze, Andrew J; Wong, Terrence S; Harland, Karisa K; Ahmed, Azeemuddin; Fuller, Brian M; Mohr, Nicholas M

    2015-06-01

    The purposes of the study are to describe current practice of ventilation in a modern air medical system and to measure the association of ventilation strategy with subsequent ventilator care and acute respiratory distress syndrome (ARDS). Retrospective observational cohort study of intubated adult patients (n = 235) transported by a university-affiliated air medical transport service to a 711-bed tertiary academic center between July 2011 and May 2013. Low tidal volume ventilation was defined as tidal volumes less than or equal to 8 mL/kg predicted body weight. Multivariable regression was used to measure the association between prehospital tidal volume, hospital ventilation strategy, and ARDS. Most patients (57%) were ventilated solely with bag valve ventilation during transport. Mean tidal volume of mechanically ventilated patients was 8.6 mL/kg predicted body weight (SD, 0.2 mL/kg). Low tidal volume ventilation was used in 13% of patients. Patients receiving low tidal volume ventilation during air medical transport were more likely to receive low tidal volume ventilation in the emergency department (P tidal volume (P = .840). Low tidal volume ventilation was rare during air medical transport. Air transport ventilation strategy influenced subsequent ventilation but was not associated with ARDS. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Tidal Venuses: Triggering a Climate Catastrophe via Tidal Heating

    Science.gov (United States)

    Mullins, Kristina; Goldblatt, Colin; Meadows, Victoria S.; Kasting, James F.; Heller, René

    2013-01-01

    Abstract Traditionally, stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here, we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high-enough levels to induce a runaway greenhouse for a long-enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets “Tidal Venuses” and the phenomenon a “tidal greenhouse.” Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e., with negligible tidal heating) in the habitable zone (HZ). However, these planets are not habitable, as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulated the evolution of hypothetical planetary systems in a quasi-continuous parameter distribution and found that we could constrain the history of the system by statistical arguments. Planets orbiting stars with massestidal heating. We have applied these concepts to Gl 667C c, a ∼4.5 MEarth planet orbiting a 0.3 MSun star at 0.12 AU. We found that it probably did not lose its water via tidal heating, as orbital stability is unlikely for the high eccentricities required for the tidal greenhouse. As the inner edge of the HZ is defined by the onset of a runaway or moist greenhouse powered by radiation, our results represent a fundamental revision to the HZ for noncircular orbits. In the appendices we review (a) the moist and runaway greenhouses, (b) hydrogen escape, (c) stellar mass-radius and mass-luminosity relations, (d) terrestrial planet mass-radius relations, and (e) linear tidal theories. Key Words: Extrasolar terrestrial planets—Habitability—Habitable zone

  14. Multi-scale modeling of Puget Sound using an unstructured-grid coastal ocean model: from tide flats to estuaries and coastal waters

    International Nuclear Information System (INIS)

    Yang, Zhaoqing; Khangaonkar, Tarang

    2010-01-01

    Water circulation in Puget Sound, a large complex estuary system in the Pacific Northwest coastal ocean of the United States, is governed by multiple spatially and temporally varying forcings from tides, atmosphere (wind, heating/cooling, precipitation/evaporation, pressure), and river inflows. In addition, the hydrodynamic response is affected strongly by geomorphic features, such as fjord-like bathymetry and complex shoreline features, resulting in many distinguishing characteristics in its main and sub-basins. To better understand the details of circulation features in Puget Sound and to assist with proposed nearshore restoration actions for improving water quality and the ecological health of Puget Sound, a high-resolution (around 50 m in estuaries and tide flats) hydrodynamic model for the entire Puget Sound was needed. Here, a threedimensional circulation model of Puget Sound using an unstructured-grid finite volume coastal ocean model is presented. The model was constructed with sufficient resolution in the nearshore region to address the complex coastline, multi-tidal channels, and tide flats. Model open boundaries were extended to the entrance of the Strait of Juan de Fuca and the northern end of the Strait of Georgia to account for the influences of ocean water intrusion from the Strait of Juan de Fuca and the Fraser River plume from the Strait of Georgia, respectively. Comparisons of model results, observed data, and associated error statistics for tidal elevation, velocity, temperature, and salinity indicate that the model is capable of simulating the general circulation patterns on the scale of a large estuarine system as well as detailed hydrodynamics in the nearshore tide flats. Tidal characteristics, temperature/salinity stratification, mean circulation, and river plumes in estuaries with tide flats are discussed.

  15. Marine nutrient contributions to tidal creeks in Virginia: spawning marine fish as nutrient vectors to freshwater ecosystems

    Science.gov (United States)

    Macavoy, S. E.; Garman, G. C.

    2006-12-01

    Coastal freshwater streams are typically viewed as conduits for the transport of sediment and nutrients to the coasts. Some coastal streams however experience seasonal migrations of anadromous fish returning to the freshwater to spawn. The fish may be vectors for the delivery of marine nutrients to nutrient poor freshwater in the form of excreted waste and post-spawning carcasses. Nutrients derived from marine sources are 13C, 15N and 34S enriched relative to nutrients in freshwater. Here we examine sediment, particulate organic matter (POM), invertebrates and fish in two tidal freshwater tributaries of the James River USA. The d15N of POM became elevated (from 3.8 to 6.5%), coincident with the arrival of anadromous river herring (Alosa sp), indicating a pulse of marine nitrogen. However, the elevated 15N was not observed in sediment samples or among invertebrates, which did not experience a seasonal isotopic shift (there were significant differences however among the guilds of invertebrate). Anadromous Alosa aestivalis captured within the tidal freshwater were 13C and 34S enriched (-19.3 and 17.2%, respectively) relative to resident freshwater fishes (-26.4 and 3.6% respectively) captured within 2 weeks of the Alosa. Although it is likely that marine derived nitrogen was detected in the tidal freshwater, it was not in sufficient abundance to change the isotope signature of most ecosystem components.

  16. Ambient Noise in an Urbanized Tidal Channel

    Science.gov (United States)

    Bassett, Christopher

    In coastal environments, when topographic and bathymetric constrictions are combined with large tidal amplitudes, strong currents (> 2 m/s) can occur. Because such environments are relatively rare and difficult to study, until recently, they have received little attention from the scientific community. However, in recent years, interest in developing tidal hydrokinetic power projects in these environments has motivated studies to improve this understanding. In order to support an analysis of the acoustic effects of tidal power generation, a multi-year study was conducted at a proposed project site in Puget Sound (WA) are analyzed at a site where peak currents exceeded 3.5 m/s. From these analyses, three noise sources are shown to dominate the observed variability in ambient noise between 0.02-30 kHz: anthropogenic noise from vessel traffic, sediment-generated noise during periods of strong currents, and flow-noise resulting from turbulence advected over the hydrophones. To assess the contribution of vessel traffic noise, one calendar year of Automatic Identification System (AIS) ship-traffic data was paired with hydrophone recordings. The study region included inland waters of the Salish Sea within a 20 km radius of the hydrophone deployment site in northern Admiralty Inlet. The variability in spectra and hourly, daily, and monthly ambient noise statistics for unweighted broadband and M-weighted sound pressure levels is driven largely by vessel traffic. Within the one-year study period, at least one AIS transmitting vessel is present in the study area 90% of the time and over 1,363 unique vessels are recorded. A noise budget for vessels equipped with AIS transponders identifies cargo ships, tugs, and passenger vessels as the largest contributors to noise levels. A simple model to predict received levels at the site based on an incoherent summation of noise from different vessel types yields a cumulative probability density function of broadband sound pressure

  17. Tidal Dwarf Galaxies and Missing Baryons

    Directory of Open Access Journals (Sweden)

    Frederic Bournaud

    2010-01-01

    Full Text Available Tidal dwarf galaxies form during the interaction, collision, or merger of massive spiral galaxies. They can resemble “normal” dwarf galaxies in terms of mass, size, and become dwarf satellites orbiting around their massive progenitor. They nevertheless keep some signatures from their origin, making them interesting targets for cosmological studies. In particular, they should be free from dark matter from a spheroidal halo. Flat rotation curves and high dynamical masses may then indicate the presence of an unseen component, and constrain the properties of the “missing baryons,” known to exist but not directly observed. The number of dwarf galaxies in the Universe is another cosmological problem for which it is important to ascertain if tidal dwarf galaxies formed frequently at high redshift, when the merger rate was high, and many of them survived until today. In this paper, “dark matter” is used to refer to the nonbaryonic matter, mostly located in large dark halos, that is, CDM in the standard paradigm, and “missing baryons” or “dark baryons” is used to refer to the baryons known to exist but hardly observed at redshift zero, and are a baryonic dark component that is additional to “dark matter”.

  18. High resolution multibeam and hydrodynamic datasets of tidal channels and inlets of the Venice Lagoon

    Science.gov (United States)

    Madricardo, Fantina; Foglini, Federica; Kruss, Aleksandra; Ferrarin, Christian; Pizzeghello, Nicola Marco; Murri, Chiara; Rossi, Monica; Bajo, Marco; Bellafiore, Debora; Campiani, Elisabetta; Fogarin, Stefano; Grande, Valentina; Janowski, Lukasz; Keppel, Erica; Leidi, Elisa; Lorenzetti, Giuliano; Maicu, Francesco; Maselli, Vittorio; Mercorella, Alessandra; Montereale Gavazzi, Giacomo; Minuzzo, Tiziano; Pellegrini, Claudio; Petrizzo, Antonio; Prampolini, Mariacristina; Remia, Alessandro; Rizzetto, Federica; Rovere, Marzia; Sarretta, Alessandro; Sigovini, Marco; Sinapi, Luigi; Umgiesser, Georg; Trincardi, Fabio

    2017-09-01

    Tidal channels are crucial for the functioning of wetlands, though their morphological properties, which are relevant for seafloor habitats and flow, have been understudied so far. Here, we release a dataset composed of Digital Terrain Models (DTMs) extracted from a total of 2,500 linear kilometres of high-resolution multibeam echosounder (MBES) data collected in 2013 covering the entire network of tidal channels and inlets of the Venice Lagoon, Italy. The dataset comprises also the backscatter (BS) data, which reflect the acoustic properties of the seafloor, and the tidal current fields simulated by means of a high-resolution three-dimensional unstructured hydrodynamic model. The DTMs and the current fields help define how morphological and benthic properties of tidal channels are affected by the action of currents. These data are of potential broad interest not only to geomorphologists, oceanographers and ecologists studying the morphology, hydrodynamics, sediment transport and benthic habitats of tidal environments, but also to coastal engineers and stakeholders for cost-effective monitoring and sustainable management of this peculiar shallow coastal system.

  19. Evolution of coastal and marine environments during the Holocene transgression. Ría de Vigo (Galicia, Spain).

    Science.gov (United States)

    Clemente, F.; Pérez-Arlucea, M.; Méndez, G.; Francés, G.; Alejo, I.; González, D.; Nombela, M.

    2003-04-01

    Coastal deposits are not prominent in the Ria de Vigo, high cliffs dominate the coast line, but several well-preserved sedimentary areas are observed. Beach and aeolian sand dunes are preserved in protected bays along margins between low cliffs, as Playa America, Patos and Samil. Several rivers form prominent estuaries such as the Verdugo-Oitaven, the Minor and the Lagares. Tidal flats are well preserved in the San Simon embayment and small areas of tidal flats and marshes can be found elsewhere associated with estuaries and protected by sandy spits as the Ramallosa tidal Complex, Moaña and San Simón. Four sedimentary areas were selected to study vertical sediment distribution. 6 cores were obtained. Sediment thicknesses range between 4.0m and 26.0 m. Vertical sediment distributions show 6 different lithologic units from basal fluvial (A), estuarine (B), tidal flat and peat fens (C), muddy subtidal bay (D), estuarine (E) and beach barrier (F). 10 14C age determinations were obtained from the longest core (Ladeira N) located at the Ramallosa beach barrier-lagoon complex. The oldest sample located at 22 m yields an age of 8177 y. BP in unit (B) allowing to constrain most of sediment evolution in the holocene transgressive context. The lower unit (A) composed mainly of fluvial gravels, and deposited in a palaeovalley, is attributed to the Younger Dryas although the LST could be also represented in these deposits. Units B, C and D configure the TST showing an initial rapid increase in water depth at 8177 y. BP and subsequent shallowing conditions due to progressive aggradation until 4809 y BP. Units E and F mark the HST eustatic stage being characterised by progradational shallow marine conditions and beach barrier progressive enclosing of the complex. Sedimentation rates were calculated at 7 intervals. An upward decrease is observed from 8177 y BP to 2001 y. BP, followed by a strong sudden increase, mostly in the last 500 years. Hydrology and geomorphology of river

  20. Organisation of microbenthic communities in intertidal estuarine flats, a case study from the Molenplaat (Westerschelde estuary, The Netherlands)

    NARCIS (Netherlands)

    Hamels, I.; Sabbe, K.; Muylaert, K.; Barranguet, C.; Lucas, C.M.; Herman, P.M.J.; Vyverman, W.

    1998-01-01

    The microbenthic communities of a tidal flat in the Westerschelde estuary were studied at 4 stations in late spring and early autumn 1996. Additional information on the diatom component of these communities was obtained from a one-year survey of these organisms. Total biomass of pigmented (PIG)

  1. Avian communities in tidal salt marshes of San Francisco Bay: a review of functional groups by foraging guild and habitat association

    Science.gov (United States)

    Takekawa, John Y.; Woo, Isa; Gardiner, Rachel J.; Casazza, Michael L.; Ackerman, Joshua T.; Nur, Nadav; Liu, Leonard; Spautz, Hildie; Palaima, Arnas

    2011-01-01

    The San Francisco Bay estuary is highly urbanized, but it supports the largest remaining extent of tidal salt marshes on the west coast of North America as well as a diverse native bird community. San Francisco Bay tidal marshes are occupied by more than 113 bird species that represent 31 families, including five subspecies from three families that we denote as tidal-marsh obligates. To better identify the niche of bird species in tidal marshes, we present a review of functional groups based on foraging guilds and habitat associations. Foraging guilds describe the method by which species obtain food from tidal marshes, while habitat associations describe broad areas within the marsh that have similar environmental conditions. For example, the ubiquitous song sparrows (Alameda Melospiza melodia pusillula, Suisun M. m. maxillaris, and San Pablo M. m. samuelis) are surface-feeding generalists that consume prey from vegetation and the ground, and they are found across the entire marsh plain into the upland–marsh transition. In contrast, surface-feeding California black rails (Laterallus jamaicensis coturniculus) are cryptic, and generally restricted in their distribution to the mid- and high-marsh plain. Although in the same family, the endangered California clapper rail (Rallus longirostris obsoletus) has become highly specialized, foraging primarily on benthic fauna within marsh channels when they are exposed at low tide. Shorebirds such as the black-necked stilt (Himantopus mexicanus) typically probe in mud flats to consume macroinvertebrate prey, and are generally restricted to foraging on salt pans within the marsh plain, in ponds, or on mud flats during transitional stages of marsh evolution. The abundance and distribution of birds varies widely with changing water depths and vegetation colonization during different stages of restoration. Thus, tidal-marsh birds represent a rich and diverse community in bay marshes, with niches that may be distinguished by the

  2. A new depositional model for sand-rich loess on the Buckley Flats outwash plain, northwestern Lower Michigan

    Science.gov (United States)

    Nyland, Kelsey E.; Schaetzl, Randall J.; Ignatov, Anthony; Miller, Bradley A.

    2018-04-01

    Loess was first studied in Michigan on the Buckley Flats, where outwash, overlain by ≈70 cm of loamy sediment, was originally interpreted as loess mixed with underlying sands. This paper re-evaluates this landscape through a spatial analysis of data from auger samples and soil pits. To better estimate the loamy sediment's initial textures, we utilized "filtered" laser diffraction data, which remove much of the coarser sand data. Textures of filtered silt data for the loamy sediment are similar to loess. The siltiest soils are found in the low-relief, central part of the Flats. Spatial analyses revealed that many silt fractions are nearly uniformly distributed, suggesting that the loess was not derived from a single source. The previous depositional model for the loamy mantle relied on loessfall followed by pedoturbation, but does not explain (1) the variation in sand contents across the Flats, or (2) the abrupt contact below the loamy mantle. This contact suggests that the outwash was frozen when the sediments above were deposited. Deep gullies at the western margins of the Flats were likely cut as permafrost facilitated runoff. Our new model for the origin of the loamy mantle suggests that the sands on the uplands were generated from eroding gullies and saltated onto the uplands along with loess that fell more widely. Sands saltating to the west of the Flats may have entrained some silts, facilitating loessfall downwind. At most sites, the loamy mantle gets increasingly silty near the surface, suggesting that saltation ended before loess deposition.

  3. Design of a quasi-flat linear permanent magnet generator for pico-scale wave energy converter in south coast of Yogyakarta, Indonesia

    Science.gov (United States)

    Azhari, Budi; Prawinnetou, Wassy; Hutama, Dewangga Adhyaksa

    2017-03-01

    Indonesia has several potential ocean energies to utilize. One of them is tidal wave energy, which the potential is about 49 GW. To convert the tidal wave energy to electricity, linear permanent magnet generator (LPMG) is considered as the best appliance. In this paper, a pico-scale tidal wave power converter was designed using quasi-flat LPMG. The generator was meant to be applied in southern coast of Yogyakarta, Indonesia and was expected to generate 1 kW output. First, a quasi-flat LPMG was designed based on the expected output power and the wave characteristic at the placement site. The design was then simulated using finite element software of FEMM. Finally, the output values were calculated and the output characteristics were analyzed. The results showed that the designed power plant was able to produce output power of 725.78 Wp for each phase, with electrical efficiency of 64.5%. The output characteristics of the LPMG: output power would increase as the average wave height or wave period increases. Besides, the efficiency would increase if the external load resistance increases. Meanwhile the output power of the generator would be maximum at load resistance equals 11 Ω.

  4. An inversion of the estuarine circulation by sluice water discharge and its impact on suspended sediment transport

    Science.gov (United States)

    Schulz, Kirstin; Gerkema, Theo

    2018-01-01

    The Wadden Sea is characterized by a complex topography of branching channels and intertidal flats, in which the interplay between fresh water discharges, wind forcing and the tidal current causes sediment transport rates and direction to be highly variable in space and time. During three field campaigns, indications of a negative estuarine circulation have been found in a channel adjacent to the coast in the Western Dutch Wadden Sea. Contrary to the classical picture of estuarine circulation, a periodic density stratification was observed that builds up during flood and breaks down during ebb. This can be related to a large freshwater source at the mouth of the channel, the sluice in Kornwerderzand. In this study, observations of this phenomenon are presented, and with the help of a numerical model the different drivers for residual suspended matter transport in this area, namely tidal asymmetries in the current velocity and the above mentioned periodic stratification, are investigated. It is found that the residual current in the area of interest points in ebb direction, caused by both the elongated ebb flow phase and the periodic stratification. On the contrary, the stronger flood currents cause a transport of suspended matter in flood direction. This transport is counteracted and therefore diminished by the effects of the sluice discharge.

  5. Physical and Biological Regulation of Carbon Sequestration in Tidal Marshes

    Science.gov (United States)

    Morris, J. T.; Callaway, J.

    2017-12-01

    The rate of carbon sequestration in tidal marshes is regulated by complex feedbacks among biological and physical factors including the rate of sea-level rise (SLR), biomass production, tidal amplitude, and the concentration of suspended sediment. We used the Marsh Equilibrium Model (MEM) to explore the effects on C-sequestration across a wide range of permutations of these variables. C-sequestration increased with the rate of SLR to a maximum, then down to a vanishing point at higher SLR when marshes convert to mudflats. An acceleration in SLR will increase C-sequestration in marshes that can keep pace, but at high rates of SLR this is only possible with high biomass and suspended sediment concentrations. We found that there were no feasible solutions at SLR >13 mm/yr for permutations of variables that characterize the great majority of tidal marshes, i.e., the equilibrium elevation exists below the lower vertical limit for survival of marsh vegetation. The rate of SLR resulting in maximum C-sequestration varies with biomass production. C-sequestration rates at SLR=1 mm/yr averaged only 36 g C m-2 yr-1, but at the highest maximum biomass tested (5000 g/m2) the mean C-sequestration reached 399 g C m-2 yr-1 at SLR = 14 mm/yr. The empirical estimate of C-sequestration in a core dated 50-years overestimates the theoretical long-term rate by 34% for realistic values of decomposition rate and belowground production. The overestimate of the empirical method arises from the live and decaying biomass contained within the carbon inventory above the marker horizon, and overestimates were even greater for shorter surface cores.

  6. Terrigenous sediment provenance from geochemical tracers, south Molokai reef flat, Hawaii

    Science.gov (United States)

    Takesue, R.K.

    2010-01-01

    Land-derived runoff is one of the greatest threats to coral-reef health. Identification of runoff sources is an important step in erosion mitigation efforts. A geochemical sediment provenance study was done in uplands and across the adjacent fringing reef on the southeast shore of Molokai, Hawaii, to determine whether sediment runoff originated from hillsides or gulches. Source-region identification was based on geochemical differences between alkalic basalt, which outcrops on hillsides, and tholeiitic basalt, which outcrops in gulches. In Kawela watershed, copper to iron ratios (Cu/Fe) were distinct in hillside soil versus gulch sediment and suggest that hillside erosion is the predominant mechanism of sediment delivery to the nearshore. This suggests that runoff-mitigation efforts should take steps to reduce hillside erosion. Cadmium to thorium ratios (Cd/Th) in nearshore sediment suggest that there is a high-Cd source of runoff east of Kamalo Gulch. This compositional difference is consistent with the predominance of tholeiitic basalt on the eastern end of Molokai.

  7. Artificial Crab Burrows Facilitate Desalting of Rooted Mangrove Sediment in a Microcosm Study

    Directory of Open Access Journals (Sweden)

    Nathalie Pülmanns

    2015-07-01

    Full Text Available Water uptake by mangrove trees can result in salt accumulation in sediment around roots, negatively influencing growth. Tidal pumping facilitates salt release and can be enhanced by crab burrows. Similarly, flushing of burrows by incoming tidal water decreases sediment salinity. In contrast to burrows with multiple entrances, the role of burrows with one opening for salinity reduction is largely unknown. In a microcosm experiment we studied the effect of artificial, burrow-like macro-pores with one opening on the desalting of mangrove sediment and growth of Rhizophora mangle L. seedlings. Sediment salinity, seedling leaf area and seedling growth were monitored over six months. Artificial burrows facilitated salt release from the sediment after six weeks, but seedling growth was not influenced. To test whether crab burrows with one opening facilitate salt release in mangrove forests, sediment salinities were measured in areas with and without R. mangle stilt roots in North Brazil at the beginning and end of the wet season. In addition, burrows of Ucides cordatus were counted. High crab burrow densities and sediment salinities were associated with stilt root occurrence. Precipitation and salt accumulation by tree roots seem to have a larger effect on sediment salinity than desalting by U. cordatus burrows.

  8. Residual flow patterns and morphological changes along a macro- and meso-tidal coastline

    Science.gov (United States)

    Leonardi, Nicoletta; Plater, Andrew James

    2017-11-01

    The hydrodynamic and residual transport patterns arising from oscillating tidal motion have important consequences for the transport of sediments, and for the evolution of the shoreline, especially under macro- and meso-tidal conditions. For many locations there are significant uncertainties about residual currents and sediment transport characteristics, and their possible influence on the morphological evolution of the coastline and on the character of the bed. Herein we use the coastline of SE England as a test case to investigate possible changes in residual currents, and residual transport patterns from neap to spring tide, the reciprocal interaction between residuals and the character of the bed, and the morphological evolution of the coastline at a century timescale. We found that in the long term the morphology of the system evolves toward a dynamic equilibrium configuration characterized by smaller, and spatially constant residual transport patterns. While the spatial distribution of residual currents maintains a similar trend during both neap and spring tide, during spring tide and for large areas residual currents switch between northerly and southerly directions, and their magnitude is doubled. Residual eddies develop in regions characterized by the presence of sand bars due to the interaction of the tide with the varying topography. Residual transport patterns are also computed for various sediment fractions, and based on the hydrodynamics and sediment availability at the bottom. We found that the distribution of sediments on the bed is significantly correlated with the intensity of residuals. Finally, the majority of long-term morphological changes tend to develop or augment sand banks features, with an increase in elevation and steepening of the bank contours.

  9. Residual flow and tidal asymmetry in the Singapore Strait, with implications for resuspension and residual transport of sediment

    NARCIS (Netherlands)

    Van Maren, D.S.; Gerritsen, H.

    2012-01-01

    The Singapore Strait connects the South China Sea, where tides are dominantly diurnal, to the dominantly semidiurnal Indian Ocean. At this transition, the tidal water level oscillations are observed to be semidiurnal while the tidal current oscillations are mixed, diurnal to fully diurnal. Due to

  10. Molluscan assemblages of seagrass-covered and bare intertidal flats on the Banc d'Arguin, Mauritania, in relation to characteristics of sediment and organic matter

    Science.gov (United States)

    Honkoop, Pieter J. C.; Berghuis, Eilke M.; Holthuijsen, Sander; Lavaleye, Marc S. S.; Piersma, Theunis

    2008-11-01

    The Banc d'Arguin, a non-estuarine area of shallows and intertidal flats off the tropical Saharan coast of Mauritania, is characterised by extensive intertidal and subtidal seagrass beds. We examined the characteristics of intertidal seagrass ( Zostera noltii) meadows and bare areas in terms of the presence and abundance of molluscs (gastropods and bivalves). To explain observed differences between molluscan assemblages in seagrass and bare patches, some aspects of the feeding habitat (top-5 mm of the sediment) and of food (organic materials) of molluscs were examined. The novelty of this study is that phytopigments were measured and identified to assess source and level of decay (freshness) of organic material in the sediment and to study their importance as an explanatory variable for the distribution of molluscs. Over an area of 36 km 2 of intertidal flats, at 12 sites, paired comparisons were made between seagrass-covered and nearby bare patches. Within seagrass meadows, dry mass of living seagrass was large and amounted to 180 ±10 g AFDM m - 2 (range 75-240). Containing twice the amount of silt per unit dry sediment mass, seagrass sediments were muddier than bare areas; the relative amount of organic material was also larger. The total number of species of bivalves and gastropods amounted to 27, 14 of which were found only in seagrass areas, 4 only in bare and 9 in both types of habitat. Among the three numerically most abundant species, the bivalves Anadara senilis, Dosinia hepatica and Loripes lacteus, the first was numerically most abundant in bare and the other two in seagrass-covered areas. Bare intertidal areas had greater mean total biomass of molluscs (80.5 g AFDM m - 2 ) than seagrass meadows (30.0 g AFDM m - 2 ). In both habitats, the bulk of the biomass was made up by A. senilis. Excluding this species, bare mudflats contained on average only 3.1 g AFDM m - 2 and seagrass meadows 6.9 g AFDM m - 2 . As compared to previous surveys in 1980-1986, the

  11. Suspended sediment load in the tidal zone of an Indonesian River

    NARCIS (Netherlands)

    Buschman, F.A.; Hoitink, A.J.F.; Jong, S.M. de; Hoekstra, P.; Hidayat, H.; Sassi, M. G.

    2012-01-01

    Forest clearing for reasons of timber production, open pit mining and the establishment of oil palm plantations generally results in excessively high sediment loads in tropical rivers. The increasing sediment loads pose a threat to coastal marine ecosystems, such as coral reefs. This

  12. Tidal radiation

    International Nuclear Information System (INIS)

    Mashhoon, B.

    1977-01-01

    The general theory of tides is developed within the framework of Einstein's theory of gravitation. It is based on the concept of Fermi frame and the associated notion of tidal frame along an open curve in spacetime. Following the previous work of the author an approximate scheme for the evaluation of tidal gravitational radiation is presented which is valid for weak gravitational fields. The emission of gravitational radiation from a body in the field of a black hole is discussed, and for some cases of astrophysical interest estimates are given for the contributions of radiation due to center-of-mass motion, purely tidal deformation, and the interference between the center of mass and tidal motions

  13. Suspended sediment load in the tidal zone of an Indonesian river

    NARCIS (Netherlands)

    Buschman, F. A.; Hoitink, A. J. F.; de Jong, S. M.; Hoekstra, P.; Hidayat, H.; Sassi, M. G.

    2012-01-01

    Forest clearing for reasons of timber production, open pit mining and the establishment of oil palm plantations generally results in excessively high sediment loads in tropical rivers. The increasing sediment loads pose a threat to coastal marine ecosystems, such as coral reefs. This study presents

  14. Morphology and Sediment Dynamics of the East Friesian Tidal Inlets, West Germany.

    Science.gov (United States)

    1982-01-01

    by three major environmental factors: (1) the tide range, (2) the nearshore wave energy, and (3) the geometry of the hack -barrier hav. Both...ASg .147 Ebb a A~ ps4 . 0.1 Fig. 15(a) and (b). For legend see opposite. 18 t7 7d 7’AI 3LI EBBTIALDELA ARI- HNE Juy1 .17 EBBW TIDAL DELTA MARINCHNL j

  15. Tides and tidal currents

    NARCIS (Netherlands)

    Roos, A.

    1997-01-01

    Basic phenomena, origin and generation of tides, analysis and prediction of tides, basic equation and types of long waves in one dimension, tidal propagation in one dimension, tidal propagation in two directions, analytical tidal computation, numerical tidal computation.

  16. Modeled CO2 Emissions from Coastal Wetland Transitions to Other Land Uses: Tidal Marshes, Mangrove Forests, and Seagrass Beds

    Directory of Open Access Journals (Sweden)

    Catherine E. Lovelock

    2017-05-01

    Full Text Available The sediments of coastal wetlands contain large stores of carbon which are vulnerable to oxidation once disturbed, resulting in high levels of CO2 emissions that may be avoided if coastal ecosystems are conserved or restored. We used a simple model to estimate CO2 emissions from mangrove forests, seagrass beds, and tidal marshes based on known decomposition rates for organic matter in these ecosystems under either oxic or anoxic conditions combined with assumptions of the proportion of sediment carbon being deposited in either oxic or anoxic environments following a disturbance of the habitat. Our model found that over 40 years after disturbance the cumulative CO2 emitted from tidal marshes, mangrove forests, and seagrass beds were ~70–80% of the initial carbon stocks in the top meter of the sediment. Comparison of our estimates of CO2 emissions with empirical studies suggests that (1 assuming 50% of organic material moves to an oxic environment after disturbance gives rise to estimates that are similar to CO2 emissions reported for tidal marshes; (2 field measurements of CO2 emissions in disturbed mangrove forests were generally higher than our modeled emissions that assumed 50% of organic matter was deposited in oxic conditions, suggesting higher proportions of organic matter may be exposed to oxic conditions after disturbance in mangrove ecosystems; and (3 the generally low observed rates of CO2 emissions from disturbed seagrasses compared to our estimates, assuming removal of 50% of the organic matter to oxic environments, suggests that lower proportions may be exposed to oxic conditions in seagrass ecosystems. There are significant gaps in our knowledge of the fate of wetland sediment carbon in the marine environment after disturbance. Greater knowledge of the distribution, form, decomposition, and emission rates of wetland sediment carbon after disturbance would help to improve models.

  17. Simulation of suspended sediment transport initialized with satellite ...

    Indian Academy of Sciences (India)

    Sediment dynamics like deposition, erosion and dispersion are explained with the simu- lated tidal currents and .... P and q=the flux in the x and y directions, respec- tively, h=water ..... Babu K S, Dwarakish G S and Jayakumar S 2003 Model-.

  18. Sensitivity and spin-up times of cohesive sediment transport models used to simulate bathymetric change: Chapter 31

    Science.gov (United States)

    Schoellhamer, D.H.; Ganju, N.K.; Mineart, P.R.; Lionberger, M.A.; Kusuda, T.; Yamanishi, H.; Spearman, J.; Gailani, J. Z.

    2008-01-01

    Bathymetric change in tidal environments is modulated by watershed sediment yield, hydrodynamic processes, benthic composition, and anthropogenic activities. These multiple forcings combine to complicate simple prediction of bathymetric change; therefore, numerical models are necessary to simulate sediment transport. Errors arise from these simulations, due to inaccurate initial conditions and model parameters. We investigated the response of bathymetric change to initial conditions and model parameters with a simplified zero-dimensional cohesive sediment transport model, a two-dimensional hydrodynamic/sediment transport model, and a tidally averaged box model. The zero-dimensional model consists of a well-mixed control volume subjected to a semidiurnal tide, with a cohesive sediment bed. Typical cohesive sediment parameters were utilized for both the bed and suspended sediment. The model was run until equilibrium in terms of bathymetric change was reached, where equilibrium is defined as less than the rate of sea level rise in San Francisco Bay (2.17 mm/year). Using this state as the initial condition, model parameters were perturbed 10% to favor deposition, and the model was resumed. Perturbed parameters included, but were not limited to, maximum tidal current, erosion rate constant, and critical shear stress for erosion. Bathymetric change was most sensitive to maximum tidal current, with a 10% perturbation resulting in an additional 1.4 m of deposition over 10 years. Re-establishing equilibrium in this model required 14 years. The next most sensitive parameter was the critical shear stress for erosion; when increased 10%, an additional 0.56 m of sediment was deposited and 13 years were required to re-establish equilibrium. The two-dimensional hydrodynamic/sediment transport model was calibrated to suspended-sediment concentration, and despite robust solution of hydrodynamic conditions it was unable to accurately hindcast bathymetric change. The tidally averaged

  19. Deformation of textural characteristics and sedimentology along micro-tidal estuarine beaches

    Digital Repository Service at National Institute of Oceanography (India)

    Dora, G.U.; SanilKumar, V.; Philip, C.S.; Johnson, G.

    Indian Journal of Geo Marine Sciences Vol. 45 (11), November 2016, pp. 1432-1444 *Corresponding author Deformation of textural characteristics and sedimentology along micro- tidal estuarine beaches G. Udhaba Dora, V. Sanil Kumar*, C... sediment is a foremost parameter for a coastal researcher/engineer/designer due to its various applications for sorting out a coastal environment. Sedimentary process at foreshore zone is a highly dynamical whereas textural characteristics...

  20. Radionuclides and trace elements in middle Chesapeake Bay sediments

    International Nuclear Information System (INIS)

    Gavrilas, M.

    1988-01-01

    Sediments play an important role in aquatic ecology by serving as a repository for radioactive substances and for soluble chemical pollutants that they may transport over considerable distances and may pass to a higher trophic level by way of bottom-feeding biota. The Chesapeake Bay is a moderately stratified, drowned river valley estuary. The oscillatory flood and ebb of the tidal currents are the most obvious motions in the bay and its tributary estuaries. It is considered that the distribution of most of the pollutants, once diluted by the mixing action of the tidal flow, remains relatively constant for many miles up and down the bay. This paper documents the present status of the radioactivity and of trace elements in sediment samples collected in March 1986 from and extended area around the Calvert Cliffs Nuclear Power Plant

  1. Residual fluxes and suspended sediment transport in the lower reaches of Muvattupuzha River, southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Revichandran, C.; Balachandran, K.K.; Xavier, J.K.; Rejendran, N.C.

    Spatial and seasonal variation of different physical processes governing the transport of salt and sediment of the Muvattupuzha River, in Kerala, India are discussed. Salt and suspended sediment due to tidal pumping was directed upstream, salt...

  2. Reprint of Mechanisms of maintaining high suspended sediment concentration over tide-dominated offshore shoals in the southern Yellow Sea

    Science.gov (United States)

    Xiong, Jilian; Wang, Xiao Hua; Wang, Ya Ping; Chen, Jingdong; Shi, Benwei; Gao, Jianhua; Yang, Yang; Yu, Qian; Li, Mingliang; Yang, Lei; Gong, Xulong

    2018-06-01

    An understanding of the dynamics and behaviors of suspended sediments is vital in analysis of morphological, environmental, and ecological processes occurring in coastal marine environments. To study the mechanisms of maintaining high suspended sediment concentrations (SSCs) on a tide-dominated offshore shoal, we measured water depths, current velocities, SSCs, wave parameters and bottom sediment compositions in the southern Yellow Sea. These data were then used to calculate bottom shear stresses generated by currents (τc), waves (τw), and wave-current interactions (τcw). SSCs time series exhibited strong quarter-diurnal peaks during spring tides, in contrast to the semidiurnal signal during neap tides. A Fourier analysis showed that suspended sediment variations within tidal cycles was mainly controlled by resuspension in most stations. There existed relatively stable background SSCs (maintaining high SSCs among tidal cycles) values at all four stations during both windy (wind speed > 9.0 m/s) and normal weather conditions (wind speed value of 0.21 N/m2. On account of the strong tidal currents, background SSCs of spring tides were greater than that of neap tides. In addition, on the base of wavelet, statistics analyses and turbulence dissipation parameter, background SSCs during slack tide in the study area may be maintained by intermittent turbulence events induced by a combined tidal current and wave action.

  3. On the timing of foraging flights by oystercatchers, haematopus ostralegus, on tidal mudflats

    Science.gov (United States)

    Daan, Serge; Koene, Paul

    The tidal movements of flocks of oystercatchers foraging on mudflats at low tide and roosting inland behind a dike at high tide were studied and the effects of day-to-day variations in the time of mudflat exposure by ebb analysed. High mean water levels and short low tides led to reduced intake during low water due to increased bird densities in addition to temporal constraints (Fig. 4). Increased feeding around the roost apparently compensated for some of the reduced intake (Figs 6 ad 7) although accurate intake measurements could be made for foraging on the tidal flats only. It is argued that optimal timing of foraging flights to coincide with exposure of the mussel banks would contribute to exploitation of this tidal food source. The median departure time from the roosts relative to the time of mudflat exposure was early on days when the tide went out late and late when the tide was early (Figs 8 and 9). Daily variations in departure time were predicted by the daily variations in tabulated high water times, but not by variations in mudflat exposure or coverage (Fig. 10). The conclusion is drawn that the birds employ a timing mechanism not directly associated with the tidal water movements. In some pilot experiments in caged oystercatchers, feeding schedules elicitated feeling attempts in anticipation of expected food. The anticipatory patterns were different for fixed and tidally shifting daily food schedules, and moreover differed between the two feeding times per day (Figs 12 and 13). Five possible mechanisms for tidal anticipation are discussed, making use either of unknown exogenous cues, or of—likewise unknown—endogenous timers of hourglass type of rhythmic with circatidal, circalunadian or circadian period. Experimental tests for these possibilities are outlined.

  4. Middle Triassic chirotherid trackways on earthquake influenced intertidal limulid reproduction flats of the European Germanic Basin coasts

    Science.gov (United States)

    Diedrich, Cajus G.

    2012-09-01

    Chirotherid footprints of Synaptichnium, Chirotherium and Isochirotherium appeared during the late Early (Aegean) to early Late (Carnian) Triassic in central Europe. These taxa are partly revised herein, using both perfect and variably preserved tracks, and very long trackways from an upper Pelsonian intertidal-flat megatracksite of the Germanic Basin coast Pelsonian (Karlstadt Formation). The global Middle Triassic distribution of those footprints suggests seasonal migrations across Pangaea of possible archosauriform reptile trackmakers, such as Euparkeria, Ticinosuchus, Arizonasaurus and Batrachotomus, caused by horseshoe-crab mass migrations into tidal-flat beach reproductive zones in the Germanic Basin. Such seasonal migrations may even suggest a Pangaea-wide food-chain reaction, possibly including the mobilization of fish, marine and terrestrial reptiles, and of which situation the Germanic Basin intertidal-flats is a globally unique example.

  5. Difference in diaphragmatic motion during tidal breathing in a standing position between COPD patients and normal subjects: Time-resolved quantitative evaluation using dynamic chest radiography with flat panel detector system (“dynamic X-ray phrenicography”)

    International Nuclear Information System (INIS)

    Yamada, Yoshitake; Ueyama, Masako; Abe, Takehiko; Araki, Tetsuro; Abe, Takayuki; Nishino, Mizuki; Jinzaki, Masahiro; Hatabu, Hiroto

    2017-01-01

    Highlights: • Dynamic X-ray phrenicography is a useful method for the evaluation of the diaphragms. • Its radiation dose is comparable to conventional two projection chest radiography. • Diaphragm motion during tidal breathing is larger in COPD than in normal subjects. • Higher BMI is also associated with increased excursions of the bilateral diaphragm. - Abstract: Objectives: To quantitatively compare diaphragmatic motion during tidal breathing in a standing position between chronic obstructive pulmonary disease (COPD) patients and normal subjects using dynamic chest radiography. Materials and methods: Thirty-nine COPD patients (35 males; age, 71.3 ± 8.4 years) and 47 normal subjects (non-smoker healthy volunteers) (20 males; age, 54.8 ± 9.8 years) underwent sequential chest radiographs during tidal breathing using dynamic chest radiography with a flat panel detector system. We evaluated the excursions and peak motion speeds of the diaphragms. The results were analyzed using an unpaired t-test and a multiple linear regression model. Results: The excursions of the diaphragms in COPD patients were significantly larger than those in normal subjects (right, 14.7 ± 5.5 mm vs. 10.2 ± 3.7 mm, respectively, P < 0.001; left, 17.2 ± 4.9 mm vs. 14.9 ± 4.2 mm, respectively, P = 0.022). Peak motion speeds in inspiratory phase were significantly faster in COPD patients compared to normal subjects (right, 16.3 ± 5.0 mm/s vs. 11.8 ± 4.2 mm/s, respectively, P < 0.001; left, 18.9 ± 4.9 mm/s vs. 16.7 ± 4.0 mm/s, respectively, P = 0.022). The multivariate analysis demonstrated that having COPD and higher body mass index were independently associated with increased excursions of the bilateral diaphragm (all P < 0.05), after adjusting for other clinical variables. Conclusions: Time-resolved quantitative evaluation of the diaphragm using dynamic chest radiography demonstrated that the diaphragmatic motion during tidal breathing in a standing position is larger and

  6. Difference in diaphragmatic motion during tidal breathing in a standing position between COPD patients and normal subjects: Time-resolved quantitative evaluation using dynamic chest radiography with flat panel detector system (“dynamic X-ray phrenicography”)

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yoshitake, E-mail: yamada@rad.med.keio.ac.jp [Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02215 (United States); Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Ueyama, Masako, E-mail: ueyamam@fukujuji.org [Department of Health Care, Fukujuji Hospital, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8522 (Japan); Abe, Takehiko, E-mail: takehikoabe@hotmail.com [Department of Radiology, Fukujuji Hospital, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8522 (Japan); Araki, Tetsuro, E-mail: TARAKI@partners.org [Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02215 (United States); Abe, Takayuki, E-mail: abe.t@keio.jp [Department of Preventive Medicine and Public Health, Biostatistics Unit at Clinical and Translational Research Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Nishino, Mizuki, E-mail: Mizuki_Nishino11@dfci.harvard.edu [Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02215 (United States); Jinzaki, Masahiro, E-mail: jinzaki@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Hatabu, Hiroto, E-mail: hhatabu@partners.org [Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02215 (United States); and others

    2017-02-15

    Highlights: • Dynamic X-ray phrenicography is a useful method for the evaluation of the diaphragms. • Its radiation dose is comparable to conventional two projection chest radiography. • Diaphragm motion during tidal breathing is larger in COPD than in normal subjects. • Higher BMI is also associated with increased excursions of the bilateral diaphragm. - Abstract: Objectives: To quantitatively compare diaphragmatic motion during tidal breathing in a standing position between chronic obstructive pulmonary disease (COPD) patients and normal subjects using dynamic chest radiography. Materials and methods: Thirty-nine COPD patients (35 males; age, 71.3 ± 8.4 years) and 47 normal subjects (non-smoker healthy volunteers) (20 males; age, 54.8 ± 9.8 years) underwent sequential chest radiographs during tidal breathing using dynamic chest radiography with a flat panel detector system. We evaluated the excursions and peak motion speeds of the diaphragms. The results were analyzed using an unpaired t-test and a multiple linear regression model. Results: The excursions of the diaphragms in COPD patients were significantly larger than those in normal subjects (right, 14.7 ± 5.5 mm vs. 10.2 ± 3.7 mm, respectively, P < 0.001; left, 17.2 ± 4.9 mm vs. 14.9 ± 4.2 mm, respectively, P = 0.022). Peak motion speeds in inspiratory phase were significantly faster in COPD patients compared to normal subjects (right, 16.3 ± 5.0 mm/s vs. 11.8 ± 4.2 mm/s, respectively, P < 0.001; left, 18.9 ± 4.9 mm/s vs. 16.7 ± 4.0 mm/s, respectively, P = 0.022). The multivariate analysis demonstrated that having COPD and higher body mass index were independently associated with increased excursions of the bilateral diaphragm (all P < 0.05), after adjusting for other clinical variables. Conclusions: Time-resolved quantitative evaluation of the diaphragm using dynamic chest radiography demonstrated that the diaphragmatic motion during tidal breathing in a standing position is larger and

  7. Organic carbon burial in a mangrove forest, margin and intertidal mud flat

    Science.gov (United States)

    Sanders, Christian J.; Smoak, Joseph M.; Naidu, A. Sathy; Sanders, Luciana M.; Patchineelam, Sambasiva R.

    2010-12-01

    The flux of total organic carbon (TOC) to depositional facies (intertidal mud flat, margin and forest) was quantified for a tropical mangrove forest in Brazil. Results indicate that these mangrove margins and intertidal mudflats are sites of large TOC accumulation, almost four times greater than the global averages for mangrove forests. The TOC burial rates were determined from organic carbon content in sediment cores which were dated using 210Pb. Burial rates were calculated to be 1129, 949, and 353 (g m -2 yr -1), for the mud flat, margin and forest, respectively. Sediment accumulation rates (SAR) were estimated to be 7.3, 5.0 and 2.8 mm yr -1. Sediment characterization (δ 13C, δ 15N, TOC/TN and mud fraction) indicated a representative mangrove system with a record of consistent organic matter flux of up to 100 years. Because of substantial burial of organic carbon in mangrove ecosystems, their role in the global carbon budget must be considered. More importantly, as climate change influences temperature and sea level, mangrove ecosystems will respond to specific climatic conditions.

  8. Extraction of tidal channel networks from airborne scanning laser altimetry

    Science.gov (United States)

    Mason, David C.; Scott, Tania R.; Wang, Hai-Jing

    Tidal channel networks are important features of the inter-tidal zone, and play a key role in tidal propagation and in the evolution of salt marshes and tidal flats. The study of their morphology is currently an active area of research, and a number of theories related to networks have been developed which require validation using dense and extensive observations of network forms and cross-sections. The conventional method of measuring networks is cumbersome and subjective, involving manual digitisation of aerial photographs in conjunction with field measurement of channel depths and widths for selected parts of the network. This paper describes a semi-automatic technique developed to extract networks from high-resolution LiDAR data of the inter-tidal zone. A multi-level knowledge-based approach has been implemented, whereby low-level algorithms first extract channel fragments based mainly on image properties then a high-level processing stage improves the network using domain knowledge. The approach adopted at low level uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels. The higher level processing includes a channel repair mechanism. The algorithm may be extended to extract networks from aerial photographs as well as LiDAR data. Its performance is illustrated using LiDAR data of two study sites, the River Ems, Germany and the Venice Lagoon. For the River Ems data, the error of omission for the automatic channel extractor is 26%, partly because numerous small channels are lost because they fall below the edge threshold, though these are less than 10 cm deep and unlikely to be hydraulically significant. The error of commission is lower, at 11%. For the Venice Lagoon data, the error of omission is 14%, but the error of commission is 42%, due partly to the difficulty of interpreting channels in these natural scenes. As a benchmark, previous work has shown that this type of algorithm

  9. ANALISIS JULAT PASANG SURUT (TIDAL RANGE DAN PENGARUHNYA TERHADAP SEBARAN TOTAL SEDIMEN TERSUSPENSI (TSS DI PERAIRAN TELUK PARE

    Directory of Open Access Journals (Sweden)

    Ulung Jantama Wisha

    2016-03-01

    Full Text Available ANALYSIS OF TIDAL RANGE AND ITS EFFECT ON DISTRIBUTION OF TOTAL SUSPENDED SOLID (TSS IN THE PARE BAY WATERSPare Bay conditions is closely related to the mechanism of circulation in Makasar Strait. One of the problems that occur in Pare Bay waters is increased turbidity and low dynamics of transport inside the bay, which caused silting in some parts of the bay. The aim of this study was to determine tidal range characteristics and the influence of suspended sediment distribution as analysis of the sedimentation process and siltation at Pare bay. Descriptive quantitative method was used and the survey location was based on purposive sampling method. Tidal type in Pare Bay water was mix mainly semidiurnal tides with Formzahl Value was 0.895. The value of the water level below the lowest tide (Z0 was 1036.44 cm. Mean sea level (MSL value was 1107.97 cm. The vertical datum of MHHWS and MLLWS were 1143.47 cm and 1072.47 cm. Tidal range cycle in spring condition was 102-129,56 cm bigger than cycle in neap condition ranged from 55.53-82.47 cm. TSS concentrations ranged from 0-7.0 mg/L in the surface and ranged from 0- 10.0 mg/L in 5 meters depth. At high tide down, sediment was settling and at the time of high tide, sediment mixed back.Keywords: Pare Bay, suspended solid, tidal range, tide.ABSTRAKKondisi perairan di Teluk Pare sangat berkaitan dengan mekanisme sirkulasi di Selat Makasar, Permasalahan yang terjadi di Teluk Pare salah satunya adalah tingginya tingkat kekeruhan dan rendahnya dinamika transport didalam teluk yang menyebabkan pendangkalan di beberapa bagian teluk. Tujuan dari penelitian ini adalah mengetahui karakteristik julat pasang surut dan pengaruhnya terhadap sebaran sedimen tersuspensi sebagai analisis proses sedimentasi dan pendangkalan di perairan Teluk Pare. Metode penelitian yang digunakan adalah deskriptif kuantitatif, metode penentuan lokasi titik pengambilan sampel air yaitu metode purposive sampling. Tipe pasang surut Teluk

  10. Tidal power

    International Nuclear Information System (INIS)

    Baker, A.C.

    1991-01-01

    This book describes how large tides develop in particular places and how the energy could be extracted by building suitable barrages. The principal features of a barrage and possible methods of operation are described in detail. Although a tidal power barrage would be non-polluting, the resulting changes in the tidal regime would have important environmental effects. These are discussed together with the economics of tidal power. Methods of assessing the likely cost of electricity from any site are set out and applied to possible sites around the world. (author)

  11. A Holocene pollen and sediment record of Whangape Harbour, far northern New Zealand

    International Nuclear Information System (INIS)

    Horrocks, M.; Nichol, S.L.; Gregory, M.R.; Creese, R.; Augustinus, P.C.

    2001-01-01

    The sediment record of Whangape Harbour shows that there were significant fluctuations in depositional energy in the harbour during the period from c. >8000 cal. yr BP to some time within the last millenium, and that fluvial influences increased as the harbour infilled. The pollen record (highly discontinuous) from Whangape Harbour indicates that conifer-hardwood forest covered the hills surrounding the harbour during this period. The main canopy conifers were Dacrydium and Prumnopitys taxifolia, with some Libocedrus, Dacrycarpus, and Phyllocladus. Agathis was also present. Common canopy hardwoods were Metrosideros and, in the latter part of the period, Elaeocarpus. Ascarina and Cyathea were abundant in the sub-canopy. Leptospermum grew on disturbed areas fringing the estuary. Marsh or swamp environments probably never developed on a large scale in the harbour. Avicennia, extremely under-represented in the pollen flora, has been present on tidal flats in the harbour since at least c. 2500 cal. yr BP. Large-scale anthropogenic deforestation by burning commenced in the Whangape catchment some time during or since 700-430 cal. yr BP. The associated increase in erosion rates in the catchment resulted in a change towards a sandier sediment regime in the harbour which has continued to the present day. Weinmannia and Ackama, previously rare in the catchment, expanded in remaining forest. (author). 39 refs., 3 figs., 1 tab

  12. Numerical simulation of sediment deposition thickness at Beidaihe International Yacht Club

    Directory of Open Access Journals (Sweden)

    Cheng-gang Lu

    2010-09-01

    Full Text Available The finite element method (FEM was used to simulate sediment hydrodynamics at the Beidaihe International Yacht Club, and a two-dimensional model was established. The sediment movement and deposition were analyzed under many tidal conditions in conjunction with the hydrological regime of the Daihe River. The peak value of the sediment deposition thickness appears in the main channel and around the estuary. The sediment deposition thickness is essentially constant and relatively small in the project area. The sediment deposition thickness in the main channel, in the yachting area, and around the hotel is greater than the other areas in the project. Regular excavation and dredging of the channel is the best measure for mitigating the sedimentation.

  13. Medical and Other Radioisotopes as Tracers in the Wastewater-River-Sediment Chain

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H. W.; Ulbrich, S.; Pittauerova, D.; Hettwig, B. [Institute of Environmental Physics, University of Bremen, Bremen (Germany)

    2013-07-15

    Medical, natural and other artificial radioisotopes have been followed on their pathway to river sediment employing gamma spectroscopy. Sampling points were situated at a local wastewater treatment plant (inflow, outflow and sludge) and along 70 km of a tidal river (bank sediment). Isotope entry points are assumed to be wastewater for medical isotopes like I-131 and Tc-99m, rain for natural Be-7, and soil erosion for fission generated Cs-137. Medical isotope data reflect the short term dynamics of medical usage, wastewater transport and treatment, and the river system. Be-7 data are influenced by the amount of rainfall on a short time scale, and by the size of the river catchment area and dilution due to tidal effects in the long term. Cs-137 values appear rather constant, behaving similarly to primordial K-40. In conclusion, the investigated radioisotopes offer a variety of possibilities to assess water and sediment dynamics. (author)

  14. Water and sediment temperature dynamics in shallow tidal environments: The role of the heat flux at the sediment-water interface

    Science.gov (United States)

    Pivato, M.; Carniello, L.; Gardner, J.; Silvestri, S.; Marani, M.

    2018-03-01

    In the present study, we investigate the energy flux at the sediment-water interface and the relevance of the heat exchanged between water and sediment for the water temperature dynamics in shallow coastal environments. Water and sediment temperature data collected in the Venice lagoon show that, in shallow, temperate lagoons, temperature is uniform within the water column, and enabled us to estimate the net heat flux at the sediment-water interface. We modeled this flux as the sum of a conductive component and of the solar radiation reaching the bottom, finding the latter being negligible. We developed a "point" model to describe the temperature dynamics of the sediment-water continuum driven by vertical energy transfer. We applied the model considering conditions characterized by negligible advection, obtaining satisfactory results. We found that the heat exchange between water and sediment is crucial for describing sediment temperature but plays a minor role on the water temperature.

  15. Effect of salinity changes on the bacterial diversity, photosynthesis and oxygen consumption of cyanobacterial mats from an intertidal flat of the Arabian Gulf.

    Science.gov (United States)

    Abed, Raeid M M; Kohls, Katharina; de Beer, Dirk

    2007-06-01

    The effects of salinity fluctuation on bacterial diversity, rates of gross photosynthesis (GP) and oxygen consumption in the light (OCL) and in the dark (OCD) were investigated in three submerged cyanobacterial mats from a transect on an intertidal flat. The transect ran 1 km inland from the low water mark along an increasingly extreme habitat with respect to salinity. The response of GP, OCL and OCD in each sample to various salinities (65 per thousand, 100 per thousand, 150 per thousand and 200 per thousand) were compared. The obtained sequences and the number of unique operational taxonomic units showed clear differences in the mats' bacterial composition. While cyanobacteria decreased from the lower to the upper tidal mat, other bacterial groups such as Chloroflexus and Cytophaga/Flavobacteria/Bacteriodetes showed an opposite pattern with the highest dominance in the middle and upper tidal mats respectively. Gross photosynthesis and OCL at the ambient salinities of the mats decreased from the lower to the upper tidal zone. All mats, regardless of their tidal location, exhibited a decrease in areal GP, OCL and OCD rates at salinities > 100 per thousand. The extent of inhibition of these processes at higher salinities suggests an increase in salt adaptation of the mats microorganisms with distance from the low water line. We conclude that the resilience of microbial mats towards different salinity regimes on intertidal flats is accompanied by adjustment of the diversity and function of their microbial communities.

  16. Exploitation of tidal power in the Bay of Cadiz: ancient tidal mills

    Directory of Open Access Journals (Sweden)

    José J. Alonso del Rosario

    2006-03-01

    Full Text Available Tidal mills were the main industrial activity in the Bay of Cadiz for centuries. They were the last step in the production of salt and flour made by grinding grains. They were installed along the shallow channels, called “caños”, around the Bay, where the frictional and geometrical effects are very strong. The authors have analyzed the propagation of the semidiurnal tidal waves along the Caño de Sancti Petri and the available tidal power in the area. The ancient tidal mills were located where the available tidal potential energy is highest, which ensured productivity for grinding salt and wheat in ancient times. Some considerations about the possibility of installing tidal power plants in the Bay of Cadiz now are given, which show that it could be a real and renewal alternative source of energy for the area.

  17. Tidal current and tidal energy changes imposed by a dynamic tidal power system in the Taiwan Strait, China

    Science.gov (United States)

    Dai, Peng; Zhang, Jisheng; Zheng, Jinhai

    2017-12-01

    The Taiwan Strait has recently been proposed as a promising site for dynamic tidal power systems because of its shallow depth and strong tides. Dynamic tidal power is a new concept for extracting tidal potential energy in which a coast-perpendicular dike is used to create water head and generate electricity via turbines inserted in the dike. Before starting such a project, the potential power output and hydrodynamic impacts of the dike must be assessed. In this study, a two-dimensional numerical model based on the Delft3D-FLOW module is established to simulate tides in China. A dike module is developed to account for turbine processes and estimate power output by integrating a special algorithm into the model. The domain decomposition technique is used to divide the computational zone into two subdomains with grid refinement near the dike. The hydrodynamic processes predicted by the model, both with and without the proposed construction, are examined in detail, including tidal currents and tidal energy flux. The predicted time-averaged power yields with various opening ratios are presented. The results show that time-averaged power yield peaks at an 8% opening ratio. For semidiurnal tides, the flow velocity increases in front of the head of the dike and decreases on either side. For diurnal tides, these changes are complicated by the oblique incidence of tidal currents with respect to the dike as well as by bathymetric features. The dike itself blocks the propagation of tidal energy flux.

  18. Measuring the role of seagrasses in regulating sediment surface elevation

    KAUST Repository

    Potouroglou, Maria

    2017-09-13

    Seagrass meadows provide numerous ecosystem services and their rapid global loss may reduce human welfare as well as ecological integrity. In common with the other \\'blue carbon\\' habitats (mangroves and tidal marshes) seagrasses are thought to provide coastal defence and encourage sediment stabilisation and surface elevation. A sophisticated understanding of sediment elevation dynamics in mangroves and tidal marshes has been gained by monitoring a wide range of different sites, located in varying hydrogeomorphological conditions over long periods. In contrast, similar evidence for seagrasses is sparse; the present study is a contribution towards filling this gap. Surface elevation change pins were deployed in four locations, Scotland, Kenya, Tanzania and Saudi Arabia, in both seagrass and unvegetated control plots in the low intertidal and shallow subtidal zone. The presence of seagrass had a highly significant, positive impact on surface elevation at all sites. Combined data from the current work and the literature show an average difference of 31 mm per year in elevation rates between vegetated and unvegetated areas, which emphasizes the important contribution of seagrass in facilitating sediment surface elevation and reducing erosion. This paper presents the first multi-site study for sediment surface elevation in seagrasses in different settings and species.

  19. Measuring the role of seagrasses in regulating sediment surface elevation

    Science.gov (United States)

    Potouroglou, Maria; Bull, James C.; Krauss, Ken W.; Kennedy, Hilary A.; Fusi, Marco; Daffonchio, Daniele; Mangora, Mwita M.; Githaiga, Michael N.; Diele, Karen; Huxham, Mark

    2017-01-01

    Seagrass meadows provide numerous ecosystem services and their rapid global loss may reduce human welfare as well as ecological integrity. In common with the other ‘blue carbon’ habitats (mangroves and tidal marshes) seagrasses are thought to provide coastal defence and encourage sediment stabilisation and surface elevation. A sophisticated understanding of sediment elevation dynamics in mangroves and tidal marshes has been gained by monitoring a wide range of different sites, located in varying hydrogeomorphological conditions over long periods. In contrast, similar evidence for seagrasses is sparse; the present study is a contribution towards filling this gap. Surface elevation change pins were deployed in four locations, Scotland, Kenya, Tanzania and Saudi Arabia, in both seagrass and unvegetated control plots in the low intertidal and shallow subtidal zone. The presence of seagrass had a highly significant, positive impact on surface elevation at all sites. Combined data from the current work and the literature show an average difference of 31 mm per year in elevation rates between vegetated and unvegetated areas, which emphasizes the important contribution of seagrass in facilitating sediment surface elevation and reducing erosion. This paper presents the first multi-site study for sediment surface elevation in seagrasses in different settings and species.

  20. Quantifying the eroded volume of mercury-contaminated sediment using terrestrial laser scanning at Stocking Flat, Deer Creek, Nevada County, California, 2010–13

    Science.gov (United States)

    Howle, James F.; Alpers, Charles N.; Bawden, Gerald W.; Bond, Sandra

    2016-07-28

    High-resolution ground-based light detection and ranging (lidar), also known as terrestrial laser scanning, was used to quantify the volume of mercury-contaminated sediment eroded from a stream cutbank at Stocking Flat along Deer Creek in the Sierra Nevada foothills, about 3 kilometers west of Nevada City, California. Terrestrial laser scanning was used to collect sub-centimeter, three-dimensional images of the complex cutbank surface, which could not be mapped non-destructively or in sufficient detail with traditional surveying techniques.The stream cutbank, which is approximately 50 meters long and 8 meters high, was surveyed on four occasions: December 1, 2010; January 20, 2011; May 12, 2011; and February 4, 2013. Volumetric changes were determined between the sequential, three-dimensional lidar surveys. Volume was calculated by two methods, and the average value is reported. Between the first and second surveys (December 1, 2010, to January 20, 2011), a volume of 143 plus or minus 15 cubic meters of sediment was eroded from the cutbank and mobilized by Deer Creek. Between the second and third surveys (January 20, 2011, to May 12, 2011), a volume of 207 plus or minus 24 cubic meters of sediment was eroded from the cutbank and mobilized by the stream. Total volumetric change during the winter and spring of 2010–11 was 350 plus or minus 28 cubic meters. Between the third and fourth surveys (May 12, 2011, to February 4, 2013), the differencing of the three-dimensional lidar data indicated that a volume of 18 plus or minus 10 cubic meters of sediment was eroded from the cutbank. The total volume of sediment eroded from the cutbank between the first and fourth surveys was 368 plus or minus 30 cubic meters.

  1. Storm surges and climate change implications for tidal marshes: Insight from the San Francisco Bay Estuary, California, USA

    Science.gov (United States)

    Thorne, Karen M.; Buffington, Kevin J.; Swanson, Kathleen; Takekawa, John Y.

    2013-01-01

    Tidal marshes are dynamic ecosystems, which are influenced by oceanic and freshwater processes and daily changes in sea level. Projected sea-level rise and changes in storm frequency and intensity will affect tidal marshes by altering suspended sediment supply, plant communities, and the inundation duration and depth of the marsh platform. The objective of this research was to evaluate if regional weather conditions resulting in low-pressure storms changed tidal conditions locally within three tidal marshes. We hypothesized that regional storms will increase sea level heights locally, resulting in increased inundation of the tidal marsh platform and plant communities. Using site-level measurements of elevation, plant communities, and water levels, we present results from two storm events in 2010 and 2011 from the San Francisco Bay Estuary (SFBE), California, USA. The January 2010 storm had the lowest recorded sea level pressure in the last 30 years for this region. During the storm episodes, the duration of tidal marsh inundation was 1.8 and 3.1 times greater than average for that time of year, respectively. At peak storm surges, over 65% in 2010 and 93% in 2011 of the plant community was under water. We also discuss the implications of these types of storms and projected sea-level rise on the structure and function of the tidal marshes and how that will impact the hydro-geomorphic processes and marsh biotic communities.

  2. The distribution and tapping tidal energy

    Directory of Open Access Journals (Sweden)

    Zygmunt Kowalik

    2004-09-01

    Full Text Available Tidal power along tidal shores has been used for centuries to run small tidal mills. Generating electricity by tapping tidal power proved to be very successful only in the last century through the tidal power plant constructed in 1967 in La Rance, France. This used a large barrier to generate the sea level head necessary for driving turbines. Construction of such plants evolved very slowly because of prohibitive costs and concerns about the environmental impact. Developments in the construction of small, efficient and inexpensive underwater turbines admit the possibility of small scale operations that will use local tidal currents to bring electricity to remote locations. Since the generation of such electricity is concerned with the tidal energy in local water bodies, it is important to understand the site-specific energy balance, i.e., the energy flowing in through open boundaries, and the energy generated and dissipated within the local domain. The question is how to tap the tidal energy while keeping possible changes in the present tidal regimes to a minimum. The older approach of constructing barrages may still be quite useful in some locations. The basics of such tidal power plants constructed in a small bay are analyzed in order to understand the principal parameter for tidal plant evaluation, i.e., the power produced.     The new approach is to place turbines - devices similar to windmills - in the pathway of tidal currents. Theoretically, the amount of power available by such turbines for electricity generation is proportional to the water density and velocity cubed of the tidal flow. The naturally dissipated tidal power due to bottom friction forces is also proportional to the cube of the velocity. Because of this similarity, the exploitation of tidal energy can be directed to reinvesting the naturally dissipated power into tidal power for the generation of electricity. This approach to tidal power exploitation is better tuned

  3. From Globular Clusters to Tidal Dwarfs: Structure Formation in Tidal Tails

    Science.gov (United States)

    Knierman, K.; Hunsberger, S.; Gallagher, S.; Charlton, J.; Whitmore, B.; Hibbard, J.; Kundu, A.; Zaritsky, D.

    1999-12-01

    Galaxy interactions trigger star formation in tidal debris. How does this star formation depend on the local and global physical conditions? Using WFPC2/HST images, we investigate the range of structure within tidal tails of four classic ``Toomre Sequence'' mergers: NGC 4038/9 (``Antennae''), NGC 7252 (``Atoms for Peace''), NGC 3921, and NGC 3256. These tails contain a variety of stellar associations with sizes from globular clusters up to dwarf Irregulars. We explore whether there is a continuum between the two extremes. Our eight fields sample seven tidal tails at a variety of stages in the evolutionary sequence. Some of these tails are rich in HI while others are HI poor. Large tidal dwarfs are embedded in three of the tails. Using V and I WFPC2 images, we measure luminosities and colors of substructures within the tidal tails. The properties of globular cluster candidates in the tails will be contrasted with those of the hundreds of young clusters in the central regions of these mergers. We address whether globular clusters form and survive in the tidal tails and whether tidal dwarfs are composed of only young stars. By comparing the properties of structures in the tails of the four mergers with different ages, we examine systematic evolution of structure along the evolutionary sequence and as a function of HI content. We acknowledge support from NASA through STScI, and from NSF for an REU supplement for Karen Knierman.

  4. The role of bank collapse on tidal creek ontogeny: A novel process-based model for bank retreat

    Science.gov (United States)

    Gong, Zheng; Zhao, Kun; Zhang, Changkuan; Dai, Weiqi; Coco, Giovanni; Zhou, Zeng

    2018-06-01

    Bank retreat in coastal tidal flats plays a primary role on the planimetric shape of tidal creeks and is commonly driven by both flow-induced bank erosion and gravity-induced bank collapse. However, existing modelling studies largely focus on bank erosion and overlook bank collapse. We build a bank retreat model coupling hydrodynamics, bank erosion and bank collapse. To simulate the process of bank collapse, a stress-deformation model is utilized to calculate the stress variation of bank soil after bank erosion, and the Mohr-Coulomb failure criterion is then applied to evaluate the stability of the tidal creek bank. Results show that the bank failure process can be categorized into three stages, i.e., shear failure at the bank toe (stage I), tensile failure on the bank top (stage II), and sectional cracking from the bank top to the toe (stage III). With only bank erosion, the planimetric shapes of tidal creeks are funneled due to the gradually seaward increasing discharge. In contrast to bank erosion, bank collapse is discontinuous, and the contribution of bank collapse to bank retreat can reach 85%, highlighting that the expansion of tidal creeks can be dominated by bank collapse process. The planimetric shapes of tidal creeks are funneled with a much faster expansion rate when bank collapse is considered. Overall, this study makes a further step toward more physical and realistic simulation of bank retreat in estuarine and coastal settings and the developed bank collapse module can be readily included in other morphodynamic models.

  5. Multiscale physical processes of fine sediment in an estuary

    NARCIS (Netherlands)

    Wan, Y.

    2015-01-01

    This study presented in this book investigates micro- and macro- scale physical processes of a large-scale fine sediment estuarine system with a moderate tidal range as well as a highly seasonal-varying freshwater inflow. Based on a series measured, experimented and modeled results, the research

  6. Sulfur bacteria in sediments of two coastal ecosystems: the Bassin d'Arcachon and the Etang du Prévost, France

    NARCIS (Netherlands)

    Schaub, B E M; van Gemerden, H

    1996-01-01

    Enumeration of the functional groups of sulfur bacteria was performed in the sediments in the Bassin d'Arcachon, a mesotidal lagoon with strong tidal currents and dominant populations of seagrass (Zostera noltii), and in the Etang du Prevost, a shallow lagoon with moderate tidal fluctuations and

  7. Tidal Wetlands and Coastal Ocean Carbon Dynamics

    Science.gov (United States)

    Hopkinson, C.; Wang, S. R.; Forbrich, I.; Giblin, A. E.; Cai, W. J.

    2017-12-01

    Recent overviews of coastal ocean C dynamics have tidal wetlands in a prominent position: a local sink for atmospheric CO2, a local store of OC, and a source of DIC and OC for the adjacent estuary and nearshore ocean. Over the past decade there have been great strides made in quantifying and understanding these flows and linkages. GPP and R of the wetlands are not nearly as imbalanced as thought 30 yrs ago. Heterotrophy of adjacent estuarine waters is not solely due to the respiration of OC exported from the marsh, rather we see the marsh directly respiring into the water during tidal inundation and accumulated marsh DIC draining into tidal creeks. Organic carbon burial on the marsh is still a relatively minor flux, but it is large relative to marsh NEE. Using literature and unpublished data on marsh DIC export, we used examples from Sapelo Island GA USA and Plum Island MA USA to constrain estimates of NEP and potential OC export. P. There remain large uncertainties in quantifying C dynamics of coupled wetland - estuary systems. Gas exchange from the water to atmosphere is one of the largest uncertainties. Work at Sapelo suggests that upwards of 40% of all daily exchange occurs from water flooding the marsh, which is but a few hours a day. This estimate is based on the intercept value for gas exchange vs wind velocity. Another major uncertainty comes from converting between O2 based estimates of metabolism to C. At Sapelo we find PQ and RQ values diverging greatly from Redfield. Finally, C dynamics of the coastal ocean, especially the role of tidal wetlands is likely to change substantially in the future. Studies at Plum Island show a reversal of the 4000 yr process of marsh progradation with marshes eroding away at their edges because of inadequate sediment supply and rising sea level. The fate of eroded OC is questionable. Landward transgression with SLR is the only likely counter to continued wetland loss - but that's a complex social issue requiring new

  8. Near bed suspended sediment flux by single turbulent events

    Science.gov (United States)

    Amirshahi, Seyed Mohammad; Kwoll, Eva; Winter, Christian

    2018-01-01

    The role of small scale single turbulent events in the vertical mixing of near bed suspended sediments was explored in a shallow shelf sea environment. High frequency velocity and suspended sediment concentration (SSC; calibrated from the backscatter intensity) were collected using an Acoustic Doppler Velocimeter (ADV). Using quadrant analysis, the despiked velocity time series was divided into turbulent events and small background fluctuations. Reynolds stress and Turbulent Kinetic Energy (TKE) calculated from all velocity samples, were compared to the same turbulent statistics calculated only from velocity samples classified as turbulent events (Reevents and TKEevents). The comparison showed that Reevents and TKEevents was increased 3 and 1.6 times, respectively, when small background fluctuations were removed and that the correlation with SSC for TKE could be improved through removal of the latter. The correlation between instantaneous vertical turbulent flux (w ‧) and SSC fluctuations (SSC ‧) exhibits a tidal pattern with the maximum correlation at peak ebb and flood currents, when strong turbulent events appear. Individual turbulent events were characterized by type, strength, duration and length. Cumulative vertical turbulent sediment fluxes and average SSC associated with individual turbulent events were calculated. Over the tidal cycle, ejections and sweeps were the most dominant events, transporting 50% and 36% of the cumulative vertical turbulent event sediment flux, respectively. Although the contribution of outward interactions to the vertical turbulent event sediment flux was low (11%), single outward interaction events were capable of inducing similar SSC ‧ as sweep events. The results suggest that on time scales of tens of minutes to hours, TKE may be appropriate to quantify turbulence in sediment transport studies, but that event characteristics, particular the upward turbulent flux need to be accounted for when considering sediment transport

  9. Measurement of Underwater Operational Noise Emitted by Wave and Tidal Stream Energy Devices.

    Science.gov (United States)

    Lepper, Paul A; Robinson, Stephen P

    2016-01-01

    The increasing international growth in the development of marine and freshwater wave and tidal energy harvesting systems has been followed by a growing requirement to understand any associated underwater impact. Radiated noise generated during operation is dependent on the device's physical properties, the sound-propagation environment, and the device's operational state. Physical properties may include size, distribution in the water column, and mechanics/hydrodynamics. The sound-propagation environment may be influenced by water depth, bathymetry, sediment type, and water column acoustic properties, and operational state may be influenced by tidal cycle and wave height among others This paper discusses some of the challenges for measurement of noise characteristics from these devices as well as a case study of the measurement of radiated noise from a full-scale wave energy converter.

  10. Changing Sediment Dynamics of a Mature Backbarrier Salt Marsh in Response to Sea-Level Rise and Storm Events

    Directory of Open Access Journals (Sweden)

    Mark Schuerch

    2018-05-01

    Full Text Available Our study analyses the long-term development of a tidal backbarrier salt marsh in the northern German Wadden Sea. The focus lies on the development of the high-lying, inner, mature part of the salt marsh, which shows a striking history of changing sediment dynamics. The analysis of high-resolution old aerial photographs and sampled sediment cores suggests that the mature part of the marsh was shielded by a sand barrier from the open sea for decades. The supply with fine-grained sediments occurred from the marsh inlet through the tidal channels to the inner salt marsh. Radiometric dating (210Pb and 137Cs reveals that the sedimentation pattern changed fundamentally around the early-mid 1980s when the sedimentation rates increased sharply. By analyzing the photographic evidence, we found that the sand barrier was breached during storm events in the early 1980s. As a result, coarse-grained sediments were brought directly through this overwash from the sea to the mature part of the salt marsh and increased the sedimentation rates. We show that the overwash and the channels created by these storm events built a direct connection to the sea and reduced the distance to the sediment source which promoted salt marsh growth and a supply with coarse-grained sediments. Consequently, the original sediment input from the tidal channels is found to play a minor role in the years following the breach event. The presented study showcases the morphological development of a mature marsh, which contradicts the commonly accepted paradigm of decreasing sedimentation rates with increasing age of the marsh. We argue that similar trends are likely to be observed in other backbarrier marshes, developing in the shelter of unstabilized sand barriers. It further highlights the question of how resilient these salt marshes are toward sea level rise and how extreme storm events interfere in determining the resilience of a mature salt marsh.

  11. Dispersion Mechanisms of a Tidal River Junction in the Sacramento–San Joaquin Delta, California

    Directory of Open Access Journals (Sweden)

    Karla T. Gleichauf

    2014-12-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2014v12iss4art1In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Doppler Current Profile (ADCP boat transecting and moored ADCPs over a spring–neap tidal cycle (May to  June 2012 monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011 advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales. The study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby

  12. Reduction in density of suspended - sediment - laden natural waters

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desa, E.; Desa, E.; Smith, D.; Peshwe, V.B.; VijayKumar, K.; Desa, J.A.E.

    to 0.4% - 4.5%) that of the density of the same water without suspended sediment. Teh values of peff in a given site differed from one tidal cycle to another (approx equal to 1.9%). These values varied slightly (less than 0.8%) from mid-tide to slack...

  13. Distribution of Technetium-99 in sub-tidal sediments of the Irish Sea

    Science.gov (United States)

    McCubbin, David; Leonard, Kinson S.; McDonald, Paul; Bonfield, Rachel; Boust, Dominique

    2006-03-01

    To date, relatively little attention has been given to the accumulation of 99Tc discharged from Sellafield in the subtidal sediments of the Irish Sea. The potential implications for secondary seafood contamination from contaminated sediment has driven the UK Food Standards Agency to commission further research into this pathway. The work reported here reviews existing data and provides new measurements of 99Tc specific activity in surface and sub-surface sediments of the Irish Sea, together with environmental Kd values. The results are used to assess the spatial and temporal evolution of 99Tc in the seabed after 8 years of enhanced Sellafield discharges (between 1994 and 2002), of the aforementioned radionuclide. The information is discussed with reference to other studies, in an attempt to infer the processes controlling 99Tc uptake and release from seabed sediments. The average environmental Kd value for 99Tc in the Irish Sea (1.9×10 3) was more than an order of magnitude greater than the presently recommended value of 10 2 [IAEA, 2004. Sediment distribution coefficients and concentration factors for biota in the marine environment. Technical Report Series No. 422, IAEA, Vienna]. Comparison with results from laboratory studies indicates that the observed distribution may represent metastable binding rather than thermodynamic equilibrium. Activities in surface sediments decreased with increasing distance from Sellafield but were also dependent upon the nature of the underlying substrate, being greater on muddy material. Preliminary measurements of grain-size distribution indicated that the observed variation in activities was probably not due to surface area effects. There is an emerging body of evidence from other studies that indicate the differences were most likely due to variations in redox regimes between the different substrates. Vertical profiles were significantly irregular, probably due to the effects of variable sediment mixing processes. Comparison of

  14. Incorporating future change into current conservation planning: Evaluating tidal saline wetland migration along the U.S. Gulf of Mexico coast under alternative sea-level rise and urbanization scenarios

    Science.gov (United States)

    Enwright, Nicholas M.; Griffith, Kereen T.; Osland, Michael J.

    2015-11-02

    In this study, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, quantified the potential for landward migration of tidal saline wetlands along the U.S. Gulf of Mexico coast under alternative future sea-level rise and urbanization scenarios. Our analyses focused exclusively on tidal saline wetlands (that is, mangrove forests, salt marshes, and salt flats), and we combined these diverse tidal saline wetland ecosystems into a single grouping, “tidal saline wetland.” Collectively, our approach and findings can provide useful information for scientists and environmental planners working to develop future-focused adaptation strategies for conserving coastal landscapes and the ecosystem goods and services provided by tidal saline wetlands. The primary product of this work is a public dataset that identifies locations where landward migration of tidal saline wetlands is expected to occur under alternative future sea-level rise and urbanization scenarios. In addition to identifying areas where landward migration of tidal saline wetlands is possible because of the absence of barriers, these data also identify locations where landward migration of these wetlands could be prevented by barriers associated with current urbanization, future urbanization, and levees.

  15. Empirical Tidal Dissipation in Exoplanet Hosts From Tidal Spin-up

    Science.gov (United States)

    Penev, Kaloyan; Bouma, L. G.; Winn, Joshua N.; Hartman, Joel D.

    2018-04-01

    Stars with hot Jupiters (HJs) tend to rotate faster than other stars of the same age and mass. This trend has been attributed to tidal interactions between the star and planet. A constraint on the dissipation parameter {Q}\\star {\\prime } follows from the assumption that tides have managed to spin up the star to the observed rate within the age of the system. This technique was applied previously to HATS-18 and WASP-19. Here, we analyze the sample of all 188 known HJs with an orbital period tidal dissipation parameter ({Q}\\star {\\prime }) increases sharply with forcing frequency, from 105 at 0.5 day‑1 to 107 at 2 day‑1. This helps to resolve a number of apparent discrepancies between studies of tidal dissipation in binary stars, HJs, and warm Jupiters. It may also allow for a HJ to damp the obliquity of its host star prior to being destroyed by tidal decay.

  16. Tidal and Seasonal River Stage Fluctuations Impact the Formation of Permeable Natural Reactive Barriers in Riverbank Sediments

    Science.gov (United States)

    Shuai, P.; Myers, K.; Knappett, P.; Cardenas, M. B.

    2017-12-01

    River stage fluctuations, induced by ocean tides and rainfall, enhance the exchange between oxic river water and reducing groundwater. When mixing occurs within riverbank aquifers high in dissolved iron (Fe) and arsenic (As), the timing and extent of mixing likely control the accumulation and mobility of arsenic (As) within the hyporheic zone. Here we analyzed the impact of tidal and seasonal water level fluctuations on the formation of a Permeable Natural Reactive Barrier (PNRB) within an aquifer adjacent to the Meghna River, Bangladesh and its impact on As mobility. We found that the periodicity and amplitude of river stage fluctuations strongly control the spatial and temporal distribution of the PNRB, comprised of rapidly precipitated iron oxides, in this riverbank along a relatively straight reach of the Meghna River. The PNRB forms much faster and with higher concentration of Fe-oxide under semi-diurnal (12 hr) tidal fluctuations compared to simulations run assuming only neap-spring tides (14 day). As tidal amplitude increases, a larger contact area between oxic river water and reducing groundwater results which in turn leads to the horizontal expansion of the PNRB into the riverbank. Seasonal fluctuations expand the PNRB up to 60 m horizontally and 5 m vertically. In contrast neap-spring tidal fluctuations result in a smaller PNRB that is 10 and 3 m in the horizontal and vertical dimensions. The predicted changes in the spatial distribution of iron oxides within the riverbank would trap and release As at different times of the year. The PNRB could act as a secondary source of As to drinking water aquifers under sustained groundwater pumping scenarios near the river.

  17. Modern sedimentation and morphology of the subaqueous Mekong Delta, Southern Vietnam

    Science.gov (United States)

    Unverricht, Daniel; Szczuciński, Witold; Stattegger, Karl; Jagodziński, Robert; Le, Xuan Thuyen; Kwong, Laval Liong Wee

    2013-11-01

    The Mekong River Delta is among the Asian mega-deltas and is influenced by various factors including tides (meso-tidal system), waves, coastal currents, monsoon-driven river discharge and human impact (agriculture, fishing, sand dredging, tourism). The present study aims to document the seafloor relief, sediment distribution and sediment accumulation rates to interpret modern sediment transport directions and main sedimentation processes in the subaqueous Mekong Delta. The major results of this investigation include the detection of two delta fronts 200 km apart, one at the mouth of the Bassac River (the biggest branch of the Mekong Delta) and the other around Cape Ca Mau (most south-western end of the Mekong Delta). Additionally, a large channel system runs in the subaqueous delta platform parallel to the shore and between the two fronts. The sediment accumulation rates vary greatly according to the location in the subaqueous delta and have reached up to 10 cm/yr for the last century. A cluster analysis of surface sediment samples revealed two different sediment types within the delta including a well-sorted sandy sediment and a poorly sorted, silty sediment. In addition, a third end member with medium to coarse sand characterised the distant parts of the delta at the transition to the open shelf. The increase of organic matter and carbonate content to the bottom set area and other sedimentary features such as shell fragments, foraminiferas and concretions of palaeo-soils that do not occur in delta sediments, supported grain size-based classification. Beginning in front of the Bassac River mouth, sedimentary pattern indicates clockwise sediment transport alongshore in the western direction to a broad topset area and the delta front around Cape Ca Mau. Our results clearly show the large lateral variability of the subaqueous Mekong Delta that is further complicated by strong monsoon-driven seasonality. River, tidal and wave forcing vary at local and seasonal scales

  18. The influence of waves on the tidal kinetic energy resource at a tidal stream energy site

    International Nuclear Information System (INIS)

    Guillou, Nicolas; Chapalain, Georges; Neill, Simon P.

    2016-01-01

    Highlights: • We model the influence of waves on tidal kinetic energy in the Fromveur Strait. • Numerical results are compared with field data of waves and currents. • The introduction of waves improve predictions of tidal stream power during storm. • Mean spring tidal stream potential is reduced by 12% during extreme wave conditions. • Potential is reduced by 7.8% with waves forces and 5.3% with enhanced friction. - Abstract: Successful deployment of tidal energy converters relies on access to accurate and high resolution numerical assessments of available tidal stream power. However, since suitable tidal stream sites are located in relatively shallow waters of the continental shelf where tidal currents are enhanced, tidal energy converters may experience effects of wind-generated surface-gravity waves. Waves may thus influence tidal currents, and associated kinetic energy, through two non-linear processes: the interaction of wave and current bottom boundary layers, and the generation of wave-induced currents. Here, we develop a three-dimensional tidal circulation model coupled with a phase-averaged wave model to quantify the impact of the waves on the tidal kinetic energy resource of the Fromveur Strait (western Brittany) - a region that has been identified with strong potential for tidal array development. Numerical results are compared with in situ observations of wave parameters (significant wave height, peak period and mean wave direction) and current amplitude and direction 10 m above the seabed (the assumed technology hub height for this region). The introduction of waves is found to improve predictions of tidal stream power at 10 m above the seabed at the measurement site in the Strait, reducing kinetic energy by up to 9% during storm conditions. Synoptic effects of wave radiation stresses and enhanced bottom friction are more specifically identified at the scale of the Strait. Waves contribute to a slight increase in the spatial gradient of

  19. Evidence for the bioavailability of PAH from oiled beach sediments in situ

    International Nuclear Information System (INIS)

    Hodson, P.V.; Cross, T.; Ewert, A.; Zambon, S.; Lee, K.

    2002-01-01

    Biological responses that reflect the flux of hydrocarbons through fish can be used to determine the impact that oil spills have on fish. In this study, the exposure and toxicity to fish of oiled sediments was assessed in a freshwater semidiurnal tidal area of the St. Lawrence River in Quebec and at a tidal salt marsh at Petpeswick Inlet in Nova Scotia. The effectiveness of wetland bioremediation strategies was assessed by monitoring the bioavailability and toxicity of oil-derived polycyclic aromatic hydrocarbons (PAH) to early life stages of fish. Bioavailability was assessed through laboratory bioassays of cytochrome P450 (CYP1A) enzymes in trout exposed to 500 g of sediments in 10 L of water. PAH was found to be still bioavailable to fish up to 14 months after oiling, but the extent of exposure decreased steadily over time. The study presented a worst-case scenario in which sediments are disturbed and mixed. When beach sediments were not disturbed, however, PAH was also bioavailable in situ 12 months after oiling, but to a much lesser degree. It was concluded that these tests are a good way to show the benefits of oil spill remediation in reducing the exposure of fish to PAH. 8 refs., 5 figs

  20. Increased Tidal Dissipation Using Advanced Rheological Models: Implications for Io and Tidally Active Exoplanets

    Science.gov (United States)

    Renaud, Joe P.; Henning, Wade G.

    2018-04-01

    The advanced rheological models of Andrade and Sundberg & Cooper are compared to the traditional Maxwell model to understand how each affects the tidal dissipation of heat within rocky bodies. We find both Andrade and Sundberg–Cooper rheologies can produce at least 10× the tidal heating compared to a traditional Maxwell model for a warm (1400–1600 K) Io-like satellite. Sundberg–Cooper can cause even larger dissipation around a critical temperature and frequency. These models allow cooler planets to stay tidally active in the face of orbital perturbations—a condition we term “tidal resilience.” This has implications for the time evolution of tidally active worlds and the long-term equilibria they fall into. For instance, if Io’s interior is better modeled by the Andrade or Sundberg–Cooper rheologies, the number of possible resonance-forming scenarios that still produce a hot, modern Io is expanded, and these scenarios do not require an early formation of the Laplace resonance. The two primary empirical parameters that define the Andrade anelasticity are examined in several phase spaces to provide guidance on how their uncertainties impact tidal outcomes, as laboratory studies continue to constrain their real values. We provide detailed reference tables on the fully general equations required for others to insert the models of Andrade and Sundberg–Cooper into standard tidal formulae. Lastly, we show that advanced rheologies can greatly impact the heating of short-period exoplanets and exomoons, while the properties of tidal resilience could mean a greater number of tidally active worlds among all extrasolar systems.

  1. Characterization of Dredged Sediments from Santander Bay

    International Nuclear Information System (INIS)

    Cortes, M.; Ibanez, R.; Viguri, J.R.; Irabien, A.

    1999-01-01

    The purpose of this study is the physico- chemical characterisation of Santander Bay (North Spain) inter-tidal sediments, with the determination of levels of selected organic compounds pollution. A sampling strategy has been developed based on characteristic parameters of the study. The physico-chemical seasonal characterisation of sediments has been performed by determination of waster content, Ph, density, humidity, lost on ignition (LOI), particle size distribution, and chemical analysis of three categories of organic compounds (VOCs,EOX and PAHs) selected for its ubiquity, persistence and high potential of environmental hazard. The EOX analysis give a picture of the total load of organo halogen compounds in the estuarine area and the VOC and ph values obtained, allow the characterization of sediments in two areas in function of the closeness to the urban and industrial activities

  2. Natural and anthropogenic change in the morphology and connectivity of tidal channels of southwest Bangladesh

    Science.gov (United States)

    Wilson, C.; Goodbred, S. L., Jr.; Wallace Auerbach, L.; Ahmed, K. R.; Small, C.; Sams, S. E.

    2014-12-01

    Over the last century, land use changes in the Ganges-Brahmaputra tidal delta have transformed >5000 km2 of intertidal mangrove forest to densely inhabited, agricultural islands that have been embanked to protect against tides and storm surges (i.e., polders). More recently, the conversion of rice paddies to profitable shrimp aquaculture has become increasingly widespread. Recent field studies documented that poldering in southwest Bangladesh has resulted in an elevation deficit relative to that of the natural mangrove forests and mean high water (MHW). The offset is a function of lost sedimentation, enhanced compaction, and an effective rise in MHW from tidal amplification. The morphologic adjustment of the tidal channel network to these perturbations, however, has gone largely undocumented. One effect has been the shoaling of many channels due to decreases in fluvial discharge and tidal prism. We document a previously unrecognized anthropogenic component: the widespread closure of large conduit tidal channels for land reclamation and shrimp farming. GIS analysis of historical Landsat and Google Earth imagery within six 1000 km2 study areas reveals that the tidal network in the natural Sundarbans mangrove forest has remained relatively constant since the 1970s, while significant changes are observed in human-modified areas. Construction of the original embankments removed >1000 km of primary tidal creeks, and >80 km2 of land has been reclaimed outside of polders through the closure of formerly active tidal channels (decrease in mean channel width from 256±91 m to 25±10 m). Tidal restriction by large sluice gates is prevalent, favoring local channel siltation. Furthermore, severing the intertidal platform and large conduit channels from the tidal network has had serious repercussions, such as increased lateral migration and straightening of the remaining channels. Where banklines have eroded, the adjacent embankments appear to be more vulnerable to failure, as

  3. Tidal power: will it bring 40 years of virtually free power, or is it still no more than a dream

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C

    1978-04-01

    First proposed in Canada in 1919, the use of tidal power to generate electricity remains a well-studied but unproved option. The Cumberland Basin has been recommended for research and engineering studies as a possible site. A single-effect system is preferred over a double-effect system for the Bay of Fundy area because of construction costs. Although major problems arise because the lunar cycle and solar cycles do not coincide, tidal power could provide utility base loads. No significant dampening of the tidal effect was seen to be caused by a dam across open water, but other complications remain to be solved. System stability, the effect of dredging and sedimentation, social and ecological impacts will be examined in the next phase of assessment. A coalition of conservationists will monitor the environmental study. (DCK)

  4. Sediment dispersal in the macro tidal Gulf of Kachchh, India

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O.S.

    of the inner gulf is marked with U and V shaped cuttings extending in the parallel clays, deposited in an earlier phase of deposition. In the outer gulf, there exists a palaeo-channel, buried under 18 m thick sediments (in the central region). Existence...

  5. Plant distributions along salinity and tidal gradients in Oregon tidal marshes

    Science.gov (United States)

    Accurately modeling climate change effects on tidal marshes in the Pacific Northwest requires understanding how plant assemblages and species are presently distributed along gradients of salinity and tidal inundation. We outline on-going field efforts by the EPA and USGS to dete...

  6. Variability of tidal signals in the Brent Delta Front: New observations on the Rannoch Formation, northern North Sea

    Science.gov (United States)

    Wei, Xiaojie; Steel, Ronald J.; Ravnås, Rodmar; Jiang, Zaixing; Olariu, Cornel; Li, Zhiyang

    2016-04-01

    Detailed observations on the Rannoch Formation in several deep Viking Graben wells indicate that the 'classical' wave-dominated Brent delta-front shows coupled storm-tide processes. The tidal signals are of three types: I): alternations of thick cross-laminated sandstone and thin mud-draped sandstone, whereby double mud drapes are prominent but discretely distributed, II): a few tidal bundles within bottomsets and foresets of up to 10 cm-thick sets cross-strata, and III): dm-thick heterolithic lamination showing multiple, well-organized sand-mud couplets. During progradation of the Brent Delta, the Rannoch shoreline system passed upward from 1) a succession dominated by clean-water, storm-event sets and cosets frequently and preferentially interbedded with type I tidal beds, and occasional types II and III tidal deposits, toward 2) very clean storm-event beds less frequently separated by types II and III tidal beds, and then into 3) a thin interval showing muddier storm-event beds mainly alternating with type II tidal beds. It is likely that those variations in preservation bias of storm and tidal beds in each facies succession result from combined effects of 1) the frequency and duration of storms; 2) river discharge; and 3) the absolute and relative strength of tides. Tidal deposits are interpreted as inter-storm, fair-weather deposits, occurred preferentially in longer intermittent fair-weather condition and periods of lower river discharge, and well-pronounced in the distal-reach of delta-front. The formation and preservation of tidal signals between storm beds, indicate that the studied Rannoch Formation was most likely a storm-dominated, tide-influenced delta front 1) near the mouth of a large Brent river, where a significant tidal prism and high tidal range might be expected, and 2) in a setting where there were relatively high sedimentation rates associated with high local subsidence rates, so that the storm waves did not completely rework the inter

  7. Contrasts in Sediment Delivery and Dispersal from River Mouth to Accumulation Zones in High Sediment Load Systems: Fly River, Papua New Guinea and Waipaoa River, New Zealand

    Science.gov (United States)

    Ogston, A. S.; Walsh, J. P.; Hale, R. P.

    2011-12-01

    The relationships between sediment-transport processes, short-term sedimentary deposition, subsequent burial, and long-term accumulation are critical to understanding the morphological development of the continental margin. This study focuses on processes involved in formation and evolution of the clinoform in the Gulf of Papua, Papua New Guinea in which much of the riverine sediment accumulates, and comparison to those processes active off the Waipaoa River, New Zealand that form mid-shelf deposits and export sediment to the slope. In tidally dominated deltas, sediment discharged from the river sources must transit through an estuarine region located within the distributary channels, where particle pathways can undergo significant transformations. Within the distributaries of the Fly River tidally dominated delta, near-bed fluid-mud concentrations were observed at the estuarine turbidity maximum and sediment delivery to the nearshore was controlled by the morphology and gradient of the distributary. El Niño results in anonymously low flow and sediment discharge conditions, which limits transport of sediment from the distributaries to the nearshore zone of temporary storage. Because the sediment stored nearshore feeds the prograding clinoform, this perturbation propagates throughout the dispersal system. In wave-dominated regions, transport mechanisms actively move sediment away from the river source, separating the site of deposition and accumulation from the river mouth. River-flood and storm-wave events each create discrete deposits on the Waipaoa River shelf and data has been collected to determine their form, distribution, and relationship to factors such as flood magnitude or wave energy. In this case, transport pathways appear to be influenced by structurally controlled shelf bathymetry. In both cases, the combined fluvial and marine processes can initiate and maintain gravity-driven density flows, and although their triggers and controls differ vastly

  8. Seasonal variability of cohesive sediment aggregation in the Bach Dang-Cam Estuary, Haiphong (Vietnam)

    Science.gov (United States)

    Lefebvre, Jean-Pierre; Ouillon, Sylvain; Vinh, Vu Duy; Arfi, Robert; Panché, Jean-Yves; Mari, Xavier; Van Thuoc, Chu; Torréton, Jean-Pascal

    2012-04-01

    In the Bach Dang-Cam Estuary, northern Vietnam, mechanisms governing cohesive sediment aggregation were investigated in situ in 2008-2009. As part of the Red River delta, this estuary exhibits a marked contrast in hydrological conditions between the monsoon and dry seasons. The impact on flocculation processes was assessed by means of surveys of water discharge, suspended particulate matter concentration and floc size distributions (FSDs) conducted during a tidal cycle at three selected sites along the estuary. A method was developed for calculating the relative volume concentration for the modes of various size classes from FSDs provided by the LISST 100X (Sequoia Scientific Inc.). It was found that all FSDs comprised four modes identified as particles/flocculi, fine and coarse microflocs, and macroflocs. Under the influence of the instantaneous turbulent kinetic energy, their proportions varied but without significant modification of their median diameters. In particular, when the turbulence level corresponded to a Kolmogorov microscale of less than ˜235 μm, a major breakup of flocs resulted in the formation of particles/flocculi and fine microflocs. Fluctuations in turbulence level were governed by seasonal variations in freshwater discharge and by the tidal cycle. During the wet season, strong freshwater input induced a high turbulent energy level that tended to generate sediment transfer from the coarser size classes (macroflocs, coarse microflocs) to finer ones (particles/flocculi and fine microflocs), and to promote a transport of sediment seawards. During the dry season, the influence of tides predominated. The turbulent energy level was then only episodically sufficiently high to generate transfer of sediment between floc size classes. At low turbulent energy, modifications in the proportions of floc size classes were due to differential settling. Tidal pumping produced a net upstream transport of sediment. Associated with the settling of sediment

  9. Sediment geochemistry as potential sea-level indicators to assess coseismic vertical displacements above the Alaska-Aleutian megathrust

    Science.gov (United States)

    Bender, A. M.; Witter, R. C.; Munk, L. A.

    2012-12-01

    mud flat transect to distinguish terrestrial from marine sediment. On Simeonof Is., stratigraphy beneath a peat bog adjacent to a tidal lagoon consists of basal marine sand overlain by ~0.6-1.5 m of peat. The presence of Arachnoidiscus japonicas, benthic marine diatom, implies a marine sand source. Sphagnum spp. and absence of marine foraminifera indicate freshwater peat. We analyzed δ13C, δ15N, and C:N from bulk sediment, and Cl- from water soluble fraction of sediment in a 1.3-m bog core. Freshwater peat at depths of 0.0-26.0, and 33.0-78.5 cm have δ13C ranging from -25.02 to -27.35 ‰, δ15N from 3.30-9.93‰, C:N of 10.16-17.89, and Cl- concentrations of 0.9-25.9 mg/L. Sand dominated intervals at 26.0-33.0, and 78.5-130 cm have δ13C ranging from -17.24 to -26.50‰, δ15N from 8.30-11.11‰ , C:N of 0.30-29.6 and Cl- concentrations of 0.7-19.3 mg/L. The data also indicate that average δ13C and δ15N values are enriched in marine sand relative to freshwater peat, respectively by 3.27‰ and 3.10‰. Also C:N ratios and Cl- concentrations are lower in marine sand, respectively by 23.1 and 0.1 mg/L. Hence, δ13C and δ15N show promise as geochemical proxies to distinguish terrestrial from marine sediment for future Alaska-Aleutian paleoseismic studies west of Kodiak Is.

  10. Tidal and flood signatures of settling particles in the Gaoping submarine canyon (SW Taiwan) revealed from radionuclide and flow measurements

    Science.gov (United States)

    Huh, C.-A.; Liu, J.T.; Lin, H.-L.; Xu, J. P.

    2009-01-01

    Sediment transport and sedimentation processes in the Gaoping submarine canyon were studied using sediment trap and current meter moorings deployed at a location during the winter (January-March) and the summer (July-September) months in 2008. At the end of each deployment, sediment cores were also collected from the canyon floor at the mooring site. Samples from sediment traps and sediment cores were analyzed for 210Pb and 234Th by gamma spectrometry. In conjunction with particle size and flow measurements, the datasets suggest that sediment transport in the canyon is tidally-modulated in the drier winter season and flood (river)-dominated in the wetter summer season. From the magnitude and temporal variation of sediment flux in the canyon with respect to the burial flux and sediment budget on the open shelf and slope region, we reaffirm that, on annual or longer timescales, the Gaoping submarine canyon is an effective conduit transporting sediments from the Gaoping River's drainage basin (the source) to the deep South China Sea (the ultimate sink). ?? 2009 Elsevier B.V.

  11. Coastal inlets and tidal basins

    NARCIS (Netherlands)

    De Vriend, H.J.; Dronkers, J.; Stive, M.J.F.; Van Dongeren, A.; Wang, J.H.

    2002-01-01

    lecture note: Tidal inlets and their associated basins (lagoons) are a common feature of lowland coasts all around the world. A significant part ofthe world's coastlines is formed by barrier island coasts, and most other tidal coasts are interrupted by estuaries and lagoon inlets. These tidal

  12. Simulating the Effects of Sea Level Rise on the Resilience and Migration of Tidal Wetlands along the Hudson River.

    Directory of Open Access Journals (Sweden)

    Nava M Tabak

    Full Text Available Sea Level Rise (SLR caused by climate change is impacting coastal wetlands around the globe. Due to their distinctive biophysical characteristics and unique plant communities, freshwater tidal wetlands are expected to exhibit a different response to SLR as compared with the better studied salt marshes. In this study we employed the Sea Level Affecting Marshes Model (SLAMM, which simulates regional- or local-scale changes in tidal wetland habitats in response to SLR, and adapted it for application in a freshwater-dominated tidal river system, the Hudson River Estuary. Using regionally-specific estimated ranges of SLR and accretion rates, we produced simulations for a spectrum of possible future wetland distributions and quantified the projected wetland resilience, migration or loss in the HRE through the end of the 21st century. Projections of total wetland extent and migration were more strongly determined by the rate of SLR than the rate of accretion. Surprisingly, an increase in net tidal wetland area was projected under all scenarios, with newly-formed tidal wetlands expected to comprise at least 33% of the HRE's wetland area by year 2100. Model simulations with high rates of SLR and/or low rates of accretion resulted in broad shifts in wetland composition with widespread conversion of high marsh habitat to low marsh, tidal flat or permanent inundation. Wetland expansion and resilience were not equally distributed through the estuary, with just three of 48 primary wetland areas encompassing >50% of projected new wetland by the year 2100. Our results open an avenue for improving predictive models of the response of freshwater tidal wetlands to sea level rise, and broadly inform the planning of conservation measures of this critical resource in the Hudson River Estuary.

  13. PTM Modeling of Dredged Suspended Sediment at Proposed Polaris Point and Ship Repair Facility CVN Berthing Sites - Apra Harbor, Guam

    Science.gov (United States)

    2017-09-01

    sedimentation outside of the channel footprint. For example, dredging near the edge of the footprint can be confined to time periods when tidal currents...Cases 1 or 2 due to the lower loss rate. Sedimentation rates outside the channel prism are further reduced because all sediment is introduced in the...ER D C/ CH L TR -1 7- 16 PTM Modeling of Dredged Suspended Sediment at Proposed Polaris Point and Ship Repair Facility CVN Berthing

  14. When shape matters: strategies of different Antarctic ascidians morphotypes to deal with sedimentation.

    Science.gov (United States)

    Torre, Luciana; Abele, Doris; Lagger, Cristian; Momo, Fernando; Sahade, Ricardo

    2014-08-01

    Climate change leads to increased melting of tidewater glaciers in the Western Antarctic Peninsula region and sediment bearing glacial melt waters negatively affects filter feeding species as solitary ascidians. In previous work the erect-forms Molgula pedunculata and Cnemidocarpa verrucosa (Order Stolidobranchiata) appeared more sensitive than the flat form Ascidia challengeri (Order Phlebobranchiata). Sedimentation exposure is expected to induce up-regulation of anaerobic metabolism by obstructing the organs of gas exchange (environmental hypoxia) or causes enhanced squirting activity (functional hypoxia). In this study we evaluated the possible relationship between ascidian morphotype and their physiological response to sedimentation. Together with some behavioural observations, we analysed the response of anaerobic metabolic parameters (lactate formation and glycogen consumption) in different tissues of three Antarctic ascidians, exposed to high sediment concentrations (200 mgL(-1)). The results were compared to experimental hypoxia (10% pO2) and exercise (induced muscular contraction) effects, in order to discriminate the effect of sediment on each species and morpho-type (erect vs. flat forms). Our results suggest that the styled (erect) C. verrucosa increases muscular squirting activity in order to expulse excessive material, while the flat-form A. challengeri reacts more passively by down-regulating its aerobic metabolism under sediment exposure. Contrary, the erect ascidian M. pedunculata did not show any measurable response to the treatments, indicating that filtration and ingestion activities were not reduced or altered even under high sedimentation (low energetic material) which could be disadvantageous on the long-term and could explain why M. pedunculata densities decline in the study area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Tidal locking of habitable exoplanets

    Science.gov (United States)

    Barnes, Rory

    2017-12-01

    Potentially habitable planets can orbit close enough to their host star that the differential gravity across their diameters can produce an elongated shape. Frictional forces inside the planet prevent the bulges from aligning perfectly with the host star and result in torques that alter the planet's rotational angular momentum. Eventually the tidal torques fix the rotation rate at a specific frequency, a process called tidal locking. Tidally locked planets on circular orbits will rotate synchronously, but those on eccentric orbits will either librate or rotate super-synchronously. Although these features of tidal theory are well known, a systematic survey of the rotational evolution of potentially habitable exoplanets using classic equilibrium tide theories has not been undertaken. I calculate how habitable planets evolve under two commonly used models and find, for example, that one model predicts that the Earth's rotation rate would have synchronized after 4.5 Gyr if its initial rotation period was 3 days, it had no satellites, and it always maintained the modern Earth's tidal properties. Lower mass stellar hosts will induce stronger tidal effects on potentially habitable planets, and tidal locking is possible for most planets in the habitable zones of GKM dwarf stars. For fast-rotating planets, both models predict eccentricity growth and that circularization can only occur once the rotational frequency is similar to the orbital frequency. The orbits of potentially habitable planets of very late M dwarfs ([InlineEquation not available: see fulltext.]) are very likely to be circularized within 1 Gyr, and hence, those planets will be synchronous rotators. Proxima b is almost assuredly tidally locked, but its orbit may not have circularized yet, so the planet could be rotating super-synchronously today. The evolution of the isolated and potentially habitable Kepler planet candidates is computed and about half could be tidally locked. Finally, projected TESS planets

  16. Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska final report

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Bruce Albert [Aleutian Pribilof Islands Association, Inc., Anchorage, AK (United States)

    2014-05-07

    , the Project Team developed a conceptual tidal energy project design utilizing ORPC’s TidGen® Power System. While the Project Team has not committed to ORPC technology for future development of a False Pass project, this conceptual design was critical to informing the Project’s economic analysis. The results showed that power from a tidal energy project could be provided to the City of False at a rate at or below the cost of diesel generated electricity and sold to commercial customers at rates competitive with current market rates, providing a stable, flat priced, environmentally sound alternative to the diesel generation currently utilized for energy in the community. The Project Team concluded that with additional grants and private investment a tidal energy project at False Pass is well-positioned to be the first tidal energy project to be developed in Alaska, and the first tidal energy project to be interconnected to an isolated micro grid in the world. A viable project will be a model for similar projects in coastal Alaska.

  17. Turning the tide : tidal power in the UK

    OpenAIRE

    Sustainable Development Commission

    2007-01-01

    Contents: Turning the tide : tidal power in the UK -- Executive summary -- Tidal power in the UK : research report 1 : UK tidal resource assessment -- Tidal power in the UK : research report 2 : tidal technologies overview -- Tidal power in the UK : research report 3 : Severn barrage proposals -- Tidal power in the UK : research report 4 : Severn non-barrage options -- Tidal power in the UK : research report 5 : UK case studies. Summarised in the Welsh language version of the executive ...

  18. Tidal energy

    International Nuclear Information System (INIS)

    Lochte, H.G.

    1995-01-01

    Together with wave energy, ocean thermal energy, and the often overlooked energy from ocean curents tidal energy belongs to those renewable energy sources that can be subsumed under the generic term of ocean energy. All that these energy sources have in common, however, is that they are found in the ocean. The present article discusses tidal energy with respect to the four principal factors determining the scope of a renewable energy source, namely global, technical, and economic availability and ecological acceptability. (orig.) [de

  19. Tidally Heated Terrestrial Exoplanets

    Science.gov (United States)

    Henning, Wade Garrett

    This work models the surface and internal temperatures for hypothetical terrestrial planets in situations involving extreme tidal heating. The feasibility of such planets is evaluated in terms of the orbital perturbations that may give rise to them, their required proximity to a hoststar, and the potential for the input tidal heating to cause significant partial melting of the mantle. Trapping terrestrial planets into 2:1 resonances with migrating Hot Jupiters is considered as a reasonable way for Earth-like worlds to both maintain high eccentricities and to move to short enough orbital periods (1-20 days) for extreme tidal heating to occur. Secular resonance and secular orbital perturbations may support moderate tidal heating at a low equilibrium eccentricity. At orbital periods below 10-30 days, with eccentricities from 0.01 to 0.1, tidal heat may greatly exceed radiogenic heat production. It is unlikely to exceed insolation, except when orbiting very low luminosity hosts, and thus will have limited surface temperature expression. Observations of such bodies many not be able to detect tidal surface enhancements given a few percent uncertainty in albedo, except on the nightside of spin synchronous airless objects. Otherwise detection may occur via spectral detection of hotspots or high volcanic gas concentrations including sulfur dioxide and hydrogen sulfide. The most extreme cases may be able to produce magma oceans, or magma slush mantles with up to 40-60% melt fractions. Tides may alter the habitable zones for smaller red dwarf stars, but are generally detrimental. Multiple viscoelastic models, including the Maxwell, Voigt-Kelvin, Standard Anelastic Solid, and Burgers rheologies are explored and applied to objects such as Io and the super-Earth planet GJ 876d. The complex valued Love number for the Burgers rheology is derived and found to be a useful improvement when modeling the low temperature behavior of tidal bodies, particularly during low eccentricity

  20. Nearshore sediment thickness, Fire Island, New York

    Science.gov (United States)

    Locker, Stanley D.; Miselis, Jennifer L.; Buster, Noreen A.; Hapke, Cheryl J.; Wadman, Heidi M.; McNinch, Jesse E.; Forde, Arnell S.; Stalk, Chelsea A.

    2017-04-03

    Investigations of coastal change at Fire Island, New York (N.Y.), sought to characterize sediment budgets and determine geologic framework controls on coastal processes. Nearshore sediment thickness is critical for assessing coastal system sediment availability, but it is largely unquantified due to the difficulty of conducting geological or geophysical surveys across the nearshore. This study used an amphibious vessel to acquire chirp subbottom profiles. These profiles were used to characterize nearshore geology and provide an assessment of nearshore sediment volume. Two resulting sediment-thickness maps are provided: total Holocene sediment thickness and the thickness of the active shoreface. The Holocene sediment section represents deposition above the maximum flooding surface that is related to the most recent marine transgression. The active shoreface section is the uppermost Holocene sediment, which is interpreted to represent the portion of the shoreface thought to contribute to present and future coastal behavior. The sediment distribution patterns correspond to previously defined zones of erosion, accretion, and stability along the island, demonstrating the importance of sediment availability in the coastal response to storms and seasonal variability. The eastern zone has a thin nearshore sediment thickness, except for an ebb-tidal deposit at the wilderness breach caused by Hurricane Sandy. Thicker sediment is found along a central zone that includes shoreface-attached sand ridges, which is consistent with a stable or accretional coastline in this area. The thickest overall Holocene section is found in the western zone of the study, where a thicker lower section of Holocene sediment appears related to the westward migration of Fire Island Inlet over several hundred years.

  1. Mercury dynamics in a San Francisco estuary tidal wetland: assessing dynamics using in situ measurements

    Science.gov (United States)

    Bergamaschi, Brian A.; Fleck, Jacob A.; Downing, Bryan D.; Boss, Emmanuel; Pellerin, Brian A.; Ganju, Neil K.; Schoellhamer, David H.; Byington, Amy A.; Heim, Wesley A.; Stephenson, Mark; Fujii, Roger

    2012-01-01

    We used high-resolution in situ measurements of turbidity and fluorescent dissolved organic matter (FDOM) to quantitatively estimate the tidally driven exchange of mercury (Hg) between the waters of the San Francisco estuary and Browns Island, a tidal wetland. Turbidity and FDOM—representative of particle-associated and filter-passing Hg, respectively—together predicted 94 % of the observed variability in measured total mercury concentration in unfiltered water samples (UTHg) collected during a single tidal cycle in spring, fall, and winter, 2005–2006. Continuous in situ turbidity and FDOM data spanning at least a full spring-neap period were used to generate UTHg concentration time series using this relationship, and then combined with water discharge measurements to calculate Hg fluxes in each season. Wetlands are generally considered to be sinks for sediment and associated mercury. However, during the three periods of monitoring, Browns Island wetland did not appreciably accumulate Hg. Instead, gradual tidally driven export of UTHg from the wetland offset the large episodic on-island fluxes associated with high wind events. Exports were highest during large spring tides, when ebbing waters relatively enriched in FDOM, dissolved organic carbon (DOC), and filter-passing mercury drained from the marsh into the open waters of the estuary. On-island flux of UTHg, which was largely particle-associated, was highest during strong winds coincident with flood tides. Our results demonstrate that processes driving UTHg fluxes in tidal wetlands encompass both the dissolved and particulate phases and multiple timescales, necessitating longer term monitoring to adequately quantify fluxes.

  2. Distribution of surficial sediment in Long Island Sound and adjacent waters: Texture and total organic carbon

    Science.gov (United States)

    Poppe, L.J.; Knebel, H.J.; Mlodzinska, Z.J.; Hastings, M.E.; Seekins, B.A.

    2000-01-01

    The surficial sediment distribution within Long Island Sound has been mapped and described using bottom samples, photography, and sidescan sonar, combined with information from the geologic literature. The distributions of sediment type and total organic carbon (TOC) reveal several broad trends that are largely related to the sea-floor geology, the bathymetry, and the effects of modern tidal- and wind-driven currents. Sediment types are most heterogeneous in bathymetrically complex and shallow nearshore areas; the heterogeneity diminishes and the texture fines with decreasing bottom-current energy. Lag deposits of gravel and gravelly sand dominate the surficial sediment texture in areas where bottom currents are the strongest (such as where tidal flow is constricted) and where glacial till crops out at the sea floor. Sand is the dominant sediment type in areas characterized by active sediment transport and in shallow areas affected by fine-grained winnowing. Silty sand and sand-silt-clay mark transitions within the basin from higher- to lower-energy environments, suggesting a diminished hydraulic ability to sort and transport sediment. Clayey silt and silty clay are the dominant sediment types accumulating in the central and western basins and in other areas characterized by long-term depositional environments. The amount of TOC in the sediments of Long Island Sound varies inversely with sediment grain size. Concentrations average more than 1.9% (dry weight) in clayey silt, but are less than 0.4% in sand. Generally, values for TOC increase both toward the west in the Sound and from the shallow margins to the deeper parts of the basin floor. Our data also suggest that TOC concentrations can vary seasonally.

  3. How do mangrove forests induce sedimentation?

    Directory of Open Access Journals (Sweden)

    K. Kathiresan

    2003-06-01

    Full Text Available The mangrove forests play a significant role as sediment traps. They reduce tidal flows and induce sedimentation of soil particles at low tide. However, there are no such processes taking place in the non-mangrove areas. Site of Avicennia-Rhizophora interphase is more efficient than Avicennia and or Rhizophora zones, in trapping the sediment by 30, 25 and 20% respectively at low tide as compared to high tide.Los bosques de manglar juegan un papel significativo como trampas de sedimentos. Ellos reducen los flujos de mareas e inducen las sedimentación de las partículas del suelo en la marea baja. Sin embargo, tal proceso no ocurre en areas sin manglares. Los sitios de interfase Avicennia-Rhizophora son más eficientes que las zonas monoespecíficas de Avicennia o de Rhizophora para atrapar sedimentos, en un 30, 25 and 20% respectivament, durante la marea baja en comparación con la marea alta.

  4. Tidal alignment of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  5. Carbon Sequestration and Sedimentation in Mangrove Swamps Influenced by Hydrogeomorphic Conditions and Urbanization in Southwest Florida

    Directory of Open Access Journals (Sweden)

    Daniel A. Marchio

    2016-05-01

    Full Text Available This study compares carbon sequestration rates along two independent tidal mangrove creeks near Naples Bay in Southwest Florida, USA. One tidal creek is hydrologically disturbed due to upstream land use changes; the other is an undisturbed reference creek. Soil cores were collected in basin, fringe, and riverine hydrogeomorphic settings along each of the two tidal creeks and analyzed for bulk density, total organic carbon profiles, and sediment accretion. Radionuclides 137Cs and 210Pb were used to estimate recent sediment accretion and carbon sequestration rates. Carbon sequestration rates (mean ± standard error for seven sites in the two tidal creeks on the Naples Bay (98 ± 12 g-C m−2·year−1 (n = 18 are lower than published global means for mangrove wetlands, but consistent with other estimates from the same region. Mean carbon sequestration rates in the reference riverine setting were highest (162 ± 5 g-C m−2·year−1, followed by rates in the reference fringe and disturbed riverine settings (127 ± 6 and 125 ± 5 g-C m−2·year−1, respectively. The disturbed fringe sequestered 73 ± 10 g-C m−2·year−1, while rates within the basin settings were 50 ± 4 g-C m−2·year−1 and 47 ± 4 g-C m−2·year−1 for the reference and disturbed creeks, respectively. These data support our hypothesis that mangroves along a hydrologically disturbed tidal creek sequestered less carbon than did mangroves along an adjacent undisturbed reference creek.

  6. Sediment texture, distribution and transport on the Ayeyarwady continental shelf, Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, P.S.; Ramaswamy, V.; Thwin, S.

    . Kluwer Academic Publishers, The Nether- lands, pp. 63–85. Milliman, J.D., Meade, R.H., 1983. World-wide delivery of river sediment to the oceans. J. Geol. 91, 1–21. Ramaswamy, V., Rao, P.S., Rao, K.H., Swe Thwin, Srinivasa Rao, N., Raiker, V., 2004. Tidal...

  7. Effect of abalone farming on sediment geochemistry in the Shallow Sea near Wando, South Korea

    Science.gov (United States)

    Kang, Jeongwon; Lee, Yeon Gyu; Jeong, Da Un; Lee, Jung Sick; Choi, Yang Ho; Shin, Yun Kyung

    2015-12-01

    Wando County has grown up to 93% of the total abalone produced in South Korea since the late 1990s; however, this production has been decreasing in recent years. The objectives of this study were to understand the potential contamination risks of abalone farming and to examine the influence of intensive abalone farming on sediment quality by analyzing grain-size composition, organic matter (total organic carbon (TOC), total nitrogen (TN), total sulfur (TS)) and heavy metal content, pH, and 210Pb geochronology. The results of organic matter analysis from surface and core sediment (length: 64 cm) showed that the area around the abalone farm had oxic marine-to-brackish conditions, but that the area directly below an abalone cage (location 7) had reductive conditions, with a C/S ratio of ~2. The average TN levels in the surface and core sediments were 0.25% and 0.29%, respectively, and this was predominantly due to the use of seaweed for feed. The low sediment pH (surface, 7.23; core, 7.04), indicates that acidification of the bottom sediment has gradually increased since the initiation of abalone farming and is likely due to the continuous accumulation of uneaten feed and feces. Heavy metal pollution was not apparent based on the examination of EF and Igeo, although the excess metal flux of Ni, Pb, Cu, Co, As, and Cd increased toward surface of the sediment core. These sediment changes may be caused by the rapid accumulation (sedimentation rate: 1.45 cm/year) of sludge discharged from the abalone farm and may be controlled by tidal currents, physiography, water depth, and tidal ranges.

  8. Dissolved gaseous mercury formation and mercury volatilization in intertidal sediments.

    Science.gov (United States)

    Cesário, Rute; Poissant, Laurier; Pilote, Martin; O'Driscoll, Nelson J; Mota, Ana M; Canário, João

    2017-12-15

    Intertidal sediments of Tagus estuary regularly experiences complex redistribution due to tidal forcing, which affects the cycling of mercury (Hg) between sediments and the water column. This study quantifies total mercury (Hg) and methylmercury (MMHg) concentrations and fluxes in a flooded mudflat as well as the effects on water-level fluctuations on the air-surface exchange of mercury. A fast increase in dissolved Hg and MMHg concentrations was observed in overlying water in the first 10min of inundation and corresponded to a decrease in pore waters, suggesting a rapid export of Hg and MMHg from sediments to the water column. Estimations of daily advective transport exceeded the predicted diffusive fluxes by 5 orders of magnitude. A fast increase in dissolved gaseous mercury (DGM) concentration was also observed in the first 20-30min of inundation (maximum of 40pg L -1 ). Suspended particulate matter (SPM) concentrations were inversely correlated with DGM concentrations. Dissolved Hg variation suggested that biotic DGM production in pore waters is a significant factor in addition to the photochemical reduction of Hg. Mercury volatilization (ranged from 1.1 to 3.3ngm -2 h -1 ; average of 2.1ngm -2 h -1 ) and DGM production exhibited the same pattern with no significant time-lag suggesting a fast release of the produced DGM. These results indicate that Hg sediment/water exchanges in the physical dominated estuaries can be underestimated when the tidal effect is not considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. TIDAL FRICTION AND TIDAL LAGGING. APPLICABILITY LIMITATIONS OF A POPULAR FORMULA FOR THE TIDAL TORQUE

    International Nuclear Information System (INIS)

    Efroimsky, Michael; Makarov, Valeri V.

    2013-01-01

    Tidal torques play a key role in rotational dynamics of celestial bodies. They govern these bodies' tidal despinning and also participate in the subtle process of entrapment of these bodies into spin-orbit resonances. This makes tidal torques directly relevant to the studies of habitability of planets and their moons. Our work begins with an explanation of how friction and lagging should be built into the theory of bodily tides. Although much of this material can be found in various publications, a short but self-consistent summary on the topic has been lacking in the hitherto literature, and we are filling the gap. After these preparations, we address a popular concise formula for the tidal torque, which is often used in the literature, for planets or stars. We explain why the derivation of this expression, offered in the paper by Goldreich and in the books by Kaula (Equation (4.5.29)) and Murray and Dermott (Equation (4.159)), implicitly sets the time lag to be frequency independent. Accordingly, the ensuing expression for the torque can be applied only to bodies having a very special (and very hypothetical) rheology which makes the time lag frequency independent, i.e., the same for all Fourier modes in the spectrum of tide. This expression for the torque should not be used for bodies of other rheologies. Specifically, the expression cannot be combined with an extra assertion of the geometric lag being constant, because at finite eccentricities the said assumption is incompatible with the constant-time-lag condition.

  10. TIDAL FRICTION AND TIDAL LAGGING. APPLICABILITY LIMITATIONS OF A POPULAR FORMULA FOR THE TIDAL TORQUE

    Energy Technology Data Exchange (ETDEWEB)

    Efroimsky, Michael; Makarov, Valeri V., E-mail: michael.efroimsky@usno.navy.mil, E-mail: vvm@usno.navy.mil [US Naval Observatory, Washington, DC 20392 (United States)

    2013-02-10

    Tidal torques play a key role in rotational dynamics of celestial bodies. They govern these bodies' tidal despinning and also participate in the subtle process of entrapment of these bodies into spin-orbit resonances. This makes tidal torques directly relevant to the studies of habitability of planets and their moons. Our work begins with an explanation of how friction and lagging should be built into the theory of bodily tides. Although much of this material can be found in various publications, a short but self-consistent summary on the topic has been lacking in the hitherto literature, and we are filling the gap. After these preparations, we address a popular concise formula for the tidal torque, which is often used in the literature, for planets or stars. We explain why the derivation of this expression, offered in the paper by Goldreich and in the books by Kaula (Equation (4.5.29)) and Murray and Dermott (Equation (4.159)), implicitly sets the time lag to be frequency independent. Accordingly, the ensuing expression for the torque can be applied only to bodies having a very special (and very hypothetical) rheology which makes the time lag frequency independent, i.e., the same for all Fourier modes in the spectrum of tide. This expression for the torque should not be used for bodies of other rheologies. Specifically, the expression cannot be combined with an extra assertion of the geometric lag being constant, because at finite eccentricities the said assumption is incompatible with the constant-time-lag condition.

  11. Coastal Dynamics of the Ganges-Brahmaputra Delta: 1988-2014

    Science.gov (United States)

    Chiu, S.; Sousa, D.; Mondal, D. R.; Small, C.

    2014-12-01

    In this study we quantify erosional and depositional processes in the coastal zone (including tidal flats and river channels) of the lower Ganges Brahmaputra delta (GBD). Recent availability of accurately coregistered, radiometrically intercalibrated, Landsat TM, ETM+ & OLI collected since 1988 allows for spatiotemporal (ST) analyses of both natural and anthropogenic processes in the coastal zone on seasonal to interannual time scales. We quantify changes in the coastal zone using 106 cloud-free acquisitions in the area of the 3 Landsat scenes spanning the lower delta. Changes are quantified using multitemporal spectral mixture analysis of exoatmospheric reflectance to represent land cover and water bodies as continuous fields of soil and sediment substrates (S), vegetation (V), and dark surfaces (D; water & shadow). We also use MODIS 16-day EVI composite time series and high spatial resolution (2-4 m) imagery post-2000 to extend and vicariously validate the Landsat-derived observations. Because water levels on the lower delta change by several meters on time scales of hours (tides), months (discharge) and years (relative sea level rise), we use a network of 11 tide gauges to distinguish the effects of these changes in the coastal zone imaged by Landsat. Cross spectral analysis of this network of tide gauge records quantifies the dominant periods and relative magnitudes as well as phase of water level variations across these time scales. Tide gauge records are used to identify Landsat scenes acquired at similar water levels as well as the effects of water level on variations in tidal flats. Water level and water leaving radiance are used to map spatiotemporal variations in suspended sediment. Tri-temporal change maps of SVD fractions show progressive changes of coastlines throughout the study period. We find significant change in tidal flats in acquisitions from different tidal heights, alluding to the importance of tidal phase in coastal analyses. Erosion of

  12. Dynamics and fate of SOC in tidal marshes along a salinity gradient (Scheldt estuary, Belgium)

    Science.gov (United States)

    Van de Broek, Marijn; Temmermann, Stijn; Merckx, Roel; Wang, Zhengang; Govers, Gerard

    2016-04-01

    found, while a change in aboveground vegetation type can have large effects on SOC accumulation. Moreover, as these marsh soils have been dated before, the observed depth patterns in SOC can be linked to historical changes (e.g. changes in vegetation). A calibrated model simulating sediment deposition in these marshes is coupled to a two-pool OC model to study the effect of sediment deposition rate on the fate of SOC, with most input information being collected at the field sites. This allows us to calculate the residence time of OC in these tidal marsh soils, a measure that is very uncertain, also for other ecosystems. The part concerning modelling is however still under progress at the moment of writing. This study shows to which extent OC stocks and dynamics of tidal marsh soils along a temperate estuary are controlled by 1) the amount and quality of OC input and 2) the contribution from different sources of OC, and uses these finding to construct a 1D model to simulate these dynamics through time.

  13. Mathematical simulation of sediment and radionuclide transport in estuaries

    International Nuclear Information System (INIS)

    Onishi, Y.; Trent, D.S.

    1982-11-01

    The finite element model LFESCOT (Flow, Energy, Salinity, Sediment and Contaminant Transport Model) was synthesized under this study to simulate radionuclide transport in estuaries to obtain accurate radionuclide distributions which are affected by these factors: time variance, three-dimensional flow, temperature, salinity, and sediments. Because sediment transport and radionuclide adsorption/desorption depend strongly on sizes or types of sediments, FLESCOT simulates sediment and a sediment-sorbed radionuclide for the total of three sediment-size fractions (or sediment types) of both cohesive and noncohesive sediments. It also calculates changes of estuarine bed conditions, including bed elevation changes due to sediment erosion/deposition, and three-dimensional distributions of three bed sediment sizes and sediment-sorbed radionuclides within the bed. Although the model was synthesized for radionuclide transport, it is general enough to also handle other contaminants such as heavy metals, pesticides, or toxic chemicals. The model was checked for its capability for flow, water surface elevation change, salinity, sediment and radionuclide transport under various simple conditions first, confirming the general validity of the model's computational schemes. These tests also revealed that FLESCOT can use large aspect ratios of computational cells, which are necessary in handling long estuarine study areas. After these simple tests, FLESCOT was applied to the Hudson River estuary between Chelsea and the mouth of the river to examine how well the model can predict radionuclide transport through simulating tidally influenced three-dimensional flow, salinity, sediment and radionuclide movements with their interactions

  14. Evolution of the Parnaíba Delta (NE Brazil) during the late Holocene

    Science.gov (United States)

    Szczygielski, Agata; Stattegger, Karl; Schwarzer, Klaus; da Silva, André Giskard Aquino; Vital, Helenice; Koenig, Juliane

    2015-04-01

    Sedimentary processes and the evolution of the wave- and tide-dominated, asymmetric Parnaíba Delta during the late Holocene were investigated based on geochemical and sedimentological analyses of sediment cores collected in 2010, as well as satellite images and historical maps. This is a rare case of pristine deltas essentially unaffected by human activities worldwide. The lowermost part of the main Parnaíba River distributary exhibits several low-sinuosity bends and several anastomosing bifurcation patterns in the east, whereas three NW-SE-oriented tidal channels drain a large mangrove area in the west. Dating of various materials in sediment cores from the tidal flats, tidal channels and supratidal marshes revealed that the oldest sediment (4,853 to 4,228 cal. years BP) is paleo-mangrove soil from the main river distributary. Present-day mangroves and marshes up to 200 years old exhibit high sedimentation rates reaching 3.4 cm/year. The asymmetry of the delta is explained not only by the wind- and wave-induced westward-directed longshore drift but also by neotectonic processes, as revealed by satellite images. Faulting and eastward tilting may have triggered delta lobe switching from west to east. This would explain the erosional character and unusual updrift orientation of the main river-mouth channel. Consistent with existing knowledge on mangrove ecosystems worldwide, sediment carbon and nitrogen signatures lie in the range of freshwater or marine dissolved organic carbon and C3 terrestrial plants. In the western tidal channels, the low Corg/Ntot ratios (16-21) of young mangrove soil (deposited in the last 16 years) reflect a stronger influence of marine plants compared to older mangroves (1,390-1,525 cal. years BP; ratios of 20-37). Thus, there would have been a greater influence of the Parnaíba River on tidal-channel sedimentology 1,400 to 1,500 years ago, entailing a natural connection between the present-day tidal channels and the river in ancient times

  15. Measuring the environmental costs of tidal power plant construction: A choice experiment study

    International Nuclear Information System (INIS)

    Lee, Joo-Suk; Yoo, Seung-Hoon

    2009-01-01

    Korea is considering the construction of a tidal power plant (TPP) at Garolim Bay. However, as the construction of the Garolim TPP (GTPP) is expected to entail some environmental damage, it has become an increasingly important topic for public debate. Using a choice experiment (CE) approach, this study attempts to measure the economic cost that results from the environmental damage caused by the construction of GTPP. The CE is used to measure the environmental costs of individual attributes, including the reduction in the area of the tidal flat, the degradation of seawater quality, and the destruction of marine life. The results indicate that the annual willingness to pay (WTP) per household for mitigating the environmental damage that results from the worst-possible situation in relation to the present situation is about 96,042 Korean won (USD 101.1) in the seven biggest cities (off-site regions) and 18,584 Korean won (USD 19.6) in Seosan and Taean (on-site regions). This study is expected to provide policy-makers with quantitative information that will be useful to decide whether or not GTPP should be constructed.

  16. Evaluating tidal marsh sustainability in the face of sea-level rise: a hybrid modeling approach applied to San Francisco Bay.

    Directory of Open Access Journals (Sweden)

    Diana Stralberg

    Full Text Available Tidal marshes will be threatened by increasing rates of sea-level rise (SLR over the next century. Managers seek guidance on whether existing and restored marshes will be resilient under a range of potential future conditions, and on prioritizing marsh restoration and conservation activities.Building upon established models, we developed a hybrid approach that involves a mechanistic treatment of marsh accretion dynamics and incorporates spatial variation at a scale relevant for conservation and restoration decision-making. We applied this model to San Francisco Bay, using best-available elevation data and estimates of sediment supply and organic matter accumulation developed for 15 Bay subregions. Accretion models were run over 100 years for 70 combinations of starting elevation, mineral sediment, organic matter, and SLR assumptions. Results were applied spatially to evaluate eight Bay-wide climate change scenarios.Model results indicated that under a high rate of SLR (1.65 m/century, short-term restoration of diked subtidal baylands to mid marsh elevations (-0.2 m MHHW could be achieved over the next century with sediment concentrations greater than 200 mg/L. However, suspended sediment concentrations greater than 300 mg/L would be required for 100-year mid marsh sustainability (i.e., no elevation loss. Organic matter accumulation had minimal impacts on this threshold. Bay-wide projections of marsh habitat area varied substantially, depending primarily on SLR and sediment assumptions. Across all scenarios, however, the model projected a shift in the mix of intertidal habitats, with a loss of high marsh and gains in low marsh and mudflats.Results suggest a bleak prognosis for long-term natural tidal marsh sustainability under a high-SLR scenario. To minimize marsh loss, we recommend conserving adjacent uplands for marsh migration, redistributing dredged sediment to raise elevations, and concentrating restoration efforts in sediment-rich areas

  17. Ephemeral seafloor sedimentation during dam removal: Elwha River, Washington

    Science.gov (United States)

    Foley, Melissa M.; Warrick, Jonathan

    2017-01-01

    The removal of the Elwha and Glines Canyon dams from the Elwha River in Washington, USA, resulted in the erosion and transport of over 10 million m3 of sediment from the former reservoirs and into the river during the first two years of the dam removal process. Approximately 90% of this sediment was transported through the Elwha River and to the coast at the Strait of Juan de Fuca. To evaluate the benthic dynamics of increased sediment loading to the nearshore, we deployed a tripod system in ten meters of water to the east of the Elwha River mouth that included a profiling current meter and a camera system. With these data, we were able to document the frequency and duration of sedimentation and turbidity events, and correlate these events to physical oceanographic and river conditions. We found that seafloor sedimentation occurred regularly during the heaviest sediment loading from the river, but that this sedimentation was ephemeral and exhibited regular cycles of deposition and erosion caused by the strong tidal currents in the region. Understanding the frequency and duration of short-term sediment disturbance events is instrumental to interpreting the ecosystem-wide changes that are occurring in the nearshore habitats around the Elwha River delta.

  18. Ephemeral seafloor sedimentation during dam removal: Elwha River, Washington

    Science.gov (United States)

    Foley, Melissa M.; Warrick, Jonathan A.

    2017-11-01

    The removal of the Elwha and Glines Canyon dams from the Elwha River in Washington, USA, resulted in the erosion and transport of over 10 million m3 of sediment from the former reservoirs and into the river during the first two years of the dam removal process. Approximately 90% of this sediment was transported through the Elwha River and to the coast at the Strait of Juan de Fuca. To evaluate the benthic dynamics of increased sediment loading to the nearshore, we deployed a tripod system in ten meters of water to the east of the Elwha River mouth that included a profiling current meter and a camera system. With these data, we were able to document the frequency and duration of sedimentation and turbidity events, and correlate these events to physical oceanographic and river conditions. We found that seafloor sedimentation occurred regularly during the heaviest sediment loading from the river, but that this sedimentation was ephemeral and exhibited regular cycles of deposition and erosion caused by the strong tidal currents in the region. Understanding the frequency and duration of short-term sediment disturbance events is instrumental to interpreting the ecosystem-wide changes that are occurring in the nearshore habitats around the Elwha River delta.

  19. Surface runoff in flat terrain: How field topography and runoff generating processes control hydrological connectivity

    NARCIS (Netherlands)

    Appels, W.M.; Bogaart, P.W.; Bogaart, P.W.; Zee, van der S.E.A.T.M.

    2016-01-01

    In flat lowland agricultural catchments in temperate climate zones with highly permeable sandy soils, surface runoff is a rare process with a large impact on the redistribution of sediments and solutes and stream water quality. We examine hydrological data obtained on two field sites in the

  20. Formation of double galaxies by tidal capture

    International Nuclear Information System (INIS)

    Alladin, S.M.; Potdar, A.; Sastry, K.S.

    1975-01-01

    The conditions under which double galaxies may be formed by tidal capture are considered. Estimates for the increase in the internal energy of colliding galaxies due to tidal effects are used to determine the magnitudes Vsub(cap) and Vsub(dis) of the maximum relative velocities at infinite separation required for tidal capture and tidal disruption respectively. A double galaxy will be formed by tidal capture without tidal disruption of a component if Vsub(cap)>Vsub(i) and Vsub(cap)>Vsub(dis) where Vsub(i) is the initial relative speed of the two galaxies at infinite separation. If the two galaxies are of the same dimension, formulation of double galaxies by tidal capture is possible in a close collision either if the two galaxies do not differ much in mass and density distribution or if the more massive galaxy is less centrally concentrated than the other. If it is assumed as statistics suggest, that the mass of a galaxy is proportional to the square of its radius, it follows that the probability of the formation of double galaxies by tidal capture increases with the increase in mass of the galaxies and tidal distribution does not occur in a single collision for any distance of closest approach of the two galaxies. (Auth.)

  1. Microfossil measures of rapid sea-level rise: Timing of response of two microfossil groups to a sudden tidal-flooding experiment in Cascadia

    Science.gov (United States)

    Horton, B.P.; Milker, Yvonne; Dura, T.; Wang, Kelin; Bridgeland, W.T.; Brophy, Laura S.; Ewald, M.; Khan, Nicole; Engelhart, S.E.; Nelson, Alan R.; Witter, Robert C.

    2017-01-01

    Comparisons of pre-earthquake and post-earthquake microfossils in tidal sequences are accurate means to measure coastal subsidence during past subduction earthquakes, but the amount of subsidence is uncertain, because the response times of fossil taxa to coseismic relative sea-level (RSL) rise are unknown. We measured the response of diatoms and foraminifera to restoration of a salt marsh in southern Oregon, USA. Tidal flooding following dike removal caused an RSL rise of ∼1 m, as might occur by coseismic subsidence during momentum magnitude (Mw) 8.1–8.8 earthquakes on this section of the Cascadia subduction zone. Less than two weeks after dike removal, diatoms colonized low marsh and tidal flats in large numbers, showing that they can record seismically induced subsidence soon after earthquakes. In contrast, low-marsh foraminifera took at least 11 months to appear in sizeable numbers. Where subsidence measured with diatoms and foraminifera differs, their different response times may provide an estimate of postseismic vertical deformation in the months following past megathrust earthquakes.

  2. Tidal controls on earthquake size-frequency statistics

    Science.gov (United States)

    Ide, S.; Yabe, S.; Tanaka, Y.

    2016-12-01

    The possibility that tidal stresses can trigger earthquakes is a long-standing issue in seismology. Except in some special cases, a causal relationship between seismicity and the phase of tidal stress has been rejected on the basis of studies using many small events. However, recently discovered deep tectonic tremors are highly sensitive to tidal stress levels, with the relationship being governed by a nonlinear law according to which the tremor rate increases exponentially with increasing stress; thus, slow deformation (and the probability of earthquakes) may be enhanced during periods of large tidal stress. Here, we show the influence of tidal stress on seismicity by calculating histories of tidal shear stress during the 2-week period before earthquakes. Very large earthquakes tend to occur near the time of maximum tidal stress, but this tendency is not obvious for small earthquakes. Rather, we found that tidal stress controls the earthquake size-frequency statistics; i.e., the fraction of large events increases (i.e. the b-value of the Gutenberg-Richter relation decreases) as the tidal shear stress increases. This correlation is apparent in data from the global catalog and in relatively homogeneous regional catalogues of earthquakes in Japan. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. Our findings indicate that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. This finding has clear implications for probabilistic earthquake forecasting.

  3. Persistence of Gulf War oil versus intertidal morphology and sediments - one year later

    International Nuclear Information System (INIS)

    Montello, T.M.; Hayes, M.O.; Michel, J.; Al-Momen, A.H.; Al-Mansi, A.M.; Aurand, D.V.

    1993-01-01

    A study of the persistence of oil in the intertidal habitats of the Saudi Arabian coast was carried out one year after the Gulf war spill in conjunction with the National Oceanic and Atmospheric Administration ship Mt. Mitchell's ROPME Sea Cruise. A total of 10 kilometers of transects were surveyed at 20 stations, representing heavily oiled sheltered beaches, tidal flats, algal mats, halophyte saltmarshes, and mangroves at the heads of bays

  4. Owhership of flats

    OpenAIRE

    Přibil, Jan

    2012-01-01

    Ownership of Flats Summary In his diploma thesis "Ownership of Flats", the author focuses on applicable law of flat ownership in the Czech Republic, especially the Flat Ownership Act 72/1994 Sb. The author puts the contemporary regulation in historical context; he describes the theoretical principles underlining the current applicable law and defines in detail the basic legal terms used by the Flat Ownership Act. Original and derivative forms of flat ownership acquisition are explained, namel...

  5. Field migration rates of tidal meanders recapitulate fluvial morphodynamics

    Science.gov (United States)

    Finotello, Alvise; Lanzoni, Stefano; Ghinassi, Massimiliano; Marani, Marco; Rinaldo, Andrea; D'Alpaos, Andrea

    2018-02-01

    The majority of tidal channels display marked meandering features. Despite their importance in oil-reservoir formation and tidal landscape morphology, questions remain on whether tidal-meander dynamics could be understood in terms of fluvial processes and theory. Key differences suggest otherwise, like the periodic reversal of landscape-forming tidal flows and the widely accepted empirical notion that tidal meanders are stable landscape features, in stark contrast with their migrating fluvial counterparts. On the contrary, here we show that, once properly normalized, observed migration rates of tidal and fluvial meanders are remarkably similar. Key to normalization is the role of tidal channel width that responds to the strong spatial gradients of landscape-forming flow rates and tidal prisms. We find that migration dynamics of tidal meanders agree with nonlinear theories for river meander evolution. Our results challenge the conventional view of tidal channels as stable landscape features and suggest that meandering tidal channels recapitulate many fluvial counterparts owing to large gradients of tidal prisms across meander wavelengths.

  6. Assessment of tidal circulation and tidal current asymmetry in the Iroise sea with specific emphasis on characterization of tidal energy resources around the Ushant Island.

    Science.gov (United States)

    Thiébaut, Maxime; Sentchev, Alexei

    2015-04-01

    We use the current velocity time series recorded by High Frequency Radars (HFR) to study circulation in highly energetic tidal basin - the Iroise sea. We focus on the analysis of tidal current pattern around the Ushant Island which is a promising site of tidal energy. The analysis reveals surface current speeds reaching 4 m/s in the North of Ushant Island and in the Fromveur Strait. In these regions 1 m/s is exceeded 60% of time and up to 70% of time in center of Fromveur. This velocity value is particularly interesting because it represents the cut-in-speed of the most of marine turbine devices. Tidal current asymmetry is not always considered in tidal energy site selection. However, this quantity plays an important role in the quantification of hydrokinetic resources. Current velocity times series recorded by HFR highlights the existence of a pronounced asymmetry in current magnitude between the flood and ebb tide ranging from -0.5 to more 2.5. Power output of free-stream devices depends to velocity cubed. Thus a small current asymmetry can generate a significant power output asymmetry. Spatial distribution of asymmetry coefficient shows persistent pattern and fine scale structure which were quantified with high degree of accuracy. The particular asymmetry evolution on both side of Fromveur strait is related to the spatial distribution of the phase lag of the principal semi-diurnal tidal constituent M2 and its higher order harmonics. In Fromveur, the asymmetry is reinforced due to the high velocity magnitude of the sixth-diurnal tidal harmonics. HF radar provides surface velocity speed, however the quantification of hydrokinetic resources has to take into account the decreasing of velocity with depth. In order to highlight this phenomenon, we plot several velocity profiles given by an ADCP which was installed in the HFR study area during the same period. The mean velocity in the water column calculated by using the ADCP data show that it is about 80% of the

  7. Seasonal variability of tidal and non-tidal currents off Beypore, SW coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    DineshKumar, P.K.; Srinivas, K.; AnilKumar, N.

    and summer monsoon seasons of year 2000. Information on tidal signals contained in the currents were extracted using harmonic analysis - Least Squares Method and non-tidal component were analyzed using the Chi sub(o) filter. The study established...

  8. Remnants of strong tidal interactions

    International Nuclear Information System (INIS)

    Mcglynn, T.A.

    1990-01-01

    This paper examines the properties of stellar systems that have recently undergone a strong tidal shock, i.e., a shock which removes a significant fraction of the particles in the system, and where the shocked system has a much smaller mass than the producer of the tidal field. N-body calculations of King models shocked in a variety of ways are performed, and the consequences of the shocks are investigated. The results confirm the prediction of Jaffe for shocked systems. Several models are also run where the tidal forces on the system are constant, simulating a circular orbit around a primary, and the development of tidal radii under these static conditions appears to be a mild process which does not dramatically affect material that is not stripped. The tidal radii are about twice as large as classical formulas would predict. Remnant density profiles are compared with a sample of elliptical galaxies, and the implications of the results for the development of stellar populations and galaxies are considered. 38 refs

  9. Flow and turbulence structure in a hypertidal estuary with the world's biggest tidal bore

    Science.gov (United States)

    Tu, Junbiao; Fan, Daidu

    2017-04-01

    Turbulent and flow structure associated with breaking tidal bores are deliberately investigated on the basis of field measurements. High-resolution velocity and hydrographic data are collected in the middle Qiantang Estuary by a vertical array of acoustic Doppler velocimeters and optical backscatter sensors, collaborated with a bottom-mounted acoustic Doppler current profiler. Besides obvious variations in diurnal and spring-neap tidal cycles, the estuarine dynamics is featured by extreme asymmetry in flood and ebb tides. The flood tide is abnormally accelerated to generate tidal bores at the first 10 min or more, with breaking or undular configurations at the front. The occurrence of peak flow velocity, turbulent kinetic energy (TKE), and TKE dissipation rate (ɛ) is definitely associated with breaking bores, with their values several times to 2 orders of magnitude larger than the corresponding secondary peak values during the maximum ebb flows. Flow and turbulence dynamics are significantly affected by the tidal-bore Froude number. A sandwich ɛ structure is clear exhibited with the maximum value at the surface, secondary maximum near the bed, and the minimum at the intermediate. Dual TKE sources are indicated by an approximate local balance between shear production and dissipation near the bottom, and a top-down TKE dissipation using the modified Froude scaling in the vertical water column. The highly elevated dissipation by breaking bores is comparable to that by intense breaking waves in the surf zone, and the former potentially penetrates the entire water column to produce extreme sediment-resuspension events in combination with intense bottom shear stress.

  10. Dynamics of tidal and non-tidal currents along the southwest continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Aruna, C.; Ravichandran, C.; Srinivas, K.; Rasheed, P.A.A.; Lekshmi, S.

    are predominantly mixed, semidiurnal in nature. Motion over any continental shelf is governed by the tide-driven oscillatory flow. In this paper, tidal and non-tidal characteristics of the waters of Southwest continental shelf of India are assessed using...

  11. Declining metal levels at Foundry Cove (Hudson River, New York): Response to localized dredging of contaminated sediments

    International Nuclear Information System (INIS)

    Mackie, Joshua A.; Natali, Susan M.; Levinton, Jeffrey S.; Sanudo-Wilhelmy, Sergio A.

    2007-01-01

    This study examines the effectiveness of remediating a well-recognized case of heavy metal pollution at Foundry Cove (FC), Hudson River, New York. This tidal freshwater marsh was polluted with battery-factory wastes (1953-1979) and dredged in 1994-1995. Eight years after remediation, dissolved and particulate metals (Cd, Co, Cu, Pb, Ni, and Ag) were found to be lower than levels in the lower Hudson near New York City. Levels of metals (Co, Ni, Cd) on suspended particles were comparatively high. Concentrations of surface sediment Cd throughout the marsh system remain high, but have decreased both in the dredged and undredged areas: Cd was 2.4-230 mg/kg dw of sediment in 2005 vs. 109-1500 mg/kg in the same area in 1983. The rate of tidal export of Cd from FC has decreased by >300-fold, suggesting that dredging successfully stemmed a major source of Cd to the Hudson River. - Dredging of a hotspot of metal-contaminated sediment is associated with a recognizable local and river-wide decline in cadmium in the Hudson River, New York

  12. Residual currents in a multiple-inlet system and the conundrum of the tidal period

    Science.gov (United States)

    Duran-Matute, Matias; Gerkema, Theo

    2015-04-01

    the yearly average transport is not representative of typical conditions (Duran-Matute et al. 2014), since the residual circulation has a strongly episodic character due to wind variability. This puts the focus again on the shorter time-scales of these episodes. Hence the central point of this presentation: to examine how the mean, median and the standard deviation of residual flows depend on how one defines the tidal period. We offer an alterative definition that is particularly suitable on a basin-wide scale. In this presentation we focus on the residual transport of water itself, but the relevance of the problem at hand extends directly to residual transports of sediment, nutrients, pollutants, etc., in multiple-inlet systems.

  13. Tidal power dams in the Bay of Fundy

    International Nuclear Information System (INIS)

    Walsun, W. van

    1998-01-01

    The challenges of harnessing tidal power and the construction of dams and tidal power plants in a tidal-ocean environment such as the Bay of Fundy in New Brunswick are discussed. In the 1966-1988 series of studies, three sites were chosen at the Bay of Fundy as being the most promising, namely (1) site B9 in Minas Basin at the entrance to Cobequid Bay, (2) site A8 at the narrow neck beyond the entrance to Cumberland Basin, and (3) site A6 at the entrance to Shepody Bay. All the sites are located at the head of the Bay of Fundy because that is where the maximum tidal ranges are found and a basin's tidal energy potential is proportional to the square of its tidal range. Site B9 was determined to have the greatest tidal power potential but no plant has ever been built because reports have stated that a solid conventional tidal power barrage at site B9 would increase the tidal range at Boston by as much as 30 cm. Rather than abandoning the site for this reason, an installation consisting of a series of piers from shore to shore with hydraulic turbines mounted in the spaces between piers, was suggested. A simple mathematical model has been developed for determining the operation of this tidal fence. The cost of energy, generated by the tidal fence at site B9 was also calculated. Further studies are suggested to determine the exact environmental effect of the tidal fence on the tidal regime. If environmental problems persist, machines with larger discharge capabilities could be considered to reduce the interference of the fence with natural tidal movements. 9 refs., 6 figs

  14. Tidal power: trends and developments

    International Nuclear Information System (INIS)

    1992-01-01

    This volume covers works and studies on tidal power currently being undertaken, both nationally and internationally. The 20 papers included cover the proposed Mersey barrage, the Severn estuary and several papers on the Severn barrage. The Department of Energy's continued variety of generic work on tidal power and various overseas studies carried out by other experts are also detailed, giving the reader an up to date picture of developments in tidal power worldwide. Separate abstracts have been prepared for the individual papers. (author)

  15. Storm-driven sediment transport in Massachusetts Bay

    Science.gov (United States)

    Warner, J.C.; Butman, B.; Dalyander, P.S.

    2008-01-01

    Massachusetts Bay is a semi-enclosed embayment in the western Gulf of Maine about 50 km wide and 100 km long. Bottom sediment resuspension is controlled predominately by storm-induced surface waves and transport by the tidal- and wind-driven circulation. Because the Bay is open to the northeast, winds from the northeast ('Northeasters') generate the largest surface waves and are thus the most effective in resuspending sediments. The three-dimensional oceanographic circulation model Regional Ocean Modeling System (ROMS) is used to explore the resuspension, transport, and deposition of sediment caused by Northeasters. The model transports multiple sediment classes and tracks the evolution of a multilevel sediment bed. The surficial sediment characteristics of the bed are coupled to one of several bottom-boundary layer modules that calculate enhanced bottom roughness due to wave-current interaction. The wave field is calculated from the model Simulating WAves Nearshore (SWAN). Two idealized simulations were carried out to explore the effects of Northeasters on the transport and fate of sediments. In one simulation, an initially spatially uniform bed of mixed sediments exposed to a series of Northeasters evolved to a pattern similar to the existing surficial sediment distribution. A second set of simulations explored sediment-transport pathways caused by storms with winds from the northeast quadrant by simulating release of sediment at selected locations. Storms with winds from the north cause transport southward along the western shore of Massachusetts Bay, while storms with winds from the east and southeast drive northerly nearshore flow. The simulations show that Northeasters can effectively transport sediments from Boston Harbor and the area offshore of the harbor to the southeast into Cape Cod Bay and offshore into Stellwagen Basin. This transport pattern is consistent with Boston Harbor as the source of silver found in the surficial sediments of Cape Cod Bay and

  16. Field migration rates of tidal meanders recapitulate fluvial morphodynamics.

    Science.gov (United States)

    Finotello, Alvise; Lanzoni, Stefano; Ghinassi, Massimiliano; Marani, Marco; Rinaldo, Andrea; D'Alpaos, Andrea

    2018-02-13

    The majority of tidal channels display marked meandering features. Despite their importance in oil-reservoir formation and tidal landscape morphology, questions remain on whether tidal-meander dynamics could be understood in terms of fluvial processes and theory. Key differences suggest otherwise, like the periodic reversal of landscape-forming tidal flows and the widely accepted empirical notion that tidal meanders are stable landscape features, in stark contrast with their migrating fluvial counterparts. On the contrary, here we show that, once properly normalized, observed migration rates of tidal and fluvial meanders are remarkably similar. Key to normalization is the role of tidal channel width that responds to the strong spatial gradients of landscape-forming flow rates and tidal prisms. We find that migration dynamics of tidal meanders agree with nonlinear theories for river meander evolution. Our results challenge the conventional view of tidal channels as stable landscape features and suggest that meandering tidal channels recapitulate many fluvial counterparts owing to large gradients of tidal prisms across meander wavelengths. Copyright © 2018 the Author(s). Published by PNAS.

  17. Plutonium in intertidal coastal and estuarine sediments in the Northern Irish Sea

    International Nuclear Information System (INIS)

    Aston, S.R.; Assinder, D.J.; Kelly, M.

    1985-01-01

    Surface intertidal sediments from 35 sites in the Irish Sea have been analysed for their 238 Pu and sup(239,240)Pu activities, together with an intensive study of plutonium in sediments of the Esk Estuary (NW England). The range of plutonium activities for the whole survey were 0.14-4118 and 1.3-16 026 Bq kg -1 for 238 Pu and sup(239,240)Pu, respectively. The levels of Pu activity, derived from the Sellafield nuclear fuel reprocessing effluents, in sediments are controlled by lithological factors and the influence of transport and post-depositional processes. Grain size distribution is particularly important, the major part of plutonium activity being in the mud fraction of all sediments. The data suggest that over the Irish Sea coastline, dynamic mixing of sediment grains by reworking and resuspension and/or by dispersion in tidal currents are important in determining plutonium distributions. The exponential decrease in sediment plutonium activities away from the Sellafield source is attributed to the progressive mixing with older contaminated and uncontaminated sediments. (author)

  18. The economics of tidal energy

    International Nuclear Information System (INIS)

    Denny, Eleanor

    2009-01-01

    Concern over global climate change has led policy makers to accept the importance of reducing greenhouse gas emissions. This in turn has led to a large growth in clean renewable generation for electricity production. Much emphasis has been on wind generation as it is among the most advanced forms of renewable generation, however, its variable and relatively unpredictable nature result in increased challenges for electricity system operators. Tidal generation on the other hand is almost perfectly forecastable and as such may be a viable alternative to wind generation. This paper calculates the break-even capital cost for tidal generation on a real electricity system. An electricity market model is used to determine the impact of tidal generation on the operating schedules of the conventional units on the system and on the resulting cycling costs, emissions and fuel savings. It is found that for tidal generation to produce positive net benefits for the case study, the capital costs would have to be less than Euro 510,000 per MW installed which is currently an unrealistically low capital cost. Thus, it is concluded that tidal generation is not a viable option for the case system at the present time.

  19. Tidal sails : an alternative to turbines for harvesting tidal current energy

    Energy Technology Data Exchange (ETDEWEB)

    Hanssen, J.E. [Tidal Sails, Haugesund (Norway)

    2008-07-01

    Tidal sail technology harnesses the energy of tidal streams in order to produce electricity. Tidal currents move the sails that are attached to wires that rotate generator wheels to produce electricity. The technology has a low impact on the surrounding environment and is simple to install. This presentation discussed the methods used to determine the influence of relative sail velocity and measure estimated energy output levels. The sails were recently tested at an on-grid tidal stream pilot in the Norwegian Arctic. A 300 kW turbine installed at the site demonstrated that the site was suitable for a full-scale development of 20 tripod-mounted 600 kW turbines placed at 50 m depth. It was estimated that the 10 strings of 1000 m length provided between 200 and 250 GWh per year. The sails have also been used at a high speed site in Washington state in the United States. The 25 m pilot plant was installed to verify site suitability and examine sail behaviour in real, high-flow currents. It is expected that the technology will be fully commercialized by 2011. Other pilot tests are being conducted to examine flow behaviour; mooring and flotation functionality; and launch and lift capabilities. Engineering work is ongoing to examine plant designs, variable sail spacing, and collaborations with key component suppliers. tabs., figs.

  20. Recent coarsening of sediments on the southern Yangtze subaqueous delta front: A response to river damming

    Science.gov (United States)

    Yang, H. F.; Yang, S. L.; Meng, Y.; Xu, K. H.; Luo, X. X.; Wu, C. S.; Shi, B. W.

    2018-03-01

    After more than 50,000 dams were built in the Yangtze basin, especially the Three Gorges Dam (TGD) in 2003, the sediment discharge to the East China Sea decreased from 470 Mt/yr before dams to the current level of 140 Mt/yr. The delta sediment's response to this decline has interested many researchers. Based on a dataset of repeated samplings at 44 stations in this study, we compared the surficial sediment grain sizes in the southern Yangtze subaqueous delta front for two periods: pre-TGD (1982) and post-TGD (2012). External factors of the Yangtze River, including water discharge, sediment discharge and suspended sediment grain size, were analysed, as well as wind speed, tidal range and wave height of the coastal ocean. We found that the average median size of the sediments in the delta front coarsened from 8.0 μm in 1982 to 15.4 μm in 2012. This coarsening was accompanied by a decrease of clay components, better sorting and more positive skewness. Moreover, the delta morphology in the study area changed from an overall accretion of 1.0 cm/yr to an erosion of - 0.6 cm/yr. At the same time, the riverine sediment discharge decreased by 70%, and the riverine suspended sediment grain size increased from 8.4 μm to 10.5 μm. The annual wind speed and wave height slightly increased by 2% and 3%, respectively, and the tidal range showed no change trend. Considering the increased wind speed and wave height, there was no evidence that the capability of the China Coastal Current to transport sediment southward has declined in recent years. The sediment coarsening in the Yangtze delta front was thus mainly attributed to the delta's transition from accumulation to erosion which was originally generated by river damming. These findings have important implications for sediment change in many large deltaic systems due to worldwide human impacts.

  1. Relativistic theory of tidal Love numbers

    International Nuclear Information System (INIS)

    Binnington, Taylor; Poisson, Eric

    2009-01-01

    In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it encodes information about the body's internal structure. We present a relativistic theory of Love numbers, which applies to compact bodies with strong internal gravities; the theory extends and completes a recent work by Flanagan and Hinderer, which revealed that the tidal Love number of a neutron star can be measured by Earth-based gravitational-wave detectors. We consider a spherical body deformed by an external tidal field, and provide precise and meaningful definitions for electric-type and magnetic-type Love numbers; and these are computed for polytropic equations of state. The theory applies to black holes as well, and we find that the relativistic Love numbers of a nonrotating black hole are all zero.

  2. Vertical migration of fine-grained sediments from interior to surface of seabed driven by seepage flows-`sub-bottom sediment pump action'

    Science.gov (United States)

    Zhang, Shaotong; Jia, Yonggang; Wen, Mingzheng; Wang, Zhenhao; Zhang, Yaqi; Zhu, Chaoqi; Li, Bowen; Liu, Xiaolei

    2017-02-01

    A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, which is defined as `sub-bottom sediment pump action' in this paper. Field experiments were performed twice on the intertidal flat of the Yellow River delta to study this process via both trapping the pumped materials and recording the pore pressures in the substrate. Experimental results are quite interesting as we did observe yellow slurry which is mainly composed of fine-grained soil particles appearing on the seabed surface; seepage gradients were also detected in the intertidal flat, under the action of tides and small wind waves. Preliminary conclusions are that `sediment pump' occurs when seepage force exceeds a certain threshold: firstly, it is big enough to disconnect the soil particles from the soil skeleton; secondly, the degree of seabed fluidization or bioturbation is big enough to provide preferred paths for the detached materials to migrate upwards. Then they would be firstly pumped from interior to the surface of seabed and then easily re-suspended into overlying water column. Influential factors of `sediment pump' are determined as hydrodynamics (wave energy), degree of consolidation, index of bioturbation (permeability) and content of fine-grained materials (sedimentary age). This new perspective of `sediment pump' may provide some implications for the mechanism interpretation of several unclear geological phenomena in the Yellow River delta area.

  3. Three-dimensional simulation of flow, salinity, sediment, and radionuclide movements in the Hudson River estuary

    International Nuclear Information System (INIS)

    Onishi, Y.; Trent, D.S.

    1985-04-01

    The three-dimensional, finite difference model, FLESCOT simulates time-varying movements of flow, turbulent kinetic energy, salinity, water temperature, sediment, and contaminants in estuarine, coastal, and ocean waters. The model was applied to a 106-km (66-mi) reach of the Hudson River estuary in New York between Chelsea and the mouth of the river. It predicted the time-varying, three-dimensional distributions of tidal flow, salinity, three separate groups of sediments (i.e., sand, silt, and clay), and a radionuclide ( 137 Cs) in both dissolved and particulate (those sorbed by sediments) forms for over 40 days. The model also calculated riverbed elevation changes caused by sediment deposition and bed erosion, bed sediment size distribution and armoring, and distributions of the particulate 137 Cs sorbed by sand, silt, and clay in the bed

  4. Comparison of environmental forcings affecting suspended sediments variability in two macrotidal, highly-turbid estuaries

    Science.gov (United States)

    Jalón-Rojas, Isabel; Schmidt, Sabine; Sottolichio, Aldo

    2017-11-01

    The relative contribution of environmental forcing frequencies on turbidity variability is, for the first time, quantified at seasonal and multiannual time scales in tidal estuarine systems. With a decade of high-frequency, multi-site turbidity monitoring, the two nearby, macrotidal and highly-turbid Gironde and Loire estuaries (west France) are excellent natural laboratories for this purpose. Singular Spectrum Analyses, combined with Lomb-Scargle periodograms and Wavelet Transforms, were applied to the continuous multiannual turbidity time series. Frequencies of the main environmental factors affecting turbidity were identified: hydrological regime (high versus low river discharges), river flow variability, tidal range, tidal cycles, and turbulence. Their relative influences show similar patterns in both estuaries and depend on the estuarine region (lower or upper estuary) and the time scale (multiannual or seasonal). On the multiannual time scale, the relative contribution of tidal frequencies (tidal cycles and range) to turbidity variability decreases up-estuary from 68% to 47%, while the influence of river flow frequencies increases from 3% to 42%. On the seasonal time scale, the relative influence of forcings frequencies remains almost constant in the lower estuary, dominated by tidal frequencies (60% and 30% for tidal cycles and tidal range, respectively); in the upper reaches, it is variable depending on hydrological regime, even if tidal frequencies are responsible for up 50% of turbidity variance. These quantifications show the potential of combined spectral analyses to compare the behavior of suspended sediment in tidal estuaries throughout the world and to evaluate long-term changes in environmental forcings, especially in a context of global change. The relevance of this approach to compare nearby and overseas systems and to support management strategies is discussed (e.g., selection of effective operation frequencies/regions, prediction of the most

  5. Incorporation of Fine-Grained Sediment Erodibility Measurements into Sediment Transport Modeling, Capitol Lake, Washington

    Science.gov (United States)

    Stevens, Andrew W.; Gelfenbaum, Guy; Elias, Edwin; Jones, Craig

    2008-01-01

    Capitol Lake was created in 1951 with the construction of a concrete dam and control gate that prevented salt-water intrusion into the newly formed lake and regulated flow of the Deschutes River into southern Puget Sound. Physical processes associated with the former tidally dominated estuary were altered, and the dam structure itself likely caused an increase in retention of sediment flowing into the lake from the Deschutes River. Several efforts to manage sediment accumulation in the lake, including dredging and the construction of sediment traps upriver, failed to stop the lake from filling with sediment. The Deschutes Estuary Feasibility Study (DEFS) was carried out to evaluate the possibility of removing the dam and restoring estuarine processes as an alternative ongoing lake management. An important component of DEFS was the creation of a hydrodynamic and sediment transport model of the restored Deschutes Estuary. Results from model simulations indicated that estuarine processes would be restored under each of four restoration alternatives, and that over time, the restored estuary would have morphological features similar to the predam estuary. The model also predicted that after dam-removal, a large portion of the sediment eroded from the lake bottom would be deposited near the Port of Olympia and a marina located in lower Budd Inlet seaward of the present dam. The volume of sediment transported downstream was a critical piece of information that managers needed to estimate the total cost of the proposed restoration project. However, the ability of the model to predict the magnitude of sediment transport in general and, in particular, the volume of sediment deposition in the port and marina was limited by a lack of information on the erodibility of fine-grained sediments in Capitol Lake. Cores at several sites throughout Capitol Lake were collected between October 31 and November 1, 2007. The erodibility of sediments in the cores was later determined in the

  6. Development of tidal watersheds in the Wadden Sea

    NARCIS (Netherlands)

    Wang, Z.B.; Vroom, J.; van Prooijen, B.C.; Labeur, R.J.; Stive, M.J.F.; Hansen, M.H.P.

    2011-01-01

    The Wadden Sea consists of a series of tidal lagoons which are connected to the North Sea by tidal inlets. Boundaries to each lagoon are the mainland coast, the barrier islands on both sides of the tidal inlet, and the tidal watersheds behind the two barrier islands. Behind each Wadden Island there

  7. TIDALLY HEATED TERRESTRIAL EXOPLANETS: VISCOELASTIC RESPONSE MODELS

    International Nuclear Information System (INIS)

    Henning, Wade G.; O'Connell, Richard J.; Sasselov, Dimitar D.

    2009-01-01

    Tidal friction in exoplanet systems, driven by orbits that allow for durable nonzero eccentricities at short heliocentric periods, can generate internal heating far in excess of the conditions observed in our own solar system. Secular perturbations or a notional 2:1 resonance between a hot Earth and hot Jupiter can be used as a baseline to consider the thermal evolution of convecting bodies subject to strong viscoelastic tidal heating. We compare results first from simple models using a fixed Quality factor and Love number, and then for three different viscoelastic rheologies: the Maxwell body, the Standard Anelastic Solid (SAS), and the Burgers body. The SAS and Burgers models are shown to alter the potential for extreme tidal heating by introducing the possibility of new equilibria and multiple response peaks. We find that tidal heating tends to exceed radionuclide heating at periods below 10-30 days, and exceed insolation only below 1-2 days. Extreme cases produce enough tidal heat to initiate global-scale partial melting, and an analysis of tidal limiting mechanisms such as advective cooling for earthlike planets is discussed. To explore long-term behaviors, we map equilibria points between convective heat loss and tidal heat input as functions of eccentricity. For the periods and magnitudes discussed, we show that tidal heating, if significant, is generally detrimental to the width of habitable zones.

  8. Sedimentary fabrics of the macrotidal, mud-dominated, inner estuary to fluvio-tidal transition zone, Petitcodiac River estuary, New Brunswick, Canada

    Science.gov (United States)

    Shchepetkina, Alina; Gingras, Murray K.; Zonneveld, John-Paul; Pemberton, S. George

    2016-03-01

    The study provides a detailed description of mud-dominated sedimentary fabrics and their application for the rock record within the inner estuary to the fluvial zone of the Petitcodiac River estuary, New Brunswick, Canada. Sedimentological characteristics and facies distributions of the clay- and silt-rich deposits are reported. The inner estuary is characterized by thick accumulations of interbedded silt and silty clay on intertidal banks that flank the tidally influenced channel. The most common sedimentary structures observed are parallel and wavy lamination, small-scale soft-sediment deformation with microfaults, and clay and silt current ripples. The tidal channel contains sandy silt and clayey silt with planar lamination, massive and convolute bedding. The fluvio-tidal transition zone is represented by interbedded trough cross-stratified sand and gravel beds with planar laminated to massive silty mud. The riverine, non-tidal reach of the estuary is characterized by massive, planar tabular and trough cross-stratified gravel-bed deposits. The absence of bioturbation within the inner estuary to the fluvio-tidal transition zone can be explained by the following factors: low water salinities (0-5 ppt), amplified tide and current speeds, and high concentrations of flocculated material in the water body. Notably, downstream in the middle and outer estuary, bioturbation is seasonally pervasive: in those locales the sedimentary conditions are similar, but salinity is higher. In this study, the sedimentological (i.e., grain size, bedding characters, sedimentary structures) differences between the tidal estuary and the fluvial setting are substantial, and those changes occur over only a few hundred meters. This suggests that the widely used concept of an extensive fluvio-tidal transition zone and its depositional character may not be a geographically significant component of fluvial or estuary deposits, which can go unnoticed in the study of the ancient rocks.

  9. Tidal flow separation at protruding beach nourishments

    NARCIS (Netherlands)

    Radermacher, M.; de Schipper, M.A.; Swinkels, Cilia M.; MacMahan, Jamie; Reniers, A.J.H.M.

    2016-01-01

    In recent years, the application of large-scale beach nourishments has been discussed, with the Sand Motor in the Netherlands as the first real-world example. Such protruding beach nourishments have an impact on tidal currents, potentially leading to tidal flow separation and the generation of tidal

  10. TIDAL NOVAE IN COMPACT BINARY WHITE DWARFS

    International Nuclear Information System (INIS)

    Fuller, Jim; Lai Dong

    2012-01-01

    Compact binary white dwarfs (WDs) undergoing orbital decay due to gravitational radiation can experience significant tidal heating prior to merger. In these WDs, the dominant tidal effect involves the excitation of outgoing gravity waves in the inner stellar envelope and the dissipation of these waves in the outer envelope. As the binary orbit decays, the WDs are synchronized from outside in (with the envelope synchronized first, followed by the core). We examine the deposition of tidal heat in the envelope of a carbon-oxygen WD and study how such tidal heating affects the structure and evolution of the WD. We show that significant tidal heating can occur in the star's degenerate hydrogen layer. This layer heats up faster than it cools, triggering runaway nuclear fusion. Such 'tidal novae' may occur in all WD binaries containing a CO WD, at orbital periods between 5 minutes and 20 minutes, and precede the final merger by 10 5 -10 6 years.

  11. Earth Tidal Controls on Basal Dynamics and Hydrology

    Science.gov (United States)

    Kulessa, B.; Hubbard, B. P.; Brown, G. H.; Becker, J.

    2001-12-01

    We appraise earth tidal forcing of coupled mechanical and hydrological processes beneath warm-based ice masses, which have to date been poorly documented but represent exciting phenomena that have important implications for future studies of glacier dynamics. Regular cycles in winter and early spring electrical self-potential (SP), water pressure (PW) and electrical conductivity (EC) were recorded at the bases of several boreholes drilled through Haut Glacier d'Arolla, Switzerland. Fourier power spectra of these data reflect the presence of diurnal and semi-diurnal cycles, and comparison with the earth tidal spectrum indicates that at least four components of the latter are visible in the borehole spectra: the luni-solar diurnal, the principal lunar diurnal, the principal solar semi-diurnal, and the principal lunar semi-diurnal. This correspondence suggests that earth tides exert a strong control over water flow at the bed of the glacier, at least during winter and early spring. We envisage a mechanism that involves earth-tide induced deformation of the bedrock and the unconsolidated sediments beneath the glacier, and to a certain extent probably also the overlying ice body. Basal water pockets, including those containing our sensors, located within these media are in turn also likely to be deformed periodically. We believe that PW gradients induced by such deformation may result in transient water flow and SPs in the pockets. Since PW and EC are typically out-of-phase, injection of waters of lower EC into the pockets during times of peak water flow is likely. Several lines of evidence suggest that such injection was caused by melting of the ice wall due to frictional heating, balancing creep closure which sustained some pockets through the winter. Further, the first annually-repeated post-winter reorganization event, termed the May event, may well be triggered by tidally-induced releases of waters from storage. This implies that the May event marks the opening of

  12. Otolith analysis of pre-restoration habitat use by Chinook salmon in the delta-flats and nearshore regions of the Nisqually River Estuary

    Science.gov (United States)

    Lind-Null, Angie; Larsen, Kim

    2010-01-01

    The Nisqually Fall Chinook population is one of 27 salmon stocks in the Puget Sound (Washington) evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Extensive restoration of the Nisqually River delta ecosystem is currently taking place to assist in recovery of the stock as juvenile Fall Chinook salmon are dependent on the estuary. A pre-restoration baseline that includes the characterization of life history strategies, estuary residence times, growth rates, and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and to determine restoration success. Otolith analysis was selected as a tool to examine Chinook salmon life history, growth, and residence in the Nisqually River estuary. Previously funded work on samples collected in 2004 (marked and unmarked) and 2005 (unmarked only) partially established a juvenile baseline on growth rates and length of residence associated with various habitats (freshwater, forested riverine tidal, emergent forested transition, estuarine emergent marsh, delta-flats and nearshore). However, residence times and growth rates for the delta-flats (DF) and nearshore (NS) habitats have been minimally documented due to small sample sizes. The purpose of the current study is to incorporate otolith microstructural analysis using otoliths from fish collected within the DF and NS habitats during sampling years 2004-08 to increase sample size and further evaluate between-year variation in otolith microstructure. Our results from this analysis indicated the delta-flats check (DFCK) on unmarked and marked Chinook samples in 2005-08 varied slightly in appearance from that seen on samples previously analyzed only from 2004. A fry migrant life history was observed on otoliths of unmarked Chinook collected in 2005, 2007, and 2008. Generally, freshwater mean increment width of unmarked fish, on average, was smaller compared to marked

  13. More than 100 Years of Background-Level Sedimentary Metals, Nisqually River Delta, South Puget Sound, Washington

    Science.gov (United States)

    Takesue, Renee K.; Swarzenski, Peter W.

    2011-01-01

    The Nisqually River Delta is located about 25 km south of the Tacoma Narrows in the southern reach of Puget Sound. Delta evolution is controlled by sedimentation from the Nisqually River and erosion by strong tidal currents that may reach 0.95 m/s in the Nisqually Reach. The Nisqually River flows 116 km from the Cascade Range, including the slopes of Mount Rainier, through glacially carved valleys to Puget Sound. Extensive tidal flats on the delta consist of late-Holocene silty and sandy strata from normal river streamflow and seasonal floods and possibly from distal sediment-rich debris flows associated with volcanic and seismic events. In the early 1900s, dikes and levees were constructed around Nisqually Delta salt marshes, and the reclaimed land was used for agriculture and pasture. In 1974, U.S. Fish and Wildlife Service established the Nisqually National Wildlife Refuge on the reclaimed land to protect migratory birds; its creation has prevented further human alteration of the Delta and estuary. In October 2009, original dikes and levees were removed to restore tidal exchange to almost 3 km2 of man-made freshwater marsh on the Nisqually Delta.

  14. A semi-analytical study on the residual transport of salinity and sediment trapping in well-mixed estuaries

    NARCIS (Netherlands)

    Wei, X.; Kumar, M.; Schuttelaars, H.M.

    2016-01-01

    Along-channel and cross-channel sediment transport in tidal estuaries is usually driven by tides, density gradients, Coriolis’s force, wind stress, channel curvature and bathymetric variations. Since the water motion is influenced by density-induced gravitational circulation which in turn affects

  15. Tidally influenced alongshore circulation at an inlet-adjacent shoreline

    Science.gov (United States)

    Hansen, Jeff E.; Elias, Edwin P.L.; List, Jeffrey H.; Erikson, Li H.; Barnard, Patrick L.

    2013-01-01

    The contribution of tidal forcing to alongshore circulation inside the surfzone is investigated at a 7 km long sandy beach adjacent to a large tidal inlet. Ocean Beach in San Francisco, CA (USA) is onshore of a ∼150 km2 ebb-tidal delta and directly south of the Golden Gate, the sole entrance to San Francisco Bay. Using a coupled flow-wave numerical model, we find that the tides modulate, and in some cases can reverse the direction of, surfzone alongshore flows through two separate mechanisms. First, tidal flow through the inlet results in a barotropic tidal pressure gradient that, when integrated across the surfzone, represents an important contribution to the surfzone alongshore force balance. Even during energetic wave conditions, the tidal pressure gradient can account for more than 30% of the total alongshore pressure gradient (wave and tidal components) and up to 55% during small waves. The wave driven component of the alongshore pressure gradient results from alongshore wave height and corresponding setup gradients induced by refraction over the ebb-tidal delta. Second, wave refraction patterns over the inner shelf are tidally modulated as a result of both tidal water depth changes and strong tidal flows (∼1 m/s), with the effect from currents being larger. These tidally induced changes in wave refraction result in corresponding variability of the alongshore radiation stress and pressure gradients within the surfzone. Our results indicate that tidal contributions to the surfzone force balance can be significant and important in determining the direction and magnitude of alongshore flow.

  16. Great differences in the critical erosion threshold between surface and subsurface sediments: A field investigation of an intertidal mudflat, Jiangsu, China

    Science.gov (United States)

    Shi, Benwei; Wang, Ya Ping; Wang, Li Hua; Li, Peng; Gao, Jianhua; Xing, Fei; Chen, Jing Dong

    2018-06-01

    Understanding of bottom sediment erodibility is necessary for the sustainable management and protection of coastlines, and is of great importance for numerical models of sediment dynamics and transport. To investigate the dependence of sediment erodibility on degree of consolidation, we measured turbidity, waves, tidal currents, intratidal bed-level changes, and sediment properties on an exposed macrotidal mudflat during a series of tidal cycles. We estimated the water content of surface sediments (in the uppermost 2 cm of sediment) and sub-surface sediments (at 2 cm below the sediment surface). Bed shear stress values due to currents (τc), waves (τw), and combined current-wave action (τcw) were calculated using a hydrodynamic model. In this study, we estimate the critical shear stress for erosion using two approaches and both of them give similar results. We found that the critical shear stress for erosion (τce) was 0.17-0.18 N/m2 in the uppermost 0-2 cm of sediment and 0.29 N/m2 in sub-surface sediment layers (depth, 2 cm), as determined by time series of τcw values and intratidal bed-level changes, and values of τce, obtained using the water content of bottom sediments, were 0.16 N/m2 in the uppermost 2 cm and 0.28 N/m2 in the sub-surface (depth, 2 cm) sediment. These results indicate that the value of τce for sub-surface sediments (depth, 2 cm) is much greater than that for the uppermost sediments (depth, 0-2 cm), and that the τce value is mainly related to the water content, which is determined by the extent of consolidation. Our results have implications for improving the predictive accuracy of models of sediment transport and morphological evolution, by introducing variable τce values for corresponding sediment layers, and can also provide a mechanistic understanding of bottom sediment erodibility at different sediment depths on intertidal mudflats, as related to differences in the consolidation time.

  17. North American coastal carbon stocks and exchanges among the coupled ecosystems of tidal wetlands and estuaries

    Science.gov (United States)

    Windham-Myers, L.; Cai, W. J.

    2017-12-01

    The development of the 2nd State of the Carbon Cycle Report (SOCCR-2) has recognized a significant role of aquatic ecosystems, including coastal zones, in reconciling some of the gaps associated with the North American carbon (C) budget. Along with a large community of coauthors, we report major C stocks and fluxes for tidal wetlands and estuaries of Canada, Mexico and the United States. We find divergent patterns between these coupled ecosystems, with tidal wetlands largely serving as CO2 sinks (net autotrophic), and open-water estuaries largely serving as CO2 sources (net heterotrophic). We summarized measurements across 4 continental regions - East Coast, Gulf of Mexico, West Coast, and High Latitudes - to assess spatial variability and datagaps in our understanding of coastal C cycling. Subtracting estuarine outgassing of 10 ± 10 Tg C yr-1 from the tidal wetland uptake of 23 ± 10 Tg C yr-1 leaves a net uptake of the combined system of 13 ± 14 Tg C yr-1. High uncertainty for net atmospheric C exchange in this combined coastal system is further complicated by spatially and temporally dynamic boundaries, as well as terrestrial C sources. Tidal wetlands are among the most productive ecosystems on earth and are capable of continuously accumulating organic C in their sediments as a result of environmental conditions that inhibit organic matter decomposition. Estuaries have more interannual variability in C dynamics than those of tidal wetlands, reflecting the estuarine balance of exchanges with terrestrial watersheds, tidal wetlands, and the continental shelf. Whereas tidal, subtidal and estuarine maps are of limited accuracy at larger scales, North America likely represents less than 1/10 of global distributions of coastal wetland habitats. Coupled land-ocean C flux models are increasingly robust but lacking much of the data needed for parameterization and validation. Accurate boundary maps and synoptic monitoring data on air-water CO2 exchange may be developed

  18. Tidal influence on subtropical estuarine methane emissions

    Science.gov (United States)

    Sturm, Katrin; Grinham, Alistair; Werner, Ursula; Yuan, Zhiguo

    2014-05-01

    The relatively unstudied subtropical estuaries, particularly in the Southern Hemisphere, represent an important gap in our understanding of global greenhouse gas (GHG) emissions. These systems are likely to form an important component of GHG budgets as they occupy a relatively large surface area, over 38 000 km2 in Australia. Here, we present studies conducted in the Brisbane River estuary, a representative system within the subtropical region of Queensland, Australia. This is a highly modified system typical of 80% of Australia's estuaries. Generally, these systems have undergone channel deepening and straightening for safer shipping access and these modifications have resulted in large increases in tidal reach. The Brisbane River estuary's natural tidal reach was 16 km and this is now 85 km and tidal currents influence double the surface area (9 km2 to 18 km2) in this system. Field studies were undertaken to improve understanding of the driving factors behind methane water-air fluxes. Water-air fluxes in estuaries are usually calculated with the gas exchange coefficient (k) for currents and wind as well as the concentration difference across the water-air interface. Tidal studies in the lower and middle reaches of the estuary were performed to monitor the influence of the tidal stage (a proxy for kcurrent) on methane fluxes. Results for both investigated reaches showed significantly higher methane fluxes during the transition time of tides, the time of greatest tidal currents, than during slack tide periods. At these tidal transition times with highest methane chamber fluxes, lowest methane surface water concentrations were monitored. Modelled fluxes using only wind speed (kwind) were at least one order of magnitude lower than observed from floating chambers, demonstrating that current speed was likely the driving factor of water-air fluxes. An additional study was then conducted sampling the lower, middle and upper reaches during a tidal transition period

  19. Influence of Spartina alterniflora invasion stages on macrobenthic communities on a tidal flat in Wenzhou Bay, China

    Directory of Open Access Journals (Sweden)

    Bao-Ming Ge

    2012-09-01

    Full Text Available Many coastal habitats in eastern China are being substantially altered by the invasion of Spartina alterniflora. The species richness, density, Margalef's diversity index (R and Shannon's diversity index (H' of macrobenthic communities on a tidal flat in Wenzhou Bay, China, were analyzed with the factors of invasion stage and season, in 2007. A significant effect of invasion stage, season, and the interaction between them on communities was detected. The macrobenthic community was more complex in the patch of initial S. alterniflora invasion than in the patches of some other invasion stages. Macrobenthic communities were classified by cluster and ordination in accordance with the habitat character of the S. alterniflora invasion stage. Our research demonstrated that the S. alterniflora invasion stage affected the macrobenthic communities significantly. The results indicated that biodiversity increased in the initial stage of invasion (invasion age 1-2 years and then decreased in the stage of invasion underway (invasion age 3-4 years and in the stage of invasion completed (invasion age 5-6 years; this phenomenon was related to the change in the S. alterniflora canopy which accompanied the invasion stages.Muitos habitats costeiros vêm sendo alterados substancialmente pela invasão de Spartina alterniflora no leste da China. Em 2007, em uma planície de maré situada em Wenzhou Bay, foram analisadas riqueza de espécies, densidade e diversidade da macrofauna bêntica em relação a diferentes estágios da invasão da gramínea e à estação do ano. Para as medidas de diversidade foram usados os índices de Margalef (R e de Shannon (H'. Foram detectados efeitos significativos do estágio de invasão e época do ano sobre a macrofauna. As comunidades macrofaunais foram mais complexas nas manchas onde a invasão de S. alterniflora estava no seu início, quando considerados os locais onde as manchas estavam em estágios mais avançados. Através das

  20. Direct sampling during multiple sediment density flows reveals dynamic sediment transport and depositional environment in Monterey submarine canyon

    Science.gov (United States)

    Maier, K. L.; Gales, J. A.; Paull, C. K.; Gwiazda, R.; Rosenberger, K. J.; McGann, M.; Lundsten, E. M.; Anderson, K.; Talling, P.; Xu, J.; Parsons, D. R.; Barry, J.; Simmons, S.; Clare, M. A.; Carvajal, C.; Wolfson-Schwehr, M.; Sumner, E.; Cartigny, M.

    2017-12-01

    Sediment density flows were directly sampled with a coupled sediment trap-ADCP-instrument mooring array to evaluate the character and frequency of turbidity current events through Monterey Canyon, offshore California. This novel experiment aimed to provide links between globally significant sediment density flow processes and their resulting deposits. Eight to ten Anderson sediment traps were repeatedly deployed at 10 to 300 meters above the seafloor on six moorings anchored at 290 to 1850 meters water depth in the Monterey Canyon axial channel during 6-month deployments (October 2015 - April 2017). Anderson sediment traps include a funnel and intervalometer (discs released at set time intervals) above a meter-long tube, which preserves fine-scale stratigraphy and chronology. Photographs, multi-sensor logs, CT scans, and grain size analyses reveal layers from multiple sediment density flow events that carried sediment ranging from fine sand to granules. More sediment accumulation from sediment density flows, and from between flows, occurred in the upper canyon ( 300 - 800 m water depth) compared to the lower canyon ( 1300 - 1850 m water depth). Sediment accumulated in the traps during sediment density flows is sandy and becomes finer down-canyon. In the lower canyon where sediment directly sampled from density flows are clearly distinguished within the trap tubes, sands have sharp basal contacts, normal grading, and muddy tops that exhibit late-stage pulses. In at least two of the sediment density flows, the simultaneous low velocity and high backscatter measured by the ADCPs suggest that the trap only captured the collapsing end of a sediment density flow event. In the upper canyon, accumulation between sediment density flow events is twice as fast compared to the lower canyon; it is characterized by sub-cm-scale layers in muddy sediment that appear to have accumulated with daily to sub-daily frequency, likely related to known internal tidal dynamics also measured

  1. Tidal disruption of fuzzy dark matter subhalo cores

    Science.gov (United States)

    Du, Xiaolong; Schwabe, Bodo; Niemeyer, Jens C.; Bürger, David

    2018-03-01

    We study tidal stripping of fuzzy dark matter (FDM) subhalo cores using simulations of the Schrödinger-Poisson equations and analyze the dynamics of tidal disruption, highlighting the differences with standard cold dark matter. Mass loss outside of the tidal radius forces the core to relax into a less compact configuration, lowering the tidal radius. As the characteristic radius of a solitonic core scales inversely with its mass, tidal stripping results in a runaway effect and rapid tidal disruption of the core once its central density drops below 4.5 times the average density of the host within the orbital radius. Additionally, we find that the core is deformed into a tidally locked ellipsoid with increasing eccentricities until it is completely disrupted. Using the core mass loss rate, we compute the minimum mass of cores that can survive several orbits for different FDM particle masses and compare it with observed masses of satellite galaxies in the Milky Way.

  2. Atmospheric noise of a breaking tidal bore.

    Science.gov (United States)

    Chanson, Hubert

    2016-01-01

    A tidal bore is a surge of waters propagating upstream in an estuary as the tidal flow turns to rising and the flood tide propagates into a funnel-shaped system. Large tidal bores have a marked breaking roller. The sounds generated by breaking tidal bores were herein investigated in the field (Qiantang River) and in laboratory. The sound pressure record showed two dominant periods, with some similarity with an earlier study [Chanson (2009). J. Acoust. Soc. Am. 125(6), 3561-3568]. The two distinct phases were the incoming tidal bore when the sound amplitude increased with the approaching bore, and the passage of the tidal bore in front of the microphone when loud and powerful noises were heard. The dominant frequency ranged from 57 to 131 Hz in the Qiantang River bore. A comparison between laboratory and prototype tidal bores illustrated both common features and differences. The low pitch sound of the breaking bore had a dominant frequency close to the collective oscillations of bubble clouds, which could be modeled with a bubble cloud model using a transverse dimension of the bore roller. The findings suggest that this model might be over simplistic in the case of a powerful breaking bore, like that of the Qiantang River.

  3. Influences of hydrological regime on heavy metal and salt ion concentrations in intertidal sediment from Chongming Dongtan, Changjiang River estuary, China

    Science.gov (United States)

    Zhao, Jiale; Gao, Xiaojiang; Yang, Jin

    2017-11-01

    The tidal flat along the Changjiang (Yangtze) River estuary has long been reclaimed for the agricultural purposes, with the prevailing hydrological conditions during such pedogenic transformations being of great importance to their successful development. In this study, samples of surface sediment from Chongming Dongtan, situated at the mouth of the Changjiang River estuary, were collected and analyzed in order to understand how hydrological management can influence the concentrations of heavy metals and salt ions in pore water, and chemical fractionation of heavy metals during the reclamation process. We performed a series of experiments that simulated three different hydrological regimes: permanent flooding (R1), alternative five-day periods of wetting and drying (R2), continuous field capacity (R3). Our results exhibited good Pearson correlations coefficients between heavy metals and salt ions in the pore water for both R1 and R2. In particular, the concentrations of salt ions in the pore water decreased in all three regimes, but showed the biggest decline in R2. With this R2 experiment, the periodic concentration patterns in the pore water varied for Fe and Mn, but not for Cr, Cu, Pb and Zn. Neither the fractionation of Ni nor the residual fractions of any metals changed significantly in any regime. In R1, the reducible fractions of heavy metals (Cr, Cu, Zn and Pb) in the sediment decreased, while the acid extractable fractions increased. In R2, the acid extractable and the reducible fractions of Cr, Cu, Zn and Pb both decreased, as did the oxidizable fraction of Cu. These data suggest that an alternating hydrological regime can reduce both salinity and the availability of heavy metals in sediments.

  4. Tidal exchange between a freshwater tidal marsh and an impacted estuary: the Scheldt estuary, Belgium

    NARCIS (Netherlands)

    van Damme, S.; Dehairs, F.; Tackx, M.; Beauchard, O.; Struyf, E.; Gribsholt, B.; van Cleemput, O.; Meire, P.

    2009-01-01

    Tidal marsh exchange studies are relatively simple tools to investigate the interaction between tidal marshes and estuaries. They have mostly been confined to only a few elements and to saltwater or brackish systems. This study presents mass-balance results of an integrated one year campaign in a

  5. Evaluation of streambed scour at bridges over tidal waterways in Alaska

    Science.gov (United States)

    Conaway, Jeffrey S.; Schauer, Paul V.

    2012-01-01

    The potential for streambed scour was evaluated at 41 bridges that cross tidal waterways in Alaska. These bridges are subject to several coastal and riverine processes that have the potential, individually or in combination, to induce streambed scour or to damage the structure or adjacent channel. The proximity of a bridge to the ocean and water-surface elevation and velocity data collected over a tidal cycle were criteria used to identify the flow regime at each bridge, whether tidal, riverine, or mixed, that had the greatest potential to induce streambed scour. Water-surface elevations measured through at least one tide cycle at 32 bridges were correlated to water levels at the nearest tide station. Asymmetry of the tidal portion of the hydrograph during the outgoing tide at 12 bridges indicated that riverine flows were stored upstream of the bridge during the tidal exchange. This scenario results in greater discharges and velocities during the outgoing tide compared to those on the incoming tide. Velocity data were collected during outgoing tides at 10 bridges that experienced complete flow reversals, and measured velocities during the outgoing tide exceeded the critical velocity required to initiate sediment transport at three sites. The primary risk for streambed scour at most of the sites considered in this study is from riverine flows rather than tidal fluctuations. A scour evaluation for riverine flow was completed at 35 bridges. Scour from riverine flow was not the primary risk for six tidally-controlled bridges and therefore not evaluated at those sites. Field data including channel cross sections, a discharge measurement, and a water-surface slope were collected at the 35 bridges. Channel instability was identified at 14 bridges where measurable scour and or fill were noted in repeated surveys of channel cross sections at the bridge. Water-surface profiles for the 1-percent annual exceedance probability discharge were calculated by using the Hydrologic

  6. Nitrogen assimilation and short term retention in a nutrient-rich tidal freshwater marsh – a whole ecosystem 15N enrichment study

    Directory of Open Access Journals (Sweden)

    B. Gribsholt

    2007-01-01

    Full Text Available An intact tidal freshwater marsh system (3477 m2 was labelled by adding 15N-ammonium as a tracer to the flood water inundating the ecosystem. The appearance and retention of 15N-label in different marsh components (leaves, roots, sediment, leaf litter and invertebrate fauna was followed over 15 days. This allowed us to elucidate the direct assimilation and dependence on creek-water nitrogen on a relatively short term and provided an unbiased assessment of the relative importance of the various compartments within the ecosystem. Two separate experiments were conducted, one in spring/early summer (May 2002 when plants were young and building up biomass; the other in late summer (September 2003 when macrophytes were in a flowering or early senescent state. Nitrogen assimilation rate (per hour inundated was >3 times faster in May compared to September. On both occasions, however, the results clearly revealed that the less conspicuous compartments such as leaf litter and ruderal vegetations are more important in nitrogen uptake and retention than the prominent reed (Phragmites australis meadows. Moreover, short-term nitrogen retention in these nutrient rich marshes occurs mainly via microbial pathways associated with the litter and sediment. Rather than direct uptake by macrophytes, it is the large reactive surface area provided by the tidal freshwater marsh vegetation that is most crucial for nitrogen transformation, assimilation and short term retention in nutrient rich tidal freshwater marshes. Our results clearly revealed the dominant role of microbes in initial nitrogen retention in marsh ecosystems.

  7. Half Moon Cove Tidal Project. Feasibility report

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    The proposed Half Moon Cove Tidal Power Project would be located in a small cove in the northern part of Cobscook Bay in the vicinity of Eastport, Maine. The project would be the first tidal electric power generating plant in the United States of America. The basin impounded by the barrier when full will approximate 1.2 square miles. The average tidal range at Eastport is 18.2 feet. The maximum spring tidal range will be 26.2 feet and the neap tidal range 12.8 feet. The project will be of the single pool-type single effect in which generation takes place on the ebb tide only. Utilizing an average mean tidal range of 18.2 feet the mode of operation enables generation for approximately ten and one-half (10-1/2) hours per day or slightly in excess of five (5) hours per tide. The installed capacity will be 12 MW utilizing 2 to 6 MW units. An axial flow, or Bulb type of turbine was selected for this study.

  8. When shape matters: strategies of different Antarctic ascidians morphotypes to deal with sedimentation

    OpenAIRE

    Torre, Luciana; Abele, Doris; Lagger, Cristian; Momo, Fernando; Sahade, Ricardo

    2014-01-01

    Climate change leads to increased melting of tidewater glaciers in theWestern Antarctic Peninsula region and sediment bearing glacial melt waters negatively affects filter feeding species as solitary ascidians. In previous work the erect-forms Molgula pedunculata and Cnemidocarpa verrucosa (Order Stolidobranchiata) appeared more sensitive than the flat form Ascidia challengeri (Order Phlebobranchiata). Sedimentation exposure is expected to induce up-regulation of anaerobic metabol...

  9. TIDAL LIMITS TO PLANETARY HABITABILITY

    International Nuclear Information System (INIS)

    Barnes, Rory; Jackson, Brian; Greenberg, Richard; Raymond, Sean N.

    2009-01-01

    The habitable zones (HZs) of main-sequence stars have traditionally been defined as the range of orbits that intercept the appropriate amount of stellar flux to permit surface water on a planet. Terrestrial exoplanets discovered to orbit M stars in these zones, which are close-in due to decreased stellar luminosity, may also undergo significant tidal heating. Tidal heating may span a wide range for terrestrial exoplanets and may significantly affect conditions near the surface. For example, if heating rates on an exoplanet are near or greater than that on Io (where tides drive volcanism that resurfaces the planet at least every 1 Myr) and produce similar surface conditions, then the development of life seems unlikely. On the other hand, if the tidal heating rate is less than the minimum to initiate plate tectonics, then CO 2 may not be recycled through subduction, leading to a runaway greenhouse that sterilizes the planet. These two cases represent potential boundaries to habitability and are presented along with the range of the traditional HZ for main-sequence, low-mass stars. We propose a revised HZ that incorporates both stellar insolation and tidal heating. We apply these criteria to GJ 581 d and find that it is in the traditional HZ, but its tidal heating alone may be insufficient for plate tectonics.

  10. ANALYSIS OF EROSION AND SEDIMENTATION PATTERNS USING SOFTWARE OF MIKE 21 HDFM-MT IN THE KAPUAS MURUNG RIVER MOUTH CENTRAL KALIMANTAN PROVINCE

    Directory of Open Access Journals (Sweden)

    Franto Novico

    2017-07-01

    Full Text Available The public transportation system along the Kapuas River, Central Kalimantan are highly depend on water transportation. Natural condition gives high distribution to the smoothness of the vessel traffic along the Kapuas Murung River. The local government has planned to build specific port for stock pile at the Batanjung which would face with natural phenomena of sedimentation and erosion at a river mouth. Erosion and sedimentation could be predicted not only by field observing but it is also needed hypotheses using software analysis. Hydrodynamics and transport sediment models by Mike 21 HDFM-MT software will be applied to describe the position of sedimentations and erosions at a river mouth. Model is assumed by two different river conditions, wet and dry seasons. Based on two types of conditions the model would also describe the river flow and sediment transport at spring and neap periods. Tidal fluctuations and a river current as field observation data would be verified with the result of model simulations. Based on field observation and simulation results could be known the verification of tidal has an 89.74% correlation while the river current correlation has 43.6%. Moreover, based on the simulation the sediment patterns in flood period have a larger area than ebb period. Furthermore, the erosion patterns dominantly occur during wet and dry season within ebb period. Water depths and sediment patterns should be considered by the vessels that will use the navigation channel at a river mouth.

  11. Modeling equilibrium bed profiles of short tidal embayments : On the effect of the vertical distribution of suspended sediment and the influence of the boundary conditions

    NARCIS (Netherlands)

    Ter Brake, M.C.; Schuttelaars, H.M.

    2009-01-01

    In many tidal embayments, bottom patterns, such as the channel-shoal systems of the Wadden Sea, are observed. To gain understanding of the mechanisms that result in these bottom patterns, an idealized model is developed and analyzed for short tidal embayments. In this model, the water motion is

  12. Balanced Sediment Fluxes in Southern California's Mediterranean-climate Zone Salt Marshes

    Science.gov (United States)

    Rosencranz, J. A.; Dickhudt, P.; Ganju, N. K.; Thorne, K.; Takekawa, J.; Ambrose, R. F.; Guntenspergen, G. R.; Brosnahan, S.; MacDonald, G. M.

    2015-12-01

    Salt marsh elevation and geomorphic stability depends on mineral sedimentation. Many southern California, USA salt marshes import sediment during El Niño storm events, but sediment fluxes and mechanisms during dry weather are also potentially important for marsh stability. We calculated tidal creek sediment fluxes within a sediment starved 1.5 km2 salt marsh (Seal Beach) and a less modified 1 km2 marsh (Mugu) with a watershed sediment supply. We measured salt marsh plain suspended sediment concentration and vertical accretion using single stage samplers and marker horizons. At Seal Beach, a 2014 storm yielded 39 and 28 g/s mean sediment fluxes and imported 12000 and 8800 kg in a western channel. This offset 8700 kg export during two months of dry weather, while landward net fluxes in the eastern channel accounted for 33% of the import. During the storm, suspended sediment concentrations on the marsh plain increased by a factor of four; accretion was 1-2 mm near creek levees. An exceptionally high tide sequence at Mugu yielded 4.4 g/s mean sediment flux, importing 1700 kg, accounting for 20% of dry weather fluxes. Overall, low sediment fluxes were observed, suggesting that these salt marshes are currently geomorphically stable. Our results suggest that storms and exceptionally high lunar tides may play large roles, importing sediment and maintaining dry weather sediment flux balances for southern California salt marshes. However, under future climate change and sea-level rise scenarios, results suggest that balanced sediment fluxes may lead to marsh elevational instability, based on estimated mineral sediment deficits.

  13. Analysis of Tidal Data for Dagang Tidal Gauge and Study of the Changes for the National Height Datum

    Directory of Open Access Journals (Sweden)

    WU Fumei

    2015-07-01

    Full Text Available The main tides affecting Dagang sea level are analyzed and the national height datum is studied by analyzing 1980—2011 hourly tidal data and 1952—2007 monthly mean tidal data. Firstly, the frequencies and amplitudes of main tides including 180 short-period tides and 6 long-period tides are gained by the Fouirer transform. Then the actual amplitudes and their variations of main tides are obtained by the harmonic analysis of the 1980—2011 hourly tidal data, and the changes with about 19 year period can easily be found in the amplitudes of Q1、O1、M2、K1、K2. And then the changes of the mean sea level at Dagang tidal gauge defining national height datum during the period of 1952—2011 are studied by the harmonic analysis and the shifting average of 18.61 year tidal heights. The results of these methods show that the mean sea level at Dagang tidal gauge descended with the speed of 1.07 mm/a and 0.76 mm/a respectively during 1952—1980, and that it ascended with the speed of 1.59 mm/a and 1.62 mm/a respectively during 1980—2011. And finally the difference of 0.14 cm is achieved by the shifting average of 18.61 year tidal heights for 1985 National Height Datum.

  14. From Globular Clusters to Tidal Dwarfs: Structure Formation in the Tidal Tails of Merging Galaxies

    Science.gov (United States)

    Knierman, Karen A.; Gallagher, Sarah C.; Charlton, Jane C.; Hunsberger, Sally D.; Whitmore, Bradley; Kundu, Arunav; Hibbard, J. E.; Zaritsky, Dennis

    2003-09-01

    Using V and I images obtained with the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope, we investigate compact stellar structures within tidal tails. Six regions of tidal debris in the four classic ``Toomre sequence'' mergers: NGC 4038/39 (``Antennae''), NGC 3256, NGC 3921, and NGC 7252 (``Atoms for Peace'') have been studied in order to explore how the star formation depends on the local and global physical conditions. These mergers sample a range of stages in the evolutionary sequence and tails with and without embedded tidal dwarf galaxies. The six tails are found to contain a variety of stellar structures, with sizes ranging from those of globular clusters up to those of dwarf galaxies. From V and I WFPC2 images, we measure the luminosities and colors of the star clusters. NGC 3256 is found to have a large population of blue clusters (0.2<~V-I<~0.9), particularly in its western tail, similar to those found in the inner region of the merger. In contrast, NGC 4038/39 has no clusters in the observed region of the tail, only less luminous point sources likely to be individual stars. NGC 3921 and NGC 7252 have small populations of clusters along their tails. A significant cluster population is clearly associated with the prominent tidal dwarf candidates in the eastern and western tails of NGC 7252. The cluster-rich western tail of NGC 3256 is not distinguished from the others by its dynamical age or by its total H I mass. However, the mergers that have few clusters in the tail all have tidal dwarf galaxies, while NGC 3256 does not have prominent tidal dwarfs. We speculate that star formation in tidal tails may manifest itself either in small structures like clusters along the tail or in large structures such as dwarf galaxies, but not in both. Also, NGC 3256 has the highest star formation rate of the four mergers studied, which may contribute to the high number of star clusters in its tidal tails. Based in part on observations obtained with the

  15. Organic Carbon and Trace Element Cycling in a River-Dominated Tidal Coastal Wetland System (Tampa Bay, FL, USA)

    Science.gov (United States)

    Moyer, R. P.; Smoak, J. M.; Engelhart, S. E.; Powell, C. E.; Chappel, A. R.; Gerlach, M. J.; Kemp, A.; Breithaupt, J. L.

    2016-02-01

    Tampa Bay is the largest open water, river-fed estuary in Florida (USA), and is characterized by the presence of both mangrove and salt marsh ecosystems. Both coastal wetland systems, and small rivers such as the ones draining into Tampa Bay have historically been underestimated in terms of their role in the global carbon and elemental cycles. Climate change and sea-level rise (SLR) are major threats in Tampa Bay and stand to disrupt hydrologic cycles, compromising sediment accumulation and the rate of organic carbon (OC) burial. This study evaluates organic carbon content, sediment accumulation, and carbon burial rates in salt marsh and mangrove ecosystems, along with measurements of fluxes of dissolved OC (DOC) and trace elements in the water column of the Little Manatee River (LMR) in Tampa Bay. The characterization of OC and trace elements in tidal rivers and estuaries is critical for quantitatively constraining these systems in local-to-regional scale biogeochemical budgets, and provide insight into biogeochemical processes occurring with the estuary and adjacent tidal wetlands. Material fluxes of DOC and trace elements were tied to discharge irrespective of season, and the estuarine habitats removed 15-65% of DOC prior to export to Tampa Bay and the Gulf of Mexico. Thus, material is available for cycling and burial within marsh and mangrove peats, however, LMR mangrove peats have higher OC content and burial rates than adjacent salt marsh peats. Sedimentary accretion rates in LMR marshes are not currently keeping pace with SLR, thus furthering the rapid marsh-to-mangrove conversions that have been seen in Tampa Bay over the past half-century. Additionally, wetlands in Tampa Bay tend to have a lower rate of carbon burial than other Florida tidal wetlands, demonstrating their high sensitivity to climate change and SLR.

  16. Calibration of an estuarine sediment transport model to sediment fluxes as an intermediate step for simulation of geomorphic evolution

    Science.gov (United States)

    Ganju, N.K.; Schoellhamer, D.H.

    2009-01-01

    Modeling geomorphic evolution in estuaries is necessary to model the fate of legacy contaminants in the bed sediment and the effect of climate change, watershed alterations, sea level rise, construction projects, and restoration efforts. Coupled hydrodynamic and sediment transport models used for this purpose typically are calibrated to water level, currents, and/or suspended-sediment concentrations. However, small errors in these tidal-timescale models can accumulate to cause major errors in geomorphic evolution, which may not be obvious. Here we present an intermediate step towards simulating decadal-timescale geomorphic change: calibration to estimated sediment fluxes (mass/time) at two cross-sections within an estuary. Accurate representation of sediment fluxes gives confidence in representation of sediment supply to and from the estuary during those periods. Several years of sediment flux data are available for the landward and seaward boundaries of Suisun Bay, California, the landward-most embayment of San Francisco Bay. Sediment flux observations suggest that episodic freshwater flows export sediment from Suisun Bay, while gravitational circulation during the dry season imports sediment from seaward sources. The Regional Oceanic Modeling System (ROMS), a three-dimensional coupled hydrodynamic/sediment transport model, was adapted for Suisun Bay, for the purposes of hindcasting 19th and 20th century bathymetric change, and simulating geomorphic response to sea level rise and climatic variability in the 21st century. The sediment transport parameters were calibrated using the sediment flux data from 1997 (a relatively wet year) and 2004 (a relatively dry year). The remaining years of data (1998, 2002, 2003) were used for validation. The model represents the inter-annual and annual sediment flux variability, while net sediment import/export is accurately modeled for three of the five years. The use of sediment flux data for calibrating an estuarine geomorphic

  17. An innovative modeling approach using Qual2K and HEC-RAS integration to assess the impact of tidal effect on River Water quality simulation.

    Science.gov (United States)

    Fan, Chihhao; Ko, Chun-Han; Wang, Wei-Shen

    2009-04-01

    Water quality modeling has been shown to be a useful tool in strategic water quality management. The present study combines the Qual2K model with the HEC-RAS model to assess the water quality of a tidal river in northern Taiwan. The contaminant loadings of biochemical oxygen demand (BOD), ammonia nitrogen (NH(3)-N), total phosphorus (TP), and sediment oxygen demand (SOD) are utilized in the Qual2K simulation. The HEC-RAS model is used to: (i) estimate the hydraulic constants for atmospheric re-aeration constant calculation; and (ii) calculate the water level profile variation to account for concentration changes as a result of tidal effect. The results show that HEC-RAS-assisted Qual2K simulations taking tidal effect into consideration produce water quality indices that, in general, agree with the monitoring data of the river. Comparisons of simulations with different combinations of contaminant loadings demonstrate that BOD is the most import contaminant. Streeter-Phelps simulation (in combination with HEC-RAS) is also performed for comparison, and the results show excellent agreement with the observed data. This paper is the first report of the innovative use of a combination of the HEC-RAS model and the Qual2K model (or Streeter-Phelps equation) to simulate water quality in a tidal river. The combination is shown to provide an alternative for water quality simulation of a tidal river when available dynamic-monitoring data are insufficient to assess the tidal effect of the river.

  18. A modeling study of tidal energy extraction and the associated impact on tidal circulation in a multi-inlet bay system of Puget Sound

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Taiping; Yang, Zhaoqing

    2017-12-01

    Previous tidal energy projects in Puget Sound have focused on major deep channels such as Admiralty Inlet that have a larger power potential but pose greater technical challenges than minor tidal channels connecting to small sub-basins. This paper focuses on the possibility of extracting energy from minor tidal channels by using a hydrodynamic model to quantify the power potential and the associated impact on tidal circulation. The study site is a multi-inlet bay system connected by two narrow inlets, Agate Pass and Rich Passage, to the Main Basin of Puget Sound. A three-dimensional hydrodynamic model was applied to the study site and calibrated for tidal elevations and currents. We examined three energy extraction scenarios in which turbines were deployed in each of the two passages and concurrently in both. Extracted power rates and associated changes in tidal elevation, current, tidal flux, and residence time were examined. Maximum instantaneous power rates reached 250 kW, 1550 kW, and 1800 kW, respectively, for the three energy extraction scenarios. The model suggests that with the proposed level of energy extraction, the impact on tidal circulation is very small. It is worth investigating the feasibility of harnessing tidal energy from minor tidal channels of Puget Sound.

  19. The relationship between sediment and plutonium budgets in a small macrotidal estuary: Esk Estuary, Cumbria, UK

    International Nuclear Information System (INIS)

    Kelly, M.; Emptage, M.; Mudge, S.; Bradshaw, K.; Hamilton-Taylor, J.

    1991-01-01

    During a spring tide, measurements were made of sediment and 239,240 Pu discharges through a cross-section of the Esk estuary. These indicated that over the full tidal cycle, the inner estuary had a net gain of ca. 18 t of sediment and ca. 85 MBq of particulate phase 239,240 Pu, and a probable net loss of ca. 1 to 2 MBq of solution phase 239,240 Pu. Each of these was the net result of large gross discharges of sediment and plutonium into and out of the estuary for which the sea was the main source, with eroded estuarine sediment providing an additional minor source of sediment, of particulate phase plutonium and, via desorption, of solution phase plutonium. A net input with each tide, of sediment and its associated radionuclides, is considered to be typical for the Esk estuary under the normal conditions of low river flows. (author)

  20. Downstream hydraulic geometry of a tidally influenced river delta

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.; Brye, de B.; Deleersnijder, E.

    2012-01-01

    Channel geometry in tidally influenced river deltas can show a mixed scaling behavior between that of river and tidal channel networks, as the channel forming discharge is both of river and tidal origin. We present a method of analysis to quantify the tidal signature on delta morphology, by