WorldWideScience

Sample records for tibial component designs

  1. Improving tibial component coronal alignment during total knee arthroplasty with use of a tibial planing device.

    Science.gov (United States)

    Patil, Shantanu; D'Lima, Darryl D; Fait, James M; Colwell, Clifford W

    2007-02-01

    The outcomes of knee arthroplasty have been shown to be affected by component alignment. Intramedullary and extramedullary alignment instrumentation are fairly effective for achieving the desired mean tibial component coronal alignment. However, there are outliers representing >3 degrees of varus or valgus alignment with respect to the anatomic tibial shaft axis. We measured the efficacy of a custom tibial planing device for reducing the outliers in tibial alignment. We designed a tibial planing tool in an effort to improve tibial alignment. In one cohort (100 knees), we used traditional intramedullary alignment instrumentation to make the tibial bone cut. In a second cohort (120 knees), we used intramedullary alignment instrumentation to make the cut and also used a custom tool to check the cut and to correct an inexact cut. Tibial tray alignment relative to the long axis of the tibial shaft was measured in the coronal and sagittal planes on postoperative radiographs. The target coronal alignment was 90 degrees with respect to the tibial shaft axis (with alignment). A total of 100 anteroposterior radiographs and sixty-five lateral radiographs were analyzed for the group that was treated with traditional instrumentation alone, and a total of 120 anteroposterior radiographs and fifty-five lateral radiographs were analyzed for the group that was treated with use of the custom tibial planing device. The mean coronal alignment of the tibial component was 89.5 degrees +/- 2.1 degrees in the group that was treated with traditional instrumentation alone and 89.6 degrees +/- 1.4 degrees in the group that was treated with use of the custom planing device. Although the mean coronal alignment was not significantly different, the number of outliers was substantially reduced when the custom planing device was used. All 120 components that had been aligned with use of the custom planing device were within 3 degrees of the target coronal alignment, compared with only eighty

  2. The Valgus Inclination of the Tibial Component Increases the Risk of Medial Tibial Condylar Fractures in Unicompartmental Knee Arthroplasty.

    Science.gov (United States)

    Inoue, Shinji; Akagi, Masao; Asada, Shigeki; Mori, Shigeshi; Zaima, Hironori; Hashida, Masahiko

    2016-09-01

    Medial tibial condylar fractures (MTCFs) are a rare but serious complication after unicompartmental knee arthroplasty. Although some surgical pitfalls have been reported for MTCFs, it is not clear whether the varus/valgus tibial inclination contributes to the risk of MTCFs. We constructed a 3-dimensional finite elemental method model of the tibia with a medial component and assessed stress concentrations by changing the inclination from 6° varus to 6° valgus. Subsequently, we repeated the same procedure adding extended sagittal bone cuts of 2° and 10° in the posterior tibial cortex. Furthermore, we calculated the bone volume that supported the tibial component, which is considered to affect stress distribution in the medial tibial condyle. Stress concentrations were observed on the medial tibial metaphyseal cortices and on the anterior and posterior tibial cortices in the corner of cut surfaces in all models; moreover, the maximum principal stresses on the posterior cortex were larger than those on the anterior cortex. The extended sagittal bone cuts in the posterior tibial cortex increased the stresses further at these 3 sites. In the models with a 10° extended sagittal bone cut, the maximum principal stress on the posterior cortex increased as the tibial inclination changed from 6° varus to 6° valgus. The bone volume decreased as the inclination changed from varus to valgus. In this finite element method, the risk of MTCFs increases with increasing valgus inclination of the tibial component and with increased extension of the sagittal cut in the posterior tibial cortex. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. [Custom-designed 3D tibial augmentation for knee replacement].

    Science.gov (United States)

    Jirman, R; Vavrík, P; Horák, Z

    2009-02-01

    Reconstruction with the use of custom-made implants aims at optimal replacement of lost or damaged bone structures and restoration of their funkction. In this study the development and construction of a custom-made implant and the operative technique used for the treatment of an extensive tibial defect are described. The patient was a 65-year-old man treated for over 20 years for psoriatic arthritis and severe instability of the right knee, particularly in the frontal plane, with a worsening varus deformity. The radiogram showed an extensive destruction of the medial tibial condyle that also deeply involved the lateral condyle. The extent of defect made it impossible to use any commercial tibial augmentation. The geometry of the custom-designed implant for the medial tibial condyle was constructed on the basis of a 3D defect model and the shape of the medial tibial condyle of the collateral knee seen on CT scans. After its correct shape was verified on a plastic model, its coordinates were set in the software of a machine tool, and a titanium augmentation otherwise compatible with a standard knee replacement was produced.The use of such a custom implant to complete standard total knee arthroplasty has so far been demanding in terms of organisation and manufacture. Its production in the future could be facilitated by substituting titanium for plastic material such as poly-ether-ether-ketone (PEEK). Key words: custom-made implant, tibial augmentation, knee prosthesis.

  4. The Effect of Malrotation of Tibial Component of Total Knee Arthroplasty on Tibial Insert during High Flexion Using a Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Kei Osano

    2014-01-01

    Full Text Available One of the most common errors of total knee arthroplasty procedure is a malrotation of tibial component. The stress on tibial insert is closely related to polyethylene failure. The objective of this study is to analyze the effect of malrotation of tibial component for the stress on tibial insert during high flexion using a finite element analysis. We used Stryker NRG PS for analysis. Three different initial conditions of tibial component including normal, 15° internal malrotation, and 15° external malrotation were analyzed. The tibial insert made from ultra-high-molecular-weight polyethylene was assumed to be elastic-plastic while femoral and tibial metal components were assumed to be rigid. Four nonlinear springs attached to tibial component represented soft tissues around the knee. Vertical load was applied to femoral component which rotated from 0° to 135° while horizontal load along the anterior posterior axis was applied to tibial component during flexion. Maximum equivalent stresses on the surface were analyzed. Internal malrotation caused the highest stress which arose up to 160% of normal position. External malrotation also caused higher stress. Implanting prosthesis in correct position is important for reducing the risk of abnormal wear and failure.

  5. What is the optimal alignment of the tibial and femoral components in knee arthroplasty?

    DEFF Research Database (Denmark)

    Gromov, Kirill; Korchi, Mounim; Thomsen, Morten G

    2014-01-01

    of positioning on survival and functional outcome was considered. Results - Many definitions exist when evaluating placement of femoral and tibial components. Implant alignment plays a role in both survival and functional outcome following primary TKA, as component malalignment can lead to increased failure......Background - Surgeon-dependent factors such as optimal implant alignment are thought to play a significant role in outcome following primary total knee arthroplasty (TKA). Exact definitions and references for optimal alignment are, however, still being debated. This overview of the literature...... describes different definitions of component alignment following primary TKA for (1) tibiofemoral alignment in the AP plane, (2) tibial and femoral component placement in the AP plane, (3) tibial and femoral component placement in the sagittal plane, and (4) rotational alignment of tibial and femoral...

  6. All-Polyethylene Tibial Components: An Analysis of Long-Term Outcomes and Infection.

    Science.gov (United States)

    Houdek, Matthew T; Wagner, Eric R; Wyles, Cody C; Watts, Chad D; Cass, Joseph R; Trousdale, Robert T

    2016-07-01

    There is debate regarding tibial component modularity and composition in total knee arthroplasty (TKA). Biomechanical studies have suggested improved stress distribution in metal-backed tibias; however, these results have not translated clinically. The purpose of this study was to analyze the outcomes of all-polyethylene components and to compare the results to those with metal-backed components. We reviewed 31,939 patients undergoing a primary TKA over a 43-year period (1970-2013). There were 28,224 (88%) metal-backed and 3715 (12%) all-polyethylene tibial components. The metal-backed and all-polyethylene groups had comparable demographics with respect to gender, age and body mass index (BMI). Mean follow-up was 7 years. The mean survival for all primary TKAs at the 5-, 10-, 20- and 30-year time points was 95%, 89%, 73%, and 57%, respectively. All-polyethylene tibial components were found to have a significantly improved (P tibial components were also found to have a significantly lower rate of infection, instability, tibial component loosening, and periprosthetic fracture. The all-polyethylene group had improved survival rates in all age groups, except in patients 85 years old or greater, where there was no significant difference. All-polyethylene tibial components had improved survival for all BMI groups except in the morbidly obese (BMI ≥ 40) where there was no significant difference. All-polyethylene tibial components had significantly improved implant survival, reduced rates of postoperative infection, fracture, and tibial component loosening. All polyethylene should be considered for most of the patients, regardless of age and BMI. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Intramedullary versus extramedullary alignment of the tibial component in the Triathlon knee

    LENUS (Irish Health Repository)

    Cashman, James P

    2011-08-20

    Abstract Background Long term survivorship in total knee arthroplasty is significantly dependant on prosthesis alignment. Our aim was determine which alignment guide was more accurate in positioning of the tibial component in total knee arthroplasty. We also aimed to assess whether there was any difference in short term patient outcome. Method A comparison of intramedullary versus extramedullary alignment jig was performed. Radiological alignment of tibial components and patient outcomes of 103 Triathlon total knee arthroplasties were analysed. Results Use of the intramedullary was found to be significantly more accurate in determining coronal alignment (p = 0.02) while use of the extramedullary jig was found to give more accurate results in sagittal alignment (p = 0.04). There was no significant difference in WOMAC or SF-36 at six months. Conclusion Use of an intramedullary jig is preferable for positioning of the tibial component using this knee system.

  8. Early Results of a Modular Cementless Tibial Component for Total Knee Arthroplasty

    Directory of Open Access Journals (Sweden)

    Raj Sinha, MD, PhD

    2014-10-01

    Full Text Available Cementless components in TKA have been used for almost 3 decades, despite mixed success rates. However, biologic fixation remains attractive, especially for younger patients, because of the potential of unlimited durability. This paper is the first to report results on a modular tibial base plate using trabecular metal as a fixation surface. Twenty-four primary TKAs were evaluated clinical and radiographically at mean 1.9 year followup. Excellent clinical results were obtained. There was no significant subsidence or change in orientation of any component. One component was probably loose radiographically but was insufficiently symptomatic to warrant revision. Five components showed nonprogressive radiolucent lines. One reoperation was performed for stiffness, at which time the components were well fixed. Thus, it would appear that excellent bony fixation can be achieved with a modular cementless tibial component with excellent short-term clinical results.

  9. Economics of All-Polyethylene Versus Metal-Backed Tibial Prosthesis Designs.

    Science.gov (United States)

    Chambers, Monique C; El-Othmani, Mouhanad M; Sayeed, Zain; Anoushiravani, Afshin; Schnur, Anne-Kathrin; Mihalko, William M; Saleh, Khaled J

    2016-05-01

    With the large number of total knee arthroplasties being performed and expectations that these numbers will be on the rise over the coming decades, efforts to provide cost-efficient care are of greater interest. The preferred design of knee arthroplasty implants has changed over time, with the original all-polyethylene tibial (APT) design being replaced by metal-backed tibial (MBT) components, as well as more recent considerations of newer APT designs. Modern APT components have been shown to have similar or superior outcomes than MBT components. Despite their limitations, APT components can be used to reduce the economic burden to the provider, medical institution, and health care system as a whole. There is a paucity of evidence-based literature directly comparing the cost associated with APT and MBT components. The purpose of this report is to review the literature to assess the available data regarding direct and indirect costs of both designs so that orthopedic surgeons can account for economic differences in everyday practice. [Orthopedics. 2016; 39(3):S61-S66.]. Copyright 2016, SLACK Incorporated.

  10. Contact Kinematics Correlates to Tibial Component Migration Following Single Radius Posterior Stabilized Knee Replacement.

    Science.gov (United States)

    Teeter, Matthew G; Perry, Kevin I; Yuan, Xunhua; Howard, James L; Lanting, Brent A

    2018-03-01

    Contact kinematics between total knee arthroplasty components is thought to affect implant migration; however, the interaction between kinematics and tibial component migration has not been thoroughly examined in a modern implant system. A total of 24 knees from 23 patients undergoing total knee arthroplasty with a single radius, posterior stabilized implant were examined. Patients underwent radiostereometric analysis at 2 and 6 weeks, 3 and 6 months, and 1 and 2 years to measure migration of the tibial component in all planes. At 1 year, patients also had standing radiostereometric analysis examinations acquired in 0°, 20°, 40°, and 60° of flexion, and the location of contact and magnitude of any condylar liftoff was measured for each flexion angle. Regression analysis was performed between kinematic variables and migration at 1 year. The average magnitude of maximum total point motion across all patients was 0.671 ± 0.270 mm at 1 year and 0.608 ± 0.359 mm at 2 years (P = .327). Four implants demonstrated continuous migration of >0.2 mm between the first and second year of implantation. There were correlations between the location of contact and tibial component anterior-posterior tilt, varus-valgus tilt, and anterior-posterior translation. The patients with continuous migration demonstrated atypical kinematics and condylar liftoff in some instances. Kinematics can influence tibial component migration, likely through alterations of force transmission. Abnormal kinematics may play a role in long-term implant loosening. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Mid-term results of total knee arthroplasty with a porous tantalum monoblock tibial component.

    Science.gov (United States)

    Hayakawa, Kazue; Date, Hideki; Tsujimura, Shunzo; Nojiri, Sho; Yamada, Harumoto; Nakagawa, Kenji

    2014-01-01

    The objectives of the present study were to assess the mid-term results of cementless total knee arthroplasty (TKA) with the porous tantalum monoblock tibial component and to examine the time course of bone changes on plain radiographs. The subjects were 32 patients, 29 patients were available for follow-up. We investigated the mid-term results of TKA after a mean follow-up period of 7 years and 8 months. We also examined changes of the bone over time on plain radiographs. The Knee Society Clinical Rating scores showed significant improvement. Bone changes around the tibial component were as follows: new bone formation and longitudinal trabecular thickening in 41.4% (Type A), only longitudinal trabecular thickening in 41.4% (Type B), and no changes in 17.2% (Type C). Type A and B changes were more frequent in patients with osteoarthritis, whereas Type C was only seen in patients with rheumatoid arthritis. Three knees had an initial gap, but this disappeared in all cases, and no new radiolucent lines were detected. Stress shielding was observed in seven knees (21.9%), but there was no implant loosening related to it. When we examined the relationship between the mechanical axis and the locations of the tips of the tibial pegs in patients with or without stress shielding, no significant differences were found. The results of mid-term follow-up have demonstrated favorable bone ingrowth, suggesting that porous tantalum is a promising material for cementless TKA. © 2013.

  12. Anthropometric measurements of tibial plateau and correlation with the current tibial implants.

    Science.gov (United States)

    Erkocak, Omer Faruk; Kucukdurmaz, Fatih; Sayar, Safak; Erdil, Mehmet Emin; Ceylan, Hasan Huseyin; Tuncay, Ibrahim

    2016-09-01

    The aim of the study was to make an anthropometric analysis at the resected surfaces of the proximal tibia in the Turkish population and to compare the data with the dimensions of tibial components in current use. We hypothesized that tibial components currently available on the market do not fulfil the requirements of this population and a new tibial component design may be required, especially for female patients with small stature. Anthropometric data from the proximal tibia of 226 knees in 226 Turkish subjects were measured using magnetic resonance imaging. We measured the mediolateral, middle anteroposterior, medial and lateral anteroposterior dimensions and the aspect ratio of the resected proximal tibial surface. All morphological data were compared with the dimensions of five contemporary tibial implants, including asymmetric and symmetric design types. The dimensions of the tibial plateau of Turkish knees demonstrated significant differences according to gender (P < 0.05). Among the different tibial implants reviewed, neither asymmetric nor symmetric designs exhibited a perfect conformity to proximal tibial morphology in size and shape. The vast majority of tibial implants involved in this study tend to overhang anteroposteriorly, and a statistically significant number of women (21 %, P < 0.05) had tibial anteroposterior diameters smaller than the smallest available tibial component. Tibial components designed according to anthropometric measurements of Western populations do not perfectly meet the requirements of Turkish population. These data could provide the basis for designing the optimal and smaller tibial component for this population, especially for women, is required for best fit. II.

  13. Inducible displacement of cemented tibial components ten years after total knee arthroplasty.

    Science.gov (United States)

    Lam Tin Cheung, K; Lanting, B A; McCalden, R W; Yuan, X; MacDonald, S J; Naudie, D D; Teeter, M G

    2018-02-01

    The aim of this study was to evaluate the long-term inducible displacement of cemented tibial components ten years after total knee arthroplasty (TKA). A total of 15 patients from a previously reported prospective trial of fixation using radiostereometric analysis (RSA) were examined at a mean of 11 years (10 to 11) postoperatively. Longitudinal supine RSA examinations were acquired at one week, one year, and two years postoperatively and at final follow-up. Weight-bearing RSA examinations were also undertaken with the operated lower limb in neutral and in maximum internal rotation positions. Maximum total point motion (MTPM) was calculated for the longitudinal and inducible displacement examinations (supine versus standing, standing versus internal rotation, and supine versus standing with internal rotation). All patients showed some inducible displacement. Two patients with radiolucent lines had greater mean standing-supine MTPM displacement (1.35; sd 0.38) compared with the remaining patients (0.68; sd 0.36). These two patients also had a greater mean longitudinal MTPM at ten years (0.64; sd 0.50) compared with the remaining patients (0.39; sd 0.13 mm). Small inducible displacements in well-fixed cemented tibial components were seen ten years postoperatively, of a similar magnitude to that which has been reported for well-fixed components one to two years postoperatively. Greater displacements were found in components with radiolucent lines. Cite this article: Bone Joint J 2018;100-B:170-5. ©2018 The British Editorial Society of Bone & Joint Surgery.

  14. Component design for LMFBR's

    International Nuclear Information System (INIS)

    Fillnow, R.H.; France, L.L.; Zerinvary, M.C.; Fox, R.O.

    1975-01-01

    Just as FFTF has prototype components to confirm their design, FFTF is serving as a prototype for the design of the commercial LMFBR's. Design and manufacture of critical components for the FFTF system have been accomplished primarily using vendors with little or no previous experience in supplying components for high temperature sodium systems. The exposure of these suppliers, and through them a multitude of subcontractors, to the requirements of this program has been a necessary and significant step in preparing American industry for the task of supplying the large mechanical components required for commercial LMFBR's

  15. Post-Cam Design and Contact Stress on Tibial Posts in Posterior-Stabilized Total Knee Prostheses: Comparison Between a Rounded and a Squared Design.

    Science.gov (United States)

    Watanabe, Toshifumi; Koga, Hideyuki; Horie, Masafumi; Katagiri, Hiroki; Sekiya, Ichiro; Muneta, Takeshi

    2017-12-01

    The post-cam mechanism in posterior stabilized (PS) prostheses plays an important role in total knee arthroplasty (TKA). The purpose of this study is to clarify the difference of the contact stress on the tibial post between a rounded post-cam design and a squared design during deep knee flexion and at hyperextension using the three-dimensional (3D) finite element models. We created 2 types of 3D, finite element models of PS prostheses (types A and B), whose surfaces were identical except for the post-cam geometries: type A has a rounded post-cam design, while type B has a squared design. Both types have a similar curved-shape intercondylar notch of the femoral component. Stress distributions, peak contact stresses, and contact areas on the tibial posts at 90°, 120°, and 150° flexion with/without 10° tibial internal rotation and at 10° hyperextension were compared between the 2 models. Type B demonstrated more concentrated stress distribution compared to type A. The peak contact stresses were similar in both groups during neutral flexion; however, the stresses were much higher in type B during flexion with 10° rotation and at hyperextension. The higher peak contact stresses corresponded to the smaller contact areas in the tibial post. A rounded post-cam design demonstrated less stress concentration during flexion with rotation and at hyperextension compared with a squared design. The results would be useful for development of implant designs and prediction of the contact stress on the tibial post in PS total knee arthroplasty. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. CT Assessment of the axial deviation of the femoral and tibial prosthetic components in total knee arthroplasty

    International Nuclear Information System (INIS)

    Rimondi, E.; Molinari, M.; Moio, A.; Busacca, M.; Trentani, F.; Trentani, P.; Tigani, D.; Nigrosoli, M.

    2000-01-01

    CT assessment of the axial deviation of the femoral and tibial prosthetic components in total knee arthroplasty. From January to July 1999, 17 patients, 10 males and 7 females, mean age 66 years (standard deviation plus or minus 4) were examined after total knee arthroplasty. Exclusion criteriawere prosthesis loosening and severe (equal or superior to 7'' varus o valgus deviation. All patients were examined with knee radiography in the standing position completed by axial projection of patella and by CT scanning. It was used a modification of Berger technique and carried out comparative CT scans extended lower limbs and acquisitions perpendicular to the mechanical axis of the knee, from the femoral supracondylar region down to the plane crossing the distal end of the tibial prosthetic component. Reference lines were then drawn electronically on given scanning planes to reckon the axial deviation of the femoral and tibial prosthetic components. Six patients, one female and 5 males with normal rotational values of femoral and tibial prosthetic components presented no clinical symptoms. Eight patients, 4 females and 4 males, with abnormal values presented the following clinical symptoms: medial impingement, (incomplete) dislocation patella, and lateral instability. One female patient with a normal rotational value of femoral prosthetic component and an altered value of tibial prosthetic component presented medial impingement. Finally two patients, one female and one male, were absolutely asymptomatic although the rotational values of the two prosthetic components were beyond the normal range. Total knee arthroplasty is presently a standard treatment for many conditions involving this joint. There are several possible postoperative complications, namely fractures, dislocations (a)septic losening and femoropatellar instability. The latter condition is the most frequent complication among implant failures and is caused by bad orientation of the femoral and tibial

  17. Using fibula as a reference can be beneficial for the tibial component alignment after total knee arthroplasty, a retrospective study.

    Science.gov (United States)

    Erdem, Mehmet; Gulabi, Deniz; Cecen, Gultekin Sitki; Avci, Cem Coskun; Asci, Murat; Saglam, Fevzi

    2015-07-01

    One of the important factors in a successful arthroplasty is component alignment. The primary objective of this study was to determine whether the fibular shaft reference technique is beneficial for the tibial component position on the postoperative plain radiograph after total knee arthroplasty. A total of 42 patients between 2009 and 2011 were analysed retrospectively. The surgeon prepared the tibia using an extramedullary cutting guide and set the posterior tibial slope with respect to the fibular reference rod. In the postoperative radiographic measurements, a true anteroposterior and lateral radiograph of the lower leg covering the whole length of the tibia was used. Five patients were excluded as they did not meet the inclusion criteria, four patients were excluded due to improper radiographs and the study group was reduced to 33 patients and 35 knees. The mean preoperative tibiofibular angle was 2.1° ± 0.8°. The mean postoperative tibial sagittal angle measurements were 83.3° ± 1.4° (81°-86°). 33 (94 %) Knees gained the desired tibial sagittal angle within the desired alignment (5° ± 3°). The mean postoperative tibial coronal angle was 89.3° ± 1.5°. The tibial component coronal angle of two knees was more than 3 alignment from the neutral mechanical axis. The major clinical relevance of the technique described in the present study is cost-effectiveness, and it does not require any extra time or surgical equipment. This method can be used as an alternative choice for bulky extremities which is a cause of malalignment of the components. Retrospective case series, Level IV.

  18. Combined CT-based and image-free navigation systems in TKA reduces postoperative outliers of rotational alignment of the tibial component.

    Science.gov (United States)

    Mitsuhashi, Shota; Akamatsu, Yasushi; Kobayashi, Hideo; Kusayama, Yoshihiro; Kumagai, Ken; Saito, Tomoyuki

    2018-02-01

    Rotational malpositioning of the tibial component can lead to poor functional outcome in TKA. Although various surgical techniques have been proposed, precise rotational placement of the tibial component was difficult to accomplish even with the use of a navigation system. The purpose of this study is to assess whether combined CT-based and image-free navigation systems replicate accurately the rotational alignment of tibial component that was preoperatively planned on CT, compared with the conventional method. We compared the number of outliers for rotational alignment of the tibial component using combined CT-based and image-free navigation systems (navigated group) with those of conventional method (conventional group). Seventy-two TKAs were performed between May 2012 and December 2014. In the navigated group, the anteroposterior axis was prepared using CT-based navigation system and the tibial component was positioned under control of the navigation. In the conventional group, the tibial component was placed with reference to the Akagi line that was determined visually. Fisher's exact probability test was performed to evaluate the results. There was a significant difference between the two groups with regard to the number of outliers: 3 outliers in the navigated group compared with 12 outliers in the conventional group (P image-free navigation systems decreased the number of rotational outliers of tibial component, and was helpful for the replication of the accurate rotational alignment of the tibial component that was preoperatively planned.

  19. Internal-external malalignment of the femoral component in kinematically aligned total knee arthroplasty increases tibial force imbalance but does not change laxities of the tibiofemoral joint.

    Science.gov (United States)

    Riley, Jeremy; Roth, Joshua D; Howell, Stephen M; Hull, Maury L

    2018-06-01

    The purposes of this study were to quantify the increase in tibial force imbalance (i.e. magnitude of difference between medial and lateral tibial forces) and changes in laxities caused by  2° and 4° of internal-external (I-E) malalignment of the femoral component in kinematically aligned total knee arthroplasty. Because I-E malalignment would introduce the greatest changes to the articular surfaces near 90° of flexion, the hypotheses were that the tibial force imbalance would be significantly increased near 90° flexion and that primarily varus-valgus laxity would be affected near 90° flexion. Kinematically aligned TKA was performed on ten human cadaveric knee specimens using disposable manual instruments without soft tissue release. One 3D-printed reference femoral component, with unmodified geometry, was aligned to restore the native distal and posterior femoral joint lines. Four 3D-printed femoral components, with modified geometry, introduced I-E malalignments of 2° and 4° from the reference component. Medial and lateral tibial forces were measured from 0° to 120° flexion using a custom tibial force sensor. Bidirectional laxities in four degrees of freedom were measured from 0° to 120° flexion using a custom load application system. Tibial force imbalance increased the greatest at 60° flexion where a regression analysis against the degree of I-E malalignment yielded sensitivities (i.e. slopes) of 30 N/° (medial tibial force > lateral tibial force) and 10 N/° (lateral tibial force > medial tibial force) for internal and external malalignments, respectively. Valgus laxity increased significantly with the 4° external component with the greatest increase of 1.5° occurring at 90° flexion (p < 0.0001). With the tibial component correctly aligned, I-E malalignment of the femoral component caused significant increases in tibial force imbalance. Minimizing I-E malalignment lowers the increase in the tibial force imbalance. By keeping

  20. Increases in tibial force imbalance but not changes in tibiofemoral laxities are caused by varus-valgus malalignment of the femoral component in kinematically aligned TKA.

    Science.gov (United States)

    Riley, Jeremy; Roth, Joshua D; Howell, Stephen M; Hull, Maury L

    2018-01-29

    The purposes of this study were to quantify the increase in tibial force imbalance (i.e. magnitude of difference between medial and lateral tibial forces) and changes in laxities caused by 2° and 4° of varus-valgus (V-V) malalignment of the femoral component in kinematically aligned total knee arthroplasty (TKA) and use the results to detemine sensitivities to errors in making the distal femoral resections. Because V-V malalignment would introduce the greatest changes in the alignment of the articular surfaces at 0° flexion, the hypotheses were that the greatest increases in tibial force imbalance would occur at 0° flexion, that primarily V-V laxity would significantly change at this flexion angle, and that the tibial force imbalance would increase and laxities would change in proportion to the degree of V-V malalignment. Kinematically aligned TKA was performed on ten human cadaveric knee specimens using disposable manual instruments without soft tissue release. One 3D-printed reference femoral component, with unmodified geometry, was aligned to restore the native distal and posterior femoral joint lines. Four 3D-printed femoral components, with modified geometry, introduced V-V malalignments of 2° and 4° from the reference component. Medial and lateral tibial forces were measured during passive knee flexion-extension between 0° to 120° using a custom tibial force sensor. Eight laxities were measured from 0° to 120° flexion using a six degree-of-freedom load application system. With the tibial component kinematically aligned, the increase in the tibial force imbalance from that of the reference component at 0° of flexion was sensitive to the degree of V-V malalignment of the femoral component. Sensitivities were 54 N/deg (medial tibial force increasing > lateral tibial force) (p  medial tibial force) (p imbalance to increase significantly, whereas the laxities were relatively unaffected. Because tibial force imbalance has the potential to

  1. Ten-year survival and patient-reported outcomes of a medial unicompartmental knee arthroplasty incorporating an all-polyethylene tibial component.

    Science.gov (United States)

    Scott, Chloe E H; Wade, Frazer A; MacDonald, Deborah; Nutton, Richard W

    2018-05-01

    Biomechanical studies have suggested that proximal tibial strain is elevated in UKAs incorporating all-polyethylene tibial components with concern that this leads to premature failure. This study reports minimum 10-year outcomes for a UKA incorporating an all-polyethylene tibial component to determine whether these concerns were realised. 109 fixed bearing UKAs (97 patients, mean age 68 (range 48-87), 54/97 (56%) female) with all-polyethylene tibial components were followed up for ≥ 10 years with Oxford Knee Scores, Forgotten Joint Scores and Kaplan-Meier analysis. 106/109 implants were 7 mm, 3 were 9.5 mm. Ten-year survival was 85.5% (78.6-92.4 95% CI) with the end-point failure for any reason. Unexplained pain was the commonest mode of failure (6/17) followed by lateral compartment osteoarthritis (5/17) and tibial subsidence/loosening (4/17). Revision rate was highest at 2-5 years due to revisions for unexplained pain. Ten-year survival was worse in patients  30 (p = 0.017) and in those with postoperative increases in medial tibial sclerosis (p  30 was 2.9 (1.2-6.9 95% CI). In those with intact UKAs at 10 years, mean Oxford Knee Score was 34.8 ± 10.7, Forgotten Joint Score was 37.9 ± 26.7 and 96% were satisfied with their knee. The high rate of early failure between 2 and 5 years in this all-polyethylene tibial component UKA did not persist in the long term. Though medial proximal tibial metabolic changes appear to persist they are not necessarily symptomatic. BMI > 30 and age < 65 years were significant risk factors for revision.

  2. CT Assessment of the axial deviation of the femoral and tibial prosthetic components in total knee arthroplasty; Valutazione con Tomografia Computerizzata della rotazione delle componenti femorale e tibiale nell'artroprotesi totale del ginocchio

    Energy Technology Data Exchange (ETDEWEB)

    Rimondi, E.; Molinari, M.; Moio, A.; Busacca, M. [Istituto Ortopedico Rizzoli, Bologna (Italy). Servizio di Diagnostica per Immagini; Trentani, F.; Trentani, P.; Tigani, D. [Istituto Ortopedico Rizzoli, Bologna (Italy). VII Div.; Nigrosoli, M. [Istituto Ortopedico Rizzoli, Bologna (Italy). IV Div.

    2000-06-01

    CT assessment of the axial deviation of the femoral and tibial prosthetic components in total knee arthroplasty. From January to July 1999, 17 patients, 10 males and 7 females, mean age 66 years (standard deviation plus or minus 4) were examined after total knee arthroplasty. Exclusion criteria were prosthesis loosening and severe (equal or superior to 7 degrees) varus o valgus deviation. All patients were examined with knee radiography in the standing position completed by axial projection of patella and by CT scanning. It was used a modification of Berger technique and carried out comparative CT scans extended lower limbs and acquisitions perpendicular to the mechanical axis of the knee, from the femoral supracondylar region down to the plane crossing the distal end of the tibial prosthetic component. Reference lines were then drawn electronically on given scanning planes to reckon the axial deviation of the femoral and tibial prosthetic components. Six patients, one female and 5 males with normal rotational values of femoral and tibial prosthetic components presented no clinical symptoms. Eight patients, 4 females and 4 males, with abnormal values presented the following clinical symptoms: medial impingement, (incomplete) dislocation patella, and lateral instability. One female patient with a normal rotational value of femoral prosthetic component and an altered value of tibial prosthetic component presented medial impingement. Finally two patients, one female and one male, were absolutely asymptomatic although the rotational values of the two prosthetic components were beyond the normal range. Total knee arthroplasty is presently a standard treatment for many conditions involving this joint. There are several possible postoperative complications, namely fractures, dislocations (a)septic losening and femoropatellar instability. The latter condition is the most frequent complication among implant failures and is caused by bad orientation of the femoral and tibial

  3. Relationship between product demand, tibial polyethylene insert shelf age, and total knee arthroplasty survival: retrospective review of total knees of one design.

    Science.gov (United States)

    Urban, Joshua A; Collier, Matthew B; Engh, C Anderson; Engh, Gerard A

    2006-04-01

    Shelf aging of gamma-irradiated-in-air polyethylene tibial components has been associated with increased articular surface wear and an elevated risk for revision. Nine hundred fifty cruciate-retaining inserts of one design were implanted between 1987 and 1996 (shelf age, 1.0 +/- 1.2 years). Less frequently used inserts (smallest/largest sizes, thicker thicknesses, supplemental articular constraint) had longer shelf ages (means ranged from 1.2 to 2.6 years). Survival analysis showed that shelf age (P product demand and can be of aid when diagnosing the painful knee.

  4. Mechanical design of machine components

    CERN Document Server

    Ugural, Ansel C

    2015-01-01

    Mechanical Design of Machine Components, Second Edition strikes a balance between theory and application, and prepares students for more advanced study or professional practice. It outlines the basic concepts in the design and analysis of machine elements using traditional methods, based on the principles of mechanics of materials. The text combines the theory needed to gain insight into mechanics with numerical methods in design. It presents real-world engineering applications, and reveals the link between basic mechanics and the specific design of machine components and machines. Divided into three parts, this revised text presents basic background topics, deals with failure prevention in a variety of machine elements and covers applications in design of machine components as well as entire machines. Optional sections treating special and advanced topics are also included.Key Features of the Second Edition:Incorporates material that has been completely updated with new chapters, problems, practical examples...

  5. Newly designed anterolateral and posterolateral locking anatomic plates for lateral tibial plateau fractures: a finite element study.

    Science.gov (United States)

    Chen, Pengbo; Lu, Hua; Shen, Hao; Wang, Wei; Ni, Binbin; Chen, Jishizhan

    2017-02-23

    Lateral column tibial plateau fracture fixation with a locking screw plate has higher mechanical stability than other fixation methods. The objectives of the present study were to introduce two newly designed locking anatomic plates for lateral tibial plateau fracture and to demonstrate their characteristics of the fixation complexes under the axial loads. Three different 3D finite element models of the lateral tibial plateau fracture with the bone plates were created. Various axial forces (100, 500, 1000, and 1500 N) were applied to simulate the axial compressive load on an adult knee during daily life. The equivalent maps of displacement and stress were output, and relative displacement was calculated along the fracture lines. The displacement and stresses in the fixation complexes increased with the axial force. The equivalent displacement or stress map of each fixation under different axial forces showed similar distributing characteristics. The motion characteristics of the three models differed, and the max-shear stress of trabecula increased with the axial load. These two novel plates could fix lateral tibial plateau fractures involving anterolateral and posterolateral fragments. Motions after open reduction and stable internal fixation should be advised to decrease the risk of trabecular microfracture. The relative displacement of the posterolateral fragments is different when using anterolateral plate and posterolateral plate, which should be considered in choosing the implants for different posterolateral plateau fractures.

  6. [The geometry of the keel determines the behaviour of the tibial tray against torsional forces in total knee replacement].

    Science.gov (United States)

    García David, S; Cortijo Martínez, J A; Navarro Bermúdez, I; Maculé, F; Hinarejos, P; Puig-Verdié, L; Monllau, J C; Hernández Hermoso, J A

    2014-01-01

    The keel design of the tibial tray is essential for the transmission of the majority of the forces to the peripheral bone structures, which have better mechanical proprieties, thus reducing the risk of loosening. The aim of the present study was to compare the behaviour of different tibial tray designs submitted to torsional forces. Four different tibial components were modelled. The 3-D reconstruction was made using the Mimics software. The solid elements were generated by SolidWorks. The finite elements study was done by Unigraphics. A torsional force of 6 Nm. applied to the lateral aspects of each tibial tray was simulated. The GENUTECH® tibial tray, with peripheral trabecular bone support, showed a lower displacement and less transmitted tensions under torsional forces. The results suggest that a tibial tray with more peripheral support behaves mechanically better than the other studied designs. Copyright © 2013 SECOT. Published by Elsevier Espana. All rights reserved.

  7. Medial tibial “spackling” to lessen chronic medial tibial soft tissue irritation

    Directory of Open Access Journals (Sweden)

    J. Ryan Martin, MD

    2016-09-01

    Full Text Available We describe a unique, utilitarian reconstructive treatment option known as tibial “spackling” for chronic, localized medial joint line pain corresponding with progressive radiographic peripheral medial tibial bone loss beneath a well-fixed revision total knee arthroplasty tibial baseplate. It is believed that this localized pain is due to chronic irritation of the medial capsule and collateral ligament from the prominent medial edge of the tibial component. In the setting of failed nonoperative treatment, our experience with utilizing bone cement to reconstruct the medial tibial bone defect and create a smooth medial tibial surface has been successful in eliminating chronic medial soft tissue irritation.

  8. Patient-specific positioning guides for total knee arthroplasty: no significant difference between final component alignment and pre-operative digital plan except for tibial rotation.

    Science.gov (United States)

    Boonen, Bert; Schotanus, Martijn G M; Kerens, Bart; Hulsmans, Frans-Jan; Tuinebreijer, Wim E; Kort, Nanne P

    2017-09-01

    To assess whether there is a significant difference between the alignment of the individual femoral and tibial components (in the frontal, sagittal and horizontal planes) as calculated pre-operatively (digital plan) and the actually achieved alignment in vivo obtained with the use of patient-specific positioning guides (PSPGs) for TKA. It was hypothesised that there would be no difference between post-op implant position and pre-op digital plan. Twenty-six patients were included in this non-inferiority trial. Software permitted matching of the pre-operative MRI scan (and therefore calculated prosthesis position) to a pre-operative CT scan and then to a post-operative full-leg CT scan to determine deviations from pre-op planning in all three anatomical planes. For the femoral component, mean absolute deviations from planning were 1.8° (SD 1.3), 2.5° (SD 1.6) and 1.6° (SD 1.4) in the frontal, sagittal and transverse planes, respectively. For the tibial component, mean absolute deviations from planning were 1.7° (SD 1.2), 1.7° (SD 1.5) and 3.2° (SD 3.6) in the frontal, sagittal and transverse planes, respectively. Absolute mean deviation from planned mechanical axis was 1.9°. The a priori specified null hypothesis for equivalence testing: the difference from planning is >3 or plan in all planes, except for the tibial rotation in the transverse plane. Possible explanations for outliers are discussed and highlight the importance for adequate training surgeons before they start using PSPG in their day-by-day practise. Prospective cohort study, Level II.

  9. Nontraumatic tibial polyethylene insert cone fracture in mobile-bearing posterior-stabilized total knee arthroplasty

    Directory of Open Access Journals (Sweden)

    Yohei Tanikake

    2016-12-01

    Full Text Available A 72-year-old male patient underwent mobile-bearing posterior-stabilized total knee arthroplasty for osteoarthritis. He experienced a nontraumatic polyethylene tibial insert cone fracture 27 months after surgery. Scanning electron microscopy of the fracture surface of the tibial insert cone suggested progress of ductile breaking from the posterior toward the anterior of the cone due to repeated longitudinal bending stress, leading to fatigue breaking at the anterior side of the cone, followed by the tibial insert cone fracture at the anterior side of the cone, resulting in fracture at the base of the cone. This analysis shows the risk of tibial insert cone fracture due to longitudinal stress in mobile-bearing posterior-stabilized total knee arthroplasty in which an insert is designed to highly conform to the femoral component.

  10. Creep fatigue design of FBR components

    International Nuclear Information System (INIS)

    Bhoje, S.B.; Chellapandi, P.

    1997-01-01

    This paper deals with the characteristic features of Fast Breeder Reactor (FBR) with reference to creep fatigue, current creep fatigue design approach in compliance with RCCMR (1987) design code, material data, effects of weldments and neutron irradiation, material constitutive models employed, structural analysis and further R and D required for achieving maturity in creep fatigue design of FBR components. For the analysis reported in this paper, material constitutive models developed based on ORNIb (Oak Ridge National Laboratory) and Chaboche viscoplastic theories are employed to demonstrate the potential of FBR components for higher plant temperatures and/or longer life. The results are presented for the studies carried out towards life prediction of Prototype Fast Breeder Reactor (PFBR) components. (author). 24 refs, 8 figs, 5 tabs

  11. Principle design and data of graphite components

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Sumita, Junya; Shibata, Taiju; Iyoku, Tatsuo; Oku, Tatsuo

    2004-01-01

    The High Temperature Engineering Test Reactor (HTTR) constructed by Japan Atomic Energy Research Institute (JAERI) is a graphite-moderated and helium-gas-cooled reactor with prismatic fuel elements of hexagonal blocks. The reactor internal structures of the HTTR are mainly made up of graphite components. As well known, the graphite is a brittle material and there were no available design criteria for brittle materials. Therefore, JAERI had to develop the design criteria taking account of the brittle fracture behavior. In this paper, concept and key specification of the developed graphite design criteria is described, and also an outline of the quality control specified in the design criteria is mentioned

  12. Main components of business cards design

    Directory of Open Access Journals (Sweden)

    Ю. В. Романенкова

    2003-03-01

    Full Text Available The essay is dedicated to the urgent problem of necessity of creation of professional design of business cards, that are important part of the image of modem businessman. There are classification of cards by functional principle, the functions of cards of each type were analyzed. All components of business card, variants of its composition schemes, color characteristics, principles of use of trade marks and other design elements have been allocated

  13. ITER plasma facing components, design and development

    International Nuclear Information System (INIS)

    Vieider, G.; Cardella, A.; Akiba, M.; Matera, R.; Watson, R.

    1991-01-01

    The paper summarizes the collaborative effort of the ITER Conceptual Design Activity (CDA) on Plasma Facing Components (PFC) which focused on the following main tasks: (a) The definition of basic design concepts for the First Wall (FW) and Divertor Plates (DP), (b) the analysis of the performance and likely lifetime of these PFC designs including the identification of major critical issues, (c) the start of R and D work giving already first results, and the definition of the required further R and D program to support the contemplated ITER Engineering Design Activity (EDA). From the ITER CDA effort on PFC it is mainly concluded that: (a) The expected PFC operating conditions lead to design solutions at the limit of present technology in particular for the divertor, which may constrain the overall machine performance, (b) the development of convincing PFC designs requires an intensified R and D effort both on PFC technology and plasma physics. (orig.)

  14. Anatomic single-bundle ACL surgery: consequences of tibial tunnel diameter and drill-guide angle on tibial footprint coverage.

    Science.gov (United States)

    Van der Bracht, H; Verhelst, L; Stuyts, B; Page, B; Bellemans, J; Verdonk, P

    2014-05-01

    To investigate the consequences of differences in drill-guide angle and tibial tunnel diameter on the amount of tibial anatomical anterior cruciate ligament (ACL) footprint coverage and the risk of overhang of the tibial tunnel aperture over the edges of the native tibial ACL footprint. Twenty fresh-frozen adult human knee specimens with a median age of 46 years were used for this study. Digital templates mimicking the ellipsoid aperture of tibial tunnels with a different drill-guide angle and a different diameter were designed. The centres of these templates were positioned over the geometric centre of the tibial ACL footprint. The amount of tibial ACL footprint coverage and overhang was calculated. Risk factors for overhang were determined. Footprint coverage and the risk of overhang were also compared between a lateral tibial tunnel and a classic antero-medial tibial tunnel. A larger tibial tunnel diameter and a smaller drill-guide angle both will create significant more footprint coverage and overhang. In 45% of the knees, an overhang was created with a 10-mm diameter tibial tunnel with drill-guide angle 45°. Furthermore, a lateral tibial tunnel was found not to be at increased risk of overhang. A larger tibial tunnel diameter and a smaller drill-guide angle both will increase the amount of footprint coverage. Inversely, larger tibial tunnel diameters and smaller drill-guide angles will increase the risk of overhang of the tibial tunnel aperture over the edges of the native tibial ACL footprint. A lateral tibial tunnel does not increase the risk of overhang.

  15. Waste Package Component Design Methodology Report

    International Nuclear Information System (INIS)

    D.C. Mecham

    2004-01-01

    This Executive Summary provides an overview of the methodology being used by the Yucca Mountain Project (YMP) to design waste packages and ancillary components. This summary information is intended for readers with general interest, but also provides technical readers a general framework surrounding a variety of technical details provided in the main body of the report. The purpose of this report is to document and ensure appropriate design methods are used in the design of waste packages and ancillary components (the drip shields and emplacement pallets). The methodology includes identification of necessary design inputs, justification of design assumptions, and use of appropriate analysis methods, and computational tools. This design work is subject to ''Quality Assurance Requirements and Description''. The document is primarily intended for internal use and technical guidance for a variety of design activities. It is recognized that a wide audience including project management, the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission, and others are interested to various levels of detail in the design methods and therefore covers a wide range of topics at varying levels of detail. Due to the preliminary nature of the design, readers can expect to encounter varied levels of detail in the body of the report. It is expected that technical information used as input to design documents will be verified and taken from the latest versions of reference sources given herein. This revision of the methodology report has evolved with changes in the waste package, drip shield, and emplacement pallet designs over many years and may be further revised as the design is finalized. Different components and analyses are at different stages of development. Some parts of the report are detailed, while other less detailed parts are likely to undergo further refinement. The design methodology is intended to provide designs that satisfy the safety and operational

  16. Waste Package Component Design Methodology Report

    Energy Technology Data Exchange (ETDEWEB)

    D.C. Mecham

    2004-07-12

    This Executive Summary provides an overview of the methodology being used by the Yucca Mountain Project (YMP) to design waste packages and ancillary components. This summary information is intended for readers with general interest, but also provides technical readers a general framework surrounding a variety of technical details provided in the main body of the report. The purpose of this report is to document and ensure appropriate design methods are used in the design of waste packages and ancillary components (the drip shields and emplacement pallets). The methodology includes identification of necessary design inputs, justification of design assumptions, and use of appropriate analysis methods, and computational tools. This design work is subject to ''Quality Assurance Requirements and Description''. The document is primarily intended for internal use and technical guidance for a variety of design activities. It is recognized that a wide audience including project management, the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission, and others are interested to various levels of detail in the design methods and therefore covers a wide range of topics at varying levels of detail. Due to the preliminary nature of the design, readers can expect to encounter varied levels of detail in the body of the report. It is expected that technical information used as input to design documents will be verified and taken from the latest versions of reference sources given herein. This revision of the methodology report has evolved with changes in the waste package, drip shield, and emplacement pallet designs over many years and may be further revised as the design is finalized. Different components and analyses are at different stages of development. Some parts of the report are detailed, while other less detailed parts are likely to undergo further refinement. The design methodology is intended to provide designs that satisfy the safety

  17. Design Environment for Multifidelity and Multidisciplinary Components

    Science.gov (United States)

    Platt, Michael

    2014-01-01

    One of the greatest challenges when developing propulsion systems is predicting the interacting effects between the fluid loads, thermal loads, and structural deflection. The interactions between technical disciplines often are not fully analyzed, and the analysis in one discipline often uses a simplified representation of other disciplines as an input or boundary condition. For example, the fluid forces in an engine generate static and dynamic rotor deflection, but the forces themselves are dependent on the rotor position and its orbit. It is important to consider the interaction between the physical phenomena where the outcome of each analysis is heavily dependent on the inputs (e.g., changes in flow due to deflection, changes in deflection due to fluid forces). A rigid design process also lacks the flexibility to employ multiple levels of fidelity in the analysis of each of the components. This project developed and validated an innovative design environment that has the flexibility to simultaneously analyze multiple disciplines and multiple components with multiple levels of model fidelity. Using NASA's open-source multidisciplinary design analysis and optimization (OpenMDAO) framework, this multifaceted system will provide substantially superior capabilities to current design tools.

  18. The Effect of Patient-Specific Instrumentation Incorporating an Extramedullary Tibial Guide on Operative Efficiency for Total Knee Arthroplasty

    Directory of Open Access Journals (Sweden)

    Oh-Ryong Kwon

    2017-01-01

    Full Text Available This retrospective study was to determine if patient-specific instrumentation (PSI for total knee arthroplasty (TKA leads to shortened surgical time through increased operating room efficiency according to different tibial PSI designs. 166 patients underwent primary TKA and were categorized into three groups as follows: PSI without extramedullary (EM tibial guide (group 1, n=48, PSI with EM tibial guide (group 2, n=68, and conventional instrumentation (CI group (group 3, n=50. Four factors were compared between groups, namely, operative room time, thickness of bone resection, tibial slope, and rotation of the component. The mean surgical time was significantly shorter in the PSI with EM tibial guide group (group 2, 63.9±13.6 min compared to the CI group (group 3, 82.8±24.9 min (P<0.001. However, there was no significant difference in the PSI without EM tibial guide group (group 1, 75.3±18.8 min. This study suggests that PSI incorporating an EM tibial guide may lead to high operative efficiency in TKA compared to CI. This trial is registered with KCT0002384.

  19. Can Achilles tendon be used as a new distal landmark for coronal tibial component alignment in total knee replacement surgery? An observational MRI study

    Directory of Open Access Journals (Sweden)

    Tiftikçi U

    2017-01-01

    Full Text Available Uğur Tiftikçi,1 Sancar Serbest,1 Veysel Burulday2 1Department of Orthopaedics and Traumatology, 2Department of Radiology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey Background: In total knee arthroplasty, it is better to use more than one reference point for correct alignment of the components. By measuring the distances of Achilles tendon (AT and other conventional landmarks from the mechanical axis in magnetic resonance imaging (MRI of the ankle, we aimed to demonstrate that, as a novel landmark which can help for correct alignment in the coronal plane, AT is a better option than other landmarks. Materials and methods: This retrospective study was done on 53 ankle MRIs that met the criteria for inclusion to the study among 158 ankle MRIs. After identification of the mechanical axis, the distances of distal landmarks, which were extensor hallucis longus tendon (EHLT, tibialis anterior tendon (TAT, dorsalis pedis artery (DPA, AT, extensor digitorum longus tendon (EDLT, and malleoli, were measured from the mechanical axis and were statistically evaluated. Results: In proximal measurements, the distances of the landmarks to the mechanical axis (on average were AT, 2.64±1.62 mm lateral; EHLT, 3.89±2.45 mm medial; DPA, 4.69±2.39 mm medial; TAT, 8.24±3.60 mm medial; and EDLT, 14.2±4.14 mm lateral (P<0.001. In distal measurements, the distances of the landmarks to the mechanical axis (on average were AT, 1.99±1.24 mm medial; EHLT, 4.27±2.49 mm medial; DPA, 4.79±2.10 mm medial; TAT, 12.9±4.07 mm medial; and EDLT, 12.18±4.17 mm lateral (P<0.001. Conclusion: In this study, the mechanical axis line, which is the center of talus, passes through the AT. Our MRI investigations showed that the AT, EHLT, DPA, and malleolar center (3–5 mm medial may help in correct alignment. Keywords: total knee arthroplasty, tibial component, alignment, distal references, landmark, MRI, Achilles tendon

  20. Design codes for gas cooled reactor components

    International Nuclear Information System (INIS)

    1990-12-01

    High-temperature gas-cooled reactor (HTGR) plants have been under development for about 30 years and experimental and prototype plants have been operated. The main line of development has been electricity generation based on the steam cycle. In addition the potential for high primary coolant temperature has resulted in research and development programmes for advanced applications including the direct cycle gas turbine and process heat applications. In order to compare results of the design techniques of various countries for high temperature reactor components, the IAEA established a Co-ordinated Research Programme (CRP) on Design Codes for Gas-Cooled Reactor Components. The Federal Republic of Germany, Japan, Switzerland and the USSR participated in this Co-ordinated Research Programme. Within the frame of this CRP a benchmark problem was established for the design of the hot steam header of the steam generator of an HTGR for electricity generation. This report presents the results of that effort. The publication also contains 5 reports presented by the participants. A separate abstract was prepared for each of these reports. Refs, figs and tabs

  1. Design, maintenance and lifetime of nuclear components

    International Nuclear Information System (INIS)

    Noel, R.L.; Eisenhut, D.G.; Carey, J.J.; Reynes, L.J.

    1989-01-01

    Division D of SMiRT deals with experience feedback relating to the in-service behavior of nuclear components, the design and construction of this equipment, its maintenance and the evaluation and management of its lifetime. The nuclear industry now having reached maturity, with more than 300 units in service worldwide, these problems are now of predominant importance to the activity of the industry and in its development programs. This applies particularly to the problems relating to the lifetime of nuclear plants, problems which are rightly of such concern both to the utilities, in view of the enormous investments involved, and also to the safety authorities. These contributions have been reviewed for the purpose of analyzing the essential points. This analysis highlights the considerable advances achieved during the recent decades in design and maintenance methods and practices. It also identifies the areas in which progress still remains to be made

  2. [Tibial periostitis ("medial tibial stress syndrome")].

    Science.gov (United States)

    Fournier, Pierre-Etienne

    2003-06-01

    Medial tibial stress syndrome is characterised by complaints along the posteromedial tibia. Runners and athletes involved in jumping activities may develop this syndrome. Increased stress to stabilize the foot especially when excessive pronation is present explain the occurrence this lesion.

  3. Peri-implant bone strains and micro-motion following in vivo service: a postmortem retrieval study of 22 tibial components from total knee replacements.

    Science.gov (United States)

    Mann, Kenneth A; Miller, Mark A; Goodheart, Jacklyn R; Izant, Timothy H; Cleary, Richard J

    2014-03-01

    Biological adaptation following placement of a total knee replacements (TKRs) affects peri-implant bone mineral density (BMD) and implant fixation. We quantified the proximal tibial bone strain and implant-bone micro-motion for functioning postmortem retrieved TKRs and assessed the strain/micro-motion relationships with chronological (donor age and time in service) and patient (body weight and BMD) factors. Twenty-two tibial constructs were functionally loaded to one body weight (60% medial/40% lateral), and the bone strains and tray/bone micro-motions were measured using a digital image correlation system. Donors with more time in service had higher bone strains (p = 0.044), but there was not a significant (p = 0.333) contribution from donor age. Donors with lower peri-implant BMD (p = 0.0039) and higher body weight (p = 0.0286) had higher bone strains. Long term implants (>11 years) had proximal bone strains 900 µϵ that were almost twice as high as short term (implants 570 µϵ. Micro-motion was greater for younger donors (p = 0.0161) and longer time in service (p = 0.0008). Increased bone strain with long term in vivo service could contribute to loosening of TKRs by failure of the tibial peri-implant bone. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. Design alternatives, components key to optimum flares

    International Nuclear Information System (INIS)

    Cunha-Leite, O.

    1992-01-01

    A properly designed flare works as an emissions control system with greater than 98% combustion efficiency. The appropriate use of steam, natural gas, and air-assisted flare tips can result in smokeless combustion. Ground flare, otherwise the elevated flare is commonly chosen because it handles larger flow releases more economically. Flaring has become more complicated than just lighting up waste gas. Companies are increasingly concerned about efficiency. In addition, U.S. Occupational Safety and Health Administration (OSHA) and U.S. Environmental Protection Agency (EPA) have become more active, resulting in tighter regulations on both safety and emissions control. These regulations have resulted in higher levels of concern and involvement in safety and emissions matters, not to mention smoke, noise, glare, and odor. This first to two articles on flare design and components looks at elevated flares, flare tips, incinerator-type flares, flare pilots, and gas seals. Part 2 will examine knockout drums, liquid-seal drums, ignition systems, ground flares, vapor recovery systems, and flare noise

  5. In vivo biomechanical evaluation of a novel angle-stable interlocking nail design in a canine tibial fracture model.

    Science.gov (United States)

    Déjardin, Loïc M; Cabassu, Julien B; Guillou, Reunan P; Villwock, Mark; Guiot, Laurent P; Haut, Roger C

    2014-03-01

    To compare clinical outcome and callus biomechanical properties of a novel angle stable interlocking nail (AS-ILN) and a 6 mm bolted standard ILN (ILN6b) in a canine tibial fracture model. Experimental in vivo study. Purpose-bred hounds (n = 11). A 5 mm mid-diaphyseal tibial ostectomy was stabilized with an AS-ILN (n = 6) or an ILN6b (n = 5). Orthopedic examinations and radiographs were performed every other week until clinical union (18 weeks). Paired tibiae were tested in torsion until failure. Callus torsional strength and toughness were statistically compared and failure mode described. Total and cortical callus volumes were computed and statistically compared from CT slices of the original ostectomy gap. Statistical significance was set at P dogs (P dogs by 10 weeks and in 3/5 ILN6b dogs at 18 weeks. Callus mechanical properties were significantly greater in AS-ILN than ILN6b specimens by 77% (failure torque) and 166% (toughness). Failure occurred by acute spiral (control and AS-ILN) or progressive transverse fractures (ILN6b). Cortical callus volume was 111% greater in AS-ILN than ILN6b specimens (P < .05). Earlier functional recovery, callus strength and remodeling suggest that the AS-ILN provides a postoperative biomechanical environment more conducive to bone healing than a comparable standard ILN. © Copyright 2014 by The American College of Veterinary Surgeons.

  6. Beamline standard component designs for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu, D.; Barraza, J.; Brite, C.; Chang, J.; Sanchez, T.; Tcheskidov, V.; Kuzay, T.M.

    1994-01-01

    The Advanced Photon Source (APS) has initiated a design standardization and modularization activity for the APS synchrotron radiation beamline components. These standard components are included in components library, sub-components library and experimental station library. This paper briefly describes these standard components using both technical specifications and side view drawings

  7. Tibial Plateau Fractures

    DEFF Research Database (Denmark)

    Elsøe, Rasmus

    This PhD thesis reported an incidence of tibial plateau fractures of 10.3/100,000/year in a complete Danish regional population. The results reported that patients treated for a lateral tibial plateau fracture with bone tamp reduction and percutaneous screw fixation achieved a satisfactory level...... with only the subgroup Sport significantly below the age matched reference population. The thesis reports a level of health related quality of life (Eq5d) and disability (KOOS) significantly below established reference populations for patients with bicondylar tibial plateau fracture treated with a ring...... fixator, both during treatment and at 19 months following injury. In general, the thesis demonstrates that the treatment of tibial plateau fractures are challenging and that some disabilities following these fractures must be expected. Moreover, the need for further research in the area, both with regard...

  8. A refinement driven component-based design

    DEFF Research Database (Denmark)

    Chen, Zhenbang; Liu, Zhiming; Ravn, Anders Peter

    2007-01-01

    the work on the Common Component Modelling Example (CoCoME). This gives evidence that the formal techniques developed in rCOS can be integrated into a model-driven development process and shows where it may be integrated in computer-aided software engineering (CASE) tools for adding formally supported...

  9. Preserving the PCL during the tibial cut in total knee arthroplasty.

    Science.gov (United States)

    Cinotti, G; Sessa, P; Amato, M; Ripani, F R; Giannicola, G

    2017-08-01

    Previous studies have shown that the PCL insertion may be damaged during the tibial cut performed in total knee arthroplasty. We investigated the maximum thickness of a tibial cut that preserves the PCL insertion and to what extent the posterior slope of the tibial cut and that of the patient's tibial plateaus affect the outcome. MR images of 83 knees were analysed. The maximum thickness of a tibial cut that preserves the PCL using a posterior slope of 0°, 3°, 5° and parallel to the patient's slope of the tibial plateau, was evaluated. Correlations between the results and the degrees of the posterior slope of the patient's tibial plateaus were also investigated. The maximum thickness of a tibial cut that preserves the entire PCL insertion was, on average, 5.5, 4.7, 4.2 and 3.1 mm when a posterior slope of 0°, 3°, 5° and parallel to the patients' tibial plateaus was used, respectively. When the 25th percentile was considered, the maximum thickness of a tibial cut that preserved the PCL was 4 and 3 mm with a tibial cut of 0° and 5° of posterior slope, respectively. The maximum thickness of a tibial cut that preserved the PCL was significantly greater in patients with a sagittal slope of the tibial plateaus more than 8° than in those with a sagittal slope less than 8°. In cruciate retaining implants, the PCL insertion may be spared in the majority of patients by performing a tibial cut of 4 mm, or even less when a posterior slope of 3°-5° is used. The clinical relevance of our study is that the execution of a conservative tibial cut, followed by a second tibial resection to achieve the thickness required for the tibial component to be implanted, may be an alternative technique to spare the PCL in CR TKA. II.

  10. Design of sodium cooled reactor systems and components for maintainability

    International Nuclear Information System (INIS)

    Carr, R.W.; Charnock, H.O.; McBride, J.P.

    1978-09-01

    Special maintenability problems associated with the design and operation of sodium cooled reactor plants are discussed. Some examples of both good and bad design practice are introduced from the design of the FFTF plant and other plants. Subjects include design for drainage, cleaning, decontamination, access, component removal, component disassembly and reassembly, remote tooling, jigs, fixtures, and design for minimizing radiation exposure of maintenance personnel. Check lists are included

  11. Blue green component and integrated urban design

    Directory of Open Access Journals (Sweden)

    Stanković Srđan M.

    2016-01-01

    Full Text Available This paper aims to demonstrate the hidden potential of blue green components, in a synergetic network, not as separate systems, like used in past. The innovative methodology of the project Blue Green Dream is presented through examples of good practice. A new approach in the project initiate thoughtful planning and remodeling of the settlement for the modern man. Professional and scientific public is looking for way to create more healthy and stimulating place for living. However, offered integrative solutions still remain out of urban and architectural practice. Tested technologies in current projects confirmed measurability of innovative approaches and lessons learned. Scientific and professional contributions are summarized in master's and doctoral theses that have been completed or are in process of writing.

  12. FFTF Heat Transport System (HTS) component and system design

    International Nuclear Information System (INIS)

    Young, M.W.; Edwards, P.A.

    1980-01-01

    The FFTF Heat Transport Systems and Components designs have been completed and successfully tested at isothermal conditions up to 427 0 C (800 0 F). General performance has been as predicted in the design analyses. Operational flexibility and reliability have been outstanding throughout the test program. The components and systems have been demonstrated ready to support reactor powered operation testing planned later in 1980

  13. A Components Database Design and Implementation for Accelerators and Detectors

    International Nuclear Information System (INIS)

    Chan, A.; Meyer, S.

    2011-01-01

    Many accelerator and detector systems being fabricated for the PEP-II Accelerator and BABAR Detector needed configuration control and calibration measurements tracked for their components. Instead of building a database for each distinct system, a Components Database was designed and implemented that can encompass any type of component and any type of measurement. In this paper we describe this database design that is especially suited for the engineering and fabrication processes of the accelerator and detector environments where there are thousands of unique component types. We give examples of information stored in the Components Database, which includes accelerator configuration, calibration measurements, fabrication history, design specifications, inventory, etc. The World Wide Web interface is used to access the data, and templates are available for international collaborations to collect data off-line.

  14. Organizational Design Analysis of Fleet Readiness Center Southwest Components Department

    National Research Council Canada - National Science Library

    Montes, Jose F

    2007-01-01

    .... The purpose of this MBA Project is to analyze the proposed organizational design elements of the FRCSW Components Department that resulted from the integration of the Naval Aviation Depot at North Island (NADEP N.I...

  15. Design and Measurement of Metallic Post-Wall Waveguide Components

    NARCIS (Netherlands)

    Coenen, T.J.; Bekers, D.J.; Tauritz, J.L.; Vliet, F.E. van

    2009-01-01

    Abstract—In this paper we discuss the design and measurement of a set of metallic post-wall waveguide components for antenna feed structures. The components are manufactured on a single layer printed circuit board and excited by a grounded coplanar waveguide. For a straight transmission line, a 90°

  16. Process weakness assessment by profiling all incoming design components

    Science.gov (United States)

    Zhuang, Linda; Cai, MengFeng; Zhu, Annie; Zhang, Yifan; Sweis, Jason; Lai, Ya-Chieh

    2017-03-01

    Foundries normally receive a large number of designs from different customers every day. It is desired to automatically profile each incoming design to quantify certain metrics like 1) the number of polygons per GDS layers 2) what kind of electrical components the design contains 3) what the dimensions of each electrical component are 4) how frequently any size of components have been used and their physical locations. This paper will present a novel method of how to generate a complete profile of components for any particular design. The component checking flow need to be completed within hours so it will have very little impact on the tape-out time. A pre-layer checking method is also run to group commonly used layers for different electrical components and then employ different layout profiling flows. The foundry does this design chip analysis in order to find potentially weak devices due to their size or special size requirements for particular electrical components. The foundry can then take pre-emptive action to avoid yield loss or make an unnecessary mask for new incoming products before fab processing starts.

  17. COMPUTER AIDED THREE DIMENSIONAL DESIGN OF MOLD COMPONENTS

    Directory of Open Access Journals (Sweden)

    Kerim ÇETİNKAYA

    2000-02-01

    Full Text Available Sheet metal molding design with classical methods is formed in very long times calculates and drafts. At the molding design, selection and drafting of most of the components requires very long time because of similar repetative processes. In this study, a molding design program has been developed by using AutoLISP which has been adapted AutoCAD packet program. With this study, design of sheet metal molding, dimensioning, assemly drafting has been realized.

  18. LEDA RF distribution system design and component test results

    International Nuclear Information System (INIS)

    Roybal, W.T.; Rees, D.E.; Borchert, H.L.; McCarthy, M.; Toole, L.

    1998-01-01

    The 350 MHz and 700 MHz RF distribution systems for the Low Energy Demonstration Accelerator (LEDA) have been designed and are currently being installed at Los Alamos National Laboratory. Since 350 MHz is a familiar frequency used at other accelerator facilities, most of the major high-power components were available. The 700 MHz, 1.0 MW, CW RF delivery system designed for LEDA is a new development. Therefore, high-power circulators, waterloads, phase shifters, switches, and harmonic filters had to be designed and built for this applications. The final Accelerator Production of Tritium (APT) RF distribution systems design will be based on much of the same technology as the LEDA systems and will have many of the RF components tested for LEDA incorporated into the design. Low power and high-power tests performed on various components of these LEDA systems and their results are presented here

  19. Construction of a 21-Component Layered Mixture Experiment Design

    International Nuclear Information System (INIS)

    Piepel, Gregory F.; Cooley, Scott K.; Jones, Bradley

    2004-01-01

    This paper describes the solution to a unique and challenging mixture experiment design problem involving: (1) 19 and 21 components for two different parts of the design, (2) many single-component and multi-component constraints, (3) augmentation of existing data, (4) a layered design developed in stages, and (5) a no-candidate-point optimal design approach. The problem involved studying the liquidus temperature of spinel crystals as a function of nuclear waste glass composition. The statistical objective was to develop an experimental design by augmenting existing glasses with new nonradioactive and radioactive glasses chosen to cover the designated nonradioactive and radioactive experimental regions. The existing 144 glasses were expressed as 19-component nonradioactive compositions and then augmented with 40 new nonradioactive glasses. These included 8 glasses on the outer layer of the region, 27 glasses on an inner layer, 2 replicate glasses at the centroid, and one replicate each of three existing glasses. Then, the 144 + 40 = 184 glasses were expressed as 21-component radioactive compositions and augmented with 5 radioactive glasses. A D-optimal design algorithm was used to select the new outer layer, inner layer, and radioactive glasses. Several statistical software packages can generate D-optimal experimental designs, but nearly all require a set of candidate points (e.g., vertices) from which to select design points. The large number of components (19 or 21) and many constraints made it impossible to generate the huge number of vertices and other typical candidate points. JMP(R) was used to select design points without candidate points. JMP uses a coordinate-exchange algorithm modified for mixture experiments, which is discussed in the paper

  20. Peri-apatite coating decreases uncemented tibial component migration: long-term RSA results of a randomized controlled trial and limitations of short-term results.

    Science.gov (United States)

    Van Hamersveld, Koen T; Marang-Van De Mheen, Perla J; Nelissen, Rob G H H; Toksvig-Larsen, Sören

    2018-05-09

    Background and purpose - Biological fixation of uncemented knee prostheses can be improved by applying hydroxyapatite coating around the porous surface via a solution deposition technique called Peri-Apatite (PA). The 2-year results of a randomized controlled trial, evaluating the effect of PA, revealed several components with continuous migration in the second postoperative year, particularly in the uncoated group. To evaluate whether absence of early stabilization is diagnostic of loosening, we now present long-term follow-up results. Patients and methods - 60 patients were randomized to PA-coated or uncoated (porous only) total knee arthroplasty of which 58 were evaluated with radiostereometric analysis (RSA) performed at baseline, at 3 months postoperatively and at 1, 2, 5, 7, and 10 years. A linear mixed-effects model was used to analyze the repeated measurements. Results - PA-coated components had a statistically significantly lower mean migration at 10 years of 0.94 mm (95% CI 0.72-1.2) compared with the uncoated group showing a mean migration of 1.72 mm (95% CI 1.4-2.1). Continuous migration in the second postoperative year was seen in 7 uncoated components and in 1 PA-coated component. All of these implants stabilized after 2 years except for 2 uncoated components. Interpretation - Peri-apatite enhances stabilization of uncemented components. The number of components that stabilized after 2 years emphasizes the importance of longer follow-up to determine full stabilization and risk of loosening in uncemented components with biphasic migration profiles.

  1. HTGR nuclear heat source component design and experience

    International Nuclear Information System (INIS)

    Peinado, C.O.; Wunderlich, R.G.; Simon, W.A.

    1982-05-01

    The high-temperature gas-cooled reactor (HTGR) nuclear heat source components have been under design and development since the mid-1950's. Two power plants have been designed, constructed, and operated: the Peach Bottom Atomic Power Station and the Fort St. Vrain Nuclear Generating Station. Recently, development has focused on the primary system components for a 2240-MW(t) steam cycle HTGR capable of generating about 900 MW(e) electric power or alternately producing high-grade steam and cogenerating electric power. These components include the steam generators, core auxiliary heat exchangers, primary and auxiliary circulators, reactor internals, and thermal barrier system. A discussion of the design and operating experience of these components is included

  2. Design standard issues for ITER in-vessel components

    International Nuclear Information System (INIS)

    Majumdar, S.

    1994-01-01

    Unique requirements that must be addressed by a structural design code for the ITER have been summarized. Existing codes such as ASME Section III, or the French RCC-MR were developed primarily for fission reactor out-of-core components and are not directly applicable to the ITER. They may be used either as a guide for developing a design code for the ITER or as interim standards. However, new rules will be needed for handling the irradiation-induced embrittlement problems faced by the ITER blanket components. Design standards developed in the past for the design of fission reactor core components in the United States can be used as guides in this area

  3. Fraturas do planalto tibial Tibial plateau fractures

    Directory of Open Access Journals (Sweden)

    Maurício Kfuri Júnior

    2009-01-01

    Full Text Available As fraturas do planalto tibial são lesões articulares cujos princípios de tratamento envolvem a redução anatômica da superfície articular e a restauração funcional do eixo mecânico do membro inferior. Contribuem para a tomada de decisões no tratamento dessas fraturas o perfil do paciente, as condições do envelope de tecidos moles, a existência de outros traumatismos associados e a infraestrutura disponível para abordagens cirúrgicas. Para as fraturas de alta energia, o tratamento estagiado, seguindo o princípio do controle de danos, tem como prioridade a manutenção do alinhamento do membro enquanto se aguarda a resolução das más condições de tecidos moles. Já nos traumas de baixa energia, desde que os tecidos moles não sejam um fator adverso, o tratamento deve ser realizado em tempo único, com osteossíntese definitiva. Fixação estável e movimento precoce são variáveis diretamente relacionadas com os melhores prognósticos. Desenvolvimentos recentes, como os implantes com estabilidade angular, substitutos ósseos e imagens tridimensionais para controle intraoperatório, deverão contribuir para cirurgias menos invasivas e melhores resultados.Tibial plateau fractures are joint lesions that require anatomical reduction of joint surface and functional restoration of mechanical axis of a lower limb. Patient profile, soft tissue conditions, presence of associated injuries and the available infrastructure for the treatment all contribute to the decision making about the best treatment for these fractures. High-energy fractures are usually approached in a staged manner respecting the principle of damage control, and are primarily targeted to maintain limb alignment while the resolution unfavorable soft tissue conditions is pending. Low-energy trauma can be managed on a single-stage basis, provided soft tissues are not an adverse factor, with open reduction and internal f-ixation. Stable fixation and early painless joint

  4. Context sensitivity and ambiguity in component-based systems design

    Energy Technology Data Exchange (ETDEWEB)

    Bespalko, S.J.; Sindt, A.

    1997-10-01

    Designers of components-based, real-time systems need to guarantee to correctness of soft-ware and its output. Complexity of a system, and thus the propensity for error, is best characterized by the number of states a component can encounter. In many cases, large numbers of states arise where the processing is highly dependent on context. In these cases, states are often missed, leading to errors. The following are proposals for compactly specifying system states which allow the factoring of complex components into a control module and a semantic processing module. Further, the need for methods that allow for the explicit representation of ambiguity and uncertainty in the design of components is discussed. Presented herein are examples of real-world problems which are highly context-sensitive or are inherently ambiguous.

  5. Design of smart sensing components for volcano monitoring

    Science.gov (United States)

    Xu, M.; Song, W.-Z.; Huang, R.; Peng, Y.; Shirazi, B.; LaHusen, R.; Kiely, A.; Peterson, N.; Ma, A.; Anusuya-Rangappa, L.; Miceli, M.; McBride, D.

    2009-01-01

    In a volcano monitoring application, various geophysical and geochemical sensors generate continuous high-fidelity data, and there is a compelling need for real-time raw data for volcano eruption prediction research. It requires the network to support network synchronized sampling, online configurable sensing and situation awareness, which pose significant challenges on sensing component design. Ideally, the resource usages shall be driven by the environment and node situations, and the data quality is optimized under resource constraints. In this paper, we present our smart sensing component design, including hybrid time synchronization, configurable sensing, and situation awareness. Both design details and evaluation results are presented to show their efficiency. Although the presented design is for a volcano monitoring application, its design philosophy and framework can also apply to other similar applications and platforms. ?? 2009 Elsevier B.V.

  6. Nuclear component design ontology building based on ASME codes

    International Nuclear Information System (INIS)

    Bao Shiyi; Zhou Yu; He Shuyan

    2005-01-01

    The adoption of ontology analysis in the study of concept knowledge acquisition and representation for the nuclear component design process based on computer-supported cooperative work (CSCW) makes it possible to share and reuse numerous concept knowledge of multi-disciplinary domains. A practical ontology building method is accordingly proposed based on Protege knowledge model in combination with both top-down and bottom-up approaches together with Formal Concept Analysis (FCA). FCA exhibits its advantages in the way it helps establish and improve taxonomic hierarchy of concepts and resolve concept conflict occurred in modeling multi-disciplinary domains. With Protege-3.0 as the ontology building tool, a nuclear component design ontology based ASME codes is developed by utilizing the ontology building method. The ontology serves as the basis to realize concept knowledge sharing and reusing of nuclear component design. (authors)

  7. Plasma facing components design of KT-2 tokamak

    International Nuclear Information System (INIS)

    In, Sang Ryul; Yoon, Byung Joo; Song, Woo Soeb; Xu, Chao Yin

    1997-04-01

    The vacuum vessel of KT-2 tokamak is protected from high thermal loads by various kinds of plasma facing components (PFC): outer and inner divertors, neutral baffle, inboard limiter, poloidal limiter, movable limiter and passive plate, installed on the inner wall of the vessel. In this report the pre-engineering design of the plasma facing components, including design requirements and function, structures of PFC assemblies, configuration of cooling systems, calculations of some mechanical and hydraulic parameters, is presented. Pumping systems for the movable limiter and the divertor are also discussed briefly. (author). 49 figs

  8. Tibial shaft fractures in football players

    Directory of Open Access Journals (Sweden)

    Daisley Susan

    2007-06-01

    Full Text Available Abstract Background Football is officially the most popular sport in the world. In the UK, 10% of the adult population play football at least once a year. Despite this, there are few papers in the literature on tibial diaphyseal fractures in this sporting group. In addition, conflicting views on the nature of this injury exist. The purpose of this paper is to compare our experience of tibial shaft football fractures with the little available literature and identify any similarities and differences. Methods and Results A retrospective study of all tibial football fractures that presented to a teaching hospital was undertaken over a 5 year period from 1997 to 2001. There were 244 tibial fractures treated. 24 (9.8% of these were football related. All patients were male with a mean age of 23 years (range 15 to 29 and shin guards were worn in 95.8% of cases. 11/24 (45.8% were treated conservatively, 11/24 (45.8% by Grosse Kemp intramedullary nail and 2/24 (8.3% with plating. A difference in union times was noted, conservative 19 weeks compared to operative group 23.9 weeks (p Conclusion Our series compared similarly with the few reports available in the literature. However, a striking finding noted by the authors was a drop in the incidence of tibial shaft football fractures. It is likely that this is a reflection of recent compulsory FIFA regulations on shinguards as well as improvements in the design over the past decade since its introduction.

  9. Development of expert system for structural design of FBR components

    International Nuclear Information System (INIS)

    Ueda, Hiroyoshi; Uno, Masayoshi; Ogawa, Hiroshi; Shimakawa, Takashi; Yoshimura, Shinobu; Yagawa, Genki.

    1995-01-01

    The characteristics of structural design processes for nuclear components can be summarized as follows : (1) Many engineers belonging to different fields are working in parallel, exchanging a huge amount of data and information. (2) A final solution is determined after a number of iterative design processes. (3) Solutions have to be examined many times based on sophisticated design codes. (4) Sophisticated calculation methods such as the finite element method are frequently utilized, and experts' knowledge on such analyses plays important roles in the design process. Taking these issues into consideration, a new expert system for structural design is developed in the present study. Here, the object-oriented data flow mechanism and the blackboard model are utilized to systematize structural design processes in a computer. An automated finite element calculation module is implemented, and experts' knowledge is stored in knowledge base. In addition, a new algorithm is employed to automatically draw the design window, which is defined as an area of permissible solutions in a design parameter space. The developed system is successfully applied to obtain the design windows of four components selected from the demonstration FBR structures. (author)

  10. Secure wireless embedded systems via component-based design

    DEFF Research Database (Denmark)

    Hjorth, T.; Torbensen, R.

    2010-01-01

    This paper introduces the method secure-by-design as a way of constructing wireless embedded systems using component-based modeling frameworks. This facilitates design of secure applications through verified, reusable software. Following this method we propose a security framework with a secure c......, with full support for confidentiality, authentication, and integrity using keypairs. The approach has been demonstrated in a multi-platform home automation prototype that can remotely unlock a door using a PDA over the Internet....

  11. Computers as components principles of embedded computing system design

    CERN Document Server

    Wolf, Marilyn

    2012-01-01

    Computers as Components: Principles of Embedded Computing System Design, 3e, presents essential knowledge on embedded systems technology and techniques. Updated for today's embedded systems design methods, this edition features new examples including digital signal processing, multimedia, and cyber-physical systems. Author Marilyn Wolf covers the latest processors from Texas Instruments, ARM, and Microchip Technology plus software, operating systems, networks, consumer devices, and more. Like the previous editions, this textbook: Uses real processors to demonstrate both technology and tec

  12. Optimization of Soft Tissue Management, Spacer Design, and Grafting Strategies for Large Segmental Bone Defects using the Chronic Caprine Tibial Defect Model

    Science.gov (United States)

    2015-12-01

    for this animal revealed an abscess at the defect site with cultures identifying Staphylococcus aureus infection . Another animal (15G11) developed...foreign body reaction and expose a bleeding vascular surface significantly increased bone formation in the defect site. Adding texture to a smooth...ACHIEVEMENTS: Nothing to report 10. REFERENCES: 1. Johnson, E.N., et al., Infectious complications of open type III tibial fractures among combat

  13. Feature-based component model for design of embedded systems

    Science.gov (United States)

    Zha, Xuan Fang; Sriram, Ram D.

    2004-11-01

    An embedded system is a hybrid of hardware and software, which combines software's flexibility and hardware real-time performance. Embedded systems can be considered as assemblies of hardware and software components. An Open Embedded System Model (OESM) is currently being developed at NIST to provide a standard representation and exchange protocol for embedded systems and system-level design, simulation, and testing information. This paper proposes an approach to representing an embedded system feature-based model in OESM, i.e., Open Embedded System Feature Model (OESFM), addressing models of embedded system artifacts, embedded system components, embedded system features, and embedded system configuration/assembly. The approach provides an object-oriented UML (Unified Modeling Language) representation for the embedded system feature model and defines an extension to the NIST Core Product Model. The model provides a feature-based component framework allowing the designer to develop a virtual embedded system prototype through assembling virtual components. The framework not only provides a formal precise model of the embedded system prototype but also offers the possibility of designing variation of prototypes whose members are derived by changing certain virtual components with different features. A case study example is discussed to illustrate the embedded system model.

  14. Design and construction of electronic components for a ''Novillo'' Tokamak

    International Nuclear Information System (INIS)

    Lopez C, R.

    1986-07-01

    The goal of this effort was to design, construct and make functional the electronic components for a ''Novillo'' Tokamak currently being experimentally investigated at the National Institute of Nuclear Research in Mexico. The problem was to develop programmable electronic switches capable of discharging high voltage kilowatt energies stored in capacitator banks onto the coils of the Tokamak. (author)

  15. Collagen turnover after tibial fractures

    DEFF Research Database (Denmark)

    Joerring, S; Krogsgaard, M; Wilbek, H

    1994-01-01

    Collagen turnover after tibial fractures was examined in 16 patients with fracture of the tibial diaphysis and in 8 patients with fracture in the tibial condyle area by measuring sequential changes in serological markers of turnover of types I and III collagen for up to 26 weeks after fracture....... The markers were the carboxy-terminal extension peptide of type I procollagen (PICP), the amino-terminal extension peptide of type III procollagen (PIIINP), and the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen (ICTP). The latter is a new serum marker of degradation of type I...... collagen. A group comparison showed characteristic sequential changes in the turnover of types I and III collagen in fractures of the tibial diaphysis and tibial condyles. The turnover of type III collagen reached a maximum after 2 weeks in both groups. The synthesis of type I collagen reached a maximum...

  16. NSSS Component Control System Design of Integral Reactor

    International Nuclear Information System (INIS)

    Lee, Joon Koo; Kwon, Ho Je; Jeong, Kwong Il; Park, Heui Youn; Koo, In Soo

    2005-01-01

    MMIS(Man Machine Interface System) of an integral reactor is composed of a Control Room, Plant Protection System, Control System and Monitoring System which are related with the overall plant operation. MMIS is being developed with a new design concept and digital technology to reduce the Human Factor Error and improve the systems' safety, reliability and availability. And CCS(component control system) is also being developed with a new design concept and digital hardware technology A fully digitalized system and design concept are introduced in the NSSS CCS

  17. Mechanical and materials engineering of modern structure and component design

    CERN Document Server

    Altenbach, Holm

    2015-01-01

    This book presents the latest findings on mechanical and materials engineering as applied to the design of modern engineering materials and components. The contributions cover the classical fields of mechanical, civil and materials engineering, as well as bioengineering and advanced materials processing and optimization. The materials and structures discussed can be categorized into modern steels, aluminium and titanium alloys, polymers/composite materials, biological and natural materials, material hybrids and modern nano-based materials. Analytical modelling, numerical simulation, state-of-the-art design tools and advanced experimental techniques are applied to characterize the materials’ performance and to design and optimize structures in different fields of engineering applications.

  18. Design and structural calculation of nuclear power plant mechanical components

    International Nuclear Information System (INIS)

    Amaral, J.A.R. do

    1986-01-01

    The mechanical components of a nuclear power plant must show high quality and safety due to the presence of radioactivity. Besides the perfect functioning during the rigid operating conditions, some postulated loadings are foreseen, like earthquake and loss of coolant accidents, which must be also considered in the design. In this paper, it is intended to describe the design and structural calculations concept and development, the interactions with the piping and civil designs, as well as their influences in the licensing process with the authorities. (Author) [pt

  19. Design and Verification of Fault-Tolerant Components

    DEFF Research Database (Denmark)

    Zhang, Miaomiao; Liu, Zhiming; Ravn, Anders Peter

    2009-01-01

    We present a systematic approach to design and verification of fault-tolerant components with real-time properties as found in embedded systems. A state machine model of the correct component is augmented with internal transitions that represent hypothesized faults. Also, constraints...... to model and check this design. Model checking uses concrete parameters, so we extend the result with parametric analysis using abstractions of the automata in a rigorous verification....... relatively detailed such that they can serve directly as blueprints for engineering, and yet be amenable to exhaustive verication. The approach is illustrated with a design of a triple modular fault-tolerant system that is a real case we received from our collaborators in the aerospace field. We use UPPAAL...

  20. Tibial valgus aperture osteotomy

    International Nuclear Information System (INIS)

    De los Rios G, Adolfo Leon; Saavedra Abadia, Adolfo Leon; Palacios, Julio

    2005-01-01

    This study is based on work carried out a The knee clinic at the arthroscopic surgery unit of the Institute of osteo-articular diseases, Imbanaco Medical Centre, The University Hospital of the Valle (Cali-Colombia) and The Fractures Clinic Ltd. (Palmira-Valle). This is a descriptive study, which demonstrates very positive outcomes for aperture osteotomy, without detracting from the importance of, and the progress made in uni-compartmental and total joint articular replacements of the knee. 10 patients were treated with a highs tibial open osteotomy between November 1988 and December 2002: 3 had post-traumatic deformities, without arthrosic alterations; 1 had pseudo-arthrosis caused by a failed corrective procedure; 1 had complex instability of the knee with osseous varus; 6 had a degenerative lesion of the medial meniscus with medial condral alterations. Follow-up was form 12 to 54 months. Treatment involved a tibial valgus aperture osteotomy and osteo-synthesis. Evaluation was carried out using the International Knee Documentation Committee (IKDC) scale, the For Special Surgery and The Knee Society Score

  1. Hot laboratory design on the basis of standardized components

    International Nuclear Information System (INIS)

    Cadrot, J.

    1976-01-01

    The paper describes the principal effects on hot laboratory design brought about over the last 15 years by the use of standardized components developed jointly with the CEA and the industrial associates of AFINE. After a rapid survey of the various advantages of standardization, the author turns to the specific case of a laboratory producing mixed plutonium and uranium oxide fuels, giving a brief description of the glove-boxes and ancillary equipment. He then deals with the design of an isotope production laboratory. The basic component is the DR 200 standard cell, which permits the civil engineering work to be effected on modular principles. Use of a safety-flow pressure regulating valve makes possible pneumatic automation of the production-cell internals. A substantial gain in output is the result. In the next section the paper refers to a pilot facility for irradiated fuel studies, and describes the components used, which require taking into account the high activities and intense radiations encountered in studies of this type. The author then demonstrates the flexibility with which standardized components can be adapted to different uses, thus solving many distinct problems, an example of which is represented by a semi-hot box for handling up to 100g of americium-241. Finally, the paper offers a rapid summary of the effects of standardization at the various stages concerned, from initial design to the commissioning of a hot laboratory. (author)

  2. Additive Manufacturing Design Considerations for Liquid Engine Components

    Science.gov (United States)

    Whitten, Dave; Hissam, Andy; Baker, Kevin; Rice, Darron

    2014-01-01

    The Marshall Space Flight Center's Propulsion Systems Department has gained significant experience in the last year designing, building, and testing liquid engine components using additive manufacturing. The department has developed valve, duct, turbo-machinery, and combustion device components using this technology. Many valuable lessons were learned during this process. These lessons will be the focus of this presentation. We will present criteria for selecting part candidates for additive manufacturing. Some part characteristics are 'tailor made' for this process. Selecting the right parts for the process is the first step to maximizing productivity gains. We will also present specific lessons we learned about feature geometry that can and cannot be produced using additive manufacturing machines. Most liquid engine components were made using a two-step process. The base part was made using additive manufacturing and then traditional machining processes were used to produce the final part. The presentation will describe design accommodations needed to make the base part and lessons we learned about which features could be built directly and which require the final machine process. Tolerance capabilities, surface finish, and material thickness allowances will also be covered. Additive Manufacturing can produce internal passages that cannot be made using traditional approaches. It can also eliminate a significant amount of manpower by reducing part count and leveraging model-based design and analysis techniques. Information will be shared about performance enhancements and design efficiencies we experienced for certain categories of engine parts.

  3. Safety design requirements for safety systems and components of JSFR

    International Nuclear Information System (INIS)

    Kubo, Shigenobu; Shimakawa, Yoshio; Yamano, Hidemasa; Kotake, Shoji

    2011-01-01

    Safety design requirements for JSFR were summarized taking the development targets of the FaCT project and design feature of JSFR into account. The related safety principle and requirements for Monju, CRBRP, PRISM, SPX, LWRs, IAEA standards, goals of GIF, basic principle of INPRO etc. were also taken into account so that the safety design requirements can be a next-generation global standard. The development targets for safety and reliability are set based on those of FaCT, namely, ensuring safety and reliability equal to future LWR and related fuel cycle facilities. In order to achieve these targets, the defence-in-depth concept is used as the basic safety design principle. General features of the safety design requirements are 1) Achievement of higher reliability, 2) Achievement of higher inspectability and maintainability, 3) Introduction of passive safety features, 4) Reduction of operator action needs, 5) Design consideration against Beyond Design Basis Events, 6) In-Vessel Retention of degraded core materials, 7) Prevention and mitigation against sodium chemical reactions, and 8) Design against external events. The current specific requirements for each system and component are summarized taking the basic design concept of JSFR into account, which is an advanced loop-type large-output power plant with a mixed-oxide-fuelled core. (author)

  4. Challenges in design of zirconium alloy reactor components

    International Nuclear Information System (INIS)

    Kakodkar, Anil; Sinha, R.K.

    1992-01-01

    Zirconium alloy components used in core-internal assemblies of heavy water reactors have to be designed under constraints imposed by need to have minimum mass, limitations of fabrication, welding and joining techniques with this material, and unique mechanisms for degradation of the operating performance of these components. These constraints manifest as challenges for design and development when the size, shape and dimensions of the components and assemblies are unconventional or untried, or when one is aiming for maximization of service life of these components under severe operating conditions. A number of such challenges were successfully met during the development of core-internal components and assemblies of Dhruva reactor. Some of the then untried ideas which were developed and successfully implemented include use of electron beam welding, cold forming of hemispherical ends of reentrant cans, and a large variety of rolled joints of innovative designs. This experience provided the foundation for taking up and successfully completing several tasks relating to coolant channels, liquid poison channels and sparger channels for PHWRs and test sections for the in-pile loops of Dhruva reactor. For life prediction and safety assessment of coolant channels of PHWRs some analytical tools, notably, a computer code for prediction of creep limited life of coolant channels has been developed. Some of the future challenges include the development of easily replaceable coolant channels and also large diameter coolant channels for Advanced Heavy Water Reactor, and development of solutions to overcome deterioration of service life of coolant channels due to hydriding. (author). 5 refs., 13 figs., 1 tab

  5. Recommendations for fatigue design of welded joints and components

    CERN Document Server

    Hobbacher, A F

    2016-01-01

    This book provides a basis for the design and analysis of welded components that are subjected to fluctuating forces, to avoid failure by fatigue. It is also a valuable resource for those on boards or commissions who are establishing fatigue design codes. For maximum benefit, readers should already have a working knowledge of the basics of fatigue and fracture mechanics. The purpose of designing a structure taking into consideration the limit state for fatigue damage is to ensure that the performance is satisfactory during the design life and that the survival probability is acceptable. The latter is achieved by the use of appropriate partial safety factors. This document has been prepared as the result of an initiative by Commissions XIII and XV of the International Institute of Welding (IIW).

  6. Seismic Design of ITER Component Cooling Water System-1 Piping

    Science.gov (United States)

    Singh, Aditya P.; Jadhav, Mahesh; Sharma, Lalit K.; Gupta, Dinesh K.; Patel, Nirav; Ranjan, Rakesh; Gohil, Guman; Patel, Hiren; Dangi, Jinendra; Kumar, Mohit; Kumar, A. G. A.

    2017-04-01

    The successful performance of ITER machine very much depends upon the effective removal of heat from the in-vessel components and other auxiliary systems during Tokamak operation. This objective will be accomplished by the design of an effective Cooling Water System (CWS). The optimized piping layout design is an important element in CWS design and is one of the major design challenges owing to the factors of large thermal expansion and seismic accelerations; considering safety, accessibility and maintainability aspects. An important sub-system of ITER CWS, Component Cooling Water System-1 (CCWS-1) has very large diameter of pipes up to DN1600 with many intersections to fulfill the process flow requirements of clients for heat removal. Pipe intersection is the weakest link in the layout due to high stress intensification factor. CCWS-1 piping up to secondary confinement isolation valves as well as in-between these isolation valves need to survive a Seismic Level-2 (SL-2) earthquake during the Tokamak operation period to ensure structural stability of the system in the Safe Shutdown Earthquake (SSE) event. This paper presents the design, qualification and optimization of layout of ITER CCWS-1 loop to withstand SSE event combined with sustained and thermal loads as per the load combinations defined by ITER and allowable limits as per ASME B31.3, This paper also highlights the Modal and Response Spectrum Analyses done to find out the natural frequency and system behavior during the seismic event.

  7. Design Procedure of Graphite Components by ASME HTR Codes

    International Nuclear Information System (INIS)

    Kang, Ji-Ho; Jo, Chang Keun

    2016-01-01

    In this study, the ASME B and PV Code, Subsection HH, Subpart A, design procedure for graphite components of HTRs was reviewed and the differences from metal materials were remarked. The Korean VHTR has a prismatic core which is made of multiple graphite blocks, reflectors, and core supports. One of the design issues is the assessment of the structural integrity of the graphite components because the graphite is brittle and shows quite different behaviors from metals in high temperature environment. The American Society of Mechanical Engineers (ASME) issued the latest edition of the code for the high temperature reactors (HTR) in 2015. In this study, the ASME B and PV Code, Subsection HH, Subpart A, Graphite Materials was reviewed and the special features were remarked. Due the brittleness of graphites, the damage-tolerant design procedures different from the conventional metals were adopted based on semi-probabilistic approaches. The unique additional classification, SRC, is allotted to the graphite components and the full 3-D FEM or equivalent stress analysis method is required. In specific conditions, the oxidation and viscoelasticity analysis of material are required. The fatigue damage rule has not been established yet

  8. Design Procedure of Graphite Components by ASME HTR Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ji-Ho; Jo, Chang Keun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, the ASME B and PV Code, Subsection HH, Subpart A, design procedure for graphite components of HTRs was reviewed and the differences from metal materials were remarked. The Korean VHTR has a prismatic core which is made of multiple graphite blocks, reflectors, and core supports. One of the design issues is the assessment of the structural integrity of the graphite components because the graphite is brittle and shows quite different behaviors from metals in high temperature environment. The American Society of Mechanical Engineers (ASME) issued the latest edition of the code for the high temperature reactors (HTR) in 2015. In this study, the ASME B and PV Code, Subsection HH, Subpart A, Graphite Materials was reviewed and the special features were remarked. Due the brittleness of graphites, the damage-tolerant design procedures different from the conventional metals were adopted based on semi-probabilistic approaches. The unique additional classification, SRC, is allotted to the graphite components and the full 3-D FEM or equivalent stress analysis method is required. In specific conditions, the oxidation and viscoelasticity analysis of material are required. The fatigue damage rule has not been established yet.

  9. Development of design Criteria for ITER In-vessel Components

    International Nuclear Information System (INIS)

    Sannazzaro, G.; Barabash, V.; Kang, S.C.; Fernandez, E.; Kalinin, G.; Obushev, A.; Martínez, V.J.; Vázquez, I.; Fernández, F.; Guirao, J.

    2013-01-01

    Absrtract: The components located inside the ITER vacuum chamber (in-vessel components – IC), due to their specific nature and the environments they are exposed to (neutron radiation, high heat fluxes, electromagnetic forces, etc.), have specific design criteria which are, in this paper, referred as Structural Design Criteria for In-vessel Components (SDC-IC). The development of these criteria started in the very early phase of the ITER design and followed closely the criteria of the RCC-MR code. Specific rules to include the effect of neutron irradiation were implemented. In 2008 the need of an update of the SDC-IC was identified to add missing specifications, to implement improvements, to modernise rules including recent evolutions in international codes and regulations (i.e. PED). Collaboration was set up between ITER Organization (IO), European (EUDA) and Russian Federation (RFDA) Domestic Agencies to generate a new version of SDC-IC. A Peer Review Group (PRG) composed by members of the ITER Organization and all ITER Domestic Agencies and code experts was set-up to review the proposed modifications, to provide comments, contributions and recommendations

  10. Design and development of R.F. LINAC accelerator components

    International Nuclear Information System (INIS)

    Abhay Kumar; Guha, S.; Balasubramaniam, R.; Jawale, S.B.

    2003-01-01

    Full text: Radio frequency linear accelerator, a high power electron LINAC technology, is being developed at BARC. These accelerators are considered to be the most compact and effective for a given power capacity. Important application areas of this LINAC include medical sterilization, food preservation, pollution control, semiconductor industries, radiation therapy and material science. Center for Design and Manufacture (CDM), BARC has been entrusted with the design, development and manufacturing of various mechanical components of the accelerator. Most critical and precision components out of them are Diagnostic chamber, Faraday cup, Drift tube and R.F. cavities. This paper deals with the design aspects in respect of Ultra high vacuum compatibility and the mechanism of operation. Also this paper discusses the state-of-art technology for machining of intricate contour using specially designed poly crystalline diamond tool and the inspection methodology developed to minimize the measurement errors on the machined contour. Silver brazing technique employed to join the LINAC cavities is also described in detail

  11. Design of components of reinforced concrete stressed by seismic loads

    International Nuclear Information System (INIS)

    Sitka, R.

    1980-01-01

    The example of the type of frame investigated shows that the ductility of the system assumed for standard dimensioning of such a frame lies between two and four. According to the system and the loading different requirements may result for the cross-section, that will have to be observed in design. Derived from these requirements rules are given for the design of frames stiffening in horizontal direction that will guarantee a minimum level of ductility. These rules concern the design of joint and node regions, utilization of the compressive force of the concrete as well as guidance and graduation of the reinforcement according to stud and bolt. By means of some examples of damaged components the effects of violating these rules are made clear. (orig./DG) [de

  12. Component design description of the neutral beam injectors for PLT

    International Nuclear Information System (INIS)

    Johnson, R.L.; Baer, M.B.; Dagenhart, W.K.; Haselton, H.H.; Mann, T.L.; Queen, C.C.; Stirling, W.L.; Whitfield, P.W.

    1977-01-01

    Plasma heating by injection of high energy neutrals is one of the experiments to be carried out on Princeton Large Torus (PLT). A four unit neutral beam injection system has been designed, built and tested which should inject a total of 3 MW of neutrals into PLT with a 200 millisecond pulse length. A typical system unit is described where the major components are identified. The following discussion describes each of these items along with some details of the design and fabrication problems encountered. Some early design considerations addressed the problems of separation and dumping of residual ions from the neutral beam, calorimetry of the neutrals with incident fuxes of 25 KW/cm 2 , and pumping speeds of several hundred thousand liters per second for hydrogen gas. Solutions were found for these problems while also resolving the complex dilemma of interfacing four large systems to a tokamak

  13. Design and analysis of automobile components using industrial procedures

    Science.gov (United States)

    Kedar, B.; Ashok, B.; Rastogi, Nisha; Shetty, Siddhanth

    2017-11-01

    Today’s automobiles depend upon mechanical systems that are crucial for aiding in the movement and safety features of the vehicle. Various safety systems such as Antilock Braking System (ABS) and passenger restraint systems have been developed to ensure that in the event of a collision be it head on or any other type, the safety of the passenger is ensured. On the other side, manufacturers also want their customers to have a good experience while driving and thus aim to improve the handling and the drivability of the vehicle. Electronics systems such as Cruise Control and active suspension systems are designed to ensure passenger comfort. Finally, to ensure optimum and safe driving the various components of a vehicle must be manufactured using the latest state of the art processes and must be tested and inspected with utmost care so that any defective component can be prevented from being sent out right at the beginning of the supply chain. Therefore, processes which can improve the lifetime of their respective components are in high demand and much research and development is done on these processes. With a solid base research conducted, these processes can be used in a much more versatile manner for different components, made up of different materials and under different input conditions. This will help increase the profitability of the process and also upgrade its value to the industry.

  14. Fabrication of Complex Optical Components From Mold Design to Product

    CERN Document Server

    Riemer, Oltmann; Gläbe, Ralf

    2013-01-01

    High quality optical components for consumer products made of glass and plastic are mostly fabricated by replication. This highly developed production technology requires several consecutive, well-matched processing steps called a "process chain" covering all steps from mold design, advanced machining and coating of molds, up to the actual replication and final precision measurement of the quality of the optical components. Current market demands for leading edge optical applications require high precision and cost effective parts in large volumes. For meeting these demands it is necessary to develop high quality process chains and moreover, to crosslink all demands and interdependencies within these process chains. The Transregional Collaborative Research Center "Process chains for the replication of complex optical elements" at Bremen, Aachen and Stillwater worked extensively and thoroughly in this field from 2001 to 2012. This volume will present the latest scientific results for the complete process chain...

  15. Internet MEMS design tools based on component technology

    Science.gov (United States)

    Brueck, Rainer; Schumer, Christian

    1999-03-01

    The micro electromechanical systems (MEMS) industry in Europe is characterized by small and medium sized enterprises specialized on products to solve problems in specific domains like medicine, automotive sensor technology, etc. In this field of business the technology driven design approach known from micro electronics is not appropriate. Instead each design problem aims at its own, specific technology to be used for the solution. The variety of technologies at hand, like Si-surface, Si-bulk, LIGA, laser, precision engineering requires a huge set of different design tools to be available. No single SME can afford to hold licenses for all these tools. This calls for a new and flexible way of designing, implementing and distributing design software. The Internet provides a flexible manner of offering software access along with methodologies of flexible licensing e.g. on a pay-per-use basis. New communication technologies like ADSL, TV cable of satellites as carriers promise to offer a bandwidth sufficient even for interactive tools with graphical interfaces in the near future. INTERLIDO is an experimental tool suite for process specification and layout verification for lithography based MEMS technologies to be accessed via the Internet. The first version provides a Java implementation even including a graphical editor for process specification. Currently, a new version is brought into operation that is based on JavaBeans component technology. JavaBeans offers the possibility to realize independent interactive design assistants, like a design rule checking assistants, a process consistency checking assistants, a technology definition assistants, a graphical editor assistants, etc. that may reside distributed over the Internet, communicating via Internet protocols. Each potential user thus is able to configure his own dedicated version of a design tool set dedicated to the requirements of the current problem to be solved.

  16. Designing components using smartMOVE electroactive polymer technology

    Science.gov (United States)

    Rosenthal, Marcus; Weaber, Chris; Polyakov, Ilya; Zarrabi, Al; Gise, Peter

    2008-03-01

    Designing components using SmartMOVE TM electroactive polymer technology requires an understanding of the basic operation principles and the necessary design tools for integration into actuator, sensor and energy generation applications. Artificial Muscle, Inc. is collaborating with OEMs to develop customized solutions for their applications using smartMOVE. SmartMOVE is an advanced and elegant way to obtain almost any kind of movement using dielectric elastomer electroactive polymers. Integration of this technology offers the unique capability to create highly precise and customized motion for devices and systems that require actuation. Applications of SmartMOVE include linear actuators for medical, consumer and industrial applications, such as pumps, valves, optical or haptic devices. This paper will present design guidelines for selecting a smartMOVE actuator design to match the stroke, force, power, size, speed, environmental and reliability requirements for a range of applications. Power supply and controller design and selection will also be introduced. An overview of some of the most versatile configuration options will be presented with performance comparisons. A case example will include the selection, optimization, and performance overview of a smartMOVE actuator for the cell phone camera auto-focus and proportional valve applications.

  17. Design and Testing of Improved Spacesuit Shielding Components

    International Nuclear Information System (INIS)

    Ware, J.; Ferl, J.; Wilson, J.W.; Clowdsley, M.S.; DeAngelis, G.; Tweed, J.; Zeitlin, C.J.

    2002-01-01

    In prior studies of the current Shuttle Spacesuit (SSA), where basic fabric lay-ups were tested for shielding capabilities, it was found that the fabric portions of the suit give far less protection than previously estimated due to porosity and non-uniformity of fabric and LCVG components. In addition, overall material transmission properties were less than optimum. A number of alternate approaches are being tested to provide more uniform coverage and to use more efficient materials. We will discuss in this paper, recent testing of new material lay-ups/configurations for possible use in future spacesuit designs

  18. Refractory metal component technology for in-core sensor design

    International Nuclear Information System (INIS)

    Cannon, C.P.

    1986-02-01

    Within recent years, an increasing concern over reactor safety has prompted tests that characterize reactor core environments during transient conditions. Such tests include the Loss-of-Fluid-Tests (Idaho National Engineering Lab (INEL)), Severe Fuel Damage Tests (INEL), Core Debris Rubble Tests (Sandia National Laboratories (SNL)), and similar tests performed by foreign nations. The in-core sensors for these tests require refractory metal components to be compatible with electrical insulator materials as well as materials comprising highly corrosive service mediums. This paper presents the refractory metal technology utilized to provide basic sensor designs in the above mentioned reactor tests

  19. Conceptual Design of Structural Components of a Dual Cooled Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung-Kyu; Lee, Young-Ho; Lee, Kang-Hee; Kim, Jae-Yong; Yoon, Kyung-Ho

    2008-01-15

    A dual cooled fuel, featured by an internal as well as an external coolant flow passage of a fuel rod, was suggested to enable a large-scaled power-uprate of PWR plant and launched as one of the National Nuclear R and D Projects in 2007. It is necessary to make the dual cooled fuel be compatible with an OPR-1000 system to maximize the economy. Also, the structural components of the dual cooled fuel should be designed to realize their features. To this end, a conceptual design of a spacer grid, outer and center guide tubes, and top and bottom end pieces has been carried out in the project 'Development of Design Technology for Dual Cooled Fuel Structure'. For the spacer grids, it is suggested that springs and dimples are located at or near the cross points of the straps due to a considerably narrowed rod-to-rod gap. Candidate shapes of the grids were also developed and applied for domestic patents. For the outer and center guide tubes, a dual tube like a fuel rod was suggested to make the subchannel areas around the guide tubes be similar to those around the fuel rods of enlarged diameter. It was applied for the domestic patent as well. For the top and bottom end pieces, the shape and pattern have been changed from the conventional ones reflecting the fuel rods' changes. Technical issues and method of resolution for each components were listed up for a basic design works in the following years.

  20. Design, Manufacture, and Experimental Serviceability Validation of ITER Blanket Components

    Science.gov (United States)

    Leshukov, A. Yu.; Strebkov, Yu. S.; Sviridenko, M. N.; Safronov, V. M.; Putrik, A. B.

    2017-12-01

    In 2014, the Russian Federation and the ITER International Organization signed two Procurement Arrangements (PAs) for ITER blanket components: 1.6.P1ARF.01 "Blanket First Wall" of February 14, 2014, and 1.6.P3.RF.01 "Blanket Module Connections" of December 19, 2014. The first PA stipulates development, manufacture, testing, and delivery to the ITER site of 179 Enhanced Heat Flux (EHF) First Wall (FW) Panels intended for withstanding the heat flux from the plasma up to 4.7MW/m2. Two Russian institutions, NIIEFA (Efremov Institute) and NIKIET, are responsible for the implementation of this PA. NIIEFA manufactures plasma-facing components (PFCs) of the EHF FW panels and performs the final assembly and testing of the panels, and NIKIET manufactures FW beam structures, load-bearing structures of PFCs, and all elements of the panel attachment system. As for the second PA, NIKIET is the sole official supplier of flexible blanket supports, electrical insulation key pads (EIKPs), and blanket module/vacuum vessel electrical connectors. Joint activities of NIKIET and NIIEFA for implementing PA 1.6.P1ARF.01 are briefly described, and information on implementation of PA 1.6.P3.RF.01 is given. Results of the engineering design and research efforts in the scope of the above PAs in 2015-2016 are reported, and results of developing the technology for manufacturing ITER blanket components are presented.

  1. Status of design code work for metallic high temperature components

    International Nuclear Information System (INIS)

    Bieniussa, K.; Seehafer, H.J.; Over, H.H.; Hughes, P.

    1984-01-01

    The mechanical components of high temperature gas-cooled reactors, HTGR, are exposed to temperatures up to about 1000 deg. C and this in a more or less corrosive gas environment. Under these conditions metallic structural materials show a time-dependent structural behavior. Furthermore changes in the structure of the material and loss of material in the surface can result. The structural material of the components will be stressed originating from load-controlled quantities, for example pressure or dead weight, and/or deformation-controlled quantities, for example thermal expansion or temperature distribution, and thus it can suffer rowing permanent strains and deformations and an exhaustion of the material (damage) both followed by failure. To avoid a failure of the components the design requires the consideration of the following structural failure modes: ductile rupture due to short-term loadings; creep rupture due to long-term loadings; reep-fatigue failure due to cyclic loadings excessive strains due to incremental deformation or creep ratcheting; loss of function due to excessive deformations; loss of stability due to short-term loadings; loss of stability due to long-term loadings; environmentally caused material failure (excessive corrosion); fast fracture due to instable crack growth

  2. Metrology for WEST components design and integration optimization

    International Nuclear Information System (INIS)

    Brun, C.; Archambeau, G.; Blanc, L.; Bucalossi, J.; Chantant, M.; Gargiulo, L.; Hermenier, A.; Le, R.; Pilia, A.

    2015-01-01

    Highlights: • Metrology methods. • Interests of metrology campaign to optimize margins by reducing uncertainties. • Assembly problems are solved and validated on a numerical mock up. • Post treatment of full 3DScan of the vacuum vessel. - Abstract: On WEST new components will be implemented in an existing environment, emphasis has to be put on the metrology to optimize the design and the assembly. Hence, at a particular stage of the project, several components have to coexist in the limited vessel. Therefore, all the difficulty consists in validating the mechanical interfaces between existing components and new one; minimize the risk of the assembling and to maximize the plasma volume. The CEA/IRFM takes the opportunity of the ambitious project to sign a partnership with an industrial specialized in multipurpose metrology domains. To optimize the assembly procedure, the IRFM Assembly group works in strong collaboration with its industrial, to define and plan the campaigns of metrology. The paper will illustrate the organization, methods and results of the dedicated metrology campaigns have been defined and carried out in the WEST dis/assembly phase. To conclude, the future needs of metrology at CEA/IRFM will be exposed to define the next steps.

  3. A preclinical numerical assessment of a polyetheretherketone femoral component in total knee arthroplasty during gait

    NARCIS (Netherlands)

    de Ruiter, Lennert; Janssen, Dennis W.; Briscoe, Adam; Verdonschot, Nico

    2017-01-01

    Background Conventional total knee replacement designs show high success rates but in the long term, the stiff metal components may affect bone quality of the distal femur. In this study we introduce an all-polymer total knee replacement device containing a PEEK femoral component on an UHMWPE tibial

  4. Design of plasma facing components for the SST-1 tokamak

    International Nuclear Information System (INIS)

    Jacob, S.; Chenna Reddy, D.; Choudhury, P.; Khirwadkar, S.; Pragash, R.; Santra, P.; Saxena, Y.C.; Sinha, P.

    2000-01-01

    Steady state Superconducting Tokamak, SST-1, is a medium sized tokamak with major and minor radii of 1.10 m and 0.20 m respectively. Elongated plasma operation with double null poloidal divertor is planned with a maximum input power of 1 MW. The Plasma Facing Components (PFC) like Divertors and Baffles, Poloidal limiters and Passive stabilizers form the first material boundary around the plasma and hence receive high heat and particle fluxes. The PFC design should ensure efficient heat and particle removal during steady state tokamak operation. A closed divertor geometry is adopted to ensure high neutral pressure in the divertor region (and hence high recycling) and less impurity influx into the core plasma. A set of poloidal limiters are provided to assist break down, current ramp-up and current ramp down phases and for the protection of the in-vessel components. Two pairs of Passive stabilizers, one on the inboard and the other on the outboard side of the plasma, are provided to slow down the vertical instability growth rates of the shaped plasma column. All PFCs are actively cooled to keep the plasma facing surface temperature within the design limits. The PFCs have been shaped/profiled so that maximum steady state heat flux on the surface is less than 1 MW/m 2 . (author)

  5. Mechanical components design for PWR - control rod drive mechanism

    International Nuclear Information System (INIS)

    Leme, Francisco Louzano; Mattar Neto, Miguel

    2002-01-01

    The Control Rod Drive Mechanism (CRDM) is usually - a high precision - equipment incorporating mechanical and electrical components designed to move the control rods. The 'control rods' refer to all rods or assemblies that are moved to assess the performance of the reactor. The CRDM here presented is the Nut and Lead Screw type. This type is basically a power screw type magnetically coupled to a slow speed reluctance electric motor that provides a means of axially positioning the movable fuel assemblies in the reactor core for purpose of controlling core reactivity. A helically threaded lead screw assembly, comprising one element of power screw, is attached to a movable fuel assemblies. The CRDM usually has closer and more consistent contact with environment peculiar to the reactor than has only other machinery component. This environment includes not only the radiation field of the reactor, but also the temperature, pressure and chemical properties associated with the material used as the coolant for reactor fuel. Specific and special materials are needed because of the above mentioned application. Due to the importance of the above described CRDM functions, this paper will also consider the nuclear functions and their safety classes as well as the CRDM nuclear design criteria. (author)

  6. Design and Manufacturing of Young 3 and 4 NSSS Components

    International Nuclear Information System (INIS)

    Chung, Chungwoon

    1989-01-01

    Korea nuclear unit 11 and 12 (Young 3 and 4) project, which is the 6th nuclear construction project in Korea, has been implemented since 1987. The project is scheduled to commence commercial operation by March 1995 and March 1996, respectively. The project is executed in such a manner that local firms play the leading role. In parallel with the project, nationwide technical self-reliance program for nuclear power plant construction is activated. Accordingly, the clear-cut division and achievement of responsibilities assigned to local firms will determine the success of this project and future nuclear projects. The local manufacturer takes responsibility for on-time delivery of safety-assured and reliable equipment and also for achieving technical self-reliance in component design and manufacturing. This paper describes the objectives to be achieved by the local manufacturer in the execution of design and manufacturing of NSSS components for the project and action plans taken and/or to be taken to achieve those objectives

  7. Extramedullary versus intramedullary tibial cutting guides in megaprosthetic total knee replacement

    Directory of Open Access Journals (Sweden)

    Karade Vikas

    2012-10-01

    Full Text Available Abstract Background In a standard total knee replacement, tibial component alignment is a key factor for the long term success of the surgery. The purpose of this study is to compare the accuracy of extramedullary and intramedullary tibial cutting guides used in indigenous and imported implants respectively, in positioning of the tibial components in megaprosthetic knee replacements. Methods A comparative study of the accuracy of extramedullary and intramedullary tibial cutting guides was carried out in 92 megaprosthetic knee replacements for distal femoral tumors. For the proximal tibia cut for tibial component placement, an extramedullary guide was used in 65 patients and an intramedullary guide was used in 27 patients. Tibial component alignment angles were measured in postoperative X-rays with the help of CAD software. Results There was more varus placement in coronal plane with extramedullary cutting guide (−1.18 +/− 2.4 degrees than the intramedullary guide (−0.34 +/− 2.31 degrees but this did not reach statistical significance. The goal of 90 +/− 2 degrees alignment of tibial component was achieved in 54% of patients in the extramedullary group versus 67% in the intramedullary group. In terms of sagittal plane alignment, extramedullary guide showed less accurate results (2.09 +/− 2.4 degrees than intramedullary guide (0.50 +/− 3.80 degrees for tibial component alignment, though 78% of patients were aligned within the goal of 0–5 degrees of tibial slope angle in extramedullary group versus 63% in intramedullary group. The mean error in the measurements due to rotation of the knee during taking the X-rays was less than 0.1 degrees and distribution of the X-rays with the rotation of knee was similar in both the groups. Conclusions Overall, in megaprosthetic knee replacement intramedullary guides gave more accurate results in sagittal plane and exhibited similar variability as of extramedullary guides in coronal plane.

  8. TIBIAL SHAFT FRACTURES.

    Science.gov (United States)

    Kojima, Kodi Edson; Ferreira, Ramon Venzon

    2011-01-01

    The long-bone fractures occur most frequently in the tibial shaft. Adequate treatment of such fractures avoids consolidation failure, skewed consolidation and reoperation. To classify these fractures, the AO/OTA classification method is still used, but it is worthwhile getting to know the Ellis classification method, which also includes assessment of soft-tissue injuries. There is often an association with compartmental syndrome, and early diagnosis can be achieved through evaluating clinical parameters and constant clinical monitoring. Once the diagnosis has been made, fasciotomy should be performed. It is always difficult to assess consolidation, but the RUST method may help in this. Radiography is assessed in two projections, and points are scored for the presence of the fracture line and a visible bone callus. Today, the dogma of six hours for cleaning the exposed fracture is under discussion. It is considered that an early start to intravenous antibiotic therapy and the lesion severity are very important. The question of early or late closure of the lesion in an exposed fracture has gone through several phases: sometimes early closure has been indicated and sometimes late closure. Currently, whenever possible, early closure of the lesion is recommended, since this diminishes the risk of infection. Milling of the canal when the intramedullary nail is introduced is still a controversial subject. Despite strong personal positions in favor of milling, studies have shown that there may be some advantage in relation to closed fractures, but not in exposed fractures.

  9. Medial tibial stress syndrome.

    Science.gov (United States)

    Reshef, Noam; Guelich, David R

    2012-04-01

    MTSS is a benign, though painful, condition, and a common problem in the running athlete. It is prevalent among military personnel, runners, and dancers, showing an incidence of 4% to 35%. Common names for this problem include shin splints, soleus syndrome, tibial stress syndrome, and periostitis. The exact cause of this condition is unknown. Previous theories included an inflammatory response of the periosteum or periosteal traction reaction. More recent evidence suggests a painful stress reaction of bone. The most proven risk factors are hyperpronation of the foot, female sex, and history of previous MTSS. Patient evaluation is based on meticulous history taking and physical examination. Even though the diagnosis remains clinical, imaging studies, such as plain radiographs and bone scans are usually sufficient, although MRI is useful in borderline cases to rule out more significant pathology. Conservative treatment is almost always successful and includes several options; though none has proven more superior to rest. Prevention programs do not seem to influence the rate of MTSS, though shock-absorbing insoles have reduced MTSS rates in military personnel, and ESWT has shortened the duration of symptoms. Surgery is rarely indicated but has shown some promising results in patients who have not responded to all conservative options.

  10. A 3D finite element model to investigate prosthetic interface stresses of different posterior tibial slope.

    Science.gov (United States)

    Shen, Yi; Li, Xiaomiao; Fu, Xiaodong; Wang, Weili

    2015-11-01

    Posterior tibial slope that is created during proximal tibial resection in total knee arthroplasty has emerged as an important factor in the mechanics of the knee joint and the surgical outcome. But the ideal degree of posterior tibial slope for recovery of the knee joint function and preventions of complications remains controversial and should vary in different racial groups. The objective of this paper is to investigate the effects of posterior tibial slope on contact stresses in the tibial polyethylene component of total knee prostheses. Three-dimensional finite element analysis was used to calculate contact stresses in tibial polyethylene component of total knee prostheses subjected to a compressive load. The 3D finite element model of total knee prosthesis was constructed from the images produced by 3D scanning technology. Stresses in tibial polyethylene component were calculated with four different posterior tibial slopes (0°, 3°, 6° and 9°). The 3D finite element model of total knee prosthesis we presented was well validated. We found that the stress distribution in the polythene as evaluated by the distributions of the von Mises stress, the maximum principle stress, the minimum principle stress and the Cpress were more uniform with 3° and 6° posterior tibial slopes than with 0° and 9° posterior tibial slopes. Moreover, the peaks of the above stresses and trends of changes with increasing degree of knee flexion were more ideal with 3° and 6° posterior slopes. The results suggested that the tibial component inclination might be favourable to 7°-10° so far as the stress distribution is concerned. The range of the tibial component inclination also can decrease the wear of polyethylene. Chinese posterior tibial slope is bigger than in the West, and the current domestic use of prostheses is imported from the West, so their demands to tilt back bone cutting can lead to shorten the service life of prostheses; this experiment result is of important

  11. Mechanical testing - designers need: a view at component design and operations stages

    International Nuclear Information System (INIS)

    Shrivastava, S.K.

    2007-01-01

    Mechanical design of any component requires knowledge of values of various material properties which designer(s) make(s) use in designing the component. In design of nuclear power plant components, it assumes even greater importance in view of degree of precision and accuracy with which the values of various properties are required. This is in turn demands, high accuracy in testing machines and measuring methods. In this paper, attempt has been made to bring out that even from conventional tension test, how designer today looks for availability of engineering stress-strain diagram preferably through digitally acquired data points during the test from which he can derive values of Ramberg-Osgood parameters for use in fracture mechanics based analysis. Attempt has been also made to provide account of some of important fracture mechanics related tests which have been evolved in last two decades and designers need for evolution of simple test techniques to measure many more fracture mechanics related parameters as well as cater to constraints such as shape and size of material available from the components. Nuclear power plant has been primarily kept in view and ASME. Section III NB, ASME Section XI and relevant ASTM Standards have been taken as standard references. Further pressure retaining materials of pressure vessels/Reactor Pressure Vessels have been kept in view. (author)

  12. Design of the ITER Plasma-Facing Components

    Energy Technology Data Exchange (ETDEWEB)

    Merola, M.

    2009-07-01

    The ITER plasma-facing components cover an area of about 850 m{sup 2} and consist of the Divertor, the Blanket and the Test Blanket Modules (TBMs) with their corresponding frames. The Divertor is located at the bottom of the plasma chamber and is aimed at exhausting the major part of the plasma thermal power (including alpha power) and at minimizing the helium and impurity content in the plasma. It consists of 54 cassette assemblies. Each assembly has 3 plasma-facing components (PFCs), namely the inner and outer target and the dome, which are mounted onto a steel support structure, the cassette body. The targets directly intercept the magnetic field lines and are designed to withstand heat fluxes as high as 20 MW/m{sup 2}. CFC is the reference design solution for the armour of the lower part of the targets. However, the resultant high erosion rate could potentially limit machine operation in the DT phase (due to co-deposition with T). Therefore, prior to the DT phase, the divertor PFCs will be replaced with a new set entirely covered with W armour. The Divertor is a RH Class 1 component, which is planned to be replaced 3 times during the 20 years of the ITER operation. The construction phase of the ITER Divertor is being launched. The Blanket covers the largest fraction of the plasma-facing surface. Each of the 440 Blanket modules consists of a first wall (FW) panel, which is mechanically attached onto a Shield Module (SM). The design heat flux is set up to 1 or 5 MW/m{sup 2}. The FW panels are covered by Be tiles, which are joined onto a copper alloy (CuCrZr) heat sink, which is in turn intimately joined onto a 316L(N) stainless steel part. The SM is a block of 316L(N)-IG steel, where an array of cooling channels are obtained by machining and welding. The TBMs are mock-ups of DEMO breeding blankets. There are three ITER equatorial ports devoted to TBM testing, each of them allocating two TBMs, inserted in a thick steel frame. The frame is a water-cooled 316L

  13. Miscellaneous component design for Tank 241SY101 pump removal

    International Nuclear Information System (INIS)

    Huang, F.H.

    1995-01-01

    A mixer pump has been used to mitigate the hydrogen build-up in tank 241SY101 (SY101), located in the 200 West Area of the Hanford Site. New equipment is being prepared for the removal, transport, storage, and disposal of the test pump. The disposal equipment for the test pump now in tank SY101 includes a shipping container, a strong back, a lifting beam, a test weight, container support stands, a modified mock-up pump, a flexible receiver blast shield, a lifting yoke, and a yoke brace. The structural evaluations of container and strong back are detailed in another supporting document (WHC 1994a), the engineering analyses of flexible receiver blast shield/lifting yoke and yoke brace are given in other supporting documents (WHC 1994b, WHC 1994c), respectively. Engineering tasks that were contracted to Advanced Engineering Consultants (AEC) include the design and analysis of the following. Two spreader-beam lifting devices. a Container test weight. Container support saddles. Mock-up pump modification. This report documents the work description, design basis, assumptions, and design calculations provided by AEC for the above components. All AEC documents appear in Appendix A. Additional work conducted by Westinghouse Hanford Company (WHC) on the modified container test weight, modification to the mock-up pump, the removable support for the transport assembly, and saddle modification for air pallets also are included in this document

  14. Effect of component design in retrieved bipolar hip hemiarthroplasty systems.

    Science.gov (United States)

    Hess, Matthew D; Baker, Erin A; Salisbury, Meagan R; Kaplan, Lige M; Greene, Ryan T; Greene, Perry W

    2013-09-01

    Primary articulation of bipolar hemiarthroplasty systems is at the femoral head-liner interface. The purpose of this study was to compare observed damage modes on 36 retrieved bipolar systems with implant, demographic, intraoperative, and radiographic data to elucidate the effects of component design, specifically locking mechanism, on clinical performance. Retrieved bipolar hip hemiarthroplasty systems of 3 different design types were obtained, disassembled, and evaluated macro- and microscopically for varying modes of wear, including abrasion, burnishing, embedding, scratching, and pitting. Clinical record review and radiographic analysis were performed by a senior orthopedic surgery resident. Average bipolar hip hemiarthroplasty system term of service was 46 months (range, 0.27-187 months). All devices contained wear debris captured within the articulating space between the femoral head and liner. In 31% of patients without infection, lucency was observed on immediate prerevision radiographs. The system with a leaf locking mechanism showed significantly increased radiographically observed osteolysis (P=.03) compared with a system with a stopper ring locking mechanism. In addition, implant design and observed damage modes, including pitting and third-body particle embedding, were significantly associated with radiographically observed osteolysis. Copyright 2013, SLACK Incorporated.

  15. A Combined Approach for Component-based Software Design

    NARCIS (Netherlands)

    Guareis de farias, Cléver; van Sinderen, Marten J.; Ferreira Pires, Luis; Quartel, Dick; Baldoni, R.

    2001-01-01

    Component-based software development enables the construction of software artefacts by assembling binary units of production, distribution and deployment, the so-called software components. Several approaches addressing component-based development have been proposed recently. Most of these

  16. Simulation approaches to probabilistic structural design at the component level

    International Nuclear Information System (INIS)

    Stancampiano, P.A.

    1978-01-01

    In this paper, structural failure of large nuclear components is viewed as a random process with a low probability of occurrence. Therefore, a statistical interpretation of probability does not apply and statistical inferences cannot be made due to the sparcity of actual structural failure data. In such cases, analytical estimates of the failure probabilities may be obtained from stress-strength interference theory. Since the majority of real design applications are complex, numerical methods are required to obtain solutions. Monte Carlo simulation appears to be the best general numerical approach. However, meaningful applications of simulation methods suggest research activities in three categories: methods development, failure mode models development, and statistical data models development. (Auth.)

  17. Development of impact design methods for ceramic gas turbine components

    Science.gov (United States)

    Song, J.; Cuccio, J.; Kington, H.

    1990-01-01

    Impact damage prediction methods are being developed to aid in the design of ceramic gas turbine engine components with improved impact resistance. Two impact damage modes were characterized: local, near the impact site, and structural, usually fast fracture away from the impact site. Local damage to Si3N4 impacted by Si3N4 spherical projectiles consists of ring and/or radial cracks around the impact point. In a mechanistic model being developed, impact damage is characterized as microcrack nucleation and propagation. The extent of damage is measured as volume fraction of microcracks. Model capability is demonstrated by simulating late impact tests. Structural failure is caused by tensile stress during impact exceeding material strength. The EPIC3 code was successfully used to predict blade structural failures in different size particle impacts on radial and axial blades.

  18. Engineering design and fabrication of X-Band components

    CERN Document Server

    Filippova, M; Solodko, A; Riddone, G; Syratchev, I

    2011-01-01

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.994 GHz permitting beam independent power production using klystrons for the accelerating structure testing. X-band klystron test facilities at 11.424 GHz are operated at SLAC and at KEK [1], and they are used by the CLIC study in the framework of the X-band structure collaboration for testing accelerating structures scaled to that frequency [2]. CERN is currently building a klystron test-stand operating at 11.994 GHz. In addition X-FEL projects at PSI and Sincrotrone Trieste operate at 11.4 GHz. Therefore several RF components accommodating frequencies from 11.424 to 11.994 GHz are required. The engineering design of these RF components (high power and compact loads, bi-directional couplers, X-band splitters, hybrids, phase shifters, variable power attenuators) and the main fabrication processes are presented here.

  19. KHIC's experience in the design and fabrication of nuclear components

    International Nuclear Information System (INIS)

    Suh, S.-C.

    1992-01-01

    Since 1980, Korea Heavy Industries ampersand Construction Company, Ltd. (KHIC) has specialized in the design and equipment supply for nuclear power facilities in Korea. In April 1987, KHIC became the prime contractor for the construction of Yonggwang 3 ampersand 4 (YGN 3 ampersand 4) nuclear power project. Accordingly, KHIC's technological self-reliance capability for the manufacturing processes of the primary system equipment and components has increased from 18% during the initial stage of Yonggwang 1 ampersand 2 (YGN 1 ampersand 2) project to 63% for YGN 3 ampersand 4 project. Self-reliance capability for the secondary system equipment and components has increased from 28% to 84% during the same period of time as well. The ultimate goal is to achieve complete and total assurance that our products are of the finest quality in the nuclear industry in the world market. Henceforth, we will be able to guarantee complete customer satisfaction and reliability of our products with safety assurance and leading edge technology

  20. Tibial internal rotation negatively affects clinical outcomes in total knee arthroplasty: a systematic review.

    Science.gov (United States)

    Panni, Alfredo Schiavone; Ascione, Francesco; Rossini, Marco; Braile, Adriano; Corona, Katia; Vasso, Michele; Hirschmann, Michael T

    2017-12-15

    The aim of this systematic review is to analyze the effect of tibial rotational alignment after total knee arthroplasty (TKA) on clinical outcomes and assess the eventual cut-off values for tibial TKA rotation leading to poor outcomes. A detailed and systematic search from 1997 to 2017 of the Pubmed, Medline, Cochrane Reviews, and the Google Scholar databases was performed using the keyword terms "total knee arthroplasty", "total knee replacement", "tibial alignment", "tibial malalignement", "tibial rotation", "rotational error", "axis", "angle", "tibial malrotation", "clinical outcome", in several combinations. The modified Coleman scoring methodology (mCMS) was used. All the primary TKAs studies analyzing correlation between clinical results and tibial rotation were included. Five articles met the inclusion criteria. A total of 333 arthroplasties were included in this review; 139 had tibial component malalignment, while 194 were in control groups. The mean age of patients was 67.3 (SD 0.57) years. The mean average postoperative follow-up delay was 34.7 months (range 21-70). The mean mCMS score was 59.2 points indicating good methodological quality in the included studies. Functional outcomes were assessed through KSS, OKS, KOOS and VAS, negatively related to tibial internal rotation. Our review confirmed that excessive internal rotation of the tibial TKA component represents a significant risk factor for pain and inferior functional outcomes after TKA (> 10° of internal rotation demonstrated the common value), since external rotation does not affect the results. However, a universal precise cut-off value has not been found in the available literature and there remains a debate about CT rotation assessment and surgical intra-operative landmarks. III.

  1. The accuracy of intramedullary tibial guide of sagittal alignment of PCL-substituting total knee arthroplasty.

    Science.gov (United States)

    Han, Hyuk-Soo; Kang, Seung-Baik; Jo, Chris H; Kim, Sun-Hong; Lee, Jung-Ha

    2010-10-01

    Experimental and clinical studies on the accuracy of the intramedullary alignment method have produced different results, and few have addressed accuracy in the sagittal plane. Reported deviations are not only attributable to the alignment method but also to radiological errors. The purpose of this study was to evaluate the accuracy of the intramedullary alignment method in the sagittal plane using computed tomography (CT) and 3-dimensional imaging software. Thirty-one TKAs were performed using an intramedullary alignment method involving the insertion of a long 8-mm diameter rod into the medullary canal to the distal metaphysis of the tibia. All alignment instruments were set to achieve an ideal varus/valgus angle of 0° in the coronal plane and a tibial slope of 0° in the sagittal plane. The accuracy of the intramedullary alignment system was assessed by measuring the coronal tibial component angle and sagittal tibial slope angles, i.e., angles between the tibial anatomical axis and the tangent to the medial and lateral tibial plateau or the cut-surface. The mean coronal tibial component angle was 88.5° ± 1.2° and the mean tibial component slope in the sagittal plane was 1.6° ± 1.2° without anterior slope. Our intramedullary tibial alignment method, which involves passing an 8-mm diameter long rod through the tibial shaft isthmus, showed good accuracy (less than 3 degrees of variation and no anterior slope) in the sagittal plane in neutral or varus knees.

  2. Epidemiology of open tibial fractures in a teaching hospital ...

    African Journals Online (AJOL)

    Methods: This is a prospective observational study of all open tibial fractures seen at the Accident and Emergency department of the University of Port Harcourt Teaching Hospital (UPTH) over a twelve- month period (July 2002- June 2003). Data from a pre-designed proforma for the study was analyzed and descriptive ...

  3. Standing balance in people with trans-tibial amputation due to vascular causes: A literature review.

    Science.gov (United States)

    Seth, Mayank; Lamberg, Eric

    2017-08-01

    Balance is an important variable to consider during the rehabilitation process of individuals with trans-tibial amputation. Limited evidence exists on the balance abilities of people with trans-tibial amputation due to vascular causes. The purpose of this article is to review literature and determine if standing balance is diminished in people with trans-tibial amputation due to vascular causes. Literature review. Data were obtained from PubMed, Google Scholar, OandP.org , CINHAL, and Science Direct. Studies were selected only if they included standing balance assessment of people with unilateral trans-tibial amputation due to vascular causes. The review yielded seven articles that met the inclusion criteria. The general test methodology required participants to stand still on force platforms, with feet together, while center of pressure or postural sway was recorded. According to the findings of this review, individuals with trans-tibial amputees due to vascular causes have diminished balance abilities. Limited evidence suggests their balance might be further diminished as compared to individuals with trans-tibial amputation due to trauma. Although the evidence is limited, because of the underlying pathology and presence of comorbidities in individuals with trans-tibial amputation due to vascular causes, one cannot ignore these findings, as even a minor injury from a fall may develop into a non-healing ulcer and affect their health and well-being more severely than individuals with trans-tibial amputation due to trauma. Clinical relevance Individuals with trans-tibial amputation due to vascular causes have diminished balance abilities compared to healthy individuals and individuals with trans-tibial amputation due to trauma. This difference should be considered when designing and fabricating prostheses. Prosthetists and rehabilitation clinicians should consider designing amputation cause-specific rehabilitation interventions, focussing on balance and other

  4. Contact Stress Generation on the UHMWPE Tibial Insert

    Directory of Open Access Journals (Sweden)

    S. Petrović Savić

    2014-12-01

    Full Text Available Total knee replacement (TKR is considered, during last years, as a very successful surgical technique for removing knee joint deformities and eliminating pain caused by cartilage damage. In literature, as primary causes for knee joint endoprothesis damage are cited complex movements which cause occurrences of complex stress conditions, sagital radius conformity, sliding, types of materials etc. Aim of this study is analysis of contact stresses that occur on tibial implant for 15°, 45° and 60° knee flexion and 50 kg, 75 kg, 100 kg and 125 kg weight. Knee joint prosthesis model and finite elements method (FEM analysis are done in software Catia V5. For this analysis we used ultra-high molecular weight polyethylene (UHMWPE for tibial implant material and AISI 316, AISI 317, AISI 321, 17-4PH, CoCrMo, Ti6Al4V and SAE A-286 for femoral component materials. Results show that area of maximal contact stress is identified in medial and lateral part of tibial implant. Von Mises stress values vary regarding of flexion degree and weight, but values are approximate for types of chosen materials. Contact stress location corresponds to damage that occur on tibial implant during exploitation.

  5. Evaluation of nutritional components by Plackett- Burman design for ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... African Journal of Biotechnology Vol. ... A number of medium components influencing lipase production by Penicillium citrinum (ATCC 42799) ... in the field of bioenergy, especially in biodiesel produc- ..... and algal culture.

  6. NGNP Component Test Capability Design Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad; D.S. Ferguson; L.E. Guillen; C.W. McKnight; P.J. Petersen

    2009-09-01

    The Next Generation Nuclear Plant Project is conducting a trade study to select a preferred approach for establishing a capability whereby NGNP technology development testing—through large-scale, integrated tests—can be performed for critical HTGR structures, systems, and components (SSCs). The mission of this capability includes enabling the validation of interfaces, interactions, and performance for critical systems and components prior to installation in the NGNP prototype.

  7. Design and development of neutral beam module components

    International Nuclear Information System (INIS)

    Holl, P.M.; Bulmer, R.H.; Dilgard, L.W.; Horvath, J.A.; Molvik, A.W.; Porter, G.D.; Shearer, J.W.; Slack, D.S.; Colonias, J.S.

    1979-01-01

    The Mirror Fusion Test Facility (MFTF) injection system consists of twenty 20 keV start-up, and twenty-four 80 keV sustaining neutral beam source modules. The neutral beam modules are mounted in four clusters equally spaced around the waist of the vacuum vessel which contains the superconducting magnets. A module is defined here as an assembly consisting of a beam source and the interfacing components between that beam source and the vacuum chamber. Six major interfacing components are the subject of this paper. They are the magnetic shield, the neutralizer duct, the isolation valve, mounting gimbals, aiming bellows and actuators

  8. Microgrid Design Toolkit (MDT) Technical Documentation and Component Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Arguello, Bryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gearhart, Jared Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eddy, John P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The Microgrid Design Toolkit (MDT) is a decision support software tool for microgrid designers to use during the microgrid design process. The models that support the two main capabilities in MDT are described. The first capability, the Microgrid Sizing Capability (MSC), is used to determine the size and composition of a new microgrid in the early stages of the design process. MSC is a mixed-integer linear program that is focused on developing a microgrid that is economically viable when connected to the grid. The second capability is focused on refining a microgrid design for operation in islanded mode. This second capability relies on two models: the Technology Management Optimization (TMO) model and Performance Reliability Model (PRM). TMO uses a genetic algorithm to create and refine a collection of candidate microgrid designs. It uses PRM, a simulation based reliability model, to assess the performance of these designs. TMO produces a collection of microgrid designs that perform well with respect to one or more performance metrics.

  9. Tibial Eminence Involvement With Tibial Plateau Fracture Predicts Slower Recovery and Worse Postoperative Range of Knee Motion.

    Science.gov (United States)

    Konda, Sanjit R; Driesman, Adam; Manoli, Arthur; Davidovitch, Roy I; Egol, Kenneth A

    2017-07-01

    To examine 1-year functional and clinical outcomes in patients with tibial plateau fractures with tibial eminence involvement. Retrospective analysis of prospectively collected data. Academic Medical Center. All patients who presented with a tibial plateau fracture (Orthopaedic Trauma Association (OTA) 41-B and 41-C). Patients were divided into fractures with a tibial eminence component (+TE) and those without (-TE) cohorts. All patients underwent similar surgical approaches and fixation techniques for fractures. No tibial eminence fractures received fixation specifically. Short musculoskeletal functional assessment (SMFA), pain (Visual Analogue Scale), and knee range-of-motion (ROM) were evaluated at 3, 6, and 12 months postoperatively and compared between cohorts. Two hundred ninety-three patients were included for review. Patients with OTA 41-C fractures were more likely to have an associated TE compared with 41-B fractures (63% vs. 28%, P knee ROM (75.16 ± 51 vs. 86.82 ± 53 degree, P = 0.06). At 6 months, total SMFA and knee ROM was significantly worse in the +TE cohort (29 ± 17 vs. 21 ± 18, P ≤ 0.01; 115.6 ± 20 vs. 124.1 ± 15, P = 0.01). By 12 months postoperatively, only knee ROM remained significantly worse in the +TE cohort (118.7 ± 15 vs. 126.9 ± 13, P time points. Knee ROM remains worse throughout the postoperative period in the +TE cohort. Functional outcome improves less rapidly in the +TE cohort but achieves similar results by 1 year. Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.

  10. Design and construction of hazardous waste landfill components

    International Nuclear Information System (INIS)

    Frano, A.J.; Numes, G.S.

    1985-01-01

    This paper discusses design and construction of two sections of a hazardous waste landfill at Peoria Disposal Company's hazardous waste management facilities in central Illinois. One section, an existing disposal facility, was retrofitted with leachate control and containment features for additional security. The second section, a new facility which had been previously permitted for development with a single clay liner, was modified to include a double liner and revised leachate collection system for additional security, and an all-weather construction and operation access ramp. The two sections of the landfill were granted a development permit allowing construction. An operating permit was granted after construction and certification by the designer allowing waste disposal operations. The sections will be accepting waste material at publication. Design and construction included: planning studies, design analyses, permitting, preparation of construction contract documents, construction assistance, monitoring construction, and certification

  11. Silicon analog components device design, process integration, characterization, and reliability

    CERN Document Server

    El-Kareh, Badih

    2015-01-01

    This book covers modern analog components, their characteristics, and interactions with process parameters. It serves as a comprehensive guide, addressing both the theoretical and practical aspects of modern silicon devices and the relationship between their electrical properties and processing conditions. Based on the authors’ extensive experience in the development of analog devices, this book is intended for engineers and scientists in semiconductor research, development and manufacturing. The problems at the end of each chapter and the numerous charts, figures and tables also make it appropriate for use as a text in graduate and advanced undergraduate courses in electrical engineering and materials science.

  12. Variabilidad en el diseño y composición del colgajo de perforante de tibial posterior para la reconstrucción de defectos en la pierna Versatility on design and composition of the tibial posterior perforator flap for reconstruction of leg defects

    Directory of Open Access Journals (Sweden)

    C. Laredo Ortiz

    2011-03-01

    Full Text Available Las pérdidas de sustancia en la pierna y fundamentalmente en su tercio inferior, siguen siendo un reto en Cirugía Reconstructiva puesto que los tejidos de vecindad, dañados por el traumatismo o por el edema concomitante, son inadecuados para cubrir hueso, tendones o material de osteosíntesis expuesto. El colgajo propeller o colgajo en hélice es un método elegante y versátil para la cubrir estas pérdidas de sustancia de la extremidad inferior con tejido locorregional no comprometido vascularmente por el traumatismo y/o lesión causante. A diferencia de los colgajos convencionales de rotación o transposición, es posible el cierre directo de la zona donante, lo que ofrece un resultado estético óptimo. Además, la presencia de perforantes más proximales permite usar pastillas musculares y tendinosas en el mismo colgajo para resolver defectos más complejos, convirtiéndose en algo más que una alternativa a los colgajos libres. Presentamos una serie de 43 pacientes para describir las posibilidades reconstructivas que ofrece el colgajo de perforante de arteria tibial posterior en su forma en hélice, en cuanto a la variabilidad del diseño y a su uso como colgajo compuesto, con el fin de minimizar aun más la morbilidad de la zona donante sin el uso de injertos.Lower extremity defects, specially lower third defects, keep being a true challenge in Reconstructive Surgery, since nearness damaged tissues, due to the traumatism or to the concomitant edema, are not suitable for the coverage of bone, tendons or exposed osteosynthesis material. Propeller flap has become an elegant and mobile method for the coverage of this type of lower extremity defects. It provides us with locorregional tissue with not vascular involvement in the traumatism and/or subsequent injury. Unlike conventional rotation or transposition flaps, direct closure of the donor site is possible, offering an optimum aesthetic result. Moreover, the presence of more proximal

  13. Design-Load Basis for LANL Structures, Systems, and Components

    Energy Technology Data Exchange (ETDEWEB)

    I. Cuesta

    2004-09-01

    This document supports the recommendations in the Los Alamos National Laboratory (LANL) Engineering Standard Manual (ESM), Chapter 5--Structural providing the basis for the loads, analysis procedures, and codes to be used in the ESM. It also provides the justification for eliminating the loads to be considered in design, and evidence that the design basis loads are appropriate and consistent with the graded approach required by the Department of Energy (DOE) Code of Federal Regulation Nuclear Safety Management, 10, Part 830. This document focuses on (1) the primary and secondary natural phenomena hazards listed in DOE-G-420.1-2, Appendix C, (2) additional loads not related to natural phenomena hazards, and (3) the design loads on structures during construction.

  14. Computers as Components Principles of Embedded Computing System Design

    CERN Document Server

    Wolf, Wayne

    2008-01-01

    This book was the first to bring essential knowledge on embedded systems technology and techniques under a single cover. This second edition has been updated to the state-of-the-art by reworking and expanding performance analysis with more examples and exercises, and coverage of electronic systems now focuses on the latest applications. Researchers, students, and savvy professionals schooled in hardware or software design, will value Wayne Wolf's integrated engineering design approach.The second edition gives a more comprehensive view of multiprocessors including VLIW and superscalar archite

  15. Application of colony complex algorithm to nuclear component optimization design

    International Nuclear Information System (INIS)

    Yan Changqi; Li Guijing; Wang Jianjun

    2014-01-01

    Complex algorithm (CA) has got popular application to the region of nuclear engineering. In connection with the specific features of the application of traditional complex algorithm (TCA) to the optimization design in engineering structures, an improved method, colony complex algorithm (CCA), was developed based on the optimal combination of many complexes, in which the disadvantages of TCA were overcame. The optimized results of benchmark function show that CCA has better optimizing performance than TCA. CCA was applied to the high-pressure heater optimization design, and the optimization effect is obvious. (authors)

  16. Layout design of user interface components with multiple objectives

    Directory of Open Access Journals (Sweden)

    Peer S.K.

    2004-01-01

    Full Text Available A multi-goal layout problem may be formulated as a Quadratic Assignment model, considering multiple goals (or factors, both qualitative and quantitative in the objective function. The facilities layout problem, in general, varies from the location and layout of facilities in manufacturing plant to the location and layout of textual and graphical user interface components in the human–computer interface. In this paper, we propose two alternate mathematical approaches to the single-objective layout model. The first one presents a multi-goal user interface component layout problem, considering the distance-weighted sum of congruent objectives of closeness relationships and the interactions. The second one considers the distance-weighted sum of congruent objectives of normalized weighted closeness relationships and normalized weighted interactions. The results of first approach are compared with that of an existing single objective model for example task under consideration. Then, the results of first approach and second approach of the proposed model are compared for the example task under consideration.

  17. Structural materials for ITER in-vessel component design

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, G. [Max-Planck-Inst. fur Plasmaphys., Garching (Germany). ITER Garching JWS; Gauster, W. [Max-Planck-Inst. fur Plasmaphys., Garching (Germany). ITER Garching JWS; Matera, R. [Max-Planck-Inst. fur Plasmaphys., Garching (Germany). ITER Garching JWS; Tavassoli, A.-A.F. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France); Rowcliffe, A. [Oak Ridge National Lab., TN (United States); Fabritsiev, S. [Research Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation); Kawamura, H. [JAERI, IMTR Project, Ibaraki (Japan). Blanket Irradiation Lab.

    1996-10-01

    The materials proposed for ITER in-vessel components have to exhibit adequate performance for the operating lifetime of the reactor or for specified replacement intervals. Estimates show that maximum irradiation dose to be up to 5-7 dpa (for 1 MWa/m{sup 2} in the basic performance phase (BPP)) within a temperature range from 20 to 300 C. Austenitic SS 316LN-ITER Grade was defined as a reference option for the vacuum vessel, blanket, primary wall, pipe lines and divertor body. Conventional technologies and mill products are proposed for blanket, back plate and manifold manufacturing. HIPing is proposed as a reference manufacturing method for the primary wall and blanket and as an option for the divertor body. The existing data show that mechanical properties of HIPed SS are no worse than those of forged 316LN SS. Irradiation will result in property changes. Minimum ductility has been observed after irradiation in an approximate temperature range between 250 and 350 C, for doses of 5-10 dpa. In spite of radiation-induced changes in tensile deformation behavior, the fracture remains ductile. Irradiation assisted corrosion cracking is a concern for high doses of irradiation and at high temperatures. Re-welding is one of the critical issues because of the need to replace failed components. It is also being considered for the replacement of shielding blanket modules by breeding modules after the BPP. (orig.).

  18. A Hybrid Hardware and Software Component Architecture for Embedded System Design

    Science.gov (United States)

    Marcondes, Hugo; Fröhlich, Antônio Augusto

    Embedded systems are increasing in complexity, while several metrics such as time-to-market, reliability, safety and performance should be considered during the design of such systems. A component-based design which enables the migration of its components between hardware and software can cope to achieve such metrics. To enable that, we define hybrid hardware and software components as a development artifact that can be deployed by different combinations of hardware and software elements. In this paper, we present an architecture for developing such components in order to construct a repository of components that can migrate between the hardware and software domains to meet the design system requirements.

  19. 5 CFR 5201.102 - Designation of separate agency components.

    Science.gov (United States)

    2010-01-01

    ... ETHICAL CONDUCT FOR EMPLOYEES OF THE DEPARTMENT OF LABOR § 5201.102 Designation of separate agency...) Office of Labor-Management Standards. (c) Definitions—(1) Remainder of the Department means employees in... prohibited source of gifts for MSHA employees. The contractor is not regulated by and has no business...

  20. Medial tibial stress syndrome: a critical review

    NARCIS (Netherlands)

    Moen, Maarten H.; Tol, Johannes L.; Weir, Adam; Steunebrink, Miriam; de Winter, Theodorus C.

    2009-01-01

    Medial tibial stress syndrome (MTSS) is one of the most common leg injuries in athletes and soldiers. The incidence of MTSS is reported as being between 4% and 35% in military personnel and athletes. The name given to this condition refers to pain on the posteromedial tibial border during exercise,

  1. Incomplete linear tibial fractures in two horses

    International Nuclear Information System (INIS)

    Johnson, P.J.; Allhands, R.V.; Baker, G.J.; Boero, M.J.; Foreman, J.H.; Hyyppa, T.; Huhn, J.C.

    1988-01-01

    Incomplete linear tibial fractures were identified in two horses with the aid of scintigraphy. Both horses were treated successfully by strict stall confinement, and both returned to normal athletic activity. Scintigraphy can be used to facilitate the generally difficult diagnosis of incomplete tibial fractures

  2. Preliminary design of electrostatic sensors for MITICA beam line components

    Energy Technology Data Exchange (ETDEWEB)

    Spagnolo, S., E-mail: spagnolo@igi.cnr.it; Spolaore, M.; Dalla Palma, M.; Pasqualotto, R.; Sartori, E.; Serianni, G.; Veltri, P. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, 35127 Padova (Italy)

    2016-02-15

    Megavolt ITER Injector and Concept Advancement, the full-scale prototype of ITER neutral beam injector, is under construction in Italy. The device will generate deuterium negative ions, then accelerated and neutralized. The emerging beam, after removal of residual ions, will be dumped onto a calorimeter. The presence of plasma and its parameters will be monitored in the components of the beam-line, by means of specific electrostatic probes. Double probes, with the possibility to be configured as Langmuir probes and provide local ion density and electron temperature measurements, will be employed in the neutralizer and in the residual ion dump. Biased electrodes collecting secondary emission electrons will be installed in the calorimeter with the aim to provide a horizontal profile of the beam.

  3. Neglected, semimembranosus osteochondral avulsion fracture of the posteromedial tibial plateau

    Directory of Open Access Journals (Sweden)

    Rakesh John

    2018-06-01

    Full Text Available Semimembranosus avulsion fracture is infrequently reported and is easy to miss on plain radiographs; the mechanism of injury is highly controversial. Initial reports linked it to anterior cruciate ligament and medial meniscal tears. We report an osteochondral semimembranosus avulsion fracture of the posteromedial tibial plateau with associated posterior cruciate ligament rupture. Also described is a novel surgical fixation technique for such osteochondral fractures where the surgical exposure is limited due to the obliquity of the fracture line resulting in a greater involvement of the articular cartilage than the small bony component. The fixation technique described may be used for osteochondral fractures where the application of a conventional compression screw may not be feasible. Keywords: Osteochondral fracture, Semimembranosus avulsion fracture, Posteromedial tibial plateau, Neglected, Nonunion

  4. Reconstruction of bilateral tibial aplasia and split hand-foot syndrome in a father and daughter.

    Science.gov (United States)

    Al Kaissi, Ali; Ganger, Rudolf; Klaushofer, Klaus; Grill, Franz

    2014-01-01

    Tibial aplasia is of heterogeneous aetiology, the majority of reports are sporadic. We describe the reconstruction procedures in two subjects - a daughter and father manifested autosomal dominant (AD) inheritance of the bilateral tibial aplasia and split hand-foot syndrome. Reconstruction of these patients required multiple surgical procedures and orthoprosthesis was mandatory. The main goal of treatment was to achieve walking. Stabilization of the ankle joint by fibular-talar-chondrodesis on both sides, followed by bilateral Brown-procedure at the knee joint level has been applied accordingly. The outcome was with improved function of the deformed limbs and walking was achieved with simultaneous designation of orthotic fitting. This is the first study encompassing the diagnosis and management of a father and daughter with bilateral tibial aplasia associated with variable split hand/foot deformity without foot ablation. Our patients showed the typical AD pattern of inheritance of split-hand/foot and tibial aplasia.

  5. Design guidance for fracture-critical components at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Streit, R.D.

    1982-01-01

    Fracture is an important design consideration for components whose sudden and catastrophic failure could result in a serious accident. Elements of fracture control and fracture mechanics design methods are reviewed. Design requirements, which are based on the consequences of fracture of a given component, are subsequently developed. Five categories of consequences are defined. Category I is the lowest risk, and relatively lenient design requirements are employed. Category V has the highest potential for injury, release of hazardous material, and damage. Correspondingly, the design requirements for these components are the most stringent. Environmental, loading, and material factors that can affect fracture safety are also discussed

  6. Tibial hyperostosis: A diagnostic approach

    International Nuclear Information System (INIS)

    Touraine, Sébastien; Parlier-Cuau, Caroline; Bousson, Valérie; Sverzut, Jean-Michel; Genah, Idan

    2013-01-01

    Tibial hyperostosis may be encountered in musculoskeletal imaging, incidentally or during the investigation of a leg pain. Hyperostosis involves the exuberant production of osseous tissue and results in cortical, periosteal and/or endosteal thickening of the bone. As a long bone with thick cortices, the tibia has a significant probability of being affected by ubiquitous bone diseases. As a tubular long bone, the tibia is likely to be involved in extensive infectious conditions such as osteomyelitis. As a bone of the lower limb, the tibia undergoes high stresses and may be affected by decrease in bone strength or repetitive submaximal stress. The tibia is also particularly involved in some bone sclerosing dysplasias and Paget's disease. In this work, we aim at highlighting the main conditions leading to tibial hyperostosis and try to provide key elements to narrow down the several diagnostic possibilities. Osteoid osteomas, fatigue or insufficiency fractures, infectious conditions, vascular lesions, sclerosing bone dysplasias and Paget's disease represent the main challenging diagnoses to discuss

  7. Tibial hyperostosis: A diagnostic approach

    Energy Technology Data Exchange (ETDEWEB)

    Touraine, Sébastien, E-mail: sebastien.touraine@lrb.aphp.fr [Radiologie ostéo-articulaire, Hôpital Lariboisière, 2 rue Ambroise Paré, 75475 Paris Cedex 10 (France); Parlier-Cuau, Caroline, E-mail: caroline.parlier@lrb.aphp.fr [Radiologie ostéo-articulaire, Hôpital Lariboisière, 2 rue Ambroise Paré, 75475 Paris Cedex 10 (France); Bousson, Valérie, E-mail: valerie.bousson@lrb.aphp.fr [Radiologie ostéo-articulaire, Hôpital Lariboisière, 2 rue Ambroise Paré, 75475 Paris Cedex 10 (France); Sverzut, Jean-Michel, E-mail: jmsverzut21@hotmail.com [Radiologie ostéo-articulaire, Hôpital Lariboisière, 2 rue Ambroise Paré, 75475 Paris Cedex 10 (France); Centre d’imagerie du centre cardiologique du Nord, 32-36 rue des Moulins Gémeaux, 93200 Saint-Denis (France); Genah, Idan, E-mail: idan.genah@lrb.aphp.fr [Radiologie ostéo-articulaire, Hôpital Lariboisière, 2 rue Ambroise Paré, 75475 Paris Cedex 10 (France); and others

    2013-12-01

    Tibial hyperostosis may be encountered in musculoskeletal imaging, incidentally or during the investigation of a leg pain. Hyperostosis involves the exuberant production of osseous tissue and results in cortical, periosteal and/or endosteal thickening of the bone. As a long bone with thick cortices, the tibia has a significant probability of being affected by ubiquitous bone diseases. As a tubular long bone, the tibia is likely to be involved in extensive infectious conditions such as osteomyelitis. As a bone of the lower limb, the tibia undergoes high stresses and may be affected by decrease in bone strength or repetitive submaximal stress. The tibia is also particularly involved in some bone sclerosing dysplasias and Paget's disease. In this work, we aim at highlighting the main conditions leading to tibial hyperostosis and try to provide key elements to narrow down the several diagnostic possibilities. Osteoid osteomas, fatigue or insufficiency fractures, infectious conditions, vascular lesions, sclerosing bone dysplasias and Paget's disease represent the main challenging diagnoses to discuss.

  8. Time-domain ultra-wideband radar, sensor and components theory, analysis and design

    CERN Document Server

    Nguyen, Cam

    2014-01-01

    This book presents the theory, analysis, and design of ultra-wideband (UWB) radar and sensor systems (in short, UWB systems) and their components. UWB systems find numerous applications in the military, security, civilian, commercial and medicine fields. This book addresses five main topics of UWB systems: System Analysis, Transmitter Design, Receiver Design, Antenna Design and System Integration and Test. The developments of a practical UWB system and its components using microwave integrated circuits, as well as various measurements, are included in detail to demonstrate the theory, analysis and design technique. Essentially, this book will enable the reader to design their own UWB systems and components. In the System Analysis chapter, the UWB principle of operation as well as the power budget analysis and range resolution analysis are presented. In the UWB Transmitter Design chapter, the design, fabrication and measurement of impulse and monocycle pulse generators are covered. The UWB Receiver Design cha...

  9. Design Basis of Core Components and their Realization in the frame of the EPR'sTM Core Component Development

    International Nuclear Information System (INIS)

    Schebitz, Florian; Mekmouche, Abdelhalim

    2008-01-01

    Rod Cluster Control Assemblies (RCCAs), Thimble Plug Assemblies (TPAs), Primary Neutron Sources (PNS) and Secondary Neutron Sources (SNS) are essential for the operation of a Nuclear Power Plant. Different functional requirements ask for different components and geometries. Therefore three different core components are used within the primary circuit: - The RCCA, which contains the absorber materials, is used to regulate and shut down the nuclear chain reaction. Under these demanding conditions different effects are determining the lifetime of the RCCA and in particular of the control rods. Several improvements like ion-nitriding of the cladding, lengthening of the bottom end plug, helium backfilling and reduction of the absorber diameter in the bottom part, which have already been introduced with the HARMONI TM RCCA, show a real improvement in terms of lifetime. - The TPAs are used at positions without RCCAs and neutron sources to limit the by-pass flow-rate in the fuel assembly guide tubes. The advanced TPA design results from a perfect combination of French and German design experience feedback. Benefits like homogenized hydraulic flow and improved manageability in terms of handling tools show the joined experience. - The neutron sources are used to enhance the flux level when the core is sub-critical so as to facilitate the core start-up control by the neutron flux detectors. Primary and secondary neutron sources are designed in a common way with reviewed and improved methodology. As there are different ways and conditions to operate core components, several designs are available. For the EPR TM , the best methods and products have been chosen. All chosen components contribute to an optimized and safe operation of the EPR TM . (authors)

  10. Asymmetry in gait pattern following tibial shaft fractures

    DEFF Research Database (Denmark)

    Larsen, Peter; Læssøe, Uffe; Rasmussen, Sten

    2017-01-01

    INTRODUCTION: Despite the high number of studies evaluating the outcomes following tibial shaft fractures, the literature lacks studies including objective assessment of patients' recovery regarding gait pattern. The purpose of the present study was to evaluate whether gait patterns at 6 and 12...... months post-operatively following intramedullary nailing of a tibial shaft fracture are different compared with a healthy reference population. PATIENTS AND METHODS: The study design was a prospective cohort study. The primary outcome measurement was the gait patterns at 6 and 12 months post......-operatively measured with a 6-metre-long pressure-sensitive mat. The mat registers footprints and present gait speed, cadence as well as temporal and spatial parameters of the gait cycle. Gait patterns were compared to a healthy reference population. RESULTS: 49 patients were included with a mean age of 43.1 years (18...

  11. Open wedge high tibial osteotomy using three-dimensional printed models: Experimental analysis using porcine bone.

    Science.gov (United States)

    Kwun, Jun-Dae; Kim, Hee-June; Park, Jaeyoung; Park, Il-Hyung; Kyung, Hee-Soo

    2017-01-01

    The purpose of this study was to evaluate the usefulness of three-dimensional (3D) printed models for open wedge high tibial osteotomy (HTO) in porcine bone. Computed tomography (CT) images were obtained from 10 porcine knees and 3D imaging was planned using the 3D-Slicer program. The osteotomy line was drawn from the three centimeters below the medial tibial plateau to the proximal end of the fibular head. Then the osteotomy gap was opened until the mechanical axis line was 62.5% from the medial border along the width of the tibial plateau, maintaining the posterior tibial slope angle. The wedge-shaped 3D-printed model was designed with the measured angle and osteotomy section and was produced by the 3D printer. The open wedge HTO surgery was reproduced in porcine bone using the 3D-printed model and the osteotomy site was fixed with a plate. Accuracy of osteotomy and posterior tibial slope was evaluated after the osteotomy. The mean mechanical axis line on the tibial plateau was 61.8±1.5% from the medial tibia. There was no statistically significant difference (P=0.160). The planned and post-osteotomy correction wedge angles were 11.5±3.2° and 11.4±3.3°, and the posterior tibial slope angle was 11.2±2.2° pre-osteotomy and 11.4±2.5° post-osteotomy. There were no significant differences (P=0.854 and P=0.429, respectively). This study showed that good results could be obtained in high tibial osteotomy by using 3D printed models of porcine legs. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The effect of tibial plateau leveling osteotomy position on cranial tibial subluxation: an in vitro study.

    Science.gov (United States)

    Kowaleski, Michael P; Apelt, Detlef; Mattoon, John S; Litsky, Alan S

    2005-01-01

    To compare centered versus distal tibial plateau leveling osteotomy (TPLO) position on cranial tibial subluxation, postoperative tibial plateau angle (TPA), and tibial long axis shift (TLAS). In vitro biomechanical evaluation. Six pairs of canine cadaveric hind limbs. One limb of each pair was randomly assigned to the distal (TPLO-D) or centered (TPLO-C) osteotomy group. Cranial tibial subluxation (CTS) under load was quantified sequentially under 3 conditions: intact, after cranial cruciate ligament transection, and after TPLO; a corrected CTS value was also calculated. Postoperative TPA and TLAS were measured. Comparisons were made using 1-way repeated measures ANOVA with a Tukey's multiple comparison post hoc test for CTS, and a Wilcoxon's sign rank test for TPA and TLAS. Significance was set at Pcranial tibial thrust. The centered osteotomy position is geometrically more precise, and biomechanically more effective than the distal position.

  13. Interrelationship betwen material strength and component design under elevated temperature for FBR

    International Nuclear Information System (INIS)

    Nakagawa, Y.

    Structural design under elevated temperature for fast breeder reactor plant is very troublesome compared to that of for lower temperature. This difficulty can be mainly discussed from two different stand points. One is design and design code, another is material strength. Components in FBR are operated under creep regime and time dependent creep behaviour should be elevated properly. This means the number and combinations of design code and material strength are significantly large and makes these systems very complicated. Material selection is, in no words, not an easy job. This should be done by not only material development but also component design stand point. With valuable experience of construction and research on FBR, a lot of information on component design and material behaviour is available. And it is a time to choose the ''best material'' from the entire stand points of component construction. (author)

  14. Prediction of Tibial Rotation Pathologies Using Particle Swarm Optimization and K-Means Algorithms.

    Science.gov (United States)

    Sari, Murat; Tuna, Can; Akogul, Serkan

    2018-03-28

    The aim of this article is to investigate pathological subjects from a population through different physical factors. To achieve this, particle swarm optimization (PSO) and K-means (KM) clustering algorithms have been combined (PSO-KM). Datasets provided by the literature were divided into three clusters based on age and weight parameters and each one of right tibial external rotation (RTER), right tibial internal rotation (RTIR), left tibial external rotation (LTER), and left tibial internal rotation (LTIR) values were divided into three types as Type 1, Type 2 and Type 3 (Type 2 is non-pathological (normal) and the other two types are pathological (abnormal)), respectively. The rotation values of every subject in any cluster were noted. Then the algorithm was run and the produced values were also considered. The values of the produced algorithm, the PSO-KM, have been compared with the real values. The hybrid PSO-KM algorithm has been very successful on the optimal clustering of the tibial rotation types through the physical criteria. In this investigation, Type 2 (pathological subjects) is of especially high predictability and the PSO-KM algorithm has been very successful as an operation system for clustering and optimizing the tibial motion data assessments. These research findings are expected to be very useful for health providers, such as physiotherapists, orthopedists, and so on, in which this consequence may help clinicians to appropriately designing proper treatment schedules for patients.

  15. Bilateral double level tibial lengthening in dwarfism.

    Science.gov (United States)

    Burghardt, Rolf D; Yoshino, Koichi; Kashiwagi, Naoya; Yoshino, Shigeo; Bhave, Anil; Paley, Dror; Herzenberg, John E

    2015-12-01

    Outcome assessment after double level tibial lengthening in patients with dwarfism. Fourteen patients with dwarfism were analyzed after bilateral simultaneous double level tibial lengthening. Average age was 15.1 years. Average lengthening was 13.5 cm. The two levels were lengthened by an average of 7.5 cm proximally and 6.0 cm distally. Concomitant deformities were also addressed during lengthening. External fixation treatment time averaged 8.8 months. Healing index averaged 0.7 months/cm. Bilateral tibial lengthening for dwarfism is difficult, but the results are usually quite gratifying.

  16. Measurement of tibial torsion by computer tomography

    Energy Technology Data Exchange (ETDEWEB)

    Jend, H.H.; Heller, M.; Dallek, M.; Schoettle, H. (Hamburg Univ. (Germany, F.R.))

    1981-01-01

    A CT procedure for objective measurements of tibial torsion independent of axial rotation in the nearby joints is described. Transverse sections in defined planes of the tibia permit easy calculation of normal and abnormal congenital or posttraumatic angles of torsion. In 69 limbs normal tibial torsion was 40/sup 0/+-9/sup 0/. In a series of 42 limbs with complicated healing of a fracture of both bones of the leg it is shown that tibial maltorsion is a deformity which in most cases leads to arthrosis of the ankle joint.

  17. Measurement of tibial torsion by computer tomography

    International Nuclear Information System (INIS)

    Jend, H.-H.; Heller, M.; Dallek, M.; Schoettle, H.

    1981-01-01

    A CT procedure for objective measurements of tibial torsion independent of axial rotation in the nearby joints is described. Transverse sections in defined planes of the tibia permit easy calculation of normal and abnormal congenital or posttraumatic angles of torsion. In 69 limbs normal tibial torsion was 40 0 +-9 0 . In a series of 42 limbs with complicated healing of a fracture of both bones of the leg it is shown that tibial maltorsion is a deformity which in most cases leads to arthrosis of the ankle joint. (Auth.)

  18. C-Based Design Methodology and Topological Change for an Indian Agricultural Tractor Component

    Science.gov (United States)

    Matta, Anil Kumar; Raju, D. Ranga; Suman, K. N. S.; Kranthi, A. S.

    2018-06-01

    The failure of tractor components and their replacement has now become very common in India because of re-cycling, re-sale, and duplication. To over come the problem of failure we propose a design methodology for topological change co-simulating with software's. In the proposed Design methodology, the designer checks Paxial, Pcr, Pfailue, τ by hand calculations, from which refined topological changes of R.S.Arm are formed. We explained several techniques employed in the component for reduction, removal of rib material to change center of gravity and centroid point by using system C for mixed level simulation and faster topological changes. The design process in system C can be compiled and executed with software, TURBO C7. The modified component is developed in proE and analyzed in ANSYS. The topologically changed component with slot 120 × 4.75 × 32.5 mm at the center showed greater effectiveness than the original component.

  19. C-Based Design Methodology and Topological Change for an Indian Agricultural Tractor Component

    Science.gov (United States)

    Matta, Anil Kumar; Raju, D. Ranga; Suman, K. N. S.; Kranthi, A. S.

    2018-02-01

    The failure of tractor components and their replacement has now become very common in India because of re-cycling, re-sale, and duplication. To over come the problem of failure we propose a design methodology for topological change co-simulating with software's. In the proposed Design methodology, the designer checks Paxial, Pcr, Pfailue, τ by hand calculations, from which refined topological changes of R.S.Arm are formed. We explained several techniques employed in the component for reduction, removal of rib material to change center of gravity and centroid point by using system C for mixed level simulation and faster topological changes. The design process in system C can be compiled and executed with software, TURBO C7. The modified component is developed in proE and analyzed in ANSYS. The topologically changed component with slot 120 × 4.75 × 32.5 mm at the center showed greater effectiveness than the original component.

  20. Effects of tibial slope changes in the stability of fixed bearing medial unicompartmental arthroplasty in anterior cruciate ligament deficient knees.

    Science.gov (United States)

    Suero, Eduardo M; Citak, Musa; Cross, Michael B; Bosscher, Marianne R F; Ranawat, Anil S; Pearle, Andrew D

    2012-08-01

    Patients with anterior cruciate ligament (ACL) deficiency may have increased failure rates with UKA as a result of abnormal contact stresses and altered knee kinematics. Variations in the slope of the tibial component in UKA may alter tibiofemoral translation, and affect outcomes. This cadaveric study evaluated tibiofemoral translation during the Lachman and pivot shift tests after changing the slope of a fixed bearing unicondylar tibial component. Sectioning the ACL increased tibiofemoral translation in both the Lachman and pivot shift tests (Pslope leveling (decreasing the posterior slope) of the polyethylene insert in a UKA decreases anteroposterior tibiofemoral translation in the sagittal plane to a magnitude similar to that of the intact knee. With 8° of tibial slope leveling, anterior tibial translation during the Lachman test decreased by approximately 5mm. However, no variation in slope altered the pivot shift kinematics in the ACL deficient knees. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. High-temperature-structural design and research and development for reactor system components

    International Nuclear Information System (INIS)

    Matsumura, Makoto; Hada, Mikio

    1985-01-01

    The design of reactor system components requires high-temperature-structural design guide with the consideration of the creep effect of materials related to research and development on structural design. The high-temperature-structural design guideline for the fast prototype reactor MONJU has been developed under the active leadership by Power Reactor and Nuclear Fuel Development Corporation and Toshiba has actively participated to this work with responsibility on in-vessel components, performing research and development programs. This paper reports the current status of high-temperature-structural-design-oriented research and development programs and development of analytical system including stress-evaluation program. (author)

  2. Wear prediction on total ankle replacement effect of design parameters

    CERN Document Server

    Saad, Amir Putra Bin Md; Harun, Muhamad Noor; Kadir, Mohammed Rafiq Abdul

    2016-01-01

    This book develops and analyses computational wear simulations of the total ankle replacement for the stance phase of gait cycle. The emphasis is put on the relevant design parameters. The book presents a model consisting of three components; tibial, bearing and talar representing their physiological functions.

  3. Bypass grafting to the anterior tibial artery.

    Science.gov (United States)

    Armour, R H

    1976-01-01

    Four patients with severe ischaemia of a leg due to atherosclerotic occlusion of the tibial and peroneal arteries had reversed long saphenous vein grafts to the patent lower part of the anterior tibial artery. Two of these grafts continue to function 19 and 24 months after operation respectively. One graft failed on the fifth postoperative day and another occluded 4 months after operation. The literature on femorotibial grafting has been reviewed. The early failure rate of distal grafting is higher than in the case of femoropopliteal bypass, but a number of otherwise doomed limbs can be salvaged. Contrary to widely held views, grafting to the anterior tibial artery appears to give results comparable to those obtained when the lower anastomosis is made to the posterior tibial artery.

  4. Posterior tibial slope impacts intraoperatively measured mid-flexion anteroposterior kinematics during cruciate-retaining total knee arthroplasty.

    Science.gov (United States)

    Dai, Yifei; Cross, Michael B; Angibaud, Laurent D; Hamad, Cyril; Jung, Amaury; Jenny, Jean-Yves

    2018-02-23

    Posterior tibial slope (PTS) for cruciate-retaining (CR) total knee arthroplasty (TKA) is usually pre-determined by the surgeon. Limited information is available comparing different choices of PTS on the kinematics of the CR TKA, independent of the balancing of the extension gap. This study hypothesized that with the same balanced extension gap, the choice of PTS significantly impacts the intraoperatively measured kinematics of CR TKA. Navigated CR TKAs were performed on seven fresh-frozen cadavers with healthy knees and intact posterior cruciate ligament (PCL). A custom designed tibial baseplate was implanted to allow in situ modification of the PTS, which altered the flexion gap but maintained the extension gap. Knee kinematics were measured by performing passive range of motion (ROM) tests from full extension to 120° of flexion on the intact knee and CR TKAs with four different PTSs (1°, 4°, 7°, and 10°). The measured kinematics were compared across test conditions to assess the impact of PTS. With a consistent extension gap, the change of PTS had significant impact on the anteroposterior (AP) kinematics of the CR TKA knees in mid-flexion range (45°-90°), but not so much for the high-flexion range (90°-120°). No considerable impacts were found on internal/external (I/E) rotation and hip-knee-ankle (HKA) angle. However, the findings on the individual basis suggested the impact of PTS on I/E rotation and HKA angle may be patient-specific. The data suggested that the choice of PTS had the greatest impact on the mid-flexion AP translation among the intraoperatively measured kinematics. This impact may be considered while making surgical decisions in the context of AP kinematics. When using a tibial component designed with "center" pivoting PTS, a surgeon may be able to fine tune the PTS to achieve proper mid-flexion AP stability.

  5. Incidence and epidemiology of tibial shaft fractures.

    Science.gov (United States)

    Larsen, Peter; Elsoe, Rasmus; Hansen, Sandra Hope; Graven-Nielsen, Thomas; Laessoe, Uffe; Rasmussen, Sten

    2015-04-01

    The literature lacks recent population-based epidemiology studies of the incidence, trauma mechanism and fracture classification of tibial shaft fractures. The purpose of this study was to provide up-to-date information on the incidence of tibial shaft fractures in a large and complete population and report the distribution of fracture classification, trauma mechanism and patient baseline demographics. Retrospective reviews of clinical and radiological records. A total of 196 patients were treated for 198 tibial shaft fractures in the years 2009 and 2010. The mean age at time of fracture was 38.5 (21.2SD) years. The incidence of tibial shaft fracture was 16.9/100,000/year. Males have the highest incidence of 21.5/100,000/year and present with the highest frequency between the age of 10 and 20, whereas women have a frequency of 12.3/100,000/year and have the highest frequency between the age of 30 and 40. AO-type 42-A1 was the most common fracture type, representing 34% of all tibial shaft fractures. The majority of tibial shaft fractures occur during walking, indoor activity and sports. The distribution among genders shows that males present a higher frequency of fractures while participating in sports activities and walking. Women present the highest frequency of fractures while walking and during indoor activities. This study shows an incidence of 16.9/100,000/year for tibial shaft fractures. AO-type 42-A1 was the most common fracture type, representing 34% of all tibial shaft fractures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Conceptual design of heat transport systems and components of PFBR-NSSS

    International Nuclear Information System (INIS)

    Chetal, S.C.; Bhoje, S.B.; Kale, R.D.; Rao, A.S.L.K.; Mitra, T.K.; Selvaraj, A.; Sethi, V.K.; Sundaramoorthy, T.R.; Balasubramaniyan, V.; Vaidyanathan, G.

    1996-01-01

    The production of electrical power from sodium cooled fast reactors in the present power scenario in India demands emphasis on plant economics consistent with safety. Number of heat transport systems/components and the design of principal heat transport components viz sodium pumps, IHX and steam generators play significant role in the plant capital cost and capacity factor. The paper discusses the basis of selection of 2 primary pumps, 4 IHX, 2 secondary loops, 2 secondary pumps and 8 steam generators for the 500 MWe Prototype Fast Breeder Reactor (PFBR), which is now in design stage. The principal design features of primary pump, IHX and steam generator have been selected based on design simplicity, ease of manufacture and utilization of established designs. The paper also describes the conceptual design of above mentioned three components. (author). 3 figs, 2 tabs

  7. A Fixed Point VHDL Component Library for a High Efficiency Reconfigurable Radio Design Methodology

    Science.gov (United States)

    Hoy, Scott D.; Figueiredo, Marco A.

    2006-01-01

    Advances in Field Programmable Gate Array (FPGA) technologies enable the implementation of reconfigurable radio systems for both ground and space applications. The development of such systems challenges the current design paradigms and requires more robust design techniques to meet the increased system complexity. Among these techniques is the development of component libraries to reduce design cycle time and to improve design verification, consequently increasing the overall efficiency of the project development process while increasing design success rates and reducing engineering costs. This paper describes the reconfigurable radio component library developed at the Software Defined Radio Applications Research Center (SARC) at Goddard Space Flight Center (GSFC) Microwave and Communications Branch (Code 567). The library is a set of fixed-point VHDL components that link the Digital Signal Processing (DSP) simulation environment with the FPGA design tools. This provides a direct synthesis path based on the latest developments of the VHDL tools as proposed by the BEE VBDL 2004 which allows for the simulation and synthesis of fixed-point math operations while maintaining bit and cycle accuracy. The VHDL Fixed Point Reconfigurable Radio Component library does not require the use of the FPGA vendor specific automatic component generators and provide a generic path from high level DSP simulations implemented in Mathworks Simulink to any FPGA device. The access to the component synthesizable, source code provides full design verification capability:

  8. Mechanical design philosophy for the graphite components of the core structure of an HTGR

    International Nuclear Information System (INIS)

    Bodmann, E.

    1987-01-01

    Parallel to the layout and design of the graphite components for THTRs and the succeeding high temperature reactor projects, the design methods for graphite components have been improved over the years. The aim of this works is to develop the design methods which take into account both the particular properties of graphite and the particular functions of the components. Because of the close relation ship between materials and design codes, this development work has progressed with the development, testing and qualification of German reactor graphite. In this paper, the experience in this field of Hochtemperatur Reaktorbau GmbH and the results of the work and approach to the design problems are reported. The example of a HTR 500 design for a 550 MWe power station is taken up, and the core structure is explained. The graphite components are divided into three classes according to the stress limits. The loading of these components is reviewed. The aim of the design is not the complete avoidance of failure, but to avoid the failure of a single component from leading to a disadvantageous consequence which is not allowable. The classification of loading events, Weibull statistics and maximum allowable stress, the formation of the permissible stress, the assessment of stress due to multiaxial loading and so on are described. (Kako, I.)

  9. Model-Based Design Tools for Extending COTS Components To Extreme Environments, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation in this project is model-based design (MBD) tools for predicting the performance and useful life of commercial-off-the-shelf (COTS) components and...

  10. Design and fabrication of a eccentric wheels based motorised alignment mechanism for cylindrical accelerator components

    International Nuclear Information System (INIS)

    Mundra, G.; Jain, V.; Karmarkar, Mangesh; Kotaiah, S.

    2006-01-01

    Precision alignment mechanisms with long term stability are required for accelerator components. For some of the components motorised and remotely operable alignment mechanism are required. An eccentric wheel mechanism based alignment system is very much suitable for such application. One such alignment system is designed, a prototype is machined/fabricated for SFDTL type accelerating structure and preliminary trial experiments have been done. (author)

  11. [Design of traditional Chinese medicines with antihypertensive components based on medicinal property combination modes].

    Science.gov (United States)

    Liao, Su-Fen; Yan, Su-Rong; Guo, Wei-Jia; Luo, Ji; Sun, Jing; Dong, Fang; Wang, Yun; Qiao, Yan-Jiang

    2014-07-01

    Multi-component traditional Chinese medicines are an innovative research mode for traditional Chinese medicines. Currently, there are many design methods for developing multi-component traditional Chinese medicines, but their common feature is the lack of effective connection of the traditional Chinese medicine theory. In this paper, the authors discussed the multi-component traditional Chinese medicine design methods based on medicinal property combination modes, provided the combination methods with the characteristics of traditional Chinese medicine for the prescription combinations, and proved its feasibly with hypertension cases.

  12. Safety philosophy and design principles for systems and components of nuclear power plant: external event

    International Nuclear Information System (INIS)

    Lopes, J.P.G.

    1986-01-01

    In nuclear power plants, some systems and components are designed to withstand external impacts. Such systems and components are those which have to perform their functions even during and after the occurrences of an earthquake, for example, fulfilling the safety objectives and avoiding the release of radioactive material to the environment. The aim of this report is to introduce the safety philosophy and design principles for systems/components to perform their functions during and after the occurrence of an earthquake, as applied by NUCLEN for Angra 2 and 3. (Author) [pt

  13. Design, construction, qualification and reliability of main components, from the safety aspect

    International Nuclear Information System (INIS)

    Crette, J.P.

    1982-01-01

    In FRANCE, the design and construction of reliable components, which condition the safe operation and availability of breeder plants, is based on the experience acquired during the operation of RAPSODIE, PHENIX and the various test facilities. The technical progress achieved on all main components is illustrated by examples taken from the CREYS-MALVILLE plant. In parallel with the development of these components, an extensive program covering research, development and the definition of design, construction and inspection rules, together with scheduling and quality assurance methods, prepares the industrialization of this reactor system, in compliance with the rules and recommendations issued by the pertinent safety authorities

  14. Tests of qualification of national components of nuclear power plants under design basis accident

    International Nuclear Information System (INIS)

    Mesquita, A.Z.

    1990-01-01

    With the purpose of qualifying national components of nuclear power plants, whose working must be maintained during and after an accident, the Thermohydraulic Division of CDTN have done tests to check the equipment stability, under Design Basis Accident conditions. Until this moment, the following components were tested: electrical junction boxes (connectors); coating systems for wall, inside cover and steel containment; hydraulics components of personnel and equipment airlock. This work describes the test instalation, the tests performed and its results. The components tested, in a general way, fulfil the specified requirements. (author) [pt

  15. Some thoughts on the future of probabilistic structural design of nuclear components

    International Nuclear Information System (INIS)

    Stancampiano, P.A.

    1978-01-01

    This paper presents some views on the future role of probabilistic methods in the structural design of nuclear components. The existing deterministic design approach is discussed and compared to the probabilistic approach. Some of the objections to both deterministic and probabilistic design are listed. Extensive research and development activities are required to mature the probabilistic approach suficiently to make it cost-effective and competitive with current deterministic design practices. The required research activities deal with probabilistic methods development, more realistic casual failure mode models development, and statistical data models development. A quasi-probabilistic structural design approach is recommended which accounts for the random error in the design models. (Auth.)

  16. Enhanced Learning through Design Problems--Teaching a Components-Based Course through Design

    Science.gov (United States)

    Jensen, Bogi Bech; Hogberg, Stig; Jensen, Frida av Flotum; Mijatovic, Nenad

    2012-01-01

    This paper describes a teaching method used in an electrical machines course, where the students learn about electrical machines by designing them. The aim of the course is not to teach design, albeit this is a side product, but rather to teach the fundamentals and the function of electrical machines through design. The teaching method is…

  17. Design and Application of an Ontology for Component-Based Modeling of Water Systems

    Science.gov (United States)

    Elag, M.; Goodall, J. L.

    2012-12-01

    Many Earth system modeling frameworks have adopted an approach of componentizing models so that a large model can be assembled by linking a set of smaller model components. These model components can then be more easily reused, extended, and maintained by a large group of model developers and end users. While there has been a notable increase in component-based model frameworks in the Earth sciences in recent years, there has been less work on creating framework-agnostic metadata and ontologies for model components. Well defined model component metadata is needed, however, to facilitate sharing, reuse, and interoperability both within and across Earth system modeling frameworks. To address this need, we have designed an ontology for the water resources community named the Water Resources Component (WRC) ontology in order to advance the application of component-based modeling frameworks across water related disciplines. Here we present the design of the WRC ontology and demonstrate its application for integration of model components used in watershed management. First we show how the watershed modeling system Soil and Water Assessment Tool (SWAT) can be decomposed into a set of hydrological and ecological components that adopt the Open Modeling Interface (OpenMI) standard. Then we show how the components can be used to estimate nitrogen losses from land to surface water for the Baltimore Ecosystem study area. Results of this work are (i) a demonstration of how the WRC ontology advances the conceptual integration between components of water related disciplines by handling the semantic and syntactic heterogeneity present when describing components from different disciplines and (ii) an investigation of a methodology by which large models can be decomposed into a set of model components that can be well described by populating metadata according to the WRC ontology.

  18. Does Tibial Slope Affect Perception of Coronal Alignment on a Standing Anteroposterior Radiograph?

    Science.gov (United States)

    Schwartz, Adam J; Ravi, Bheeshma; Kransdorf, Mark J; Clarke, Henry D

    2017-07-01

    A standing anteroposterior (AP) radiograph is commonly used to evaluate coronal alignment following total knee arthroplasty (TKA). The impact of coronal alignment on TKA outcomes is controversial, perhaps due to variability in imaging and/or measurement technique. We sought to quantify the effect of image rotation and tibial slope on coronal alignment. Using a standard extramedullary tibial alignment guide, 3 cadaver legs were cut to accept a tibial tray at 0°, 3°, and 7° of slope. A computed tomography scan of the entire tibia was obtained for each specimen to confirm neutral coronal alignment. Images were then obtained at progressive 10° intervals of internal and external rotation up to 40° maximum in each direction. Images were then randomized and 5 blinded TKA surgeons were asked to determine coronal alignment. Continuous data values were transformed to categorical data (neutral [0], valgus [L], and varus [R]). Each 10° interval of external rotation of a 7° sloped tibial cut (or relative internal rotation of a tibial component viewed in the AP plane) resulted in perception of an additional 0.75° of varus. The slope of the proximal tibia bone cut should be taken into account when measuring coronal alignment on a standing AP radiograph. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. [Mobility of a polyethylene tibial insert in a mobile total knee prosthesis].

    Science.gov (United States)

    Castel, E; Roger, B; Camproux, A; Saillant, G

    1999-03-01

    We have studied the mobility of a mobile tibial implant in total knee arthroplasty (TKA) by a radiographical evaluation. We analyzed mobility of the polyethylene tibial insert of 15 "G2S" TKA implanted for one year or more. We established a dynamic radiographical evaluation. We used 3 weight-bearing radiographs: AP in extension and two lateral (one in extension and one at 90 degrees of flexion), two AP with femoral internal and external rotation, 2 strict lateral X-rays in neutral rotation in antero-posterior replacement with a 25 kilograms strength Telos, and 2 AP in varus and valgus with Telos. Wilcoxon's test and Fisher's exact test were used for statistical evaluation. Our study demonstrated preservation of the polyethylene mobility in tibial TKA implant in all movements: in rotation, in antero-posterior translation with Telos, and even in antero-posterior translation during physiological condition with flexion-extension weight-bearing radiographs. Statistical tests were very significant. We noticed that flexion induced anterior translation of tibial polyethylene when PCL was preserved. This study answered to our question whether mobility of TKA tibial implant persists after implantation. This mobility should reduce loosening forces to the tibia and stress in the polyethylene component. Now we have to determine the amplitude of mobility required to reach this objective.

  20. Mechanical design assessments of structural components and auxiliaries of the Joint European Torus

    International Nuclear Information System (INIS)

    Sonnerup, L.

    1985-01-01

    The general design of the Joint European Torus (JET) is briefly described. The loads on its major structural components, at normal operation, and in cases of plasma instability and/or disruption, are discussed. The way these components have been assessed and optimised in relation to their loads is presented. A short account of mechanical design problems of auxiliary equipment is given. Finally, the state of operation of JET and its implications for the mechanical design at the time of the conference will be summarized. The mechanically most important components of the JET device are the support structure of the toroidal magnet, th vacuum vessel, the coils of the magnets and the pedestals supporting the weight of the torus. These components all participate in resisting and transmitting the primary forces during operation. (orig.)

  1. Mechanical design assessments of structural components and auxiliaries of the Joint European Torus

    International Nuclear Information System (INIS)

    Sonnerup, L.

    1986-01-01

    The general design of the Joint European Torus (JET) is briefly described. The loads on its major structural components, at normal operation, and in cases of plasma instability and/or disruption, are discussed. The way these components have been assessed and optimised in relation to their loads is presented. A short account of mechanical design problems of auxiliary equipment is given. Finally, the state of operation of JET and its implications for the mechanical design is summarized. The mechanically most important components of the JET device are the support structure of the toroidal magnet, the vacuum vessel, the coils of the magnets and the pedestals supporting the weight of the torus. These components all participate in resisting and transmitting the primary forces during operation. (orig.)

  2. Methods for designing building envelope components prepared for repair and maintenance

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian

    2000-01-01

    the deterministic and probabilistic approach. Based on an investigation of the data-requirement, user-friendliness and supposed accuracy (the accuracy of the different methods has not been evaluated due to the absence of field data) the method which combines the deterministic factor method with statistical...... to be prepared for repair and maintenance. Both of these components are insulation systems for flat roofs and low slope roofs; components where repair or replacement is very expensive if the roofing material fails in its function. The principle of both roofing insulation systems is that the insulation can...... of issues which are specified below:Further development of methods for designing building envelope components prepared for repair and maintenance, and ways of tracking and predicting performance through time once the components have been designed, implemented in a building design and built...

  3. The effect of polyethylene creep on tibial insert locking screw loosening and back-out in prosthetic knee joints.

    Science.gov (United States)

    Sanders, Anthony P; Raeymaekers, Bart

    2014-10-01

    A prosthetic knee joint typically comprises a cobalt-chromium femoral component that articulates with a polyethylene tibial insert. A locking screw may be used to prevent micromotion and dislodgement of the tibial insert from the tibial tray. Screw loosening and back-out have been reported, but the mechanism that causes screw loosening is currently not well understood. In this paper, we experimentally evaluate the effect of polyethylene creep on the preload of the locking screw. We find that the preload decreases significantly as a result of polyethylene creep, which reduces the torque required to loosen the locking screw. The torque applied to the tibial insert due to internal/external rotation within the knee joint during gait could thus drive locking screw loosening and back-out. The results are very similar for different types of polyethylene. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. FFTF thermal-hydraulic testing results affecting piping and vessel component design in LMFBR's

    International Nuclear Information System (INIS)

    Stover, R.L.; Beaver, T.R.; Chang, S.C.

    1983-01-01

    The Fast Flux Test Facility completed four years of pre-operational testing in April 1982. This paper describes thermal-hydraulic testing results from this period which impact piping and vessel component design in LMFBRs. Data discussed are piping flow oscillations, piping thermal stratification and vessel upper plenum stratification. Results from testing verified that plant design limits were met

  5. Development of computational methods of design by analysis for pressure vessel components

    International Nuclear Information System (INIS)

    Bao Shiyi; Zhou Yu; He Shuyan; Wu Honglin

    2005-01-01

    Stress classification is not only one of key steps when pressure vessel component is designed by analysis, but also a difficulty which puzzles engineers and designers at all times. At present, for calculating and categorizing the stress field of pressure vessel components, there are several computation methods of design by analysis such as Stress Equivalent Linearization, Two-Step Approach, Primary Structure method, Elastic Compensation method, GLOSS R-Node method and so on, that are developed and applied. Moreover, ASME code also gives an inelastic method of design by analysis for limiting gross plastic deformation only. When pressure vessel components design by analysis, sometimes there are huge differences between the calculating results for using different calculating and analysis methods mentioned above. As consequence, this is the main reason that affects wide application of design by analysis approach. Recently, a new approach, presented in the new proposal of a European Standard, CEN's unfired pressure vessel standard EN 13445-3, tries to avoid problems of stress classification by analyzing pressure vessel structure's various failure mechanisms directly based on elastic-plastic theory. In this paper, some stress classification methods mentioned above, are described briefly. And the computational methods cited in the European pressure vessel standard, such as Deviatoric Map, and nonlinear analysis methods (plastic analysis and limit analysis), are depicted compendiously. Furthermore, the characteristics of computational methods of design by analysis are summarized for selecting the proper computational method when design pressure vessel component by analysis. (authors)

  6. Design, Manufacturing and Integration of LHC Cryostat Components an Example of Collaboration between CERN and Industry

    CERN Document Server

    Slits, Ivo; Canetti, Marco; Colombet, Thierry; Gangini, Fabrizio; Parma, Vittorio; Tock, Jean-Philippe

    2006-01-01

    The components for the LHC cryostats and interconnections are supplied by European industry. The manufacturing, assembly and testing of these components in accordance with CERN technical specifications require a close collaboration and dedicated approach from the suppliers. This paper presents the different phases of design, manufacturing, testing and integration of four LHC cryostat components supplied by RIAL Vacuum (Parma, Italy), including 112 Insulation Vacuum Barriers (IVB), 482 Cold-mass Extension Tubes (CET), 121 cryostat vacuum vessel Jumper Elbows (JE) and 10800 Interconnection Sleeves (IS). The Quality Assurance Plan, which the four projects have in common, is outlined. The components are all leak-tight thin stainless steel assemblies (<10-8 mbar l/s), most of them operating at cryogenic temperature (2 K), however each having specific requirements. The particularities of each component are presented with respect to manufacturing, assembly and testing. These components are being integrated ...

  7. Advancements in the design of safety-related systems and components of the MARS nuclear plant

    International Nuclear Information System (INIS)

    Caira, M.; Caruso, G.; Naviglio, A.; Sorabella, L.; Farello, C.E.

    1992-01-01

    In the paper, the advancements in the design of safety-related systems and components of the MARS nuclear plant, equipped with a 600 MW th PWR, are described. These advancements are due to the special safety features of this plant, which relies completely on inherent and passive safety. In particular, the new steps of the design of the innovative, completely passive, and with an unlimited autonomy Emergency core Cooling System are described, together with the characteristics of the last version of the steam generator, developed in a new design involving disconnecting components, for a fast erection and an easy maintenance. (author)

  8. Application of new design methodologies to very high-temperature metallic components of the HTTR

    International Nuclear Information System (INIS)

    Hada, Kazuhiko; Ohkubo, Minoru; Baba, Osamu

    1991-01-01

    The high-temperature piping and helium-to-helium intermediate heat exchanger of the High-Temperature Engineering Test Reactor (HTTR) are designed to be operating at very high temperatures of about 900deg C among the class 1 components of the HTTR. At such a high temperature, mechanical strength of heat-resistant metallic materials is very low and thermal expansions of structural members are large. Therefore, innovative design methodologies are needed to reduce both mechanical and thermal loads acting on these components. To the HTTR, the design methodologies which can separate the heat-resistant function from the pressure-retaining functions and allow them to expand freely are applied to reduce pressure and thermal loads. Since these design methodologies need to verify their applicability, the Japan Atomic Energy Research Institute (JAERI) has been performing many design and research works on their verifications. The details of the design methodologies and their verifications are given in this paper. (orig.)

  9. Design and component test performance of an efficient 4 W, 130 K sorption refrigerator

    International Nuclear Information System (INIS)

    Alvarez, J.; Ryba, E.; Sywulka, P.; Wade, L.

    1990-01-01

    A recent advance in sorption cooler technology has resulted in cryocooler designs offering high performance and the promise of long-life operation. A 4-W, 130 K sorption refrigeration stage which incorporates the advanced concept design is presently being constructed. Powdered charcoal is used as the sorbent, and methane is used as the refrigerant. Expansion is accomplished using a passive Joule-Thomson expansion valve. The design details of this cooler and the component performance test results are discussed. 5 refs

  10. RCC-M: Design and construction rules for mechanical components of PWR nuclear islands

    International Nuclear Information System (INIS)

    2017-01-01

    AFCEN's RCC-M code concerns the mechanical components designed and manufactured for pressurized water reactors (PWR). It applies to pressure equipment in nuclear islands in safety classes 1, 2 and 3, and certain non-pressure components, such as vessel internals, supporting structures for safety class components, storage tanks and containment penetrations. RCC-M covers the following technical subjects: sizing and design, choice of materials and procurement. Fabrication and control, including: associated qualification requirements (procedures, welders and operators, etc.), control methods to be implemented, acceptance criteria for detected defects, documentation associated with the different activities covered, and quality assurance. The design, manufacture and inspection rules defined in RCC-M leverage the results of the research and development work pioneered in France, Europe and worldwide, and which have been successfully used by industry to design and build PWR nuclear islands. AFCEN's rules incorporate the resulting feedback. Use: France's last 16 nuclear units (P'4 and N4); 4 CP1 reactors in South Africa (2) and Korea (2); 44 M310 (4), CPR-1000 (28), CPR-600 (6), HPR-1000 (4) and EPR (2) reactors in service or undergoing construction in China; 4 EPR reactors in Europe: Finland (1), France (1) and UK (2). Content: Section I - nuclear island components, subsection 'A': general rules, subsection 'B': class 1 components, subsection 'C': class 2 components, subsection 'D': class 3 components, subsection 'E': small components, subsection 'G': core support structures, subsection 'H': supports, subsection 'J': low pressure or atmospheric storage tanks, subsection 'P': containment penetration, subsection 'Q': qualification of active mechanical components, subsection 'Z': technical appendices; section II - materials; section III - examination

  11. Design of reactor components (non replaceable) of 500 MWe PHWR for enhanced life

    International Nuclear Information System (INIS)

    Dwivedi, K.P.; Seth, V.K.

    1994-01-01

    A nuclear power station is characterised by large initial cost and low operating cost. So a plant which is capable of operating for a longer period of time will be economically more attractive. In the past approach had been to design a nuclear power plant for 30 to 40 years of life time. However, with the improvement in technology and incorporation of redundant and diverse safety features it is now possible to design a nuclear power plant for longer life. Now internationally it is being realised that without sacrificing safety features, plant life should be extended till the cost of maintenance or refurbishment is larger than the cost of the replacement capacity. In order to meet the objective of long life, for the components which cannot be easily replaced the life time of about 100 years is being considered as the design objective. For other items replacement, layout space, shielding, access route and lifting capacity and component design are receiving additional emphasis so as to provide a long total station life time. With the above background, design improvements to enhance the life of reactor components for 500 MWe PHWR namely calandria, end shields and calandria vault liners which cannot be replaced and on which any repair is extremely difficult, have been made. This paper deals with design life of these components and the modifications incorporated in the design. (author). 3 refs., 2 tabs., 3 figs

  12. Tibial bone fractures occurring after medioproximal tibial bone grafts for oral and maxillofacial reconstruction.

    Science.gov (United States)

    Kim, Il-Kyu; Cho, Hyun-Young; Pae, Sang-Pill; Jung, Bum-Sang; Cho, Hyun-Woo; Seo, Ji-Hoon

    2013-12-01

    Oral and maxillofacial defects often require bone grafts to restore missing tissues. Well-recognized donor sites include the anterior and posterior iliac crest, rib, and intercalvarial diploic bone. The proximal tibia has also been explored as an alternative donor site. The use of the tibia for bone graft has many benefits, such as procedural ease, adequate volume of cancellous and cortical bone, and minimal complications. Although patients rarely complain of pain, swelling, discomfort, or dysfunction, such as gait disturbance, both patients and surgeons should pay close attention to such after effects due to the possibility of tibial fracture. The purpose of this study is to analyze tibial fractures that occurring after osteotomy for a medioproximal tibial graft. An analysis was intended for patients who underwent medioproximal tibial graft between March 2004 and December 2011 in Inha University Hospital. A total of 105 subjects, 30 females and 75 males, ranged in age from 17 to 78 years. We investigated the age, weight, circumstance, and graft timing in relation to tibial fracture. Tibial fractures occurred in four of 105 patients. There were no significant differences in graft region, shape, or scale between the fractured and non-fractured patients. Patients who undergo tibial grafts must be careful of excessive external force after the operation.

  13. Principle of maximum entropy for reliability analysis in the design of machine components

    Science.gov (United States)

    Zhang, Yimin

    2018-03-01

    We studied the reliability of machine components with parameters that follow an arbitrary statistical distribution using the principle of maximum entropy (PME). We used PME to select the statistical distribution that best fits the available information. We also established a probability density function (PDF) and a failure probability model for the parameters of mechanical components using the concept of entropy and the PME. We obtained the first four moments of the state function for reliability analysis and design. Furthermore, we attained an estimate of the PDF with the fewest human bias factors using the PME. This function was used to calculate the reliability of the machine components, including a connecting rod, a vehicle half-shaft, a front axle, a rear axle housing, and a leaf spring, which have parameters that typically follow a non-normal distribution. Simulations were conducted for comparison. This study provides a design methodology for the reliability of mechanical components for practical engineering projects.

  14. Evaluation of Embedded System Component Utilized in Delivery Integrated Design Project Course

    Science.gov (United States)

    Junid, Syed Abdul Mutalib Al; Hussaini, Yusnira; Nazmie Osman, Fairul; Razak, Abdul Hadi Abdul; Idros, Mohd Faizul Md; Karimi Halim, Abdul

    2018-03-01

    This paper reports the evaluation of the embedded system component utilized in delivering the integrated electronic engineering design project course. The evaluation is conducted based on the report project submitted as to fulfil the assessment criteria for the integrated electronic engineering design project course named; engineering system design. Six projects were assessed in this evaluation. The evaluation covers the type of controller, programming language and the number of embedded component utilization as well. From the evaluation, the C-programming based language is the best solution preferred by the students which provide them flexibility in the programming. Moreover, the Analog to Digital converter is intensively used in the projects which include sensors in their proposed design. As a conclusion, in delivering the integrated design project course, the knowledge over the embedded system solution is very important since the high density of the knowledge acquired in accomplishing the project assigned.

  15. Design of multi-tiered database application based on CORBA component in SDUV-FEL system

    International Nuclear Information System (INIS)

    Sun Xiaoying; Shen Liren; Dai Zhimin

    2004-01-01

    The drawback of usual two-tiered database architecture was analyzed and the Shanghai Deep Ultraviolet-Free Electron Laser database system under development was discussed. A project for realizing the multi-tiered database architecture based on common object request broker architecture (CORBA) component and middleware model constructed by C++ was presented. A magnet database was given to exhibit the design of the CORBA component. (authors)

  16. Design and optimization of components and processes for plasma sources in advanced material treatments

    OpenAIRE

    Rotundo, Fabio

    2012-01-01

    The research activities described in the present thesis have been oriented to the design and development of components and technological processes aimed at optimizing the performance of plasma sources in advanced in material treatments. Consumables components for high definition plasma arc cutting (PAC) torches were studied and developed. Experimental activities have in particular focussed on the modifications of the emissive insert with respect to the standard electrode configuration, whi...

  17. Design issues and implications for the structural integrity and lifetime of fusion power plant components

    International Nuclear Information System (INIS)

    Karditas, P.J.

    1996-05-01

    This review discusses, with example calculations, the criteria, and imposed constraints and limitations, for the design of fusion components and assesses the implications for successful design and power plant operation. The various loading conditions encountered during the operation of a tokamak lead to structural damage and possible failure by such mechanisms as yielding, thermal creep rupture and fatigue due to thermal cycling, plastic strain cycling (ratcheting), crack growth-propagation and radiation induced swelling and creep. Of all the possible damage mechanisms, fatigue, creep and their combination are the most important in the structural design and lifetime of fusion power plant components operating under steady or load varying conditions. Also, the effect of neutron damage inflicted onto the structural materials and the degradation of key properties is of major concern in the design and lifetime prediction of components. Structures are classified by, and will be restricted by existing or future design codes relevant to medium and high temperature power plant environments. The ways in which existing design codes might be used in present and near future design activities, and the implications, are discussed; the desirability of an early start towards the development of fusion-specific design codes is emphasised. (UK)

  18. Fracture reduction and primary ankle arthrodesis: a reliable approach for severely comminuted tibial pilon fracture.

    Science.gov (United States)

    Beaman, Douglas N; Gellman, Richard

    2014-12-01

    Posttraumatic arthritis and prolonged recovery are typical after a severely comminuted tibial pilon fracture, and ankle arthrodesis is a common salvage procedure. However, few reports discuss the option of immediate arthrodesis, which may be a potentially viable approach to accelerate overall recovery in patients with severe fracture patterns. (1) How long does it take the fracture to heal and the arthrodesis to fuse when primary ankle arthrodesis is a component of initial fracture management? (2) How do these patients fare clinically in terms of modified American Orthopaedic Foot and Ankle Society (AOFAS) scores and activity levels after this treatment? (3) Does primary ankle arthrodesis heal in an acceptable position when anterior ankle arthrodesis plates are used? During a 2-year period, we performed open fracture reduction and internal fixation in 63 patients. Eleven patients (12 ankles) with severely comminuted high-energy tibial pilon fractures were retrospectively reviewed after surgical treatment with primary ankle arthrodesis and fracture reduction. Average patient age was 58 years, and minimum followup was 6 months (average, 14 months; range, 6-22 months). Anatomically designed anterior ankle arthrodesis plates were used in 10 ankles. Ring external fixation was used in nine ankles with concomitant tibia fracture or in instances requiring additional fixation. Clinical evaluation included chart review, interview, the AOFAS ankle-hindfoot score, and radiographic evaluation. All of the ankle arthrodeses healed at an average of 4.4 months (range, 3-5 months). One patient had a nonunion at the metaphyseal fracture, which healed with revision surgery. The average AOFAS ankle-hindfoot score was 83 with 88% having an excellent or good result. Radiographic and clinical analysis confirmed a plantigrade foot without malalignment. No patients required revision surgery for malunion. Primary ankle arthrodesis combined with fracture reduction for the severely comminuted

  19. Design Optimization Method for Composite Components Based on Moment Reliability-Sensitivity Criteria

    Science.gov (United States)

    Sun, Zhigang; Wang, Changxi; Niu, Xuming; Song, Yingdong

    2017-08-01

    In this paper, a Reliability-Sensitivity Based Design Optimization (RSBDO) methodology for the design of the ceramic matrix composites (CMCs) components has been proposed. A practical and efficient method for reliability analysis and sensitivity analysis of complex components with arbitrary distribution parameters are investigated by using the perturbation method, the respond surface method, the Edgeworth series and the sensitivity analysis approach. The RSBDO methodology is then established by incorporating sensitivity calculation model into RBDO methodology. Finally, the proposed RSBDO methodology is applied to the design of the CMCs components. By comparing with Monte Carlo simulation, the numerical results demonstrate that the proposed methodology provides an accurate, convergent and computationally efficient method for reliability-analysis based finite element modeling engineering practice.

  20. [Surgical approaches to tibial plateau fractures].

    Science.gov (United States)

    Krause, Matthias; Müller, Gunnar; Frosch, Karl-Heinz

    2018-06-06

    Intra-articular tibial plateau fractures can present a surgical challenge due to complex injury patterns and compromised soft tissue. The treatment goal is to spare the soft tissue and an anatomical reconstruction of the tibial articular surface. Depending on the course of the fracture, a fracture-specific access strategy is recommended to provide correct positioning of the plate osteosynthesis. While the anterolateral approach is used in the majority of lateral tibial plateau fractures, only one third of the joint surface is visible; however, posterolateral fragments require an individual approach, e. g. posterolateral or posteromedial. If necessary, osteotomy of the femoral epicondyles can improve joint access for reduction control. Injuries to the posterior columns should be anatomically reconstructed and biomechanically correctly addressed via posterior approaches. Bony posterior cruciate ligament tears can be refixed via a minimally invasive posteromedial approach.

  1. A proposal to develop a high temperature structural design guideline for HTGR components

    International Nuclear Information System (INIS)

    Hada, K.

    1989-01-01

    This paper presents some proposals for developing a high-temperature structural design guideline for HTGR structural components. It is appropriate that a basis for developing high-temperature structural design rules is rested on well-established elevated-temperature design guidelines, if the same failure modes are expected for high-temperature components as considered in such design guidelines. As for the applicability of ASME B and PV Code Case N-47 to structural design rules for high-temperature components (service temperatures ≥ 900 deg. C), the following critical issues on material properties and service life evaluation rules have been pointed out. (i) no work-hardening of stress-strain curves at high temperatures due to dynamic recrystallization; (ii) issues relating to very significant creep; (iii) ductility loss after long-term ageing at high temperatures; (iv) validity of life-fraction rule (Robinson-Taira rule) as creep-fatigue damage evaluation rule. Furthermore, the validity of design margins of elevated-temperature structural design guidelines to high-temperature design rules should be clarified. Solutions and proposals to these issues are presented in this paper. Concerning no work-hardening due to dynamic recrystallization, it is shown that viscous effects cannot be neglected even at high extension rate for tensile tests, and that changes in viscous deformation rates by dynamic recrystallization should be taken into account. The extension rate for tensile tests is proposed to change at high temperatures. The solutions and proposals to the above-mentioned issues lead to the conclusion that the design methodologies of N-47 are basically applicable to the high-temperature structural design guideline for HTGR structural components in service at about 900 deg. C. (author). 9 refs, 5 figs

  2. Tibial Stress Injuries: Decisive Diagnosis and Treatment of "Shin Splints."

    Science.gov (United States)

    Couture, Christopher J.; Karlson, Kristine A.

    2002-01-01

    Tibial stress injuries, commonly called shin splints, often result when bone remodeling processes adopt inadequately to repetitive stress. Physicians who are caring for athletic patients must have a thorough understanding of this continuum of injuries, including medial tibial stress syndrome and tibial stress fractures, because there are…

  3. The MainSTREAM Component Platform: A Holistic Approach to Microfluidic System Design

    DEFF Research Database (Denmark)

    Sabourin, David; Skafte-Pedersen, Peder; Søe, Martin Jensen

    2013-01-01

    A microfluidic component library for building systems driving parallel or serial microfluidic-based assays is presented. The components are a miniaturized eight-channel peristaltic pump, an eight-channel valve, sample-to-waste liquid management, and interconnections. The library of components...... of reaction chips; (2) highly parallel pumping and routing/valving capability; (3) methods to interface pumps and chip-to-liquid management systems; (4) means to construct a portable system; (5) reconfigurability/flexibility in system design; (6) means to interface to microscopes; and (7) compatibility...

  4. Components of the LWR primary circuit. Pt. 2. Design, construction and calculation. Draft

    International Nuclear Information System (INIS)

    1995-01-01

    This standard is to be applied to components made of metallic materials, operated at design temperatures of up to 673 K (400 deg C). The primary circuit as the pressure containment of the reactor coolant comprises: Reactor pressure vessel (without internals), steam generator (primary loop), pressurizer, reactor coolant pump housing, interconnecting pipings between the components mentioned above and appropriate various valve and instrument casings, pipings branding from the above components and interconnecting pipings, including the appropriate instrument casings, up to and including the first isolating valve, pressure shielding of control rod drives. (orig.) [de

  5. Design of a Novel Two-Component Hybrid Dermal Scaffold for the Treatment of Pressure Sores.

    Science.gov (United States)

    Sharma, Vaibhav; Kohli, Nupur; Moulding, Dale; Afolabi, Halimat; Hook, Lilian; Mason, Chris; García-Gareta, Elena

    2017-11-01

    The aim of this study is to design a novel two-component hybrid scaffold using the fibrin/alginate porous hydrogel Smart Matrix combined to a backing layer of plasma polymerized polydimethylsiloxane (Sil) membrane to make the fibrin-based dermal scaffold more robust for the treatment of the clinically challenging pressure sores. A design criteria are established, according to which the Sil membranes are punched to avoid collection of fluid underneath. Manual peel test shows that native silicone does not attach to the fibrin/alginate component while the plasma polymerized silicone membranes are firmly bound to fibrin/alginate. Structural characterization shows that the fibrin/alginate matrix is intact after the addition of the Sil membrane. By adding a Sil membrane to the original fibrin/alginate scaffold, the resulting two-component scaffolds have a significantly higher shear or storage modulus G'. In vitro cell studies show that dermal fibroblasts remain viable, proliferate, and infiltrate the two-component hybrid scaffolds during the culture period. These results show that the design of a novel two-component hybrid dermal scaffold is successful according to the proposed design criteria. To the best of the authors' knowledge, this is the first study that reports the combination of a fibrin-based scaffold with a plasma-polymerized silicone membrane. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Radiological assessment of the position of the tibial tuberosity by means of a marking wire in knees with patellofemoral arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Nagamine, R.; Miura, H.; Urabe, K.; Matsuda, S.; Chen, W.J.; Matsunobu, T.; Iwamoto, Y. [Department of Orthopaedic Surgery, Faculty of Medicine, Kyushu University, Fukuoka (Japan)

    1999-01-01

    Objective. To assess the usefulness of a new axial radiographic technique in knees with patellofemoral arthritis (PF-OA). Design and patients. After a marking wire had been attached to the skin on the tibial tuberosity so that the wire matched the width of the patellar tendon, an axial radiograph was taken at 30 of flexion in 16 normal knees and 14 PF-OA knees in which computed tomographic analysis had revealed a laterally positioned tibial tuberosity at 30 of flexion. The distance of the marking wire from the lateral condyle and from the patellar groove was compared between the two groups. Results. The marking wire was located significantly laterally in PF-OA knees compared with normal knees. Conclusion. An axial radiograph with a marking wire on the tibial tuberosity is useful for assessing the position of the tibial tuberosity in PF-OA knees. (orig.) With 8 figs., 1 tab., 6 refs.

  7. Radiological assessment of the position of the tibial tuberosity by means of a marking wire in knees with patellofemoral arthritis

    International Nuclear Information System (INIS)

    Nagamine, R.; Miura, H.; Urabe, K.; Matsuda, S.; Chen, W.J.; Matsunobu, T.; Iwamoto, Y.

    1999-01-01

    Objective. To assess the usefulness of a new axial radiographic technique in knees with patellofemoral arthritis (PF-OA). Design and patients. After a marking wire had been attached to the skin on the tibial tuberosity so that the wire matched the width of the patellar tendon, an axial radiograph was taken at 30 of flexion in 16 normal knees and 14 PF-OA knees in which computed tomographic analysis had revealed a laterally positioned tibial tuberosity at 30 of flexion. The distance of the marking wire from the lateral condyle and from the patellar groove was compared between the two groups. Results. The marking wire was located significantly laterally in PF-OA knees compared with normal knees. Conclusion. An axial radiograph with a marking wire on the tibial tuberosity is useful for assessing the position of the tibial tuberosity in PF-OA knees. (orig.)

  8. Successful Bullying Prevention Programs: Influence of Research Design, Implementation Features, and Program Components

    Directory of Open Access Journals (Sweden)

    Bryanna Hahn Fox

    2012-12-01

    Full Text Available Bullying prevention programs have been shown to be generally effective in reducing bullying and victimization. However, the effects are relatively small in randomized experiments and greater in quasi-experimental and age-cohort designs. Programs that are more intensive and of longer duration (for both children and teachers are more effective, as are programs containing more components. Several program components are associated with large effect sizes, including parent training or meetings and teacher training. These results should inform the design and evaluation of anti-bullying programs in the future, and a system ofaccreditation of effective programs.

  9. Longitudinal tibial epiphyseal bracket in Nievergelt syndrome

    International Nuclear Information System (INIS)

    Burnstein, M.I.; De Smet, A.A.; Breed, A.L.; Thomas, J.R.; Hafez, G.R.

    1989-01-01

    A patient is described with lower extremity mesomelic dwarfism associated with bilateral congenital elbow, hip, and knee dislocations. Rhomboid-shaped tibiae and delayed ossification of the primary fibular ossification centers were demonstrated at birth. Plain films and magnetic resonance imaging revealed that the tibial deformities were due to the presence of longitudinal epiphyseal brackets. These brackets were observed at surgery and confirmed histologically. Recognition of the longitudinal epiphyseal bracket and its relationship to the tibial deformities seen in this patient with Nievergelt syndrome is important for planning surgical treatment. (orig.)

  10. Longitudinal tibial epiphyseal bracket in Nievergelt syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Burnstein, M.I.; De Smet, A.A.; Breed, A.L.; Thomas, J.R.; Hafez, G.R.

    1989-04-01

    A patient is described with lower extremity mesomelic dwarfism associated with bilateral congenital elbow, hip, and knee dislocations. Rhomboid-shaped tibiae and delayed ossification of the primary fibular ossification centers were demonstrated at birth. Plain films and magnetic resonance imaging revealed that the tibial deformities were due to the presence of longitudinal epiphyseal brackets. These brackets were observed at surgery and confirmed histologically. Recognition of the longitudinal epiphyseal bracket and its relationship to the tibial deformities seen in this patient with Nievergelt syndrome is important for planning surgical treatment. (orig.).

  11. Tibial and fibular developmental fields defects

    International Nuclear Information System (INIS)

    Khoury, N.J.; Haddad, M.C.; Hourani, M.H.

    1999-01-01

    Malformations of the lower limbs are rare and heterogeneous anomalies. To explain the diversity and complexity of these abnormalities, authors introduced the concept of tibial and fibular developmental fields. Defects in these fields are responsible for different malformations, which have been described, to our knowledge, in only one report in the radiology literature. We present a case of a newborn with femoral bifurcation, absent fibulae and talar bones, ankle and foot malformations, and associated atrial septal defect. Our case is an example of defects in both fibular and tibial developmental fields. (orig.)

  12. Development of guidelines for inelastic analysis in design of fast reactor components

    International Nuclear Information System (INIS)

    Nakamura, Kyotada; Kasahara, Naoto; Morishita, Masaki; Shibamoto, Hiroshi; Inoue, Kazuhiko; Nakayama, Yasunari

    2008-01-01

    The interim guidelines for the application of inelastic analysis to design of fast reactor components were developed. These guidelines are referred from 'Elevated Temperature Structural Design Guide for Commercialized Fast Reactor (FDS)'. The basic policies of the guidelines are more rational predictions compared with elastic analysis approach and a guarantee of conservative results for design conditions. The guidelines recommend two kinds of constitutive equations to estimate strains conservatively. They also provide the methods for modeling load histories and estimating fatigue and creep damage based on the results of inelastic analysis. The guidelines were applied to typical design examples and their results were summarized as exemplars to support users

  13. Component design considerations for gas turbine HTGR waste-heat power plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; Vrable, D.L.

    1976-01-01

    Component design considerations are described for the ammonia waste-heat power conversion system of a large helium gas-turbine nuclear power plant under development by General Atomic Company. Initial component design work was done for a reference plant with a 3000-MW(t) High-Temperature Gas-Cooled Reactor (HTGR), and this is discussed. Advanced designs now being evaluated include higher core outlet temperature, higher peak system pressures, improved loop configurations, and twin 4000-MW(t) reactor units. Presented are the design considerations of the major components (turbine, condenser, heat input exchanger, and pump) for a supercritical ammonia Rankine waste heat power plant. The combined cycle (nuclear gas turbine and waste-heated plant) has a projected net plant efficiency of over 50 percent. While specifically directed towards a nuclear closed-cycle helium gas-turbine power plant (GT-HTGR), it is postulated that the bottoming waste-heat cycle component design considerations presented could apply to other low-grade-temperature power conversion systems such as geothermal plants

  14. Design principles and overall aspects to proof the integrity of pressurized components

    International Nuclear Information System (INIS)

    Roos, E.; Herter, K.-H.; Schuler, X.

    2005-01-01

    Technical codes and standards used for the construction, design and operation of nuclear components and systems provides the material data required, detailed stress analysis procedures and a design philosophy which guarantees a reliable behaviour of the systems, structures and components (SSC) throughout the specified life time. It is important that the design concept accounts for most possible damage mechanisms and failure modes and provides rational margins of safety against each type of damage mechanism and failure mode. The design criteria according to codes and standards are the basic rules upon which the mechanical behaviour of the SSC is based. For cyclic stress evaluation the different codes and standards provides fatigue analyses to be performed considering the various loading histories (mechanical and thermal loads) and geometric complexities of the SSC. Essentially the philosophy for the mechanical design in all of the codes and standards broadly encompasses the two approaches of Design-by-Rule (DBR) and Design-by-Analysis (DBA). Design-by-Experiment (DBE) and Design-by-Fracture Mechanics (DBFA) are in special cases additional possibilities for the design as well as for the proof of integrity of SSC. Based on the German Basis Safety Concept a general concept to ensure the integrity of pressurised components is developed. As a premise for a systematically approach it is indispensable to show that the as-built status of quality (actual material characteristics, actual as-built configurations, design, actual loading) is according to the requirements given in the guidelines and standards, to show that sufficient knowledge of possible failure mechanism (e.g. no inadmissible dynamic loading, no corrosion) is available and to show that the as-built status of quality can be guaranteed for the succeeding operation. The calculation methods and fracture mechanics approaches are verified by numerous experimental data. (authors)

  15. Views on seismic design standardization of structures, systems and components of nuclear facilities

    International Nuclear Information System (INIS)

    Reddy, G.R.

    2011-01-01

    Structures, Systems and Components (SSCs) of nuclear facilities have to be designed for normal operating loads such as dead weight, pressure, temperature etc., and accidental loads such as earthquakes, floods, extreme, wind air craft impact, explosions etc. Manmade accidents such as aircraft impact, explosions etc., sometimes may be considered as design basis event and sometimes taken care by providing administrative controls. This will not be possible in the case of natural events such as earthquakes, flooding, extreme winds etc. Among natural events earthquakes are considered as most devastating and need to be considered as design basis event which has certain annual frequency specified in design codes. For example nuclear power plants are designed for a seismic event has 10000 year return period. It is generally felt that design of SSCs for earthquake loads is very time consuming and expensive. Conventional seismic design approaches demands for large number of supports for systems and components. This results in large space occupation and in turn creates difficulties for maintenance and in service inspection of systems and components. In addition, complete exercise of design need to be repeated for plants being located at different sites due to different seismic demands. However, advanced seismic response control methods will help to standardize the seismic design meeting the safety and economy. These methods adopt passive, semi active and active devices, and base isolators to control the seismic response. In nuclear industry, it is advisable to go for passive devices to control the seismic responses. Ideally speaking, these methods will make the designs made for normal loads can also satisfy the seismic demand without calling for change in material, geometry, layout etc. in the SSCs. This paper explain the basic ideas of seismic response control methods, demonstrate the effectiveness of control methods through case studies and eventually give the procedure to

  16. Design of the Mechanical Components of a Dual Axis Solar Tracker

    OpenAIRE

    Romero Llanas, Amador

    2013-01-01

    This work is about the design of a solar tracker with the objective of following the sun throughout the day. In order to achieve that objective, the solar tracker has two degrees of freedom. The different mechanical components necessary to build the structure has been designed, calculated and verified. Apart from that, the whole structure has been drawn using the 3D mechanical CAD program SolidWorks. The plans have been drawn too.

  17. Conceptual design of bend, compression, and final focus components of ILSE [Induction Linac System Experiment

    International Nuclear Information System (INIS)

    Lee, E.P.; Fong, C.; Mukherjee, S.; Thur, W.

    1989-03-01

    The Induction Linac System Experiment (ILSE) includes a 180/degree/ bend system, drift compression line and a final focus, which test the analogous features of a heavy ion driver for inertial fusion. These components are novel in their transport of a space-charge-dominated ion beam with large head-to-tail velocity tilt. Their conceptual design is presented, including calculations of the beam envelope, momentum dispersion, and engineering design of magnets, vacuum system, diagnostics, alignment, and support. 3 refs., 5 figs

  18. An approach to development of structural design criteria for highly irradiated core components

    International Nuclear Information System (INIS)

    Nelson, D.V.

    1980-01-01

    The advent of the fast breeder reactor presents novel challenges in structural design and materials engineering. For instance, the core components of these reactors experience high energy neutron irradiation at elevated temperature, which causes significant time-dependent changes in material behaviour, such as a progressive loss of ductility. New structural design criteria are needed to extend elevated temperature design-by-analysis to account for these changes. Alloys best able to cope with the demands of the core operating environment are being explored and their structural behaviour characterized. The purpose of this paper is to illustrate an approach used in the development of core component structural design criteria. To do this, several design rules, plus brief rationale, from draft RDT Standards F9-7, -8 and -9 will be presented. These recently completed standards ('Structural Design Guidelines for Breeder Reactor Core Components') were prepared for the U.S. Department of Energy and represent a consensus among most organizations participating in the U.S. breeder program. (author)

  19. The scope of additive manufacturing in cryogenics, component design, and applications

    Science.gov (United States)

    Stautner, W.; Vanapalli, S.; Weiss, K.-P.; Chen, R.; Amm, K.; Budesheim, E.; Ricci, J.

    2017-12-01

    Additive manufacturing techniques using composites or metals are rapidly gaining momentum in cryogenic applications. Small or large, complex structural components are now no longer limited to mere design studies but can now move into the production stream thanks to new machines on the market that allow for light-weight, cost optimized designs with short turnaround times. The potential for cost reductions from bulk materials machined to tight tolerances has become obvious. Furthermore, additive manufacturing opens doors and design space for cryogenic components that to date did not exist or were not possible in the past, using bulk materials along with elaborate and expensive machining processes, e.g. micromachining. The cryogenic engineer now faces the challenge to design toward those new additive manufacturing capabilities. Additionally, re-thinking designs toward cost optimization and fast implementation also requires detailed knowledge of mechanical and thermal properties at cryogenic temperatures. In the following we compile the information available to date and show a possible roadmap for additive manufacturing applications of parts and components typically used in cryogenic engineering designs.

  20. Sizes of secondary plant components for modularized IRIS balance of plant design

    International Nuclear Information System (INIS)

    Williamson, Martin; Townsend, Lawrence

    2003-01-01

    Herein we report on a conceptual design for a balance of plant (BOP) layout to coordinate with IRIS-like plants. The report consists of results of calculations that sizes of various BOP components. These calculations include the thermodynamic analyses and general sizing of the components in order to determine plant capability and plant layout for studies on modularity and transportability. Mathematical modeling of the BOP system involves a modified ORCENT2 code as well as standard heat transfer methods. Using typical values for PWR type plants, a general BOP design, and IRIS steam generator values, an ORCENT2 heat balance is carried out for the secondary side of the plant. Using the ORCENT2 output, standard heat transfer methods are then used to calculate system performance and component sizes. (author)

  1. A conceptual design of main components sizing for UMT PHEV powertrain

    Science.gov (United States)

    Haezah, M. N.; Norbakyah, J. S.; Atiq, W. H.; Salisa, A. R.

    2015-12-01

    This paper presents a conceptual design of main components sizing for Universiti Malaysia Terengganu plug-in hybrid electric vehicle (UMT PHEV) powertrain. In the design of hybrid vehicles, it is important to identify a proper component sizes. Component sizing significantly affects vehicle performance, fuel economy and emissions. The proposed UMT PHEV has only one electric machine (EM) which functions as either a motor or generator at a time and using batteries and ultracapacitors as an energy storage system (ESS). In this work, firstly, energy and power requirements based on parameters, specifications and performance requirements of vehicle are calculated. Then, the parameters for internal combustion engine, EM and ESS are selected based on the developed Kuala Terengganu drive cycle. The results obtained from this analysis are within reasonable range and satisfactory.

  2. Conceptual design of low activation target chamber and components for the National Ignition Facility

    International Nuclear Information System (INIS)

    Streckert, H.H.; Schultz, K.R.; Sager, G.T.; Kantner, R.D.

    1996-01-01

    The baseline design for the target chamber and chamber components for the National Ignition Facility (NIF) consists of aluminum alloy structural material. Low activation composite chamber and components have important advantages including enhanced environmental and safety characteristics and improved accessibility due to reduced neutron-induced radioactivity. A low activation chamber can be fabricated from carbon fiber reinforced epoxy using thick wall laminate technology similar to submarine bow dome fabrication for the U.S. Navy. A risk assessment analysis indicates that a composite chamber has a reasonably high probability of success, but that an aluminum alloy chamber represents a lower risk. Use of low activation composite materials for several chamber components such as the final optics assemblies, the target positioner and inserter, the diagnostics manipulator tubes, and the optics beam tubes would offer an opportunity to make significant reductions in post-shot radiation dose rate with smaller, less immediate impact on the NIF design. 7 refs., 3 figs

  3. Component design and testing for a miniaturised autonomous sensor based on a nanowire materials platform

    NARCIS (Netherlands)

    Rajesh Ramaneti; Francois Krummenacher; Fritz Falk; Naser Khosropour; Björn Eisenhawer; Cees van Rijn; Giorgos Fagas; Ran Yu; Adrian M. Ionescu; Ing. Erik Puik; Montserrat Fernández-Bolaños Badia; Nikolay Petkov; Hien Duy Tong; Rik Lafeber; John C De Mello; Olan Lotty; Adrian M. Nightingale; Yordan M. Georgiev; Elizabeth Buitrago; Frank van der Bent; Michael Nolan; Justin D. Holmes; Annett Gawlik; Maher Kayal; Guobin Jia

    2014-01-01

    From Springer description: "We present the design considerations of an autonomous wireless sensor and discuss the fabrication and testing of the various components including the energy harvester, the active sensing devices and the power management and sensor interface circuits. A common materials

  4. The scope of additive manufacturing in cryogenics, component design, and applications

    NARCIS (Netherlands)

    Stautner, W.; Vanapalli, S.; Weiss, K.-P.; Chen, R.; Amm, K.; Budesheim, E.; Ricci, J.

    2017-01-01

    Additive manufacturing techniques using composites or metals are rapidly gaining momentum in cryogenic applications. Small or large, complex structural components are now no longer limited to mere design studies but can now move into the production stream thanks to new machines on the market that

  5. Design and Implementation of a Media Access Component at Picsearch Using a Rigorous Software Engineering Approach

    OpenAIRE

    Silva, Diego Núñez

    2011-01-01

    With the arrival of a new generation of sophisticated smartphones, possibilities for mobile video usage are presenting exciting new opportunities. This Master's thesis is based on a collaboration with Picsearch to design and implement a software component that enables the company's video services in Android smartphones.

  6. Reliability optimization for series systems under uncertain component failure rates in the design phase

    NARCIS (Netherlands)

    Ge, Q.; Peng, H.; van Houtum, G.J.J.A.N.; Adan, I.J.B.F.

    2018-01-01

    We develop an optimization model to determine the reliability design of critical components in a serial system. The system is under a service contract, and a penalty cost has to be paid by the OEM when the total system down time exceeds a predetermined level, which complicates the evaluation of the

  7. Group-wise ANOVA simultaneous component analysis for designed omics experiments

    NARCIS (Netherlands)

    Saccenti, Edoardo; Smilde, Age K.; Camacho, José

    2018-01-01

    Introduction: Modern omics experiments pertain not only to the measurement of many variables but also follow complex experimental designs where many factors are manipulated at the same time. This data can be conveniently analyzed using multivariate tools like ANOVA-simultaneous component analysis

  8. Designing and Implementing an Interactive Social Robot from Off-the-shelf Components

    DEFF Research Database (Denmark)

    Tan, Zheng-Hua; Thomsen, Nicolai Bæk; Duan, Xiaodong

    2015-01-01

    people feel comfortable in its presence. All electrical components are standard off-the-shelf commercial products making a replication possible. Furthermore, the software is based on Robot Operating Software (ROS) and is made freely available.We present our experience with the design and discuss possible...

  9. Design of roundness measurement model with multi-systematic error for cylindrical components with large radius.

    Science.gov (United States)

    Sun, Chuanzhi; Wang, Lei; Tan, Jiubin; Zhao, Bo; Tang, Yangchao

    2016-02-01

    The paper designs a roundness measurement model with multi-systematic error, which takes eccentricity, probe offset, radius of tip head of probe, and tilt error into account for roundness measurement of cylindrical components. The effects of the systematic errors and radius of components are analysed in the roundness measurement. The proposed method is built on the instrument with a high precision rotating spindle. The effectiveness of the proposed method is verified by experiment with the standard cylindrical component, which is measured on a roundness measuring machine. Compared to the traditional limacon measurement model, the accuracy of roundness measurement can be increased by about 2.2 μm using the proposed roundness measurement model for the object with a large radius of around 37 mm. The proposed method can improve the accuracy of roundness measurement and can be used for error separation, calibration, and comparison, especially for cylindrical components with a large radius.

  10. TIBIAL PERIPROSTHETIC FRACTURE COMBINED WITH TIBIAL STEM STRESS FRACTURE FROM TOTAL KNEE ARTHROPLASTY

    OpenAIRE

    Fonseca, Fernando; Rebelo, Edgar; Completo, Antonio

    2011-01-01

    Total knee arthroplasty complications related to the prosthetic material are very rare, except for polyethylene wear. We report the case of a 58-year-old woman who came to the emergency service of our hospital with a periprosthetic tibial fracture (Mayo Clinic type I). Careful examination showed that this fracture was concomitantly associated with a tibial stem fatigue fracture. The prosthesis and the stem were sent to an independent biomechanics laboratory for evaluation. A finite-element CA...

  11. Creative design-by-analysis solutions applied to high-temperature components

    International Nuclear Information System (INIS)

    Dhalla, A.K.

    1993-01-01

    Elevated temperature design has evolved over the last two decades from design-by-formula philosophy of the ASME Boiler and Pressure Vessel Code, Sections I and VIII (Division 1), to the design-by-analysis philosophy of Section III, Code Case N-47. The benefits of design-by-analysis procedures, which were developed under a US-DOE-sponsored high-temperature structural design (HTSD) program, are illustrated in the paper through five design examples taken from two U.S. liquid metal reactor (LMR) plants. Emphasis in the paper is placed upon the use of a detailed, nonlinear finite element analysis method to understand the structural response and to suggest design optimization so as to comply with Code Case N-47 criteria. A detailed analysis is cost-effective, if selectively used, to qualify an LMR component for service when long-lead-time structural forgings, procured based upon simplified preliminary analysis, do not meet the design criteria, or the operational loads are increased after the components have been fabricated. In the future, the overall costs of a detailed analysis will be reduced even further with the availability of finite element software used on workstations or PCs

  12. TIBIAL LANDMARKS IN ACL ANATOMIC REPAIR

    Directory of Open Access Journals (Sweden)

    M. V. Demesсhenko

    2016-01-01

    Full Text Available Purpose: to identify anatomical landmarks on tibial articular surface to serve as reference in preparing tibial canal with respect to the center of ACL footprint during single bundle arthroscopic repair.Materials and methods. Twelve frozen knee joint specimens and 68 unpaired macerated human tibia were studied using anatomical, morphometric, statistical methods as well as graphic simulation.Results. Center of the tibial ACL footprint was located 13,1±1,7 mm anteriorly from posterior border of intercondylar eminence, at 1/3 of the distance along the line connecting apexes of internal and external tubercles and 6,1±0,5 mm anteriorly along the perpendicular raised to this point.Conclusion. Internal and external tubercles, as well as posterior border of intercondylar eminence can be considered as anatomical references to determine the center of the tibial ACL footprint and to prepare bone canals for anatomic ligament repair.

  13. A posterior tibial tendon skipping rope

    NARCIS (Netherlands)

    van Sterkenburg, M. N.; Haverkamp, D.; van Dijk, C. N.; Kerkhoffs, G. M. M. J.

    2010-01-01

    This report presents an athletic patient with swelling and progressive pain on the posteromedial side of his right ankle on weight bearing. MRI demonstrated tenosynovitis and suspicion of a length rupture. On posterior tibial tendoscopy, there was no rupture, but medial from the tendon a tissue cord

  14. Incidence and epidemiology of tibial shaft fractures

    DEFF Research Database (Denmark)

    Larsen, Peter; Elsøe, Rasmus; Hansen, Sandra Hope

    2015-01-01

    Introduction: The literature lacks recent population-based epidemiology studies of the incidence, trauma mechanism and fracture classification of tibial shaft fractures. The purpose of this study was to provide up-to-date information on the incidence of tibial shaft fractures in a large....... The mean age at time of fracture was 38.5 (21.2SD) years. The incidence of tibial shaft fracture was 16.9/100,000/year. Males have the highest incidence of 21.5/100,000/year and present with the highest frequency between the age of 10 and 20, whereas women have a frequency of 12.3/100,000/year and have...... frequency of fractures while participating in sports activities and walking. Women present the highest frequency of fractures while walking and during indoor activities. Conclusion: This study shows an incidence of 16.9/100,000/year for tibial shaft fractures. AO-type 42-A1 was the most common fracture type...

  15. Advances in Human-Computer Interaction: Graphics and Animation Components for Interface Design

    Science.gov (United States)

    Cipolla Ficarra, Francisco V.; Nicol, Emma; Cipolla-Ficarra, Miguel; Richardson, Lucy

    We present an analysis of communicability methodology in graphics and animation components for interface design, called CAN (Communicability, Acceptability and Novelty). This methodology has been under development between 2005 and 2010, obtaining excellent results in cultural heritage, education and microcomputing contexts. In studies where there is a bi-directional interrelation between ergonomics, usability, user-centered design, software quality and the human-computer interaction. We also present the heuristic results about iconography and layout design in blogs and websites of the following countries: Spain, Italy, Portugal and France.

  16. Posterior coronal plating for tibial fractures: technique and advantages

    Directory of Open Access Journals (Sweden)

    Montu Jain

    2014-04-01

    Full Text Available Objective:Tibial shaft fractures are straightforward to treat but when associated with soft tissue injury particularly at the nail entry/plate insertion site or there is significant comminution proximally or a large butterfly fragment/a second split component in the posterior coronal plane, it is a challenge to the treating surgeon. The aim of the present report is to describe the technique of posterior coronal plating in such a scenario and its advantages. Methods:Between July 2008 and June 2011, 12 patients were pro spectively treated by this approach using 4.5 mm broad dynamic compression plates. Results:The time of bony consolidation and full weight bearing averaged 21.7 weeks (range, 16-26 weeks. Patients were followed up for at least 24 months (range, 24-48 months. At 1 year postoper atively, no loss in reduction or alignment was observed. Mean Hospital for Lower Extremity Measurement Functional Score was 72.8 (range, 64-78. All patients were satisfied with their treatment outcomes. Conclusion:Direct posterior approach and fixation using prone position helps to visualise the fracture fragments and provide rigid fixation. The approach is simple and extensile easily, apart from advantages of less soft tissue and hardware problems compared to standard medial or lateral plating. Key words: Tibial fractures; Bone plates; Orthopedic procedures

  17. Integrated Design Software Predicts the Creep Life of Monolithic Ceramic Components

    Science.gov (United States)

    1996-01-01

    Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated-temperature applications. As design protocols emerge for these material systems, designers must be aware of several innate features, including the degrading ability of ceramics to carry sustained load. Usually, time-dependent failure in ceramics occurs because of two different, delayedfailure mechanisms: slow crack growth and creep rupture. Slow crack growth initiates at a preexisting flaw and continues until a critical crack length is reached, causing catastrophic failure. Creep rupture, on the other hand, occurs because of bulk damage in the material: void nucleation and coalescence that eventually leads to macrocracks which then propagate to failure. Successful application of advanced ceramics depends on proper characterization of material behavior and the use of an appropriate design methodology. The life of a ceramic component can be predicted with the NASA Lewis Research Center's Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design programs. CARES/CREEP determines the expected life of a component under creep conditions, and CARES/LIFE predicts the component life due to fast fracture and subcritical crack growth. The previously developed CARES/LIFE program has been used in numerous industrial and Government applications.

  18. Load assumption for fatigue design of structures and components counting methods, safety aspects, practical application

    CERN Document Server

    Köhler, Michael; Pötter, Kurt; Zenner, Harald

    2017-01-01

    Understanding the fatigue behaviour of structural components under variable load amplitude is an essential prerequisite for safe and reliable light-weight design. For designing and dimensioning, the expected stress (load) is compared with the capacity to withstand loads (fatigue strength). In this process, the safety necessary for each particular application must be ensured. A prerequisite for ensuring the required fatigue strength is a reliable load assumption. The authors describe the transformation of the stress- and load-time functions which have been measured under operational conditions to spectra or matrices with the application of counting methods. The aspects which must be considered for ensuring a reliable load assumption for designing and dimensioning are discussed in detail. Furthermore, the theoretical background for estimating the fatigue life of structural components is explained, and the procedures are discussed for numerous applications in practice. One of the prime intentions of the authors ...

  19. Embedded Sensors and Controls to Improve Component Performance and Reliability Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, R.; Melin, A.; Burress, T.; Fugate, D.; Holcomb, D.; Wilgen, J.; Miller, J.; Wilson, D.; Silva, P.; Whitlow, L.; Peretz, F.

    2012-09-15

    The objective of this project is to demonstrate improved reliability and increased performance made possible by deeply embedding instrumentation and controls (I&C) in nuclear power plant (NPP) components and systems. The project is employing a highly instrumented canned rotor, magnetic bearing, fluoride salt pump as its I&C technology demonstration platform. I&C is intimately part of the basic millisecond-by-millisecond functioning of the system; treating I&C as an integral part of the system design is innovative and will allow significant improvement in capabilities and performance. As systems become more complex and greater performance is required, traditional I&C design techniques become inadequate and more advanced I&C needs to be applied. New I&C techniques enable optimal and reliable performance and tolerance of noise and uncertainties in the system rather than merely monitoring quasistable performance. Traditionally, I&C has been incorporated in NPP components after the design is nearly complete; adequate performance was obtained through over-design. By incorporating I&C at the beginning of the design phase, the control system can provide superior performance and reliability and enable designs that are otherwise impossible. This report describes the progress and status of the project and provides a conceptual design overview for the platform to demonstrate the performance and reliability improvements enabled by advanced embedded I&C.

  20. RCC-M - Design and Conception Rules for Mechanical Components of PWR Nuclear Islands

    International Nuclear Information System (INIS)

    2007-01-01

    The design and construction rules applicable to mechanical components of PWR Nuclear Islands (RCC-M) are a part of the collection of design and construction rules for nuclear power plants. It covers the rules applicable to the design and manufacture of pressure boundaries of mechanical equipment of pressurized water reactors (PWR). The pressure components subject to the RCC-M are specified in A 4000. They include the reactor fluid systems (primary, secondary and auxiliary systems) and other components which are not subject to pressure: vessel internals, supports for pressure components subject to the RCC-M, nuclear island storage tanks. When a pressure equipment is subject to the RCC-M, all its elements subject to pressure are also, in accordance with the provisions of A 4000, and these elements are the same class as the component. In this case all the provisions of the RCC-M are applicable: design, procurement, manufacture, inspection and pressure testing. Elements which are not subject to pressure and which are subject to the RCC-M may be covered within the Code by limited specific provisions (procurement of materials for example). The other rules applicable to this equipment must be in contractual form. The assemblies comprising pressure equipment assembled by a manufacturer to constitute an integrated and functional whole, shall be subject to the rules indicated in this Code. Main objectives of Code Requirements are to ensure the integrity and mechanical stability over the equipment design life. Function ability and operability of equipment are not directly addressed in the Code. The RCC-M contributes to ensuring compliance with regulatory requirements. These requirements depend on the applicable regulatory context. The RCC-M is representative of the state of the art as concerns the design and manufacture of PWR components, ensuring an overall safety level tested through experience. The RCC-M consists of five sections, which provide rules for the design and

  1. Posterior Tibial Slope Angle Correlates With Peak Sagittal and Frontal Plane Knee Joint Loading During Robotic Simulations of Athletic Tasks

    Science.gov (United States)

    Bates, Nathaniel A.; Nesbitt, Rebecca J.; Shearn, Jason T.; Myer, Gregory D.; Hewett, Timothy E.

    2017-01-01

    Background Tibial slope angle is a nonmodifiable risk factor for anterior cruciate ligament (ACL) injury. However, the mechanical role of varying tibial slopes during athletic tasks has yet to be clinically quantified. Purpose To examine the influence of posterior tibial slope on knee joint loading during controlled, in vitro simulation of the knee joint articulations during athletic tasks. Study Design Descriptive laboratory study. Methods A 6 degree of freedom robotic manipulator positionally maneuvered cadaveric knee joints from 12 unique specimens with varying tibial slopes (range, −7.7° to 7.7°) through drop vertical jump and sidestep cutting tasks that were derived from 3-dimensional in vivo motion recordings. Internal knee joint torques and forces were recorded throughout simulation and were linearly correlated with tibial slope. Results The mean (6SD) posterior tibial slope angle was 2.2° ± 4.3° in the lateral compartment and 2.3° ± 3.3° in the medial compartment. For simulated drop vertical jumps, lateral compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee adduction (r = 0.60–0.65), flexion (r = 0.64–0.66), lateral (r = 0.57–0.69), and external rotation torques (r = 0.47–0.72) as well as inverse correlations with peak abduction (r = −0.42 to −0.61) and internal rotation torques (r = −0.39 to −0.79). Only frontal plane torques were correlated during sidestep cutting simulations. For simulated drop vertical jumps, medial compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee flexion torque (r = 0.64–0.69) and lateral knee force (r = 0.55–0.74) as well as inverse correlations with peak external torque (r = −0.34 to 20.67) and medial knee force (r = −0.58 to −0.59). These moderate correlations were also present during simulated sidestep cutting. Conclusion The investigation supported the theory that increased posterior

  2. Advanced BWR core component designs and the implications for SFD analysis

    International Nuclear Information System (INIS)

    Ott, L.J.

    1997-01-01

    Prior to the DF-4 boiling water reactor (BWR) severe fuel damage (SFD) experiment conducted at the Sandia National Laboratories in 1986, no experimental data base existed for guidance in modeling core component behavior under postulated severe accident conditions in commercial BWRs. This paper will present the lessons learned from the DF-4 experiment (and subsequent German CORA BWR SFD tests) and the impact on core models in the current generation of SFD codes. The DF-4 and CORA BWR test assemblies were modeled on the core component designs circa 1985; that is, the 8 x 8 fuel assembly with two water rods and a cruciform control blade constructed of B 4 C-filled tubelets. Within the past ten years, the state-of-the-art with respect to BWR core component development has out-distanced the current SFD experimental data base and SFD code capabilities. For example, modern BWR control blade design includes hafnium at the tips and top of each control blade wing for longer blade operating lifetimes; also water rods have been replaced by larger water channels for better neutronics economy; and fuel assemblies now contain partial-length fuel rods, again for better neutronics economy. This paper will also discuss the implications of these advanced fuel assembly and core component designs on severe accident progression and on the current SFD code capabilities

  3. Engineering design and thermal hydraulics of plasma facing components of SST-1

    International Nuclear Information System (INIS)

    Pragash, N. Ravi; Chaudhuri, P.; Santra, P.; Chenna Reddy, D.; Khirwadkar, S.; Saxena, Y.C.

    2001-01-01

    SST-1 is a medium size tokamak with super conducting magnetic field coils. All the subsystems of SST-1 are designed for quasi steady state (∼1000 s) operation. Plasma Facing Components (PFCs) of SST-1 consisting of divertors, passive stabilizers, baffles and poloidal limiters are also designed to be compatible for steady state operation. As SST-1 is designed to run double null divertor plasmas, these components also have up-down symmetry. A closed divertor configuration is chosen to produce high recycling and high pumping speed in the divertor region. All the PFC are made of copper alloys (CuCrZr and CuZr) on which graphite tiles are mechanically attached. These copper alloy back plates are actively cooled with water flowing in the channels grooved on them with the main consideration in the design of PFCs as the steady state heat removal of about 1.0 MW/m 2 . In addition to be able to remove high heat fluxes, the PFCs are also designed to be compatible for baking at 350 degree sign C. Extensive studies, involving different flow parameters and various cooling layouts, have been done to select the final cooling parameters and layout. Thermal response of the PFCs and vacuum vessel during baking, has been calculated using a FORTRAN code and a 2-D finite element analysis. The PFCs and their supports are also designed to withstand large electro-magnetic forces. Finite element analysis using ANSYS software package is used in this and other PFCs design. The engineering design including thermal hydraulics for cooling and baking of all the PFCs is completed. Poloidal limiters are being fabricated. The remaining PFCs, viz. divertors, stabilizers and baffles are likely to go for fabrication in the next few months. The detailed engineering design, the finite element calculations in the structural and thermal designs are presented in this paper

  4. Design and component specifications for high average power laser optical systems

    Energy Technology Data Exchange (ETDEWEB)

    O' Neil, R.W.; Sawicki, R.H.; Johnson, S.A.; Sweatt, W.C.

    1987-01-01

    Laser imaging and transport systems are considered in the regime where laser-induced damage and/or thermal distortion have significant design implications. System design and component specifications are discussed and quantified in terms of the net system transport efficiency and phase budget. Optical substrate materials, figure, surface roughness, coatings, and sizing are considered in the context of visible and near-ir optical systems that have been developed at Lawrence Livermore National Laboratory for laser isotope separation applications. In specific examples of general applicability, details of the bulk and/or surface absorption, peak and/or average power damage threshold, coating characteristics and function, substrate properties, or environmental factors will be shown to drive the component size, placement, and shape in high-power systems. To avoid overstressing commercial fabrication capabilities or component design specifications, procedures will be discussed for compensating for aberration buildup, using a few carefully placed adjustable mirrors. By coupling an aggressive measurements program on substrates and coatings to the design effort, an effective technique has been established to project high-power system performance realistically and, in the process, drive technology developments to improve performance or lower cost in large-scale laser optical systems. 13 refs.

  5. Component design challenges for the ground-based SP-100 nuclear assembly test

    International Nuclear Information System (INIS)

    Markley, R.A.; Disney, R.K.; Brown, G.B.

    1989-01-01

    The SP-100 ground engineering system (GES) program involves a ground test of the nuclear subsystems to demonstrate their design. The GES nuclear assembly test (NAT) will be performed in a simulated space environment within a vessel maintained at ultrahigh vacuum. The NAT employs a radiation shielding system that is comprised of both prototypical and nonprototypical shield subsystems to attenuate the reactor radiation leakage and also nonprototypical heat transport subsystems to remove the heat generated by the reactor. The reactor is cooled by liquid lithium, which will operate at temperatures prototypical of the flight system. In designing the components for these systems, a number of design challenges were encountered in meeting the operational requirements of the simulated space environment (and where necessary, prototypical requirements) while also accommodating the restrictions of a ground-based test facility with its limited available space. This paper presents a discussion of the design challenges associated with the radiation shield subsystem components and key components of the heat transport systems

  6. Design and component specifications for high average power laser optical systems

    International Nuclear Information System (INIS)

    O'Neil, R.W.; Sawicki, R.H.; Johnson, S.A.; Sweatt, W.C.

    1987-01-01

    Laser imaging and transport systems are considered in the regime where laser-induced damage and/or thermal distortion have significant design implications. System design and component specifications are discussed and quantified in terms of the net system transport efficiency and phase budget. Optical substrate materials, figure, surface roughness, coatings, and sizing are considered in the context of visible and near-ir optical systems that have been developed at Lawrence Livermore National Laboratory for laser isotope separation applications. In specific examples of general applicability, details of the bulk and/or surface absorption, peak and/or average power damage threshold, coating characteristics and function, substrate properties, or environmental factors will be shown to drive the component size, placement, and shape in high-power systems. To avoid overstressing commercial fabrication capabilities or component design specifications, procedures will be discussed for compensating for aberration buildup, using a few carefully placed adjustable mirrors. By coupling an aggressive measurements program on substrates and coatings to the design effort, an effective technique has been established to project high-power system performance realistically and, in the process, drive technology developments to improve performance or lower cost in large-scale laser optical systems. 13 refs

  7. Embedded Sensors and Controls to Improve Component Performance and Reliability: Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, Roger A [ORNL; Melin, Alexander M [ORNL; Burress, Timothy A [ORNL; Fugate, David L [ORNL; Holcomb, David Eugene [ORNL; Wilgen, John B [ORNL; Miller, John M [ORNL; Wilson, Dane F [ORNL; Silva, Pamela C [ORNL; Whitlow, Lynsie J [ORNL; Peretz, Fred J [ORNL

    2012-10-01

    The overall project objective is to demonstrate improved reliability and increased performance made possible by deeply embedding instrumentation and controls (I&C) in nuclear power plant components. The project is employing a highly instrumented canned rotor, magnetic bearing, fluoride salt pump as its I&C technology demonstration vehicle. The project s focus is not primarily on pump design, but instead is on methods to deeply embed I&C within a pump system. However, because the I&C is intimately part of the basic millisecond-by-millisecond functioning of the pump, the I&C design cannot proceed in isolation from the other aspects of the pump. The pump will not function if the characteristics of the I&C are not embedded within the design because the I&C enables performance of the basic function rather than merely monitoring quasi-stable performance. Traditionally, I&C has been incorporated in nuclear power plant (NPP) components after their design is nearly complete; adequate performance was obtained through over-design. This report describes the progress and status of the project and provides a conceptual design overview for the embedded I&C pump.

  8. Proximal tibial osteophytes and their relationship with the height of the tibial spines of the intercondylar eminence: paleopathological study

    International Nuclear Information System (INIS)

    Hayeri, Mohammad Reza; Shiehmorteza, Masoud; Trudell, Debra J.; Resnick, Donald; Hefflin, Tori

    2010-01-01

    Tibial spiking (i.e., spurring of tibial spines), eburnation, and osteophytes are considered features of osteoarthritis. This investigation employed direct inspection of the medial and lateral tibial plateaus in paleopathological specimens to analyze the frequency and morphological features of osteoarthritis and to define any relationship between the size of osteophytes and that of the intercondylar tibial spines. A total of 35 tibial bone specimens were evaluated for the degree of osteoarthritis and presence of eburnation. Each plateau was also divided into four quadrants and the presence and size of bone outgrowths were recorded in each quadrant. The ''medial/lateral tibial intercondylar spine index'' for each specimen was calculated as follows: (medial/lateral intercondylar tibial spine height)/(anteroposterior width of the superior tibial surface). The relationships between medial and lateral tibial height indexes with the degree of osteoarthritis were then tested. Osteophytes were observed more frequently in the anterior quadrants of both tibial plateaus than in the posterior quadrants (29 vs 16 for the medial tibial plateau [p = 0.01] and 28 vs 20 for the lateral tibial plateau [p = 0.04]). Eburnation was seen more frequently in the posterior regions of both tibial plateaus than in the anterior regions (17 vs 5, p < 0.01). In specimens with no signs of osteoarthritis the lateral intercondylar tibial index was significantly lower than that in specimens with some degree of osteoarthritis (p = 0.02). The medial intercondylar tibial index of the specimens with no signs of osteoarthritis was not significantly different from that of the specimens with some degree of osteoarthritis (p = 0.45). There was a positive correlation between the lateral spine height index and the overall grading of osteoarthritis, (r = 0.6, p < 0.01). In the anteromedial and posteromedial quadrants of the lateral tibial plateau, the association between the lateral intercondylar tibial spine

  9. Proximal tibial osteophytes and their relationship with the height of the tibial spines of the intercondylar eminence: paleopathological study

    Energy Technology Data Exchange (ETDEWEB)

    Hayeri, Mohammad Reza [Children' s National Medical Center, Department of Radiology, Washington, DC (United States); Shiehmorteza, Masoud; Trudell, Debra J.; Resnick, Donald [University of California San Diego, Department of Radiology, San Diego, CA (United States); Hefflin, Tori [Museum of Man San Diego, San Diego, CA (United States)

    2010-09-15

    Tibial spiking (i.e., spurring of tibial spines), eburnation, and osteophytes are considered features of osteoarthritis. This investigation employed direct inspection of the medial and lateral tibial plateaus in paleopathological specimens to analyze the frequency and morphological features of osteoarthritis and to define any relationship between the size of osteophytes and that of the intercondylar tibial spines. A total of 35 tibial bone specimens were evaluated for the degree of osteoarthritis and presence of eburnation. Each plateau was also divided into four quadrants and the presence and size of bone outgrowths were recorded in each quadrant. The ''medial/lateral tibial intercondylar spine index'' for each specimen was calculated as follows: (medial/lateral intercondylar tibial spine height)/(anteroposterior width of the superior tibial surface). The relationships between medial and lateral tibial height indexes with the degree of osteoarthritis were then tested. Osteophytes were observed more frequently in the anterior quadrants of both tibial plateaus than in the posterior quadrants (29 vs 16 for the medial tibial plateau [p = 0.01] and 28 vs 20 for the lateral tibial plateau [p = 0.04]). Eburnation was seen more frequently in the posterior regions of both tibial plateaus than in the anterior regions (17 vs 5, p < 0.01). In specimens with no signs of osteoarthritis the lateral intercondylar tibial index was significantly lower than that in specimens with some degree of osteoarthritis (p = 0.02). The medial intercondylar tibial index of the specimens with no signs of osteoarthritis was not significantly different from that of the specimens with some degree of osteoarthritis (p = 0.45). There was a positive correlation between the lateral spine height index and the overall grading of osteoarthritis, (r = 0.6, p < 0.01). In the anteromedial and posteromedial quadrants of the lateral tibial plateau, the association between the lateral

  10. Artroplastia total do joelho com o apoio tibial móvel: avaliação dos resultados a médio prazo Total knee arthroplasty with a mobile tibial bearing: medium-term follow-up results

    Directory of Open Access Journals (Sweden)

    Luiz Gabriel Betoni Guglielmetti

    2010-01-01

    Full Text Available OBJETIVO: Avaliações dos resultados a médio prazo da aplicação da prótese com apoio tibial móvel. MÉTODOS: Noventa e seis pacientes (107 joelhos foram submetidos a artroplastia total do joelho realizada com um modelo de prótese com mobilidade rotatória no componente tibial. Os pacientes foram avaliados após um seguimento médio de 52,7 meses - desvio padrão 21,94 (mínimo de 24 meses e máximo de 120 meses, através do protocolo de avaliação "Knee Society Clinical Rating System" (KSCRS, com uma média de 78,22 pontos. RESULTADOS: Entre as complicações transoperatórias e pós operatórias imediatas ocorreram uma deiscência de sutura, com cura espontânea, duas fraturas de patela, uma fratura do côndilo medial do fêmur, três paresias do nervo fibular lateral e uma distrofia nervosa simpático reflexa. As complicações tardias foram uma fratura da patela, uma fratura distal do fêmur, quatro solturas assépticas e quatro infecções profundas, que necessitaram de revisão. CONCLUSÃO: Excluindo-se os casos que necessitaram de uma revisão, por soltura séptica ou asséptica, os autores concluem serem bons os resultados clínicos e funcionais obtidos com a prótese com o apoio tibial móvel num seguimento a médio prazo.OBJECTIVE: Evaluation of mid-term follow up results of the application of a total knee replacement with a mobile tibial bearing design. METHODS: Ninety six patients (107 knees were submitted to total knee Arthroplasty, performed with a model of prosthesis with rotating mobility in the tibial component. The patients were evaluated after a mean follow-up of 52.7 months - standard deviation 21.94 (minimum 24 months and maximum 120 months through the Knee Society Clinical Rating System (KSCRS, with a mean outcome of 78.22 points. RESULTS: The complications that occurred immediately after or during the surgery included: one wound dehiscence with spontaneous healing, two patellar fractures, one fracture of the medial

  11. DEVELOPMENT OF METHODOLOGY FOR DESIGNING TESTABLE COMPONENT STRUCTURE OF DISCIPLINARY COMPETENCE

    Directory of Open Access Journals (Sweden)

    Vladimir I. Freyman

    2014-01-01

    Full Text Available The aim of the study is to present new methods of quality results assessment of the education corresponding to requirements of Federal State Educational Standards (FSES of the Third Generation developed for the higher school. The urgency of search of adequate tools for quality competency measurement and its elements formed in the course of experts’ preparation are specified. Methods. It is necessary to consider interference of competency components such as knowledge, abilities, possession in order to make procedures of assessment of students’ achievements within the limits of separate discipline or curriculum section more convenient, effective and exact. While modeling of component structure of the disciplinary competence the testable design of components is used; the approach borrowed from technical diagnostics. Results. The research outcomes include the definition and analysis of general iterative methodology for testable designing component structure of the disciplinary competence. Application of the proposed methodology is illustrated as the example of an abstract academic discipline with specified data and index of labour requirement. Methodology restrictions are noted; practical recommendations are given. Scientific novelty. Basic data and a detailed step-by-step implementation phase of the proposed common iterative approach to the development of disciplinary competence testable component structure are considered. Tests and diagnostic tables for different options of designing are proposed. Practical significance. The research findings can help promoting learning efficiency increase, a choice of adequate control devices, accuracy of assessment, and also efficient use of personnel, temporal and material resources of higher education institutions. Proposed algorithms, methods and approaches to procedure of control results organization and realization of developed competences and its components can be used as methodical base while

  12. [Application of tibial mechanical axis locator in tibial extra-articular deformity in total knee arthroplasty].

    Science.gov (United States)

    Li, Guoliang; Han, Guangpu; Zhang, Jinxiu; Ma, Shiqiang; Guo, Donghui; Yuan, Fulu; Qi, Bingbing; Shen, Runbin

    2013-07-01

    To explore the application value of self-made tibial mechanical axis locator in tibial extra-articular deformity in total knee arthroplasty (TKA) for improving the lower extremity force line. Between January and August 2012, 13 cases (21 knees) of osteoarthritis with tibial extra-articular deformity were treated, including 5 males (8 knees) and 8 females (13 knees) with an average age of 66.5 years (range, 58-78 years). The disease duration was 2-5 years (mean, 3.5 years). The knee society score (KSS) was 45.5 +/- 15.5. Extra-articular deformities included 1 case of knee valgus (2 knees) and 12 cases of knee varus (19 knees). Preoperative full-length X-ray films of lower extremities showed 10-21 degrees valgus or varus deformity of tibial extra joint. Self-made tibial mechanical axis locator was used to determine and mark coronal tibial mechanical axis under X-ray before TKA, and then osteotomy was performed with extramedullary positioning device according to the mechanical axis marker.' All incisions healed by first intention, without related complications of infection and joint instability. All patients were followed up 5-12 months (mean, 8.3 months). The X-ray examination showed case of 2.9 degrees knee deviation angle at 3 days after operation, and the accurate rate was 95.2%. No loosening or instability of prosthesis occurred during follow-up. KSS score was 85.5 +/- 15.0 at last follow-up, showing significant difference when compared with preoperative score (t=12.82, P=0.00). The seft-made tibial mechanical axis locator can improve the accurate rate of the lower extremity force line in TKA for tibia extra-articular deformity.

  13. Design and R&D for manufacturing the beamline components of MITICA and ITER HNBs

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Palma, M., E-mail: mauro.dallapalma@igi.cnr.it [Consorzio RFX, Padova (Italy); Sartori, E. [Consorzio RFX, Padova (Italy); Blatchford, P.; Chuilon, B. [CCFE, Culham Science Centre, Oxfordshire (United Kingdom); Graceffa, J. [ITER Organization, St Paul Lez Durance (France); Hanke, S. [KIT, Institute for Technical Physics, Eggenstein-Leopoldshafen (Germany); Hardie, C. [CCFE, Culham Science Centre, Oxfordshire (United Kingdom); Masiello, A. [F4E, Barcelona (Spain); Muraro, A. [Consorzio RFX, Padova (Italy); Ochoa, S. [KIT, Institute for Technical Physics, Eggenstein-Leopoldshafen (Germany); Shah, D. [ITER Organization, St Paul Lez Durance (France); Veltri, P.; Zaccaria, P.; Zaupa, M. [Consorzio RFX, Padova (Italy)

    2015-10-15

    Highlights: • Particle beam-component interaction was analysed developing and applying numerical codes. • Gas density distribution was calculated with AVOCADO code and applied for electrical analyses. • High heat flux components were designed, analysed with subcooled boiling, verified for fatigue. • Fracture behaviour of ceramics was analysed by finite element modelling and was verified. • R&D supports the design of the beamline components, especially for water-vacuum barriers. - Abstract: The design of the beamline components of MITICA, the full prototype of the ITER heating neutral beam injectors, is almost finalised and technical specifications for the procurement are under preparation. These components are the gas neutraliser, the electrostatic residual ion dump, and the calorimeter. Electron dump panels are foreseen each side of the upstream end of the neutraliser to protect the cryo-panels from electrons, created by stripping and other processes, that exit the 1 MeV accelerator. As the design of the components must fulfil requirements on the beam physics, insight on physical processes is required to identify performance trade-offs and constraints. The spatial gas distribution was simulated to verify the pumping requirements with electron dump panels and local conditions for breakdown voltage. Electrostatic analyses were carried out for the insulating elements of the RID to verify the limits of the electric field intensity. Different criteria were approached to investigate the fracture behaviour of ceramics considering the manufacturing implications and extrapolating the conditions for proof testing. Severe heating conditions will be applied steadily, as the maximum pulse duration is 1 h, and cyclically so requiring to fulfil fatigue and ratcheting verifications. High heat fluxes, up to 13 MW/m{sup 2} on the calorimeter, with enhanced heat transfer in subcooled boiling conditions will occur in the actively cooled CuCr1Zr panel elements provided with

  14. Economic-based design of engineering systems with degrading components using probabilistic loss of quality

    International Nuclear Information System (INIS)

    Son, Young Kap; Savage, Gordon J.; Chang, Seog Weon

    2007-01-01

    The allocation of means and tolerances to provide quality, functional reliability and performance reliability in engineering systems is a challenging problem. Traditional measures to help select the best means and tolerances include mean time to failure and its variance: however, they have some shortcomings. In this paper, a monetary measure based on present worth is invoked as a more inclusive metric. We consider the sum of the production cost and the expected loss of quality cost over a planned horizon at the customer's discount rates. Key to the approach is a probabilistic loss of quality cost that incorporates the cumulative distribution function that arises from time-variant distributions of system performance measures due to degrading components. The proposed design approach investigates both degradation and uncertainty in component. Moreover, it tries to obviate problems of current Taguchi's loss function-based design approaches. Case studies show the practicality and promise of the approach

  15. Design feasibility study of a divertor component reinforced with fibrous metal matrix composite laminate

    International Nuclear Information System (INIS)

    You, J.-H.

    2005-01-01

    Fibrous metal matrix composites possess advanced mechanical properties compared to conventional alloys. It is expected that the application of these composites to a divertor component will enhance the structural reliability. A possible design concept would be a system consisting of tungsten armour, copper composite interlayer and copper heat sink where the composite interlayer is locally inserted into the highly stressed domain near the bond interface. For assessment of the design feasibility of the composite divertor concept, a non-linear multi-scale finite element analysis was performed. To this end, a micro-mechanics algorithm was implemented into a finite element code. A reactor-relevant heat flux load was assumed. Focus was placed on the evolution of stress state, plastic deformation and ductile damage on both macro- and microscopic scales. The structural response of the component and the micro-scale stress evolution of the composite laminate were investigated

  16. Design feasibility study of a divertor component reinforced with fibrous metal matrix composite laminate

    Energy Technology Data Exchange (ETDEWEB)

    You, J.-H. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, D-85748 Garching (Germany)]. E-mail: j.h.you@ipp.mpg.de

    2005-01-01

    Fibrous metal matrix composites possess advanced mechanical properties compared to conventional alloys. It is expected that the application of these composites to a divertor component will enhance the structural reliability. A possible design concept would be a system consisting of tungsten armour, copper composite interlayer and copper heat sink where the composite interlayer is locally inserted into the highly stressed domain near the bond interface. For assessment of the design feasibility of the composite divertor concept, a non-linear multi-scale finite element analysis was performed. To this end, a micro-mechanics algorithm was implemented into a finite element code. A reactor-relevant heat flux load was assumed. Focus was placed on the evolution of stress state, plastic deformation and ductile damage on both macro- and microscopic scales. The structural response of the component and the micro-scale stress evolution of the composite laminate were investigated.

  17. Component and System Sensitivity Considerations for Design of a Lunar ISRU Oxygen Production Plant

    Science.gov (United States)

    Linne, Diane L.; Gokoglu, Suleyman; Hegde, Uday G.; Balasubramaniam, Ramaswamy; Santiago-Maldonado, Edgardo

    2009-01-01

    Component and system sensitivities of some design parameters of ISRU system components are analyzed. The differences between terrestrial and lunar excavation are discussed, and a qualitative comparison of large and small excavators is started. The effect of excavator size on the size of the ISRU plant's regolith hoppers is presented. Optimum operating conditions of both hydrogen and carbothermal reduction reactors are explored using recently developed analytical models. Design parameters such as batch size, conversion fraction, and maximum particle size are considered for a hydrogen reduction reactor while batch size, conversion fraction, number of melt zones, and methane flow rate are considered for a carbothermal reduction reactor. For both reactor types the effect of reactor operation on system energy and regolith delivery requirements is presented.

  18. Software Engineering Environment for Component-based Design of Embedded Software

    DEFF Research Database (Denmark)

    Guo, Yu

    2010-01-01

    as well as application models in a computer-aided software engineering environment. Furthermore, component models have been realized following carefully developed design patterns, which provide for an efficient and reusable implementation. The components have been ultimately implemented as prefabricated...... executable objects that can be linked together into an executable application. The development of embedded software using the COMDES framework is supported by the associated integrated engineering environment consisting of a number of tools, which support basic functionalities, such as system modelling......, validation, and executable code generation for specific hardware platforms. Developing such an environment and the associated tools is a highly complex engineering task. Therefore, this thesis has investigated key design issues and analysed existing platforms supporting model-driven software development...

  19. Conceptual design of a fission-based integrated test facility for fusion reactor components

    International Nuclear Information System (INIS)

    Watts, K.D.; Deis, G.A.; Hsu, P.Y.S.; Longhurst, G.R.; Masson, L.S.; Miller, L.G.

    1982-01-01

    The testing of fusion materials and components in fission reactors will become increasingly important because of lack of fusion engineering test devices in the immediate future and the increasing long-term demand for fusion testing when a fusion reactor test station becomes available. This paper presents the conceptual design of a fission-based Integrated Test Facility (ITF) developed by EG and G Idaho. This facility can accommodate entire first wall/blanket (FW/B) test modules such as those proposed for INTOR and can also accommodate smaller cylindrical modules similar to those designed by Oak Ridge National laboratory (ORNL) and Westinghouse. In addition, the facility can be used to test bulk breeder blanket materials, materials for tritium permeation, and components for performance in a nuclear environment. The ITF provides a cyclic neutron/gamma flux as well as the numerous module and experiment support functions required for truly integrated tests

  20. Simulation based design strategy for EMC compliance of components in hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Maass, Uwe; Ndip, Ivan; Hoene, Eckard; Guttowski, Stephan [Fraunhofer-Institut fuer Zuverlaessigkeit und Mikrointegration (IZM), Berlin (Germany); Tschoban, Christian; Lang, Klaus-Dieter [Technische Univ. Berlin (Germany)

    2012-11-01

    The design of components for the power train of hybrid vehicles needs to take into account EMC compliance standards related to hazardous electromagnetic fields. Using a simulation based design strategy allows for virtual EMC tests in parallel to the mechanical / electrical power design and thus reduces (re-)design time and costs. Taking as an example a high-voltage battery for a hybrid vehicle the emitted magnetic fields outside the battery are examined. The simulation stategy is based on 3D EM simulations using a full-wave and an eddy current solver. The simulation models are based on the actual CAD data from the mechanical construction resulting in and a high geometrical aspect ratio. The impact of simulation specific aspects such as boundary conditions and excitation is given. It was found that using field simulations it is possible to identify noise sources and coupling paths as well as aid the construction of the battery. (orig.)

  1. Outcome of intramedullary interlocking SIGN nail in tibial diaphyseal fracture

    International Nuclear Information System (INIS)

    Khan, I.; Javed, S.; Khan, G.N.; Aziz, A.

    2013-01-01

    Objective: To determine the outcome of intramedullary interlocking surgical implant generation network (SIGN) nail in diaphyseal tibial fractures in terms of union and failure of implant (breakage of nail or interlocking screws). Study Design: Case series. Place and Duration of Study: Orthopaedics and Spinal Surgery, Ghurki Trust Teaching Hospital, Lahore Medical and Dental College, Lahore, from September 2008 to August 2009. Methodology: Fifty patients aged 14 - 60 years, of either gender were included, who had closed and Gustilo type I and II open fractures reported in 2 weeks, whose closed reduction was not possible or was unsatisfactory and fracture was located 7 cm below knee joint to 7 cm above ankle joint. Fractures previously treated with external fixator, infected fractures and unfit patients were excluded. All fractures were fixed with intramedullary interlocking SIGN nail and were followed clinically and radiographically for union and for any implant failure. Results: Forty one (88%) patients had united fracture within 6 months, 5 (10%) patients had delayed union while 4 (8%) patients had non-union. Mean duration for achieving union was 163 + 30.6 days. Interlocking screws were broken in 2 patients while no nail was broken in any patient. Conclusion: Intramedullary interlocking nailing is an effective measure in treating closed and grade I and II open tibial fractures. It provides a high rate of union less complications and early return to function. (author)

  2. A 2 MW, 170 GHz coaxial cavity gyrotron - experimental verification of the design of main components

    Energy Technology Data Exchange (ETDEWEB)

    Piosczyk, B [Forschungszentrum Karlsruhe, Association EURATOM-FZK, Institut fuer Hochleistungsimpuls- und Mikrowellentechnik (IHM), Postfach 3640, D-76021 Karlsruhe (Germany); Dammertz, G [Forschungszentrum Karlsruhe, Association EURATOM-FZK, Institut fuer Hochleistungsimpuls- und Mikrowellentechnik (IHM), Postfach 3640, D-76021 Karlsruhe (Germany); Dumbrajs, O [Department of Engineering Physics and Mathematics, Helsinki University of Technology, Association EURATOM-TEKES, FIN-02150 Espoo (Finland)] (and others)

    2005-01-01

    A 2 MW, CW, 170 GHz coaxial cavity gyrotron is under development in cooperation between European Research Institutions (FZK Karlsruhe, CRPP Lausanne, HUT Helsinki) and the European tube industry (TED, Velizy, France). The design of critical components has recently been examined experimentally at FZK Karlsruhe with a short pulse ({approx} few ms) coaxial cavity gyrotron. This gyrotron uses the same cavity and the same quasioptical (q.o.) RF-output system as designed for the industrial prototype and a very similar electron gun.

  3. Future needs for inelastic analysis in design of high-temperature nuclear plant components

    International Nuclear Information System (INIS)

    Corum, J.M.

    1980-01-01

    The role that inelastic analyses play in the design of high-temperature nuclear plant components is described. The design methodology, which explicitly accounts for nonlinear material deformation and time-dependent failure modes, requires a significant level of realism in the prediction of structural response. Thus, material deformation and failure modeling are, along with computational procedures, key parts of the methodology. Each of these is briefly discussed along with validation by comparisons with benchmark structural tests, and problem areas and needs are discussed for each

  4. Design logistics performance measurement model of automotive component industry for srengthening competitiveness of dealing AEC 2015

    Science.gov (United States)

    Amran, T. G.; Janitra Yose, Mindy

    2018-03-01

    As the free trade Asean Economic Community (AEC) causes the tougher competition, it is important that Indonesia’s automotive industry have high competitiveness as well. A model of logistics performance measurement was designed as an evaluation tool for automotive component companies to improve their logistics performance in order to compete in AEC. The design of logistics performance measurement model was based on the Logistics Scorecard perspectives, divided into two stages: identifying the logistics business strategy to get the KPI and arranging the model. 23 KPI was obtained. The measurement result can be taken into consideration of determining policies to improve the performance logistics competitiveness.

  5. Research on application of complex-genetic algorithm in nuclear component optimal design

    International Nuclear Information System (INIS)

    He Shijing; Yan Changqi; Wang Jianjun; Wang Meng

    2010-01-01

    Complex algorithm is one of the most commonly used methods in the mechanical design optimization, such as the optimization of nuclear component. An improved method,complex-genetic algorithm(CGA), is developed based on traditional complex algorithm(TCA), in which the disadvantages of TCA have been overcome. An optimal calculation,which represents the pressurizer, is carried out in order to analyze the optimization capability of CGA. The results show that CGA has better optimizing performance than TCA. (authors)

  6. Plasma facing components: a conceptual design strategy for the first wall in FAST tokamak

    Science.gov (United States)

    Labate, C.; Di Gironimo, G.; Renno, F.

    2015-09-01

    Satellite tokamaks are conceived with the main purpose of developing new or alternative ITER- and DEMO-relevant technologies, able to contribute in resolving the pending issues about plasma operation. In particular, a high criticality needs to be associated to the design of plasma facing components, i.e. first wall (FW) and divertor, due to physical, topological and thermo-structural reasons. In such a context, the design of the FW in FAST fusion plant, whose operational range is close to ITER’s one, takes place. According to the mission of experimental satellites, the FW design strategy, which is presented in this paper relies on a series of innovative design choices and proposals with a particular attention to the typical key points of plasma facing components design. Such an approach, taking into account a series of involved physical constraints and functional requirements to be fulfilled, marks a clear borderline with the FW solution adopted in ITER, in terms of basic ideas, manufacturing aspects, remote maintenance procedure, manifolds management, cooling cycle and support system configuration.

  7. A CANDU designed for more tolerance to failures in large components

    International Nuclear Information System (INIS)

    Spinks, N.J.; Barclay, F.W.; Allen, P.J.; Yee, F.

    1988-06-01

    Current designs of CANDU reactors have several groups of fuel channels each served by an upstream coolant supply-train consisting of an outlet header, a steam generator, one or more pumps in parallel and an inlet header. Postulated failures in these large components put the heaviest demands on the safety systems. For example, the rupture of a header sets the requirements for the speed of shutdown and for the speed and capacity of emergency coolant injection, and it has a large impact on containment design. A CANDU design is being investigated to reduce the impact of failures in large components. Each group of fuel channels is supplied by more than one train so that if one train fails the rest continue to work. Reverse flow limiters reduce the loss-of-coolant from the unbroken trains to a broken supply train. The paper describes several design options for making the piping connections from multi supply-trains to fuel channels. It discusses progress in design and testing of flow limiters. A preliminary analysis is given of affected accidents

  8. Optimal design of multi-state weighted k-out-of-n systems based on component design

    International Nuclear Information System (INIS)

    Li Wei; Zuo, Ming J.

    2008-01-01

    This paper presents a study on design optimization of multi-state weighted k-out-of-n systems. The studied system reliability model is more general than the traditional k-out-of-n system model. The system and its components are capable of assuming a whole range of performance levels, varying from perfect functioning to complete failure. A utility value corresponding to each state is used to indicate the corresponding performance level. A widely studied reliability optimization problem is the 'component selection problem', which involves selection of components with known reliability and cost characteristics. Less adequately addressed has been the problem of determining system cost and utility based on the relationships between component reliability, cost and utility. This paper addresses this topic. All the optimization problems dealt with in this paper can be categorized as either minimizing the expected total system cost subject to system reliability requirements, or maximizing system reliability subject to total system cost limitation. The resulting optimization problems are too complicated to be solved by traditional optimization approaches; therefore, genetic algorithm (GA) is used to solve them. Our results show that GA is a powerful tool for solving these kinds of problems

  9. Metallurgical considerations in the design of creep exposed, high temperature components for advanced power plants

    International Nuclear Information System (INIS)

    Schubert, F.

    1990-08-01

    Metallic components in advanced power generating plants are subjected to temperatures at which the material properties are significantly time-dependent, so that the creep properties become dominant for the design. In this investigation, methods by which such components are to be designed are given, taking into account metallurgical principles. Experimental structure mechanics testing of component related specimens carried out for representative loading conditions has confirmed the proposed methods. The determination of time-dependent design values is based on a scatterband evaluation of long-term testing data obtained for a number of different heats of a given alloy. The application of computer-based databank systems is recommendable. The description of the technically important secondary creep rate based on physical metallurgy principles can be obtained using the exponential relationship originally formulated by Norton, ε min = k.σ n . The deformation of tubes observed under internal pressure with a superimposed static or cyclic tensile stress and a torsion loading can be adequately described with the derived, three-dimensional creep equation (Norton). This is also true for the description of creep ratcheting and creep buckling phenomena. By superimposing a cyclic stress, the average creep rate is increased in one of the principal deformation axes. This is also true for the creep crack growth rate. The Norton equation can be used to derive this type of deformation behaviour. (orig.) [de

  10. An explication of the Graphite Structural Design Code of core components for the High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Iyoku, Tatsuo; Ishihara, Masahiro; Toyota, Junji; Shiozawa, Shusaku

    1991-05-01

    The integrity evaluation of the core graphite components for the High Temperature Engineering Test Reactor (HTTR) will be carried out based upon the Graphite Structural Design Code for core components. In the application of this design code, it is necessary to make clear the basic concept to evaluate the integrity of core components of HTTR. Therefore, considering the detailed design of core graphite structures such as fuel graphite blocks, etc. of HTTR, this report explicates the design code in detail about the concepts of stress and fatigue limits, integrity evaluation method of oxidized graphite components and thermal irradiation stress analysis method etc. (author)

  11. Criteria for design of the Yucca Mountain structures, systems and components for fault displacement

    International Nuclear Information System (INIS)

    Stepp, C.; Hossain, Q.; Nesbit, S.; Pezzopane, S.; Hardy, M.

    1995-01-01

    The DOE intends to design the Yucca Mountain high-level waste facility structures, systems and components (SSCs) for fault displacements to provide reasonable assurance that they will meet the preclosure safety performance objectives established by 10 CFR Part 60. To the extent achievable, fault displacement design of the facility will follow guidance provided in the NRC Staff Technical Position. Fault avoidance will be the primary design criterion, especially for spatially compact or clustered SSCs. When fault avoidance is not reasonably achievable, expected to be the case for most spatially extended SSCs, engineering design procedures and criteria or repair and rehabilitation actions, depending on the SSC's importance to safety, are provided. SSCs that have radiological safety importance will be designed for fault displacements that correspond to the hazard exceedance frequency equal to their established seismic safety performance goals. Fault displacement loads are generally localized and may cause local inelastic response of SSCs. For this reason, the DOE intends to use strain-based design acceptance criteria similar to the strain-based criteria used to design nuclear plant SSCs for impact and impulsive loads

  12. [Magnetic resonance imaging of tibial periostitis].

    Science.gov (United States)

    Meyer, X; Boscagli, G; Tavernier, T; Aczel, F; Weber, F; Legros, R; Charlopain, P; Martin, J P

    1998-01-01

    Tibial periostitis frequently occurs in athletes. We present our experience with MRI in a series of 7 patients (11 legs) with this condition. The clinical presentation and scintigraphic scanning suggested the diagnosis. MRI exploration of 11 legs demonstrated a high band-like juxta-osseous signal enhancement of SE and IR T2 weighted sequences in 6 cases, a signal enhancement after i.v. contrast administration in 4. Tibial periostitis is a clinical diagnosis and MRI and scintigraphic findings can be used to assure the differential diagnosis in difficult cases with stress fracture. MRI can visualize juxta-osseous edematous and inflammatory reactions and an increased signal would appear to be characteristic when the band-like image is fixed to the periosteum.

  13. Conceptual benefits of passive nuclear power plants and their effect on component design

    International Nuclear Information System (INIS)

    DeVine, J.C. Jr.

    1996-01-01

    Today, nearly ten years after the advanced light water reactor (ALWR) Program was conceived by US utility leaders, and a decade and a half since a new nuclear power plant was ordered in the US, the ALWR passive plant is coming into its own. This design concept, a midsized simplified light water reactor, features extremely reliable passive systems for accident prevention and mitigation and combines proven experience with state-of-the-art engineering and human factors. It is now emerging as the front runner to become the next generation reactor in the US and perhaps around the world. Although simple and straightforward in concept, the passive plant is in many respects a significant departure from previous trends in reactor engineering. Successful implementation of this concept presents numerous challenges to the designers of passive plant systems and components. This paper provides a brief history of the ALWR program, it outlines the ALWR passive plant design objectives and principles, and it summarizes with examples their implications on component design. (orig.)

  14. Biomechanical Factors in Tibial Stress Fracture

    Science.gov (United States)

    2001-08-01

    Relationship between Loading Rates and Tibial Accelerometry in Forefoot Strike Runners. Presented at the Annual American Society of Biomechanics Mtg...of the APTA, Seattle, WA, 2/99. McClay, IS, Williams, DS, and Manal, KT. Lower Extremity Mechanics of Runners with a Converted Forefoot Strike ...Management, Inc, 1998-1999 The Effect of Different Orthotic Devices on Lower Extremity Mechanics of Rearfoot and Forefoot Strikers, $3,500. Foot Management

  15. Anterior Tibial Artery Pseudoaneurysm: Case Report

    Directory of Open Access Journals (Sweden)

    Funda Tor

    2012-06-01

    Full Text Available The aneurysmsatic changes of the infrapopliteal arteries are rarely seen. They are pseudoaneurysms rather than true aneursyms. The most important cause of them is trauma. There is not a standart treatment for infrapopliteal aneursyms. In this study, we have evaluated a case operated for anterior tibial artery pseudoaneurysm developed after penetrant trauma and diagnosed two weeks later. [Cukurova Med J 2012; 37(3.000: 172-175

  16. Dysplasia epiphysealis hemimelica of the tibial tubercle

    Energy Technology Data Exchange (ETDEWEB)

    Thacker, M.M.; Scully, S.P.; Pitcher, J.D.; Temple, H. Thomas [University of Miami, Department of Orthopedics and Rehabilitation, FL (United States); Azouz, E.M. [University of Miami, Department of Radiology, FL (United States)

    2006-03-15

    Dysplasia epiphysealis hemimelica (DEH) is a rare skeletal dysplasia with epiphyseal involvement first described by Mouchet and Belot in 1926. Lower extremity involvement is common and might involve a single or multiple epiphyses in the affected extremity. We report an unusual case of involvement of the tibial tubercle in a girl aged 4 years 8 months, and we present the clinical, radiographic and pathologic findings. We discuss the role of MRI in the diagnosis and treatment plan. (orig.)

  17. Design evolution and integration of the ITER in-vessel components

    International Nuclear Information System (INIS)

    Martin, A.; Calcagno, B.; Chappuis, Ph.; Daly, E.; Dellopoulos, G.; Furmanek, A.; Gicquel, S.; Heitzenroeder, P.; Jiming, Chen; Kalish, M.; Kim, D.-H.; Khomiakov, S.; Labusov, A.; Loarte, A.; Loughlin, M.; Merola, M.; Mitteau, R.; Polunovski, E.; Raffray, R.; Sadakov, S.

    2013-01-01

    Highlights: ► The ITER in-vessel components have experienced a major redesign since the ITER Design Review of 2007. ► A set of in-vessel vertical stabilization (VS) coils and a set of in-vessel Edge Localized Mode (ELM) control coils have been implemented. ► The blanket system has been redesigned to include first wall (FW) shaping, to upgrade the FW heat removal capability and to allow for an “in situ” replacement. ► The blanket manifold system has been redesigned to improve leak detection and localisation. ► The introduction of a new set of in-vessel coils and the design evolution of the blanket system while the ITER project was entering the procurement phase have proven to be a major engineering challenge. -- Abstract: The ITER in-vessel components have experienced a major redesign since the ITER Design Review of 2007. A set of in-vessel vertical stabilization (VS) coils and a set of in-vessel Edge Localized Mode (ELM) control coils have been implemented. The blanket system has been redesigned to include first wall (FW) shaping, to upgrade the FW heat removal capability and to allow for an “in situ” replacement. The blanket manifold system has been redesigned to improve leak detection and localisation. The introduction of a new set of in-vessel coils and the design evolution of the blanket system while the ITER project was entering the procurement phase have proven to be a major engineering challenge. This paper describes the status of the redesign of the in-vessel components and the associated integration issues

  18. Systematic radiographic evaluation of tibial hemimelia with orthopedic implications

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan-List, Katia [Rochester General Hospital, Department of Diagnostic Imaging, Rochester, NY (United States); Klionsky, Nina B. [University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, NY (United States); Golisano Children' s Hospital, Department of Radiology, Rochester, NY (United States); Sanders, James O. [University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, NY (United States); Golisano Children' s Hospital, Department of Orthopaedics, Rochester, NY (United States); Golisano Children' s Hospital, Department of Pediatrics, Rochester, NY (United States); Katz, Michael E. [St. Mary' s Medical Center and Palm Beach Children' s Hospital, Department of Radiology, West Palm Beach, FL (United States)

    2017-04-15

    Tibial hemimelia is a rare lower-extremity pre-axial longitudinal deficiency characterized by complete or partial absence of the tibia. The reported incidence is 1 in 1 million live births. In this pictorial essay, we define tibial hemimelia and describe associated conditions and principles of preoperative imaging assessment for a child with tibial hemimelia. We also indicate the imaging findings that might influence the choice of treatment, describe the most widely used classification systems, and briefly discuss current treatment approaches. (orig.)

  19. Systematic radiographic evaluation of tibial hemimelia with orthopedic implications

    International Nuclear Information System (INIS)

    Kaplan-List, Katia; Klionsky, Nina B.; Sanders, James O.; Katz, Michael E.

    2017-01-01

    Tibial hemimelia is a rare lower-extremity pre-axial longitudinal deficiency characterized by complete or partial absence of the tibia. The reported incidence is 1 in 1 million live births. In this pictorial essay, we define tibial hemimelia and describe associated conditions and principles of preoperative imaging assessment for a child with tibial hemimelia. We also indicate the imaging findings that might influence the choice of treatment, describe the most widely used classification systems, and briefly discuss current treatment approaches. (orig.)

  20. Finite element based design optimization of WENDELSTEIN 7-X divertor components under high heat flux loading

    International Nuclear Information System (INIS)

    Plankensteiner, A.; Leuprecht, A.; Schedler, B.; Scheiber, K.-H.; Greuner, H.

    2007-01-01

    In the divertor of the nuclear fusion experiment WENDELSTEIN 7-X (W7-X) plasma facing high heat flux target elements have to withstand severe loading conditions. The thermally induced mechanical stressing turns out to be most critical with respect to lifetime predictions of the target elements. Therefore, different design variants of those CFC flat tile armoured high heat flux components have been analysed via the finite element package ABAQUS aiming at derivation of an optimized component design under high heat flux conditions. The investigated design variants comprise also promising alterations in the cooling channel design and castellation of the CFC flat tiles which, however, from a system integration and manufacturing standpoint of view, respectively, are evaluated to be critical. Therefore, the numerical study as presented here mainly comprises a reference variant that is comparatively studied with a variant incorporating a bi-layer-type AMC-Cu/OF-Cu interlayer at the CFC/Cu-interface. The thermo-mechanical material characteristics are accounted for in the finite element models with elastic-plastic properties being assigned to the metallic sections CuCrZr, AMC-Cu and OF-Cu, respectively, and orthotropic nonlinear-elastic properties being used for the CFC sections. The calculated temporal and spatial evolution of temperatures, stresses, and strains for the individual design variants are evaluated with special attention being paid to stress measures, plastic strains, and damage parameters indicating the risk of failure of CFC and the CFC/Cu-interface, respectively. This way the finite element analysis allows to numerically derive an optimized design variant within the framework of expected operating conditions in W7-X

  1. Design concept of a pump stage with replaceable hydraulic components and prediction of its performance curves

    International Nuclear Information System (INIS)

    Lugova, S O; Knyazeva, E G; Tverdokhleb, I B; Kochevsky, A N

    2010-01-01

    In many cases, centrifugal pump units are expected to deliver the required performance under varying operating conditions. In particular, the pumps for oil extraction and transportation should deliver a constant head, although their capacity often changes during the life cycle. In order to keep the efficiency at a high level and not to replace a whole pump, the authors suggest to replace in such cases only hydraulic components of the pump (impellers and stationary sections of diffuser channels) that are to be installed in the same casing. The paper describes an approach for designing of radial-flow impellers and sections of diffuser channels to be used as replaceable. It allows for delivering a required head and providing a high efficiency in a wide range of capacities. The components intended for smaller capacities are featured with narrower flow passages. However, the dimensions of replaceable components are the same. The paper describes also a numerical simulation of fluid flow in a pump stage with two sets of replaceable radial-flow impellers and sections of diffuser channels. The CFD software used in this research is ANSYS CFX 11. Good correspondence of results is observed. Difference in flow pattern at various capacities and its influence on the performance curves delivered with replaceable components is demonstrated. Basing on the obtained results, the analysis of energy losses is presented.

  2. Thermal-hydraulic and thermo-mechanical design of plasma facing components for SST-1 tokamak

    International Nuclear Information System (INIS)

    Chaudhuri, Paritosh; Santra, P.; Chenna Reddy, D.; Parashar, S.K.S.

    2014-01-01

    The Plasma Facing Components (PFCs) are one of the major sub-systems of ssT-1 tokamak. PFC of ssT-1 consisting of divertors, passive stabilizers, baffles and limiters are designed to be compatible for steady state operation. The main consideration in the design of the PFC cooling is the steady state heat removal of up to 1 MW/m 2 . The PFC has been designed to withstand the peak heat fluxes and also without significant erosion such that frequent replacement of the armor is not necessary. Design considerations included 2-D steady state and transient tile temperature distribution and resulting thermal loads in PFC during baking, and cooling, coolant parameters necessary to maintain optimum thermal-hydraulic design, and tile fitting mechanism. Finite Element (FE) models using ANSYS have been developed to carry out the heat transfer and stress analyses of the PFC to understand its thermal and mechanical behaviors. The results of the calculation led to a good understanding of the coolant flow behavior and the temperature distribution in the tube wall and the different parts of the PFC. Thermal analysis of the PFC is carried out with the purpose of evaluating the thermal mechanical behavior of PFCs. The detailed thermal-hydraulic and thermo-mechanical designs of PFCs of ssT-1 are discussed in this paper. (authors)

  3. A perspective on the design of high-temperature boiler components

    International Nuclear Information System (INIS)

    Perrin, I.J.; Fishburn, J.D.

    2008-01-01

    Boiler pressure parts are designed to formalize codes such as the ASME Boiler and Pressure Vessel Code. These codes employ a 'design-by-rule' approach, which is based on a combination of sound structural mechanics and boiler design and operating experience. These codes have served the industry well, but the need for a number of enhancements has been highlighted by the widespread use of creep strength-enhanced steels, the advent of ultrasupercritical boilers constructed from nickel-based alloys, and the cyclic duty required for some plants. The need for these enhancements is discussed to explain their origin and key challenges that must be tackled to provide robust design methods for the future. In particular, the use of reference stress concepts and design-by-analysis are discussed to highlight some practical issues. Weldments are identified as a particular concern because they are often a life-limiting feature, and since existing code rules do not adequately consider the high-temperature creep failure modes that can arise as a function of geometry, loading and material combination. Associated with the behavior of welds, multiaxial creep rupture is also identified as a topic that requires further study. The discussion illustrates the multidisciplinary nature of design and need for the materials and structural mechanics communities to work together. This should optimize the use of advanced, expensive alloys and reduce component wall thickness, facilitating pressure part manufacture and enhancing operational flexibility without compromising safety

  4. Development of a knowledge-based system for the design of composite automotive components

    Science.gov (United States)

    Moynihan, Gary P.; Stephens, J. Paul

    1997-01-01

    Composite materials are comprised of two or more constituents possessing significantly different physical properties. Due to their high strength and light weight, there is an emerging trend to utilize composites in the automotive industry. There is an inherent link between component design and the manufacturing processes necessary for fabrication. To many designers, this situation may be intimidating, since there is frequently little available understanding of composites and their processes. A direct results is high rates of product scrap and rework. Thus, there is a need to implement a systematic approach to composite material design. One such approach is quality function deployment (QFD). By translating customer requirements into design parameters, through the use of heuristics, QFD supports the improvement of product quality during the planning stages prior to actual production. The purpose of this research is to automate the use of knowledge pertaining to the design and application of composite materials within the automobile industry. This is being accomplished through the development of a prototype expert system incorporating a QFD approach. It will provide industry designers with access to knowledge of composite materials that might not be otherwise available.

  5. Knowledge Assisted Integrated Design of a Component and Its Manufacturing Process

    Science.gov (United States)

    Gautham, B. P.; Kulkarni, Nagesh; Khan, Danish; Zagade, Pramod; Reddy, Sreedhar; Uppaluri, Rohith

    Integrated design of a product and its manufacturing processes would significantly reduce the total cost of the products as well as the cost of its development. However this would only be possible if we have a platform that allows us to link together simulations tools used for product design, performance evaluation and its manufacturing processes in a closed loop. In addition to that having a comprehensive knowledgebase that provides systematic knowledge guided assistance to product or process designers who may not possess in-depth design knowledge or in-depth knowledge of the simulation tools, would significantly speed up the end-to-end design process. In this paper, we propose a process and illustrate a case for achieving an integrated product and manufacturing process design assisted by knowledge support for the user to make decisions at various stages. We take transmission component design as an example. The example illustrates the design of a gear for its geometry, material selection and its manufacturing processes, particularly, carburizing-quenching and tempering, and feeding the material properties predicted during heat treatment into performance estimation in a closed loop. It also identifies and illustrates various decision stages in the integrated life cycle and discusses the use of knowledge engineering tools such as rule-based guidance, to assist the designer make informed decisions. Simulation tools developed on various commercial, open-source platforms as well as in-house tools along with knowledge engineering tools are linked to build a framework with appropriate navigation through user-friendly interfaces. This is illustrated through examples in this paper.

  6. Consideration of a design optimization method for advanced nuclear power plant thermal-hydraulic components

    International Nuclear Information System (INIS)

    Ridluan, Artit; Tokuhiro, Akira; Manic, Milos; Patterson, Michael; Danchus, William

    2009-01-01

    In order to meet the global energy demand and also mitigate climate change, we anticipate a significant resurgence of nuclear power in the next 50 years. Globally, Generation III plants (ABWR) have been built; Gen' III+ plants (EPR, AP1000 others) are anticipated in the near term. The U.S. DOE and Japan are respectively pursuing the NGNP and MSFR. There is renewed interest in closing the fuel cycle and gradually introducing the fast reactor into the LWR-dominated global fleet. In order to meet Generation IV criteria, i.e. thermal efficiency, inherent safety, proliferation resistance and economic competitiveness, plant and energy conversion system engineering design have to increasingly meet strict design criteria with reduced margin for reliable safety and uncertainties. Here, we considered a design optimization approach using an anticipated NGNP thermal system component as a Case Study. A systematic, efficient methodology is needed to reduce time consuming trial-and-error and computationally-intensive analyses. We thus developed a design optimization method linking three elements; that is, benchmarked CFD used as a 'design tool', artificial neural networks (ANN) to accommodate non-linear system behavior and enhancement of the 'design space', and finally, response surface methodology (RSM) to optimize the design solution with targeted constraints. The paper presents the methodology including guiding principles, an integration of CFD into design theory and practice, consideration of system non-linearities (such as fluctuating operating conditions) and systematic enhancement of the design space via application of ANN, and a stochastic optimization approach (RSM) with targeted constraints. Results from a Case Study optimizing the printed circuit heat exchanger for the NGNP energy conversion system will be presented. (author)

  7. Reconstruction of bilateral tibial aplasia and split hand-foot syndrome in a father and daughter

    Directory of Open Access Journals (Sweden)

    Ali Al Kaissi

    2014-01-01

    Full Text Available Background: Tibial aplasia is of heterogeneous aetiology, the majority of reports are sporadic. We describe the reconstruction procedures in two subjects - a daughter and father manifested autosomal dominant (AD inheritance of the bilateral tibial aplasia and split hand-foot syndrome. Materials and Methods: Reconstruction of these patients required multiple surgical procedures and orthoprosthesis was mandatory. The main goal of treatment was to achieve walking. Stabilization of the ankle joint by fibular-talar-chondrodesis on both sides, followed by bilateral Brown-procedure at the knee joint level has been applied accordingly. Results: The outcome was with improved function of the deformed limbs and walking was achieved with simultaneous designation of orthotic fitting. Conclusion: This is the first study encompassing the diagnosis and management of a father and daughter with bilateral tibial aplasia associated with variable split hand/foot deformity without foot ablation. Our patients showed the typical AD pattern of inheritance of split-hand/foot and tibial aplasia.

  8. Radiographic quantitative assessment of cranial tibial subluxation before and after tibial plateau leveling osteotomy in dogs.

    Science.gov (United States)

    Kim, Stanley E; Lewis, Daniel D; Pozzi, Antonio; Seibert, Rachel L; Winter, Matthew D

    2011-03-01

    To determine the influence of stifle joint flexion angle, cranial cruciate ligament (CrCL) integrity, tibial plateau leveling osteotomy (TPLO), and cranial tibial subluxation on the distance between the location of the origin and insertion of the CrCL (CrCL(d)) in dogs. 4 pairs of pelvic limbs from adult dog cadavers weighing 23 to 34 kg. Procedures-Mediolateral projection radiographs of each stifle joint were obtained with the joint flexed at 90°, 105°, 120°, 135°, and 150°. Radiopaque markers were then placed at the sites of origin and insertion of the CrCL. Afterward, radiography was repeated in the same manner, before and after CrCL transection, with and without TPLO. Following CrCL transection, radiographs were obtained before and after inducing overt cranial tibial subluxation. Interobserver variation in measuring the CrCL(d) without fiduciary markers was assessed. The effect of CrCL integrity, cranial tibial subluxation, flexion angle, and TPLO on CrCL(d) was also determined. Interobserver agreement was strong, with an intraclass correlation coefficient of 0.859. The CrCL(d) was significantly shorter (Cranial tibial subluxation caused a 25% to 40% increase in CrCL(d). No effect of TPLO on CrCL(d) was found, regardless of CrCL integrity, forced stifle joint subluxation, or flexion angle. Overt cranial tibial subluxation in CrCL-deficient stifle joints can be detected on mediolateral projection radiographs by comparing CrCL(d) on neutral and stressed joint radiographs at joint angles between 105° and 150°, regardless of whether a TPLO has been performed.

  9. The study and design of a national supply chain for the aerospace titanium components manufacturing industry

    Directory of Open Access Journals (Sweden)

    Lene van der Merwe

    2012-11-01

    Full Text Available Titanium’s strength-to-density ratio, corrosion resistance and high thermal compatibility makes it the perfect metal for aerospace. Titanium is for instance used for the structural airframe, seat tracks, engine components and landing gear of aircraft. The Boeing 787 that had its test flight in 2009 is one of the latest aircraft designs that incorporates a substantially higher percentage of parts manufactured from titanium due to the weight benefit. Titanium’s extensive use in aerospace applications ensures that the aerospace market is the main driver of titanium metal demand. South Africa is the second largest titanium producer in the world after Australia. The abundance of titanium in South Africa together with the growing demand has led it to be identified as a beneficiation priority in a collaborative government initiative, called Titanium Beneficiation Initiative (TBI. The purpose of this paper is to develop a supply chain model for the anticipated South African titanium component manufacturing industry.

  10. Design and development of major balance of plant components in solid oxide fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Wen-Tang; Huang, Cheng-Nan; Tan, Hsueh-I; Chao, Yu [Institute of Nuclear Energy Research Atomic Energy Council, Taoyuan County 32546 (Taiwan, Province of China); Yen, Tzu-Hsiang [Green Technology Research Institute, CPC Corporation, Chia-Yi City 60036 (Taiwan, Province of China)

    2013-07-01

    The balance of plant (BOP) of a Solid Oxide Fuel Cell (SOFC) system with a 2 kW stack and an electric efficiency of 40% is optimized using commercial GCTool software. The simulation results provide a detailed understanding of the optimal operating temperature, pressure and mass flow rate in all of the major BOP components, i.e., the gas distributor, the afterburner, the reformer and the heat exchanger. A series of experimental trials are performed to validate the simulation results. Overall, the results presented in this study not only indicate an appropriate set of operating conditions for the SOFC power system, but also suggest potential design improvements for several of the BOP components.

  11. A Global Multi-Objective Optimization Tool for Design of Mechatronic Components using Generalized Differential Evolution

    DEFF Research Database (Denmark)

    Bech, Michael Møller; Nørgård, Christian; Roemer, Daniel Beck

    2016-01-01

    This paper illustrates how the relatively simple constrained multi-objective optimization algorithm Generalized Differential Evolution 3 (GDE3), can assist with the practical sizing of mechatronic components used in e.g. digital displacement fluid power machinery. The studied bi- and tri-objectiv......This paper illustrates how the relatively simple constrained multi-objective optimization algorithm Generalized Differential Evolution 3 (GDE3), can assist with the practical sizing of mechatronic components used in e.g. digital displacement fluid power machinery. The studied bi- and tri...... different optimization control parameter settings and it is concluded that GDE3 is a reliable optimization tool that can assist mechatronic engineers in the design and decision making process....

  12. Synthesis of results obtained on sodium components and technology through the Generation IV International Forum SFR Component Design and Balance-of-Plant Project

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Rodriguez, G.; Kisohara, N.; Kim, J. B.; Gerber, A.; Ashurko, Y.; Toyama, S.

    2013-01-01

    Status: The viability of designing SFR components and BOP has been demonstrated with design, construction and operation of previous sodium-cooled reactors. The main objective of this R&D project is related to system performance, or by development on the use of AECS in the BOP that could allow further cost improvements. Objective: To conduct collaborative research and development of components and BOP for the SFR System. The Project has to satisfy the GIF’s criteria of safety, economy, sustainability, proliferation resistance and physical protection. Activities within this Project are addressing experimental and analytical evaluation of advanced ISI&R, LBB assessment, development of AECS with Brayton cycles, advanced SG technologies. Project activities will be based in part on the extensive historical R&D experience with component design and balance of plant for sodium-cooled fast reactors

  13. Design characteristics of a three-component AEOI Neutriran Albedo Neutron Personnel Dosimeter

    International Nuclear Information System (INIS)

    Sohrabi, M.; Katouzi, M.

    1991-01-01

    In establishing a national personnel neutron dosimetry service in Iran, different parameters of the AEOI Neutriran Albedo Neutron Personnel Dosimeter (NANPD) have been optimized. A NANPD was designed with three dosimetry components to measure (a) direct thermal neutrons, (b) direct fast neutrons and (C) direct neutrons by the detection of the albedo neutrons reflected from the body. The dosimeter consists of one or more Lexan polycarbonate and/or CR-39 foils and two 10 B (n,α) 7 Li converters in a cadmium cover so arranged as to efficiently measure the three neutron dose components separately. The boron converter thickness, its position relative to the beam direction and its distance from the PC foil were studied and the results were incorporated into the design. The dose response of the dosimeter, its lower detection limit as well as the correction factors related to the field neutrons and albedo neutrons were also determined for a 238 Pu-Be, an 241 Am-Be and a 252 Cf sources. In this paper, the dosimeter design and its dosimetric characteristics are presented and discussed. (author)

  14. Assessment of design limits and criteria requirements for Eurofer structures in TBM components

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, G., E-mail: giacomo.aiello@cea.fr [CEA, DEN/DANS/DM2S, F-91191 Gif-sur-Yvette (France); Aktaa, J. [Forschungszentrum Karlsruhe (FZK), Institute for Materials Research II, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Cismondi, F. [Forschungszentrum Karlsruhe (FZK), Institut fuer Neutronenphysik und Reaktortechnik, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rampal, G.; Salavy, J.-F. [CEA, DEN/DANS/DM2S, F-91191 Gif-sur-Yvette (France); Tavassoli, F. [CEA, DEN/DANS/DMN/DIR, F-91191 Gif-sur-Yvette (France)

    2011-07-01

    Eurofer97 is a Reduced Activation Ferritic-Martensitic (RAFM) steel developed for use as structural material in fusion power reactors blankets and in particular the future DEMOnstration power plant that should follow ITER. In order to evaluate the performances of the different blanket concepts in a fusion-relevant environment, the ITER experimental programme foresees the installation of dedicated Test Blanket Modules (TBMs), representative of the corresponding DEMO blankets, in selected equatorial ports. To be fully relevant, TBMs will have to be designed and fabricated using DEMO relevant technologies and will, in particular, use Eurofer97 as structural material. While the use of ferritic/martensitic steels is not new in the nuclear industry, the fusion environment in ITER poses new challenges for the structural materials. Besides, contrary to DEMO, ITER is characterised by a strongly pulsed mode of operation that could have severe consequences on the lifetime of the components. This paper gives an overview of the issues related to the design of Eurofer97 structures in TBM components, discussing the choice of reference Codes and Standards and the consistency of the design rules with Eurofer97 mechanical properties.

  15. Principles of designing cyber-physical system of producing mechanical assembly components at Industry 4.0 enterprise

    Science.gov (United States)

    Gurjanov, A. V.; Zakoldaev, D. A.; Shukalov, A. V.; Zharinov, I. O.

    2018-03-01

    The task of developing principles of cyber-physical system constitution at the Industry 4.0 company of the item designing components of mechanical assembly production is being studied. The task has been solved by analyzing the components and technologies, which have some practical application in the digital production organization. The list of components has been defined and the authors proposed the scheme of the components and technologies interconnection in the Industry 4.0 of mechanical assembly production to make an uninterrupted manufacturing route of the item designing components with application of some cyber-physical systems.

  16. Technical program to study the benefits of nonlinear analysis methods in LWR component designs. Technical report TR-3723-1

    International Nuclear Information System (INIS)

    Raju, P.P.

    1980-05-01

    This report summarizes the results of the study program to assess the benefits of nonlinear analysis methods in Light Water Reactor (LWR) component designs. The current study reveals that despite its increased cost and other complexities, nonlinear analysis is a practical and valuable tool for the design of LWR components, especially under ASME Level D service conditions (faulted conditions) and it will greatly assist in the evaluation of ductile fracture potential of pressure boundary components. Since the nonlinear behavior is generally a local phenomenon, the design of complex components can be accomplished through substructuring isolated localized regions and evaluating them in detail using nonlinear analysis methods

  17. Rationale, design and methods of the HEALTHY study nutrition intervention component.

    Science.gov (United States)

    Gillis, B; Mobley, C; Stadler, D D; Hartstein, J; Virus, A; Volpe, S L; El ghormli, L; Staten, M A; Bridgman, J; McCormick, S

    2009-08-01

    The HEALTHY study was a randomized, controlled, multicenter and middle school-based, multifaceted intervention designed to reduce risk factors for the development of type 2 diabetes. The study randomized 42 middle schools to intervention or control, and followed students from the sixth to the eighth grades. Here we describe the design of the HEALTHY nutrition intervention component that was developed to modify the total school food environment, defined to include the following: federal breakfast, lunch, after school snack and supper programs; a la carte venues, including snack bars and school stores; vending machines; fundraisers; and classroom parties and celebrations. Study staff implemented the intervention using core and toolbox strategies to achieve and maintain the following five intervention goals: (1) lower the average fat content of foods, (2) increase the availability and variety of fruits and vegetables, (3) limit the portion sizes and energy content of dessert and snack foods, (4) eliminate whole and 2% milk and all added sugar beverages, with the exception of low fat or nonfat flavored milk, and limit 100% fruit juice to breakfast in small portions and (5) increase the availability of higher fiber grain-based foods and legumes. Other nutrition intervention component elements were taste tests, cafeteria enhancements, cafeteria line messages and other messages about healthy eating, cafeteria learning laboratory (CLL) activities, twice-yearly training of food service staff, weekly meetings with food service managers, incentives for food service departments, and twice yearly local meetings and three national summits with district food service directors. Strengths of the intervention design were the integration of nutrition with the other HEALTHY intervention components (physical education, behavior change and communications), and the collaboration and rapport between the nutrition intervention study staff members and food service personnel at both school

  18. Structural integrity assessment of a pressure container component. Design and service code implementation. Case studies

    International Nuclear Information System (INIS)

    Sanzi, H.C.

    2006-01-01

    In the present work, the most important results of the local stresses occurred in the cracked pipes with a axial through-wall crack (outer), produced during operation of a Petrochemical Plant, using finite elements method, are presented. As requested, the component has been verified based 3D FE plastic analysis, under the postulated failure loading, assuring with this method a high degree of accuracy in the results. Codes used by Design and Service, as ASME Section VIII Div. 2 and API 579, have been used in the analysis. (author) [es

  19. Circuit arrangement of an electronic component for the design of fail-safe protective circuits

    International Nuclear Information System (INIS)

    Centmaier, W.; Bernhard, U.; Friederich, B.; Heisecke, I.

    1974-01-01

    The critical parameters of reactors are controlled by safety circuits. These circuits are controlled designed as logic modules operating by the 'n-out-of-m' selection principle. In most cases, a combination of a '1-out-of-3' circuit with a '2-out-of-3' circuit and separate indication is sufficient for a dynamic fail-safe circuit. The basic logic elements are AND and OR gate circuits, respectively, which are triggered by pulse trains and in which the failure of a pulse train is indicated as an error at the output. The module allows the design of safety circuits offering various degrees of safety. If the indication of an error is made on the modules, faulty components can be exchanged by the maintenance crew right away. (DG) [de

  20. Relation of fuel rod service parameters and design requirements to produced fuel rod and their components

    International Nuclear Information System (INIS)

    Bibilashvili, Yu.K.

    1999-01-01

    Based on the presented material it is possible to state that there is a very close link between the fuel operational parameters and the requirements for its design and production process. The required performance and life-time of a fuel rod can be only assured by the correctly selected design and process solutions. The economical aspect of this problem is significantly depend on the commercial feasibility of a particular selected solution with the provision of an automated and comparative by inexpensive production of a fuel rod and its components. The operational conditions are also important for the life time of the fuel rods. If there are no special measures for the mitigation of the certain operation conditions the leakage of fuel elements can take place before the planned time. (authors)

  1. Design, manufacture and initial operation of the beryllium components of the JET ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    Riccardo, V., E-mail: valeria.riccardo@ccfe.ac.uk [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Lomas, P.; Matthews, G.F. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Nunes, I. [Associação EURATOM-IST, IPFN – Laboratório Associado, IST, Lisbon (Portugal); JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Thompson, V. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Villedieu, E. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)

    2013-10-15

    Highlights: ► 40 m{sup 2} of plasma facing surface covered with bulk Be re-using existing supports, designed for C-based tiles (hence for much lower disruption loads). ► Optimization of power handling to allow compatibility with higher (×1.5) and longer (×2) neutral beam power. ► Beryllium re-cycling. ► Machining and cleaning to ultra high vacuum standards of <350 μm thin castellations in Be. ► Quality control to minimize installation problems (proto-types, full scale jigs, inspections). -- Abstract: The aim of the JET ITER-like wall project was to provide JET with the plasma facing material combination now selected for the DT phase of ITER (bulk beryllium main chamber limiters and a full tungsten divertor) and, in conjunction with the upgraded neutral beam heating system, to achieve ITER relevant conditions. The design of the bulk Be plasma facing components had to be compatible with increased heating power and pulse length, as well as to reuse the existing tile supports originally designed to cope with disruption loads from carbon based tiles and be installed by remote handling. Risk reduction measures (prototypes, jigs, etc.) were implemented to maximize efficiency during the shutdown. However, a large number of clashes with existing components not fully captured by the configuration model occurred. Restarting the plasma on the ITER-like Wall proved much easier than for the carbon wall and no deconditioning by disruptions was observed. Disruptions have been more threatening than expected due to the reduced radiative losses compared to carbon, leaving most of the plasma magnetic energy to be conducted to the wall and requiring routine disruption mitigation. The main chamber power handling has achieved and possibly exceeded the design targets.

  2. Design, manufacture and initial operation of the beryllium components of the JET ITER-like wall

    International Nuclear Information System (INIS)

    Riccardo, V.; Lomas, P.; Matthews, G.F.; Nunes, I.; Thompson, V.; Villedieu, E.

    2013-01-01

    Highlights: ► 40 m 2 of plasma facing surface covered with bulk Be re-using existing supports, designed for C-based tiles (hence for much lower disruption loads). ► Optimization of power handling to allow compatibility with higher (×1.5) and longer (×2) neutral beam power. ► Beryllium re-cycling. ► Machining and cleaning to ultra high vacuum standards of <350 μm thin castellations in Be. ► Quality control to minimize installation problems (proto-types, full scale jigs, inspections). -- Abstract: The aim of the JET ITER-like wall project was to provide JET with the plasma facing material combination now selected for the DT phase of ITER (bulk beryllium main chamber limiters and a full tungsten divertor) and, in conjunction with the upgraded neutral beam heating system, to achieve ITER relevant conditions. The design of the bulk Be plasma facing components had to be compatible with increased heating power and pulse length, as well as to reuse the existing tile supports originally designed to cope with disruption loads from carbon based tiles and be installed by remote handling. Risk reduction measures (prototypes, jigs, etc.) were implemented to maximize efficiency during the shutdown. However, a large number of clashes with existing components not fully captured by the configuration model occurred. Restarting the plasma on the ITER-like Wall proved much easier than for the carbon wall and no deconditioning by disruptions was observed. Disruptions have been more threatening than expected due to the reduced radiative losses compared to carbon, leaving most of the plasma magnetic energy to be conducted to the wall and requiring routine disruption mitigation. The main chamber power handling has achieved and possibly exceeded the design targets

  3. New design of engineered safety features-component control system to improve performance and reliability

    International Nuclear Information System (INIS)

    Kim, S.T.; Jung, H.W.; Lee, S.J.; Cho, C.H.; Kim, D.H.; Kim, H.

    2006-01-01

    Full text: Full text: The Engineered Safety Features-Component Control System (ESF-CCS) controls the engineered safety features of a Nuclear Power Plant such as Solenoid Operated Valves (SOV), Motor Operated Valves (MOV), pumps, dampers, etc. to mitigate the effects of a Design Basis Accident (DBA) or an abnormal operation. ESF-CCS serves as an interface system between the Plant Protection System (PPS) and remote actuation devices. ESF-CCS is composed of fault tolerant Group Controllers GC, Loop Controllers (LC), ESF-CCS Test and Interface Processor (ETIP) and Cabinet Operator Module (COM) and Control Channel Gateway (CCG) etc. GCs in each division are designed to be fully independent triple configuration, which perform system level NSSS and BOP ESFAS logic (2-out-of-4 logic and l-out-of-2 logic, respectively) making it possible to test each GC individually during normal operation. In the existing configuration, the safety-related plant component control is part of the Plant Control System (PCS) non-safety system. For increased safety and reliability, this design change incorporates this part into the LCs, and is therefore designed according to the safety-critical system procedures. The test and diagnosis capabilities of ETIP and COM are reinforced. By means of an automatic periodic test for all main functions of the system, it is possible to quickly determine an abnormal status of the system, and to decrease the elapsed time for tests, thus effectively increasing availability. ESF-CCS consists of four independent divisions (A, B, C, and D) in the Advanced Power Reactor 1400 (APR1400). One prototype division is being manufactured and will be tested

  4. Design of experiments and springback prediction for AHSS automotive components with complex geometry

    International Nuclear Information System (INIS)

    Asgari, A.; Pereira, M.; Rolfe, B.; Dingle, M.; Hodgson, P.

    2005-01-01

    With the drive towards implementing Advanced High Strength Steels (AHSS) in the automotive industry; stamping engineers need to quickly answer questions about forming these strong materials into elaborate shapes. Commercially available codes have been successfully used to accurately predict formability, thickness and strains in complex parts. However, springback and twisting are still challenging subjects in numerical simulations of AHSS components. Design of Experiments (DOE) has been used in this paper to study the sensitivity of the implicit and explicit numerical results with respect to certain arrays of user input parameters in the forming of an AHSS component. Numerical results were compared to experimental measurements of the parts stamped in an industrial production line. The forming predictions of the implicit and explicit codes were in good agreement with the experimental measurements for the conventional steel grade, while lower accuracies were observed for the springback predictions. The forming predictions of the complex component with an AHSS material were also in good correlation with the respective experimental measurements. However, much lower accuracies were observed in its springback predictions. The number of integration points through the thickness and tool offset were found to be of significant importance, while coefficient of friction and Young's modulus (modeling input parameters) have no significant effect on the accuracy of the predictions for the complex geometry

  5. Improvement of the knee center of rotation during walking after opening wedge high tibial osteotomy.

    Science.gov (United States)

    Kim, Kyungsoo; Feng, Jun; Nha, Kyung Wook; Park, Won Man; Kim, Yoon Hyuk

    2015-06-01

    Accurate measurement of the center of rotation of the knee joint is indispensable for prediction of joint kinematics and kinetics in musculoskeletal models. However, no study has yet identified the knee center of rotations during several daily activities before and after high tibial osteotomy surgery, which is one surgical option for treating knee osteoarthritis. In this study, an estimation method for determining the knee joint center of rotation was developed by applying the optimal common shape technique and symmetrical axis of rotation approach techniques to motion-capture data and validated for typical activities (walking, squatting, climbing up stairs, walking down stairs) of 10 normal subjects. The locations of knee joint center of rotations for injured and contralateral knees of eight subjects with osteoarthritis, both before and after high tibial osteotomy surgery, were then calculated during walking. It was shown that high tibial osteotomy surgery improved the knee joint center of rotation since the center of rotations for the injured knee after high tibial osteotomy surgery were significantly closer to those of the normal healthy population. The difference between the injured and contralateral knees was also generally reduced after surgery, demonstrating increased symmetry. These results indicate that symmetry in both knees can be recovered in many cases after high tibial osteotomy surgery. Moreover, the recovery of center of rotation in the injured knee was prior to that of symmetry. This study has the potential to provide fundamental information that can be applied to understand abnormal kinematics in patients, diagnose knee joint disease, and design a novel implants for knee joint surgeries. © IMechE 2015.

  6. Implication of irradiation effects on materials data for the design of near core components

    International Nuclear Information System (INIS)

    Dietz, W.; Breitling, H.

    1995-01-01

    For LWR's strict regulations exist for the consideration of irradiation in the design and surveillance of the reactor pressure vessel in the various codes (ASME, RCC-M, KTA) but less for near core components. For FBR's no firm rules exist either for the vessel nor the reactor internals. In this paper the German design practices for the loop type SNR-300 will be presented, and also some information from the surveillance programme of the KNK-reactor. Austenitic stainless steels have been mainly selected for the near core components. For some special applications Ni-alloys and a stabilized 2 1/4 Cr 1 Mo-alloy were specified. Considerations of the irradiation effects on material properties will be made for the various temperature and fluence levels around the core. The surveillance programmes will be described. Both, the consideration of irradiation effects in the elastic and inelastic analysis and the surveillance programmes had been a part of the licensing process for SNR-300. (author). 8 figs, 4 tabs

  7. Computational Design of Multi-component Bio-Inspired Bilayer Membranes

    Directory of Open Access Journals (Sweden)

    Evan Koufos

    2014-04-01

    Full Text Available Our investigation is motivated by the need to design bilayer membranes with tunable interfacial and mechanical properties for use in a range of applications, such as targeted drug delivery, sensing and imaging. We draw inspiration from biological cell membranes and focus on their principal constituents. In this paper, we present our results on the role of molecular architecture on the interfacial, structural and dynamical properties of bio-inspired membranes. We focus on four lipid architectures with variations in the head group shape and the hydrocarbon tail length. Each lipid species is composed of a hydrophilic head group and two hydrophobic tails. In addition, we study a model of the Cholesterol molecule to understand the interfacial properties of a bilayer membrane composed of rigid, single-tail molecular species. We demonstrate the properties of the bilayer membranes to be determined by the molecular architecture and rigidity of the constituent species. Finally, we demonstrate the formation of a stable mixed bilayer membrane composed of Cholesterol and one of the phospholipid species. Our approach can be adopted to design multi-component bilayer membranes with tunable interfacial and mechanical properties. We use a Molecular Dynamics-based mesoscopic simulation technique called Dissipative Particle Dynamics that resolves the molecular details of the components through soft-sphere coarse-grained models and reproduces the hydrodynamic behavior of the system over extended time scales.

  8. Design, Analysis and R&D of the EAST In-Vessel Components

    Science.gov (United States)

    Yao, Damao; Bao, Liman; Li, Jiangang; Song, Yuntao; Chen, Wenge; Du, Shijun; Hu, Qingsheng; Wei, Jing; Xie, Han; Liu, Xufeng; Cao, Lei; Zhou, Zibo; Chen, Junling; Mao, Xinqiao; Wang, Shengming; Zhu, Ning; Weng, Peide; Wan, Yuanxi

    2008-06-01

    In-vessel components are important parts of the EAST superconducting tokamak. They include the plasma facing components, passive plates, cryo-pumps, in-vessel coils, etc. The structural design, analysis and related R&D have been completed. The divertor is designed in an up-down symmetric configuration to accommodate both double null and single null plasma operation. Passive plates are used for plasma movement control. In-vessel coils are used for the active control of plasma vertical movements. Each cryo-pump can provide an approximately 45 m3/s pumping rate at a pressure of 10-1 Pa for particle exhaust. Analysis shows that, when a plasma current of 1 MA disrupts in 3 ms, the EM loads caused by the eddy current and the halo current in a vertical displacement event (VDE) will not generate an unacceptable stress on the divertor structure. The bolted divertor thermal structure with an active cooling system can sustain a load of 2 MW/m2 up to a 60 s operation if the plasma facing surface temperature is limited to 1500 °C. Thermal testing and structural optimization testing were conducted to demonstrate the analysis results.

  9. Design/licensing of on-site package for core component

    International Nuclear Information System (INIS)

    Ogasawara, K.; Chohzuka, T.; Shimura, T.; Kikuchi, T.; Fujiwara, R.; Karigome, S.; Takani, M.

    1993-01-01

    For storage of used core components which are produced from reactors, Tohoku EPCO decided to construct a site bunker at Onagawa site. It was also decided to develop and fabricate one packaging to transport core components from the reactor buildings to the site bunker. The packaging will be used within the power station; therefore, it shall comply with 'The Law for the Business of Electric Power' and relevant Notification. The main requirements of the packaging are as follows: 1) The number of contents, such as channel boxes and control rods, shall be as large as possible. 2) The weight and the outer dimensions of the packaging shall be within the limitation of the reactor building and the site bunker. 3) Materials shall be selected from those which have been already applied for existing packagings and utilized without any problems. 4) It shall be considered during design of trunnions that handling equipment, such as lifting beam, can be used for not only this packaging but also for existing spent fuel packagings. The design of the packaging is completed and has been licensed. The packaging is scheduled to be utilized from November, 1993. (J.P.N.)

  10. Design of aseismic class components: measurement of frequency parameters and optimization of analytical models

    International Nuclear Information System (INIS)

    Panet, M.; Delmas, J.; Ballester, J.L.

    1993-04-01

    In each plant unit, there are about 250 earthquake-qualified safety related valves. Justifying their aseismic capacity has proved complex. The structures are so diversified that it is not easy for designers to determine a generic model. Generally speaking, the models tend to overestimate the resonance frequencies. An approach more representative of the actual structure of the component was consequently sought, on which qualification of technological options with respect to the safety authorities would be based, thereby optimizing vibrating table qualification test schedules. The paper describes application of the approximate spectral identification method from the OPTDIM system, which determines basic structure modal data to forecast the approximate eigenfrequencies of a sub-domain, materialized by the component. It is used for a posteriori justification of topworks in operating equipment (900 MWe series), with respect to the 33 Hz ≤ f condition, which guarantees zero amplification of seismic induced internal loads. In the seismic design context and supplementing the preliminary eigenfrequency studies, inverse method solution techniques are used to define the most representative model of the modal behaviour of an electrically controlled motor-operated valve. (authors). 6 figs., 6 tabs., 11 refs

  11. Specification of properties and design allowables for copper alloys used in HHF components of ITER

    DEFF Research Database (Denmark)

    Kalinin, G.M.; Fabritziev, S.A.; Singh, B.N.

    2002-01-01

    CrZr and CuAl25 are not yet fully characterised. The performed R&D gives a basis for the specification of physical and mechanical properties required for the design analysis in accordance with the ITER Structural Design Criteria for In-vessel Components (SDC-IC). For both CuCrZr-IG and CuAl25-IG alloys......Two types of copper alloys, precipitation hardened (PH) Cu (CuCrZr-IG) and dispersion strengthened (DS) Cu (CuAl25-IG), are proposed as heat sink materials for the high heat flux (HHF) components of ITER. However, copper alloys are not included in any national codes, and properties of both Cu......, the statistical evaluation of available experimental data has been used to calculate the temperature dependence of the average value and of the 95% confidence limit of tensile properties. The stress limits, Sm, Se, and Sd, have been estimated on the basis of available data. The procedure used for specification...

  12. Design and Fabrication Technique of the Key Components for Very High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jin; Song, Ki Nam; Kim, Yong Wan

    2006-12-15

    The gas outlet temperature of Very High Temperature Reactor (VHTR) may be beyond the capability of conventional metallic materials. The requirement of the gas outlet temperature of 950 .deg. C will result in operating temperatures for metallic core components that will approach very high temperature on some cases. The materials that are capable of withstanding this temperature should be prepared, or nonmetallic materials will be required for limited components. The Ni-base alloys such as Alloy 617, Hastelloy X, XR, Incoloy 800H, and Haynes 230 are being investigated to apply them on components operated in high temperature. Currently available national and international codes and procedures are needed reviewed to design the components for HTGR/VHTR. Seven codes and procedures, including five ASME Codes and Code cases, one French code (RCC-MR), and on British Procedure (R5) were reviewed. The scope of the code and code cases needs to be expanded to include the materials with allowable temperatures of 950 .deg. C and higher. The selection of compact heat exchangers technology depends on the operating conditions such as pressure, flow rates, temperature, but also on other parameters such as fouling, corrosion, compactness, weight, maintenance and reliability. Welding, brazing, and diffusion bonding are considered proper joining processes for the heat exchanger operating in the high temperature and high pressure conditions without leakage. Because VHTRs require high temperature operations, various controlled materials, thick vessels, dissimilar metal joints, and precise controls of microstructure in weldment, the more advanced joining processes are needed than PWRs. The improved solid joining techniques are considered for the IHX fabrication. The weldability for Alloy 617 and Haynes 230 using GTAW and SMAW processes was investigated by CEA.

  13. Design and Fabrication Technique of the Key Components for Very High Temperature Reactor

    International Nuclear Information System (INIS)

    Lee, Ho Jin; Song, Ki Nam; Kim, Yong Wan

    2006-12-01

    The gas outlet temperature of Very High Temperature Reactor (VHTR) may be beyond the capability of conventional metallic materials. The requirement of the gas outlet temperature of 950 .deg. C will result in operating temperatures for metallic core components that will approach very high temperature on some cases. The materials that are capable of withstanding this temperature should be prepared, or nonmetallic materials will be required for limited components. The Ni-base alloys such as Alloy 617, Hastelloy X, XR, Incoloy 800H, and Haynes 230 are being investigated to apply them on components operated in high temperature. Currently available national and international codes and procedures are needed reviewed to design the components for HTGR/VHTR. Seven codes and procedures, including five ASME Codes and Code cases, one French code (RCC-MR), and on British Procedure (R5) were reviewed. The scope of the code and code cases needs to be expanded to include the materials with allowable temperatures of 950 .deg. C and higher. The selection of compact heat exchangers technology depends on the operating conditions such as pressure, flow rates, temperature, but also on other parameters such as fouling, corrosion, compactness, weight, maintenance and reliability. Welding, brazing, and diffusion bonding are considered proper joining processes for the heat exchanger operating in the high temperature and high pressure conditions without leakage. Because VHTRs require high temperature operations, various controlled materials, thick vessels, dissimilar metal joints, and precise controls of microstructure in weldment, the more advanced joining processes are needed than PWRs. The improved solid joining techniques are considered for the IHX fabrication. The weldability for Alloy 617 and Haynes 230 using GTAW and SMAW processes was investigated by CEA

  14. Neutronics analysis of the conceptual design of a component test facility based on the spherical tokamak

    International Nuclear Information System (INIS)

    Zheng, S.; Voss, G.M.; Pampin, R.

    2010-01-01

    One of the crucial aspects of fusion research is the optimisation and qualification of suitable materials and components. To enable the design and construction of DEMO in the future, ITER is taken to demonstrate the scientific and technological feasibility and IFMIF will provide rigorous testing of small material samples. Meanwhile, a dedicated, small-scale components testing facility (CTF) is proposed to complement and extend the functions of ITER and IFMIF and operate in association with DEMO so as to reduce the risk of delays during this phase of fusion power development. The design of a spherical tokamak (ST)-based CTF is being developed which offers many advantages over conventional machines, including lower tritium consumption, easier maintenance, and a compact assembly. The neutronics analysis of this system is presented here. Based on a three-dimensional neutronics model generated by the interface programme MCAM from CAD models, a series of nuclear and radiation protection analyses were carried out using the MCNP code and FENDL2.1 nuclear data library to assess the current design and guide its development if needed. The nuclear analyses addresses key neutronics issues such as the neutron wall loading (NWL) profile, nuclear heat loads, and radiation damage to the coil insulation and to structural components, particularly the stainless steel vessel wall close to the NBI ports where shielding is limited. The shielding of the divertor coil and the internal Poloidal Field (PF) coil, which is introduced in the expanded divertor design, are optimised to reduce their radiation damage. The preliminary results show that the peak radiation damage to the structure of martensitic/ferritic steel is about 29 dpa at the mid-plane assuming a life of 12 years at a duty factor 33%, which is much lower than its ∼150 dpa limit. In addition, TBMs installed in 8 mid-plane ports and 6 lower ports, and 60% 6 Li enrichment in the Li 4 SiO 4 breeder, the total tritium generation is

  15. Frequency and topography of lesions of the femoro-tibial cartilage at spiral CT arthrography of the knee: a study in patients with normal knee radiographs and without history of trauma

    International Nuclear Information System (INIS)

    Vande Berg, B.C.; Lecouvet, F.E.; Malghem, J.

    2002-01-01

    To determine the frequency and topography of cartilage lesions involving the femoro-tibial joints in patients with normal knee radiographs and without a remembered history of trauma.Design and patients. A radiologist retrospectively reviewed the dual-detector spiral CT knee arthrograms performed in 209 consecutive patients (mean age 37.6 years) with normal knee radiographs. Images were analyzed for the presence, grade (Noyes classification system) and location of cartilage lesions, the location being designated by dividing each articular surface into a grid of 16 parts.Results. Fifty-three percent of knees had cartilage lesions of grade 2A or higher that involved articular surfaces to a variable extent: lateral tibial plateau (31%), medial femoral condyle (27%), medial tibial plateau (14%) and lateral femoral condyle (5%). Areas of the posterior half of the lateral tibial plateau and of the inner half of the medial femoral condyle were statistically more frequently involved than their counterparts (P<0.0001). The bare area of the medial tibial plateau, but not that of the lateral tibial plateau, was more frequently involved than the corresponding meniscus-covered area (P<0.0001).Conclusion. Cartilage lesions of grade 2A or higher, detected at spiral CT arthrography in 53% of the knees, predominantly involved the posterior half of the lateral tibial plateau, the inner half of the medial femoral condyle and the bare area of the medial tibial plateau. (orig.)

  16. Anterior cruciate ligament reconstruction with tibial attachment preserving hamstring graft without implant on tibial side

    Directory of Open Access Journals (Sweden)

    Skand Sinha

    2018-01-01

    Full Text Available Background: Tibial attachment preserving hamstring graft could prevent potential problems of free graft in anterior cruciate ligament (ACL reconstruction such as pull out before graft-tunnel healing or rupture before ligamentization. Different implants have been reportedly used for tibial side fixation with this technique. We investigated short-term outcome of ACL reconstruction (ACLR with tibial attachment sparing hamstring graft without implant on the tibial side by outside in technique. Materials and Methods: Seventy nine consecutive cases of ACL tear having age of 25.7 ± 6.8 years were included after Institutional Board Approval. All subjects were male. The mean time interval from injury to surgery was of 7.5 ± 6.4 months. Hamstring tendons were harvested with open tendon stripper leaving the tibial insertion intact. The free ends of the tendons were whip stitched, quadrupled, and whip stitched again over the insertion site of hamstring with fiber wire (Arthrex. Single bundle ACLR was done by outside in technique and the femoral tunnel was created with cannulated reamer. The graft was pulled up to the external aperture of femoral tunnel and fixed with interference screw (Arthrex. The scoring was done by Lysholm, Tegner, and KT 1000 by independent observers. All cases were followed up for 2 years. Results: The mean length of quadrupled graft attached to tibia was 127.65 ± 7.5 mm, and the mean width was 7.52 ± 0.78 mm. The mean preoperative Lysholm score of 47.15 ± 9.6, improved to 96.8 ± 2.4 at 1 year. All cases except two returned to the previous level of activity after ACLR. There was no significant difference statistically between preinjury (5.89 ± 0.68 and postoperative (5.87 ± 0.67 Tegner score. The anterior tibial translation (ATT (KT 1000 improved from 11.44 ± 1.93 mm to 3.59 ± 0.89 mm. The ATT of operated knee returned to nearly the similar value as of the opposite knee (3.47 ± 1.16 mm. The Pivot shift test was negative in

  17. Intercalary bone segment transport in treatment of segmental tibial defects

    International Nuclear Information System (INIS)

    Iqbal, A.; Amin, M.S.

    2002-01-01

    Objective: To evaluate the results and complications of intercalary bone segment transport in the treatment of segmental tibial defects. Design: This is a retrospective analysis of patients with segmental tibial defects who were treated with intercalary bone segment transport method. Place and Duration of Study: The study was carried out at Combined Military Hospital, Rawalpindi from September 1997 to April 2001. Subjects and methods: Thirteen patients were included in the study who had developed tibial defects either due to open fractures with bone loss or subsequent to bone debridement of infected non unions. The mean bone defect was 6.4 cms and there were eight associated soft tissue defects. Locally made unilateral 'Naseer-Awais' (NA) fixator was used for bone segment transport. The distraction was done at the rate of 1mm/day after 7-10 days of osteotomy. The patients were followed-up fortnightly during distraction and monthly thereafter. The mean follow-up duration was 18 months. Results: The mean time in external fixation was 9.4 months. The m ean healing index' was 1.47 months/cm. Satisfactory union was achieved in all cases. Six cases (46.2%) required bone grafting at target site and in one of them grafting was required at the level of regeneration as well. All the wounds healed well with no residual infection. There was no residual leg length discrepancy of more than 20 mm nd one angular deformity of more than 5 degrees. The commonest complication encountered was pin track infection seen in 38% of Shanz Screws applied. Loosening occurred in 6.8% of Shanz screws, requiring re-adjustment. Ankle joint contracture with equinus deformity and peroneal nerve paresis occurred in one case each. The functional results were graded as 'good' in seven, 'fair' in four, and 'poor' in two patients. Overall, thirteen patients had 31 (minor/major) complications with a ratio of 2.38 complications per patient. To treat the bone defects and associated complications, a mean of

  18. Intrinsic factors associated with medial tibial stress syndrome in ...

    African Journals Online (AJOL)

    Intrinsic factors associated with medial tibial stress syndrome in athletes: A large case-control study. ... Medial tibial stress syndrome (MTSS) is the most common lower-leg injury in athletes, and is thought to be caused by ... from 32 Countries:.

  19. The soleal line: a cause of tibial pseudoperiostitis.

    Science.gov (United States)

    Levine, A H; Pais, M J; Berinson, H; Amenta, P S

    1976-04-01

    An unusually prominent soleal line (a normal anatomic variant) may mimic periosteal reaction along the posterior margin of the proximal tibial shaft. This area of pseudoperiostitis is differentiated from hyperostoses arising from the anterior tibial tubercle and the interosseous membrane. It is always associated with normal, undisturbed architecture of the underlying bone.

  20. Coverage of extensive tibial bone exposure in burn patients with ...

    African Journals Online (AJOL)

    Covering tibial bone exposure from third degree burns to the lower limbs is a challenging task for the plastic surgeon. We present our experience of covering tibial exposure from burns in three different patients, where four limbs were involved and three muscular flaps were used in conjunction with one another; i.e. the ...

  1. Therapeutical Management of the Tibial Plateau Fractures

    Directory of Open Access Journals (Sweden)

    Obada B.

    2016-11-01

    Full Text Available The study was aimed to identify the role of surgical treatment of tibial plateau fractures, its functional outcome and complications. Demographic data for the patients and details of current clinical and radiological follow-up findings were obtained to assess range of motion, clinical stability, alignment of the knee, and posttraumatic arthrosis (Kellgren/Lawrence score. 64 cases of tibial plateau fractures treated by different surgical methods and variuos implants type were studied from 2013 to 2015 and followed-up for minimum period of 6 months. The systematisation of the casuitry was made using Schatzker and AO classifications. The treatment methods consist of: percutaneous cannulated cancellous screws, ORIF with buttress plate with or without bone grafting, locking or nonlocking plates, external fixator. As complications we found: redepression 4 case, malunion 2 cases, knee stiffness 9, wound dehiscence in 1 cases and non-union or infection in none of our cases. The average flexion of the injured knee was significantly lower in comparison with the contralateral side (124.9°/135.2°. Knee stability did not differ statistically significantly. There were no signs of posttraumatic arthrosis in 45% of cases, mild signs in 30%, clear signs in 18%, and severe signs in 7%. As conclusion we found that surgical management of tibial plateau fractures will give excellent anatomical reduction and rigid fixation to restore articular congruity, facilitate early motion and reduce arthrosis risk and hence to achieve optimal knee function. The choice of optimal surgical methods, proper approach and implant is made in relation to fracture type according Schatzker and AO classification.

  2. Medial tibial stress syndrome: a critical review.

    Science.gov (United States)

    Moen, Maarten H; Tol, Johannes L; Weir, Adam; Steunebrink, Miriam; De Winter, Theodorus C

    2009-01-01

    Medial tibial stress syndrome (MTSS) is one of the most common leg injuries in athletes and soldiers. The incidence of MTSS is reported as being between 4% and 35% in military personnel and athletes. The name given to this condition refers to pain on the posteromedial tibial border during exercise, with pain on palpation of the tibia over a length of at least 5 cm. Histological studies fail to provide evidence that MTSS is caused by periostitis as a result of traction. It is caused by bony resorption that outpaces bone formation of the tibial cortex. Evidence for this overloaded adaptation of the cortex is found in several studies describing MTSS findings on bone scan, magnetic resonance imaging (MRI), high-resolution computed tomography (CT) scan and dual energy x-ray absorptiometry. The diagnosis is made based on physical examination, although only one study has been conducted on this subject. Additional imaging such as bone, CT and MRI scans has been well studied but is of limited value. The prevalence of abnormal findings in asymptomatic subjects means that results should be interpreted with caution. Excessive pronation of the foot while standing and female sex were found to be intrinsic risk factors in multiple prospective studies. Other intrinsic risk factors found in single prospective studies are higher body mass index, greater internal and external ranges of hip motion, and calf girth. Previous history of MTSS was shown to be an extrinsic risk factor. The treatment of MTSS has been examined in three randomized controlled studies. In these studies rest is equal to any intervention. The use of neoprene or semi-rigid orthotics may help prevent MTSS, as evidenced by two large prospective studies.

  3. Effects of counteracting external valgus moment on lateral tibial cartilage contact conditions and tibial rotation.

    Science.gov (United States)

    Shriram, Duraisamy; Parween, Rizuwana; Lee, Yee Han Dave; Subburaj, Karupppasamy

    2017-07-01

    Knee osteoarthritis that prevalently occurs at the medial compartment is a progressive chronic disorder affecting the articular cartilage of the knee joint, and lead to loss of joint functionality. Valgus braces have been used as a treatment procedure to unload the medial compartment for patients with medial osteoarthritis. Valgus braces through the application of counteracting external valgus moment shift the load from medial compartment towards the lateral compartment. Previous biomechanical studies focused only on the changes in varus moments before and after wearing the brace. The objective of this study was to investigate the influence of opposing external valgus moment applied by knee braces on the lateral tibial cartilage contact conditions using a 3D finite element model of the knee joint. Finite element simulations were performed on the knee joint model without and with the application of opposing valgus moment to mimic the unbraced and braced conditions. Lateral tibial cartilage contact pressures and contact area, and tibial rotation (varus-valgus and internal-external) were estimated for the complete walking gait cycle. The opposing valgus moment increased the maximum contact pressure and contact area on the lateral tibial cartilage compared to the normal gait moment. A peak contact pressure of 8.2 MPa and maximum cartilage loaded area of 28% (loaded cartilage nodes) on the lateral cartilage with the application of external valgus moment were induced at 50% of the gait cycle. The results show that the use of opposing valgus moment may significantly increase the maximum contact pressures and contact area on the lateral tibial cartilage and increases the risk of articular cartilage damage on the lateral compartment.

  4. Use of ROOM in the design of data-acquisition software components

    CERN Document Server

    Carena, W; Van de Vyvre, P; Vascotto, Alessandro

    1999-01-01

    Presentation made at the Real Time Conference, Santa Fe, New Mexico 14-18 June 1999The Event Builder and Distribution System (EBDS) is a component of the data-acquisition architecture of the ALICE experiment at CERN. The purpose of the EBDS is to dispatch the sub-events originated in the detector front-end electronics to the processors of the Event Filter Farm, where the full events are assembled.For the design of the EBDS, we use the Real-time Object-Oriented Modelling method (ROOM), which was chosen because of its powerful modelling paradigm, well suited to this type of application. The use of ROOM is aided by the ObecTime Developer tool set, which fully supports the method and covers all the aspects of the development cycle, from analysis to code generation. Fast prototyping and simulation bring a new perspective to the designer, who can advance by gradual refinements.We describe how ROOM has been used to design a model of both the EBDS and its environment, and the results obtained from the simulation. We ...

  5. STRUCTURAL DESIGN CRITERIA FOR TARGET/BLANKET SYSTEM COMPONENT MATERIALS FOR THE ACCELERATOR PRODUCTION OF TRITIUM PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    W. JOHNSON; R. RYDER; P. RITTENHOUSE

    2001-01-01

    The design of target/blanket system components for the Accelerator Production of Tritium (APT) plant is dependent on the development of materials properties data specified by the designer. These data are needed to verify that component designs are adequate. The adequacy of the data will be related to safety, performance, and economic considerations, and to other requirements that may be deemed necessary by customers and regulatory bodies. The data required may already be in existence, as in the open technical literature, or may need to be generated, as is often the case for the design of new systems operating under relatively unique conditions. The designers' starting point for design data needs is generally some form of design criteria used in conjunction with a specified set of loading conditions and associated performance requirements. Most criteria are aimed at verifying the structural adequacy of the component, and often take the form of national or international standards such as the ASME Boiler and Pressure Vessel Code (ASME B and PV Code) or the French Nuclear Structural Requirements (RCC-MR). Whether or not there are specific design data needs associated with the use of these design criteria will largely depend on the uniqueness of the conditions of operation of the component. A component designed in accordance with the ASME B and PV Code, where no unusual environmental conditions exist, will utilize well-documented, statistically-evaluated developed in conjunction with the Code, and will not be likely to have any design data needs. On the other hand, a component to be designed to operate under unique APT conditions, is likely to have significant design data needs. Such a component is also likely to require special design criteria for verification of its structural adequacy, specifically accounting for changes in materials properties which may occur during exposure in the service environment. In such a situation it is common for the design criteria

  6. Structural mechanics research and development for main components of chinese 300 MWe PWR NPPs: from design to life management

    International Nuclear Information System (INIS)

    Yao Weida; Dou Yikang; Xie Yongcheng; He Yinbiao; Zhang Ming; Liang Xingyun

    2005-01-01

    Qinshan Nuclear Power Plant (Unit I), is a 300 MWe prototype PWR independently developed by Chinese own efforts, from design, manufacture, construction, installation, commissioning, to operation, inspection, maintenance, ageing management and lifetime assessment. Shanghai Nuclear Engineering Research and Design Institute (SNERDI) has taken up with and involved in deeply the R and D to tackle problems of this type of reactor since very beginning in early 1970s. Structural mechanics is one of the important aspects to ensure the safety and reliability for NPP components. This paper makes a summary on role of structural mechanics for component safety and reliability assessment in different stages of design, commissioning, operation, as well as lifetime assessment on this type PWR NPPs, including Qinshan-I and Chashma-I, a sister plant in Pakistan designed by SNERDI. The main contents of the paper cover design by analysis for key components of NSSS; mechanical problems relating to safety analysis; special problems relating to pressure retaining components, such as fracture mechanics, sealing analysis and its test verifications, etc.; experimental research on flow-induced vibration; seismic qualification for components; component failure diagnosis and root cause analysis; vibration qualification and diagnosis technique; component online monitoring technique; development of defect assessment; methodology of aging management and lifetime assessment for key components of NPPs, etc. (authors)

  7. Consequences for designer and manufacturer of mechanical components due to future requirements in Europe

    International Nuclear Information System (INIS)

    Hans-Joachim, Frank

    2001-01-01

    In the frame of European harmonization, a lot of changes on requirements for designer and manufacturer of mechanical components have been performed. Differed organizations are involved in preparing future requirements for nuclear application. On one side the French German cooperation on the development of EPR. At the origin of this project was the common decision in 1989 of Framatome and Siemens to cooperate through NPI, to design the Nuclear Island, which meets the future needs of utilities. EDF and a group of the main German Utilities joined this cooperation in 1991 and since then they have been totally involved to the progress of the work. In addition, all the process was backed up to the end by the strong cooperation between the French and the German. Safety Authorities, which have a long lasting cooperation to define common requirements, which have to be applied to future Nuclear Power Plants. Furthermore an organization has been set up to elaborate common codes related to the EPR design, at the level of the French design and construction rules (RCC) or the German KTA safety standards, the so-called EPR technical codes (ETC). On the other side, the European utilities co-operate on a much broader basis for the establishment of European Utilities Requirements (EUR). These requirements are prepared by a group of European utilities that represent the major European electricity generating companies that are determined to keep the nuclear option open. The technical requirements specified in the EUR document define the boundaries in which future plants need to be designed in order to be acceptable for the needs of the utilities and in order to fulfill the basic requirements of competitive power generation costs and licensability in all countries represented in the EUR group. All the new requirements have to be applied by designer and manufacturer. Siemens /SNP act as a designer of a lot of various vessels and tanks, heat exchangers and other items of process

  8. Structural Design of Glass and Ceramic Components for Space System Safety

    Science.gov (United States)

    Bernstein, Karen S.

    2007-01-01

    Manned space flight programs will always have windows as part of the structural shell of the crew compartment. Astronauts and cosmonauts need to and enjoy looking out of the spacecraft windows at Earth, at approaching vehicles, at scientific objectives and at the stars. With few exceptions spacecraft windows have been made of glass, and the lessons learned over forty years of manned space flight have resulted in a well-defined approach for using this brittle, unforgiving material in NASA's vehicles, in windows and other structural applications. This chapter will outline the best practices that have developed at NASA for designing, verifying and accepting glass (and ceramic) windows and other components for safe and reliable use in any space system.

  9. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-05-01

    The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported [via an intermediate heat exchanger (IHX)] to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  10. Standardization Efforts for Mechanical Testing and Design of Advanced Ceramic Materials and Components

    Science.gov (United States)

    Salem, Jonathan A.; Jenkins, Michael G.

    2003-01-01

    Advanced aerospace systems occasionally require the use of very brittle materials such as sapphire and ultra-high temperature ceramics. Although great progress has been made in the development of methods and standards for machining, testing and design of component from these materials, additional development and dissemination of standard practices is needed. ASTM Committee C28 on Advanced Ceramics and ISO TC 206 have taken a lead role in the standardization of testing for ceramics, and recent efforts and needs in standards development by Committee C28 on Advanced Ceramics will be summarized. In some cases, the engineers, etc. involved are unaware of the latest developments, and traditional approaches applicable to other material systems are applied. Two examples of flight hardware failures that might have been prevented via education and standardization will be presented.

  11. General purpose nonlinear analysis program FINAS for elevated temperature design of FBR components

    International Nuclear Information System (INIS)

    Iwata, K.; Atsumo, H.; Kano, T.; Takeda, H.

    1982-01-01

    This paper presents currently available capabilities of a general purpose finite element nonlinear analysis program FINAS (FBR Inelastic Structural Analysis System) which has been developed at Power Reactor and Nuclear Fuel Development Corporation (PNC) since 1976 to support structural design of fast breeder reactor (FBR) components in Japan. This program is capable of treating inelastic responses of arbitrary complex structures subjected to static and dynamic load histories. Various types of finite element covering rods, beams, pipes, axisymmetric, two and three dimensional solids, plates and shells, are implemented in the program. The thermal elastic-plastic creep analysis is possible for each element type, with primary emphasis on the application to FBR components subjected to sustained or cyclic loads at elevated temperature. The program permits large deformation, buckling, fracture mechanics, and dynamic analyses for some of the element types and provides a number of options for automatic mesh generation and computer graphics. Some examples including elevated temperature effects are shown to demonstrate the accuracy and the efficiency of the program

  12. Design of piezoelectric probe for measurement of longitudinal and shear components of elastic wave

    Science.gov (United States)

    Aoyanagi, Masafumi; Wakatsuki, Naoto; Mizutani, Koichi; Ebihara, Tadashi

    2017-07-01

    We focus on ultrasonic probes for nondestructive tests and evaluation. Transient characteristics of probes are important for nondestructive tests such as the pulse echo method. We previously reported the principle of measurement using a piezoelectric probe with triaxial sensitivities. In the results, it was calculated that the probe could transmit and receive particle displacement which contains normal and tangential components. It was confirmed that the probe had sensitivities in triaxial directions. However, its performance in terms of frequency and transient characteristics has not been evaluated. The purpose of this study is to design a probe by changing its shape to obtain better performance. The transient characteristics of probes in longitudinal and shear driving were evaluated by the inverse Fourier transformation of frequency responses of longitudinal and shear components, using the two-dimensional finite element method. As a result, the sensitivities at the dips of frequency characteristics increased when using our probe compared with those measured using conventional probes in longitudinal and shear driving. Hence, the performance in terms of the frequency response was improved by more than 3 dB under the conditions in this simulation. Also, the pulse width of impulse response was decreased by half compared with that of probes with conventional shapes.

  13. Mechanical component design for upgrading of whole body counter ND7500

    International Nuclear Information System (INIS)

    Norizam Saad; Mohamad Annuar Assadat Husain; Ishak Mansor

    2007-01-01

    The Whole Body Counter (WBC) ND7500 is a bed type counting system that used for measuring radionuclide in the entire human body. Malaysian Nuclear Agency has this system, which savaged from Institute of Medical Research (IMR) in 1987. This system consists of a nuclear counting system and mechanical system that totally inoperable due to its counting system failures. In April 2003, both counting system and the mechanical system were tested. The mechanical component is working properly but needs some readjustment for the bed movement while for the counting system, only detectors can work but with a poor detecting capability. During IAEA expert visits on July 2003, both detectors were verified cannot be use any longer due to poor resolution and aging factor and a single (3 x 5 x 16) inches rectangular NaI(Tl) detector was then purchased in the end of 2004 to replace (3 x 5) inches cylindrical Na(Tl) detectors. The existing shielding cannot accommodate this new (3 x 5 x 16) inches dimension and the (5 x 16) inches detecting area. Therefore, shielding modification has been done based on effective detecting area and positioning test results. A new detector's entrance and detector stage were built at the bottom shielding. A new features, which is a detectors protection also been developed for detector safety. This upgrading task successfully accomplished as from experimental the design of positioning component can make system operated easily and also can give a good results to meets user's requirements. (Author)

  14. Modelling and design of undercarriage components of large-scale earthmoving equipment in tar sand operations

    Energy Technology Data Exchange (ETDEWEB)

    Szymanski, J.; Frimpong, S.; Sobieski, R. [Alberta Univ., Edmonton, AB (Canada). Centre for Advanced Energy and Minerals Research

    2004-07-01

    This presentation described the fundamental and applied research work which has been carried out at the University of Alberta's Centre for Advanced Energy and Minerals Research to improve the undercarriage elements of large scale earthmoving equipment used in oil sands mining operations. A new method has been developed to predict the optimum curvature and blade geometry of earth moving equipment such as bulldozers and motor graders. A mathematical relationship has been found to approximate the optimum blade shape for reducing cutting resistance and fill resistance. The equation is a function of blade geometry and soil properties. It is the first model that can mathematically optimize the shape of a blade on earth moving equipment. A significant saving in undercarriage components can be achieved from reducing the amount of cutting and filling resistance for this type of equipment working on different soils. A Sprocket Carrier Roller for a Tracked Vehicle was also invented to replace the conventional cylindrical carrier roller. The new sprocket type carrier roller offers greater support for the drive track and other components of the undercarriage assembly. A unique retaining pin assembly has also been designed to detach connecting disposable wear parts from earthmoving equipment. The retaining pin assembly is easy to assemble and disassemble and includes reusable parts. 13 figs.

  15. Management of Gustilo Anderson III B open tibial fractures by primary fascio-septo-cutaneous local flap and primary fixation: The ′fix and shift′ technique

    Directory of Open Access Journals (Sweden)

    P R Ramasamy

    2017-01-01

    Full Text Available Background: Open fractures of tibia have posed great difficulty in managing both the soft tissue and the skeletal components of the injured limb. Gustilo Anderson III B open tibial fractures are more difficult to manage than I, II, and III A fractures. Stable skeletal fixation with immediate soft tissue cover has been the key to the successful outcome in treating open tibial fractures, in particular, Gustilo Anderson III B types. If the length of the open wound is larger and if the exposed surface of tibial fracture and tibial shaft is greater, then the management becomes still more difficult. Materials and Methods: Thirty six Gustilo Anderson III B open tibial fractures managed between June 2002 and December 2013 with "fix and shift" technique were retrospectively reviewed. All the 36 patients managed by this technique had open wounds measuring >5 cm (post debridement. Under fix and shift technique, stable fixation involved primary external fixator application or primary intramedullary nailing of the tibial fracture and immediate soft tissue cover involved septocutaneous shift, i.e., shifting of fasciocutaneous segments based on septocutaneous perforators. Results: Primary fracture union rate was 50% and reoperation rate (bone stimulating procedures was 50%. Overall fracture union rate was 100%. The rate of malunion was 14% and deep infection was 16%. Failure of septocutaneous shift was 2.7%. There was no incidence of amputation. Conclusion: Management of Gustilo Anderson III B open tibial fractures with "fix and shift" technique has resulted in better outcome in terms of skeletal factors (primary fracture union, overall union, and time for union and malunion and soft tissue factors (wound healing, flap failure, access to secondary procedures, and esthetic appearance when compared to standard methods adopted earlier. Hence, "fix and shift" could be recommended as one of the treatment modalities for open III B tibial fractures.

  16. Management of Gustilo Anderson III B open tibial fractures by primary fascio-septo-cutaneous local flap and primary fixation: The 'fix and shift' technique.

    Science.gov (United States)

    Ramasamy, P R

    2017-01-01

    Open fractures of tibia have posed great difficulty in managing both the soft tissue and the skeletal components of the injured limb. Gustilo Anderson III B open tibial fractures are more difficult to manage than I, II, and III A fractures. Stable skeletal fixation with immediate soft tissue cover has been the key to the successful outcome in treating open tibial fractures, in particular, Gustilo Anderson III B types. If the length of the open wound is larger and if the exposed surface of tibial fracture and tibial shaft is greater, then the management becomes still more difficult. Thirty six Gustilo Anderson III B open tibial fractures managed between June 2002 and December 2013 with "fix and shift" technique were retrospectively reviewed. All the 36 patients managed by this technique had open wounds measuring >5 cm (post debridement). Under fix and shift technique, stable fixation involved primary external fixator application or primary intramedullary nailing of the tibial fracture and immediate soft tissue cover involved septocutaneous shift, i.e., shifting of fasciocutaneous segments based on septocutaneous perforators. Primary fracture union rate was 50% and reoperation rate (bone stimulating procedures) was 50%. Overall fracture union rate was 100%. The rate of malunion was 14% and deep infection was 16%. Failure of septocutaneous shift was 2.7%. There was no incidence of amputation. Management of Gustilo Anderson III B open tibial fractures with "fix and shift" technique has resulted in better outcome in terms of skeletal factors (primary fracture union, overall union, and time for union and malunion) and soft tissue factors (wound healing, flap failure, access to secondary procedures, and esthetic appearance) when compared to standard methods adopted earlier. Hence, "fix and shift" could be recommended as one of the treatment modalities for open III B tibial fractures.

  17. Comparison of Clinical Results and Injury Risk of Posterior Tibial Cortex Between Attune and Press Fit Condylar Sigma Knee Systems.

    Science.gov (United States)

    Song, Sang Jun; Park, Cheol Hee; Liang, Hu; Kang, Se Gu; Park, Jong Jun; Bae, Dae Kyung

    2018-02-01

    We compared clinical and radiographic results after total knee arthroplasty (TKA) using Attune and Press Fit Condylar Sigma, and investigated whether use of the current prosthesis increased injury risk to the tibial cortex in Asian patients. We also assessed whether a preoperative posterior tibial slope angle (PSA) is associated with the injury when using the current prosthesis. The 300 TKAs with Attune (group A) were compared to the 300 TKAs with Press Fit Condylar Sigma (group B). Demographics were not different, except follow-up periods (24.8 vs 33.3 months, P Universities Index and range of motion were compared. A minimum distance between tibial component stem and posterior tibial cortex (mDSC) was compared. The correlation between preoperative PSA and mDSC was analyzed in group A. The postoperative Western Ontario and McMaster Universities Index and range of motion of group A were better than those of group B (17.7 vs 18.8, P = .004; 131.4° vs 129.0°, P = .008). The mDSC was shorter in group A (6.3 vs 7.0 mm, P < .001), which made up a higher proportion of the high-risk group for posterior tibial cortical injury with an mDSC of <4 mm (20.0% vs 10.7%, P = .002). A negative correlation was found between the preoperative PSA and mDSC in group A (r = -0.205, P < .001). The TKA using the current prosthesis provided more satisfactory results than the TKA using the previous prosthesis. However, the injury risk to the posterior tibial cortex increased in the knees with a large PSA when using the current prosthesis for Asian patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Large airplane crash on a nuclear plant: Design study against excessive shaking of components

    International Nuclear Information System (INIS)

    Petrangeli, Gianni

    2010-01-01

    The problem of the strong shaking of structures and of components in case of an aircraft impact is the subject of this study. This problem is solved in some designs by protecting the external Nuclear Island block (N.I.) by an external thick wall, capable to withstand the aircraft impact. This wall is connected to the rest of the N.I. by the common foundation slab only. The first part of this study consists of the evaluation of the order of magnitude of the vibration attenuation which can be obtained by this design scheme. Should the attenuation obtained be not sufficient for some parts of the internal structures, some additional design provision could be adopted. In order to solve this problem, a specific design solution is here suggested. It essentially consists in connecting critical parts of structures to the common foundation slab with restraints having an adequate degree of deformability, so that the transmission of high frequency impact forces from other parts of the whole structure is minimized. In a previous paper, the structural protection of the reactor dome and of connected structures of a modern nuclear plant is dealt with. In the present paper, the protection of internal parts of the plant (the internal containment is chosen) in case of strong impact on lateral walls is studied. The indicative result of this study is that the enhancement of attenuation in the transmission of acceleration from the impact point to some representative point in the inner structure is of the order of 75. This result cannot be generalized, as it depends on many parameters of the structure and of the soil.

  19. Large airplane crash on a nuclear plant: Design study against excessive shaking of components

    Energy Technology Data Exchange (ETDEWEB)

    Petrangeli, Gianni, E-mail: g.petrangeli@gmail.i [University of Pisa, Via C. Maes 53, 00162 Roma (Italy)

    2010-12-15

    The problem of the strong shaking of structures and of components in case of an aircraft impact is the subject of this study. This problem is solved in some designs by protecting the external Nuclear Island block (N.I.) by an external thick wall, capable to withstand the aircraft impact. This wall is connected to the rest of the N.I. by the common foundation slab only. The first part of this study consists of the evaluation of the order of magnitude of the vibration attenuation which can be obtained by this design scheme. Should the attenuation obtained be not sufficient for some parts of the internal structures, some additional design provision could be adopted. In order to solve this problem, a specific design solution is here suggested. It essentially consists in connecting critical parts of structures to the common foundation slab with restraints having an adequate degree of deformability, so that the transmission of high frequency impact forces from other parts of the whole structure is minimized. In a previous paper, the structural protection of the reactor dome and of connected structures of a modern nuclear plant is dealt with. In the present paper, the protection of internal parts of the plant (the internal containment is chosen) in case of strong impact on lateral walls is studied. The indicative result of this study is that the enhancement of attenuation in the transmission of acceleration from the impact point to some representative point in the inner structure is of the order of 75. This result cannot be generalized, as it depends on many parameters of the structure and of the soil.

  20. Component Functional Allocations of the ESF Multi-loop Controller for the KNICS ESF-CCS Design

    International Nuclear Information System (INIS)

    Hur, Seop; Choi, Jong Kyun; Kim, Dong Hoon; Kim, Ho; Kim, Seong Tae

    2006-01-01

    The safety related components in nuclear power plants are traditionally controlled by single-loop controllers. Traditional single-loop controller systems utilize dedicated processors for each component but that components independence is compromised through a sharing of power supplies, auxiliary logic modules and auxiliary I/O cards. In the new design of the ESF-CCS, the multi-loop controllers with data networks are widely used. Since components are assigned to ESF-CCS functional groups in a manner consistent with their process relationship, the effects of the failures are predictable and manageable. Therefore, the key issues for the design of multi-loop controller is to allocate the components to the each multi-loop controller through plant and function analysis and grouping. This paper deals with an ESF component functional allocation which is performed through allocation criteria and a fault analysis

  1. [Operative treatment for complex tibial plateau fractures].

    Science.gov (United States)

    Song, Qi-Zhi; Li, Tao

    2012-03-01

    To explore the surgical methods and clinical evaluation of complex tibial plateau fractures resulted from high-energy injuries. From March 2006 to May 2009,48 cases with complex tibial plateau fractures were treated with open reduction and plate fixation, including 37 males and 11 females, with an average age of 37 years (ranged from 18 to 63 years). According to Schatzker classification, 16 cases were type IV, 20 cases type V and 12 cases type VI. All patients were examined by X-ray flim and CT scan. The function of knee joint were evaluated according to postoperative follow-up X-ray and Knee Merchant Rating. Forty-eight patients were followed up with a mean time of 14 months. According to Knee Merchant Rating, 24 cases got excellent results, 16 cases good, 6 cases fair and 2 cases poor. Appropriate operation time, anatomical reduction, suitable bone graft and reasonable rehabilitation exercises can maximally recovery the function of knee joint.

  2. Comparison of fixed-bearing and mobile-bearing total knee arthroplasty after high tibial osteotomy.

    Science.gov (United States)

    Hernigou, Philippe; Huys, Maxime; Pariat, Jacques; Roubineau, François; Flouzat Lachaniette, Charles Henri; Dubory, Arnaud

    2018-02-01

    There is no information comparing the results of fixed-bearing total knee replacement and mobile-bearing total knee replacement in the same patients previously treated by high tibial osteotomy. The purpose was therefore to compare fixed-bearing and mobile-bearing total knee replacements in patients treated with previous high tibial osteotomy. We compared the results of 57 patients with osteoarthritis who had received a fixed-bearing prosthesis after high tibial osteotomy with the results of 41 matched patients who had received a rotating platform after high tibial osteotomy. The match was made for length of follow-up period. The mean follow-up was 17 years (range, 15-20 years). The patients were assessed clinically and radiographically. The pre-operative knee scores had no statistically significant differences between the two groups. So was the case with the intra-operative releases, blood loss, thromboembolic complications and infection rates in either group. There was significant improvement in both groups of knees, and no significant difference was observed between the groups (i.e., fixed-bearing and mobile-bearing knees) for the mean Knee Society knee clinical score (95 and 92 points, respectively), or the Knee Society knee functional score (82 and 83 points, respectively) at the latest follow-up. However, the mean post-operative knee motion was higher for the fixed-bearing group (117° versus 110°). In the fixed-bearing group, one knee was revised because of periprosthetic fracture. In the rotating platform mobile-bearing group, one knee was revised because of aseptic loosening of the tibial component. The Kaplan-Meier survivorship for revision at ten years of follow-up was 95.2% for the fixed bearing prosthesis and 91.1% for the rotating platform mobile-bearing prosthesis. Although we did manage to detect significant differences mainly in clinical and radiographic results between the two groups, we found no superiority or inferiority of the mobile

  3. General Description of the Mechanic Design of the Pressure Vessel and the Internal Mechanical Component of the CAREM Reactor

    International Nuclear Information System (INIS)

    Diez, F.; Horro, R.

    2000-01-01

    This paper presents a brief description of the CAREM reactor pressure vessel and its main internal mechanical components and summarizes the functional requirements and approaches applied for their design, together with a review of the normative applicable in each case

  4. JSFR design progress related to development of safety design criteria for generation IV sodium-cooled fast reactors. (3) Progress of component design

    International Nuclear Information System (INIS)

    Enuma, Yasuhiro; Kawasaki, Nobuchika; Orita, Junichi; Eto, Masao; Miyagawa, Takayuki

    2015-01-01

    In the frame work of generation IV international forum (GIF), safety design criteria (SDC) and safety design guideline (SDG) for the generation IV sodium-cooled fast reactors have been developing in the circumstance of worldwide deployment of SFRs. JAEA, JAPC, MFBR have been investigating design study for JSFR to satisfy SDC in the feasibility study of SDG for Sodium-cooled Fast Reactor (SFR). In addition to the safety measures, maintainability, reparability and manufacturability are taken into account in the JSFR design study. This paper describes the design of main components. Enlargement of the access route for the inspection devices and addition of the access routes were carried out for the reactor structure. The pump-integrated IHX (pump/IHX) was modified for the primary heat exchanger (PHX), which was installed for the decay heat removal in the IHX at the upper plenum, to be removable for improved repair and maintenance. For the steam generator (SG), protective wall tube type design is under investigation as an option with less R and D risks. (author)

  5. Effect of Icariin on Tibial Dyschondroplasia Incidence and Tibial Characteristics by Regulating P2RX7 in Chickens

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2018-01-01

    Full Text Available Tibial dyschondroplasia (TD is a disease of rapid growing chickens that occurs in many avian species; it is characterized by nonvascular and nonmineralized growth plates, along with tibia bone deformation and lameness. Icariin is widely used to treat bone diseases in humans, but no report is available regarding the effectiveness of icariin against avian TD. Therefore, this study was designed to determine its effect against TD. For this purpose, a total of 180 broiler chicks were distributed into three groups including control, TD, and icariin group. Control group was given a standard normal diet, while TD and icariin groups received normal standard diet containing 50 mg/kg thiram to induce TD from days 3 to 7 after hatch. After the induction of TD, the chicks of icariin group were fed with standard normal diet by adding 10 mg/kg icariin in water. Then morphological and production parameters analysis of tibial bone indicators, physiological index changes, and gene expression were examined. The results showed that icariin administration not only decreased the mortality but also mitigated the lameness and promoted the angiogenesis, which diminished the TD lesion and significantly increased the expression of P2RX7 (P<0.05 in TD affected thiram induced chicks. In conclusion, present findings suggest that icariin has a significant role in promoting the recovery of chicken growth plates affected by TD via regulating the P2RX7. Our findings reveal a new target for clinical treatment and prevention of TD in broiler chickens.

  6. The Component Packaging Problem: A Vehicle for the Development of Multidisciplinary Design and Analysis Methodologies

    Science.gov (United States)

    Fadel, Georges; Bridgewood, Michael; Figliola, Richard; Greenstein, Joel; Kostreva, Michael; Nowaczyk, Ronald; Stevenson, Steve

    1999-01-01

    This report summarizes academic research which has resulted in an increased appreciation for multidisciplinary efforts among our students, colleagues and administrators. It has also generated a number of research ideas that emerged from the interaction between disciplines. Overall, 17 undergraduate students and 16 graduate students benefited directly from the NASA grant: an additional 11 graduate students were impacted and participated without financial support from NASA. The work resulted in 16 theses (with 7 to be completed in the near future), 67 papers or reports mostly published in 8 journals and/or presented at various conferences (a total of 83 papers, presentations and reports published based on NASA inspired or supported work). In addition, the faculty and students presented related work at many meetings, and continuing work has been proposed to NSF, the Army, Industry and other state and federal institutions to continue efforts in the direction of multidisciplinary and recently multi-objective design and analysis. The specific problem addressed is component packing which was solved as a multi-objective problem using iterative genetic algorithms and decomposition. Further testing and refinement of the methodology developed is presently under investigation. Teaming issues research and classes resulted in the publication of a web site, (http://design.eng.clemson.edu/psych4991) which provides pointers and techniques to interested parties. Specific advantages of using iterative genetic algorithms, hurdles faced and resolved, and institutional difficulties associated with multi-discipline teaming are described in some detail.

  7. Engineering design of the IFMIF EVEDA reference test cell and key components

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Kuo, E-mail: kuo.tian@kit.edu [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Arbeiter, Frederik; Chen, Yuming; Heinzel, Volker; Kondo, Keitaro [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Mittwollen, Martin [Institute for Material Handling and Logistics, Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2014-10-15

    The latest design updates of the IFMIF-EVEDA reference test cell (TC) are described with emphasis on the following key components: active cooling pipes for concrete biological shielding walls and stainless steel liner, TC gas leak tight boundary, and piping and cabling inside TC and between TC and the access cell (AC). Water cooling is adopted for concrete shielding walls and the liner. Buried pipes are selected for active cooling of the TC surrounding shielding walls; directly welded pipes on the liner are used to remove nuclear heat of the liner. Technical features and layout of the cooling pipes are preliminary defined. The TC vacuum boundary, which includes the TC liner, an independent TC cover plate, a rubber based sealing gasket, and welding seams between interface shielding plugs and TC liner, is described. Engineering design of the piping and cabling plugs as well as the arrangement of pipes and cables under the TC covering plate and the AC floor are updated. Pipes and cable tunnels inside the shielding plugs are arranged with several bends for minimizing neutron streaming from inside to outside of the TC. Pipes, cables, and the corresponding penetrations between the TC and the AC are carefully arranged for convenient access and maintenances.

  8. Study on system layout and component design in the HTTR hydrogen production system. Contract research

    International Nuclear Information System (INIS)

    Nishihara, Tetsuo; Shimizu, Akira; Uchida, Shoji

    2003-01-01

    The global warming becomes a significant issue in the world so that it needs to reduce the CO 2 emission. It is expected that hydrogen is in place of the fossil fuels such as coal and oil, and plays the important role to resolve the global warming. There are several hydrogen making processes such as water electrolysis and steam reforming of hydrocarbon. Steam reforming of hydrocarbon is a major hydrogen making process because of economy in industry. It utilizes the fossil fuels as process heat for chemical reaction and results in a large CO 2 emission. New steam reforming system without fossil fuel can contribute to resolve the global warming. High temperature gas-cooled reactor (HTGR) has a unique feature to be able to supply a hot helium gas whose temperature is approximately 950degC at the reactor outlet. This makes HTGR possible to utilize for not only power generation but also process heat utilization. JAERI constructed the high temperature engineering test reactor (HTTR) that is a sort of HTGR in Oarai establishment and starts operation. Nuclear heat utilization is one of the R and D items of the HTTR. The steam reforming system coupling to the HTTR for hydrogen production has been designed. This report represents the system layout and design specification of key components in HTTR steam reforming system. (author)

  9. Study on system layout and component design in the HTTR hydrogen production system. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Nishihara, Tetsuo; Shimizu, Akira [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tanihira, Masanori [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Uchida, Shoji [Advanced Reactor Technology Co., Ltd., Tokyo (Japan)

    2003-01-01

    The global warming becomes a significant issue in the world so that it needs to reduce the CO{sub 2} emission. It is expected that hydrogen is in place of the fossil fuels such as coal and oil, and plays the important role to resolve the global warming. There are several hydrogen making processes such as water electrolysis and steam reforming of hydrocarbon. Steam reforming of hydrocarbon is a major hydrogen making process because of economy in industry. It utilizes the fossil fuels as process heat for chemical reaction and results in a large CO{sub 2} emission. New steam reforming system without fossil fuel can contribute to resolve the global warming. High temperature gas-cooled reactor (HTGR) has a unique feature to be able to supply a hot helium gas whose temperature is approximately 950degC at the reactor outlet. This makes HTGR possible to utilize for not only power generation but also process heat utilization. JAERI constructed the high temperature engineering test reactor (HTTR) that is a sort of HTGR in Oarai establishment and starts operation. Nuclear heat utilization is one of the R and D items of the HTTR. The steam reforming system coupling to the HTTR for hydrogen production has been designed. This report represents the system layout and design specification of key components in HTTR steam reforming system. (author)

  10. Sustainable design of fuel cell systems and components. Paper no. IGEC-1-148

    International Nuclear Information System (INIS)

    Frank, D.

    2005-01-01

    'Full text:' Fuel Cell and Hydrogen Technology are touted as the major future enabler for a renewable energy future. This is particularly true for vehicular applications were there are few competitive alternatives. However, without zero-emission production of hydrogen, this will not be a very sustainable solution. Hydrogen generation from biomass, solar, hydro or wind energy will allow this realization. In addition, we need to evaluate the whole life cycle of a fuel cell system in order to make sure that it is truly 'green'. Hydrogenics has in place corporate initiatives to ensure that sustainability is part of the corporate objectives and philosophy. A sustainable future ensures that this generation does not prevent future generations from a similar (or better) standard of living. Fuel cell recyclability and reusability will be a major factor in ensuring a renewable, sustainable future. This is accomplished using sustainable design methodology whereby fuel cell system components are analyzed for their total life cycle impact. This concept of 'cradle to grave' product design responsibility is applied to Hydrogenics fuel cell products and is discussed in this paper. (author)

  11. Rules for design of Alloy 617 nuclear components to very high temperatures

    International Nuclear Information System (INIS)

    Corum, J.M.; Blass, J.J.

    1991-01-01

    Very-high-temperature gas-cooled reactors provide attractive options for electric power generation using a direct gas-turbine cycle and for process-heat applications. For the latter, temperatures of at least 950 degree C (1742 degree F) are desirable. As a first step to providing rules for the design of nuclear components operating at very high temperatures, a draft ASME Boiler and Pressure Vessel Code Case has been prepared by an ad hoc Code task force. The Case, which is patterned after the high-temperature nuclear Code Case N-47, covers Ni-Cr-Co-Mo Alloy 617 for temperatures to 982 degree C (1800 degree F). The purpose of this paper is to provide a synopsis of the draft Case and the significant differences between it and Case N-47. Particular emphasis is placed on the material behavior and allowables. The paper also recommends some materials and structures development activities that are needed to place the design methodology on a sound and defensible footing. 4 refs., 9 figs., 1 tab

  12. Mechanical properties, reliability assessment and design of ceramic components used in high temperature assemblies

    International Nuclear Information System (INIS)

    Bendeich, P.J.

    2002-01-01

    The use of ceramic materials in high temperature structural components holds may advantages over conventional materials such as metals. These include high temperature strength, creep resistance, wear resistance, corrosion resistance, and stiffness. The tradeoff for these improved properties is the brittle nature of ceramics and their tendency for catastrophic failure and lack of damage tolerance. In this work some the various strategies available to overcome these limitations are reviewed. These include stochastic design strategies using the Weibull and Batdorf methods of failure probability prediction rather than the more familiar deterministic methods. Fracture mechanics analysis is also used extensively in this work to predict damage tolerance and failure conditions. A range of testing methods was utilised to provide material information for the methods outlined above. These included: flexural strength measurement for the determination of failure probability parameters; fracture toughness measurement using indentation methods and crack growth measurement; thermal expansion measurement; temperature dependant dynamic Young's modulus measurement; and thermal shock testing using a central heating laser. A new inverse method for measuring specific heat was developed and critically examined for practical use. This is particularly valuable in modelling transient thermal conditions for use in thermal shock analysis. A shape optimisation technique utilising a biological growth law was adapted for use with ceramic components utilising failure probability as the objective function. These methods were utilised in the design and subsequent failure analysis of a high temperature hotpress ram. The results of the failure probability analysis showed that the design had a very low probability of failure under normal operating conditions. Fracture mechanics analysis indicated that damage tolerance in the critical retaining bolt mechanism was high with damage likely to cause

  13. Design Basis of Core Components and their Realization in the frame of the EPR's{sup TM} Core Component Development

    Energy Technology Data Exchange (ETDEWEB)

    Schebitz, Florian [AREVA NP GmbH, Paul-Gossen-Str. 100, 91052 Erlangen (Germany); Mekmouche, Abdelhalim [AREVA NP SAS, 10 rue Juliette Recamier, 69456 Lyon Cedex 06 (France)

    2008-07-01

    Rod Cluster Control Assemblies (RCCAs), Thimble Plug Assemblies (TPAs), Primary Neutron Sources (PNS) and Secondary Neutron Sources (SNS) are essential for the operation of a Nuclear Power Plant. Different functional requirements ask for different components and geometries. Therefore three different core components are used within the primary circuit: - The RCCA, which contains the absorber materials, is used to regulate and shut down the nuclear chain reaction. Under these demanding conditions different effects are determining the lifetime of the RCCA and in particular of the control rods. Several improvements like ion-nitriding of the cladding, lengthening of the bottom end plug, helium backfilling and reduction of the absorber diameter in the bottom part, which have already been introduced with the HARMONI{sup TM} RCCA, show a real improvement in terms of lifetime. - The TPAs are used at positions without RCCAs and neutron sources to limit the by-pass flow-rate in the fuel assembly guide tubes. The advanced TPA design results from a perfect combination of French and German design experience feedback. Benefits like homogenized hydraulic flow and improved manageability in terms of handling tools show the joined experience. - The neutron sources are used to enhance the flux level when the core is sub-critical so as to facilitate the core start-up control by the neutron flux detectors. Primary and secondary neutron sources are designed in a common way with reviewed and improved methodology. As there are different ways and conditions to operate core components, several designs are available. For the EPR{sup TM}, the best methods and products have been chosen. All chosen components contribute to an optimized and safe operation of the EPR{sup TM}. (authors)

  14. Malposition of the tibial tubercle during flexion in knees with patellofemoral arthritis

    International Nuclear Information System (INIS)

    Nagamine, R.; Miura, H.; Tanaka, K.; Urabe, K.; Iwamoto, Y.; Inoue, Y.; Okamoto, Y.; Nishizawa, M.

    1997-01-01

    Objective. To assess the mechanisms contributing to the induction of patellofemoral arthritis (PF-OA). Design and patients. A computed tomography scan was taken at three levels of the lower extremity in full extension and at 30 of flexion. The cuts were superimposed and 12 parameters were compared in 17 PF-OA knees and 27 normal knees to assess the rotation angle of the tibial tubercle. Results. Although the tibial tubercle was in almost the same position in full extensioin in the normal and PF-OA knees, it was positioned significantly laterally at 30 of flexion in PF-OA knees. Also the articular surface of the lateral femoral condyle was significantly narrower or steeper in PF-OA knees. Conclusion. Anatomic variations and mechanical abnormalities were identified in the PF-OA knees. (orig.)

  15. Malposition of the tibial tubercle during flexion in knees with patellofemoral arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Nagamine, R.; Miura, H.; Tanaka, K.; Urabe, K.; Iwamoto, Y. [Department of Orthopaedic Surgery, Kyushu Univ. (Japan); Inoue, Y.; Okamoto, Y.; Nishizawa, M. [Department of Orthopaedic Surgery, JR Kyushu Hospital, Kitakyushu City (Japan)

    1997-10-01

    Objective. To assess the mechanisms contributing to the induction of patellofemoral arthritis (PF-OA). Design and patients. A computed tomography scan was taken at three levels of the lower extremity in full extension and at 30 of flexion. The cuts were superimposed and 12 parameters were compared in 17 PF-OA knees and 27 normal knees to assess the rotation angle of the tibial tubercle. Results. Although the tibial tubercle was in almost the same position in full extensioin in the normal and PF-OA knees, it was positioned significantly laterally at 30 of flexion in PF-OA knees. Also the articular surface of the lateral femoral condyle was significantly narrower or steeper in PF-OA knees. Conclusion. Anatomic variations and mechanical abnormalities were identified in the PF-OA knees. (orig.) With 8 figs., 1 tab., 11 refs.

  16. Design of Plasma Facing Components for Superconducting Modification of JT-60

    International Nuclear Information System (INIS)

    Shinji Sakurai; Kei Masaki; Yusuke-Kudo Shibama; Hiroshi Tamai; Makoto Matsukawa; Cordier, J.J.

    2006-01-01

    remote handling capability for in-vessel components should be required due to the increase in the neutron budget by an order of magnitude with respect to the original design. Upper and lower divertor cassettes and inboard first wall units should be designed to be exchangeable by the ITER-like remote handling system. Design modification for the increase of heating power and neutron budget will be completed in the end of 2006 under the conceptual design activity in the collaboration with EU and Japan. (author)

  17. Construction of a 21-Component Layered Mixture Experiment Design Using a New Mixture Coordinate-Exchange Algorithm

    International Nuclear Information System (INIS)

    Piepel, Gregory F.; Cooley, Scott K.; Jones, Bradley

    2005-01-01

    This paper describes the solution to a unique and challenging mixture experiment design problem involving: (1) 19 and 21 components for two different parts of the design, (2) many single-component and multi-component constraints, (3) augmentation of existing data, (4) a layered design developed in stages, and (5) a no-candidate-point optimal design approach. The problem involved studying the liquidus temperature of spinel crystals as a function of nuclear waste glass composition. The statistical objective was to develop an experimental design by augmenting existing glasses with new nonradioactive and radioactive glasses chosen to cover the designated nonradioactive and radioactive experimental regions. The existing 144 glasses were expressed as 19-component nonradioactive compositions and then augmented with 40 new nonradioactive glasses. These included 8 glasses on the outer layer of the region, 27 glasses on an inner layer, 2 replicate glasses at the centroid, and one replicate each of three existing glasses. Then, the 144 + 40 = 184 glasses were expressed as 21-component radioactive compositions, and augmented with 5 radioactive glasses. A D-optimal design algorithm was used to select the new outer layer, inner layer, and radioactive glasses. Several statistical software packages can generate D-optimal experimental designs, but nearly all of them require a set of candidate points (e.g., vertices) from which to select design points. The large number of components (19 or 21) and many constraints made it impossible to generate the huge number of vertices and other typical candidate points. JMP was used to select design points without candidate points. JMP uses a coordinate-exchange algorithm modified for mixture experiments, which is discussed and illustrated in the paper

  18. Ultrasound elasticity imaging of human posterior tibial tendon

    Science.gov (United States)

    Gao, Liang

    Posterior tibial tendon dysfunction (PTTD) is a common degenerative condition leading to a severe impairment of gait. There is currently no effective method to determine whether a patient with advanced PTTD would benefit from several months of bracing and physical therapy or ultimately require surgery. Tendon degeneration is closely associated with irreversible degradation of its collagen structure, leading to changes to its mechanical properties. If these properties could be monitored in vivo, it could be used to quantify the severity of tendonosis and help determine the appropriate treatment. Ultrasound elasticity imaging (UEI) is a real-time, noninvasive technique to objectively measure mechanical properties in soft tissue. It consists of acquiring a sequence of ultrasound frames and applying speckle tracking to estimate displacement and strain at each pixel. The goals of my dissertation were to 1) use acoustic simulations to investigate the performance of UEI during tendon deformation with different geometries; 2) develop and validate UEI as a potentially noninvasive technique for quantifying tendon mechanical properties in human cadaver experiments; 3) design a platform for UEI to measure mechanical properties of the PTT in vivo and determine whether there are detectable and quantifiable differences between healthy and diseased tendons. First, ultrasound simulations of tendon deformation were performed using an acoustic modeling program. The effects of different tendon geometries (cylinder and curved cylinder) on the performance of UEI were investigated. Modeling results indicated that UEI accurately estimated the strain in the cylinder geometry, but underestimated in the curved cylinder. The simulation also predicted that the out-of-the-plane motion of the PTT would cause a non-uniform strain pattern within incompressible homogeneous isotropic material. However, to average within a small region of interest determined by principal component analysis (PCA

  19. Bone Morphogenetic Protein for the Healing of Tibial Fracture: A Meta-Analysis of Randomized Controlled Trials.

    Directory of Open Access Journals (Sweden)

    Jiezhi Dai

    Full Text Available To review the evidence from RCTs on clinical outcomes and benefit of acute tibial fracture and nonunion treated with and without BMPs.We searched multiple databases (MEDLINE, EMABSE, BIOSIS and Cochrane central as well as reference lists of articles and contacted authors. Evaluated outcomes included union rate, revision rate, hardware failure and infection. The weighted and standard mean difference (WMD and SMD or the relative risk (RR was calculated for continuous or dichotomous data respectively. The quality of the trial was assessed, and meta-analyses were performed with the Cochrane Collaboration's REVMAN 5.0 software.Eight RCTs involving 1113 patients were included. For acute tibial fracture, BMP group was associated with a higher rate of union (RR, 1.16; 95% CI, 1.04 to 1.30 and a lower rate of revision (RR, 0.68; 95% CI, 0.54 to 0.85 compared with control group. No significant differences were found in rate of hardware failure and infection. The pooled RR for achieving union for tibial fracture nonunion was 0.98 (95% CI, 0.86 to 1.13. There was no significant difference between the two groups in the rate of revision (RR, 0.48; 95% CI, 0.13 to 1.85 and infection (RR, 0.61; 95% CI, 0.37 to 1.02.Study on acute tibial fractures suggests that BMP is more effective that controls, for bone union and for decreasing the rate of surgical revision to achieve union. For the treatment of tibial fracture nonunion, BMP leads to similar results to as autogenous bone grafting. Finally, well-designed RCTs of BMP for tibial fracture treatment are also needed.

  20. Tibial coverage, meniscus position, size and damage in knees discordant for joint space narrowing – data from the Osteoarthritis Initiative

    Science.gov (United States)

    Bloecker, K.; Guermazi, A.; Wirth, W.; Benichou, O.; Kwoh, C.K.; Hunter, D.J.; Englund, M.; Resch, H.; Eckstein, F.

    2013-01-01

    SUMMARY Introduction Meniscal extrusion is thought to be associated with less meniscus coverage of the tibial surface, but the association of radiographic disease stage with quantitative measures of tibial plateau coverage is unknown. We therefore compared quantitative and semi-quantitative measures of meniscus position and morphology in individuals with bilateral painful knees discordant on medial joint space narrowing (mJSN). Methods A sample of 60 participants from the first half (2,678 cases) of the Osteoarthritis Initiative cohort fulfilled the inclusion criteria: bilateral frequent pain, Osteoarthritis Research Society International (OARSI) mJSN grades 1–3 in one, no-JSN in the contra-lateral (CL), and no lateral JSN in either knee (43 unilateral mJSN1; 17 mJSN2/3; 22 men, 38 women, body mass index (BMI) 31.3 ± 3.9 kg/m2). Segmentation and three-dimensional quantitative analysis of the tibial plateau and meniscus, and semi-quantitative evaluation of meniscus damage (magnetic resonance imaging (MRI) osteoarthritis knee score – MOAKS) was performed using coronal 3T MR images (MPR DESSwe and intermediate-weighted turbo spin echo (IW-TSE) images). CL knees were compared using paired t-tests (between-knee, within-person design). Results Medial tibial plateau coverage was 36 ± 9% in mJSN1 vs 45 ± 8% in CL no-JSN knees, and was 31 ± 9% in mJSN2/3 vs 46 ± 6% in no-JSN knees (both P meniscus extrusion and damage (MOAKS), but no significant difference in meniscus volume. No significant differences in lateral tibial coverage, lateral meniscus morphology or position were observed. Conclusions Knees with medial JSN showed substantially less medial tibial plateau coverage by the meniscus. We suggest that the less meniscal coverage, i.e., less mechanical protection may be a reason for greater rates of cartilage loss observed in JSN knees. PMID:23220556

  1. Cartilaginous avulsion fracture of the tibial spine in a 5-year-old girl

    International Nuclear Information System (INIS)

    Kim, Jung Ryul; Song, Ji Hun; Lee, Ju Hong; Lee, Sang Yong; Yoo, Wan Hee

    2008-01-01

    Fractures of the tibial spine usually occur in children aged 8 to 14 years. Usually, radiographs will demonstrate a tibial spine fracture, with the degree of displacement. Tibial spine fractures in younger children have not been reported in the previously published literature. We report a tibial spine fracture that occurred in 5-year-old girl. The cartilaginous avulsion fracture of the tibial spine was not revealed by radiographs because it was limited to the cartilaginous portion of the proximal tibia. (orig.)

  2. Patella height changes post high tibial osteotomy

    Directory of Open Access Journals (Sweden)

    Siew Ghim Gooi

    2017-01-01

    Full Text Available Background: Medial opening wedge high tibial osteotomy (HTO is a well-described treatment in early medial compartmental osteoarthritis of the knee. However, two undesirable sequelae may follow –patella baja and changes in the posterior tibial slope (TS. Materials and Methods: We conducted a retrospective study in patients who underwent HTO in our center between September 2009 and February 2017. Preoperative and 6-week postoperative long-leg weight bearing films and lateral knee radiographs were assessed. Pre- and postoperative radiological measurements include the Caton-Deschamps Index (CDI, the mechanical axis deviation (MAD, and the posterior TS. Independant t-test and Pearson correlation test were performed. Results: A total of 106 knees were recruited. The mean age was 48.8 ± 10.8 years. 66 (62.3% and 40 (37.7% knees were from males and females, respectively. The mean pre- and postoperative measurements was (−9.70° ± 3.67° to 0.08° ± 2.80° (−varus; +valgus for the MAD, (7.14° ± 1.78° to 8.72° ± 3.11° for posterior TS, and (0.93° ± 0.084° to 0.82° ± 0.13° for CDI (P ≤ 0.001 for all. The association between patella height change and the level of osteotomy (supra-tubercle vs. infra-tubercle was statistically significant (P < 0.001. A supra-tubercle osteotomy cut significantly lowering patella height (P = 0.011. There was otherwise no statistically significant correlations between patella height changes and the correction angle (P = 0.187 or posterior TS change (P = 0.744. Conclusions: A medial opening wedge HTO above the tibial tubercle was significantly associated with lowering patella height or reducing CDI postoperatively. Based on our results, we would recommend the use of an infra-tubercle osteotomy during the corrective surgery to prevent the complication of patella baja.

  3. Flight service evaluation of composite components on the Bell Helicopter model 206L: Design, fabrication and testing

    Science.gov (United States)

    Zinberg, H.

    1982-01-01

    The design, fabrication, and testing phases of a program to obtain long term flight service experience on representative helicopter airframe structural components operating in typical commercial environments are described. The aircraft chosen is the Bell Helicopter Model 206L. The structural components are the forward fairing, litter door, baggage door, and vertical fin. The advanced composite components were designed to replace the production parts in the field and were certified by the FAA to be operable through the full flight envelope of the 206L. A description of the fabrication process that was used for each of the components is given. Static failing load tests on all components were done. In addition fatigue tests were run on four specimens that simulated the attachment of the vertical fin to the helicopter's tail boom.

  4. Design and implementation of component reliability database management system for NPP

    International Nuclear Information System (INIS)

    Kim, S. H.; Jung, J. K.; Choi, S. Y.; Lee, Y. H.; Han, S. H.

    1999-01-01

    KAERI is constructing the component reliability database for Korean nuclear power plant. This paper describes the development of data management tool, which runs for component reliability database. This is running under intranet environment and is used to analyze the failure mode and failure severity to compute the component failure rate. Now we are developing the additional modules to manage operation history, test history and algorithms for calculation of component failure history and reliability

  5. A combined Component-Based Approach for the Design of Distributed Software Systems

    NARCIS (Netherlands)

    Guareis de farias, Cléver; Ferreira Pires, Luis; van Sinderen, Marten J.; Quartel, Dick; Yang, H.; Gupta, S.

    2001-01-01

    Component-based software development enables the construction of software artefacts by assembling binary units of production, distribution and deployment, the so-called components. Several approaches to component-based development have been proposed recently. Most of these approaches are based on

  6. Maintenance implications of critical components in ITER CXRS upper port plug design

    International Nuclear Information System (INIS)

    Koning, Jarich; Jaspers, Roger; Doornink, Jan; Ouwehand, Bernard; Klinkhamer, Friso; Snijders, Bart; Sadakov, Sergey; Heemskerk, Cock

    2009-01-01

    Already in the early phase of a design for ITER, the maintenance aspects should be taken into account, since they might have serious implications. This paper presents the arguments in support of the case for the maintainability of the design, notably if this maintenance is to be performed by advanced remote methods. This structure is compliant to the evolving maintenance strategy of ITER. Initial results of a Failure Mode Effects and Criticality Analysis (FMECA) and a development risk analysis for the ITER upper port plug no. 3, housing the Charge Exchange Recombination Spectroscopy (CXRS) diagnostic, are employed for the definition of the maintenance strategy. The CXRS upper port plug is essentially an optical system which transfers visible light from the plasma into a fiber bundle. The most critical component in this path is the first mirror (M1) whose reflectivity degrades during operation due to deposition and/or erosion dominated effects. Amongst other measures to mitigate these effects, the strategy is to allow for a replacement of this mirror. Therefore it is mounted on a retractable central tube. The main purpose of this tube is to make frequent replacements possible without hindering operation. The maintenance method in terms of time, geometry and spare part policy has a large impact on cost of the system and time usage in the hot cell. Replacement of the tube under vacuum and magnetic field seems infeasible due to the operational risk involved. The preferred solution is to have a spare tube available which is replaced in parallel with other maintenance operations on the vessel, as to avoid any interference in the hot cell with the shutdown scheduling. This avoids having to refurbish a full port plug and also allows for a more frequent replacement of M1, as we can replace the mirror anytime the vacuum vessel is vented, estimated to be once a year.

  7. Multicriteria Decision Analysis in Improving Quality of Design in Femoral Component of Knee Prostheses: Influence of Interface Geometry and Material

    Directory of Open Access Journals (Sweden)

    Ali Jahan

    2015-01-01

    Full Text Available Knee prostheses as medical products require careful application of quality and design tool to ensure the best performance. Therefore, quality function deployment (QFD was proposed as a quality tool to systematically integrate consumer’s expectation to perceived needs by medical and design team and to explicitly address the translation of customer needs into engineering characteristics. In this study, full factorial design of experiment (DOE method was accompanied by finite element analysis (FEA to evaluate the effect of inner contours of femoral component on mechanical stability of the implant and biomechanical stresses within the implant components and adjacent bone areas with preservation of the outer contours for standard Co-Cr alloy and a promising functionally graded material (FGM. The ANOVA revealed that the inner shape of femoral component influenced the performance measures in which the angle between the distal and anterior cuts and the angle between the distal and posterior cuts were greatly influential. In the final ranking of alternatives, using multicriteria decision analysis (MCDA, the designs with FGM was ranked first over the Co-Cr femoral component, but the original design with Co-Cr material was not the best choice femoral component, among the top ranked design with the same material.

  8. Bilateral metachronous periosteal tibial amyloid tumors

    International Nuclear Information System (INIS)

    Murata, H.; Kusuzaki, Katsuyuki; Hashiguchi, S.; Ueda, Hidetaka; Hirasawa, Yasusuke

    2000-01-01

    Localized primary periosteal amyloid tumors are extremely rare. A case of bilateral tibial amyloid tumor is presented. A 62-year-old woman initially presented with a painful mass in the anterior aspect of the right leg. There was no evidence of underlying systemic disease, including chronic infection or malignancy. Based on the results of resistance with Congo red staining to treatment with potassium permanganate and positivity for kappa light chain, we classified this particular case as AL-type amyloidosis. The patient noticed a swelling in the opposite leg 2 years later. The second tumor was also an AL-type amyloidoma. Amyloid tumors are generally solitary. This is the first case of bilateral periosteal amyloid tumors of the AL-type occurring in the tibiae. (orig.)

  9. Computed tomography of tibial plateau fractures

    International Nuclear Information System (INIS)

    Rafii, M.; Firooznia, H.; Golimbu, C.; Bonamo, J.

    1984-01-01

    Twenty patients with tibial plateau fractures were studied by conventional tomography and computed tomography (CT) in order to determine the role and feasibility of CT in management of such patients. CT resulted in less discomfort to the patient and provided optimal visualization of the plateau defect and the split fragments. It proved more accurate than conventional tomography in assessing depressed and split fractures when they involved the anterior or posterior border of the plateau and in demonstrating the extent of fracture comminution. Split fragments with an oblique plane of fracture also were seen better by CT. The degree of fracture depression and separation as measured by the computerized technique was often more accurate than measurements obtained from conventional tomograms

  10. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-01-01

    Using alternate energy sources abundant in the U.S.A. to help curb foreign oil imports is vitally important from both national security and economic standpoints. Perhaps the most forwardlooking opportunity to realize national energy goals involves the integrated use of two energy sources that have an established technology base in the U.S.A., namely nuclear energy and coal. The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc.) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported (via an intermediate heat exchanger (IHX)) to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  11. Implementation of a design and configuration management platform for fusion components on the Tore Supra WEST Project

    Energy Technology Data Exchange (ETDEWEB)

    Benoît, Fabrice, E-mail: fabrice-2.benoit@cea.fr [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Allegretti, Ludovic [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Aumeunier, Marie-Hélène [OPTIS, ZE de La Farlède, F-83078 Toulon Cedex 9 (France); Bucalossi, Jérôme; Doceul, Louis; Faïsse, Frederic; Firdaouss, Medhi; Geynet, Michel; Houtte, Didier van; Larroque, Sébastien; Magaud, Philippe; Maini, Patrick; Missirlian, Marc; Parrat, Hélène [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Robert, Julien [SOFYNE, F-69800 Saint Priest (France)

    2014-10-15

    Highlights: •A design and configuration management platform is under development for managing fusion components lifecycle at CEA. •Design platform ensures an efficient sharing of the data and provides connections between the different software and databases involved in fusion components design. •Design platform rollout on WEST project is ongoing as part of change control and configuration management implementation. -- Abstract: This paper presents the technical solutions and methodologies that are used and under development for managing the design lifecycle of the WEST project (W – for tungsten – Environment in Steady-state Tokamak, upgrade of Tore Supra's with actively cooled tungsten plasma facing components) fusion components and explains the interfaces that are implemented or in construction to connect together the different tools like documents management system, CAD modeler, or simulation codes around the data management backbone. It describes the methodologies used on the WEST project to optimize the design process by managing the engineering data workflow and ensuring the consistency between the different 3D representations for design or analysis as well as the specification or interfaces documents. Finally it explains how this platform contributes to reach the project targets in terms of performance, cost and schedule.

  12. Implementation of a design and configuration management platform for fusion components on the Tore Supra WEST Project

    International Nuclear Information System (INIS)

    Benoît, Fabrice; Allegretti, Ludovic; Aumeunier, Marie-Hélène; Bucalossi, Jérôme; Doceul, Louis; Faïsse, Frederic; Firdaouss, Medhi; Geynet, Michel; Houtte, Didier van; Larroque, Sébastien; Magaud, Philippe; Maini, Patrick; Missirlian, Marc; Parrat, Hélène; Robert, Julien

    2014-01-01

    Highlights: •A design and configuration management platform is under development for managing fusion components lifecycle at CEA. •Design platform ensures an efficient sharing of the data and provides connections between the different software and databases involved in fusion components design. •Design platform rollout on WEST project is ongoing as part of change control and configuration management implementation. -- Abstract: This paper presents the technical solutions and methodologies that are used and under development for managing the design lifecycle of the WEST project (W – for tungsten – Environment in Steady-state Tokamak, upgrade of Tore Supra's with actively cooled tungsten plasma facing components) fusion components and explains the interfaces that are implemented or in construction to connect together the different tools like documents management system, CAD modeler, or simulation codes around the data management backbone. It describes the methodologies used on the WEST project to optimize the design process by managing the engineering data workflow and ensuring the consistency between the different 3D representations for design or analysis as well as the specification or interfaces documents. Finally it explains how this platform contributes to reach the project targets in terms of performance, cost and schedule

  13. Do Capacitively Coupled Electric Fields Accelerate Tibial Stress Fracture Healing

    National Research Council Canada - National Science Library

    Hoffman, Andrew

    2002-01-01

    A convenience sample based on availability of tibial stress fracture cases at local Sports Medicine Clinics will be selected over 2-3 years until forty subjects (20 male, 20 female) have been treated...

  14. Do Capacity Coupled Electric Fields Accelerate Tibial Stress Fracture Healing?

    National Research Council Canada - National Science Library

    Hoffman, Andrew

    2004-01-01

    A convenience sample based on availability of tibial stress fracture cases a% local Sports Medicine Clinics will be selected over 4 years until forty subjects (20 male, 20 female) have been treated...

  15. Do Capacitively Coupled Electric Fields Accelerate Tibial Stress Fracture Healing

    National Research Council Canada - National Science Library

    Hoffman, Andrew

    2003-01-01

    A convenience sample based on availability of tibial stress fracture cases at local Sports Medicine Clinics will be selected over 2-3 years until forty subjects (20 male, 20 female) have been treated...

  16. Safe surgical technique: intramedullary nail fixation of tibial shaft fractures.

    Science.gov (United States)

    Zelle, Boris A; Boni, Guilherme

    2015-01-01

    Statically locked, reamed intramedullary nailing remains the standard treatment for displaced tibial shaft fractures. Establishing an appropriate starting point is a crucial part of the surgical procedure. Recently, suprapatellar nailing in the semi-extended position has been suggested as a safe and effective surgical technique. Numerous reduction techiques are available to achieve an anatomic fracture alignment and the treating surgeon should be familiar with these maneuvers. Open reduction techniques should be considered if anatomic fracture alignment cannot be achieved by closed means. Favorable union rates above 90 % can be achieved by both reamed and unreamed intramedullary nailing. Despite favorable union rates, patients continue to have functional long-term impairments. In particular, anterior knee pain remains a common complaint following intramedullary tibial nailing. Malrotation remains a commonly reported complication after tibial nailing. The effect of postoperative tibial malalignment on the clinical and radiographic outcome requires further investigation.

  17. Reliability analysis and component functional allocations for the ESF multi-loop controller design

    International Nuclear Information System (INIS)

    Hur, Seop; Kim, D.H.; Choi, J.K.; Park, J.C.; Seong, S.H.; Lee, D.Y.

    2006-01-01

    This paper deals with the reliability analysis and component functional allocations to ensure the enhanced system reliability and availability. In the Engineered Safety Features, functionally dependent components are controlled by a multi-loop controller. The system reliability of the Engineered Safety Features-Component Control System, especially, the multi-loop controller which is changed comparing to the conventional controllers is an important factor for the Probability Safety Assessment in the nuclear field. To evaluate the multi-loop controller's failure rate of the k-out-of-m redundant system, the binomial process is used. In addition, the component functional allocation is performed to tolerate a single multi-loop controller failure without the loss of vital operation within the constraints of the piping and component configuration, and ensure that mechanically redundant components remain functional. (author)

  18. Displaced tibial shaft fractures treated with ASIF compression internal fixation

    DEFF Research Database (Denmark)

    Gebuhr, Peter Henrik; Larsen, T K; Petersen, O C

    1990-01-01

    Fifty-one tibial shaft fractures treated by ASIF compression osteosynthesis were seen at follow-up at a median time of 46 weeks after injury. Twenty-four were open fractures and the patients received prophylactic antibiotics. The median stay in hospital was 15 days for open fractures and 6 days f...... for closed fractures. There were complications in 26 cases, with deep infection in 9 cases. At present we cannot advocate the use of ASIF compression osteosynthesis for displaced tibial fractures....

  19. Physeal growth arrest after tibial lengthening in achondroplasia

    Science.gov (United States)

    2012-01-01

    Background and purpose Bilateral tibial lengthening has become one of the standard treatments for upper segment-lower segment disproportion and to improve quality of life in achondroplasia. We determined the effect of tibial lengthening on the tibial physis and compared tibial growth that occurred at the physis with that in non-operated patients with acondroplasia. Methods We performed a retrospective analysis of serial radiographs until skeletal maturity in 23 achondroplasia patients who underwent bilateral tibial lengthening before skeletal maturity (lengthening group L) and 12 achondroplasia patients of similar height and age who did not undergo tibial lengthening (control group C). The mean amount of lengthening of tibia in group L was 9.2 cm (lengthening percentage: 60%) and the mean age at the time of lengthening was 8.2 years. The mean duration of follow-up was 9.8 years. Results Skeletal maturity (fusion of physis) occurred at 15.2 years in group L and at 16.0 years in group C. The actual length of tibia (without distraction) at skeletal maturity was 238 mm in group L and 277 mm in group C (p = 0.03). The mean growth rates showed a decrease in group L relative to group C from about 2 years after surgery. Physeal closure was most pronounced on the anterolateral proximal tibial physis, with relative preservation of the distal physis. Interpretation Our findings indicate that physeal growth rate can be disturbed after tibial lengthening in achondroplasia, and a close watch should be kept for such an occurrence—especially when lengthening of more than 50% is attempted. PMID:22489887

  20. Complications of Open Tibial Fracture Management: Risk Factors and Treatment

    OpenAIRE

    Lua, JYC; Tan, VH; Sivasubramanian, H; Kwek, EBK

    2017-01-01

    Open tibial fractures result in high rates of complications. This study aims to elucidate the risk factors causing these complications, and suggest antimicrobial regimens based on the organisms grown in post-operative infections. Over a period of five years, 173 patients had sustained open tibial fractures and undergone operative treatment at a single institution. All surgical data was gathered retrospectively through online medical records. Thirty-one patients (17.9%) had sustained post-oper...

  1. Measurement of Posterior Tibial Slope Using Magnetic Resonance Imaging.

    Science.gov (United States)

    Karimi, Elham; Norouzian, Mohsen; Birjandinejad, Ali; Zandi, Reza; Makhmalbaf, Hadi

    2017-11-01

    Posterior tibial slope (PTS) is an important factor in the knee joint biomechanics and one of the bone features, which affects knee joint stability. Posterior tibial slope has impact on flexion gap, knee joint stability and posterior femoral rollback that are related to wide range of knee motion. During high tibial osteotomy and total knee arthroplasty (TKA) surgery, proper retaining the mechanical and anatomical axis is important. The aim of this study was to evaluate the value of posterior tibial slope in medial and lateral compartments of tibial plateau and to assess the relationship among the slope with age, gender and other variables of tibial plateau surface. This descriptive study was conducted on 132 healthy knees (80 males and 52 females) with a mean age of 38.26±11.45 (20-60 years) at Imam Reza hospital in Mashhad, Iran. All patients, selected and enrolled for MRI in this study, were admitted for knee pain with uncertain clinical history. According to initial physical knee examinations the study subjects were reported healthy. The mean posterior tibial slope was 7.78± 2.48 degrees in the medial compartment and 6.85± 2.24 degrees in lateral compartment. No significant correlation was found between age and gender with posterior tibial slope ( P ≥0.05), but there was significant relationship among PTS with mediolateral width, plateau area and medial plateau. Comparison of different studies revealed that the PTS value in our study is different from other communities, which can be associated with genetic and racial factors. The results of our study are useful to PTS reconstruction in surgeries.

  2. A PROSPECTIVE STUDY OF DISTAL TIBIAL FRACTURES BY MIPO (LCP)

    OpenAIRE

    Chandra Sekharam Naidu; Ch.Murali Krishna; Sankara Rao; Dharma Rao; Ashok Kumar

    2015-01-01

    INTRODUCTION: D istal tibial fractures represent a significant challenge to most of the surgeons even today. They constitute 1 - 10% of all lower extremity fractures . 1 The difficulty in treating the fractures of distal tibial end is exemplif ied by orthopedists, who in the first half of twentieth century, believed these injuries were so severe and fraught with so many complications, that these fractures wer...

  3. The medial tibial stress syndrome. A cause of shin splints.

    Science.gov (United States)

    Mubarak, S J; Gould, R N; Lee, Y F; Schmidt, D A; Hargens, A R

    1982-01-01

    The medial tibial stress syndrome is a symptom complex seen in athletes who complain of exercise-induced pain along the distal posterior-medial aspect of the tibia. Intramuscular pressures within the posterior compartments of the leg were measured in 12 patients with this disorder. These pressures were not elevated and therefore this syndrome is a not a compartment syndrome. Available information suggests that the medial tibial stress syndrome most likely represents a periostitis at this location of the leg.

  4. External versus internal fixation for bicondylar tibial plateau fractures: systematic review and meta-analysis.

    Science.gov (United States)

    Metcalfe, David; Hickson, Craig J; McKee, Lesley; Griffin, Xavier L

    2015-12-01

    It is uncertain whether external fixation or open reduction internal fixation (ORIF) is optimal for patients with bicondylar tibial plateau fractures. A systematic review using Ovid MEDLINE, Embase Classic, Embase, AMED, the Cochrane Library, Open Grey, Orthopaedic Proceedings, WHO International Clinical Trials Registry Platform, Current Controlled Trials, US National Institute for Health Trials Registry, and the Cochrane Central Register of Controlled Trials. The search was conducted on 3rd October 2014 and no language limits were applied. Inclusion criteria were all clinical study designs comparing external fixation with open reduction internal fixation of bicondylar tibial plateau fractures. Studies of only one treatment modality were excluded, as were those that included unicondylar tibial plateau fractures. Treatment effects from studies reporting dichotomous outcomes were summarised using odds ratios. Continuous outcomes were converted to standardized mean differences to assess the treatment effect, and inverse variance methods used to combine data. A fixed effect model was used for meta-analyses. Patients undergoing external fixation were more likely to have returned to preinjury activities by six and twelve months (P = 0.030) but not at 24 months follow-up. However, external fixation was complicated by a greater number of infections (OR 2.59, 95 % CI 1.25-5.36, P = 0.01). There were no statistically significant differences in the rates of deep infection, venous thromboembolism, compartment syndrome, or need for re-operation between the two groups. Although external fixation and ORIF are associated with different complication profiles, both are acceptable strategies for managing bicondylar tibial plateau fractures.

  5. In Search of the Philosopher's Stone: Simulation Composability Versus Component-Based Software Design

    National Research Council Canada - National Science Library

    Bartholet, Robert G; Brogan, David C; Reynolds, Jr., Paul F; Carnahan, Joseph C

    2004-01-01

    The simulation community and the software engineering community are actively conducting research on technology that will make it possible to easily build complex systems by combining existing components...

  6. Fusion component design for the moving-ring field-reversed mirror reactor

    International Nuclear Information System (INIS)

    Carlson, G.A.

    1981-01-01

    This partial report on the reactor design contains sections on the following: (1) burner section magnet system design, (2) plasma ring energy recovery, (3) vacuum system, (4) cryogenic system, (5) tritium flows and inventories, and (6) reactor design and layout

  7. Design and operation results of nitrogen gas baking system for KSTAR plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-Tae [National Fusion Research Institute, 113 Gwahang-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Kim, Young-Jin, E-mail: k43689@nfri.re.kr [National Fusion Research Institute, 113 Gwahang-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Joung, Nam-Yong; Im, Dong-Seok; Kim, Kang-Pyo; Kim, Kyung-Min; Bang, Eun-Nam; Kim, Yaung-Soo [National Fusion Research Institute, 113 Gwahang-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Yoo, Seong-Yeon [Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2013-11-15

    Highlights: • Vacuum pressure in a vacuum vessel arrived at 7.24 × 10{sup −8} mbar. • PFC temperature was reached maximum 250 °C by gas temperature at 300 °C. • PFC inlet gas temperature was changed 5 °C per hour during rising and falling. • PFC gas balancing was made temperature difference among them below 8.3 °C. • System has a pre-cooler and a three-way valve to save operation energy. -- Abstract: A baking system for the Korea Superconducting Tokamak Advanced Research (KSTAR) plasma facing components (PFCs) is designed and operated to achieve vacuum pressure below 5 × 10{sup −7} mbar in vacuum vessel with removing impurities. The purpose of this research is to prevent the fracture of PFC because of thermal stress during baking the PFC, and to accomplish stable operation of the baking system with the minimum life cycle cost. The uniformity of PFC temperature in each sector was investigated, when the supply gas temperature was varied by 5 °C per hour using a heater and the three-way valve at the outlet of a compressor. The alternative of the pipe expansion owing to hot gas and the cage configuration of the three-way valve were also studied. During the fourth campaign of the KSTAR in 2011, nitrogen gas temperature rose up to 300 °C, PFC temperature reached at 250 °C, the temperature difference among PFCs was maintained at below 8.3 °C, and vacuum pressure of up to 7.24 × 10{sup −8} mbar was achieved inside the vacuum vessel.

  8. Understanding the etiology of the posteromedial tibial stress fracture.

    Science.gov (United States)

    Milgrom, Charles; Burr, David B; Finestone, Aharon S; Voloshin, Arkady

    2015-09-01

    Previous human in vivo tibial strain measurements from surface strain gauges during vigorous activities were found to be below the threshold value of repetitive cyclical loading at 2500 microstrain in tension necessary to reduce the fatigue life of bone, based on ex vivo studies. Therefore it has been hypothesized that an intermediate bone remodeling response might play a role in the development of tibial stress fractures. In young adults tibial stress fractures are usually oblique, suggesting that they are the result of failure under shear strain. Strains were measured using surface mounted unstacked 45° rosette strain gauges on the posterior aspect of the flat medial cortex just below the tibial midshaft, in a 48year old male subject while performing vertical jumps, staircase jumps and running up and down stadium stairs. Shear strains approaching 5000 microstrain were recorded during stair jumping and vertical standing jumps. Shear strains above 1250 microstrain were recorded during runs up and down stadium steps. Based on predictions from ex vivo studies, stair and vertical jumping tibial shear strain in the test subject was high enough to potentially produce tibial stress fracture subsequent to repetitive cyclic loading without necessarily requiring an intermediate remodeling response to microdamage. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Gender differences in passive knee biomechanical properties in tibial rotation.

    Science.gov (United States)

    Park, Hyung-Soon; Wilson, Nicole A; Zhang, Li-Qun

    2008-07-01

    The anterior cruciate ligament (ACL) is the most commonly injured knee ligament with the highest incidence of injury in female athletes who participate in pivoting sports. Noncontact ACL injuries commonly occur with both internal and external tibial rotation. ACL impingement against the lateral wall of the intercondylar notch during tibial external rotation and abduction has been proposed as an injury mechanism, but few studies have evaluated in vivo gender-specific differences in laxity and stiffness in external and internal tibial rotations. The purpose of this study was to evaluate these differences. The knees of 10 male and 10 female healthy subjects were rotated between internal and external tibial rotation with the knee at 60 degrees of flexion. Joint laxity, stiffness, and energy loss were compared between male and female subjects. Women had higher laxity (p = 0.01), lower stiffness (p = 0.038), and higher energy loss (p = 0.008) in external tibial rotation than did men. The results suggest that women may be at greater risk of ACL injury resulting from impingement against the lateral wall of the intercondylar notch, which has been shown to be associated with external tibial rotation and abduction.

  10. A calibration rig for multi-component internal strain gauge balance using the new design-of-experiment (DOE) approach

    Science.gov (United States)

    Nouri, N. M.; Mostafapour, K.; Kamran, M.

    2018-02-01

    In a closed water-tunnel circuit, the multi-component strain gauge force and moment sensor (also known as balance) are generally used to measure hydrodynamic forces and moments acting on scaled models. These balances are periodically calibrated by static loading. Their performance and accuracy depend significantly on the rig and the method of calibration. In this research, a new calibration rig was designed and constructed to calibrate multi-component internal strain gauge balances. The calibration rig has six degrees of freedom and six different component-loading structures that can be applied separately and synchronously. The system was designed based on the applicability of formal experimental design techniques, using gravity for balance loading and balance positioning and alignment relative to gravity. To evaluate the calibration rig, a six-component internal balance developed by Iran University of Science and Technology was calibrated using response surface methodology. According to the results, calibration rig met all design criteria. This rig provides the means by which various methods of formal experimental design techniques can be implemented. The simplicity of the rig saves time and money in the design of experiments and in balance calibration while simultaneously increasing the accuracy of these activities.

  11. 5 CFR 5501.102 - Designation of HHS components as separate agencies.

    Science.gov (United States)

    2010-01-01

    ... SUPPLEMENTAL STANDARDS OF ETHICAL CONDUCT FOR EMPLOYEES OF THE DEPARTMENT OF HEALTH AND HUMAN SERVICES § 5501... Administration. (b) Definitions—(1) Employee of a component includes, in addition to employees actually within a... responsibilities principally involve the provision of legal services to the relevant component with respect to...

  12. Using TinyOS Components for the Design of an Adaptive Ubiquitous System

    NARCIS (Netherlands)

    Kaya, O.S.; Durmaz, O.; Dulman, S.O.; Gemesi, R.; Jansen, P.G.; Havinga, Paul J.M.

    2005-01-01

    This work is an initiative attempt toward component-based software engineering in ubiquitous computing systems. Software components cooperate in a distributed manner to meet a demand, and adapt their software bindings during run-time depending on the context information. There are two main research

  13. Using TinyOS Components for the Design of an Adaptive Ubiquitous System

    NARCIS (Netherlands)

    Kaya, O.S.; Durmaz, O.; Dulman, S.O.; Gemesi, R.; Jansen, P.G.; Havinga, Paul J.M.

    This work is an initiative attempt toward component-based software engineering in ubiquitous computing systems. Software components cooperate in a distributed manner to meet a demand, and adapt their software bindings during run-time depending on the context information. There are two main research

  14. Components of the primary circuit of LWRs. Design, construction and calculation. Komponenten des Primaerkreises von Leichtwasserreaktoren. Auslegung, Konstruktion und Berechnung

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This standard is to be applied to components made of metallic materials, operated at design temperatures of up to 673 K (400 C). The primary circuit as the pressure containment of the reactor coolant comprises: Reactor pressure vessel (without internals), steam generator (primary loop), pressurizer, reactor coolant pump housing, interconnecting pipings between the components mentioned above and appropriate various valve and instrument casings, pipings branding from the above components and interconnecting pipings, including the appropriate instrument casings, up to and including the first isolating valve, pressure shielding of control rod drives.

  15. AXIOLOGICAL COMPONENT OF VOCATIONAL TRAINING (THE EXAMPLE OF BACHELOR PROGRAMS IN THE FIELD OF THE GARMENT INDUSTRY PRODUCTS DESIGN

    Directory of Open Access Journals (Sweden)

    Lyudmila V. Rosnovskaya

    2015-01-01

    Full Text Available The aim of the article is to review and study the significance of an axiological component and its mechanisms implementation for bachelor vocational training in the field of designing garment industry products.Methods. The methods involve theoretical analysis of philosophical, psychological and pedagogical literature, as well as modeling and classification methods.Scientific novelty and results. An independent axiological component based on structural and content analysis of a clothes designer’s professional work is identified; the content of this component is justified and determined. The substantive characteristics of clothes designer professional competencies are determined in terms of the axiological component. The education objectives aimed at forming the axiological component of Bachelors’ of garment design competencies are classified in correlation with the functions of training. Activity-related information and specifications necessary for values related to actual practice are identified, including channels and mechanisms of translation values in the vocational education process. A model of the educational situation is elaborated, which is proposed to be used as an orientation basis for designing specific educational situations, adequate to this or that kind of value experience. The dialogue activity is shown as the most favorable environment and a form of student activities organization in the development of emotionally-valuable experience.Practical significance. The article is supposed to be used while the training process for the garment industry and the fashion industry staff.

  16. Pressure vessel design codes: A review of their applicability to HTGR components at temperatures above 800 deg C

    International Nuclear Information System (INIS)

    Hughes, P.T.; Over, H.H.; Bieniussa, K.

    1984-01-01

    The governments of USA and Federal Republic of Germany have approved of cooperation between the two countries in an endeavour to establish structural design code for gas reactor components intended to operate at temperatures exceeding 800 deg C. The basis of existing codes and their applicability to gas reactor component design are reviewed in this paper. This review has raised a number of important questions as to the direct applicability of the present codes. The status of US and FRG cooperative efforts to obtain answers to these questions are presented

  17. Design of a cryogenic test facility for evaluating the performance of interferometric components of the SPICA/SAFARI instrument

    Science.gov (United States)

    Veenendaal, Ian T.; Naylor, David A.; Gom, Brad G.

    2014-08-01

    The Japanese SPace Infrared telescope for Cosmology and Astrophysics (SPICA), a 3 m class telescope cooled to ~ 6 K, will provide extremely low thermal background far-infrared observations. An imaging Fourier transform spectrometer (SAFARI) is being developed to exploit the low background provided by SPICA. Evaluating the performance of the interferometer translation stage and key optical components requires a cryogenic test facility. In this paper we discuss the design challenges of a pulse tube cooled cryogenic test facility that is under development for this purpose. We present the design of the cryostat and preliminary results from component characterization and external optical metrology.

  18. Rap system of stress stimulation can promote bone union after lower tibial bone fracture: a clinical research.

    Science.gov (United States)

    Yao, Jian-fei; Shen, Jia-zuo; Li, Da-kun; Lin, Da-sheng; Li, Lin; Li, Qiang; Qi, Peng; Lian, Ke-jian; Ding, Zhen-qi

    2012-01-01

    Lower tibial bone fracture may easily cause bone delayed union or nonunion because of lacking of dynamic mechanical load. Research Group would design a new instrument as Rap System of Stress Stimulation (RSSS) to provide dynamic mechanical load which would promote lower tibial bone union postoperatively. This clinical research was conducted from January 2008 to December 2010, 92 patients(male 61/female 31, age 16-70 years, mean 36.3 years) who suffered lower tibial bone closed fracture were given intramedullary nail fixation and randomly averagely separated into experimental group and control group(according to the successively order when patients went for the admission procedure). Then researchers analysed the clinical healing time, full weight bearing time, VAS (Visual Analogue Scales) score and callus growth score of Lane-Sandhu in 3,6,12 months postoperatively. The delayed union and nonunion rates were compared at 6 and 12 months separately. All the 92 patients had been followed up (mean 14 months). Clinical bone healing time in experimental group was 88.78±8.80 days but control group was 107.91±9.03 days. Full weight bearing time in experimental group was 94.07±9.81 days but control group was 113.24±13.37 days respectively (Ptibial bone union, reduce bone delayed union or nonunion rate. It is an adjuvant therapy for promoting bone union after lower tibial bone fracture.

  19. Design of multi-tiered database application based on CORBA component

    International Nuclear Information System (INIS)

    Sun Xiaoying; Dai Zhimin

    2003-01-01

    As computer technology quickly developing, middleware technology changed traditional two-tier database system. The multi-tiered database system, consisting of client application program, application servers and database serves, is mainly applying. While building multi-tiered database system using CORBA component has become the mainstream technique. In this paper, an example of DUV-FEL database system is presented, and then discuss the realization of multi-tiered database based on CORBA component. (authors)

  20. Typical design/qualification acceptance criteria for newly installed pipelines and equipment components of VVER-type NPPs

    International Nuclear Information System (INIS)

    Masopust, R.

    2003-01-01

    This paper describes in general the typical design/qualification acceptance criteria and seismic acceptance criteria in particular that are applicable for important to safety newly installed pipelines and equipment components of VVER-type already existing NPPs, specifically during the design verification phase of this newly installed equipment. These criteria are currently used for VVER 440-213 and VVER 1000 NPPs in Czech Republic and in Slovakia. The similar criteria are also used in Hungary. (author)

  1. Hypercell : A bio-inspired information design framework for real-time adaptive spatial components

    NARCIS (Netherlands)

    Biloria, N.M.; Chang, J.R.

    2012-01-01

    Contemporary explorations within the evolutionary computational domain have been heavily instrumental in exploring biological processes of adaptation, growth and mutation. On the other hand a plethora of designers owing to the increasing sophistication in computer aided design software are equally

  2. Design and development of an experimental six component wind tunnel block balance using optical fibre sensors.

    CSIR Research Space (South Africa)

    De Ponte, JD

    2014-05-01

    Full Text Available In order to meet the increasingly stringent requirements for wind tunnel balances, as expressed by the wind tunnel testing community, balance design philosophy needs to be further expanded to include alternative sensor, material, design...

  3. RCC-MRx: Design and construction rules for mechanical components in high-temperature structures, experimental reactors and fusion reactors

    International Nuclear Information System (INIS)

    2015-01-01

    The RCC-MRx code was developed for sodium-cooled fast reactors (SFR), research reactors (RR) and fusion reactors (FR-ITER). It provides the rules for designing and building mechanical components involved in areas subject to significant creep and/or significant irradiation. In particular, it incorporates an extensive range of materials (aluminum and zirconium alloys in response to the need for transparency to neutrons), sizing rules for thin shells and box structures, and new modern welding processes: electron beam, laser beam, diffusion and brazing. The RCC-MR code was used to design and build the prototype Fast Breeder Reactor (PFBR) developed by IGCAR in India and the ITER Vacuum Vessel. The RCC-Mx code is being used in the current construction of the RJH experimental reactor (Jules Horowitz reactor). The RCC-MRx code is serving as a reference for the design of the ASTRID project (Advanced Sodium Technological Reactor for Industrial Demonstration), for the design of the primary circuit in MYRRHA (Multi-purpose hybrid Research Reactor for High-tech Applications) and the design of the target station of the ESS project (European Spallation Source). Contents of the 2015 edition of the RCC-MRx code: Section I General provisions; Section II Additional requirements and special provisions; Section III Rules for nuclear installation mechanical components: Volume I: Design and construction rules: Volume A (RA): General provisions and entrance keys, Volume B (RB): Class 1 components and supports, Volume C (RC): Class 2 components and supports, Volume D (RD): Class 3 components and supports, Volume K (RK): Examination, handling or drive mechanisms, Volume L (RL): Irradiation devices, Volume Z (Ai): Technical appendices; Volume II: Materials; Volume III: Examinations methods; Volume IV: Welding; Volume V: Manufacturing operations; Volume VI: Probationary phase rules

  4. TENCompetence Learning Design Toolkit, Runtime component, ccsi_v3_2_10c_v1_4

    NARCIS (Netherlands)

    Sharples, Paul; Popat, Kris; Llobet, Lau; Santos, Patricia; Hernández-Leo, Davinia; Miao, Yongwu; Griffiths, David; Beauvoir, Phillip

    2010-01-01

    Sharples, P., Popat, K., Llobet, L., Santos, P., Hernandez-Leo, D., Miao, Y., Griffiths, D. & Beauvoir, P. (2009) TENCompetence Learning Design Toolkit, Runtime component, ccsi_v3_2_10c_v1_4 This release is composed of three files corresponding to CopperCore Service Integration (CCSI) v3.2-10cv1.4,

  5. The design of the optical components and gas control systems of the CERN Omega Ring Imaging Cerenkov Detector

    International Nuclear Information System (INIS)

    Apsimon, R.J.; Cowell, J.; Flower, P.S.

    1985-06-01

    A large Ring Imaging Cerenkov Detector (RICH) has been commissioned for use at the CERN Omega Spectrometer. The general design of the device is discussed, and the dependence of the attainable spatial resolution and range of particle identification on its optical parameters is illustrated. The construction and performance of the major optical components and gas systems of the detector are also described. (author)

  6. Lab-on-a-Chip Design-Build Project with a Nanotechnology Component in a Freshman Engineering Course

    Science.gov (United States)

    Allam, Yosef; Tomasko, David L.; Trott, Bruce; Schlosser, Phil; Yang, Yong; Wilson, Tiffany M.; Merrill, John

    2008-01-01

    A micromanufacturing lab-on-a-chip project with a nanotechnology component was introduced as an alternate laboratory in the required first-year engineering curriculum at The Ohio State University. Nanotechnology is introduced in related reading and laboratory tours as well as laboratory activities including a quarter-length design, build, and test…

  7. Procedures for the design of the main mechanical components of a wind system; Dimensionamento dos componentes mecanicos principais de aerogeradores

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, M.H.; Marco Filho, F. de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    1990-12-31

    Procedures for the design of the main mechanical components of a wind system were developed. One of the main concerns was related to the possibility of its use in small micro-computers. This goal was reached and an APPLE II computer was used. The resulting algorithm permits a friendly interaction between man and machine. 5 refs., 12 figs

  8. Evaluation of Fibular Fracture Type vs Location of Tibial Fixation of Pilon Fractures.

    Science.gov (United States)

    Busel, Gennadiy A; Watson, J Tracy; Israel, Heidi

    2017-06-01

    Comminuted fibular fractures can occur with pilon fractures as a result of valgus stress. Transverse fibular fractures can occur with varus deformation. No definitive guide for determining the proper location of tibial fixation exists. The purpose of this study was to identify optimal plate location for fixation of pilon fractures based on the orientation of the fibular fracture. One hundred two patients with 103 pilon fractures were identified who were definitively treated at our institution from 2004 to 2013. Pilon fractures were classified using the AO/OTA classification and included 43-A through 43-C fractures. Inclusion criteria were age of at least 18 years, associated fibular fracture, and definitive tibial plating. Patients were grouped based on the fibular component fracture type (comminuted vs transverse), and the location of plate fixation (medial vs lateral) was noted. Radiographic outcomes were assessed for mechanical failures. Forty fractures were a result of varus force as evidenced by transverse fracture of the fibula and 63 were due to valgus force with a comminuted fibula. For the transverse fibula group, 14.3% mechanical complications were noted for medially placed plate vs 80% for lateral plating ( P = .006). For the comminuted fibular group, 36.4% of medially placed plates demonstrated mechanical complications vs 16.7% for laterally based plates ( P = .156). Time to weight bearing as tolerated was also noted to be significant between groups plated medially and laterally for the comminuted group ( P = .013). Correctly assessing the fibular component for pilon fractures provides valuable information regarding deforming forces. To limit mechanical complications, tibial plates should be applied in such a way as to resist the original deforming forces. Level of Evidence Level III, comparative study.

  9. The RCC-MR design code for LMFBR components. A useful basic for fusion reactor design tools development

    International Nuclear Information System (INIS)

    Acker, D.; Chevereau, G.

    1985-11-01

    LMFBR and fusion reactors exhibit common features with regard to structural materials (Stainless steels), temperature service level (550-600 0 C), loading types. So, design and construction rules used in France for LMFBR, that is to say RCC-MR Code, can constitute a good basis for fusion reactors design. Some original aspects of RCC-MR design rules are described, relating to unsignificant creep, ratchetting effect, fatigue and creep damage limits, creep damage evaluation, fatigue damage evaluation, buckling. The main originality of RCC-MR consists to propose comprehensive simplified rules based on elastic calculations and extended from classical cold temperatures to the elevated temperature domain

  10. The RCC-MR design code for LMFBR components. A useful basis for fusion reactor design tools development

    International Nuclear Information System (INIS)

    Acker, D.; Chevereau, G.

    1986-01-01

    LMFBR and fusion reactors exhibit common features with regard to structural materials, temperature service level, loading types. So, design and construction rules used in France for LMFBR, that is to say RCC-MR Code, can constitute a good basis for fusion reactors design. Some original aspects of RCC-MR design rules are described, relating to unsignificant creep, ratchetting effect, fatigue and creep damage limits, creep damage evaluation, fatigue damage evaluation, buckling. The main originality of RCC-MR consists to propose comprehensive simplified rules based on elastic calculations and extended from classical cold temperatures to the elevated temperature domain. (author)

  11. Balance of Plant System Analysis and Component Design of Turbo-Machinery for High Temperature Gas Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, Ronald G. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Wang, Chun Yun [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kadak, Andrew [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Todreas, Neil [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Mirick, Bradley [Concepts, Northern Engineering and Research, Woburn, MA (United States); Demetri, Eli [Concepts, Northern Engineering and Research, Woburn, MA (United States); Koronowski, Martin [Concepts, Northern Engineering and Research, Woburn, MA (United States)

    2004-08-30

    The Modular Pebble Bed Reactor system (MPBR) requires a gas turbine cycle (Brayton cycle) as the power conversion system for it to achieve economic competitiveness as a Generation IV nuclear system. The availability of controllable helium turbomachinery and compact heat exchangers are thus the critical enabling technology for the gas turbine cycle. The development of an initial reference design for an indirect helium cycle has been accomplished with the overriding constraint that this design could be built with existing technology and complies with all current codes and standards. Using the initial reference design, limiting features were identified. Finally, an optimized reference design was developed by identifying key advances in the technology that could reasonably be expected to be achieved with limited R&D. This final reference design is an indirect, intercooled and recuperated cycle consisting of a three-shaft arrangement for the turbomachinery system. A critical part of the design process involved the interaction between individual component design and overall plant performance. The helium cycle overall efficiency is significantly influenced by performance of individual components. Changes in the design of one component, a turbine for example, often required changes in other components. To allow for the optimization of the overall design with these interdependencies, a detailed steady state and transient control model was developed. The use of the steady state and transient models as a part of an iterative design process represents a key contribution of this work. A dynamic model, MPBRSim, has been developed. The model integrates the reactor core and the power conversion system simultaneously. Physical parameters such as the heat exchangers; weights and practical performance maps such as the turbine characteristics and compressor characteristics are incorporated into the model. The individual component models as well as the fully integrated model of the

  12. Balance of Plant System Analysis and Component Design of Turbo-Machinery for High Temperature Gas Reactor Systems

    International Nuclear Information System (INIS)

    Ballinger, Ronald G.; Chunyun Wang; Kadak, Andrew; Todreas, Neil

    2004-01-01

    The Modular Pebble Bed Reactor system (MPBR) requires a gas turbine cycle (Brayton cycle) as the power conversion system for it to achieve economic competitiveness as a Generation IV nuclear system. The availability of controllable helium turbomachinery and compact heat exchangers are thus the critical enabling technology for the gas turbine cycle. The development of an initial reference design for an indirect helium cycle has been accomplished with the overriding constraint that this design could be built with existing technology and complies with all current codes and standards. Using the initial reference design, limiting features were identified. Finally, an optimized reference design was developed by identifying key advances in the technology that could reasonably be expected to be achieved with limited R and D. This final reference design is an indirect, intercooled and recuperated cycle consisting of a three-shaft arrangement for the turbomachinery system. A critical part of the design process involved the interaction between individual component design and overall plant performance. The helium cycle overall efficiency is significantly influenced by performance of individual components. Changes in the design of one component, a turbine for example, often required changes in other components. To allow for the optimization of the overall design with these interdependencies, a detailed steady state and transient control model was developed. The use of the steady state and transient models as a part of an iterative design process represents a key contribution of this work. A dynamic model, MPBRSim, has been developed. The model integrates the reactor core and the power conversion system simultaneously. Physical parameters such as the heat exchangers; weights and practical performance maps such as the turbine characteristics and compressor characteristics are incorporated into the model. The individual component models as well as the fully integrated model of the

  13. Designing evidence-based medicine training to optimize the transfer of skills from the classroom to clinical practice: applying the four component instructional design model.

    Science.gov (United States)

    Maggio, Lauren A; Cate, Olle Ten; Irby, David M; O'Brien, Bridget C

    2015-11-01

    Evidence-based medicine (EBM) skills, although taught in medical schools around the world, are not optimally practiced in clinical environments because of multiple barriers, including learners' difficulty transferring EBM skills learned in the classroom to clinical practice. This lack of skill transfer may be partially due to the design of EBM training. To facilitate the transfer of EBM skills from the classroom to clinical practice, the authors explore one instructional approach, called the Four Component Instructional Design (4C/ID) model, to guide the design of EBM training. On the basis of current cognitive psychology, including cognitive load theory, the premise of the 4C/ID model is that complex skills training, such as EBM training, should include four components: learning tasks, supportive information, procedural information, and part-task practice. The combination of these four components can inform the creation of complex skills training that is designed to avoid overloading learners' cognitive abilities; to facilitate the integration of the knowledge, skills, and attitudes needed to execute a complex task; and to increase the transfer of knowledge to new situations. The authors begin by introducing the 4C/ID model and describing the benefits of its four components to guide the design of EBM training. They include illustrative examples of educational practices that are consistent with each component and that can be applied to teaching EBM. They conclude by suggesting that medical educators consider adopting the 4C/ID model to design, modify, and/or implement EBM training in classroom and clinical settings.

  14. Development of floor design response spectra for seismic design of floor-supported equipment or components, Revision 1, February 1978

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This guide presents an acceptable method for developing two horizontal and one vertical floor design response spectra at various floor or other equipment-support locations from the time-history motions resulting from the dynamic analysis of the supporting structure. These floor design response spectra are used in the dynamic analysis of systems or equipment supported at various locations of the supporting structure. Consulation has been provided by the Advisory Committee on Reactor Safeguards

  15. Aluminum-air battery: System design alternatives and status of components

    Science.gov (United States)

    Maimoni, A.

    1988-09-01

    This report summarizes the status of the various components of the aluminum-air battery system developed for the U.S. Department of Energy Technology Base Project for Electrochemical Energy Storage from 1978 to mid-1987, and presents results of system analysis. Preliminary information indicated that the concentration of carbon dioxide in the incoming air will need to be reduced to 5--100 ppM. A detailed calculation was performed to predict the performance of a full-size-vehicle system with 6-m air-cathode surface area; results showed that previous estimates of system performance are reasonable and consistent with currently available components.

  16. Constraint-based component-modeling for knowledge-based design

    Science.gov (United States)

    Kolb, Mark A.

    1992-01-01

    The paper describes the application of various advanced programming techniques derived from artificial intelligence research to the development of flexible design tools for conceptual design. Special attention is given to two techniques which appear to be readily applicable to such design tools: the constraint propagation technique and the object-oriented programming. The implementation of these techniques in a prototype computer tool, Rubber Airplane, is described.

  17. Proximal tibial fracture following anterior cruciate ligament reconstruction surgery: a biomechanical analysis of the tibial tunnel as a stress riser.

    Science.gov (United States)

    Aldebeyan, Wassim; Liddell, Antony; Steffen, Thomas; Beckman, Lorne; Martineau, Paul A

    2017-08-01

    This is the first biomechanical study to examine the potential stress riser effect of the tibial tunnel or tunnels after ACL reconstruction surgery. In keeping with literature, the primary hypothesis tested in this study was that the tibial tunnel acts as a stress riser for fracture propagation. Secondary hypotheses were that the stress riser effect increases with the size of the tunnel (8 vs. 10 mm), the orientation of the tunnel [standard (STT) vs. modified transtibial (MTT)], and with the number of tunnels (1 vs. 2). Tibial tunnels simulating both single bundle hamstring graft (8 mm) and bone-patellar tendon-bone graft (10 mm) either STT or MTT position, as well as tunnels simulating double bundle (DB) ACL reconstruction (7, 6 mm), were drilled in fourth-generation saw bones. These five experimental groups and a control group consisting of native saw bones without tunnels were loaded to failure on a Materials Testing System to simulate tibial plateau fracture. There were no statistically significant differences in peak load to failure between any of the groups, including the control group. The fracture occurred through the tibial tunnel in 100 % of the MTT tunnels (8 and 10 mm) and 80 % of the DB tunnels specimens; however, the fractures never (0 %) occurred through the tibial tunnel of the standard tunnels (8 or 10 mm) (P = 0.032). In the biomechanical model, the tibial tunnel does not appear to be a stress riser for fracture propagation, despite suggestions to the contrary in the literature. Use of a standard, more vertical tunnel decreases the risk of ACL graft compromise in the event of a fracture. This may help to inform surgical decision making on ACL reconstruction technique.

  18. Comparison of tibial shaft ski fractures in children and adults.

    Science.gov (United States)

    Hamada, Tomo; Matsumoto, Kazu; Ishimaru, Daichi; Sumi, Hiroshi; Shimizu, Katsuji

    2014-09-01

    To examine whether child and adult skiers have different risk factors or mechanisms of injury for tibial shaft fractures. Descriptive epidemiological study. Prospectively analyzed the epidemiologic factors, injury types, and injury mechanisms at Sumi Memorial Hospital. This study analyzed information obtained from 276 patients with tibial fractures sustained during skiing between 2004 and 2012. We focused on 174 ski-related tibial shaft fractures with respect to the following factors: age, gender, laterality of fracture, skill level, mechanism of fracture (fall vs collision), scene of injury (steepness of slope), snow condition, and weather. Fracture pattern was graded according to Arbeitsgemeinschaft für Osteosynthesefragen (AO) classification and mechanical direction [external (ER) or internal rotation (IR)]. Tibial shaft fractures were the most common in both children (89.3%) and adults (47.4%). There were no significant differences in gender, side of fracture, mechanism of fracture, snow condition, or weather between children and adults. Skill levels were significantly lower in children than in adults (P differences in some of these parameters, suggesting that child and adult skiers have different risk factors or mechanisms of injury for tibial shaft fractures.

  19. Background, design and conceptual model of the cluster randomized multiple-component workplace study

    DEFF Research Database (Denmark)

    Christensen, Jeanette Reffstrup; Bredahl, Thomas Viskum Gjelstrup; Hadrévi, Jenny

    2016-01-01

    health care workers. This was done through a multi-component intervention including 1) intelligent physical exercise training (IPET), dietary advice and weight loss (DAW) and cognitive behavioural training (CBT). DISCUSSION: The FRIDOM program has the potential to provide evidence-based knowledge...

  20. Reconstrucción tibial: transferencia sóleo-peroné ipsilateral. Tibialización peroneal Tibial reconstruction: ipsilateral soleus-fibula transfer. Fibular tibialization

    Directory of Open Access Journals (Sweden)

    E. Revelo Jiron

    2009-12-01

    Full Text Available Las transferencias óseas peroneales en forma libre o ipsilateral han sido propuestas para la reconstrucción de grandes defectos tibiales. Están también descritas varias modificaciones al respecto, siendo una de ellas la constitución de un colgajo compuesto soleo-peroné realizado como transferencia libre. En este estudio presentamos nuestra experiencia con esta variante, pero en forma ipsilateral. logrando la reconstrucción del defecto tibial por medio de la tibialización peroneal. Escogimos realizar un colgajo compuesto soleo-peroné ipsilateral a flujo anterógrado o retrogrado para la reconstrucción de una serie personal de 14 pacientes consecutivos, 13 hombre y 1 mujer, con edad media de 30 años, y con amplios defectos tibiales y de tejidos blandos causados por accidentes de transito en 12 casos, 1 por proyectil balístico y 1 por artefacto explosivo artesanal. El promedio de tamaño del defecto tibial fue de 9.4 cm. Elegimos la forma ipsilateral por no disponer de infraestructura adecuada para realizar una transferencia libre. La serie de estudio se realizó durante el periodo comprendido entre Abril de 1995 y Abril del 2005. Todos los colgajos sobrevivieron. Dos pacientes desarrollaron pseudoartrosis. El apoyo completo y la marcha en 12 pacientes, se logró en un periodo promedio de 9 meses. El seguimiento postoperatorio ha sido de 3 a 6 años. Doce pacientes se han incorporado a la vida activa. Discutimos algunos aspectos prácticos de la técnica como resultado de la experiencia quirúrgica obtenida de esta serie personal. Consideramos que el método es fiable, fácil de realizar y proporciona excelentes resultados.Fibular flaps such as in there free form or as ipsilateral transfers have been proposed for reconstruction of large tibial defects. Several modifications have been described for the use of this flap. In this study we will present our experience using the ipsilateral transfer of an osteomuscular soleous fibular flap

  1. The medial tibial stress syndrome score: Item generation for a new ...

    African Journals Online (AJOL)

    The medial tibial stress syndrome score: Item generation for a new patient reported outcome measure. ... instrument that evaluates injury severity and treatment effects for medial tibial stress syndrome (MTSS) patients. ... from 32 Countries:.

  2. Maintenance implications of critical components in ITER CXRS upper port plug design

    NARCIS (Netherlands)

    Koning, J.; Jaspers, R.; Doornink, J.; Ouwehand, B.; Klinkhamer, J.F.F.; Snijders, B.; Sadakov, S.; Heemskerk, C.

    2009-01-01

    Already in the early phase of a design for ITER, the maintenance aspects should be taken into account, since they might have serious implications. This paper presents the arguments in support of the case for the maintainability of the design, notably if this maintenance is to be performed by

  3. SystemCSP: A graphical language for designing concurrent component-based embedded control systems

    NARCIS (Netherlands)

    Orlic, B.

    2007-01-01

    Realization of embedded control systems is a complex task. Increasing part of this complexity is nowadays located in the design and implementation of software that runs them. A major source of difficulties is the limitation of the average software developer to understand and design complex

  4. Robert M. Gagne and M. David Merrill: In Conversation. No. 3: An Overview of M. David Merrill's New Component Design Theory.

    Science.gov (United States)

    Twitchell, David, Ed.

    1990-01-01

    This third in a series of edited transcripts based on a conference at Utah State University describes Merrill's Component Design Theory (CDT) and compares it to his earlier Component Display Theory. Topics discussed include concept structures, knowledge acquisition, components of an instructional design system, and a new CDT matrix. (10…

  5. Component optimization of dairy manure vermicompost, straw, and peat in seedling compressed substrates using simplex-centroid design.

    Science.gov (United States)

    Yang, Longyuan; Cao, Hongliang; Yuan, Qiaoxia; Luoa, Shuai; Liu, Zhigang

    2018-03-01

    Vermicomposting is a promising method to disposal dairy manures, and the dairy manure vermicompost (DMV) to replace expensive peat is of high value in the application of seedling compressed substrates. In this research, three main components: DMV, straw, and peat, are conducted in the compressed substrates, and the effect of individual components and the corresponding optimal ratio for the seedling production are significant. To address these issues, the simplex-centroid experimental mixture design is employed, and the cucumber seedling experiment is conducted to evaluate the compressed substrates. Results demonstrated that the mechanical strength and physicochemical properties of compressed substrates for cucumber seedling can be well satisfied with suitable mixture ratio of the components. Moreover, DMV, straw, and peat) could be determined at 0.5917:0.1608:0.2475 when the weight coefficients of the three parameters (shoot length, root dry weight, and aboveground dry weight) were 1:1:1. For different purpose, the optimum ratio can be little changed on the basis of different weight coefficients. Compressed substrate is lump and has certain mechanical strength, produced by application of mechanical pressure to the seedling substrates. It will not harm seedlings when bedding out the seedlings, since the compressed substrate and seedling are bedded out together. However, there is no one using the vermicompost and agricultural waste components of compressed substrate for vegetable seedling production before. Thus, it is important to understand the effect of individual components to seedling production, and to determine the optimal ratio of components.

  6. Medial tibial plateau morphology and stress fracture location: A magnetic resonance imaging study

    OpenAIRE

    Yukata, Kiminori; Yamanaka, Issei; Ueda, Yuzuru; Nakai, Sho; Ogasa, Hiroyoshi; Oishi, Yosuke; Hamawaki, Jun-ichi

    2017-01-01

    AIM To determine the location of medial tibial plateau stress fractures and its relationship with tibial plateau morphology using magnetic resonance imaging (MRI). METHODS A retrospective review of patients with a diagnosis of stress fracture of the medial tibial plateau was performed for a 5-year period. Fourteen patients [three female and 11 male, with an average age of 36.4 years (range, 15-50 years)], who underwent knee MRI, were included. The appearance of the tibial plateau stress fract...

  7. Embedded Sensors and Controls to Improve Component Performance and Reliability -- Bench-scale Testbed Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Drira, Anis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Reed, Frederick K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Embedded instrumentation and control systems that can operate in extreme environments are challenging due to restrictions on sensors and materials. As a part of the Department of Energy's Nuclear Energy Enabling Technology cross-cutting technology development programs Advanced Sensors and Instrumentation topic, this report details the design of a bench-scale embedded instrumentation and control testbed. The design goal of the bench-scale testbed is to build a re-configurable system that can rapidly deploy and test advanced control algorithms in a hardware in the loop setup. The bench-scale testbed will be designed as a fluid pump analog that uses active magnetic bearings to support the shaft. The testbed represents an application that would improve the efficiency and performance of high temperature (700 C) pumps for liquid salt reactors that operate in an extreme environment and provide many engineering challenges that can be overcome with embedded instrumentation and control. This report will give details of the mechanical design, electromagnetic design, geometry optimization, power electronics design, and initial control system design.

  8. Fault-tolerant design of adaptive digital control systems for power plant components

    International Nuclear Information System (INIS)

    Parlos, A.G.; Menon, S.K.

    1992-01-01

    An adaptive controller has been designed for the water level of a Westinghouse type U-tube steam generator, and its operation has been demonstrated in the entire power range via computer simulations. The proposed design exhibits improved performance, at low operating powers, a,s compared to existing controller types. The continuous-time controller design is performed systematically via the Linear Quadratic Gaussian/Loop Transfer Recovery method, followed by gain adaptation allowing controller operation in the entire power range. Digital implementation of the controller is accomplished by a digital redesign which results in matching the digital and continuous-time system and controller states. It is only at this stage of the control system design process that issues such as microprocessor induced quantization effects are taken into account. The use of computer-aided-design software greatly expedites the design cycle, allowing the designer to maximize the controller stability robustness to uncertainties via numerous iterations. This inherent controller robustness can be exploited to tolerate incipient plant faults, such as deteriorating U-tube heat transfer properties, without significant loss of controller performance

  9. Supporting Youth Boundary Crossing – Intertextuality as a Component of Design for Information and Visual Literacy

    Directory of Open Access Journals (Sweden)

    Kristen Radcliff Clark

    2009-12-01

    Full Text Available This article charts attempts to derive a theoretically guided approach to engaging children in boundary crossing toward literacies and practices associated with the Age of Information. Using Fifth Dimension (5D afterschool programs as laboratories for informal learning design, interventions were designed to explore the extent to which youth cultures and literacies can be used as intertextual gateways to more educative practices associated with visual and information literacy. Intertextuality is introduced as a concept to consider the relevance of using semantic relationships between popular and educative texts to inform learning design for afterschool programming.

  10. Refinement and verification in component-based model-driven design

    DEFF Research Database (Denmark)

    Chen, Zhenbang; Liu, Zhiming; Ravn, Anders Peter

    2009-01-01

    Modern software development is complex as it has to deal with many different and yet related aspects of applications. In practical software engineering this is now handled by a UML-like modelling approach in which different aspects are modelled by different notations. Component-based and object-o...... be integrated in computer-aided software engineering (CASE) tools for adding formally supported checking, transformation and generation facilities.......Modern software development is complex as it has to deal with many different and yet related aspects of applications. In practical software engineering this is now handled by a UML-like modelling approach in which different aspects are modelled by different notations. Component-based and object...

  11. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    Science.gov (United States)

    Polzin, Kurt A.; Godfroy, Thomas J.

    2008-01-01

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 5 psi, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.5 GPM.

  12. Design and implementation of an inpatient physician documentation system using off-the-shelf components.

    Science.gov (United States)

    Cucina, Russell J; Bokser, Seth J; Carter, Jonathan T; McLaren, Kevin M; Blum, Michael S

    2007-10-11

    We report the development and implementation of an electronic inpatient physician documentation system using off-the-shelf components, rapidly and at low cost. Within 9 months of deployment, over half of physician notes were electronic, and within 20 months, paper physician notes were eliminated. Our results suggest institutions can prioritize conversion to inpatient electronic physician documentation without waiting for development of sophisticated software packages or large capital investments.

  13. Development of Component Mechanisms and Novel Actuation for Origami Inspired Designs

    Science.gov (United States)

    2016-11-17

    distribution unlimited. All structural components of the robot were fabricated with a 3D printer . The communication module, cooling fan, and battery for...wire actuator. The module has bi- stability so that it can maintain its shape without actuator force. Morphing Voxel Sheet Modular morphing...is the complexity of geometrical relationships between folding units requires complex pattern generation and folding sequence to build diverse 3D

  14. Progress in the engineering design and assessment of the European DEMO first wall and divertor plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Thomas R., E-mail: tom.barrett@ukaea.uk [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Ellwood, G.; Pérez, G.; Kovari, M.; Fursdon, M.; Domptail, F.; Kirk, S.; McIntosh, S.C.; Roberts, S.; Zheng, S. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Boccaccini, L.V. [KIT, INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); You, J.-H. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Bachmann, C. [EUROfusion, PPPT, Boltzmann Str. 2, 85748 Garching (Germany); Reiser, J.; Rieth, M. [KIT, IAM, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Visca, E.; Mazzone, G. [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati (Italy); Arbeiter, F. [KIT, INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Domalapally, P.K. [Research Center Rez, Hlavní 130, 250 68 Husinec – Řež (Czech Republic)

    2016-11-01

    Highlights: • The engineering of the plasma facing components for DEMO is an extreme challenge. • PFC overall requirements, methods for assessment and designs status are described. • Viable divertor concepts for 10 MW/m{sup 2} surface heat flux appear to be within reach. • The first wall PFC concept will need to vary poloidally around the wall. • First wall coolant, structural material and PFC topology are open design choices. - Abstract: The European DEMO power reactor is currently under conceptual design within the EUROfusion Consortium. One of the most critical activities is the engineering of the plasma-facing components (PFCs) covering the plasma chamber wall, which must operate reliably in an extreme environment of neutron irradiation and surface heat and particle flux, while also allowing sufficient neutron transmission to the tritium breeding blankets. A systems approach using advanced numerical analysis is vital to realising viable solutions for these first wall and divertor PFCs. Here, we present the system requirements and describe bespoke thermo-mechanical and thermo-hydraulic assessment procedures which have been used as tools for design. The current first wall and divertor designs are overviewed along with supporting analyses. The PFC solutions employed will necessarily vary around the wall, depending on local conditions, and must be designed in an integrated manner by analysis and physical testing.

  15. Automated Design and Analysis Tool for CEV Structural and TPS Components, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation of the proposed effort is a unique automated process for the analysis, design, and sizing of CEV structures and TPS. This developed process will...

  16. Automated Design and Analysis Tool for CLV/CEV Composite and Metallic Structural Components, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation of the proposed effort is a unique automated process for the analysis, design, and sizing of CLV/CEV composite and metallic structures. This developed...

  17. Model-Based Design Tools for Extending COTS Components To Extreme Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation in this Phase I project is to prove the feasibility of using model-based design (MBD) tools to predict the performance and useful life of...

  18. 75% success rate after open debridement, exchange of tibial insert, and antibiotics in knee prosthetic joint infections.

    Science.gov (United States)

    Holmberg, Anna; Thórhallsdóttir, Valdís Gudrún; Robertsson, Otto; W-Dahl, Annette; Stefánsdóttir, Anna

    2015-01-01

    Prosthetic joint infection (PJI) is a leading cause of early revision after total knee arthroplasty (TKA). Open debridement with exchange of tibial insert allows treatment of infection with retention of fixed components. We investigated the success rate of this procedure in the treatment of knee PJIs in a nationwide material, and determined whether the results were affected by microbiology, antibiotic treatment, or timing of debridement. 145 primary TKAs revised for the first time, due to infection, with debridement and exchange of the tibial insert were identified in the Swedish Knee Arthroplasty Register (SKAR). Staphylococcus aureus was the most common pathogen (37%) followed by coagulase-negative staphylococci (CNS) (23%). Failure was defined as death before the end of antibiotic treatment, revision of major components due to infection, life-long antibiotic treatment, or chronic infection. The overall healing rate was 75%. The type of infecting pathogen did not statistically significantly affect outcome. Staphylococcal infections treated without a combination of antibiotics including rifampin had a higher failure rate than those treated with rifampin (RR = 4, 95% CI: 2-10). In the 16 cases with more than 3 weeks of symptoms before treatment, the healing rate was 62%, as compared to 77% in the other cases (p = 0.2). The few patients with a revision model of prosthesis at primary operation had a high failure rate (5 of 8). Good results can be achieved by open debridement with exchange of tibial insert. It is important to use an antibiotic combination including rifampin in staphylococcal infections.

  19. Primary Ankle Arthrodesis for Severely Comminuted Tibial Pilon Fractures.

    Science.gov (United States)

    Al-Ashhab, Mohamed E

    2017-03-01

    Management of severely comminuted, complete articular tibial pilon fractures (Rüedi and Allgöwer type III) remains a challenge, with few treatment options providing good clinical outcomes. Twenty patients with severely comminuted tibial pilon fractures underwent primary ankle arthrodesis with a retrograde calcaneal nail and autogenous fibular bone graft. The fusion rate was 100% and the varus malunion rate was 10%. Fracture union occurred at a mean of 16 weeks (range, 13-18 weeks) postoperatively. Primary ankle arthrodesis is a successful method for treating highly comminuted tibial pilon fractures, having a low complication rate and a high satisfaction score. [Orthopedics. 2017; 40(2):e378-e381.]. Copyright 2016, SLACK Incorporated.

  20. Design basis for creep of zirconium alloy components in a fast neutron flux

    International Nuclear Information System (INIS)

    Ross-Ross, P.A.; Fidleris, V.

    1975-01-01

    The chalk River Nuclear Laboratory's experience with the creep of zirconium alloys in a neutron flux is described. Fast neutron flux changes the creep behaviour of zirconium alloys and new design criteria for in-reactor applications are needed. From experimental results empirical relations describing the effects of neutron flux, stress, temperature, time and anisotropy on creep rate were established. The relations are applied to the design of pressure tubes. (author)

  1. Component-based engineering of real-time JAVA : applications on a polychronous design platform

    OpenAIRE

    Talpin , Jean-Pierre; Le Dez , Bruno; Gamatié , Abdoulaye; Le Guernic , Paul; Berner , David

    2003-01-01

    Rising complexity and performances of embedded systems, shortening time-to-ma- rket demands for digital equipments, growing installed bases of intellectual properties, stress high-level design as a prominent research topic to compensate a widening productivity gap. In this aim, we put the principles of polychronous design (i.e. multi-clocked and synchronous) to work in the context of the real-time Java programming language by introducing a method for modeling, transforming, verifying and simu...

  2. Design basis for creep of zirconium alloy components in a fast neutron flux

    International Nuclear Information System (INIS)

    Ross-Ross, P.A.; Fidleris, V.

    1974-01-01

    The Chalk River Nuclear Laboratory's experience with the creep of zirconium alloys in a neutron flux is described. Fast neutron flux changes the creep behavior of zirconium alloys and new design criteria for in-reactor applications are needed. From experimental results empirical relations describing the effects of neutron flux, stress, temperature, time, and anisotropy on creep rate were established. The relations are applied to the design of pressure tubes. (author)

  3. Agent And Component Object Framework For Concept Design Modeling Of Mobile Cyber Physical Systems

    Science.gov (United States)

    2018-03-01

    base design, service-oriented architecture (SOA) and enterprise architecture , brought a new emphasis on business processes and business organization...there are some useful concepts that can be leveraged into an MIGVS architecture . The concept of modeling operational or business behavior logic as...Design 1. Explicit meta model for architecture concepts and relationships 2. Support business or operational modeling and associated events 3

  4. Theory and Design of Tunable and Reconfigurable Microwave Passive Components on Partially Magnetized Ferrite Substrate

    KAUST Repository

    Ghaffar, Farhan A.

    2016-11-01

    Typical microwave components such as antennas are large in size and occupy considerable space. Since multiple standards are utilized in modern day systems and thus multiple antennas are required, it is best if a single component can be reconfigured or tuned to various bands. Similarly phase shifters to provide beam scanning and polarization reconfigurable antennas are important for modern day congested wireless systems. Tunability of antennas or phase shifting between antenna elements has been demonstrated using various techniques which include magnetically tunable components on ferrite based substrates. Although this method has shown promising results it also has several issues due to the use of large external electromagnets and operation in the magnetically saturated state. These issues include the device being bulky, inefficient, non-integrable and expensive. In this thesis, we have tried to resolve the above mentioned issues of large size and large power requirement by replacing the large electromagnets with embedded bias windings and also by operating the ferrites in the partially magnetized state. New theoretical models and simulation methodology have been used to evaluate the performance of the microwave passive components in the partially magnetized state. A multilayer ferrite Low Temperature Cofired Ceramic (LTCC) tape system has been used to verify the performance experimentally. There exists a good agreement between the theoretical, simulation and measurement results. Tunable antennas with tuning range of almost 10 % and phase shifter with an FoM of 83.2/dB have been demonstrated in this work, however the major contribution is that this has been achieved with bias fields that are 90 % less than the typically reported values in the literature. Finally, polarization reconfigurability has also been demonstrated for a circular patch antenna using a low cost additive manufacturing technique. The results are promising and indicate that highly integrated

  5. High temperature structural design and R and Ds for heat transport system components of FBR 'Monju'

    International Nuclear Information System (INIS)

    Sumikawa, Masaharu; Nakagawa, Yukio; Fukuda, Yoshio; Sukegawa, Masayuki; Ishizaki, Tairo.

    1980-01-01

    The machines and equipments of cooling system for the fast breeder prototype reactor ''Monju'' are operated in creep temperature region, and the upper limit temperature to apply the domestic structural design standard for nuclear machines and equipment is exceeded, therefore the guideline for high temperature structural design is being drawn up, reflecting the results of recent research and development, by the Power Reactor and Nuclear Fuel Development Corp. and others. In order to obtain the basic data for the purpose, the tests on the high temperature characteristics of main structural members and structural elements were carried out, and eight kinds of the inelastic structural analysis program ''HI-EPIC'' series were developed, thus the fundamental technologies of structural desigh in non-linear region were established. Also in the non-linear region, enormous physical quantities must be evaluated, and in the design method based on real elastic analysis, many design diagrams must be employed, therefore for the purpose of improving the reliability of evaluation, the automatic evaluation program ''HI-TEP'' was developed, and preparation has been made for the design of actual machines. The high temperature structural design in ''Monju'', the development of inelastic structural analysis program and high temperature structural analysis evaluation program, and the development of high temperature structures and materials are described. (Kako, I.)

  6. tibialization of the fibula in a child with chronic osteomyelitis of the ...

    African Journals Online (AJOL)

    used in tibial reconstruction after resection of Ewing's sarcoma (6). A case report from Congo detailed how a 10-centimeter tibial bone loss was treated by inter- tibiofibula bone grafting, resulting in tibialization of the fibula. The patient was reviewed after 10 years; and the clinical result was satisfactory and stable (7).

  7. 21 CFR 888.3590 - Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint tibial (hemi-knee) metallic resurfacing... Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis. (a) Identification. A knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis is a device intended to be implanted...

  8. External fixation of tibial pilon fractures and fracture healing.

    Science.gov (United States)

    Ristiniemi, Jukka

    2007-06-01

    Distal tibial fractures are rare and difficult to treat because the bones are subcutaneous. External fixation is commonly used, but the method often results in delayed union. The aim of the present study was to find out the factors that affect fracture union in tibial pilon fractures. For this purpose, prospective data collection of tibial pilon fractures was carried out in 1998-2004, resulting in 159 fractures, of which 83 were treated with external fixation. Additionally, 23 open tibial fractures with significant > 3 cm bone defect that were treated with a staged method in 2000-2004 were retrospectively evaluated. The specific questions to be answered were: What are the risk factors for delayed union associated with two-ring hybrid external fixation? Does human recombinant BMP-7 accelerate healing? What is the role of temporary ankle-spanning external fixation? What is the healing potential of distal tibial bone loss treated with a staged method using antibiotic beads and subsequent autogenous cancellous grafting compared to other locations of the tibia? The following risk factors for delayed healing after external fixation were identified: post-reduction fracture gap of >3 mm and fixation of the associated fibula fracture. Fracture displacement could be better controlled with initial temporary external fixation than with early definitive fixation, but it had no significant effect on healing time, functional outcome or complication rate. Osteoinduction with rhBMP-7 was found to accelerate fracture healing and to shorten the sick leave. A staged method using antibiotic beads and subsequent autogenous cancellous grafting proved to be effective in the treatment of tibial bone loss. Healing potential of the bone loss in distal tibia was at least equally good as in other locations of the tibia.

  9. Bone stress in runners with tibial stress fracture.

    Science.gov (United States)

    Meardon, Stacey A; Willson, John D; Gries, Samantha R; Kernozek, Thomas W; Derrick, Timothy R

    2015-11-01

    Combinations of smaller bone geometry and greater applied loads may contribute to tibial stress fracture. We examined tibial bone stress, accounting for geometry and applied loads, in runners with stress fracture. 23 runners with a history of tibial stress fracture & 23 matched controls ran over a force platform while 3-D kinematic and kinetic data were collected. An elliptical model of the distal 1/3 tibia cross section was used to estimate stress at 4 locations (anterior, posterior, medial and lateral). Inner and outer radii for the model were obtained from 2 planar x-ray images. Bone stress differences were assessed using two-factor ANOVA (α=0.05). Key contributors to observed stress differences between groups were examined using stepwise regression. Runners with tibial stress fracture experienced greater anterior tension and posterior compression at the distal tibia. Location, but not group, differences in shear stress were observed. Stepwise regression revealed that anterior-posterior outer diameter of the tibia and the sagittal plane bending moment explained >80% of the variance in anterior and posterior bone stress. Runners with tibial stress fracture displayed greater stress anteriorly and posteriorly at the distal tibia. Elevated tibial stress was associated with smaller bone geometry and greater bending moments about the medial-lateral axis of the tibia. Future research needs to identify key running mechanics associated with the sagittal plane bending moment at the distal tibia as well as to identify ways to improve bone geometry in runners in order to better guide preventative and rehabilitative efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. [Effects of the new comprehensive system for designating illegal drug components on the abuse of designer drugs and future problems based on an online questionnaire].

    Science.gov (United States)

    Morino, Taichi; Okazaki, Mitsuhiro; Toda, Takaki; Yokoyama, Takashi

    2015-12-01

    Recently, the abuse of designer drugs has become a social problem. Designer drugs are created by modifying part of the chemical structure of drugs that have already been categorized as illegal, thereby creating a different chemical compound in order to evade Pharmaceutical Affairs Law regulations. The new comprehensive system for designating illegal drug components has been in effect since March 2013, and many designer drugs can now be regulated. We conducted an online questionnaire survey of people with a history of designer drug use to elucidate the effects of the new system on the abuse of designer drugs and to identify potential future problems. Over half the subjects obtained designer drugs only before the new system was implemented. Awareness of the system was significantly lower among subjects who obtained designer drugs for the first time after its introduction than those who obtained the drugs only before its implementation. Due to the new system, all methods of acquiring designer drugs saw decreases in activity. However, the ratio of the acquisition of designer drugs via the Internet increased. Since over 50% of the subjects never obtained designer drugs after the new system was introduced, goals that aimed to make drug procurement more difficult were achieved. However, awareness of the new system among subjects who obtained designer drugs after the new system was introduced was significantly low. Therefore, fostering greater public awareness of the new system is necessary. The results of the questionnaire also suggested that acquiring designer drugs through the Internet has hardly been affected by the new system. We strongly hope that there will be a greater push to restrict the sale of designer drugs on the Internet in the near future.

  11. Assessment Of Mold-Design Dependent Textures In CIM-Components By Polarized Light Optical Texture Analysis (PLOTA)

    International Nuclear Information System (INIS)

    Kern, Frank; Rauch, Johannes; Gadow, Rainer

    2007-01-01

    By thermoplastic ceramic injection moulding (CIM) ceramic components of high complexity can be produced in a large number of items at low dimensional tolerances. The cost advantage by the high degree of automation leads to an economical mass-production. The structure of injection-moulded components is determined by the form filling behaviour and viscosity of the feedstock, the machine parameters, the design of the mold and the gate design. With an adapted mold- and gate-design CIM-components without textures are possible. The ''Polarized Light Optical Texture analysis'' (PLOTA) makes it possible to inspect the components and detect and quantify the textures produced by a new mold. Based on the work of R. Fischer (2004) the PLOTA procedure was improved by including the possibility to measure the inclination angle and thus describe the orientation of the grains in three dimensions. Sampled thin sections of ceramic components are analysed under the polarization microscope and are brought in diagonal position. Pictures are taken with a digital camera. The pictures are converted in the L*a*b*- colour space and the crystals color values a* and b* in the picture are measured. The color values are compared with the values of a quartz wedge, which serves as universal standard. From the received values the inclination angle can be calculated relative to the microscope axis. It is possible to use the received data quantitatively e.g. for the FEM supported simulation of texture-conditioned divergences of mechanical values. Thus the injection molding parameters can be optimized to obtain improved mechanical properties

  12. Ischial hypoplasia, tibial hypoplasia and facial abnormalities: a new syndrome?

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, G. [Department of Radiology, Dokkyo University School of Medicine (Japan); Haga, Yoshihiko [Department of Orthopaedics, Shizuoka Children`s Hospital, Shizuoka (Japan); Aoki, Katsuhiko [Department of Radiology, Shizuoka Children`s Hospital, Shizuoka (Japan); Hasegawa, Tomoko [Division of Clinical Genetics, Shizuoka Children`s Hospital, Shizuoka (Japan)

    1998-12-01

    A child with facial abnormalities, short stature and a variety of skeletal alterations is reported. The facial abnormalities comprised low-set ears, short nose with a long philtrum, micrognathia and cleft palate. The skeletal alterations included ischial hypoplasia, malformations of the cervical spine, hypoplasia of the lesser trochanters, tibial hypoplasia with bowing of the lower legs, tibio-fibular diastasis with malformed distal tibial epiphyses, clubfeet and brachymesophalangy. The constellation of clinical and radiological findings in the present patient do not fit any known malformation syndrome. (orig.) With 4 figs., 8 refs.

  13. Expected long-term outcome after a tibial shaft fracture

    DEFF Research Database (Denmark)

    Faergemann, C; Frandsen, P A; Röck, N D

    1999-01-01

    OBJECTIVE: A prospective study of 207 laymen and professionals answered a questionnaire regarding the expectations of the long-term outcome 6 months after a unilateral tibial shaft fracture. The aim was (1) to disclose the expected outcome after unilateral tibial shaft fracture, and (2) to compare...... these expectations with the outcome measured in patients. METHODS: There were five groups of nonpatients: (1) 42 orthopedic surgeons, (2) 36 physiotherapists, (3) 42 students, (4) 49 white collar workers, and (5) 38 blue collar workers. Outcome was measured by Sickness Impact Profile (SIP). The SIP scores were...

  14. Ischial hypoplasia, tibial hypoplasia and facial abnormalities: a new syndrome?

    International Nuclear Information System (INIS)

    Nishimura, G.; Haga, Yoshihiko; Aoki, Katsuhiko; Hasegawa, Tomoko

    1998-01-01

    A child with facial abnormalities, short stature and a variety of skeletal alterations is reported. The facial abnormalities comprised low-set ears, short nose with a long philtrum, micrognathia and cleft palate. The skeletal alterations included ischial hypoplasia, malformations of the cervical spine, hypoplasia of the lesser trochanters, tibial hypoplasia with bowing of the lower legs, tibio-fibular diastasis with malformed distal tibial epiphyses, clubfeet and brachymesophalangy. The constellation of clinical and radiological findings in the present patient do not fit any known malformation syndrome. (orig.)

  15. Posterior tibial neuropathy by a Baker's cyst: case report.

    Science.gov (United States)

    Lee, J H; Jun, J B; Lee, H S; Yun, H R; Choi, C H; Park, S B; Hong, E K; Yoo, D H; Kim, S Y

    2000-01-01

    Baker's cysts are rare cause of peripheral nerve entrapment and only a few cases of tibial nerve entrapment resulting from the popliteal cyst in the calf muscle have been reported in the literature. We present a case of rheumatoid arthritis complicated by a Baker's cyst with a tibial nerve entrapment. It is important to diagnose a Baker's cyst early and to differentiate it from thrombophlebitis, a popliteal aneurysm, tumor or muscle tear to effect optimal therapy and to obviate a potential neuropathy. Prompt recognition of these cases may save the patients unnecessary procedures and delay in treatment.

  16. Tibial and fibular angles in homozygous sickle cell disease

    International Nuclear Information System (INIS)

    Akamaguna, A.I.; Odita, J.C.; Ugbodaga, C.I.; Okafor, L.A.

    1986-01-01

    Measurements of the tibial and fibular angles made on ankle radiographs of 34 patients with sickle cell disease were compared with those of 36 normal Nigerians. Widening of the fibular angle, which is an indication of tibiotalar slant, was demonstrated in about 79% of sickle cell disease patients. By using fibular angle measurements as an objective method of assessing subtle tibiotalar slant, it is concluded that the incidence of this deformity is much higher among sickle cell disease patients than previously reported. The mean values of tibial and fibular angles in normal Nigerians are higher than has been reported amongst Caucasians. (orig.)

  17. Polietileno tibial móvel na artroplastia total do joelho Mobile polyethylene bearing in total knee replacement

    Directory of Open Access Journals (Sweden)

    Hugo Alexandre de Araújo Barros Cobra

    2009-01-01

    Full Text Available O desgaste do polietileno tibial utilizado nas artroplastias de joelho origina partículas que, quando fagocitadas, dão início à cascata de eventos biológicos que levam à osteólise e consequente afrouxamento dos componentes da prótese. Assim sendo, alternativas para o polietileno têm sido pesquisadas com o objetivo de minimizar o desgaste e, com isso, aumentar a durabilidade das artroplastias. Uma dessas opções é a utilização de polietilenos tibiais móveis, que apresentam maior conformidade do que os polietilenos fixos, ao mesmo tempo em que permitem autoalinhamento rotacional entre os componentes, melhorando, dessa forma, a cinética e a cinemática da prótese. São apresentados aqui, de forma resumida, porém abrangente, o conceito, os fundamentos biomecânicos, as indicações, os resultados esperados e complicações dos polietilenos tibiais móveis nas artroplastias totais do joelho.Debris of polyethylene tibial bearings have been recognized as a major cause for the onset of the cascade of biological events leading to osteolysis and loosening of prosthetic components after total knee arthroplasty. Since then, research has been focused on alternative bearing surfaces in order to minimize the amount and rate of polyethylene wear off and, in doing so, increasing the survivorship rate for knee arthroplasties. One such option is to have a mobile tibial bearing allowing more conformity and rotational self-alignment of the components, improving kinetics and kinematics of the prosthesis. The authors present a resumed but throughout and comprehensive review of the rationale, biomechanics fundamentals, indications, pitfalls, outcomes and complications for the use of mobile tibial bearings in total knee replacement.

  18. Design considerations for multi component molecular-polymeric nonlinear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Singer, K.D. (Case Western Reserve Univ., Cleveland, OH (USA). Dept. of Physics); Kuzyk, M.G. (Washington State Univ., Pullman, WA (USA). Dept. of Physics); Fang, T.; Holland, W.R. (AT and T Bell Labs., Princeton, NJ (USA)); Cahill, P.A. (Sandia National Labs., Albuquerque, NM (USA))

    1990-01-01

    We review our work on multi component polymeric nonlinear optical materials. These materials consist of nonlinear optical molecules incorporated in a polymeric host. A cross-linked triazine polymer incorporating a dicyanovinyl terminated azo dye was found to be relatively stable at 85{degree} and posses an electro-optic coefficient of 11pm/V. We have also observed the zero dispersion condition in a new anomalous dispersion dye for phase matched second harmonic generation, and expect efficient conversion to the blue. A squarylium dye, ISQ, has been found to posses a large third order nonlinearity, and may display two-level behavior. 24 refs., 11 figs.

  19. Derivation of design response spectra for analysis and testing of components and systems

    International Nuclear Information System (INIS)

    Krutzik, N.

    1996-01-01

    Some institutions participating in the Benchmark Project performed parallel calculations for the WWER-1000 Kozloduy NPP. The investigations were based on various mathematical models and procedures for consideration of soil-structure interaction effects, simultaneously applying uniform soil dynamic and seismological input data. The methods, mathematical models and dynamic response results were evaluated and discussed in detail and finally compared by means of different structural models and soil representations with the aim of deriving final enveloped and smoothed dynamic response data (benchmark response spectra). This should be used for requalification by analysis testing of the mechanical and electrical components and systems located in this type of reactor building

  20. Radiation effects on optical components of a laser radar sensor designed for remote metrology in ITER

    International Nuclear Information System (INIS)

    Menon, M.M.; Grann, E.B.; Slotwinski, A.

    1997-09-01

    A frequency modulated laser radar is being developed for in-vessel metrology and viewing of plasma-facing surfaces. Some optical components of this sensor must withstand intense gamma radiation (3 x 10 6 rad/h) during operation. The authors have tested the effect of radiation on a silica core polarization maintaining optical fiber and on TeO 2 crystals at doses up to ∼ 10 9 rad. Additional tests are planned for evaluating the performance of a complete acousto-optic (AO) scanning device. The progress made in these tests is also described

  1. Design rule for fatigue of welded joints in elevated-temperature nuclear components

    International Nuclear Information System (INIS)

    O'Connor, D.G.; Corum, J.M.

    1986-01-01

    Elevated-temperature weldment fatigue failures have occurred in several operating liquid-metal reactor plants. Yet, ASME Code Case N-47, which governs the design of such plants in the United States, does not currently address the Code Subgroup on Elevated Temperature Design recently proposed a fatigue strength reduction factor for austenitic and ferritic steel weldments. The factor is based on a variety of weld metal and weldment fatigue data generated in the United States, Europe, and Japan. This paper describes the factor and its bases, and it presents the results of confirmatory fatigue tests conducted at Oak Ridge National Laboratory on 316 stainless steel tubes with axial and circumferential welds of 16-8-2 filler metal. These test results confirm the suitability of the design factor, and they support the premise that the metallurgical notch effect produced by yield strength variations across a weldment is largely responsible for the observed elevated-temperature fatigue strength reduction

  2. Design and characterization of integrated components for SiN photonic quantum circuits.

    Science.gov (United States)

    Poot, Menno; Schuck, Carsten; Ma, Xiao-Song; Guo, Xiang; Tang, Hong X

    2016-04-04

    The design, fabrication, and detailed calibration of essential building blocks towards fully integrated linear-optics quantum computation are discussed. Photonic devices are made from silicon nitride rib waveguides, where measurements on ring resonators show small propagation losses. Directional couplers are designed to be insensitive to fabrication variations. Their offset and coupling lengths are measured, as well as the phase difference between the transmitted and reflected light. With careful calibrations, the insertion loss of the directional couplers is found to be small. Finally, an integrated controlled-NOT circuit is characterized by measuring the transmission through different combinations of inputs and outputs. The gate fidelity for the CNOT operation with this circuit is estimated to be 99.81% after post selection. This high fidelity is due to our robust design, good fabrication reproducibility, and extensive characterizations.

  3. Gate design in injection molding of microfluidic components using process simulations

    DEFF Research Database (Denmark)

    Marhöfer, David Maximilian; Tosello, Guido; Islam, Aminul

    2015-01-01

    to moulding process window, polymer flow, and part quality. This finally led to an optimization of the design and the realization as actual steel mold. Additionally, the simulation results were critically discussed and possible improvements and limitations of the gained results and the deployed software......Process simulations are an effective design and optimization tool in conventional as well as micro injection molding (μIM). They can be applied to optimize and assist the design of the micro part, the mold, the micro cavity and the μIM process. Available simulation software is however developed...... for macroscopic plastic parts. By using the correct implementation and careful modelling though, it can also be applied to micro parts. In the present work, process simulations were applied to a microfluidic distributor and a microfluidic mixer of which features were in the 100 μm dimensional range. The meshing...

  4. Recommendations for Additional Design Development of Components for the SpinTek Rotary Microfilter Prior to Radioactive Service

    International Nuclear Information System (INIS)

    Herman, D.T.

    2004-01-01

    The SpinTek rotary microfilter is being considered as an alternative to crossflow filtration. Prior testing evaluated the vendor's standard design for a 1-disk and 3-disk design. We noted several areas of improvement during the testing of the two filter systems that can be included in the 25-disk plant size unit.This report outlines several potential enhancements and improvements to the vendor's standard design which would extend the lifetime of the unit and increase the ability to perform maintenance for units deployed in radioactive service. The enhancements proposed in this report can be implemented to the current design with minimal impact to the cost and schedule of the purchase of the standard unit. An example of this is the replacement of the current mechanical seal with a bellows seal. The improvements proposed will require an extensive redesign of components found in the current system such as the filter chamber

  5. Reducing Undue Conservatism in "Higher Frequency" Structural Design Loads in Aerospace Components

    Science.gov (United States)

    Knight, J. Brent

    2012-01-01

    This study is intended to investigate the frequency dependency of significant strain due to vibratory loads in aerospace vehicle components. The notion that "higher frequency" dynamic loads applied as static loads is inherently conservative is perceived as widely accepted. This effort is focused on demonstrating that principle and attempting to evolve methods to capitalize on it to mitigate undue conservatism. It has been suggested that observations of higher frequency modes that resulted in very low corresponding strain did so due to those modes not being significant. Two avionics boxes, one with its first significant mode at 341 Hz and the other at 857 Hz, were attached to a flat panel installed on a curved orthogrid panel which was driven acoustically in tests performed at NASA/MSFC. Strain and acceleration were measured at select locations on each of the boxes. When possible, strain gage rosettes and accelerometers were installed on either side of a given structural member so that measured strain and acceleration data would directly correspond to one another. Ultimately, a frequency above which vibratory loads can be disregarded for purposes of static structural analyses and sizing of typical robust aerospace components is sought.

  6. A Further Study of Productive Failure in Mathematical Problem Solving: Unpacking the Design Components

    Science.gov (United States)

    Kapur, Manu

    2011-01-01

    This paper replicates and extends my earlier work on productive failure in mathematical problem solving (Kapur, doi:10.1007/s11251-009-9093-x, 2009). One hundred and nine, seventh-grade mathematics students taught by the same teacher from a Singapore school experienced one of three learning designs: (a) traditional lecture and practice (LP), (b)…

  7. Design and Testing of a Hall Effect Thruster with Additively Manufactured Components

    Science.gov (United States)

    Hopping, Ethan

    The UAH-78AM is a low-power Hall effect thruster developed at the University of Alabama in Huntsville to study the application of low-cost additive manufacturing in the design and fabrication of Hall thrusters. The goal of this project is to assess the feasibility of using unconventional materials to produce a low-cost functioning Hall effect thruster and consider how additive manufacturing can expand the design space and provide other benefits. The thruster features channel walls and a propellant distributor that were manufactured using 3D printing with a variety of materials including ABS, ULTEM, and glazed ceramic. A version of the thruster was tested at NASA Glenn Research Center to obtain performance metrics and to validate the ability of the thruster to produce thrust and sustain a discharge. The design of the thruster and the transient performance measurements are presented here. Measured thrust ranged from 17.2 mN to 30.4 mN over a discharge power of 280 W to 520 W with an anode Isp range of 870 s to 1450 s. Temperature limitations of materials used for the channel walls and propellant distributor limit the ability to run the thruster at thermal steady-state. While the current thruster design is not yet ready for continuous operation, revisions to the device that could enable longer duration tests are discussed.

  8. Prototype Design of Plasma-Nitriding Apparatus for Components of Industries

    International Nuclear Information System (INIS)

    Bandriyana, B.; Tutun Nugraha; Silakhuddin

    2003-01-01

    An apparatus to carry-out plasma-nitriding surface treatment has been designed. The construction was planned as a prototype for a larger system at industrial scale. The design was based on a similar apparatus currently operating at the Accelerator Laboratory at the P3TM-BATAN, in Yogyakarta. The system consists of a main vacuum chamber from steel SS-304, 45 cm OD, 55 cm height and is equipped with a nitriding chamber in the inner part that also functions as a plasma container (Quartz, cylindrical, 38 cm OD, 40 cm height). The system utilized an anode-cathode pair to generate nitrogen plasma, as well as to accelerate and direct the positively-charged-plasma toward the surface of the material to be treated. The pressure inside the chamber is designed to be in the region of 10 -3 mb with a temperature between 350-590 o C. Pulsated DC high voltage can be set at 1-50 kV at a frequency between 100-1000 Hz and current 1- 50 mA. The safety and reliability features have been designed to obtain nitriding results that are in accordance with the required technical specification as well as economical constrain. It is hoped that this device can become a prototype for future development of an industrial scale plasma-nitriding apparatus. (author)

  9. Facilitating Performance Optimization of RF PCB Designs by using Parametric Finite-Element Component Models

    DEFF Research Database (Denmark)

    Rohde, John; Toftegaard, Thomas Skjødeberg

    2012-01-01

    such as antennas and PCB traces. The models presented are benchmarked against real-life measurements and conventional circuit models. Furthermore, two example parallel-resonance circuits are designed based on interpolation of the results and validated by measurements in order to demonstrate the accuracy...

  10. Embedded Sensors and Controls to Improve Component Performance and Reliability -- Loop-scale Testbed Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    Embedded instrumentation and control systems that can operate in extreme environments are challenging to design and operate. Extreme environments limit the options for sensors and actuators and degrade their performance. Because sensors and actuators are necessary for feedback control, these limitations mean that designing embedded instrumentation and control systems for the challenging environments of nuclear reactors requires advanced technical solutions that are not available commercially. This report details the development of testbed that will be used for cross-cutting embedded instrumentation and control research for nuclear power applications. This research is funded by the Department of Energy's Nuclear Energy Enabling Technology program's Advanced Sensors and Instrumentation topic. The design goal of the loop-scale testbed is to build a low temperature pump that utilizes magnetic bearing that will be incorporated into a water loop to test control system performance and self-sensing techniques. Specifically, this testbed will be used to analyze control system performance in response to nonlinear and cross-coupling fluid effects between the shaft axes of motion, rotordynamics and gyroscopic effects, and impeller disturbances. This testbed will also be used to characterize the performance losses when using self-sensing position measurement techniques. Active magnetic bearings are a technology that can reduce failures and maintenance costs in nuclear power plants. They are particularly relevant to liquid salt reactors that operate at high temperatures (700 C). Pumps used in the extreme environment of liquid salt reactors provide many engineering challenges that can be overcome with magnetic bearings and their associated embedded instrumentation and control. This report will give details of the mechanical design and electromagnetic design of the loop-scale embedded instrumentation and control testbed.

  11. Regulatory Guide 1.122: Development of floor design response spectra for seismic design of floor-supported equipment or components

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    ''Reactor Site Criteria,'' requires, in part, that safety-related structures, systems, and components remain functional in the event of a Safe Shutdown Earthquake (SSE). It specifies the use of a suitable dynamic analysis as one method of ensuring that the structures, systems, and components can withstand the seismic loads. Similarly, paragraph (a)(2) of Section VI of the same appendix requires, in part, that the structures, systems, and components necessary for continued operation without undue risk to the health and safety of the public remain functional in the event of an Operating Basis Earthquake (OBE). Again, the use of suitable dynamic analysis is specified as one method of ensuring that the structures, systems, and components can withstand the seismic loads. This guide describes methods acceptable to the NRC staff for developing two horizontal and one vertical floor design response spectra at various floors or other equipment-support locations of interest from the time-history motions resulting from the dynamic analysis of the supporting structure. These floor design response spectra are needed for the dynamic analysis of the systems or equipment supported at various locations of the supporting structure

  12. ITER vacuum vessel design and electromagnetic analysis on in-vessel components

    International Nuclear Information System (INIS)

    Ioki, K.; Johnson, G.; Shimizu, K.; Williamson, D.; Iizuka, T.

    1995-01-01

    Major functional requirements for the vacuum vessel are to provide the first safety barrier and to support electromagnetic loads due to plasma disruptions and vertical displacement events, and to withstand plausible accidents without losing confinement. A double wall structure concept has been developed for the vacuum vessel due to its beneficial characteristics from the viewpoints of structural integrity and electrical continuity. An electromagnetic analysis of the blanket modules and the vacuum vessel has been performed to investigate force distributions on in-vessel components. According to the vertical displacement events (VDE) scenario, which assumes a critical q-value of 1.5, the total downward vertical force, induced by coupling between the eddy current and external fields, is about 110 MN. We have performed a stress analysis for the vacuum vessel using the VDE disruption forces acting on the blankets, and a maximum stress intensity of 112 MPa was obtained in the vicinity of the lower support of the vessel. (orig.)

  13. Fatigue-crack growth correlations for design and analysis of stainless steel components

    International Nuclear Information System (INIS)

    James, L.A.

    1981-10-01

    A relatively large collection of fatigue-crack growth results for annealed Types 304 and 316 stainless steels over a wide range of temperature was processed and analyzed in a consistent way. Only data that satisfied the criteria of ASTM E647-82 was retained and used in the statistical treatments that followed. Linear least-squares regression equations and 95% confidence intervals were fitted through the results for each material/temperature set. The regression results (and their associated limits of validity) provide useful equations for the analysis of structural components. Overlap (or the lack of overlap) of the confidence intervals was employed as a criterion as to whether the results for Types 304 and 316 should be separated into discrete sets, and on this basis it was concluded that the two alloys should be treated separately. 38 references, 16 figures, 1 table

  14. The construction of life prediction models for the design of Stirling engine heater components

    Science.gov (United States)

    Petrovich, A.; Bright, A.; Cronin, M.; Arnold, S.

    1983-01-01

    The service life of Stirling-engine heater structures of Fe-based high-temperature alloys is predicted using a numerical model based on a linear-damage approach and published test data (engine test data for a Co-based alloy and tensile-test results for both the Co-based and the Fe-based alloys). The operating principle of the automotive Stirling engine is reviewed; the economic and technical factors affecting the choice of heater material are surveyed; the test results are summarized in tables and graphs; the engine environment and automotive duty cycle are characterized; and the modeling procedure is explained. It is found that the statistical scatter of the fatigue properties of the heater components needs to be reduced (by decreasing the porosity of the cast material or employing wrought material in fatigue-prone locations) before the accuracy of life predictions can be improved.

  15. Clinical Experience Using a 3D-Printed Patient-Specific Instrument for Medial Opening Wedge High Tibial Osteotomy

    Directory of Open Access Journals (Sweden)

    Jesse Chieh-Szu Yang

    2018-01-01

    Full Text Available Purpose. High tibial osteotomy (HTO has been adopted as an effective surgery for medial degeneration of the osteoarthritis (OA knee. However, satisfactory outcomes necessitate the precise creation and distraction of osteotomized wedges and the use of intraoperative X-ray images to continually monitor the wedge-related manipulation. Thus HTO is highly technique-demanding and has a high radiation exposure. We report a patient-specific instrument (PSI guide for the precise creation and distraction of HTO wedge. Methods. This study first parameterized five HTO procedures to serve as a design rationale for an innovative PSI guide. Preoperative X-ray and computed tomography- (CT- scanning images were used to design and fabricate PSI guides for clinical use. The weight-bearing line (WBL of the ten patients was shifted to the Fujisawa’s point and instrumented using the TomoFix system. The radiological results of the PSI-guided HTO surgery were evaluated by the WBL percentage and tibial slope. Results. All patients consistently showed an increased range of motion and a decrease in pain and discomfort at about three-month follow-up. This study demonstrates the satisfactory accuracy of the WBL adjustment and tibial slope maintenance after HTO with PSI guide. For all patients, the average pre- and postoperative WBL are, respectively, 14.2% and 60.2%, while the tibial slopes are 9.9 and 10.1 degrees. The standard deviations are 2.78 and 0.36, respectively, in postoperative WBL and tibial slope. The relative errors of the pre- and postoperative WBL percentage and tibial slope averaged 4.9% and 4.1%, respectively. Conclusion. Instead of using navigator systems, this study integrated 2D and 3D preoperative planning to create a PSI guide that could most likely render the outcomes close to the planning. The PSI guide is a precise procedure that is time-saving, radiation-reducing, and relatively easy to use. Precise osteotomy and good short-term results were

  16. Remote maintenance systems requirements are being developed to provide design guidelines for machine components, to define maintenance interfaces, and to quantify maintenance equipment and procedures needed

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Tabor, M.A.

    1988-01-01

    Remote maintenance systems requirements are being developed to provide design guidelines for machine components, to define maintenance interfaces, and to quantify maintenance equipment and procedures needed

  17. Rules for design of nuclear graphite core components - some considerations and approaches

    International Nuclear Information System (INIS)

    Svalbonas, V.; Stilwell, T.C.; Zudans, Z.

    1978-01-01

    The use of graphite as a structural element presents unusual problems both for the designer and stress analysist. When the structure happens to be a nuclear reactor core, these problems are significantly magnified both by the environment and the attendant safety requirements. In the high temperature gas reactor (HTGR) core a large number of elements are constructed of nuclear graphite. This paper discusses the attendant difficulties, and presents some approaches, for ASME code safety-consistent design and analysis. The statistical scatter of material properties, which complicates even the definitions of allowable stress, as well as the brittle, anisotropic, inhomogeneous nature of the graphite was considered. The study of this subject was undertaken under contract to the U.S. Nuclear Regulatory Commission. (Auth.)

  18. Functional components for a design strategy: Hot cell shielding in the high reliability safeguards methodology

    Energy Technology Data Exchange (ETDEWEB)

    Borrelli, R.A., E-mail: rborrelli@uidaho.edu

    2016-08-15

    The high reliability safeguards (HRS) methodology has been established for the safeguardability of advanced nuclear energy systems (NESs). HRS is being developed in order to integrate safety, security, and safeguards concerns, while also optimizing these with operational goals for facilities that handle special nuclear material (SNM). Currently, a commercial pyroprocessing facility is used as an example system. One of the goals in the HRS methodology is to apply intrinsic features of the system to a design strategy. This current study investigates the thickness of the hot cell walls that could adequately shield processed materials. This is an important design consideration that carries implications regarding the formation of material balance areas, the location of key measurement points, and material flow in the facility.

  19. Fabrication of mechanical components and piping design for Brazilian nuclear reactors

    International Nuclear Information System (INIS)

    Deppe, L.O.

    1987-01-01

    The supply of Brazilian equipment and piping design for Angra 2 (and Angra 3 in some cases) have reached an advanced status in spite of the continuous outside difficulties which affect these nuclear power plants. The achieved quality is similar to the quality achieved in foreign countries and the nationalization program foreseen in 1975 is being largely surpassed. In this paper the actual situation is presented as well as the future perspectives. (Author) [pt

  20. An Active Learning Activity to Reinforce the Design Components of the Corticosteroids.

    Science.gov (United States)

    Slauson, Stephen R; Mandela, Prashant

    2018-02-05

    Despite the popularity of active learning applications over the past few decades, few activities have been reported for the field of medicinal chemistry. The purpose of this study is to report a new active learning activity, describe participant contributions, and examine participant performance on the assessment questions mapped to the objective covered by the activity. In this particular activity, students are asked to design two novel corticosteroids as a group (6-8 students per group) based on the design characteristics of marketed corticosteroids covered in lecture coupled with their pharmaceutics knowledge from the previous semester and then defend their design to the class through an interactive presentation model. Although class performance on the objective mapped to this material on the assessment did not reach statistical significance, use of this activity has allowed fruitful discussion of misunderstood concepts and facilitated multiple changes to the lecture presentation. As pharmacy schools continue to emphasize alternative learning pedagogies, publication of previously implemented activities demonstrating their use will help others apply similar methodologies.

  1. Reverse Engineering Nature to Design Biomimetic Total Knee Implants.

    Science.gov (United States)

    Varadarajan, Kartik Mangudi; Zumbrunn, Thomas; Rubash, Harry E; Malchau, Henrik; Muratoglu, Orhun K; Li, Guoan

    2015-10-01

    While contemporary total knee arthroplasty (TKA) provides tremendous clinical benefits, the normal feel and function of the knee is not fully restored. To address this, a novel design process was developed to reverse engineer "biomimetic" articular surfaces that are compatible with normal soft-tissue envelope and kinematics of the knee. The biomimetic articular surface is created by moving the TKA femoral component along in vivo kinematics of normal knees and carving out the tibial articular surface from a rectangular tibial block. Here, we describe the biomimetic design process. In addition, we utilize geometric comparisons and kinematic simulations to show that; (1) tibial articular surfaces of conventional implants are fundamentally incompatible with normal knee motion, and (2) the anatomic geometry of the biomimetic surface contributes directly to restoration of normal knee kinematics. Such biomimetic implants may enable us to achieve the long sought after goal of a "normal" knee post-TKA surgery. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Design, Analysis, and Characterization of Metamaterial Quasi-Optical Components for Millimeter-Wave Automotive Radar

    Science.gov (United States)

    Nguyen, Vinh Ngoc

    Since their introduction by Mercedes Benz in the late 1990s, W-band radars operating at 76-77 GHz have found their way into more and more passenger cars. These automotive radars are typically used in adaptive cruise control, pre-collision sensing, and other driver assistance systems. While these systems are usually only about the size of two stacked cigarette packs, system size, and weight remains a concern for many automotive manufacturers. In this dissertation, I discuss how artificially structured metamaterials can be used to improve lens-based automotive radar systems. Metamaterials allow the fabrication of smaller and lighter systems, while still meeting the frequency, high gain, and cost requirements of this application. In particular, I focus on the development of planar artificial dielectric lenses suitable for use in place of the injection-molded lenses now used in many automotive radar systems. I begin by using analytic and numerical ray-tracing to compare the performance of planar metamaterial GRIN lenses to equivalent aspheric refractive lenses. I do this to determine whether metamaterials are best employed in GRIN or refractive automotive radar lenses. Through this study I find that planar GRIN lenses with the large refractive index ranges enabled by metamaterials have approximately optically equivalent performance to equivalent refractive lenses for fields of view approaching +/-20°. I also find that the uniaxial nature of most planar metamaterials does not negatively impact planar GRIN lens performance. I then turn my attention to implementing these planar GRIN lenses at W-band automotive radar frequencies. I begin by designing uniform sheets of W-band electrically-coupled LC resonator-based metamaterials. These metamaterial samples were fabricated by the Jokerst research group on glass and liquid crystal polymer (LCP) substrates and tested at Toyota Research Institute- North America (TRI-NA). When characterized at W-band frequencies, these

  3. Design and synthesis of single-source molecular precursors to homogeneous multi-component oxide materials

    Science.gov (United States)

    Fujdala, Kyle Lee

    This dissertation describes the syntheses of single-source molecular precursors to multi-component oxide materials. These molecules possess a core metal or element with various combinations of -OSi(O tBu)3, -O2P(OtBu) 2, and -OB[OSi(OtBu)3] 2 ligands. Such molecules decompose under mild thermolytic conditions (models for oxide-supported metal species and multi-component oxides. Significantly, the first complexes to contain three or more heteroelements suitable for use in the TMP method have been synthesized. Compounds for use as single-source molecular precursors have been synthesized containing Al, B, Cr, Hf, Mo, V, W, and Zr, and their thermal transformations have been examined. Heterogeneous catalytic reactions have been examined for selected materials. Also, cothermolyses of molecular precursors and additional molecules (i.e., metal alkoxides) have been utilized to provide materials with several components for potential use as catalysts or catalyst supports. Reactions of one and two equivs of HOSi(OtBu) 3 with Cr(OtBu)4 afforded the first Cr(IV) alkoxysiloxy complexes (tBuO) 3CrOSi(OtBu)3 and ( tBuO)2Cr[OSi(OtBu) 3]2, respectively. The high-yielding, convenient synthesis of (tBuO)3CrOSi(O tBu)3 make this complex a useful single-source molecular precursor, via the TMP method, to Cr/Si/O materials. The thermal transformations of (tBuO)3CrOSi(O tBu)3 and (tBuO) 2Cr[OSi(OtBu)3]2 to chromia-silica materials occurr at low temperatures (≤180°C), to give isobutene as the major carbon-containing product. The material generated from the solid-state conversion of (tBuO) 3CrOSi(OtBu)3 (CrOS ss) has an unexpectedly high surface area of 315 m2 g-1 that is slightly reduced to 275 m2 g-1 after calcination at 500°C in O2. The xerogel obtained by the thermolysis of an n-octane solution of (tBuO)3CrOSi(O tBu)3 (CrOSixg) has a surface area of 315 m2 g-1 that is reduced to 205 m2 g-1 upon calcination at 500°C. Powder X-ray diffraction (PXRD) analysis revealed that Cr2O 3 is

  4. Medial tibial plateau morphology and stress fracture location: A magnetic resonance imaging study.

    Science.gov (United States)

    Yukata, Kiminori; Yamanaka, Issei; Ueda, Yuzuru; Nakai, Sho; Ogasa, Hiroyoshi; Oishi, Yosuke; Hamawaki, Jun-Ichi

    2017-06-18

    To determine the location of medial tibial plateau stress fractures and its relationship with tibial plateau morphology using magnetic resonance imaging (MRI). A retrospective review of patients with a diagnosis of stress fracture of the medial tibial plateau was performed for a 5-year period. Fourteen patients [three female and 11 male, with an average age of 36.4 years (range, 15-50 years)], who underwent knee MRI, were included. The appearance of the tibial plateau stress fracture and the geometry of the tibial plateau were reviewed and measured on MRI. Thirteen of 14 stress fractures were linear, and one of them stellated on MRI images. The location of fractures was classified into three types. Three fractures were located anteromedially (AM type), six posteromedially (PM type), and five posteriorly (P type) at the medial tibial plateau. In addition, tibial posterior slope at the medial tibial plateau tended to be larger when the fracture was located more posteriorly on MRI. We found that MRI showed three different localizations of medial tibial plateau stress fractures, which were associated with tibial posterior slope at the medial tibial plateau.

  5. Gate Design in Injection Molding of Microfluidic Components Using Process Simulations

    DEFF Research Database (Denmark)

    Marhöfer, David Maximilian; Tosello, Guido; Islam, Aminul

    2016-01-01

    Just as in conventional injection molding of plastics, process simulationsare an effective and interesting tool in the area of microinjection molding. They can be applied in order to optimize and assist the design of the microplastic part, the mold, and the actual process. Available simulation...... software is however actually made for macroscopic injection molding. By means of the correct implementation and careful modeling strategy though, it can also be applied to microplastic parts, as it is shown in the present work. Process simulations were applied to two microfluidic devices (amicrofluidic...

  6. Select Components and Finish System Design of a Window Air Conditioner with Propane

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    This report describes the technical targets for developing a high efficiency window air conditioner (WAC) using propane (R-290). The baseline unit selected for this activity is a GE R-410A WAC. We established collaboration with a Chinese rotary compressor manufacturer, to select an R-290 compressor. We first modelled and calibrated the WAC system model using R-410A. Next, we applied the calibrated system model to design the R-290 WAC, and decided the strategies to reduce the system charge below 260 grams and achieve the capacity and efficiency targets.

  7. Fundamental principles for a nuclear design and structural analysis code for HTR components operating at temperatures above 8000C

    International Nuclear Information System (INIS)

    Nickel, H.; Schubert, F.

    1985-01-01

    With reference to the special characteristics of an HTR plant for the supply of nuclear process heat, the investigation of the fundamental principles to form the basis for a high temperature nuclear structural design code has been described. As examples, preliminary design values are proposed for the creep rupture and fatigue behaviour. The linear damage accumulation rule is for practical reasons proposed for the determination of service life, and the difficulties in using this rule are discussed. Finally, using the data obtained in structural analysis, the main areas of investigation which will lead to improvements in the utilization of the materials are discussed. Based on the current information, the working group ''Design Code'' believes that a service life of 70000 h for the heat-exchanging components operating at above 800 0 C can be. (orig.)

  8. Explosive bonding and its application in the Advanced Photon Source front-end and beamline components design

    International Nuclear Information System (INIS)

    Shu, D.; Li, Y.; Ryding, D.; Kuzay, T.M.

    1994-01-01

    Explosive bonding is a bonding method in which the controlled energy of a detonating explosive is used to create a metallurgical bonding between two or more similar or dissimilar materials. Since 1991, a number of explosive-bonding joints have been designed for high-thermal-load ultrahigh-vacuum (UHV) compatible components in the Advanced Photon Source. A series of standardized explosive bonded joint units has also been designed and tested, such as: oxygen-free copper (OFHC) to stainless-steel vacuum joints for slits and shutters, GlidCop to stainless-steel vacuum joints for fixed masks, and GlidCop to OFHC thermal and mechanical joints for shutter face-plates, etc. The design and test results for the explosive bonding units to be used in the Advanced Photon Source front ends and beamlines will be discussed in this paper

  9. Advanced computational simulation for design and manufacturing of lightweight material components for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Simunovic, S.; Aramayo, G.A.; Zacharia, T. [Oak Ridge National Lab., TN (United States); Toridis, T.G. [George Washington Univ., Washington, DC (United States); Bandak, F.; Ragland, C.L. [Dept. of Transportation, Washington, DC (United States)

    1997-04-01

    Computational vehicle models for the analysis of lightweight material performance in automobiles have been developed through collaboration between Oak Ridge National Laboratory, the National Highway Transportation Safety Administration, and George Washington University. The vehicle models have been verified against experimental data obtained from vehicle collisions. The crashed vehicles were analyzed, and the main impact energy dissipation mechanisms were identified and characterized. Important structural parts were extracted and digitized and directly compared with simulation results. High-performance computing played a key role in the model development because it allowed for rapid computational simulations and model modifications. The deformation of the computational model shows a very good agreement with the experiments. This report documents the modifications made to the computational model and relates them to the observations and findings on the test vehicle. Procedural guidelines are also provided that the authors believe need to be followed to create realistic models of passenger vehicles that could be used to evaluate the performance of lightweight materials in automotive structural components.

  10. Design Of Measurements For Evaluating Readiness Of Technoware Components To Meet The Required Standard Of Products

    Science.gov (United States)

    Fauzi, Ilham; Muharram Hasby, Fariz; Irianto, Dradjad

    2018-03-01

    Although government is able to make mandatory standards that must be obeyed by the industry, the respective industries themselves often have difficulties to fulfil the requirements described in those standards. This is especially true in many small and medium sized enterprises that lack the required capital to invest in standard-compliant equipment and machineries. This study aims to develop a set of measurement tools for evaluating the level of readiness of production technology with respect to the requirements of a product standard based on the quality function deployment (QFD) method. By combining the QFD methodology, UNESCAP Technometric model [9] and Analytic Hierarchy Process (AHP), this model is used to measure a firm’s capability to fulfill government standard in the toy making industry. Expert opinions from both the governmental officers responsible for setting and implementing standards and the industry practitioners responsible for managing manufacturing processes are collected and processed to find out the technological capabilities that should be improved by the firm to fulfill the existing standard. This study showed that the proposed model can be used successfully to measure the gap between the requirements of the standard and the readiness of technoware technological component in a particular firm.

  11. Decommissioning: A critical component of the design for uranium tailings management facilities

    International Nuclear Information System (INIS)

    Clifton, W.A.; Barsi, R.G.; Misfeldt, G.A.

    2000-01-01

    Uranium was discovered in the Beaverlodge area of northern Saskatchewan in 1934 with the first major mill beginning operation in 1953. Little attention was paid to tailings quality or tailings management practices. With the onset of the modem uranium operations beginning in the late 1970's, it was repeatedly evident, that the public had significant concerns, particularly with respect to tailings management, that must be addressed if the developments were to be allowed to proceed. Primary considerations related to environmental protection, public safety and an assurance of the ongoing sustainable development of the region. Integrating the decommissioning of a mine/mill site into development planning from the very outset has proven to be a critical component that has contributed to the ongoing success of the Saskatchewan uranium operations. This paper will provide a case study of the evolution of the uranium tailings management technology utilized in Saskatchewan. It documents the evolution of tailings management processes and the characteristics of tailings produced by successive mines in northern Saskatchewan. It also discusses the evolution of technologies applied to management of uranium mill tailings and demonstrates how progressively increasing levels of environmental protection have been achieved during the last 47 years of uranium mill operation. The paper also shows that the planned and progressive decommissioning of an operational site is the key to: Minimizing environmental impacts; Satisfying public and regulatory concerns; Minimizing operational and decommissioning costs; Minimizing corporate liability; and Shifting public resistance to public support. (author)

  12. Surface engineering glass-metal coatings designed for induction heating of ceramic components

    International Nuclear Information System (INIS)

    Khan, Amir Azam; Labbe, Jean Claude

    2014-01-01

    The term Surface Engineering is of relatively recent origin and use, however, the use of coatings and treatments to render surfaces of materials more suitable for certain application or environment is not new. With the advent of Vacuum Technology, Surface Engineering has gained a whole new impetus, whereby expensive materials with adequate mechanical, chemical and thermal properties are being coated or treated on their surfaces in order to achieve what is called as Surface Engineered materials. The present paper presents an overview of recent achievements in Surface Engineering and gives a detailed view of a specific application where glass-metal composite coatings were deposited on ceramic components in order to render them sensitive to induction heating. Sintered glaze coatings containing silver particles in appropriate concentration can be used for the induction heating of porcelain. Mixtures of glass ceramic powders with silver are used to prepare self-transfer patterns, which are deposited over porcelain. Several configurations of these coatings, which are aesthetic to start with, are employed and heating patterns are recorded. The microstructure of these coatings is discussed in relation to the heating ability by a classical household induction system. The results show that this technique is practical and commercially viable

  13. Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: Physicochemical aspects.

    Science.gov (United States)

    McClements, David Julian

    2017-02-01

    Biopolymer microgels have considerable potential for their ability to encapsulate, protect, and release bioactive components. Biopolymer microgels are small particles (typically 100nm to 1000μm) whose interior consists of a three-dimensional network of cross-linked biopolymer molecules that traps a considerable amount of solvent. This type of particle is also sometimes referred to as a nanogel, hydrogel bead, biopolymer particles, or microsphere. Biopolymer microgels are typically prepared using a two-step process involving particle formation and particle gelation. This article reviews the major constituents and fabrication methods that can be used to prepare microgels, highlighting their advantages and disadvantages. It then provides an overview of the most important characteristics of microgel particles (such as size, shape, structure, composition, and electrical properties), and describes how these parameters can be manipulated to control the physicochemical properties and functional attributes of microgel suspensions (such as appearance, stability, rheology, and release profiles). Finally, recent examples of the utilization of biopolymer microgels to encapsulate, protect, or release bioactive agents, such as pharmaceuticals, nutraceuticals, enzymes, flavors, and probiotics is given. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Decommissioning: A critical component of the design for uranium tailings management facilities

    International Nuclear Information System (INIS)

    Clifton, A.W.; Barsi, R.G.; Misfeldt, G.A.

    2002-01-01

    Uranium was discovered in the Beaverlodge area of northern Saskatchewan in 1934 with the first major mill beginning operation in 1953. Little attention was paid to tailings quality or tailings management practices. With the onset of the modern uranium operations beginning in the late 1970's, it was repeatedly evident, that the public had significant concerns, particularly with respect to tailings management, that must be addressed if the developments were to be allowed to proceed. Primary considerations related to environmental protection, public safety and an assurance of the ongoing sustainable development of the region. Integrating the decommissioning of a mine/mill site into development planning from the very outset has proven to be a critical component that has contributed to the ongoing success of the Saskatchewan uranium operations. This paper will provide a case study of the evolution of the uranium tailings management technology utilized in Saskatchewan. It documents the evolution of tailings management processes and the characteristics of tailings produced by successive mines in northern Saskatchewan. It also discusses the evolution of technologies applied to management of uranium mill tailings and demonstrates how progressively increasing levels of environmental protection have been achieved during the last 47 years of uranium mill operation. The paper also shows that the planned and progressive decommissioning of an operational site is the key to: Minimizing environmental impacts; Satisfying public and regulatory concerns; Minimizing operational and decommissioning costs; Minimizing corporate liability; and Shifting public resistance to public support. (author)

  15. Anterior cruciate ligament reconstruction failure after tibial shaft malunion.

    Science.gov (United States)

    LaFrance, Russell M; Gorczyca, John T; Maloney, Michael D

    2012-02-17

    Anterior cruciate ligament (ACL) reconstruction is common, with >100,000 procedures performed each year in the United States. Several factors are associated with failure, including poor surgical technique, graft incorporation failure, overly aggressive rehabilitation, and trauma. Tibial shaft fracture is also common and frequently requires operative intervention. Failure to reestablish the anatomic alignment of the tibia may cause abnormal forces across adjacent joints, which can cause degenerative joint disease or attritional failure of the surrounding soft tissues. This article describes a case of ACL reconstruction failure after a tibial fracture that resulted in malunion. Excessive force across the graft from lower-extremity malalignment and improper tunnel placement likely contributed to the attritional failure of the graft. This patient required a staged procedure for corrective tibial osteotomy followed by revision ACL reconstruction. This article describes ACL reconstruction failure, tibial shaft malunions, their respective treatments, the technical details of each procedure, and the technical aspects that must be considered when these procedures are done in a staged manner by 2 surgeons. Copyright 2012, SLACK Incorporated.

  16. Preliminary evaluation of the tibial tuberosity-trochlear groove measurement

    DEFF Research Database (Denmark)

    Miles, James Edward; Kirpensteijn, Jolle; Svalastoga, Eiliv Lars

    guide surgical treatment. The TTTG measures tibial tuberosity position relative to the axis of the femoral trochlea. A preliminary investigation of TTTG measurement was performed using the red fox (Vulpes vulpes) cadavers as a morphologically similar and homogenous substitute for dog cadavers. CT...

  17. Displaced tibial shaft fractures treated with ASIF compression internal fixation

    DEFF Research Database (Denmark)

    Gebuhr, Peter Henrik; Larsen, T K; Petersen, O C

    1990-01-01

    Fifty-one tibial shaft fractures treated by ASIF compression osteosynthesis were seen at follow-up at a median time of 46 weeks after injury. Twenty-four were open fractures and the patients received prophylactic antibiotics. The median stay in hospital was 15 days for open fractures and 6 days f...

  18. MR imaging findings of medial tibial crest friction

    International Nuclear Information System (INIS)

    Klontzas, Michail E.; Akoumianakis, Ioannis D.; Vagios, Ilias; Karantanas, Apostolos H.

    2013-01-01

    Objective: Medial tibial condyle bone marrow edema (BME), associated with soft tissue edema (STe) surrounding the medial collateral ligament, was incidentally observed in MRI examinations of young and athletic individuals. The aim of the present study was to 1. Prospectively investigate the association between these findings and coexistence of localized pain, and 2. Explore the possible contribution of the tibial morphology to its pathogenesis. Methods: The medial tibial condyle crest was evaluated in 632 knee MRI examinations. The angle and depth were measured by two separate evaluators. The presence of STe and BME was recorded. A third evaluator blindly assessed the presence of pain at this site. Results: BME associated with STe was found in 24 patients (with no history of previous trauma, osteoarthritis, tumor or pes anserine bursitis). The mean crest angle was 151.3° (95%CI 147.4–155.3°) compared to 159.4° (95%CI 158.8–160°) in controls (Mann–Whitney test, P < 0.0001). MRI findings were highly predictive of localized pain (sensitivity 92% specificity 99%, Fisher's exact test, P < 0.0001). Conclusion: Friction at the medial tibial condyle crest is a painful syndrome. MRI is a highly specific and sensitive imaging modality for its diagnosis

  19. Tibial dyschondroplasia associated proteomic changes in chicken growth plate cartilage

    Science.gov (United States)

    Tibial dyschondroplasia (TD) is a poultry leg problem that affects the proximal growth plate of tibia preventing its transition to bone. To understand the disease-induced proteomic changes we compared the protein extracts of cartilage from normal and TD- affected growth plates. TD was induced by fe...

  20. Medial Tibial Stress Syndrome : Diagnosis, Treatment and Outcome Assessment

    NARCIS (Netherlands)

    Winters, M.

    2017-01-01

    Medial tibial stress syndrome (MTSS), also known as shin splints, is one of the most common sports injuries. Although 20% of the jumping and running athletes have MTSS at some point while engaging in sporting activities, we know little about it. There is a lack of knowledge regarding making the