WorldWideScience

Sample records for tidal disruption type

  1. Tidal disruption of fuzzy dark matter subhalo cores

    Science.gov (United States)

    Du, Xiaolong; Schwabe, Bodo; Niemeyer, Jens C.; Bürger, David

    2018-03-01

    We study tidal stripping of fuzzy dark matter (FDM) subhalo cores using simulations of the Schrödinger-Poisson equations and analyze the dynamics of tidal disruption, highlighting the differences with standard cold dark matter. Mass loss outside of the tidal radius forces the core to relax into a less compact configuration, lowering the tidal radius. As the characteristic radius of a solitonic core scales inversely with its mass, tidal stripping results in a runaway effect and rapid tidal disruption of the core once its central density drops below 4.5 times the average density of the host within the orbital radius. Additionally, we find that the core is deformed into a tidally locked ellipsoid with increasing eccentricities until it is completely disrupted. Using the core mass loss rate, we compute the minimum mass of cores that can survive several orbits for different FDM particle masses and compare it with observed masses of satellite galaxies in the Milky Way.

  2. Resonant Tidal Disruption in Galactic Nuclei

    OpenAIRE

    Rauch, Kevin P.; Ingalls, Brian

    1997-01-01

    It has recently been shown that the rate of angular momentum relaxation in nearly-Keplerian star clusters is greatly increased by a process termed resonant relaxation (Rauch & Tremaine 1996), who also argued that tidal disruption of stars in galactic nuclei containing massive black holes could be noticeably enhanced by this process. We describe here the results of numerical simulations of resonant tidal disruption which quantitatively test the predictions made by Rauch & Tremaine. The simulat...

  3. BINARY DISRUPTION BY MASSIVE BLACK HOLES: HYPERVELOCITY STARS, S STARS, AND TIDAL DISRUPTION EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J.; Geller, Margaret J.; Brown, Warren R., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-04-20

    We examine whether disrupted binary stars can fuel black hole growth. In this mechanism, tidal disruption produces a single hypervelocity star (HVS) ejected at high velocity and a former companion star bound to the black hole. After a cluster of bound stars forms, orbital diffusion allows the black hole to accrete stars by tidal disruption at a rate comparable to the capture rate. In the Milky Way, HVSs and the S star cluster imply similar rates of 10{sup -5} to 10{sup -3} yr{sup -1} for binary disruption. These rates are consistent with estimates for the tidal disruption rate in nearby galaxies and imply significant black hole growth from disrupted binaries on 10 Gyr timescales.

  4. Simulations of Magnetic Fields in Tidally Disrupted Stars

    Energy Technology Data Exchange (ETDEWEB)

    Guillochon, James [Harvard-Smithsonian Center for Astrophysics, The Institute for Theory and Computation, 60 Garden Street, Cambridge, MA 02138 (United States); McCourt, Michael, E-mail: jguillochon@cfa.harvard.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

    2017-01-10

    We perform the first magnetohydrodynamical simulations of tidal disruptions of stars by supermassive black holes. We consider stars with both tangled and ordered magnetic fields, for both grazing and deeply disruptive encounters. When the star survives disruption, we find its magnetic field amplifies by a factor of up to 20, but see no evidence for a self-sustaining dynamo that would yield arbitrary field growth. For stars that do not survive, and within the tidal debris streams produced in partial disruptions, we find that the component of the magnetic field parallel to the direction of stretching along the debris stream only decreases slightly with time, eventually resulting in a stream where the magnetic pressure is in equipartition with the gas. Our results suggest that the returning gas in most (if not all) stellar tidal disruptions is already highly magnetized by the time it returns to the black hole.

  5. Time scales in tidal disruption events

    Directory of Open Access Journals (Sweden)

    Krolik J.

    2012-12-01

    Full Text Available We explore the temporal structure of tidal disruption events pointing out the corresponding transitions in the lightcurves of the thermal accretion disk and of the jet emerging from such events. The hydrodynamic time scale of the disrupted star is the minimal time scale of building up the accretion disk and the jet and it sets a limit on the rise time. This suggest that Swift J1644+57, that shows several flares with a rise time as short as a few hundred seconds could not have arisen from a tidal disruption of a main sequence star whose hydrodynamic time is a few hours. The disrupted object must have been a white dwarf. A second important time scale is the Eddington time in which the accretion rate changes form super to sub Eddington. It is possible that such a transition was observed in the light curve of Swift J2058+05. If correct this provides interesting constraints on the parameters of the system.

  6. ENHANCED TIDAL DISRUPTION RATES FROM MASSIVE BLACK HOLE BINARIES

    International Nuclear Information System (INIS)

    Chen Xian; Liu, F. K.; Madau, Piero; Sesana, Alberto

    2009-01-01

    'Hard' massive black hole (MBH) binaries embedded in steep stellar cusps can shrink via three-body slingshot interactions. We show that this process will inevitably be accompanied by a burst of stellar tidal disruptions, at a rate that can be several orders of magnitude larger than that appropriate for a single MBH. Our numerical scattering experiments reveal that (1) a significant fraction of stars initially bound to the primary hole are scattered into its tidal disruption loss cone by gravitational interactions with the secondary hole, an enhancement effect that is more pronounced for very unequal mass binaries; (2) about 25% (40%) of all strongly interacting stars are tidally disrupted by an MBH binary of mass ratio q = 1/81 (q = 1/243) and eccentricity 0.1; and (3) two mechanisms dominate the fueling of the tidal disruption loss cone, a Kozai nonresonant interaction that causes the secular evolution of the stellar angular momentum in the field of the binary, and the effect of close encounters with the secondary hole that change the stellar orbital parameters in a chaotic way. For a hard MBH binary of 10 7 M sun and mass ratio 10 -2 , embedded in an isothermal stellar cusp of velocity dispersion σ * = 100 km s -1 , the tidal disruption rate can be as large as N-dot * ∼1 yr -1 . This is 4 orders of magnitude higher than estimated for a single MBH fed by two-body relaxation. When applied to the case of a putative intermediate-mass black hole inspiraling onto Sgr A*, our results predict tidal disruption rates N-dot * ∼0.05-0.1 yr -1 .

  7. Super massive black hole in galactic nuclei with tidal disruption of stars

    International Nuclear Information System (INIS)

    Zhong, Shiyan; Berczik, Peter; Spurzem, Rainer

    2014-01-01

    Tidal disruption of stars by super massive central black holes from dense star clusters is modeled by high-accuracy direct N-body simulation. The time evolution of the stellar tidal disruption rate, the effect of tidal disruption on the stellar density profile, and, for the first time, the detailed origin of tidally disrupted stars are carefully examined and compared with classic papers in the field. Up to 128k particles are used in simulation to model the star cluster around a super massive black hole, and we use the particle number and the tidal radius of the black hole as free parameters for a scaling analysis. The transition from full to empty loss-cone is analyzed in our data, and the tidal disruption rate scales with the particle number, N, in the expected way for both cases. For the first time in numerical simulations (under certain conditions) we can support the concept of a critical radius of Frank and Rees, which claims that most stars are tidally accreted on highly eccentric orbits originating from regions far outside the tidal radius. Due to the consumption of stars moving on radial orbits, a velocity anisotropy is found inside the cluster. Finally we estimate the real galactic center based on our simulation results and the scaling analysis.

  8. Super Massive Black Hole in Galactic Nuclei with Tidal Disruption of Stars

    Science.gov (United States)

    Zhong, Shiyan; Berczik, Peter; Spurzem, Rainer

    2014-09-01

    Tidal disruption of stars by super massive central black holes from dense star clusters is modeled by high-accuracy direct N-body simulation. The time evolution of the stellar tidal disruption rate, the effect of tidal disruption on the stellar density profile, and, for the first time, the detailed origin of tidally disrupted stars are carefully examined and compared with classic papers in the field. Up to 128k particles are used in simulation to model the star cluster around a super massive black hole, and we use the particle number and the tidal radius of the black hole as free parameters for a scaling analysis. The transition from full to empty loss-cone is analyzed in our data, and the tidal disruption rate scales with the particle number, N, in the expected way for both cases. For the first time in numerical simulations (under certain conditions) we can support the concept of a critical radius of Frank & Rees, which claims that most stars are tidally accreted on highly eccentric orbits originating from regions far outside the tidal radius. Due to the consumption of stars moving on radial orbits, a velocity anisotropy is found inside the cluster. Finally we estimate the real galactic center based on our simulation results and the scaling analysis.

  9. Tidal Disruption Events from Eccentric Nuclear Disks

    Science.gov (United States)

    Wernke, Heather N.; Madigan, Ann-Marie

    2018-04-01

    Stars that get too close to a supermassive black hole are in danger of being tidally disrupted. Stellar two-body relaxation is commonly assumed to be the main driver of these events. Recent work has shown, however, that secular gravitational torques from eccentric nuclear disks can push stars to extreme eccentricities at much higher rates than predicted by two-body relaxation. This work did not include the effects of general relativity, however, which could quench secular torques via rapid apsidal precession. Here we show that, for a star in danger of disruption, general relativity acts on a timescale of less than an orbital period. This short timescale means that general relativity does not have enough time to have a major effect on the orbit. When driven by secular torques from eccentric nuclear disks, tidal disruption event rates are not affected by general relativity.

  10. Tidal disruption of asteroids by supermassive black holes

    Directory of Open Access Journals (Sweden)

    Gomboc A.

    2012-12-01

    Full Text Available The compact radio source Sgr A* at the centre of our Galaxy harbours a super-massive black hole, and is therefore the nearest laboratory for testing the super-massive black hole astrophysics and environment. Since it is not an active galactic nucleus, it also offers the possibility of observing the capture of low-mass objects, such as comets or asteroids, that may orbit the central black hole. In this paper we discuss conditions for tidal disruption of low-mass objects and predictions of the appearance and light curve of such events, as well as their relevance for the X-ray and infra-red flares detected in Sgr A*. The modelled light curves of such tidal disruption events bear marks of the strong gravitational field: tidal squeezing and elongation of the object, gravitational lensing, aberration of light, and Doppler effects. Finally, we show that this model is able to reproduce and fit X-ray flares.

  11. TIDAL STELLAR DISRUPTIONS BY MASSIVE BLACK HOLE PAIRS. II. DECAYING BINARIES

    International Nuclear Information System (INIS)

    Chen Xian; Liu, F. K.; Sesana, Alberto; Madau, Piero

    2011-01-01

    Tidal stellar disruptions have traditionally been discussed as a probe of the single, massive black holes (MBHs) that are dormant in the nuclei of galaxies. We have previously used numerical scattering experiments to show that three-body interactions between bound stars in a stellar cusp and a non-evolving 'hard' MBH binary will also produce a burst of tidal disruptions, caused by a combination of the secular 'Kozai effect' and by close resonant encounters with the secondary hole. Here, we derive basic analytical scalings of the stellar disruption rates with the system parameters, assess the relative importance of the Kozai and resonant encounter mechanisms as a function of time, discuss the impact of general relativistic (GR) and extended stellar cusp effects, and develop a hybrid model to self-consistently follow the shrinking of an MBH binary in a stellar background, including slingshot ejections and tidal disruptions. In the case of a fiducial binary with primary hole mass M 1 = 10 7 M sun and mass ratio q = M 2 /M 1 = 1/81, embedded in an isothermal cusp, we derive a stellar disruption rate N-dot * ∼ 0.2 yr -1 lasting ∼3 x 10 5 yr. This rate is three orders of magnitude larger than the corresponding value for a single MBH fed by two-body relaxation, confirming our previous findings. For q 10% of the tidal-disruption events may originate in MBH binaries.

  12. Prompt emission from tidal disruptions of white dwarfs by intermediate mass black holes

    Directory of Open Access Journals (Sweden)

    Laguna P.

    2012-12-01

    Full Text Available We present a qualitative picture of prompt emission from tidal disruptions of white dwarfs (WD by intermediate mass black holes (IMBH. The smaller size of an IMBH compared to a supermassive black hole and a smaller tidal radius of a WD disruption lead to a very fast event with high peak luminosity. Magnetic field is generated in situ following the tidal disruption, which leads to effective accretion. Since large-scale magnetic field is also produced, geometrically thick super-Eddington inflow leads to a relativistic jet. The dense jet possesses a photosphere, which emits quasi-thermal radiation in soft X-rays. The source can be classified as a long low-luminosity gamma-ray burst (ll-GRB. Tidal compression of a WD causes nuclear ignition, which is observable as an accompanying supernova. We suggest that GRB060218 and SN2006aj is such a pair of ll-GRB and supernova. We argue that in a flux-limited sample the disruptions of WDs by IMBHs are more frequent then the disruptions of other stars by IMBHs.

  13. Tidal Disruption of Phobos as the Cause of Surface Fractures

    Science.gov (United States)

    Hurford, T. A.; Asphaug, E.; Spitale, J. N.; Hemingway, D.; Rhoden, A. R.; Henning, W. G.; Bills, B. G.; Kattenhorn, S. A.; Walker, M.

    2016-01-01

    Phobos, the innermost satellite of Mars, displays an extensive system of grooves that are mostly symmetric about its sub-Mars point. Phobos is steadily spiraling inward due to the tides it raises on Mars lagging behind Phobos' orbital position and will suffer tidal disruption before colliding with Mars in a few tens of millions of years. We calculate the surface stress field of the deorbiting satellite and show that the first signs of tidal disruption are already present on its surface. Most of Phobos' prominent grooves have an excellent correlation with computed stress orientations. The model requires a weak interior that has very low rigidity on the tidal evolution time scale, overlain by an approximately 10-100 m exterior shell that has elastic properties similar to lunar regolith as described by Horvath et al. (1980).

  14. High energy neutrinos from the tidal disruption of stars

    Energy Technology Data Exchange (ETDEWEB)

    Lunardini, Cecilia [Arizona State Univ., Tempe, AZ (United States). Dept. of Physics; Winter, Walter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2017-05-17

    We study the production of high energy neutrinos in jets from the tidal disruption of stars by supermassive black holes. The diffuse neutrino flux expected from these tidal disruption events (TDEs) is calculated both analytically and numerically, taking account the dependence of the rate of TDEs on the redshift and black hole mass. We find that ∝ 10% of the observed diffuse flux at IceCube at an energy of about 1 PeV can come from TDEs if the characteristics of known jetted tidal disruption events are assumed to apply to the whole population of these sources. If, however, plausible scalings of the jet Lorentz factor or variability timescale with the black hole mass are taken into account, the contribution of the lowest mass black holes to the neutrino flux is enhanced. In this case, TDEs can account for most of the neutrino flux detected at IceCube, describing both the neutrino flux normalization and spectral shape with moderate baryonic loadings. While the uncertainties on our assumptions are large, a possible signature of TDEs as the origin of the IceCube signal is the transition of the flux flavor composition from a pion beam to a muon damped source at the highest energies, which will also result in a suppression of Glashow resonance events.

  15. High energy neutrinos from the tidal disruption of stars

    International Nuclear Information System (INIS)

    Lunardini, Cecilia

    2017-01-01

    We study the production of high energy neutrinos in jets from the tidal disruption of stars by supermassive black holes. The diffuse neutrino flux expected from these tidal disruption events (TDEs) is calculated both analytically and numerically, taking account the dependence of the rate of TDEs on the redshift and black hole mass. We find that ∝ 10% of the observed diffuse flux at IceCube at an energy of about 1 PeV can come from TDEs if the characteristics of known jetted tidal disruption events are assumed to apply to the whole population of these sources. If, however, plausible scalings of the jet Lorentz factor or variability timescale with the black hole mass are taken into account, the contribution of the lowest mass black holes to the neutrino flux is enhanced. In this case, TDEs can account for most of the neutrino flux detected at IceCube, describing both the neutrino flux normalization and spectral shape with moderate baryonic loadings. While the uncertainties on our assumptions are large, a possible signature of TDEs as the origin of the IceCube signal is the transition of the flux flavor composition from a pion beam to a muon damped source at the highest energies, which will also result in a suppression of Glashow resonance events.

  16. Gravitational interactions of stars with supermassive black hole binaries. I. Tidal disruption events

    Science.gov (United States)

    Darbha, Siva; Coughlin, Eric R.; Kasen, Daniel; Quataert, Eliot

    2018-04-01

    Stars approaching supermassive black holes (SMBHs) in the centers of galaxies can be torn apart by strong tidal forces. We study the physics of tidal disruption by a circular, binary SMBH as a function of the binary mass ratio q = M2/M1 and separation a, exploring a large set of points in the parameter range q ∈ [0.01, 1] and a/rt1 ∈ [10, 1000]. We simulate encounters in which field stars approach the binary from the loss cone on parabolic, low angular momentum orbits. We present the rate of disruption and the orbital properties of the disrupted stars, and examine the fallback dynamics of the post-disruption debris in the "frozen-in" approximation. We conclude by calculating the time-dependent disruption rate over the lifetime of the binary. Throughout, we use a primary mass M1 = 106M⊙ as our central example. We find that the tidal disruption rate is a factor of ˜2 - 7 times larger than the rate for an isolated BH, and is independent of q for q ≳ 0.2. In the "frozen-in" model, disruptions from close, nearly equal mass binaries can produce intense tidal fallbacks: for binaries with q ≳ 0.2 and a/rt1 ˜ 100, roughly ˜18 - 40% of disruptions will have short rise times (trise ˜ 1 - 10 d) and highly super-Eddington peak return rates (\\dot{M}_{peak} / \\dot{M}_{Edd} ˜ 2 × 10^2 - 3 × 10^3).

  17. Tidal disruption of dwarf spheroidal galaxies: the strange case of Crater II

    Science.gov (United States)

    Sanders, Jason L.; Evans, N. W.; Dehnen, W.

    2018-05-01

    Dwarf spheroidal galaxies of the Local Group obey a relationship between the line-of-sight velocity dispersion and half-light radius, although there are a number of dwarfs that lie beneath this relation with suppressed velocity dispersion. The most discrepant of these (in the Milky Way) is the `feeble giant' Crater II. Using analytic arguments supported by controlled numerical simulations of tidally-stripped flattened two-component dwarf galaxies, we investigate interpretations of Crater II within standard galaxy formation theory. Heavy tidal disruption is necessary to explain the velocity-dispersion suppression which is plausible if the proper motion of Crater II is (μα*, μδ) = ( - 0.21 ± 0.09, -0.24 ± 0.09)mas yr-1. Furthermore, we demonstrate that the velocity dispersion of tidally-disrupted systems is solely a function of the total mass loss even for weakly-embedded and flattened systems. The half-light radius evolution depends more sensitively on orbital phase and the properties of the dark matter profile. The half-light radius of weakly-embedded cusped systems rapidly decreases producing some tension with the Crater II observations. This tension is alleviated by cored dark matter profiles, in which the half-light radius can grow after tidal disruption. The evolution of flattened galaxies is characterised by two competing effects: tidal shocking makes the central regions rounder whilst tidal distortion produces a prolate tidally-locked outer envelope. After ˜70% of the central mass is lost, tidal distortion becomes the dominant effect and the shape of the central regions of the galaxy tends to a universal prolate shape irrespective of the initial shape.

  18. ENHANCED OFF-CENTER STELLAR TIDAL DISRUPTIONS BY SUPERMASSIVE BLACK HOLES IN MERGING GALAXIES

    International Nuclear Information System (INIS)

    Liu, F. K.; Chen, Xian

    2013-01-01

    Off-center stellar tidal disruption flares have been suggested to be a powerful probe of recoiling supermassive black holes (SMBHs) out of galactic centers due to anisotropic gravitational wave radiations. However, off-center tidal flares can also be produced by SMBHs in merging galaxies. In this paper, we computed the tidal flare rates by dual SMBHs in two merging galaxies before the SMBHs become self-gravitationally bounded. We employ an analytical model to calculate the tidal loss-cone feeding rates for both SMBHs, taking into account two-body relaxation of stars, tidal perturbations by the companion galaxy, and chaotic stellar orbits in triaxial gravitational potential. We show that for typical SMBHs with masses 10 7 M ☉ , the loss-cone feeding rates are enhanced by mergers up to Γ ∼ 10 –2 yr –1 , about two orders of magnitude higher than those by single SMBHs in isolated galaxies and about four orders of magnitude higher than those by recoiling SMBHs. The enhancements are mainly due to tidal perturbations by the companion galaxy. We suggest that off-center tidal flares are overwhelmed by those from merging galaxies, making the identification of recoiling SMBHs challenging. Based on the calculated rates, we estimate the relative contributions of tidal flare events by single, binary, and dual SMBH systems during cosmic time. Our calculations show that the off-center tidal disruption flares by un-bound SMBHs in merging galaxies contribute a fraction comparable to that by single SMBHs in isolated galaxies. We conclude that off-center tidal disruptions are powerful tracers of the merging history of galaxies and SMBHs.

  19. THE TIDAL DISRUPTION OF GIANT STARS AND THEIR CONTRIBUTION TO THE FLARING SUPERMASSIVE BLACK HOLE POPULATION

    International Nuclear Information System (INIS)

    MacLeod, Morgan; Guillochon, James; Ramirez-Ruiz, Enrico

    2012-01-01

    Sun-like stars are thought to be regularly disrupted by supermassive black holes (SMBHs) within galactic nuclei. Yet, as stars evolve off the main sequence their vulnerability to tidal disruption increases drastically as they develop a bifurcated structure consisting of a dense core and a tenuous envelope. Here we present the first hydrodynamic simulations of the tidal disruption of giant stars and show that the core has a substantial influence on the star's ability to survive the encounter. Stars with more massive cores retain large fractions of their envelope mass, even in deep encounters. Accretion flares resulting from the disruption of giant stars should last for tens to hundreds of years. Their characteristic signature in transient searches would not be the t –5/3 decay typically associated with tidal disruption events, but a correlated rise over many orders of magnitude in brightness on timescales of months to years. We calculate the relative disruption rates of stars of varying evolutionary stages in typical galactic centers, then use our results to produce Monte Carlo realizations of the expected flaring event populations. We find that the demographics of tidal disruption flares are strongly dependent on both stellar and black hole mass, especially near the limiting SMBH mass scale of ∼10 8 M ☉ . At this black hole mass, we predict a sharp transition in the SMBH flaring diet beyond which all observable disruptions arise from evolved stars, accompanied by a dramatic cutoff in the overall tidal disruption flaring rate. Black holes less massive than this limiting mass scale will show observable flares from both main-sequence and evolved stars, with giants contributing up to 10% of the event rate. The relative fractions of stars disrupted at different evolutionary states can constrain the properties and distributions of stars in galactic nuclei other than our own.

  20. Tidal Disruption of Strengthless Rubble Piles: A Dimensional Analysis

    Science.gov (United States)

    Hahn, Joseph M.; Rettig, Terrence W.

    1998-01-01

    A relatively simple prescription for estimating the number of debris clumps (n) that form after a catastrophic tidal disruption event is presented. Following the breakup event, it is assumed that the individual debris particles follow keplerian orbits about the planet until the debris' gravitational contraction timescale (t(sub c)) becomes shorter than its orbital spreading timescale (t(sub s)). When the two timescales become comparable, self-gravity breaks up the debris train into n = L/D clumps, which is the debris length/diameter ratio at that instant. The clumps subsequently orbit the planet independent of each other. The predicted number of clumps n is in good agreement with more sophisticated N-body treatments of tidal breakup for parabolic encounters, and the dependence of n upon the progenitor's density as well as its orbit is also mapped out for hyperbolic encounters. These findings may be used to further constrain both the orbits and densities of the tidally disrupted bodies that struck Callisto and Ganymede. A cursory analysis shows that the Gomul and Gipul crater chains on Callisto, which have the greatest number of craters among the known chains, were formed by projectiles having comet-like densities estimated at rho(sub o) < 1 gm/cc.

  1. Challenges in the modeling of tidal disruption events lightcurves

    Directory of Open Access Journals (Sweden)

    Lodato G.

    2012-12-01

    Full Text Available In this contribution, I review the recent developments on the modeling of the lightcurve of tidal disruption events. Our understanding has evolved significantly from the earlier seminal results that imply a simple power-law decay of the bolometric light curve as t−5/3. We now know that the details of the rise to the peak of the lightcurve is determined mainly by the internal structure of the disrupted star. We also have improved models for the disc thermal emission, showing that in this case the decline of the luminosity with time should be much flatter than the standard t−5/3 law, especially in optical and UV wavelengths, while the X-ray lightcurve is generally best suited to track the bolometric one. Finally, we are just starting to explore the interesting general relativistic effects that might arise for such events, for which the tidal radius lies very close to the black hole event horizon.

  2. A continuum of H- to He-rich tidal disruption candidates with a preference for E+A galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Arcavi, Iair; Gal-Yam, Avishay; Horesh, Assaf; Ofek, Eran O.; De Cia, Annalisa; Tal, David [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Pan, Yen-Chen [Department of Physics (Astrophysics), University of Oxford, DWB, Keble Road, Oxford OX1 3RH (United Kingdom); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Yan, Lin; Yang, Chen-Wei [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Howell, D. A. [Las Cumbres Observatory Global Telescope, 6740 Cortona Drive, Suite 102, Goleta, CA 93111 (United States); Kulkarni, Shrinivas R.; Tendulkar, Shriharsh P.; Cohen, Judith G. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Tang, Sumin [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Xu, Dong [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 København Ø (Denmark); Sternberg, Assaf [Excellence Cluster Universe, Technische Universität München, Boltzmann Strasse 2, D-85748 Garching (Germany); Bloom, Joshua S.; Nugent, Peter E., E-mail: iarcavi@lcogt.net [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); and others

    2014-09-20

    We present the results of a Palomar Transient Factory (PTF) archival search for blue transients that lie in the magnitude range between 'normal' core-collapse and superluminous supernovae (i.e., with –21 ≤ M {sub R} {sub (peak)} ≤ – 19). Of the six events found after excluding all interacting Type IIn and Ia-CSM supernovae, three (PTF09ge, 09axc, and 09djl) are coincident with the centers of their hosts, one (10iam) is offset from the center, and a precise offset cannot be determined for two (10nuj and 11glr). All the central events have similar rise times to the He-rich tidal disruption candidate PS1-10jh, and the event with the best-sampled light curve also has similar colors and power-law decay. Spectroscopically, PTF09ge is He-rich, while PTF09axc and 09djl display broad hydrogen features around peak magnitude. All three central events are in low star formation hosts, two of which are E+A galaxies. Our spectrum of the host of PS1-10jh displays similar properties. PTF10iam, the one offset event, is different photometrically and spectroscopically from the central events, and its host displays a higher star formation rate. Finding no obvious evidence for ongoing galactic nuclei activity or recent star formation, we conclude that the three central transients likely arise from the tidal disruption of a star by a supermassive black hole. We compare the spectra of these events to tidal disruption candidates from the literature and find that all of these objects can be unified on a continuous scale of spectral properties. The accumulated evidence of this expanded sample strongly supports a tidal disruption origin for this class of nuclear transients.

  3. Discovery of a tidal disruption event candidate from the 2XMM catalog

    Directory of Open Access Journals (Sweden)

    Farrell S.A.

    2012-12-01

    Full Text Available Stars approaching a supermassive black hole (SMBH can be tidally disrupted and subsequently accreted, providing a unique way to find and study inactive SMBHs. We report on our discovery of a new tidal disruption event candidate, 2XMMi J184725.1-631724, with unprecedented ultrasoft X-ray spectra near the flare peak. It lies toward the center of an inactive galaxy at z = 0.0353. It was detected serendipitously in two XMM-Newton observations separated by 211 days, with the flux increasing by a factor of ∼9. The source was not detected in X-rays by ROSAT in 1992, indicating a long-term variability factor of >64; neither by Swift in 2011, implying a flux decay factor of >12 since the last XMM-Newton observation. The XMM-Newton X-ray spectra are dominated by a strong cool thermal disk (>80%, tens of eV with the luminosity appearing to follow the L ∝ T4 relation, often seen in the thermal state of the BH X-ray binaries. Both XMM-Newton observations show large variability on timescales of hours. This can be explained as due to fast variations in the mass accretion rate, maybe caused by the shocks during the tidal disruption of the star.

  4. An enhanced rate of tidal disruptions in the centrally overdense E+A galaxy NGC 3156

    OpenAIRE

    Stone, Nicholas C.; van Velzen, Sjoert

    2016-01-01

    Time domain optical surveys have discovered roughly a dozen candidate stellar tidal disruption flares in the last five years, and future surveys like the {\\it Large Synoptic Survey Telescope} will likely find hundreds to thousands more. These tidal disruption events (TDEs) present an interesting puzzle: a majority of the current TDE sample is hosted by rare post-starburst galaxies, and tens of percent are hosted in even rarer E+A galaxies, which make up $\\sim 0.1\\%$ of all galaxies in the loc...

  5. Super-Eddington Accretion in Tidal Disruption Events: the Impact of Realistic Fallback Rates on Accretion Rates

    Science.gov (United States)

    Wu, Samantha; Coughlin, Eric R.; Nixon, Chris

    2018-04-01

    After the tidal disruption of a star by a massive black hole, disrupted stellar debris can fall back to the hole at a rate significantly exceeding its Eddington limit. To understand how black hole mass affects the duration of super-Eddington accretion in tidal disruption events, we first run a suite of simulations of the disruption of a Solar-like star by a supermassive black hole of varying mass to directly measure the fallback rate onto the hole, and we compare these fallback rates to the analytic predictions of the "frozen-in" model. Then, adopting a Zero-Bernoulli Accretion flow as an analytic prescription for the accretion flow around the hole, we investigate how the accretion rate onto the black hole evolves with the more accurate fallback rates calculated from the simulations. We find that numerically-simulated fallback rates yield accretion rates onto the hole that can, depending on the black hole mass, be nearly an order of magnitude larger than those predicted by the frozen-in approximation. Our results place new limits on the maximum black hole mass for which super-Eddington accretion occurs in tidal disruption events.

  6. Physics and observations of tidal disruption events

    Science.gov (United States)

    Mangalam, Arun; Mageshwaran, Tamilan

    2018-04-01

    We describe a model of tidal disruption events (TDEs) with input physical parameters that include the black hole (BH) mass M•, the specific orbital energy E, the angular momentum J, the star mass M⊙ and radius R⊙. We calculate the rise time of the TDEs, the peak bolometric luminosity in terms of these physical parameters and a typical light curve of TDEs for various All Sky Survey (ASS) and Deep Sky Survey (DSS) missions. We then derive the expected detection rates and discuss the follow up of TDEs through observations in various spectral bands from X-rays to radio wavelengths.

  7. Tidal Disruption of Inclined or Eccentric Binaries by Massive Black Holes

    Science.gov (United States)

    Brown, Harriet; Kobayashi, Shiho; Rossi, Elena M.; Sari, Re'em

    2018-04-01

    Binary stars that are on close orbits around massive black holes (MBH) such as Sgr A* in the centre of the Milky Way are liable to undergo tidal disruption and eject a hypervelocity star. We study the interaction between such a MBH and circular binaries for general binary orientations and penetration depths (i.e. binaries penetrate into the tidal radius around the BH). We show that for very deep penetrators, almost all binaries are disrupted when the binary rotation axis is roughly oriented toward the BH or it is in the opposite direction. The surviving chance becomes significant when the angle between the binary rotation axis and the BH direction is between 0.15π and 0.85π. The surviving chance is as high as ˜20% when the binary rotation axis is perpendicular to the BH direction. However, for shallow penetrators, the highest disruption chance is found in such a perpendicular case, especially in the prograde case. This is because the dynamics of shallow penetrators is more sensitive to the relative orientation of the binary and orbital angular momenta. We provide numerical fits to the disruption probability and energy gain at the the BH encounter as a function of the penetration depth. The latter can be simply rescaled in terms of binary masses, their initial separation and the binary-to-BH mass ratio to evaluate the ejection velocity of a binary members in various systems. We also investigate the disruption of coplanar, eccentric binaries by a MBH. It is shown that for highly eccentric binaries retrograde orbits have a significantly increased disruption probability and ejection velocities compared to the circular binaries.

  8. Enhancing the rate of tidal disruptions of stars by a self-gravitating disc around a massive central black hole

    Directory of Open Access Journals (Sweden)

    Šubr L.

    2012-12-01

    Full Text Available We further study the idea that a self-gravitating accretion disc around a supermassive black hole can increase the rate of gradual orbital decay of stellar trajectories (and hence tidal disruption events by setting some stars on eccentric trajectories. Cooperation between the gravitational field of the disc and the dissipative environment can provide a mechanism explaining the origin of stars that become bound tightly to the central black hole. We examine this process as a function of the black hole mass and conclude that it is most efficient for intermediate central masses of the order of ∼ 104Mʘ. Members of the cluster experience the stage of orbital decay via collisions with an accretion disc and by other dissipative processes, such as tidal effects, dynamical friction and the emission of gravitational waves. Our attention is concentrated on the region of gravitational dominance of the central body. Mutual interaction between stars and the surrounding environment establishes a non-spherical shape and anisotropy of the nuclear cluster. In some cases, the stellar sub-system acquires ring-type geometry. Stars of the nuclear cluster undergo a tidal disruption event as they plunge below the tidal radius of the supermassive black hole.

  9. On the Mass and Luminosity Functions of Tidal Disruption Flares: Rate Suppression due to Black Hole Event Horizons

    Science.gov (United States)

    van Velzen, S.

    2018-01-01

    The tidal disruption of a star by a massive black hole is expected to yield a luminous flare of thermal emission. About two dozen of these stellar tidal disruption flares (TDFs) may have been detected in optical transient surveys. However, explaining the observed properties of these events within the tidal disruption paradigm is not yet possible. This theoretical ambiguity has led some authors to suggest that optical TDFs are due to a different process, such as a nuclear supernova or accretion disk instabilities. Here we present a test of a fundamental prediction of the tidal disruption event scenario: a suppression of the flare rate due to the direct capture of stars by the black hole. Using a recently compiled sample of candidate TDFs with black hole mass measurements, plus a careful treatment of selection effects in this flux-limited sample, we confirm that the dearth of observed TDFs from high-mass black holes is statistically significant. All the TDF impostor models we consider fail to explain the observed mass function; the only scenario that fits the data is a suppression of the rate due to direct captures. We find that this suppression can explain the low volumetric rate of the luminous TDF candidate ASASSN-15lh, thus supporting the hypothesis that this flare belongs to the TDF family. Our work is the first to present the optical TDF luminosity function. A steep power law is required to explain the observed rest-frame g-band luminosity, {dN}/{{dL}}g\\propto {L}g-2.5. The mean event rate of the flares in our sample is ≈ 1× {10}-4 galaxy‑1 yr‑1, consistent with the theoretically expected tidal disruption rate.

  10. Tidal Disruption of Milky Way Satellites with Shallow Dark Matter Density Profiles

    Directory of Open Access Journals (Sweden)

    Ewa L. Łokas

    2016-11-01

    Full Text Available Dwarf galaxies of the Local Group provide unique possibilities to test current theories of structure formation. Their number and properties have put the broadly accepted cold dark matter model into question, posing a few problems. These problems now seem close to resolution due to the improved treatment of baryonic processes in dwarf galaxy simulations which now predict cored rather than cuspy dark matter profiles in isolated dwarfs with important consequences for their subsequent environmental evolution. Using N-body simulations, we study the evolution of a disky dwarf galaxy with such a shallow dark matter profile on a typical orbit around the Milky Way. The dwarf survives the first pericenter passage but is disrupted after the second due to tidal forces from the host. We discuss the evolution of the dwarf’s properties in time prior to and at the time of disruption. We demonstrate that the dissolution occurs on a rather short timescale as the dwarf expands from a spheroid into a stream with non-zero mean radial velocity. We point out that the properties of the dwarf at the time of disruption may be difficult to distinguish from bound configurations, such as tidally induced bars, both in terms of surface density and line-of-sight kinematics.

  11. Gravitational waves from the collision of tidally disrupted stars with massive black holes

    International Nuclear Information System (INIS)

    East, William E.

    2014-01-01

    We use simulations of hydrodynamics coupled with full general relativity to investigate the gravitational waves produced by a star colliding with a massive black hole when the star's tidal disruption radius lies far outside of the black hole horizon. We consider both main-sequence and white-dwarf compaction stars, and nonspinning black holes, as well as those with near-extremal spin. We study the regime in between where the star can be accurately modeled by a point particle, and where tidal effects completely suppress the gravitational wave signal. We find that nonnegligible gravitational waves can be produced even when the star is strongly affected by tidal forces, as well as when it collides with large angular momentum. We discuss the implications that these results have for the potential observation of gravitational waves from these sources with future detectors.

  12. POSSIBLE ORIGIN OF THE G2 CLOUD FROM THE TIDAL DISRUPTION OF A KNOWN GIANT STAR BY SGR A*

    International Nuclear Information System (INIS)

    Guillochon, James; Loeb, Abraham; MacLeod, Morgan; Ramirez-Ruiz, Enrico

    2014-01-01

    The discovery of the gas cloud G2 on a near-radial orbit about Sgr A* has prompted much speculation on its origin. In this Letter, we propose that G2 formed out of the debris stream produced by the removal of mass from the outer envelope of a nearby giant star. We perform hydrodynamical simulations of the returning tidal debris stream with cooling and find that the stream condenses into clumps that fall periodically onto Sgr A*. We propose that one of these clumps is the observed G2 cloud, with the rest of the stream being detectable at lower Brγ emissivity along a trajectory that would trace from G2 to the star that was partially disrupted. By simultaneously fitting the orbits of S2, G2, and ∼2000 candidate stars, and by fixing the orbital plane of each candidate star to G2 (as is expected for a tidal disruption), we find that several stars have orbits that are compatible with the notion that one of them was tidally disrupted to produce G2. If one of these stars were indeed disrupted, it last encountered Sgr A* hundreds of years ago and has likely encountered Sgr A* repeatedly. However, while these stars are compatible with the giant disruption scenario given their measured positions and proper motions, their radial velocities are currently unknown. If one of these stars' radial velocity is measured to be compatible with a disruptive orbit, it would strongly suggest that its disruption produced G2

  13. STELLAR TIDAL DISRUPTION EVENTS BY DIRECT-COLLAPSE BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Kashiyama, Kazumi [Theoretical Astrophysics Center, Department of Astronomy, University of California, Berkeley, Berkeley, CA 94720 (United States); Inayoshi, Kohei, E-mail: kashiyama@berkeley.edu, E-mail: inayoshi@astro.columbia.edu [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

    2016-07-20

    We analyze the early growth stage of direct-collapse black holes (DCBHs) with ∼10{sup 5} M {sub ⊙}, which are formed by collapse of supermassive stars in atomic-cooling halos at z ≳ 10. A nuclear accretion disk around a newborn DCBH is gravitationally unstable and fragments into clumps with a few × 10 M {sub ⊙} at ∼0.01–0.1 pc from the center. Such clumps evolve into massive Population III stars with a few × 10–10{sup 2} M {sub ⊙} via successive gas accretion, and a nuclear star cluster is formed. Radiative and mechanical feedback from an inner slim disk and the star cluster will significantly reduce the gas accretion rate onto the DCBH within ∼10{sup 6} yr. Some of the nuclear stars can be scattered onto the loss cone orbits also within ≲10{sup 6} yr and tidally disrupted by the central DCBH. The jet luminosity powered by such tidal disruption events can be L {sub j} ≳ 10{sup 50} erg s{sup 1}. The prompt emission will be observed in X-ray bands with a peak duration of δt {sub obs} ∼ 10{sup 5–6}(1 + z ) s followed by a tail ∝ t {sub obs} {sup 5/3}, which can be detectable by Swift BAT and eROSITA even from z ∼ 20. Follow-up observations of the radio afterglows with, e.g., eVLA and the host halos with James Webb Space Telescope could probe the earliest active galactic nucleus feedback from DCBHs.

  14. Tidal disruption of stars by supermassive black holes: The X-ray view

    Directory of Open Access Journals (Sweden)

    Komossa S.

    2012-12-01

    Full Text Available The tidal disruption of stars by supermassive black holes produces luminous soft X-ray accretion flares in otherwise inactive galaxies. First events have been discovered in X-rays with the ROSAT observatory, and have more recently been detected with XMM-Newton, Chandra and Swift, and at other wavelengths. In X-rays, they typically appear as very soft, exceptionally luminous outbursts of radiation, which decline consistent with L ∝ t−5/3 on the timescale of months to years. They reach total amplitudes of decline up to factors 1000–6000 more than a decade after their initial high-states, and in low-state, their host galaxies are essentially X-ray inactive, optically inactive, and radio inactive. X-ray luminous tidal disruption events (TDEs represent a powerful new probe of accretion physics near the event horizon, and of relativistic effects. TDEs offer a new way of estimating black hole spin, and they are signposts of supermassive binary black holes and recoiling black holes. Once discovered in the thousands in upcoming sky surveys, their rates will probe stellar dynamics in distant galaxies, and they will uncover the – so far elusive – population of intermediate mass black holes in the universe, if they do exist. Further, the reprocessing of the flare into IR, optical and UV emission lines provides us with multiple new diagnostics of the properties of any gaseous material in the vicinity of the black hole (including the disrupted star itself and in the host galaxy. First candidate events of this kind have been reported recently.

  15. PS1-10jh CONTINUES TO FOLLOW THE FALLBACK ACCRETION RATE OF A TIDALLY DISRUPTED STAR

    Energy Technology Data Exchange (ETDEWEB)

    Gezari, S. [Department of Astronomy, University of Maryland, Stadium Drive, College Park, MD 20742-2421 (United States); Chornock, R. [Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University Athens, OH 45701 (United States); Lawrence, A. [Institute for Astronomy, University of Edinburgh Scottish Universities Physics Alliance, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Rest, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Jones, D. O. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Berger, E.; Challis, P. M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Narayan, G., E-mail: suvi@astro.umd.edu [NOAO, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2015-12-10

    We present late-time observations of the tidal disruption event candidate PS1-10jh. UV and optical imaging with Hubble Space Telescope/WFC3 localize the transient to be coincident with the host galaxy nucleus to an accuracy of 0.023 arcsec, corresponding to 66 pc. The UV flux in the F225W filter, measured 3.35 rest-frame years after the peak of the nuclear flare, is consistent with a decline that continues to follow a t{sup −5/3} power-law with no spectral evolution. Late epochs of optical spectroscopy obtained with MMT ∼ 2 and 4 years after the peak, enable a clean subtraction of the host galaxy from the early spectra, revealing broad helium emission lines on top of a hot continuum, and placing stringent upper limits on the presence of hydrogen line emission. We do not measure Balmer Hδ absorption in the host galaxy that is strong enough to be indicative of a rare, post-starburst “E+A” galaxy as reported by Arcavi et al. The light curve of PS1-10jh over a baseline of 3.5 years is best modeled by fallback accretion of a tidally disrupted star. Its strong broad helium emission relative to hydrogen (He iiλ4686/Hα > 5) could be indicative of either the hydrogen-poor chemical composition of the disrupted star, or certain conditions in the tidal debris of a solar-composition star in the presence of an optically thick, extended reprocessing envelope.

  16. SOFT X-RAY TEMPERATURE TIDAL DISRUPTION EVENTS FROM STARS ON DEEP PLUNGING ORBITS

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Lixin; McKinney, Jonathan C.; Miller, M. Coleman, E-mail: cosimo@umd.edu [Department of Astronomy and Joint Space-Science Institute, University of Maryland, College Park, MD 20742 (United States)

    2015-10-20

    One of the puzzles associated with tidal disruption event candidates (TDEs) is that there is a dichotomy between the color temperatures of a few × 10{sup 4} K for TDEs discovered with optical and UV telescopes and the color temperatures of a few × 10{sup 5}–10{sup 6} K for TDEs discovered with X-ray satellites. Here, we propose that high-temperature TDEs are produced when the tidal debris of a disrupted star self-intersects relatively close to the supermassive black hole, in contrast to the more distant self-intersection that leads to lower color temperatures. In particular, we note from simple ballistic considerations that greater apsidal precession in an orbit is the key to closer self-intersection. Thus, larger values of β, the ratio of the tidal radius to the pericenter distance of the initial orbit, are more likely to lead to higher temperatures of more compact disks that are super-Eddington and geometrically and optically thick. For a given star and β, apsidal precession also increases for larger black hole masses, but larger black hole masses imply a lower temperature at the Eddington luminosity. Thus, the expected dependence of the temperature on the mass of the black hole is non-monotonic. We find that in order to produce a soft X-ray temperature TDE, a deep plunging stellar orbit with β > 3 is needed and a black hole mass of ≲5 × 10{sup 6}M{sub ⊙} is favored. Although observations of TDEs are comparatively scarce and are likely dominated by selection effects, it is encouraging that both expectations are consistent with current data.

  17. Evolution of accretion disks in tidal disruption events

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Rong-Feng [Current address: Racah Institute of Physics, Hebrew University of Jerusalem, Israel. (Israel); Matzner, Christopher D., E-mail: rf.shen@mail.huji.ac.il, E-mail: matzner@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, M5S 3H4 (Canada)

    2014-04-01

    During a stellar tidal disruption event (TDE), an accretion disk forms as stellar debris returns to the disruption site and circularizes. Rather than being confined within the circularizing radius, the disk can spread to larger radii to conserve angular momentum. A spreading disk is a source of matter for re-accretion at rates that may exceed the later stellar fallback rate, although a disk wind can suppress its contribution to the central black hole accretion rate. A spreading disk is detectible through a break in the central accretion rate history or, at longer wavelengths, by its own emission. We model the evolution of TDE disk size and accretion rate by accounting for the time-dependent fallback rate, for the influence of wind losses in the early advective stage, and for the possibility of thermal instability for accretion rates intermediate between the advection-dominated and gas-pressure-dominated states. The model provides a dynamic basis for modeling TDE light curves. All or part of a young TDE disk will precess as a solid body because of the Lense-Thirring effect, and precession may manifest itself as a quasi-periodic modulation of the light curve. The precession period increases with time. Applying our results to the jetted TDE candidate Swift J1644+57, whose X-ray light curve shows numerous quasi-periodic dips, we argue that the data best fit a scenario in which a main-sequence star was fully disrupted by an intermediate mass black hole on an orbit significantly inclined from the black hole equator, with the apparent jet shutoff at t = 500 days corresponding to a disk transition from the advective state to the gas-pressure-dominated state.

  18. High-energy cosmic ray nuclei from tidal disruption events: Origin, survival, and implications

    Science.gov (United States)

    Zhang, B. Theodore; Murase, Kohta; Oikonomou, Foteini; Li, Zhuo

    2017-09-01

    Tidal disruption events (TDEs) by supermassive or intermediate mass black holes have been suggested as candidate sources of ultrahigh-energy cosmic rays (UHECRs) and high-energy neutrinos. Motivated by the recent measurements from the Pierre Auger Observatory, which indicates a metal-rich cosmic-ray composition at ultrahigh energies, we investigate the fate of UHECR nuclei loaded in TDE jets. First, we consider the production and survival of UHECR nuclei at internal shocks, external forward and reverse shocks, and nonrelativistic winds. Based on the observations of Swift J 1644 +57 , we show that the UHECRs can survive for external reverse and forward shocks, and disk winds. On the other hand, UHECR nuclei are significantly disintegrated in internal shocks, although they could survive for low-luminosity TDE jets. Assuming that UHECR nuclei can survive, we consider implications of different composition models of TDEs. We find that the tidal disruption of main sequence stars or carbon-oxygen white dwarfs does not successfully reproduce UHECR observations, namely the observed composition or spectrum. The observed mean depth of the shower maximum and its deviation could be explained by oxygen-neon-magnesium white dwarfs, although they may be too rare to be the sources of UHECRs.

  19. A tidal disruption event in a nearby galaxy hosting an intermediate mass black hole

    Energy Technology Data Exchange (ETDEWEB)

    Donato, D.; Troja, E. [CRESST and Astroparticle Physics Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States); Cenko, S. B.; Fox, O. [Astrophysics Science Division, NASA/GSFC, Mail Code 661, Greenbelt, MD 20771 (United States); Covino, S. [INAF, Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Italy); Pursimo, T. [Nordic Optical Telescope, Apartado 474, E-38700 Santa Cruz de La Palma (Spain); Cheung, C. C. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Kutyrev, A. [Observational Cosmology Laboratory, NASA/GSFC, 8800 Greenbelt Road, Greenbelt, MD 20771-2400 (United States); Campana, S.; Fugazza, D. [Joint Space Science Institute, University of Maryland, College Park, MD 20742 (United States); Landt, H. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Butler, N. R., E-mail: davide.donato-1@nasa.gov [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States)

    2014-02-01

    We report the serendipitous discovery of a bright point source flare in the Abell cluster A1795 with archival EUVE and Chandra observations. Assuming the EUVE emission is associated with the Chandra source, the X-ray 0.5-7 keV flux declined by a factor of ∼2300 over a time span of 6 yr, following a power-law decay with index ∼2.44 ± 0.40. The Chandra data alone vary by a factor of ∼20. The spectrum is well fit by a blackbody with a constant temperature of kT ∼ 0.09 keV (∼10{sup 6} K). The flare is spatially coincident with the nuclear region of a faint, inactive galaxy with a photometric redshift consistent at the 1σ level with the cluster (z = 0.062476). We argue that these properties are indicative of a tidal disruption of a star by a black hole (BH) with log (M {sub BH}/M {sub ☉}) ∼ 5.5 ± 0.5. If so, such a discovery indicates that tidal disruption flares may be used to probe BHs in the intermediate mass range, which are very difficult to study by other means.

  20. A tidal disruption event in a nearby galaxy hosting an intermediate mass black hole

    International Nuclear Information System (INIS)

    Donato, D.; Troja, E.; Cenko, S. B.; Fox, O.; Covino, S.; Pursimo, T.; Cheung, C. C.; Kutyrev, A.; Campana, S.; Fugazza, D.; Landt, H.; Butler, N. R.

    2014-01-01

    We report the serendipitous discovery of a bright point source flare in the Abell cluster A1795 with archival EUVE and Chandra observations. Assuming the EUVE emission is associated with the Chandra source, the X-ray 0.5-7 keV flux declined by a factor of ∼2300 over a time span of 6 yr, following a power-law decay with index ∼2.44 ± 0.40. The Chandra data alone vary by a factor of ∼20. The spectrum is well fit by a blackbody with a constant temperature of kT ∼ 0.09 keV (∼10 6 K). The flare is spatially coincident with the nuclear region of a faint, inactive galaxy with a photometric redshift consistent at the 1σ level with the cluster (z = 0.062476). We argue that these properties are indicative of a tidal disruption of a star by a black hole (BH) with log (M BH /M ☉ ) ∼ 5.5 ± 0.5. If so, such a discovery indicates that tidal disruption flares may be used to probe BHs in the intermediate mass range, which are very difficult to study by other means.

  1. 1I/‘Oumuamua as a Tidal Disruption Fragment from a Binary Star System

    Science.gov (United States)

    Ćuk, Matija

    2018-01-01

    1I/‘Oumuamua is the first known interstellar small body, probably being only about 100 m in size. Against expectations based on comets, ‘Oumuamua does not show any activity and has a very elongated figure, and it also exhibits undamped rotational tumbling. In contrast, ‘Oumuamua’s trajectory indicates that it was moving with the local stars, as expected from a low-velocity ejection from a relatively nearby system. Here, I assume that ‘Oumuamua is typical of 100 m interstellar objects and speculate on its origins. I find that giant planets are relatively inefficient at ejecting small bodies from inner solar systems of main-sequence stars, and that binary systems offer a much better opportunity for ejections of non-volatile bodies. I also conclude that ‘Oumuamua is not a member of a collisional population, which could explain its dramatic difference from small asteroids. I observe that 100 m small bodies are expected to carry little mass in realistic collisional populations and that occasional events, when whole planets are disrupted in catastrophic encounters, may dominate the interstellar population of 100 m fragments. Unlike the Sun or Jupiter, red dwarf stars are very dense and are capable of thoroughly tidally disrupting terrestrial planets. I conclude that ‘Oumuamua may have originated as a fragment from a planet that was tidally disrupted and then ejected by a dense member of a binary system, which could explain its peculiarities.

  2. A Tidal Disruption Event in a Nearby Galaxy Hosting an Intermediate Mass Black Hole

    Science.gov (United States)

    Donato, D; Cenko, S. B.; Covino, S.; Troja, E.; Pursimo, T.; Cheung, C. C.; Fox, O.; Kutyrev, A.; Campana, S.; Fugazza, D.; hide

    2014-01-01

    We report the serendipitous discovery of a bright point source flare in the Abell cluster A1795 with archival EUVE and Chandra observations. Assuming the EUVE emission is associated with the Chandra source, the X-ray 0.5-7 kiloelectronvolt flux declined by a factor of approximately 2300 over a time span of 6 years, following a power-law decay with index approximately equal to 2.44 plus or minus 0.40. The Chandra data alone vary by a factor of approximately 20. The spectrum is well fit by a blackbody with a constant temperature of kiloteslas approximately equal to 0.09 kiloelectronvolts (approximately equal to 10 (sup 6) Kelvin). The flare is spatially coincident with the nuclear region of a faint, inactive galaxy with a photometric redshift consistent at the 1 sigma level with the cluster (redshift = 0.062476).We argue that these properties are indicative of a tidal disruption of a star by a black hole (BH) with log(M (sub BH) / M (sub 1 solar mass)) approximately equal to 5.5 plus or minus 0.5. If so, such a discovery indicates that tidal disruption flares may be used to probe BHs in the intermediate mass range, which are very difficult to study by other means.

  3. Dating the Tidal Disruption of Globular Clusters with GAIA Data on Their Stellar Streams

    Science.gov (United States)

    Bose, Sownak; Ginsburg, Idan; Loeb, Abraham

    2018-05-01

    The Gaia mission promises to deliver precision astrometry at an unprecedented level, heralding a new era for discerning the kinematic and spatial coordinates of stars in our Galaxy. Here, we present a new technique for estimating the age of tidally disrupted globular cluster streams using the proper motions and parallaxes of tracer stars. We evolve the collisional dynamics of globular clusters within the evolving potential of a Milky Way-like halo extracted from a cosmological ΛCDM simulation and analyze the resultant streams as they would be observed by Gaia. The simulations sample a variety of globular cluster orbits, and account for stellar evolution and the gravitational influence of the disk of the Milky Way. We show that a characteristic timescale, obtained from the dispersion of the proper motions and parallaxes of stars within the stream, is a good indicator for the time elapsed since the stream has been freely expanding away due to the tidal disruption of the globular cluster. This timescale, in turn, places a lower limit on the age of the cluster. The age can be deduced from astrometry using a modest number of stars, with the error on this estimate depending on the proximity of the stream and the number of tracer stars used.

  4. TIDAL INTERACTION AS THE ORIGIN OF EARLY-TYPE DWARF GALAXIES IN GROUP ENVIRONMENTS

    International Nuclear Information System (INIS)

    Paudel, Sanjaya; Ree, Chang H.

    2014-01-01

    We present a sample of dwarf galaxies that suffer ongoing disruption by the tidal forces of nearby massive galaxies. By analyzing structural and stellar population properties using the archival imaging and spectroscopic data from the Sloan Digital Sky Survey (SDSS), we find that they are likely a ''smoking gun'' example of the formation through tidal stirring of early-type dwarf galaxies (dEs) in the galaxy group environment. The inner cores of these galaxies are fairly intact and the observed light profiles are well fit by the Sérsic functions while the tidally stretched stellar halos are prominent in the outer parts. They are all located within a sky-projected distance of 50 kpc from the centers of the host galaxies and no dwarf galaxies have relative line-of-sight velocities larger than 205 km s –1 to their hosts. We derive the Composite Stellar Population properties of these galaxies by fitting the SDSS optical spectra to a multiple-burst composite stellar population model. We find that these galaxies accumulate a significant fraction of stellar mass within the last 1 Gyr and contain a majority stellar population with an intermediate age of 2 to 4 Gyr. Based on this evidence, we argue that tidal stirring, particularly through the galaxy-galaxy interaction, might have an important role in the formation and evolution of dEs in the group environment where the influence of other gas stripping mechanism might be limited

  5. WIYN Open Cluster Study: Tidal Interactions in Solar type Binaries

    OpenAIRE

    Meibom, S.; Mathieu, R. D.

    2003-01-01

    We present an ongoing study on tidal interactions in late-type close binary stars. New results on tidal circularization are combined with existing data to test and constrain theoretical predictions of tidal circularization in the pre-main-sequence (PMS) phase and throughout the main-sequence phase of stellar evolution. Current data suggest that tidal circularization during the PMS phase sets the tidal cutoff period for binary populations younger than ~1 Gyr. Binary populations older than ~1 G...

  6. Long-term radio and X-ray evolution of the tidal disruption event ASASSN-14li

    Science.gov (United States)

    Bright, J. S.; Fender, R. P.; Motta, S. E.; Mooley, K.; Perrott, Y. C.; van Velzen, S.; Carey, S.; Hickish, J.; Razavi-Ghods, N.; Titterington, D.; Scott, P.; Grainge, K.; Scaife, A.; Cantwell, T.; Rumsey, C.

    2018-04-01

    We report on late time radio and X-ray observations of the tidal disruption event candidate ASASSN-14li, covering the first 1000 d of the decay phase. For the first ˜200 d the radio and X-ray emission fade in concert. This phase is better fitted by an exponential decay at X-ray wavelengths, while the radio emission is well described by either an exponential or the canonical t-5/3 decay assumed for tidal disruption events. The correlation between radio and X-ray emission during this period can be fitted as L_R∝ L_X^{1.9± 0.2}. After 400 d the radio emission at 15.5 GHz has reached a plateau level of 244 ± 8 μJy which it maintains for at least the next 600 d, while the X-ray emission continues to fade exponentially. This steady level of radio emission is likely due to relic radio lobes from the weak AGN-like activity implied by historical radio observations. We note that while most existing models are based upon the evolution of ejecta which are decoupled from the central black hole, the radio-X-ray correlation during the declining phase is also consistent with core-jet emission coupled to a radiatively efficient accretion flow.

  7. Atypical Thermonuclear Supernovae from Tidally Crushed White Dwarfs

    International Nuclear Information System (INIS)

    Rosswog, S.; Ramirez-Ruiz, E.; Hix, William Raphael

    2008-01-01

    Suggestive evidence has accumulated that intermediate mass black holes (IMBHs) exist in some globular clusters. Some stars will inevitably wander sufficiently close to the hole to suffer a tidal disruption. IMBHs can disrupt not only solar-type stars but also compact white dwarf stars. We investigate the fate of white dwarfs that approach the hole close enough to be disrupted and compressed to such an extent that explosive nuclear burning is triggered. Based on a precise modeling of the gas dynamics together with the nuclear reactions, it is argued that thermonuclear ignition is a natural outcome for white dwarfs of all masses passing well within the tidal radius. A good fraction of the star is accreted, yielding high luminosities that persist for up to a year. A peculiar, underluminous thermonuclear explosion accompanied by a soft X-ray transient signal would, if detected, be a compelling testimony for the presence of an IMBH

  8. A LUMINOUS, FAST RISING UV-TRANSIENT DISCOVERED BY ROTSE: A TIDAL DISRUPTION EVENT?

    International Nuclear Information System (INIS)

    Vinkó, J.; Wheeler, J. C.; Chatzopoulos, E.; Marion, G. H.; Yuan, F.; Akerlof, C.; Quimby, R. M.; Ramirez-Ruiz, E.; Guillochon, J.

    2015-01-01

    We present follow-up observations of an optical transient (OT) discovered by ROTSE on 2009 January 21. Photometric monitoring was carried out with ROTSE-IIIb in the optical and Swift in the UV up to +70 days after discovery. The light curve showed a fast rise time of ∼10 days followed by a steep decline over the next 60 days, which was much faster than that implied by 56 Ni— 56 Co radioactive decay. The Sloan Digital Sky Survey Data Release 10 database contains a faint, red object at the position of the OT, which appears slightly extended. This and other lines of evidence suggest that the OT is of extragalactic origin, and this faint object is likely the host galaxy. A sequence of optical spectra obtained with the 9.2 m Hobby-Eberly Telescope between +8 and +45 days after discovery revealed a hot, blue continuum with no visible spectral features. A few weak features that appeared after +30 days probably originated from the underlying host. Fitting synthetic templates to the observed spectrum of the host galaxy revealed a redshift of z = 0.19. At this redshift, the peak magnitude of the OT is close to –22.5, similar to the brightest super-luminous supernovae; however, the lack of identifiable spectral features makes the massive stellar death hypothesis less likely. A more plausible explanation appears to be the tidal disruption of a Sun-like star by the central supermassive black hole. We argue that this transient likely belongs to a class of super-Eddington tidal disruption events

  9. Optical/UV-to-X-Ray Echoes from the Tidal Disruption Flare ASASSN-14li

    Energy Technology Data Exchange (ETDEWEB)

    Pasham, Dheeraj R.; Sadowski, Aleksander [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Cenko, S. Bradley; Cannizzo, John K. [NASA’s Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Guillochon, James [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Stone, Nicholas C. [Columbia University, New York, NY 10027 (United States); Velzen, Sjoert van [The Johns Hopkins University, Baltimore, MD 21218 (United States)

    2017-03-10

    We carried out the first multi-wavelength (optical/UV and X-ray) photometric reverberation mapping of a tidal disruption flare (TDF) ASASSN-14li. We find that its X-ray variations are correlated with and lag the optical/UV fluctuations by 32 ± 4 days. Based on the direction and the magnitude of the X-ray time lag, we rule out X-ray reprocessing and direct emission from a standard circular thin disk as the dominant source of its optical/UV emission. The lag magnitude also rules out an AGN disk-driven instability as the origin of ASASSN-14li and thus strongly supports the tidal disruption picture for this event and similar objects. We suggest that the majority of the optical/UV emission likely originates from debris stream self-interactions. Perturbations at the self-interaction sites produce optical/UV variability and travel down to the black hole where they modulate the X-rays. The time lag between the optical/UV and the X-rays variations thus correspond to the time taken by these fluctuations to travel from the self-interaction site to close to the black hole. We further discuss these time lags within the context of the three variants of the self-interaction model. High-cadence monitoring observations of future TDFs will be sensitive enough to detect these echoes and would allow us to establish the origin of optical/UV emission in TDFs in general.

  10. Optical/UV-to-X-Ray Echoes from the Tidal Disruption Flare ASASSN-14li

    International Nuclear Information System (INIS)

    Pasham, Dheeraj R.; Sadowski, Aleksander; Cenko, S. Bradley; Cannizzo, John K.; Guillochon, James; Stone, Nicholas C.; Velzen, Sjoert van

    2017-01-01

    We carried out the first multi-wavelength (optical/UV and X-ray) photometric reverberation mapping of a tidal disruption flare (TDF) ASASSN-14li. We find that its X-ray variations are correlated with and lag the optical/UV fluctuations by 32 ± 4 days. Based on the direction and the magnitude of the X-ray time lag, we rule out X-ray reprocessing and direct emission from a standard circular thin disk as the dominant source of its optical/UV emission. The lag magnitude also rules out an AGN disk-driven instability as the origin of ASASSN-14li and thus strongly supports the tidal disruption picture for this event and similar objects. We suggest that the majority of the optical/UV emission likely originates from debris stream self-interactions. Perturbations at the self-interaction sites produce optical/UV variability and travel down to the black hole where they modulate the X-rays. The time lag between the optical/UV and the X-rays variations thus correspond to the time taken by these fluctuations to travel from the self-interaction site to close to the black hole. We further discuss these time lags within the context of the three variants of the self-interaction model. High-cadence monitoring observations of future TDFs will be sensitive enough to detect these echoes and would allow us to establish the origin of optical/UV emission in TDFs in general.

  11. The effects of host obscuration on searches for tidal disruption events

    Science.gov (United States)

    Roth, Nathaniel; Mushotzky, Richard; Gezari, Suvi; van Velzen, Sjoert

    2018-01-01

    Tidal disruptions of stars by super-massive black holes (TDEs) offer opportunities to learn about black hole demographics and stellar dynamics. However, matching the observed TDE rate to that predicted by theory has remained a challenge, as most surveys to-date have found fewer flares than expected. Some of this discrepancy may relate to nuclear obscuration in host galaxies. This includes the effects of dust at optical and ultraviolet wavelengths, and the effects of neutral gas at x-ray wavelengths. I will discuss procedures to correct the observed TDE rate within existing and upcoming surveys to the intrinsic per-galaxy rate by accounting for host obscuration. I will also discuss how reddening might affect TDE selection criteria, and I will make predictions for the population of infrared TDE light echoes.

  12. A Unified Model for Tidal Disruption Events

    Science.gov (United States)

    Dai, Lixin; McKinney, Jonathan C.; Roth, Nathaniel; Ramirez-Ruiz, Enrico; Miller, M. Coleman

    2018-06-01

    In the past few years wide-field optical and UV transient surveys and X-ray telescopes have allowed us to identify a few dozen candidate tidal disruption events (TDEs). While in theory the physical processes in TDEs are ubiquitous, a few distinct classes of TDEs have been observed. Some TDEs radiate mainly in NUV/optical, while others produce prominent X-rays. Moreover, relativistic jets have been observed in only a handful of TDEs. This diversity might be related to the details of the super-Eddington accretion and emission physics relevant to TDE disks. In this Letter, we utilize novel three-dimensional general relativistic radiation magnetohydrodynamics simulations to study the super-Eddington compact disk phase expected in TDEs. Consistent with previous studies, geometrically thick disks, wide-angle optically thick fast outflows, and relativistic jets are produced. The outflow density and velocity depend sensitively on the inclination angle, and hence so does the reprocessing of emission produced from the inner disk. We then use Monte Carlo radiative transfer to calculate the reprocessed spectra and find that that the observed ratio of optical to X-ray fluxes increases with increasing inclination angle. This naturally leads to a unified model for different classes of TDEs in which the spectral properties of the TDE depend mainly on the viewing angle of the observer with respect to the orientation of the disk.

  13. Multi-Wavelength Spectroscopy of Tidal Disruption Flares: A Legacy Sample for the LSST Era

    Science.gov (United States)

    Cenko, Stephen

    2017-08-01

    When a star passes within the sphere of disruption of a massive black hole, tidal forces will overcome self-gravity and unbind the star. While approximately half of the stellar debris is ejected at high velocities, the remaining material stays bound to the black hole and accretes, resulting in a luminous, long-lived transient known as a tidal disruption flare (TDF). In addition to serving as unique laboratories for accretion physics, TDFs offer the hope of measuring black hole masses in galaxies much too distant for resolved kinematic studies.In order to realize this potential, we must better understand the detailed processes by which the bound debris circularizes and forms an accretion disk. Spectroscopy is critical to this effort, as emission and absorption line diagnostics provide insight into the location and physical state (velocity, density, composition) of the emitting gas (in analogy with quasars). UV spectra are particularly critical, as most strong atomic features fall in this bandpass, and high-redshift TDF discoveries from LSST will sample rest-frame UV wavelengths.Here we propose to obtain a sequence of UV (HST) and optical (Gemini/GMOS) spectra for a sample of 5 TDFs discovered by the Zwicky Transient Facility, doubling the number of TDFs with UV spectra. Our observations will directly test models for the generation of the UV/optical emission (circularization vs reprocessing) by searching for outflows and measuring densities, temperatures, and composition as a function of time. This effort is critical to developing the framework by which we can infer black hole properties (e.g., mass) from LSST TDF discoveries.

  14. Tidal disruption events seen in the XMM-Newton slew survey

    Science.gov (United States)

    Saxton, Richard; Komossa, S.; Read, Andrew; Lira, Paulina; Alexander, Kate D.; Steele, Iain

    XMM-Newton performs a survey of the sky in the 0.2-12 keV X-ray band while slewing between observation targets. The sensitivity in the soft X-ray band is comparable with that of the ROSAT all-sky survey, allowing bright transients to be identified in near real-time by a comparison of the flux in both surveys. Several of the soft X-ray flares are coincident with galaxy nuclei and five of these have been interpreted as candidate tidal disruption events (TDE). The first three discovered had a soft X-ray spectrum, consistent with the classical model of TDE, where radiation is released during the accretion phase by thermal processes. The remaining two have an additional hard, power-law component, which in only one case was accompanied by radio emission. Overall the flares decay with the classical index of t -5/3 but vary greatly in the early phase.

  15. Formation of double galaxies by tidal capture

    International Nuclear Information System (INIS)

    Alladin, S.M.; Potdar, A.; Sastry, K.S.

    1975-01-01

    The conditions under which double galaxies may be formed by tidal capture are considered. Estimates for the increase in the internal energy of colliding galaxies due to tidal effects are used to determine the magnitudes Vsub(cap) and Vsub(dis) of the maximum relative velocities at infinite separation required for tidal capture and tidal disruption respectively. A double galaxy will be formed by tidal capture without tidal disruption of a component if Vsub(cap)>Vsub(i) and Vsub(cap)>Vsub(dis) where Vsub(i) is the initial relative speed of the two galaxies at infinite separation. If the two galaxies are of the same dimension, formulation of double galaxies by tidal capture is possible in a close collision either if the two galaxies do not differ much in mass and density distribution or if the more massive galaxy is less centrally concentrated than the other. If it is assumed as statistics suggest, that the mass of a galaxy is proportional to the square of its radius, it follows that the probability of the formation of double galaxies by tidal capture increases with the increase in mass of the galaxies and tidal distribution does not occur in a single collision for any distance of closest approach of the two galaxies. (Auth.)

  16. Mapping the Tidal Destruction of the Hercules Dwarf: A Wide-field DECam Imaging Search for RR Lyrae Stars

    Science.gov (United States)

    Garling, Christopher; Willman, Beth; Sand, David J.; Hargis, Jonathan; Crnojević, Denija; Bechtol, Keith; Carlin, Jeffrey L.; Strader, Jay; Zou, Hu; Zhou, Xu; Nie, Jundan; Zhang, Tianmeng; Zhou, Zhimin; Peng, Xiyan

    2018-01-01

    We investigate the hypothesized tidal disruption of the Hercules ultra-faint dwarf galaxy (UFD). Previous tidal disruption studies of the Hercules UFD have been hindered by the high degree of foreground contamination in the direction of the dwarf. We bypass this issue by using RR Lyrae stars, which are standard candles with a very low field-volume density at the distance of Hercules. We use wide-field imaging from the Dark Energy Camera on CTIO to identify candidate RR Lyrae stars, supplemented with observations taken in coordination with the Beijing–Arizona Sky Survey on the Bok Telescope. Combining color, magnitude, and light-curve information, we identify three new RR Lyrae stars associated with Hercules. All three of these new RR Lyrae stars lie outside its published tidal radius. When considered with the nine RR Lyrae stars already known within the tidal radius, these results suggest that a substantial fraction of Hercules’ stellar content has been stripped. With this degree of tidal disruption, Hercules is an interesting case between a visibly disrupted dwarf (such as the Sagittarius dwarf spheroidal galaxy) and one in dynamic equilibrium. The degree of disruption also shows that we must be more careful with the ways we determine object membership when estimating dwarf masses in the future. One of the three discovered RR Lyrae stars sits along the minor axis of Hercules, but over two tidal radii away. This type of debris is consistent with recent models that suggest Hercules’ orbit is aligned with its minor axis.

  17. Development of a model counter-rotating type horizontal-axis tidal turbine

    Science.gov (United States)

    Huang, B.; Yoshida, K.; Kanemoto, T.

    2016-05-01

    In the past decade, the tidal energies have caused worldwide concern as it can provide regular and predictable renewable energy resource for power generation. The majority of technologies for exploiting the tidal stream energy are based on the concept of the horizontal axis tidal turbine (HATT). A unique counter-rotating type HATT was proposed in the present work. The original blade profiles were designed according to the developed blade element momentum theory (BEMT). CFD simulations and experimental tests were adopted to the performance of the model counter-rotating type HATT. The experimental data provides an evidence of validation of the CFD model. Further optimization of the blade profiles was also carried out based on the CFD results.

  18. TURBOVELOCITY STARS: KICKS RESULTING FROM THE TIDAL DISRUPTION OF SOLITARY STARS

    International Nuclear Information System (INIS)

    Manukian, Haik; Guillochon, James; Ramirez-Ruiz, Enrico; O'Leary, Ryan M.

    2013-01-01

    The centers of most known galaxies host supermassive black holes (SMBHs). In orbit around these black holes are a centrally concentrated distribution of stars, both in single and in binary systems. Occasionally, these stars are perturbed onto orbits that bring them close to the SMBH. If the star is in a binary system, the three-body interaction with the SMBH can lead to large changes in orbital energy, depositing one of the two stars on a tightly-bound orbit, and its companion into a hyperbolic orbit that may escape the galaxy. In this Letter, we show that the disruption of solitary stars can also lead to large positive increases in orbital energy. The kick velocity depends on the amount of mass the star loses at pericenter, but not on the ratio of black hole to stellar mass, and are at most the star's own escape velocity. We find that these kicks are usually too small to result in the ejection of stars from the Milky Way, but can eject the stars from the black hole's sphere of influence, reducing their probability of being disrupted again. We estimate that ∼ 10 5 stars, ∼ 1% of all stars within 10 pc of the galactic center, are likely to have had mass removed by the central black hole through tidal interaction, and speculate that these 'turbovelocity' stars will at first be redder, but eventually bluer, and always brighter than their unharassed peers.

  19. Radio follow-up observations of stellar tidal disruption flares: Constraints on off-axis jets

    Directory of Open Access Journals (Sweden)

    Körding E.

    2012-12-01

    Full Text Available Observations of active galactic nuclei (AGN and X-ray binaries have shown that relativistic jets are ubiquitous when compact objects accrete. One could therefore anticipate the launch of a jet after a star is disrupted and accreted by a massive black hole. This birth of a relativistic jet may have been observed recently in two stellar tidal disruption flares (TDFs, which were discovered in gamma-rays by Swift. Yet no transient radio emission has been detected from the tens of TDF candidates that were discovered at optical to soft X-ray frequencies. Because the sample that was followed-up at radio frequencies is small, the non-detections can be explained by Doppler boosting, which reduces the jet flux for off-axis observers. Plus, the existing followup observation are mostly within ∼ 10 months of the discovery, so the non-detections can also be due to a delay of the radio emission with respect to the time of disruption. To test the conjecture that all TDFs launch jets, we obtained 5 GHz follow-up observations with the Jansky VLA of six known TDFs. To avoid missing delayed jet emission, our observations probe 1–8 years since the estimated time of disruption. None of the sources are detected, with very deep upper limits at the 10 micro Jansky level. These observations rule out the hypothesis that these TDFs launched jets similar to radio-loud quasars. We also constrain the possibility that the flares hosted a jet identical to Sw 1644+57.

  20. Searching for tidal disruption events at an unexplored wavelength

    Science.gov (United States)

    Soler, S.; Webb, N.; Saxton, R.

    2017-10-01

    When a star approaches too close to a black hole, the star can be torn apart by the gravitational forces and approximately half the matter falls towards the black hole, causing the luminosity to increase by several orders of magnitude. Such an event is known as a tidal disruption event (TDE). These events can help us locate black holes which would be otherwise too faint to be detected and help us understand the mass function of these objects. To date only a small sample of candidate TDEs have been detected (˜65), either in the optical or in soft X-rays. However, four TDEs have been observed with hard X-ray spectra. In order to determine if these hard TDEs are the result of a different mechanism to those detected at lower energy, we search for similar events in the 3XMM catalogue. Using spectral and timing characteristics determined from the hard TDEs and cross-correlating 3XMM with other catalogues, we have developed a methodology with which to identify new hard TDEs. In this poster we describe the characteristics used to search for previously undiscovered hard TDEs and present the results of this search and the resulting constraints on the central mechanism in TDEs.

  1. The Post-starburst Evolution of Tidal Disruption Event Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    French, K. Decker; Zabludoff, Ann [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Arcavi, Iair [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States)

    2017-02-01

    We constrain the recent star formation histories of the host galaxies of eight optical/UV-detected tidal disruption events (TDEs). Six hosts had quick starbursts of <200 Myr duration that ended 10–1000 Myr ago, indicating that TDEs arise at different times in their hosts’ post-starburst evolution. If the disrupted star formed in the burst or before, the post-burst age constrains its mass, generally excluding O, most B, and highly massive A stars. If the starburst arose from a galaxy merger, the time since the starburst began limits the coalescence timescale and thus the merger mass ratio to more equal than 12:1 in most hosts. This uncommon ratio, if also that of the central supermassive black hole (SMBH) binary, disfavors the scenario in which the TDE rate is boosted by the binary but is insensitive to its mass ratio. The stellar mass fraction created in the burst is 0.5%–10% for most hosts, not enough to explain the observed 30–200× boost in TDE rates, suggesting that the host’s core stellar concentration is more important. TDE hosts have stellar masses 10{sup 9.4}–10{sup 10.3} M {sub ☉}, consistent with the Sloan Digital Sky Survey volume-corrected, quiescent Balmer-strong comparison sample and implying SMBH masses of 10{sup 5.5}–10{sup 7.5} M {sub ☉}. Subtracting the host absorption line spectrum, we uncover emission lines; at least five hosts have ionization sources inconsistent with star formation that instead may be related to circumnuclear gas, merger shocks, or post-AGB stars.

  2. FORMATION OF CENTAURS’ RINGS THROUGH THEIR PARTIAL TIDAL DISRUPTION DURING PLANETARY ENCOUNTERS

    Energy Technology Data Exchange (ETDEWEB)

    Hyodo, Ryuki; Charnoz, Sébastien [Institut de Physique du Globe, F-75005 Paris, France (France); Genda, Hidenori [Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Ohtsuki, Keiji [Department of Planetology, Kobe University, Kobe 657-8501 (Japan)

    2016-09-01

    Centaurs are minor planets orbiting between Jupiter and Neptune that have or had crossing orbits with one or more giant planets. Recent observations and reinterpretation of previous observations have revealed the existence of ring systems around 10199 Chariklo and 2060 Chiron. However, the origin of the ring systems around such a minor planet is still an open question. Here, we propose that the tidal disruption of a differentiated object that experiences a close encounter with a giant planet could naturally form diverse ring–satellite systems around the Centaurs. During the close encounter, the icy mantle of the passing object is preferentially ripped off by the planet's tidal force and the debris is distributed mostly within the Roche limit of the largest remnant body. Assuming the existence of a 20−50 wt% silicate core below the icy mantle, a disk of particles is formed when the objects pass within 0.4–0.8 of the planet's Roche limit with the relative velocity at infinity 3−6 km s{sup −1} and 8 hr initial spin period of the body. The resultant ring mass is 0.1%–10% of the central object's mass. Such particle disks are expected to spread radially, and materials spreading beyond the Roche limit would accrete into satellites. Our numerical results suggest that ring formation would be a natural outcome of such extreme close encounters, and Centaurs can naturally have such ring systems because they cross the orbits of the giant planets.

  3. FORMATION OF CENTAURS’ RINGS THROUGH THEIR PARTIAL TIDAL DISRUPTION DURING PLANETARY ENCOUNTERS

    International Nuclear Information System (INIS)

    Hyodo, Ryuki; Charnoz, Sébastien; Genda, Hidenori; Ohtsuki, Keiji

    2016-01-01

    Centaurs are minor planets orbiting between Jupiter and Neptune that have or had crossing orbits with one or more giant planets. Recent observations and reinterpretation of previous observations have revealed the existence of ring systems around 10199 Chariklo and 2060 Chiron. However, the origin of the ring systems around such a minor planet is still an open question. Here, we propose that the tidal disruption of a differentiated object that experiences a close encounter with a giant planet could naturally form diverse ring–satellite systems around the Centaurs. During the close encounter, the icy mantle of the passing object is preferentially ripped off by the planet's tidal force and the debris is distributed mostly within the Roche limit of the largest remnant body. Assuming the existence of a 20−50 wt% silicate core below the icy mantle, a disk of particles is formed when the objects pass within 0.4–0.8 of the planet's Roche limit with the relative velocity at infinity 3−6 km s"−"1 and 8 hr initial spin period of the body. The resultant ring mass is 0.1%–10% of the central object's mass. Such particle disks are expected to spread radially, and materials spreading beyond the Roche limit would accrete into satellites. Our numerical results suggest that ring formation would be a natural outcome of such extreme close encounters, and Centaurs can naturally have such ring systems because they cross the orbits of the giant planets.

  4. Sgr A* flares: tidal disruption of asteroids and planets?

    NARCIS (Netherlands)

    Zubovas, K.; Nayakshin, S.; Markoff, S.

    2012-01-01

    It is theoretically expected that a supermassive black hole (SMBH) in the centre of a typical nearby galaxy disrupts a solar-type star every ∼105 yr, resulting in a bright flare lasting for months. Sgr A*, the resident SMBH of the Milky Way, produces (by comparison) tiny flares that last only hours

  5. The secular tidal disruption of stars by low-mass Super Massive Black Holes secondaries in galactic nuclei

    Science.gov (United States)

    Fragione, Giacomo; Leigh, Nathan

    2018-06-01

    Stars passing too close to a super massive black hole (SMBH) can produce tidal disruption events (TDEs). Since the resulting stellar debris can produce an electromagnetic flare, TDEs are believed to probe the presence of single SMBHs in galactic nuclei, which otherwise remain dark. In this paper, we show how stars orbiting an IMBH secondary are perturbed by an SMBH primary. We find that the evolution of the stellar orbits are severely affected by the primary SMBH due to secular effects and stars orbiting with high inclinations with respect to the SMBH-IMBH orbital plane end their lives as TDEs due to Kozai-Lidov oscillations, hence illuminating the secondary SMBH/IMBH. Above a critical SMBH mass of ≈1.15 × 108 M⊙, no TDE can occur for typical stars in an old stellar population since the Schwarzschild radius exceeds the tidal disruption radius. Consequently, any TDEs due to such massive SMBHs will remain dark. It follows that no TDEs should be observed in galaxies more massive than ≈4.15 × 1010 M⊙, unless a lower-mass secondary SMBH or IMBH is also present. The secular mechanism for producing TDEs considered here therefore offers a useful probe of SMBH-SMBH/IMBH binarity in the most massive galaxies. We further show that the TDE rate can be ≈10-4 - 10-3 yr-1, and that most TDEs occur on ≈0.5 Myr. Finally, we show that stars may be ejected with velocities up to thousands of km s-1, which could contribute to the observed population of Galactic hypervelocity stars.

  6. Counter rotating type hydroelectric unit suitable for tidal power station

    International Nuclear Information System (INIS)

    Kanemoto, T; Suzuki, T

    2010-01-01

    The counter rotating type hydroelectric unit, which is composed of the axial flow type tandem runners and the peculiar generator with double rotational armatures,was proposed to utilize effectively the tidal power. In the unit, the front and the rear runners counter drive the inner and the outer armatures of the generator, respectively. Besides, the flow direction at the rear runner outlet must coincide with the flow direction at the front runner inlet, because the angular momentum through the rear runner must coincides with that through the front runner. That is, the flow runs in the axial direction at the rear runner outlet while the axial inflow at the front runner inlet. Such operations are suitable for working at the seashore with rising and falling tidal flows, and the unit may be able to take place of the traditional bulb type turbines. The tandem runners were operated at the on-cam conditions, in keeping the induced frequency constant. The output and the hydraulic efficiency are affected by the adjustment of the front and the blade setting angles. The both optimum angles giving the maximum output and/or efficiency were presented at the various discharges/heads. To promote more the tidal power generation by this type unit, the runners were also modified so as to be suitable for both rising and falling flows. The hydraulic performances are acceptable while the output is determined mainly by the trailing edge profiles of the runner blades.

  7. Facies architecture of heterolithic tidal deposits : The Holocene Holland Tidal Basin

    NARCIS (Netherlands)

    Donselaar, M.E.; Geel, C.R.

    2007-01-01

    The size, shape and spatial position of lithofacies types (or facies architecture) in a tidal estuarine basin are complex and therefore difficult to model. The tidal currents in the basin concentrate sand-sized sediment in a branching pattern of tidal channels and fringing tidal flats. Away from the

  8. Morphological effect of a scallop shell on a flapping-type tidal stream generator

    International Nuclear Information System (INIS)

    Le, Tuyen Quang; Ko, Jin Hwan; Byun, Doyoung

    2013-01-01

    Inspired by nature, flapping-type tidal stream generators have been introduced in recent years. The improvement in their power generation ability is known to be a critical factor in the success of these generators. So far, corrugation and camber observed in flying insects and swimming animals are known to enhance the performance of a flapping-type propulsive system. In this study, we explore the effect of corrugation and camber in a system that mimics a scallop shell in terms of its ability to extract flow energy through a two-dimensional Navier–Stokes simulation. The simulations show that the size and the activity of the leading edge vortex are strongly affected by the morphological factors of the mimicked foils, the effects of which are then advantageous in terms of the power efficiency of the flapping-type tidal stream generator. Eventually, an optimal mimicked foil, as suggested based on the morphological effects, would be a good alternative type of foil with a typical section with regard to the hydrodynamic performance and structural properties of tidal stream generators. (paper)

  9. High-energy Neutrino Flares from X-Ray Bright and Dark Tidal Disruption Events

    Energy Technology Data Exchange (ETDEWEB)

    Senno, Nicholas; Murase, Kohta; Mészáros, Peter [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2017-03-20

    X-ray and γ-ray observations by the Swift satellite revealed that a fraction of tidal disruption events (TDEs) have relativistic jets. Jetted TDEs have been considered to be potential sources of very-high-energy cosmic-rays and neutrinos. In this work, using semi-analytical methods, we calculate neutrino spectra of X-ray bright TDEs with powerful jets and dark TDEs with possible choked jets, respectively. We estimate their neutrino fluxes and find that non-detection would give us an upper limit on the baryon loading of the jet luminosity contained in cosmic-rays ξ {sub cr} ≲ 20–50 for Sw J1644+57. We show that X-ray bright TDEs make a sub-dominant (≲5%–10%) contribution to IceCube’s diffuse neutrino flux, and study possible contributions of X-ray dark TDEs given that particles are accelerated in choked jets or disk winds. We discuss future prospects for multi-messenger searches of the brightest TDEs.

  10. BOOSTED TIDAL DISRUPTION BY MASSIVE BLACK HOLE BINARIES DURING GALAXY MERGERS FROM THE VIEW OF N -BODY SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo; Berczik, Peter; Spurzem, Rainer [National Astronomical Observatories and Key Laboratory of Computational Astrophysics, Chinese Academy of Sciences, 20A Datun Rd., Chaoyang District, Beijing 100012 (China); Liu, F. K., E-mail: lishuo@nao.cas.cn [Department of Astronomy, School of Physics, Peking University, Yiheyuan Lu 5, Haidian Qu, Beijing 100871 (China)

    2017-01-10

    Supermassive black hole binaries (SMBHBs) are productions of the hierarchical galaxy formation model. There are many close connections between a central SMBH and its host galaxy because the former plays very important roles on galaxy formation and evolution. For this reason, the evolution of SMBHBs in merging galaxies is a fundamental challenge. Since there are many discussions about SMBHB evolution in a gas-rich environment, we focus on the quiescent galaxy, using tidal disruption (TD) as a diagnostic tool. Our study is based on a series of numerical, large particle number, direct N -body simulations for dry major mergers. According to the simulation results, the evolution can be divided into three phases. In phase I, the TD rate for two well separated SMBHs in a merging system is similar to that for a single SMBH in an isolated galaxy. After two SMBHs approach close enough to form a bound binary in phase II, the disruption rate can be enhanced by ∼2 orders of magnitude within a short time. This “boosted” disruption stage finishes after the SMBHB evolves to a compact binary system in phase III, corresponding to a reduction in disruption rate back to a level of a few times higher than in phase I. We also discuss how to correctly extrapolate our N -body simulation results to reality, and the implications of our results to observations.

  11. Tides and tidal currents

    NARCIS (Netherlands)

    Roos, A.

    1997-01-01

    Basic phenomena, origin and generation of tides, analysis and prediction of tides, basic equation and types of long waves in one dimension, tidal propagation in one dimension, tidal propagation in two directions, analytical tidal computation, numerical tidal computation.

  12. Disruption of a red giant star by a supermassive black hole and the case of PS1-10jh

    International Nuclear Information System (INIS)

    Bogdanović, Tamara; Cheng, Roseanne M.; Amaro-Seoane, Pau

    2014-01-01

    The development of a new generation of theoretical models for tidal disruptions is timely, as increasingly diverse events are being captured in surveys of the transient sky. Recently, Gezari et al. reported a discovery of a new class of tidal disruption events: the disruption of a helium-rich stellar core, thought to be a remnant of a red giant (RG) star. Motivated by this discovery and in anticipation of others, we consider tidal interaction of an RG star with a supermassive black hole (SMBH) which leads to the stripping of the stellar envelope and subsequent inspiral of the compact core toward the black hole. Once the stellar envelope is removed the inspiral of the core is driven by tidal heating as well as the emission of gravitational radiation until the core either falls into the SMBH or is tidally disrupted. In the case of the tidal disruption candidate PS1-10jh, we find that there is a set of orbital solutions at high eccentricities in which the tidally stripped hydrogen envelope is accreted by the SMBH before the helium core is disrupted. This places the RG core in a portion of parameter space where strong tidal heating can lift the degeneracy of the compact remnant and disrupt it before it reaches the tidal radius. We consider how this sequence of events explains the puzzling absence of the hydrogen emission lines from the spectrum of PS1-10jh and gives rise to its other observational features.

  13. Disruption of a red giant star by a supermassive black hole and the case of PS1-10jh

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanović, Tamara; Cheng, Roseanne M. [Center for Relativistic Astrophysics, School of Physics, Georgia Tech, Atlanta, GA 30332 (United States); Amaro-Seoane, Pau, E-mail: tamarab@gatech.edu, E-mail: rcheng@gatech.edu, E-mail: Pau.Amaro-Seoane@aei.mpg.de [Max Planck Institut für Gravitationsphysik (Albert-Einstein-Institut), D-14476 Potsdam (Germany)

    2014-06-20

    The development of a new generation of theoretical models for tidal disruptions is timely, as increasingly diverse events are being captured in surveys of the transient sky. Recently, Gezari et al. reported a discovery of a new class of tidal disruption events: the disruption of a helium-rich stellar core, thought to be a remnant of a red giant (RG) star. Motivated by this discovery and in anticipation of others, we consider tidal interaction of an RG star with a supermassive black hole (SMBH) which leads to the stripping of the stellar envelope and subsequent inspiral of the compact core toward the black hole. Once the stellar envelope is removed the inspiral of the core is driven by tidal heating as well as the emission of gravitational radiation until the core either falls into the SMBH or is tidally disrupted. In the case of the tidal disruption candidate PS1-10jh, we find that there is a set of orbital solutions at high eccentricities in which the tidally stripped hydrogen envelope is accreted by the SMBH before the helium core is disrupted. This places the RG core in a portion of parameter space where strong tidal heating can lift the degeneracy of the compact remnant and disrupt it before it reaches the tidal radius. We consider how this sequence of events explains the puzzling absence of the hydrogen emission lines from the spectrum of PS1-10jh and gives rise to its other observational features.

  14. New Physical Insights about Tidal Disruption Events from a Comprehensive Observational Inventory at X-Ray Wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Auchettl, Katie [Center for Cosmology and Astro-Particle Physics, The Ohio State University, 191 West Woodruff Avenue, Columbus, OH 43210 (United States); Guillochon, James [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Ramirez-Ruiz, Enrico [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2017-04-01

    We perform a comprehensive study of the X-ray emission from 70 transient sources that have been classified as tidal disruption events (TDEs) in the literature. We explore the properties of these candidates, using nearly three decades of X-ray observations to quantify their properties and characteristics. We find that the emission from X-ray TDEs increase by two to three orders of magnitude, compared to pre-flare constraints. These emissions evolve significantly with time, and decay with power-law indices that are typically shallower than the canonical t {sup −5/3} decay law, implying that X-ray TDEs are viscously delayed. These events exhibit enhanced (relative to galactic) column densities and are quite soft in nature, with no strong correlation between the amount of detected soft and hard emission. At their peak, jetted events have an X-ray to optical ratio ≫1, whereas non-jetted events have a ratio ∼1, which suggests that these events undergo reprocessing at different rates. X-ray TDEs have long T {sub 90} values, consistent with what would be expected from a viscously driven accretion disk formed by the disruption of a main-sequence star by a black hole with a mass <10{sup 7} M {sub ⊙}. The isotropic luminosities of X-ray TDEs are bimodal, such that jetted and non-jetted events are separated by a “reprocessing valley” that we suggest is naturally populated by optical/UV TDEs that most likely produce X-rays, but this emission is “veiled” from observations due to reprocessing. Our results suggest that non-jetted X-ray TDEs likely originate from partial disruptions and/or disruptions of low-mass stars.

  15. Tidal streams from axion miniclusters and direct axion searches

    CERN Document Server

    Tinyakov, Peter; Zioutas, Konstantin

    2016-01-19

    In some axion dark matter models a dominant fraction of axions resides in dense small-scale substructures, axion miniclusters. A fraction of these substructures is disrupted and forms tidal streams where the axion density may still be an order of magnitude larger than the average. We discuss implications of these streams for the direct axion searches. We estimate the fraction of disrupted miniclusters and the parameters of the resulting streams, and find that stream-crossing events would occur at a rate of about $1/(20 {\\rm yr})$ for 2-3 days, during which the signal in axion detectors would be amplified by a factor $\\sim 10$. These estimates suggest that the effect of the tidal disruption of axion miniclusters may be important for direct axion searches and deserves a more thorough study.

  16. Tidal tails test the equivalence principle in the dark-matter sector

    International Nuclear Information System (INIS)

    Kesden, Michael; Kamionkowski, Marc

    2006-01-01

    Satellite galaxies currently undergoing tidal disruption offer a unique opportunity to constrain an effective violation of the equivalence principle in the dark sector. While dark matter in the standard scenario interacts solely through gravity on large scales, a new long-range force between dark-matter particles may naturally arise in theories in which the dark matter couples to a light scalar field. An inverse-square-law force of this kind would manifest itself as a violation of the equivalence principle in the dynamics of dark matter compared to baryons in the form of gas or stars. In a previous paper, we showed that an attractive force would displace stars outwards from the bottom of the satellite's gravitational potential well, leading to a higher fraction of stars being disrupted from the tidal bulge further from the Galactic center. Since stars disrupted from the far (near) side of the satellite go on to form the trailing (leading) tidal stream, an attractive dark-matter force will produce a relative enhancement of the trailing stream compared to the leading stream. This distinctive signature of a dark-matter force might be detected through detailed observations of the tidal tails of a disrupting satellite, such as those recently performed by the Two-Micron All-Sky Survey (2MASS) and Sloan Digital Sky Survey (SDSS) on the Sagittarius (Sgr) dwarf galaxy. Here we show that this signature is robust to changes in our models for both the satellite and Milky Way, suggesting that we might hope to search for a dark-matter force in the tidal features of other recently discovered satellite galaxies in addition to the Sgr dwarf

  17. Spectral features of tidal disruption candidates and alternative origins for such transient flares

    Science.gov (United States)

    Saxton, Curtis J.; Perets, Hagai B.; Baskin, Alexei

    2018-03-01

    UV and optically selected candidates for stellar tidal disruption events (TDEs) often exhibit broad spectral features (He II emission, H α emission, or absorption lines) on a blackbody-like continuum (104 K≲ T≲ 105 K). The lines presumably emit from TDE debris or circumnuclear clouds photoionized by the flare. Line velocities however are much lower than expected from a stellar disruption by supermassive black hole (SMBH), and are somewhat faster than expected for the broad line region (BLR) clouds of a persistently active galactic nucleus (AGN). The distinctive spectral states are not strongly related to observed luminosity and velocity, nor to SMBH mass estimates. We use exhaustive photoionization modelling to map the domain of fluxes and cloud properties that yield (e.g.) an He-overbright state where a large He II(4686 Å)/H α line ratio creates an illusion of helium enrichment. Although observed line ratios occur in a plausible minority of cases, AGN-like illumination cannot reproduce the observed equivalent widths. We therefore propose to explain these properties by a light-echo photoionization model: the initial flash of a hot blackbody (detonation) excites BLR clouds, which are then seen superimposed on continuum from a later, expanded, cooled stage of the luminous source. The implied cloud mass is substellar, which may be inconsistent with a TDE. Given these and other inconsistencies with TDE models (e.g. host-galaxies distribution) we suggest to also consider alternative origins for these nuclear flares, which we briefly discuss (e.g. nuclear supernovae and starved/subluminous AGNs).

  18. Swift J2058.4+0516: Discovery of a Possible Second Relativistic Tidal Disruption Flare

    Science.gov (United States)

    Cenko, S. Bradely; Krimm, Hans A.; Horesh, Assaf; Rau, Arne; Frail, Dale A.; Kennea, Jamie A.; Levan, Andrew J.; Holland, Stephen T.; Butler, Nathaniel R.; Quimby, Robert M.; hide

    2011-01-01

    We report the discovery by the Swift hard X-ray monitor of the transient source Swift J2058.4+0516 (Sw J2058+05). Our multi-wavelength follow-up campaign uncovered a long-lived (duration approximately greater than months), luminous X-ray (L(sub x.iso) approximates 3 X 10(exp47) erg/s) and radio (vL(sub v.iso) approximates 10(exp 42) erg/s) counterpart. The associated optical emission, however, from which we measure a redshift of 1.1853, is relatively faint, and this is not due to a large amount of dust extinction in the host galaxy. Based on numerous similarities with the recently discovered GRB 110328A / Swift 1164449.3+573451 (Sw 11644+57), we suggest that Sw J2058+05 may be the second member of a new class of relativistic outbursts resulting from the tidal disruption of a star by a supermassive black hole. If so, the relative rarity of these sources implies that either these outflows are extremely narrowly collimated (theta disruptions generate relativistic ejecta. Analogous to the case of long duration gamma-ray bursts and core-collapse supernovae, we speculate that the spin of the black hole may be a necessary condition to generate the relativistic component. Alternatively, if powered by gas accretion (i.e., an active galactic nucleus), this would imply that some galaxies can transition from apparent quiescence to a radiatively efficient state of accretion on quite short time scales.

  19. NGC 4438: Ram pressure sweeping of a tidally disrupted galaxy

    International Nuclear Information System (INIS)

    Hibbard, J.E.; Vangorkom, J.H.

    1990-01-01

    NGC 4438 is the highly HI deficient peculiar spiral in the center of the Virgo cluster. Observations are given of the neutral hydrogen emission obtained with the Very Large Array (VLA) in the D-array configuration. These observations map out the total HI as determined from single dish measurements, and show the hydrogen to be confined to a region about one third the size of the optical disk and displaced to the side of the galaxy opposite M87. The hydrogen content of the galaxy is over an order of magnitude less than that expected for a galaxy of its type. The data suggest that the HI deficiency is a result of ram pressure stripping of the gas in the outer regions of the galaxy by the hot intracluster medium after being tidally perturbed

  20. EARLY-TYPE GALAXIES WITH TIDAL DEBRIS AND THEIR SCALING RELATIONS IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S4G)

    International Nuclear Information System (INIS)

    Kim, Taehyun; Sheth, Kartik; Muñoz-Mateos, Juan-Carlos; Hinz, Joannah L.; Zaritsky, Dennis; Lee, Myung Gyoon; Gadotti, Dimitri A.; Knapen, Johan H.; Schinnerer, Eva; Ho, Luis C.; Madore, Barry F.; Laurikainen, Eija; Salo, Heikki; Athanassoula, E.; Bosma, Albert; De Swardt, Bonita; Comerón, Sébastien; Regan, Michael W.; Menéndez-Delmestre, Karín; De Paz, Armando Gil

    2012-01-01

    Tidal debris around galaxies can yield important clues on their evolution. We have identified tidal debris in 11 early-type galaxies (T ≤ 0) from a sample of 65 early types drawn from the Spitzer Survey of Stellar Structure in Galaxies (S 4 G). The tidal debris includes features such as shells, ripples, and tidal tails. A variety of techniques, including two-dimensional decomposition of galactic structures, were used to quantify the residual tidal features. The tidal debris contributes ∼3%-10% to the total 3.6 μm luminosity of the host galaxy. Structural parameters of the galaxies were estimated using two-dimensional profile fitting. We investigate the locations of galaxies with tidal debris in the fundamental plane and Kormendy relation. We find that galaxies with tidal debris lie within the scatter of early-type galaxies without tidal features. Assuming that the tidal debris is indicative of recent gravitational interaction or merger, this suggests that these galaxies have either undergone minor merging events so that the overall structural properties of the galaxies are not significantly altered, or they have undergone a major merging events but already have experienced sufficient relaxation and phase mixing so that their structural properties become similar to those of the non-interacting early-type galaxies.

  1. A 200-Second Quasi-Periodicity After the Tidal Disruption of a Star by a Dormant Black Hole

    Science.gov (United States)

    Reis, R. C.; Miller, J. M.; Reynolds, M. T.; Gueltkinm K.; Maitra, D.; King, A. L.; Strohmayer, T.

    2012-01-01

    Supermassive black holes are known to exist at the center of most galaxies with sufficient stellar mass, In the local Universe, it is possible to infer their properties from the surrounding stars or gas. However, at high redshifts we require active, continuous accretion to infer the presence of the SMBHs, often coming in the form of long term accretion in active galactic nuclei. SMBHs can also capture and tidally disrupt stars orbiting nearby, resulting in bright flares from otherwise quiescent black holes. Here, we report on a approx.200-s X-ray quasi-periodicity around a previously dormant SMBH located in the center of a galaxy at redshift z = 0.3534. This result may open the possibility of probing general relativity beyond our local Universe.

  2. A NEW CLASS OF GAMMA-RAY BURSTS FROM STELLAR DISRUPTIONS BY INTERMEDIATE-MASS BLACK HOLES

    International Nuclear Information System (INIS)

    Gao, H.; Lu, Y.; Zhang, S. N.

    2010-01-01

    It has been argued that the long gamma-ray burst (GRB) of GRB 060614 without an associated supernova (SN) has challenged the current classification and fuel model for long GRBs, and thus a tidal disruption model has been proposed to account for such an event. Since it is difficult to detect SNe for long GRBs at high redshift, the absence of an SN association cannot be regarded as the solid criterion for a new classification of long GRBs similar to GRB 060614, called GRB 060614-type bursts. Fortunately, we now know that there is an obvious periodic substructure observed in the prompt light curve of GRB 060614. We thus use such periodic substructure as a potential criterion to categorize some long GRBs into a new class of bursts, which might have been fueled by an intermediate-mass black hole (IMBH) gulping a star, rather than a massive star collapsing to form a black hole. Therefore, the second criterion to recognize for this new class of bursts is whether they fit the tidal disruption model. From a total of 328 Swift GRBs with accurately measured durations and without SN association, we find 25 GRBs satisfying the criteria for GRB 060614-type bursts: seven of them are with known redshifts and 18 with unknown redshifts. These new bursts are ∼6% of the total Swift GRBs, which are clustered into two subclasses: Type I and Type II with considerably different viscous parameters of accretion disks formed by tidally disrupting their different progenitor stars. We suggest that the two different kinds of progenitors are solar-type stars and white dwarfs: the progenitors for four Type I bursts with viscous parameter of around 0.1 are solar-type stars, and the progenitors for 21 Type II bursts with viscous parameter of around 0.3 are white dwarfs. The potential applications of this new class of GRBs as cosmic standard candles are discussed briefly.

  3. Hyperaccretion during Tidal Disruption Events: Weakly Bound Debris Envelopes and Jets

    Science.gov (United States)

    Coughlin, Eric R.; Begelman, Mitchell C.

    2014-02-01

    After the destruction of the star during a tidal disruption event (TDE), the cataclysmic encounter between a star and the supermassive black hole (SMBH) of a galaxy, approximately half of the original stellar debris falls back onto the hole at a rate that can initially exceed the Eddington limit by orders of magnitude. We argue that the angular momentum of this matter is too low to allow it to attain a disk-like configuration with accretion proceeding at a mildly super-Eddington rate, the excess energy being carried away by a combination of radiative losses and radially distributed winds. Instead, we propose that the infalling gas traps accretion energy until it inflates into a weakly bound, quasi-spherical structure with gas extending nearly to the poles. We study the structure and evolution of such "zero-Bernoulli accretion" flows as a model for the super-Eddington phase of TDEs. We argue that such flows cannot stop extremely super-Eddington accretion from occurring, and that once the envelope is maximally inflated, any excess accretion energy escapes through the poles in the form of powerful jets. We compare the predictions of our model to Swift J1644+57, the putative super-Eddington TDE, and show that it can qualitatively reproduce some of its observed features. Similar models, including self-gravity, could be applicable to gamma-ray bursts from collapsars and the growth of SMBH seeds inside quasi-stars.

  4. Hyperaccretion during tidal disruption events: Weakly bound debris envelopes and jets

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, Eric R.; Begelman, Mitchell C., E-mail: eric.coughlin@colorado.edu, E-mail: mitch@jila.colorado.edu [Also at Department of Astrophysical and Planetary Sciences, University of Colorado, UCB 391, Boulder, CO 80309, USA. (United States)

    2014-02-01

    After the destruction of the star during a tidal disruption event (TDE), the cataclysmic encounter between a star and the supermassive black hole (SMBH) of a galaxy, approximately half of the original stellar debris falls back onto the hole at a rate that can initially exceed the Eddington limit by orders of magnitude. We argue that the angular momentum of this matter is too low to allow it to attain a disk-like configuration with accretion proceeding at a mildly super-Eddington rate, the excess energy being carried away by a combination of radiative losses and radially distributed winds. Instead, we propose that the infalling gas traps accretion energy until it inflates into a weakly bound, quasi-spherical structure with gas extending nearly to the poles. We study the structure and evolution of such 'zero-Bernoulli accretion' flows as a model for the super-Eddington phase of TDEs. We argue that such flows cannot stop extremely super-Eddington accretion from occurring, and that once the envelope is maximally inflated, any excess accretion energy escapes through the poles in the form of powerful jets. We compare the predictions of our model to Swift J1644+57, the putative super-Eddington TDE, and show that it can qualitatively reproduce some of its observed features. Similar models, including self-gravity, could be applicable to gamma-ray bursts from collapsars and the growth of SMBH seeds inside quasi-stars.

  5. Hyperaccretion during tidal disruption events: Weakly bound debris envelopes and jets

    International Nuclear Information System (INIS)

    Coughlin, Eric R.; Begelman, Mitchell C.

    2014-01-01

    After the destruction of the star during a tidal disruption event (TDE), the cataclysmic encounter between a star and the supermassive black hole (SMBH) of a galaxy, approximately half of the original stellar debris falls back onto the hole at a rate that can initially exceed the Eddington limit by orders of magnitude. We argue that the angular momentum of this matter is too low to allow it to attain a disk-like configuration with accretion proceeding at a mildly super-Eddington rate, the excess energy being carried away by a combination of radiative losses and radially distributed winds. Instead, we propose that the infalling gas traps accretion energy until it inflates into a weakly bound, quasi-spherical structure with gas extending nearly to the poles. We study the structure and evolution of such 'zero-Bernoulli accretion' flows as a model for the super-Eddington phase of TDEs. We argue that such flows cannot stop extremely super-Eddington accretion from occurring, and that once the envelope is maximally inflated, any excess accretion energy escapes through the poles in the form of powerful jets. We compare the predictions of our model to Swift J1644+57, the putative super-Eddington TDE, and show that it can qualitatively reproduce some of its observed features. Similar models, including self-gravity, could be applicable to gamma-ray bursts from collapsars and the growth of SMBH seeds inside quasi-stars.

  6. Relaxation near Supermassive Black Holes Driven by Nuclear Spiral Arms: Anisotropic Hypervelocity Stars, S-stars, and Tidal Disruption Events

    Energy Technology Data Exchange (ETDEWEB)

    Hamers, Adrian S. [Institute for Advanced Study, School of Natural Sciences, Einstein Drive, Princeton, NJ 08540 (United States); Perets, Hagai B., E-mail: hamers@ias.edu [Technion—Israel Institute of Technology, Haifa 32000 (Israel)

    2017-09-10

    Nuclear spiral arms are small-scale transient spiral structures found in the centers of galaxies. Similarly to their galactic-scale counterparts, nuclear spiral arms can perturb the orbits of stars. In the case of the Galactic center (GC), these perturbations can affect the orbits of stars and binaries in a region extending to several hundred parsecs around the supermassive black hole (SMBH), causing diffusion in orbital energy and angular momentum. This diffusion process can drive stars and binaries to close approaches with the SMBH, disrupting single stars in tidal disruption events (TDEs), or disrupting binaries, leaving a star tightly bound to the SMBH and an unbound star escaping the galaxy, i.e., a hypervelocity star (HVS). Here, we consider diffusion by nuclear spiral arms in galactic nuclei, specifically the Milky Way GC. We determine nuclear-spiral-arm-driven diffusion rates using test-particle integrations and compute disruption rates. Our TDE rates are up to 20% higher compared to relaxation by single stars. For binaries, the enhancement is up to a factor of ∼100, and our rates are comparable to the observed numbers of HVSs and S-stars. Our scenario is complementary to relaxation driven by massive perturbers. In addition, our rates depend on the inclination of the binary with respect to the Galactic plane. Therefore, our scenario provides a novel potential source for the observed anisotropic distribution of HVSs. Nuclear spiral arms may also be important for accelerating the coalescence of binary SMBHs and for supplying nuclear star clusters with stars and gas.

  7. Numerical Simulation of an Oscillatory-Type Tidal Current Powered Generator Based on Robotic Fish Technology

    Directory of Open Access Journals (Sweden)

    Ikuo Yamamoto

    2017-10-01

    Full Text Available The generation of clean renewable energy is becoming increasingly critical, as pollution and global warming threaten the environment in which we live. While there are many different kinds of natural energy that can be harnessed, marine tidal energy offers reliability and predictability. However, harnessing energy from tidal flows is inherently difficult, due to the harsh environment. Current mechanisms used to harness tidal flows center around propeller-based solutions but are particularly prone to failure due to marine fouling from such as encrustations and seaweed entanglement and the corrosion that naturally occurs in sea water. In order to efficiently harness tidal flow energy in a cost-efficient manner, development of a mechanism that is inherently resistant to these harsh conditions is required. One such mechanism is a simple oscillatory-type mechanism based on robotic fish tail fin technology. This uses the physical phenomenon of vortex-induced oscillation, in which water currents flowing around an object induce transverse motion. We consider two specific types of oscillators, firstly a wing-type oscillator, in which the optimal elastic modulus is being sort. Secondly, the optimal selection of shape from 6 basic shapes for a reciprocating oscillating head-type oscillator. A numerical analysis tool for fluid structure-coupled problems—ANSYS—was used to select the optimum softness of material for the first type of oscillator and the best shape for the second type of oscillator, based on the exhibition of high lift coefficients. For a wing-type oscillator, an optimum elastic modulus for an air-foil was found. For a self-induced vibration-type mechanism, based on analysis of vorticity and velocity distribution, a square-shaped head exhibited a lift coefficient of more than two times that of a cylindrically shaped head. Analysis of the flow field clearly showed that the discontinuous flow caused by a square-headed oscillator results in

  8. DYNAMICS OF TIDALLY CAPTURED PLANETS IN THE GALACTIC CENTER

    International Nuclear Information System (INIS)

    Trani, Alessandro A.; Bressan, Alessandro; Mapelli, Michela; Spera, Mario

    2016-01-01

    Recent observations suggest ongoing planet formation in the innermost parsec of the Galactic center. The supermassive black hole (SMBH) might strip planets or planetary embryos from their parent star, bringing them close enough to be tidally disrupted. Photoevaporation by the ultraviolet field of young stars, combined with ongoing tidal disruption, could enhance the near-infrared luminosity of such starless planets, making their detection possible even with current facilities. In this paper, we investigate the chance of planet tidal captures by means of high-accuracy N -body simulations exploiting Mikkola's algorithmic regularization. We consider both planets lying in the clockwise (CW) disk and planets initially bound to the S-stars. We show that tidally captured planets remain on orbits close to those of their parent star. Moreover, the semimajor axis of the planetary orbit can be predicted by simple analytic assumptions in the case of prograde orbits. We find that starless planets that were initially bound to CW disk stars have mild eccentricities and tend to remain in the CW disk. However, we speculate that angular momentum diffusion and scattering by other young stars in the CW disk might bring starless planets into orbits with low angular momentum. In contrast, planets initially bound to S-stars are captured by the SMBH on highly eccentric orbits, matching the orbital properties of the clouds G1 and G2. Our predictions apply not only to planets but also to low-mass stars initially bound to the S-stars and tidally captured by the SMBH.

  9. TIDAL BREAKUP OF BINARY STARS AT THE GALACTIC CENTER. II. HYDRODYNAMIC SIMULATIONS

    International Nuclear Information System (INIS)

    Antonini, Fabio; Merritt, David; Lombardi, James C. Jr

    2011-01-01

    In Paper I, we followed the evolution of binary stars as they orbited near the supermassive black hole (SMBH) at the Galactic center, noting the cases in which the two stars would come close enough together to collide. In this paper, we replace the point-mass stars by fluid realizations, and use a smoothed-particle hydrodynamics code to follow the close interactions. We model the binary components as main-sequence stars with initial masses of 1, 3, and 6 solar masses, and with chemical composition profiles taken from stellar evolution codes. Outcomes of the close interactions include mergers, collisions that leave both stars intact, and ejection of one star at high velocity accompanied by capture of the other star into a tight orbit around the SMBH. For the first time, we follow the evolution of the collision products for many (∼> 100) orbits around the SMBH. Stars that are initially too small to be tidally disrupted by the SMBH can be puffed up by close encounters or collisions, with the result that tidal stripping occurs in subsequent periapse passages. In these cases, mass loss occurs episodically, sometimes for hundreds of orbits before the star is completely disrupted. Repeated tidal flares, of either increasing or decreasing intensity, are a predicted consequence. In collisions involving a low-mass and a high-mass star, the merger product acquires a high core hydrogen abundance from the smaller star, effectively resetting the nuclear evolution 'clock' to a younger age. Elements like Li, Be, and B that can exist only in the outermost envelope of a star are severely depleted due to envelope ejection during collisions and due to tidal forces from the SMBH. Tidal spin-up can occur due to either a collision or tidal torque by the SMBH at periapsis. However, in the absence of collisions, tidal spin-up of stars is only important in a narrow range of periapse distances, r t /2 ∼ per ∼ t , with r t the tidal disruption radius. We discuss the implications of

  10. An Ultraviolet Spectrum of the Tidal Disruption Flare ASASSN-14li

    Science.gov (United States)

    Cenko, S. Bradley; Cucchiara, Antonio; Roth, Nathaniel; Veilleux, Sylvain; Prochaska, J. Xavier; Yan, Lin; Guillochon, James; Maksym, W. Peter; Arcavi, Iair; Butler, Nathaniel R.

    2016-01-01

    We present a Hubble Space Telescope Space Telescope Imaging Spectrograph spectrum of ASASSN-14li, the first rest-frame ultraviolet (UV) spectrum of a tidal disruption flare (TDF). The underlying continuum is well fit by a blackbody with T(sub UV) = 3.5 x 10(exp. 4) K, an order of magnitude smaller than the temperature inferred from X-ray spectra (and significantly more precise than previous efforts based on optical and near-UV photometry).Superimposed on this blue continuum, we detect three classes of features: narrow absorption from the Milky Way (probably a high-velocity cloud), and narrow absorption and broad {approx. 2000-8000 km s(exp. -1)} emission lines at or near the systemic host velocity. The absorption lines are blueshifted with respect to the emission lines by Delta(sub v) = -(250-400) km s(exp. -1). Due both to this velocity offset and the lack of common low-ionization features (Mg II, Fe II), we argue these arise from the same absorbing material responsible for the low-velocity outflow discovered at X-ray wavelengths. The broad nuclear emission lines display a remarkable abundance pattern: N III], N IV], and He II are quite prominent, while the common quasar emission lines of C III] and Mg II are weak or entirely absent. Detailed modeling of this spectrum will help elucidate fundamental questions regarding the nature of the emission processes at work in TDFs, while future UV spectroscopy of ASASSN-14li would help to confirm (or refute) the previously proposed connection between TDFs and N-rich quasars.

  11. Planetary and tidal wave-type oscillations in the ionospheric sporadic E layers over Tehran region

    Science.gov (United States)

    Karami, K.; Ghader, S.; Bidokhti, A. A.; Joghataei, M.; Neyestani, A.; Mohammadabadi, A.

    2012-04-01

    It is believed that in the lower ionosphere, particularly in the ionospheric sporadic E (Es) layers (90-130 km), the planetary and tidal wave-type oscillations in the ionized component indicate the planetary and tidal waves in the neutral atmosphere. In the present work, the presence of wave-type oscillations, including planetary and tidal waves in the ionospheric sporadic E layers over Tehran region is examined. Data measured by a digital ionosonde at the ionospheric station of the Institute of Geophysics, University of Tehran, from July 2006 to June 2007 are used to investigate seasonal variations of planetary and tidal waves activities. For the purpose of accurate comparison between different seasons, wavelet transform is applied to time series of foEs and h‧Es, namely, the critical frequency and virtual height of Es layers, respectively. The results show that the sporadic E layers over Tehran region are strongly under the influence of upward propagation of waves from below. More specifically, among diverse range of periodicities in the sporadic E layers, we found that diurnal (24 hours) and semidiurnal (12 hours) oscillations in all seasons for both parameters. Moreover, terdiurnal (8 hours) tide-like variation is observed during spring and summer for foEs parameter and summer and winter for h‧Es. Furthermore, the results show that diurnal tidal waves obtain their maximum activities during autumn and winter seasons, and their activities decrease during the late spring and summer. In addition, periods of about 2, 4, 6, 10, 14, and 16 days in our observation verifies the hypothesis of upward propagation of planetary waves from lower atmosphere to the ionosphere. Moreover, planetary waves have their maximum activities during equinox.

  12. Illuminating massive black holes with white dwarfs: orbital dynamics and high-energy transients from tidal interactions

    International Nuclear Information System (INIS)

    MacLeod, Morgan; Goldstein, Jacqueline; Ramirez-Ruiz, Enrico; Guillochon, James; Samsing, Johan

    2014-01-01

    White dwarfs (WDs) can be tidally disrupted only by massive black holes (MBHs) with masses less than ∼10 5 M ☉ . These tidal interactions feed material to the MBH well above its Eddington limit, with the potential to launch a relativistic jet. The corresponding beamed emission is a promising indication of an otherwise quiescent MBH of relatively low mass. We show that the mass transfer history, and thus the light curve, is quite different when the disruptive orbit is parabolic, eccentric, or circular. The mass lost each orbit exponentiates in the eccentric-orbit case, leading to the destruction of the WD after several tens of orbits. We examine the stellar dynamics of clusters surrounding MBHs to show that single-passage WD disruptions are substantially more common than repeating encounters. The 10 49 erg s –1 peak luminosity of these events makes them visible to cosmological distances. They may be detectible at rates of as many as tens per year by instruments like Swift. In fact, WD-disruption transients significantly outshine their main-sequence star counterparts and are the tidal interaction most likely to be detected arising from MBHs with masses less than 10 5 M ☉ . The detection or nondetection of such WD-disruption transients by Swift is, therefore, a powerful tool to constrain the lower end of the MBH mass function. The emerging ultralong gamma-ray burst class of events all have peak luminosities and durations reminiscent of WD disruptions, offering a hint that WD-disruption transients may already be present in existing data sets.

  13. [Evaluation of tidal volume delivered by ventilators during volume-controlled ventilation].

    Science.gov (United States)

    Zhou, Juan; Yan, Yong; Cao, Desen

    2014-12-01

    To study the ways which ensure the delivery of enough tidal volume to patients under various conditions close to the demand of the physician. The volume control ventilation model was chosen, and the simulation lung type was active servo lung ASL 5000 or Michigan lung 1601. The air resistance, air compliance and lung type in simulation lungs were set. The tidal volume was obtained from flow analyzer PF 300. At the same tidal volume, the displaying values of tidal volume of E5, Servo i, Evital 4, and Evital XL ventilators with different lung types of patient, compliance of gas piping, leakage, gas types, etc. were evaluated. With the same setting tidal volume of a same ventilator, the tidal volume delivered to patients was different with different lung types of patient, compliance of gas piping, leakage, gas types, etc. Reducing compliance and increasing resistance of the patient lungs caused high peak airway pressure, the tidal volume was lost in gas piping, and the tidal volume be delivered to the patient lungs was decreased. If the ventilator did not compensate to leakage, the tidal volume delivered to the patient lungs was decreased. When the setting gas type of ventilator did not coincide with that applying to the patient, the tidal volume be delivered to the patient lungs might be different with the setting tidal volume of ventilator. To ensure the delivery of enough tidal volume to patients close to the demand of the physician, containable factors such as the compliance of gas piping, leakage, and gas types should be controlled.

  14. Relativistic theory of tidal Love numbers

    International Nuclear Information System (INIS)

    Binnington, Taylor; Poisson, Eric

    2009-01-01

    In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it encodes information about the body's internal structure. We present a relativistic theory of Love numbers, which applies to compact bodies with strong internal gravities; the theory extends and completes a recent work by Flanagan and Hinderer, which revealed that the tidal Love number of a neutron star can be measured by Earth-based gravitational-wave detectors. We consider a spherical body deformed by an external tidal field, and provide precise and meaningful definitions for electric-type and magnetic-type Love numbers; and these are computed for polytropic equations of state. The theory applies to black holes as well, and we find that the relativistic Love numbers of a nonrotating black hole are all zero.

  15. Tidal disruption of white dwarfs by intermediate mass black holes

    Directory of Open Access Journals (Sweden)

    Bode T.

    2012-12-01

    Full Text Available Modeling ultra-close encounters between a white dwarf and a spinning, intermediate mass black hole requires a full general relativistic treatment of gravity. This paper summarizes results from such a study. Our results show that the disruption process and prompt accretion of the debris strongly depend on the magnitude and orientation of the black hole spin. On the other hand, the late-time accretion onto the black hole follows the same decay, Ṁ ∝  t−5/3, estimated from Newtonian gravity disruption studies. The spectrum of the fallback material peaks in the soft X-rays and sustains Eddington luminosity for 1–3 yrs after the disruption. The orientation of the black hole spin has also a profound effect on how the outflowing debris obscures the central region. The disruption produces a burst of gravitational radiation with characteristic frequencies of ∼3.2 Hz and strain amplitudes of ∼10−18 for galactic intermediate mass black holes.

  16. X-Ray Brightening and UV Fading of Tidal Disruption Event ASASSN-15oi

    Science.gov (United States)

    Gezari, S.; Cenko, S. B.; Arcavi, I.

    2017-12-01

    We present late-time observations by Swift and XMM-Newton of the tidal disruption event (TDE) ASASSN-15oi that reveal that the source brightened in the X-rays by a factor of ∼10 one year after its discovery, while it faded in the UV/optical by a factor of ∼100. The XMM-Newton observations measure a soft X-ray blackbody component with {{kT}}{bb}∼ 45 {eV}, corresponding to radiation from several gravitational radii of a central ∼ {10}6 {M}ȯ black hole. The last Swift epoch taken almost 600 days after discovery shows that the X-ray source has faded back to its levels during the UV/optical peak. The timescale of the X-ray brightening suggests that the X-ray emission could be coming from delayed accretion through a newly forming debris disk and that the prompt UV/optical emission is from the prior circularization of the disk through stream–stream collisions. The lack of spectral evolution during the X-ray brightening disfavors ionization breakout of a TDE “veiled” by obscuring material. This is the first time a TDE has been shown to have a delayed peak in soft X-rays relative to the UV/optical peak, which may be the first clear signature of the real-time assembly of a nascent accretion disk, and provides strong evidence for the origin of the UV/optical emission from circularization, as opposed to reprocessed emission of accretion radiation.

  17. Does Explosive Nuclear Burning Occur in Tidal Disruption Events of White Dwarfs by Intermediate-mass Black Holes?

    Energy Technology Data Exchange (ETDEWEB)

    Tanikawa, Ataru; Sato, Yushi; Hachisu, Izumi [Department of Earth Science and Astronomy, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Nomoto, Ken’ichi; Maeda, Keiichi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Nakasato, Naohito, E-mail: tanikawa@ea.c.u-tokyo.ac.jp [Department of Computer Science and Engineering, University of Aizu, Tsuruga Ikki-machi Aizu-Wakamatsu, Fukushima 965-8580 (Japan)

    2017-04-20

    We investigate nucleosynthesis in tidal disruption events (TDEs) of white dwarfs (WDs) by intermediate-mass black holes. We consider various types of WDs with different masses and compositions by means of three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations. We model these WDs with different numbers of SPH particles, N , from a few 10{sup 4} to a few 10{sup 7} in order to check mass resolution convergence, where SPH simulations with N > 10{sup 7} (or a space resolution of several 10{sup 6} cm) have unprecedentedly high resolution in this kind of simulation. We find that nuclear reactions become less active with increasing N and that these nuclear reactions are excited by spurious heating due to low resolution. Moreover, we find no shock wave generation. In order to investigate the reason for the absence of a shock wave, we additionally perform one-dimensional (1D) SPH and mesh-based simulations with a space resolution ranging from 10{sup 4} to 10{sup 7} cm, using a characteristic flow structure extracted from the 3D SPH simulations. We find shock waves in these 1D high-resolution simulations, one of which triggers a detonation wave. However, we must be careful of the fact that, if the shock wave emerged in an outer region, it could not trigger the detonation wave due to low density. Note that the 1D initial conditions lack accuracy to precisely determine where a shock wave emerges. We need to perform 3D simulations with ≲10{sup 6} cm space resolution in order to conclude that WD TDEs become optical transients powered by radioactive nuclei.

  18. Half Moon Cove Tidal Project. Feasibility report

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    The proposed Half Moon Cove Tidal Power Project would be located in a small cove in the northern part of Cobscook Bay in the vicinity of Eastport, Maine. The project would be the first tidal electric power generating plant in the United States of America. The basin impounded by the barrier when full will approximate 1.2 square miles. The average tidal range at Eastport is 18.2 feet. The maximum spring tidal range will be 26.2 feet and the neap tidal range 12.8 feet. The project will be of the single pool-type single effect in which generation takes place on the ebb tide only. Utilizing an average mean tidal range of 18.2 feet the mode of operation enables generation for approximately ten and one-half (10-1/2) hours per day or slightly in excess of five (5) hours per tide. The installed capacity will be 12 MW utilizing 2 to 6 MW units. An axial flow, or Bulb type of turbine was selected for this study.

  19. The Aquarius comoving group is not a disrupted classical globular cluster★

    Science.gov (United States)

    Casey, A. R.; Keller, S. C.; Alves-Brito, A.; Frebel, A.; Da Costa, G.; Karakas, A.; Yong, D.; Schlaufman, K. C.; Jacobson, H. R.; Yu, Q.; Fishlock, C.

    2014-09-01

    We present a detailed analysis of high-resolution, high signal-to-noise ratio spectra for five Aquarius stream stars observed with the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Clay telescope. Our sample represents one-third of the 15 known members in the stream. We find the stream is not monometallic: the metallicity ranges from [Fe/H] = -0.63 to -1.58. No anticorrelation in Na-O abundances is present, and we find a strong positive Mg-Al relationship, similar to that observed in the thick disc. We find no evidence that the stream is a result of a disrupted classical globular cluster, contrary to a previously published claim. High [(Na, Ni, α)/Fe] and low [Ba/Y] abundance ratios in the stream suggest that it is not a tidal tail from a disrupted dwarf galaxy, either. The stream is chemically indistinguishable from Milky Way field stars with the exception of one candidate, C222531-145437. From its position, velocity, and detailed chemical abundances, C222531-145437 is likely a star that was tidally disrupted from ω-Centauri. We propose that the Aquarius stream is Galactic in origin, and could be the result of a disc-satellite perturbation in the Milky Way thick disc of the order of a few Gyr ago: derived orbits, UVW velocities, and angular momenta of the Aquarius members offer qualitative support for our hypothesis. Assuming that C222531-145437 is a tidally disrupted member of ω-Centauri, this system is the most likely disc perturber. In the absence of compelling chemical and/or dynamical evidence that the Aquarius stream is the tidal tail of a disrupted satellite, we advocate the `Aquarius group' as a more appropriate description. Like the Canis Major overdensity, as well as the Hercules and Monoceros groups, the Aquarius group joins the list of kinematically identified substructures that are not actually accreted material: they are simply part of the rich complexity of the Milky Way structure.

  20. Identification of old tidal dwarfs near early-type galaxies from deep imaging and H I observations

    Science.gov (United States)

    Duc, Pierre-Alain; Paudel, Sanjaya; McDermid, Richard M.; Cuillandre, Jean-Charles; Serra, Paolo; Bournaud, Frédéric; Cappellari, Michele; Emsellem, Eric

    2014-05-01

    It has recently been proposed that the dwarf spheroidal galaxies located in the Local Group discs of satellites (DoSs) may be tidal dwarf galaxies (TDGs) born in a major merger at least 5 Gyr ago. Whether TDGs can live that long is still poorly constrained by observations. As part of deep optical and H I surveys with the Canada-France-Hawaii Telescope (CFHT) MegaCam camera and Westerbork Synthesis Radio Telescope made within the ATLAS3D project, and follow-up spectroscopic observations with the Gemini-North telescope, we have discovered old TDG candidates around several early-type galaxies. At least one of them has an oxygen abundance close to solar, as expected for a tidal origin. This confirmed pre-enriched object is located within the gigantic, but very low surface brightness, tidal tail that emanates from the elliptical galaxy, NGC 5557. An age of 4 Gyr estimated from its SED fitting makes it the oldest securely identified TDG ever found so far. We investigated the structural and gaseous properties of the TDG and of a companion located in the same collisional debris, and thus most likely of tidal origin as well. Despite several Gyr of evolution close to their parent galaxies, they kept a large gas reservoir. Their central surface brightness is low and their effective radius much larger than that of typical dwarf galaxies of the same mass. This possibly provides us with criteria to identify tidal objects which can be more easily checked than the traditional ones requiring deep spectroscopic observations. In view of the above, we discuss the survival time of TDGs and question the tidal origin of the DoSs.

  1. Tidal controls on river delta morphology

    Science.gov (United States)

    Hoitink, A. J. F.; Wang, Z. B.; Vermeulen, B.; Huismans, Y.; Kästner, K.

    2017-09-01

    River delta degradation has been caused by extraction of natural resources, sediment retention by reservoirs, and sea-level rise. Despite global concerns about these issues, human activity in the world’s largest deltas intensifies. Harbour development, construction of flood defences, sand mining and land reclamation emerge as key contemporary factors that exert an impact on delta morphology. Tides interacting with river discharge can play a crucial role in the morphodynamic development of deltas under pressure. Emerging insights into tidal controls on river delta morphology suggest that--despite the active morphodynamics in tidal channels and mouth bar regions--tidal motion acts to stabilize delta morphology at the landscape scale under the condition that sediment import during low flows largely balances sediment export during high flows. Distributary channels subject to tides show lower migration rates and are less easily flooded by the river because of opposing non-linear interactions between river discharge and the tide. These interactions lead to flow changes within channels, and a more uniform distribution of discharge across channels. Sediment depletion and rigorous human interventions in deltas, including storm surge defence works, disrupt the dynamic morphological equilibrium and can lead to erosion and severe scour at the channel bed, even decades after an intervention.

  2. Formation of S-type planets in close binaries: scattering induced tidal capture of circumbinary planets

    Science.gov (United States)

    Gong, Yan-Xiang; Ji, Jianghui

    2018-05-01

    Although several S-type and P-type planets in binary systems were discovered in past years, S-type planets have not yet been found in close binaries with an orbital separation not more than 5 au. Recent studies suggest that S-type planets in close binaries may be detected through high-accuracy observations. However, nowadays planet formation theories imply that it is difficult for S-type planets in close binaries systems to form in situ. In this work, we extensively perform numerical simulations to explore scenarios of planet-planet scattering among circumbinary planets and subsequent tidal capture in various binary configurations, to examine whether the mechanism can play a part in producing such kind of planets. Our results show that this mechanism is robust. The maximum capture probability is ˜10%, which can be comparable to the tidal capture probability of hot Jupiters in single star systems. The capture probability is related to binary configurations, where a smaller eccentricity or a low mass ratio of the binary will lead to a larger probability of capture, and vice versa. Furthermore, we find that S-type planets with retrograde orbits can be naturally produced via capture process. These planets on retrograde orbits can help us distinguish in situ formation and post-capture origin for S-type planet in close binaries systems. The forthcoming missions (PLATO) will provide the opportunity and feasibility to detect such planets. Our work provides several suggestions for selecting target binaries in search for S-type planets in the near future.

  3. Tidal streams in the local group and beyond observations and implications

    CERN Document Server

    Carlin, Jeffrey

    2016-01-01

    This volume is written by leading scientists in the field, who review the current state of our knowledge of tidal streams in the Milky Way, the Andromeda galaxy, and in other nearby galaxies.  The cosmological origins of dwarf galaxies and the physical processes by which they are tidally disrupted into streams and incorporated into galaxy halos are discussed. The techniques that have been used to identify tidal streams are presented, and will be useful to researchers who would like to find substructures in the next generation of optical sky surveys, including Pan-STARRS and LSST.  The methods that are currently under development to constrain both large scale distribution of dark matter in the Milky Way and the (small scale) lumpiness of the dark matter distribution are also explained.  The authors also provide motivation for future spectroscopic surveys of Milky Way halo stars, which will aid both in the identification of tidal streams and the constraint of dark matter properties.This volume is aimed at g...

  4. Orbital tidal variability in the eccentric early type binary Iota Orionis

    International Nuclear Information System (INIS)

    Stevens, I.R.

    1988-01-01

    Iota Orionis is a bright, highly eccentric, massive early type binary, which has been studied recently in UV wavelengths, for evidence of stellar wind variability caused by tidal interactions between the two stars. No gross variability was found, but small scale perturbations in the UV resonance line profiles were noted. Here, using a radiatively driven stellar wind model for eccentric binaries, the results of numerical modelling of the stellar wind of Iota Orionis are presented. These calculations suggest that increased mass-loss from the primary star will occur close to the periastron passage, but that the enhancements will be short lived, and observed probably as redshifted emission features. (author)

  5. Survey on utility technology of a tidal and ocean current energy

    Science.gov (United States)

    Hirose, Manabu; Kadoyu, Masataka; Tanaka, Hiroyoshi

    1987-06-01

    A study is made to show the current technological levels in Japan and other nations regarding the conversion of tidal current or ocean current energy to electric power and to determine the latent energy quantities and energy-related characteristics of tidal and ocean currents. In Japan, relatively large-scale experiments made so far mostly used one of the following three types of devices: Savonius-wheel type, Darrieus-wheel type, and cross-flow-wheel type. Field experiments of tidal energy conversion have been performed at the Naruto and Kurushima Straits. The energy in the Kuroshio current is estimated at about 170 billion kWh per year. Ocean current energy does not undergo large seasonal variations. The total energy in major straits and channels in the Inland Sea and other sea areas to the west is estimated at about 124 billion kWh per year. Tidal current energy shows large seasonal variations, but it is possible to predict the changes. A survey is made to determine energy-related characteristics of a tidal current at Chichino-seto, Kagoshima Prefecture. At Chichino-seto, the flow velocity ranges from 0 to 2.2m/s, with a latent tidal current energy of about 70 kW, of which about 20 kW can actually be utilized.

  6. A Systematic Mid-Infrared Survey of A Sample of Tidal Disruption Events Discovered by ZTF

    Science.gov (United States)

    Yan, Lin; Van, Sjoert; Kulkarni, Shri; Kasliwal, Mansi; Gezari, Suvi; Cenko, Brad; Blagorodnova, Nadia; Hung, Tiara

    2017-12-01

    Zwicky Transient Facility (ZTF) saw its first light (press release on Nov 14, 2017) and is currently in the commissioning phase. The science operation is scheduled to start on Feb 1, 2018. Based on the data from Palomar Transient Factory (PTF), ZTF is expected to discover 30 new tidal disruption events (TDE) in the centers of galaxies containing supermassive blackholes. TDEs are rare transient events, and have only been discovered in recent years by large area transient surveys. Observations of optically discovered TDEs appear to show common characteristics, including blackbody temperatures of a few 10,000K, derived bolometric peak luminosities of several 10^43 - 10^44 erg/s, and photospheric radius of 10^15 - 10^16 cm. These properties are in conflict with the classic TDE model predictions, which suggest an order of magnitude higher temperature and peak luminosity. One proposed explanation is the possible existence of a reprocessing gas layer which absorbs X-ray, UV/optical photons and produces a cooler spectral energy distribution (SED). So far, there are only two published mid-IR light curves of TDEs, each with two epochal data. To solve this mystery, we require higher cadence Spitzer observations of a sample of uniformly selected TDEs. Next year is the only opportunity to obtain the critical observations because Spitzer is expected to operate only to March 2019. We request 24.1 hours of Spitzer time to observe 7 ZTF TDEs. This will produce a unique legacy dataset for many future studies of physics of TDEs.

  7. Tidal Venuses: triggering a climate catastrophe via tidal heating.

    Science.gov (United States)

    Barnes, Rory; Mullins, Kristina; Goldblatt, Colin; Meadows, Victoria S; Kasting, James F; Heller, René

    2013-03-01

    Traditionally, stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here, we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high-enough levels to induce a runaway greenhouse for a long-enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets "Tidal Venuses" and the phenomenon a "tidal greenhouse." Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e., with negligible tidal heating) in the habitable zone (HZ). However, these planets are not habitable, as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulated the evolution of hypothetical planetary systems in a quasi-continuous parameter distribution and found that we could constrain the history of the system by statistical arguments. Planets orbiting stars with massesplanet orbiting a 0.3 MSun star at 0.12 AU. We found that it probably did not lose its water via tidal heating, as orbital stability is unlikely for the high eccentricities required for the tidal greenhouse. As the inner edge of the HZ is defined by the onset of a runaway or moist greenhouse powered by radiation, our results represent a fundamental revision to the HZ for noncircular orbits. In the appendices we review (a) the moist and runaway greenhouses, (b) hydrogen escape, (c) stellar mass-radius and mass-luminosity relations, (d) terrestrial planet mass-radius relations, and (e) linear tidal theories.

  8. Relativistic tidal properties of neutron stars

    International Nuclear Information System (INIS)

    Damour, Thibault; Nagar, Alessandro

    2009-01-01

    We study the various linear responses of neutron stars to external relativistic tidal fields. We focus on three different tidal responses, associated to three different tidal coefficients: (i) a gravito-electric-type coefficient Gμ l =[length] 2l+1 measuring the lth-order mass multipolar moment GM a 1 ...a l induced in a star by an external lth-order gravito-electric tidal field G a 1 ...a l ; (ii) a gravito-magnetic-type coefficient Gσ l =[length] 2l+1 measuring the lth spin multipole moment GS a 1 ...a l induced in a star by an external lth-order gravito-magnetic tidal field H a 1 ...a l ; and (iii) a dimensionless 'shape' Love number h l measuring the distortion of the shape of the surface of a star by an external lth-order gravito-electric tidal field. All the dimensionless tidal coefficients Gμ l /R 2l+1 , Gσ l /R 2l+1 , and h l (where R is the radius of the star) are found to have a strong sensitivity to the value of the star's 'compactness'c≡GM/(c 0 2 R) (where we indicate by c 0 the speed of light). In particular, Gμ l /R 2l+1 ∼k l is found to strongly decrease, as c increases, down to a zero value as c is formally extended to the 'black hole (BH) limit'c BH =1/2. The shape Love number h l is also found to significantly decrease as c increases, though it does not vanish in the formal limit c→c BH , but is rather found to agree with the recently determined shape Love numbers of black holes. The formal vanishing of μ l and σ l as c→c BH is a consequence of the no-hair properties of black holes. This vanishing suggests, but in no way proves, that the effective action describing the gravitational interactions of black holes may not need to be augmented by nonminimal worldline couplings.

  9. Multiwavelength follow-up observations of the tidal disruption event candidate 2XMMi J184725.1-631724

    Science.gov (United States)

    Lin, Dacheng; Strader, Jay; Carrasco, Eleazar R.; Godet, Olivier; Grupe, Dirk; Webb, Natalie A.; Barret, Didier; Irwin, Jimmy A.

    2018-03-01

    The ultrasoft X-ray flare 2XMMi J184725.1-631724 was serendipitously detected in two XMM-Newton observations in 2006 and 2007, with a peak luminosity of 6 × 1043 erg s-1. It was suggested to be a tidal disruption event (TDE) because its position is consistent with the centre of an inactive galaxy. It is the only known X-ray TDE candidate whose X-ray spectra showed evidence of a weak steep power-law component besides a dominant supersoft thermal disc. We have carried out multiwavelength follow-up observations of the event. Multiple X-ray monitorings show that the X-ray luminosity has decayed significantly after 2011. Especially, in our deep Chandra observation in 2013, we detected a very faint counterpart that supports the nuclear origin of 2XMMi J184725.1-631724 but had an X-ray flux a factor of ˜1000 lower than in the peak of the event. Compared with follow-up ultraviolet (UV) observations, we found that there might be some enhanced UV emission associated with the TDE in the first XMM-Newton observation. We also obtained a high-quality UV-optical spectrum with the Southern Astrophysical Research (SOAR) Telescope and put a very tight constraint on the persistent nuclear activity, with a persistent X-ray luminosity expected to be lower than the peak of the flare by a factor of >2700. Therefore, our multiwavelength follow-up observations strongly support the TDE explanation of the event.

  10. THE DISCOVERY OF THE MOST METAL-RICH WHITE DWARF: COMPOSITION OF A TIDALLY DISRUPTED EXTRASOLAR DWARF PLANET

    International Nuclear Information System (INIS)

    Dufour, P.; Fontaine, G.; Bergeron, P.; Lachapelle, F.-R.; Kilic, M.; Kleinman, S. J.; Leggett, S. K.

    2010-01-01

    Cool white dwarf stars are usually found to have an outer atmosphere that is practically pure in hydrogen or helium. However, a small fraction have traces of heavy elements that must originate from the accretion of extrinsic material, most probably circumstellar matter. Upon examining thousands of Sloan Digital Sky Survey (SDSS) spectra, we discovered that the helium-atmosphere white dwarf SDSS J073842.56+183509.6 shows the most severe metal pollution ever seen in the outermost layers of such stars. We present here a quantitative analysis of this exciting star by combining high signal-to-noise ratio follow-up spectroscopic and photometric observations with model atmospheres and evolutionary models. We determine the global structural properties of our target star, as well as the abundances of the most significant pollutants in its atmosphere, i.e., H, O, Na, Mg, Si, Ca, and Fe. The relative abundances of these elements imply that the source of the accreted material has a composition similar to that of Bulk Earth. We also report the signature of a circumstellar disk revealed through a large infrared excess in JHK photometry. Combined with our inferred estimate of the mass of the accreted material, this strongly suggests that we are witnessing the remains of a tidally disrupted extrasolar body that was as large as Ceres.

  11. Comparison of different functional EIT approaches to quantify tidal ventilation distribution.

    Science.gov (United States)

    Zhao, Zhanqi; Yun, Po-Jen; Kuo, Yen-Liang; Fu, Feng; Dai, Meng; Frerichs, Inez; Möller, Knut

    2018-01-30

    The aim of the study was to examine the pros and cons of different types of functional EIT (fEIT) to quantify tidal ventilation distribution in a clinical setting. fEIT images were calculated with (1) standard deviation of pixel time curve, (2) regression coefficients of global and local impedance time curves, or (3) mean tidal variations. To characterize temporal heterogeneity of tidal ventilation distribution, another fEIT image of pixel inspiration times is also proposed. fEIT-regression is very robust to signals with different phase information. When the respiratory signal should be distinguished from the heart-beat related signal, or during high-frequency oscillatory ventilation, fEIT-regression is superior to other types. fEIT-tidal variation is the most stable image type regarding the baseline shift. We recommend using this type of fEIT image for preliminary evaluation of the acquired EIT data. However, all these fEITs would be misleading in their assessment of ventilation distribution in the presence of temporal heterogeneity. The analysis software provided by the currently available commercial EIT equipment only offers either fEIT of standard deviation or tidal variation. Considering the pros and cons of each fEIT type, we recommend embedding more types into the analysis software to allow the physicians dealing with more complex clinical applications with on-line EIT measurements.

  12. Prehospital tidal volume influences hospital tidal volume: A cohort study.

    Science.gov (United States)

    Stoltze, Andrew J; Wong, Terrence S; Harland, Karisa K; Ahmed, Azeemuddin; Fuller, Brian M; Mohr, Nicholas M

    2015-06-01

    The purposes of the study are to describe current practice of ventilation in a modern air medical system and to measure the association of ventilation strategy with subsequent ventilator care and acute respiratory distress syndrome (ARDS). Retrospective observational cohort study of intubated adult patients (n = 235) transported by a university-affiliated air medical transport service to a 711-bed tertiary academic center between July 2011 and May 2013. Low tidal volume ventilation was defined as tidal volumes less than or equal to 8 mL/kg predicted body weight. Multivariable regression was used to measure the association between prehospital tidal volume, hospital ventilation strategy, and ARDS. Most patients (57%) were ventilated solely with bag valve ventilation during transport. Mean tidal volume of mechanically ventilated patients was 8.6 mL/kg predicted body weight (SD, 0.2 mL/kg). Low tidal volume ventilation was used in 13% of patients. Patients receiving low tidal volume ventilation during air medical transport were more likely to receive low tidal volume ventilation in the emergency department (P tidal volume (P = .840). Low tidal volume ventilation was rare during air medical transport. Air transport ventilation strategy influenced subsequent ventilation but was not associated with ARDS. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Tidal Venuses: Triggering a Climate Catastrophe via Tidal Heating

    Science.gov (United States)

    Mullins, Kristina; Goldblatt, Colin; Meadows, Victoria S.; Kasting, James F.; Heller, René

    2013-01-01

    Abstract Traditionally, stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here, we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high-enough levels to induce a runaway greenhouse for a long-enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets “Tidal Venuses” and the phenomenon a “tidal greenhouse.” Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e., with negligible tidal heating) in the habitable zone (HZ). However, these planets are not habitable, as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulated the evolution of hypothetical planetary systems in a quasi-continuous parameter distribution and found that we could constrain the history of the system by statistical arguments. Planets orbiting stars with massestidal heating. We have applied these concepts to Gl 667C c, a ∼4.5 MEarth planet orbiting a 0.3 MSun star at 0.12 AU. We found that it probably did not lose its water via tidal heating, as orbital stability is unlikely for the high eccentricities required for the tidal greenhouse. As the inner edge of the HZ is defined by the onset of a runaway or moist greenhouse powered by radiation, our results represent a fundamental revision to the HZ for noncircular orbits. In the appendices we review (a) the moist and runaway greenhouses, (b) hydrogen escape, (c) stellar mass-radius and mass-luminosity relations, (d) terrestrial planet mass-radius relations, and (e) linear tidal theories. Key Words: Extrasolar terrestrial planets—Habitability—Habitable zone

  14. Detecting the Disruption of Dark-Matter Halos with Stellar Streams.

    Science.gov (United States)

    Bovy, Jo

    2016-03-25

    Narrow stellar streams in the Milky Way halo are uniquely sensitive to dark-matter subhalos, but many of these subhalos may be tidally disrupted. I calculate the interaction between stellar and dark-matter streams using analytical and N-body calculations, showing that disrupting objects can be detected as low-concentration subhalos. Through this effect, we can constrain the lumpiness of the halo as well as the orbit and present position of individual dark-matter streams. This will have profound implications for the formation of halos and for direct- and indirect-detection dark-matter searches.

  15. Discovery of a transient U-band dropout in a lyman break survey: A tidally disrupted star at z=3.3?

    International Nuclear Information System (INIS)

    Stern, Daniel; van Dokkum, P.G.; Nugent, Peter; Sand, D.J.; Ellis, R.S.; Sullivan, Mark; Bloom, J.S.; Frail, D.A.; Kneib, J.-P.; Koopmans, L.V.E.; Treu, Tommaso

    2004-01-01

    We report the discovery of a transient source in the central regions of galaxy cluster A267. The object, which we call ''PALS-1'', was found in a survey aimed at identifying highly magnified Lyman break galaxies in the fields of intervening rich clusters. At discovery, the source had Un>24:7 (2 ; AB), g 1/4 21:96 0:12, and very blue g r and ri colors; i.e., PALS-1 was a ''U-band dropout'', characteristic of star-forming galaxies and quasars at z 3. However, 3 months later the source had faded by more than 3 mag. Further observations showed a continued decline in luminosity, to R>26:4 at 7 months after discovery. Although the apparent brightness suggests a supernova at roughly the cluster redshift, we show that the photometry and light curve argue against any known type of supernova at any redshift. The spectral energy distribution and location near the center of a galaxy cluster are consistent with the hypothesis that PALS-1 is a gravitationally lensed transient at z 3:3. If this interpretation is correct, the source is magnified by a factor of 4 7, and two counter images are predicted. Our lens model predicts that there are time delays between the three images of 110 yr and that we have witnessed the final occurrence of the transient. The intense luminosity (MAB 23:5 after correcting for lensing) and blue UV continuum (implying T k50; 000 K) argue that the source may have been a flare resulting from the tidal disruption of a star by a 106108 M black hole. Regardless of its physical nature, PALS-1 highlights the importance of monitoring regions of high magnification in galaxy clusters for distant time-varying phenomena

  16. ARE ULTRA-LONG GAMMA-RAY BURSTS CAUSED BY BLUE SUPERGIANT COLLAPSARS, NEWBORN MAGNETARS, OR WHITE DWARF TIDAL DISRUPTION EVENTS?

    Energy Technology Data Exchange (ETDEWEB)

    Ioka, Kunihito [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Hotokezaka, Kenta; Piran, Tsvi, E-mail: kunihito.ioka@yukawa.kyoto-u.ac.jp [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2016-12-10

    Ultra-long gamma-ray bursts (ulGRBs) are a new population of GRBs with extreme durations of ∼10{sup 4} s. Leading candidates for their origin are blue supergiant collapsars, magnetars, and white dwarf tidal disruption events (WD-TDEs) caused by massive black holes (BHs). Recent observations of supernova-like (SN-like) bumps associated with ulGRBs challenged both the WD-TDE and the blue supergiant models because of the detection of SNe and the absence of hydrogen lines, respectively. We propose that WD-TDEs can accommodate the observed SN-like bumps if the fallback WD matter releases energy into the unbound WD ejecta. The observed ejecta energy, luminosity, and velocity are explained by the gravitational energy, Eddington luminosity, and escape velocity of the formed accretion disk, respectively. We also show that the observed X-rays can ionize the ejecta, eliminating lines. The SN-like light curves (SN 2011kl) for the ulGRB 111209A are consistent with all three models, although a magnetar model is unnatural because the spin-down time required to power the SN-like bump is a hundred times longer than the GRB. Our results imply that TDEs are a possible energy source for SN-like events in general and for ulGRBs in particular.

  17. The origin of neap-spring tidal cycles

    Science.gov (United States)

    Kvale, E.P.

    2006-01-01

    The origin of oceanic tides is a basic concept taught in most introductory college-level sedimentology/geology, oceanography, and astronomy courses. Tides are typically explained in the context of the equilibrium tidal theory model. Yet this model does not take into account real tides in many parts of the world. Not only does the equilibrium tidal model fail to explicate amphidromic circulation, it also does not explain diurnal tides in low latitude positions. It likewise fails to explain the existence of tide-dominated areas where neap-spring cycles are synchronized with the 27.32-day orbital cycle of the Moon (tropical month), rather than with the more familiar 29.52-day cycle of lunar phases (synodic month). Both types of neap-spring cycles can be recognized in the rock record. A complete explanation of the origin of tides should include a discussion of dynamic tidal theory. In the dynamic tidal model, tides resulting from the motions of the Moon in its orbit around the Earth and the Earth in its orbit around the Sun are modeled as products of the combined effects of a series of phantom satellites. The movement of each of these satellites, relative to the Earth's equator, creates its own tidal wave that moves around an amphidromic point. Each of these waves is referred to as a tidal constituent. The geometries of the ocean basins determine which of these constituents are amplified. Thus, the tide-raising potential for any locality on Earth can be conceptualized as the result of a series of tidal constituents specific to that region. A better understanding of tidal cycles opens up remarkable opportunities for research on tidal deposits with implications for, among other things, a more complete understanding of the tidal dynamics responsible for sediment transport and deposition, changes in Earth-Moon distance through time, and the possible influences tidal cycles may exert on organisms. ?? 2006 Elsevier B.V. All rights reserved.

  18. Ocean energy. Tide and tidal power

    Energy Technology Data Exchange (ETDEWEB)

    Finkl, Charles W. [Coastal Planning and Engineering, Inc., Boca Raton, FL (United States); Charlier, Roger H.

    2009-07-01

    Engineers' dreams and fossil energy replacement schemes can come true. Man has been tapping the energy of the sea to provide power for his industries for centuries. Tidal energy combined with that of waves and marine winds rank among those most successfully put the work. Large scale plants are capital intensive but smaller ones, particularly built in China, have proven profitable. Since the initiation of the St Malo project in France, similar projects have gone into active service where methods have been devised to cut down on costs, new types of turbines developed and cost competitiveness considerably improved. Tidal power has enormous potential. The book reviews recent progress in extracting power from the ocean, surveys the history of tidal power harnessing and updates a prior publication by the author. (orig.)

  19. Effect of tidal environment on the trophic balance of mixotrophic hexacorals using biochemical profile and photochemical performance as indicators.

    Science.gov (United States)

    Rosa, Inês C; Rocha, Rui J M; Cruz, Igor; Lopes, Ana; Menezes, Natália; Bandarra, Narcisa; Kikuchi, Ruy; Serôdio, João; Soares, Amadeu M V M; Rosa, Rui

    2018-04-01

    Fluctuations of environmental factors in intertidal habitats can disrupt the trophic balance of mixotrophic cnidarians. We investigated the effect of tidal environments (subtidal, tidal pools and emerged areas) on fatty acid (FA) content of Zoanthus sociatus and Siderastrea stellata. Effect on photophysiology was also accessed as an autotrophy proxy. There was a general tendency of a lower percentage of zooplankton-associated FAs in colonies from emerged areas or tidal pools when compared with colonies from the subtidal environment. Moreover, tidal environment significantly affected the photophysiology of both species. Colonies from the subtidal generally showed lower values of α, ETR max and E k when compared with their conspecifics from tidal pools or emerged areas. However, the absence of consistent patterns in F v /F m and in dinoflagellate-associated FAs, suggest that these corals are well adapted to intertidal conditions. This suggests that intertidal pressures may disturb the trophic balance, mainly by affecting heterotrophy of these species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Sedimentary Facies Mapping Based on Tidal Channel Network and Topographic Features

    Science.gov (United States)

    Ryu, J. H.; Lee, Y. K.; Kim, K.; Kim, B.

    2015-12-01

    Tidal flats on the west coast of Korea suffer intensive changes in their surface sedimentary facies as a result of the influence of natural and artificial changes. Spatial relationships between surface sedimentary facies distribution and benthic environments were estimated for the open-type Ganghwa tidal flat and semi closed-type Hwangdo tidal flat, Korea. In this study, we standardized the surface sedimentary facies and tidal channel index of the channel density, distance, thickness and order. To extract tidal channel information, we used remotely sensed data, such as those from the Korea Multi-Purpose Satellite (KOMPSAT)-2, KOMPSAT-3, and aerial photographs. Surface sedimentary facies maps were generated based on field data using an interpolation method.The tidal channels in each sediment facies had relatively constant meandering patterns, but the density and complexity were distinguishable. The second fractal dimension was 1.7-1.8 in the mud flat, about 1.4 in the mixed flat, and about 1.3 in the sand flat. The channel density was 0.03-0.06 m/m2 in the mud flat and less than 0.02 m/m2 in the mixed and sand flat areas of the two test areas. Low values of the tidal channel index, which indicated a simple pattern of tidal channel distribution, were identified at areas having low elevation and coarse-grained sediments. By contrast, high values of the tidal channel index, which indicated a dendritic pattern of tidal channel distribution, were identified at areas having high elevation and fine-grained sediments. Surface sediment classification based on remotely sensed data must circumspectly consider an effective critical grain size, water content, local topography, and intertidal structures.

  1. Tidal radiation

    International Nuclear Information System (INIS)

    Mashhoon, B.

    1977-01-01

    The general theory of tides is developed within the framework of Einstein's theory of gravitation. It is based on the concept of Fermi frame and the associated notion of tidal frame along an open curve in spacetime. Following the previous work of the author an approximate scheme for the evaluation of tidal gravitational radiation is presented which is valid for weak gravitational fields. The emission of gravitational radiation from a body in the field of a black hole is discussed, and for some cases of astrophysical interest estimates are given for the contributions of radiation due to center-of-mass motion, purely tidal deformation, and the interference between the center of mass and tidal motions

  2. Chemical enrichment by tidally disrupted stars near a black hole in the Galactic Center

    International Nuclear Information System (INIS)

    Luminet, J.P.; Barbuy, B.

    1990-01-01

    The amount of species produced in the nucleosynthesis tidally induced by a large black hole on infalling stars is computed. The total mass of isotopic species N-14, N-15, Mg-25, Mg-26, and Al-26, Al-27 produced in this process along the first billion years of the Galaxy life are compared to possible observational evidences. 35 refs

  3. Turbine Control of a Tidal and River Power Generator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-08-01

    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. The input variations to these types of resources are slower but also steadier than wind or solar generation. The level of water turbulent flow may vary from one place to another, however, the control algorithm can be adjusted to local environment. This paper describes the hydrokinetic aspects of river and tidal generation based on a river and tidal generator. Although the information given in this paper is not that of an exact generator deployed on site, the data used is representative of a typical river or tidal generator. In this paper, the hydrokinetic and associated electrical controller of the system were not included; however, the focus of this paper is on the hydrodynamic control.

  4. Jetted tidal disruptions of stars as a flag of intermediate mass black holes at high redshifts

    Science.gov (United States)

    Fialkov, Anastasia; Loeb, Abraham

    2017-11-01

    Tidal disruption events (TDEs) of stars by single or binary supermassive black holes (SMBHs) brighten galactic nuclei and reveal a population of otherwise dormant black holes. Adopting event rates from the literature, we aim to establish general trends in the redshift evolution of the TDE number counts and their observable signals. We pay particular attention to (I) jetted TDEs whose luminosity is boosted by relativistic beaming and (II) TDEs around binary black holes. We show that the brightest (jetted) TDEs are expected to be produced by massive black hole binaries if the occupancy of intermediate mass black holes (IMBHs) in low-mass galaxies is high. The same binary population will also provide gravitational wave sources for the evolved Laser Interferometer Space Antenna. In addition, we find that the shape of the X-ray luminosity function of TDEs strongly depends on the occupancy of IMBHs and could be used to constrain scenarios of SMBH formation. Finally, we make predictions for the expected number of TDEs observed by future X-ray telescopes finding that a 50 times more sensitive instrument than the Burst Alert Telescope (BAT) on board the Swift satellite is expected to trigger ˜10 times more events than BAT, while 6-20 TDEs are expected in each deep field observed by a telescope 50 times more sensitive than the Chandra X-ray Observatory if the occupation fraction of IMBHs is high. Because of their long decay times, high-redshift TDEs can be mistaken for fixed point sources in deep field surveys and targeted observations of the same deep field with year-long intervals could reveal TDEs.

  5. EVOLUTIONARY TRACKS OF TIDALLY STIRRED DISKY DWARF GALAXIES

    International Nuclear Information System (INIS)

    Lokas, Ewa L.; Kazantzidis, Stelios; Mayer, Lucio

    2011-01-01

    Using collisionless N-body simulations, we investigate the tidal evolution of late-type, rotationally supported dwarfs inside Milky Way sized host galaxies. Our study focuses on a wide variety of dwarf orbital configurations and initial structures. During the evolution, the disky dwarfs undergo strong mass loss, the stellar disks are transformed into spheroids, and rotation is replaced by random motions of the stars. Thus, the late-type progenitors are transformed into early-type dwarfs as envisioned by the tidal stirring model for the formation of dwarf spheroidal (dSph) galaxies in the Local Group. We determine the photometric properties of the dwarfs, including the total visual magnitude, the half-light radius, and the central surface brightness as they would be measured by an observer near the galactic center. Special emphasis is also placed on studying their kinematics and shapes. We demonstrate that the measured values are biased by a number of observational effects including the increasing angle of the observation cone near the orbital pericenter, the fact that away from the pericenter the tidal tails are typically oriented along the line of sight, and the fact that for most of the evolution the stellar components of the dwarfs are triaxial ellipsoids whose major axis tumbles with respect to the line of sight. Finally, we compare the measured properties of the simulated dwarfs to those of dwarf galaxies in the Local Group. The evolutionary tracks of the dwarfs in different parameter planes and the correlations between their different properties, especially the total magnitude and the surface brightness, strongly suggest that present-day dSph galaxies may have indeed formed from late-type progenitors as proposed by the tidal stirring scenario.

  6. Recreating the chemical evolution of the Sagittarius dwarf spheroidal from its tidal debris

    Science.gov (United States)

    Carlin, Jeffrey L.; Sheffield, Allyson; Cunha, Katia M. L.; Smith, Verne V.

    2018-06-01

    We present a detailed chemical analysis of the Sagittarius (Sgr) tidal stream based on high-resolution Gemini+GRACES spectra of 42 members of the highest surface brightness portions of both the trailing and leading arms of the Sgr stream. We select Sgr tidal stream candidates using a 2MASS+WISE color-color selection, combined with LAMOST radial velocities, allowing us to efficiently select Sgr stream members with little contamination from field stars. Sgr is a recently infallen, currently disrupting dwarf spheroidal galaxy, with roughly 70% of the luminosity of the Sgr system residing in the tidal streams. With this study, we provide a link between the (known) chemical properties in the intact Sgr core and the significant portion of the Sgr system's luminosity that is estimated to currently reside in the streams. In this talk, we focus on abundances of alpha-elements, but we will also analyze neutron-capture (both r- and s-process) and iron-peak species. We compare our chemical abundances to the few existing measurements in the stream as well as the numerous results in the Sgr core.

  7. Tidal power

    International Nuclear Information System (INIS)

    Baker, A.C.

    1991-01-01

    This book describes how large tides develop in particular places and how the energy could be extracted by building suitable barrages. The principal features of a barrage and possible methods of operation are described in detail. Although a tidal power barrage would be non-polluting, the resulting changes in the tidal regime would have important environmental effects. These are discussed together with the economics of tidal power. Methods of assessing the likely cost of electricity from any site are set out and applied to possible sites around the world. (author)

  8. Dark matter substructure in numerical simulations: a tale of discreteness noise, runaway instabilities, and artificial disruption

    Science.gov (United States)

    van den Bosch, Frank C.; Ogiya, Go

    2018-04-01

    To gain understanding of the complicated, non-linear, and numerical processes associated with the tidal evolution of dark matter subhaloes in numerical simulation, we perform a large suite of idealized simulations that follow individual N-body subhaloes in a fixed, analytical host halo potential. By varying both physical and numerical parameters, we investigate under what conditions the subhaloes undergo disruption. We confirm the conclusions from our more analytical assessment in van den Bosch et al. that most disruption is numerical in origin; as long as a subhalo is resolved with sufficient mass and force resolution, a bound remnant survives. This implies that state-of-the-art cosmological simulations still suffer from significant overmerging. We demonstrate that this is mainly due to inadequate force softening, which causes excessive mass loss and artificial tidal disruption. In addition, we show that subhaloes in N-body simulations are susceptible to a runaway instability triggered by the amplification of discreteness noise in the presence of a tidal field. These two processes conspire to put serious limitations on the reliability of dark matter substructure in state-of-the-art cosmological simulations. We present two criteria that can be used to assess whether individual subhaloes in cosmological simulations are reliable or not, and advocate that subhaloes that satisfy either of these two criteria be discarded from further analysis. We discuss the potential implications of this work for several areas in astrophysics.

  9. Exploitation of tidal power in the Bay of Cadiz: ancient tidal mills

    Directory of Open Access Journals (Sweden)

    José J. Alonso del Rosario

    2006-03-01

    Full Text Available Tidal mills were the main industrial activity in the Bay of Cadiz for centuries. They were the last step in the production of salt and flour made by grinding grains. They were installed along the shallow channels, called “caños”, around the Bay, where the frictional and geometrical effects are very strong. The authors have analyzed the propagation of the semidiurnal tidal waves along the Caño de Sancti Petri and the available tidal power in the area. The ancient tidal mills were located where the available tidal potential energy is highest, which ensured productivity for grinding salt and wheat in ancient times. Some considerations about the possibility of installing tidal power plants in the Bay of Cadiz now are given, which show that it could be a real and renewal alternative source of energy for the area.

  10. Tidal current and tidal energy changes imposed by a dynamic tidal power system in the Taiwan Strait, China

    Science.gov (United States)

    Dai, Peng; Zhang, Jisheng; Zheng, Jinhai

    2017-12-01

    The Taiwan Strait has recently been proposed as a promising site for dynamic tidal power systems because of its shallow depth and strong tides. Dynamic tidal power is a new concept for extracting tidal potential energy in which a coast-perpendicular dike is used to create water head and generate electricity via turbines inserted in the dike. Before starting such a project, the potential power output and hydrodynamic impacts of the dike must be assessed. In this study, a two-dimensional numerical model based on the Delft3D-FLOW module is established to simulate tides in China. A dike module is developed to account for turbine processes and estimate power output by integrating a special algorithm into the model. The domain decomposition technique is used to divide the computational zone into two subdomains with grid refinement near the dike. The hydrodynamic processes predicted by the model, both with and without the proposed construction, are examined in detail, including tidal currents and tidal energy flux. The predicted time-averaged power yields with various opening ratios are presented. The results show that time-averaged power yield peaks at an 8% opening ratio. For semidiurnal tides, the flow velocity increases in front of the head of the dike and decreases on either side. For diurnal tides, these changes are complicated by the oblique incidence of tidal currents with respect to the dike as well as by bathymetric features. The dike itself blocks the propagation of tidal energy flux.

  11. DEEP IMAGING OF M51: A NEW VIEW OF THE WHIRLPOOL’S EXTENDED TIDAL DEBRIS

    International Nuclear Information System (INIS)

    Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul

    2015-01-01

    We present deep, wide-field imaging of the M51 system using CWRU’s Burrell Schmidt Telescope at KPNO to study the faint tidal features that constrain its interaction history. Our images trace M51's tidal morphology down to a limiting surface brightness of μ B,lim ∼ 30 mag arcsec −2 and provide accurate colors (σ B−V <0.1) down to μ B ∼ 28. We identify two new tidal streams in the system (the south and northeast plumes) with surface brightnesses of μ B = 29 and luminosities of ∼10 6 L ⊙,B . While the northeast plume may be a faint outer extension of the tidal “crown” north of NGC 5195 (M51b), the south plume has no analog in any existing M51 simulation and may represent a distinct tidal stream or disrupted dwarf galaxy. We also trace the extremely diffuse northwest plume out to a total extent of 20′ (43 kpc) from NGC 5194 (M51a) and show it to be physically distinct from the overlapping bright tidal streams from M51b. The northwest plume’s morphology and red color (B−V=0.8) instead argue that it originated from tidal stripping of M51a’s extreme outer disk. Finally, we confirm the strong segregation of gas and stars in the southeast tail and do not detect any diffuse stellar component in the H i portion of the tail. Extant simulations of M51 have difficulty matching both the wealth of tidal structure in the system and the lack of stars in the H i tail, motivating new modeling campaigns to study the dynamical evolution of this classic interacting system

  12. Harmonic tidal analysis at a few stations using the least squares method

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Das, V.K.; Bahulayan, N.

    Using the least squares method, harmonic analysis has been performed on hourly water level records of 29 days at several stations depicting different types of non-tidal noise. For a tidal record at Mormugao, which was free from storm surges (low...

  13. The Disruption and Demise of Periodic Comet Shoemaker-Levy 9

    Science.gov (United States)

    Asphaug, Erik; Benz, Willy; Cuzzi, Jeffrey (Technical Monitor)

    1994-01-01

    The impact of the fragmented comet Shoemaker-Levy 9 (SL9) into Jupiter this July promises to change our understanding of the outer solar system. More than twenty mountain-sized conglomerates of ice and rock will hit the atmosphere at approx. 50 km/s over the course of a week beginning July 16, releasing approx. 10(exp 4) to 10(exp8) megatons of energy per burst, and providing unique and perhaps pivotal clues to the properties of comets and the physics of massive atmospheres. Because the fragments will strike the far side of Jupiter, data acquisition, analysis and interpretation will be quite sensitive to the actual size and energy of the fragments. We therefore examine an event which took place two summers ago, unnoticed and unobserved: the disruption of SL9 into a "string of pearls' as it passed within the Roche limit at perijove. We first demonstrate, on the basis of timescales of tidal interaction, that the comet could not have broken into 20+ fragments through a hierarchy of brittle fracture events. Next, noting that the tidal stress was too weak to have even fragmented an uncompressed mass of freshly fallen snow, we run models for a strengthless comet held together only by self-gravity. We explore the initial size, density, and rotation. We conclude that a 4 km diameter comet (smaller if a prograde rotator) of density approx. 0.5 g/cu cm disrupts and disperses into a chain of fragments similar to Shoemaker-Levy 9, whether we begin with 21, 85, 169, 700 or 2000 sub-grains. Gravitational reaccumulation is evidently the answer, and there is no need to invoke the presence of 21 "cometesimals" as the subscale of the comet. To explain how a comet can be weaker than uncompacted snow, we show that the ring-plane crossing prior to perijove could have caused total damage. Finally, we compute the tidal stress on impactors as they approach Jupiter this July. Objects of various density are moderately distorted but not disrupted by the time they strike the planet.

  14. Tidal Response to Sea-Level Rise in Different Types of Estuaries: The Importance of Length, Bathymetry, and Geometry

    Science.gov (United States)

    Du, Jiabi; Shen, Jian; Zhang, Yinglong J.; Ye, Fei; Liu, Zhuo; Wang, Zhengui; Wang, Ya Ping; Yu, Xin; Sisson, Mac; Wang, Harry V.

    2018-01-01

    Tidal response to sea-level rise (SLR) varies in different coastal systems. To provide a generic pattern of tidal response to SLR, a systematic investigation was conducted using numerical techniques applied to idealized and realistic estuaries, with model results cross-checked by analytical solutions. Our results reveal that the response of tidal range to SLR is nonlinear, spatially heterogeneous, and highly affected by the length and bathymetry of an estuary and weakly affected by the estuary convergence with an exception of strong convergence. Contrary to the common assumption that SLR leads to a weakened bottom friction, resulting in increased tidal amplitude, we demonstrate that tidal range is likely to decrease in short estuaries and in estuaries with a narrow channel and large low-lying shallow areas.

  15. AN ULTRASOFT X-RAY FLARE FROM 3XMM J152130.7+074916: A TIDAL DISRUPTION EVENT CANDIDATE

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dacheng [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States); Maksym, Peter W.; Irwin, Jimmy A. [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Komossa, S. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Webb, Natalie A.; Godet, Olivier; Barret, Didier [CNRS, IRAP, 9 avenue du Colonel Roche, BP 44346, F-31028 Toulouse Cedex 4 (France); Grupe, Dirk [Space Science Center, Morehead State University, 235 Martindale Drive, Morehead, KY 40351 (United States); Gwyn, Stephen D. J., E-mail: dacheng.lin@unh.edu [Canadian Astronomy Data Centre, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, British Columbia, V9E 2E7 (Canada)

    2015-09-20

    We report on the discovery of an ultrasoft X-ray transient source, 3XMM J152130.7+074916. It was serendipitously detected in an XMM-Newton observation on 2000 August 23, and its location is consistent with the center of the galaxy SDSS J152130.72+074916.5 (z = 0.17901 and d{sub L} = 866 Mpc). The high-quality X-ray spectrum can be fitted with a thermal disk with an apparent inner disk temperature of 0.17 keV and a rest-frame 0.24–11.8 keV unabsorbed luminosity of ∼5 × 10{sup 43} erg s{sup −1}, subject to a fast-moving warm absorber. Short-term variability was also clearly observed, with the spectrum being softer at lower flux. The source was covered but not detected in a Chandra observation on 2000 April 3, a Swift observation on 2005 September 10, and a second XMM-Newton observation on 2014 January 19, implying a large variability (>260) of the X-ray flux. The optical spectrum of the candidate host galaxy, taken ∼11 years after the XMM-Newton detection, shows no sign of nuclear activity. This, combined with its transient and ultrasoft properties, leads us to explain the source as tidal disruption of a star by the supermassive black hole in the galactic center. We attribute the fast-moving warm absorber detected in the first XMM-Newton observation to the super-Eddington outflow associated with the event and the short-term variability to a disk instability that caused fast change of the inner disk radius at a constant mass accretion rate.

  16. ON THE SURVIVABILITY AND METAMORPHISM OF TIDALLY DISRUPTED GIANT PLANETS: THE ROLE OF DENSE CORES

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shang-Fei; Lin, Douglas N. C. [Kavli Institute for Astronomy and Astrophysics and Department of Astronomy, Peking University, Beijing 100871 (China); Guillochon, James; Ramirez-Ruiz, Enrico, E-mail: liushangfei@pku.edu.cn [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2013-01-01

    A large population of planetary candidates in short-period orbits have been found recently through transit searches, mostly with the Kepler mission. Radial velocity surveys have also revealed several Jupiter-mass planets with highly eccentric orbits. Measurements of the Rossiter-McLaughlin effect indicate that the orbital angular momentum vector of some planets is inclined relative to the spin axis of their host stars. This diversity could be induced by post-formation dynamical processes such as planet-planet scattering, the Kozai effect, or secular chaos which brings planets to the vicinity of their host stars. In this work, we propose a novel mechanism to form close-in super-Earths and Neptune-like planets through the tidal disruption of gas giant planets as a consequence of these dynamical processes. We model the core-envelope structure of gas giant planets with composite polytropes which characterize the distinct chemical composition of the core and envelope. Using three-dimensional hydrodynamical simulations of close encounters between Jupiter-like planets and their host stars, we find that the presence of a core with a mass more than 10 times that of the Earth can significantly increase the fraction of envelope which remains bound to it. After the encounter, planets with cores are more likely to be retained by their host stars in contrast with previous studies which suggested that coreless planets are often ejected. As a substantial fraction of their gaseous envelopes is preferentially lost while the dense incompressible cores retain most of their original mass, the resulting metallicity of the surviving planets is increased. Our results suggest that some gas giant planets can be effectively transformed into either super-Earths or Neptune-like planets after multiple close stellar passages. Finally, we analyze the orbits and structure of known planets and Kepler candidates and find that our model is capable of producing some of the shortest-period objects.

  17. The distribution and tapping tidal energy

    Directory of Open Access Journals (Sweden)

    Zygmunt Kowalik

    2004-09-01

    Full Text Available Tidal power along tidal shores has been used for centuries to run small tidal mills. Generating electricity by tapping tidal power proved to be very successful only in the last century through the tidal power plant constructed in 1967 in La Rance, France. This used a large barrier to generate the sea level head necessary for driving turbines. Construction of such plants evolved very slowly because of prohibitive costs and concerns about the environmental impact. Developments in the construction of small, efficient and inexpensive underwater turbines admit the possibility of small scale operations that will use local tidal currents to bring electricity to remote locations. Since the generation of such electricity is concerned with the tidal energy in local water bodies, it is important to understand the site-specific energy balance, i.e., the energy flowing in through open boundaries, and the energy generated and dissipated within the local domain. The question is how to tap the tidal energy while keeping possible changes in the present tidal regimes to a minimum. The older approach of constructing barrages may still be quite useful in some locations. The basics of such tidal power plants constructed in a small bay are analyzed in order to understand the principal parameter for tidal plant evaluation, i.e., the power produced.     The new approach is to place turbines - devices similar to windmills - in the pathway of tidal currents. Theoretically, the amount of power available by such turbines for electricity generation is proportional to the water density and velocity cubed of the tidal flow. The naturally dissipated tidal power due to bottom friction forces is also proportional to the cube of the velocity. Because of this similarity, the exploitation of tidal energy can be directed to reinvesting the naturally dissipated power into tidal power for the generation of electricity. This approach to tidal power exploitation is better tuned

  18. From Globular Clusters to Tidal Dwarfs: Structure Formation in Tidal Tails

    Science.gov (United States)

    Knierman, K.; Hunsberger, S.; Gallagher, S.; Charlton, J.; Whitmore, B.; Hibbard, J.; Kundu, A.; Zaritsky, D.

    1999-12-01

    Galaxy interactions trigger star formation in tidal debris. How does this star formation depend on the local and global physical conditions? Using WFPC2/HST images, we investigate the range of structure within tidal tails of four classic ``Toomre Sequence'' mergers: NGC 4038/9 (``Antennae''), NGC 7252 (``Atoms for Peace''), NGC 3921, and NGC 3256. These tails contain a variety of stellar associations with sizes from globular clusters up to dwarf Irregulars. We explore whether there is a continuum between the two extremes. Our eight fields sample seven tidal tails at a variety of stages in the evolutionary sequence. Some of these tails are rich in HI while others are HI poor. Large tidal dwarfs are embedded in three of the tails. Using V and I WFPC2 images, we measure luminosities and colors of substructures within the tidal tails. The properties of globular cluster candidates in the tails will be contrasted with those of the hundreds of young clusters in the central regions of these mergers. We address whether globular clusters form and survive in the tidal tails and whether tidal dwarfs are composed of only young stars. By comparing the properties of structures in the tails of the four mergers with different ages, we examine systematic evolution of structure along the evolutionary sequence and as a function of HI content. We acknowledge support from NASA through STScI, and from NSF for an REU supplement for Karen Knierman.

  19. Variability of tidal signals in the Brent Delta Front: New observations on the Rannoch Formation, northern North Sea

    Science.gov (United States)

    Wei, Xiaojie; Steel, Ronald J.; Ravnås, Rodmar; Jiang, Zaixing; Olariu, Cornel; Li, Zhiyang

    2016-04-01

    Detailed observations on the Rannoch Formation in several deep Viking Graben wells indicate that the 'classical' wave-dominated Brent delta-front shows coupled storm-tide processes. The tidal signals are of three types: I): alternations of thick cross-laminated sandstone and thin mud-draped sandstone, whereby double mud drapes are prominent but discretely distributed, II): a few tidal bundles within bottomsets and foresets of up to 10 cm-thick sets cross-strata, and III): dm-thick heterolithic lamination showing multiple, well-organized sand-mud couplets. During progradation of the Brent Delta, the Rannoch shoreline system passed upward from 1) a succession dominated by clean-water, storm-event sets and cosets frequently and preferentially interbedded with type I tidal beds, and occasional types II and III tidal deposits, toward 2) very clean storm-event beds less frequently separated by types II and III tidal beds, and then into 3) a thin interval showing muddier storm-event beds mainly alternating with type II tidal beds. It is likely that those variations in preservation bias of storm and tidal beds in each facies succession result from combined effects of 1) the frequency and duration of storms; 2) river discharge; and 3) the absolute and relative strength of tides. Tidal deposits are interpreted as inter-storm, fair-weather deposits, occurred preferentially in longer intermittent fair-weather condition and periods of lower river discharge, and well-pronounced in the distal-reach of delta-front. The formation and preservation of tidal signals between storm beds, indicate that the studied Rannoch Formation was most likely a storm-dominated, tide-influenced delta front 1) near the mouth of a large Brent river, where a significant tidal prism and high tidal range might be expected, and 2) in a setting where there were relatively high sedimentation rates associated with high local subsidence rates, so that the storm waves did not completely rework the inter

  20. Organic geochemistry in Pennsylvanian tidally influenced sediments from SW Indiana

    Science.gov (United States)

    Mastalerz, Maria; Kvale, E.P.; Stankiewicz, B.A.; Portle, K.

    1999-01-01

    Tidal rhythmites are vertically stacked small-scale sedimentary structures that record daily variations in tidal current energy and are known to overlie some low-sulfur coals in the Illinois Basin. Tidal rhythmites from the Pennsylvanian Brazil Formation in Indiana have been analyzed sedimentologically, petrographically, and geochemically in order to understand the character and distribution of organic matter (OM) preserved in an environment of daily interactions between marine and fresh waters. The concentration of organic matter (TOC) ranges from traces to 6.9% and sulfur rarely exceeds 0.1% in individual laminae. Angular vitrinite is the major organic matter type, accounting for 50-90% of total OM. The C/S ratio decreases as the verfical distance from the underlying coal increases. A decreasing C/S ratio coupled with decreases in Pr/Ph, Pr/n-C17, Ph/n-C18 ratios and a shift of carbon isotopic composition towards less negative values suggest an increase in salinity from freshwater in the mudflat tidal rhythmite facies close to the coal to brackish/marine in the sandflat tidal rhythmite facies further above from the coal. Within an interval spanning one year of deposition, TOC and S values show monthly variability. On a daily scale, TOC and S oscillations are still detectable but they are of lower magnitude than on a monthly scale. These small-scale variations are believed to reflect oscillations in water salinity related to tidal cycles.Tidal rhythmites are vertically stacked small-scale sedimentary structures that record daily variations in tidal current energy and are known to overlie some low-sulfur coals in the Illinois Basin. Tidal rhythmites from the Pennsylvanian Brazil Formation in Indiana have been analyzed sedimentologically, petrographically, and geochemically in order to understand the character and distribution of organic matter (OM) preserved in an environment of daily interactions between marine and fresh waters. The concentration of organic matter

  1. Empirical Tidal Dissipation in Exoplanet Hosts From Tidal Spin-up

    Science.gov (United States)

    Penev, Kaloyan; Bouma, L. G.; Winn, Joshua N.; Hartman, Joel D.

    2018-04-01

    Stars with hot Jupiters (HJs) tend to rotate faster than other stars of the same age and mass. This trend has been attributed to tidal interactions between the star and planet. A constraint on the dissipation parameter {Q}\\star {\\prime } follows from the assumption that tides have managed to spin up the star to the observed rate within the age of the system. This technique was applied previously to HATS-18 and WASP-19. Here, we analyze the sample of all 188 known HJs with an orbital period tidal dissipation parameter ({Q}\\star {\\prime }) increases sharply with forcing frequency, from 105 at 0.5 day‑1 to 107 at 2 day‑1. This helps to resolve a number of apparent discrepancies between studies of tidal dissipation in binary stars, HJs, and warm Jupiters. It may also allow for a HJ to damp the obliquity of its host star prior to being destroyed by tidal decay.

  2. The influence of waves on the tidal kinetic energy resource at a tidal stream energy site

    International Nuclear Information System (INIS)

    Guillou, Nicolas; Chapalain, Georges; Neill, Simon P.

    2016-01-01

    Highlights: • We model the influence of waves on tidal kinetic energy in the Fromveur Strait. • Numerical results are compared with field data of waves and currents. • The introduction of waves improve predictions of tidal stream power during storm. • Mean spring tidal stream potential is reduced by 12% during extreme wave conditions. • Potential is reduced by 7.8% with waves forces and 5.3% with enhanced friction. - Abstract: Successful deployment of tidal energy converters relies on access to accurate and high resolution numerical assessments of available tidal stream power. However, since suitable tidal stream sites are located in relatively shallow waters of the continental shelf where tidal currents are enhanced, tidal energy converters may experience effects of wind-generated surface-gravity waves. Waves may thus influence tidal currents, and associated kinetic energy, through two non-linear processes: the interaction of wave and current bottom boundary layers, and the generation of wave-induced currents. Here, we develop a three-dimensional tidal circulation model coupled with a phase-averaged wave model to quantify the impact of the waves on the tidal kinetic energy resource of the Fromveur Strait (western Brittany) - a region that has been identified with strong potential for tidal array development. Numerical results are compared with in situ observations of wave parameters (significant wave height, peak period and mean wave direction) and current amplitude and direction 10 m above the seabed (the assumed technology hub height for this region). The introduction of waves is found to improve predictions of tidal stream power at 10 m above the seabed at the measurement site in the Strait, reducing kinetic energy by up to 9% during storm conditions. Synoptic effects of wave radiation stresses and enhanced bottom friction are more specifically identified at the scale of the Strait. Waves contribute to a slight increase in the spatial gradient of

  3. Increased Tidal Dissipation Using Advanced Rheological Models: Implications for Io and Tidally Active Exoplanets

    Science.gov (United States)

    Renaud, Joe P.; Henning, Wade G.

    2018-04-01

    The advanced rheological models of Andrade and Sundberg & Cooper are compared to the traditional Maxwell model to understand how each affects the tidal dissipation of heat within rocky bodies. We find both Andrade and Sundberg–Cooper rheologies can produce at least 10× the tidal heating compared to a traditional Maxwell model for a warm (1400–1600 K) Io-like satellite. Sundberg–Cooper can cause even larger dissipation around a critical temperature and frequency. These models allow cooler planets to stay tidally active in the face of orbital perturbations—a condition we term “tidal resilience.” This has implications for the time evolution of tidally active worlds and the long-term equilibria they fall into. For instance, if Io’s interior is better modeled by the Andrade or Sundberg–Cooper rheologies, the number of possible resonance-forming scenarios that still produce a hot, modern Io is expanded, and these scenarios do not require an early formation of the Laplace resonance. The two primary empirical parameters that define the Andrade anelasticity are examined in several phase spaces to provide guidance on how their uncertainties impact tidal outcomes, as laboratory studies continue to constrain their real values. We provide detailed reference tables on the fully general equations required for others to insert the models of Andrade and Sundberg–Cooper into standard tidal formulae. Lastly, we show that advanced rheologies can greatly impact the heating of short-period exoplanets and exomoons, while the properties of tidal resilience could mean a greater number of tidally active worlds among all extrasolar systems.

  4. Plant distributions along salinity and tidal gradients in Oregon tidal marshes

    Science.gov (United States)

    Accurately modeling climate change effects on tidal marshes in the Pacific Northwest requires understanding how plant assemblages and species are presently distributed along gradients of salinity and tidal inundation. We outline on-going field efforts by the EPA and USGS to dete...

  5. Discovery of a Transient U-Band Dropout in a Lyman Break Survey: A Tidally Disrupted Star at z=3.3?

    Science.gov (United States)

    Stern, Daniel; van Dokkum, P. G.; Nugent, Peter; Sand, D. J.; Ellis, R. S.; Sullivan, Mark; Bloom, J. S.; Frail, D. A.; Kneib, J.-P.; Koopmans, L. V. E.; Treu, Tommaso

    2004-09-01

    We report the discovery of a transient source in the central regions of galaxy cluster A267. The object, which we call ``PALS-1,'' was found in a survey aimed at identifying highly magnified Lyman break galaxies in the fields of intervening rich clusters. At discovery, the source had Un>24.7 (2 σ AB), g=21.96+/-0.12, and very blue g-r and r-i colors; i.e., PALS-1 was a ``U-band dropout,'' characteristic of star-forming galaxies and quasars at z~3. However, 3 months later the source had faded by more than 3 mag. Further observations showed a continued decline in luminosity, to R>26.4 at 7 months after discovery. Although the apparent brightness suggests a supernova at roughly the cluster redshift, we show that the photometry and light curve argue against any known type of supernova at any redshift. The spectral energy distribution and location near the center of a galaxy cluster are consistent with the hypothesis that PALS-1 is a gravitationally lensed transient at z~3.3. If this interpretation is correct, the source is magnified by a factor of 4-7, and two counterimages are predicted. Our lens model predicts that there are time delays between the three images of 1-10 yr and that we have witnessed the final occurrence of the transient. The intense luminosity (MAB~-23.5 after correcting for lensing) and blue UV continuum (implying T>~50,000 K) argue that the source may have been a flare resulting from the tidal disruption of a star by a 106-108 Msolar black hole. Regardless of its physical nature, PALS-1 highlights the importance of monitoring regions of high magnification in galaxy clusters for distant time-varying phenomena. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the California Institute of Technology and the University of California.

  6. Tidal phenomena in reservoirs; Fenomeno de mare em reservatorios

    Energy Technology Data Exchange (ETDEWEB)

    Pinilla Cortes, John Freddy

    1997-06-01

    This work models the oceanic tidal effect on reservoirs by coupling geomechanic principles with equations for fluid in a deformable porous media. The coupling revealed the importance of establishing properly the system compressibility under the various possible configurations of the loading system. The basic models for infinite reservoir, constant outer-pressure reservoir and closed reservoir were considered. It was verified that it was possible to apply the superposition of effects on the solution for the basic models by carrying a simple transformation on the solution variable. The problem was treated by in the context of test analysis, concerning dimensionless form of variables and the inclusion of well effects. The solution for the infinite reservoir including tidal effects. The solution for the infinite reservoir including tidal effects was obtained in the Laplace space and was inverted numerically by using Crump's routine. The results were incorporated to conventional type curves, and were validated by comparison with real and simulated pressure test data. Finally, alternate practices were suggested to integrate the well test analysis in reservoirs affected by the tidal effect. (author)

  7. Tidal variations in the Sundarbans Estuarine System, India

    Indian Academy of Sciences (India)

    gle channel; estuaries of this type are by far the most numerous .... the observation stations and describe the methods used. ...... The Cen- tral Inland Fisheries Research Institute, in their .... Qualitative information regarding tidal levels and the ...

  8. On luminescence bleaching of tidal channel sediments

    DEFF Research Database (Denmark)

    Fruergaard, Mikkel; Pejrup, Morten; Murray, Andrew S.

    2015-01-01

    We investigate the processes responsible for bleaching of the quartz OSL signal from tidal channel sediment. Tidal dynamics are expected to play an important role for complete bleaching of tidal sediments. However, no studies have examined the amount of reworking occurring in tidal channels...... and on tidal flats due to the mixing caused by currents and waves. We apply bed level data to evaluate the amount of vertical sediment reworking in modern tidal channels and at a tidal flat. Cycles of deposition and erosion are measured with a bed level sensor, and the results show that gross sedimentation...... was several times higher than net sedimentation. We propose that tidal channel sediment is bleached either on the tidal flat before it is transported to the tidal channels and incorporated in channel-fill successions or, alternatively, on the shallow intertidal part of the channel banks. Based...

  9. The influence of neap-spring tidal variation and wave energy on sediment flux in salt marsh tidal creeks

    Science.gov (United States)

    Lacy, Jessica; Ferner, Matthew C.; Callaway, John C.

    2018-01-01

    Sediment flux in marsh tidal creeks is commonly used to gage sediment supply to marshes. We conducted a field investigation of temporal variability in sediment flux in tidal creeks in the accreting tidal marsh at China Camp State Park adjacent to northern San Francisco Bay. Suspended-sediment concentration (SSC), velocity, and depth were measured near the mouths of two tidal creeks during three six-to-ten-week deployments: two in winter and one in summer. Currents, wave properties and SSC were measured in the adjacent shallows. All deployments spanned the largest spring tides of the season. Results show that tidally-averaged suspended-sediment flux (SSF) in the tidal creeks decreased with increasing tidal energy, and SSF was negative (bayward) for tidal cycles with maximum water surface elevation above the marsh plain. Export during the largest spring tides dominated the cumulative SSF measured during the deployments. During ebb tides following the highest tides, velocities exceeded 1 m/s in the narrow tidal creeks, resulting in negative tidally-averaged water flux, and mobilizing sediment from the creek banks or bed. Storm surge also produced negative SSF. Tidally-averaged SSF was positive in wavey conditions with moderate tides. Spring-tide sediment export was about 50% less at a station 130 m further up the tidal creek than at the creek mouth. The negative tidally-averaged water flux near the creek mouth during spring tides indicates that in the lower marsh, some of the water flooding directly across the bay--marsh interface drains through the tidal creeks, and suggests that this interface may be a pathway for sediment supply to the lower marsh as well.

  10. Coastal inlets and tidal basins

    NARCIS (Netherlands)

    De Vriend, H.J.; Dronkers, J.; Stive, M.J.F.; Van Dongeren, A.; Wang, J.H.

    2002-01-01

    lecture note: Tidal inlets and their associated basins (lagoons) are a common feature of lowland coasts all around the world. A significant part ofthe world's coastlines is formed by barrier island coasts, and most other tidal coasts are interrupted by estuaries and lagoon inlets. These tidal

  11. A Candidate Tidal Disruption Event in a Quasar at z = 2.359 from Abundance Ratio Variability

    Science.gov (United States)

    Liu, Xin; Dittmann, Alexander; Shen, Yue; Jiang, Linhua

    2018-05-01

    A small fraction of quasars show an unusually high nitrogen-to-carbon ratio (N/C) in their spectra. These “nitrogen-rich” (N-rich) quasars are a long-standing puzzle because their interstellar medium implies stellar populations with abnormally high metallicities. It has recently been proposed that N-rich quasars may result from tidal disruption events (TDEs) of stars by supermassive black holes. The rapid enhancement of nitrogen and the depletion of carbon due to the carbon–nitrogen–oxygen cycle in supersolar mass stars could naturally produce high N/C. However, the TDE hypothesis predicts that the N/C should change with time, which has never hitherto been observed. Here we report the discovery of the first N-rich quasar with rapid N/C variability that could be caused by a TDE. Two spectra separated by 1.7 years (rest-frame) show that the N III] λ1750/C III] λ1909 intensity ratio decayed by ∼86% ± 14% (1σ). Optical (rest-frame UV) light-curve and X-ray observations are qualitatively consistent with the TDE hypothesis; though, the time baseline falls short of a definitive proof. Putting the single-object discovery into context, statistical analyses of the ∼80 known N-rich quasars with high-quality archival spectra show evidence (at a 5σ significance level) of a decrease in N/C on timescales of >1 year (rest-frame) and a constant level of ionization (indicated by the C III] λ1909/C IV λ1549 intensity ratio). If confirmed, our results demonstrate the method of identifying TDE candidates in quasars via abundance ratio variability, opening a new window of TDE observations at high redshift (z > 2) with upcoming large-scale time-domain spectroscopic surveys.

  12. Tidal locking of habitable exoplanets

    Science.gov (United States)

    Barnes, Rory

    2017-12-01

    Potentially habitable planets can orbit close enough to their host star that the differential gravity across their diameters can produce an elongated shape. Frictional forces inside the planet prevent the bulges from aligning perfectly with the host star and result in torques that alter the planet's rotational angular momentum. Eventually the tidal torques fix the rotation rate at a specific frequency, a process called tidal locking. Tidally locked planets on circular orbits will rotate synchronously, but those on eccentric orbits will either librate or rotate super-synchronously. Although these features of tidal theory are well known, a systematic survey of the rotational evolution of potentially habitable exoplanets using classic equilibrium tide theories has not been undertaken. I calculate how habitable planets evolve under two commonly used models and find, for example, that one model predicts that the Earth's rotation rate would have synchronized after 4.5 Gyr if its initial rotation period was 3 days, it had no satellites, and it always maintained the modern Earth's tidal properties. Lower mass stellar hosts will induce stronger tidal effects on potentially habitable planets, and tidal locking is possible for most planets in the habitable zones of GKM dwarf stars. For fast-rotating planets, both models predict eccentricity growth and that circularization can only occur once the rotational frequency is similar to the orbital frequency. The orbits of potentially habitable planets of very late M dwarfs ([InlineEquation not available: see fulltext.]) are very likely to be circularized within 1 Gyr, and hence, those planets will be synchronous rotators. Proxima b is almost assuredly tidally locked, but its orbit may not have circularized yet, so the planet could be rotating super-synchronously today. The evolution of the isolated and potentially habitable Kepler planet candidates is computed and about half could be tidally locked. Finally, projected TESS planets

  13. Turning the tide : tidal power in the UK

    OpenAIRE

    Sustainable Development Commission

    2007-01-01

    Contents: Turning the tide : tidal power in the UK -- Executive summary -- Tidal power in the UK : research report 1 : UK tidal resource assessment -- Tidal power in the UK : research report 2 : tidal technologies overview -- Tidal power in the UK : research report 3 : Severn barrage proposals -- Tidal power in the UK : research report 4 : Severn non-barrage options -- Tidal power in the UK : research report 5 : UK case studies. Summarised in the Welsh language version of the executive ...

  14. Tidal energy

    International Nuclear Information System (INIS)

    Lochte, H.G.

    1995-01-01

    Together with wave energy, ocean thermal energy, and the often overlooked energy from ocean curents tidal energy belongs to those renewable energy sources that can be subsumed under the generic term of ocean energy. All that these energy sources have in common, however, is that they are found in the ocean. The present article discusses tidal energy with respect to the four principal factors determining the scope of a renewable energy source, namely global, technical, and economic availability and ecological acceptability. (orig.) [de

  15. Tidally Heated Terrestrial Exoplanets

    Science.gov (United States)

    Henning, Wade Garrett

    This work models the surface and internal temperatures for hypothetical terrestrial planets in situations involving extreme tidal heating. The feasibility of such planets is evaluated in terms of the orbital perturbations that may give rise to them, their required proximity to a hoststar, and the potential for the input tidal heating to cause significant partial melting of the mantle. Trapping terrestrial planets into 2:1 resonances with migrating Hot Jupiters is considered as a reasonable way for Earth-like worlds to both maintain high eccentricities and to move to short enough orbital periods (1-20 days) for extreme tidal heating to occur. Secular resonance and secular orbital perturbations may support moderate tidal heating at a low equilibrium eccentricity. At orbital periods below 10-30 days, with eccentricities from 0.01 to 0.1, tidal heat may greatly exceed radiogenic heat production. It is unlikely to exceed insolation, except when orbiting very low luminosity hosts, and thus will have limited surface temperature expression. Observations of such bodies many not be able to detect tidal surface enhancements given a few percent uncertainty in albedo, except on the nightside of spin synchronous airless objects. Otherwise detection may occur via spectral detection of hotspots or high volcanic gas concentrations including sulfur dioxide and hydrogen sulfide. The most extreme cases may be able to produce magma oceans, or magma slush mantles with up to 40-60% melt fractions. Tides may alter the habitable zones for smaller red dwarf stars, but are generally detrimental. Multiple viscoelastic models, including the Maxwell, Voigt-Kelvin, Standard Anelastic Solid, and Burgers rheologies are explored and applied to objects such as Io and the super-Earth planet GJ 876d. The complex valued Love number for the Burgers rheology is derived and found to be a useful improvement when modeling the low temperature behavior of tidal bodies, particularly during low eccentricity

  16. Phase lag control of tidally reversing mega-ripple geometry and bed stress in tidal inlets

    Science.gov (United States)

    Traykovski, P.

    2016-02-01

    Recent observations in the Columbia River Mouth, New River Inlet, and Wasque Shoals have shown that tidally reversing mega-ripples are an ubiquitous bedform morphology in energetic tidal inlets. As the name implies, these bedforms reverse asymmetry and migration direction in each half tidal cycle. With wavelengths of 2 to 5 m and heights of 0.2 to 0.5 m, these bedforms are larger than current formed ripples, but smaller than dunes. Unlike dunes which have a depth dependent geometry, observations indicate the tidally reversing mega-ripples geometry is related to the time dependent tidal flow and independent of depth. Previous empirical relations for predicting the geometry of ripples or dunes do not successfully predict the geometry of these features. A time dependent geometric model was developed that accounts for the reversal of migration and asymmetry to successfully predict bedform geometry. The model requires sufficient sediment transport in each half tidal cycle to reverse the asymmetry before the bedforms begin to grow. Both the observations and model indicate that the complete reversal of asymmetry and development of a steep lee face occurs near or after maximum flow in each half tidal cycle. This phase lag in bedform response to tidal forcing also has important implications for bed stress in tidal inlets. Observations of frictional drag in the Columbia River mouth based on a tidal momentum balance of surface slope over 10 km regressed against quadratic near bed velocity show drag coefficients that fall off as CD U-1.4. Reynolds stress measurements performed using the dual ADV differencing technique show similar relations. The Reynolds stress measurements also show a dramatic asymmetry between accelerating flows and decelerating flows with a factor of 5 increase during deceleration. Pulse coherent Doppler profiles of near bed turbulence indicate that the turbulence is dominated by energetic fluctuations in separation zones downstream of steep lee faces. The

  17. Short-term tidal asymmetry inversion in a macrotidal estuary (Beira, Mozambique)

    Science.gov (United States)

    Nzualo, Teodósio N. M.; Gallo, Marcos N.; Vinzon, Susana B.

    2018-05-01

    The distortion of the tide in estuaries, bays and coastal areas is the result of the generation of overtides due to the non-linear effects associated with friction, advection, and the finite effects of the tidal amplitude in shallow waters. The Beira estuary is classified as macrotidal, with a large ratio of S2/M2. Typical tides ranges from 6 m and 0.8 m, during springs and neaps tides, respectively. As a consequence of this large fortnightly tidal amplitude difference and the estuarine morphology, asymmetry inversions occur. Two types of tidal asymmetries were investigated in this paper, one considering tidal duration asymmetry (time difference between rising and falling tide) and the other, related to tidal velocity asymmetry (unequal magnitudes of flood and ebb peaks currents). In the Beira estuary when we examine the tidal duration asymmetry, flood dominance is observed during spring tide periods (negative time difference between rising and falling tide), while ebb dominance appears during neap tides (positive time difference between rising and falling tide). A 2DH hydrodynamic model was implemented to analyze this asymmetry inversion. The model was calibrated with water-level data measured at the Port of Beira and current data measured along the estuary. The model was run for different scenarios considering tidal constituents at the ocean boundary, river discharge and the morphology of the estuary. River discharge did not show significant effects on the tidal duration asymmetry. Through comparison of the scenarios, it was shown that the incoming ocean tide at the boundary has an ebb-dominant asymmetry, changing to flood-dominant only during spring tides due to the effect of shoaling and friction within the estuary. During neap tides, the propagation occurs mainly in the channels, and ebb dominance remains. The interplay between the estuary morphodynamics was thus identified and the relation between tidal duration asymmetry and tidal velocity asymmetry was

  18. Tidal asymmetry in a funnel-shaped estuary with mixed semidiurnal tides

    Science.gov (United States)

    Gong, Wenping; Schuttelaars, Henk; Zhang, Heng

    2016-05-01

    Different types of tidal asymmetry (see review of de Swart and Zimmerman Annu Rev Fluid Mech 41: 203-229, 2009) are examined in this study. We distinguish three types of tidal asymmetry: duration and magnitude differences between flood and ebb tidal flow, duration difference between the rising and falling tides. For waterborne substance transport, the first two asymmetries are important while the last one is not. In this study, we take the Huangmaohai Estuary (HE), Pearl River Delta, China as an example to examine the spatio-temporal variations of the tidal asymmetry in a mixed semidiurnal tidal regime and to explain them by investigating the associated mechanisms. The methodology defining the tidal duration asymmetry and velocity skewness, proposed by Nidzieko (J Geophys Res 115: C08006. doi: 10.1029/2009JC005864 , 2010) and synthesized by Song et al. (J Geophys Res 116: C12007. doi: 10.1029/2011JC007270 , 2011), is utilized here and referred to as tidal duration asymmetry (TDA) and flow velocity asymmetry (FVA), respectively. The methodology is further used to quantify the flow duration asymmetry (FDA). A positive asymmetry means a shorter duration of low water slack for FDA, a shorter duration of the rising tide for TDA, and a flood dominance for FVA and vice versa. The Regional Ocean Modeling System (ROMS) model is used to provide relatively long-term water elevation and velocity data and to conduct diagnostic experiments. In the HE, the main tidal constituents are diurnal tides K 1, O 1 and semidiurnal tides M 2 and S 2. The interaction among the diurnal and semidiurnal tides generates a negative tidal asymmetry, while the interactions among semidiurnal tides and their overtides or compound tides result in a positive tidal asymmetry. The competition among the above interactions determines the FDA and TDA, whereas for the FVA, aside from the interaction among different tidal constituents, an extra component, the residual flow, plays an important role. The

  19. Type 1 diabetes promotes disruption of advanced atherosclerotic lesions in LDL receptor-deficient mice

    OpenAIRE

    Johansson, Fredrik; Kramer, Farah; Barnhart, Shelley; Kanter, Jenny E.; Vaisar, Tomas; Merrill, Rachel D.; Geng, Linda; Oka, Kazuhiro; Chan, Lawrence; Chait, Alan; Heinecke, Jay W.; Bornfeldt, Karin E.

    2008-01-01

    Cardiovascular disease, largely because of disruption of atherosclerotic lesions, accounts for the majority of deaths in people with type 1 diabetes. Recent mouse models have provided insights into the accelerated atherosclerotic lesion initiation in diabetes, but it is unknown whether diabetes directly worsens more clinically relevant advanced lesions. We therefore used an LDL receptor-deficient mouse model, in which type 1 diabetes can be induced at will, to investigate the effects of diabe...

  20. RED CLUMP STARS IN THE SAGITTARIUS TIDAL STREAMS

    International Nuclear Information System (INIS)

    Carrell, Kenneth; Chen Yuqin; Wilhelm, Ronald

    2012-01-01

    We have probed a section (l ∼ 150, b ∼ –60) of the trailing tidal arm of the Sagittarius dwarf spheroidal galaxy by identifying a sample of Red Clump (RC) stream stars. RC stars are not generally found in the halo field, but are found in significant numbers in both the Sagittarius galaxy and its tidal streams, making them excellent probes of stream characteristics. Our target sample was selected using photometric data from the Sloan Digital Sky Survey, Data Release 6, which was constrained in color to match the Sagittarius RC stars. Spectroscopic observations of the target stars were conducted at Kitt Peak National Observatory using the WIYN telescope. The resulting spectroscopic sample is magnitude limited and contains both main-sequence disk stars and evolved RC stars. We have developed a method to systematically separate these two stellar classes using kinematic information and a Bayesian approach for surface gravity determination. The resulting RC sample allows us to determine an absolute stellar density of ρ = 2.7 ± 0.5 RC stars kpc –3 at this location in the stream. Future measurements of stellar densities for a variety of populations and at various locations along the streams will lead to a much improved understanding of the original nature of the Sagittarius galaxy and the physical processes controlling its disruption and subsequent stream generation.

  1. Tidal alignment of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  2. Chaotic Excitation and Tidal Damping in the GJ 876 System

    Science.gov (United States)

    Puranam, Abhijit; Batygin, Konstantin

    2018-04-01

    The M-dwarf GJ 876 is the closest known star to harbor a multi-planetary system. With three outer planets locked in a chaotic Laplace-type resonance and an appreciably eccentric short-period super-Earth, this system represents a unique exposition of extrasolar planetary dynamics. A key question that concerns the long-term evolution of this system, and the fate of close-in planets in general, is how the significant eccentricity of the inner-most planet is maintained against tidal circularization on timescales comparable to the age of the universe. Here, we employ stochastic secular perturbation theory and N-body simulations to show that the orbit of the inner-most planet is shaped by a delicate balance between extrinsic chaotic forcing and tidal dissipation. As such, the planet’s orbital eccentricity represents an indirect measure of its tidal quality factor. Based on the system’s present-day architecture, we estimate that the extrasolar super-Earth GJ 876 d has a tidal Q ∼ 104–105, a value characteristic of solar system gas giants.

  3. Tidal disruption of stars in a supermassive black hole binary system: the influence of orbital properties on fallback and accretion rates

    Science.gov (United States)

    Vigneron, Quentin; Lodato, Giuseppe; Guidarelli, Alessio

    2018-06-01

    The disruption of a star by a supermassive black hole generates a sudden bright flare. Previous studies have focused on the disruption by single black holes, for which the fallback rate decays as ∝ t-5/3. In this paper, we generalize the study to the case of a supermassive black hole binary (SMBHB), using both analytical estimates and hydrodynamical simulations, looking for specific observable signatures. The range of binary separation for which it is possible to distinguish between the disruption created by a single or a binary black hole concerns typically separations of the order of a few milliparsecs for a primary of mass ˜106 M⊙. When the fallback rate is affected by the secondary, it undergoes two types interruptions, depending on the initial inclination θ of the orbit of the star relative to the plane of the SMBHB. For θ ≲ 70°, periodic sharp interruptions occur and the time of first interruption depends on the distance of the secondary black hole with the debris. If θ ≳ 70°, a first smooth interruption occurs, but not always followed by a further recovery of the fallback rate. This implies that most of the TDEs around a SMBHB will undergo periodic sharp interruptions of their light curve.

  4. An Overabundance of Black Hole X-Ray Binaries in the Galactic Center from Tidal Captures

    Science.gov (United States)

    Generozov, A.; Stone, N. C.; Metzger, B. D.; Ostriker, J. P.

    2018-05-01

    A large population of X-ray binaries (XRBs) was recently discovered within the central parsec of the Galaxy by Hailey et al. (2018). While the presence of compact objects on this scale due to radial mass segregation is, in itself, unsurprising, the fraction of binaries would naively be expected to be small because of how easily primordial binaries are dissociated in the dynamically hot environment of the nuclear star cluster (NSC). We propose that the formation of XRBs in the central parsec is dominated by the tidal capture of stars by black holes (BHs) and neutron stars (NSs). We model the time-dependent radial density profiles of stars and compact objects in the NSC with a Fokker-Planck approach, using the present-day stellar population and rate of in situ massive star (and thus compact object) formation as observational constraints. Of the ˜1 - 4 × 104 BHs that accumulate in the central parsec over the age of the Galaxy, we predict that ˜60 - 200 currently exist as BH-XRBs formed from tidal capture, consistent with the population seen by Hailey et al. (2018). A somewhat lower number of tidal capture NS-XRBs is also predicted. We also use our observationally calibrated models for the NSC to predict rates of other exotic dynamical processes, such as the tidal disruption of stars by the central supermassive black hole (˜10-4 per year at z=0).

  5. TIDALLY ENHANCED STELLAR WIND: A WAY TO MAKE THE SYMBIOTIC CHANNEL TO TYPE Ia SUPERNOVA VIABLE

    International Nuclear Information System (INIS)

    Chen, X.; Han, Z.; Tout, C. A.

    2011-01-01

    In the symbiotic (or WD+RG) channel of the single-degenerate scenario for type Ia supernovae (SNe Ia), the explosions occur a relatively long time after star formation. The birthrate from this channel would be too low to account for all observed SNe Ia were it not for some mechanism to enhance the rate of accretion on to the white dwarf. A tidally enhanced stellar wind, of the type which has been postulated to explain many phenomena related to giant star evolution in binary systems, can do this. Compared to mass stripping, this model extends the space of SNe Ia progenitors to longer orbital periods and hence increases the birthrate to about 0.0069 yr -1 for the symbiotic channel. Two symbiotic stars, T CrB and RS Oph, considered to be the most likely progenitors of SNe Ia through the symbiotic channel, are well inside the period-companion mass space predicted by our models.

  6. TIDAL FRICTION AND TIDAL LAGGING. APPLICABILITY LIMITATIONS OF A POPULAR FORMULA FOR THE TIDAL TORQUE

    International Nuclear Information System (INIS)

    Efroimsky, Michael; Makarov, Valeri V.

    2013-01-01

    Tidal torques play a key role in rotational dynamics of celestial bodies. They govern these bodies' tidal despinning and also participate in the subtle process of entrapment of these bodies into spin-orbit resonances. This makes tidal torques directly relevant to the studies of habitability of planets and their moons. Our work begins with an explanation of how friction and lagging should be built into the theory of bodily tides. Although much of this material can be found in various publications, a short but self-consistent summary on the topic has been lacking in the hitherto literature, and we are filling the gap. After these preparations, we address a popular concise formula for the tidal torque, which is often used in the literature, for planets or stars. We explain why the derivation of this expression, offered in the paper by Goldreich and in the books by Kaula (Equation (4.5.29)) and Murray and Dermott (Equation (4.159)), implicitly sets the time lag to be frequency independent. Accordingly, the ensuing expression for the torque can be applied only to bodies having a very special (and very hypothetical) rheology which makes the time lag frequency independent, i.e., the same for all Fourier modes in the spectrum of tide. This expression for the torque should not be used for bodies of other rheologies. Specifically, the expression cannot be combined with an extra assertion of the geometric lag being constant, because at finite eccentricities the said assumption is incompatible with the constant-time-lag condition.

  7. TIDAL FRICTION AND TIDAL LAGGING. APPLICABILITY LIMITATIONS OF A POPULAR FORMULA FOR THE TIDAL TORQUE

    Energy Technology Data Exchange (ETDEWEB)

    Efroimsky, Michael; Makarov, Valeri V., E-mail: michael.efroimsky@usno.navy.mil, E-mail: vvm@usno.navy.mil [US Naval Observatory, Washington, DC 20392 (United States)

    2013-02-10

    Tidal torques play a key role in rotational dynamics of celestial bodies. They govern these bodies' tidal despinning and also participate in the subtle process of entrapment of these bodies into spin-orbit resonances. This makes tidal torques directly relevant to the studies of habitability of planets and their moons. Our work begins with an explanation of how friction and lagging should be built into the theory of bodily tides. Although much of this material can be found in various publications, a short but self-consistent summary on the topic has been lacking in the hitherto literature, and we are filling the gap. After these preparations, we address a popular concise formula for the tidal torque, which is often used in the literature, for planets or stars. We explain why the derivation of this expression, offered in the paper by Goldreich and in the books by Kaula (Equation (4.5.29)) and Murray and Dermott (Equation (4.159)), implicitly sets the time lag to be frequency independent. Accordingly, the ensuing expression for the torque can be applied only to bodies having a very special (and very hypothetical) rheology which makes the time lag frequency independent, i.e., the same for all Fourier modes in the spectrum of tide. This expression for the torque should not be used for bodies of other rheologies. Specifically, the expression cannot be combined with an extra assertion of the geometric lag being constant, because at finite eccentricities the said assumption is incompatible with the constant-time-lag condition.

  8. Generation of tidal volume via gentle chest pressure in children over one year old.

    Science.gov (United States)

    Tsui, Ban C H; Horne, Sara; Tsui, Jenkin; Corry, Gareth N

    2015-07-01

    In the event of cardiac arrest, cardiopulmonary resuscitation (CPR) is a well-established technique to maintain oxygenation of tissues and organs until medical equipment and staff are available. During CPR, chest compressions help circulate blood and have been shown in animal models to be a means of short-term oxygenation. In this study, we tested whether gentle chest pressure can generate meaningful tidal volume in paediatric subjects. This prospective cohort pilot study recruited children under the age of 17 years and undergoing any surgery requiring general anaesthetic and endotracheal intubation. After induction of general anaesthesia, tidal volumes were obtained before and after intubation by applying a downward force on the chest which was not greater than the patient's weight. Mean tidal volumes were compared for unprotected versus protected airway and for type of surgery. Mean tidal volume generated with an unprotected and protected airway was 2.7 (1.7) and 2.9 (2.3) mL/kg, respectively. Mean tidal volume generated with mechanical ventilation was 13.6 (4.9) mL/kg. No statistical significance was found when comparing tidal volumes generated with an unprotected or protected airway (p = 0.20), type of surgery (tonsillectomy and/or adenoidectomy versus other surgery) (unprotected, p = 0.09; protected, p = 0.37), and when age difference between groups was taken into account (p = 0.34). Using gentle chest pressure, we were able to generate over 20% of the tidal volume achieved with mechanical ventilation. Our results suggest that gentle chest pressure may be a means to support temporary airflow in children. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Internal disruption in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1990-01-01

    A review of results of experimental and theoretical investigations of internal disruption in tokamaks is given. Specific features of various types of saw-tooth oscillations are described and their classification is performed. Theoretical models of the process of development of internal disruption instability are discussed. Effect of internal disruption on parameters of plasma, confined in tokamak, is considered. Scalings of period and amplitude of saw-tooth oscillations, as well as version radius are presented. Different methods for stabilizing instability of internal disruption are described

  10. Internal disruptions in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1990-01-01

    Experimental and theoretical studies of the phenomenon of internal disruptions in tokamaks are reviewed. A classification scheme is introduced and the features of different types of sawtooth oscillations are described. A theoretical model for the development of the internal disruption instability is discussed. The effect of internal disruptions on the parameters of plasma confined in tokamaks is discussed. Scaling laws for the period and amplitude of sawtooth oscillations, as well as for the inversion radius, are presented. Different methods of stabilizing the internal disruption instability are described

  11. Evidence of Absence of Tidal Features in the Outskirts of Ultra Diffuse Galaxies in the Coma Cluster

    Science.gov (United States)

    Mowla, Lamiya; van Dokkum, Pieter; Merritt, Allison; Abraham, Roberto; Yagi, Masafumi; Koda, Jin

    2017-12-01

    We study the presence of tidal features associated with ultra diffuse galaxies (UDGs) in galaxy clusters. Specifically, we stack deep Subaru images of UDGs in the Coma cluster to determine whether they show position angle twists at large radii. Selecting galaxies with central surface brightness μ (g,0)> 24 magarcsec-2 and projected half-light radius {r}e> 1.5 {kpc}, we identify 287 UDGs in the Yagi et al. catalog of low surface brightness Coma objects. The UDGs have apparent spheroidal shapes with median Sérsic index =0.8 and median axis ratio =0.7. The images are processed by masking all background objects and rotating to align the major axis before stacking them in bins of properties such as axis ratio, angle of major axis with respect to the cluster center, and separation from cluster center. Our image stacks reach further than 7 kpc (≳4r e). Analysis of the isophotes of the stacks reveals that the ellipticity remains constant up to the last measured point, which means that the individual galaxies have a non-varying position angle and axis ratio and show no evidence for tidal disruption out to ˜ 4{r}e. We demonstrate this explicitly by comparing our stacks with stacks of model UDGs with and without tidal features in their outskirts. We infer that the average tidal radius of the Coma UDGs is >7 kpc and estimate that the average dark matter fraction within the tidal radius of the UDGs inhabiting the innermost 0.5 Mpc of Coma is >99%.

  12. Dynamic Braking System of a Tidal Generator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Wright, Alan; Gevorgian, Vahan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-08-01

    Renewable energy generation has experienced significant cost reductions during the past decades, and it has become more accepted by the global population. In the beginning, wind generation dominated the development and deployment of renewable energy; however, during recent decades, photovoltaic (PV) generation has grown at a very significant pace due to the tremendous decrease in the cost of PV modules. The focus on renewable energy generation has now expanded to include new types with promising future applications, such as river and tidal generation. The input water flow to these types of resources is more predictable than wind or solar generation. The data used in this paper is representative of a typical river or tidal generator. The analysis is based on a generator with a power rating of 40 kW. The tidal generator under consideration is driven by two sets of helical turbines connected to each side of the generator located in between the turbines. The generator is operated in variable speed, and it is controlled to maximize the energy harvested as well as the operation of the turbine generator. The electrical system consists of a three-phase permanent magnet generator connected to a three-phase passive rectifier. The output of the rectifier is connected to a DC-DC converter to match the rectifier output to the DC bus voltage of the DC-AC inverter. The three-phase inverter is connected to the grid, and it is controlled to provide a good interface with the grid. One important aspect of river and tidal generation is the braking mechanism. In a tidal generator, the braking mechanism is important to avoid a runaway condition in case the connection to the grid is lost when there is a fault in the lines. A runaway condition may lead to an overspeed condition and cause extreme stresses on the turbine blade structure and eventual disintegration of the mechanical structure. In this paper, the concept of the dynamic braking system is developed and investigated for normal

  13. Tidal Creek Morphology and Sediment Type Influence Spatial Trends in Salt Marsh Vegetation

    DEFF Research Database (Denmark)

    Kim, Daehyun; Cairns, David M.; Bartholdy, Jesper

    2013-01-01

    that by shaping major geomorphic features and providing sediments to the adjacent sites, fluvial-geomorphic processes of tidal creeks exert fundamental controls on the cross-channel distribution of abiotic and biotic factors. These results point to a need for biogeomorphic and landscape ecological perspectives...

  14. Environmental consequences of tidal power in a hyper-tidal muddy regime: the Severn estuary

    International Nuclear Information System (INIS)

    Kirby, R.

    1997-01-01

    Muddy hyper-tidal regimes, such as the Severn Estuary in the UK, are especially difficult for plants and animals. The difficulties stem from the semi-diurnal and semi-lunar energy fluctuations. On spring tides entrained fine sediment induces elevated suspended sediment concentrations such that photosynthesis is inhibited. On neap tides much of the entrained fine sediment is deposited on the sub-tidal bed over periods of several days to form ephemeral dense layers, which reach in excess of 100 G/l and rapidly become anaerobic on stagnation. Such occasional bed faunas as develop are characterised by very large numbers of immature individuals of a few species. One of the few organisms able to cope with the extreme conditions is the siliceous reef-building worn Sabellaria. Arising from the long term suppression in its calcareous fauna, erosion and winnowing of these Holocene clays fails to give rise to lag shell deposits, called chenier ridges, found elsewhere in eroding muddy inter-tidal systems. A tidal power barrage would shift the regime from hyper-tidal to macro-tidal decrease in turbidity would permit photosynthesis and phytoplankton growth, so stimulating the higher food chain. Ironically, perhaps, cleaning up the sewage discharges in the estuary, in the absence of barrage construction would lead to a wading bird crash whereas barrage construction would lead to an improved carrying capacity. (author)

  15. The environmental interactions of tidal and wave energy generation devices

    International Nuclear Information System (INIS)

    Frid, Chris; Andonegi, Eider; Depestele, Jochen; Judd, Adrian; Rihan, Dominic; Rogers, Stuart I.; Kenchington, Ellen

    2012-01-01

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: ► We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. ► Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. ► Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. ► Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

  16. The environmental interactions of tidal and wave energy generation devices

    Energy Technology Data Exchange (ETDEWEB)

    Frid, Chris, E-mail: c.l.j.frid@liv.ac.uk [School of Environmental Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB (United Kingdom); Andonegi, Eider, E-mail: eandonegi@azti.es [AZTI-Tecnalia, Txatxarramendi ugartea, z/g E-48395 Sukarrieta (Bizkaia) (Spain); Depestele, Jochen, E-mail: jochen.depestele@ilvo.vlaanderen.be [Institute for Agricultural and Fisheries Research, Ankerstraat 1, B-8400 Oostende (Belgium); Judd, Adrian, E-mail: Adrian.Judd@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Rihan, Dominic, E-mail: Dominic.RIHAN@ec.europa.eu [Irish Sea Fisheries Board, P.O. Box 12 Dun Laoghaire, Co. Dublin (Ireland); Rogers, Stuart I., E-mail: stuart.rogers@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Kenchington, Ellen, E-mail: Ellen.Kenchington@dfo-mpo.gc.ca [Fisheries and Oceans Canada, Bedford Institute of Oceanography, P.O. Box 1006, Dartmouth Canada, NS B2Y 4A2 (Canada)

    2012-01-15

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: Black-Right-Pointing-Pointer We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. Black-Right-Pointing-Pointer Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. Black-Right-Pointing-Pointer Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. Black-Right-Pointing-Pointer Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

  17. Enhanced winds and tidal streams in massive X-ray binaries

    International Nuclear Information System (INIS)

    Blondin, J.M.; Stevens, I.R.; Kallman, T.R.

    1991-01-01

    The tidal effects created by the presence of a compact companion are expected to induce a stream of enhanced wind from the early-type primary star in massive X-ray binary systems. In this paper, two-dimensional gasdynamical simulations of such streams are presented. It is found that the wind enhancement is a sensitive function of the binary separation, and develops into a tidal stream as the primary approaches its critical surface. For typical system parameters, the Coriolis force deflects the stream sufficiently that it does not impact directly on the compact companion but passes behind it. The density in the stream can reach values of 20-30 times the ambient wind density, leading to strong attenuation of the X-ray flux that passes through the tidal stream, providing a possible explanation of the enhanced absorption events seen at later phases in the X-ray observations of massive X-ray binary systems such as Vela X-1. In contrast to the time-variable accretion wake, the tidal stream is relatively stationary, producing absorption features that should remain fixed from orbit to orbit. For systems with a strong tidal stream, the large asymmetry in the accreting wind results in the accretion of angular momentum of constant sign, as opposed to systems without streams, where the sign of the accreted angular momentum can change. 39 refs

  18. Tidal controls on earthquake size-frequency statistics

    Science.gov (United States)

    Ide, S.; Yabe, S.; Tanaka, Y.

    2016-12-01

    The possibility that tidal stresses can trigger earthquakes is a long-standing issue in seismology. Except in some special cases, a causal relationship between seismicity and the phase of tidal stress has been rejected on the basis of studies using many small events. However, recently discovered deep tectonic tremors are highly sensitive to tidal stress levels, with the relationship being governed by a nonlinear law according to which the tremor rate increases exponentially with increasing stress; thus, slow deformation (and the probability of earthquakes) may be enhanced during periods of large tidal stress. Here, we show the influence of tidal stress on seismicity by calculating histories of tidal shear stress during the 2-week period before earthquakes. Very large earthquakes tend to occur near the time of maximum tidal stress, but this tendency is not obvious for small earthquakes. Rather, we found that tidal stress controls the earthquake size-frequency statistics; i.e., the fraction of large events increases (i.e. the b-value of the Gutenberg-Richter relation decreases) as the tidal shear stress increases. This correlation is apparent in data from the global catalog and in relatively homogeneous regional catalogues of earthquakes in Japan. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. Our findings indicate that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. This finding has clear implications for probabilistic earthquake forecasting.

  19. Field migration rates of tidal meanders recapitulate fluvial morphodynamics

    Science.gov (United States)

    Finotello, Alvise; Lanzoni, Stefano; Ghinassi, Massimiliano; Marani, Marco; Rinaldo, Andrea; D'Alpaos, Andrea

    2018-02-01

    The majority of tidal channels display marked meandering features. Despite their importance in oil-reservoir formation and tidal landscape morphology, questions remain on whether tidal-meander dynamics could be understood in terms of fluvial processes and theory. Key differences suggest otherwise, like the periodic reversal of landscape-forming tidal flows and the widely accepted empirical notion that tidal meanders are stable landscape features, in stark contrast with their migrating fluvial counterparts. On the contrary, here we show that, once properly normalized, observed migration rates of tidal and fluvial meanders are remarkably similar. Key to normalization is the role of tidal channel width that responds to the strong spatial gradients of landscape-forming flow rates and tidal prisms. We find that migration dynamics of tidal meanders agree with nonlinear theories for river meander evolution. Our results challenge the conventional view of tidal channels as stable landscape features and suggest that meandering tidal channels recapitulate many fluvial counterparts owing to large gradients of tidal prisms across meander wavelengths.

  20. Experimental and numerical study of a flapping tidal stream generator

    Science.gov (United States)

    Kim, Jihoon; Le, Tuyen Quang; Ko, Jin Hwan; Sitorus, Patar Ebenezer; Tambunan, Indra Hartarto; Kang, Taesam

    2017-11-01

    The tidal stream turbine is one of the systems that extract kinetic energy from tidal stream, and there are several types of the tidal stream turbine depending on its operating motion. In this research, we conduct experimental and consecutive numerical analyses of a flapping tidal stream generator with a dual configuration flappers. An experimental analysis of a small-scale prototype is conducted in a towing tank, and a numerical analysis is conducted using two-dimensional computational fluid dynamics simulations with an in-house code. Through an experimental analysis conducted while varying these factors, a high applied load and a high input arm angle were found to be advantageous. In consecutive numerical investigations with the kinematics selected from the experiments, it was found that a rear-swing flapper contributes to the total amount of power more than a front-swing flapper with a distance of two times the chord length and with a 90-degree phase difference between the two. This research was a part of the project titled `R&D center for underwater construction robotics', funded by the Ministry of Oceans and Fisheries(MOF), Korea Institute of Marine Science & Technology Promotion(KIMST,PJT200539), and Pohang City in Korea.

  1. Assessment of tidal circulation and tidal current asymmetry in the Iroise sea with specific emphasis on characterization of tidal energy resources around the Ushant Island.

    Science.gov (United States)

    Thiébaut, Maxime; Sentchev, Alexei

    2015-04-01

    We use the current velocity time series recorded by High Frequency Radars (HFR) to study circulation in highly energetic tidal basin - the Iroise sea. We focus on the analysis of tidal current pattern around the Ushant Island which is a promising site of tidal energy. The analysis reveals surface current speeds reaching 4 m/s in the North of Ushant Island and in the Fromveur Strait. In these regions 1 m/s is exceeded 60% of time and up to 70% of time in center of Fromveur. This velocity value is particularly interesting because it represents the cut-in-speed of the most of marine turbine devices. Tidal current asymmetry is not always considered in tidal energy site selection. However, this quantity plays an important role in the quantification of hydrokinetic resources. Current velocity times series recorded by HFR highlights the existence of a pronounced asymmetry in current magnitude between the flood and ebb tide ranging from -0.5 to more 2.5. Power output of free-stream devices depends to velocity cubed. Thus a small current asymmetry can generate a significant power output asymmetry. Spatial distribution of asymmetry coefficient shows persistent pattern and fine scale structure which were quantified with high degree of accuracy. The particular asymmetry evolution on both side of Fromveur strait is related to the spatial distribution of the phase lag of the principal semi-diurnal tidal constituent M2 and its higher order harmonics. In Fromveur, the asymmetry is reinforced due to the high velocity magnitude of the sixth-diurnal tidal harmonics. HF radar provides surface velocity speed, however the quantification of hydrokinetic resources has to take into account the decreasing of velocity with depth. In order to highlight this phenomenon, we plot several velocity profiles given by an ADCP which was installed in the HFR study area during the same period. The mean velocity in the water column calculated by using the ADCP data show that it is about 80% of the

  2. Seasonal variability of tidal and non-tidal currents off Beypore, SW coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    DineshKumar, P.K.; Srinivas, K.; AnilKumar, N.

    and summer monsoon seasons of year 2000. Information on tidal signals contained in the currents were extracted using harmonic analysis - Least Squares Method and non-tidal component were analyzed using the Chi sub(o) filter. The study established...

  3. Landscape-scale flow patterns over a vegetated tidal marsh and an unvegetated tidal flat: implications for the landform properties of the intertidal floodplain

    NARCIS (Netherlands)

    Vandenbruwaene, W.; Schwarz, C.; Bouma, T.; Meire, P.; Temmerman, S.

    2015-01-01

    Vegetation is increasingly recognized as an important control on flow and landformpatterns inmany landscape types. Field studies on the landscape-scale effect of vegetation in fluvial and tidal floodplains are relatively scarce while insights are especially based on flume and numerical models.

  4. Remnants of strong tidal interactions

    International Nuclear Information System (INIS)

    Mcglynn, T.A.

    1990-01-01

    This paper examines the properties of stellar systems that have recently undergone a strong tidal shock, i.e., a shock which removes a significant fraction of the particles in the system, and where the shocked system has a much smaller mass than the producer of the tidal field. N-body calculations of King models shocked in a variety of ways are performed, and the consequences of the shocks are investigated. The results confirm the prediction of Jaffe for shocked systems. Several models are also run where the tidal forces on the system are constant, simulating a circular orbit around a primary, and the development of tidal radii under these static conditions appears to be a mild process which does not dramatically affect material that is not stripped. The tidal radii are about twice as large as classical formulas would predict. Remnant density profiles are compared with a sample of elliptical galaxies, and the implications of the results for the development of stellar populations and galaxies are considered. 38 refs

  5. Dynamics of tidal and non-tidal currents along the southwest continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Aruna, C.; Ravichandran, C.; Srinivas, K.; Rasheed, P.A.A.; Lekshmi, S.

    are predominantly mixed, semidiurnal in nature. Motion over any continental shelf is governed by the tide-driven oscillatory flow. In this paper, tidal and non-tidal characteristics of the waters of Southwest continental shelf of India are assessed using...

  6. Tidal power dams in the Bay of Fundy

    International Nuclear Information System (INIS)

    Walsun, W. van

    1998-01-01

    The challenges of harnessing tidal power and the construction of dams and tidal power plants in a tidal-ocean environment such as the Bay of Fundy in New Brunswick are discussed. In the 1966-1988 series of studies, three sites were chosen at the Bay of Fundy as being the most promising, namely (1) site B9 in Minas Basin at the entrance to Cobequid Bay, (2) site A8 at the narrow neck beyond the entrance to Cumberland Basin, and (3) site A6 at the entrance to Shepody Bay. All the sites are located at the head of the Bay of Fundy because that is where the maximum tidal ranges are found and a basin's tidal energy potential is proportional to the square of its tidal range. Site B9 was determined to have the greatest tidal power potential but no plant has ever been built because reports have stated that a solid conventional tidal power barrage at site B9 would increase the tidal range at Boston by as much as 30 cm. Rather than abandoning the site for this reason, an installation consisting of a series of piers from shore to shore with hydraulic turbines mounted in the spaces between piers, was suggested. A simple mathematical model has been developed for determining the operation of this tidal fence. The cost of energy, generated by the tidal fence at site B9 was also calculated. Further studies are suggested to determine the exact environmental effect of the tidal fence on the tidal regime. If environmental problems persist, machines with larger discharge capabilities could be considered to reduce the interference of the fence with natural tidal movements. 9 refs., 6 figs

  7. Tidal power: trends and developments

    International Nuclear Information System (INIS)

    1992-01-01

    This volume covers works and studies on tidal power currently being undertaken, both nationally and internationally. The 20 papers included cover the proposed Mersey barrage, the Severn estuary and several papers on the Severn barrage. The Department of Energy's continued variety of generic work on tidal power and various overseas studies carried out by other experts are also detailed, giving the reader an up to date picture of developments in tidal power worldwide. Separate abstracts have been prepared for the individual papers. (author)

  8. Field migration rates of tidal meanders recapitulate fluvial morphodynamics.

    Science.gov (United States)

    Finotello, Alvise; Lanzoni, Stefano; Ghinassi, Massimiliano; Marani, Marco; Rinaldo, Andrea; D'Alpaos, Andrea

    2018-02-13

    The majority of tidal channels display marked meandering features. Despite their importance in oil-reservoir formation and tidal landscape morphology, questions remain on whether tidal-meander dynamics could be understood in terms of fluvial processes and theory. Key differences suggest otherwise, like the periodic reversal of landscape-forming tidal flows and the widely accepted empirical notion that tidal meanders are stable landscape features, in stark contrast with their migrating fluvial counterparts. On the contrary, here we show that, once properly normalized, observed migration rates of tidal and fluvial meanders are remarkably similar. Key to normalization is the role of tidal channel width that responds to the strong spatial gradients of landscape-forming flow rates and tidal prisms. We find that migration dynamics of tidal meanders agree with nonlinear theories for river meander evolution. Our results challenge the conventional view of tidal channels as stable landscape features and suggest that meandering tidal channels recapitulate many fluvial counterparts owing to large gradients of tidal prisms across meander wavelengths. Copyright © 2018 the Author(s). Published by PNAS.

  9. The effects of tidal range on saltmarsh morphology

    Science.gov (United States)

    Goodwin, Guillaume; Mudd, Simon

    2017-04-01

    Saltmarshes are highly productive coastal ecosystems that act simultaneously as flood barriers, carbon storage, pollutant filters and nurseries. As halophytic plants trap suspended sediment and decay in the settled strata, innervated platforms emerge from the neighbouring tidal flats, forming sub-vertical scarps on their eroding borders and sub-horizontal pioneer zones in areas of seasonal expansion. These evolutions are subject to two contrasting influences: stochastically generated waves erode scarps and scour tidal flats, whereas tidally-generated currents transport sediment to and from the marsh through the channel network. Hence, the relative power of waves and tidal currents strongly influences saltmarsh evolution, and regional variations in tidal range yield marshes of differing morphologies. We analyse several sheltered saltmarshes to determine how their morphology reflects variations in tidal forcing. Using tidal, topographic and spectral data, we implement an algorithm based on the open-source software LSDTopoTools to automatically identify features such as marsh platforms, tidal flats, erosion scarps, pioneer zones and tidal channels on local Digital Elevation Models. Normalised geometric properties are then computed and compared throughout the spectrum of tidal range, highlighting a notable effect on channel networks, platform geometry and wave exposure. We observe that micro-tidal marshes typically display jagged outlines and multiple islands along with wide, shallow channels. As tidal range increases, we note the progressive disappearance of marsh islands and linearization of scarps, both indicative of higher hydrodynamic stress, along with a structuration of channel networks and the increase of levee volume, suggesting higher sediment input on the platform. Future research will lead to observing and modelling the evolution of saltmarshes under various tidal forcing in order to assess their resilience to environmental change.

  10. DISCOVERY OF AN ULTRASOFT X-RAY TRANSIENT SOURCE IN THE 2XMM CATALOG: A TIDAL DISRUPTION EVENT CANDIDATE

    International Nuclear Information System (INIS)

    Lin Dacheng; Webb, Natalie A.; Barret, Didier; Carrasco, Eleazar R.; Grupe, Dirk; Farrell, Sean A.

    2011-01-01

    We have discovered an ultrasoft X-ray transient source, 2XMMi J184725.1-631724, which was detected serendipitously in two XMM-Newton observations in the direction of the center of the galaxy IC 4765-f01-1504 at a redshift of 0.0353. These two observations were separated by 211 days, with the 0.2-10 keV absorbed flux increasing by a factor of about nine. Their spectra are best described by a model dominated by a thermal disk or a single-temperature blackbody component (contributing ∼>80% of the flux) plus a weak power-law component. The thermal emission has a temperature of a few tens of eV, and the weak power-law component has a photon index of ∼3.5. Similar to the black hole X-ray binaries in the thermal state, our source exhibits an accretion disk whose luminosity appears to follow the L∝T 4 relation. This would indicate that the black hole mass is about 10 5 -10 6 M sun using the best-fitting inner disk radius. Both XMM-Newton observations show variability of about 21% on timescales of hours, which can be explained as due to fast variations in the mass accretion rate. The source was not detected by ROSAT in an observation in 1992, indicating a variability factor of ∼>64 over longer timescales. The source was not detected again in X-rays in a Swift observation in 2011 February, implying a flux decrease by a factor of ∼>12 since the last XMM-Newton observation. The transient nature, in addition to the extreme softness of the X-ray spectra and the inactivity of the galaxy implied by the lack of strong optical emission lines, makes it a candidate tidal disruption event. If this is the case, the first XMM-Newton observation would have been in the rising phase and the second one in the decay phase.

  11. The economics of tidal energy

    International Nuclear Information System (INIS)

    Denny, Eleanor

    2009-01-01

    Concern over global climate change has led policy makers to accept the importance of reducing greenhouse gas emissions. This in turn has led to a large growth in clean renewable generation for electricity production. Much emphasis has been on wind generation as it is among the most advanced forms of renewable generation, however, its variable and relatively unpredictable nature result in increased challenges for electricity system operators. Tidal generation on the other hand is almost perfectly forecastable and as such may be a viable alternative to wind generation. This paper calculates the break-even capital cost for tidal generation on a real electricity system. An electricity market model is used to determine the impact of tidal generation on the operating schedules of the conventional units on the system and on the resulting cycling costs, emissions and fuel savings. It is found that for tidal generation to produce positive net benefits for the case study, the capital costs would have to be less than Euro 510,000 per MW installed which is currently an unrealistically low capital cost. Thus, it is concluded that tidal generation is not a viable option for the case system at the present time.

  12. Tidal sails : an alternative to turbines for harvesting tidal current energy

    Energy Technology Data Exchange (ETDEWEB)

    Hanssen, J.E. [Tidal Sails, Haugesund (Norway)

    2008-07-01

    Tidal sail technology harnesses the energy of tidal streams in order to produce electricity. Tidal currents move the sails that are attached to wires that rotate generator wheels to produce electricity. The technology has a low impact on the surrounding environment and is simple to install. This presentation discussed the methods used to determine the influence of relative sail velocity and measure estimated energy output levels. The sails were recently tested at an on-grid tidal stream pilot in the Norwegian Arctic. A 300 kW turbine installed at the site demonstrated that the site was suitable for a full-scale development of 20 tripod-mounted 600 kW turbines placed at 50 m depth. It was estimated that the 10 strings of 1000 m length provided between 200 and 250 GWh per year. The sails have also been used at a high speed site in Washington state in the United States. The 25 m pilot plant was installed to verify site suitability and examine sail behaviour in real, high-flow currents. It is expected that the technology will be fully commercialized by 2011. Other pilot tests are being conducted to examine flow behaviour; mooring and flotation functionality; and launch and lift capabilities. Engineering work is ongoing to examine plant designs, variable sail spacing, and collaborations with key component suppliers. tabs., figs.

  13. Which future for the tidal sector in France? Towards a new model of territorial development

    International Nuclear Information System (INIS)

    Aelbrecht, Denis; Deroo, Luc; Le Visage, Christophe; Rabain, Antoine

    2017-01-01

    This document proposes a brief overview of works by a French national work-group of the SHF (French Hydro-technical Society) on the new tidal sector. It indicates recent and current development in the renewable marine energy sector: offshore wind farms along the French coasts, floating wind energy demonstrators, several tidal stream demonstrators, and other projects. British projects are also evoked. Then various aspects which could be success factors, are briefly discussed: the tidal potential, project configuration types (dams in estuary, coastal lagoons, offshore lagoons), interactions with the environment (sea and coastal ecosystems, sediments), opportunities of technological innovation (belt of the tidal basin, machine technology, exploitation mode), the concept of tidal garden, economic performance and viability (orientations for cost reduction and income increase). The issue of feasibility with respect with the NIMBY syndrome is finally addressed, and orientations and principles are briefly defined to evolve towards a YINBY (Yes in my back yard) syndrome

  14. Power Generation for River and Tidal Generators

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wright, Alan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Donegan, James [Ocean Renewable Power Company (ORPC), Portland, ME (United States); Marnagh, Cian [Ocean Renewable Power Company (ORPC), Portland, ME (United States); McEntee, Jarlath [Ocean Renewable Power Company (ORPC), Portland, ME (United States)

    2016-06-01

    Renewable energy sources are the second largest contributor to global electricity production, after fossil fuels. The integration of renewable energy continued to grow in 2014 against a backdrop of increasing global energy consumption and a dramatic decline in oil prices during the second half of the year. As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded from primarily wind and solar to include new types with promising future applications, such as hydropower generation, including river and tidal generation. Today, hydropower is considered one of the most important renewable energy sources. In river and tidal generation, the input resource flow is slower but also steadier than it is in wind or solar generation, yet the level of water turbulent flow may vary from one place to another. This report focuses on hydrokinetic power conversion.

  15. Development of tidal watersheds in the Wadden Sea

    NARCIS (Netherlands)

    Wang, Z.B.; Vroom, J.; van Prooijen, B.C.; Labeur, R.J.; Stive, M.J.F.; Hansen, M.H.P.

    2011-01-01

    The Wadden Sea consists of a series of tidal lagoons which are connected to the North Sea by tidal inlets. Boundaries to each lagoon are the mainland coast, the barrier islands on both sides of the tidal inlet, and the tidal watersheds behind the two barrier islands. Behind each Wadden Island there

  16. TIDALLY HEATED TERRESTRIAL EXOPLANETS: VISCOELASTIC RESPONSE MODELS

    International Nuclear Information System (INIS)

    Henning, Wade G.; O'Connell, Richard J.; Sasselov, Dimitar D.

    2009-01-01

    Tidal friction in exoplanet systems, driven by orbits that allow for durable nonzero eccentricities at short heliocentric periods, can generate internal heating far in excess of the conditions observed in our own solar system. Secular perturbations or a notional 2:1 resonance between a hot Earth and hot Jupiter can be used as a baseline to consider the thermal evolution of convecting bodies subject to strong viscoelastic tidal heating. We compare results first from simple models using a fixed Quality factor and Love number, and then for three different viscoelastic rheologies: the Maxwell body, the Standard Anelastic Solid (SAS), and the Burgers body. The SAS and Burgers models are shown to alter the potential for extreme tidal heating by introducing the possibility of new equilibria and multiple response peaks. We find that tidal heating tends to exceed radionuclide heating at periods below 10-30 days, and exceed insolation only below 1-2 days. Extreme cases produce enough tidal heat to initiate global-scale partial melting, and an analysis of tidal limiting mechanisms such as advective cooling for earthlike planets is discussed. To explore long-term behaviors, we map equilibria points between convective heat loss and tidal heat input as functions of eccentricity. For the periods and magnitudes discussed, we show that tidal heating, if significant, is generally detrimental to the width of habitable zones.

  17. [Effect of water storage and aquaculture on Oncomelania hupensis control in tidal flats wetlands of islet-beach type area of Dantu section of lower reaches of Yangtze River].

    Science.gov (United States)

    Li, Ye-fang; Huang, Yi-xin; Wang, He-sheng; Hang, De-rong; Chen, Xiang-ping; Xie, Yi-feng; Zhang, Lian-heng

    2015-12-01

    To evaluate the effect and the benefits of the projects of water storage and aquaculture on Oncomelania hupensis snail control in the tidal flats wetlands of islet-beach type area of lower reaches of the Yangtze River. The projects of water storage and aquaculture on 0. hupensis snail control were implemented in the tidal flats wetlands of islet-beach type of lower reaches of the Yangtze River. The breed situation of the snails was investigated by the conventional method before and after the project implementation and the effect of control and elimination of the snails by the projects were evaluated. At the same time, the cost-benefit analysis of two projects among them was performed by the static benefit-cost ratio method. All of 0. hupensis snails were eliminated in the first year after the implementation of seven water storage and aquaculture projects. The costs of detection and control of snails saved by each project was 69.20 thousand yuan a year on average. The annual net benefits of the "Nanhao Group 10 beach" project and "Wutao Group 6-14 beach" project were 2 039.40 thousand yuan and 955.00 thousand yuan respectively, and the annual net benefit-cost ratios were 1.09: 1 and 1.07: 1 respectively. The O. hupensis snails could be rapidly eliminated by the water storage and aquaculture, and the economic benefit is obvious, but the wetland ecological protection and flood control safety should be considered in the tidal flats wetlands of islet-beach type area of lower reaches of the Yangtze River.

  18. Swift J1644+57 gone MAD: the case for dynamically important magnetic flux threading the black hole in a jetted tidal disruption event

    Science.gov (United States)

    Tchekhovskoy, Alexander; Metzger, Brian D.; Giannios, Dimitrios; Kelley, Luke Z.

    2014-01-01

    The unusual transient Swift J1644+57 likely resulted from a collimated relativistic jet, powered by the sudden onset of accretion on to a massive black hole (BH) following the tidal disruption (TD) of a star. However, several mysteries cloud the interpretation of this event, including (1) the extreme flaring and `plateau' shape of the X-ray/γ-ray light curve during the first t - ttrig ˜ 10 d after the γ-ray trigger; (2) unexpected rebrightening of the forward shock radio emission at t - ttrig ˜ months; (3) lack of obvious evidence for jet precession, despite the misalignment typically expected between the angular momentum of the accretion disc and BH; (4) recent abrupt shut-off in the jet X-ray emission at t - ttrig ˜ 1.5 yr. Here, we show that all of these seemingly disparate mysteries are naturally resolved by one assumption: the presence of strong magnetic flux Φ• threading the BH. Just after the TD event, Φ• is dynamically weak relative to the high rate of fall-back accretion dot{M}, such that the accretion disc (jet) freely precesses about the BH axis = our line of sight. As dot{M} decreases, however, Φ• becomes dynamically important, leading to a state of `magnetically arrested disk' (MAD). MAD naturally aligns the jet with the BH spin, but only after an extended phase of violent rearrangement (jet wobbling), which in Swift J1644+57 starts a few days before the γ-ray trigger and explains the erratic early light curve. Indeed, the entire X-ray light curve can be fitted to the predicted power-law decay dot{M} ∝ t^{-α } (α ≃ 5/3 - 2.2) if the TD occurred a few weeks prior to the γ-ray trigger. Jet energy directed away from the line of sight, either prior to the trigger or during the jet alignment process, eventually manifests as the observed radio rebrightening, similar to an off-axis (orphan) γ-ray burst afterglow. As suggested recently, the late X-ray shut-off occurs when the disc transitions to a geometrically thin (jetless) state once

  19. Tidal flow separation at protruding beach nourishments

    NARCIS (Netherlands)

    Radermacher, M.; de Schipper, M.A.; Swinkels, Cilia M.; MacMahan, Jamie; Reniers, A.J.H.M.

    2016-01-01

    In recent years, the application of large-scale beach nourishments has been discussed, with the Sand Motor in the Netherlands as the first real-world example. Such protruding beach nourishments have an impact on tidal currents, potentially leading to tidal flow separation and the generation of tidal

  20. TIDAL NOVAE IN COMPACT BINARY WHITE DWARFS

    International Nuclear Information System (INIS)

    Fuller, Jim; Lai Dong

    2012-01-01

    Compact binary white dwarfs (WDs) undergoing orbital decay due to gravitational radiation can experience significant tidal heating prior to merger. In these WDs, the dominant tidal effect involves the excitation of outgoing gravity waves in the inner stellar envelope and the dissipation of these waves in the outer envelope. As the binary orbit decays, the WDs are synchronized from outside in (with the envelope synchronized first, followed by the core). We examine the deposition of tidal heat in the envelope of a carbon-oxygen WD and study how such tidal heating affects the structure and evolution of the WD. We show that significant tidal heating can occur in the star's degenerate hydrogen layer. This layer heats up faster than it cools, triggering runaway nuclear fusion. Such 'tidal novae' may occur in all WD binaries containing a CO WD, at orbital periods between 5 minutes and 20 minutes, and precede the final merger by 10 5 -10 6 years.

  1. Biocontrol for Rhizoctonia Stem Rot Disease by Using Combination of Specific Endophyte in Paddy Tidal Swamp

    OpenAIRE

    Budi, Ismed Setya; Mariana, Mariana

    2013-01-01

    The use of combination of specific endophytic in tidal swamps to control stem root disease as biological control agents has not been done. It is expected that this combination is able to continuously protect plants from pathogen interference. The research was carried out in type C tidal swamp in Banjar regency of South Kalimantan, from March to November 2011, temperature 29-32oC, and pH 4.0-5.5. The method used was Split Plot design. Biocontrol preparation for both types of endophytic was ap...

  2. Sudden increase in tidal response linked to calving and acceleration at a large Greenland outlet glacier

    DEFF Research Database (Denmark)

    de Juan, Julia; Elósegui, Pedro; Nettles, Meredith

    2010-01-01

    strongly with the step-like increases in glacier speed and longitudinal strain rate associated with glacial earthquakes. The enhanced response to the ocean tides may be explained by a temporary disruption of the subglacial drainage system and a concomitant reduction of the friction at the ice......Large calving events at Greenland's largest outlet glaciers are associated with glacial earthquakes and near-instantaneous increases in glacier flow speed. At some glaciers and ice streams, flow is also modulated in a regular way by ocean tidal forcing at the terminus. At Helheim Glacier, analysis...

  3. Tidally influenced alongshore circulation at an inlet-adjacent shoreline

    Science.gov (United States)

    Hansen, Jeff E.; Elias, Edwin P.L.; List, Jeffrey H.; Erikson, Li H.; Barnard, Patrick L.

    2013-01-01

    The contribution of tidal forcing to alongshore circulation inside the surfzone is investigated at a 7 km long sandy beach adjacent to a large tidal inlet. Ocean Beach in San Francisco, CA (USA) is onshore of a ∼150 km2 ebb-tidal delta and directly south of the Golden Gate, the sole entrance to San Francisco Bay. Using a coupled flow-wave numerical model, we find that the tides modulate, and in some cases can reverse the direction of, surfzone alongshore flows through two separate mechanisms. First, tidal flow through the inlet results in a barotropic tidal pressure gradient that, when integrated across the surfzone, represents an important contribution to the surfzone alongshore force balance. Even during energetic wave conditions, the tidal pressure gradient can account for more than 30% of the total alongshore pressure gradient (wave and tidal components) and up to 55% during small waves. The wave driven component of the alongshore pressure gradient results from alongshore wave height and corresponding setup gradients induced by refraction over the ebb-tidal delta. Second, wave refraction patterns over the inner shelf are tidally modulated as a result of both tidal water depth changes and strong tidal flows (∼1 m/s), with the effect from currents being larger. These tidally induced changes in wave refraction result in corresponding variability of the alongshore radiation stress and pressure gradients within the surfzone. Our results indicate that tidal contributions to the surfzone force balance can be significant and important in determining the direction and magnitude of alongshore flow.

  4. Tidal influence on subtropical estuarine methane emissions

    Science.gov (United States)

    Sturm, Katrin; Grinham, Alistair; Werner, Ursula; Yuan, Zhiguo

    2014-05-01

    The relatively unstudied subtropical estuaries, particularly in the Southern Hemisphere, represent an important gap in our understanding of global greenhouse gas (GHG) emissions. These systems are likely to form an important component of GHG budgets as they occupy a relatively large surface area, over 38 000 km2 in Australia. Here, we present studies conducted in the Brisbane River estuary, a representative system within the subtropical region of Queensland, Australia. This is a highly modified system typical of 80% of Australia's estuaries. Generally, these systems have undergone channel deepening and straightening for safer shipping access and these modifications have resulted in large increases in tidal reach. The Brisbane River estuary's natural tidal reach was 16 km and this is now 85 km and tidal currents influence double the surface area (9 km2 to 18 km2) in this system. Field studies were undertaken to improve understanding of the driving factors behind methane water-air fluxes. Water-air fluxes in estuaries are usually calculated with the gas exchange coefficient (k) for currents and wind as well as the concentration difference across the water-air interface. Tidal studies in the lower and middle reaches of the estuary were performed to monitor the influence of the tidal stage (a proxy for kcurrent) on methane fluxes. Results for both investigated reaches showed significantly higher methane fluxes during the transition time of tides, the time of greatest tidal currents, than during slack tide periods. At these tidal transition times with highest methane chamber fluxes, lowest methane surface water concentrations were monitored. Modelled fluxes using only wind speed (kwind) were at least one order of magnitude lower than observed from floating chambers, demonstrating that current speed was likely the driving factor of water-air fluxes. An additional study was then conducted sampling the lower, middle and upper reaches during a tidal transition period

  5. High-resolution Hydrodynamic Simulation of Tidal Detonation of a Helium White Dwarf by an Intermediate Mass Black Hole

    Science.gov (United States)

    Tanikawa, Ataru

    2018-05-01

    We demonstrate tidal detonation during a tidal disruption event (TDE) of a helium (He) white dwarf (WD) with 0.45 M ⊙ by an intermediate mass black hole using extremely high-resolution simulations. Tanikawa et al. have shown tidal detonation in results of previous studies from unphysical heating due to low-resolution simulations, and such unphysical heating occurs in three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations even with 10 million SPH particles. In order to avoid such unphysical heating, we perform 3D SPH simulations up to 300 million SPH particles, and 1D mesh simulations using flow structure in the 3D SPH simulations for 1D initial conditions. The 1D mesh simulations have higher resolutions than the 3D SPH simulations. We show that tidal detonation occurs and confirm that this result is perfectly converged with different space resolution in both 3D SPH and 1D mesh simulations. We find that detonation waves independently arise in leading parts of the WD, and yield large amounts of 56Ni. Although detonation waves are not generated in trailing parts of the WD, the trailing parts would receive detonation waves generated in the leading parts and would leave large amounts of Si group elements. Eventually, this He WD TDE would synthesize 56Ni of 0.30 M ⊙ and Si group elements of 0.08 M ⊙, and could be observed as a luminous thermonuclear transient comparable to SNe Ia.

  6. Atmospheric noise of a breaking tidal bore.

    Science.gov (United States)

    Chanson, Hubert

    2016-01-01

    A tidal bore is a surge of waters propagating upstream in an estuary as the tidal flow turns to rising and the flood tide propagates into a funnel-shaped system. Large tidal bores have a marked breaking roller. The sounds generated by breaking tidal bores were herein investigated in the field (Qiantang River) and in laboratory. The sound pressure record showed two dominant periods, with some similarity with an earlier study [Chanson (2009). J. Acoust. Soc. Am. 125(6), 3561-3568]. The two distinct phases were the incoming tidal bore when the sound amplitude increased with the approaching bore, and the passage of the tidal bore in front of the microphone when loud and powerful noises were heard. The dominant frequency ranged from 57 to 131 Hz in the Qiantang River bore. A comparison between laboratory and prototype tidal bores illustrated both common features and differences. The low pitch sound of the breaking bore had a dominant frequency close to the collective oscillations of bubble clouds, which could be modeled with a bubble cloud model using a transverse dimension of the bore roller. The findings suggest that this model might be over simplistic in the case of a powerful breaking bore, like that of the Qiantang River.

  7. Tidal exchange between a freshwater tidal marsh and an impacted estuary: the Scheldt estuary, Belgium

    NARCIS (Netherlands)

    van Damme, S.; Dehairs, F.; Tackx, M.; Beauchard, O.; Struyf, E.; Gribsholt, B.; van Cleemput, O.; Meire, P.

    2009-01-01

    Tidal marsh exchange studies are relatively simple tools to investigate the interaction between tidal marshes and estuaries. They have mostly been confined to only a few elements and to saltwater or brackish systems. This study presents mass-balance results of an integrated one year campaign in a

  8. Flow paths of water and sediment in a tidal marsh: relations with marsh developmental stage and tidal inundation height

    NARCIS (Netherlands)

    Temmerman, S.; Bouma, T.J.; Govers, G.; Lauwaet, D.

    2005-01-01

    This study provides new insights in the relative role of tidal creeks and the marsh edge in supplying water and sediments to and from tidal marshes for a wide range of tidal inundation cycles with different high water levels and for marsh zones of different developmental stage. Net import or export

  9. Widespread infilling of tidal channels and navigable waterways in human-modified tidal deltaplain of southwest Bangladesh

    Directory of Open Access Journals (Sweden)

    Carol Wilson

    2017-12-01

    Full Text Available Since the 1960s, ~5000 km2 of tidal deltaplain in southwest Bangladesh has been embanked and converted to densely inhabited, agricultural islands (i.e., polders. This landscape is juxtaposed to the adjacent Sundarbans, a pristine mangrove forest, both well connected by a dense network of tidal channels that effectively convey water and sediment throughout the region. The extensive embanking in poldered areas, however, has greatly reduced the tidal prism (i.e., volume of water transported through local channels. We reveal that >600 km of these major waterways have infilled in recent decades, converting to land through enhanced sedimentation and the direct blocking of waterways by embankments and sluice gates. Nearly all of the observed closures (~98% have occurred along the embanked polder systems, with no comparable changes occurring in channels of the Sundarbans (<2% change. We attribute most of the channel infilling to the local reduction of tidal prism in poldered areas and the associated decline in current velocities. The infilled channels account for ~90 km2 of new land in the last 40–50 years, the rate of which, ~2 km2/yr, offsets the 4 km2/yr that is eroded at the coast, and is equivalent to ~20% of the new land produced naturally at the Ganges-Brahmaputra tidal rivermouth. Most of this new land, called ‘khas’ in Bengali, has been reclaimed for agriculture or aquaculture, contributing to the local economy. However, benefits are tempered by the loss of navigable waterways for commerce, transportation, and fishing, as well as the forced rerouting of tidal waters and sediments necessary to sustain this low-lying landscape against rising sea level. A more sustainable delta will require detailed knowledge of the consequences of these hydrodynamic changes to support more scientifically-grounded management of water, sediment, and tidal energy distribution.

  10. TIDAL LIMITS TO PLANETARY HABITABILITY

    International Nuclear Information System (INIS)

    Barnes, Rory; Jackson, Brian; Greenberg, Richard; Raymond, Sean N.

    2009-01-01

    The habitable zones (HZs) of main-sequence stars have traditionally been defined as the range of orbits that intercept the appropriate amount of stellar flux to permit surface water on a planet. Terrestrial exoplanets discovered to orbit M stars in these zones, which are close-in due to decreased stellar luminosity, may also undergo significant tidal heating. Tidal heating may span a wide range for terrestrial exoplanets and may significantly affect conditions near the surface. For example, if heating rates on an exoplanet are near or greater than that on Io (where tides drive volcanism that resurfaces the planet at least every 1 Myr) and produce similar surface conditions, then the development of life seems unlikely. On the other hand, if the tidal heating rate is less than the minimum to initiate plate tectonics, then CO 2 may not be recycled through subduction, leading to a runaway greenhouse that sterilizes the planet. These two cases represent potential boundaries to habitability and are presented along with the range of the traditional HZ for main-sequence, low-mass stars. We propose a revised HZ that incorporates both stellar insolation and tidal heating. We apply these criteria to GJ 581 d and find that it is in the traditional HZ, but its tidal heating alone may be insufficient for plate tectonics.

  11. Disruptions in the TFTR tokamak

    International Nuclear Information System (INIS)

    Janos, A.; Fredrickson, E.D.; McGuire, K.; Batha, S.H.; Bell, M.G.; Bitter, M.; Budny, R.; Bush, C.E.; Efthimion, P.C.; Hawryluk, R.J.; Hill, K.W.; Hosea, J.; Jobes, F.C.; Johnson, D.W.; Levinton, F.; Mansfield, D.; Meade, D.; Medley, S.S.; Monticello, D.; Mueller, D.; Nagayama, Y.; Owens, D.K.; Park, H.; Park, W.; Post, D.E.; Schivell, J.; Strachan, J.D.; Taylor, G.; Ulrickson, M.; Goeler, S. von; Wilfrid, E.; Wong, K.L.; Yamada, M.; Young, K.M.; Zarnstorff, M.C.; Zweben, S.J.; Drake, J.F.; Kleva, R.G.; Fleischmann, H.H.

    1993-03-01

    For a successful reactor, it will be useful to predict the occurrence of disruptions and to understand disruption effects including how a plasma disrupts onto the wall and how reproducibly it does so. Studies of disruptions on TFTR at both high-β pol and high-density have shown that, in both types, a fast growing m/n=1/1 mode plays an important role. In highdensity disruptions, a newly observed fast m/n = 1/1 mode occurs early in the thermal decay phase. For the first time in TFTR q-profile measurements just prior to disruptions have been made. Experimental studies of heat deposition patterns on the first wall of TFTR due to disruptions have provided information on MHD phenomena prior to or during the disruption, how the energy is released to the wall, and the reproducibility of the heat loads from disruptions. This information is important in the design of future devices such as ITER. Several new processes of runaway electron generation are theoretically suggested and their application to TFTR and ITER is considered, together with a preliminary assessment of x-ray data from runaways generated during disruptions

  12. Sedimentary structures of tidal flats

    Indian Academy of Sciences (India)

    Sedimentary structures of some coastal tropical tidal flats of the east coast of India, and inner estuarine tidal point bars located at 30 to 50 kilometers inland from the coast, have been extensively studied under varying seasonal conditions. The results reveal that physical features such as flaser bedding, herringbone ...

  13. Analysis of Tidal Data for Dagang Tidal Gauge and Study of the Changes for the National Height Datum

    Directory of Open Access Journals (Sweden)

    WU Fumei

    2015-07-01

    Full Text Available The main tides affecting Dagang sea level are analyzed and the national height datum is studied by analyzing 1980—2011 hourly tidal data and 1952—2007 monthly mean tidal data. Firstly, the frequencies and amplitudes of main tides including 180 short-period tides and 6 long-period tides are gained by the Fouirer transform. Then the actual amplitudes and their variations of main tides are obtained by the harmonic analysis of the 1980—2011 hourly tidal data, and the changes with about 19 year period can easily be found in the amplitudes of Q1、O1、M2、K1、K2. And then the changes of the mean sea level at Dagang tidal gauge defining national height datum during the period of 1952—2011 are studied by the harmonic analysis and the shifting average of 18.61 year tidal heights. The results of these methods show that the mean sea level at Dagang tidal gauge descended with the speed of 1.07 mm/a and 0.76 mm/a respectively during 1952—1980, and that it ascended with the speed of 1.59 mm/a and 1.62 mm/a respectively during 1980—2011. And finally the difference of 0.14 cm is achieved by the shifting average of 18.61 year tidal heights for 1985 National Height Datum.

  14. From Globular Clusters to Tidal Dwarfs: Structure Formation in the Tidal Tails of Merging Galaxies

    Science.gov (United States)

    Knierman, Karen A.; Gallagher, Sarah C.; Charlton, Jane C.; Hunsberger, Sally D.; Whitmore, Bradley; Kundu, Arunav; Hibbard, J. E.; Zaritsky, Dennis

    2003-09-01

    Using V and I images obtained with the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope, we investigate compact stellar structures within tidal tails. Six regions of tidal debris in the four classic ``Toomre sequence'' mergers: NGC 4038/39 (``Antennae''), NGC 3256, NGC 3921, and NGC 7252 (``Atoms for Peace'') have been studied in order to explore how the star formation depends on the local and global physical conditions. These mergers sample a range of stages in the evolutionary sequence and tails with and without embedded tidal dwarf galaxies. The six tails are found to contain a variety of stellar structures, with sizes ranging from those of globular clusters up to those of dwarf galaxies. From V and I WFPC2 images, we measure the luminosities and colors of the star clusters. NGC 3256 is found to have a large population of blue clusters (0.2<~V-I<~0.9), particularly in its western tail, similar to those found in the inner region of the merger. In contrast, NGC 4038/39 has no clusters in the observed region of the tail, only less luminous point sources likely to be individual stars. NGC 3921 and NGC 7252 have small populations of clusters along their tails. A significant cluster population is clearly associated with the prominent tidal dwarf candidates in the eastern and western tails of NGC 7252. The cluster-rich western tail of NGC 3256 is not distinguished from the others by its dynamical age or by its total H I mass. However, the mergers that have few clusters in the tail all have tidal dwarf galaxies, while NGC 3256 does not have prominent tidal dwarfs. We speculate that star formation in tidal tails may manifest itself either in small structures like clusters along the tail or in large structures such as dwarf galaxies, but not in both. Also, NGC 3256 has the highest star formation rate of the four mergers studied, which may contribute to the high number of star clusters in its tidal tails. Based in part on observations obtained with the

  15. Gene disruption in Salmonella typhimurim by modified λ Red disruption system.

    Science.gov (United States)

    Ahani Azari, A; Zahraei Salehi, T; Nayeri Fasaei, B; Alebouyeh, M

    2015-01-01

    There are many techniques to knock out directed genes in bacteria, some of which have been described in Salmonella species. In this study, a combination of SOEing PCR method and the λ Red disruption system were used to disrupt phoP gene in wild type and standard strains of Salmonella typhimurium. Three standards PCR and one fusion PCR reactions were performed to construct a linear DNA including upstream and downstream of phoP gene and Kanamycin cassette. As a template plasmid, we used pKD4 which carries kanamycin gene flanked by FRT (FLP recognition target) sites. The resulting construct was electroporated into prepared competent cells of S. typhimurium. The transformants colonies related to the standard strain appeared on the LB-Km-agar plates after incubation, but there was no colony on LB-Km-agar plates corresponding to the wild type strain. The failure in transformation of the wild type strain may be because of inflexibility of the λ Red disruption system in this strain or its unique restriction-modification system. However, by this construct we are able to generate phoP mutant in many of the Salmonella species due to high homology of the phoP gene which exists in different species.

  16. A modeling study of tidal energy extraction and the associated impact on tidal circulation in a multi-inlet bay system of Puget Sound

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Taiping; Yang, Zhaoqing

    2017-12-01

    Previous tidal energy projects in Puget Sound have focused on major deep channels such as Admiralty Inlet that have a larger power potential but pose greater technical challenges than minor tidal channels connecting to small sub-basins. This paper focuses on the possibility of extracting energy from minor tidal channels by using a hydrodynamic model to quantify the power potential and the associated impact on tidal circulation. The study site is a multi-inlet bay system connected by two narrow inlets, Agate Pass and Rich Passage, to the Main Basin of Puget Sound. A three-dimensional hydrodynamic model was applied to the study site and calibrated for tidal elevations and currents. We examined three energy extraction scenarios in which turbines were deployed in each of the two passages and concurrently in both. Extracted power rates and associated changes in tidal elevation, current, tidal flux, and residence time were examined. Maximum instantaneous power rates reached 250 kW, 1550 kW, and 1800 kW, respectively, for the three energy extraction scenarios. The model suggests that with the proposed level of energy extraction, the impact on tidal circulation is very small. It is worth investigating the feasibility of harnessing tidal energy from minor tidal channels of Puget Sound.

  17. Downstream hydraulic geometry of a tidally influenced river delta

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.; Brye, de B.; Deleersnijder, E.

    2012-01-01

    Channel geometry in tidally influenced river deltas can show a mixed scaling behavior between that of river and tidal channel networks, as the channel forming discharge is both of river and tidal origin. We present a method of analysis to quantify the tidal signature on delta morphology, by

  18. Conditions for tidal bore formation in convergent alluvial estuaries

    Science.gov (United States)

    Bonneton, Philippe; Filippini, Andrea Gilberto; Arpaia, Luca; Bonneton, Natalie; Ricchiuto, Mario

    2016-04-01

    Over the last decade there has been an increasing interest in tidal bore dynamics. However most studies have been focused on small-scale bore processes. The present paper describes the first quantitative study, at the estuary scale, of the conditions for tidal bore formation in convergent alluvial estuaries. When freshwater discharge and large-scale spatial variations of the estuary water depth can be neglected, tide propagation in such estuaries is controlled by three main dimensionless parameters: the nonlinearity parameter ε0 , the convergence ratio δ0 and the friction parameter ϕ0. In this paper we explore this dimensionless parameter space, in terms of tidal bore occurrence, from a database of 21 estuaries (8 tidal-bore estuaries and 13 non tidal-bore estuaries). The field data point out that tidal bores occur for convergence ratios close to the critical convergence δc. A new proposed definition of the friction parameter highlights a clear separation on the parameter plane (ϕ0,ε0) between tidal-bore estuaries and non tidal-bore estuaries. More specifically, we have established that tidal bores occur in convergent estuaries when the nonlinearity parameter is greater than a critical value, εc , which is an increasing function of the friction parameter ϕ0. This result has been confirmed by numerical simulations of the two-dimensional Saint Venant equations. The real-estuary observations and the numerical simulations also show that, contrary to what is generally assumed, tide amplification is not a necessary condition for tidal bore formation. The effect of freshwater discharge on tidal bore occurrence has been analyzed from the database acquired during three long-term campaigns carried out on the Gironde/Garonne estuary. We have shown that in the upper estuary the tidal bore intensity is mainly governed by the local dimensionless tide amplitude ε. The bore intensity is an increasing function of ε and this relationship does not depend on freshwater

  19. NATURE OF WAVE PROCESSES AND THEIR INTERACTION WITH Tidal power PLANTS

    Directory of Open Access Journals (Sweden)

    Alekseeva Ol'ga Aleksandrovna

    2012-07-01

    Full Text Available The author examines the nature of wave processes and their impact on the operation of tidal power plants. The article also has an overview of both operating and prospective tidal power plants in Russia and worldwide. Patterns of tidal fluctuations and the intensity of their driving forces are also considered in the article. The author discloses the origin of tides in terms of elementary physics and hydraulics. The author covers various aspects of formation of different types of inequality of tides caused by alterations in the mutual positions of the Sun and the Moon in relation to the Earth, variable declination of tide-generating luminaries (the Sun and the Moon in relation to the plane of the Earth equator, and variable distance between the luminaries and the Earth. The author analyzes wave-related phenomena, including refraction, diffraction and interference, their origin and influence onto the properties of waves. The author also covers the origin of advancing and standing waves, or waves of mixed origin, and the impact of the wind onto the characteristics of wave fluctuations. The author provides suggestions regarding potential methods of their control that can affect the essential concept of construction of tidal power plants.

  20. CHALLENGES IN FORMING PLANETS BY GRAVITATIONAL INSTABILITY: DISK IRRADIATION AND CLUMP MIGRATION, ACCRETION, AND TIDAL DESTRUCTION

    International Nuclear Information System (INIS)

    Zhu Zhaohuan; Hartmann, Lee; Nelson, Richard P.; Gammie, Charles F.

    2012-01-01

    We present two-dimensional hydrodynamic simulations of self-gravitating protostellar disks subject to axisymmetric, continuing mass loading from an infalling envelope and irradiation from the central star to explore the growth of gravitational instability (GI) and disk fragmentation. We assume that the disk is built gradually and smoothly by the infall, resulting in good numerical convergence. We confirm that for disks around solar-mass stars, infall at high rates at radii beyond ∼50 AU leads to disk fragmentation. At lower infall rates, however, irradiation suppresses fragmentation. We find that, once formed, the fragments or clumps migrate inward on typical type I timescales of ∼2 × 10 3 yr initially, but with a stochastic component superimposed due to their interaction with the GI-induced spiral arms. Migration begins to deviate from the type I timescale when the clump becomes more massive than the local disk mass, and/or when the clump begins to form a gap in the disk. As they migrate, clumps accrete from the disk at a rate between 10 –3 and 10 –1 M J yr –1 , consistent with analytic estimates that assume a 1-2 Hill radii cross section. The eventual fates of these clumps, however, diverge depending on the migration speed: 3 out of 13 clumps in our simulations become massive enough (brown dwarf mass range) to open gaps in the disk and essentially stop migrating; 4 out of 13 are tidally destroyed during inward migration; and 6 out of 13 migrate across the inner boundary of the simulated disks. A simple analytic model for clump evolution explains the different fates of the clumps and reveals some limitations of two-dimensional simulations. Overall, our results indicate that fast migration, accretion, and tidal destruction of the clumps pose challenges to the scenario of giant planet formation by GI in situ, although we cannot address whether or not remnant solid cores can survive after tidal stripping. The models where the massive clumps are not

  1. Tidal energy site - Tidal energy site mammal/bird survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A vessel-based line visual transect survey was conducted for birds and marine mammals near the proposed Snohomish County PUD Admiralty Inlet tidal energy site...

  2. Tidal and sub-tidal sea level variability at the northern shelf of the Brazilian Northeast Region.

    Science.gov (United States)

    Frota, Felipe F; Truccolo, Eliane C; Schettini, Carlos A F

    2016-09-01

    A characterization of the sea level variability at tidal and sub-tidal frequencies at the northern shore of the Brazilian Northeast shelf for the period 2009-2011 is presented. The sea level data used was obtained from the Permanent Geodetic Tide Network from the Brazilian Institute of Geography and Statistics for the Fortaleza gauge station. Local wind data was also used to assess its effects on the low-frequency sea level variability. The variability of the sea level was investigated by classical harmonic analysis and by morphology assessment over the tidal signal. The low frequencies were obtained by low-pass filtering. The tidal range oscillated with the highest value of 3.3 m during the equinox and the lowest value of 0.7 m during the solstice. Differences between the spring and neap tides were as high as 1 m. A total of 59 tidal constituents were obtained from harmonic analysis, and the regional tide was classified as semi-diurnal pure with a form number of 0.11. An assessment of the monthly variability of the main tidal constituents (M2, S2, N2, O1, and K1) indicated that the main semi-diurnal solar S2 presented the highest variability, ranging from 0.21 to 0.41 m; it was the main element altering the form number through the years. The low frequency sea-level variability is negligible, although there is a persistent signal with an energy peak in the 10-15 day period, and it cannot be explained by the effects of local winds.

  3. Maine Tidal Power Initiative: Environmental Impact Protocols For Tidal Power

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Michael Leroy [Univ. of Maine, Orono, ME; Zydlewski, Gayle Barbin [Univ. of Maine, Orono, ME; Xue, Huijie [Univ. of Maine, Orono, ME; Johnson, Teresa R. [Univ. of Maine, Orono, ME

    2014-02-02

    The Maine Tidal Power Initiative (MTPI), an interdisciplinary group of engineers, biologists, oceanographers, and social scientists, has been conducting research to evaluate tidal energy resources and better understand the potential effects and impacts of marine hydro-kinetic (MHK) development on the environment and local community. Project efforts include: 1) resource assessment, 2) development of initial device design parameters using scale model tests, 3) baseline environmental studies and monitoring, and 4) human and community responses. This work included in-situ measurement of the environmental and social response to the pre-commercial Turbine Generator Unit (TGU®) developed by Ocean Renewable Power Company (ORPC) as well as considering the path forward for smaller community scale projects.

  4. VISCOELASTIC MODELS OF TIDALLY HEATED EXOMOONS

    International Nuclear Information System (INIS)

    Dobos, Vera; Turner, Edwin L.

    2015-01-01

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life has been intensely studied on solar system moons such as Europa or Enceladus where the surface ice layer covers a tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. To study the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models because it takes into account the temperature dependence of the tidal heat flux and the melting of the inner material. Using this model, we introduced the circumplanetary Tidal Temperate Zone (TTZ), which strongly depends on the orbital period of the moon and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ using both models. We have found that the viscoelastic model predicts 2.8 times more exomoons in the TTZ with orbital periods between 0.1 and 3.5 days than the fixed Q model for plausible distributions of physical and orbital parameters. The viscoelastic model provides more promising results in terms of habitability because the inner melting of the body moderates the surface temperature, acting like a thermostat

  5. VISCOELASTIC MODELS OF TIDALLY HEATED EXOMOONS

    Energy Technology Data Exchange (ETDEWEB)

    Dobos, Vera [Konkoly Thege Miklos Astronomical Institute, Research Centre of Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Konkoly Thege Miklós út 15-17, Budapest (Hungary); Turner, Edwin L., E-mail: dobos@konkoly.hu [Department of Astrophysical Sciences, Princeton University, 08544, 4 Ivy Lane, Peyton Hall, Princeton, NJ (United States)

    2015-05-01

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life has been intensely studied on solar system moons such as Europa or Enceladus where the surface ice layer covers a tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. To study the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models because it takes into account the temperature dependence of the tidal heat flux and the melting of the inner material. Using this model, we introduced the circumplanetary Tidal Temperate Zone (TTZ), which strongly depends on the orbital period of the moon and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ using both models. We have found that the viscoelastic model predicts 2.8 times more exomoons in the TTZ with orbital periods between 0.1 and 3.5 days than the fixed Q model for plausible distributions of physical and orbital parameters. The viscoelastic model provides more promising results in terms of habitability because the inner melting of the body moderates the surface temperature, acting like a thermostat.

  6. The internal flow pattern analysis of a tidal power turbine operating on bidirectional generation-pumping

    International Nuclear Information System (INIS)

    Luo, Y Y; Xiao, Y X; Wang, Z W

    2013-01-01

    Using tidal energy can reduce environment pollution, save conventional energy and improve energy structure, hence it presents great advantage and is developing potential. Influenced by flood tide and low tide, a fully functional tidal power station needs to experience six operating modes, including bidirectional generation, pumping and sluice; the internal unsteady flow pattern and dynamic characters are very complicated. Based on a bidirectional tidal generator unit, three-dimensional unsteady flows in the flow path were calculated for four typical operating conditions with the pressure pulsation characteristics analyzed. According to the numerical results, the internal flow characteristics in the flow path were discussed. The influence of gravity to the hydraulic performance and flow characteristics were analysed. The results provide a theoretical analysis method of the hydraulic optimization design of the same type unit as well as a direction for stable operation and optimal scheduling of existing tidal power unit

  7. Tidal interactions with Kerr black holes

    International Nuclear Information System (INIS)

    Hiscock, W.A.

    1977-01-01

    The tidal deformation of an extended test body falling with zero angular momentum into a Kerr black hole is calculated. Numerical results for infall along the symmetry axis and in the equatorial plane of the black hole are presented for a range of values of a, the specific angular momentum of the black hole. Estimates of the tidal contribution to the gravitational radiation are also given. The tidal contribution in equatorial infall into a maximally rotating Kerr black hole may be of the same order as the center-of-mass contribution to the gravitational radiation

  8. Relevance of tidal heating on large TNOs

    Science.gov (United States)

    Saxena, Prabal; Renaud, Joe P.; Henning, Wade G.; Jutzi, Martin; Hurford, Terry

    2018-03-01

    We examine the relevance of tidal heating for large Trans-Neptunian Objects, with a focus on its potential to melt and maintain layers of subsurface liquid water. Depending on their past orbital evolution, tidal heating may be an important part of the heat budget for a number of discovered and hypothetical TNO systems and may enable formation of, and increased access to, subsurface liquid water. Tidal heating induced by the process of despinning is found to be particularly able to compete with heating due to radionuclide decay in a number of different scenarios. In cases where radiogenic heating alone may establish subsurface conditions for liquid water, we focus on the extent by which tidal activity lifts the depth of such conditions closer to the surface. While it is common for strong tidal heating and long lived tides to be mutually exclusive, we find this is not always the case, and highlight when these two traits occur together. We find cases where TNO systems experience tidal heating that is a significant proportion of, or greater than radiogenic heating for periods ranging from100‧s of millions to a billion years. For subsurface oceans that contain a small antifreeze component, tidal heating due to very high initial spin states may enable liquid water to be preserved right up to the present day. Of particular interest is the Eris-Dysnomia system, which in those cases may exhibit extant cryovolcanism.

  9. No Snowball on Habitable Tidally Locked Planets

    Science.gov (United States)

    Checlair, Jade; Menou, Kristen; Abbot, Dorian S.

    2017-08-01

    The TRAPPIST-1, Proxima Centauri, and LHS 1140 systems are the most exciting prospects for future follow-up observations of potentially inhabited planets. All of the planets orbit nearby M-stars and are likely tidally locked in 1:1 spin–orbit states, which motivates the consideration of the effects that tidal locking might have on planetary habitability. On Earth, periods of global glaciation (snowballs) may have been essential for habitability and remote signs of life (biosignatures) because they are correlated with increases in the complexity of life and in the atmospheric oxygen concentration. In this paper, we investigate the snowball bifurcation (sudden onset of global glaciation) on tidally locked planets using both an energy balance model and an intermediate-complexity global climate model. We show that tidally locked planets are unlikely to exhibit a snowball bifurcation as a direct result of the spatial pattern of insolation they receive. Instead, they will smoothly transition from partial to complete ice coverage and back. A major implication of this work is that tidally locked planets with an active carbon cycle should not be found in a snowball state. Moreover, this work implies that tidally locked planets near the outer edge of the habitable zone with low CO2 outgassing fluxes will equilibrate with a small unglaciated substellar region rather than cycling between warm and snowball states. More work is needed to determine how the lack of a snowball bifurcation might affect the development of life on a tidally locked planet.

  10. No Snowball on Habitable Tidally Locked Planets

    International Nuclear Information System (INIS)

    Checlair, Jade; Abbot, Dorian S.; Menou, Kristen

    2017-01-01

    The TRAPPIST-1, Proxima Centauri, and LHS 1140 systems are the most exciting prospects for future follow-up observations of potentially inhabited planets. All of the planets orbit nearby M-stars and are likely tidally locked in 1:1 spin–orbit states, which motivates the consideration of the effects that tidal locking might have on planetary habitability. On Earth, periods of global glaciation (snowballs) may have been essential for habitability and remote signs of life (biosignatures) because they are correlated with increases in the complexity of life and in the atmospheric oxygen concentration. In this paper, we investigate the snowball bifurcation (sudden onset of global glaciation) on tidally locked planets using both an energy balance model and an intermediate-complexity global climate model. We show that tidally locked planets are unlikely to exhibit a snowball bifurcation as a direct result of the spatial pattern of insolation they receive. Instead, they will smoothly transition from partial to complete ice coverage and back. A major implication of this work is that tidally locked planets with an active carbon cycle should not be found in a snowball state. Moreover, this work implies that tidally locked planets near the outer edge of the habitable zone with low CO 2 outgassing fluxes will equilibrate with a small unglaciated substellar region rather than cycling between warm and snowball states. More work is needed to determine how the lack of a snowball bifurcation might affect the development of life on a tidally locked planet.

  11. Tidal mixing in Dahej creek waters

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Sarma, R.V.

    Mixing characteristics of a tidal inlet near Dahej at the mouth of Narmada River, Gujarat, India are examined in terms of tides, currents and bathymetry. The dilution potential of the Dahej Creek waters during a tidal march for a given rate...

  12. An Astrobiological Experiment to Explore the Habitability of Tidally Locked M-Dwarf Planets

    Science.gov (United States)

    Angerhausen, Daniel; Sapers, Haley; Simoncini, Eugenio; Lutz, Stefanie; Alexandre, Marcelo da Rosa; Galante, Douglas

    2014-04-01

    We present a summary of a three-year academic research proposal drafted during the Sao Paulo Advanced School of Astrobiology (SPASA) to prepare for upcoming observations of tidally locked planets orbiting M-dwarf stars. The primary experimental goal of the suggested research is to expose extremophiles from analogue environments to a modified space simulation chamber reproducing the environmental parameters of a tidally locked planet in the habitable zone of a late-type star. Here we focus on a description of the astronomical analysis used to define the parameters for this climate simulation.

  13. Diatom-driven recolonization of microbial mat-dominated siliciclastic tidal flat sediments.

    Science.gov (United States)

    Pan, Jerónimo; Cuadrado, Diana G; Bournod, Constanza N

    2017-10-01

    Modern microbial mats and biofilms play a paramount role in sediment biostabilization. When sporadic storms affect tidal flats of Bahía Blanca Estuary, the underlying siliciclastic sediment is exposed by physical disruption of the mat, and in a few weeks' lapse, a microbial community re-establishes. With the objective of studying colonization patterns and the ecological succession of microorganisms at the scale of these erosional structures, these were experimentally made and their biological recolonization followed for 8 weeks, with replication in winter and spring. Motile pennate diatoms led the initial colonization following two distinct patterns: a dominance by Cylindrotheca closterium in winter and by naviculoid and nitzschioid diatoms in spring. During the first 7 days, cell numbers increased 2- to 17-fold. Cell densities further increased exhibiting sigmoidal community growth, reaching 2.9-8.9 × 106 cells cm-3 maxima around day 30; centric diatoms maintained low densities throughout. In 56 days after removal of the original mat, filamentous cyanobacteria that dominate mature mats did not establish a significant biomass, leading to the rejection of the hypothesis that cyanobacteria would drive the colonization. The observed dominance of pennate diatoms is attributed to extrinsic factors determined by tidal flooding, and intrinsic ones, e.g. motility, nutrient affinity and high growth rate. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Digital disruption ?syndromes.

    Science.gov (United States)

    Sullivan, Clair; Staib, Andrew

    2017-05-18

    The digital transformation of hospitals in Australia is occurring rapidly in order to facilitate innovation and improve efficiency. Rapid transformation can cause temporary disruption of hospital workflows and staff as processes are adapted to the new digital workflows. The aim of this paper is to outline various types of digital disruption and some strategies for effective management. A large tertiary university hospital recently underwent a rapid, successful roll-out of an integrated electronic medical record (EMR). We observed this transformation and propose several digital disruption "syndromes" to assist with understanding and management during digital transformation: digital deceleration, digital transparency, digital hypervigilance, data discordance, digital churn and post-digital 'depression'. These 'syndromes' are defined and discussed in detail. Successful management of this temporary digital disruption is important to ensure a successful transition to a digital platform. What is known about this topic? Digital disruption is defined as the changes facilitated by digital technologies that occur at a pace and magnitude that disrupt established ways of value creation, social interactions, doing business and more generally our thinking. Increasing numbers of Australian hospitals are implementing digital solutions to replace traditional paper-based systems for patient care in order to create opportunities for improved care and efficiencies. Such large scale change has the potential to create transient disruption to workflows and staff. Managing this temporary disruption effectively is an important factor in the successful implementation of an EMR. What does this paper add? A large tertiary university hospital recently underwent a successful rapid roll-out of an integrated electronic medical record (EMR) to become Australia's largest digital hospital over a 3-week period. We observed and assisted with the management of several cultural, behavioural and

  15. EXPLORING HALO SUBSTRUCTURE WITH GIANT STARS: SUBSTRUCTURE IN THE LOCAL HALO AS SEEN IN THE GRID GIANT STAR SURVEY INCLUDING EXTENDED TIDAL DEBRIS FROM ωCENTAURI

    International Nuclear Information System (INIS)

    Majewski, Steven R.; Nidever, David L.; Damke, Guillermo J.; Patterson, Richard J.; García Pérez, Ana E.; Smith, Verne V.; Kunkel, William E.; Bizyaev, Dmitry

    2012-01-01

    We present the latitude-normalized radial velocity (v b ) distribution of 3318 subsolar metallicity, V ∼ b sequences. One sequence in the fourth Galactic quadrant lies within the l-v b space expected to contain tidal debris from the 'star cluster' ωCentauri. Not only does ωCen lie precisely in this l-v b sequence, but the positions and v b of member stars match those of N-body simulations of tidally disrupting dwarf galaxies on orbits ending with ωCen's current position and space motion. But the ultimate proof that we have very likely found extended parts of the ωCen tidal stream comes from echelle spectroscopy of a subsample of the stars that reveals a very particular chemical abundance signature known to occur only in ωCen. The newly discovered ωCen debris accounts for almost all fourth Galactic quadrant retrograde stars in the southern GGSS, which suggests ωCen is a dominant contributor of retrograde giant stars in the inner Galaxy.

  16. Tidal volume in acute respiratory distress syndrome: how best to select it.

    Science.gov (United States)

    Umbrello, Michele; Marino, Antonella; Chiumello, Davide

    2017-07-01

    Mechanical ventilation is the type of organ support most widely provided in the intensive care unit. However, this form of support does not constitute a cure for acute respiratory distress syndrome (ARDS), as it mainly works by buying time for the lungs to heal while contributing to the maintenance of vital gas exchange. Moreover, it can further damage the lung, leading to the development of a particular form of lung injury named ventilator-induced lung injury (VILI). Experimental evidence accumulated over the last 30 years highlighted the factors associated with an injurious form of mechanical ventilation. The present paper illustrates the physiological effects of delivering a tidal volume to the lungs of patients with ARDS, and suggests an approach to tidal volume selection. The relationship between tidal volume and the development of VILI, the so called volotrauma, will be reviewed. The still actual suggestion of a lung-protective ventilatory strategy based on the use of low tidal volumes scaled to the predicted body weight (PBW) will be presented, together with newer strategies such as the use of airway driving pressure as a surrogate for the amount of ventilatable lung tissue or the concept of strain, i.e., the ratio between the tidal volume delivered relative to the resting condition, that is the functional residual capacity (FRC). An ultra-low tidal volume strategy with the use of extracorporeal carbon dioxide removal (ECCO 2 R) will be presented and discussed. Eventually, the role of other ventilator-related parameters in the generation of VILI will be considered (namely, plateau pressure, airway driving pressure, respiratory rate (RR), inspiratory flow), and the promising unifying framework of mechanical power will be presented.

  17. Marine Hydrokinetic Energy Site Identification and Ranking Methodology Part II: Tidal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kilcher, Levi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tinnesand, Heidi [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    Marine hydrokinetic energy is a promising and growing piece of the renewable energy sector that offers high predictability and additional energy sources for a diversified energy economy. This report investigates the market opportunities for tidal energy along the U.S. coastlines. It is part one of a two-part investigation into the United States' two largest marine hydrokinetic resources (wave and tidal). Tidal energy technology is still an emerging form of renewable energy for which large-scale grid-connected project costs are currently poorly defined. Ideally, device designers would like to know the resource conditions at economical project sites so they can optimize device designs. On the other hand, project developers need detailed device cost data to identify sites where projects are economical. That is, device design and siting are, to some extent, a coupled problem. This work describes a methodology for identifying likely deployment locations based on a set of criteria that tidal energy experts in industry, academia, and national laboratories agree are likely to be important factors for all technology types. Several factors that will affect tidal project costs and siting have not been considered here -- including permitting constraints, conflicting use, seasonal resource variability, extreme event likelihood, and distance to ports -- because consistent data are unavailable or technology-independent scoring could not be identified. As the industry continues to mature and converge around a subset of device archetypes with well-defined costs, more precise investigations of project siting that include these factors will be possible. For now, these results provide a high-level guide pointing to the regions where markets and resource will one day support commercial tidal energy projects.

  18. Geometry of tidal inlet systems : A key factor for the net sediment transport in tidal inlets

    NARCIS (Netherlands)

    Ridderinkhof, W.; de Swart, H. E.; van der Vegt, M.; Alebregtse, N. C.; Hoekstra, P.

    2014-01-01

    The net transport of sediment between the back-barrier basin and the sea is an important process for determining the stability of tidal inlet systems. Earlier studies showed that in a short basin, tidal flats favor peak ebb-currents stronger than peak flood currents, implying export of coarse

  19. Tidal variations of earth rotation

    Science.gov (United States)

    Yoder, C. F.; Williams, J. G.; Parke, M. E.

    1981-01-01

    The periodic variations of the earths' rotation resulting from the tidal deformation of the earth by the sun and moon were rederived including terms with amplitudes of 0.002 millisec and greater. The series applies to the mantle, crust, and oceans which rotate together for characteristic tidal periods; the scaling parameter is the ratio of the fraction of the Love number producing tidal variations in the moment of inertia of the coupled mantle and oceans (k) to the dimensionless polar moment of inertia of the coupled moments (C). The lunar laser ranging data shows that k/C at monthly and fortnightly frequencies equals 0.99 + or - 0.15 and 0.99 + or - 0.20 as compared to the theoretical value of 0.94 + or - 0.04.

  20. Disrupted globular clusters and the gamma-ray excess in the Galactic Centre

    Science.gov (United States)

    Fragione, Giacomo; Antonini, Fabio; Gnedin, Oleg Y.

    2018-04-01

    The Fermi Large Area Telescope has provided the most detailed view towards the Galactic Centre (GC) in high-energy gamma-rays. Besides the interstellar emission and point source contributions, the data suggest a residual diffuse gamma-ray excess. The similarity of its spatial distribution with the expected profile of dark matter has led to claims that this may be evidence for dark matter particle annihilation. Here, we investigate an alternative explanation that the signal originates from millisecond pulsars (MSPs) formed in dense globular clusters and deposited at the GC as a consequence of cluster inspiral and tidal disruption. We use a semi-analytical model to calculate the formation, migration, and disruption of globular clusters in the Galaxy. Our model reproduces the mass of the nuclear star cluster and the present-day radial and mass distribution of globular clusters. For the first time, we calculate the evolution of MSPs from disrupted globular clusters throughout the age of the Galaxy and consistently include the effect of the MSP spin-down due to magnetic-dipole braking. The final gamma-ray amplitude and spatial distribution are in good agreement with the Fermi observations and provide a natural astrophysical explanation for the GC excess.

  1. TIDAL INTERACTIONS IN MERGING WHITE DWARF BINARIES

    International Nuclear Information System (INIS)

    Piro, Anthony L.

    2011-01-01

    The recently discovered system J0651 is the tightest known detached white dwarf (WD) binary. Since it has not yet initiated Roche-lobe overflow, it provides a relatively clean environment for testing our understanding of tidal interactions. I investigate the tidal heating of each WD, parameterized in terms of its tidal Q parameter. Assuming that the heating can be radiated efficiently, the current luminosities are consistent with Q 1 ∼ 7 x 10 10 and Q 2 ∼ 2 x 10 7 , for the He and C/O WDs, respectively. Conversely, if the observed luminosities are merely from the cooling of the WDs, these estimated values of Q represent the upper limits. A large Q 1 for the He WD means its spin velocity will be slower than that expected if it was tidally locked, which, since the binary is eclipsing, may be measurable via the Rossiter-McLaughlin effect. After one year, gravitational wave emission shifts the time of eclipses by 5.5 s, but tidal interactions cause the orbit to shrink more rapidly, changing the time by up to an additional 0.3 s after a year. Future eclipse timing measurements may therefore infer the degree of tidal locking.

  2. THE TIDAL ORIGIN OF THE MAGELLANIC STREAM AND THE POSSIBILITY OF A STELLAR COUNTERPART

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Jonathan D.; Bekki, Kenji, E-mail: jdiaz@ast.cam.ac.uk [ICRAR, M468, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009 (Australia)

    2012-05-01

    We present an N-body model that reproduces the morphology and kinematics of the Magellanic Stream (MS), a vast neutral hydrogen (H I) structure that trails behind the Large and Small Magellanic Clouds (LMC and SMC, respectively) in their orbit about the Milky Way (MW). After investigating 8 Multiplication-Sign 10{sup 6} possible orbits consistent with the latest proper motions, we adopt an orbital history in which the LMC and SMC have only recently become a strongly interacting binary pair. We find that their first close encounter {approx}2 Gyr ago provides the necessary tidal forces to disrupt the disk of the SMC and thereby create the MS. The model also reproduces the on-sky bifurcation of the two filaments of the MS, and we suggest that a bound association with the MW is required to reproduce the bifurcation. Additional H I structures are created during the tidal evolution of the SMC disk, including the Magellanic Bridge, the 'Counter-Bridge', and two branches of leading material. Insights into the chemical evolution of the LMC are also provided, as a substantial fraction of the material stripped away from the SMC is engulfed by the LMC. Lastly, we compare three different N-body realizations of the stellar component of the SMC, which we model as a pressure-supported spheroid motivated by recent kinematical observations. We find that an extended spheroid is better able to explain the stellar periphery of the SMC, and the tidal evolution of the spheroid may imply the existence of a stellar stream akin to the gaseous MS.

  3. No Snowball on Habitable Tidally Locked Planets

    Energy Technology Data Exchange (ETDEWEB)

    Checlair, Jade; Abbot, Dorian S. [Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States); Menou, Kristen, E-mail: jadecheclair@uchicago.edu [Centre for Planetary Sciences, Department of Physical and Environmental Sciences, University of Toronto at Scarborough, Toronto, ON M1C 1A4 (Canada)

    2017-08-20

    The TRAPPIST-1, Proxima Centauri, and LHS 1140 systems are the most exciting prospects for future follow-up observations of potentially inhabited planets. All of the planets orbit nearby M-stars and are likely tidally locked in 1:1 spin–orbit states, which motivates the consideration of the effects that tidal locking might have on planetary habitability. On Earth, periods of global glaciation (snowballs) may have been essential for habitability and remote signs of life (biosignatures) because they are correlated with increases in the complexity of life and in the atmospheric oxygen concentration. In this paper, we investigate the snowball bifurcation (sudden onset of global glaciation) on tidally locked planets using both an energy balance model and an intermediate-complexity global climate model. We show that tidally locked planets are unlikely to exhibit a snowball bifurcation as a direct result of the spatial pattern of insolation they receive. Instead, they will smoothly transition from partial to complete ice coverage and back. A major implication of this work is that tidally locked planets with an active carbon cycle should not be found in a snowball state. Moreover, this work implies that tidally locked planets near the outer edge of the habitable zone with low CO{sub 2} outgassing fluxes will equilibrate with a small unglaciated substellar region rather than cycling between warm and snowball states. More work is needed to determine how the lack of a snowball bifurcation might affect the development of life on a tidally locked planet.

  4. TIDAL EVOLUTION OF CLOSE-IN PLANETS

    International Nuclear Information System (INIS)

    Matsumura, Soko; Rasio, Frederic A.; Peale, Stanton J.

    2010-01-01

    Recent discoveries of several transiting planets with clearly non-zero eccentricities and some large obliquities started changing the simple picture of close-in planets having circular and well-aligned orbits. The two major scenarios that form such close-in planets are planet migration in a disk and planet-planet interactions combined with tidal dissipation. The former scenario can naturally produce a circular and low-obliquity orbit, while the latter implicitly assumes an initially highly eccentric and possibly high-obliquity orbit, which are then circularized and aligned via tidal dissipation. Most of these close-in planets experience orbital decay all the way to the Roche limit as previous studies showed. We investigate the tidal evolution of transiting planets on eccentric orbits, and find that there are two characteristic evolution paths for them, depending on the relative efficiency of tidal dissipation inside the star and the planet. Our study shows that each of these paths may correspond to migration and scattering scenarios. We further point out that the current observations may be consistent with the scattering scenario, where the circularization of an initially eccentric orbit occurs before the orbital decay primarily due to tidal dissipation in the planet, while the alignment of the stellar spin and orbit normal occurs on a similar timescale to the orbital decay largely due to dissipation in the star. We also find that even when the stellar spin-orbit misalignment is observed to be small at present, some systems could have had a highly misaligned orbit in the past, if their evolution is dominated by tidal dissipation in the star. Finally, we also re-examine the recent claim by Levrard et al. that all orbital and spin parameters, including eccentricity and stellar obliquity, evolve on a similar timescale to orbital decay. This counterintuitive result turns out to have been caused by a typo in their numerical code. Solving the correct set of tidal

  5. Assessment of Kinetic Tidal Energy Resources Using SELFE

    Directory of Open Access Journals (Sweden)

    Manasa Ranjan Behera

    2014-09-01

    Full Text Available An investigation is carried out to study the theoretical tidal stream energy resource in the Singapore Strait to support the search for renewable energy in the effort to reduce the carbon footprints in the Southeast Asia. The tidal hydrodynamics in the Singapore Strait has been simulated using a Semi-implicit Eulerian-Lagrangian Finite-Element (SELFE model solving the 3D shallow water equations with Boussinesq approximations. Potential sites, with high tidal current (2.5 m/s and suitable for Tidal Energy Converter (TEC array installation to generate sustainable energy, have been identified. Further, various operational factors for installation of Tidal Energy Converters are considered before computing the theoretical power output for a typical TEC array. An approximate estimation of the possible theoretical power extraction from a TEC array shows an energy potential of up to 4.36% of the total energy demand of Singapore in 2011. Thus, the study suggests a detailed investigation of potential sites to quantify the total tidal stream energy potential in the Singapore Strait.

  6. Tidal energy, a renewable energy within hand reach

    International Nuclear Information System (INIS)

    Danielo, O.

    2011-01-01

    Tide energy and oceanic current energy represent a strong potentiality for a few countries in the world including France. In the domain of tidal energy there are 2 strategies. The first one is based on the search for the lowest power production cost in order to contribute efficiently to the country's energy mix. Generally this strategy leads to the construction of tidal dams. The second strategy is based on the search for the lowest environmental impact. This strategy is economically competitive only in places where electrical power is expensive like isolated islands. This strategy is illustrated by the tidal power station of the Alderney island. In fact the amount of energy delivered by a tidal power station depends on the rise of the tide and on the surface of the dam. It appears that tidal dams require less surface that hydroelectric power plants. The energy of oceanic currents like Gulf Stream or the thermal energy of oceans or wave power are very little exploited now but represent a potentiality higher by several orders of magnitude than tidal energy. (A.C.)

  7. Geometro-thermodynamics of tidal charged black holes

    International Nuclear Information System (INIS)

    Gergely, Laszlo Arpad; Pidokrajt, Narit; Winitzki, Sergei

    2011-01-01

    Tidal charged spherically symmetric vacuum brane black holes are characterized by their mass m and tidal charge q, an imprint of the five-dimensional Weyl curvature. For q>0 they are formally identical to the Reissner-Nordstroem black hole of general relativity. We study the thermodynamics and thermodynamic geometries of tidal charged black holes and discuss similarities and differences as compared to the Reissner-Nordstroe m black hole. As a similarity, we show that (for q>0) the heat capacity of the tidal charged black hole diverges on a set of measure zero of the parameter space, nevertheless both the regularity of the Ruppeiner metric and a Poincare stability analysis show no phase transition at those points. The thermodynamic state spaces being different indicates that the underlying statistical models could be different. We find that the q<0 parameter range, which enhances the localization of gravity on the brane, is thermodynamically preferred. Finally we constrain for the first time the possible range of the tidal charge from the thermodynamic limit on gravitational radiation efficiency at black hole mergers. (orig.)

  8. Tidal Marshes: The Boundary between Land and Ocean.

    Science.gov (United States)

    Gosselink, James

    An overview of the ecology of the tidal marshes along the gulf coast of the United States is presented. The following topics are included: (1) the human impact on tidal marshes; (2) the geologic origins of tidal marshes; (3) a description of the physical characteristics and ecosystem of the marshlands; (4) a description of the marshland food chain…

  9. Satellite Tidal Magnetic Signals Constrain Oceanic Lithosphere-Asthenosphere Boundary Earth Tomography with Tidal Magnetic Signals

    Science.gov (United States)

    Grayver, Alexander V.; Schnepf, Neesha R.; Kuvshinov, Alexey V.; Sabaka, Terence J.; Chandrasekharan, Manoj; Olsen, Niles

    2016-01-01

    The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. Here we use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. The model derived from more than 12 years of satellite data reveals an Approximately 72 km thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere.

  10. Are Wave and Tidal Energy Plants New Green Technologies?

    Science.gov (United States)

    Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca

    2016-07-19

    Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research.

  11. Adaptive management of perennial pepperweed for endangered specias and tidal marsh recovery

    Science.gov (United States)

    Perennial pepperweed has invaded a wide range of habitat types in the far west. In the San Francisco Estuary, dense infestations have impacted sensitive tidal wetlands and compromised endangered species recovery efforts. An adaptive management effort to reduce perennial pepperweed was initiated by...

  12. Tidal regimes and salt marshes - the River Hamble analogue

    International Nuclear Information System (INIS)

    Gray, A.J.; Moy, I.L.; Warman, E.A.; Dawson, F.H.; Henville, P.

    1993-01-01

    Construction of estuarine tidal-energy barrages has a potentially major effect on the tidal regime of the estuary, particularly upstream of a barrage. Because tidal regime largely controls the distribution and species composition of intertidal plant and animal communities, it is important to understand how barrages may affect such communities. The main objectives of the research described in this report were to relate recent changes in tidal regime within an embanked area of salt marsh and mudflat to changes in the distribution of plant species. This was to test predictions about tidal control of species' range and to assess the site's suitability as an analogue of post-barrage conditions. (author)

  13. Tidal propagation off the central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.

    . [Keywords: Tidal propagation, Mumbai high, Global tidal model, Shelf model, Central west coast of India] Introduction In coastal regions, tides play an important role in determining circulation and hydrography. Barotropic tides coming from the open... with increase in the width of the shelf. Materials and Methods Global tidal models Schwiderski5 used a hydrodynamic interpolation technique to determine the amplitude and phase of tidal constituents of global ocean. Since the availability of satellite...

  14. Dissipation of Tidal Energy

    Science.gov (United States)

    2002-01-01

    The moon's gravity imparts tremendous energy to the Earth, raising tides throughout the global oceans. What happens to all this energy? This question has been pondered by scientists for over 200 years, and has consequences ranging from the history of the moon to the mixing of the oceans. Richard Ray at NASA's Goddard Space Flight Center, Greenbelt, Md. and Gary Egbert of the College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Ore. studied six years of altimeter data from the TOPEX/Poseidon satellite to address this question. According to their report in the June 15 issue of Nature, about 1 terawatt, or 25 to 30 percent of the total tidal energy dissipation, occurs in the deep ocean. The remainder occurs in shallow seas, such as on the Patagonian Shelf. 'By measuring sea level with the TOPEX/Poseidon satellite altimeter, our knowledge of the tides in the global ocean has been remarkably improved,' said Richard Ray, a geophysicist at Goddard. The accuracies are now so high that this data can be used to map empirically the tidal energy dissipation. (Red areas, above) The deep-water tidal dissipation occurs generally near rugged bottom topography (seamounts and mid-ocean ridges). 'The observed pattern of deep-ocean dissipation is consistent with topographic scattering of tidal energy into internal motions within the water column, resulting in localized turbulence and mixing', said Gary Egbert an associate professor at OSU. One important implication of this finding concerns the possible energy sources needed to maintain the ocean's large-scale 'conveyor-belt' circulation and to mix upper ocean heat into the abyssal depths. It is thought that 2 terawatts are required for this process. The winds supply about 1 terawatt, and there has been speculation that the tides, by pumping energy into vertical water motions, supply the remainder. However, all current general circulation models of the oceans ignore the tides. 'It is possible that properly

  15. Carbon sequestration by Australian tidal marshes

    KAUST Repository

    Macreadie, Peter I.

    2017-03-10

    Australia\\'s tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia\\'s tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha-1 (range 14-963 Mg OC ha-1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha-1 yr-1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia\\'s 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2-equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr-1, with a CO2-equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes.

  16. Extraction of tidal channel networks from airborne scanning laser altimetry

    Science.gov (United States)

    Mason, David C.; Scott, Tania R.; Wang, Hai-Jing

    Tidal channel networks are important features of the inter-tidal zone, and play a key role in tidal propagation and in the evolution of salt marshes and tidal flats. The study of their morphology is currently an active area of research, and a number of theories related to networks have been developed which require validation using dense and extensive observations of network forms and cross-sections. The conventional method of measuring networks is cumbersome and subjective, involving manual digitisation of aerial photographs in conjunction with field measurement of channel depths and widths for selected parts of the network. This paper describes a semi-automatic technique developed to extract networks from high-resolution LiDAR data of the inter-tidal zone. A multi-level knowledge-based approach has been implemented, whereby low-level algorithms first extract channel fragments based mainly on image properties then a high-level processing stage improves the network using domain knowledge. The approach adopted at low level uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels. The higher level processing includes a channel repair mechanism. The algorithm may be extended to extract networks from aerial photographs as well as LiDAR data. Its performance is illustrated using LiDAR data of two study sites, the River Ems, Germany and the Venice Lagoon. For the River Ems data, the error of omission for the automatic channel extractor is 26%, partly because numerous small channels are lost because they fall below the edge threshold, though these are less than 10 cm deep and unlikely to be hydraulically significant. The error of commission is lower, at 11%. For the Venice Lagoon data, the error of omission is 14%, but the error of commission is 42%, due partly to the difficulty of interpreting channels in these natural scenes. As a benchmark, previous work has shown that this type of algorithm

  17. Long-term divergent tidal flat benthic community recovery following hypoxia-induced mortality

    NARCIS (Netherlands)

    Colen, van C.; Montserrat, F.; Vincx, M.; Herman, P.M.J.; Ysebaert, T.; Degraer, S.

    2010-01-01

    Macrobenthos recovery after hypoxia-induced mass mortality was assessed in an estuarine tidal mudflat during 3 years. During the first 2 years, a Pearson-Rosenberg type of community recovery took place along with the improving bottom water oxygen conditions. After 3 months, spionid polychaetes

  18. Modeling In-stream Tidal Energy Extraction and Its Potential Environmental Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea; Geerlofs, Simon H.

    2014-09-30

    In recent years, there has been growing interest in harnessing in-stream tidal energy in response to concerns of increasing energy demand and to mitigate climate change impacts. While many studies have been conducted to assess and map tidal energy resources, efforts for quantifying the associated potential environmental impacts have been limited. This paper presents the development of a tidal turbine module within a three-dimensional unstructured-grid coastal ocean model and its application for assessing the potential environmental impacts associated with tidal energy extraction. The model is used to investigate in-stream tidal energy extraction and associated impacts on estuarine hydrodynamic and biological processes in a tidally dominant estuary. A series of numerical experiments with varying numbers and configurations of turbines installed in an idealized estuary were carried out to assess the changes in the hydrodynamics and biological processes due to tidal energy extraction. Model results indicated that a large number of turbines are required to extract the maximum tidal energy and cause significant reduction of the volume flux. Preliminary model results also indicate that extraction of tidal energy increases vertical mixing and decreases flushing rate in a stratified estuary. The tidal turbine model was applied to simulate tidal energy extraction in Puget Sound, a large fjord-like estuary in the Pacific Northwest coast.

  19. Large tidal plants may supply 1,000 TWh / year

    International Nuclear Information System (INIS)

    Lemperiere, F.

    2006-10-01

    Many studies of tidal plants have been made fifty years ago: they were usually devoted to sites with average tidal head over 6 m and reduced works at sea: estuaries such as La Rance (France) or Severn (U.K.) were favoured: preferred corresponding operation was using flow from a high basin to low sea level, supplying power 4 hours from 12. Such solutions had 2 drawbacks: power supply poorly adapted to needs and modified shore tidal ecosystems. Beyond that the power cost was usually higher than from thermal plants and very few plants were built, the main one being the Rance plant in France supplying 0,5 TWh/year with 240 MW. The world theoretical tidal potential is in the same range as the traditional hydropower potential. A new approach of tidal plants based upon solutions existing now and using new operating methods substantiates the possibility of over 1,000 TWh/year of cost efficient tidal energy with limited environmental impact and power supply well adapted to requirements. Over 15 countries may be involved. Tidal plants with heads as low as 4 m may be cost efficient. (author)

  20. Tidal effects in twin-degenerate binaries

    International Nuclear Information System (INIS)

    Campbell, C.G.

    1984-01-01

    The tidal velocity field is calculated for an initially non-rotating low mass white dwarf secondary in a twin-degenerate binary. These motions are used to find the tidal torque on the secondary, to first order in the orbital frequency, and an expression is derived for the synchronization time. For a lobe-filling secondary the synchronization time has a weak dependence on the mass and luminosity of the star, and for the binary G61-29 is found to be of the same order as the estimated lifetime of the system. It is emphasized, however, that tidal excitation of non-radial oscillatory modes in the secondary may significantly shorten the synchronization time. (author)

  1. Spin-orbital Tidal Dynamics and Tidal Heating in the TRAPPIST-1 Multiplanet System

    Science.gov (United States)

    Makarov, Valeri V.; Berghea, Ciprian T.; Efroimsky, Michael

    2018-04-01

    We perform numerical simulations of the TRAPPIST-1 system of seven exoplanets orbiting a nearby M dwarf, starting with a previously suggested stable configuration. The long-term stability of this configuration is confirmed, but the motion of planets is found to be chaotic. The eccentricity values are found to vary within finite ranges. The rates of tidal dissipation and tidal evolution of orbits are estimated, assuming an Earth-like rheology for the planets. We find that under this assumption, the planets b, d, and e were captured in the 3:2 or higher spin–orbit resonances during the initial spin-down, but slipped further down into the 1:1 resonance. Depending on its rheology, the innermost planet b may be captured in a stable pseudosynchronous rotation. Nonsynchronous rotation ensures higher levels of tidal dissipation and internal heating. The positive feedback between the viscosity and the dissipation rate—and the ensuing runaway heating—are terminated by a few self-regulation processes. When the temperature is high and the viscosity is low enough, the planet spontaneously leaves the 3:2 resonance. Further heating is stopped either by passing the peak dissipation or by the emergence of partial melt in the mantle. In the post-solidus state, the tidal dissipation is limited to the levels supported by the heat transfer efficiency. The tides on the host star are unlikely to have had a significant dynamical impact. The tides on the synchronized inner planets tend to reduce these planets’ orbital eccentricity, possibly contributing thereby to the system’s stability.

  2. Understanding the Influence of Retention Basin on Tidal Dynamics in Tidal Estuaries

    Science.gov (United States)

    Kumar, Mohit; Schuttelaars, Henk; Roos, Pieter

    2014-05-01

    Both the tidal motion and suspended sediment concentration (SSC) in tidal embayments and estuaries are influenced by anthropogenic (e.g. deepening ) and natural changes. An example of such an estuary is the Ems estuary, situated on the border of the Netherlands and Germany. The mean tidal range towards the end of the Ems estuary has increased from 1.5m in the 1950s to more than 3m in the 1990s while the suspended concentration has increased by a factor 10. To possibly reduce these negative effects, the construction of retention basin(s) (RB) is considered. In this contribution, the influence of location and geometry of RBs on tidal dynamics and SSC is investigated. For this purpose, a three-dimensional semi-analytic idealized model is developed. This model is an extension of the model proposed by Winant (2007) to arbitrary domain and realistic bathymetry with partial slip boundary condition at the bottom. The sea surface elevation (SSE) is calculated numerically using a finite element method. Next, the three-dimensional velocities are calculated by combining the analytically calculated vertical profiles and the gradients of the SSE which are obtained numerically. Firstly, the influence of a RB on the tidal dynamics in an infinitely long, rectangular, frictionless estuary is considered. The SSE decreases when the RB is located between a node and a landward antinode, consistent with the work of Alebregtse et al. (2013). Secondly, an estuary of finite length is connected to a sea. By varying the width of the sea, not only the effect of the distance of the RB to the landward end plays a role, but also the distance to the open sea becomes important. Finally, we discuss the influence of a RB on the tidal motion and initial sediment transport, considering the Ems estuary with realistic bathymetry. Results show that the SSE at the landward end of the Ems estuary decreases for all locations of the RBs. This decrease is most pronounced for the RB which is closest to the end

  3. Using gaps in N-body tidal streams to probe missing satellites

    International Nuclear Information System (INIS)

    Ngan, W. H. W.; Carlberg, R. G.

    2014-01-01

    We use N-body simulations to model the tidal disruption of a star cluster in a Milky-Way-sized dark matter halo, which results in a narrow stream comparable to (but slightly wider than) Pal-5 or GD-1. The mean Galactic dark matter halo is modeled by a spherical Navarro-Frenk-White potential with subhalos predicted by the ΛCDM cosmological model. The distribution and mass function of the subhalos follow the results from the Aquarius simulation. We use a matched filter approach to look for 'gaps' in tidal streams at 12 length scales from 0.1 kpc to 5 kpc, which appear as characteristic dips in the linear densities along the streams. We find that, in addition to the subhalos' perturbations, the epicyclic overdensities (EOs) due to the coherent epicyclic motions of particles in a stream also produce gap-like signals near the progenitor. We measure the gap spectra—the gap formation rates as functions of gap length—due to both subhalo perturbations and EOs, which have not been accounted for together by previous studies. Finally, we project the simulated streams onto the sky to investigate issues when interpreting gap spectra in observations. In particular, we find that gap spectra from low signal-to-noise observations can be biased by the orbital phase of the stream. This indicates that the study of stream gaps will benefit greatly from high-quality data from future missions.

  4. The development and application practice of neglected tidal energy in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Li-qun; Liu, Chun-xia; Sun, Zhi-yi; Han, Ru-cheng [Department of Electronic and Information, Taiyuan University of Science and Technology, 030024 Taiyuan, Shanxi Province (China)

    2011-02-15

    Along the eastcoasts of China are large bodies of water, China has abundant ocean energy resource, such as the theory reserves of tidal resource is about 0.2 billion kW, as early as 1958, Jizhou tidal power station is the first tidal power station in China, which built in Shunde, Guangdong province, and more than 40 small tidal power stations are built in east coastal region in 1960s, and the total installed capacity is about 0.5 MW. But it is a pity, the application and development of tidal energy has not been regarded by the government and ordinary people due to the investment of power plant is big and the technology is not mature, so there are only several small tidal power stations in China, and Jiangxia tidal power station with an installed capacity of 3.2 MW is the most famous. Fortunately, with the rapid development of Chinese economic and society, the renewable and sustainable energy have been regarded by Chinese government, and the application and development of wind energy and solar energy is increasing in an incredible speed, and more and more specialists began to regard the application of tidal energy, and they thought that tidal energy can relieve the energy stress of east coastal region, and many layout of tidal energy exploitation is unfold in recently. This paper discusses the distribution zone and current developmental situation of tidal energy in China. Then, some application practice is described, such as tidal power station and tidal stream turbine. The policies and law of China central government and local governments are described in the following paragraph. At the end, the developmental prospect of tidal energy in future China and the development barriers and recommendations are introduced, respectively. (author)

  5. Simple Tidal Prism Models Revisited

    Science.gov (United States)

    Luketina, D.

    1998-01-01

    Simple tidal prism models for well-mixed estuaries have been in use for some time and are discussed in most text books on estuaries. The appeal of this model is its simplicity. However, there are several flaws in the logic behind the model. These flaws are pointed out and a more theoretically correct simple tidal prism model is derived. In doing so, it is made clear which effects can, in theory, be neglected and which can not.

  6. Admiralty Inlet Pilot Tidal Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Collar, Craig [Public Utility District No. 1 of Snohomish County, Everett, WA (United States)

    2015-09-14

    This document represents the final report for the Admiralty Inlet Pilot Tidal Project, located in Puget Sound, Washington, United States. The Project purpose was to license, permit, and install a grid-connected deep-water tidal turbine array (two turbines) to be used as a platform to gather operational and environmental data on tidal energy generation. The data could then be used to better inform the viability of commercial tidal energy generation from technical, economic, social, and environmental standpoints. This data would serve as a critical step towards the responsible advancement of commercial scale tidal energy in the United States and around the world. In late 2014, Project activities were discontinued due to escalating costs, and the DOE award was terminated in early 2015. Permitting, licensing, and engineering design activities were completed under this award. Final design, deployment, operation, and monitoring were not completed. This report discusses the results and accomplishments achieved under the subject award.

  7. Tidal Forces in Dyonic Reissner-Nördstrom Black Hole

    Science.gov (United States)

    Sharif, M.; Kousar, Lubna

    2018-03-01

    This paper investigates the tidal as well as magnetic charge effects produced in dyonic Reissner-Nordström black hole. We evaluate Newtonian radial acceleration using radial geodesics for freely falling test particles. We establish system of equations governing radial and angular tidal forces using geodesic deviation equation and discuss their solutions for bodies falling freely towards this black hole. The radial tidal force turns out to be compressing outside the event horizon whereas the angular tidal force changes sign between event and Cauchy horizons unlike Schwarzschild black hole. The radial geodesic component starts decreasing in dyonic Reissner-Nordström black hole unlike Schwarzschild case. We conclude that magnetic charge strongly affects the radial as well as angular components of tidal force.

  8. Short-term effects of tidal flooding on soil nitrogen mineralization in a Chinese tidal salt marsh

    Science.gov (United States)

    Gao, Haifeng; Bai, Junhong; Deng, Xiaoya; Lu, Qiongqiong; Ye, Xiaofei

    2018-02-01

    Tidal flooding is an important control of nitrogen biogeochemistry in wetland ecosystems of Yellow River Delta, China. Variations in hydrology could change soil redox dynamics and conditions for microorganisms living. A tidal simulation experiment was designed to extract tidal flooding effect on nitrogen mineralization of salt marsh soil. Inorganic nitrogen and relevant enzyme were measured during the 20-day incubation period. Considering the variation of both inorganic N and enzymes, nitrogen mineralization process in tidal salt marsh could be divided into 2 phases of short term response and longtime adaption by around 12th incubation day as the inflection point. Soil ammonium nitrogen (NH4+-N) and volatilized ammonia (NH3) occupied the mineralization process since nitrate nitrogen (NO3--N) was not detected over whole incubation period. NH4+-N varied fluctuant and increased significantly after 12 day's incubation. Released NH3 reached to peak value of 14.24 mg m-2 d-1 at the inflection point and declined thereafter. Inorganic nitrogen released according to net nitrogen mineralization rate (RM) under the tidal flooding condition without plant uptake except first 2 days. However, during the transitional period of 6-12 days, RM decreased notably to almost 0 and increased again after inflection point with the value of 0.182 mg kg-1 d-1. It might be due to the change of microbial composition and function when soil shifted from oxic to anoxic, which were reflected by arylamidase, urease and fluorescein diacetate. Fluorescein diacetate hydrolysis and arylamidase had the similar variation of U style with decreasing activities before 12 days' incubation. All the enzymes measured in this experiment increased after inflection point. Whereas, urease activity kept constant from 2 to 12 days. Alternant oxidation reduction condition would increase N loss through denitrification and ammonia volatilization during the transitional period, while more inorganic nitrogen would be

  9. Effects of different tidal volumes in pulmonary and extrapulmonary lung injury with or without intraabdominal hypertension.

    Science.gov (United States)

    Santos, Cíntia L; Moraes, Lillian; Santos, Raquel S; Oliveira, Mariana G; Silva, Johnatas D; Maron-Gutierrez, Tatiana; Ornellas, Débora S; Morales, Marcelo M; Capelozzi, Vera L; Jamel, Nelson; Pelosi, Paolo; Rocco, Patricia R M; Garcia, Cristiane S N B

    2012-03-01

    We hypothesized that: (1) intraabdominal hypertension increases pulmonary inflammatory and fibrogenic responses in acute lung injury (ALI); (2) in the presence of intraabdominal hypertension, higher tidal volume reduces lung damage in extrapulmonary ALI, but not in pulmonary ALI. Wistar rats were randomly allocated to receive Escherichia coli lipopolysaccharide intratracheally (pulmonary ALI) or intraperitoneally (extrapulmonary ALI). After 24 h, animals were randomized into subgroups without or with intraabdominal hypertension (15 mmHg) and ventilated with positive end expiratory pressure = 5 cmH(2)O and tidal volume of 6 or 10 ml/kg during 1 h. Lung and chest wall mechanics, arterial blood gases, lung and distal organ histology, and interleukin (IL)-1β, IL-6, caspase-3 and type III procollagen (PCIII) mRNA expressions in lung tissue were analyzed. With intraabdominal hypertension, (1) chest-wall static elastance increased, and PCIII, IL-1β, IL-6, and caspase-3 expressions were more pronounced than in animals with normal intraabdominal pressure in both ALI groups; (2) in extrapulmonary ALI, higher tidal volume was associated with decreased atelectasis, and lower IL-6 and caspase-3 expressions; (3) in pulmonary ALI, higher tidal volume led to higher IL-6 expression; and (4) in pulmonary ALI, liver, kidney, and villi cell apoptosis was increased, but not affected by tidal volume. Intraabdominal hypertension increased inflammation and fibrogenesis in the lung independent of ALI etiology. In extrapulmonary ALI associated with intraabdominal hypertension, higher tidal volume improved lung morphometry with lower inflammation in lung tissue. Conversely, in pulmonary ALI associated with intraabdominal hypertension, higher tidal volume increased IL-6 expression.

  10. Morphodynamics of the Manyema Tidal Delta at Kunduchi, Tanzania

    African Journals Online (AJOL)

    Keywords: Morphodynamics, Kunduchi, Manyema, shoreline change, tidal creek, tidal delta. Abstract—The prevailing northward longshore drift of beach sand on the northern part of Msasani Bay, north of Dar es Salaam, is interrupted at Kunduchi by the tidal flushing of ... Western Indian Ocean J. Mar. Sci. Vol. 11, No. 2, pp.

  11. Tidal extension and sea-level rise: recommendations for a research agenda

    Science.gov (United States)

    Ensign, Scott H.; Noe, Gregory

    2018-01-01

    Sea-level rise is pushing freshwater tides upstream into formerly non-tidal rivers. This tidal extension may increase the area of tidal freshwater ecosystems and offset loss of ecosystem functions due to salinization downstream. Without considering how gains in ecosystem functions could offset losses, landscape-scale assessments of ecosystem functions may be biased toward worst-case scenarios of loss. To stimulate research on this concept, we address three fundamental questions about tidal extension: Where will tidal extension be most evident, and can we measure it? What ecosystem functions are influenced by tidal extension, and how can we measure them? How do watershed processes, climate change, and tidal extension interact to affect ecosystem functions? Our preliminary answers lead to recommendations that will advance tidal extension research, enable better predictions of the impacts of sea-level rise, and help balance the landscape-scale benefits of ecosystem function with costs of response.

  12. Adélie penguin foraging location predicted by tidal regime switching.

    Science.gov (United States)

    Oliver, Matthew J; Irwin, Andrew; Moline, Mark A; Fraser, William; Patterson, Donna; Schofield, Oscar; Kohut, Josh

    2013-01-01

    Penguin foraging and breeding success depend on broad-scale environmental and local-scale hydrographic features of their habitat. We investigated the effect of local tidal currents on a population of Adélie penguins on Humble Is., Antarctica. We used satellite-tagged penguins, an autonomous underwater vehicle, and historical tidal records to model of penguin foraging locations over ten seasons. The bearing of tidal currents did not oscillate daily, but rather between diurnal and semidiurnal tidal regimes. Adélie penguins foraging locations changed in response to tidal regime switching, and not to daily tidal patterns. The hydrography and foraging patterns of Adélie penguins during these switching tidal regimes suggest that they are responding to changing prey availability, as they are concentrated and dispersed in nearby Palmer Deep by variable tidal forcing on weekly timescales, providing a link between local currents and the ecology of this predator.

  13. Tidal Current Energy Resource Assessment Around Buton Island, Southeast Sulawesi, Indonesia

    OpenAIRE

    Ribal, Agustinus; Amir, Amir Kamal; Toaha, Syamsuddin; Kusuma, Jeffry; Khaeruddin

    2017-01-01

    International Journal bereputasi An early stage of assessing tidal current energy resources is carried out in this present work. Tidal current power is estimated around Buton Island, Southeast Sulawesi province, Indonesia. Two-dimensional, depth-integrated of Advanced Circulation (ADCIRC) model has been used to simulate tidal elevation and barotropic tidal current around the island. Green???s function approach has been used to improve eight tidal constituents on the open boundary condition...

  14. Storm surges and climate change implications for tidal marshes: Insight from the San Francisco Bay Estuary, California, USA

    Science.gov (United States)

    Thorne, Karen M.; Buffington, Kevin J.; Swanson, Kathleen; Takekawa, John Y.

    2013-01-01

    Tidal marshes are dynamic ecosystems, which are influenced by oceanic and freshwater processes and daily changes in sea level. Projected sea-level rise and changes in storm frequency and intensity will affect tidal marshes by altering suspended sediment supply, plant communities, and the inundation duration and depth of the marsh platform. The objective of this research was to evaluate if regional weather conditions resulting in low-pressure storms changed tidal conditions locally within three tidal marshes. We hypothesized that regional storms will increase sea level heights locally, resulting in increased inundation of the tidal marsh platform and plant communities. Using site-level measurements of elevation, plant communities, and water levels, we present results from two storm events in 2010 and 2011 from the San Francisco Bay Estuary (SFBE), California, USA. The January 2010 storm had the lowest recorded sea level pressure in the last 30 years for this region. During the storm episodes, the duration of tidal marsh inundation was 1.8 and 3.1 times greater than average for that time of year, respectively. At peak storm surges, over 65% in 2010 and 93% in 2011 of the plant community was under water. We also discuss the implications of these types of storms and projected sea-level rise on the structure and function of the tidal marshes and how that will impact the hydro-geomorphic processes and marsh biotic communities.

  15. On the timing of foraging flights by oystercatchers, haematopus ostralegus, on tidal mudflats

    Science.gov (United States)

    Daan, Serge; Koene, Paul

    The tidal movements of flocks of oystercatchers foraging on mudflats at low tide and roosting inland behind a dike at high tide were studied and the effects of day-to-day variations in the time of mudflat exposure by ebb analysed. High mean water levels and short low tides led to reduced intake during low water due to increased bird densities in addition to temporal constraints (Fig. 4). Increased feeding around the roost apparently compensated for some of the reduced intake (Figs 6 ad 7) although accurate intake measurements could be made for foraging on the tidal flats only. It is argued that optimal timing of foraging flights to coincide with exposure of the mussel banks would contribute to exploitation of this tidal food source. The median departure time from the roosts relative to the time of mudflat exposure was early on days when the tide went out late and late when the tide was early (Figs 8 and 9). Daily variations in departure time were predicted by the daily variations in tabulated high water times, but not by variations in mudflat exposure or coverage (Fig. 10). The conclusion is drawn that the birds employ a timing mechanism not directly associated with the tidal water movements. In some pilot experiments in caged oystercatchers, feeding schedules elicitated feeling attempts in anticipation of expected food. The anticipatory patterns were different for fixed and tidally shifting daily food schedules, and moreover differed between the two feeding times per day (Figs 12 and 13). Five possible mechanisms for tidal anticipation are discussed, making use either of unknown exogenous cues, or of—likewise unknown—endogenous timers of hourglass type of rhythmic with circatidal, circalunadian or circadian period. Experimental tests for these possibilities are outlined.

  16. Observed tidal braking in the earth/moon/sun system

    Science.gov (United States)

    Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.

    1987-01-01

    The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-earth satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor tides. Wahr's earth tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century squared), with the corresponding tidal braking of earth's rotation being -5.98 + or - 0.22 x 10 to the minus 22 rad/second squared. If the nontidal braking of the earth due to the observed secular change in the earth's second zonal harmonic is considered, satellite techniques yield a total value of the secular change of the earth's rotation rate of -4.69 + or - 0.36 x 10 to the minus 22 rad/second squared.

  17. Tidal exchange of larvae of Sesarma catenata (Decapoda, Brachyura)

    African Journals Online (AJOL)

    The tidal exchange of larvae of the salt-marsh grapsid crab Sesarma catenata was studied in the Swartkops estuary, a tidally driven, shallow estuary in Algoa Bay, South Africa. Plankton samples were collected bimonlhly during spring and neap tides from October to March at the tidal inlet. Samples were collected hourly for ...

  18. Towards a population synthesis model of self-gravitating disc fragmentation and tidal downsizing II: the effect of fragment-fragment interactions

    Science.gov (United States)

    Forgan, D. H.; Hall, C.; Meru, F.; Rice, W. K. M.

    2018-03-01

    It is likely that most protostellar systems undergo a brief phase where the protostellar disc is self-gravitating. If these discs are prone to fragmentation, then they are able to rapidly form objects that are initially of several Jupiter masses and larger. The fate of these disc fragments (and the fate of planetary bodies formed afterwards via core accretion) depends sensitively not only on the fragment's interaction with the disc, but also with its neighbouring fragments. We return to and revise our population synthesis model of self-gravitating disc fragmentation and tidal downsizing. Amongst other improvements, the model now directly incorporates fragment-fragment interactions while the disc is still present. We find that fragment-fragment scattering dominates the orbital evolution, even when we enforce rapid migration and inefficient gap formation. Compared to our previous model, we see a small increase in the number of terrestrial-type objects being formed, although their survival under tidal evolution is at best unclear. We also see evidence for disrupted fragments with evolved grain populations - this is circumstantial evidence for the formation of planetesimal belts, a phenomenon not seen in runs where fragment-fragment interactions are ignored. In spite of intense dynamical evolution, our population is dominated by massive giant planets and brown dwarfs at large semimajor axis, which direct imaging surveys should, but only rarely, detect. Finally, disc fragmentation is shown to be an efficient manufacturer of free-floating planetary mass objects, and the typical multiplicity of systems formed via gravitational instability will be low.

  19. Salmon habitat use, tidal-fluvial estuary - Columbia River Estuary Tidal Habitats

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the tidal-fluvial estuary study is to determine the estuary's contribution to the spatial structure and life history diversity of Columbia River salmon...

  20. Earthquake potential revealed by tidal influence on earthquake size-frequency statistics

    Science.gov (United States)

    Ide, Satoshi; Yabe, Suguru; Tanaka, Yoshiyuki

    2016-11-01

    The possibility that tidal stress can trigger earthquakes is long debated. In particular, a clear causal relationship between small earthquakes and the phase of tidal stress is elusive. However, tectonic tremors deep within subduction zones are highly sensitive to tidal stress levels, with tremor rate increasing at an exponential rate with rising tidal stress. Thus, slow deformation and the possibility of earthquakes at subduction plate boundaries may be enhanced during periods of large tidal stress. Here we calculate the tidal stress history, and specifically the amplitude of tidal stress, on a fault plane in the two weeks before large earthquakes globally, based on data from the global, Japanese, and Californian earthquake catalogues. We find that very large earthquakes, including the 2004 Sumatran, 2010 Maule earthquake in Chile and the 2011 Tohoku-Oki earthquake in Japan, tend to occur near the time of maximum tidal stress amplitude. This tendency is not obvious for small earthquakes. However, we also find that the fraction of large earthquakes increases (the b-value of the Gutenberg-Richter relation decreases) as the amplitude of tidal shear stress increases. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. This suggests that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. We conclude that large earthquakes are more probable during periods of high tidal stress.

  1. Plasma-current structures of plasma focus during the current disruption

    International Nuclear Information System (INIS)

    Krokhin, O.N.; Kalachev, N.V.; Malafeev, Yu.S.; Nikulin, V.Ya; Polukhin, S.N.; Tsybenko, S.P.

    2000-01-01

    The results are presented of an investigation of the plasma structures arising during the current disruption in the Dense Plasma Focus (DPF). The study was performed using the laser-shadow and interferometry methods together with measurements of current and X-ray radiation. An analysis of the experimental results shows that for the construction of a multi mega-amperes current disruption device, the Filippov type of DPF (in comparison with the Mather type) is to be preferred since the processes occurring in the X-ray regime are much faster than in the pinch regime, and this type of plasma focus is geometrically more suitable for the assembly of such a current disrupter.This disrupter is now under construction, based on the 'Tulip' DPF installation

  2. Nova Scotia Power : in-stream tidal

    International Nuclear Information System (INIS)

    Meade, K.

    2007-01-01

    The Government of Nova Scotia, the Government of New Brunswick, Nova Scotia Power and others have funded a feasibility study of North American sites for commercial instream tidal power. In July 2007, Nova Scotia Power received partial funding for a demonstration project. This presentation provided information on a demonstration plant for tidal power run by Nova Scotia Power. It discussed the benefits of the Open Hydro technology for this plant. In this simple design, the generator is on the circumference of the turbine. The design does not involve any power transmission systems or any pitching of blades. In addition, the technology is environmentally sound as it is completely shrouded, has low rotational speed, and a large open centre allows fish to pass through, and it does not require lubricants. The last benefit that was presented was the scale up of 250 kW machine deployed in a European test facility. The presentation also discussed the advantages of developing tidal power at this time. It was concluded that tidal energy has significant potential. Although it is intermittent, it is predictable and bulk power system can be scheduled to accommodate it. figs

  3. Tidal pumping facilitates dissimilatory nitrate reduction in intertidal marshes

    Science.gov (United States)

    Zheng, Yanling; Hou, Lijun; Liu, Min; Liu, Zhanfei; Li, Xiaofei; Lin, Xianbiao; Yin, Guoyu; Gao, Juan; Yu, Chendi; Wang, Rong; Jiang, Xiaofen

    2016-01-01

    Intertidal marshes are alternately exposed and submerged due to periodic ebb and flood tides. The tidal cycle is important in controlling the biogeochemical processes of these ecosystems. Intertidal sediments are important hotspots of dissimilatory nitrate reduction and interacting nitrogen cycling microorganisms, but the effect of tides on dissimilatory nitrate reduction, including denitrification, anaerobic ammonium oxidation and dissimilatory nitrate reduction to ammonium, remains unexplored in these habitats. Here, we use isotope-tracing and molecular approaches simultaneously to show that both nitrate-reduction activities and associated functional bacterial abundances are enhanced at the sediment-tidal water interface and at the tide-induced groundwater fluctuating layer. This pattern suggests that tidal pumping may sustain dissimilatory nitrate reduction in intertidal zones. The tidal effect is supported further by nutrient profiles, fluctuations in nitrogen components over flood-ebb tidal cycles, and tidal simulation experiments. This study demonstrates the importance of tides in regulating the dynamics of dissimilatory nitrate-reducing pathways and thus provides new insights into the biogeochemical cycles of nitrogen and other elements in intertidal marshes. PMID:26883983

  4. Counter-rotating type tidal stream power unit boarded on pillar (performances and flow conditions of tandem propellers)

    Science.gov (United States)

    Usui, Yuta; Kanemoto, Toshiaki; Hiraki, Koju

    2013-12-01

    The authors have invented the unique counter-rotating type tidal stream power unit composed of the tandem propellers and the double rotational armature type peculiar generator without the traditional stator. The front and the rear propellers counter-drive the inner and the outer armatures of the peculiar generator, respectively. The unit has the fruitful advantages that not only the output is sufficiently higher without supplementary equipment such as a gearbox, but also the rotational moment hardly act on the pillar because the rotational torque of both propellers/armatures are counter-balanced in the unit. This paper discusses experimentally the performances of the power unit and the effects of the propeller rotation on the sea surface. The axial force acting on the pillar increases naturally with the increase of not only the stream velocity but also the drag of the tandem propellers. Besides, the force vertical to the stream also acts on the pillar, which is induced from the Karman vortex street and the dominant frequencies appear owing to the front and the rear propeller rotations. The propeller rotating in close to the sea surface brings the abnormal wave and the amplitude increases as the stream velocity is faster and/or the drag is stronger.

  5. Tidal Stream Generators, current state and potential opportunities for condition monitoring

    DEFF Research Database (Denmark)

    Kappatos, Vassilios; Georgoulas, George; Avdelidis, Nicolas

    2016-01-01

    Tidal power industry has made significant progress towards commercialization over the past decade. Significant investments from sector leaders, strong technical progress and positive media coverage have established the credibility of this specific renewable energy source. However, its progress...... is being retarded by operation and maintenance problems, which results in very low operational availability times, as low as 25 %. This paper presents a literature review of the current state of tidal device operators as well as some commercial tidal turbine condition monitoring solutions. Furthermore......, an overview is given of the global tidal activity status (tidal energy market size and geography), the key industry activity and the regulations-standards related with tidal energy industry. Therefore, the main goal of this paper is to provide a bird’s view of the current status of the tidal power industry...

  6. On tidal radius determination for a globular cluster

    International Nuclear Information System (INIS)

    Ninkovic, S.

    1985-01-01

    A tidal radius determination for a globular cluster based on its density minimum, which is caused by the galactic tidal forces and derivable from a model of the Galaxy, is proposed. Results obtained on the basis of the Schmidt model for two clusters are in a satisfactory agreement with those obtained earlier by means of other methods. A mass determination for the clusters through the tidal radius, when the latter one is identified with the cluster perigalactic distance, yields unusually large mass values. Probably, the tidal radius should be identified with the instantaneous galactocentric distance. Use of models more recent than the Schmidt one indicates that a globular cluster may contain a significant portion of an invisible interstellar matter. (author)

  7. Sensitivity of growth characteristics of tidal sand ridges and long bed waves to formulations of bed shear stress, sand transport and tidal forcing : A numerical model study

    NARCIS (Netherlands)

    Yuan, Bing; de Swart, Huib E.; Panadès, Carles

    2016-01-01

    Tidal sand ridges and long bed waves are large-scale bedforms that are observed on continental shelves. They differ in their wavelength and in their orientation with respect to the principal direction of tidal currents. Previous studies indicate that tidal sand ridges appear in areas where tidal

  8. Assessment of Kinetic Tidal Energy Resources Using SELFE

    OpenAIRE

    Manasa Ranjan Behera; Pavel Tkalich

    2014-01-01

    An investigation is carried out to study the theoretical tidal stream energy resource in the Singapore Strait to support the search for renewable energy in the effort to reduce the carbon footprints in the Southeast Asia. The tidal hydrodynamics in the Singapore Strait has been simulated using a Semi-implicit Eulerian-Lagrangian Finite-Element (SELFE) model solving the 3D shallow water equations with Boussinesq approximations. Potential sites, with high tidal current (2.5 m/s) and suitable fo...

  9. Vertical Distribution of Tidal Flow Reynolds Stress in Shallow Sea

    Institute of Scientific and Technical Information of China (English)

    SONG Zhi-yao; NI Zhi-hui; LU Guo-nian

    2009-01-01

    Based on the results of the tidal flow Reynolds stresses of the field observations,indoor experiments,and numerical models,the parabolic distribution of the tidal flow Reynolds stress is proposed and its coefficients are determined theoretically in this paper.Having been well verified with the field data and experimental data,the proposed distribution of Reynolds stress is also compared with numerical model results,and a good agreement is obtained,showing that this distribution can well reflect the basic features of Reynolds stress deviating from the linear distribution that is downward when the tidal flow is of acceleration,upward when the tidal flow is of deceleration.Its dynamics cause is also discussed preliminarily and the influence of the water depth is pointed out from the definition of Reynolds stress,turbulent generation,transmission,and so on.The established expression for the vertical distribution of the tidal flow Reynolds stress is not only simple and explicit,but can also well reflect the features of the tidal flow acceleration and deceleration for further study on the velocity profile of tidal flow.

  10. Infrared emission and tidal interactions of spiral galaxies

    International Nuclear Information System (INIS)

    Byrd, G.G.

    1987-01-01

    Computer simulations of tidal interactions of spiral galaxies are used to attempt to understand recent discoveries about infrared (IR) emitting galaxies. It is found that the stronger tidal perturbation by a companion the more disk gas clouds are thrown into nucleus crossing orbits and the greater the velocity jumps crossing spiral arms. Both these tidally created characteristics would create more IR emission by high speed cloud collisions and more IR via effects of recently formed stars. This expectation at greater tidal perturbation matches the observation of greater IR emission for spiral galaxies with closer and/or more massive companions. The greater collision velocities found at stronger perturbations on the models will also result in higher dust temperature in the colliding clouds. In the IR pairs examined, most have only one member, the larger, detected and when both are detected, the larger is always the more luminous. In simulations and in a simple analytic description of the strong distance dependence of the tidal force, it is found that the big galaxy of a pair is more strongly affected than the small

  11. On the Formation of Ultra-Difuse Galaxies as Tidally-Stripped Systems

    Science.gov (United States)

    Carleton, Timothy; Cooper, Michael; Kaplinghat, Manoj; Errani, Raphael; Penarrubia, Jorge

    2018-01-01

    The recent identification of a large population of so-called 'Ultra-Diffuse' Galaxies (UDGs), with stellar masses ~108 M⊙, but half light radii over 1.5 kpc, has challenged our understanding of galaxy evolution. Motivated by the environmental dependence of UDG properties and abundance, I present a model for the formation of UDGs through tidal-stripping of dwarf galaxies in cored dark matter halos. To test this scenario, I utilize results from simulations of tidal stripping, which demonstrate that changes in the stellar profile of a tidally stripped galaxy can be written as a function of the amount of tidal stripping experienced by the halo (tidal tracks). These tracks, however, are different for cored and cuspy halos. Additional simulations show how the halo responds to tidal interactions given the halo orbit within a cluster.In particular, dwarf elliptical galaxies, born in 1010-10.5 M⊙ halos, expand significantly as a result of tidal stripping and produce UDGs. Applying these models to the population of halos in the Bolshoi simulation, I am able to follow the effects of tidal stripping on the dwarf galaxy population in clusters. Using tidal tracks for cuspy halos does not reproduce the observed properties of UDGs. However, using the tidal tracks for cored halos, I reproduce the distribution of sizes, stellar masses, and abundance of UDGs in clusters remarkably well.

  12. Tidal energy - a technology review

    International Nuclear Information System (INIS)

    Price, R.

    1991-01-01

    The tides are caused by gravitational attraction of the sun and the moon acting upon the world's oceans. This creates a clean renewable form of energy which can in principle be tapped for the benefit of mankind. This paper reviews the status of tidal energy, including the magnitude of the resource, the technology which is available for its extraction, the economics, possible environmental effects and non-technical barriers to its implementation. Although the total energy flux of the tides is large, at about 2 TW, in practice only a very small fraction of this total potential can be utilised in the foreseeable future. This is because the energy is spread diffusely over a wide area, requiring large and expensive plant for its collection, and is often available remote from centres of consumption. The best mechanism for exploiting tidal energy is to employ estuarine barrages at suitable sites with high tidal ranges. The technology is relatively mature and components are commercially available now. Also, many of the best sites for implementation have been identified. However, the pace and extent of commercial exploitation of tidal energy is likely to be significantly influenced, both by the treatment of environmental costs of competing fossil fuels, and by the availability of construction capital at modest real interest rates. The largest projects could require the involvement of national governments if they are to succeed. (author) 8 figs., 2 tabs., 19 refs

  13. Tidal effects on groundwater contamination at Pekan, Pahang

    International Nuclear Information System (INIS)

    Nor Dalila Desa; Dominic, J.A.; Mohd Muzamil Mohd Hashim; Kamarudin Samuding; Mohd Faizun Khalid; Mod Omar Hassan; Kamaruzaman Mohamad

    2014-01-01

    The meeting of coastal ground water and the sea is a unique and dynamic hydro geologic boundary phenomenon that has fascinated groundwater engineers and scientists for the past century. The variation of seawater level resulting from tidal fluctuations is usually neglected in regional groundwater flow studies. In this study the effects of seawater tidal on groundwater are investigated using geophysical together with conventional method. Comparative result between these two methods shown how tidal fluctuations effects groundwater in study area. (author)

  14. NUMERICAL MODELING OF THE DISRUPTION OF COMET D/1993 F2 SHOEMAKER-LEVY 9 REPRESENTING THE PROGENITOR BY A GRAVITATIONALLY BOUND ASSEMBLAGE OF RANDOMLY SHAPED POLYHEDRA

    Energy Technology Data Exchange (ETDEWEB)

    Movshovitz, Naor; Asphaug, Erik; Korycansky, Donald, E-mail: nmovshov@ucsc.edu [Department of Earth and Planetary Sciences, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2012-11-10

    We advance the modeling of rubble-pile solid bodies by re-examining the tidal breakup of comet Shoemaker-Levy 9, an event that occurred during a 1.33 R encounter with Jupiter in 1992 July. Tidal disruption of the comet nucleus led to a chain of sub-nuclei {approx}100-1000 m diameter; these went on to collide with the planet two years later. They were intensively studied prior to and during the collisions, making SL9 the best natural benchmark for physical models of small-body disruption. For the first time in the study of this event, we use numerical codes treating rubble piles as collections of polyhedra. This introduces forces of dilatation and friction, and inelastic response. As in our previous studies we conclude that the progenitor must have been a rubble pile, and we obtain approximately the same pre-breakup diameter ({approx}1.5 km) in our best fits to the data. We find that the inclusion of realistic fragment shapes leads to grain locking and dilatancy, so that even in the absence of friction or other dissipation we find that disruption is overall more difficult than in our spheres-based simulations. We constrain the comet's bulk density at {rho}{sub bulk} {approx} 300-400 kg m{sup -3}, half that of our spheres-based predictions and consistent with recent estimates derived from spacecraft observations.

  15. Geometric properties of hydraulic-relevant tidal bedforms

    DEFF Research Database (Denmark)

    Winter, Christian; Ferret, Yann; Lefebvre, Alice

    2013-01-01

    of bedform genesis and dynamics is not yet available, various empirical descriptors have been formulated based on extensive data compilations (e.g. Allen, 1968; Flemming, 1988; Francken, 2004). Mean bedform heights H and lengths L were found to scale, e.g H = a * L b in which a=0.03-0.07 and b=0.7-0.9. Due...... on the tidal stage: Whereas the secondary bedforms act as roughness elements throughout the tidal cycle, the large primary bedforms dominate the hydraulics when the tidal flow is in the (dominant) direction of the bedform orientation (e.g. ebb-directed primary bedforms act during ebb currents) when...

  16. Disruptive behaviour in the Foundation Phase of schooling

    Directory of Open Access Journals (Sweden)

    Petro Marais

    2010-01-01

    Full Text Available Since the passage of legislation banning corporal punishment in South African schools, disruptive behaviour in schools has become an issue of national concern. Against this background a research project was undertaken in which the types and causes of disruptive behaviour occurring most frequently in the Foundation Phase of schooling were identified, with a view to providing strategies for teachers to manage behaviour of this kind. A qualitative research approach was applied. Data collection was done by conducting interviews comprising semistructured questions with Foundation Phase teachers. Strategies purposely devised to deal specifically with the identified types and causes of disruptive behaviour are explained.

  17. How Tidal Forces Cause Ocean Tides in the Equilibrium Theory

    Science.gov (United States)

    Ng, Chiu-king

    2015-01-01

    We analyse why it is erroneous to think that a tidal bulge is formed by pulling the water surface directly up by a local vertical tidal force. In fact, ocean tides are caused by the global effect of the horizontal components of the tidal forces.

  18. Land Use in Korean Tidal Wetlands: Impacts and Management Strategies

    Science.gov (United States)

    Hong, Sun-Kee; Koh, Chul-Hwan; Harris, Richard R.; Kim, Jae-Eun; Lee, Jeom-Sook; Ihm, Byung-Sun

    2010-05-01

    The coastal landscapes in southwestern Korea include a diverse array of tidal wetlands and salt marshes. These coastal zones link the ecological functions of marine tidal wetlands and freshwater ecosystems with terrestrial ecosystems. They are rich in biological diversity and play important roles in sustaining ecological health and processing environmental pollutants. Korean tidal wetlands are particularly important as nurseries for economically important fishes and habitats for migratory birds. Diking, draining, tourism, and conversion to agricultural and urban uses have adversely affected Korean tidal wetlands. Recent large development projects have contributed to further losses. Environmental impact assessments conducted for projects affecting tidal wetlands and their surrounding landscapes should be customized for application to these special settings. Adequate environmental impact assessments will include classification of hydrogeomorphic units and consideration of their responses to biological and environmental stressors. As is true worldwide, Korean laws and regulations are changing to be more favorable to the conservation and protection of tidal wetlands. More public education needs to be done at the local level to build support for tidal wetland conservation. Some key public education points include the role of tidal wetlands in maintaining healthy fish populations and reducing impacts of nonpoint source pollution. There is also a need to develop procedures for integrating economic and environmental objectives within the overall context of sustainable management and land uses.

  19. [Characteristics of tidal breathing pulmonary function in children with tracheobronchomalacia].

    Science.gov (United States)

    Li, Lan; Chen, Qaing; Zhang, Fan; Zhu, Shuang-Gui; Hu, Ci-Lang; Wu, Ai-Min

    2017-12-01

    To investigate the characteristics of tidal breathing pulmonary function in children with tracheobronchomalacia (TBM). In this study, 30 children who were diagnosed with TBM using electronic bronchoscopy were enrolled in the observation group; 30 healthy children were recruited in the normal control group. For individuals in each group, the assessment of tidal breath pulmonary function was performed at diagnosis and 3, 6, 9, and 12 months after diagnosis. There were no significant differences in tidal volume, inspiratory time, expiratory time, and inspiratory to expiratory ratio between the two groups (P>0.05). Compared with the control group, the observation group had a significantly higher respiratory rate and significantly lower ratio of time to peak tidal expiratory flow to total expiratory time (TPTEF/TE) and ratio of volume to peak tidal expiratory flow to total expiratory volume (VPTEF/VE). There was a time-dependent increase in TPTEF/TE and VPTEF/VE for TBM children from the time of initial diagnosis to 12 months after diagnosis. Tidal breathing pulmonary function has characteristic changes in children with TBM. Tidal breathing pulmonary function tends to be recovered with increased age in children with TBM.

  20. Derivation of Delaware Bay tidal parameters from space shuttle photography

    International Nuclear Information System (INIS)

    Zheng, Quanan; Yan, Xiaohai; Klemas, V.

    1993-01-01

    The tide-related parameters of the Delaware Bay are derived from space shuttle time-series photographs. The water areas in the bay are measured from interpretation maps of the photographs with a CALCOMP 9100 digitizer and ERDAS Image Processing System. The corresponding tidal levels are calculated using the exposure time annotated on the photographs. From these data, an approximate function relating the water area to the tidal level at a reference point is determined. Based on the function, the water areas of the Delaware Bay at mean high water (MHW) and mean low water (MLW), below 0 m, and for the tidal zone are inferred. With MHW and MLW areas and the mean tidal range, the authors calculate the tidal influx of the Delaware Bay, which is 2.76 x 1O 9 m 3 . Furthermore, the velocity of flood tide at the bay mouth is determined using the tidal flux and an integral of the velocity distribution function at the cross section between Cape Henlopen and Cape May. The result is 132 cm/s, which compares well with the data on tidal current charts

  1. High tidal volume decreases adult respiratory distress syndrome, atelectasis, and ventilator days compared with low tidal volume in pediatric burned patients with inhalation injury.

    Science.gov (United States)

    Sousse, Linda E; Herndon, David N; Andersen, Clark R; Ali, Arham; Benjamin, Nicole C; Granchi, Thomas; Suman, Oscar E; Mlcak, Ronald P

    2015-04-01

    Inhalation injury, which is among the causes of acute lung injury and acute respiratory distress syndrome (ARDS), continues to represent a significant source of mortality in burned patients. Inhalation injury often requires mechanical ventilation, but the ideal tidal volume strategy is not clearly defined in burned pediatric patients. The aim of this study was to determine the effects of low and high tidal volume on the number of ventilator days, ventilation pressures, and incidence of atelectasis, pneumonia, and ARDS in pediatric burned patients with inhalation injury within 1 year post burn injury. From 1986 to 2014, inhalation injury was diagnosed by bronchoscopy in pediatric burned patients (n = 932). Patients were divided into 3 groups: unventilated (n = 241), high tidal volume (HTV, 15 ± 3 mL/kg, n = 190), and low tidal volume (LTV, 9 ± 3 mL/kg, n = 501). High tidal volume was associated with significantly decreased ventilator days (p tidal volume significantly decreases ventilator days and the incidence of both atelectasis and ARDS compared with low tidal volume in pediatric burned patients with inhalation injury. Therefore, the use of HTV may interrupt sequences leading to lung injury in our patient population. Copyright © 2015 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Linking freshwater tidal hydrology to carbon cycling in bottomland hardwood wetlands

    Science.gov (United States)

    Carl C. Trettin; Brooke J. Czwartacki; Craig J. Allan; Devendra M. Amatya

    2016-01-01

    Hydrology is recognized as one of the principal factors regulating soil biogeochemical processes in forested wetlands. However, the consequences of tidally mediated hydrology are seldom considered within forested wetlands that occur along tidal water bodies. These tidal water bodies may be either fresh or brackish, and the tidal streams function as a reservoir to...

  3. Effects of inhalational anaesthesia with low tidal volume ventilation on end-tidal sevoflurane and carbon dioxide concentrations: prospective randomized study.

    Science.gov (United States)

    de la Matta-Martín, M; López-Herrera, D; Luis-Navarro, J C; López-Romero, J L

    2014-02-01

    We investigated how ventilation with low tidal volumes affects the pharmacokinetics of sevoflurane uptake during the first minutes of inhaled anaesthesia. Forty-eight patients scheduled for lung resection were randomly assigned to three groups. Patients in group 1, 2 and 3 received 3% sevoflurane for 3 min via face mask and controlled ventilation with a tidal volume of 2.2, 8 and 12 ml kg(-1), respectively (Phase 1). After tracheal intubation (Phase 2), 3% sevoflurane was supplied for 2 min using a tidal volume of 8 ml kg(-1) (Phase 3). End-tidal sevoflurane concentrations were significantly higher in group 1 at the end of phase 1 and lower at the end of phase 2 than in the other groups as follows: median of 2.5%, 2.2% and 2.3% in phase 1 for groups 1, 2 and 3, respectively (Ptidal carbon dioxide values in group 1 were significantly lower at the end of phase 1 and higher at the end of phase 2 than in the other groups as follows: median of 16.5, 31 and 29.5 mm Hg in phase 1 for groups 1, 2 and 3, respectively (Ptidal volume approximating the airway dead space volume, end-tidal sevoflurane and end-tidal carbon dioxide may not correctly reflect the concentration of these gases in the alveoli, leading to misinterpretation of expired gas data. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.

  4. Magnetic fields driven by tidal mixing in radiative stars

    Science.gov (United States)

    Vidal, Jérémie; Cébron, David; Schaeffer, Nathanaël; Hollerbach, Rainer

    2018-04-01

    Stellar magnetism plays an important role in stellar evolution theory. Approximatively 10 per cent of observed main sequence (MS) and pre-main-sequence (PMS) radiative stars exhibit surface magnetic fields above the detection limit, raising the question of their origin. These stars host outer radiative envelopes, which are stably stratified. Therefore, they are assumed to be motionless in standard models of stellar structure and evolution. We focus on rapidly rotating, radiative stars which may be prone to the tidal instability, due to an orbital companion. Using direct numerical simulations in a sphere, we study the interplay between a stable stratification and the tidal instability, and assess its dynamo capability. We show that the tidal instability is triggered regardless of the strength of the stratification (Brunt-Väisälä frequency). Furthermore, the tidal instability can lead to both mixing and self-induced magnetic fields in stably stratified layers (provided that the Brunt-Väisälä frequency does not exceed the stellar spin rate in the simulations too much). The application to stars suggests that the resulting magnetic fields could be observable at the stellar surfaces. Indeed, we expect magnetic field strengths up to several Gauss. Consequently, tidally driven dynamos should be considered as a (complementary) dynamo mechanism, possibly operating in radiative MS and PMS stars hosting orbital companions. In particular, tidally driven dynamos may explain the observed magnetism of tidally deformed and rapidly rotating Vega-like stars.

  5. New Concept for Assessment of Tidal Current Energy in Jiangsu Coast, China

    Directory of Open Access Journals (Sweden)

    Ji-Sheng Zhang

    2013-01-01

    Full Text Available Tidal current energy has attracted more and more attentions of coastal engineers in recent years, mainly due to its advantages of low environmental impact, long-term predictability, and large energy potential. In this study, a two-dimensional hydrodynamic model is applied to predict the distribution of mean density of tidal current energy and to determine a suitable site for energy exploitation in Jiangsu Coast. The simulation results including water elevation and tidal current (speed and direction were validated with measured data, showing a reasonable agreement. Then, the model was used to evaluate the distribution of mean density of tidal current energy during springtide and neap tide in Jiangsu Coast. Considering the discontinuous performance of tidal current turbine, a new concept for assessing tidal current energy is introduced with three parameters: total operating time, dispersion of operating time, and mean operating time of tidal current turbine. The operating efficiency of tidal current turbine at three locations around radial submarine sand ridges was taken as examples for comparison, determining suitable sites for development of tidal current farm.

  6. Homogeneous wave turbulence driven by tidal flows

    Science.gov (United States)

    Favier, B.; Le Reun, T.; Barker, A.; Le Bars, M.

    2017-12-01

    When a moon orbits around a planet, the rotation of the induced tidal bulge drives a homogeneous, periodic, large-scale flow. The combination of such an excitation with the rotating motion of the planet has been shown to drive parametric resonance of a pair of inertial waves in a mechanism called the elliptical instability. Geophysical fluid layers can also be stratified: this is the case for instance of the Earth's oceans and, as suggested by several studies, of the upper part of the Earth's liquid Outer Core. We thus investigate the stability of a rotating and stratified layer undergoing tidal distortion in the limit where either rotation or stratification is dominant. We show that the periodic tidal flow drives a parametric subharmonic resonance of inertial (resp. internal) waves in the rotating (resp. stratified) case. The instability saturates into a wave turbulence pervading the whole fluid layer. In such a state, the instability mechanism conveys the tidal energy from the large scale tidal flow to the resonant modes, which then feed a succession of triadic resonances also generating small spatial scales. In the rotating case, we observe a kinetic energy spectrum with a k-2 slope for which the Coriolis force is dominant at all spatial scales. In the stratified case, where the timescale separation is increased between the tidal excitation and the Brunt-Väisälä frequencies, the temporal spectrum decays with a ω-2 power law up to the cut-off frequency beyond which waves do not exist. This result is reminiscent of the Garrett and Munk spectrum measured in the oceans and theoretically described as a manifestation of internal wave turbulence. In addition to revealing an instability driving homogeneous turbulence in geophysical fluid layers, our approach is also an efficient numerical tool to investigate the possibly universal properties of wave turbulence in a geophysical context.

  7. On tidal phenomena in a strong gravitational field

    International Nuclear Information System (INIS)

    Mashoon, B.

    1975-01-01

    A simple framework based on the concept of quadrupole tidal potential is presented for the calculation of tidal deformation of an extended test body in a gravitational field. This method is used to study the behavior of an initially faraway nonrotating spherical body that moves close to a Schwarzschild or an extreme Kerr black hole. In general, an extended body moving in an external gravitational field emits gravitational radiation due to its center of mass motion, internal tidal deformation, and the coupling between the internal and center of mass motions. Estimates are given of the amount of tidal radiation emitted by the body in the gravitational fields considered. The results reported in this paper are expected to be of importance in the dynamical evolution of a dense stellar system with a massive black hole in its center

  8. Characterising the spatial variability of the tidal stream energy resource from floating turbines

    Science.gov (United States)

    Ward, Sophie; Neill, Simon; Robins, Peter

    2017-04-01

    The shelf seas, in particular the northwest European shelf seas surrounding the UK, contain significant tidal power potential. Tidal stream energy is both predictable and reliable providing that sites are well-selected based upon the hydrodynamic regime and the device specifics. In this high resolution three-dimensional tidal modelling study, we investigate how the tidal stream resource around the Welsh coast (UK) varies with water depth and location, with particular focus on the Pembrokeshire region. The potential extractable energy for a floating tidal stream energy converter is compared with that for a bottom-fixed device, highlighting the need to vary the resource characterisation criteria based on device specifics. We demonstrate how small variations in the tidal current speeds - with hub depth or due to tidal asymmetry - can lead to substantial variations in potential power output. Further, the results indicate that power generation from floating tidal energy converters will be more significantly influenced by tidal elevations in regions characterised by a lower tidal range (more progressive waves) than regions that experience a high tidal range (standing waves). As numerical modelling capacity improves and tidal stream energy converter technologies develop, ongoing improved quantification of the tidal resource is needed, as well as consideration of the possible feedbacks of the devices and energy extraction on the hydrodynamic regime and the surrounding area.

  9. The history of tidal power in France

    International Nuclear Information System (INIS)

    Banal, M.

    1997-01-01

    The first known use of tidal power in France concerns the tidal mills in general use during the Middle Age along the French coasts. The first research studies of tidal power plants started at the end of the first world war but it is only in 1940 with the stimulus of Robert Gibrat that was created the Research Society for the use of Tides and the Rance plant project. In 1946, Electricite de France (EdF) started again the studies of this company for a greater size project in the Chausey archipelago which was abandoned for the benefit of the Rance project in the 1960's. The start up of the plant took place in 1967 but the other projects were abandoned during the 1980's. This short paper recalls the historical aspects of the development of tidal power in France and focusses on the research and development studies and on the economical, political and legal factors that led to retain the Rance project among others proposed. (J.S.)

  10. Tidal tilts observations in the Gran Sasso underground laboratory

    International Nuclear Information System (INIS)

    Iafolla, V.; Nozzoli, S.; Milyukov, V.

    2001-01-01

    A new tilt meter, based on the technology for building a space-borne high-sensitivity accelerometer and manufactured at IFSI/CNR, has a been operating during several years in the INFN Gran Sasso underground laboratory. The results of the analysis of a three-year data set, processed with the program package ETERNA, to estimate earth tidal parameters are reported. For the best series of data (1998) tide measurement accuracies are: 0.5-1% for the M 2 (lunar principal) amplitude and 3-4% for the O 1 (lunar declination) amplitude. The tilt meter installed at a depth of 1400 m shows no clear evidence of meteorological effects. Observed tidal parameters are compared with theoretical tidal parameters predicted for a non-hydrostatic inelastic Earth model and demonstrate good agreement for the M 2 component. Due to the high accuracy of the tidal components prediction (better than 1%) tidal measurements were used to estimate the long-term stability of the instrument response

  11. Tidal analysis of Met rocket wind data

    Science.gov (United States)

    Bedinger, J. F.; Constantinides, E.

    1976-01-01

    A method of analyzing Met Rocket wind data is described. Modern tidal theory and specialized analytical techniques were used to resolve specific tidal modes and prevailing components in observed wind data. A representation of the wind which is continuous in both space and time was formulated. Such a representation allows direct comparison with theory, allows the derivation of other quantities such as temperature and pressure which in turn may be compared with observed values, and allows the formation of a wind model which extends over a broader range of space and time. Significant diurnal tidal modes with wavelengths of 10 and 7 km were present in the data and were resolved by the analytical technique.

  12. Tidal River Management (TRM and Tidal Basin Management (TBM: A case study on Bangladesh

    Directory of Open Access Journals (Sweden)

    Talchabhadel Rocky

    2016-01-01

    Full Text Available Bangladesh is the biggest delta of the world. Construction of numbers of polders is one of the flood resilient approach. But the presence of coastal polders de-linked the flood plain. The siltation in river causes riverbeds to become higher than the adjacent crop lands, and vast area under the polders became permanently water logged rendering large tract of land uncultivable. The current practice is temporarily de-poldering by cutting embankment. This is a natural water management process with very little human interventions but it needs strong participation and consensus with a great deal of sacrifice by the stakeholders for a specific period (3 to 5 years or even more[1]. An attempt has been made to study the phenomena of tidal basin management reviewing some secondary data and processes involved in successfully operated tidal basins of Bangladesh. And preliminary laboratory experiments are carried out to precisely look into the suspended sediment transport. With varying outflow discharge and sediment supply, the transport processes are investigated. 3D sediment transport model developed using openFOAM has good agreement with experimental result and can be used to better understand effectiveness of tidal basin management.

  13. Dynamical modeling of tidal streams

    International Nuclear Information System (INIS)

    Bovy, Jo

    2014-01-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  14. Interpreting Medieval Inter-tidal Features at Weelie's Taing on Papa Westray, Orkney, NE Scotland

    Science.gov (United States)

    Pollard, Edward; Gibson, Julie; Littlewood, Mark

    2016-12-01

    Investigation of the inter-tidal heritage of the Orkney Islands is used to interpret a previously perplexing complex at Weelie's Taing on Papa Westray. The study revealed a previously unknown type of harbour since identified in several locations around Orkney. Situated in exposed environmental situations, shelter is formed by an `ayre', a type of spit that encloses a loch, and which has been used historically as a landing place or crossing of the inter-tidal zone. A complex landing area, pier, tower and ship-blockage suggest Weelie's Taing was used as a harbour. Important fishing grounds exploited since the Neolithic are nearby, and Papa Westray was the site of water-focussed religious communities. It is suggested that Weelie's Taing was in use in the medieval period when Papa Westray was less isolated than today with the presence of ecclesiastical communities and situation on the Orkney-Shetland route.

  15. Tidal Evolution of Asteroidal Binaries. Ruled by Viscosity. Ignorant of Rigidity.

    Science.gov (United States)

    Efroimsky, Michael

    2015-10-01

    This is a pilot paper serving as a launching pad for study of orbital and spin evolution of binary asteroids. The rate of tidal evolution of asteroidal binaries is defined by the dynamical Love numbers kl divided by quality factors Q. Common in the literature is the (oftentimes illegitimate) approximation of the dynamical Love numbers with their static counterparts. Since the static Love numbers are, approximately, proportional to the inverse rigidity, this renders a popular fallacy that the tidal evolution rate is determined by the product of the rigidity by the quality factor: {k}l/Q\\propto 1/(μ Q). In reality, the dynamical Love numbers depend on the tidal frequency and all rheological parameters of the tidally perturbed body (not just rigidity). We demonstrate that in asteroidal binaries the rigidity of their components plays virtually no role in tidal friction and tidal lagging, and thereby has almost no influence on the intensity of tidal interactions (tidal torques, tidal dissipation, tidally induced changes of the orbit). A key quantity that overwhelmingly determines the tidal evolution is a product of the effective viscosity η by the tidal frequency χ . The functional form of the torque’s dependence on this product depends on who wins in the competition between viscosity and self-gravitation. Hence a quantitative criterion, to distinguish between two regimes. For higher values of η χ , we get {k}l/Q\\propto 1/(η χ ), {while} for lower values we obtain {k}l/Q\\propto η χ . Our study rests on an assumption that asteroids can be treated as Maxwell bodies. Applicable to rigid rocks at low frequencies, this approximation is used here also for rubble piles, due to the lack of a better model. In the future, as we learn more about mechanics of granular mixtures in a weak gravity field, we may have to amend the tidal theory with other rheological parameters, ones that do not show up in the description of viscoelastic bodies. This line of study provides

  16. Focal mechanisms and tidal modulation for tectonic tremors in Taiwan

    Science.gov (United States)

    Ide, S.; Yabe, S.; Tai, H. J.; Chen, K. H.

    2015-12-01

    Tectonic tremors in Taiwan have been discovered beneath the southern Central Range, but their hosting structure has been unknown. Here we constrain the focal mechanism of underground deformation related to tremors, using moment tensor inversion in the very low frequency band and tidal stress analysis. Three types of seismic data are used for two analysis steps: detection of tremors and the moment tensor inversion. Short-period seismograms from CWBSN are used for tremor detection. Broadband seismograms from BATS and the TAIGER project are used for both steps. About 1000 tremors were detected using an envelope correlation method in the high frequency band (2-8 Hz). Broadband seismograms are stacked relative to the tremor timing, and inverted for a moment tensor in the low frequency band (0.02-0.05 Hz). The best solution was obtained at 32 km depth, as a double-couple consistent with a low-angle thrust fault dipping to the east-southeast, or a high-angle thrust with a south-southwest strike. Almost all tremors occur when tidal shear stress is positive and normal stress is negative (clamping). Since the clamping stress is high for a high-angle thrust fault, the low-angle thrust fault is more likely to be the fault plane. Tremor rate increases non-linearly with increasing shear stress, suggesting a velocity strengthening friction law. The high tidal sensitivity is inconsistent with horizontal slip motion suggested by previous studies, and normal faults that dominates regional shallow earthquakes. Our results favor thrust slip on a low-angle fault dipping to the east-southeast, consistent with the subduction of the Eurasian plate. The tremor region is characterized by a deep thermal anomaly with decrease normal stress. This region has also experienced enough subduction to produce metamorphic fluids. A large amount of fluid and low vertical stress may explain the high tidal sensitivity.

  17. Will Tidal Wetland Restoration Enhance Populations of Native Fishes?

    Directory of Open Access Journals (Sweden)

    Larry R. Brown

    2003-10-01

    Full Text Available Restoration of tidal wetlands might enhance populations of native fishes in the San Francisco Estuary of California. The purpose of this paper is to: (1 review the currently available information regarding the importance of tidal wetlands to native fishes in the San Francisco Estuary, (2 construct conceptual models on the basis of available information, (3 identify key areas of scientific uncertainty, and (4 identify methods to improve conceptual models and reduce uncertainty. There are few quantitative data to suggest that restoration of tidal wetlands will substantially increase populations of native fishes. On a qualitative basis, there is some support for the idea that tidal wetland restoration will increase populations of some native fishes; however, the species deriving the most benefit from restoration might not be of great management concern at present. Invasion of the San Francisco Estuary by alien plants and animals appears to be a major factor in obscuring the expected link between tidal wetlands and native fishes. Large-scale adaptive management experiments (>100 hectares appear to be the best available option for determining whether tidal wetlands will provide significant benefit to native fishes. Even if these experiments are unsuccessful at increasing native fish populations, the restored wetlands should benefit native birds, plants, and other organisms.

  18. Tidal interaction of black holes and Newtonian viscous bodies

    International Nuclear Information System (INIS)

    Poisson, Eric

    2009-01-01

    The tidal interaction of a (rotating or nonrotating) black hole with nearby bodies produces changes in its mass, angular momentum, and surface area. Similarly, tidal forces acting on a Newtonian, viscous body do work on the body, change its angular momentum, and part of the transferred gravitational energy is dissipated into heat. The equations that describe the rate of change of the black-hole mass, angular momentum, and surface area as a result of the tidal interaction are compared with the equations that describe how the tidal forces do work, torque, and produce heat in the Newtonian body. The equations are strikingly similar, and unexpectedly, the correspondence between the Newtonian-body and black-hole results is revealed to hold in near-quantitative detail. The correspondence involves the combination k 2 τ of 'Love quantities' that incorporate the details of the body's internal structure; k 2 is the tidal Love number, and τ is the viscosity-produced delay between the action of the tidal forces and the body's reaction. The combination k 2 τ is of order GM/c 3 for a black hole of mass M; it does not vanish, in spite of the fact that k 2 is known to vanish individually for a nonrotating black hole.

  19. A numerical study of local variations in tidal regime of Tagus estuary, Portugal.

    Science.gov (United States)

    Dias, João Miguel; Valentim, Juliana Marques; Sousa, Magda Catarina

    2013-01-01

    Tidal dynamics of shallow estuaries and lagoons is a complex matter that has attracted the attention of a large number of researchers over the last few decades. The main purpose of the present work is to study the intricate tidal dynamics of the Tagus estuary, which states as the largest estuary of the Iberian Peninsula and one of the most important wetlands in Portugal and Europe. Tagus has large areas of low depth and a remarkable geomorphology, both determining the complex propagation of tidal waves along the estuary of unknown manner. A non-linear two-dimensional vertically integrated hydrodynamic model was considered to be adequate to simulate its hydrodynamics and an application developed from the SIMSYS2D model was applied to study the tidal propagation along the estuary. The implementation and calibration of this model revealed its accuracy to predict tidal properties along the entire system. Several model runs enabled the analysis of the local variations in tidal dynamics, through the interpretation of amplitude and phase patterns of the main tidal constituents, tidal asymmetry, tidal ellipses, form factor and tidal dissipation. Results show that Tagus estuary tidal dynamics is extremely dependent on an estuarine resonance mode for the semi-diurnal constituents that induce important tidal characteristics. Besides, the estuarine coastline features and topography determines the changes in tidal propagation along the estuary, which therefore result essentially from a balance between convergence/divergence and friction and advection effects, besides the resonance effects.

  20. Potential sites for tidal power in New Jersey.

    Science.gov (United States)

    2014-04-01

    High-resolution simulation is made to model tidal energy along the coastlines of New Jersey (NJ) and its neighbor states with an : unprecedentedly fine grid. On the basis of the simulation, a thorough search is made for sites for tidal power generati...

  1. Social stars: Modeling the interactive lives of stars in dense clusters and binary systems in the era of time domain astronomy

    Science.gov (United States)

    MacLeod, Morgan Elowe

    This thesis uses computational modeling to study of phases of dramatic interaction that intersperse stellar lifetimes. In galactic centers stars trace dangerously wandering orbits dictated by the combined gravitational force of a central, supermassive black hole and all of the surrounding stars. In binary systems, stars' evolution -- which causes their radii to increase substantially -- can bring initially non-interacting systems into contact. Moments of strong stellar interaction transform stars, their subsequent evolution, and the stellar environments they inhabit. In tidal disruption events, a star is partially or completely destroyed as tidal forces from a supermassive black hole overwhelm the star's self gravity. A portion of the stellar debris falls back to the black hole powering a luminous flare as it accretes. This thesis studies the relative event rates and properties of tidal disruption events for stars across the stellar evolutionary spectrum. Tidal disruptions of giant stars occur with high specific frequency; these objects' extended envelopes make them vulnerable to disruption. More-compact white dwarf stars are tidally disrupted relatively rarely. Their transients are also of very different duration and luminosity. Giant star disruptions power accretion flares with timescales of tens to hundreds of years; white dwarf disruption flares take hours to days. White dwarf tidal interactions can additionally trigger thermonuclear burning and lead to transients with signatures similar to type I supernovae. In binary star systems, a phase of hydrodynamic interaction called a common envelope episode occurs when one star evolves to swallow its companion. Dragged by the surrounding gas, the companion star spirals through the envelope to tighter orbits. This thesis studies accretion and flow morphologies during this phase. Density gradients across the gravitationally-focussed material lead to a strong angular momentum barrier to accretion during common envelope

  2. Tidally induced lateral dispersion of the Storfjorden overflow plume

    Directory of Open Access Journals (Sweden)

    F. Wobus

    2013-10-01

    Full Text Available We investigate the flow of brine-enriched shelf water from Storfjorden (Svalbard into Fram Strait and onto the western Svalbard Shelf using a regional set-up of NEMO-SHELF, a 3-D numerical ocean circulation model. The model is set up with realistic bathymetry, atmospheric forcing, open boundary conditions and tides. The model has 3 km horizontal resolution and 50 vertical levels in the sh-coordinate system which is specially designed to resolve bottom boundary layer processes. In a series of modelling experiments we focus on the influence of tides on the propagation of the dense water plume by comparing results from tidal and non-tidal model runs. Comparisons of non-tidal to tidal simulations reveal a hotspot of tidally induced horizontal diffusion leading to the lateral dispersion of the plume at the southernmost headland of Spitsbergen which is in close proximity to the plume path. As a result the lighter fractions in the diluted upper layer of the plume are drawn into the shallow coastal current that carries Storfjorden water onto the western Svalbard Shelf, while the dense bottom layer continues to sink down the slope. This bifurcation of the plume into a diluted shelf branch and a dense downslope branch is enhanced by tidally induced shear dispersion at the headland. Tidal effects at the headland are shown to cause a net reduction in the downslope flux of Storfjorden water into the deep Fram Strait. This finding contrasts previous results from observations of a dense plume on a different shelf without abrupt topography.

  3. A Summary of the San Francisco Tidal Wetlands Restoration Series

    Directory of Open Access Journals (Sweden)

    Larry R. Brown

    2003-10-01

    Full Text Available The four topical articles of the Tidal Wetlands Restoration Series summarized and synthesized much of what is known about tidal wetlands and tidal wetland restoration in the San Francisco Estuary (hereafter “Estuary”. Despite a substantial amount of available information, major uncertainties remain. A major uncertainty with regard to fishes is the net benefit of restored tidal wetlands relative to other habitats for native fishes in different regions of the Estuary given the presence of numerous invasive alien species. With regard to organic carbon, a major uncertainty is the net benefit of land use change given uncertainty about the quantity and quality of different forms of organic carbon resulting from different land uses. A major challenge is determining the flux of organic carbon from open systems like tidal wetlands. Converting present land uses to tidal wetlands will almost certainly result in increased methylation of mercury at the local scale with associated accumulation of mercury within local food webs. However, it is unclear if such local accumulation is of concern for fish, wildlife or humans at the local scale or if cumulative effects at the regional scale will emerge. Based on available information it is expected that restored tidal wetlands will remain stable once constructed; however, there is uncertainty associated with the available data regarding the balance of sediment accretion, sea-level rise, and sediment erosion. There is also uncertainty regarding the cumulative effect of many tidal restoration projects on sediment supply. The conclusions of the articles highlight the need to adopt a regional and multidisciplinary approach to tidal wetland restoration in the Estuary. The Science Program of the CALFED effort provides an appropriate venue for addressing these issues.

  4. Responses of water environment to tidal flat reduction in Xiangshan Bay: Part I hydrodynamics

    Science.gov (United States)

    Li, Li; Guan, Weibing; Hu, Jianyu; Cheng, Peng; Wang, Xiao Hua

    2018-06-01

    Xiangshan Bay consists of a deep tidal channel and three shallow inlets. A large-scale tidal flat has been utilized through coastal construction. To ascertain the accumulate influences of these engineering projects upon the tidal dynamics of the channel-inlets system, this study uses FVCOM to investigate the tides and flow asymmetries of the bay, and numerically simulate the long-term variations of tidal dynamics caused by the loss of tidal flats. It was found that the reduction of tidal flat areas from 1963 to 2010 slightly dampened M2 tidal amplitudes (0.1 m, ∼6%) and advanced its phases by reducing shoaling effects, while amplified M4 tidal amplitudes (0.09 m, ∼27%) and advanced its phases by reducing bottom friction, in the inner bay. Consequently, the ebb dominance was dampened indicated by reduced absolute value of elevation skewness (∼20%) in the bay. The tides and tidal asymmetry were impacted by the locations, areas and slopes of the tidal flats through changing tidal prism, shoaling effect and bottom friction, and consequently impacted tidal duration asymmetry in the bay. Tides and tidal asymmetry were more sensitive to the tidal flat at the head of the bay than the side bank. Reduced/increased tidal flat slopes around the Tie inlet dampened the ebb dominance. Tidal flat had a role in dissipating the M4 tide rather than generating it, while the advection only play a secondary role in generating the M4 tide. The full-length tidal flats reclamation would trigger the reverse of ebb to flood dominance in the bay. This study would be applicable for similar narrow bays worldwide.

  5. TIDAL TURBULENCE SPECTRA FROM A COMPLIANT MOORING

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Jim; Kilcher, Levi; Richmond, Marshall C.; Talbert, Joe; deKlerk, Alex; Polagye, Brian; Guerra, Maricarmen; Cienfuegos, Rodrigo

    2013-06-13

    A compliant mooring to collect high frequency turbulence data at a tidal energy site is evaluated in a series of short demon- stration deployments. The Tidal Turbulence Mooring (TTM) improves upon recent bottom-mounted approaches by suspend- ing Acoustic Doppler Velocimeters (ADVs) at mid-water depths (which are more relevant to tidal turbines). The ADV turbulence data are superior to Acoustic Doppler Current Profiler (ADCP) data, but are subject to motion contamination when suspended on a mooring in strong currents. In this demonstration, passive stabilization is shown to be sufficient for acquiring bulk statistics of the turbulence, without motion correction. With motion cor- rection (post-processing), data quality is further improved; the relative merits of direct and spectral motion correction are dis- cussed.

  6. Geometry and dynamics of a tidally deformed black hole

    International Nuclear Information System (INIS)

    Poisson, Eric; Vlasov, Igor

    2010-01-01

    The metric of a nonrotating black hole deformed by a tidal interaction is calculated and expressed as an expansion in the strength of the tidal coupling. The expansion parameter is the inverse length scale R -1 , where R is the radius of curvature of the external spacetime in which the black hole moves. The expansion begins at order R -2 , and it is carried out through order R -4 . The metric is parametrized by a number of tidal multipole moments, which specify the black hole's tidal environment. The tidal moments are freely-specifiable functions of time that are related to the Weyl tensor of the external spacetime. At order R -2 the metric involves the tidal quadrupole moments E ab and B ab . At order R -3 it involves the time derivative of the quadrupole moments and the tidal octupole moments E abc and B abc . At order R -4 the metric involves the second time derivative of the quadrupole moments, the first time derivative of the octupole moments, the tidal hexadecapole moments E abcd and B abcd , and bilinear combinations of the quadrupole moments. The metric is presented in a light-cone coordinate system that possesses a clear geometrical meaning: The advanced-time coordinate v is constant on past light cones that converge toward the black hole; the angles θ and φ are constant on the null generators of each light cone; and the radial coordinate r is an affine parameter on each generator, which decreases as the light cones converge toward the black hole. The coordinates are well-behaved on the black-hole horizon, and they are adjusted so that the coordinate description of the horizon is the same as in the Schwarzschild geometry: r=2M+O(R -5 ). At the order of accuracy maintained in this work, the horizon is a stationary null hypersurface foliated by apparent horizons; it is an isolated horizon in the sense of Ashtekar and Krishnan. As an application of our results we examine the induced geometry and dynamics of the horizon, and calculate the rate at which the

  7. Emerging and Disruptive Technologies.

    Science.gov (United States)

    Kricka, Larry J

    2016-08-01

    Several emerging or disruptive technologies can be identified that might, at some point in the future, displace established laboratory medicine technologies and practices. These include increased automation in the form of robots, 3-D printing, technology convergence (e.g., plug-in glucose meters for smart phones), new point-of-care technologies (e.g., contact lenses with sensors, digital and wireless enabled pregnancy tests) and testing locations (e.g., Retail Health Clinics, new at-home testing formats), new types of specimens (e.g., cell free DNA), big biology/data (e.g., million genome projects), and new regulations (e.g., for laboratory developed tests). In addition, there are many emerging technologies (e.g., planar arrays, mass spectrometry) that might find even broader application in the future and therefore also disrupt current practice. One interesting source of disruptive technology may prove to be the Qualcomm Tricorder XPrize, currently in its final stages.

  8. Classification of tidal inlets along the Central east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, N.A.; Vikas, M.; Rao, S.; JayaKumar S.

    ) as long as the alongshore sediment bypasses the tidal inlet. Classification of coastal systems in a broader view is necessary for the management of tidal inlets. There are several methods to classify tidal inlets based on different perspectives namely geo...

  9. Tidal Power in the UK and Worldwide to Reduce Greenhouse Gas Emissions

    Directory of Open Access Journals (Sweden)

    T. J. Hammons

    2011-05-01

    Full Text Available This paper discusses the role of Tidal Power in the UK in fulfilling the UK's requirements for reducing greenhouse gas emissions. Generating electricity from tidal range of the Severn Estuary has the potential to generate some 5% of UK electricity from a renewable indigenous resource. The paper focuses primarily on the proposed Severn Barrage considering potential benefits, conditions for sustainable development, energy policy context and compliance with environment legislation. UK tidal resource is reviewed: stream resource (that is KE contained in fast-flowing tidal currents, and tidal range resource (that refers to gravitation potential energy. The top tidal range and tidal stream sites in the UK with the resource (in TWh/year are indicated. A feasibility study for Tidal Range development in the Mersey Estuary is also summarised and other schemes including the Loughor Estuary (Wales, Duddon Estuary (located on the Cumbrian coast and the Thames Estuary proposals are reported. Also given is a strategic overview of the Severn Estuary resource, electric output and characteristics, carbon emissions (carbon payback and carbon reduction potential and physical implications of a barrage.

  10. Real-time images of tidal recruitment using lung ultrasound.

    Science.gov (United States)

    Tusman, Gerardo; Acosta, Cecilia M; Nicola, Marco; Esperatti, Mariano; Bohm, Stephan H; Suarez-Sipmann, Fernando

    2015-12-01

    Ventilator-induced lung injury is a form of mechanical damage leading to a pulmonary inflammatory response related to the use of mechanical ventilation enhanced by the presence of atelectasis. One proposed mechanism of this injury is the repetitive opening and closing of collapsed alveoli and small airways within these atelectatic areas-a phenomenon called tidal recruitment. The presence of tidal recruitment is difficult to detect, even with high-resolution images of the lungs like CT scan. The purpose of this article is to give evidence of tidal recruitment by lung ultrasound. A standard lung ultrasound inspection detected lung zones of atelectasis in mechanically ventilated patients. With a linear probe placed in the intercostal oblique position. We observed tidal recruitment within atelectasis as an improvement in aeration at the end of inspiration followed by the re-collapse at the end of expiration. This mechanism disappeared after the performance of a lung recruitment maneuver. Lung ultrasound was helpful in detecting the presence of atelectasis and tidal recruitment and in confirming their resolution after a lung recruitment maneuver.

  11. Tidal bending of glaciers: a linear viscoelastic approach

    DEFF Research Database (Denmark)

    Reeh, Niels; Christensen, Erik Lintz; Mayer, Christoph

    2003-01-01

    In theoretical treatments of tidal bending of floating glaciers, the glacier is usually modelled as an elastic beam with uniform thickness, resting on an elastic foundation. With a few exceptions, values of the elastic (Young's) modulus E of ice derived from tidal deflection records of floating...

  12. Diurnal, semidiurnal, and fortnightly tidal components in orthotidal proglacial rivers.

    Science.gov (United States)

    Briciu, Andrei-Emil

    2018-02-22

    The orthotidal rivers are a new concept referring to inland rivers influenced by gravitational tides through the groundwater tides. "Orthotidal signals" is intended to describe tidal signals found in inland streamwaters (with no oceanic input); these tidal signals were locally generated and then exported into streamwaters. Here, we show that orthotidal signals can be found in proglacial rivers due to the gravitational tides affecting the glaciers and their surrounding areas. The gravitational tides act on glacier through earth and atmospheric tides, while the subglacial water is affected in a manner similar to the groundwater tides. We used the wavelet analysis in order to find tidally affected streamwaters. T_TIDE analyses were performed for discovering the tidal constituents. Tidal components with 0.95 confidence level are as follows: O1, PI1, P1, S1, K1, PSI1, M2, T2, S2, K2, and MSf. The amplitude of the diurnal tidal constituents is strongly influenced by the daily thermal cycle. The average amplitude of the semidiurnal tidal constituents is less altered and ranges from 0.0007 to 0.0969 m. The lunisolar synodic fortnightly oscillation, found in the time series of the studied river gauges, is a useful signal for detecting orthotidal rivers when using noisier data. The knowledge of the orthotidal oscillations is useful for modeling fine resolution changes in rivers.

  13. Prospects for Fundy tidal power

    International Nuclear Information System (INIS)

    Clark, R.H.

    1997-01-01

    The Bay of Fundy in Canada probably possesses the most favourable conditions in the world for the exploitation of tidal energy. The results of the comprehensive investigations carried out during the past quarter-century are reviewed together with operating and environmental aspects of the modest (20 MW) Annapolis Tidal Power Station, commissioned in 1984, the primary purpose of which was to evaluate the operation of a large (7.6 m) diameter Straflo turbine unit under low heads. The results of the operating and maintenance experience for the Annapolis Station are reviewed as well as the results of the environmental/ecological studies that have been on-going in the Annapolis Basin. The tidal power investigations have shown that a 1400 MW development at the mouth of the Cumberland Basin, at the head of the bay of Fundy, is technically and economically feasible and that its output would probably be competitive with fossil-fired plants, particularly if a 'green' accounting technique were applied to such energy sources. The importance of timing, if the exploitation of this non-polluting, renewable and completely predicable source is to be used to meet the future electrical energy needs of the maritime provinces, is discussed. (author)

  14. Sedimentation and response to sea-level rise of a restored marsh with reduced tidal exchange: Comparison with a natural tidal marsh

    Science.gov (United States)

    Vandenbruwaene, W.; Maris, T.; Cahoon, D.R.; Meire, P.; Temmerman, S.

    2011-01-01

    Along coasts and estuaries, formerly embanked land is increasingly restored into tidal marshes in order to re-establish valuable ecosystem services, such as buffering against flooding. Along the Scheldt estuary (Belgium), tidal marshes are restored on embanked land by allowing a controlled reduced tide (CRT) into a constructed basin, through a culvert in the embankment. In this way tidal water levels are significantly lowered (ca. 3 m) so that a CRT marsh can develop on formerly embanked land with a ca. 3 m lower elevation than the natural tidal marshes. In this study we compared the long-term change in elevation (ΔE) within a CRT marsh and adjacent natural tidal marsh. Over a period of 4 years, the observed spatio-temporal variations in ΔE rate were related to variations in inundation depth, and this relationship was not significantly different for the CRT marsh and natural tidal marsh. A model was developed to simulate the ΔE over the next century. (1) Under a scenario without mean high water level (MHWL) rise in the estuary, the model shows that the marsh elevation-ΔE feedback that is typical for a natural tidal marsh (i.e. rising marsh elevation results in decreasing inundation depth and therefore a decreasing increase in elevation) is absent in the basin of the CRT marsh. This is because tidal exchange of water volumes between the estuary and CRT marsh are independent from the CRT marsh elevation but dependent on the culvert dimensions. Thus the volume of water entering the CRT remains constant regardless of the marsh elevation. Consequently the CRT MHWL follows the increase in CRT surface elevation, resulting after 75 years in a 2–2.5 times larger elevation gain in the CRT marsh, and a faster reduction of spatial elevation differences. (2) Under a scenario of constant MHWL rise (historical rate of 1.5 cm a-1), the equilibrium elevation (relative to MHWL) is 0.13 m lower in the CRT marsh and is reached almost 2 times faster. (3) Under a scenario of

  15. Tidal power development -- A realistic, justifiable and topical problem of today

    International Nuclear Information System (INIS)

    Bernshtein, L.B.

    1995-01-01

    Modern tidal power plant designs have shown that with the use of large single-basin schemes, tidal power can be integrated with other forms of power generation. Tidal power is an environmentally benign means of producing electricity, particularly during off-peak demand. A number of tidal power schemes have been evaluated. These include Cumberland (1.4 Gigawatts (GW)), Cobequid (4.4 GW) in Canada; Sevrn (8.6 GW), Mersey (0.7 GW), Wyre (0.06 GW) and Conwy (0.03 GW) in Great Britain; Tugur (6.8 GW) in Russia and Garolim (0.5 GW) in South Korea. These schemes ar opening up future prospects for very large scale opportunities which could have global importance, for example, the transmission of 24 GW of electricity from tidal power plants in Great Britain to Europe. Another example is the potential transmission of 87 GW from Penzhinsh tidal power plant in Russia

  16. Tidal day organic and inorganic material flux of ponds in the Liberty Island freshwater tidal wetland.

    Science.gov (United States)

    Lehman, Peggy W; Mayr, Shawn; Liu, Leji; Tang, Alison

    2015-01-01

    The loss of inorganic and organic material export and habitat produced by freshwater tidal wetlands is hypothesized to be an important contributing factor to the long-term decline in fishery production in San Francisco Estuary. However, due to the absence of freshwater tidal wetlands in the estuary, there is little information on the export of inorganic and organic carbon, nutrient or phytoplankton community biomass and the associated mechanisms. A single-day study was conducted to assess the potential contribution of two small vegetated ponds and one large open-water pond to the inorganic and organic material flux within the freshwater tidal wetland Liberty Island in San Francisco Estuary. The study consisted of an intensive tidal day (25.5 h) sampling program that measured the flux of inorganic and organic material at three ponds using continuous monitoring of flow, chlorophyll a, turbidity and salt combined with discrete measurements of phytoplankton community carbon, total and dissolved organic carbon and nutrient concentration at 1.5 h intervals. Vegetated ponds had greater material concentrations than the open water pond and, despite their small area, contributed up to 81% of the organic and 61% of the inorganic material flux of the wetland. Exchange between ponds was important to wetland flux. The small vegetated pond in the interior of the wetland contributed as much as 72-87% of the total organic carbon and chlorophyll a and 10% of the diatom flux of the wetland. Export of inorganic and organic material from the small vegetated ponds was facilitated by small-scale topography and tidal asymmetry that produced a 40% greater material export on ebb tide. The small vegetated ponds contrasted with the large open water pond, which imported 29-96% of the inorganic and 4-81% of the organic material into the wetland from the adjacent river. This study identified small vegetated ponds as an important source of inorganic and organic material to the wetland and the

  17. Tidal dissipation in the subsurface ocean of Enceladus

    Science.gov (United States)

    Matsuyama, I.; Hay, H.; Nimmo, F.; Kamata, S.

    2017-12-01

    Icy satellites of the outer solar system have emerged as potential habitable worlds due to the presence of subsurface oceans. As a long-term energy source, tidal heating in these oceans can influence the survivability of subsurface oceans, and the thermal, rotational, and orbital evolution of these satellites. Additionally, the spatial and temporal variation of tidal heating has implications for the interior structure and spacecraft observations. Previous models for dissipation in thin oceans are not generally applicable to icy satellites because either they ignore the presence of an overlying solid shell or use a thin shell membrane approximation. We present a new theoretical treatment for tidal dissipation in thin oceans with overlying shells of arbitrary thickness and apply it to Enceladus. The shell's resistance to ocean tides increases with shell thickness, reducing tidal dissipation as expected. Both the magnitude of energy dissipation and the resonant ocean thicknesses decrease as the overlying shell thickness increases, as previously shown using a membrane approximation. In contrast to previous work based on the traditional definition of the tidal quality factor, Q, our new definition is consistent with higher energy dissipation for smaller Q, and introduces a lower limit on Q. The dissipated power and tides are not in phase with the forcing tidal potential due to the delayed ocean response. The phase lag depends on the Rayleigh friction coefficient and ocean and shell thicknesses, which implies that phase lag observations can be used to constrain these parameters. Eccentricity heating produces higher dissipation near the poles, while obliquity heating produces higher dissipation near the equator, in contrast to the dissipation patterns in the shell. The time-averaged surface distribution of tidal heating can generate lateral shell thickness variations, providing an additional constraint on the Rayleigh friction coefficient. Explaining the endogenic power

  18. Effect of breathing fluctuations on cerebral blood flow in demented patients and its correction method using end-tidal CO/sub 2/ concentration

    Energy Technology Data Exchange (ETDEWEB)

    Komatani, Akio; Yamaguchi, Koichi; Kera, Masahiro; Takanashi, Toshiyasu; Shinohara, Masao; Kawakatsu, Shinobu; Yazaki, Mitsuyasu

    1989-02-01

    During mouthpiece respiration of Xe-133 for a measurement of regional cerebral blood flow (rCBF), the breathing pattern of patients fluctuated and it caused a change of end-tidal CO/sub 2/ concentration that had an excellent correlation with PaCO/sub 2/ in patients without respiratory disease. The end-tidal CO/sub 2/ concentration of demented patients varied within lower ranges than senile control group. The range of fluctuation on the end-tidal CO/sub 2/ concentration was dependent on the type and the degree of dementia, and it fluctuated most widely at the middle stage of Alzheimer disease. Mean cerebral blood flow increased by 13.9% for each l% increase in end-tidal CO/sub 2/ concentration (3.6%/mmHg PaCO/sub 2/) in the case of demented patients without cerebrovascular disease. To improve the reliability of rCBF in demented patients, especially in Alzheimer disease, the correction of rCBF data for end-tidal CO/sub 2/ concentration should be performed.

  19. Disruptive behaviour in the Foundation Phase of schooling | Marais ...

    African Journals Online (AJOL)

    Data collection was done by conducting interviews comprising semistructured questions with Foundation Phase teachers. Strategies purposely devised to deal specifically with the identified types and causes of disruptive behaviour are explained. Keywords: disciplinary procedures; discipline problems; disruptive behaviour;

  20. TIDAL HEATING IN A MAGMA OCEAN WITHIN JUPITER’S MOON Io

    International Nuclear Information System (INIS)

    Tyler, Robert H.; Henning, Wade G.; Hamilton, Christopher W.

    2015-01-01

    Active volcanism observed on Io is thought to be driven by the temporally periodic, spatially differential projection of Jupiter's gravitational field over the moon. Previous theoretical estimates of the tidal heat have all treated Io as essentially a solid, with fluids addressed only through adjustment of rheological parameters rather than through appropriate extension of the dynamics. These previous estimates of the tidal response and associated heat generation on Io are therefore incomplete and possibly erroneous because dynamical aspects of the fluid behavior are not permitted in the modeling approach. Here we address this by modeling the partial-melt asthenosphere as a global layer of fluid governed by the Laplace Tidal Equations. Solutions for the tidal response are then compared with solutions obtained following the traditional solid-material approach. It is found that the tidal heat in the solid can match that of the average observed heat flux (nominally 2.25 W m −2 ), though only over a very restricted range of plausible parameters, and that the distribution of the solid tidal heat flux cannot readily explain a longitudinal shift in the observed (inferred) low-latitude heat fluxes. The tidal heat in the fluid reaches that observed over a wider range of plausible parameters, and can also readily provide the longitudinal offset. Finally, expected feedbacks and coupling between the solid/fluid tides are discussed. Most broadly, the results suggest that both solid and fluid tidal-response estimates must be considered in exoplanet studies, particularly where orbital migration under tidal dissipation is addressed

  1. On the ambiguity in relativistic tidal deformability

    Science.gov (United States)

    Gralla, Samuel E.

    2018-04-01

    The LIGO collaboration recently reported the first gravitational-wave constraints on the tidal deformability of neutron stars. I discuss an inherent ambiguity in the notion of relativistic tidal deformability that, while too small to affect the present measurement, may become important in the future. I propose a new way to understand the ambiguity and discuss future prospects for reliably linking observed gravitational waveforms to compact object microphysics.

  2. Tidal Love numbers of neutron and self-bound quark stars

    International Nuclear Information System (INIS)

    Postnikov, Sergey; Prakash, Madappa; Lattimer, James M.

    2010-01-01

    Gravitational waves from the final stages of inspiraling binary neutron stars are expected to be one of the most important sources for ground-based gravitational wave detectors. The masses of the components are determinable from the orbital and chirp frequencies during the early part of the evolution, and large finite-size (tidal) effects are measurable toward the end of inspiral, but the gravitational wave signal is expected to be very complex at this time. Tidal effects during the early part of the evolution will form a very small correction, but during this phase the signal is relatively clean. The accumulated phase shift due to tidal corrections is characterized by a single quantity related to a star's tidal Love number. The Love number is sensitive, in particular, to the compactness parameter M/R and the star's internal structure, and its determination could provide an important constraint to the neutron star radius. We show that Love numbers of self-bound strange quark matter stars are qualitatively different from those of normal neutron stars. Observations of the tidal signature from coalescing compact binaries could therefore provide an important, and possibly unique, way to distinguish self-bound strange quark stars from normal neutron stars. Tidal signatures from self-bound strange quark stars with masses smaller than 1M · are substantially smaller than those of normal stars owing to their smaller radii. Thus tidal signatures of stars less massive than 1M · are probably not detectable with Advanced LIGO. For stars with masses in the range 1-2M · , the anticipated efficiency of the proposed Einstein telescope would be required for the detection of tidal signatures.

  3. Tidal forces in Kiselev black hole

    Energy Technology Data Exchange (ETDEWEB)

    Shahzad, M.U. [University of Central Punjab, CAMS, UCP Business School, Lahore (Pakistan); Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan)

    2017-06-15

    The aim of this paper is to examine the tidal forces occurring in a Kiselev black hole surrounded by radiation and dust fluids. It is noted that the radial and angular components of the tidal force change the sign between event and Cauchy horizons. We solve the geodesic deviation equation for radially free-falling bodies toward Kiselev black holes. We explain the geodesic deviation vector graphically and point out the location of the event and Cauchy horizons for specific values of the radiation and dust parameters. (orig.)

  4. Role of tidal flat in material cycling in the coastal sea

    OpenAIRE

    Yara, Yumiko; Yanagi, Tetsuo; Montani, Shigeru; Kuninao, Tada

    2007-01-01

    A simple tidal flat model with pelagic and benthic ecosystems was developed in order to analyze the nitrogen cycling in an inter-tidal flat of the Seto Inland Sea, Japan. After the verification of calculation results with the observed results in water quality and benthic biomasses, the role of this tidal flat in nitrogen cycling was evaluated from the viewpoint of water quality purification capability. When there is no suspension feeder in the tidal flat, the water quality purification capab...

  5. The prediction of the hydrodynamic performance of tidal current turbines

    International Nuclear Information System (INIS)

    Xiao, B Y; Zhou, L J; Xiao, Y X; Wang, Z W

    2013-01-01

    Nowadays tidal current energy is considered to be one of the most promising alternative green energy resources and tidal current turbines are used for power generation. Prediction of the open water performance around tidal turbines is important for the reason that it can give some advice on installation and array of tidal current turbines. This paper presents numerical computations of tidal current turbines by using a numerical model which is constructed to simulate an isolated turbine. This paper aims at studying the installation of marine current turbine of which the hydro-environmental impacts influence by means of numerical simulation. Such impacts include free-stream velocity magnitude, seabed and inflow direction of velocity. The results of the open water performance prediction show that the power output and efficiency of marine current turbine varies from different marine environments. The velocity distribution should be clearly and the suitable unit installation depth and direction be clearly chosen, which can ensure the most effective strategy for energy capture before installing the marine current turbine. The findings of this paper are expected to be beneficial in developing tidal current turbines and array in the future

  6. Tidal Turbines’ Layout in a Stream with Asymmetry and Misalignment

    Directory of Open Access Journals (Sweden)

    Nicolas Guillou

    2017-11-01

    Full Text Available A refined assessment of tidal currents variability is a prerequisite for successful turbine deployment in the marine environment. However, the numerical evaluation of the tidal kinetic energy resource relies, most of the time, on integrated parameters, such as the averaged or maximum stream powers. Predictions from a high resolution three-dimensional model are exploited here to characterize the asymmetry and misalignment between the flood and ebb tidal currents in the “Raz de Sein”, a strait off western Brittany (France with strong potential for array development. A series of parameters is considered to assess resource variability and refine the cartography of local potential tidal stream energy sites. The strait is characterized by strong tidal flow divergence with currents’ asymmetry liable to vary output power by 60% over a tidal cycle. Pronounced misalignments over 20 ∘ are furthermore identified in a great part of energetic locations, and this may account for a deficit of the monthly averaged extractable energy by more than 12%. As sea space is limited for turbines, it is finally suggested to aggregate flood and ebb-dominant stream powers on both parts of the strait to output energy with reduced asymmetry.

  7. The comparative study of lumbar disc disruption with MRI and CT discography

    International Nuclear Information System (INIS)

    Chen Xingcan; Liu Naifang; Li Xiaohong; Xu Wengen; Zou Qing; Yang Yonghong

    2005-01-01

    Objective: To compare MRI with CT discography (CTD) for diagnostic assessment of lumbar disc disruption. Methods: Paired comparative examination in 16 patients with chronic lower back pain without radicular pain and no disc herniation was conducted using CT or MRI. The standard of CTD classification and positive disc was formulated and the correlation between the induced lower back pain and dosage used in CTD was observed. Results: For a total of 21 discs in the 16 patients, CTD showed the disc as type 2 in 12 discs and type 5 in 1 disc with 13 positive discs, while MRI only showed the high-intensity zone of posterior annulus in 6 discs as the indirect sign of disc disruption and disc degeneration in 7 discs. Conclusion: CTD was the only method for showing the direct sign of disc disruption. The induced lower back pain was related with the type of disc disruption. MRI can show some of the indirect signs of disc disruption and CTD can show the direct sign of disc disruption. (authors)

  8. Inspiratory time and tidal volume during intermittent positive pressure ventilation.

    OpenAIRE

    Field, D; Milner, A D; Hopkin, I E

    1985-01-01

    We measured the tidal volume achieved during intermittent positive pressure ventilation using various inspiratory times with a minimum of 0.2 seconds. Results indicate that tidal volume shows no reduction with inspiratory times down to 0.4 seconds. An inspiratory time of 0.3 seconds, however, is likely to reduce tidal volume by 8%, and at 0.2 seconds a 22% fall may be anticipated.

  9. Disruptive Behaviour in the Foundation Phase of Schooling

    Science.gov (United States)

    Marais, Petro; Meier, Corinne

    2010-01-01

    Since the passage of legislation banning corporal punishment in South African schools, disruptive behaviour in schools has become an issue of national concern. Against this background a research project was undertaken in which the types and causes of disruptive behaviour occurring most frequently in the Foundation Phase of schooling were…

  10. A forward-looking, national-scale remote sensing-based model of tidal marsh aboveground carbon stocks

    Science.gov (United States)

    Holmquist, J. R.; Byrd, K. B.; Ballanti, L.; Nguyen, D.; Simard, M.; Windham-Myers, L.; Thomas, N.

    2017-12-01

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our goal was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). To meet this objective we developed the first national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest algorithm we tested Sentinel-1 radar backscatter metrics and Landsat vegetation indices as predictors of biomass. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n=409, RMSE=310 g/m2, 10.3% normalized RMSE), successfully predicted biomass and carbon for a range of marsh plant functional types defined by height, leaf angle and growth form. Model error was reduced by scaling field measured biomass by Landsat fraction green vegetation derived from object-based classification of National Agriculture Imagery Program imagery. We generated 30m resolution biomass maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map for each region. With a mean plant %C of 44.1% (n=1384, 95% C.I.=43.99% - 44.37%) we estimated mean aboveground carbon densities (Mg/ha) and total carbon stocks for each wetland type for each region. Louisiana palustrine emergent marshes had the highest C density (2.67 ±0.08 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had the highest C density of all estuarine emergent marshes (2.03 ±0.06 Mg/ha). This modeling and data synthesis effort will allow for aboveground

  11. Brd2 disruption in mice causes severe obesity without Type 2 diabetes.

    Science.gov (United States)

    Wang, Fangnian; Liu, Hongsheng; Blanton, Wanda P; Belkina, Anna; Lebrasseur, Nathan K; Denis, Gerald V

    2009-12-14

    Certain human subpopulations are metabolically healthy but obese, or metabolically obese but normal weight; such mutations uncouple obesity from glucose intolerance, revealing pathways implicated in Type 2 diabetes. Current searches for relevant genes consume significant effort. We have reported previously a novel double bromodomain protein called Brd2, which is a transcriptional co-activator/co-repressor with SWI/SNF (switch mating type/sucrose non-fermenting)-like functions that regulates chromatin. In the present study, we show that wholebody disruption of Brd2, an unusual MHC gene, causes lifelong severe obesity in mice with pancreatic islet expansion, hyperinsulinaemia, hepatosteatosis and elevated pro-inflammatory cytokines, but, surprisingly, enhanced glucose tolerance, elevated adiponectin, increased weight of brown adipose tissue, heat production and expression of mitochondrial uncoupling proteins in brown adipose tissue, reduced macrophage infiltration in white adipose tissue, and lowered blood glucose, leading to an improved metabolic profile and avoiding eventual Type 2 diabetes. Brd2 is highly expressed in pancreatic beta-cells, where it normally inhibits beta-cell mitosis and insulin transcription. In 3T3-L1 pre-adipocytes, Brd2 normally co-represses PPAR-gamma (peroxisome-proliferator-activated receptor-gamma) and inhibits adipogenesis. Brd2 knockdown protects 3T3-L1 adipocytes from TNF-alpha (tumour necrosis factor-alpha)-induced insulin resistance, thereby decoupling inflammation from insulin resistance. Thus hypomorphic Brd2 shifts energy balance toward storage without causing glucose intolerance and may provide a novel model for obese metabolically healthy humans.

  12. Estimation of River Pollution Index in a Tidal Stream Using Kriging Analysis

    Directory of Open Access Journals (Sweden)

    Chiang Wei

    2012-08-01

    Full Text Available Tidal streams are complex watercourses that represent a transitional zone between riverine and marine systems; they occur where fresh and marine waters converge. Because tidal circulation processes cause substantial turbulence in these highly dynamic zones, tidal streams are the most productive of water bodies. Their rich biological diversity, combined with the convenience of land and water transports, provide sites for concentrated populations that evolve into large cities. Domestic wastewater is generally discharged directly into tidal streams in Taiwan, necessitating regular evaluation of the water quality of these streams. Given the complex flow dynamics of tidal streams, only a few models can effectively evaluate and identify pollution levels. This study evaluates the river pollution index (RPI in tidal streams by using kriging analysis. This is a geostatistical method for interpolating random spatial variation to estimate linear grid points in two or three dimensions. A kriging-based method is developed to evaluate RPI in tidal streams, which is typically considered as 1D in hydraulic engineering. The proposed method efficiently evaluates RPI in tidal streams with the minimum amount of water quality data. Data of the Tanshui River downstream reach available from an estuarine area validate the accuracy and reliability of the proposed method. Results of this study demonstrate that this simple yet reliable method can effectively estimate RPI in tidal streams.

  13. A C-Type Lectin from Bothrops jararacussu Venom Disrupts Staphylococcal Biofilms

    Science.gov (United States)

    Klein, Raphael Contelli; Fabres-Klein, Mary Hellen; de Oliveira, Leandro Licursi; Feio, Renato Neves; Malouin, François; Ribon, Andréa de Oliveira Barros

    2015-01-01

    Bovine mastitis is a major threat to animal health and the dairy industry. Staphylococcus aureus is a contagious pathogen that is usually associated with persistent intramammary infections, and biofilm formation is a relevant aspect of the outcome of these infections. Several biological activities have been described for snake venoms, which led us to screen secretions of Bothrops jararacussu for antibiofilm activity against S. aureus NRS155. Crude venom was fractionated by size-exclusion chromatography, and the fractions were tested against S. aureus. Biofilm growth, but not bacterial growth, was affected by several fractions. Two fractions (15 and 16) showed the best activities and were also assayed against S. epidermidis NRS101. Fraction 15 was identified by TripleTOF mass spectrometry as a galactose-binding C-type lectin with a molecular weight of 15 kDa. The lectin was purified from the crude venom by D-galactose affinity chromatography, and only one peak was observed. This pure lectin was able to inhibit 75% and 80% of S. aureus and S. epidermidis biofilms, respectively, without affecting bacterial cell viability. The lectin also exhibited a dose-dependent inhibitory effect on both bacterial biofilms. The antibiofilm activity was confirmed using scanning electron microscopy. A pre-formed S. epidermidis biofilm was significantly disrupted by the C-type lectin in a time-dependent manner. Additionally, the lectin demonstrated the ability to inhibit biofilm formation by several mastitis pathogens, including different field strains of S. aureus, S. hyicus, S. chromogenes, Streptococcus agalactiae, and Escherichia coli. These findings reveal a new activity for C-type lectins. Studies are underway to evaluate the biological activity of these lectins in a mouse mastitis model. PMID:25811661

  14. A C-type lectin from Bothrops jararacussu venom disrupts Staphylococcal biofilms.

    Directory of Open Access Journals (Sweden)

    Raphael Contelli Klein

    Full Text Available Bovine mastitis is a major threat to animal health and the dairy industry. Staphylococcus aureus is a contagious pathogen that is usually associated with persistent intramammary infections, and biofilm formation is a relevant aspect of the outcome of these infections. Several biological activities have been described for snake venoms, which led us to screen secretions of Bothrops jararacussu for antibiofilm activity against S. aureus NRS155. Crude venom was fractionated by size-exclusion chromatography, and the fractions were tested against S. aureus. Biofilm growth, but not bacterial growth, was affected by several fractions. Two fractions (15 and 16 showed the best activities and were also assayed against S. epidermidis NRS101. Fraction 15 was identified by TripleTOF mass spectrometry as a galactose-binding C-type lectin with a molecular weight of 15 kDa. The lectin was purified from the crude venom by D-galactose affinity chromatography, and only one peak was observed. This pure lectin was able to inhibit 75% and 80% of S. aureus and S. epidermidis biofilms, respectively, without affecting bacterial cell viability. The lectin also exhibited a dose-dependent inhibitory effect on both bacterial biofilms. The antibiofilm activity was confirmed using scanning electron microscopy. A pre-formed S. epidermidis biofilm was significantly disrupted by the C-type lectin in a time-dependent manner. Additionally, the lectin demonstrated the ability to inhibit biofilm formation by several mastitis pathogens, including different field strains of S. aureus, S. hyicus, S. chromogenes, Streptococcus agalactiae, and Escherichia coli. These findings reveal a new activity for C-type lectins. Studies are underway to evaluate the biological activity of these lectins in a mouse mastitis model.

  15. Device interactions in reducing the cost of tidal stream energy

    International Nuclear Information System (INIS)

    Vazquez, A.; Iglesias, G.

    2015-01-01

    Highlights: • Numerical modelling is used to estimate the levelised cost of tidal stream energy. • As a case study, a model of Lynmouth (UK) is implemented and successfully validated. • The resolution of the model allows the demarcation of individual devices on the model grid. • Device interactions reduce the available tidal resource and the cost increases significantly. - Abstract: The levelised cost of energy takes into account the lifetime generated energy and the costs associated with a project. The objective of this work is to investigate the effects of device interactions on the energy output and, therefore, on the levelised cost of energy of a tidal stream project, by means of numerical modelling. For this purpose, a case study is considered: Lynmouth (North Devon, UK), an area in the Bristol Channel in which the first tidal stream turbine was installed − a testimony of its potential as a tidal energy site. A state-of-the-art hydrodynamics model is implemented on a high-resolution computational grid, which allows the demarcation of the individual devices. The modification to the energy output resulting from interaction between turbines within the tidal farm is thus resolved for each individual turbine. The results indicate that significant changes in the levelised cost of energy values, of up to £0.221 kW h −1 , occur due to the aforementioned modifications, which should not be disregarded if the cost of tidal stream energy is to be minimised

  16. Spatial tidal asymmetry of Cochin estuary, West Coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Vinita, J.; Shivaprasad, A.; Manoj, N.T.; Revichandran, C.; Naveenkumar, K.R.; Jineesh, V.K.

    tidal amplitude and currents get attenuated towards upstream through frictional dissipation The results showed that the tidal momentum balance along the main axis of the channel was dominated by pressure gradient and friction The influence of advection...

  17. Comparison of Tidal Volumes at the Endotracheal Tube and at the Ventilator.

    Science.gov (United States)

    Kim, Paul; Salazar, Adler; Ross, Patrick A; Newth, Christopher J L; Khemani, Robinder G

    2015-11-01

    Lung protective ventilation for children with acute respiratory distress syndrome requires accurate assessment of tidal volume. Although modern ventilators compensate for ventilator tubing compliance, tidal volume measured at the ventilator may not be accurate, particularly in small children. Although ventilator-specific proximal flow sensors that measure tidal volume at the endotracheal tube have been developed, there is little information regarding their accuracy. We sought to test the accuracy of ventilator measured tidal volume with and without proximal flow sensors against a calibrated pneumotachometer in children. Prospective, observational. Tertiary care PICU. Fifty-one endotracheally intubated and mechanically ventilated children younger than 18 years. Tidal volumes were measured at the ventilator, using a ventilator-specific flow sensor, and a calibrated pneumotachometer connected to the SensorMedics 2600A Pediatric Pulmonary Function Cart. In a pressure control mode of ventilation: median tidal volume measured with the pneumotachometer (9.5 mL/kg [interquartile range, 8.2-11.7 mL/kg]) was significantly higher than tidal volume measured either at the ventilator (8.2 mL/kg [7.1-9.6 mL/kg]) or at the proximal flow sensor (8.1 mL/kg [7.2-10.0 mL/kg]) (p tidal volume measured with the pneumotachometer (10.2 mL/kg [8.8-12.4 mL/kg]) was significantly higher than tidal volume measured either at the ventilator (8.0 mL/kg [7.1-9.7 mL/kg]) or at the proximal flow sensor (8.5 mL/kg [7.3-10.4 mL/kg]) (p Tidal volume measured either at the endotracheal tube with a proximal flow sensor or at the ventilator with compensation for tubing compliance are both significantly lower than tidal volume measured with a calibrated pneumotachometer. This underestimation of delivered tidal volume may be particularly important when managing children with acute respiratory distress syndrome.

  18. A new type of gene-disruption cassette with a rescue gene for Pichia pastoris.

    Science.gov (United States)

    Shibui, Tatsuro; Hara, Hiroyoshi

    2017-09-01

    Pichia pastoris has been used for the production of many recombinant proteins, and many useful mutant strains have been created. However, the efficiency of mutant isolation by gene-targeting is usually low and the procedure is difficult for those inexperienced in yeast genetics. In order to overcome these issues, we developed a new gene-disruption system with a rescue gene using an inducible Cre/mutant-loxP system. With only short homology regions, the gene-disruption cassette of the system replaces its target-gene locus containing a mutation with a compensatory rescue gene. As the cassette contains the AOX1 promoter-driven Cre gene, when targeted strains are grown on media containing methanol, the DNA fragment, i.e., the marker, rescue and Cre genes, between the mutant-loxP sequences in the cassette is excised, leaving only the remaining mutant-loxP sequence in the genome, and consequently a target gene-disrupted mutant can be isolated. The system was initially validated on ADE2 gene disruption, where the disruption can easily be detected by color-change of the colonies. Then, the system was applied for knocking-out URA3 and OCH1 genes, reported to be difficult to accomplish by conventional gene-targeting methods. All three gene-disruption cassettes with their rescue genes replaced their target genes, and the Cre/mutant-loxP system worked well to successfully isolate their knock-out mutants. This study identified a new gene-disruption system that could be used to effectively and strategically knock out genes of interest, especially whose deletion is detrimental to growth, without using special strains, e.g., deficient in nonhomologous end-joining, in P. pastoris. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1201-1208, 2017. © 2017 American Institute of Chemical Engineers.

  19. Wave and tidal generation devices reliability and availability

    CERN Document Server

    Tavner, Peter John

    2017-01-01

    To some extent the wave and tidal generation industry is following in the wake of the wind industry, learning from the growing experience of offshore wind farm deployment. This book combines wind industry lessons with wave and tidal field knowledge to explore the main reliability and availability issues facing this growing industry.

  20. Ocean tidal loading affecting precise geodetic observations on Greenland: Error account of surface deformations by tidal gravity measurements

    DEFF Research Database (Denmark)

    Jentzsch, G.; Knudsen, Per; Ramatschi, M.

    2000-01-01

    Air-borne and satellite based altimetry are used to monitor the Greenland ice-cap. Since these measurements are related to fiducial sites at the coast, the robustness of the height differences depends on the stability of these reference points. To benefit from the accuracy of these methods...... on the centimeter level, station corrections regarding the Earth tides and the ocean tidal loading have to be applied. Models for global corrections esp. for the body tides are available and sufficient, but local corrections regarding the effect of the adjacent shelf area still have to be inferred from additional...... observations. Near the coast ocean tidal loading causes additional vertical deformations in the order of 1 to 10 cm Therefore, tidal gravity measurements were carried out at four fiducial sites around Greenland in order to provide corrections for the kinematic part of the coordinates of these sites. Starting...

  1. A PETAL OF THE SUNFLOWER: PHOTOMETRY OF THE STELLAR TIDAL STREAM IN THE HALO OF MESSIER 63 (NGC 5055)

    International Nuclear Information System (INIS)

    Chonis, Taylor S.; Martínez-Delgado, David; Gabany, R. Jay; Majewski, Steven R.; Hill, Gary J.; Gralak, Ray; Trujillo, Ignacio

    2011-01-01

    We present deep surface photometry of a very faint, giant arc-loop feature in the halo of the nearby spiral galaxy NGC 5055 (M63) that is consistent with being a part of a stellar stream resulting from the disruption of a dwarf satellite galaxy. This faint feature was first detected in early photographic studies by van der Kruit; more recently, in the study of Martínez-Delgado and as presented in this work, from the loop has been realized to be the result of a recent minor merger through evidence obtained by wide-field, deep images taken with a telescope of only 0.16 m aperture. The stellar stream is clearly confirmed in additional deep images taken with the 0.5 m telescope of the BlackBird Remote Observatory and the 0.8 m telescope of the McDonald Observatory. This low surface brightness (μ R ≈ 26 mag arcsec –2 ) arc-like structure around the disk of the galaxy extends 14.'0 (∼29 kpc projected) from its center, with a projected width of 1.'6 (∼3.3 kpc). The stream's morphology is consistent with that of the visible part of a giant, 'great-circle' type stellar stream originating from the recent accretion of a ∼10 8 M ☉ dwarf satellite in the last few Gyr. The progenitor satellite's current position and final fate are not conclusive from our data. The color of the stream's stars is consistent with dwarfs in the Local Group and is similar to the outer faint regions of M63's disk and stellar halo. From our photometric study, we detect other low surface brightness 'plumes'; some of these may be extended spiral features related to the galaxy's complex spiral structure, and others may be tidal debris associated with the disruption of the galaxy's outer stellar disk as a result of the accretion event. We are able to differentiate between features related to the tidal stream and faint, blue extended features in the outskirts of the galaxy's disk previously detected by the Galaxy Evolution Explorer satellite. With its highly warped H I gaseous disk (∼20

  2. On effects produced by tidal power plants upon environmental conditions in adjacent sea areas

    International Nuclear Information System (INIS)

    Nekrasov, A.V.; Romanenkov, D.A.

    1997-01-01

    Consideration is given to the change in natural (oceanographic) environmental conditions due to the transformation of the tidal oscillations structure resulting from erection and operation of tidal power plants (TPP). The relevant transformation of tidal movements encompasses practically all its main characteristics: amplitudes, phases and spectral composition of sea level oscillations, as well as the similar parameters of tidal currents and also the intensity and positioning of extremes zones. The changes in positioning and width of the inter-tidal zone, the inter-tidal zone regime, mutual arrangement of mixed, stratified and transient frontal zones, transportation of suspended matter and bottom sedimentation, owing to residual tidal currents, sea ice characteristics, air these changes can be estimated on the basis of mathematical predictive modelling of tidal characteristics transformed by a contemplated tidal power plant. Some results are presented for the Russian large-scale TPP projects in the White and Okhotsk seas. (author)

  3. The structure of turbulence in a rapid tidal flow.

    Science.gov (United States)

    Milne, I A; Sharma, R N; Flay, R G J

    2017-08-01

    The structure of turbulence in a rapid tidal flow is characterized through new observations of fundamental statistical properties at a site in the UK which has a simple geometry and sedate surface wave action. The mean flow at the Sound of Islay exceeded 2.5 m s -1 and the turbulent boundary layer occupied the majority of the water column, with an approximately logarithmic mean velocity profile identifiable close to the seabed. The anisotropic ratios, spectral scales and higher-order statistics of the turbulence generally agree well with values reported for two-dimensional open channels in the laboratory and other tidal channels, therefore providing further support for the application of universal models. The results of the study can assist in developing numerical models of turbulence in rapid tidal flows such as those proposed for tidal energy generation.

  4. Anticorrosion and halobios control for tidal power generating units

    International Nuclear Information System (INIS)

    Shen, J C; Ding, L X

    2012-01-01

    The anticorrosion and halobios control is the key techniquesrelated to the safety and durability of tidal power generating units. The technique of material application, antifouling coating and cathodic protection are often adopted. The technical research, application, updating and development are carried on Jiangxia Tidal Power Station, which is based on the old Unit 1-Unit 5 operated for nearly 30 years, and the new Unit 6 operated in 2007. It is found that stainless steeland the antifouling coating used in Unit 1- Unit 5 are very effective, but cathodic protection is often likely to fail because of the limitation of structure and installation. Analyses and studies for anticorrosion and halobios control techniques of tidal power generating units according to theory, experience and actual effects have been done, which can be for reference to the tidal power station designers and builders.

  5. Tidal flow characteristics at Kasheli (Kalwa/ Bassein creek), Bombay

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Suryanarayana, A.

    Tidal flow characteristics of waters at Kasheli, connected to the sea through Thane and Bassein Creeks in Bombay, Maharashtra, India are investigated based on tide and current observations carried out in 1980-81. The results establish that the tidal...

  6. An optimal tuning strategy for tidal turbines

    Science.gov (United States)

    2016-01-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This ‘impatient-tuning strategy’ results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing ‘patient-tuning strategy’ which maximizes the power output averaged over the tidal cycle. This paper presents a ‘smart patient tuning strategy’, which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine’s average power output. PMID:27956870

  7. An optimal tuning strategy for tidal turbines.

    Science.gov (United States)

    Vennell, Ross

    2016-11-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This 'impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing 'patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a 'smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.

  8. Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound

    Energy Technology Data Exchange (ETDEWEB)

    Brian Polagye; Jim Thomson; Chris Bassett; Jason Wood; Dom Tollit; Robert Cavagnaro; Andrea Copping

    2012-03-30

    community as to whether strong currents produce propagating sound. (2) Analyzed data collected from a tidal turbine operating at the European Marine Energy Center to develop a profile of turbine sound and developed a framework to evaluate the acoustic effects of deploying similar devices in other locations. This framework has been applied to Public Utility District No. 1 of Snohomish Country's demonstration project in Admiralty Inlet to inform postinstallation acoustic and marine mammal monitoring plans. (3) Demonstrated passive acoustic techniques to characterize the ambient noise environment at tidal energy sites (fixed, long-term observations recommended) and characterize the sound from anthropogenic sources (drifting, short-term observations recommended). (4) Demonstrated the utility and limitations of instrumentation, including bottom mounted instrumentation packages, infrared cameras, and vessel monitoring systems. In doing so, also demonstrated how this type of comprehensive information is needed to interpret observations from each instrument (e.g., hydrophone data can be combined with vessel tracking data to evaluate the contribution of vessel sound to ambient noise). (5) Conducted a study that suggests harbor porpoise in Admiralty Inlet may be habituated to high levels of ambient noise due to omnipresent vessel traffic. The inability to detect behavioral changes associated with a high intensity source of opportunity (passenger ferry) has informed the approach for post-installation marine mammal monitoring. (6) Conducted laboratory exposure experiments of juvenile Chinook salmon and showed that exposure to a worse than worst case acoustic dose of turbine sound does not result in changes to hearing thresholds or biologically significant tissue damage. Collectively, this means that Chinook salmon may be at a relatively low risk of injury from sound produced by tidal turbines located in or near their migration path. In achieving these accomplishments, the project

  9. Tidal residual current and its role in the mean flow on the Changjiang Bank

    Science.gov (United States)

    Xuan, Jiliang; Yang, Zhaoqing; Huang, Daji; Wang, Taiping; Zhou, Feng

    2016-02-01

    The tidal residual current may play an important role in the mean flow in the Changjiang Bank region, in addition to other residual currents, such as the Taiwan Warm Current, the Yellow Sea Coastal Current, and the Yellow Sea Warm Current. In this paper, a detailed structure of the tidal residual current, in particular the meso-scale eddies, in the Changjiang Bank region is observed from model simulations, and its role in the mean flow is quantified using the well-validated Finite Volume Coastal Ocean Model. The tidal residual current in the Changjiang Bank region consists of two components: an anticyclonic regional-scale tidal residual circulation around the edge of the Changjiang Bank and some cyclonic meso-scale tidal residual eddies across the Changjiang Bank. The meso-scale tidal residual eddies occur across the Changjiang Bank and contribute to the regional-scale tidal residual circulation offshore at the northwest boundary and on the northeast edge of the Changjiang Bank, southeastward along the 50 m isobath. Tidal rectification is the major mechanism causing the tidal residual current to flow along the isobaths. Both components of the tidal residual current have significant effects on the mean flow. A comparison between the tidal residual current and the mean flow indicates that the contribution of the tidal residual current to the mean flow is greater than 50%.

  10. Tidal residual current and its role in the mean flow on the Changjiang Bank

    Energy Technology Data Exchange (ETDEWEB)

    Xuan, Jiliang; Yang, Zhaoqing; Huang, Daji; Wang, Taiping; Zhou, Feng

    2016-02-01

    Tidal residual current may play an important role in the mean flow in the Changjiang Bank region, in addition to other residual currents, such as the Taiwan Warm Current, the Yellow Sea Coastal Current, and the Yellow Sea Warm Current. In this paper, a detailed structure of the tidal residual current, in particular the meso-scale eddies, in the Changjiang Bank region is observed from model simulations, and its role in the mean flow is quantified using the well-validated Finite Volume Coastal Ocean Model). The tidal residual current in the Changjiang Bank region consists of two components: an anticyclonic regional-scale tidal residual circulation around the edge of the Changjiang Bank and some cyclonic meso-scale tidal residual eddies across the Changjiang Bank. The meso-scale tidal residual eddies occur across the Changjiang Bank and contribute to the regional-scale tidal residual circulation offshore at the northwest boundary and at the northeast edge of the Changjiang Bank, southeastward along the 50 m isobath. Tidal rectification is the major mechanism causing the tidal residual current to flow along the isobaths. Both components of the tidal residual current have significant effects on the mean flow. A comparison between the tidal residual current and the mean flow indicates that the contribution of the tidal residual current to the mean flow is greater than 50%.

  11. Wave-induced Maintenance of Suspended Sediment Concentration during Slack in a Tidal Channel on a Sheltered Macro-tidal Flat, Gangwha Island, Korea

    Science.gov (United States)

    Lee, Guan-hong; Kang, KiRyong

    2018-05-01

    A field campaign was conducted to better understand the influence of wave action, in terms of turbulence and bed shear stress, on sediment resuspension and transport processes on a protected tidal flat. An H-frame was deployed in a tidal channel south of Gangwha Island for 6 tidal cycles during November 2006 with instrumentation including an Acoustic Doppler Velocimeter, an Acoustic Backscatter System, and an Optical Backscatter Sensor. During calm conditions, the current-induced shear was dominant and responsible for suspending sediments during the accelerating phases of flood and ebb. During the high-tide slack, both bed shear stress and suspended sediment concentration were reduced. The sediment flux was directed landward due to the scour-lag effect over a tidal cycle. On the other hand, when waves were stronger, the wave-induced turbulence appeared to keep sediments in suspension even during the high-tide slack, while the current-induced shear remained dominant during the accelerating phases of flood and ebb. The sediment flux under strong waves was directed offshore due to the sustained high suspended sediment concentration during the high-tide slack. Although strong waves can induce offshore sediment flux, infrequent events with strong waves are unlikely to alter the long-term accretion of the protected southern Gangwha tidal flats.

  12. Measurement of Underwater Operational Noise Emitted by Wave and Tidal Stream Energy Devices.

    Science.gov (United States)

    Lepper, Paul A; Robinson, Stephen P

    2016-01-01

    The increasing international growth in the development of marine and freshwater wave and tidal energy harvesting systems has been followed by a growing requirement to understand any associated underwater impact. Radiated noise generated during operation is dependent on the device's physical properties, the sound-propagation environment, and the device's operational state. Physical properties may include size, distribution in the water column, and mechanics/hydrodynamics. The sound-propagation environment may be influenced by water depth, bathymetry, sediment type, and water column acoustic properties, and operational state may be influenced by tidal cycle and wave height among others This paper discusses some of the challenges for measurement of noise characteristics from these devices as well as a case study of the measurement of radiated noise from a full-scale wave energy converter.

  13. Land claim and loss of tidal flats in the Yangtze Estuary.

    Science.gov (United States)

    Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun

    2016-04-01

    Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world's largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km(2), a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics.

  14. Measuring and modeling exposure from environmental radiation on tidal flats

    International Nuclear Information System (INIS)

    Gould, T.J.; Hess, C.T.

    2005-01-01

    To examine the shielding effects of the tide cycle, a high pressure ion chamber was used to measure the exposure rate from environmental radiation on tidal flats. A theoretical model is derived to predict the behavior of exposure rate as a function of time for a detector placed one meter above ground on a tidal flat. The numerical integration involved in this derivation results in an empirical formula which implies exposure rate ∝tan-1(sint). We propose that calculating the total exposure incurred on a tidal flat requires measurements of only the slope of the tidal flat and the exposure rate when no shielding occurs. Experimental results are consistent with the model

  15. A new high resolution tidal model in the arctic ocean

    DEFF Research Database (Denmark)

    Cancet, M.; Andersen, Ole Baltazar; Lyard, F.

    The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence, the accu......The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence......, the accuracy of the global tidal models decreases by several centimeters in the Polar Regions. In particular, it has a large impact on the quality of the satellite altimeter sea surface heights in these regions (ERS1/2, Envisat, CryoSat-2, SARAL/AltiKa and the future Sentinel-3 mission). Better knowledge......-growing maritime and industrial activities in this region. NOVELTIS and DTU Space have developed a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of the CryoSat Plus for Ocean (CP4O) ESA project. In particular, this atlas benefits from the assimilation of the most complete satellite...

  16. Tidal and subtidal exchange flows at an inlet of the Wadden Sea

    Science.gov (United States)

    Valle-Levinson, Arnoldo; Stanev, Emil; Badewien, Thomas H.

    2018-03-01

    Observations of underway velocity profiles during complete spring and neap tidal cycles were used to determine whether the spatial structures of tidal and subtidal flows at a tidal inlet in a multiple-inlet embayment are consistent with those observed at single-inlet embayments. Measurements were obtained at the Otzumer Balje, one of the multiple inlets among the East Frisian Islands of the Wadden Sea. The 1.5 km-wide inlet displayed a bathymetric profile consisting of a channel ∼15 m deep flanked by tide observations spanned 36 h in the period May 11-12, 2011, while spring tide measurements exceeded 48 h from May 17 to May 19, 2011. Analysis of observations indicate that frictional effects from bathymetry molded tidal flows. Spatial distributions of semidiurnal tidal current amplitude and phase conform to those predicted by an analytical model for a basin with one inlet. Maximum semidiurnal flows appear at the surface in the channel, furthest away from bottom friction effects. Therefore, Otzumer Balje displays tidal hydrodynamics that are independent of the other inlets of the embayment. Subtidal exchange flows are laterally sheared, with residual inflow in the channel combined with outflow over shoals. The spatial distribution of these residual flows follow theoretical expectations of tidally driven flows interacting with bathymetry. Such distribution is similar to the tidal residual circulation at other inlets with only one communication to the ocean, suggesting that at subtidal scales the Otzumer Balje responds to tidal forcing independently of the other inlets.

  17. Prediction of Tidal Elevations and Barotropic Currents in the Gulf of Bone

    Science.gov (United States)

    Purnamasari, Rika; Ribal, Agustinus; Kusuma, Jeffry

    2018-03-01

    Tidal elevation and barotropic current predictions in the gulf of Bone have been carried out in this work based on a two-dimensional, depth-integrated Advanced Circulation (ADCIRC-2DDI) model for 2017. Eight tidal constituents which were obtained from FES2012 have been imposed along the open boundary conditions. However, even using these very high-resolution tidal constituents, the discrepancy between the model and the data from tide gauge is still very high. In order to overcome such issues, Green’s function approach has been applied which reduced the root-mean-square error (RMSE) significantly. Two different starting times are used for predictions, namely from 2015 and 2016. After improving the open boundary conditions, RMSE between observation and model decreased significantly. In fact, RMSEs for 2015 and 2016 decreased 75.30% and 88.65%, respectively. Furthermore, the prediction for tidal elevations as well as tidal current, which is barotropic current, is carried out. This prediction was compared with the prediction conducted by Geospatial Information Agency (GIA) of Indonesia and we found that our prediction is much better than one carried out by GIA. Finally, since there is no tidal current observation available in this area, we assume that, when tidal elevations have been fixed, then the tidal current will approach the actual current velocity.

  18. The Origin of Faint Tidal Features around Galaxies in the RESOLVE Survey

    Science.gov (United States)

    Hood, Callie E.; Kannappan, Sheila J.; Stark, David V.; Dell’Antonio, Ian P.; Moffett, Amanda J.; Eckert, Kathleen D.; Norris, Mark A.; Hendel, David

    2018-04-01

    We study tidal features around galaxies in the REsolved Spectroscopy Of a Local VolumE (RESOLVE) survey. Our sample consists of 1048 RESOLVE galaxies that overlap with the DECam Legacy Survey, which reaches an r-band 3σ depth of ∼27.9 mag arcsec‑2 for a 100 arcsec2 feature. Images were masked, smoothed, and inspected for tidal features such as streams, shells, or tails/arms. We find tidal features in 17±2% of our galaxies, setting a lower limit on the true frequency. The frequency of tidal features in the gas-poor (gas-to-stellar mass ratio arms from resonant interactions. Similar to tidal features in gas-poor galaxies, tidal features in gas-rich galaxies imply 1.7× closer nearest neighbors in the same group; however, they are associated with diskier morphologies, higher star formation rates, and higher gas content. In addition to interactions with known neighbors, we suggest that tidal features in gas-rich galaxies may arise from accretion of cosmic gas and/or gas-rich satellites below the survey limit.

  19. On-Shore Central Hydraulic Power Generation for Wind and Tidal Energy

    Science.gov (United States)

    Jones, Jack A.; Bruce, Allan; Lim, Steven; Murray, Luke; Armstrong, Richard; Kimbrall, Richard; Cook-Chenault, Kimberly; DeGennaro, Sean

    2012-01-01

    Tidal energy, offshore wind energy, and onshore wind energy can be converted to electricity at a central ground location by means of converting their respective energies into high-pressure hydraulic flows that are transmitted to a system of generators by high-pressure pipelines. The high-pressure flows are then efficiently converted to electricity by a central power plant, and the low-pressure outlet flow is returned. The Department of Energy (DOE) is presently supporting a project led by Sunlight Photonics to demonstrate a 15 kW tidal hydraulic power generation system in the laboratory and possibly later submerged in the ocean. All gears and submerged electronics are completely eliminated. A second portion of this DOE project involves sizing and costing a 15 MW tidal energy system for a commercial tidal energy plant. For this task, Atlantis Resources Corporation s 18-m diameter demonstrated tidal blades are rated to operate in a nominal 2.6 m/sec tidal flow to produce approximately one MW per set of tidal blades. Fifteen units would be submerged in a deep tidal area, such as in Maine s Western Passage. All would be connected to a high-pressure (20 MPa, 2900 psi) line that is 35 cm ID. The high-pressure HEPG fluid flow is transported 500-m to on-shore hydraulic generators. HEPG is an environmentally-friendly, biodegradable, watermiscible fluid. Hydraulic adaptations to ORPC s cross-flow turbines are also discussed. For 15 MW of wind energy that is onshore or offshore, a gearless, high efficiency, radial piston pump can replace each set of top-mounted gear-generators. The fluid is then pumped to a central, easily serviceable generator location. Total hydraulic/electrical efficiency is 0.81 at full rated wind or tidal velocities and increases to 0.86 at 1/3 rated velocities.

  20. An Introduction to the San Francisco Estuary Tidal Wetlands Restoration Series

    Directory of Open Access Journals (Sweden)

    Larry R. Brown

    2003-10-01

    Full Text Available Restoration of tidal wetlands may provide an important tool for improving ecological health and water management for beneficial uses of the San Francisco Estuary (hereafter “Estuary”. Given the large losses of tidal wetlands from San Francisco Bay and the Sacramento-San Joaquin Delta in the last 150 years, it seems logical to assume that restoring tidal wetlands will have benefits for a variety of aquatic and terrestrial native species that have declined during the same time period. However, many other changes have also occurred in the Estuary concurrent with the declines of native species. Other factors that might be important in species declines include the effects of construction of upstream dams, large and small water diversions within the Sacramento-San Joaquin Delta, agricultural pesticides, trace elements from industrial and agricultural activities, and invasions of alien species. Discussions among researchers, managers, and stakeholders have identified a number of uncertainties regarding the potential benefits of tidal wetland restoration. The articles of the Tidal Wetlands Restoration Series address four major issues of concern. Stated as questions, these are: 1. Will tidal wetland restoration enhance populations of native fishes? 2. Will wetland restoration increase rates of methylation of mercury? 3. Will primary production and other ecological processes in restored tidal wetlands result in net export of organic carbon to adjacent habitats, resulting in enhancement of the food web? Will the carbon produced contribute to the formation of disinfection byproducts when disinfected for use as drinking water? 4. Will restored tidal wetlands provide long-term ecosystem benefits that can be sustained in response to ongoing physical processes, including sedimentation and hydrodynamics? Reducing the uncertainty surrounding these issues is of critical importance because tidal wetland restoration is assumed to be a critical tool for

  1. The high density and high βpol disruption mechanism on TFTR

    International Nuclear Information System (INIS)

    Fredrickson, E.D.; Manickam, J.; McGuire, K.M.; Monticello, D.; Nagayama, Y.; Park, W.; Taylor, G.

    1992-01-01

    Studies of disruptions on TFTR have been extended to include high density disruptions as well as the high β pol disruptions. The data strongly suggests that the (m,n)=(1,1) mode plays an important role in both types of disruptions. Further, for the first time, it is unambiguously shown, using a fast electron cyclotron emission (ECE) instrument for the electron temperature profile measurements, that the (m,n)=(1,1) precursor to the high density disruptions has a 'cold bubble' structure. The precursor to the major disruption at high density resembles the 'vacuum bubble' model of disruptions first proposed by Kadomtsev and Pogutse. (author) 2 refs., 2 figs

  2. Waves and tides responsible for the intermittent closure of the entrance of a small, sheltered tidal wetland at San Francisco, CA

    Science.gov (United States)

    Hanes, D.M.; Ward, K.; Erikson, L.H.

    2011-01-01

    Crissy Field Marsh (CFM; http://www.nps.gov/prsf/planyourvisit/crissy-field-marsh-and-beach.htm) is a small, restored tidal wetland located in the entrance to San Francisco Bay just east of the Golden Gate. The marsh is small but otherwise fairly typical of many such restored wetlands worldwide. The marsh is hydraulically connected to the bay and the adjacent Pacific Ocean by a narrow sandy channel. The channel often migrates and sometimes closes completely, which effectively blocks the tidal connection to the ocean and disrupts the hydraulics and ecology of the marsh. Field measurements of waves and tides have been examined in order to evaluate the conditions responsible for the intermittent closure of the marsh entrance. The most important factor found to bring about the entrance channel closure is the occurrence of large ocean waves. However, there were also a few closure events during times with relatively small offshore waves. Examination of the deep-water directional wave spectra during these times indicates the presence of a small secondary peak corresponding to long period swell from the southern hemisphere, indicating that CFM and San Francisco Bay in general may be more susceptible to long period ocean swell emanating from the south or southwest than the more common ocean waves coming from the northwest. The tidal records during closure events show no strong relationship between closures and tides, other than that closures tend to occur during multi-day periods with successively increasing high tides. It can be inferred from these findings that the most important process to the intermittent closure of the entrance to CFM is littoral sediment transport driven by the influence of ocean swell waves breaking along the CFM shoreline at oblique angles. During periods of large, oblique waves the littoral transport of sand likely overwhelms the scour potential of the tidal flow in the entrance channel. ?? 2011.

  3. Satellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary

    DEFF Research Database (Denmark)

    Grayver, Alexander V.; Schnepf, Neesha R.; Kuvshinov, Alexey V.

    2016-01-01

    The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation ofsecondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; howeve...

  4. Review of Tidal Lagoon Technology and Opportunities for Integration within the UK Energy System

    Directory of Open Access Journals (Sweden)

    Grazia Todeschini

    2017-07-01

    Full Text Available The number of distributed resources for renewable energy installed worldwide has been increasing rapidly in the last decade, and the great majority of these installations consist of solar panels and wind turbines. Other renewable sources of energy are not exploited to the same level: for instance, tidal energy is still a minute portion of the global energy capacity, in spite of the large amount of potential energy stored in tidal waves, and of the successful experience of the few existing plants. The world’s second largest tidal range occurs in the UK but at the moment tidal installations in this country are limited to a few prototypes. More recently, there has been a renewed interest in harnessing tidal energy in the UK, and a few tidal lagoon projects have been evaluated by the UK government. This paper provides an overview of the historical and current developments of tidal plants, a description of operation of tidal lagoons, challenges and opportunities for their integration within the UK energy systems and solutions to improve the dispatchability of tidal energy. The concepts described in the paper are applied to a tidal project proposed for South Wales.

  5. Tidal Creek Sentinel Habitat Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ecological Research, Assessment and Prediction's Tidal Creeks: Sentinel Habitat Database was developed to support the National Oceanic and Atmospheric...

  6. Tidal Heating in Multilayered Terrestrial Exoplanets

    Science.gov (United States)

    Henning, Wade G.; Hurford, Terry

    2014-01-01

    The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R(sub E) is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.

  7. Tidal heating in multilayered terrestrial exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Henning, Wade G.; Hurford, Terry, E-mail: wade.g.henning@nasa.gov [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2014-07-01

    The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R{sub E} is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.

  8. Tidal heating in multilayered terrestrial exoplanets

    International Nuclear Information System (INIS)

    Henning, Wade G.; Hurford, Terry

    2014-01-01

    The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R E is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.

  9. Lithologic Coring in the Lower Anacostia Tidal Watershed, Washington, D.C., July 2002

    Science.gov (United States)

    Tenbus, Frederick J.

    2003-01-01

    Little is known about the volumetric flux of ground water to the lower tidal Anacostia River, or whether ground-water flow is an important component of the contaminant load in this part of the Anacostia River. The watershed is in the eastern part of Washington, D.C., and has been subjected to over 200 years of urbanization and modifications of the river channel and nearby land areas. These anthropogenic factors, along with tidal fluctuations in the river, make ground-water data collection and interpretations difficult. The U.S. Geological Survey is cooperating with the District of Columbia Department of Health, Environmental Health Administration, Bureau of Environmental Quality, Water Quality Division, in a study to assess nonpoint-source pollution from ground water into the lower tidal Anacostia River. Lithologic cores from drilling activities conducted during July 2002 in the study area have been interpreted in the context of geologic and hydrogeologic information from previous studies in the lower Anacostia tidal watershed. These interpretations can help achieve the overall project goals of characterizing ground-water flow and contaminant load in the study area. Hydrostratigraphic units encountered during drilling generally consisted of late Pleistocene to Holocene fluvial deposits overlying Cretaceous fluvial/deltaic deposits. Cores collected in Beaverdam Creek and the Anacostia River indicated high- and low-energy environments of deposition, respectively. Two cores collected near the river showed different types of anthropogenic fill underlain by low-energy deposits, which were in turn underlain by sand and gravel. A third core collected near the river consisted primarily of sand and gravel with no artificial fill.

  10. Tidal Friction in the Earth and Ocean

    Science.gov (United States)

    Ray, R. D.

    2006-12-01

    "Tidal Friction" is a classic subject in geophysics, with ties to some of the great scientists of the Victorian era. The subject has been reinvigorated over the past decade by space geodesy, and particularly by the Topex/Poseidon satellite altimeter mission. In fact, the topic has now taken on some significance in oceanography, with potential implications for problems of mixing, thermocline maintenance, and the thermohaline circulation. Likewise, tidal measurements have become sufficiently precise to reveal new information about the solid earth. In this respect, the tidal force is an invaluable "probe" of the earth, at frequencies well outside the seismic band. This talk will "follow the energy" of tides while noting some important geophysical implications at each stage. In the present earth-moon-sun configuration, energy for tides is extracted from the earth's rotation. Ancient eclipses bear witness to this, and the discrepancy between Babylonian (and other) observations and tidal predictions yields unique information about the mantle and the overlying fluid envelope. Complementary information comes from tidal anelasticity estimates, which are now available at frequencies ranging from semidiurnal to fortnightly, monthly, and 18.6 years. These data, when combined with various kinds of gravity measurements, are relevant to the present-day sea-level problem. Solid-earth tidal dissipation represents less than 5% of the system total. As has long been realized, the largest energy sink is the ocean. About 70% of the oceanic dissipation occurs in shallow seas (the traditional sink) and 30% in the deep ocean, generally near rugged bottom topography. The latter represents a substantial amount of power, roughly 1 gigawatt, available for generation of internal tides and other baroclinic motions. Experiments like HOME are helping unravel the links between barotropic tides, internal tides, turbulence, and mixing. The latter opens possible linkages to climate, and recent work

  11. Simulating Impacts of Disruptions to Liquid Fuels Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Resilience and Regulatory Effects; Corbet, Thomas F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Policy and Decision Analytics; Baker, Arnold B. [ABB Consulting, Albuquerque, NM (United States); O' Rourke, Julia M. [Univ. of Texas, Austin, TX (United States). Dept. of Mechanical Engineering

    2015-04-01

    This report presents a methodology for estimating the impacts of events that damage or disrupt liquid fuels infrastructure. The impact of a disruption depends on which components of the infrastructure are damaged, the time required for repairs, and the position of the disrupted components in the fuels supply network. Impacts are estimated for seven stressing events in regions of the United States, which were selected to represent a range of disruption types. For most of these events the analysis is carried out using the National Transportation Fuels Model (NTFM) to simulate the system-level liquid fuels sector response. Results are presented for each event, and a brief cross comparison of event simulation results is provided.

  12. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1980-08-01

    An evaluation is made of the disruptive effects of volcanic activity with respect to long term isolation of radioactive waste through deep geologic storage. Three major questions are considered. First, what is the range of disruption effects of a radioactive waste repository by volcanic activity. Second, is it possible, by selective siting of a repository, to reduce the risk of disruption by future volcanic activity. And third, can the probability of repository disruption by volcanic activity be quantified. The main variables involved in the evaluation of the consequences of repository disruption by volcanic activity are the geometry of the magma-repository intersection (partly controlled by depth of burial) and the nature of volcanism. Potential radionuclide dispersal by volcanic transport within the biosphere ranges in distance from several kilometers to global. Risk from the most catastrophic types of eruptions can be reduced by careful site selection to maximize lag time prior to the onset of activity. Certain areas or volcanic provinces within the western United States have been sites of significant volcanism and should be avoided as potential sites for a radioactive waste repository. Examples of projection of future sites of active volcanism are discussed for three areas of the western United States. Probability calculations require two types of data: a numerical rate or frequency of volcanic activity and a numerical evaluation of the areal extent of volcanic disruption for a designated region. The former is clearly beyond the current state of art in volcanology. The latter can be approximated with a reasonable degree of satisfaction. In this report, simplified probability calculations are attempted for areas of past volcanic activity

  13. Relation between tidal damping and wave celerity in estuaries

    NARCIS (Netherlands)

    Savenije, H.H.G.; Veling, E.J.M.

    2005-01-01

    Observations in estuaries indicate that an amplified tidal wave moves considerably faster than is indicated by the classical equation for wave propagation. Similarly, the celerity of propagation is lower if the tidal wave is damped. This phenomenon is clearly observed in the Schelde estuary (located

  14. Virtual Seafloor Reduces Internal Wave Generation by Tidal Flow

    Science.gov (United States)

    Zhang, Likun; Swinney, Harry L.

    2014-03-01

    Our numerical simulations of tidal flow of a stratified fluid over periodic knife-edge ridges and random topography reveal that the time-averaged tidal energy converted into internal gravity wave radiation arises only from the section of a ridge above a virtual seafloor. The average radiated power is approximated by the power predicted by linear theory if the height of the ridge is measured relative to the virtual floor. The concept of a virtual floor can extend the applicability of linear theory to global predictions of the conversion of tidal energy into internal wave energy in the oceans.

  15. Light rays and the tidal gravitational pendulum

    Science.gov (United States)

    Farley, A. N. St J.

    2018-05-01

    Null geodesic deviation in classical general relativity is expressed in terms of a scalar function, defined as the invariant magnitude of the connecting vector between neighbouring light rays in a null geodesic congruence projected onto a two-dimensional screen space orthogonal to the rays, where λ is an affine parameter along the rays. We demonstrate that η satisfies a harmonic oscillator-like equation with a λ-dependent frequency, which comprises terms accounting for local matter affecting the congruence and tidal gravitational effects from distant matter or gravitational waves passing through the congruence, represented by the amplitude, of a complex Weyl driving term. Oscillating solutions for η imply the presence of conjugate or focal points along the rays. A polarisation angle, is introduced comprising the orientation of the connecting vector on the screen space and the phase, of the Weyl driving term. Interpreting β as the polarisation of a gravitational wave encountering the light rays, we consider linearly polarised waves in the first instance. A highly non-linear, second-order ordinary differential equation, (the tidal pendulum equation), is then derived, so-called due to its analogy with the equation describing a non-linear, variable-length pendulum oscillating under gravity. The variable pendulum length is represented by the connecting vector magnitude, whilst the acceleration due to gravity in the familiar pendulum formulation is effectively replaced by . A tidal torque interpretation is also developed, where the torque is expressed as a coupling between the moment of inertia of the pendulum and the tidal gravitational field. Precessional effects are briefly discussed. A solution to the tidal pendulum equation in terms of familiar gravitational lensing variables is presented. The potential emergence of chaos in general relativity is discussed in the context of circularly, elliptically or randomly polarised gravitational waves encountering the null

  16. Tidal and meteorological forcing of sediment transport in tributary mudflat channels.

    Science.gov (United States)

    Ralston, David K; Stacey, Mark T

    2007-06-01

    Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides.

  17. Disruption of fibronectin matrix affects type IV collagen, fibrillin and laminin deposition into extracellular matrix of human trabecular meshwork (HTM) cells.

    Science.gov (United States)

    Filla, Mark S; Dimeo, Kaylee D; Tong, Tiegang; Peters, Donna M

    2017-12-01

    Fibronectin fibrils are a major component of the extracellular matrix (ECM) of the trabecular meshwork (TM). They are a key mediator of the formation of the ECM which controls aqueous humor outflow and contributes to the pathogenesis of glaucoma. The purpose of this work was to determine if a fibronectin-binding peptide called FUD, derived from the Streptococcus pyogenes Functional Upstream Domain of the F1 adhesin protein, could be used to control fibronectin fibrillogenesis and hence ECM formation under conditions where its expression was induced by treatment with the glucocorticoid dexamethasone. FUD was very effective at preventing fibronectin fibrillogenesis in the presence or absence of steroid treatment as well as the removal of existing fibronectin fibrils. Disruption of fibronectin fibrillogenesis by FUD also disrupted the incorporation of type IV collagen, laminin and fibrillin into the ECM. The effect of FUD on these other protein matrices, however, was found to be dependent upon the maturity of the ECM when FUD was added. FUD effectively disrupted the incorporation of these other proteins into matrices when added to newly confluent cells that were forming a nascent ECM. In contrast, FUD had no effect on these other protein matrices if the cell cultures already possessed a pre-formed, mature ECM. Our studies indicate that FUD can be used to control fibronectin fibrillogenesis and that these fibrils play a role in regulating the assembly of other ECM protein into matrices involving type IV collagen, laminin, and fibrillin within the TM. This suggests that under in vivo conditions, FUD would selectively disrupt fibronectin fibrils and de novo assembly of other proteins into the ECM. Finally, our studies suggest that targeting fibronectin fibril assembly may be a viable treatment for POAG as well as other glaucomas involving excessive or abnormal matrix deposition of the ECM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Periodic disruptions in the MT-1 tokamak

    International Nuclear Information System (INIS)

    Zoletnik, S.

    1988-11-01

    Disruptive instabilities are common phenomena in toroidal devices, especially in tokamaks. Three types can be distinguished: internal, minor and major disruptions. Periodic minor disruptions in the MT-1 tokamak were measured systematically with values of the limiter safety factor between 4 and 10. The density limit as a function of plasma current and horizontal displacement was investigated. Precursor oscillations always appear before the instability with increasing amplitude but can be observed at the density limit with quasi-stationary amplitude. Phase correlation between precursor oscillations were measured with Mirnov coils and x-ray detectors, and they show good agreement with a simple magnetic island model. (R.P.) 11 refs.; 6 figs

  19. Analysing how plants in coastal wetlands respond to varying tidal regimes throughout their life cycles.

    Science.gov (United States)

    Xie, Tian; Cui, Baoshan; Li, Shanze

    2017-10-15

    Important to conserve plant species in coastal wetlands throughout their life cycle. All life stages in these habitats are exposed to varying tidal cycles. It is necessary to investigate all life stages as to how they respond to varying tidal regimes. We examine three wetlands containing populations of an endangered halophyte species, each subjected to different tidal regimes: (1). wetlands completely closed to tidal cycles; (2). wetlands directly exposed to tidal cycles (3). wetlands exposed to a partially closed tidal regime. Our results showed that the most threatened stage varied between wetlands subjected to these varying tidal regimes. We hypothesis that populations of this species have adapted to these different tidal regimes. Such information is useful in developing management options for coastal wetlands and modifying future barriers restricting tidal flushing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Flow and sediment transport in an Indonesian tidal network

    NARCIS (Netherlands)

    Buschman, F.A.

    2011-01-01

    The Berau river, situated in east Kalimantan (Indonesia), drains a relatively small catchment area and splits into several interconnected tidal channels. This tidal network connects to the sea. The sea is host to extremely diverse coral reef communities. Also the land side of the region is

  1. On the superposition of bedforms in a tidal channel

    DEFF Research Database (Denmark)

    Winter, C; Vittori, G.; Ernstsen, V.B.

    2008-01-01

    High resolution bathymetric measurements reveal the super-imposition of bedforms in the Grådyb tidal inlet in the Danish Wadden Sea. Preliminary results of numerical model simulations are discussed: A linear stability model was tested to explain the large bedforms as being caused by tidal system ...

  2. Bending the law: tidal bending and its effects on ice viscosity and flow

    Science.gov (United States)

    Rosier, S.; Gudmundsson, G. H.

    2017-12-01

    Many ice shelves are subject to strong ocean tides and, in order to accommodate this vertical motion, the ice must bend within the grounding zone. This tidal bending generates large stresses within the ice, changing its effective viscosity. For a confined ice shelf, this is particularly relevant because the tidal bending stresses occur along the sidewalls, which play an important role in the overall flow regime of the ice shelf. Hence, tidal bending stresses will affect both the mean and time-varying components of ice shelf flow. GPS measurements reveal strong variations in horizontal ice shelf velocities at a variety of tidal frequencies. We show, using full-Stokes viscoelastic modelling, that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of horizontal ice shelf flow. Furthermore, our model shows that in the absence of a vertical tidal forcing, the mean flow of the ice shelf is reduced considerably.

  3. A system shift in tidal choking due to the construction of Yangshan Harbour, Shanghai, China

    Science.gov (United States)

    Guo, Wenyun; Wang, Xiao Hua; Ding, Pingxing; Ge, Jianzhong; Song, Dehai

    2018-06-01

    Tidal choking is a geometric feature caused by a narrowed channel. Construction of the Yangshan Harbour, Shanghai, China obstructed three key channels and intensively changed the local geometry and topography. In this study nine numerical experiments based on the Finite-Volume Community Ocean Model are conducted to study the project's influence on tidal characteristics. Results show that stronger tidal choking happened at the East Entrance after project, mainly due to the jet induced water-level drop forced by Bernoulli law and the longer and narrower geometry. The stronger tidal choking forces a faster flow and larger tidal energy flux at the choked channel while reducing the tidal amplitude in the Inner Harbour Area (IHA). The scouring on this channel reduces the choking effect but further enlarges tidal energy flux. Moreover, damming the channels decrease the tidal amplitude at the lee side of tidal propagating direction while increasing the amplitude on the stoss side. The dams also decrease the tidal current on both sides, and meanwhile develop two patches with stronger current aside the dam. The project induced changes in tidal characteristics are complex in space, and perturbations in bathymetry increase this complexity. Yangshan Harbour's construction induces little changes in the total tidal energy density in the IHA, but induces obvious changes in the spatial distribution of tidal energy. Although this study is site-specific, the findings may be applicable to tidal dynamics in land reclamation close to open seas, such as the dramatic reclamation of islands in the South China Sea.

  4. A Tale of Tidal Tales in the Milky Way

    Science.gov (United States)

    Casey, Andrew R.

    2014-05-01

    Hundreds of globular clusters and dwarf galaxies encircle the Milky Way. Many of these systems have undergone partial disruption due to tidal forces, littering the halo with stellar streams. These tidal tails are sensitive to the Galactic potential, facilitating an excellent laboratory to investigate galaxy formation and evolution. To better understand the emergence of the Milky Way, this thesis examines the dynamics and chemistry of a number of known stellar streams. In particular the Sagittarius, Orphan and Aquarius streams are investigated. Low-resolution spectra for hundreds of stars in the direction of the Virgo Over-Density and the Sagittarius northern leading arms have been obtained. Multiple significant kinematic groups are recovered in this accretion-dominated region, confirming detections by previous studies. A metal-poor population ([Fe/H] = -1.7) in the Sagittarius stream is discovered due to a photometric selection that was inadvertently biased towards more metal-poor stars. Positions and kinematics of Sagittarius stream members are compared with existing best-fitting dark matter models, and a triaxial dark matter halo distribution is favoured. The Orphan stream is appropriately named, as no parent system has yet been identified. The stream has an extremely low surface brightness, which makes distinguishing stream members from field stars particularly challenging. From low-resolution spectra obtained for hundreds of stars, we identify likely Orphan stream red giant branch stars on the basis of velocity, metallicity, surface gravity, and proper motions. A negligible intrinsic velocity dispersion is found, and a wide spread in metallicities is observed, which suggests the undiscovered parent is similar to the present-day dwarf galaxies in the Milky Way. High-resolution spectra were obtained for five Orphan stream candidates, and the intrinsic chemical dispersion found from low-resolution spectra is confirmed from these data. Detailed chemical abundances

  5. Second order tidally induced flow in the inlet of a coastal lagoon

    Science.gov (United States)

    Eguiluz, Ana; Wong, Kuo-Chuin

    2005-08-01

    Current meter data obtained in Indian River Inlet and Indian River Bay, Delaware are analyzed to compute second order low-frequency tidal flow and tidally induced mean flow in the system. Results from least-squares harmonic analysis show that nonlinearly induced M4 currents in the inlet and bay occur at order 10 -1 of the M2 amplitudes, indicating weak nonlinearity in the system. Tidally rectified mean flow computed from Mm and Msf is ˜3 cm s -1, which is of the same order of magnitude as the observed mean current. The estimated low-frequency tidal flow and the tidally induced mean flow agree well with scalings computed for the inlet and with results found by Münchow et al. [Münchow, A., Masse, A.K., Garvine, R.W., 1992. Astronomical and nonlinear tidal currents in a coupled estuary shelf system. Continental Shelf Research 12, 471-498] in Delaware Bay.

  6. A life-cycle model for wave-dominated tidal inlets along passive margin coasts of North America

    Science.gov (United States)

    Seminack, Christopher T.; McBride, Randolph A.

    2018-03-01

    A regional overview of 107 wave-dominated tidal inlets along the U.S. Atlantic coast, U.S. Gulf of Mexico coast, and Canadian Gulf of St. Lawrence coast yielded a generalized wave-dominated tidal inlet life-cycle model that recognized the rotational nature of tidal inlets. Tidal inlets are influenced by concurrently acting processes transpiring over two timescales: short-term, event-driven processes and long-term, evolutionary processes. Wave-dominated tidal inlets are classified into three rotational categories based on net longshore sediment transport direction and rotation direction along the landward (back-barrier) portion of the inlet channel: downdrift channel rotation, updrift channel rotation, or little-to-no channel rotation. Lateral shifting of the flood-tidal delta depocenter in response to available estuarine accommodation space appears to control inlet channel rotation. Flood-tidal delta deposits fill accommodation space locally within the estuary (i.e., creating bathymetric highs), causing the tidal-inlet channel to rotate. External influences, such as fluvial discharge, pre-existing back-barrier channels, and impeding salt marsh will also influence inlet-channel rotation. Storm events may rejuvenate the tidal inlet by scouring sediment within the flood-tidal delta, increasing local accommodation space. Wave-dominated tidal inlets are generally unstable and tend to open, concurrently migrate laterally and rotate, infill, and close. Channel rotation is a primary reason for wave-dominated tidal inlet closure. During rotation, the inlet channel lengthens and hydraulic efficiency decreases, thus causing tidal prism to decrease. Tidal prism, estuarine accommodation space, and sediment supply to the flood-tidal delta are the primary variables responsible for tidal inlet rotation. Stability of wave-dominated tidal inlets is further explained by: stability (S) = tidal prism (Ω) + estuarine accommodation space (V) - volume of annual sediment supply (Mt

  7. The Algorithm Theoretical Basis Document for Tidal Corrections

    Science.gov (United States)

    Fricker, Helen A.; Ridgway, Jeff R.; Minster, Jean-Bernard; Yi, Donghui; Bentley, Charles R.`

    2012-01-01

    This Algorithm Theoretical Basis Document deals with the tidal corrections that need to be applied to range measurements made by the Geoscience Laser Altimeter System (GLAS). These corrections result from the action of ocean tides and Earth tides which lead to deviations from an equilibrium surface. Since the effect of tides is dependent of the time of measurement, it is necessary to remove the instantaneous tide components when processing altimeter data, so that all measurements are made to the equilibrium surface. The three main tide components to consider are the ocean tide, the solid-earth tide and the ocean loading tide. There are also long period ocean tides and the pole tide. The approximate magnitudes of these components are illustrated in Table 1, together with estimates of their uncertainties (i.e. the residual error after correction). All of these components are important for GLAS measurements over the ice sheets since centimeter-level accuracy for surface elevation change detection is required. The effect of each tidal component is to be removed by approximating their magnitude using tidal prediction models. Conversely, assimilation of GLAS measurements into tidal models will help to improve them, especially at high latitudes.

  8. An analytical solution for tidal propagation in the Yangtze Estuary, China

    Directory of Open Access Journals (Sweden)

    E. F. Zhang

    2012-09-01

    Full Text Available An analytical model for tidal dynamics has been applied to the Yangtze Estuary for the first time, to describe the tidal propagation in this large and typically branched estuary with three-order branches and four outlets to the sea. This study shows that the analytical model developed for a single-channel estuary can also accurately describe the tidal dynamics in a branched estuary, particularly in the downstream part. Within the same estuary system, the North Branch and the South Branches have a distinct tidal behaviour: the former being amplified demonstrating a marine character and the latter being damped with a riverine character. The satisfactory results for the South Channel and the South Branch using both separate and combined topographies confirm that the branched estuary system functions as an entity. To further test these results, it is suggested to collect more accurate and dense bathymetric and tidal information.

  9. NOAA Historical Tidal Current Data for the Coastal United States

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Knowledge of the timing and strength of tidal currents is extremely important for safe navigation in coastal waters. Tidal currents are almost always the strongest...

  10. Effect of subseabed salt domes on Tidal Residual currents in the Persian Gulf

    Science.gov (United States)

    Mashayekh Poul, Hossein; Backhaus, Jan; Dehghani, Ali; Huebner, Udo

    2016-05-01

    Geological studies in the Persian Gulf (PG) have revealed the existence of subseabed salt-domes. With suitable filtering of a high-resolution PG seabed topography, it is seen that the domes leave their signature in the seabed, i.e., numerous hills and valleys with amplitudes of several tens of meters and radii from a few up to tens of kilometers. It was suspected that the "shark skin" of the PG seabed may affect the tidal residual flow. The interaction of tidal dynamics and these obstacles was investigated in a nonlinear hydrodynamic numerical tidal model of the PG. The model was first used to characterize flow patterns of residual currents generated by a tidal wave passing over symmetric, elongated and tilted obstacles. Thereafter it was applied to the entire PG. The model was forced at its open boundary by the four dominant tidal constituents residing in the PG. Each tidal constituent was simulated separately. Results, i.e., tidal residual currents in the PG, as depicted by Lagrangian trajectories reveal a stationary flow that is very rich in eddies. Each eddy can be identified with a topographic obstacle. This confirms that the tidal residual flow field is strongly influenced by the nonlinear interaction of the tidal wave with the bottom relief which, in turn, is deformed by salt-domes beneath the seabed. Different areas of maximum residual current velocities are identified for major tidal constituents. The pattern of trajectories indicates the presence of two main cyclonic gyres and several adjacent gyres rotating in opposite directions and a strong coastal current in the northern PG.

  11. BIOCONTROL FOR RHIZOCTONIA STEM ROT DISEASE BY USING COMBINATION OF SPECIFIC ENDOPHYTE IN PADDY TIDAL SWAMP

    Directory of Open Access Journals (Sweden)

    Ismed Setya Budi

    2013-10-01

    Full Text Available The use of combination of specific endophytic in tidal swamps to control stem root disease as biological control agents has not been done. It is expected that this combination is able to continuously protect plants from pathogen interference. The research was carried out in type C tidal swamp in Banjar regency of South Kalimantan, from March to November 2011, temperature 29-32oC, and pH 4.0-5.5. The method used was Split Plot design. Biocontrol preparation for both types of endophytic was applied in seeds in 7 days after planting (DAP. Observation on high intensity and plant diseases of planting stage on tidal swamps (taradak, ampak and lacak was conducted. The results showed that there was a reduction of disease ranging from 58.70 to 87.29%. The application of combination of two biocontrol agents (T. viride PS-2.1 + P. fluorescent PS-4.8, (Fusarium non-pathogenic PS-1.5 + P. fluorescent PS-4.8 and (T. viride PS-2.1+ FNP PS-1.5 isolate gave the best inhibition result, reduced disease intensity, and increased plant height. The result of soil analysis before and after application of endophytic showed that there was an increase in soil fertility with the element addition of N, P, K and pH.

  12. Ocean tidal loading affecting precise geodetic observations on Greenland: Error account of surface deformations by tidal gravity measurements

    DEFF Research Database (Denmark)

    Jentzsch, G.; Knudsen, Per; Ramatschi, M.

    2000-01-01

    Air-borne and satellite based altimetry are used to monitor the Greenland ice-cap. Since these measurements are related to fiducial sites at the coast, the robustness of the height differences depends on the stability of these reference points. To benefit from the accuracy of these methods...... observations. Near the coast ocean tidal loading causes additional vertical deformations in the order of 1 to 10 cm Therefore, tidal gravity measurements were carried out at four fiducial sites around Greenland in order to provide corrections for the kinematic part of the coordinates of these sites. Starting...

  13. Diurnal and semi-diurnal tidal currents in the deep mid-Arabian sea

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Gouveia, A.D.; Shetye, S.R.

    Current meter records from two depths, approximately 1000 m, at three mooring in the deep mid-Arabian Sea were used to study tidal components. Tidal ellipses for the semi-diurnal (M2, S2 and K2) and the diurnal (K1 and P1) tidal constituents have...

  14. The wave and tidal resource of Scotland

    Science.gov (United States)

    Neill, Simon; Vogler, Arne; Lewis, Matt; Goward-Brown, Alice

    2017-04-01

    As the marine renewable energy industry evolves, in parallel with an increase in the quantity of available data and improvements in validated numerical simulations, it is occasionally appropriate to re-assess the wave and tidal resource of a region. This is particularly true for Scotland - a leading nation that the international community monitors for developments in the marine renewable energy industry, and which has witnessed much progress in the sector over the last decade. With 7 leased wave and 17 leased tidal sites, Scotland is well poised to generate significant levels of electricity from its abundant natural marine resources. In this review of Scotland's wave and tidal resource, I present the theoretical and technical resource, and provide an overview of commercial progress. I also discuss issues that affect future development of the marine energy seascape in Scotland, applicable to other regions of the world, including the potential for developing lower energy sites, and grid connectivity.

  15. Preliminary investigation of the potential of harnessing tidal energy for electricity generation in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.S.; Seng, L.Y. [Tunku Abdul Rahman Univ. (Malaysia). Dept. of Electrical and Electronic Engineering

    2008-07-01

    Malaysia relies heavily on fossil fuels to meet its energy demands. However, Malaysia has started to explore the use of other forms of renewable energy such as solar energy, biofuels and tidal power. This paper focused on the potential of harnessing tidal energy in Malaysia for electricity production. There are several sites with great potential for tidal energy conversion, which could supplement the energy needs of Malaysia while reducing greenhouse gas emissions. Illustrations were included to show the amplitude of the main harmonic component of the tidal range around Malaysia. The main harmonic component found in the region has a maximum amplitude of 1.4 m, confirming the potential of tidal energy in Malaysia's Ocean. Since the tidal cycle is highly predictable, it has the potential to be a very reliable renewable energy source. Two main approaches are being researched internationally to harness the energy from tides, notably the barrage approach and the tidal stream approach. For the barrage approach, a physical barrier is created within the sea, and a sluice gate controls the flow of sea water. In the tidal stream approach, horizontal axis turbines are placed in the path of tidal currents to generate electricity, similar to the operation of wind turbines. This paper described the flow velocity, power output, availability of power supply and monthly yield of turbines using both the barrage and tidal stream approaches. The study showed that for the barrage approach, there are 6 sites in Malaysia where 14,970 kWH of energy can be generated monthly with a single turbine with a 5 m long blade. The tidal stream approach showed equally promising results at 2 sites. It was concluded that tidal energy is a promising form of renewable energy because of its cyclic, reliable and predictable nature and the vast energy contained within it. According to United Kingdom Department of Trade and Industry, 10 per cent of the United Kingdom's electricity needs could be

  16. Coastal Water Quality Modeling in Tidal Lake: Revisited with Groundwater Intrusion

    Science.gov (United States)

    Kim, C.

    2016-12-01

    A new method for predicting the temporal and spatial variation of water quality, with accounting for a groundwater effect, has been proposed and applied to a water body partially connected to macro-tidal coastal waters in Korea. The method consists of direct measurement of environmental parameters, and it indirectly incorporates a nutrients budget analysis to estimate the submarine groundwater fluxes. Three-dimensional numerical modeling of water quality has been used with the directly collected data and the indirectly estimated groundwater fluxes. The applied area is Saemangeum tidal lake that is enclosed by 33km-long sea dyke with tidal openings at two water gates. Many investigations of groundwater impact reveal that 10 50% of nutrient loading in coastal waters comes from submarine groundwater, particularly in the macro-tidal flat, as in the west coast of Korea. Long-term monitoring of coastal water quality signals the possibility of groundwater influence on salinity reversal and on the excess mass outbalancing the normal budget in Saemangeum tidal lake. In the present study, we analyze the observed data to examine the influence of submarine groundwater, and then a box model is demonstrated for quantifying the influx and efflux. A three-dimensional numerical model has been applied to reproduce the process of groundwater dispersal and its effect on the water quality of Saemangeum tidal lake. The results show that groundwater influx during the summer monsoon then contributes significantly, 20% more than during dry season, to water quality in the tidal lake.

  17. 33 CFR 117.181 - Oakland Inner Harbor Tidal Canal.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Oakland Inner Harbor Tidal Canal. 117.181 Section 117.181 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Tidal Canal. The draws of the Alameda County highway drawbridges at Park Street, mile 5.2; Fruitvale...

  18. Dynamical and photometric models of star formation in tidal tails

    International Nuclear Information System (INIS)

    Wallin, J.F.

    1990-01-01

    An investigation into the causes of star formation in tidal tails has been conducted using a restricted three-body dynamical model in conjunction with a broadband photometric evolutionary code. Test particles are initially placed in circular orbits around a softened point mass and then perturbed by a companion passing in a parabotic orbit. During the passage, the density evolution of the galaxy is examined both in regions within the disk and in selected comoving regions in the tidal features. Even without the inclusion of self-gravity and hydrodynamics, regions of compression form inside the disk, along the tidal tail, and in the tidal bridge causing local density increases of up to 500 percent. By assuming that the density changes relate to the star-formation rate via a Schmidt (1959) law, limits on the density changes needed to make detectable changes in the colors are calculated. A spiral galaxy population is synthesized and the effects of modest changes in the star-formation rate are explored using a broadband photometric evolutionary code. Density changes similar to those found in the dynamical models will cause detectable changes in the colors of a stellar population. From these models, it is determined that the blue colors and knotty features observed in the tidal features of some galaxies result from increased rates of star formation induced by tidally produced density increases. Limitations of this model are discussed along with photometric evolutionary models based on the density evolution in the tails. 52 refs

  19. Can barrier islands survive sea level rise? Tidal inlets versus storm overwash

    Science.gov (United States)

    Nienhuis, J.; Lorenzo-Trueba, J.

    2017-12-01

    Barrier island response to sea level rise depends on their ability to transgress and move sediment to the back barrier, either through flood-tidal delta deposition or via storm overwash. Our understanding of these processes over decadal to centennial timescales, however, is limited and poorly constrained. We have developed a new barrier inlet environment (BRIE) model to better understand the interplay between tidal dynamics, overwash fluxes, and sea-level rise on barrier evolution. The BRIE model combines existing overwash and shoreface formulations [Lorenzo-Trueba and Ashton, 2014] with alongshore sediment transport, inlet stability [Escoffier, 1940], inlet migration and flood-tidal delta deposition [Nienhuis and Ashton, 2016]. Within BRIE, inlets can open, close, migrate, merge with other inlets, and build flood-tidal delta deposits. The model accounts for feedbacks between overwash and inlets through their mutual dependence on barrier geometry. Model results suggest that when flood-tidal delta deposition is sufficiently large, barriers require less storm overwash to transgress and aggrade during sea level rise. In particular in micro-tidal environments with asymmetric wave climates and high alongshore sediment transport, tidal inlets are effective in depositing flood-tidal deltas and constitute the majority of the transgressive sediment flux. Additionally, we show that artificial inlet stabilization (via jetty construction or maintenance dredging) can make barrier islands more vulnerable to sea level rise. Escoffier, F. F. (1940), The Stability of Tidal Inlets, Shore and Beach, 8(4), 114-115. Lorenzo-Trueba, J., and A. D. Ashton (2014), Rollover, drowning, and discontinuous retreat: Distinct modes of barrier response to sea-level rise arising from a simple morphodynamic model, J. Geophys. Res. Earth Surf., 119(4), 779-801, doi:10.1002/2013JF002941. Nienhuis, J. H., and A. D. Ashton (2016), Mechanics and rates of tidal inlet migration: Modeling and application to

  20. Resource Assessment of Tidal Current Energy in Hangzhou Bay Based on Long Term Measurement

    Science.gov (United States)

    Zhang, Feng; Dai, Chun-Ni; Xu, Xue-Feng; Wang, Chuan-Kun; Ye, Qin

    2017-05-01

    Compared with other marine renewable energy, tidal current energy benefits a lot in high energy density and good predictability. Based on the measured tidal current data in Hangzhou Bay from Nov 2012 to Oct 2012, this paper analysed temporal and spatial changes of tidal current energy in the site. It is the first time measured data of such long time been taken in tidal current energy analysis. Occurrence frequency and duration of the current of different speed are given out in the paper. According to the analysis results, monthly average power density changed a lot in different month, and installation orientation of tidal current turbine significantly affected energy acquisition. Finally, the annual average power density of tidal current energy with coefficient Cp in the site was calculated, and final output of a tidal current plant was also estimated.

  1. Ammonium transformation in a nitrogen-rich tidal freshwater marsh

    DEFF Research Database (Denmark)

    Gribsholt, B.; Andersson, M.; Boschker, H.T.S.

    2006-01-01

    The fate and transport of watershed-derived ammonium in a tidal freshwater marsh fringing the nutrient rich Scheldt River, Belgium, was quantified in a whole ecosystem 15N labeling experiment. In late summer (September) we added 15N-NH4+ to the flood water entering a 3477 m2 tidal freshwater marsh...

  2. The secret gardener: vegetation and the emergence of biogeomorphic patterns in tidal environments.

    Science.gov (United States)

    Da Lio, Cristina; D'Alpaos, Andrea; Marani, Marco

    2013-01-01

    The presence and continued existence of tidal morphologies, and in particular of salt marshes, is intimately connected with biological activity, especially with the presence of halophytic vegetation. Here, we review recent contributions to tidal biogeomorphology and identify the presence of multiple competing stable states arising from a two-way feedback between biomass productivity and topographic elevation. Hence, through the analysis of previous and new results on spatially extended biogeomorphological systems, we show that multiple stable states constitute a unifying framework explaining emerging patterns in tidal environments from the local to the system scale. Furthermore, in contrast with traditional views we propose that biota in tidal environments is not just passively adapting to morphological features prescribed by sediment transport, but rather it is 'The Secret Gardener', fundamentally constructing the tidal landscape. The proposed framework allows to identify the observable signature of the biogeomorphic feedbacks underlying tidal landscapes and to explore the response and resilience of tidal biogeomorphic patterns to variations in the forcings, such as the rate of relative sea-level rise.

  3. Arctide2017, a high-resolution regional tidal model in the Arctic Ocean

    DEFF Research Database (Denmark)

    Cancet, M.; Andersen, O. B.; Lyard, F.

    2018-01-01

    The Arctic Ocean is a challenging region for tidal modelling. The accuracy of the global tidal models decreases by several centimeters in the Polar Regions, which has a large impact on the quality of the satellite altimeter sea surface heights and the altimetry-derived products. NOVELTIS, DTU Space...... and LEGOS have developed Arctide2017, a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of an extension of the CryoSat Plus for Ocean (CP4O) ESA STSE (Support to Science Element) project. In particular, this atlas benefits from the assimilation of the most complete satellite...... assimilation and validation. This paper presents the implementation methodology and the performance of this new regional tidal model in the Arctic Ocean, compared to the existing global and regional tidal models....

  4. Understanding the potential risk to marine mammals from collision with tidal turbines

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea; Grear, Molly; Jepsen, Richard; Chartrand, Chris; Gorton, Alicia

    2017-09-01

    The advent of the marine renewable energy industry has raised questions, particularly for tidal turbines, about potential threats to populations of marine mammals. This research examines the sequence of behavioral events that lead up to a potential collision of a marine mammal with a tidal turbine, within the context of the physical environment, the attributes of the tidal device, and the biomechanical properties of a marine mammal that may resist injury from a tidal blade collision. There are currently no data available to determine the risk of collision to a marine mammal, and obtaining those data would be extremely difficult. The surrogate data examined in this research (likelihood of a marine mammal being in close proximity to a tidal turbine, biomechanics of marine mammal tissues, and engineering models) provide insight into the interaction.

  5. Effects of sodium bicarbonate on the end-tidal CO2, PaCO2, HCO3-, PH and cerebral blood flow

    International Nuclear Information System (INIS)

    Komatani, Akio; Akutsu, Tooru; Yoshida, Michihiko; Yamaguchi, Koichi; Seo, Hiroshi

    1992-01-01

    To estimate the quantitative reactivity of cerebral blood flow (CBF), the effects of sodium bicarbonate on the end-tidal CO 2 , arterial partial pressure of CO 2 (PaCO 2 ), HCO 3 - , pH and CBF were examined. The CBF was measured by 133 Xe inhalation method with ring type SPECT (HEADTOME). Activation study with sodium bicarbonate administration was performed after 30 minutes of resting study, and the reactivity of each parameters was investigated. The arterial HCO 3 - and pH increased with similar reactivity, but PaCO 2 , end-tidal CO 2 and CBF in the non-injured hemisphere changed with irregular reactivity. The excellent correlation between PaCO 2 and end-tidal CO 2 was vanished by the administration of sodium bicarbonate. The reactivity of CBF did not correlate with reactivity of PaCO 2 and end-tidal CO 2 , but correlated with arterial HCO 3 - and pH. Thus the measurement of arterial HCO 3 - and pH may be indispensable to estimate the CBF reactivity with the administration of sodium bicarbonate. (author)

  6. Modeling and control of a hybrid wind-tidal turbine with hydraulic accumulator

    International Nuclear Information System (INIS)

    Fan, YaJun; Mu, AnLe; Ma, Tao

    2016-01-01

    This paper presents the modeling and control of a hybrid wind-tidal turbine with hydraulic accumulator. The hybrid turbine captures the offshore wind energy and tidal current energy simultaneously and stores the excess energy in hydraulic accumulator prior to electricity generation. Two hydraulic pumps installed respectively in wind and tidal turbine nacelles are used to transform the captured mechanical energy into hydraulic energy. To extract the maximal power from wind and tidal current, standard torque controls are achieved by regulating the displacements of the hydraulic pumps. To meet the output power demand, a Proportion Integration Differentiation (PID) controller is designed to distribute the hydraulic energy between the accumulator and the Pelton turbine. A simulation case study based on combining a 5 MW offshore wind turbine and a 1 MW tidal current turbine is undertaken. Case study demonstrates that the hybrid generation system not only captures all the available wind and tidal energy and also delivers the desired generator power precisely through the accumulator damping out all the power fluctuations from the wind and tidal speed disturbances. Energy and exergy analyses show that the energy efficiency can exceed 100% as the small input speeds are considered, and the exergy efficiency has the consistent change trends with demand power. Further more parametric sensitivity study on hydraulic accumulator shows that there is an inversely proportional relationship between accumulator and hydraulic equipments including the pump and nozzle in terms of dimensions. - Highlights: • A hybrid wind-tidal turbine is presented. • Hydraulic accumulator stores/releases the surplus energy. • Standard torque controls extract the maximal power from wind and tidal. • Generator outputs meet the electricity demand precisely. • Parametric sensitivity study on accumulator is implemented.

  7. Evaluation of a Model for Predicting the Tidal Velocity in Fjord Entrances

    Energy Technology Data Exchange (ETDEWEB)

    Lalander, Emilia [The Swedish Centre for Renewable Electric Energy Conversion, Division of Electricity, Uppsala Univ. (Sweden); Thomassen, Paul [Team Ashes, Trondheim (Norway); Leijon, Mats [The Swedish Centre for Renewable Electric Energy Conversion, Division of Electricity, Uppsala Univ. (Sweden)

    2013-04-15

    Sufficiently accurate and low-cost estimation of tidal velocities is of importance when evaluating a potential site for a tidal energy farm. Here we suggest and evaluate a model to calculate the tidal velocity in fjord entrances. The model is compared with tidal velocities from Acoustic Doppler Current Profiler (ADCP) measurements in the tidal channel Skarpsundet in Norway. The calculated velocity value from the model corresponded well with the measured cross-sectional average velocity, but was shown to underestimate the velocity in the centre of the channel. The effect of this was quantified by calculating the kinetic energy of the flow for a 14-day period. A numerical simulation using TELEMAC-2D was performed and validated with ADCP measurements. Velocity data from the simulation was used as input for calculating the kinetic energy at various locations in the channel. It was concluded that the model presented here is not accurate enough for assessing the tidal energy resource. However, the simplicity of the model was considered promising in the use of finding sites where further analyses can be made.

  8. Estimating Coastal Lagoon Tidal Flooding and Repletion with Multidate ASTER Thermal Imagery

    Directory of Open Access Journals (Sweden)

    Thomas R. Allen

    2012-10-01

    Full Text Available Coastal lagoons mix inflowing freshwater and tidal marine waters in complex spatial patterns. This project sought to detect and measure temperature and spatial variability of flood tides for a constricted coastal lagoon using multitemporal remote sensing. Advanced Spaceborne Thermal Emission Radiometer (ASTER thermal infrared data provided estimates of surface temperature for delineation of repletion zones in portions of Chincoteague Bay, Virginia. ASTER high spatial resolution sea-surface temperature imagery in conjunction with in situ observations and tidal predictions helped determine the optimal seasonal data for analyses. The selected time series ASTER satellite data sets were analyzed at different tidal phases and seasons in 2004–2006. Skin surface temperatures of ocean and estuarine waters were differentiated by flood tidal penetration and ebb flows. Spatially variable tidal flood penetration was evaluated using discrete seed-pixel area analysis and time series Principal Components Analysis. Results from these techniques provide spatial extent and variability dynamics of tidal repletion, flushing, and mixing, important factors in eutrophication assessment, water quality and resource monitoring, and application of hydrodynamic modeling for coastal estuary science and management.

  9. Nonrotating black hole in a post-Newtonian tidal environment

    International Nuclear Information System (INIS)

    Taylor, Stephanne; Poisson, Eric

    2008-01-01

    We examine the motion and tidal dynamics of a nonrotating black hole placed within a post-Newtonian external spacetime. The black hole's gravity is described accurately to all orders in Gm/c 2 r, where m is the black-hole mass and r is the distance to the black hole. The tidal perturbation created by the external environment is treated as a small perturbation. At a large distance from the black hole, the gravitational field of the external distribution of matter is assumed to be sufficiently weak to be adequately described by the (first) post-Newtonian approximation to general relativity. There, the black hole is treated as a monopole contribution to the total gravitational field. There exists an overlap in the domains of validity of each description, and the black-hole and post-Newtonian metrics are matched in the overlap. The matching procedure produces (i) a justification of the statement that a nonrotating black hole is a post-Newtonian monopole; (ii) a complete characterization of the coordinate transformation between the inertial, barycentric frame and the accelerated, black-hole frame; (iii) the equations of motion for the black hole; and (iv) the gravito-electric and gravito-magnetic tidal fields acting on the black hole. We first calculate the equations of motion and tidal fields by making no assumptions regarding the nature of the post-Newtonian environment; this could contain a continuous distribution of matter (so as to model a galactic core) or any number of condensed bodies. We next specialize our discussion to a situation in which the black hole is a member of a post-Newtonian two-body system. As an application of our results, we examine the geometry of the deformed event horizon and calculate the tidal heating of the black hole, the rate at which it acquires mass as a result of its tidal interaction with the companion body.

  10. CFD for wind and tidal offshore turbines

    CERN Document Server

    Montlaur, Adeline

    2015-01-01

    The book encompasses novel CFD techniques to compute offshore wind and tidal applications. Computational fluid dynamics (CFD) techniques are regarded as the main design tool to explore the new engineering challenges presented by offshore wind and tidal turbines for energy generation. The difficulty and costs of undertaking experimental tests in offshore environments have increased the interest in the field of CFD which is used to design appropriate turbines and blades, understand fluid flow physical phenomena associated with offshore environments, predict power production or characterise offshore environments, amongst other topics.

  11. Short period tidal variations of earth rotation

    Science.gov (United States)

    Yoder, C. F.; Williams, J. G.; Parke, M. E.; Dickey, J. O.

    1981-01-01

    It is explained that the tidal deformation of the earth's polar moment of inertia by the moon and sun cause periodic variations in rotation. The short period oscillations give rise to a meter-sized, diurnal signature in the lunar laser ranging data obtained at McDonald Observatory. A solution is given for the scale parameter k/C at fortnightly and monthly tidal frequencies. The results are compared with those obtained by other investigators and with a theoretical estimate which includes the effect of oceans and a decoupled fluid core.

  12. One-dimensional Analytical Modelling of Floating Seed Dispersal in Tidal Channels

    Science.gov (United States)

    Shi, W.; Purnama, A.; Shao, D.; Cui, B.; Gao, W.

    2017-12-01

    Seed dispersal is a primary factor influencing plant community development, and thus plays a critical role in maintaining wetland ecosystem functioning. However, compared with fluvial seed dispersal of riparian plants, dispersal of saltmarsh plant seeds in tidal channels is much less studied due to its complex behavior, and relevant mathematical modelling is particularly lacking. In this study, we developed a one-dimensional advection-dispersion model to explore the patterns of tidal seed dispersal. Oscillatory tidal current and water depth were assumed to represent the tidal effects. An exponential decay coefficient λ was introduced to account for seed deposition and retention. Analytical solution in integral form was derived using Green's function and further evaluated using numerical integration. The developed model was applied to simulate Spartina densiflora seed dispersal in a tidal channel located at the Mad River Slough in North Humboldt Bay, California, USA, to demonstrate its practical applicability. Model predictions agree satisfactorily with field observation and simulation results from Delft3D numerical model. Sensitivity analyses were also conducted to evaluate the effects of varying calibrated parameters on model predictions. The range of the seed dispersion as well as the distribution of the seed concentration were further analyzed through statistical parameters such as centroid displacement and variance of the seed cloud together with seed concentration contours. Implications of the modelling results on tidal marsh restoration and protection, e.g., revegetation through seed addition, were also discussed through scenario analysis. The developed analytical model provides a useful tool for ecological management of tidal marshes.

  13. Frequency-Dependent Tidal Triggering of Low Frequency Earthquakes Near Parkfield, California

    Science.gov (United States)

    Xue, L.; Burgmann, R.; Shelly, D. R.

    2017-12-01

    The effect of small periodic stress perturbations on earthquake generation is not clear, however, the rate of low-frequency earthquakes (LFEs) near Parkfield, California has been found to be strongly correlated with solid earth tides. Laboratory experiments and theoretical analyses show that the period of imposed forcing and source properties affect the sensitivity to triggering and the phase relation of the peak seismicity rate and the periodic stress, but frequency-dependent triggering has not been quantitatively explored in the field. Tidal forcing acts over a wide range of frequencies, therefore the sensitivity to tidal triggering of LFEs provides a good probe to the physical mechanisms affecting earthquake generation. In this study, we consider the tidal triggering of LFEs near Parkfield, California since 2001. We find the LFEs rate is correlated with tidal shear stress, normal stress rate and shear stress rate. The occurrence of LFEs can also be independently modulated by groups of tidal constituents at semi-diurnal, diurnal and fortnightly frequencies. The strength of the response of LFEs to the different tidal constituents varies between LFE families. Each LFE family has an optimal triggering frequency, which does not appear to be depth dependent or systematically related to other known properties. This suggests the period of the applied forcing plays an important role in the triggering process, and the interaction of periods of loading history and source region properties, such as friction, effective normal stress and pore fluid pressure, produces the observed frequency-dependent tidal triggering of LFEs.

  14. Paolo Sarpi and the first Copernican tidal theory.

    Science.gov (United States)

    Naylor, Ron

    2014-12-01

    Despite his demanding religious responsibilities, Paolo Sarpi maintained an active involvement in science between 1578 and 1598- as his Pensieri reveal. They show that from 1585 onwards he studied the Copernican theory and recorded arguments in its favour. The fact that for 1595 they include an outline of a Copernican tidal theory resembling Galileo's Dialogue theory is well known. But examined closely, Sarpi's theory is found to be different from that of the Dialogue in several important respects. That Sarpi was a Copernican by 1592 is revealed by other of his pensieri, whereas at that time we know that Galileo was not. The examination of Sarpi's tidal theory and of the work of Galileo in this period indicates that the theory Sarpi recorded in 1595 was of his own creation. The appreciation that the theory was Sarpi's and that Galileo subsequently came to change his views on the Copernican theory and adopted the tidal theory has major implications for our understanding of the significance of Sarpi's contribution to the Scientific Revolution. Moreover, it appears that several of the most significant theoretical features of the tidal theory published by Galileo in the Dialogue - and which proved of lasting value - were in reality Sarpi's.

  15. Assessment of tidal range energy resources based on flux conservation in Jiantiao Bay, China

    Science.gov (United States)

    Du, Min; Wu, He; Yu, Huaming; Lv, Ting; Li, Jiangyu; Yu, Yujun

    2017-12-01

    La Rance Tidal Range Power Station in France and Jiangxia Tidal Range Power Station in China have been both long-term successful commercialized operations as kind of role models for public at large for more than 40 years. The Sihwa Lake Tidal Range Power Station in South Korea has also developed to be the largest marine renewable power station with its installed capacity 254 MW since 2010. These practical applications prove that the tidal range energy as one kind of marine renewable energy exploitation and utilization technology is becoming more and more mature and it is used more and more widely. However, the assessment of the tidal range energy resources is not well developed nowadays. This paper summarizes the main problems in tidal range power resource assessment, gives a brief introduction to tidal potential energy theory, and then we present an analyzed and estimated method based on the tide numerical modeling. The technical characteristics and applicability of these two approaches are compared with each other. Furthermore, based on the theory of tidal range energy generation combined with flux conservation, this paper proposes a new assessment method that include a series of evaluation parameters and it can be easily operated to calculate the tidal range energy of the sea. Finally, this method is applied on assessment of the tidal range power energy of the Jiantiao Harbor in Zhejiang Province, China for demonstration and examination.

  16. How useful is esophageal high resolution manometry in diagnosing gastroesophageal junction disruption: causes affecting this disruption and its relationship with manometric alterations and gastroesophageal reflux

    Directory of Open Access Journals (Sweden)

    Constanza Ciriza-de-los-Ríos

    2014-01-01

    Full Text Available Background: High-resolution manometry (HRM is a breakthrough in the morphological study of the gastroesophageal junction (GEJ and its degrees of disruption. Objectives: a Assessment of risk factors involved in the disruption of the GEJ in patients with gastroesophageal reflux (GER symptoms; b the relationship between the type of GEJ and GER demonstrated by 24 hours pH-monitoring; and c identification of the alterations in the manometric parameters related to the morphology of the GEJ. Methods: One hundred and fifteen patients with symptoms of GER studied with HRM and classified by the type of GEJ (type I: Normal; type II: Sliding; type III: Hiatal hernia. Twenty four hour pH-monitoring without proton pump inhibitors was performed in all of them. Epidemiological aspects, manometric parameters (Chicago 2012 classification and the pH-monitoring results were evaluated. Results: Age (OR 1.033 [1.006-1.060]; p = 0.16, BMI (OR 1.097 [1.022-1.176]; p = 0. 01 and abdominal perimeter (OR 1.034 [1.005-1.063]; p = 0.0215 were independent risk factors for the GEJ type III (area under the curve 0.70. Disruption of the GEJ was associated with a lower resting pressure (p = 0.006, greater length (p < 0.001 and greater esophageal shortening (p < 0.001. Abnormal acidic reflux was found in the total period (p = 0.015, standing (p = 0.022 and supine (p = 0.001 in patients with GEJ type II and III with respect to type I. Conclusions: Increased age, overweight and central obesity pose a higher risk of GEJ type III (hiatal hernia. The greater disruption of the GEJ is associated with lower resting pressure, esophageal shortening, and higher acid exposure in the pH-monitoring.

  17. Drive-train condition monitoring for offshore wind and tidal turbines

    DEFF Research Database (Denmark)

    Roshanmanesh, Sanaz; Hayati, Farzad; Kappatos, Vassilios

    are subject to several damage mechanisms which may lead to various failure modes including gear teeth damage, cracking of the gearbox case, shaft misalignment, wear or looseness of torque arm, loss of lubricant in lubrication system, bearing damage and shaft failure. This paper presents an experimental...... investigation assessing the effectiveness of Acoustic Emission (AE) and vibration analysis (VA) in identifying different types of faults in wind and tidal turbine drive-trains. Additionally the application of advanced signal processing techniques, such as Spectral Kurtosis (SK) and wavelet analysis have been...

  18. Modern sedimentary environments in a large tidal estuary, Delaware Bay

    Science.gov (United States)

    Knebel, H.J.

    1989-01-01

    Data from an extensive grid of sidescan-sonar records reveal the distribution of sedimentary environments in the large, tidally dominated Delaware Bay estuary. Bathymetric features of the estuary include large tidal channels under the relatively deep (> 10 m water depth) central part of the bay, linear sand shoals (2-8 m relief) that parallel the sides of the tidal channels, and broad, low-relief plains that form the shallow bay margins. The two sedimentary environments that were identified are characterized by either (1) bedload transport and/or erosion or (2) sediment reworking and/or deposition. Sand waves and sand ribbons, composed of medium to coarse sands, define sites of active bedload transport within the tidal channels and in gaps between the linear shoals. The sand waves have spacings that vary from 1 to 70 m, amplitudes of 2 m or less, and crestlines that are usually straight. The orientations of the sand waves and ribbons indicate that bottom sediment movement may be toward either the northwest or southeast along the trends of the tidal channels, although sand-wave asymmetry indicates that the net bottom transport is directed northwestward toward the head of the bay. Gravelly, coarse-grained sediments, which appear as strongly reflective patterns on the sonographs, are also present along the axes and flanks of the tidal channels. These coarse sediments are lag deposits that have developed primarily where older strata were eroded at the bay floor. Conversely, fine sands that compose the linear shoals and muddy sands that cover the shallow bay margins appear mainly on the sonographs either as smooth featureless beds that have uniform light to moderate shading or as mosaics of light and dark patches produced by variations in grain size. These acoustic and textural characteristics are the result of sediment deposition and reworking. Data from this study (1) support the hypothesis that bed configurations under deep tidal flows are functions of current

  19. Tidal flushing restores the physiological condition of fish residing in degraded salt marshes.

    Directory of Open Access Journals (Sweden)

    Kimberly L Dibble

    Full Text Available Roads, bridges, and dikes constructed across salt marshes can restrict tidal flow, degrade habitat quality for nekton, and facilitate invasion by non-native plants including Phragmites australis. Introduced P. australis contributes to marsh accretion and eliminates marsh surface pools thereby adversely affecting fish by reducing access to intertidal habitats essential for feeding, reproduction, and refuge. Our study assessed the condition of resident fish populations (Fundulus heteroclitus at four tidally restricted and four tidally restored marshes in New England invaded by P. australis relative to adjacent reference salt marshes. We used physiological and morphological indicators of fish condition, including proximate body composition (% lipid, % lean dry, % water, recent daily growth rate, age class distributions, parasite prevalence, female gravidity status, length-weight regressions, and a common morphological indicator (Fulton's K to assess impacts to fish health. We detected a significant increase in the quantity of parasites infecting fish in tidally restricted marshes but not in those where tidal flow was restored to reduce P. australis cover. Using fish length as a covariate, we found that unparasitized, non-gravid F. heteroclitus in tidally restricted marshes had significantly reduced lipid reserves and increased lean dry (structural mass relative to fish residing in reference marshes. Fish in tidally restored marshes were equivalent across all metrics relative to those in reference marshes indicating that habitat quality was restored via increased tidal flushing. Reference marshes adjacent to tidally restored sites contained the highest abundance of young fish (ages 0-1 while tidally restricted marshes contained the lowest. Results indicate that F. heteroclitus residing in physically and hydrologically altered marshes are at a disadvantage relative to fish in reference marshes but the effects can be reversed through ecological

  20. Morphodynamics of the Manyema tidal delta 1 LIST OF TABLES ...

    African Journals Online (AJOL)

    Kheira Kortenbout

    Morphodynamics of the Manyema tidal delta. 1. LIST OF ... Location of Manyema Creek and its associated tidal delta platform at Kunduchi. Fig. 2. ... platform. Beachcomber. Hotel. Whitesands. Hotel. Kunduchi. Beach Hotel. Giraffe. Hotel. INDIAN. OCEAN. Mombasa. Dar es. Salaam. KUNDUCHI. KENYA. TANZANIA.

  1. Tidal and seasonal variation in particulate and dissolved organic carbon in the western dutch Wadden Sea and Marsdiep tidal inlet

    Science.gov (United States)

    Cadée, G. C.

    Seasonal variation in POC and DOC was measured in the Marsdiep tidal inlet of the Wadden Sea from March 1978 to June 1981, and compared with tidal variation. A POC peak was coincident with the phytoplankton peak (except for 1981), whereas a DOC peak occurred about one month later indicating autolysis and degradation of phytoplankton rather than excretion as the main source of this DOC. DOC production calculated from the spring increase amounted to 4.2 mg C·1 -1 or about 40% of the annual phytoplankton primary production in the area. This means that a large part of the phytoplankton production is not used directly by primary consumers but is converted into DOC. Tidal variation in DOC was correlated with salinity, pointing to a fresh water source for the bulk of it. POC was correlated with suspended matter content and phaeopigment, and slightly less with chlorophyll. Compared with the seasonal variation, tidal variation in chlorophyll and temperature was relatively small, but large in POC, DOC, suspended matter and salinity. Although import of POC and export of DOC through the Marsdiep inlet is large on an annual base, the transport cannot be measured directly because of the variability and precision limits of the measurements and as differences in content between ebb and flood current are only 15 and 5% of the POC and DOC content, respectively.

  2. Investigating Disruption

    DEFF Research Database (Denmark)

    Lundgaard, Stine Schmieg; Rosenstand, Claus Andreas Foss

    This book shares knowledge collected from 2015 and onward within the Consortium for Digital Disruption anchored at Aalborg University (www.dd.aau.dk). Evidenced by this publication, the field of disruptive innovation research has gone through several stages of operationalizing the theory. In recent...... years, researchers are increasingly looking back towards the origins of the theory in attempts to cure it from its most obvious flaws. This is especially true for the use of the theory in making predictions about future disruptions. In order to continue to develop a valuable theory of disruption, we...... find it useful to first review what the theory of disruptive innovation initially was, how it has developed, and where we are now. A cross section of disruptive innovation literature has been reviewed in order to form a general foundation from which we might better understand the changing world...

  3. Interactions Between Wetlands and Tidal Inlets

    National Research Council Canada - National Science Library

    Sanchez, Alejandro

    2008-01-01

    This Coastal and Hydraulics Engineering Technical Note (CHETN) presents numerical simulations investigating how the loss of wetlands in estuaries modifies tidal processes in inlet navigation channels...

  4. Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients.

    Science.gov (United States)

    Sugita, Kazunari; Steer, Catherine A; Martinez-Gonzalez, Itziar; Altunbulakli, Can; Morita, Hideaki; Castro-Giner, Francesc; Kubo, Terufumi; Wawrzyniak, Paulina; Rückert, Beate; Sudo, Katsuko; Nakae, Susumu; Matsumoto, Kenji; O'Mahony, Liam; Akdis, Mübeccel; Takei, Fumio; Akdis, Cezmi A

    2018-01-01

    Bronchial epithelial barrier leakiness and type 2 innate lymphoid cells (ILC2s) have been separately linked to asthma pathogenesis; however, the influence of ILC2s on the bronchial epithelial barrier has not been investigated previously. We investigated the role of ILC2s in the regulation of bronchial epithelial tight junctions (TJs) and barrier function both in bronchial epithelial cells of asthmatic patients and healthy subjects and general innate lymphoid cell- and ILC2-deficient mice. Cocultures of human ILC2s and bronchial epithelial cells were used to determine transepithelial electrical resistance, paracellular flux, and TJ mRNA and protein expressions. The effect of ILC2s on TJs was examined by using a murine model of IL-33-induced airway inflammation in wild-type, recombination-activating gene 2 (Rag2) -/- , Rag2 -/- Il2rg -/- , and Rora sg/sg mice undergoing bone marrow transplantation to analyze the in vivo relevance of barrier disruption by ILC2s. ILC2s significantly impaired the epithelial barrier, as demonstrated by reduced transepithelial electrical resistance and increased fluorescein isothiocyanate-dextran permeability in air-liquid interface cultures of human bronchial epithelial cells. This was in parallel to decreased mRNAs and disrupted protein expression of TJ proteins and was restored by neutralization of IL-13. Intranasal administration of recombinant IL-33 to wild-type and Rag2 -/- mice lacking T and B cells triggered TJ disruption, whereas Rag2 -/- Il2rg -/- and Rora sg/sg mice undergoing bone marrow transplantation that lack ILC2s did not show any barrier leakiness. Direct nasal administration of IL-13 was sufficient to induce deficiency in the TJ barrier in the bronchial epithelium of mice in vivo. These data highlight an essential mechanism in asthma pathogenesis by demonstrating that ILC2s are responsible for bronchial epithelial TJ barrier leakiness through IL-13. Copyright © 2017 American Academy of Allergy, Asthma & Immunology

  5. TIDALLY INDUCED PULSATIONS IN KEPLER ECLIPSING BINARY KIC 3230227

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhao; Gies, Douglas R. [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States); Fuller, Jim, E-mail: guo@astro.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: jfuller@caltech.edu [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, Caltech, Pasadena, CA 91125 (United States)

    2017-01-01

    KIC 3230227 is a short period (P  ≈ 7.0 days) eclipsing binary with a very eccentric orbit ( e  = 0.6). From combined analysis of radial velocities and Kepler light curves, this system is found to be composed of two A-type stars, with masses of M {sub 1} = 1.84 ± 0.18  M {sub ⊙}, M {sub 2} = 1.73 ± 0.17  M {sub ⊙} and radii of R {sub 1} = 2.01 ± 0.09  R {sub ⊙}, R {sub 2} = 1.68 ± 0.08 R {sub ⊙} for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system. After removing the binary light curve model, more than 10 pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for l  = 2, m  = −2 prograde modes.

  6. TIDALLY INDUCED PULSATIONS IN KEPLER ECLIPSING BINARY KIC 3230227

    International Nuclear Information System (INIS)

    Guo, Zhao; Gies, Douglas R.; Fuller, Jim

    2017-01-01

    KIC 3230227 is a short period (P  ≈ 7.0 days) eclipsing binary with a very eccentric orbit ( e  = 0.6). From combined analysis of radial velocities and Kepler light curves, this system is found to be composed of two A-type stars, with masses of M 1  = 1.84 ± 0.18  M ⊙ , M 2  = 1.73 ± 0.17  M ⊙ and radii of R 1  = 2.01 ± 0.09  R ⊙ , R 2  = 1.68 ± 0.08 R ⊙ for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system. After removing the binary light curve model, more than 10 pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for l  = 2, m  = −2 prograde modes.

  7. Impaired Hematopoiesis and Disrupted Monocyte/Macrophage Homeostasis in Mucopolysaccharidosis Type I Mice.

    Science.gov (United States)

    Viana, Gustavo Monteiro; Buri, Marcus Vinícius; Paredes-Gamero, Edgar Julian; Martins, Ana Maria; D'Almeida, Vânia

    2016-03-01

    Mucopolysaccharidosis type I (MPS I) is a rare autosomal recessive disease caused by alpha-L-iduronidase deficiency in which heparan and dermatan sulfate degradation is compromised. Besides primary lysosomal glycosaminoglycan accumulation, further changes in cellular functions have also been described in several murine MPS models. Herein, we evaluated alterations in hematopoiesis and its implications on the production of mature progeny in a MPS I murine model. Despite the significant increase in hematopoietic stem cells, a reduction in common myeloid progenitors and granulocyte-macrophage progenitor cells was observed in Idua -/- mice bone marrow. Furthermore, no alterations in number, viability nor activation of cell death mechanisms were observed in Idua -/- mice mature macrophages but they presented higher sensitivity to apoptotic induction after staurosporine treatment. In addition, changes in Ca(2+) signaling and a reduction in phagocytosis ability were also found. In summary, our results revealed significant intracellular changes in mature Idua -/- macrophages related to alterations in Idua -/- mice hematopoiesis, revealing a disruption in cell homeostasis. These results provide new insights into physiopathology of MPS I. © 2015 Wiley Periodicals, Inc.

  8. Dynamic and photometric evolutionary models of tidal tails and ripples

    International Nuclear Information System (INIS)

    Wallin, J.F.

    1989-01-01

    An investigation into the causes of star formation in tidal tails has been conducted using a restricted three-body dynamical model in conjunction with a broad-band photometric evolutionary code. In these models, regions of compression form inside the disk and along the tidal tail and tidal bridge. The effects these density changes have on the colors of the tidal features are examined with a broad-band photometric evolutionary code. A spiral galaxy population is synthesized and the effects of modest changes in the star formation rate are explored. Limits on the density changes needed to make detectable changes in the colors are calculated using a Schmidt (1959) law. These models suggest that the blue colors and knotty features observed in the tidal features of some galaxies result from increased rates of star formation induced by tidally produced density increases. Limitations of this model are discussed along with photometric evolutionary models based on the density evolution in the tails. The Lynds and Toomre (1976) interpretation of ring galaxies as the natural result of a nearly head-on collision between a disk galaxy and a companion galaxy has become widely accepted. Similarly, Quinn's (1984) interpretation of the shells in elliptical galaxies as the aftermath of the cannibalization of a low-mass companion has been quite successful in accounting for the observations. Restricted three-body calculations of high inclination, low impact parameter encounters demonstrate that the shell-like ripples observed in a number of disk galaxies can also be produced as collisional artifacts from internal oscillations much as in ring galaxies

  9. Identification of the Uncertainties for the Calibration of the Partial Safety Factors for Load in Tidal Turbines

    Directory of Open Access Journals (Sweden)

    Gaizka Zarraonandia Simeón

    2016-03-01

    Full Text Available Tidal energy is nowadays one of the fastest growing types of marine renewable energy. In particular, Horizontal Axis Tidal Turbines (HATTs are the most advanced designs and the most appropriate for standardization. This paper presents a review of actual design criteria focusing on the identification of the uncertainties that technology developers need to address during the design process. Key environmental parameters like turbine inflow conditions or predictions of extreme values are still grey areas due to the lack of site measurements and the uncertainty in metocean model predictions. A comparison of turbulence intensity characterization using different tools and at different points in time shows the uncertainty in the prediction of this parameter. Numerical models of HATTs are still quite uncertain, often dependent on experience of the people running them. In the reliability-based calibration of partial safety factors, the uncertainties need to be reflected on the limit state formulation. This paper analyses the different types of uncertainties present in the limit state equation. These uncertainties are assessed in terms of stochastic variables in the limit state equation. In some cases, advantage can be taken from the experience from offshore wind and oil and gas industries. Tidal turbines have a mixture of the uncertainties present in both industries with regard to partial safety factor calibration.

  10. Water and suspended sediment division at a stratified tidal junction

    NARCIS (Netherlands)

    Buschman, F.A.; Vegt, M. van der; Hoitink, A.J.F.; Hoekstra, P.

    2013-01-01

    Tidal junctions play a crucial role in the transport of water, salt, and sediment through a delta distributary network. Water, salt and sediment are exchanged at tidal junctions, thereby influencing the transports in the connecting branches and the overall dynamics of the system. This paper

  11. Tidal deformations of spinning black holes in Bowen–York initial data

    International Nuclear Information System (INIS)

    Cabero, Miriam; Krishnan, Badri

    2015-01-01

    We study the tidal deformations of the shape of a spinning black hole horizon due to a binary companion in the Bowen–York initial data set. We use the framework of quasi-local horizons and identify a black hole by marginally outer trapped surfaces. The intrinsic horizon geometry is specified by a set of mass and angular-momentum multipole moments M n and J n , respectively. The tidal deformations are described by the change in these multipole moments caused by an external perturbation. This leads us to define two sets of dimensionless numbers, the tidal coefficients for M n and J n , which specify the deformations of a black hole with a binary companion. We compute these tidal coefficients in a specific model problem, namely the Bowen–York initial data set for binary black holes. We restrict ourselves to axisymmetric situations and to small spins. Within this approximation, we analytically compute the conformal factor, the location of the marginally trapped surfaces, and finally the multipole moments and the tidal coefficients. (paper)

  12. Three-dimensional Modeling of Tidal Hydrodynamics in the San Francisco Estuary

    Directory of Open Access Journals (Sweden)

    Edward S. Gross

    2010-01-01

    Full Text Available Simulations of circulation in the San Francisco Estuary were performed with the three-dimensional TRIM3D hydrodynamic model using a generic length scale turbulence closure. The model was calibrated to reproduce observed tidal elevations, tidal currents, and salinity observations in the San Francisco Estuary using data collected during 1996-1998, a period of high and variable freshwater flow. It was then validated for 1994-1995, with emphasis on spring of 1994, a period of intensive data collection in the northern estuary. The model predicts tidal elevations and tidal currents accurately, and realistically predicts salinity at both the seasonal and tidal time scales. The model represents salt intrusion into the estuary accurately, and therefore accurately represents the salt balance. The model’s accuracy is adequate for its intended purposes of predicting salinity, analyzing gravitational circulation, and driving a particle-tracking model. Two applications were used to demonstrate the utility of the model. We estimated the components of the longitudinal salt flux and examined their dependence on flow conditions, and compared predicted salt intrusion with estimates from two empirical models.

  13. Tidally Driven Failure Along Europa's Rhadamanthys Linea

    Science.gov (United States)

    Cameron, M.; Konter, B.; Pappalardo, R. T.

    2013-12-01

    The surface of Europa is crosscut by a dense network of fractures and there are many candidate faults for studying past tectonic activity. To better understand the role of tidal stress sources and implications for faulting on Europa, we investigate the relationship between shear and normal stresses at Rhadamanthys Linea, a northwest oriented fracture in the northern hemisphere. Previous work on Agenor Linea, a right-lateral strike-slip fracture in the southern hemisphere, suggests that both tidal diurnal and non-synchronous rotation (NSR) stresses play a critical role in the mechanics of Coulomb shear failure on Europa. At Agenor Linea, shear failure from diurnal tidal stress mechanisms is difficult to achieve because the relatively large over¬burden stress (ie., 1.2 MPa at 1 km depth) dominates the stress field; however, MPa order stresses from NSR permit right-lateral shear failure along the west side of the fault at shallow depths (Astypalea Linea and Conamara Chaos will also be investigated, offering a unique comparison of geologic activity of fractures residing in geographically diverse locations of Europa.

  14. Feasibility of tidal power development in the Bay of Fundy

    Energy Technology Data Exchange (ETDEWEB)

    1969-01-01

    A committee was formed to carry out technical studies on the feasibility of a tidal power plant in the Bay of Fundy. Basic information was collected on the physical, geological, climatic, and tidal characteristics of the area to determine areas for more intense investigation. Studies were conducted on the possible effects of the plant on navigation, ground transportation, fisheries, and area development. Electric power marketing and transmission were also examined, as well as the basic concepts for extracting tidal energy. A number of potential sites were examined, and the three most promising sites were selected for preliminary design and cost estimates. Computerized models were used at appropriate stages in order to evaluate various tidal power schemes. This report presents a summary of the committee's investigations. It was seen that a site at the entrance to Cobequid Bay would have an economic advantage over the other sites considered. From the results of the design studies, it was concluded that a long period of construction, plus extensive capital investment, would be required. However, the lowest unit cost of output was calculated at 5.6 mills/kWh, substantially above the incremental cost of energy available from existing sources. Under current economic conditions, the tidal power plant would not be feasible. 4 figs., 1 tab.

  15. Implications of tidally-varying bed stress and intermittent estuarine stratification on fine-sediment dynamics through the Mekong's tidal river to estuarine reach

    Science.gov (United States)

    McLachlan, R. L.; Ogston, A. S.; Allison, M. A.

    2017-09-01

    River gauging stations are often located upriver of tidal propagation where sediment transport processes and storage are impacted by widely varying ratios of marine to freshwater influence. These impacts are not yet thoroughly understood. Therefore, sediment fluxes measured at these stations may not be suitable for predicting changes to coastal morphology. To characterize sediment transport dynamics in this understudied zone, flow velocity, salinity, and suspended-sediment properties (concentration, size, and settling velocity) were measured within the tidal Sông Hậu distributary of the lower Mekong River, Vietnam. Fine-sediment aggregation, settling, and trapping rates were promoted by seasonal and tidal fluctuations in near-bed shear stress as well as the intermittent presence of a salt wedge and estuary turbidity maximum. Beginning in the tidal river, fine-grained particles were aggregated in freshwater. Then, in the interface zone between the tidal river and estuary, impeded near-bed shear stress and particle flux convergence promoted settling and trapping. Finally, in the estuary, sediment retention was further encouraged by stratification and estuarine circulation which protected the bed against particle resuspension and enhanced particle aggregation. These patterns promote mud export ( 1.7 t s-1) from the entire study area in the high-discharge season when fluvial processes dominate and mud import ( 0.25 t s-1) into the estuary and interface zone in the low-discharge season when estuarine processes dominate. Within the lower region of the distributaries, morphological change in the form of channel abandonment was found to be promoted within minor distributaries by feedbacks between channel depth, vertical mixing, and aggregate trapping. In effect, this field study sheds light on the sediment trapping capabilities of the tidal river - estuary interface zone, a relatively understudied region upstream of where traditional concepts place sites of deposition

  16. On the Disruption of Star Clusters in a Hierarchical Interstellar Medium

    Science.gov (United States)

    Elmegreen, Bruce G.; Hunter, Deidre A.

    2010-03-01

    The distribution of the number of clusters as a function of mass M and age T suggests that clusters get eroded or dispersed in a regular way over time, such that the cluster number decreases inversely as an approximate power law with T within each fixed interval of M. This power law is inconsistent with standard dispersal mechanisms such as cluster evaporation and cloud collisions. In the conventional interpretation, it requires the unlikely situation where diverse mechanisms stitch together over time in a way that is independent of environment or M. Here, we consider another model in which the large-scale distribution of gas in each star-forming region plays an important role. We note that star clusters form with positional and temporal correlations in giant cloud complexes, and suggest that these complexes dominate the tidal force and collisional influence on a cluster during its first several hundred million years. Because the cloud complex density decreases regularly with position from the cluster birth site, the harassment and collision rates between the cluster and the cloud pieces decrease regularly with age as the cluster drifts. This decrease is typically a power law of the form required to explain the mass-age distribution. We reproduce this distribution for a variety of cases, including rapid disruption, slow erosion, combinations of these two, cluster-cloud collisions, cluster disruption by hierarchical disassembly, and partial cluster disruption. We also consider apparent cluster mass loss by fading below the surface brightness limit of a survey. In all cases, the observed log M-log T diagram can be reproduced under reasonable assumptions.

  17. ON THE DISRUPTION OF STAR CLUSTERS IN A HIERARCHICAL INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Elmegreen, Bruce G.; Hunter, Deidre A.

    2010-01-01

    The distribution of the number of clusters as a function of mass M and age T suggests that clusters get eroded or dispersed in a regular way over time, such that the cluster number decreases inversely as an approximate power law with T within each fixed interval of M. This power law is inconsistent with standard dispersal mechanisms such as cluster evaporation and cloud collisions. In the conventional interpretation, it requires the unlikely situation where diverse mechanisms stitch together over time in a way that is independent of environment or M. Here, we consider another model in which the large-scale distribution of gas in each star-forming region plays an important role. We note that star clusters form with positional and temporal correlations in giant cloud complexes, and suggest that these complexes dominate the tidal force and collisional influence on a cluster during its first several hundred million years. Because the cloud complex density decreases regularly with position from the cluster birth site, the harassment and collision rates between the cluster and the cloud pieces decrease regularly with age as the cluster drifts. This decrease is typically a power law of the form required to explain the mass-age distribution. We reproduce this distribution for a variety of cases, including rapid disruption, slow erosion, combinations of these two, cluster-cloud collisions, cluster disruption by hierarchical disassembly, and partial cluster disruption. We also consider apparent cluster mass loss by fading below the surface brightness limit of a survey. In all cases, the observed log M-log T diagram can be reproduced under reasonable assumptions.

  18. ON THE DIRECT IMAGING OF TIDALLY HEATED EXOMOONS

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Mary Anne; Turner, Edwin L., E-mail: mapeters@princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2013-06-01

    We demonstrate the ability of existing and planned telescopes, on the ground and in space, to directly image tidally heated exomoons orbiting gas-giant exoplanets. Tidally heated exomoons can plausibly be far more luminous than their host exoplanet and as much as 0.1% as bright as the system's stellar primary if it is a low mass star. Because emission from exomoons can be powered by tidal forces, they can shine brightly at arbitrarily large separations from the system's stellar primary with temperatures of several hundreds degrees Kelvin or even higher in extreme cases. Furthermore, these high temperatures can occur in systems that are billions of years old. Tidally heated exomoons may thus be far easier targets for direct imaging studies than giant exoplanets which must be both young and at a large projected separation (typically at least tens of AU) from their primary to be accessible to current generation direct imaging studies. For example, the (warm) Spitzer Space Telescope and the next generation of ground based instruments could detect an exomoon roughly the size of the Earth at a temperature Almost-Equal-To 600 K and a distance Almost-Equal-To 5 pc in the K, L, and M bands at the 5{sigma} confidence level with a one hour exposure; in more favorable but still plausible cases, detection at distances of tens of parsecs is feasible. Future mid-infrared space telescopes, such as James Webb Space Telescope and SPICA, will be capable of directly imaging tidally heated exomoons around the nearest two dozen stars with a brightness temperature {>=}300 K and R {>=} 1 R{sub Circled-Plus} orbiting at {>=}12 AU from the primary star at a 5{sigma} confidence level in a 10{sup 4} s integration. In addition it is possible that some of the exoplanets which have already been directly imaged are actually tidally heated exomoons or blends of such objects with hot young planets. If such exomoons exist and are sufficiently common (i.e., nearby), it may well be far

  19. Organic Carbon and Trace Element Cycling in a River-Dominated Tidal Coastal Wetland System (Tampa Bay, FL, USA)

    Science.gov (United States)

    Moyer, R. P.; Smoak, J. M.; Engelhart, S. E.; Powell, C. E.; Chappel, A. R.; Gerlach, M. J.; Kemp, A.; Breithaupt, J. L.

    2016-02-01

    Tampa Bay is the largest open water, river-fed estuary in Florida (USA), and is characterized by the presence of both mangrove and salt marsh ecosystems. Both coastal wetland systems, and small rivers such as the ones draining into Tampa Bay have historically been underestimated in terms of their role in the global carbon and elemental cycles. Climate change and sea-level rise (SLR) are major threats in Tampa Bay and stand to disrupt hydrologic cycles, compromising sediment accumulation and the rate of organic carbon (OC) burial. This study evaluates organic carbon content, sediment accumulation, and carbon burial rates in salt marsh and mangrove ecosystems, along with measurements of fluxes of dissolved OC (DOC) and trace elements in the water column of the Little Manatee River (LMR) in Tampa Bay. The characterization of OC and trace elements in tidal rivers and estuaries is critical for quantitatively constraining these systems in local-to-regional scale biogeochemical budgets, and provide insight into biogeochemical processes occurring with the estuary and adjacent tidal wetlands. Material fluxes of DOC and trace elements were tied to discharge irrespective of season, and the estuarine habitats removed 15-65% of DOC prior to export to Tampa Bay and the Gulf of Mexico. Thus, material is available for cycling and burial within marsh and mangrove peats, however, LMR mangrove peats have higher OC content and burial rates than adjacent salt marsh peats. Sedimentary accretion rates in LMR marshes are not currently keeping pace with SLR, thus furthering the rapid marsh-to-mangrove conversions that have been seen in Tampa Bay over the past half-century. Additionally, wetlands in Tampa Bay tend to have a lower rate of carbon burial than other Florida tidal wetlands, demonstrating their high sensitivity to climate change and SLR.

  20. Application of Wavelet Decomposition to Removing Barometric and Tidal Response in Borehole Water Level

    Institute of Scientific and Technical Information of China (English)

    Yan Rui; Huang Fuqiong; Chen Yong

    2007-01-01

    Wavelet decomposition is used to analyze barometric fluctuation and earth tidal response in borehole water level changes. We apply wavelet analysis method to the decomposition of barometric fluctuation and earth tidal response into several temporal series in different frequency ranges. Barometric and tidal coefficients in different frequency ranges are computed with least squares method to remove barometric and tidal response. Comparing this method with general linear regression analysis method, we find wavelet analysis method can efficiently remove barometric and earth tidal response in borehole water level. Wavelet analysis method is based on wave theory and vibration theories. It not only considers the frequency characteristic of the observed data but also the temporal characteristic, and it can get barometric and tidal coefficients in different frequency ranges. This method has definite physical meaning.

  1. Tidal power - a major prospect for the 21st century

    International Nuclear Information System (INIS)

    Haws, E.T.

    1997-01-01

    Tidal power technology is reviewed and its prospects for the next century assessed. It is concluded that the technology is now in place and, given the political will to secure financing, tidal power offers a clean, renewable and sustainable source of power for the near future. (UK)

  2. Water and suspended sediment division at a stratified tidal junction

    NARCIS (Netherlands)

    Buschman, F.A.; Vegt, van der M.; Hoitink, A.J.F.; Hoekstra, P.

    2013-01-01

    [1] Tidal junctions play a crucial role in the transport of water, salt, and sediment through a delta distributary network. Water, salt and sediment are exchanged at tidal junctions, thereby influencing the transports in the connecting branches and the overall dynamics of the system. This paper

  3. Gulf of Mexico Integrated Science - Tampa Bay Study - Characterization of Tidal Wetlands

    Science.gov (United States)

    McIvor, Carole

    2005-01-01

    Tidal wetlands in Tampa Bay, Florida, consist of mangrove forests and salt marshes. Wetlands buffer storm surges, provide fish and wildlife habitat, and enhance water quality through the removal of water-borne nutrients and contaminants. Substantial areas of both mangroves and salt marshes have been lost to agricultural, residential, and industrial development in this urban estuary. Wetlands researchers are characterizing the biological components of tidal wetlands and examining the physical factors such as salinity, tidal flushing, and sediment deposition that control the composition of tidal wetland habitats. Wetlands restoration is a priority of resource managers in Tampa Bay. Baseline studies such as these are needed for successful restoration planning and evaluation.

  4. Regulatory, design and methodological impacts in determining tidal-in-stream power resource potential

    International Nuclear Information System (INIS)

    Atwater, Joel F.; Lawrence, Gregory A.

    2011-01-01

    Tidal-in-Stream energy has been heralded by many as a significant potential source for clean power, a scheme where kinetic energy is extracted from tidal currents. A number of estimates have suggested that tidal power may become a sizeable fraction of overall electricity generation, however these estimates have been largely based on a resource assessment methodology that dramatically oversimplifies the physical phenomenon at play. This paper develops a model that considers the effect of energy extraction on the bulk flow, showing that tidal energy inventories that assess solely kinetic energy flux may represent both an order-of-magnitude overestimation of the resource and a significant oversimplification of regulatory impacts. The interplay between the characteristics of a flow and the regulatory and economic issues will likely limit tidal power generation to levels significantly below the physical maximums. Permitted flow reduction, turbine design and staging of development all have significant and predictable impacts on the extractible resource. Energy planners must therefore understand these relationships in order to appropriately assess the magnitude of generation that can be realistically be produced from tidal energy. - Research highlights: → Inventorying kinetic energy is not appropriate for assessing the tidal energy potential and may overestimate the resource by orders of magnitude. → The physical maximum for tidal power extraction is 38% of the total fluid power of a channel and causes a flow reduction of 42%. → Any amount of tidal power generation will reduce the flow rate in a channel. → Limiting the permitted reduction in flow significantly reduces the available resource. → Turbine efficiency is important as extraneous resistance depletes the resource without providing power generation.

  5. An integrated model for estimating energy cost of a tidal current turbine farm

    International Nuclear Information System (INIS)

    Li, Ye; Lence, Barbara J.; Calisal, Sander M.

    2011-01-01

    A tidal current turbine is a device for harnessing energy from tidal currents and functions in a manner similar to a wind turbine. A tidal current turbine farm consists of a group of tidal current turbines distributed in a site where high-speed current is available. The accurate prediction of energy cost of a tidal current turbine farm is important to the justification of planning and constructing such a farm. However, the existing approaches used to predict energy cost of tidal current turbine farms oversimplify the hydrodynamic interactions between turbines in energy prediction and oversimplify the operation and maintenance strategies involved in cost estimation as well as related fees. In this paper, we develop a model, which integrates a marine hydrodynamic model with high accuracy for predicting energy output and a comprehensive cost-effective operation and maintenance model for estimating the cost that may be incurred in producing the energy, to predict energy cost from a tidal current turbine farm. This model is expected to be able to simulate more complicated cases and generate more accurate results than existing models. As there is no real tidal current turbine farm, we validate this model with offshore wind studies. Finally, case studies about Vancouver are conducted with a scenario-based analysis. We minimize the energy cost by minimizing the total cost and maximizing the total power output under constraints related to the local conditions (e.g., geological and labor information) and the turbine specifications. The results suggest that tidal current energy is about ready to penetrate the electricity market in some major cities in North America if learning curve for the operational and maintenance is minimum. (author)

  6. Digital Disruption

    DEFF Research Database (Denmark)

    Rosenstand, Claus Andreas Foss

    det digitale domæne ud over det niveau, der kendetegner den nuværende debat, så præsenteres der ny viden om digital disruption. Som noget nyt udlægges Clayton Christens teori om disruptiv innovation med et særligt fokus på små organisationers mulighed for eksponentiel vækst. Specielt udfoldes...... forholdet mellem disruption og den stadig accelererende digitale udvikling i konturerne til ny teoridannelse om digital disruption. Bogens undertitel ”faretruende og fascinerende forandringer” peger på, at der er behov for en nuanceret debat om digital disruption i modsætning til den tone, der er slået an i...... videre kalder et ”disruption-råd”. Faktisk er rådet skrevet ind i 2016 regeringsgrundlaget for VLK-regeringen. Disruption af organisationer er ikke et nyt fænomen; men hastigheden, hvormed det sker, er stadig accelererende. Årsagen er den globale mega-trend: Digitalisering. Og derfor er specielt digital...

  7. THE EFFECT OF MASS LOSS ON THE TIDAL EVOLUTION OF EXTRASOLAR PLANET

    International Nuclear Information System (INIS)

    Guo, J. H.

    2010-01-01

    By combining mass loss and tidal evolution of close-in planets, we present a qualitative study on their tidal migrations. We incorporate mass loss in tidal evolution for planets with different masses and find that mass loss could interfere with tidal evolution. In an upper limit case (β = 3), a significant portion of mass may be evaporated in a long evolution timescale. Evidence of greater modification of the planets with an initial separation of about 0.1 AU than those with a = 0.15 AU can be found in this model. With the assumption of a large initial eccentricity, the planets with initial mass ≤1 M J and initial distance of about 0.1 AU could not survive. With the supposition of β = 1.1, we find that the loss process has an effect on the planets with low mass at a ∼ 0.05 AU. In both cases, the effect of evaporation on massive planets can be neglected. Also, heating efficiency and initial eccentricity have significant influence on tidal evolution. We find that even low heating efficiency and initial eccentricity have a significant effect on tidal evolution. Our analysis shows that evaporation on planets with different initial masses can accelerate (decelerate) the tidal evolution due to the increase (decrease) in tide of the planet (star). Consequently, the effect of evaporation cannot be neglected in evolutionary calculations of close-in planets. The physical parameters of HD 209458b can be fitted by our model.

  8. Tidal and gravity waves study from the airglow measurements at ...

    Indian Academy of Sciences (India)

    The other waves may be the upward propagating gravity waves or waves resulting from the interaction of inter-mode tidal oscillations, interaction of tidal waves with planetary waves and gravity waves. Some times, the second harmonic wave has higher vertical velocity than the corresponding fundamental wave. Application ...

  9. Seasonal behaviour of tidal inlets in a tropical monsoon area

    NARCIS (Netherlands)

    Lam, N.T.; Stive, M.J.F.; Verhagen, H.J.; Wang, Z.B.

    2008-01-01

    Morphodynamics of a tidal inlet system on a micro-tidal coast in a tropical monsoon influenced region is modelled and discussed. Influences of river flow and wave climate on the inlet morphology are investigated with the aid of process-based state-of-the-art numerical models. Seasonal and episodic

  10. Relationship of autonomic imbalance and circadian disruption with obesity and type 2 diabetes in resistant hypertensive patients

    Directory of Open Access Journals (Sweden)

    Figueiredo Márcio J

    2011-03-01

    Full Text Available Abstract Background Hypertension, diabetes and obesity are not isolated findings, but a series of interacting interactive physiologic derangements. Taking into account genetic background and lifestyle behavior, AI (autonomic imbalance could be a common root for RHTN (resistant hypertension or RHTN plus type 2 diabetes (T2D comorbidity development. Moreover, circadian disruption can lead to metabolic and vasomotor impairments such as obesity, insulin resistance and resistant hypertension. In order to better understand the triggered emergence of obesity and T2D comorbidity in resistant hypertension, we investigated the pattern of autonomic activity in the circadian rhythm in RHTN with and without type 2 diabetes (T2D, and its relationship with serum adiponectin concentration. Methods Twenty five RHTN patients (15 non-T2D and 10 T2D, 15 males, 10 females; age range 34 to 70 years were evaluated using the following parameters: BMI (body mass index, biochemical analysis, serum adiponectinemia, echocardiogram and ambulatory electrocardiograph heart rate variability (HRV in time and frequency domains stratified into three periods: 24 hour, day time and night time. Results Both groups demonstrated similar characteristics despite of the laboratory analysis concerning T2D like fasting glucose, HbA1c levels and hypertriglyceridemia. Both groups also revealed disruption of the circadian rhythm: inverted sympathetic and parasympathetic tones during day (parasympathetic > sympathetic tone and night periods (sympathetic > parasympathetic tone. T2D group had increased BMI and serum triglyceride levels (mean 33.7 ± 4.0 vs 26.6 ± 3.7 kg/m2 - p = 0.00; 254.8 ± 226.4 vs 108.6 ± 48.7 mg/dL - p = 0.04, lower levels of adiponectin (6729.7 ± 3381.5 vs 10911.5 ± 5554.0 ng/mL - p = 0.04 and greater autonomic imbalance evaluated by HRV parameters in time domain compared to non-T2D RHTN patients. Total patients had HRV correlated positively with serum adiponectin (r

  11. Structural safety assessment of a tokamak-type fusion facility for a through crack to cause cooling water leakage and plasma disruption

    International Nuclear Information System (INIS)

    Nakahira, Masataka

    2004-01-01

    A tokamak-type fusion machine has inherent safety associated with plasma shutdown. A small water leak can cause a plasma disruption although there is another possibility to terminate plasma without disruption. This plasma disruption will induce electromagnetic (EM) forces acting in the vacuum vessel (VV). From a radiological safety viewpoint, the VV is designed to form a physical barrier that encloses tritium and activated dust. If the VV can sustain an unstable fracture by EM forces from a through crack to cause the small leak, the structural safety will be assured and the inherent safety will be demonstrated. Therefore, a systematic approach to assure the structural safety is developed. A new analytical model to evaluate the through crack and leak rate of cooling water is proposed, with verification by experimental leak measurements. Based on the analysis, the critical crack length to terminate plasma is evaluated as about 2mm. On the other hand, the critical crack length for unstable fracture is obtained as about 400 mm. It is concluded that EM forces induced by the small leak to terminate plasma will not cause unstable fracture of the VV; thus the inherent safety is demonstrated. (author)

  12. Topographic mapping on large-scale tidal flats with an iterative approach on the waterline method

    Science.gov (United States)

    Kang, Yanyan; Ding, Xianrong; Xu, Fan; Zhang, Changkuan; Ge, Xiaoping

    2017-05-01

    Tidal flats, which are both a natural ecosystem and a type of landscape, are of significant importance to ecosystem function and land resource potential. Morphologic monitoring of tidal flats has become increasingly important with respect to achieving sustainable development targets. Remote sensing is an established technique for the measurement of topography over tidal flats; of the available methods, the waterline method is particularly effective for constructing a digital elevation model (DEM) of intertidal areas. However, application of the waterline method is more limited in large-scale, shifting tidal flats areas, where the tides are not synchronized and the waterline is not a quasi-contour line. For this study, a topographical map of the intertidal regions within the Radial Sand Ridges (RSR) along the Jiangsu Coast, China, was generated using an iterative approach on the waterline method. A series of 21 multi-temporal satellite images (18 HJ-1A/B CCD and three Landsat TM/OLI) of the RSR area collected at different water levels within a five month period (31 December 2013-28 May 2014) was used to extract waterlines based on feature extraction techniques and artificial further modification. These 'remotely-sensed waterlines' were combined with the corresponding water levels from the 'model waterlines' simulated by a hydrodynamic model with an initial generalized DEM of exposed tidal flats. Based on the 21 heighted 'remotely-sensed waterlines', a DEM was constructed using the ANUDEM interpolation method. Using this new DEM as the input data, it was re-entered into the hydrodynamic model, and a new round of water level assignment of waterlines was performed. A third and final output DEM was generated covering an area of approximately 1900 km2 of tidal flats in the RSR. The water level simulation accuracy of the hydrodynamic model was within 0.15 m based on five real-time tide stations, and the height accuracy (root mean square error) of the final DEM was 0.182 m

  13. Heartbeat stars and the ringing of tidal pulsations

    OpenAIRE

    García, RA; Hambleton, K; Kurtz, DW; Prsa, A; Fuller, J; Thompson (SU), S; Ballot, J

    2015-01-01

    With the advent of high precision photometry from satellites such as Kepler and CoRoT, a whole new layer of interesting and astounding astronomical objects has been revealed: heartbeat stars are an example of such objects. Heartbeat stars are eccen- tric ellipsoidal variables that undergo strong tidal interactions when the stars are almost in contact at the time of closest approach. These interactions deform of the stars and cause a notable light curve variation in the form of a tidal pulse. ...

  14. Assessing the vertical structure of baroclinic tidal currents in a global model

    Science.gov (United States)

    Timko, Patrick; Arbic, Brian; Scott, Robert

    2010-05-01

    Tidal forcing plays an important role in many aspects of oceanography. Mixing, transport of particulates and internal wave generation are just three examples of local phenomena that may depend on the strength of local tidal currents. Advances in satellite altimetry have made an assessment of the global barotropic tide possible. However, the vertical structure of the tide may only be observed by deployment of instruments throughout the water column. Typically these observations are conducted at pre-determined depths based upon the interest of the observer. The high cost of such observations often limits both the number and the length of the observations resulting in a limit to our knowledge of the vertical structure of tidal currents. One way to expand our insight into the baroclinic structure of the ocean is through the use of numerical models. We compare the vertical structure of the global baroclinic tidal velocities in 1/12 degree HYCOM (HYbrid Coordinate Ocean Model) to a global database of current meter records. The model output is a subset of a 5 year global simulation that resolves the eddying general circulation, barotropic tides and baroclinic tides using 32 vertical layers. The density structure within the simulation is both vertically and horizontally non-uniform. In addition to buoyancy forcing the model is forced by astronomical tides and winds. We estimate the dominant semi-diurnal (M2), and diurnal (K1) tidal constituents of the model data using classical harmonic analysis. In regions where current meter record coverage is adequate, the model skill in replicating the vertical structure of the dominant diurnal and semi-diurnal tidal currents is assessed based upon the strength, orientation and phase of the tidal ellipses. We also present a global estimate of the baroclinic tidal energy at fixed depths estimated from the model output.

  15. Tidal energy UK Government R and D programme. Final report

    International Nuclear Information System (INIS)

    Craig, J.W.; Davies, L.M.; Allington, M.A.

    1996-05-01

    The United Kingdom Government's research programme into the feasibility of exploiting tidal power for electricity generation in Britain's estuaries is described in this document. The history of the research is included from the Severn Barrage Committee in 1978 to the conclusion of the tidal energy barrages programme in 1994. The programme sought to reduce uncertainty on costs, technical performance and environmental and regional effects, in order to firm up on decisions on whether to construct certain specific barrages. It was concluded that, while technically feasible, tidal power from barrages, was and will continue to be uneconomic compared with other energy sources. Other renewable technologies would receive further research. (UK)

  16. Cephalopod dynamic camouflage: bridging the continuum between background matching and disruptive coloration

    Science.gov (United States)

    Hanlon, R.T.; Chiao, C.-C.; Mäthger, L.M.; Barbosa, A.; Buresch, K.C.; Chubb, C.

    2008-01-01

    Individual cuttlefish, octopus and squid have the versatile capability to use body patterns for background matching and disruptive coloration. We define—qualitatively and quantitatively—the chief characteristics of the three major body pattern types used for camouflage by cephalopods: uniform and mottle patterns for background matching, and disruptive patterns that primarily enhance disruptiveness but aid background matching as well. There is great variation within each of the three body pattern types, but by defining their chief characteristics we lay the groundwork to test camouflage concepts by correlating background statistics with those of the body pattern. We describe at least three ways in which background matching can be achieved in cephalopods. Disruptive patterns in cuttlefish possess all four of the basic components of ‘disruptiveness’, supporting Cott's hypotheses, and we provide field examples of disruptive coloration in which the body pattern contrast exceeds that of the immediate surrounds. Based upon laboratory testing as well as thousands of images of camouflaged cephalopods in the field (a sample is provided on a web archive), we note that size, contrast and edges of background objects are key visual cues that guide cephalopod camouflage patterning. Mottle and disruptive patterns are frequently mixed, suggesting that background matching and disruptive mechanisms are often used in the same pattern. PMID:19008200

  17. A improved tidal method without water level

    Science.gov (United States)

    Luo, xiaowen

    2017-04-01

    Now most tide are obtained use water Level and pressure type water gage, but it is difficult to install them and reading is in low accuracy in this method . In view of above-mentioned facts, In order to improve tide accuracy, A improved method is introduced.sea level is obtained in given time using high-precision GNSS buoy combined instantaneous position from pressure gage. two steps are as following, (1) the GNSS time service is used as the source of synchronization reference in tidal measurement; (2) centimeter-level sea surface positions are obtained in real time using difference GNSS The improved method used in seafloor topography survey,in 145 cross points, 95% meet the requirements of the Hydrographic survey specification. It is effective method to obtain higher accuracy tide.

  18. Tidal Flooding and Vegetation Patterns in a Salt Marsh Tidal Creek Imaged by Low-altitude Balloon Aerial Photography

    Science.gov (United States)

    White, S. M.; Madsen, E.

    2013-12-01

    Inundation of marsh surfaces by tidal creek flooding has implications for the headward erosion of salt marsh creeks, effect of rising sea levels, biological zonation, and marsh ecosystem services. The hydroperiod; as the frequency, duration, depth and flux of water across the marsh surface; is a key factor in salt marsh ecology, but remains poorly understood due to lack of data at spatial scales relevant to tracking the spatial movement of water across the marsh. This study examines how hydroperiod, drainage networks, and tidal creek geomorphology on the vegetation at Crab Haul Creek. Crab Haul Creek is the farthest landward tidal basin in North Inlet, a bar-built estuary in South Carolina. This study measures the hydroperiod in the headwaters Crab Haul Creek with normal and near-IR photos from a helium balloon Helikite at 75-100 m altitude. Photos provide detail necessary to resolve the waterline and delineate the hydroperiod during half tidal cycles by capturing the waterline hourly from the headwaters to a piezometer transect 260 meters north. The Helikite is an ideal instrument for local investigations of surface hydrology due to its maneuverability, low cost, ability to remain aloft for extended time over a fixed point, and ability to capture high-resolution images. Photographs taken from aircraft do not provide the detail necessary to determine the waterline on the marsh surface. The near-IR images make the waterline more distinct by increasing the difference between wet and dry ground. In the headwaters of Crab Haul Creek, individual crab burrows are detected by automated image classification and the number of crab burrows and their spatial density is tracked from January-August. Crab burrows are associated with the unvegetated region at the creek head, and we relate their change over time to the propagation of the creek farther into the tidal basin. Plant zonation is influenced by the hydroperiod, but also may be affected by salinity, water table depth, and

  19. Turbidity maximum formation in a well-mixed macrotidal estuary : The role of tidal pumping

    NARCIS (Netherlands)

    Yu, Q.; Wang, Y.; Gao, J.; Gao, S.; Flemming, B.

    2014-01-01

    Traditionally, vertical circulation (induced by gravity circulation and tidal straining), tidal pumping, and resuspension are suggested as the major processes for the formation and maintenance of the estuarine turbidity maximum (ETM). Due to strong mixing, tidal pumping is considered as the

  20. Analytic modeling of axisymmetric disruption halo currents

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Kellman, A.G.

    1999-01-01

    Currents which can flow in plasma facing components during disruptions pose a challenge to the design of next generation tokamaks. Induced toroidal eddy currents and both induced and conducted poloidal ''halo'' currents can produce design-limiting electromagnetic loads. While induction of toroidal and poloidal currents in passive structures is a well-understood phenomenon, the driving terms and scalings for poloidal currents flowing on open field lines during disruptions are less well established. A model of halo current evolution is presented in which the current is induced in the halo by decay of the plasma current and change in enclosed toroidal flux while being convected into the halo from the core by plasma motion. Fundamental physical processes and scalings are described in a simplified analytic version of the model. The peak axisymmetric halo current is found to depend on halo and core plasma characteristics during the current quench, including machine and plasma dimensions, resistivities, safety factor, and vertical stability growth rate. Two extreme regimes in poloidal halo current amplitude are identified depending on the minimum halo safety factor reached during the disruption. A 'type I' disruption is characterized by a minimum safety factor that remains relatively high (typically 2 - 3, comparable to the predisruption safety factor), and a relatively low poloidal halo current. A 'type II' disruption is characterized by a minimum safety factor comparable to unity and a relatively high poloidal halo current. Model predictions for these two regimes are found to agree well with halo current measurements from vertical displacement event disruptions in DIII-D [T. S. Taylor, K. H. Burrell, D. R. Baker, G. L. Jackson, R. J. La Haye, M. A. Mahdavi, R. Prater, T. C. Simonen, and A. D. Turnbull, open-quotes Results from the DIII-D Scientific Research Program,close quotes in Proceedings of the 17th IAEA Fusion Energy Conference, Yokohama, 1998, to be published in

  1. Image formation in weak gravitational lensing by tidal charged black holes

    International Nuclear Information System (INIS)

    Horvath, Zsolt; Gergely, Laszlo Arpad; Hobill, David

    2010-01-01

    We derive a generic weak lensing equation and apply it for the study of images produced by tidal charged brane black holes. We discuss the similarities and point out the differences with respect to the Schwarzschild black hole weak lensing, to both first- and second-order accuracy, when either the mass or the tidal charge dominates. In the case of mass-dominated weak lensing, we analyze the position of the images, the magnification factors and the flux ratio, as compared to the Schwarzschild lensing. The most striking modification appears in the flux ratio. When the tidal charge represents the dominating lensing effect, the number and orientation of the images with respect to the optical axis resembles the lensing properties of a Schwarzschild geometry, where the sign associated with the mass is opposite to that for the tidal charge. Finally it is found that the ratio of the brightness of the images as a function of image separation in the case of tidal charged black holes obeys a power-law relation significantly different from that of Schwarzschild black holes. This might provide a means for determining the underlying spacetime structure.

  2. Development and the environmental impact analysis of tidal current energy turbines in China

    Science.gov (United States)

    Liu, Yuxin; Ma, Changlei; Jiang, Bo

    2018-02-01

    Chinese government pays more attentions to renewable energies (RE) in the context of increasing energy demand and climate change problems. As a promising RE, the utilization of marine renewable energy (MRE) is engaging in the world, including the wave energy and tidal current energy mainly. At the same time, the tidal current energy resources in China are abundant. Thus, the utilization of tidal current energy becomes an inevitable choice for China to meet the challenge of global climate change. The Renewable Energy Law (amendment) and “Twelfth Five-Year” Plan of Renewable Energy Development (2011-2015) were released in recent years in China, the tidal current energy are successfully implemented in China, including the R&D and pilot projects. After the summary of the status of tidal current energy converters in recent years in China, especially the devices being in the open sea test. The environmental impact study in China is also introduced in order to offer reference for the environmental impact assessment of tidal current power generation.

  3. Disruption?

    DEFF Research Database (Denmark)

    2016-01-01

    This is a short video on the theme disruption and entrepreneurship. It takes the form of an interview with John Murray......This is a short video on the theme disruption and entrepreneurship. It takes the form of an interview with John Murray...

  4. Development, installation and testing of a large-scale tidal current turbine

    Energy Technology Data Exchange (ETDEWEB)

    Thake, J.

    2005-10-15

    This report summarises the findings of the Seaflow project to investigate the feasibility of building and operating a commercial scale marine current horizontal axis tidal turbine and to evaluate the long-term economics of producing electricity using tidal turbines. Details are given of competitive tidal stream technologies and their commercial status, the selection of the site on the North Devon coast of the UK, and the evaluation of the turbine design, manufacture, testing, installation, commissioning, and maintenance of the turbine. The organisations working on the Seaflow project and cost estimations are discussed.

  5. Impact of intertidal area characteristics on estuarine tidal hydrodynamics: A modelling study for the Scheldt Estuary

    Science.gov (United States)

    Stark, J.; Smolders, S.; Meire, P.; Temmerman, S.

    2017-11-01

    Marsh restoration projects are nowadays being implemented as ecosystem-based strategies to reduce flood risks and to restore intertidal habitat along estuaries. Changes in estuarine tidal hydrodynamics are expected along with such intertidal area changes. A validated hydrodynamic model of the Scheldt Estuary is used to gain fundamental insights in the role of intertidal area characteristics on tidal hydrodynamics and tidal asymmetry in particular through several geomorphological scenarios in which intertidal area elevation and location along the estuary is varied. Model results indicate that the location of intertidal areas and their storage volume relative to the local tidal prism determine the intensity and reach along the estuary over which tidal hydrodynamics are affected. Our model results also suggest that intertidal storage areas that are located within the main estuarine channel system, and hence are part of the flow-carrying part of the estuary, may affect tidal hydrodynamics differently than intertidal areas that are side-basins of the main estuarine channel, and hence only contribute little to the flow-carrying cross-section of the estuary. If tidal flats contribute to the channel cross-section and exert frictional effects on the tidal propagation, the elevation of intertidal flats influences the magnitude and direction of tidal asymmetry along estuarine channels. Ebb-dominance is most strongly enhanced if tidal flats are around mean sea level or slightly above. Conversely, flood-dominance is enhanced if the tidal flats are situated low in the tidal frame. For intertidal storage areas at specific locations besides the main channel, flood-dominance in the estuary channel peaks in the vicinity of those areas and generally reduces upstream and downstream compared to a reference scenario. Finally, the model results indicate an along-estuary varying impact on the tidal prism as a result of adding intertidal storage at a specific location. In addition to known

  6. Temporal bed level variations in the Yangtze tidal flats (abstract)

    NARCIS (Netherlands)

    Yan, H.; Van Prooijen, B.C.

    2013-01-01

    The Yangtze River is one of the largest rivers in the world and the longest one in Asia. Its estuary forms an important entrance for shipping, but is also a key ecological system. Especially the inter-tidal flats are valuable habitats. The health and integrity of the estuarine tidal flat are however

  7. End-tidal control vs. manually controlled minimal-flow anesthesia: a prospective comparative trial.

    Science.gov (United States)

    Wetz, A J; Mueller, M M; Walliser, K; Foest, C; Wand, S; Brandes, I F; Waeschle, R M; Bauer, M

    2017-11-01

    To ensure safe general anesthesia, manually controlled anesthesia requires constant monitoring and numerous manual adjustments of the gas dosage, especially for low- and minimal-flow anesthesia. Oxygen flow-rate and administration of volatile anesthetics can also be controlled automatically by anesthesia machines using the end-tidal control technique, which ensures constant end-tidal concentrations of oxygen and anesthetic gas via feedback and continuous adjustment mechanisms. We investigated the hypothesis that end-tidal control is superior to manually controlled minimal-flow anesthesia (0.5 l/min). In this prospective trial, we included 64 patients undergoing elective surgery under general anesthesia. We analyzed the precision of maintenance of the sevoflurane concentration (1.2-1.4%) and expiratory oxygen (35-40%) and the number of necessary adjustments. Target-concentrations of sevoflurane and oxygen were maintained at more stable levels with the use of end-tidal control (during the first 15 min 28% vs. 51% and from 15 to 60 min 1% vs. 19% deviation from sevoflurane target, P tidal oxygen (5, IQR 3-6). The target-concentrations were reached earlier with the use of end-tidal compared with manual controlled minimal-flow anesthesia but required slightly greater use of anesthetic agents (6.9 vs. 6.0 ml/h). End-tidal control is a superior technique for setting and maintaining oxygen and anesthetic gas concentrations in a stable and rapid manner compared with manual control. Consequently, end-tidal control can effectively support the anesthetist. © 2017 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  8. Disruption of tetR type regulator adeN by mobile genetic element confers elevated virulence in Acinetobacter baumannii.

    Science.gov (United States)

    Saranathan, Rajagopalan; Pagal, Sudhakar; Sawant, Ajit R; Tomar, Archana; Madhangi, M; Sah, Suresh; Satti, Annapurna; Arunkumar, K P; Prashanth, K

    2017-10-03

    Acinetobacter baumannii is an important human pathogen and considered as a major threat due to its extreme drug resistance. In this study, the genome of a hyper-virulent MDR strain PKAB07 of A. baumannii isolated from an Indian patient was sequenced and analyzed to understand its mechanisms of virulence, resistance and evolution. Comparative genome analysis of PKAB07 revealed virulence and resistance related genes scattered throughout the genome, instead of being organized as an island, indicating the highly mosaic nature of the genome. Many intermittent horizontal gene transfer events, insertion sequence (IS) element insertions identified were augmenting resistance machinery and elevating the SNP densities in A. baumannii eventually aiding in their swift evolution. ISAba1, the most widely distributed insertion sequence in A. baumannii was found in multiple sites in PKAB07. Out of many ISAba1 insertions, we identified novel insertions in 9 different genes wherein insertional inactivation of adeN (tetR type regulator) was significant. To assess the significance of this disruption in A. baumannii, adeN mutant and complement strains were constructed in A. baumannii ATCC 17978 strain and studied. Biofilm levels were abrogated in the adeN knockout when compared with the wild type and complemented strain of adeN knockout. Virulence of the adeN knockout mutant strain was observed to be high, which was validated by in vitro experiments and Galleria mellonella infection model. The overexpression of adeJ, a major component of AdeIJK efflux pump observed in adeN knockout strain could be the possible reason for the elevated virulence in adeN mutant and PKB07 strain. Knocking out of adeN in ATCC strain led to increased resistance and virulence at par with the PKAB07. Disruption of tetR type regulator adeN by ISAba1 consequently has led to elevated virulence in this pathogen.

  9. From Globular Clusters to Tidal Dwarfs: Structure Formation in the Tidal Tails of Merging Pairs

    Science.gov (United States)

    Knierman, K. A.; Gallagher, S. C.; Charlton, J. C.; Hunsberger, S. D.; Whitmore, B. C.; Kundu, A.; Hibbard, J. E.; Zaritsky, D. F.

    2001-05-01

    Using V and I images obtained with the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope, we investigate compact stellar structures within tidal tails. Six regions of tidal debris in the four classic ``Toomre Sequence'' mergers: NGC 4038/9 (``Antennae''), NGC 3256, NGC 3921, and NGC 7252 (``Atoms for Peace'') have been studied in order to explore how the star formation depends upon the local and global physical conditions. These mergers sample a range of stages in the evolutionary sequence, and include HI--rich and HI--poor environments. The six tails are found to contain a variety of stellar structures, with sizes ranging from those of globular clusters up to those of dwarf galaxies. From V and I WFPC2 images, we measure the luminosities and colors of the star clusters. NGC 3256 is found to have a large population of young clusters lying along both tails, similar to those found in the inner region of the merger. In contrast, NGC 4038/9 has no clusters in the observed region of the tail, only less luminous point sources likely to be individual stars. NGC 3921 and NGC 7252 have small populations of clusters that are concentrated in certain regions of the tail, and particularly in the prominent tidal dwarfs in the eastern and western tails of NGC 7252. The two cluster--rich tails of NGC 3256 are not distinguished from the others by their ages or by their total HI masses. We acknowledge support from NASA through STScI, and from NSF for an REU supplement for Karen Knierman.

  10. Tidal current energy resource assessment in Ireland: Current status and future update

    International Nuclear Information System (INIS)

    O'Rourke, Fergal; Boyle, Fergal; Reynolds, Anthony

    2010-01-01

    Interest in renewable energy in Ireland has increased continually over the past decade. This interest is due primarily to security of supply issues and the effects of climate change. Ireland imports over 90% of its primary energy consumption, mostly in the form of fossil fuels. The exploitation of Ireland's vast indigenous renewable energy resources is required in order to reduce this over-dependence on fossil fuel imports to meet energy demand. Various targets have been set by the Irish government to incorporate renewable energy technologies into Ireland's energy market. As a result of these targets, the development in wind energy has increased substantially over the past decade; however this method of energy extraction is intermittent and unpredictable. Ireland has an excellent tidal current energy resource and the use of this resource will assist in the development of a sustainable energy future. Energy extraction using tidal current energy technologies offers a vast and predictable energy resource. This paper reviews the currently accepted tidal current energy resource assessment for Ireland. This assessment was compiled by Sustainable Energy Ireland in a report in 2004. The assessment employed a 2-dimensional numerical model of the tidal current velocities around Ireland, and from this numerical model the theoretical tidal current energy resource was identified. With the introduction of constraints and limitations, the technical, practical, accessible and viable tidal current energy resources were obtained. The paper discusses why the assessment needs updating including the effect on the assessment of the current stage of development of tidal current turbines and their deployment technology. (author)

  11. High-resolution modeling assessment of tidal stream resource in Western Passage of Maine, USA

    Science.gov (United States)

    Yang, Zhaoqing; Wang, Taiping; Feng, Xi; Xue, Huijie; Kilcher, Levi

    2017-04-01

    Although significant efforts have been taken to assess the maximum potential of tidal stream energy at system-wide scale, accurate assessment of tidal stream energy resource at project design scale requires detailed hydrodynamic simulations using high-resolution three-dimensional (3-D) numerical models. Extended model validation against high quality measured data is essential to minimize the uncertainties of the resource assessment. Western Passage in the State of Maine in U.S. has been identified as one of the top ranking sites for tidal stream energy development in U.S. coastal waters, based on a number of criteria including tidal power density, market value and transmission distance. This study presents an on-going modeling effort for simulating the tidal hydrodynamics in Western Passage using the 3-D unstructured-grid Finite Volume Community Ocean Model (FVCOM). The model domain covers a large region including the entire the Bay of Fundy with grid resolution varies from 20 m in the Western Passage to approximately 1000 m along the open boundary near the mouth of Bay of Fundy. Preliminary model validation was conducted using existing NOAA measurements within the model domain. Spatial distributions of tidal power density were calculated and extractable tidal energy was estimated using a tidal turbine module embedded in FVCOM under different tidal farm scenarios. Additional field measurements to characterize resource and support model validation were discussed. This study provides an example of high resolution resource assessment based on the guidance recommended by the International Electrotechnical Commission Technical Specification.

  12. Environmental impact assessment of Kachchh tidal power project

    International Nuclear Information System (INIS)

    Yadav, Ramanand; Lal, B.B.

    1995-01-01

    The Kachchh tidal power development project is a single-basin, single -effect and ebb generation development by construction of a tidal power barrage of about 3.25 km length across Hansthal creek. The project may disturb the ecosystem of the region. The paper deals in detail the environmental impacts of the project on climate, water velocity, flow and sedimentation pattern, water quality, flora and fauna, fishery, tourism and recreation, wild life, public health and socio-economic conditions. (author). 4 refs., 1 fig., 2 tabs

  13. Tidal Mixing at the Shelf Break

    National Research Council Canada - National Science Library

    Hogg, Nelson; Legg, Sonya

    2005-01-01

    ...; the second a set of simulations of flow over the Hawaiian ridge. The most exciting scientific result is the importance of internal hydraulic jumps in generating tidal mixing at large amplitude, steep topography...

  14. The mass disruption of Jupiter Family comets

    Science.gov (United States)

    Belton, Michael J. S.

    2015-01-01

    I show that the size-distribution of small scattered-disk trans-neptunian objects when derived from the observed size-distribution of Jupiter Family comets (JFCs) and other observational constraints implies that a large percentage (94-97%) of newly arrived active comets within a range of 0.2-15.4 km effective radius must physically disrupt, i.e., macroscopically disintegrate, within their median dynamical lifetime. Additional observational constraints include the numbers of dormant and active nuclei in the near-Earth object (NEO) population and the slope of their size distributions. I show that the cumulative power-law slope (-2.86 to -3.15) of the scattered-disk TNO hot population between 0.2 and 15.4 km effective radius is only weakly dependent on the size-dependence of the otherwise unknown disruption mechanism. Evidently, as JFC nuclei from the scattered disk evolve into the inner Solar System only a fraction achieve dormancy while the vast majority of small nuclei (e.g., primarily those with effective radius <2 km) break-up. The percentage disruption rate appears to be comparable with that of the dynamically distinct Oort cloud and Halley type comets (Levison, H.F., Morbidelli, A., Dones, L., Jedicke, R., Wiegert, P.A., Bottke Jr., W.F. [2002]. Science 296, 2212-2215) suggesting that all types of comet nuclei may have similar structural characteristics even though they may have different source regions and thermal histories. The typical disruption rate for a 1 km radius active nucleus is ∼5 × 10-5 disruptions/year and the dormancy rate is typically 3 times less. We also estimate that average fragmentation rates range from 0.01 to 0.04 events/year/comet, somewhat above the lower limit of 0.01 events/year/comet observed by Chen and Jewitt (Chen, J., Jewitt, D.C. [1994]. Icarus 108, 265-271).

  15. Tidal Love numbers and moment-Love relations of polytropic stars

    Science.gov (United States)

    Yip, Kenny L. S.; Leung, P. T.

    2017-12-01

    The physical significance of tidal deformation in astronomical systems has long been known. The recently discovered universal I-Love-Q relations, which connect moment of inertia, quadrupole tidal Love number and spin-induced quadrupole moment of compact stars, also underscore the special role of tidal deformation in gravitational wave astronomy. Motivated by the observation that such relations also prevail in Newtonian stars and crucially depend on the stiffness of a star, we consider the tidal Love numbers of Newtonian polytropic stars whose stiffness is characterized by a polytropic index n. We first perturbatively solve the Lane-Emden equation governing the profile of polytropic stars through the application of the scaled delta expansion method and then formulate perturbation series for the multipolar tidal Love number about the two exactly solvable cases with n = 0 and n = 1, respectively. Making use of these two series to form a two-point Padé approximant, we find an approximate expression of the quadrupole tidal Love number, whose error is less than 2.5 × 10-5 per cent (0.39 per cent) for n ∈ [0, 1] (n ∈ [0, 3]). Similarly, we also determine the mass moments for polytropic stars accurately. Based on these findings, we are able to show that the I-Love-Q relations are in general stationary about the incompressible limit irrespective of the equation of state of a star. Moreover, for the I-Love-Q relations, there is a secondary stationary point near n ≈ 0.4444, thus showing the insensitivity to n for n ∈ [0, 1]. Our investigation clearly tracks the universality of the I-Love-Q relations from their validity for stiff stars such as neutron stars to their breakdown for soft stars.

  16. Breakdown of Hydrostatic Assumption in Tidal Channel with Scour Holes

    Directory of Open Access Journals (Sweden)

    Chunyan Li

    2016-10-01

    Full Text Available Hydrostatic condition is a common assumption in tidal and subtidal motions in oceans and estuaries.. Theories with this assumption have been largely successful. However, there is no definite criteria separating the hydrostatic from the non-hydrostatic regimes in real applications because real problems often times have multiple scales. With increased refinement of high resolution numerical models encompassing smaller and smaller spatial scales, the need for non-hydrostatic models is increasing. To evaluate the vertical motion over bathymetric changes in tidal channels and assess the validity of the hydrostatic approximation, we conducted observations using a vessel-based acoustic Doppler current profiler (ADCP. Observations were made along a straight channel 18 times over two scour holes of 25 m deep, separated by 330 m, in and out of an otherwise flat 8 m deep tidal pass leading to the Lake Pontchartrain over a time period of 8 hours covering part of the diurnal tidal cycle. Out of the 18 passages over the scour holes, 11 of them showed strong upwelling and downwelling which resulted in the breakdown of hydrostatic condition. The maximum observed vertical velocity was ~ 0.35 m/s, a high value in a tidal channel, and the estimated vertical acceleration reached a high value of 1.76×10-2 m/s2. Analysis demonstrated that the barotropic non-hydrostatic acceleration was dominant. The cause of the non-hydrostatic flow was the that over steep slopes. This demonstrates that in such a system, the bathymetric variation can lead to the breakdown of hydrostatic conditions. Models with hydrostatic restrictions will not be able to correctly capture the dynamics in such a system with significant bathymetric variations particularly during strong tidal currents.

  17. Properties of active tidal bedforms

    DEFF Research Database (Denmark)

    Winter, Christian; Lefebvre, Alice; Becker, Marius

    2016-01-01

    Bedforms of various shapes and sizes are ubiquitous in tidal channels, inlets and estuaries. They constitute a form roughness which has a large scale effect on the hydrodynamics and sediment transport of coastal environments. It has been shown that this form roughness can be expressed in terms...

  18. Detecting areal changes in tidal flats after sea dike construction ...

    Indian Academy of Sciences (India)

    The main objective of this study was to estimate changes in the area of tidal flats that occurred after sea dike construction on the western coast of South Korea using Landsat-TM images. Applying the ISODATA method of unsupervised classification for Landsat-TM images, the tidal flats were identified, and the resulting areas ...

  19. Effects of causeway construction on vegetation and sedimentation in North Carolina tidal marshes

    Science.gov (United States)

    Knowlton, A.; Leonard, L.; Pricope, N. G.; Eulie, D.

    2017-12-01

    Causeways, especially those constructed to facilitate transportation across low lying tidal marshes, are known to affect tidal exchanges and thereby potentially influence geological and biological processes in these ecosystems. While these impacts have been documented in several expansive marsh systems with large tidal ranges, the extent of these impacts in smaller tidal creek watersheds is less understood. This study examined how the presence, absence, and removal of small causeways affected sedimentological processes and vegetation characteristics in two small tidal creek watersheds in Wilmington, NC. Surficial deposition rates, determined using petri-dish sediment traps, indicate that mean deposition landward of a small causeway (1.64 mg cm-2day-1) is significantly lower (pchanges adjacent to the causeway. Partial causeway removal in one of these systems in 2006 also provided the opportunity to evaluate how the marsh canopy responded to causeway removal. Using Juncus roemerianus and Spartina alterniflora as a proxy for changes in tidal exchange, spectroradiometer data and aerial imagery available in 2006 and 2016 will be used to quantify changes in canopy coverage subsequent to causeway removal. Although this study is ongoing, the preliminary results indicate that small causeways, similar to their larger counterparts, significantly affect the rate and characteristics of sediment delivered to landward marshes and also affect tidal exchanges that lead to changes in vegetation characteristics.

  20. On summer stratification and tidal mixing in the Taiwan Strait

    Science.gov (United States)

    Zhu, Jia; Hu, Jianyu; Liu, Zhiyu

    2013-06-01

    On continental shelves, a front that separates the sea into well-mixed and stratified zones is usually formed in warm seasons due to spatial variations of tidal mixing. In this paper, using eight years of in situ hydrographic observations, satellite images of sea surface temperature (SST) and chlorophyll- a (Chl- a) concentration, and results of a tidal model, we investigate summer stratification in the Taiwan Strait and its dependence on tidal mixing, upwelling, and river diluted water plumes. In most regions of the strait the dominant role of tidal mixing in determining the thermohaline structure is confirmed by the correlation between the two; there are some regions, however, where thermohaline structure varies in different ways owing to significant influences of upwelling and river diluted water plumes. The well-mixed regions are mainly distributed on the Taiwan Bank and in the offshore regions off the Dongshan Island, Nanao Island, and Pingtan Island, while the northern and central Taiwan Strait and the region south of the Taiwan Bank are stratified. The critical Simpson-Hunter parameter for the region is estimated to be 1.78.