WorldWideScience

Sample records for ti sn mn

  1. First-principles analysis of ferroelectric transition in MnSnO3 and MnTiO3 perovskites

    Science.gov (United States)

    Kang, Sung Gu

    2018-06-01

    The ferroelectric instabilities of an artificially adopted Pnma structure in low tolerance perovskites have been explored (Kang et al., 2017) [4], where an unstable A-site environment was reported to be the major driving source for the low tolerance perovskites to exhibit ferroelectric instability. This study examined the ferroelectric transition of two magnetic perovskite materials, MnSnO3 and MnTiO3, in Pnma phase. Phase transitions to the Pnma phase at elevated pressures were observed. MnSnO3, which has a lower (larger) tolerance factor (B-site cation radius), showed a higher ferroelectric mode amplitude than MnTiO3. The distribution of the bond length of Mn-O and the mean quadratic elongation (QE) of octahedra (SnO6 or TiO6) were investigated for structural analysis. However, MnTiO3 showed a larger spontaneous polarization than MnSnO3 due to high Born effective charges of titanium. This study is useful because it provides a valuable pathway to the design of promising multiferroic materials.

  2. Optimized thermoelectric performance of the n-type half-Heusler material TiNiSn by substitution and addition of Mn

    Directory of Open Access Journals (Sweden)

    Enkhtaivan Lkhagvasuren

    2017-04-01

    Full Text Available Alloys based on the half-Heusler compound TiNiSn with the addition of Mn or with a substitution of Ti by Mn are investigated as high-temperature thermoelectric materials. In both materials an intrinsic phase separation is observed, similar to TiNiSn where Ti has been partially substituted by Hf, with increasing Mn concentration the phase separation drastically reduces the lattice thermal conductivity while the power factor is increased. The thermoelectric performance of the n-type conducting alloy can be optimized both by substitution of Ti by Mn as well as the addition of Mn.

  3. Effect of metal ions doping (M = Ti4+, Sn4+) on the catalytic performance of MnOx/CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3

    Science.gov (United States)

    Xiong, Yan; Tang, Changjin; Dong, Lin

    2015-04-01

    Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China The abatement of nitrogen oxides (NOx) emission from exhaust gases of diesel and stationary sources is a significant challenge for economic and social development. Ceria-based solid solutions were synthesized and used as supports to prepare MnOx/Ce0.8Ti0.2O2 and MnOx/Ce0.8Sn0.2O2 catalysts (Mn/CeTi and Mn/CeSn) for low temperature selective catalytic reduction of NO by NH3 (NH3-SCR). The effects of Ti or Sn doping on the catalytic performance of MnOx/CeO2 catalyst were investigated. Experimental results show that doping of Ti or Sn increases the NO removal efficiency of MnOx/CeO2. The NO conversion of Mn/CeTi catalyst is more than 90 % at temperature window of 175 ~ 300 °C under a gas hour space velocity of 60,000 mL.g-1.h-1. Modified catalysts are also found to exhibit greatly improved resistance to sulfur-poisoning. NH3-TPD results suggest that NH3 desorption on the catalysts is observed over a wide temperature range, due to the variability of adsorbed NH3 species with different thermal stabilities. Doping of Ti and Sn into Mn/CeO2 greatly increased the NH3 adsorption ability of the composites which could promote the SCR reaction. Characterization results also indicate that doping of Ti or Sn brings about catalysts with higher BET surface area, enhanced oxygen storage capacity and increased surface acidity.

  4. Noncollinear antiferromagnetic Mn3Sn films

    Science.gov (United States)

    Markou, A.; Taylor, J. M.; Kalache, A.; Werner, P.; Parkin, S. S. P.; Felser, C.

    2018-05-01

    Noncollinear hexagonal antiferromagnets with almost zero net magnetization were recently shown to demonstrate giant anomalous Hall effect. Here, we present the structural and magnetic properties of noncollinear antiferromagnetic Mn3Sn thin films heteroepitaxially grown on Y:ZrO2 (111) substrates with a Ru underlayer. The Mn3Sn films were crystallized in the hexagonal D 019 structure with c -axis preferred (0001) crystal orientation. The Mn3Sn films are discontinuous, forming large islands of approximately 400 nm in width, but are chemical homogeneous and characterized by near perfect heteroepitaxy. Furthermore, the thin films show weak ferromagnetism with an in-plane uncompensated magnetization of M =34 kA/m and coercivity of μ0Hc=4.0 mT at room temperature. Additionally, the exchange bias effect was studied in Mn3Sn /Py bilayers. Exchange bias fields up to μ0HEB=12.6 mT can be achieved at 5 K. These results show Mn3Sn films to be an attractive material for applications in antiferromagnetic spintronics.

  5. Structural, magnetic and transport properties of Mn3.1Sn0.9 and Mn3.1Sn0.9N compounds

    International Nuclear Information System (INIS)

    Feng, W.J.; Li, D.; Ren, W.J.; Li, Y.B.; Li, W.F.; Li, J.; Zhang, Y.Q.; Zhang, Z.D.

    2007-01-01

    The cubic anti-perovskite Mn 3.1 Sn 0.9 N compound is prepared via nitrogenation of the hexagonal Mn 3.1 Sn 0.9 compound. A magnetic phase diagram of Mn 3.1 Sn 0.9 compound is constructed by analysis of data of its magnetic properties. For Mn 3.1 Sn 0.9 N compound, parasitic ferromagnetism exists in the temperature range of 5-370 K, besides a spin-reorientation at about 280 K. Mn 3.1 Sn 0.9 compound exhibits a metallic conducting behavior, while Mn 3.1 Sn 0.9 N displays a metal-nonmetal transition due to the electron localization caused by the static disorder. The differences of the physical properties between the both compounds, are discussed, in terms of the correlation of the hexagonal DO 19 and the cubic anti-perovskite structures, the reduction of the distances between Mn atoms, and the spin-pairing or charge transfer effect due to the electron donation by N 2p to Mn 3d states after introduction of N atoms into the interstitial sites of Mn 3.1 Sn 0.9 compound

  6. Influence of silver addition on the microstructure and mechanical properties of squeeze cast Mg-6Al-1Sn-0.3Mn-0.3Ti

    International Nuclear Information System (INIS)

    Acikgoez, Sehzat; Sevik, Hueseyin; Kurnaz, S.Can

    2011-01-01

    Graphical abstract: Highlights: → X-ray diffractometry reveals that the main phases are α-Mg, α-Ti, β-Mg 17 Al 12 and Al 8 Mn 5 in the base alloy. → With addition of silver, Al 81 Mn 19 phase was found. → The mechanical properties of the base alloy are improved with addition of silver. → The fracture surface of base alloy shows relatively deeper and more amount of dimples than that of alloys containing silver. - Abstract: In this study, the effect of silver (0, 0.2, 0.5, and 1 wt.%) on the microstructure and mechanical properties of a magnesium-based alloy (Mg-Al 6 wt.%-Sn 1 wt.%-Mn 0.3 wt.%-Ti 0.3 wt.%) were investigated. The alloys were produced under a controlled atmosphere by a squeeze-casting process. X-ray diffractometry revealed that the main phases are α-Mg, α-Ti, β-Mg 17 Al 12 and Al 8 Mn 5 in the all of alloys. In addition to, Al 81 Mn 19 phase was found with Ag additive. Besides, the amount of β-Mg 17 Al 12 phase was decreased with increasing the amount of Ag. The strength of the base alloy was increased by solid solution mechanism and decreasing the amount of β-Mg 17 Al 12 phase with addition of Ag. Furthermore, existence of Al 81 Mn 19 phase can be acted an important role in the increase on the mechanical properties of the alloys.

  7. Magnetic phase change in Mn-doped ZnSnAs2 thin films depending on Mn concentration

    Science.gov (United States)

    Uchitomi, Naotaka; Hidaka, Shiro; Saito, Shin; Asubar, Joel T.; Toyota, Hideyuki

    2018-04-01

    The relationship between Mn concentration and Curie temperature (TC) is studied for Mn-doped ZnSnAs2 ferromagnetic semiconductors, epitaxially grown on InP substrates by molecular beam epitaxy. In the ferromagnetic phase, Mn distributions in a (Zn,Mn,Sn)As2 thin film with 7.2 cation percent (cat. %) Mn are investigated using three-dimensional atom probe tomography. The results indicate an inhomogeneous distribution which spreads to a relatively high Mn concentration of 9.0 at. % (at. %). In the paramagnetic phase, it is found that the paramagnetic to ferromagnetic transition takes place sharply with a TC of 334 K when the Mn doping concentration increases to about 4 cat. % Mn, which corresponds to a magnetic percolation threshold for ferromagnetism in (Zn,Mn,Sn)As2. An effective Curie temperature ⟨TC⟩ is considered to bridge the Curie temperatures obtained experimentally to those calculated theoretically in inhomogeneous magnetic semiconductors. The behavior of magnetism in Mn-doped ZnSnAs2 can be explained by three different phases within the present framework.

  8. Magnetic exchange interactions in Mn doped ZnSnAs{sub 2} chalcopyrite

    Energy Technology Data Exchange (ETDEWEB)

    Bouhani-Benziane, H.; Sahnoun, O. [Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University of Mascara (Algeria); Sahnoun, M., E-mail: sahnoun_cum@yahoo.fr [Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University of Mascara (Algeria); Department of Chemistry, University of Fribourg (Switzerland); Driz, M. [Laboratoire de Sciences des Matériaux (LSM), University of Sidi Bel Abbes (Algeria); Daul, C. [Department of Chemistry, University of Fribourg (Switzerland)

    2015-12-15

    Accurate ab initio full-potential augmented plane wave (FP-LAPW) electronic calculations within generalized gradient approximation have been performed for Mn doped ZnSnAs{sub 2} chalcopyrites, focusing on their electronic and magnetic properties as a function of the geometry related to low Mn-impurity concentration and the spin magnetic alignment (i.e., ferromagnetic vs antiferromagnetic). As expected, Mn is found to be a source of holes and localized magnetic moments of about 4 µ{sub B} per Mn atom are calculated which are sufficiently large. The defect calculations are firstly performed by replacing a single cation (namely Zn and Sn) with a single Mn atom in the pure chalcopyrite ZnSnAs{sub 2} supercell, and their corresponding formation energies show that the substitution of a Sn atom (rather than Zn) by Mn is strongly favored. Thereafter, a comparison of total energy differences between ferromagnetic (FM) and antiferromagnetic (AFM) are given. Surprisingly, the exchange interaction between a Mn pairs is found to oscillate with the distance between them. Consequently, the AFM alignment is energetically favored in Mn-doped ZnSnAs{sub 2} compounds, except for low impurity concentration associated with lower distances between neighboring Mn impurities, in this case the stabilization of FM increases. Moreover, the ferromagnetic alignment in the Mn-doped ZnSnAs{sub 2} systems behaves half-metallic; the valence band for majority spin orientation is partially filled while there is a gap in the density of states for the minority spin orientation. This semiconducting gap of ~1 eV opened up in the minority channel and is due to the large bonding–antibonding splitting from the p–d hybridization. Our findings suggest that the Mn-doped ZnSnAs{sub 2} chalcopyrites could be a different class of ferromagnetic semiconductors. - Highlights: • ab initio calculations were performed on Mn doped ZnSnAs{sub 2} chalcopyrite. • Substitution of a Sn atom (rather than Zn) by Mn

  9. Electrochemical properties of Ti-Ni-Sn materials predicted by {sup 119}Sn Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ladam, A., E-mail: alix.ladam@univ-montp2.fr; Aldon, L.; Lippens, P.-E.; Olivier-Fourcade, J.; Jumas, J.-C. [Université de Montpellier, Institut Charles Gerhardt, UMR 5253 CNRS (France); Cenac-Morthe, C. [CNES, Service DCT/TV/El (France)

    2016-12-15

    The electrochemical activity of TiNiSn, TiNi {sub 2}Sn and Ti {sub 6}Sn {sub 5} compounds considered as negative electrode materials for Li-ion batteries has been predicted from the isomer shift- Hume-Rothery electronic density correlation diagram. The ternary compounds were obtained from solid-state reactions and Ti {sub 6}Sn {sub 5} by ball milling. The {sup 119}Sn Mössbauer parameters were experimentally determined and used to evaluate the Hume-Rothery electronic density [e {sub av}]. The values of [e {sub av}] are in the region of Li-rich Li-Sn alloys for Ti {sub 6}Sn {sub 5} and outside this region for the ternary compounds, suggesting that the former compound is electrochemically active but not the two latter ones. Electrochemical tests were performed for these different materials confirming this prediction. The close values of [e {sub av}] for Ti {sub 6}Sn {sub 5} and Li-rich Li-Sn alloys indicate that the observed good capacity retention could be related to small changes in the global structures during cycling.

  10. Enhanced temperature stability and quality factor with Hf substitution for Sn and MnO2 doping of (Ba0.97Ca0.03(Ti0.96Sn0.04O3 lead-free piezoelectric ceramics with high Curie temperature

    Directory of Open Access Journals (Sweden)

    Cheng-Che Tsai

    2016-12-01

    Full Text Available In this work, the process of two-stage modifications for (Ba0.97Ca0.03(Ti0.96Sn0.04-xHfxO3 (BCTS4-100xH100x ceramics was studied. The trade-off composition was obtained by Hf substitution for Sn and MnO2 doping (two-stage modification which improves the temperature stability and piezoelectric properties. The phase structure ratio, microstructure, and dielectric, piezoelectric, ferroelectric, and temperature stability properties were systematically investigated. Results showed that BCTS4-100xH100x piezoelectric ceramics with x=0.035 had a relatively high Curie temperature (TC of about 112 °C, a piezoelectric charge constant (d33 of 313 pC/N, an electromechanical coupling factor (kp of 0.49, a mechanical quality factor (Qm of 122, and a remnant polarization (Pr of 19μC/cm2. In addition, the temperature stability of the resonant frequency (fr, kp, and aging d33 could be tuned via Hf content. Good piezoelectric temperature stability (up to 110 °C was found with x =0.035. BCTS0.5H3.5 + a mol% Mn (BCTSH + a Mn piezoelectric ceramics with a = 2 had a high TC of about 123 °C, kp ∼ 0.39, d33 ∼ 230 pC/N, Qm ∼ 341, and high temperature stability due to the produced oxygen vacancies. This mechanism can be depicted using the complex impedance analysis associated with a valence compensation model on electric properties. Two-stage modification for lead-free (Ba0.97Ca0.03(Ti0.96Sn0.04O3 ceramics suitably adjusts the compositions for applications in piezoelectric motors and actuators.

  11. Evaluation of mechanical properties of nanocrystalline Ti-Mo-Fe-Sn alloys system; Avaliacao de propriedades mecanicas de ligas nanocristalinas do sistema Ti-Mo-Fe-Sn

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, M.O.A; Vidilli, A.L.; Afonso, C.R.M., E-mail: andre.vidilli@gmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2014-07-01

    The Ti-6Al-4V, widely used in biomaterials, exhibits elastic modulus (E) of approximately 110GPa, which is significantly higher than the one of human bone (E = 10 to 30 GPa). In this project, a process of rapid solidification was utilized in 4 different alloys of Ti-Mo-Fe-Sn, in order to produce ultrafine nanocrystalline eutectic alloys, which present high strength (1800-2500 MPa), low elastic modulus (50-110 GPa) and good corrosion resistance. The alloys Ti{sub 62}Fe{sub 30}Mo{sub 8}, Ti{sub 56}Fe{sub 30}Mo{sub 8}Sn{sub 6}, Ti{sub 63}Fe{sub 23}Mo{sub 8}Sn{sub 6}, Ti{sub 60}Fe{sub 23}Mo{sub 8}Sn{sub 9} show Vickers microhardness de, respectively, 745 (1mm), 733 (1mm), 609 (1mm) e 651(1mm) HV. The characterization was performed using scanning electron microscopy (SEM) and X- ray diffraction (XRD). The results indicated the presence of a β-Ti (bcc) matrix and the intermetallic TiFe and Ti{sub 3}Sn phases, and the microstructure were formed by dendrites, and eutectic constituents, which were present in the compositions Ti{sub 62}Fe{sub 30}Mo{sub 8}, Ti{sub 56}Fe{sub 30}Mo{sub 8}Sn{sub 6}, Ti{sub 63}Fe{sub 23}Mo{sub 8}Sn{sub 6}, Ti{sub 60}Fe{sub 23}Mo{sub 8}Sn{sub 9}. (author)

  12. Magnetoresistance and phase composition of La-Sn-Mn-O systems

    DEFF Research Database (Denmark)

    Li, Z.W.; Morrish, A.H.; Jiang, Jianzhong

    1999-01-01

    The transport properties of the manganites La1 - xSnxMnO3 + delta with x = 0.1-0.5 and of Fe-doped samples have been comprehensively studied using magnetoresistance measurements, Fe-57 and Sn-119 Mossbauer spectroscopy, and x-ray diffraction. At the Sn concentration x = 0.5, La0.5Sn0.5MnO3 + delta...

  13. Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn alloys.

    Science.gov (United States)

    Zhang, D C; Yang, S; Wei, M; Mao, Y F; Tan, C G; Lin, J G

    2012-09-01

    Ti-7.5Nb-4Mo-xSn (x=0-4at%) alloys were developed as the biomedical materials. The effect of the Sn content on the microstructure and superelasticity of the alloys was investigated. It is found that Sn is a strong stabilizer of the β phase, which is effective in suppressing the formation of α″ and ω phases in the alloys. Moreover, the Sn addition has a significant impact on the mechanical properties of the alloys. With the increase of Sn addition, the yield stress of the alloys increase, but their elastic modulus, the fracture strength and the ductility decrease, and the deformation mode of the alloys changes from (322) twining to α″ transformation and then to slip. The Ti-7.5Nb-4Mo-1Sn and Ti-7.5Nb-4Mo-3Sn alloys exhibit a good superelasticity with a high σ(SIM) due to the relatively high athermal ω phases containing or the solution hardening at room temperature. Under the maximum strain of 5%, Ti-7.5Nb-4Mo-3Sn (at%) alloy exhibits higher super elastic stability than that of Ti-7.5Nb-4Mo-1Sn alloy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Fabrication and thermoelectric properties of fine-grained TiNiSn compounds

    International Nuclear Information System (INIS)

    Zou Minmin; Li Jingfeng; Du Bing; Liu Dawei; Kita, Takuji

    2009-01-01

    Nearly single-phased TiNiSn half-Heusler compound thermoelectric materials were synthesized by combining mechanical alloying (MA) and spark plasma sintering (SPS) in order to reduce its thermal conductivity by refining the grain sizes. Although TiNiSn compound powders were not synthesized directly via MA, dense bulk samples of TiNiSn compound were obtained by the subsequent SPS treatment. It was found that an excessive Ti addition relative to the TiNiSn stoichiometry is effective in increasing the phase purity of TiNiSn half-Heusler phase in the bulk samples, by compensating for the Ti loss caused by the oxidation of Ti powders and MA processing. The maximum power factor value obtained in the Ti-compensated sample is 1720 μW m -1 K -2 at 685 K. A relatively high ZT value of 0.32 is achieved at 785 K for the present undoped TiNiSn compound polycrystals. - Graphical abstract: Nearly single-phased TiNiSn-based half-Heusler compound polycrystalline materials with fine grains were fabricated by combining mechanical alloying (MA) and spark plasma sintering (SPS). A high ZT value for undoped TiNiSn was obtained because of the reduced thermal conductivity.

  15. Peculiarity of component interaction in {l_brace}Y, Dy{r_brace}-Mn-Sn ternary systems

    Energy Technology Data Exchange (ETDEWEB)

    Romaka, V.V. [Department of Materials Engineering and Applied Physics, Lviv Polytechnic National University, Ustyyanovycha Str. 5, 79013 Lviv (Ukraine); Konyk, M. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine); Romaka, L., E-mail: romakal@franko.lviv.ua [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine); Pavlyuk, V. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine); Jan Dlugosz University, Institute of Chemistry, Environmental Protection and Biotechnology, al. Armii Krajowej 13/15, 42200 Czestochowa (Poland); Ehrenberg, H. [Institute for Complex Materials, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden (Germany); Tkachuk, A. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine)

    2011-07-14

    Highlights: > {l_brace}Y, Dy{r_brace}-Mn-Sn ternary systems at 770 K are characterized by formation of stannides with general compositions RMn{sub 6}Sn{sub 6} and R{sub 4}Mn{sub 4}Sn{sub 7}. > The crystal structure of YMn{sub 6}Sn{sub 6} was determined by single crystal and powder diffraction methods. > Structural analysis showed that Dy{sub 4}Mn{sub 4}Sn{sub 7} compound is disordered. > Isostructural R{sub 4}Mn{sub 4}Sn{sub 7} compounds were also found with Gd, Tb, Ho, Er, Tm(confirmed), Yb, and Lu. - Abstract: The phase equilibria in the Y-Mn-Sn and Dy-Mn-Sn ternary systems were studied at 770 K by means of X-ray and metallographic analyses in the whole concentration range. Both Y-Mn-Sn and Dy-Mn-Sn systems are characterized by formation of two ternary compounds RMn{sub 6}Sn{sub 6} (MgFe{sub 6}Ge{sub 6}-type, space group P6/mmm) and R{sub 4}Mn{sub 4}Sn{sub 7} (Zr{sub 4}Co{sub 4}Ge{sub 7}-type, space group I4/mmm). The disorder in Dy{sub 4}Mn{sub 4}Sn{sub 7} compound was found by single crystal method. Compounds with the same type of structure were also found with Gd, Tb, Ho, Er, Tm (confirmed), Yb, and Lu and their lattice parameters were determined.

  16. Phase diagram of the ternary Zr-Ti-Sn system

    International Nuclear Information System (INIS)

    Arias, D.; Gonzalez Camus, M.

    1987-01-01

    It is well known that Ti stabilizes the high temperature cubic phase of Zr and that Sn stabilizes the low temperature hexagonal phase of Zr. The effect of Sn on the Zr-Ti diagram has been studied in the present paper. Using high purity metals, nine different alloys have been prepared, with 4-32 at % Ti, 0.7-2.2 at % Sn and Zr till 100%. Resistivity and optical and SEM metallography techniques have been employed. Effect of some impurities have been analyzed. The results are discussed and different isothermic sections of the ternary Zr-Ti-Sn diagram are presented. (Author) [es

  17. Dimensional stability of Ti--6Al--6V--2Sn

    International Nuclear Information System (INIS)

    Rack, H.J.

    1978-08-01

    The dimensional stability of Ti-6Al-6V-2Sn has been examined. It is shown that in the duplex annealed condition Ti-6Al-6V-2Sn is dimensionally stable at temperatures up to 448 0 K for 512 hrs. Solution treated Ti-6Al-6V-2Sn undergoes large dimensional changes during both initial aging between 673 and 973 0 K and subsequent exposure to low temperatures ( 0 K). These results indicate that if close dimensional tolerances must be maintained, duplex annealed Ti-6Al-6V-2Sn should be selected. Selection of treated and aged Ti-6Al-6V-2Sn should only be considered if accompanied by full scale environmental testing

  18. Synthesis and photoluminescence of Ca-(Sn,Ti)-Si-O compounds

    International Nuclear Information System (INIS)

    Abe, Shunsuke; Yamane, Hisanori; Yoshida, Hisashi

    2010-01-01

    The phase relation of the compounds prepared in the CaO-SnO 2 -SiO 2 system at 1673 K and in the CaO-TiO 2 -SiO 2 system at 1573 K was investigated in order to explore new Ti 4+ -activated stannate phosphors. Solid solutions of Ca(Sn 1-x Ti x )SiO 5 and Ca 3 (Sn 1-y Ti y )Si 2 O 9 were synthesized at x = 0-1.0 and y = 0-0.10, respectively, and their crystal structures were analyzed by powder X-ray diffraction. Photoluminescence of these solid solutions was observed in a broad range of a visible light wavelength region under ultraviolet (UV) light excitation. The peaks of the emission band of Ca(Sn 0.97 Ti 0.03 )SiO 5 and Ca 3 (Sn 0.925 Ti 0.075 )Si 2 O 9 were at 510 nm under excitation of 252 nm and at 534 nm under excitation of 258 nm, respectively. The absorption edges estimated by the diffuse reflectance spectra were at 300 nm (4.1 eV) for CaSnSiO 5 and at 270 nm (4.6 eV) for Ca 3 SnSi 2 O 9 , suggesting that the excitation levels in Ca(Sn 1-x Ti x )SiO 5 were above the band gap of the host, although the levels in Ca 3 (Sn 1-y Ti y )Si 2 O 9 were within the band gap and near the conduction band edge.

  19. Duplex Heterogeneous Nucleation Behavior of Precipitates in C-Mn Steel Containing Sn

    Science.gov (United States)

    Sun, Guilin; Tao, Sufen

    2018-04-01

    The two successive heterogeneous nucleation behaviors of FeSn2-MnS-Al2O3 complex precipitates in ultrahigh Sn-bearing steel were investigated. First, Al2O3 was the nucleation site of the MnS at the end of solidification. Then, FeSn2 nucleated heterogeneously on the MnS particles that nucleated on the Al2O3 particles. The formation sequence of the precipitated phase caused the duplex heterogeneous nucleation to occur consecutively at most twice.

  20. Intrinsic defect processes and elastic properties of Ti3AC2 (A = Al, Si, Ga, Ge, In, Sn) MAX phases

    Science.gov (United States)

    Christopoulos, S.-R. G.; Filippatos, P. P.; Hadi, M. A.; Kelaidis, N.; Fitzpatrick, M. E.; Chroneos, A.

    2018-01-01

    Mn+1AXn phases (M = early transition metal; A = group 13-16 element and X = C or N) have a combination of advantageous metallic and ceramic properties, and are being considered for structural applications particularly where high thermal conductivity and operating temperature are the primary drivers: for example in nuclear fuel cladding. Here, we employ density functional theory calculations to investigate the intrinsic defect processes and mechanical behaviour of a range of Ti3AC2 phases (A = Al, Si, Ga, Ge, In, Sn). Based on the intrinsic defect reaction, it is calculated that Ti3SnC2 is the more radiation-tolerant 312 MAX phase considered herein. In this material, the C Frenkel reaction is the lowest energy intrinsic defect mechanism with 5.50 eV. When considering the elastic properties of the aforementioned MAX phases, Ti3SiC2 is the hardest and Ti3SnC2 is the softest. All the MAX phases considered here are non-central force solids and brittle in nature. Ti3SiC2 is elastically more anisotropic and Ti3AlC2 is nearly isotropic.

  1. Martensitic transformation and magnetic properties of manganese-rich Ni-Mn-In and Ni-Mn-Sn Heusler alloys

    International Nuclear Information System (INIS)

    Krenke, T.

    2007-01-01

    In the present work, the martensitic transition and the magnetic properties of Manganese rich Ni 50 Mn 50-x Sn x and Ni 50 Mn 50-y In y alloys with 5 at%≤x(y)≤25 at% were investigated. Calorimetry, X-ray and neutron diffraction, magnetization, and strain measurements were performed on polycrystalline samples. It was shown that alloys close to the stoichiometric composition Ni 50 Mn 25 Sn 25 and Ni 50 Mn 25 Sn 25 do not exhibit a structural transition on lowering of the temperature, whereas alloys with x≤15 at% Tin and y≤16 at% Indium transform martensitically. The structural transition temperatures increase linearly with decreasing Tin or Indium content. The crystal structures of the low temperature martensite are modulated as well as unmodulated. Alloys with compositions close to stoichiometry are dominated by ferromagnetic interactions, whereas those close to the binary composition Ni 50 Mn 50 order antiferromagnetically. Ferromagnetic order and structural instability coexist in a narrow composition range between 13 at%≤x≤15 at% and 15 at%≤x≤16 at% for Ni 50 Mn 50-x Sn x and Ni 50 Mn 50-y In y respectively. As a consequence, interesting magnetoelastic effects are observed. The Ni 50 Mn 34 In 16 alloy shows a magnetic field-induced structural transition, whereby application of an external magnetic field in the martensitic state stabilizes the high temperature L2 1 structure. Evidence for this was given by neutron diffraction experiments in external magnetic fields. Moreover, the structural transition temperatures of this alloy show large magnetic field dependencies. By use of calorimetry, M(T), and strain measurements, changes in M s up to -11 K/Tesla are observed. Such large values have, until now, not been observed in Heusler alloys. Since during transformation the volume changes reversibly, magnetic field-induced strains of about 0.12 % appear. Additionally, the alloys Ni 50 Mn 35 Sn 15 , Ni 50 Mn 37 Sn 13 , Ni 50 Mn 34 In 16 , Ni 51.5 Mn 33 In

  2. Phase relationships in the Er-Mn-Ti ternary system at 773 K

    International Nuclear Information System (INIS)

    Liu Jingqi; Wang Xina; Tang Mengqi; Su Kunpeng; Yang Xiaomao; Li Chunhui; Li Xueqiang

    2009-01-01

    The Phase relationship in the Er-Mn-Ti ternary system at 773 K has been investigated by X-ray powder diffraction analysis with the aid of differential thermal analysis and optical microanalysis techniques in this work. The existence of eight binary compounds Mn 15 Ti 85, αMnTi, βMnTi, Mn 2 Ti, Mn 5 Ti, ErMn 12, Er 6 Mn 23 and ErMn 2 has been confirmed at 773 K in this system. The maximum solid solubility of Ti in Mn is about 8 at%Ti. The homogeneity range of Mn 2 Ti extends from about 31 at% to 39 at% Ti. The maximum solid solubility of Er in Mn 2 Ti phase is about less than 1 at% Er. No ternary compounds were found in this ternary system at 773K. At 773 K, the isothermal section of phase diagram of Er-Mn-Ti ternary system consists of 11 single-phase regions, 19 two-phase regions and 9 three-phase regions.

  3. Martensitic transformation and magnetic properties of manganese-rich Ni-Mn-In and Ni-Mn-Sn Heusler alloys; Untersuchung der martensitischen Umwandlung und der magnetischen Eigenschaften Mangan-reicher Ni-Mn-In- und Ni-Mn-Sn-Heusler-Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Krenke, T.

    2007-06-29

    In the present work, the martensitic transition and the magnetic properties of Manganese rich Ni{sub 50}Mn{sub 50-x}Sn{sub x} and Ni{sub 50}Mn{sub 50-y}In{sub y} alloys with 5 at%{<=}x(y){<=}25 at% were investigated. Calorimetry, X-ray and neutron diffraction, magnetization, and strain measurements were performed on polycrystalline samples. It was shown that alloys close to the stoichiometric composition Ni{sub 50}Mn{sub 25}Sn{sub 25} and Ni{sub 50}Mn{sub 25}Sn{sub 25} do not exhibit a structural transition on lowering of the temperature, whereas alloys with x{<=}15 at% Tin and y{<=}16 at% Indium transform martensitically. The structural transition temperatures increase linearly with decreasing Tin or Indium content. The crystal structures of the low temperature martensite are modulated as well as unmodulated. Alloys with compositions close to stoichiometry are dominated by ferromagnetic interactions, whereas those close to the binary composition Ni{sub 50}Mn{sub 50} order antiferromagnetically. Ferromagnetic order and structural instability coexist in a narrow composition range between 13 at%{<=}x{<=}15 at% and 15 at%{<=}x{<=}16 at% for Ni{sub 50}Mn{sub 50-x}Sn{sub x} and Ni{sub 50}Mn{sub 50-y}In{sub y} respectively. As a consequence, interesting magnetoelastic effects are observed. The Ni{sub 50}Mn{sub 34}In{sub 16} alloy shows a magnetic field-induced structural transition, whereby application of an external magnetic field in the martensitic state stabilizes the high temperature L2{sub 1} structure. Evidence for this was given by neutron diffraction experiments in external magnetic fields. Moreover, the structural transition temperatures of this alloy show large magnetic field dependencies. By use of calorimetry, M(T), and strain measurements, changes in M{sub s} up to -11 K/Tesla are observed. Such large values have, until now, not been observed in Heusler alloys. Since during transformation the volume changes reversibly, magnetic field-induced strains of about

  4. Possible martensitic transformation in Heusler alloy Mn{sub 2}PdSn from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Feng, L., E-mail: author.fenglin@tyut.edu.cn [Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Computational Condensed Matter Physics Laboratory, Department of Physics, Taiyuan University of Technology, Taiyuan 030024 (China); Feng, X. [Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Computational Condensed Matter Physics Laboratory, Department of Physics, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, E.K.; Wang, W.H.; Wu, G.H. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Hu, J.F.; Zhang, W.X. [Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Computational Condensed Matter Physics Laboratory, Department of Physics, Taiyuan University of Technology, Taiyuan 030024 (China)

    2016-12-01

    The tetragonal distortion, electronic structure and magnetic property of Mn{sub 2}PdSn have been systematically investigated by first-principles calculations. The results indicate that the total energy of tetragonal martensitic phase is lower than cubic austenitic phase for Mn{sub 2}PdSn. The corresponding c/a ratio and energy difference are 1.23 and 41.62 meV/f.u., respectively. This suggests that there is a great possibility for martensitic transformation to occur in Mn{sub 2}PdSn with temperature decreasing. The electronic structure shows that there are sharp DOS peaks originating from p–d hybridization in the vicinity of Fermi level in the cubic phase. And these peaks disappear or become more flat in the martensitic phase. - Highlights: • The martensitic transformation is prone to occur with temperature decreasing in Mn{sub 2}PdSn. • Electronic structure and magnetic property of Mn{sub 2}PdSn are investigated. • Both the austenitic and martensitic phases of Mn{sub 2}PdSn are ferrimagnetic.

  5. Diffusion and chemical activity of Zr-Sn and Zr-Ti systems

    International Nuclear Information System (INIS)

    Zee, R.H.; Watters, J.F.; Davidson, R.D.

    1986-01-01

    A modified evaporation method was used to determine the diffusion coefficients and the emission rates of Sn and Ti in Zr-Sn and Zr-Ti, respectively, at temperatures between 1605 and 1970 K. Results show that both Sn and Ti diffuse in their respective alloys via a vacancy mechanism. Comparison with data in the literature reveals that the activation energy for diffusion of Sn in Zr-Sn, with Sn content between 3 and 5 at.X is relatively constant from 1200 to 1970 K. From the measured emission rates, values of 103 and 98 kcal/mol were obtained for the enthalpies of sublimation for Sn and Ti in their alloys. With a comparison of the solute vapor pressures with those of the pure elements, partial molar free energies, entropies, and enthalpies for the two systems were determined in the temperature range investigated. The Zr-Sn system shows a very large negative heat of formation (-33 kcal/mol) whereas the Zr-Ti system behaves quite ideally, in agreement with phase-diagram predictions

  6. Magnetism of DyMn2 and HoMn2 - 57Fe and 119Sn Moessbauer studies

    International Nuclear Information System (INIS)

    Krop, K.; Haeufler, T.; Hilscher, G.; Steiner, W.

    1995-01-01

    Moessbauer spectra were measured for two Laves phase compounds DyMn 2 and HoMn 2 in which manganese was substituted to 0.5% with 57 Fe and to 0.2% with 119 Sn. At 4.2 K the 57 Fe and 119 Sn spectra of the Dy compound were unambiguously fitted each with two Zeeman patterns (with relative contributions to the spectra 3:1) corresponding to two different Mn sites - magnetic and nonmagnetic. Transferred hyperfine fields at 119 Sn were found to be proportional to the magnetic moment of Dy and its ferromagnetic component, corroborating the magnetic structure found in neutron diffraction (ND) experiment. The same procedure was carried on with the spectra measured for the Ho compound, but the above mentioned proportionality was not found. ((orig.))

  7. SnTe-TiC-C composites as high-performance anodes for Li-ion batteries

    Science.gov (United States)

    Son, Seung Yeon; Hur, Jaehyun; Kim, Kwang Ho; Son, Hyung Bin; Lee, Seung Geol; Kim, Il Tae

    2017-10-01

    Intermetallic SnTe composites dispersed in a conductive TiC/C hybrid matrix are synthesized by high-energy ball milling (HEBM). The electrochemical performances of the composites as potential anodes for Li-ion batteries are evaluated. The structural and morphological characteristics of the SnTe-TiC-C composites with various TiC contents are investigated by X-ray diffraction (XRD) and high-resolution transmission electron microscopy, which reveal that SnTe and TiC are uniformly dispersed in a carbon matrix. The electrochemical performance is significantly improved by introducing TiC to the SnTe-C composite; higher TiC contents result in better performances. Among the prepared composites, the SnTe-TiC (30%)-C and SnTe-TiC (40%)-C electrodes exhibit the best electrochemical performance, showing the reversible capacities of, respectively, 652 mAh cm-3 and 588 mAh cm-3 after 400 cycles and high rate capabilities with the capacity retentions of 75.4% for SnTe-TiC (30%)-C and 82.2% for SnTe-TiC (40%)-C at 10 A g-1. Furthermore, the Li storage reaction mechanisms of Te or Sn in the SnTe-TiC-C electrodes are confirmed by ex situ XRD.

  8. Production of superconducting Nb3Sn wire using Nb or Nb(Ti) and Sn(Ga) solid solution powders

    International Nuclear Information System (INIS)

    Thieme, C.L.H.; Foner, S.

    1991-01-01

    This paper reports on superconducting Nb 3 Sn wire produced by the powder metallurgy method using Nb or Nb-2.9 at% Ti powder in combination with Sn-x at% Ga powders (x = 3, 4.2, 6.2 and 9.0). Ga additions to the Sn caused considerable solid solution hardening which improved its workability. It made the Nb-Sn(Ga) powder combinations convenient for swaging and extensive wire drawing. Anneals at 950 degrees C produced wires with an overall J c of 10 4 A/cm 2 at 21.9 T for wires with both Ti in the Nb and 6.2 at% Ga in the Sn. Comparison of this wire with the best Nb(Ti)-Cu-internal Sn(Ti) shows a higher J c per A15 areas, especially in fields of 22T and above

  9. Three NiAs-Ni 2In Type Structures in the Mn-Sn System

    Science.gov (United States)

    Elding-Pontén, Margareta; Stenberg, Lars; Larsson, Ann-Kristin; Lidin, Sven; Ståhl, Kenny

    1997-03-01

    TheB8-type structure field of the Mn-Sn system has been investigated. Two high temperature phases (HTP1 and HTP2) and one low temperature phase (Mn3Sn2) were found. They all crystallize with the NiAs structure type with part of the trigonal bipyramidal interstices filled by manganese atoms in an ordered manner. The ordering as well as the manganese content is different for the three phases, giving rise to three different orthorhombic superstructures. Mn3Sn2seems to have the lowest manganese content, since the corresponding basal unit cell is smaller than for HTP1-2. Structural models of the phases are based on selected area electron diffraction, X-ray powder diffraction, and preliminary single crystal X-ray measurements. The ideal cell parameters found are (a=7ahex,b=3ahex,c=chex), (a=5ahex,b=3ahex,c=chex), and (a=2ahex,b=3ahex,c=chex) for HTP1, HTP2, and Mn3Sn2, respectively. The crystal structure of Mn3Sn2has been refined by means of the Rietveld method from X-ray powder diffraction data. Mn3Sn2is orthorhombic,Pnma,a=7.5547(2),b=5.4994(2),c=8.5842(2) Å,Z=4. (Pbnmin the setting above.) The compound is isostructural with Ni3Sn2andγ‧-Co3Sn2(H. Fjellvåg and A. Kjekshus,Acta Chem. Scand.A40, 23-30 (1986)). FinalRp=8.97%,Rwp=11.44%, GOF=2.86, andRBragg=4.11% using 43 parameters and 5701 observations and 330 Bragg reflections.

  10. Properties of Sn-doped TiO2 nanotubes fabricated by anodization of co-sputtered Ti–Sn thin films

    International Nuclear Information System (INIS)

    Kyeremateng, Nana Amponsah; Hornebecq, Virginie; Knauth, Philippe; Djenizian, Thierry

    2012-01-01

    Self-organized Sn-doped TiO 2 nanotubes (nts) were fabricated for the first time, by anodization of co-sputtered Ti and Sn thin films. This nanostructured material was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, UV–vis spectroscopy and transmission electron microscopy. Due to their remarkable properties, Sn-doped TiO 2 nts can find potential applications in Li-ion microbatteries, photovoltaics, and catalysis. Particularly, the electrochemical performance as an anode material for Li-ion microbatteries was evaluated in Li test cells. With current density of 70 μA cm −2 (1 C) and cut-off potential of 1 V, Sn-doped TiO 2 nts showed improved performance compared to simple TiO 2 nts, and differential capacity plots revealed that the material undergoes full electrochemical reaction as a Rutile-type TiO 2 .

  11. Phase separation and antisite defects in the thermoelectric TiNiSn half-Heusler alloys

    International Nuclear Information System (INIS)

    Kirievsky, K.; Gelbstein, Y.; Fuks, D.

    2013-01-01

    The half-Heusler TiNiSn alloys have recently gained an attention as promising candidates for thermoelectric applications. Improvement of these alloys for such applications can be obtained by both electronic and compositional optimizations. The latter can result in a miscibility gap, allowing a phase separation in the nano-scale and consequently a thermal conductivity reduction. Combination of ab initio calculations and statistical thermodynamics was applied for studying the relative stability of a number of superstructures in TiNiSn based alloys. The quasi-binary phase diagram beyond T=0 K for TiNiSn–TiNi 2 Sn solid solutions was calculated using energy parameters extracted from the total energy calculations for ordered structures in the Ni sublattice. We demonstrated that a decomposition of the off-stoichiometric Ni-rich half-Heusler alloy into the stoichiometric TiNiSn phase and into Ni deficient Heusler TiNi 2 Sn phase occurs at elevated temperatures—an effect which recently had been observed experimentally. Furthermore, favorable energetic conditions for antisite defects formation were deduced, based on calculations of the energy of formation, an effect which was explained as a cooperative process of partial disordering on the Ni sublattice. The influence of these two effects on improvement of the thermoelectric performance of TiNiSn based half Heusler compounds is discussed. - Graphical abstract: Phase separation and antisite defects in the thermoelectric TiNiSn alloy, are covered as methods for nanostructuring and thereby enhancement of the thermoelectric potential. - Highlights: • Ab initio calculations/statistical thermodynamics was applied for studying the TiNiSn system. • The phase diagram for TiNiSn–TiNi 2 Sn solid solutions was calculated. • Decomposition of the Ni-rich HH into TiNiSn and Ni deficient TiNi 2 Sn phases was observed. • Favorable energetic conditions for antisite defects formation were deduced

  12. Structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy

    Science.gov (United States)

    Kanzyuba, Vasily; Dong, Sining; Liu, Xinyu; Li, Xiang; Rouvimov, Sergei; Okuno, Hanako; Mariette, Henri; Zhang, Xueqiang; Ptasinska, Sylwia; Tracy, Brian D.; Smith, David J.; Dobrowolska, Margaret; Furdyna, Jacek K.

    2017-02-01

    We describe the structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy on GaAs (111) substrates, as revealed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. When the Mn concentration is increased, the lattice of the ternary (Sn,Mn)Se films evolves quasi-coherently from a SnSe2 two-dimensional (2D) crystal structure into a more complex quasi-2D lattice rearrangement, ultimately transforming into the magnetically concentrated antiferromagnetic MnSe 3D rock-salt structure as Mn approaches 50 at. % of this material. These structural transformations are expected to underlie the evolution of magnetic properties of this ternary system reported earlier in the literature.

  13. TiO2-SnS2 nanocomposites: solar-active photocatalytic materials for water treatment.

    Science.gov (United States)

    Kovacic, Marin; Kusic, Hrvoje; Fanetti, Mattia; Stangar, Urska Lavrencic; Valant, Matjaz; Dionysiou, Dionysios D; Bozic, Ana Loncaric

    2017-08-01

    The study is aimed at evaluating TiO 2 -SnS 2 composites as effective solar-active photocatalysts for water treatment. Two strategies for the preparation of TiO 2 -SnS 2 composites were examined: (i) in-situ chemical synthesis followed by immobilization on glass plates and (ii) binding of two components (TiO 2 and SnS 2 ) within the immobilization step. The as-prepared TiO 2 -SnS 2 composites and their sole components (TiO 2 or SnS 2 ) were inspected for composition, crystallinity, and morphology using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analyses. Diffuse reflectance spectroscopy (DRS) was used to determine band gaps of immobilized TiO 2 -SnS 2 and to establish the changes in comparison to respective sole components. The activity of immobilized TiO 2 -SnS 2 composites was tested for the removal of diclofenac (DCF) in aqueous solution under simulated solar irradiation and compared with that of single component photocatalysts. In situ chemical synthesis yielded materials of high crystallinity, while their morphology and composition strongly depended on synthesis conditions applied. TiO 2 -SnS 2 composites exhibited higher activity toward DCF removal and conversion in comparison to their sole components at acidic pH, while only in situ synthesized TiO 2 -SnS 2 composites showed higher activity at neutral pH.

  14. TiO2 coated SnO2 nanosheet films for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Cai Fengshi; Yuan Zhihao; Duan Yueqing; Bie Lijian

    2011-01-01

    TiO 2 -coated SnO 2 nanosheet (TiO 2 -SnO 2 NS) films about 300 nm in thickness were fabricated on fluorine-doped tin oxide glass by a two-step process with facile solution-grown approach and subsequent hydrolysis of TiCl 4 aqueous solution. The as-prepared TiO 2 -SnO 2 NSs were characterized by scanning electron microscopy and X-ray diffraction. The performances of the dye-sensitized solar cells (DSCs) with TiO 2 -SnO 2 NSs were analyzed by current-voltage measurements and electrochemical impedance spectroscopy. Experimental results show that the introduction of TiO 2 -SnO 2 NSs can provide an efficient electron transition channel along the SnO 2 nanosheets, increase the short current density, and finally improve the conversion efficiency for the DSCs from 4.52 to 5.71%.

  15. Catalytic Oxidation of NO over MnOx–CeO2 and MnOx–TiO2 Catalysts

    Directory of Open Access Journals (Sweden)

    Xiaolan Zeng

    2016-11-01

    Full Text Available A series of MnOx–CeO2 and MnOx–TiO2 catalysts were prepared by a homogeneous precipitation method and their catalytic activities for the NO oxidation in the absence or presence of SO2 were evaluated. Results show that the optimal molar ratio of Mn/Ce and Mn/Ti are 0.7 and 0.5, respectively. The MnOx–CeO2 catalyst exhibits higher catalytic activity and better resistance to SO2 poisoning than the MnOx–TiO2 catalyst. On the basis of Brunauer–Emmett–Teller (BET, X-ray diffraction (XRD, and scanning transmission electron microscope with mapping (STEM-mapping analyses, it is seen that the MnOx–CeO2 catalyst possesses higher BET surface area and better dispersion of MnOx over the catalyst than MnOx–TiO2 catalyst. X-ray photoelectron spectroscopy (XPS measurements reveal that MnOx–CeO2 catalyst provides the abundance of Mn3+ and more surface adsorbed oxygen, and SO2 might be preferentially adsorbed to the surface of CeO2 to form sulfate species, which provides a protection of MnOx active sites from being poisoned. In contrast, MnOx active sites over the MnOx–TiO2 catalyst are easily and quickly sulfated, leading to rapid deactivation of the catalyst for NO oxidation. Furthermore, temperature programmed desorption with NO and O2 (NO + O2-TPD and in situ diffuse reflectance infrared transform spectroscopy (in situ DRIFTS characterizations results show that the MnOx–CeO2 catalyst displays much stronger ability to adsorb NOx than the MnOx–TiO2 catalyst, especially after SO2 poisoning.

  16. Electronic Topological Transitions in CuNiMnAl and CuNiMnSn under pressure from first principles study

    Science.gov (United States)

    Rambabu, P.; Kanchana, V.

    2018-06-01

    A detailed study on quaternary ordered full Heusler alloys CuNiMnAl and CuNiMnSn at ambient and under different compressions is presented using first principles electronic structure calculations. Both the compounds are found to possess ferromagnetic nature at ambient with magnetic moment of Mn being 3.14 μB and 3.35 μB respectively in CuNiMnAl and CuNiMnSn. The total magnetic moment for both the compounds is found to decrease under compression. Fermi surface (FS) topology change is observed in both compounds under pressure at V/V0 = 0.90, further leading to Electronic Topological Transitions (ETTs) and is evidenced by the anomalies visualized in density of states and elastic constants under compression.

  17. Controlled synthesis of MnSn(OH)6/graphene nanocomposites and their electrochemical properties as capacitive materials

    International Nuclear Information System (INIS)

    Wang Gongkai; Sun Xiang; Lu Fengyuan; Yu Qingkai; Liu Changsheng; Lian Jie

    2012-01-01

    We report the synthesis of novel MnSn(OH) 6 /graphene nanocomposites produced by a co-precipitation method and their potential application for electrochemical energy storage. The hydroxide decorated graphene nanocomposites display better performance over pure MnSn(OH) 6 nanoparticles because the graphene sheets act as conductive bridges improving the ionic and electronic transport. The crystallinity of MnSn(OH) 6 nanoparticles deposited on the surface of graphene sheets also impacts the capacitive properties as electrodes. The maximum capacitance of 31.2 F/g (59.4 F/g based on the mass of MnSn(OH) 6 nanoparticles) was achieved for the sample with a low degree of crystallinity. No significant degradation of capacitance occurred after 500 cycles at a current density of 1.5 A/g in 1 M Na 2 SO 4 aqueous solution, indicating an excellent electrochemical stability. The results serve as an example demonstrating the potential of integrating highly conductive graphene networks into binary metal hydroxide in improving the performance of active electrode materials for electrochemical energy storage applications. - Graphical abstract: Graphite oxide (GO) can be synthesized by oxidizing graphite using Hummers method. Graphene was reduced from GO by thermal exfoliation. In this work, MnSn(OH) 6 /graphene nano-composites were synthesized by a simple co-precipitation method and their electrochemical performances have been explored. Highlights: ► Noval MnSn(OH) 6 /graphene nano-composites were synthesized. ► Microstructure can be tailored by changing the reaction temperature and time. ► Crystallinity of MnSn(OH) 6 nanoparticles impacts capacitive properties as electrode. ► Nano-composites display improved electrochemical performance over MnSn(OH) 6 alone. ► Results serve as an example demonstrating the potential for energy storage.

  18. One-pot electrospinning and gas-sensing properties of LaMnO3 perovskite/SnO2 heterojunction nanofibers

    Science.gov (United States)

    Chen, Dongdong; Yi, Jianxin

    2018-03-01

    Using nanostructured composite materials is an effective way to obtain high-performance gas sensors. This work used p-type LaMnO3 perovskite-structured semiconductor as a novel promoter for SnO2 nanofibers and studied the gas-sensing characteristics. Nanofibers of 0-2.5-mol% LaMnO3/SnO2 were synthesized via one-pot electrospinning. Compared with pristine SnO2, LaMnO3/SnO2 composite nanofibers exhibited smaller particle size (10-30 nm) and higher BET surface area. XPS revealed that oxygen surface absorption decreased with increasing LaMnO3 content. 0.3-mol% LaMnO3/SnO2 exhibited significantly enhanced ethanol sensitivity relative to pristine SnO2. A response of 20 was obtained at the optimum temperature of 260 °C for 100-ppm ethanol. Higher LaMnO3 loading led to decrease of the ethanol response. The impact of LaMnO3 loading on the sensing behavior of SnO2 nanofibers was discussed in terms of p-n heterojunction formation and changes in the microstructure and catalytic properties.

  19. Photoluminescence study of epitaxially grown ZnSnAs2:Mn thin films

    International Nuclear Information System (INIS)

    Mammadov, E; Haneta, M; Toyota, H; Uchitomi, N

    2011-01-01

    The photoluminescence (PL) properties of heavily Mn-doped ZnSnAs 2 layers epitaxially grown on nearly lattice-matched semi-insulating InP substrates are studied. PL spectra are obtained for samples with Mn concentrations of 5, 12 and 24 mol% relative to the combined concentrations of Zn and Sn. A broad emission band centered at ∼ 1 eV is detected for Mn-doped layers at room temperature. The emission is a intense broad asymmetric line at low temperatures. The line is reconstructed by superposition of two bands with peak energies of ∼ 0.99 and 1.07 eV, similar to those reported for InP. These bands are superimposed onto a 1.14 eV band with well-resolved phonon structure for the layer doped with 12 % Mn. Recombination mechanism involving the split-off band of the ZnSnAs 2 is suggested. Temperature dependence of integrated intensities of the PL bands indicates to thermally activated emission with activation energies somewhat different from those found for InP. Mn substitution at cationic sites increases the concentration of holes which may act as recombination centers. Recombination to the holes bound to Mn ions with the ground state located below the top of the valence band has been proposed as a possible PL mechanism.

  20. Comparing Thermal Stability of NbTi and Nb$_3$Sn Wires

    CERN Document Server

    Breschi, M; Bottura, L; Devred, A; Trillaud, F

    2009-01-01

    The investigation of quenching in low temperature superconducting wires is of great relevance for a proper design of superconductive cables and magnets. This paper reports the experimental results of a vast measurement campaign of quench induced by laser pulses on NbTi and Nb$_{3}$Sn wires in pool boiling Helium I. A comparison of the quench behavior of two typical NbTi and Nb$_{3}$Sn wires is shown from different standpoints. Different qualitative behaviors of the voltage traces recorded during quenches and recoveries on NbTi and Nb$_{3}$Sn wires are reported and analyzed. It is shown that the Nb$_{3}$Sn wire exhibits a quench or no-quench behavior, whereas quenches and recoveries are exhibited by the NbTi wire. The two wires are also compared considering the behaviors of the two main parameters describing quench, i.e. quench energies and quench velocities, with respect to operation current and pulse duration and magnetic field. It is shown that the Nb$_{3}$Sn wire exhibits a ‘kink’ of the quench energy ...

  1. Phase transitions and thermal expansion in Ni51- x Mn36 + x Sn13 alloys

    Science.gov (United States)

    Kaletina, Yu. V.; Gerasimov, E. G.; Kazantsev, V. A.; Kaletin, A. Yu.

    2017-10-01

    Thermal expansion and structural and magnetic phase transitions in alloys of the Ni-Mn-Sn system have been investigated. The spontaneous martensitic transformation in Ni51-xMn36 + xSn13 (0 ≤ x ≤ 3) alloys is found to be accompanied by high jumps in the temperature dependences of the linear thermal expansion. The relative change in the linear sizes of these alloys at the martensitic transformation is 1.5 × 10-3. There are no anomalies in the magnetic-ordering temperature range in the temperature dependences of the coefficient of linear thermal expansion. The differences in the behavior of linear thermal expansion at the martensitic transformation in Ni51-xMn36 + xSn13 (0 ≤ x ≤ 3) and Ni47Mn40Sn13( x = 4) alloys have been established.

  2. Induced Ti magnetization at La0.7Sr0.3MnO3 and BaTiO3 interfaces

    Directory of Open Access Journals (Sweden)

    Yaohua Liu

    2016-04-01

    Full Text Available In artificial multiferroics hybrids consisting of ferromagnetic La0.7Sr0.3MnO3 (LSMO and ferroelectric BaTiO3 epitaxial layers, net Ti moments are found from polarized resonant soft x-ray reflectivity and absorption. The Ti dichroic reflectivity follows the Mn signal during the magnetization reversal, indicating exchange coupling between the Ti and Mn ions. However, the Ti dichroic reflectivity shows stronger temperature dependence than the Mn dichroic signal. Besides a reduced ferromagnetic exchange coupling in the interfacial LSMO layer, this may also be attributed to a weak Ti-Mn exchange coupling that is insufficient to overcome the thermal energy at elevated temperatures.

  3. Synthesis and characterization of SnO2, TiO2 and Ti0.5Sn0.5O2 nanoparticles as efficient materials for photocatalytic activity

    Science.gov (United States)

    Bargougui, R.; Pichavant, A.; Hochepied, J.-F.; Berger, M.-H.; Gadri, A.; Ammar, S.

    2016-08-01

    This work reports the synthesis of polydispersible SnO2, TiO2 and Ti0.5Sn0.5O2 nanoparticles via microwave-assisted polyol as an efficient method using diethylene glycol (DEG) and triethylene glycol (TREG) as solvent. The properties of as-prepared samples were investigated by X-ray diffractometry, transmission electron microscopy, diffuse reflectance and FTIR spectrophotometery, photoluminescence spectroscopy and N2 physisorption. The X-ray diffraction patterns of the samples were indexed on the anatase phase of TiO2 and cassiterite phase of SnO2 and Ti0.5Sn0.5O2. The TEM images show uniform isotropic morphologies with average sizes close to10 nm. The band gap is reduced for Ti0.5Sn0.5O2 and enhances visible light absorption, a shift resulting in the absorption threshold towards the visible spectral range, compared to pure titania and tin. Slight shifts to longer wavelength are attributed to the change in the acceptor's level induced by the mixture of both oxides. The evaluation of the photocatalytic activity is carried out using indigo carmine (IC) as model of chemical pollutants in UV irradiation conditions. The photocatalytic decolorization of the dye follows a pseudo-first-order kinetics and the constant apparent rate was increased with the increase of the tin oxide content up to 50%.

  4. Magnetism of DyMn{sub 2} and HoMn{sub 2} - {sup 57}Fe and {sup 119}Sn Moessbauer studies

    Energy Technology Data Exchange (ETDEWEB)

    Krop, K. [University of Min. and Metall., Krakow (Poland). Dept. of Solid State Phys.; Zukrowski, J. [University of Min. and Metall., Krakow (Poland). Dept. of Solid State Phys.; Przewoznik, J. [University of Min. and Metall., Krakow (Poland). Dept. of Solid State Phys.; Marzec, J. [University of Min. and Metall., Krakow (Poland). Dept. of Solid State Phys.; Wiesinger, G. [Institute for Experimental Physics, Technical University, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Haeufler, T. [Institute for Experimental Physics, Technical University, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Hilscher, G. [Institute for Experimental Physics, Technical University, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Steiner, W. [Institute for Applied and Technical Physics, Technical University, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria)

    1995-05-01

    Moessbauer spectra were measured for two Laves phase compounds DyMn{sub 2} and HoMn{sub 2} in which manganese was substituted to 0.5% with {sup 57}Fe and to 0.2% with {sup 119}Sn. At 4.2 K the {sup 57}Fe and {sup 119}Sn spectra of the Dy compound were unambiguously fitted each with two Zeeman patterns (with relative contributions to the spectra 3:1) corresponding to two different Mn sites - magnetic and nonmagnetic. Transferred hyperfine fields at {sup 119}Sn were found to be proportional to the magnetic moment of Dy and its ferromagnetic component, corroborating the magnetic structure found in neutron diffraction (ND) experiment. The same procedure was carried on with the spectra measured for the Ho compound, but the above mentioned proportionality was not found. ((orig.)).

  5. {sup 119}Sn Mössbauer studies on ferromagnetic and photocatalytic Sn–TiO{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ganeshraja, Ayyakannu Sundaram [Dalian Institute of Chemical Physics, Chinese Academy of Science, Mössbauer Effect Data Center (China); Nomura, Kiyoshi [Tokyo University of Science, Photocatalysis International Research Center (Japan); Wang, Junhu, E-mail: wangjh@dicp.ac.cn [Dalian Institute of Chemical Physics, Chinese Academy of Science, Mössbauer Effect Data Center (China)

    2016-12-15

    Diluted Sn doped TiO{sub 2} nanocrystals (Sn/Ti ratio: x ≤ 1.37 %) were synthesized by a simple hydrothermal method using pure reagents without any surfactant and dispersant material. The XRD of these samples showed an anatase phase, anatase and rutile mixed phases, and a rutile phase of TiO{sub 2} and SnO{sub 2} with the increase of Sn dopant concentrations. {sup 119}Sn Mössbauer spectra gave the broad peaks, which were decomposed into doublets and sextets because almost all these samples showed magnetic hysteresis even at room temperature. The titanium oxides doped with x ≤ 0.12 % showed the relatively large magnetic hysteresis and high photocatalytic activity. Mössbauer spectra of samples doped with x > 0.3 % were analyzed by one doublet and two sextets although the samples showed weak ferromagnetism. Three kinds of Sn species may be distinguished as Sn {sup 4+} substituted TiO{sub 2} and two different magnetic arrangements of Sn doped TiO{sub 2}: one with more oxygen defects and other at the interface of TiO{sub 2} and precipitated SnO{sub 2} containing Ti atoms. The correlation between various amounts of Sn sites and photocatalytic activity and/ or magnetic property was discussed.

  6. Tailoring luminescence properties of TiO2 nanoparticles by Mn doping

    International Nuclear Information System (INIS)

    Choudhury, B.; Choudhury, A.

    2013-01-01

    TiO 2 nanoparticles are doped with three different concentrations of Mn, 2%, 4% and 6% respectively. Absorption edge of TiO 2 is shifted from UV to visible region on amplification of Mn content. Room temperature photoluminescence spectra, excited at 320 nm, exhibit band edge and visible emission peaks associated with self trapped excitons, oxygen defects, etc. Doping of Mn increases the width and decreases the intensity of the UV emission peak. Potential fluctuations of impurities increase the width and auger type non-radiative recombination decreases the intensity of the UV emission peak. The intensity ratio of the UV to defect emission band decreases on doping, indicating degradation of structural quality. Excitation of pure and doped nanoparticles at 390 nm results in Mn 2+ emission peaks at 525 nm and 585 nm respectively. Photoluminescence excitation spectra also indicate the presence of Mn 2+ in the crystalline environment of TiO 2 . The oxygen defects and Mn related impurities act as efficient trap centers and increases the lifetime of the charge carriers. -- Highlights: ► Doping of Mn increases the d-spacing of TiO 2 nanoparticles. ► Characteristic d–d electronic transition of Mn 2+ is observed in the absorption spectra. ► Doping of Mn quenches the UV and visible emission peaks of TiO 2 . ► Photoexcitation at 390 nm generates emission peaks of Mn 2+

  7. Nonohmic behavior of SnO2.MnO2-based ceramics

    Directory of Open Access Journals (Sweden)

    Marcelo O. Orlandi

    2003-06-01

    Full Text Available The present paper describes the nonohmic behavior of the SnO2.MnO-based system and analyzes the influence of the sintering time and the Nb2O5 concentration on this system's electrical properties. A nonlinear coefficient of ~7 was obtained for a 0.2 mol%-doped Nb2O5 composition, which is comparable to other values reported in the literature for the ternary SnO2-based systems. A recent barrier formation model proposed in the literature to explain the nonlinear electrical behavior of SnO2-based systems is used to clarify the role of the MnO constituent in the formation of the barrier, taking into account the influence of segregated atoms, precipitated phase and oxygen species in the grain boundary region.

  8. Structural and magnetic properties of Mn{sub 50}Fe{sub 50−x}Sn{sub x} (x=10, 15 and 20) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Tanmoy [LCMP, S.N. Bose National Centre for Basic Sciences, Kolkata 700106 (India); Agarwal, Sandeep [Haldia Institute of Technology, Haldia 721657 (India); Mukhopadhyay, P.K., E-mail: pkm@bose.res.in [LCMP, S.N. Bose National Centre for Basic Sciences, Kolkata 700106 (India)

    2016-11-15

    In this work we report measurements and comparisons of the structural, magnetic and transport properties of a series of Mn{sub 50}Fe{sub 50−x}Sn{sub x} alloys (x=10, 15 and 20). We found that while the lower Sn composition sample stabilized in β-Mn-type crystallographic phase, the higher Sn composition alloys contained both β-Mn-type as well as Mn{sub 3}Sn-type hexagonal DO{sub 19} phases. Through d.c. and a.c. magnetic property measurements we have established the existence of a ferromagnetic transition near room temperature followed by a spin reorientation at lower temperature in the Mn{sub 3}Sn-type crystallographic phase of the alloys. Our resistivity study also revealed an interesting behavior with negative temperature coefficient (TCR) in these alloys. - Highlights: • Mn{sub 50}Fe{sub 50-x}Sn{sub x} alloys were studied over a limited concentration range. • Lower Sn alloys behaved similar to ß-Mn alloys both structurally and magnetically. • Higher Sn alloys showed magnetic transitions similar to Mn{sub 3}Sn and Fe{sub 3}Sn. • Resistivity showed bad metallic behavior with negetive temperature coefficient.

  9. Comparing the thermal stability of NbTi and Nb3Sn wires

    International Nuclear Information System (INIS)

    Breschi, M; Trevisani, L; Bottura, L; Devred, A; Trillaud, F

    2009-01-01

    The investigation of quenching in low temperature superconducting wires is of great relevance for a proper design of superconductive cables and magnets. This paper reports the experimental results of a vast measurement campaign of quench induced by laser pulses on NbTi and Nb 3 Sn wires in pool boiling helium I. A comparison of the quench behavior of two typical NbTi and Nb 3 Sn wires is shown from different standpoints. Different qualitative behaviors of the voltage traces recorded during quenches and recoveries on NbTi and Nb 3 Sn wires are reported and analyzed. It is shown that the Nb 3 Sn wire exhibits a quench or no-quench behavior, whereas quenches and recoveries are exhibited by the NbTi wire. The two wires are also compared by considering the behaviors of the two main parameters describing quench, i.e. quench energies and quench velocities, with respect to operating current, pulse duration, and magnetic field. It is shown that the Nb 3 Sn wire exhibits a 'kink' of the quench energy versus current curve that makes the quench energy of Nb 3 Sn lower than that of NbTi at some intermediate current levels. Both the qualitative differences of the voltage traces and the different behaviors of quench energies and velocities are interpreted through a coupled electromagnetic-thermal model, with special emphasis on the detailed description of heat exchange with liquid helium.

  10. Segregation and microstructure evolution in chill cast and directionally solidified Ni-Mn-Sn metamagnetic shape memory alloys

    Science.gov (United States)

    Czaja, P.; Wierzbicka-Miernik, A.; Rogal, Ł.

    2018-06-01

    A multiphase solidification behaviour is confirmed for a range of Ni-rich and Ni-deficient Ni-Mn-Sn induction cast and directionally solidified (Bridgman) alloys. The composition variation is primarily linked to the changing Mn/Sn ratio, whereas the content of Ni remains largely stable. The partitioning coefficients for the Ni50Mn37Sn13 and Ni46Mn41.5Sn12.5 Bridgman alloys were obtained according to the Scheil equation based on the composition distribution along the longitudinal cross section of the ingots. Homogenization heat treatment performed for 72 h at 1220 K turned out sufficient for ensuring chemical uniformity on the macro- and microscale. It is owed to a limited segregation length scale due to slow cooling rates adopted for the directional solidification process.

  11. Designing a New Ni-Mn-Sn Ferromagnetic Shape Memory Alloy with Excellent Performance by Cu Addition

    Directory of Open Access Journals (Sweden)

    Kun Zhang

    2018-02-01

    Full Text Available Both magnetic-field-induced reverse martensitic transformation (MFIRMT and a high working temperature are crucial for the application of Ni-Mn-Sn magnetic shape memory alloys. Here, by first-principles calculations, we demonstrate that the substitution of Cu for Sn is effective not only in enhancing the MFIRMT but also in increasing martensitic transformation, which is advantageous for its application. Large magnetization difference (ΔM in Ni-Mn-Sn alloy is achieved by Cu doping, which arises from the enhancement of magnetization of austenite due to the change of Mn-Mn interaction from anti-ferromagnetism to ferromagnetism. This directly leads to the enhancement of MFIRMT. Meanwhile, the martensitic transformation shifts to higher temperature, owing to the energy difference between the austenite L21 structure and the tetragonal martensite L10 structure increases by Cu doping. The results provide the theoretical data and the direction for developing a high temperature magnetic-field-induced shape memory alloy with large ΔM in the Ni-Mn-Sn Heusler alloy system.

  12. Noncollinear magnetism in Mn{sub 2}RhSn Heusler compound

    Energy Technology Data Exchange (ETDEWEB)

    Meshcheriakova, Olga

    2014-09-15

    Heusler compounds is a large class of materials, which exhibits diverse fundamental phenomena, together with the possibility of their specific tailoring for various engineering demands. Present work discusses the magnetic noncollinearity in the family of noncentrosymmetric ferrimagnetic Mn{sub 2}-based Heusler compounds. Based on the obtained experimental and theoretical results, Mn{sub 2}YZ Heusler family is suspected to provide promising candidates for the formation of the skyrmion lattice. The work is focused on Mn{sub 2}RhSn bulk polycrystalline sample, which serves as a prototype. It crystallizes in the tetragonal noncentrosymmetric structure (No. 119, I anti 4m2), which enables the anisotropic Dzyaloshinskii-Moriya (DM) exchange coupling. Additional short-range modulation, induced by the competing nearest and next-nearest interplanes Heisenberg exchange, is suppressed above the 80 K. This allows to develop the long-range modulations in the ideal ferrimagnetic structure within the ab crystallographic planes, and thus, favors to the occurrence of the skyrmion lattice within the temperature range of (80≤T≤ 270) K. The studies of Mn{sub 2}RhSn were expanded to the broad composition range and continued on thin film samples.

  13. First-principles study of Mn-S codoped anatase TiO2

    Science.gov (United States)

    Li, Senlin; Huang, Jinliang; Ning, Xiangmei; Chen, Yongcha; Shi, Qingkui

    2018-04-01

    In this work, the CASTEP program in Materials Studio 2017 software package was applied to calculate the electronic structures and optical properties of pure anatase TiO2, S-doped, Mn-doped and Mn-S co-doped anatase TiO2 by GGA + U methods based on the density function theory (DFT). The results indicate that the lattice is distorted and the lattice constant is reduce due to doping. The doping also introduces impurity energy levels into the forbidden band. After substitution of Mn for Ti atom, band gap narrowing of anatase TiO2 is caused by the impurity energy levels appearance in the near Fermi surface, which are contributed by Mn-3d orbital, Ti-3d orbital and O-2p orbital hybridization. After substitution of S for O atom, band gap narrowing is creited with the shallow accepter level under the conduction hand of S-3p orbital. The Mn-S co-doped anatase TiO2 could be a potential candidate for a photocatalyst because of tis enhanced absorption ability of visible light. The results can well explain the immanent cause of a band gap narrowing as well as a red shift in the spectrum for doped anatase TiO2.

  14. Moessbauer study of supertransferred hyperfine field of /sup 119/Sn (Sn/sup 4 +/) in Casub(1-x)Srsub(x)MnO/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Takano, M [Konan Univ., Kobe (Japan). Faculty of Science; Takeda, Y; Shimada, M; Matsuzawa, T; Shinjo, T

    1975-09-01

    Casub(1-x)Srsub(x)Mnsub(0.99)Snsub(0.01)O/sub 3/(0<=x<=1) with (nearly) cubic perovskite structures were prepared and the magnetic hyperfine fields of /sup 119/Sn (Sn/sup 4 +/) were measured by the Moessbauer effect. The hyperfine fields arise from unpaired s electron spin densities transferred from Mn/sup 4 +/ ions (supertransferred hyperfine interaction). The hyperfine field for a tin ion was found to depend linearly upon the numbers of Ca/sup 2 +/ and Sr/sup 2 +/ ions in the neighboring divalent cation sites, with proportional coefficients having opposite signs. To explain experimental results two kinds of spin transfer processes contributing to the hyperfine field oppositely to each other have been considered, and spin transfer via a divalent cation is emphasized particularly. The hyperfine field at 0 K for Sn/sup 4 +/ in CaMnO/sub 3/ is -75 kOe, while +20 kOe for Sn/sup 4 +/ in SrMnO/sub 3/.

  15. Nanoscale structural heterogeneity in Ni-rich half-Heusler TiNiSn

    International Nuclear Information System (INIS)

    Douglas, Jason E.; Pollock, Tresa M.; Chater, Philip A.; Brown, Craig M.; Seshadri, Ram

    2014-01-01

    The structural implications of excess Ni in the TiNiSn half-Heusler compound are examined through a combination of synchrotron x-ray and neutron scattering studies, in conjunction with first principles density functional theory calculations on supercells. Despite the phase diagram suggesting that TiNiSn is a line compound with no solid solution, for small x in TiNi 1+x Sn there is indeed an appearance—from careful analysis of the scattering—of some solubility, with the excess Ni occupying the interstitial tetrahedral site in the half-Heusler structure. The analysis performed here would point to the excess Ni not being statistically distributed, but rather occurring as coherent nanoclusters. First principles calculations of energetics, carried out using supercells, support a scenario of Ni interstitials clustering, rather than a statistical distribution.

  16. A new Ti-Zr-Hf-Cu-Ni-Si-Sn bulk amorphous alloy with high glass-forming ability

    International Nuclear Information System (INIS)

    Huang, Y.J.; Shen, J.; Sun, J.F.; Yu, X.B.

    2007-01-01

    The effect of Sn substitution for Cu on the glass-forming ability was investigated in Ti 41.5 Zr 2.5 Hf 5 Cu 42.5-x Ni 7.5 Si 1 Sn x (x = 0, 1, 3, 5, 7) alloys by using differential scanning calorimetry (DSC) and X-ray diffractometry. The alloy containing 5% Sn shows the highest glass-forming ability (GFA) among the Ti-Zr-Hf-Cu-Ni-Si-Sn system. Fully amorphous rod sample with diameters up to 6 mm could be successfully fabricated by the copper mold casting Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 alloy. The activation energies for glass transition and crystallization for Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 amorphous alloy are both larger than those values for the Sn-free alloy. The enhancement in GFA and thermal stability after the partial replacement of Cu by Sn may be contributed to the strong atomic bonding nature between Ti and Sn and the increasing of atomic packing density. The amorphous Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 alloy also possesses superior mechanical properties

  17. Electrochemical Behavior of Sn-9Zn- xTi Lead-Free Solders in Neutral 0.5M NaCl Solution

    Science.gov (United States)

    Wang, Zhenghong; Chen, Chuantong; Jiu, Jinting; Nagao, Shijo; Nogi, Masaya; Koga, Hirotaka; Zhang, Hao; Zhang, Gong; Suganuma, Katsuaki

    2018-05-01

    Electrochemical techniques were employed to study the electrochemical corrosion behavior of Sn-9Zn- xTi ( x = 0, 0.05, 0.1, 0.2 wt.%) lead-free solders in neutral 0.5M NaCl solution, aiming to figure out the effect of Ti content on the corrosion properties of Sn-9Zn, providing information for the composition design of Sn-Zn-based lead-free solders from the perspective of corrosion. EIS results reveal that Ti addition was involved in the corrosion product layer and changed electrochemical interface behavior from charge transfer control process to diffusion control process. The trace amount of Ti addition (0.05 wt.%) can refine the microstructure and improve the corrosion resistance of Sn-9Zn solder, evidenced by much lower corrosion current density ( i corr) and much higher total resistance ( R t). Excess Ti addition (over 0.1 wt.%) led to the formation of Ti-containing IMCs, which were confirmed as Sn3Ti2 and Sn5Ti6, deteriorating the corrosion resistance of Sn-9Zn- xTi solders. The main corrosion products were confirmed as Sn3O(OH)2Cl2 mixed with small amount of chlorine/oxide Sn compounds.

  18. In vitro corrosion behaviour of Ti-Nb-Sn shape memory alloys in Ringer's physiological solution.

    Science.gov (United States)

    Rosalbino, F; Macciò, D; Scavino, G; Saccone, A

    2012-04-01

    The nearly equiatomic Ni-Ti alloy (Nitinol) has been widely employed in the medical and dental fields owing to its shape memory or superelastic properties. The main concern about the use of this alloy derives form the fact that it contains a large amount of nickel (55% by mass), which is suspected responsible for allergic, toxic and carcinogenic reactions. In this work, the in vitro corrosion behavior of two Ti-Nb-Sn shape memory alloys, Ti-16Nb-5Sn and Ti-18Nb-4Sn (mass%) has been investigated and compared with that of Nitinol. The in vitro corrosion resistance was assessed in naturally aerated Ringer's physiological solution at 37°C by corrosion potential and electrochemical impedance spectroscopy (EIS) measurements as a function of exposure time, and potentiodynamic polarization curves. Corrosion potential values indicated that both Ni-Ti and Ti-Nb-Sn alloys undergo spontaneous passivation due to spontaneously formed oxide film passivating the metallic surface, in the aggressive environment. It also indicated that the tendency for the formation of a spontaneous oxide is greater for the Ti-18Nb-5Sn alloy. Significantly low anodic current density values were obtained from the polarization curves, indicating a typical passive behaviour for all investigated alloys, but Nitinol exhibited breakdown of passivity at potentials above approximately 450 mV(SCE), suggesting lower corrosion protection characteristics of its oxide film compared to the Ti-Nb-Sn alloys. EIS studies showed high impedance values for all samples, increasing with exposure time, indicating an improvement in corrosion resistance of the spontaneous oxide film. The obtained EIS spectra were analyzed using an equivalent electrical circuit representing a duplex structure oxide film, composed by an outer and porous layer (low resistance), and an inner barrier layer (high resistance) mainly responsible for the alloys corrosion resistance. The resistance of passive film present on the metals' surface

  19. The optimization of NbTi-Nb/sub 3/Sn high field superconducting magnet used for physics experiments

    International Nuclear Information System (INIS)

    Han, B.; Han, S.; Feng, Z.X.

    1989-01-01

    The approach to the optimum cost design of multigraded NbTi-Nb/sub 3/Sn high field superconducting magnet is proposed. Investigation shows that by reasonably choosing the contribution of NbTi and Nb/sub 3/Sn coils to the central field required and properly increasing the parameters β of both NbTi and Nb/sub 2/Sn coils, the optimum cost design of the NbTi-Nb/sub 3/Sn solenoid magnet can be obtained. This is the base on which the minimum cost design of multi-graded NbTi-Nb/sub 3/Sn high field superconducting magnet is reached. As an example, a calculation of a 14T three graded NbT-Nb/sub 3/Sn superconducting magnet with a bore of 31mm in diameter is given

  20. Synthesis and characterization of Sn doped TiO{sub 2} photocatalysts: Effect of Sn concentration on the textural properties and on the photocatalytic degradation of 2,4-dichlorophenoxyacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Rangel-Vázquez, I.; Del Angel, G.; Bertin, V. [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael, Atlixco No 1865, México 09340 D.F. (Mexico); González, F. [Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael, Atlixco No 1865, México 09340 D.F. (Mexico); Vázquez-Zavala, A.; Arrieta, A. [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael, Atlixco No 1865, México 09340 D.F. (Mexico); Padilla, J.M. [Universidad Tecnológica del Centro de Veracruz, Área de Tecnología, Av. Universidad Carretera Federal Cuitláhuac-La Tinaja No. 350, Cuitláhuac, Veracruz 94910 (Mexico); Barrera, A. [Universidad de Guadalajara, Centro Universitario de la Ciénega, Av. Universidad, Número 1115, Col. Linda Vista, Apdo. Postal 106, Ocotlán Jal. (Mexico); Ramos-Ramirez, E. [Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato de la Universidad de Guanajuato Noria Alta S/N, Col. Noria Alta, Guanajuato, Gto. C.P. 36050 (Mexico)

    2015-09-15

    Abstract: TiO{sub 2} and Sn-doped TiO{sub 2} materials were prepared by sol–gel method using titanium and tin alkoxides at different Sn concentration (0.1 mol%, 0.5 mol%, 1 mol%, 3 mol% and 5 mol%). Samples were characterized by thermo gravimetric analyzer with differential scanning calorimeter (TGA–DSC), X-ray Rietveld refinement, N{sub 2} adsorption (BET), transmission electron microscopy (TEM), UV–vis spectroscopies technology and Raman spectroscopy. Only anatase phase was observed in pure TiO{sub 2}, whereas anatase and brookite were obtained in Sn-doped TiO{sub 2} samples. Sn dopant acts as a promoter in phase transformation of TiO{sub 2}. The Rietveld refinements method was used to determine the relative weight of anatase and brookite, and crystallite size as a function of Sn concentration after calcination of samples at 673 K. It was also demonstrated the incorporation of Sn{sup 4+} into the anatase TiO{sub 2} structure. Sn{sup 4+} inhibits the growth of TiO{sub 2} crystallite size, which leads to an increase of the specific surface area of TiO{sub 2}. From XRD analysis, the solid solution limit of Sn{sup 4+} into TiO{sub 2} is 5 mol% Sn. The photocatalytic activity on Sn{sup 4+} doped TiO{sub 2} was determined for the 2,4-dichlorophenoxyacetic acid reaction. The maximum in activity was attributed to the coexistence of anatase and brookite phases in the appropriate ratio and crystallite size.

  1. A new class of materials with promising thermoelectric properties: MNiSn (M=Ti, Zr, Hf)

    Energy Technology Data Exchange (ETDEWEB)

    Hohl, H; Ramirez, A P; Kaefer, W; Fess, K; Thurner, Ch; Kloc, Ch; Bucher, E

    1997-07-01

    TiNiSn, ZrNiSn and HfNiSn are members of a large group of intermetallic compounds which crystallize in the cubic MgAgAs-type structure. Polycrystalline samples of these compounds have been prepared and investigated for their thermoelectric properties. With thermopowers of about {minus}200 {micro}V/K and resistivities of a few m{Omega}cm, power factors S{sup 2}/{rho} as high as 38 {micro}W/K{sup 2}cm were obtained at 700 K. These remarkably high power factors are, however, accompanied by a thermal conductivity, solid solutions Zr{sub 1{minus}x}Hf{sub x}NiSn, Zr{sub 1{minus}x}Ti{sub x}NiSn, and Hf{prime}{sub 1{minus}x}Ti{sub x}NiSn were formed. The figure of merit of Zr{sub 0.5}Hf{sub 0.5}NiSn at 700 K (ZT = 0.41) exceeds the end members ZrNiSn (ZT = 0.26) and HfNiSn (ZT = 0.22).

  2. Polymorphism and second harmonic generation in a novel diamond-like semiconductor: Li{sub 2}MnSnS{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, Kasey P. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Glaid, Andrew J. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Center for Computational Sciences, Duquesne University, Pittsburgh, PA 15282 (United States); Brant, Jacilynn A.; Zhang, Jian-Han [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Srnec, Matthew N. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Center for Computational Sciences, Duquesne University, Pittsburgh, PA 15282 (United States); Clark, Daniel J. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY 13902 (United States); Soo Kim, Yong [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY 13902 (United States); Department of Physics and Energy Harvest-Storage Research Center, University of Ulsan, 680-749 (Korea, Republic of); Jang, Joon I. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY 13902 (United States); Daley, Kimberly R.; Moreau, Meghann A. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Madura, Jeffry D. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Center for Computational Sciences, Duquesne University, Pittsburgh, PA 15282 (United States); Aitken, Jennifer A., E-mail: aitkenj@duq.edu [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States)

    2015-11-15

    High-temperature, solid-state synthesis in the Li{sub 2}MnSnS{sub 4} system led to the discovery of two new polymorphic compounds that were analyzed using single crystal X-ray diffraction. The α-polymorph crystallizes in Pna2{sub 1} with the lithium cobalt (II) silicate, Li{sub 2}CoSiO{sub 4}, structure type, where Z=4, R1=0.0349 and wR2=0.0514 for all data. The β-polymorph possesses the wurtz-kesterite structure type, crystallizing in Pn with Z=2, R1=0.0423, and wR2=0.0901 for all data. Rietveld refinement of synchrotron X-ray powder diffraction was utilized to quantify the phase fractions of the polymorphs in the reaction products. The α/β-Li{sub 2}MnSnS{sub 4} mixture exhibits an absorption edge of ∼2.6–3.0 eV, a wide region of optical transparency in the mid- to far-IR, and moderate SHG activity over the fundamental range of 1.1–2.1 μm. Calculations using density functional theory indicate that the ground state energies and electronic structures for α- and β-Li{sub 2}MnSnS{sub 4}, as well as the hypothetical polymorph, γ-Li{sub 2}MnSnS{sub 4} with the wurtz-stannite structure type, are highly similar. - Graphical abstract: Two polymorphs, α- and β-Li{sub 2}MnSnS{sub 4}, have been discovered using single crystal X-ray diffraction. Rietveld refinement of synchrotron X-ray powder diffraction data indicates the presence of both polymorphs in the samples that were analyzed. - Highlights: • Li{sub 2}MnSnS{sub 4} exists as two polymorphs crystallizing in the Pna2{sub 1} and Pn space groups. • The α- and β-Li{sub 2}MnSnS{sub 4} mixture exhibits a moderate SHG response over a broad range. • The α- and β-Li{sub 2}MnSnS{sub 4} mixture exhibits an optical absorption edge of ∼2.6–3.0 eV. • Synchrotron powder diffraction data are necessary to distinguish α- and β-Li{sub 2}MnSnS{sub 4.} • Electronic structure calculations show similar total energies for α- and β-Li{sub 2}MnSnS{sub 4}.

  3. Precision casting of Ti-15V-3Cr-3Al-3Sn alloy setting

    OpenAIRE

    Nan Hai; Liu Changkui; Huang Dong

    2008-01-01

    In this research, Ti-15V-3Cr-3Al-3Sn alloy ingots were prepared using ceramic mold and centrifugal casting. The Ti-15V-3Cr-3Al-3Sn setting casting, for aeronautic engine, with 1.5 mm in thickness was manufactured. The alloy melting process, precision casting process, and problems in casting application were discussed. Effects of Hot Isostatic Pressing and heat treatment on the mechanical properties and microstructure of the Ti-15V-3Cr-3Al-3Sn alloy were studied.

  4. Improvement of the electrochemical performance of nanosized α-MnO2 used as cathode material for Li-batteries by Sn-doping

    International Nuclear Information System (INIS)

    Hashem, A.M.; Abdel-Latif, A.M.; Abuzeid, H.M.; Abbas, H.M.; Ehrenberg, H.; Farag, R.S.; Mauger, A.; Julien, C.M.

    2011-01-01

    Highlights: → Doping MnO 2 with Sn improved properties of α-MnO 2 . → Thermal stabilization and electrochemical performances were improved. → Doping affected also the morphology feature of α-MnO 2 . - Abstract: Sn-doped MnO 2 was prepared by hydrothermal reaction between KMnO 4 as oxidant, fumaric acid C 4 H 4 O 4 as reductant and SnCl 2 as doping agent. XRD analysis indicates the cryptomelane α-MnO 2 crystal structure for pure and doped samples. Thermal stabilization was observed for both oxides as detected from thermogravimetric analysis. SEM and TEM images show changes in the morphology of the materials from spherical-like particles for pristine P-MnO 2 to rod-like structure for Sn-MnO 2 . Electrochemical properties of the electrode materials have been tested in lithium cells. Improvement in capacity retention and cycling ability is observed for doped oxide at the expense of initial capacity. After 35 cycles, the Li//Sn doped MnO 2 cell display lower capacity loss.

  5. Pressure Effects on the Magnetic Phase Transition of Mn3SnC1−xNx (x = 0, 0.5)

    International Nuclear Information System (INIS)

    Hu Jing-Yu; Zhao Qing; Wen Yong-Chun; Wang Cong; Yao Yuan; Jin Chang-Qing; Yu Ri-Cheng

    2012-01-01

    The electronic transport properties of Mn 3 SnC and Mn 3 SnC 0.5 N 0.5 were measured under pressures up to 1.8 GPa. At ambient pressure, an abrupt increase of resistance occurs around the temperature of magnetic phase transition in both samples. The transition temperature Tc from paramagnetic to ferrimagnetic state decreases linearly at rates of 12.6 and 6.3K/GPa with pressure for Mn 3 SnC and Mn 3 SnC 0.5 N 0.5 , respectively. This phenomenon could be understood by the Labbe-Jardin tight binding approximation model. (condensed matter: structure, mechanical and thermal properties)

  6. Highly efficient electrochemical degradation of perfluorooctanoic acid (PFOA) by F-doped Ti/SnO{sub 2} electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bo, E-mail: boyang@szu.edu.cn [Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060 (China); School of Environment, POPs Research Center, Tsinghua University, Beijing 100084 (China); Jiang, Chaojin [Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060 (China); Yu, Gang, E-mail: yg-den@tsinghua.edu.cn [School of Environment, POPs Research Center, Tsinghua University, Beijing 100084 (China); Zhuo, Qiongfang [South China Institute of Environmental Sciences, The Ministry of Environment Protection, Guangzhou 510655 (China); Deng, Shubo [School of Environment, POPs Research Center, Tsinghua University, Beijing 100084 (China); Wu, Jinhua [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Zhang, Hong [Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060 (China)

    2015-12-15

    Highlights: • A novel SnO{sub 2} electrode is prepared by F doping instead of the traditional Sb doping. • SnF{sub 4} as single-source precursor is used to fabricate the long-life Ti/SnO{sub 2}–F anode. • F-doped Ti/SnO{sub 2} anode possesses high OEP and decomposition ability for PFOA. • Further mechanistic detail of PFOA degradation on Ti/SnO{sub 2}–F electrode is proposed. - Abstract: The novel F-doped Ti/SnO{sub 2} electrode prepared by SnF{sub 4} as the single-source precursor was used for electrochemical degradation of aqueous perfluorooctanoic acid (PFOA). Higher oxidation reactivity and significantly longer service life were achieved for Ti/SnO{sub 2}–F electrode than Ti/SnO{sub 2}–X (X = Cl, Br, I, or Sb) electrode, which could decomposed over 99% of PFOA (50 mL of 100 mg L{sup −1}) within 30-min electrolysis. The property of Ti/SnO{sub 2}–F electrode and its electrooxidation mechanism were investigated by XRD, SEM–EDX, EIS, LSV, and interfacial resistance measurements. We propose that the similar ionic radii of F and O as well as strong electronegativity of F caused its electrochemical stability with high oxygen evolution potential (OEP) and smooth surface to generate weakly adsorbed ·OH. The preparation conditions of electrode were also optimized including F doping amount, calcination temperature, and dip coating times, which revealed the formation process of electrode. Additionally, the major mineralization product, F{sup −}, and low concentration of shorter chain perfluorocarboxylic acids (PFCAs) were detected in solution. So the reaction pathway of PFOA electrooxidation was proposed by intermediate analysis. These results demonstrate that Ti/SnO{sub 2}–F electrode is promising for highly efficient treatment of PFOA in wastewater.

  7. Optical and magnetic properties of Sn{sub 1−x}Mn{sub x}O{sub 2} dilute magnetic semiconductor nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Khatoon, Sarvari [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Coolahan, Kelsey [Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028 (United States)

    2014-12-05

    Highlights: • Monophasic Mn-doped SnO{sub 2} nanoparticles by solvothermal method for first time. • High surface area with smaller particle size. • Increase in band gap with increasing Mn concentration. • Sn{sub 1−x}Mn{sub x}O{sub 2} (x = 0.05 and 0.10) revealed the parasitic ferromagnetism. • Sn{sub 0.85}Mn{sub 0.15}O{sub 2} showed paramagnetic behaviour. - Abstract: Sn{sub 1−x}Mn{sub x}O{sub 2} (x = 0.05, 0.10 and 0.15) nanoparticles with tetragonal structure have been successfully synthesized by solvothermal method using oxalate precursor route. The oxalate precursors and its corresponding oxides were characterized by powder X-ray diffraction (PXRD), thermogravimetric (TG), fourier transform infrared (FTIR) and transmission electron microscopic (TEM) studies. PXRD studies showed the highly crystalline and monophasic nature of the solid solutions. The shifting of X-ray reflections towards higher angle is attributed to the incorporation of Mn{sup 2+} ions in SnO{sub 2} host lattice. The average particle size was found to be in the range of 5–11 nm. Reflectance measurements showed blue shift in energy band gap which increases with increasing Mn{sup 2+} concentration. Surface area of these nanoparticles (59–388 m{sup 2}/g) was found to be high which increases with increasing the dopant ion concentration. Mn-doped SnO{sub 2} showed distinct magnetic behaviour with different manganese concentration. Sn{sub 1−x}Mn{sub x}O{sub 2} (x = 0.05 and 0.10) revealed the parasitic ferromagnetism, however on increasing x = 0.15, sample showed paramagnetic behaviour.

  8. Characteristics of nano Ti-doped SnO2 powders prepared by sol-gel method

    International Nuclear Information System (INIS)

    Liu, X.M.; Wu, S.L.; Chu, Paul K.; Zheng, J.; Li, S.L.

    2006-01-01

    Ti 4+ -doped SnO 2 nano-powders were prepared by the sol-gel process using tin tetrachloride and titanium tetrachloride as the starting materials. The crystallinity and purity of the powders were analyzed by X-ray diffraction (XRD) and the size and distribution of Ti 4+ -doped SnO 2 grains were studied using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results show that Ti 4+ has been successfully incorporated into the SnO 2 crystal lattice and the electrical conductivity of the doped materials improves significantly

  9. Direct evidence of the existence of Mn3+ ions in MnTiO3

    Science.gov (United States)

    Maurya, R. K.; Sharma, Priyamedha; Patel, Ashutosh; Bindu, R.

    2017-08-01

    We investigate the room temperature electronic properties of MnTiO3 synthesised by different preparation conditions. For this purpose, we prepared MnTiO3 under two different cooling rates, one is naturally cooled while the other is quenched in liq.nitrogen. The samples were studied using optical absorbance, photoemission spectroscopy and band structure calculations. We observe significant changes in the structural parameters as a result of quenching. Interestingly, in the parent compound, our combined core level, valence band and optical absorbance studies give evidence of the Mn existence in both 2+ and 3+ states. The fraction of Mn3+ ions has been found to increase on quenching MnTiO3 suggests an increase in oxygen non-stoichiometry. The increase in the fraction of the Mn3+ ions has been manifested a) as slight enhancement in the intensity of the optical absorbance in the visible region. There occurs persistent photo-resistance when the incident light is terminated after shining; b) in the behaviour of the features (close to Fermi level) in the valence band spectra. Hence, the combined analysis of the core level, valence band and optical absorbance spectra suggests that the charge carriers are hole like which further leads to the increase in the electrical conductivity of the quenched sample. The present results provide a recipe to tune the optical absorption in the visible range for its applications in optical sensors, solar cell, etc.

  10. Reducing Staphylococcus aureus growth on Ti alloy nanostructured surfaces through the addition of Sn.

    Science.gov (United States)

    Verissimo, Nathália C; Geilich, Benjamin M; Oliveira, Haroldo G; Caram, Rubens; Webster, Thomas J

    2015-12-01

    β-type Ti alloys containing Nb are exciting materials for numerous orthopedic and dental applications due to their exceptional mechanical properties. To improve their cytocompatibility properties (such as increasing bone growth and decreasing infection), the surfaces of such materials can be optimized by adding elements and/or nanotexturing through anodization. Because of the increasing prevalence of orthopedic implant infections, the objective of this in vitro study was to add Sn and create unique nanoscale surface features on β-type Ti alloys. Nanotubes and nanofeatures on Ti-35Nb and Ti-35Nb-4Sn alloys were created by anodization in a HF-based electrolyte and then heat treated in a furnace to promote amorphous structures and phases such as anatase, a mixture of anatase-rutile, and rutile. Samples were characterized by SEM, which indicated different morphologies dependent on the oxide content and method of modification. XPS experiments identified the oxide content which resulted in a phase transformation in the oxide layer formed onto Ti-35Nb and Ti-35Nb-4Sn alloys. Most importantly, regardless of the resulting nanostructures (nanotubes or nanofeatures) and crystalline phase, this study showed for the first time that adding Sn to β-type Ti alloys strongly decreased the adhesion of Staphylococcus aureus (S. aureus; a bacteria which commonly infects orthopedic implants leading to their failure). Thus, this study demonstrated that β-type Ti alloys with Nb and Sn have great promise to improve numerous orthopedic applications where infection may be a concern. © 2015 Wiley Periodicals, Inc.

  11. Fabrication of SnO{sub 2}-TiO{sub 2} core-shell nanopillar-array films for enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hsyi-En, E-mail: sean@mail.stust.edu.tw; Lin, Chun-Yuan; Hsu, Ching-Ming

    2017-02-28

    Highlights: • SnO{sub 2}-TiO{sub 2} core-shell nanopillar-arrays on ITO glass were successfully fabricated. • The 3D heterojunction solves the problem of low photocatalytic activity of TiO{sub 2} films. • SnO{sub 2} is more suitable than ITO for the core layer to separate electron-hole pairs. - Abstract: Immobilized or deposited thin film TiO{sub 2} photocatalysts are suffering from a low photocatalytic activity due to either a low photon absorption efficiency or a high carrier recombination rate. Here we demonstrate that the photocatalytic activity of TiO{sub 2} can be effectively improved by the SnO{sub 2}-TiO{sub 2} core-shell nanopillar-array structure which combines the benefits of SnO{sub 2}/TiO{sub 2} heterojunction and high reaction surface area. The SnO{sub 2}-TiO{sub 2} core-shell nanopillar-array films were fabricated using atomic layer deposition and dry etching techniques via barrier-free porous anodic alumina templates. The photocatalytic activity of the prepared films was evaluated by methylene blue (MB) bleaching under 352 nm UV light irradiation. The results show that the photocatalytic activity of TiO{sub 2} film was 45% improved by introducing a SnO{sub 2} film between TiO{sub 2} and ITO glass substrate and was 300% improved by using the SnO{sub 2}-TiO{sub 2} core-shell nanopillar-array structure. The 45% improvement by the SnO{sub 2} interlayer is attributed to the SnO{sub 2}/TiO{sub 2} heterojunction which separates the photogenerated electron-hole pairs in TiO{sub 2} for MB degradation, and the high photocatalytic activity of the SnO{sub 2}-TiO{sub 2} core-shell nanopillar-array films is attributed to the three dimensional SnO{sub 2}/TiO{sub 2} heterojunction which owns both the carrier separation ability and the high photocatalytic reaction surface area.

  12. A new Ti-Zr-Hf-Cu-Ni-Si-Sn bulk amorphous alloy with high glass-forming ability

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.J. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Shen, J. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: junshen@hit.edu.cn; Sun, J.F. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yu, X.B. [Lab of Energy Science and Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)]. E-mail: yuxuebin@hotmail.com

    2007-01-16

    The effect of Sn substitution for Cu on the glass-forming ability was investigated in Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 42.5-x}Ni{sub 7.5}Si{sub 1}Sn {sub x} (x = 0, 1, 3, 5, 7) alloys by using differential scanning calorimetry (DSC) and X-ray diffractometry. The alloy containing 5% Sn shows the highest glass-forming ability (GFA) among the Ti-Zr-Hf-Cu-Ni-Si-Sn system. Fully amorphous rod sample with diameters up to 6 mm could be successfully fabricated by the copper mold casting Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} alloy. The activation energies for glass transition and crystallization for Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} amorphous alloy are both larger than those values for the Sn-free alloy. The enhancement in GFA and thermal stability after the partial replacement of Cu by Sn may be contributed to the strong atomic bonding nature between Ti and Sn and the increasing of atomic packing density. The amorphous Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} alloy also possesses superior mechanical properties.

  13. Study of Sn and Mg doping effects on TiO2/Ge stack structure by combinatorial synthesis

    Science.gov (United States)

    Nagata, Takahiro; Suzuki, Yoshihisa; Yamashita, Yoshiyuki; Ogura, Atsushi; Chikyow, Toyohiro

    2018-04-01

    The effects of Sn and Mg doping of a TiO2 film on a Ge substrate were investigated to improve leakage current properties and Ge diffusion into the TiO2 film. For systematic analysis, dopant-composition-spread TiO2 samples with dopant concentrations of up to 20.0 at. % were fabricated by RF sputtering and a combinatorial method. X-ray photoelectron spectroscopy revealed that the instability of Mg doping of TiO2 at dopant concentrations above 10.5 at. %. Both Sn and Mg dopants reduced Ge diffusion into TiO2. Sn doping enhanced the crystallization of the rutile phase, which is a high-dielectric-constant phase, although the Mg-doped TiO2 film indicated an amorphous structure. Sn-doping indicated systematic leakage current reduction with increasing dopant concentration. Doping at Sn concentrations higher than 16.8 at. % improved the leakage properties (˜10-7 A/cm2 at -3.0 V) and capacitance-voltage properties of metal-insulator-semiconductor (MIS) operation. The Sn doping of TiO2 may be useful for interface control and as a dielectric material for Ge-based MIS capacitors.

  14. Influence of Sn content on microstructural and mechanical properties of centrifugal cast Ti-Nb-Sn biomedical alloys; Efeitos da adicao de Sn na evolucao microestrutural e em propriedades mecanicas de ligas Ti-Nb-Sn biomedicas fundidas por centrifugacao

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, E.S.N.; Contieri, R.J.; Caram, R., E-mail: ederlopes@fem.unicamp.b [Universidade Estadual de Campinas (DEMA/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Engenharia de Materiais; Moraes, P.E.L. [FATEC Artur Azevedo, Mogi Mirim, SP (Brazil); Costa, A.M.S. [Universidade de Sao Paulo (DEMAR/EEL/USP), Lorena, SP (Brazil). Escola de Engenharia. Dept. de Engenharia de Materiais

    2010-07-01

    The arc voltaic centrifugal casting is an interesting alternative in terms of economic and technological development in the production of components based on materials with high reactivity and high melting point, such as titanium alloys. In this work, Ti-30Nb (wt. %) with additions of Sn (2, 4, 6, 8 and 10 wt. %) were formed by casting process. Characterization of the samples included optical microscopy, scanning electron microscopy, X-ray diffraction, Vickers hardness and elastic modulus measures by acoustic techniques. It was observed that the microstructure of the samples investigated is composed by dendritic structures, with clear segregation of alloying elements. The Vickers hardness and the elastic modulus decreased with the addition of Sn. The results show that the mechanical behavior of Ti-Nb alloys can be controlled within certain limits, by adding Sn. (author)

  15. The effects of Ti and Sn alloying elements on precipitation strengthened Cu40Zn brass using powder metallurgy and hot extrusion

    International Nuclear Information System (INIS)

    Li Shufeng; Imai, Hisashi; Atsumi, Haruhiko; Kondoh, Katsuyoshi; Kojima, Akimichi; Kosaka, Yoshiharu; Yamamoto, Koji; Takahashi, Motoi

    2012-01-01

    Highlights: ► Alloying elements Ti and Sn are proposed as additives in 60/40 brass. ► Super-saturated Ti in powder creates high chemical potential for precipitation. ► Ti is readily segregated in primary particle boundaries in BS40–1.0Ti. ► Sn was proposed as an additive to inhibit segregation of Ti in BS40–1.0Ti. ► The introduction of Sn to BS40–1.0Ti brass effectively impedes Ti segregation. - Abstract: The effects of Ti and Sn alloying elements on the microstructural and mechanical properties of 60/40 brass were studied by powder metallurgy processing. The super-saturated solid solution of Ti creates a high precipitation reaction chemical potential in water-atomized BS40-1.0Ti brass powder. Consequently, BS40–1.0Ti brass was remarkably strengthened by the addition of Ti. However, Ti readily segregated in the primary particle boundaries at elevated temperatures, which detrimentally affected the mechanical properties of BS40–1.0Ti brass. Accordingly, Sn was proposed as an additive to BS40–0.6Sn1.0Ti to inhibit the segregation of Ti. Consequently, the Ti precipitate was retained in the form of CuSn 3 Ti 5 in the interior of grains and grain boundaries rather than in the primary particle boundaries. This result demonstrates that the addition of Sn can effectively hinder Ti segregation in the primary particle boundaries. Sn addition produced significant grain refinement and mechanical strengthening effects in BS40–0.6Sn1.0Ti brass. As a result, outstanding strengthening effects were observed for BS40–0.6Sn1.0Ti sintered at 600 °C, which exhibited a yield strength of 315 MPa, an ultimate tensile strength of 598 MPa, and a Vickers micro-hardness of 216 Hv. These values represent increases of 27.5%, 20.1% and 45.6%, over those of extruded BS40–1.0Ti brass.

  16. The effects of Ti and Sn alloying elements on precipitation strengthened Cu40Zn brass using powder metallurgy and hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Li Shufeng, E-mail: shufenglimail@gmail.com [Joining and Welding Research Institute, Osaka University (Japan); Imai, Hisashi; Atsumi, Haruhiko; Kondoh, Katsuyoshi [Joining and Welding Research Institute, Osaka University (Japan); Kojima, Akimichi; Kosaka, Yoshiharu [San-Etsu metals Co. Ltd., 1892, OHTA, Tonami, Toyama (Japan); Yamamoto, Koji; Takahashi, Motoi [Nippon Atomized Metal Powders Corporation, 87-16, Nishi-Sangao, Noda, Chiba (Japan)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Alloying elements Ti and Sn are proposed as additives in 60/40 brass. Black-Right-Pointing-Pointer Super-saturated Ti in powder creates high chemical potential for precipitation. Black-Right-Pointing-Pointer Ti is readily segregated in primary particle boundaries in BS40-1.0Ti. Black-Right-Pointing-Pointer Sn was proposed as an additive to inhibit segregation of Ti in BS40-1.0Ti. Black-Right-Pointing-Pointer The introduction of Sn to BS40-1.0Ti brass effectively impedes Ti segregation. - Abstract: The effects of Ti and Sn alloying elements on the microstructural and mechanical properties of 60/40 brass were studied by powder metallurgy processing. The super-saturated solid solution of Ti creates a high precipitation reaction chemical potential in water-atomized BS40-1.0Ti brass powder. Consequently, BS40-1.0Ti brass was remarkably strengthened by the addition of Ti. However, Ti readily segregated in the primary particle boundaries at elevated temperatures, which detrimentally affected the mechanical properties of BS40-1.0Ti brass. Accordingly, Sn was proposed as an additive to BS40-0.6Sn1.0Ti to inhibit the segregation of Ti. Consequently, the Ti precipitate was retained in the form of CuSn{sub 3}Ti{sub 5} in the interior of grains and grain boundaries rather than in the primary particle boundaries. This result demonstrates that the addition of Sn can effectively hinder Ti segregation in the primary particle boundaries. Sn addition produced significant grain refinement and mechanical strengthening effects in BS40-0.6Sn1.0Ti brass. As a result, outstanding strengthening effects were observed for BS40-0.6Sn1.0Ti sintered at 600 Degree-Sign C, which exhibited a yield strength of 315 MPa, an ultimate tensile strength of 598 MPa, and a Vickers micro-hardness of 216 Hv. These values represent increases of 27.5%, 20.1% and 45.6%, over those of extruded BS40-1.0Ti brass.

  17. Facile fabrication of robust TiO2@SnO2@C hollow nanobelts for outstanding lithium storage

    Science.gov (United States)

    Tian, Qinghua; Li, Lingxiangyu; Chen, Jizhang; Yang, Li; Hirano, Shin-ichi

    2018-02-01

    Elaborate fabrication of state-of-the-art nanostructure SnO2@C-based composites greatly contributes to alleviate the huge volume expansion issue of the SnO2 anodes. But the preparation processes of most of them are complicated and tedious, which is generally adverse to the development of SnO2@C-based composite anodes. Herein, a unique nanostructure of TiO2@SnO2@C hollow nanobelts (TiO2@SnO2@C HNBs), including the characteristics of one-dimensional architecture, sandwich protection, hollow structure, carbon coating, and a mechanically robust TiO2 support, has been fabricated by a facile approach for the first time. As anodes for lithium-ion batteries, the as-fabricated TiO2@SnO2@C HNBs exhibit an outstanding lithium storage performance, delivering capacity of 804.6 and 384. 5 mAh g-1 at 200 and even 1000 mA g-1 after 500 cycles, respectively. It is demonstrated that thus outstanding performance is mainly attributed to the unique nanostructure of TiO2@SnO2@C HNBs.

  18. Preparation of MnO2 electrodes coated by Sb-doped SnO2 and their effect on electrochemical performance for supercapacitor

    International Nuclear Information System (INIS)

    Zhang, Yuqing; Mo, Yan

    2014-01-01

    Highlights: • Sb-doped SnO 2 coated MnO 2 electrodes (SS-MnO 2 electrodes) are prepared. • The capacitive property and stability of SS-MnO 2 electrode is superior to uncoated MnO 2 electrode and SnO 2 coated MnO 2 electrode. • Sb-doped SnO 2 coating enhances electrochemical performance of MnO 2 effectively. • SS-MnO 2 electrodes are desirable to become a novel electrode material for supercapacitor. - Abstract: To enhance the specific capacity and cycling stability of manganese binoxide (MnO 2 ) for supercapacitor, antimony (Sb) doped tin dioxide (SnO 2 ) is coated on MnO 2 through a sol-gel method to prepare MnO 2 electrodes, enhancing the electrochemical performance of MnO 2 electrode in sodium sulfate electrolytes. The structure and composition of SS-MnO 2 electrode are characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR) and X-Ray diffraction spectroscopy (XRD). The electrochemical performances are evaluated and researched by galvanostatic charge-discharge test, cyclic voltammogram (CV) and electrochemical impedance spectroscopy (EIS). The results show that SS-MnO 2 electrodes hold porous structure, displaying superior cycling stability at large current work condition in charge-discharge tests and good capacity performance at high scanning rate in CV tests. The results of EIS show that SS-MnO 2 electrodes have small internal resistance. Therefore, the electrochemical performances of MnO 2 electrodes are enhanced effectively by Sb-doped SnO 2 coating

  19. Effect of Sn addition on the corrosion behavior of Ti-7Cu-Sn cast alloys for biomedical applications.

    Science.gov (United States)

    Tsao, L C

    2015-01-01

    The aim of this study was to investigate the effects of Sn content on the microstructure and corrosion resistance of Ti7CuXSn (x=0-5 wt.%) samples. The corrosion tests were carried out in 0.9 wt.% NaCl solution at 25 °C. The electrochemical corrosion behavior of the Ti7CuXSn alloy samples was evaluated using potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), and equivalent circuit analysis. The resulting impedance parameters and polarization curves showed that adding Sn improved the electrochemical corrosion behavior of the Ti7CuXSn alloy. The Ti7CuXSn alloy samples were composed of a dual-layer oxide consisting of an inner barrier layer and an outer porous layer. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Improvement of the electrochemical performance of nanosized {alpha}-MnO{sub 2} used as cathode material for Li-batteries by Sn-doping

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, A.M., E-mail: ahmedh242@yahoo.com [National Research Centre, Inorganic Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Abdel-Latif, A.M.; Abuzeid, H.M. [National Research Centre, Inorganic Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Abbas, H.M. [National Research Centre, Physical Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Ehrenberg, H. [Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Materials Science, Technische Universitaet Darmstadt, Petersenstr. 23, D-64287 Darmstadt (Germany); Farag, R.S. [Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo (Egypt); Mauger, A. [Universite Pierre et Marie Curie, Institut de Mineralogie et Physique de la Matiere Condensee (IMPMC), 4 Place Jussieu, 75005 Paris (France); Julien, C.M. [Universite Pierre et Marie Curie, Physicochimie des Electrolytes, Colloides et Sciences Analytiques (PECSA), 4 Place Jussieu, 75005 Paris (France)

    2011-10-06

    Highlights: > Doping MnO{sub 2} with Sn improved properties of {alpha}-MnO{sub 2}. > Thermal stabilization and electrochemical performances were improved. > Doping affected also the morphology feature of {alpha}-MnO{sub 2}. - Abstract: Sn-doped MnO{sub 2} was prepared by hydrothermal reaction between KMnO{sub 4} as oxidant, fumaric acid C{sub 4}H{sub 4}O{sub 4} as reductant and SnCl{sub 2} as doping agent. XRD analysis indicates the cryptomelane {alpha}-MnO{sub 2} crystal structure for pure and doped samples. Thermal stabilization was observed for both oxides as detected from thermogravimetric analysis. SEM and TEM images show changes in the morphology of the materials from spherical-like particles for pristine P-MnO{sub 2} to rod-like structure for Sn-MnO{sub 2}. Electrochemical properties of the electrode materials have been tested in lithium cells. Improvement in capacity retention and cycling ability is observed for doped oxide at the expense of initial capacity. After 35 cycles, the Li//Sn doped MnO{sub 2} cell display lower capacity loss.

  1. Reactivation and reuse of TiO2-SnS2 composite catalyst for solar-driven water treatment.

    Science.gov (United States)

    Kovacic, Marin; Kopcic, Nina; Kusic, Hrvoje; Stangar, Urska Lavrencic; Dionysiou, Dionysios D; Bozic, Ana Loncaric

    2018-01-01

    One of the most important features of photocatalytic materials intended to be used for water treatment is their long-term stability. The study is focused on the application of thermal and chemical treatments for the reactivation of TiO 2 -SnS 2 composite photocatalyst, prepared by hydrothermal synthesis and immobilized on the glass support using titania/silica binder. Such a catalytic system was applied in solar-driven treatment, solar/TiO 2 -SnS 2 /H 2 O 2 , for the purification of water contaminated with diclofenac (DCF). The effectiveness of studied reactivation methods for retaining TiO 2 -SnS 2 activity in consecutive cycles was evaluated on basis of DCF removal and conversion, and TOC removal and mineralization of organic content. Besides these water quality parameters, biodegradability changes in DCF aqueous solution treated by solar/TiO 2 -SnS 2 /H 2 O 2 process using simply reused (air-dried) and thermally and chemically reactivated composite photocatalyst through six consecutive cycles were monitored. It was established that both thermal and chemical reactivation retain TiO 2 -SnS 2 activity in the second cycle of its reuse. However, both treatments caused the alteration in the TiO 2 -SnS 2 morphology due to the partial transformation of visible-active SnS 2 into non-active SnO 2 . Such alteration, repeated through consecutive reactivation and reuse, was reflected through gradual activity loss of TiO 2 -SnS 2 composite in applied solar-driven water treatment.

  2. Eosin Y-sensitized nanostructured SnO{sup 2}/TiO{sup 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Weon-Pil [Institute of Advanced Materials, Inha University, Yonghyun-dong, Nam-ku, Inchon 402-751 (South Korea); Inoue, Kozo [National Institute of Advanced Industrial Science and Technology, Tosu, Saga 841-0052 (Japan)

    2003-02-01

    The photoelectrochemical behaviors of eosin Y (organic dye)-sensitized nanostructured SnO{sub 2}/TiO{sub 2} coupled and SnO{sub 2}+TiO{sub 2} composite solar cells were studied. The value of incident photon-to-current conversion efficiency (IPCE) in the coupled system was higher than the composite system. A maximum IPCE value, 63%, was reached at 525 nm wavelength in the coupled cell with 3.5-{mu}m-thick SnO{sub 2} and 7-{mu}m-thick TiO{sub 2}. The IPCE difference in the coupled and composite cells sensitized by eosin Y dye is discussed.

  3. Electrochemical corrosion and bioactivity of Ti-Nb-Sn-hydroxyapatite composites fabricated by pulse current activated sintering.

    Science.gov (United States)

    Xiaopeng, Wang; Fantao, Kong; Biqing, Han; Yuyong, Chen

    2017-11-01

    Ti-Nb-Sn-hydroxyapatite (HA) composites were prepared by mechanical alloying for different times (unmilled, 4, 8 and 12h), followed by pulse current activated sintering. The effects of the milling time on the electrochemical corrosion resistance and bioactivity of the sintered Ti-35Nb-2.5Sn-15HA composites were investigated. Potentiodynamic polarization test results indicated that the sintered Ti-35Nb-2.5Sn-15HA composites exhibited higher corrosion resistance with increasing milling time. The corrosion potential and current of the Ti-35Nb-2.5Sn-15HA composite sintered by 12h milled powders were - 0.261V and 0.18μA/cm 2 , respectively, and this sintered composite showed a stable and wide passivation region. The hemolysis rate of the sintered Ti-35Nb-2.5Sn-15HA composites reduced with increasing milling time and the lowest hemolytic rate of the composites was 0.87%. In addition, the in vitro cell culture results indicated that the composite sintered by 12h milled powders had good biocompatibility. These results indicate the significant potential of Ti-35Nb-2.5Sn/xHA composites for biomedical implant applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Influence of Sn content on microstructural and mechanical properties of centrifugal cast Ti-Nb-Sn biomedical alloys

    International Nuclear Information System (INIS)

    Lopes, E.S.N.; Contieri, R.J.; Caram, R.; Costa, A.M.S.

    2010-01-01

    The arc voltaic centrifugal casting is an interesting alternative in terms of economic and technological development in the production of components based on materials with high reactivity and high melting point, such as titanium alloys. In this work, Ti-30Nb (wt. %) with additions of Sn (2, 4, 6, 8 and 10 wt. %) were formed by casting process. Characterization of the samples included optical microscopy, scanning electron microscopy, X-ray diffraction, Vickers hardness and elastic modulus measures by acoustic techniques. It was observed that the microstructure of the samples investigated is composed by dendritic structures, with clear segregation of alloying elements. The Vickers hardness and the elastic modulus decreased with the addition of Sn. The results show that the mechanical behavior of Ti-Nb alloys can be controlled within certain limits, by adding Sn. (author)

  5. Nanocrystalline sol-gel TiO{sub 2}-SnO{sub 2} coatings: Preparation, characterization and photo-catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Kaleji, Behzad Koozegar [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Sarraf-Mamoory, Rasoul, E-mail: rsarrafm@modares.ac.ir [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer SnO{sub 2} additive enhanced significantly photo-catalytic properties of TiO{sub 2} based thin film for remove of organic compounds. Black-Right-Pointing-Pointer Structural and optical properties are dependent on dopant concentration. Black-Right-Pointing-Pointer TiO{sub 2}-SnO{sub 2} nanocrystalline thin film is promising for photocatalytic properties in visible light. -- Abstract: In this study, preparation of SnO{sub 2} (0-30 mol% SnO{sub 2})-TiO{sub 2} dip-coated thin films on glazed porcelain substrates via sol-gel process has been investigated. The effects of SnO{sub 2} on the structural, optical, and photo-catalytic properties of applied thin films have been studied by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. Surface topography and surface chemical state of thin films were examined by atomic force microscopy and X-ray photoelectron spectroscopy. XRD patterns showed an increase in peak intensities of the rutile crystalline phase by increasing the SnO{sub 2} content. The prepared Sn doped TiO{sub 2} photo-catalyst films showed optical absorption in the visible light area exhibited excellent photo-catalytic ability for the degradation of methylene blue under visible light irradiation. Best photo-catalytic activity of Sn doped TiO{sub 2} thin films was measured in the TiO{sub 2}-15 mol% SnO{sub 2} sample by the Sn{sup 4+} dopants presented substitution Ti{sup 4+} into the lattice of TiO{sub 2} increasing the surface oxygen vacancies and the surface hydroxyl groups.

  6. Site occupancy, composition and magnetic structure dependencies of martensitic transformation in Mn2Ni1+xSn1-x.

    Science.gov (United States)

    Kundu, Ashis; Ghosh, Subhradip

    2017-11-14

    A delicate balance between various factors such as site occupancy, composition and magnetic ordering seems to affect the stability of the martensitic phase in Mn2Ni1+xSn1-x. Using first-principles DFT calculations, we explore the impacts of each one of these factors on the martensitic stability of this system. Our results on total energies, magnetic moments and electronic structures upon changes in the composition, the magnetic configurations and the site occupancies show that the occupancies at the 4d sites in the Inverse Heusler crystal structure play the most crucial role. The presence of Mn at the 4d sites originally occupied by Sn and its interaction with the Mn atoms at other sites decide the stability of the martensitic phases. This explains the discrepancy between the experiments and earlier DFT calculations regarding phase stability in Mn2NiSn. Our results qualitatively explain the trends observed experimentally with regard to martensitic phase stability and the magnetisations in Ni-excess, Sn-deficient Mn2NiSn system. © 2017 IOP Publishing Ltd.

  7. Alloy Design and Property Evaluation of Ti-Mo-Nb-Sn Alloy for ...

    African Journals Online (AJOL)

    Ti-Mo alloy containing Nb and Sn were arc melted and composition analyzed by EDX. The XRD analysis indicates that the crystal structure and mechanical properties are sensitive to Sn concentration. A combination of Sn and Nb elements in synergy hindered formation athermal w phase and significantly enhanced b phase ...

  8. Synthesis of PtSn nanostructured catalysts supported over TiO{sub 2} and Ce-doped TiO{sub 2} particles for the electro-oxidation of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, A.E. [Instituto de Ingeniería Electroquímica y Corrosión (INIEC), CONICET, Universidad Nacional del Sur. Av. Alem 1253, Bahía Blanca B8000CPB (Argentina); Gravina, A.N. [Departamento de Química, INQUISUR, CONICET, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca B8000CPB (Argentina); Sieben, J.M., E-mail: jmsieben@uns.edu.ar [Instituto de Ingeniería Electroquímica y Corrosión (INIEC), CONICET, Universidad Nacional del Sur. Av. Alem 1253, Bahía Blanca B8000CPB (Argentina); Messina, P.V. [Departamento de Química, INQUISUR, CONICET, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca B8000CPB (Argentina); Duarte, M.M.E. [Instituto de Ingeniería Electroquímica y Corrosión (INIEC), CONICET, Universidad Nacional del Sur. Av. Alem 1253, Bahía Blanca B8000CPB (Argentina)

    2016-09-15

    Highlights: • PtSn particles supported on TiO2 and Ce-doped TiO2 were evaluated as catalysts for EOR. • PtSn/TiO2 showed better mass current and higher TON than PtSn/Ce–TiO2 materials. • The activity for EOR decreased markedly with increasing Ce content in the TiO2. - Abstract: PtSn/TiO2 and PtSn/Ce-doped TiO2 catalysts were synthesized and evaluated for ethanol electro-oxidation in acid media. Titanium dioxide and Ce-doped TiO2 nanoparticles were prepared by hydrothermal method followed by calcination at 923 K. Bimetallic PtSn catalysts supported on the oxide materials were synthesized by microwave assisted reduction in ethylene glycol (EG). The structural properties of the resulting materials were evaluated via TEM and XRD, and the compositions were assessed by EDX and ICP-AES analysis. PtSn nanoparticles of about 3–4 nm were deposited on TiO2 and Ce–TiO2 particles. It was found that the catalyst composition is scarcely influenced by the cerium content in the mixed oxides while the electrochemical surface area per unit mass decreases upon the incorporation of Ce in the anatase lattice. The electrochemical tests pointed out that the electrocatalytic activity for ethanol oxidation decreases markedly as the Ce content increases. The results indicate that the presence of cerium in the titanium dioxide crystalline network induces local structural and electronic modifications, thereby leading to a reduction of the crystallinity, surface conductivity and the amount of OH species adsorbed on the surface of the oxide support.

  9. Surface Characterization, Corrosion Resistance and in Vitro Biocompatibility of a New Ti-Hf-Mo-Sn Alloy

    Science.gov (United States)

    Ion, Raluca; Drob, Silviu Iulian; Ijaz, Muhammad Farzik; Vasilescu, Cora; Osiceanu, Petre; Gordin, Doina-Margareta; Cimpean, Anisoara; Gloriant, Thierry

    2016-01-01

    A new superelastic Ti-23Hf-3Mo-4Sn biomedical alloy displaying a particularly large recovery strain was synthesized and characterized in this study. Its native passive film is very thick (18 nm) and contains very protective TiO2, Ti2O3, HfO2, MoO2, and SnO2 oxides (XPS analysis). This alloy revealed nobler electrochemical behavior, more favorable values of the corrosion parameters and open circuit potentials in simulated body fluid in comparison with commercially pure titanium (CP-Ti) and Ti-6Al-4V alloy taken as reference biomaterials in this study. This is due to the favorable influence of the alloying elements Hf, Sn, Mo, which enhance the protective properties of the native passive film on alloy surface. Impedance spectra showed a passive film with two layers, an inner, capacitive, barrier, dense layer and an outer, less insulating, porous layer that confer both high corrosion resistance and bioactivity to the alloy. In vitro tests were carried out in order to evaluate the response of Human Umbilical Vein Endothelial Cells (HUVECs) to Ti-23Hf-3Mo-4Sn alloy in terms of cell viability, cell proliferation, phenotypic marker expression and nitric oxide release. The results indicate a similar level of cytocompatibility with HUVEC cells cultured on Ti-23Hf-3Mo-4Sn substrate and those cultured on the conventional CP-Ti and Ti-6Al-4V metallic materials. PMID:28773939

  10. Hydrothermal synthesis and characterizations of Ti substituted Mn-ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, Nasser Y., E-mail: nmost69@yahoo.com [Faculty of Science, Taif University, P.O. Box 888 Al-Haweiah, Taif (Saudi Arabia); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Hessien, M.M. [Faculty of Science, Taif University, P.O. Box 888 Al-Haweiah, Taif (Saudi Arabia); Advanced materials Division-Central metallurgical R and D Institute (CMRDI), P.O. Box 87 Helwan, Cairo (Egypt); Shaltout, Abdallah A. [Faculty of Science, Taif University, P.O. Box 888 Al-Haweiah, Taif (Saudi Arabia); Spectroscopy Department, Physics Division, National Research Center, El Behooth Str., 12622 Dokki, Cairo (Egypt)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Hydrothermal synthesized of well-crystallized Ti-substituted MnFe{sub 2}O{sub 4} nanoparticles at 180 Degree-Sign C without any calcination step. The chemical composition was represented by Mn{sub 1-2x}Ti{sub x}Fe{sub 2}O{sub 4} with x having values 0.0, 0.1, 0.2, 0.3 and 0.4. Black-Right-Pointing-Pointer The change in lattice parameter and saturation magnetization with increasing Ti-substitution was investigated and explained. Black-Right-Pointing-Pointer The change in microstructure due to Ti{sup 4+} ions substitutions was investigated using TEM analysis. - Abstarct: A series of well-crystallized Mn{sub 1-2x}Ti{sub x}Fe{sub 2}O{sub 4} nanoparticles with x values of 0.0, 0.1, 0.2, 0.3 and 0.4 have been synthesized by hydrothermal route at 180 Degree-Sign C in the presence of NaOH as mineralizer. The obtained ferrite samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM). The XRD analysis showed that pure single phases of cubic ferrites were obtained with x up to 0.2. However, samples with x > 0.2 showed traces of unreacted anatase. The increase in Ti-substitution up to x = 0.2 leads to an increase in the lattice parameter of the prepared ferrites. On the other hand, the increase in Ti-substitution over x = 0.2 leads to a decrease in the lattice parameter. The average crystallite size was in the range of 39-57 nm, where it is increased by increasing the Ti-substitution up to x = 0.3, then decreased for x = 0.4. According to VSM results, the saturation magnetization increased with Ti ion substitution of x = 0.1 and decreased for x > 0.1.

  11. Sn buffered by shape memory effect of NiTi alloys as high-performance anodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Hu Renzong; Zhu Min; Wang Hui; Liu Jiangwen; Liuzhang Ouyang; Zou Jin

    2012-01-01

    By applying the shape memory effect of the NiTi alloys to buffer the Sn anodes, we demonstrate a simple approach to overcome a long-standing challenge of Sn anode in the applications of Li-ion batteries – the capacity decay. By supporting the Sn anodes with NiTi shape memory alloys, the large volume change of Sn anodes due to lithiation and delithiation can be effectively accommodated, based on the stress-induced martensitic transformation and superelastic recovery of the NiTi matrix respectively, which leads to a decrease in the internal stress and closing of cracks in Sn anodes. Accordingly, stable cycleability (630 mA h g −1 after 100 cycles at 0.7C) and excellent high-rate capabilities (478 mA h g −1 at 6.7C) were attained with the NiTi/Sn/NiTi film electrode. These shape memory alloys can also combine with other high-capacity metallic anodes, such as Si, Sb, Al, and improve their cycle performance.

  12. Influence of Ti addition on the room temperature ferromagnetism of tin oxide (SnO{sub 2}) nanocrystal

    Energy Technology Data Exchange (ETDEWEB)

    Sakthiraj, K.; Balachandrakumar, K., E-mail: dkbaldr@gmail.com

    2015-12-01

    Nano-crystalline Sn{sub 1−x}Ti{sub x}O{sub 2} (x=0.00, 0.02, 0.05 and 0.07) particles were synthesized by the sol–gel method without any surfactant and dispersant material. The X-ray diffraction (XRD) pattern shows the formation of the tetragonal rutile phase structure for the undoped SnO{sub 2} nanoparticle and Ti doping does not alter the structure of undoped tin oxide. Due to quantum confinement effect, a larger optical band gap for as-synthesized materials was found. Vibrating sample magnetometer (VSM) result demonstrates the undoped and 2% Ti doped SnO{sub 2} samples exhibit perfect room temperature ferromagnetism (RTFM) but 5% and 7% of Ti doped samples show a weak ferromagnetism with diamagnetic contribution. The ferromagnetic property of the material was initiated with the help of oxygen vacancy. The amount of oxygen vacancy present in the samples were identified from the photoluminescence spectra and the value of oxygen vacancy decreased with increasing Ti concentration. - Highlights: • Pure Ti doped and undoped SnO{sub 2} nanocrystal were prepared using sol–gel method. • Oxygen vacancy induced RTFM was observed in SnO{sub 2} nanostructures. • Higher amount of ferromagnetism was detected in pristine SnO{sub 2} nanocrystal. • Ferromagnetic property was decreased with increasing Ti concentration. • Redshift of energy band gap was noted with increasing Ti content.

  13. Preparation and characterization of Ti/SnO2-Sb electrode with copper nanorods for AR 73 removal

    International Nuclear Information System (INIS)

    Xu, Li; Li, Ming; Xu, Wei

    2015-01-01

    Novel Ti/Cu-NRs/SnO 2 -Sb electrode modified by copper (Cu) nanorods was fabricated through anodic aluminum oxide (AAO) template assisted electrochemical deposition (ECD) for wastewater treatment. Scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD) and electrochemical methods such as linear sweep voltammetry (LSV), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the surface morphology, crystal structure and electrochemical performance of the electrodes. Acid dye AR 73 was selected as target pollutants to investigate the electro-catalyst behavior, and UV/vis spectroscopy was used to monitor the concentration changes with time. The results indicated that the presence of Cu nanorods on the Ti substrate promoted the electrodes' property obviously. Ti/Cu-NRs/SnO 2 -Sb anode possessed smaller charge transfer resistance and longer service life than Ti/SnO 2 -Sb anode. The oxygen evolution potential (OEP) of Ti/Cu-NRs/SnO 2 -Sb electrodes reach 2.17 V (vs. Ag/AgCl). Removal of pollutants and reaction rate were all promoted due to the introduction of Cu nanorods in the process of AR 73 decomposing with Ti/Cu-NRs/SnO 2 -Sb electrodes. And specific energy consumption also reduced remarkably. Our study has shown that the fabricated Ti/Cu-NRs/SnO 2 -Sb electrodes are very promising for the electrochemical treatment of wastewater

  14. Preparation and Performance of Sb-SnO2 / Ti Electrode Modified with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    WEI Jin-zhi

    2017-06-01

    Full Text Available In order to improve the electro-catalytic oxidation activity and stability of Sb-SnO2 /Ti electrode,the CNTs-Sb-SnO2 /Ti electrode was prepared by sol-gel-thermal decomposition method. The microstructure and electrochemical properties of the modified electrode was characterized via SEM electrochemical impedance spectroscope ( EIS ,polarization curve and congo red degradation experiments. Furthermore,its the stability was investigated by accelerated life test. The results indicate that when the optimal doping amount of CNTs is 2. 0 g /L the congo red removal rate increases by 14. 7% using the CNTs-Sb-SnO2 /Ti electrode compared with the Sb-SnO2 /Ti electrode. Meanwhile pore structure appears and roughness increases on the surface of modified electrodes leading to larger specific surface area of electrode. Then the modified electrodes exhibit higher oxygen evolution potential and lower charge transfer resistance. Additionally,accelerated life tests reveal that the modified electrode has better electro-catalytic stability while the service life increases by

  15. Synthesis, Property Characterization and Photocatalytic Activity of the Novel Composite Polymer Polyaniline/Bi2SnTiO7

    Directory of Open Access Journals (Sweden)

    Yunjun Yang

    2012-03-01

    Full Text Available A novel polyaniline/Bi2SnTiO7 composite polymer was synthesized by chemical oxidation in-situ polymerization method and sol-gel method for the first time. The structural properties of novel polyaniline/Bi2SnTiO7 have been characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray spectrometry. The lattice parameter of Bi2SnTiO7 was found to be a = 10.52582(8 Å. The photocatalytic degradation of methylene blue was realized under visible light irradiation with the novel polyaniline/Bi2SnTiO7 as catalyst. The results showed that novel polyaniline/Bi2SnTiO7 possessed higher catalytic activity compared with Bi2InTaO7 or pure TiO2 or N-doped TiO2 for photocatalytic degradation of methylene blue under visible light irradiation. The photocatalytic degradation of methylene blue with the novel polyaniline/Bi2SnTiO7 or N-doped TiO2 as catalyst followed first-order reaction kinetics, and the first-order rate constant was 0.01504 or 0.00333 min−1. After visible light irradiation for 220 minutes with novel polyaniline/Bi2SnTiO7 as catalyst, complete removal and mineralization of methylene blue was observed. The reduction of the total organic carbon, the formation of inorganic products, SO42− and NO3−, and the evolution of CO2 revealed the continuous mineralization of methylene blue during the photocatalytic process. The possible photocatalytic degradation pathway of methylene blue was obtained under visible light irradiation.

  16. Single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides as promising photocatalysts.

    Science.gov (United States)

    Bai, Yujie; Luo, Gaixia; Meng, Lijuan; Zhang, Qinfang; Xu, Ning; Zhang, Haiyang; Wu, Xiuqiang; Kong, Fanjie; Wang, Baolin

    2018-05-30

    Searching for two-dimensional semiconductor materials that are suitable for visible-light photocatalytic water splitting provides a sustainable solution to deal with the future energy crisis and environmental problems. Herein, based on first-principles calculations, single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides are proposed as efficient photocatalysts for water splitting. Stability analyses show that the single-layer ZnMN2 zinc nitrides exhibit energetic and dynamical stability. The electronic properties reveal that all of the single-layer ZnMN2 zinc nitrides are semiconductors. Interestingly, single-layer ZnSnN2 is a direct band gap semiconductor with a desirable band gap (1.74 eV), and the optical adsorption spectrum confirms its optical absorption in the visible light region. The hydrogen evolution reaction (HER) calculations show that the catalytic activity for single-layer ZnMN2 (M = Ge, Sn) is better than that of single-layer ZnSiN2. Furthermore, the band gaps and band edge positions for the single-layer ZnMN2 zinc nitrides can be effectively tuned by biaxial strain. Especially, single-layer ZnGeN2 can be effectively tuned to match better with the redox potentials of water and enhance the light absorption in the visible light region at a tensile strain of 5%, which is confirmed by the corresponding optical absorption spectrum. Our results provide guidance for experimental synthesis efforts and future searches for single-layer materials suitable for photocatalytic water splitting.

  17. Phase stability and elastic properties of β Ti-Nb-X (X = Zr, Sn) alloys: an ab initio density functional study

    Science.gov (United States)

    K, Rajamallu; Niranjan, Manish K.; Ameyama, Kei; Dey, Suhash R.

    2017-12-01

    Alloying effects of Zr and Sn on β phase stability and elastic properties in Ti-Nb alloys are investigated within the framework of first-principles density functional theory. Our results suggest that the stability of β phase can be significantly enhanced by the addition of Zr and Sn in Ti-Nb alloys. The computed results indicate that Zr and Sn behave as strong β stabilizers in the Ti-Nb system. The elastic properties are found to be altered considerably by the addition of ternary alloying elements (Zr and Sn). The computed elastic moduli of Ti18.75 at%Nb6.25 at%Zr and Ti25 at%NbxZr compositions are found to be lower than that for Ti18.75 at%Nb6.25 at%Sn and Ti25 at%NbxSn system. The lowest value of ˜54 GPa is obtained for Ti25 at%Nb6.25 at%Zr composition. Furthermore, the directional Young’s modulus is found to be in the order of E 100 system.

  18. Investigation of spin-gapless semiconductivity and half-metallicity in Ti2MnAl-based compounds

    International Nuclear Information System (INIS)

    Lukashev, P.; Staten, B.; Hurley, N.; Kharel, P.; Gilbert, S.; Fuglsby, R.; Huh, Y.; Valloppilly, S.; Zhang, W.; Skomski, R.; Sellmyer, D. J.; Yang, K.

    2016-01-01

    The increasing interest in spin-based electronics has led to a vigorous search for new materials that can provide a high degree of spin polarization in electron transport. An ideal candidate would act as an insulator for one spin channel and a conductor or semiconductor for the opposite spin channel, corresponding to the respective cases of half-metallicity and spin-gapless semiconductivity. Our first-principle electronic-structure calculations indicate that the metallic Heusler compound Ti 2 MnAl becomes half-metallic and spin-gapless semiconducting if half of the Al atoms are replaced by Sn and In, respectively. These electronic structures are associated with structural transitions from the regular cubic Heusler structure to the inverted cubic Heusler structure.

  19. Lithium-Excess Research of Cathode Material Li₂MnTiO₄ for Lithium-Ion Batteries.

    Science.gov (United States)

    Zhang, Xinyi; Yang, Le; Hao, Feng; Chen, Haosen; Yang, Meng; Fang, Daining

    2015-11-20

    Lithium-excess and nano-sized Li 2+x Mn₁ - x /2 TiO₄ ( x = 0, 0.2, 0.4) cathode materials were synthesized via a sol-gel method. The X-ray diffraction (XRD) experiments indicate that the obtained main phases of Li 2.0 MnTiO₄ and the lithium-excess materials are monoclinic and cubic, respectively. The scanning electron microscope (SEM) images show that the as-prepared particles are well distributed and the primary particles have an average size of about 20-30 nm. The further electrochemical tests reveal that the charge-discharge performance of the material improves remarkably with the lithium content increasing. Particularly, the first discharging capacity at the current of 30 mA g -1 increases from 112.2 mAh g -1 of Li 2.0 MnTiO₄ to 187.5 mAh g -1 of Li 2.4 Mn 0.8 TiO₄. In addition, the ex situ XRD experiments indicate that the monoclinic Li₂MnTiO₄ tends to transform to an amorphous state with the extraction of lithium ions, while the cubic Li₂MnTiO₄ phase shows better structural reversibility and stability.

  20. Oxygen nonstoichiometry and defects in Mn-doped Gd2Ti2O7+x

    International Nuclear Information System (INIS)

    Porat, O.; Tuller, H.L.

    1996-01-01

    The oxygen nonstoichiometry in Mn-doped Gd 2 Ti 2 O 7 , Gd 2 (Ti 0.975 Mn 0.025 ) 2 O 7+x , was measured electrochemically, as a function of temperature and oxygen partial pressure, with the aid of an oxygen titration cell. The analysis of the data shows that the defect equilibrium can be described by considering the dominant point defects to be neutral oxygen interstitials, doubly charged oxygen vacancies, and trivalent and quadrivalent Mn ions substituted in the Ti sites. The enthalpies for the formation of neutral oxygen interstitials and trivalent Mn are determined

  1. Thermoelectric Properties in the TiO2/SnO2 System

    Science.gov (United States)

    Dynys, F.; Sayir, A.; Sehirlioglu, A.; Berger, M.

    2009-01-01

    Nanotechnology has provided a new interest in thermoelectric technology. A thermodynamically driven process is one approach in achieving nanostructures in bulk materials. TiO2/SnO2 system exhibits a large spinodal region with exceptional stable phase separated microstructures up to 1400 C. Fabricated TiO2/SnO2 nanocomposites exhibit n-type behavior with Seebeck coefficients greater than -300 .V/K. Composites exhibit good thermal conductance in the range of 7 to 1 W/mK. Dopant additions have not achieved high electrical conductivity (<1000 S/m). Formation of oxygen deficient composites, TixSn1-xO2-y, can change the electrical conductivity by four orders of magnitude. Achieving higher thermoelectric ZT by oxygen deficiency is being explored. Seebeck coeffcient, thermal conductivity, electrical conductance and microstructure will be discussed in relation to composition and doping.

  2. Electronic structure, magnetism and disorder in the Heusler compound Co2TiSn

    International Nuclear Information System (INIS)

    Kandpal, Hem Chandra; Ksenofontov, Vadim; Wojcik, Marek; Seshadri, Ram; Felser, Claudia

    2007-01-01

    Polycrystalline samples of the Heusler compound Co 2 TiSn have been prepared and studied using bulk techniques (x-ray diffraction and magnetization) as well as local probes ( 119 Sn Moessbauer spectroscopy and 59 Co nuclear magnetic resonance spectroscopy) in order to determine how disorder affects the half-metallic behaviour and also to establish the joint use of Moessbauer and NMR spectroscopies as a quantitative probe of local atom ordering in these compounds. Additionally, density functional electronic structure calculations on ordered and partially disordered Co 2 TiSn compounds have been carried out at a number of different levels of theory in order to simultaneously understand how the particular choice of DFT scheme as well as disorder affects the computed magnetization. Our studies suggest that a sample which seems well ordered by x-ray diffraction and magnetization measurements can possess up to 10% of antisite (Co/Ti) disordering. Computations similarly suggest that even 12.5% antisite Co/Ti disorder does not destroy the half-metallic character of this material. However, the use of an appropriate level of non-local DFT is crucial

  3. Band structure of the quaternary Heusler alloys ScMnFeSn and ScFeCoAl

    Science.gov (United States)

    Shanthi, N.; Teja, Y. N.; Shaji, Shephine M.; Hosamani, Shashikala; Divya, H. S.

    2018-04-01

    In our quest for materials with specific applications, a theoretical study plays an important role in predicting the properties of compounds. Heusler alloys or compounds are the most studied in this context. More recently, a lot of quaternary Heusler compounds are investigated for potential applications in fields like Spintronics. We report here our preliminary study of the alloys ScMnFeSn and ScFeCoAl, using the ab-initio linear muffin-tin orbital method within the atomic sphere approximation (LMTO-ASA). The alloy ScMnFeSn shows perfect half-metallicity, namely, one of the spins shows a metallic behaviour and the other spin shows semi-conducting behaviour. Such materials find application in devices such as the spin-transfer torque random access memory (STT-MRAM). In addition, the alloy ScMnFeSn is found to have an integral magnetic moment of 4 µB, as predicted by the Slater-Pauling rule. The alloy ScFeCoAl does not show half-metallicity.

  4. Influence of Ta and Ti Doping on the High Field Performance of (Nb, Ta, Ti)3Sn Multifilamentary Wires based on Osprey Bronze with High Tin Content

    International Nuclear Information System (INIS)

    Abaecherli, V; Uglietti, D; Lezza, P; Seeber, B; Fluekiger, R; Cantoni, M; Buffat, P-A

    2006-01-01

    Ta and Ti are the most widely used additions for technical Nb 3 Sn multifilamentary superconductors. These elements are known to influence grain growth, grain morphology and chemical composition in the A15 layer, hence the current carrying properties of the wires over a wide magnetic field range. So far only few studies tried to compare systematically Ta and Ti doped and undoped Nb 3 Sn wires in the frame of the same work, down to a nanometric scale. We present an investigation on several multifilamentary (Nb, Ta, Ti) 3 Sn bronze route wires, fabricated at a laboratory scale, with various amounts of additives. The wires consist of fine filaments embedded in a Cu-Sn or Cu-Sn-Ti Osprey bronze with > 15 wt.% Sn and an external Cu stabilization. Microstructural observations are compared with the results of J c and n values measured up to 21 T at 4.2 and 2.2 K, and for longitudinal strains up to 0.5%. Non-Cu J c values up to 300 Amm -2 and n values up to 50 at 17 T and 4.2 K show clearly that wires with Ti addition to the bronze have a better performance with respect to wires with Ti additions to the filaments

  5. Shape memory and superelastic behavior of Ti-7.5Nb-4Mo-1Sn alloy

    International Nuclear Information System (INIS)

    Zhang, D.C.; Lin, J.G.; Jiang, W.J.; Ma, M.; Peng, Z.G.

    2011-01-01

    Research highlights: → A Ti-based shape memory alloy, Ti-7.5Nb-4Mo-1Sn, was designed. → The martensitic transformation start temperature of the alloy, M s , is 261 K. → The alloy exhibits good shape memory and superelastic behaviors. → The alloy also shows a good superelastic stability at room temperature. → The Ti-5Mo-7.5Nb-1Sn alloy has a potential application as a biomedical material. -- Abstract: In the present work, a Ti-based shape memory alloy with the composition of Ti-7.5Nb-4Mo-1Sn was designed based on the d-electron orbit theory. The shape memory and superelastic behavior of the alloy were investigated. It is found that the martensitic transformation temperature of the alloy is near 261 K. The tensile and the thermal cycling testing results show that the alloy exhibits the stable shape memory effect and superelasticity at room temperature. The maximum recovered strain of the alloy is 4.83%.

  6. Study on preparation of SnO2-TiO2/Nano-graphite composite anode and electro-catalytic degradation of ceftriaxone sodium.

    Science.gov (United States)

    Guo, Xiaolei; Wan, Jiafeng; Yu, Xiujuan; Lin, Yuhui

    2016-12-01

    In order to improve the electro-catalytic activity and catalytic reaction rate of graphite-like material, Tin dioxide-Titanium dioxide/Nano-graphite (SnO 2 -TiO 2 /Nano-G) composite was synthesized by a sol-gel method and SnO 2 -TiO 2 /Nano-G electrode was prepared in hot-press approach. The composite was characterized by X-ray photoelectron spectroscopy, fourier transform infrared, Raman, N 2 adsorption-desorption, scanning electrons microscopy, transmission electron microscopy and X-ray diffraction. The electrochemical performance of the SnO 2 -TiO 2 /Nano-G anode electrode was investigated via cyclic voltammetry and electrochemical impedance spectroscopy. The electro-catalytic performance was evaluated by the degradation of ceftriaxone sodium and the yield of ·OH radicals in the reaction system. The results demonstrated that TiO 2 , SnO 2 and Nano-G were composited successfully, and TiO 2 and SnO 2 particles dispersed on the surface and interlamination of the Nano-G uniformly. The specific surface area of SnO 2 modified anode was higher than that of TiO 2 /Nano-G anode and the degradation rate of ceftriaxone sodium within 120 min on SnO 2 -TiO 2 /Nano-G electrode was 98.7% at applied bias of 2.0 V. The highly efficient electro-chemical property of SnO 2 -TiO 2 /Nano-G electrode was attributed to the admirable conductive property of the Nano-G and SnO 2 -TiO 2 /Nano-G electrode. Moreover, the contribution of reactive species ·OH was detected, indicating the considerable electro-catalytic activity of SnO 2 -TiO 2 /Nano-G electrode. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Development of precipitation strengthened brass with Ti and Sn alloying elements additives by using water atomized powder via powder metallurgy route

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shufeng, E-mail: shufengli@hotmail.com [Joining and Welding Research Institute, Osaka University, Osaka (Japan); Imai, Hisashi; Kondoh, Katsuyoshi [Joining and Welding Research Institute, Osaka University, Osaka (Japan); Kojima, Akimichi; Kosaka, Yoshiharu [San-Etsu Metals Co. LTD., 1892 OHTA, Tonami, Toyama (Japan); Yamamoto, Koji; Takahashi, Motoi [Nippon Atomized Metal Powders Corporation, 87-16, Nishi-Sangao, Noda, Chiba (Japan)

    2012-08-15

    Effect of Ti and Sn alloying elements on microstructure and mechanical properties of 60/40 brass has been studied via the powder metallurgy (P/M) route. The water-atomized BS40-0.6Sn1.0Ti (Cu40wt%Zn-0.6wt%Sn1.0wt%Ti) pre-alloyed powder was consolidated at various temperatures within range of 400-600 Degree-Sign C using spark plasma sintering (SPS) and hot extrusion was carried out at 500 Degree-Sign C. Effects of extrusion temperature on microstructure and tensile strength were investigated by employing SEM-EDS/EBSD, TEM, XRD and tensile test. Results indicated that super-saturated solid solution Ti and Sn elements created high chemical potential for a precipitate reaction in rapidly solidified brass powder, which showed significant strengthening effects on the extruded sample consolidated at lower temperature. Solid solubility of Ti in brass matrix decreased with increasing of sintering temperature, thus resulted in degradation of mechanical properties. Consequently, lower hot processing temperature is necessary to obtain excellent mechanical properties for BS40-0.6Sn1.0Ti during sintering and extrusion. An yield strength of 398 MPa and ultimate tensile strength of 615 MPa were achieved, they respectively showed 31.3% and 22.9% higher values than those of extruded Cu40Zn brass. -- Graphical abstract: The Ti and Sn alloying elements additions showed significant grain refinement on Cu40Zn-0.6Sn1.0Ti brass (b) as comparing with that of the conventional Cu40Zn brass (a), detected by electron backscatter diffraction (EBSD) technique. The grain boundaries maps of (a) BS40 (b) BS40-0.6Sn1.0Ti SPS compact sintered at 400 Degree-Sign C reveals by electron backscatter diffraction (EBSD) technique. Highlights: Black-Right-Pointing-Pointer Alloying elements Ti and Sn are proposed as additives in 60/40 brass. Black-Right-Pointing-Pointer Super-saturated Ti in powder creates high chemical potential for precipitation. Black-Right-Pointing-Pointer CuSn{sub 3}Ti{sub 5

  8. Ternary composite of TiO2 nanotubes/Ti plates modified by g-C3N4 and SnO2 with enhanced photocatalytic activity for enhancing antibacterial and photocatalytic activity.

    Science.gov (United States)

    Faraji, Masoud; Mohaghegh, Neda; Abedini, Amir

    2018-01-01

    A series of g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plates were fabricated via simple dipping of TiO 2 nanotubes/Ti in a solution containing SnCl 2 and g-C 3 N 4 nanosheets and finally annealing of the plates. Synthesized plates were characterized by various techniques. The SEM analysis revealed that the g-C 3 N 4 -SnO 2 nanosheets with high physical stability have been successfully deposited onto the surface of TiO 2 nanotubes/Ti plate. Photocatalytic activity was investigated using two probe chemical reactions: oxidative decomposition of acetic acid and oxidation of 2-propanol under irradiation. Antibacterial activities for Escherichia coli (E. coli) bacteria were also investigated in dark and under UV/Vis illuminations. Detailed characterization and results of photocatalytic and antibacterial activity tests revealed that semiconductor coupling significantly affected the photocatalyst properties synthesized and hence their photocatalytic and antibacterial activities. Modification of TiO 2 nanotubes/Ti plates with g-C 3 N 4 -SnO 2 deposits resulted in enhanced photocatalytic activities in both chemical and microbial systems. The g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plate exhibited the highest photocatalytic and antibacterial activity, probably due to the heterojunction between g-C 3 N 4 -SnO 2 and TiO 2 nanotubes/Ti in the ternary composite plate and thus lower electron/hole recombination rate. Based on the obtained results, a photocatalytic and an antibacterial mechanism for the degradation of E. coli bacteria and chemical pollutants over g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plate were proposed and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Microstructures, mechanical properties and cytotoxicity of low cost beta Ti-Mn alloys for biomedical applications.

    Science.gov (United States)

    Santos, Pedro Fernandes; Niinomi, Mitsuo; Cho, Ken; Nakai, Masaaki; Liu, Huihong; Ohtsu, Naofumi; Hirano, Mitsuhiro; Ikeda, Masahiko; Narushima, Takayuki

    2015-10-01

    The microstructures, mechanical properties and biocompatibility of low cost β-type Ti-(6-18)Mn alloys were investigated after solution treatment. Ti-9 Mn exhibits the best combination of tensile strength and elongation among the fabricated alloys, and its performance is comparable to or superior to those of Ti-6Al-4V ELI (Ti-64 ELI) in terms of every parameter evaluated. A hardness of 338 HV, a Young's modulus of 94 GPa, a 0.2% proof stress of 1023 MPa, an ultimate tensile strength of 1048 MPa and elongation of 19% were obtained for Ti-9 Mn. Furthermore, the cell viability and metallic ion release ratios are comparable to those of commercially pure titanium, making this alloy promising for biomedical applications. The Young's modulus is also lower than that of Ti-64 ELI (110 GPa), which can possibly reduce the stress shielding effect in implanted patients. This study evaluates mechanical and biological performance of low cost solution treated β-type Ti-(6, 9, 13 and 18 mass%)Mn alloys. It includes alloys containing a Mn content range higher than most previously published works (which is around or lower than 8 mass%). Furthermore, the effects of the ω phase and the β phase stability of the alloys over some mechanical properties and microstructures are discussed. Ion release behavior under simulated body fluids and cell viability are also evaluated. For the case of the Ti-9 Mn, a mechanical and biological performance that is comparable to or superior than that of the widely used Ti-6Al-4V ELI and commercially pure Ti was observed. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Carbon encapsulated ultrasmall SnO2 nanoparticles anchoring on graphene/TiO2 nanoscrolls for lithium storage

    International Nuclear Information System (INIS)

    Li, Xinlu; Zhang, Yonglai; Li, Tongtao; Zhong, Qineng; Li, Hongyi; Huang, Jiamu

    2014-01-01

    Highlights: • Highly-dispersive ultrasmall SnO 2 nanoparticles (4∼8 nm) are anchored on the substrate of graphene/TiO 2 nanoscrolls. • The encapsulated glucose-derived carbon layer effectively immobilizes SnO 2 nanoparticles. • The enhanced cycling performance is owing to the synergetic effects between the multicomposites. - Abstract: Amorphous carbon is coated on the surface of ultrasmall SnO 2 nanoparticles which are anchored on graphene/TiO 2 nanoscrolls via hydrothermal treatment, followed by annealing process. Transmission electron microscope images show that ultrasmall SnO 2 nanoparticles are anchored on graphene/TiO 2 nanoscrolls and further immobilized by the outermost amorphous carbon layer. The carbon encapsulated SnO 2 @graphene/TiO 2 nanocomposites deliver high reversible capacities around 1131, 793, 621 and 476 mAh g −1 at the current densities of 100, 250, 500, and 1000 mA g −1 , respectively. It is found that SnO 2 nanoparticles play a dominant role in the contributions of reversible capacity according to the cyclic voltammetry curves, voltage-capacity curves and dQ/dV vs. potential curves. The substrate of graphene/TiO 2 nanoscrolls provides sufficient transport channels for lithium ions and high electron conductivity. While the outermost amorphous carbon layer prevents the peeling of SnO 2 nanoparticles from the substrate, therefore making them desirable alternative anode materials for lithium ion batteries

  11. Hydrothermal synthesis of Ti oxide nanostructures and TiO2:SnO2 heterostructures applied to the photodegradation of rhodamine B

    International Nuclear Information System (INIS)

    Mourão, Henrique A.J.L.; Junior, Waldir Avansi; Ribeiro, Caue

    2012-01-01

    The present study describes the synthesis, characterization and testing of the photocatalytic potential of TiO 2 nanoparticles (NPs), TiO 2 :SnO 2 heterostructures and potassium titanate nanotubes (TNTs) obtained by the alkaline hydrothermal method. The materials were characterized by X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy, surface area estimated from the N 2 physisorption isotherm (BET), X-ray absorption near-edge structure (XANES) spectroscopy, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM) and Fourier transform near-infrared (FT-NIR) spectroscopy, among other methods. Photocatalytic potential was assessed by rhodamine B dye photodegradation under UVC radiation. The properties of the materials were shown to depend on the KOH concentration. Potassium TNTs with high surface area were obtained only in 5 mol L −1 KOH. The material composed of TiO 2 anatase phase, which was obtained in KOH solution ranging from 10 −4 to 1 mol L −1 , showed higher photocatalytic activity than the TNTs, despite the lower surface area and lower density of hydroxyl groups on the anatase. In the heterostructure syntheses, SnO 2 NPs were identified attached to TiO 2 when 10 −4 and 10 −2 mol L −1 KOH were used, whereas at [KOH] = 1 and 5 mol L −1 , Sn remained in solution during the synthetic process and only the respective TiO 2 phase was identified. The TiO 2 :SnO 2 heterostructures were more active than the material without SnO 2 prepared at the same KOH concentrations. Highlights: ► The formation of the materials depends on the [KOH] used during syntheses. ► The heterostructures were obtained with the lower [KOH]. ► Photoactivity of the heterostructures was higher than the respective TiO 2 nanostructures. ► Titanate nanotubes showed high concentration of OH groups but low photoactivity.

  12. Effect of Metal (Mn, Ti) Doping on NCA Cathode Materials for Lithium Ion Batteries

    OpenAIRE

    Wan, Dao Yong; Fan, Zhi Yu; Dong, Yong Xiang; Baasanjav, Erdenebayar; Jun, Hang-Bae; Jin, Bo; Jin, En Mei; Jeong, Sang Mun

    2018-01-01

    NCA (LiNi0.85Co0.10Al0.05-x MxO2, M=Mn or Ti, x < 0.01) cathode materials are prepared by a hydrothermal reaction at 170°C and doped with Mn and Ti to improve their electrochemical properties. The crystalline phases and morphologies of various NCA cathode materials are characterized by XRD, FE-SEM, and particle size distribution analysis. The CV, EIS, and galvanostatic charge/discharge test are employed to determine the electrochemical properties of the cathode materials. Mn and Ti doping res...

  13. Synthesis, Characterization, and Gas-Sensing Properties of Mesoporous Nanocrystalline Sn(x)Ti(1-x)O2.

    Science.gov (United States)

    Zhong, Cheng; Lin, Zhidong; Guo, Fei; Wang, Xuehua

    2015-06-01

    A nanocomposite mesoporous material composed by SnO2 and TiO2 with the size of -5-9 nm were prepared via a facile wet-chemical approach combining with an annealing process. The microstructure of obtained Sn(x)Ti(1-x)O2 powders were characterized by X-ray diffraction, X-ray Photo-electronic Spectroscopy, scanning electron microscope, transmission electron microscope and nitrogen adsorption-desorption experiment. The gas sensing performances to several gases of the mesoporous material were studied. The sensors of Sn(x)Ti(1-x)O2 (ST10, with 9.1% Ti) exhibited very high responses to volatile organic compounds at 160 degrees C. The order of the responses to volatile gases based on ST10 was ethanol > formaldehyde > acetone > toluene > benzene > methane. Sensor based on ST10 displays a highest sensitivity to hydrogen at 200 degrees C. Sensor responses to H2 at 200 degrees C have been measured and analyzed in a wide concentration range from 5 to 2000 ppm. The solid solution Sn(x)Ti(1-x)O2 can be served as a potential gas-sensing material for a broad range of future sensor applications.

  14. Magnetic anisotropy in Pb_{1-x-y}Sn_{y}Mn_{x}Te studied by ferromagnetic resonance

    NARCIS (Netherlands)

    Eggenkamp, P.J.T.; Story, T.; Swüste, C.H.W.; Swagten, H.J.M.; Jonge, de W.J.M.

    1993-01-01

    Proceedings of the XXII International School of Semiconducting Compounds, Jaszowiec 1993 We will report on the anisotropy in (Pb)SnMnTe, studied by ferromagnetic resonance. We have found a cubic anisotropy with a = 73 × 10-4 cm-1 for Sn1-xMnxTe and a = 200 × 10-4 cm-1 for Pb0.28-xSn0.72MnxTe. We

  15. Ferroelectricity of Sn-doped SrTiO3 perovskites with tin at both A and B sites

    Science.gov (United States)

    Suzuki, Shoichiro; Honda, Atsushi; Iwaji, Naoki; Higai, Shin'ichi; Ando, Akira; Takagi, Hiroshi; Kasatani, Hirofumi; Deguchi, Kiyoshi

    2012-08-01

    We successfully obtained Sn-doped SrTiO3 (SSTO) perovskites, and clarified their ferroelectricity and structural properties by using first-principles theoretical calculations. The ferroelectricity of SSTO was confirmed by the appearance of a dielectric permittivity maximum and a clear hysteresis loop of the relationship between the external electric field and the electric flux density below 180 K. X-ray diffraction and Raman spectra revealed the structural phase transition of SSTO at approximately 200 K. We directly observed by spherical aberration corrected scanning transmission electron microscopy with energy-dispersive x-ray spectroscopy that Sn ions are doped into both Sr and Ti sites (SnA and SnB), and that SnA is located at an off-centered position. We also performed theoretical analyses of SSTO and related perovskites, and found that SnA is preferentially located in an off-centered position and that SnA and the O6 octahedron, which includes SnB in its center, oscillate along the antiphase direction in the soft mode. Thus, we propose that the ferroelectricity of SSTO originates from the antiphase off-centering, which induces ferroelectric nanoregions in paraelectric SrTiO3.

  16. Technology development of fabrication NbTi and Nb3 Sn superconducting wires

    International Nuclear Information System (INIS)

    Rodrigues Junior, D.; Bormio, C.; Baldan, C.A.; Ramos, M.J.; Pinatti, D.G.

    1988-01-01

    The technology development of NbTi and Nb 3 Sn superconducting wires are studied, mentioning the use of fluxes capture theory in the sizing of wires fabrication. The fabrication process, the thermal treatment and the experimental datas of critical temperature and current of Nb 3 Sn wires are described. (C.G.C.) [pt

  17. Effect of Mn doping on the structural, magnetic, optical and electrical properties of ZrO_2–SnO_2 thin films prepared by sol–gel method

    International Nuclear Information System (INIS)

    Anitha, V.S.; Sujatha Lekshmy, S.; Joy, K.

    2016-01-01

    Manganese doped ZrO_2–SnO_2 (ZrO_2–SnO_2: Mn) nanocomposite thin films were prepared using sol – gel dip coating technique. The structural, morphological, magnetic, optical and electrical properties of the films were studied for undoped and different (15 mol %) manganese doping concentrations. X-ray diffraction pattern (XRD) of films showed the formation of tetragonal phase of SnO_2 and orthorhombic ZrSnO_4. Decrease in crystallinity with increase of Mn concentration was observed for the films. Scanning electron microscopy (SEM) showed the formation of grain growth with an increase in Mn concentration. X-ray photo electron spectroscopy (XPS) confirmed the presence of Zr"4"+, Sn"4"+ and Mn"2"+ ion in ZrO_2–SnO_2: Mn films. Vibrating sample magnetometer (VSM) measurements reveal the presence of magnetic properties in Mn doped nanocomposite thin films. Antiferromagnetic interactions were observed for 5 mol % Mn doping. An average transmittance >80% (UV - Vis region) was observed for all the films. Band gap of the films decreased from 4.78 to 4.41 eV with increase in Mn concentration. Photoluminescence (PL) spectra of the films exhibited emission peaks in visible region of the electromagnetic spectra. Conductivity of the film increased up to 3 mol % Mn doping and then decreased. - Highlights: • ZrO_2–SnO_2: Mn films were deposited onto quartz substrates by Sol –Gel dip coating. • Structural, magnetic, optical and electrical properties of the films were analyzed. • Optical band gap decreased with increase in manganese concentration. • Ferromagnetic behavior was observed for Mn doped films. • These ferromagnetic ZrO_2–SnO_2: Mn films find application in spintronic devices.

  18. Intergrown SnO{sub 2}–TiO{sub 2}@graphene ternary composite as high-performance lithium-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zheng; Gao, Renmei [Shanghai University, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering (China); Tao, Haihua [Inspection Center of Industrial Products and Raw Materials of SHCIQ (China); Yuan, Shuai [Shanghai University, Research Center of Nanoscience and Nanotechnology (China); Xu, Laiqiang; Xia, Saisai; Zhang, Haijiao, E-mail: hjzhang128@shu.edu.cn [Shanghai University, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering (China)

    2016-10-15

    In recent years, a lot of metal oxides with high theoretical capacity have widely investigated as the high-performance anode materials for lithium-ion batteries (LIBs). In this work, a simple, facile and effective one-pot hydrothermal strategy toward ternary SnO{sub 2}–TiO{sub 2}@graphene composite has been developed by using SnCl{sub 2} and TiOSO{sub 4} as the starting materials. The obtained composite demonstrates a unique structure and high surface areas, in which both SnO{sub 2} and TiO{sub 2} nanoparticles are well grown on the surface of graphene. More interestingly, the SnO{sub 2} and TiO{sub 2} nanoparticles are intergrowth together, totally different with the traditional ternary hybrids. When used as anode material for LIBs, the introduction of TiO{sub 2} plays a crucial role in maintaining the structural stability of the electrode during Li{sup +} insertion/extraction, which can effectively prevent the aggregation of SnO{sub 2} nanoparticles. The electrochemical tests indicate that as-prepared SnO{sub 2}–TiO{sub 2}@graphene composite exhibits a high capacity of 1276 mA h g{sup −1} after 200 cycles at the current density of 200 mA g{sup −1}. Furthermore, the composite also maintains the specific capacity of 611 mA h g{sup −1} at an ultrahigh current density of 2000 mA g{sup −1}, which is superior to those of the reported SnO{sub 2} and SnO{sub 2}/graphene hybrids. Accordingly, the remarkable electrochemical performance of ternary SnO{sub 2}–TiO{sub 2}@graphene composites is mainly attributed to their unique nanostructure, high surface areas, and the synergistic effect not only between graphene and metal oxides but also between the intergrown SnO{sub 2} and TiO{sub 2} nanoparticles.Graphical abstractIntergrown SnO{sub 2} and TiO{sub 2} nanoparticles have been successfully anchored onto the graphene nanosheets as high-performance lithium-ion battery anodes.

  19. Martensitic transformation and phase stability of In-doped Ni-Mn-Sn shape memory alloys from first-principles calculations

    International Nuclear Information System (INIS)

    Xiao, H. B.; Yang, C. P.; Wang, R. L.; Luo, X.; Marchenkov, V. V.

    2014-01-01

    The effect of the alloying element Indium (In) on the martensitic transition, magnetic properties, and phase stabilities of Ni 8 Mn 6 Sn 2−x In x shape memory alloys has been investigated using the first-principles pseudopotential plane-wave method based on density functional theory. The energy difference between the austenitic and martensitic phases was found to increase with increasing In content, which implies an enhancement of the martensitic phase transition temperature (T M ). Moreover, the formation energy results indicate that In-doping increases the relative stability of Ni 8 Mn 6 Sn 2−x In x both in austenite and martensite. This results from a reduction in density of states near the Fermi level regions caused by Ni-3d–In-5p hybridization when Sn is replaced by In. The equilibrium equation of state results show that the alloys Ni 8 Mn 6 Sn 2−x In x exhibit an energetically degenerated effect for an In content of x = ∼1.5. This implies the coexistence of antiparallel and parallel configurations in the austenite.

  20. Improving cycle stability of SnS anode for sodium-ion batteries by limiting Sn agglomeration

    Science.gov (United States)

    Wang, Wenhui; Shi, Liang; Lan, Danni; Li, Quan

    2018-02-01

    Flower-like SnS nanostructures are obtained by a simple solvothermal method for anode applications in Na-ion batteries. We show experimental evidence of progressive Sn agglomeration and crystalline Na2S enrichment at the end of de-sodiation process of the SnS electrode, both of which contribute to the capacity decay of the electrode upon repeated cycles. By replacing the commonly adopted acetylene black conductive additive with multi-wall carbon nanotubes (MWCNT), the cycle stability of the SnS electrode is largely improved, which correlates well with the observed suppression of both Sn agglomeration and Na2S enrichment at the end of de-sodiation cycle. A full cell is assembled with the SnS/MWCNT anode and the P2-Na2/3Ni1/3Mn1/2Ti1/6O2 cathode. An initial energy density of 262 Wh/kg (normalized to the total mass of cathode and anode) is demonstrated for the full cell, which retains 71% of the first discharge capacity after 40 cycles.

  1. Bouquet-Like Mn2SnO4 Nanocomposite Engineered with Graphene Sheets as an Advanced Lithium-Ion Battery Anode.

    Science.gov (United States)

    Rehman, Wasif Ur; Xu, Youlong; Sun, Xiaofei; Ullah, Inam; Zhang, Yuan; Li, Long

    2018-05-30

    Volume expansion is a major challenge associated with tin oxide (SnO x ), which causes poor cyclability in lithium-ion battery anode. Bare tin dioxide (SnO 2 ), tin dioxide with graphene sheets (SnO 2 @GS), and bouquet-like nanocomposite structure (Mn 2 SnO 4 @GS) are prepared via hydrothermal method followed by annealing. The obtained composite material presents a bouquet structure containing manganese and tin oxide nanoparticle network with graphene sheets. Benefiting from this porous nanostructure, in which graphene sheets provide high electronic pathways to enhance the electronic conductivity, uniformly distributed particles offer accelerated kinetic reaction with lithium ion and reduced volume deviation in the tin dioxide (SnO 2 ) particle during charge-discharge testing. As a consequence, ternary composite Mn 2 SnO 4 @GS showed a high rate performance and outstanding cyclability of anode material for lithium-ion batteries. The electrode achieved a specific capacity of about 1070 mA h g -1 at a current density of 400 mA g -1 after 200 cycles; meanwhile, the electrode still delivered a specific capacity of about 455 mA h g -1 at a high current density of 2500 mA g -1 . Ternary Mn 2 SnO 4 @GS material could facilitate fabrication of unique structure and conductive network as advanced lithium-ion battery.

  2. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron.

    Science.gov (United States)

    Liu, B; Zheng, Y F

    2011-03-01

    Pure iron was determined to be a valid candidate material for biodegradable metallic stents in recent animal tests; however, a much faster degradation rate in physiological environments was desired. C, Mn, Si, P, S, B, Cr, Ni, Pb, Mo, Al, Ti, Cu, Co, V and W are common alloying elements in industrial steels, with Cr, Ni, Mo, Cu, Ti, V and Si being acknowledged as beneficial in enhancing the corrosion resistance of iron. The purpose of the present work (using Fe-X binary alloy models) is to explore the effect of the remaining alloying elements (Mn, Co, Al, W, B, C and S) and one detrimental impurity element Sn on the biodegradability and biocompatibility of pure iron by scanning electron microscopy, X-ray diffraction, metallographic observation, tensile testing, microhardness testing, electrochemical testing, static (for 6 months) and dynamic (for 1 month with various dissolved oxygen concentrations) immersion testing, cytotoxicity testing, hemolysis and platelet adhesion testing. The results showed that the addition of all alloying elements except for Sn improved the mechanical properties of iron after rolling. Localized corrosion of Fe-X binary alloys was observed in both static and dynamic immersion tests. Except for the Fe-Mn alloy, which showed a significant decrease in corrosion rate, the other Fe-X binary alloy corrosion rates were close to that of pure iron. It was found that compared with pure iron all Fe-X binary alloys decreased the viability of the L929 cell line, none of experimental alloying elements significantly reduced the viability of vascular smooth muscle cells and all the elements except for Mn increased the viability of the ECV304 cell line. The hemolysis percentage of all Fe-X binary alloy models were less than 5%, and no sign of thrombogenicity was observed. In vitro corrosion and the biological behavior of these Fe-X binary alloys are discussed and a corresponding mechanism of corrosion of Fe-X binary alloys in Hank's solution proposed. As a

  3. Preparation and Characterization of Mn/N Co-Doped TiO2 Loaded on Wood-Based Activated Carbon Fiber and Its Visible Light Photodegradation

    Directory of Open Access Journals (Sweden)

    Xiaojun Ma

    2015-09-01

    Full Text Available Using MnSO4·H2O as manganese source and urea as nitrogen source, Mn/N co-doped TiO2 loaded on wood-based activated carbon fiber (Mn/Ti-N-WACF was prepared by sol–gel method. Mn/Ti-N-WACF with different Mn doping contents was characterized by scanning electron microscopy, X-ray diffraction (XRD and X-ray photoelectron spectroscopies (XPS, and ultraviolet-visible spectrophotometer. Results showed that the loading rate of TiO2 in Mn/Ti-N-WACF was improved by Mn/N co-doping. After calcination at 450 °C, the degree of crystallinity of TiO2 was reduced due to Mn/N co-doption in the resulting Mn/Ti-N-WACF samples, but the TiO2 crystal phase was not changed. XPS spectra revealed that some Ti4+ ions from the TiO2 lattice of Mn/Ti-N-WACF system were substituted by doped Mn. Moreover, new bonds formed within N–Ti–N and Ti–N–O because of the doped N that substituted some oxygen atoms in the TiO2 lattice. Notably, the degradation rate of methylene blue for Mn/Ti-N-WACF was improved because of the co-doped Mn/N under visible-light irradiation.

  4. Temperature dependence of differential conductance in Co-based Heusler alloy Co2TiSn and superconductor Pb junctions

    Science.gov (United States)

    Ooka, Ryutaro; Shigeta, Iduru; Umetsu, Rie Y.; Nomura, Akiko; Yubuta, Kunio; Yamauchi, Touru; Kanomata, Takeshi; Hiroi, Masahiko

    2018-05-01

    We investigated temperature dependence of differential conductance G (V) in planar junctions consisting of Co-based Heusler alloy Co2TiSn and superconductor Pb. Ferromagnetic Co2TiSn was predicted to be half-metal by first-principles band calculations. The spin polarization P of Co2TiSn was deduced to be 60.0% at 1.4 K by the Andreev reflection spectroscopy. The G (V) spectral shape was smeared gradually with increasing temperature and its structure was disappeared above the superconducting transition temperature Tc. Theoretical model analysis revealed that the superconducting energy gap Δ was 1.06 meV at 1.4 K and the Tc was 6.8 K , indicating that both values were suppressed from bulk values. However, the temperature dependent Δ (T) behavior was in good agreement with that of the Bardeen-Cooper-Schrieffer (BCS) theory. The experimental results exhibit that the superconductivity of Pb attached to half-metallic Co2TiSn was kept the conventional BCS mechanism characterized strong-coupling superconductors while its superconductivity was slightly suppressed by the superconducting proximity effect at the Co2TiSn/Pb interface.

  5. The selective catalytic reduction of NO with NH3 over a novel Ce-Sn-Ti mixed oxides catalyst: Promotional effect of SnO2

    Science.gov (United States)

    Yu, Ming'e.; Li, Caiting; Zeng, Guangming; Zhou, Yang; Zhang, Xunan; Xie, Yin'e.

    2015-07-01

    A series of novel catalysts (CexSny) for the selective catalytic reduction of NO by NH3 were prepared by the inverse co-precipitation method. The aim of this novel design was to improve the NO removal efficiency of CeTi by the introduction of SnO2. It was found that the Ce-Sn-Ti catalyst was much more active than Ce-Ti and the best Ce:Sn molar ratio was 2:1. Ce2Sn1 possessed a satisfied NO removal efficiency at low temperature (160-280 °C), while over 90% NO removal efficiency maintained in the temperature range of 280-400 °C at the gas hourly space velocity (GHSV) of 50,000 h-1. Besides, Ce2Sn1 kept a stable NO removal efficiency within a wide range of GHSV and a long period of reacting time. Meanwhile, Ce2Sn1 exhibited remarkable resistance to both respectively and simultaneously H2O and SO2 poisoning due to the introduction of SnO2. The promotional effect of SnO2 was studied by N2 adsorption-desorption, X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS) and H2 temperature programmed reduction (H2-TPR) for detail information. The characterization results revealed that the excellent catalytic performance of Ce2Sn1 was associated with the higher specific surface area, larger pore volume and poorer crystallization. Besides, the introduction of SnO2 could result in not only greater conversion of Ce4+ to Ce3+ but also the increase amount of chemisorbed oxygen, which are beneficial to improve the SCR activity. More importantly, a novel peak appearing at lower temperatures through the new redox equilibrium of 2Ce4+ + Sn2+ ↔ 2Ce3+ + Sn4+ and higher total H2 consumption can be obtained by the addition of SnO2. Finally, the possible reaction mechanism of the selective catalytic reduction over Ce2Sn1 was also proposed.

  6. A graphene–SnO_2–TiO_2 ternary nanocomposite electrode as a high stability lithium-ion anode material

    International Nuclear Information System (INIS)

    Liang, Jicai; Wang, Juan; Zhou, Meixin; Li, Yi; Wang, Xiaofeng; Yu, Kaifeng

    2016-01-01

    In this work, a solvothermal method combined with a hydrothermal two-step method is developed to synthesize graphene–SnO_2–TiO_2 ternary nanocomposite, in which the nanometer-sized TiO_2 and SnO_2 nanoparticles form in situ uniformly anchored on the surface of graphene sheets, as high stability and capacity lithium-ion anode materials. Compared to graphene–TiO_2, bulk TiO_2 and grapheme–SnO_2 composites, the as-prepared nanocomposite delivers a superior rate performance of 499.3 mAhg"−"1 at 0.2 C and an outstanding stability cycling capability (1073.4 mAhg"−"1 at 0.2 C after 50 cycles), due to the synergistic effects contributed from individual components, for example, high specific capacity of SnO_2, excellent conductivity of 3D graphene networks. - Graphical abstract: Graphene–SnO_2–TiO_2 nanocomposite is synthesized by a hydrothermal two-step method. The composite exhibits higher reversible capacity and better cycle/rate performance due to the unique structure. - Highlights: • We have synthesized a graphene–SnO_2–TiO_2 nanocomposite by a two-step method to improve the cycling performance. • Graphene–SnO_2–TiO_2 nanocomposite is synthesized by a hydrothermal two-step method. • The composite exhibits higher reversible capacity and better cycle/rate performance due to the unique structure.

  7. Mn-coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetron sputtering for dental applications

    Science.gov (United States)

    Park, Seon-Yeong; Choe, Han-Cheol

    2018-02-01

    In this study, Mn-coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetrons sputtering for dental applications were studied using different experimental techniques. Mn coating films were formed on Ti-29Nb-xHf alloys by a radio frequency magnetron sputtering technique for 0, 1, 3, and 5 min at 45 W. The microstructure, composition, and phase structure of the coated alloys were examined by optical microscopy, field emission scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The microstructure of Ti-29Nb alloy showed α" phase in the needle-like structure and Ti-29Nb-15Hf alloy showed β phase in the equiaxed structure. As the sputtering time increased, the circular particles of Mn coatings on the Ti-29Nb alloy increased at inside and outside surfaces. As the sputtering time increased, [Mn + Ca/P] ratio of the plasma electrolytic oxidized films in Ti- 29Nb-xHf alloys increased. The corrosion potential (Ecorr) of Mn coatings on the Ti-29Nb alloy showed higher than that of Mn coatings on the Ti-29Nb-15Hf alloy. The passive current density (Ipass) of the Mn coating on the Ti-29Nb alloy and Mn coatings on the Ti-29Nb-15Hf alloy was less noble than the non-Mn coated Ti-29Nb and Ti-29Nb-15Hf alloys surface.

  8. Microstructure and Mechanical Performance of Cu-Sn-Ti-Based Active Braze Alloy Containing In Situ Formed Nano-Sized TiC Particles

    Science.gov (United States)

    Leinenbach, Christian; Transchel, Robert; Gorgievski, Klea; Kuster, Friedrich; Elsener, Hans Rudolf; Wegener, Konrad

    2015-05-01

    A Cu-Sn-Ti-based active brazing filler alloy was in situ reinforced with nanosized TiC particles by adding different amounts of a cellulose nitride-based binder. The TiC particles emanate from a reaction of the Ti within the filler alloy with the carbon from the binder that does not decompose completely during heating. The correlation between the microstructure and mechanical performance was studied. In addition, the effect of different binder amounts on the shear strength and cutting performance of brazed diamond grains was studied in shear tests and single grain cutting tests. The results clearly show that the mechanical performance of the brazed diamond grains can be improved by the formation of TiC particles. This is attributed to particle strengthening of the filler alloy matrix as well as to the decreasing grain size and more homogeneous distribution of the (Cu,Sn)3Ti5 phase with increasing amount of binder.

  9. Synthesis and Dielectric Properties of Mn-Doped BaTi2O5 Ceramics

    Science.gov (United States)

    Akishige, Yukikuni; Honda, Kazuo; Tsukada, Shinya

    2011-09-01

    High-density ceramics of BaTi2O5 have been fabricated by a conventional sintering method using both sol-gel-derived BaTi2O5 powders and MnO2 additives of 0.2-0.8 wt %. The effects of sintering conditions on the densification, microstructural evolution and dielectric properties are investigated. As the effect of Mn addition, the BaTi2O5 phase becomes stable at least up to 1250 °C, and a significant densification is achieved at temperatures as low as 1200-1250 °C. The dielectric constant ɛ' vs temperature T curve of the MnO2-added ceramics exhibits a broad maximum ɛ'max at the ferroelectric phase transition temperature TC, which is 140 °C lower than that of the nondoped ceramics. Among the ceramics with different Mn contents, the 0.2 wt % MnO2-added ceramics have the largest ɛ'max of 470 at 328 °C and the smallest tan δ of <0.05 at a high temperature of around 520 °C at 1 MHz. We observed a ferroelectric D-E hysteresis loop for the first time in the polycrystalline form of BaTi2O5.

  10. Lithium-Excess Research of Cathode Material Li2MnTiO4 for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Xinyi Zhang

    2015-11-01

    Full Text Available Lithium-excess and nano-sized Li2+xMn1−x/2TiO4 (x = 0, 0.2, 0.4 cathode materials were synthesized via a sol-gel method. The X-ray diffraction (XRD experiments indicate that the obtained main phases of Li2.0MnTiO4 and the lithium-excess materials are monoclinic and cubic, respectively. The scanning electron microscope (SEM images show that the as-prepared particles are well distributed and the primary particles have an average size of about 20–30 nm. The further electrochemical tests reveal that the charge-discharge performance of the material improves remarkably with the lithium content increasing. Particularly, the first discharging capacity at the current of 30 mA g−1 increases from 112.2 mAh g−1 of Li2.0MnTiO4 to 187.5 mAh g−1 of Li2.4Mn0.8TiO4. In addition, the ex situ XRD experiments indicate that the monoclinic Li2MnTiO4 tends to transform to an amorphous state with the extraction of lithium ions, while the cubic Li2MnTiO4 phase shows better structural reversibility and stability.

  11. Ti-24Nb-4Zr-8Sn Alloy Pedicle Screw Improves Internal Vertebral Fixation by Reducing Stress-Shielding Effects in a Porcine Model.

    Science.gov (United States)

    Qu, Yang; Zheng, Shuang; Dong, Rongpeng; Kang, Mingyang; Zhou, Haohan; Zhao, Dezhi; Zhao, Jianwu

    2018-01-01

    To ensure the biomechanical properties of Ti-24Nb-4Zr-8Sn, stress-shielding effects were compared between Ti-24Nb-4Zr-8Sn and Ti-6Al-4V fixation by using a porcine model. Twelve thoracolumbar spines (T12-L5) of 12-month-old male pigs were randomly divided into two groups: Ti-24Nb-4Zr-8Sn (EG, n = 6) and Ti-6Al-4V (RG, n = 6) fixation. Pedicle screw was fixed at the outer edge of L4-5 vertebral holes. Fourteen measuring points were selected on the front of transverse process and middle and posterior of L4-5 vertebra. Electronic universal testing machine was used to measure the strain resistance of measuring points after forward and backward flexion loading of 150 N. Meanwhile, stress resistance was compared between both groups. The strain and stress resistance of measurement points 1, 2, 5, 6, 9, and 10-14 in Ti-24Nb-4Zr-8Sn fixation was lower than that of Ti-6Al-4V fixation after forward and backward flexion loading ( P Ti-24Nb-4Zr-8Sn fixation than that of Ti-6Al-4V fixation ( P Ti-24Nb-4Zr-8Sn internal fixation were less than that of Ti-6Al-4V internal fixation. These results suggest that Ti-24Nb-4Zr-8Sn elastic fixation has more biomechanical goals than conventional Ti-6Al-4V internal fixation by reducing stress-shielding effects.

  12. Effects of pre-deformation on the martensitic transformation and magnetocaloric property in Ni-Mn-Co-Sn ribbons

    International Nuclear Information System (INIS)

    Ma Sheng-Can; Xuan Hai-Cheng; Zhang Cheng-Liang; Wang Liao-Yu; Cao Qing-Qi; Wang Dun-Hui; Du You-Wei

    2010-01-01

    This paper investigates the martensitic transformation and magnetocaloric effect in pre-deformed Ni-Mn-Co-Sn ribbons. The experimental results show that the reverse martensitic transformation temperature T M increases with the increasing pre-pressure, suggesting that pre-deformation is another effective way to adjust T M in ferromagnetic shape memory alloys. Large magnetic entropy changes and refrigerant capacities are obtained in these ribbons as well. It also discusses the origin of the enhanced martensitic transformation temperature and magnetocaloric property in pre-deformed Ni-Mn-Co-Sn ribbons

  13. Characterization of TiO2–MnO2 composite electrodes synthesized using spark plasma sintering technique

    CSIR Research Space (South Africa)

    Tshephe, TS

    2015-03-01

    Full Text Available and electrochemical stability of the resulting materials were investigated. Relative densities of 99.33% and 98.49% were obtained for 90TiO2–10MnO2 and 80TiO2–10MnO2 when ball was incorporated. The 90TiO2–10MnO2 powder mixed with balls had its Vickers hardness value...

  14. Nano-MnO2@TiO2 microspheres: A novel structure and excellent performance as anode of lithium-ion batteries

    Science.gov (United States)

    Cao, Zhiguang; Chen, Xiaoqiao; Xing, Lidang; Liao, Youhao; Xu, Mengqing; Li, Xiaoping; Liu, Xiang; Li, Weishan

    2018-03-01

    A structurally hierarchical MnO2/TiO2 composite (Nano-MnO2@TiO2) is fabricated by calcining MnCO3 microspheres and coating a thin layer of TiO2 through the heat decomposition of tetrabutyl titanate, and evaluated as anode of gravimetrically and volumetrically high energy density lithium ion battery. The characterizations from FESEM, TEM, HRTEM and XRD, indicate that the resulting Nano-MnO2@TiO2 takes a spherical morphology with a core of about 2 μm in diameter, consisting of compact MnO2 nanoparticles, and a shell of 60 nm thick, consisting of smaller TiO2 nanoparticles. The charge/discharge tests demonstrate that Nano-MnO2@TiO2 exhibits excellent performance as anode of lithium ion battery, delivering a capacity of 938 mAh g-1 at 300 mA g-1 after 200 cycles, compared to the 103 mAh g-1 of the uncoated sample. The microsphere consisting of compact nanoparticles provides Nano-MnO2@TiO2 with high specific gravity. The dimensionally and structurally stable TiO2 maintains the integrity of MnO2 microspheres and facilitates lithium insertion/extraction. This unique structure yields the excellent cyclic stability and rate capability of Nano-MnO2@TiO2.

  15. Tuning antiferromagnetic exchange interaction for spontaneous exchange bias in MnNiSnSi system

    Science.gov (United States)

    Jia, Liyun; Shen, Jianlei; Li, Mengmeng; Wang, Xi; Ma, Li; Zhen, Congmian; Hou, Denglu; Liu, Enke; Wang, Wenhong; Wu, Guangheng

    2017-12-01

    Based on almost all the data from the literature on spontaneous exchange bias (SEB), it is expected that the system will show SEB if it meets two conditions simultaneously: (i) there are the coexistence and competition of antiferromagnetic (AFM) and ferromagnetic (FM) interactions and (ii) AFM interaction should dominate but not be too strong in this competition. In order to verify this view, a systematic study on SEB has been performed in this work. Mn50Ni40Sn10 with strong FM interaction and without SEB is chosen as the mother composition, and the negative chemical pressure is introduced by the substitution of Sn by Si to enhance AFM interaction. It is found that a long-range FM ordering window is closed, and a long-range AFM ordering window is opened. As a result, SEB is triggered and a continuous tuning of the spontaneous exchange bias field (HSEB) from 0 Oe to 1300 Oe has been realized in a Mn50Ni40Sn10-xSix system by the enhanced AFM interaction.

  16. Hydrothermal synthesis of Ti oxide nanostructures and TiO{sub 2}:SnO{sub 2} heterostructures applied to the photodegradation of rhodamine B

    Energy Technology Data Exchange (ETDEWEB)

    Mourao, Henrique A.J.L., E-mail: henriquepiau@yahoo.com.br [Universidade Federal de Sao Carlos, Departamento de Quimica, Rod. Washington Luiz, km 235, CEP 13565-905, Sao Carlos, SP (Brazil); EMBRAPA Instrumentacao Agropecuaria, Rua XV de Novembro, 1452, CEP 13560-970, CP 741, Sao Carlos, SP (Brazil); Junior, Waldir Avansi; Ribeiro, Caue [EMBRAPA Instrumentacao Agropecuaria, Rua XV de Novembro, 1452, CEP 13560-970, CP 741, Sao Carlos, SP (Brazil)

    2012-08-15

    The present study describes the synthesis, characterization and testing of the photocatalytic potential of TiO{sub 2} nanoparticles (NPs), TiO{sub 2}:SnO{sub 2} heterostructures and potassium titanate nanotubes (TNTs) obtained by the alkaline hydrothermal method. The materials were characterized by X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy, surface area estimated from the N{sub 2} physisorption isotherm (BET), X-ray absorption near-edge structure (XANES) spectroscopy, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM) and Fourier transform near-infrared (FT-NIR) spectroscopy, among other methods. Photocatalytic potential was assessed by rhodamine B dye photodegradation under UVC radiation. The properties of the materials were shown to depend on the KOH concentration. Potassium TNTs with high surface area were obtained only in 5 mol L{sup -1} KOH. The material composed of TiO{sub 2} anatase phase, which was obtained in KOH solution ranging from 10{sup -4} to 1 mol L{sup -1}, showed higher photocatalytic activity than the TNTs, despite the lower surface area and lower density of hydroxyl groups on the anatase. In the heterostructure syntheses, SnO{sub 2} NPs were identified attached to TiO{sub 2} when 10{sup -4} and 10{sup -2} mol L{sup -1} KOH were used, whereas at [KOH] = 1 and 5 mol L{sup -1}, Sn remained in solution during the synthetic process and only the respective TiO{sub 2} phase was identified. The TiO{sub 2}:SnO{sub 2} heterostructures were more active than the material without SnO{sub 2} prepared at the same KOH concentrations. Highlights: Black-Right-Pointing-Pointer The formation of the materials depends on the [KOH] used during syntheses. Black-Right-Pointing-Pointer The heterostructures were obtained with the lower [KOH]. Black-Right-Pointing-Pointer Photoactivity of the heterostructures was higher than the respective TiO{sub 2

  17. Epitaxial TiO 2/SnO 2 core-shell heterostructure by atomic layer deposition

    KAUST Repository

    Nie, Anmin

    2012-01-01

    Taking TiO 2/SnO 2 core-shell nanowires (NWs) as a model system, we systematically investigate the structure and the morphological evolution of this heterostructure synthesized by atomic layer deposition/epitaxy (ALD/ALE). All characterizations, by X-ray diffraction, high-resolution transmission electron microscopy, selected area electron diffraction and Raman spectra, reveal that single crystalline rutile TiO 2 shells can be epitaxially grown on SnO 2 NWs with an atomically sharp interface at low temperature (250 °C). The growth behavior of the TiO 2 shells highly depends on the surface orientations and the geometrical shape of the core SnO 2 NW cross-section. Atomically smooth surfaces are found for growth on the {110} surface. Rough surfaces develop on {100} surfaces due to (100) - (1 × 3) reconstruction, by introducing steps in the [010] direction as a continuation of {110} facets. Lattice mismatch induces superlattice structures in the TiO 2 shell and misfit dislocations along the interface. Conformal epitaxial growth has been observed for SnO 2 NW cores with an octagonal cross-section ({100} and {110} surfaces). However, for a rectangular core ({101} and {010} surfaces), the shell also derives an octagonal shape from the epitaxial growth, which was explained by a proposed model based on ALD kinetics. The surface steps and defects induced by the lattice mismatch likely lead to improved photoluminescence (PL) performance for the yellow emission. Compared to the pure SnO 2 NWs, the PL spectrum of the core-shell nanostructures exhibits a stronger emission peak, which suggests potential applications in optoelectronics. © The Royal Society of Chemistry 2012.

  18. Enhanced photoelectrochemical performance of PbS sensitized Sb–SnO{sub 2}/TiO{sub 2} nanotube arrays electrode under visible light illumination

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jia; Tang, Chengli [Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Xu, Hao, E-mail: xuhao@mail.xjtu.edu.cn [Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Yan, Wei, E-mail: yanwei@mail.xjtu.edu.cn [Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China)

    2015-06-05

    Highlights: • Sb–SnO{sub 2} is used to modify TiO{sub 2} NTAs by microwave method. • PbS is employed to sensitive Sb–SnO{sub 2}/TiO{sub 2} NTAs by S-SILAR method. • Sb–SnO{sub 2} improves electrons transfer and PbS enhances visible light absorption. • The composite electrode shows enhanced photoelectrochemical properties. • The composite electrode exhibits high hydrogen evolution and high QE. - Abstract: The novel PbS sensitized Sb–SnO{sub 2}/TiO{sub 2} nanotube arrays (NTAs) composite electrode (PbS/Sb–SnO{sub 2}/TiO{sub 2} NTAs) was fabricated by microwave combined with sonication-assisted successive ionic layer adsorption and reaction technique (S-SILAR). The obtained electrodes were characterized by field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–Vis diffuse reflectance absorption spectra techniques. Enhanced photocurrent (15.52 mA/cm{sup 2}) of the PbS/Sb–SnO{sub 2}/TiO{sub 2} NTAs electrode was observed and can be attributed to the facile photo-generated electrons transfer and enhanced charge separation efficiency. Furthermore, the PbS/Sb–SnO{sub 2}/TiO{sub 2} NTAs composite electrode shows a higher H{sub 2} production rate than the Sb–SnO{sub 2}/TiO{sub 2} NTAs electrode and PbS/TiO{sub 2} NTAs electrode. The results indicate that the PbS/Sb–SnO{sub 2}/TiO{sub 2} NTAs electrode is a promising photoanode in visible photocatalytic water splitting.

  19. Sn and Ti influences on intermetallic phases damage in hot dip galvanizing

    Directory of Open Access Journals (Sweden)

    V. Di Cocco

    2012-10-01

    Full Text Available Protection against metallic materials corrosion is one of the most important means to reduce both maintenance costs and environmental impact. In the last years new studies on chemical baths compositions and fluxes have been performed in order to improve processes, corrosion resistance and mechanical behavior of Zn based coatings. Chemical bath composition is often improved by the Sn addition which increases the fluidity of the melt. Ti addition makes the coatings to change color under appropriate heat treatment. In this work a comparative microstructural analysis, in Zn-Sn and Zn-Ti coatings, is performed to evaluate intermetallic phases formation kinetics and the influence of intermetallic microstructure on coating damage under constant bending deformation.

  20. Effect of Metal (Mn, Ti Doping on NCA Cathode Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Dao Yong Wan

    2018-01-01

    Full Text Available NCA (LiNi0.85Co0.10Al0.05-x MxO2, M=Mn or Ti, x < 0.01 cathode materials are prepared by a hydrothermal reaction at 170°C and doped with Mn and Ti to improve their electrochemical properties. The crystalline phases and morphologies of various NCA cathode materials are characterized by XRD, FE-SEM, and particle size distribution analysis. The CV, EIS, and galvanostatic charge/discharge test are employed to determine the electrochemical properties of the cathode materials. Mn and Ti doping resulted in cell volume expansion. This larger volume also improved the electrochemical properties of the cathode materials because Mn4+ and Ti4+ were introduced into the octahedral lattice space occupied by the Li-ions to expand the Li layer spacing and, thereby, improved the lithium diffusion kinetics. As a result, the NCA-Ti electrode exhibited superior performance with a high discharge capacity of 179.6 mAh g−1 after the first cycle, almost 23 mAh g−1 higher than that obtained with the undoped NCA electrode, and 166.7 mAh g−1 after 30 cycles. A good coulombic efficiency of 88.6% for the NCA-Ti electrode is observed based on calculations in the first charge and discharge capacities. In addition, the NCA-Ti cathode material exhibited the best cycling stability of 93% up to 30 cycles.

  1. Effects of intramedullary nails composed of a new β-type Ti-Nb-Sn alloy with low Young's modulus on fracture healing in mouse tibiae.

    Science.gov (United States)

    Fujisawa, Hirokazu; Mori, Yu; Kogure, Atsushi; Tanaka, Hidetatsu; Kamimura, Masayuki; Masahashi, Naoya; Hanada, Shuji; Itoi, Eiji

    2018-01-23

    The influence of Young's moduli of materials on the fracture healing process remains unclear. This study aimed to assess the effects of intramedullary nails composed of materials with low Young's moduli on fracture repair. We previously developed a β-type Ti-Nb-Sn alloy with low Young's modulus close to that of human cortical bone. Here, we prepared two Ti-Nb-Sn alloys with Young's moduli of 45 and 78 GPa by heat treatment, and compared their effects on fracture healing. Fracture and nailing were performed in the right tibiae of C57BL/6 mice. The bone healing process was evaluated by microcomputed tomography (micro-CT), histomorphometry, and RT-PCR. We found larger bone volumes of fracture callus in the mice treated with the 45-GPa Ti-Nb-Sn alloy as compared with the 78-GPa Ti-Nb-Sn alloy in micro-CT analyses. This was confirmed with histology at day 14, with accelerated new bone formation and cartilage absorption in the 45-GPa Ti-Nb-Sn group compared with the 78-GPa Ti-Nb-Sn group. Acp5 expression was lower in the 45-GPa Ti-Nb-Sn group than in the 78-GPa Ti-Nb-Sn group at day 10. These findings indicate that intramedullary fixation with nails with a lower Young's modulus offer a greater capacity for fracture repair. Our 45-GPa Ti-Nb-Sn alloy is a promising material for fracture treatment implants. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  2. An ab initio study on the structural, electronic and mechanical properties of quaternary full-Heusler alloys FeMnCrSn and FeMnCrSb

    Science.gov (United States)

    Erkişi, Aytaç

    2018-06-01

    The quaternary full Heusler alloys FeMnCrSn and FeMnCrSb, which have face-centred cubic (FCC) crystal structure and conform to ? space group with 216 space number, have been investigated using Generalised Gradient Approximation (GGA) in the Density Functional Theory (DFT) as implemented in VASP (Vienna Ab initio Simulation Package) software. These alloys are considered in ferromagnetic (FM) order. After the investigation of structural stability of these alloys, their mechanical and thermal properties and also electronic band structures have been examined. The calculated spin-polarised electronic band structures and total electronic density of states (DOS) within GGA approximation show that these alloys can exhibit both metallic and half-metallic characters in different structural phases. The calculated formation enthalpies and the plotted energy-volume graphs show that Type-III phase is most stable structural phase for these materials. Also, FeMnCrSb alloy in Type-I/Type-III phases and FeMnCrSn alloy in Type-III phase show half-metallic behaviour with integer total magnetic moments almost 2 and 1 μB per formula unit, respectively, since there are band gaps observed in spin-down states, whereas they have metallic behaviour in majority bands. Other structural phases of both systems are also metallic. Moreover, the calculated elastic constants and the estimated anisotropy shear factors indicate that these materials are stable mechanically in all of three phases except FeMnCrSn in Type-I phase that does not satisfy Born stability criteria in this phase and have high anisotropic behaviour.

  3. Study of electric resistivity in function of temperature in Ni2Mn (Sn1-x Inx) type Heuster alloys

    International Nuclear Information System (INIS)

    Fraga, G.L.F.

    1984-01-01

    The electric resistivity as a function of temperature and concentration was measured in the range 4.2 2 Mn (Sn i-x In x ), with x = 0; 0.02; 0.05; 0.10; 0.15; 0.85; 0.90; 0.95; 0.98 and 1.00. In the lower temperature region (7 n - law. The 0 2 function; the linear term is mostly ascribed to electron-phonon scattering process and the quadratic one to magnetic scattering mechanism. For the ternary alloys Ni 2 MnSn and Ni 2 MnIn the experimental magnetic term BT 2 is well fitted by the Kasuya's magnetic spin-disorder model. (author) [pt

  4. The effect of Pd on martensitic transformation and magnetic properties for Ni50Mn38−xPdxSn12Heusler alloys

    Directory of Open Access Journals (Sweden)

    C. Jing

    2016-05-01

    Full Text Available In the past decade, Mn rich Ni-Mn based alloys have attained considerable attention due to their abundant physics and potential application as multifunctional materials. In this paper, polycrystalline Ni50Mn38−xPdxSn12 (x = 0, 2, 4, 6 Heusler alloys have been prepared, and the martensitic phase transformation (MPT together with the shape memory effect and the magnetocaloric effect has been investigated. The experimental result indicates that the MPT evidently shifts to a lower temperature with increase of Pd substitution for Mn atoms, which can be attributed to the weakness of the hybridization between the Ni atom and excess Mn on the Sn site rather than the electron concentration. The physics properties study focused on the sample of Ni50Mn34Pd4Sn12 shows a good two-way shape memory behavior, and the maximum value of strain Δ L/L reaches about 0.13% during the MPT. The small of both entropy change Δ ST and magnetostrain can be ascribed to the inconspicuous influence of magnetic field induced MPT.

  5. Impact of Interstitial Ni on the Thermoelectric Properties of the Half-Heusler TiNiSn

    Directory of Open Access Journals (Sweden)

    Sonia A. Barczak

    2018-03-01

    Full Text Available TiNiSn is an intensively studied half-Heusler alloy that shows great potential for waste heat recovery. Here, we report on the structures and thermoelectric properties of a series of metal-rich TiNi1+ySn compositions prepared via solid-state reactions and hot pressing. A general relation between the amount of interstitial Ni and lattice parameter is determined from neutron powder diffraction. High-resolution synchrotron X-ray powder diffraction reveals the occurrence of strain broadening upon hot pressing, which is attributed to the metastable arrangement of interstitial Ni. Hall measurements confirm that interstitial Ni causes weak n-type doping and a reduction in carrier mobility, which limits the power factor to 2.5–3 mW m−1 K−2 for these samples. The thermal conductivity was modelled within the Callaway approximation and is quantitively linked to the amount of interstitial Ni, resulting in a predicted value of 12.7 W m−1 K−1 at 323 K for stoichiometric TiNiSn. Interstitial Ni leads to a reduction of the thermal band gap and moves the peak ZT = 0.4 to lower temperatures, thus offering the possibility to engineer a broad ZT plateau. This work adds further insight into the impact of small amounts of interstitial Ni on the thermal and electrical transport of TiNiSn.

  6. Influence of the Si content on the microstructure and mechanical properties of Ti-Ni-Cu-Si-Sn nanocomposite alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fornell, J., E-mail: Jordinafornell@gmail.com [Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Van Steenberge, N. [OCAS N.V., Pres. J.F. Kennedylaan 3, BE-9060 Zelzate (Belgium); Surinach, S.; Baro, M.D. [Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Sort, J. [Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Institucio Catalana de Recerca i Estudis Avancats (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer We study the effects of Si addition of Ti-Ni-Cu-Si-Sn alloy. Black-Right-Pointing-Pointer The microstructure evolution is correlated with the obtained mechanical and elastic properties. Black-Right-Pointing-Pointer Higher Young's modulus and larger hardness values are obtained in samples with higher Si contents. - Abstract: (Ti{sub 48}Ni{sub 32}Cu{sub 8}Si{sub 8}Sn{sub 4}){sub 100-x}Si{sub x} (x = 0, 2, 4 and 6) alloys were prepared by levitation melting mixtures of the high purity elements in an Ar atmosphere. Rods of 3 mm in diameter were obtained from the melt by copper mould casting. The effects of Si addition on the microstructure, elastic and mechanical properties of the Ti{sub 48}Ni{sub 32}Cu{sub 8}Si{sub 8}Sn{sub 4} alloy were investigated by scanning electron microscopy, X-ray diffraction, acoustic measurements and nanoindentation. The main phases composing the Ti{sub 48}Ni{sub 32}Cu{sub 8}Si{sub 8}Sn{sub 4} alloy are B2 NiTi, B19 Prime NiTi and tetragonal Ti{sub 2}Ni. Additional phases, like Ti{sub 5}Si{sub 3} or Ni{sub 2}Ti{sub 2}Si, become clearly visible in samples with higher Si contents. The microstructure evolution is correlated with the obtained mechanical and elastic properties. These alloys exhibit very high hardness values, which increase with the Si content, from 9 GPa (for x = 0) to around 10.5 GPa (for x = 6). The Young's modulus of Ti{sub 48}Ni{sub 32}Cu{sub 8}Si{sub 8}Sn{sub 4} (around 115 GPa) also increases significantly with Si addition, up to 160 GPa for x = 6.

  7. Toxicological aspects of photocatalytic degradation of selected xenobiotics with nano-sized Mn-doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ozmen, Murat, E-mail: murat.ozmen@inonu.edu.tr [Inonu University, Faculty of Science, Department of Biology, Malatya (Turkey); Güngördü, Abbas [Inonu University, Faculty of Science, Department of Biology, Malatya (Turkey); Erdemoglu, Sema [Inonu University, Faculty of Science, Department of Chemistry, Malatya (Turkey); Ozmen, Nesrin [Inonu University, Faculty of Education, Department of Science Teaching Program, Malatya (Turkey); Asilturk, Meltem [Akdeniz University, Department of Materials Science and Engineering, Antalya (Turkey)

    2015-08-15

    Highlights: • Undoped and Mn-doped TiO{sub 2} nanoparticles were synthesized and characterized. • The photocatalytic efficiency of the photocatalysts was evaluated for BPA and ATZ. • Toxicity of photocatalysts and photocatalytic by-products were determined. • Mn-doped TiO{sub 2} nanoparticles did not cause significant lethality on X. laevis. • Degradation of BPA caused a significant reduction of lethal effects. - Abstract: The toxic effects of two selected xenobiotics, bisphenol A (BPA) and atrazine (ATZ), were evaluated after photocatalytic degradation using nano-sized, Mn-doped TiO{sub 2}. Undoped and Mn-doped TiO{sub 2} nanoparticles were synthesized. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), UV–vis-diffuse reflectance spectra (DRS), X-ray fluorescence spectroscopy (XRF), and BET surface area. The photocatalytic efficiency of the undoped and Mn-doped TiO{sub 2} was evaluated for BPA and ATZ. The toxicity of the synthesized photocatalysts and photocatalytic by-products of BPA and ATZ was determined using frog embryos and tadpoles, zebrafish embryos, and bioluminescent bacteria. Possible toxic effects were also evaluated using selected enzyme biomarkers. The results showed that Mn-doped TiO{sub 2} nanoparticles did not cause significant lethality in Xenopus laevis embryos and tadpoles, but nonfiltered samples caused lethality in zebrafish. Furthermore, Mn-doping of TiO{sub 2} increased the photocatalytic degradation capability of nanoparticles, and it successfully degraded BPA and AZT, but degradation of AZT caused an increase of the lethal effects on both tadpoles and fish embryos. Degradation of BPA caused a significant reduction of lethal effects, especially after 2–4 h of degradation. However, biochemical assays showed that both Mn-doped TiO{sub 2} and the degradation by-products caused a significant change of selected biomarkers on X. laevis tadpoles; thus, the ecological risks of Mn

  8. Synthesis and photocatalytic properties of Sn-doped TiO{sub 2} nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Tu Yafang; Huang Shengyou [Department of Physics, Wuhan University, Wuhan 430072 (China); Sang Jianping, E-mail: jpsang@acc-lab.whu.edu.c [Department of Physics, Wuhan University, Wuhan 430072 (China); Department of Physics, Jianghan University, Wuhan 430056 (China); Zou Xianwu [Department of Physics, Wuhan University, Wuhan 430072 (China)

    2009-08-12

    TiO{sub 2} nanotube arrays doped by Sn up to 12 at% have been prepared using template-based liquid phase deposition method. Their morphologies, structures and optical properties have been investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, UV-vis absorption spectroscopy and photoluminescence spectroscopy. The photocatalytic properties of the samples were evaluated with the degradation of methylene blue under UV irradiation. The result shows that doping an appropriate amount of Sn can effectively improve the photocatalytic activity of TiO{sub 2} nanotube arrays, and the optimum dopant amount is found to be 5.6 at% in our experiments.

  9. Photocatalytic Degradation of Rhodamine B Dye over Novel Porous TiO2-SnO2 Nanocomposites Prepared by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2014-01-01

    Full Text Available The photocatalytic degradation of Rhodamine B dye was successfully carried out under UV irradiation over porous TiO2-SnO2 nanocomposites with various molar ratios of Ti/Sn (4–12 synthesized by hydrothermal method using polystyrene microspheres as template. The combination of TiO2 with SnO2 can obtain high quantum yield of TiO2, and then achieve the high photocatalytic activity. And its porous structure can provide large surface area, leading to more adsorption and fast transfer of dye pollutant. Structural and textural features of the samples were investigated by X-ray diffraction (XRD, transmission electron microscopy (TEM, and N2 sorption techniques. Both adsorption and UV irradiation contribute to decolorization of about 100% of Rhodamine B dye over the sample TiSn10 after 30 min of the photocatalytic reaction, while the decomposition of Rhodamine B dye is only 62% over pure titania (Degussa P25.

  10. Effect of calcination temperature on structural properties and photocatalytic activity of Mn-C-codoped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jianbo; Xin, Wei; Liu, Guanglong; Lin, Die; Zhu, Duanwei, E-mail: liugl@mail.hzau.edu.cn [Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University (HZAU), Wuhan (China)

    2016-03-15

    Mn-C-codoped TiO{sub 2} catalysts were synthesized by modified sol-gel method based on the self-assembly technique using polyoxyethylene sorbitan monooleate (Tween 80) as template and carbon precursor and the effect of calcination temperature on their structural properties and photocatalytic activity were investigated. The XRD results showed undoped and Mn-C-codoped TiO{sub 2} calcined at 400 deg C only include anatase phase and the rutile phase appears when the calcination temperature reached to 600 deg C. UV-vis absorption spectroscopy demonstrates that the absorption spectra are strongly modified by the calcination temperature. Moreover, the Mn-C-TiO{sub 2} calcined at 400 deg C showed the lowest PL intensity due to a decrease in the recombination rate of photogenerated electrons and holes under light irradiation. The photocatalytic activity of Mn-C-codoped TiO{sub 2} were evaluated by the degradation of methyl orange (MO) under the simulate daylight irradiation and all the prepared Mn-C-codoped TiO{sub 2} samples exhibited high photocatalytic activities for photocatalytic decolorisation of methyl orange aqueous solution. At 400 deg C, the Mn-C-codoped TiO{sub 2} samples showed the highest photocatalytic activity due to synergetic effects of good crystallize ation, appropriate phase composition and slower recombination rate of photogenerated charge carriers, which further confirms the calcination temperature could affect the properties of Mn-C-codoped TiO2 significantly. (author)

  11. Mixed phase in cubic and hexagonal HoMn2111Cd PAC and 119Sn, 57Fe Moessbauer studies

    International Nuclear Information System (INIS)

    Cottenier, S.; Meersschaut, J.; Demuynck, S.; Swinnen, B.; Rots, M.

    1998-01-01

    Hyperfine parameters on 57 Fe, 119 Sn and 111 Cd substituted into the Mn sublattice were measured by Moessbauer and PAC spectroscopies. From these results it is tentatively concluded that C15 and C14 HoMn 2 are mixed-phase compounds. In C14 HoMn 2 there is no (or small) moment on the 2a site. (orig.)

  12. Polyaniline assisted by TiO2:SnO2 nanoparticles as a hydrogen gas sensor at environmental conditions

    Science.gov (United States)

    Nasirian, Shahruz; Milani Moghaddam, Hossain

    2015-02-01

    In the present research, polyaniline assisted by TiO2:SnO2 nanoparticles was synthesized and deposited onto an epoxy glass substrate with Cu-interdigited electrodes for gas sensing application. To examine the efficiency of the polyaniline/TiO2:SnO2 nanocomposite (PTS) as a hydrogen (H2) gas sensor, its nature, stability, response, recovery/response time have been studied with a special focus on its ability to work at environmental conditions. H2 gas sensing results demonstrated that a PTS sensor with 20 and 10 wt% of anatase-TiO2 and SnO2 nanoparticles, respectively, has the best response time (75 s) with a recovery time of 117 s at environmental conditions. The highest (lowest) response (recovery time) was 6.18 (46 s) in PTS sensor with 30 and 15 wt% of anatase- (rutile-)TiO2 and SnO2 nanoparticles, respectively, at 0.8 vol.% H2 gas. Further, the H2 gas sensing mechanism of PTS sensor has also been studied.

  13. Photoelectrochemical performance of Mn-TiO{sub 2} thin films mounted on FTO prepared by sol-gel spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.C.; Song, G.H. [National Central Univ., Taoyuan, Taiwan (China). Dept. of Mechanical Engineering; Lu, C.W. [Jen-Teh Junior College, Hou- Lung, Taiwan (China). Dept. of Information Management; Tseng, C.J. [National Central Univ., Chung-Li, Taoyuan County, Taiwan (China). Dept. of Mechanical Engineering; Cheng, K.W. [Chang Gung Univ., Tao-Yuan, Taiwan (China). Dept. of Chemical and Materials Engineering

    2009-07-01

    Tin oxide (TiO{sub 2}) sol-gels with Mn{sup 2+} molar ratios ranging from 0 to 0.1 per cent were used to form nano-structured Mn(x)Ti(1-x)O(2) thin films. A layer-by-layer spincoating (LLSC) technique was used, in which 10 very thin and uniform coating layers of Mn(x)Ti(1-x)O(2) were deposited on fluorine doped tin oxide (FTO) glass. Properties of the thin films were determined as a function of annealing temperature and molar ratio of the Mn{sup 2+} ions by X-ray diffraction (XRD), scanning electron microscopy (SEM), Atomic Force microscopy (AFM) and photoelectrochemical (PEC) measurements. The PEC measurements were obtained in a dry-type three-electrode cell consisting of sample, platinized and reference Ag/AgCl electrodes. The results revealed that the Mn(x)Ti(1-x)O(2) thin films have better structure and electrochemical characteristics when the annealing temperature is 550 degrees C. The TiO{sub 2} thin films with Mn{sup 2+} ions also had higher photocurrent than undoped TiO{sub 2}. The optimum Mn{sup 2+} loading in this study was found to be 0.1 ml per cent. The maximum photocurrent of Mn(0.1)Ti(0.9)O(2) thin films is about 0.68 mA/cm2 when the bias potential is 0.8 V (vs.Ag/AgCl).

  14. Hollow Amorphous MnSnO3 Nanohybrid with Nitrogen-Doped Graphene for High-Performance Lithium Storage

    International Nuclear Information System (INIS)

    Liu, Peng; Hao, Qingli; Xia, Xifeng; Lei, Wu; Xia, Hui; Chen, Ziyang; Wang, Xin

    2016-01-01

    Graphical abstract: A novel hybrid of hollow amorphous MnSnO 3 nanoparticles and nitrogen-doped reduced graphene oxide was fabricated. The unique structure and well-combination of both components account for the ultra long-term cyclic life with high reversible capacity of 610 mAh g −1 over 1000 cycles at 400 mA g −1 . - Highlights: • Novel hybrid of MnSnO 3 and nitrogen-doped reduced graphene oxide was fabricated. • The MnSnO 3 nanoparticles possess amorphous and hollow structure in the composite. • The excellent electrochemical performance benefits from unique nanostructure. • The reversible capacity of as-prepared hybrid is 610 mAh g −1 after 1000 cycles. • A long-term life with 97.3% capacity retention over 1000 cycles was obtained. - Abstract: Tin-based metal oxides usually suffer from severe capacity fading resulting from aggregation and considerable volume variation during the charge/discharge process in lithium ion batteries. In this work, a novel nanocomposite (MTO/N-RGO) of hollow amorphous MnSnO 3 (MTO) nanoparticles and nitrogen-doped reduced graphene oxide (N-RGO) has been designed and synthesized by a two-step method. Firstly, the nitrogen-doped graphene nanocomposite (MTO/N-RGO-P) with MnSn(OH) 6 crystal nanoparticles was synthesized by a facile solvothermal method. Subsequently, the MTO/N-RGO nanocomposite was obtained through the post heat treatment of MTO/N-RGO-P. The designed heterostructure and well-combination of the hollow amorphous MTO and N-RGO matrix can accelerate the ionic and electronic transport, and simultaneously accommodate the aggregation and volume variation of MTO nanoparticles during the lithiation–delithiation cycles. The as-prepared hybrid of MTO and N-RGO (MTO/N-RGO) exhibits a high reversible capacity of 707 mAh g −1 after 110 cycles at 200 mA g −1 , superior rate capability, and long-term cyclic life with high capacity of 610 mAh g −1 over 1000 cycles at 400 mA g −1 . Superior capacity retention of

  15. Spin-polarized electron gas in Co2MSi/SrTiO3(M= Ti, V, Cr, Mn, and Fe) heterostructures

    KAUST Repository

    Nazir, S.; Schwingenschlö gl, Udo

    2016-01-01

    Spin-polarized density functional theory is used to study the TiO2 terminated interfaces between the magnetic Heusler alloys Co2Si (M = Ti, V, Cr, Mn, and Fe) and the non-polar band insulator SrTiO3. The structural relaxation at the interface turns

  16. Above room temperature ferromagnetism in Si:Mn and TiO(2-delta)Co.

    Science.gov (United States)

    Granovsky, A; Orlov, A; Perov, N; Gan'shina, E; Semisalova, A; Balagurov, L; Kulemanov, I; Sapelkin, A; Rogalev, A; Smekhova, A

    2012-09-01

    We present recent experimental results on the structural, electrical, magnetic, and magneto-optical properties of Mn-implanted Si and Co-doped TiO(2-delta) magnetic oxides. Si wafers, both n- and p-type, with high and low resistivity, were used as the starting materials for implantation with Mn ions at the fluencies up to 5 x 10(16) cm(-2). The saturation magnetization was found to show the lack of any regular dependence on the Si conductivity type, type of impurity and the short post-implantation annealing. According to XMCD Mn impurity in Si does not bear any appreciable magnetic moment at room temperature. The obtained results indicate that above room temperature ferromagnetism in Mn-implanted Si originates not from Mn impurity but rather from structural defects in Si. The TiO(2-delta):Co thin films were deposited on LaAlO3 (001) substrates by magnetron sputtering in the argon-oxygen atmosphere at oxygen partial pressure of 2 x 10(-6)-2 x 10(-4) Torr. The obtained transverse Kerr effect spectra at the visible and XMCD spectra indicate on intrinsic room temperature ferromagnetism in TiO(2-delta):Co thin films at low (< 1%) volume fraction of Co.

  17. Energy band alignment of antiferroelectric (Pb,La)(Zr,Sn,Ti)O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Andreas, E-mail: aklein@surface.tu-darmstadt.de [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Lohaus, Christian [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Reiser, Patrick [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); InnovationLab GmbH, Speyerer Straße 4, 69115 Heidelberg (Germany); Dimesso, Lucangelo [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Wang, Xiucai; Yang, Tongqing [Tongji University, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), Functional Materials Research Laboratory, College of Materials Science and Engineering, Cao’an Road 4800, Shanghai 201804 (China)

    2017-06-15

    Highlights: • Energy band alignment of antiferroelectric PLZST studied by XPS. • A deconvolution procedure is applied to study band alignment of insulating materials. • Contribution of Pb 6s orbitals leads to higher valence band maximum. • Ferroelectric polarization does not contribute to valence band maximum energy. • The variation of Schottky barrier heights indicates no Fermi level pinning in PLZST. - Abstract: The energy band alignment of antiferroelectric (Pb,La)(Zr,Sn,Ti)O{sub 3} is studied with photoelectron spectroscopy using interfaces with high work function RuO{sub 2} and low work function Sn-doped In{sub 2}O{sub 3} (ITO). It is demonstrated how spectral deconvolution can be used to determine absolute Schottky barrier heights for insulating materials with a high accuracy. Using this approach it is found that the valence band maximum energy of (Pb,La)(Zr,Sn,Ti)O{sub 3} is found to be comparable to that of Pb- and Bi-containing ferroelectric materials, which is ∼1 eV higher than that of BaTiO{sub 3}. The results provide additional evidence for the occupation of the 6s orbitals as origin of the higher valence band maximum, which is directly related to the electrical properties of such compounds. The results also verify that the energy band alignment determined by photoelectron spectroscopy of as-deposited electrodes is not influenced by polarisation. The electronic structure of (Pb,La)(Zr,Sn,Ti)O{sub 3} should enable doping of the material without strongly modifying its insulating properties, which is crucial for high energy density capacitors. Moreover, the position of the energy bands should result in a great freedom of selecting electrode materials in terms of avoiding charge injection.

  18. H-TiO2/C/MnO2 nanocomposite materials for high-performance supercapacitors

    Science.gov (United States)

    Di, Jing; Fu, Xincui; Zheng, Huajun; Jia, Yi

    2015-06-01

    Functionalized TiO2 nanotube arrays with decoration of MnO2 nanoparticles (denoted as H-TiO2/C/MnO2) have been synthesized in the application of electrochemical capacitors. To improve both areal and gravimetric capacitance, hydrogen treatment and carbon coating process were conducted on TiO2 nanotube arrays. By scanning electron microscopy and X-ray photoelectron spectroscopy, it is confirmed that the nanostructure is formed by the uniform incorporation of MnO2 nanoparticles growing round the surface of the TiO2 nanotube arrays. Impedance analysis proves that the enhanced capacitive is due to the decrease of charge transfer resistance and diffusion resistance. Electrochemical measurements performed on this H-TiO2/C/MnO2 nanocomposite when used as an electrode material for an electrochemical pseudocapacitor presents quasi-rectangular shaped cyclic voltammetry curves up to 100 mV/s, with a large specific capacitance (SC) of 299.8 F g-1 at the current density of 0.5 A g-1 in 1 M Na2SO4 electrolyte. More importantly, the electrode also exhibits long-term cycling stability, only 13 % of SC loss after 2000 continuous charge-discharge cycles. Based on the concept of integrating active materials on highly ordered nanostructure framework, this method can be widely applied to the synthesis of high-performance electrode materials for energy storage.

  19. Heavy Metals (Mg, Mn, Ni and Sn contamination in Soil Samples of Ahvaz II Industrial Estate of Iran in 2013

    Directory of Open Access Journals (Sweden)

    Soheil l Sobhanardakani

    2016-04-01

    Full Text Available Background & Aims of the Study: Due to the rapid industrial development in Khuzestan province of Iran during recent years, this study was performed to analyze the variation of metals concentrations (Mg, Mn, Ni, and Sn in soil samples of Ahvaz II Industrial estate during the spring season of 2013. Materials & Methods: In this experimental study, 27 topsoil samples were collected from nine stations. The intensity of the soil contamination was evaluated, using a contamination factor (Cf and geo-accumulation index (I-geo. Results:  The mean soil concentrations (in mg kg-1 (dry weight were in ranged within 870-1144 (Mg, 188-300 (Mn, 93-199 (Ni and 9-15 (Sn. The data indicated that the I-geo value for all metals falls in class ‘1’. Also the Cf value for Mg and Mn falls in class ‘0’, the Cf value for Sn falls in class ‘1’ and the Cf value for Ni falls in the classes of ‘1’ and ‘2’. The result of the Pearson correlation showed that there were significant positive associations between all metals. Conclusions: According to the results which were achieved by a cluster analysis, there were significant positive associations among all metals based on Pearson correlation coefficient, especially between Ni and Sn; also both of them with Mn. Because the Ni originates from oil sources it can be resulted that Mn and Sn originate from oil sources, too. Therefore, industrial activities and exploitation of oil reservoirs are the main cause of pollution in that area. Also, it can be concluded that, with increasing the distance from the source of pollution, the accumulation of contaminants in the soil samples decreased.

  20. SnS2 nanosheets arrays sandwiched by N-doped carbon and TiO2 for high-performance Na-ion storage

    Directory of Open Access Journals (Sweden)

    Weina Ren

    2018-01-01

    Full Text Available In this paper, SnS2 nanosheets arrays sandwiched by porous N-doped carbon and TiO2 (TiO2@SnS2@N-C on flexible carbon cloth are prepared and tested as a free-standing anode for high-performance sodium ion batteries. The as-obtained TiO2@SnS2@N-C composite delivers a remarkable capacity performance (840 mA h g−1 at a current density of 200 mA g−1, excellent rate capability and long-cycling life stability (293 mA h g−1 at 1 A g−1 after 600 cycles. The excellent electrochemical performance can be attributed to the synergistic effect of each component of the unique hybrid structure, in which the SnS2 nanosheets with open framworks offer high capacity, while the porous N-doped carbon nanoplates arrays on flexible carbon cloth are able to improve the conductivity and the TiO2 passivation layer can keep the structure integrity of SnS2 nanosheets.

  1. A graphene–SnO{sub 2}–TiO{sub 2} ternary nanocomposite electrode as a high stability lithium-ion anode material

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jicai [Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130025 (China); Roll Forging Research Institute, Jilin University, Changchun, 130025, Jilin (China); Wang, Juan; Zhou, Meixin; Li, Yi [Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130025 (China); Wang, Xiaofeng [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 (China); Yu, Kaifeng, E-mail: yukf@jlu.edu.cn [Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130025 (China)

    2016-07-15

    In this work, a solvothermal method combined with a hydrothermal two-step method is developed to synthesize graphene–SnO{sub 2}–TiO{sub 2} ternary nanocomposite, in which the nanometer-sized TiO{sub 2} and SnO{sub 2} nanoparticles form in situ uniformly anchored on the surface of graphene sheets, as high stability and capacity lithium-ion anode materials. Compared to graphene–TiO{sub 2}, bulk TiO{sub 2} and grapheme–SnO{sub 2} composites, the as-prepared nanocomposite delivers a superior rate performance of 499.3 mAhg{sup −1} at 0.2 C and an outstanding stability cycling capability (1073.4 mAhg{sup −1} at 0.2 C after 50 cycles), due to the synergistic effects contributed from individual components, for example, high specific capacity of SnO{sub 2}, excellent conductivity of 3D graphene networks. - Graphical abstract: Graphene–SnO{sub 2}–TiO{sub 2} nanocomposite is synthesized by a hydrothermal two-step method. The composite exhibits higher reversible capacity and better cycle/rate performance due to the unique structure. - Highlights: • We have synthesized a graphene–SnO{sub 2}–TiO{sub 2} nanocomposite by a two-step method to improve the cycling performance. • Graphene–SnO{sub 2}–TiO{sub 2} nanocomposite is synthesized by a hydrothermal two-step method. • The composite exhibits higher reversible capacity and better cycle/rate performance due to the unique structure.

  2. Effect of Si, Mn, Sn on Tensile and Corrosion Properties of Mg-4Zn-0.5Ca Alloys for Biodegradable Implant Materials

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dae Hyun; Nam, Ji Hoon; Lee, Byeong Woo; Park, Ji Yong; Shin, Hyun Jung; Park, Ik Min [Pusan National University, Busan (Korea, Republic of)

    2015-03-15

    Effect of elements Si, Mn, Sn on tensile and corrosion properties of Mg-4Zn-0.5Ca alloys were investigated. The results of tensile properties show that the yield strength, ultimate tensile strength and elongation of Mg-4Zn-0.5Ca alloy increased significantly with the addition of 0.6 wt% Mn. This is considered the grain refinement effect due to addition of Mn. However addition of 0.6 wt% Si decreased yield strength, ultimate tensile strength and elongation. The bio-corrosion behavior of Mg-4Zn-0.5Ca-X alloys were investigated using immersion tests and potentiodynamic polarization test in Hank's solution. Immersion test showed that corrosion rate of Mg-4Zn-0.5Ca-0.6Mn alloy was the lowest rate and addition of 1.0 wt% Sn accelerated corrosion rate due to micro-galvanic effect in α-Mg/CaMgSn phases interface. And corrosion potential (E{sub c}orr) of Mg-4Zn-0.5Ca-0.6Mn alloy was the most noble among Mg-4Zn-0.5Ca-X alloys.

  3. Magnetocaloric effect in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16

    Science.gov (United States)

    Sharma, V. K.; Chattopadhyay, M. K.; Kumar, Ravi; Ganguli, Tapas; Tiwari, Pragya; Roy, S. B.

    2007-12-01

    We present results of detailed ac susceptibility, magnetization and specific heat measurements in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16. These alloys undergo a paramagnetic to ferromagnetic transition around 305 K, which is followed by a martensitic transition in the temperature regime around 220 K. Inside the martensite phase both the alloys show signatures of field-induced transition from martensite to austenite phase. Both field- and temperature-induced martensite-austenite transitions are relatively sharp in Ni50Mn34In16. We estimate the isothermal magnetic entropy change and adiabatic temperature change across the various phase transitions in these alloys and investigate the possible influence of these transitions on the estimated magnetocaloric effect. The sharp martensitic transition in Ni50Mn34In16 gives rise to a comparatively large inverse magnetocaloric effect across this transition. On the other hand the magnitudes of the conventional magnetocaloric effect associated with the paramagnetic to ferromagnetic transition are quite comparable in these alloys.

  4. Enhanced separation efficiency of photoinduced charges for antimony-doped tin oxide (Sb-SnO{sub 2})/TiO{sub 2} heterojunction semiconductors with varied Sb doping concentration

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen-Long [School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Ma, Wen-Hai [School of Physical Education, Henan University, Kaifeng 475004 (China); Mao, Yan-Li, E-mail: ylmao1@163.com [School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Institute for Computational Materials Science, Henan University, Kaifeng 475004 (China)

    2014-09-07

    In this paper, antimony-doped tin oxide (Sb-SnO{sub 2}) nanoparticles were synthesized with varied Sb doping concentration, and the Sb-SnO{sub 2}/TiO{sub 2} heterojunction semiconductors were prepared with Sb-SnO{sub 2} and TiO{sub 2}. The separation efficiency of photoinduced charges was characterized with surface photovoltage (SPV) technique. Compared with Sb-SnO{sub 2} and TiO{sub 2}, Sb-SnO{sub 2}/TiO{sub 2} presents an enhanced separation efficiency of photoinduced charges, and the SPV enhancements were estimated to be 1.40, 1.43, and 1.99 for Sb-SnO{sub 2}/TiO{sub 2} composed of Sb-SnO{sub 2} with the Sb doping concentration of 5%, 10%, and 15%, respectively. To understand the enhancement, the band structure of Sb-SnO{sub 2} and TiO{sub 2} in the heterojunction semiconductor was determined, and the conduction band offsets (CBO) between Sb-SnO{sub 2} and TiO{sub 2} were estimated to be 0.56, 0.64, and 0.98 eV for Sb-SnO{sub 2}/TiO{sub 2} composed of Sb-SnO{sub 2} with the Sb doping concentration of 5%, 10%, and 15%, respectively. These results indicate that the separation efficiency enhancement is resulting from the energy level matching, and the increase of enhancement is due to the rising of CBO.

  5. Trends in (LaMnO3)n/(SrTiO3)m superlattices with varying layer thicknesses

    KAUST Repository

    Jilili, J.

    2015-09-01

    We investigate the thickness dependence of the structural, electronic, and magnetic properties of (LaMnO3)n/(SrTiO3)m (n, m = 2, 4, 6, 8) superlattices using density functional theory. The electronic structure turns out to be highly sensitive to the onsite Coulomb interaction. In contrast to bulk SrTiO3, strongly distorted O octahedra are observed in the SrTiO3 layers with a systematic off centering of the Ti atoms. The systems favour ferromagnetic spin ordering rather than the antiferromagnetic spin ordering of bulk LaMnO3 and all show half-metallicity, while a systematic reduction of the minority spin band gaps as a function of the LaMnO3 and SrTiO3 layer thicknesses originates from modifications of the Ti dxy states.

  6. The effect of addition of various elements on properties of NiTi-based shape memory alloys for biomedical application

    Science.gov (United States)

    Kök, Mediha; Ateş, Gonca

    2017-04-01

    In biomedical applications, NiTi and NiTi-based alloys that show their shape memory effects at body temperature are preferred. In this study, the purpose is to produce NiTi and NiTi-based alloys with various chemical rates and electron concentrations and to examine their various physical properties. N45Ti55, Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Sn, Co) alloys were produced in an arc melter furnace in this study. After the homogenization of these alloys, the martensitic phase transformation temperatures were determined with differential-scanner calorimeter. The transformation temperature was found to be below the 37 ° C (body temperature) in Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Co) alloys; and the transformation temperature of the N45Ti55, Ni48Ti51Sn alloys was found to be over 37 ° C . Then, the micro and crystal structure analyses of the alloys were made, and it was determined that Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Co) alloys, which were in austenite phase at room temperature, included B2 (NiTi) phase and Ti2Ni precipitation phase, and the alloys that were in the martensite phase at room temperature included B19ı (NiTi) phase and Ti2Ni phase. The common phase in both alloy groups is the Ti2Ni phase, and this type of phase is generally seen in NiTi alloys that are rich in titanium (Ti-rich).

  7. Electrochemically active nanocomposites of Li4Ti5O12 2D nanosheets and SnO2 0D nanocrystals with improved electrode performance

    International Nuclear Information System (INIS)

    Han, Song Yi; Kim, In Young; Lee, Sang-Hyup; Hwang, Seong-Ju

    2012-01-01

    Electrochemically active nanocomposites consisting of Li 4 Ti 5 O 12 2D nanosheets and SnO 2 0D nanocrystals are synthesized by the crystal growth of tin dioxide on the surface of 2D nanostructured lithium titanate. According to powder X-ray diffraction and electron microscopic analyses, the rutile-structured SnO 2 nanocrystals are stabilized on the surface of spinel-structured Li 4 Ti 5 O 12 2D nanosheets. The homogeneous hybridization of tin dioxide with lithium titanate is confirmed by elemental mapping analysis. Ti K-edge X-ray absorption near-edge structure and Sn 3d X-ray photoelectron spectroscopy indicate the stabilization of tetravalent titanium ions in the spinel lattice of Li 4 Ti 5 O 12 and the formation of SnO 2 phase with tetravalent Sn oxidation state. The electrochemical measurements clearly demonstrate the promising functionality of the present nanocomposites as anode for lithium secondary batteries. The Li 4 Ti 5 O 12 –SnO 2 nanocomposites show larger discharge capacity and better cyclability than do the uncomposited Li 4 Ti 5 O 12 and SnO 2 phases, indicating the synergistic effect of nanocomposite formation on the electrode performance of Li 4 Ti 5 O 12 and SnO 2 . The present experimental findings underscore the validity of 2D nanostructured lithium titanate as a useful platform for the stabilization of nanocrystalline electrode materials and also for the improvement of their functionality.

  8. (V,Nb)-doped half Heusler alloys based on {Ti,Zr,Hf}NiSn with high ZT

    International Nuclear Information System (INIS)

    Rogl, G.; Sauerschnig, P.; Rykavets, Z.; Romaka, V.V.; Heinrich, P.; Hinterleitner, B.; Grytsiv, A.; Bauer, E.; Rogl, P.

    2017-01-01

    Half Heusler alloys are among the most promising materials for thermoelectric generators as they can be used in a wide temperature range and their starting materials are abundant and cheap, the latter as long as no hafnium is involved. For Sb-doped Ti 0.5 Zr 0.25 Hf 0.25 NiSn Sakurada and Shutoh in 2008 have published ZT max  = 1.5 at 690 K, a value that hitherto was never reproduced independently. In this paper we successfully prepared Ti 0.5 Zr 0.25 Hf 0.25 NiSn with ZT max  = 1.5, however, at higher temperature (825 K). As the main goal is to produce hafnium – free half Heusler alloys, we investigated the influence of niobium or vanadium dopants on Ti x Zr 1−x NiSn 0.98 Sb 0.02 , reaching ZTs > 1.2 and thermal-electric conversion efficiencies up to 13.1%. For Hf-free n-type TiNiSn-based half Heusler alloys these values are unsurpassed. In order to further improve our thermoelectric materials our study is completed by electrical resistivity and thermal conductivity data in the low temperature range but also by mechanical properties (elastic moduli, hardness) at room temperature. The electrical properties have been discussed in comparison with DFT calculations.

  9. Thermoelectric properties of TiNiSn and Zr0.5Hf0.5NiSn thin films and superlattices with reduced thermal conductivities

    International Nuclear Information System (INIS)

    Jaeger, Tino

    2013-01-01

    Rising energy costs and enhanced CO 2 emission have moved research about thermoelectric (TE) materials into focus. The suitability of a material for usage in TE devices depends on the figure of merit ZT and is equal to α 2 σTκ -1 including Seebeck coefficient α, conductivity σ, temperature T and thermal conductivity κ. Without affecting the power factor α 2 σ, using nanostructuring, ZT should here be increased by a depressed thermal conductivity. As half-Heusler (HH) bulk materials, the TE properties of TiNiSn and Zr 0.5 Hf 0.5 NiSn have been extensively studied. Here, semiconducting TiNiSn and Zr 0.5 Hf 0.5 NiSn thin films were fabricated for the first time by dc magnetron sputtering. On MgO (100) substrates, strongly textured polycrystalline films were obtained at substrate temperatures of about 450 C. The film consisted of grains with an elongation perpendicular to the surface of 55 nm. These generated rocking curves with FWHMs of less than 1 . Structural analyses were performed by X ray diffraction (XRD). Having deposition rates of about 1 nms -1 within shortest time also films in the order of microns were fabricated. For TiNiSn the highest in-plane power factor of about 0.4 mWK -2 m -1 was measured at about 550 K. In addition, at room temperature a cross-plane thermal conductivity of 2.8 Wm -1 K -1 was observed by the differential 3ω method. Because the reduction of thermal conductivity by mass fluctuation is well-known and interface scattering of phonons is expected, superlattices (SL) were fabricated. Therefore, TiNiSn and Zr 0.5 Hf 0.5 NiSn were successively deposited. While the sputter cathodes were continuously running, for fabrication of SLs the substrates were moved from one to another. The high crystal quality of the SLs and the sharp interfaces were proven by satellite peaks (XRD) and Scanning Transmission Electron Microscopy (STEM). For a SL with a periodicity of 21 nm (TiNiSn and Zr 0.5 Hf 0.5 NiSn each 15 nm) at a temperature of 550 K an

  10. Evaluation of surface energy state distribution and bulk defect concentration in DSSC photoanodes based on Sn, Fe, and Cu doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ako, Rajour Tanyi [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara (Brunei Darussalam); Ekanayake, Piyaisiri, E-mail: piyasiri.ekanayake@ubd.edu.bn [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara (Brunei Darussalam); Young, David James [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara (Brunei Darussalam); Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research -A*STAR, 3 Research Link, 117602 (Singapore); Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, 4558 (Australia); Hobley, Jonathan [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara (Brunei Darussalam); Chellappan, Vijila [Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research - A*STAR, 3 Research Link, 117602 (Singapore); Tan, Ai Ling [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara (Brunei Darussalam); Gorelik, Sergey; Subramanian, Gomathy Sandhya [Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research - A*STAR, 3 Research Link, 117602 (Singapore); Lim, Chee Ming [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara (Brunei Darussalam)

    2015-10-01

    Graphical abstract: - Highlights: • The structural, optical and optoelectronic properties of 1 mol.% Fe, Sn and Cu doped TiO{sub 2} have been compared. • Transient lifetimes for pure TiO{sub 2} and Sn doped TiO{sub 2} were considerably shorter than Fe and Cu doped TiO{sub 2}. • A good correlation between the bulk defects and transient decay for the doped TiO{sub 2} powders was observed. • Photon to current conversion efficiency of DSSC based on the metal doped TiO{sub 2} were in order Sn-TiO{sub 2} > Cu-TiO{sub 2} > Pure >> Fe-TiO{sub 2}. • DSSC based on Fe doped photoanodes is limited by a high concentration of surface free holes observed at 433 nm. - Abstract: Electron transfer dynamics in the oxide layers of the working electrodes in both dye-sensitized solar cells and photocatalysts greatly influences their performance. A proper understanding of the distribution of surface and bulk energy states on/in these oxide layers can provide insights into the associated electron transfer processes. Metal ions like Iron (Fe), Copper (Cu) and Tin (Sn) doped onto TiO{sub 2} have shown enhanced photoactivity in these processes. In this work, the structural, optical and transient properties of Fe, Cu and Sn doped TiO{sub 2} nanocrystalline powders have been investigated and compared using EDX, Raman spectroscopy, X-ray Photoelectron spectroscopy (XPS), and Transient Absorption spectroscopy (TAS). Surface free energy states distributions were probed using Electrochemical Impedance spectroscopy (EIS) on Dye Sensitized Solar Cells (DSSC) based on the doped TiO{sub 2} photoanodes. Raman and XPS Ti2p{sub 3/2} peak shifts and broadening showed that the concentration of defects were in the order: Cu doped TiO{sub 2} > Fe doped TiO{sub 2} > Sn doped TiO{sub 2} > pure TiO{sub 2}. Nanosecond laser flash photolysis of Fe and Cu doped TiO{sub 2} indicated slower transient decay kinetics than that of Sn doped TiO{sub 2} or pure TiO{sub 2}. A broad absorption peak and fast

  11. The centralized control of elemental mercury emission from the flue gas by a magnetic rengenerable Fe-Ti-Mn spinel.

    Science.gov (United States)

    Liao, Yong; Xiong, Shangchao; Dang, Hao; Xiao, Xin; Yang, Shijian; Wong, Po Keung

    2015-12-15

    A magnetic Fe-Ti-Mn spinel was developed to adsorb gaseous Hg(0) in our previous study. However, it is currently extremely restricted in the control of Hg(0) emission from the flue gas for at least three reasons: sorbent recovery, sorbent regeneration and the interference of the chemical composition in the flue gas. Therefore, the effect of SO2 and H2O on the adsorption of gaseous Hg(0) on the Fe-Ti-Mn spinel and the regeneration of spent Fe-Ti-Mn spinel were investigated in this study. Meanwhile, the procedure of the centralized control of Hg(0) emission from the flue gas by the magnetic Fe-Ti-Mn spinel has been analyzed for industrial application. The spent Fe-Ti-Mn spinel can be regenerated by water washing followed by the thermal treatment at 450 °C with no obvious decrease of its ability for Hg(0) capture. Meanwhile, gaseous Hg(0) in the flue gas can be remarkably concentrated during the regeneration, facilitating its safe disposal. Initial pilot test demonstrated that gaseous Hg(0) in the real flue gas can be concentrated at least 100 times by the Fe-Ti-Mn spinel. Therefore, Fe-Ti-Mn spinel was a novel magnetic regenerable sorbent, which can be used for the centralized control of Hg(0) emission from the flue gas. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Synthesis of Nanocrystalline SnO2 Modified TiO2:a Material for Carbon Monoxide Gas Sensor

    Directory of Open Access Journals (Sweden)

    A. B. BODADE

    2008-11-01

    Full Text Available Nanocrystalline SnO2 doped TiO2 having average crystallite size of 45-50 nm were synthesized by the sol-gel method and studied for gas sensing behavior to reducing gases like CO, liquefied petroleum gas (LPG, NH3 and H2. The material characterization was done by using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR and scanning electron microscope (SEM. The sensitivity measurements were carried out as a function of different operating temperature in SnO2 doped TiO2. The 15 wt.% SnO2 doped TiO2 based CO sensor shows better sensitivity at an operating temperature 240°C Incorporation of 0.5 wt% Pd improved the sensitivity, selectivity, response time and reduced the operating temperature from 240°C to 200°C for CO sensor.

  13. Apatite Formation and Biocompatibility of a Low Young's Modulus Ti-Nb-Sn Alloy Treated with Anodic Oxidation and Hot Water.

    Directory of Open Access Journals (Sweden)

    Hidetatsu Tanaka

    Full Text Available Ti-6Al-4V alloy is widely prevalent as a material for orthopaedic implants because of its good corrosion resistance and biocompatibility. However, the discrepancy in Young's modulus between metal prosthesis and human cortical bone sometimes induces clinical problems, thigh pain and bone atrophy due to stress shielding. We designed a Ti-Nb-Sn alloy with a low Young's modulus to address problems of stress disproportion. In this study, we assessed effects of anodic oxidation with or without hot water treatment on the bone-bonding characteristics of a Ti-Nb-Sn alloy. We examined surface analyses and apatite formation by SEM micrographs, XPS and XRD analyses. We also evaluated biocompatibility in experimental animal models by measuring failure loads with a pull-out test and by quantitative histomorphometric analyses. By SEM, abundant apatite formation was observed on the surface of Ti-Nb-Sn alloy discs treated with anodic oxidation and hot water after incubation in Hank's solution. A strong peak of apatite formation was detected on the surface using XRD analyses. XPS analysis revealed an increase of the H2O fraction in O 1s XPS. Results of the pull-out test showed that the failure loads of Ti-Nb-Sn alloy rods treated with anodic oxidation and hot water was greater than those of untreated rods. Quantitative histomorphometric analyses indicated that anodic oxidation and hot water treatment induced higher new bone formation around the rods. Our findings indicate that Ti-Nb-Sn alloy treated with anodic oxidation and hot water showed greater capacity for apatite formation, stronger bone bonding and higher biocompatibility for osteosynthesis. Ti-Nb-Sn alloy treated with anodic oxidation and hot water treatment is a promising material for orthopaedic implants enabling higher osteosynthesis and lower stress disproportion.

  14. Hydrogenation properties and microstructure of Ti-Mn-based alloys for hybrid hydrogen storage vessel

    International Nuclear Information System (INIS)

    Shibuya, Masachika; Nakamura, Jin; Akiba, Etsuo

    2008-01-01

    Ti-Mn-based AB 2 -type alloys which are suitable for a hybrid hydrogen storage vessel have been synthesized and evaluated hydrogenation properties. As the third element V was added to Ti-Mn binary alloys. All the alloys synthesized in this work mainly consist of the C14 Laves and BCC phase. In the case of Ti0.5V0.5Mn alloy, the amounts of hydrogen absorption was 1.8 wt.% at 243 K under the atmosphere of 7 MPa H 2 , and the hydrogen desorption pressure was in the range of 0.2-0.4 MPa at 243 K. The hydrogen capacity of this alloy did not saturate under 7 MPa H 2 and seems to increase with hydrogen pressure up to 35 MPa that is estimated working pressure of the hybrid hydrogen storage vessel

  15. Maximization of current efficiency for organic pollutants oxidation at BDD, Ti/SnO2-Sb/PbO2, and Ti/SnO2-Sb anodes.

    Science.gov (United States)

    Xing, Xuan; Ni, Jinren; Zhu, Xiuping; Jiang, Yi; Xia, Jianxin

    2018-08-01

    Whereas electrochemical oxidation is noted for its ability to degrade bio-refractory organics, it has also been incorrectly criticized for excessive energy consumption. The present paper rectifies this misunderstanding by demonstrating that the energy actually consumed in the degradation process is much less than that wasted in the side reaction of oxygen evolution. To minimize the side reaction, the possible highest instantaneous current efficiency (PHICE) for electrochemical oxidation of phenol at Boron-doped Diamond (BDD), Ti/SnO 2 -Sb/PbO 2 (PbO 2 ), and Ti/SnO 2 -Sb (SnO 2 ) anodes has been investigated systematically, and found to reach almost 100% at the BDD anode compared with 23% at the PbO 2 anode and 9% at the SnO 2 anode. The significant discrepancy between PHICE values at the various anodes is interpreted in terms of different existing forms of hydroxyl radicals. For each anode system, the PHICEs are maintained experimentally using a computer-controlled exponential decay current mode throughout the electrolysis process. For applications, the minimized energy consumption is predicted by response surface methodology, and demonstrated for the BDD anode system. Consequently, almost 100% current efficiency is achieved (for a relatively meagre energy consumption of 17.2 kWh kgCOD -1 ) along with excellent COD degradation efficiency by optimizing the initial current density, flow rate, electrolysis time, and exponential decay constant. Compared with galvanostatic conditions, over 70% of the energy is saved in the present study, thus demonstrating the great potential of electrochemical oxidation for practical applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Mn-doped CdS quantum dots sensitized hierarchical TiO2 flower-rod for solar cell application

    International Nuclear Information System (INIS)

    Yu, Libo; Li, Zhen; Liu, Yingbo; Cheng, Fa; Sun, Shuqing

    2014-01-01

    A double-layered TiO 2 film which three dimensional (3D) flowers grown on highly ordered self-assembled one dimensional (1D) TiO 2 nanorods was synthesized directly on transparent fluorine-doped tin oxide (FTO) conducting glass substrate by a facile hydrothermal method and was applied as photoanode in Mn-doped CdS quantum dots sensitized solar cells (QDSSCs). The 3D TiO 2 flowers with the increased surface areas can adsorb more QDs, which increased the absorption of light; meanwhile 1D TiO 2 nanorods beneath the flowers offered a direct electrical pathway for photogenerated electrons, accelerating the electron transfer rate. A typical type II band alignment which can effectively separate photogenerated excitons and reduce recombination of electrons and holes was constructed by Mn-doped CdS QDs and TiO 2 flower-rod. The incident photon-to-current conversion efficiency (IPCE) of the Mn-doped CdS/TiO 2 flower-rod solar cell reached to 40% with the polysulfide electrolyte filled in the solar cell. The power conversion efficiency (PCE) of 1.09% was obtained with the Mn-doped CdS/TiO 2 flower-rod solar cell under one sun illumination (AM 1.5G, 100 mW/cm 2 ), which is 105.7% higher than that of the CdS/TiO 2 nanorod solar cell (0.53%).

  17. First-principle investigations of the magnetic properties and possible martensitic transformation in Ni2MnX (X=Al, Ga, In, Si, Ge and Sn)

    International Nuclear Information System (INIS)

    Wang, Wei; Gao, She-Sheng; Meng, Yang

    2014-01-01

    The magnetic and electronic properties of Ni 2 MnX (X=Al, Ga, In, Si, Ge and Sn) Heusler alloys have been studied by using the first-principle projector augmented wave potential within the generalized gradient approximation. The possible non-modulated martensitic transformation in these six alloys has been investigated. Both austenitic and martensitic Ni 2 MnX (X=Al, Ga, In, Si, Ge and Sn) Heusler alloys are found to be ferromagnets. In martensitic phase, the energies minimum occurs at c/a=0.99 for Ni 2 MnX (X=Al, In, Ge and Sn), and the energy minimum occurs at c/a=1.02 for Ni 2 MnSi. But there is a negligible energy difference ΔE (<6 meV/cell) between the austenitic and martensitic phases for each alloy. Meanwhile, around c/a=1, an anomaly is observed in the E-c/a curve, which is related to a very slightly tetragonal distortion trend in Ni 2 MnX (X=Al, In, Si, Ge and Sn). The energy difference ΔE between the austenitic and martensitic phases for Ni 2 MnGa is as large as 99 meV/cell, so it is more likely to realize martensitic transformation in it. - Highlights: • Both austenitic and martensitic Ni 2 MnX alloys are found to be ferromagnets. • The energy difference between the martensitic and austenitic phases is negligible. • The total moment in martensitic phase is close to corresponding to austenitic phase

  18. TiNiSn and Zr{sub 0.5}Hf{sub 0.5}NiSn superlattices for thermoelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Tino; Jakob, Gerhard [Institut fuer Physik, Universitaet Mainz, 55099 Mainz (Germany); Schwall, Michael; Kozina, Xeniya; Balke, Benjamin; Felser, Claudia [Institut fuer Analytische und Anorganische Chemie, Universitaet Mainz, 55099 Mainz (Germany); Populoh, Sascha; Weidenkaff, Anke [EMPA, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland)

    2012-07-01

    In order to increase the attractiveness of thermoelectric devices, their efficiency must be increased. Beside others, the properties of the thermoelectric material can be improved. That can be achieved by either increasing Seebeck coefficient or conductivity or by a depressed thermal conductivity along the thermal gradient. For thin films, superlattices or multilayers can be used to lower the cross plane thermal conductivity. As a bottom up approach, artificially layered films with a periodicity of about 5-6 nm are assumed to generate the most phonon scattering at the interfaces. If electrical properties remain unchanged or less effected, the thermoelectric efficiency is enhanced. Semiconducting Half-Heuslers are well studied thermoelectric bulk materials. Among others, TiNiSn and Zr{sub 0.5}Hf{sub 0.5}NiSn are potential candidates. Essentially, their similar lattice constants enable epitaxial layers on top of each other. Furthermore, varied atomic masses of Ti, Zr and Hf generate the aspired alternating mass distribution. By rotating the substrate in between simultaneously burning cathodes, significant film thicknesses can be achieved by sputter deposition.

  19. Sn doped TiO{sub 2} nanotube with oxygen vacancy for highly efficient visible light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jinliang; Xu, Xingtao [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, Department of Physics, East China Normal University, Shanghai 200062 (China); Liu, Xinjuan [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Yu, Caiyan; Yan, Dong; Sun, Zhuo [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, Department of Physics, East China Normal University, Shanghai 200062 (China); Pan, Likun, E-mail: lkpan@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, Department of Physics, East China Normal University, Shanghai 200062 (China)

    2016-09-15

    Sn doped TiO{sub 2} nanotube with oxygen vacancy (V{sub o}-Sn−TiO{sub 2}) was successfully synthesized via a facile hydrothermal process and subsequent annealing in nitrogen atmosphere. The morphology, structure and photocatalytic performance of V{sub o}-Sn−TiO{sub 2} in the degradation of nitrobenzene were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, UV–vis absorption spectroscopy, nitrogen adsorption-desorption and electrochemical impedance spectra, respectively. The inner diameter, outer diameter and specific surface area of V{sub o}-Sn−TiO{sub 2} are about 5 nm, 15 nm and 235.54 m{sup 2} g{sup −1}, respectively. The experimental results show that the V{sub o}-Sn−TiO{sub 2} exhibits excellent photocatalytic performance with a maximum degradation rate of 92% in 300 min for nitrobenzene and 94% in 100 min for Rhodamine B and corresponding mineralization rates of 68% and 70% under visible light irradiation. The improved photocatalytic performance is ascribed to the enhanced light absorption and specific surface area as well as the reduced electron-hole pair recombination with the presence of oxygen vacancy and Sn doping in the TiO{sub 2} nanotube. - Highlights: • Photocatalysis is an environmental-friendly technology for nitrobenzene removal. • Sn doped TiO{sub 2} nanotube with oxygen vacancy is fabricated for the first time. • It exhibits excellent photocatalytic performance in degradation of nitrobenzene. • A high degradation rate of 92% is achieved under visible light irradiation.

  20. Effect of alloying elements on the shape memory properties of ductile Cu-Al-Mn alloys

    International Nuclear Information System (INIS)

    Sutou, Y.; Kainuma, R.; Ishida, K.

    1999-01-01

    The effect of alloying elements on the M s temperature, ductility and the shape memory properties of Cu-Al-Mn ductile shape memory (SM) alloys was investigated by differential scanning calorimetry, cold-rolling and tensile test techniques. It was found that the addition of Au, Si and Zn to the Cu 73 -Al 17 -Mn 10 alloy stabilized the martensite (6M) phase increasing the M s temperature, while the addition of Ag, Co, Cr, Fe, Ni, Sn and Ti decreased the stability of the martensite phase, decreasing the M s temperature. The SM properties were improved by the addition of Co, Ni, Cr and Ti. (orig.)

  1. Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge

    Science.gov (United States)

    Audetat, Andreas; Garbe-Schonberg, Dieter; Kronz, Andreas; Pettke, Thomas; Rusk, Brian G.; Donovan, John J.; Lowers, Heather

    2015-01-01

    A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP-MS, electron probe microanalysis (EPMA) and solution ICP-MS to determine the concentration of twenty-four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium-in-quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA-ICP-MS laboratories, three EPMA laboratories and one solution-ICP-MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 μg g-1), Al (154 ± 15 μg g-1), Li (30 ± 2 μg g-1), Fe (2.2 ± 0.3 μg g-1), Mn (0.34 ± 0.04 μg g-1), Ge (1.7 ± 0.2 μg g-1) and Ga (0.020 ± 0.002 μg g-1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. Concentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.

  2. Elastic and inelastic {alpha}-scattering cross-sections obtained with the 44 MeV fixed energy Saclay cyclotron on separated targets of {sup 24}Mg, {sup 25}Mg, {sup 26}Mg, {sup 40}Ca, {sup 46}Ti, {sup 48}Ti, {sup 50}Ti, {sup 52}Cr, {sup 54}Fe, {sup 56}Fe, {sup 58}Fe, {sup 58}Ni, {sup 60}Ni, {sup 62}Ni, {sup 64}Ni, {sup 63}Cu, {sup 65}Cu, {sup 64}Zn, {sup 112}Sn, {sup 114}Sn, {sup 116}Sn, {sup 118}Sn, {sup 120}Sn, {sup 122}Sn, {sup 124}Sn and {sup 208}Pb using the Saclay fixed-energy cyclotron; Sections efficaces differentielles elastiques et inelastiques obtenues par diffusion de particules {alpha} de 44 MeV sur des cibles de {sup 24}Mg, {sup 25}Mg, {sup 26}Mg, {sup 40}Ca, {sup 46}Ti, {sup 48}Ti, {sup 50}Ti, {sup 52}Cr, {sup 54}Fe, {sup 56}Fe, {sup 58}Fe, {sup 58}Ni, {sup 60}Ni, {sup 62}Ni, {sup 64}Ni, {sup 63}Cu, {sup 65}Cu, {sup 64}Zn, {sup 112}Sn, {sup 114}Sn, {sup 116}Sn, {sup 118}Sn, {sup 120}Sn, {sup 122}Sn, {sup 124}Sn et {sup 208}Pb au cyclotron a energie fixe de saclay

    Energy Technology Data Exchange (ETDEWEB)

    Bruge, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires. Departement de physique nucleaire, service de physique nucleaire a moyenne energie

    1967-01-01

    This report contains elastic and inelastic {alpha}-scattering cross-sections obtained with the 44 MeV fixed energy Saclay cyclotron on Mg, Ca, Ti, Cr, Fe, Ni, Co, Zn, Sn and Pb enriched targets. (author) [French] Ce rapport contient les tableaux des sections efficaces differentielles obtenues par diffusion elastique et inelastique des particules {alpha} de 44 MeV, fournies par le cyclotron a energie fixe de Saclay, sur des cibles d'isotopes separes de Mg, Ca, Ti, Cr, Fe, Ni, Co, Zn, Sn et Pb. (auteur)

  3. Apatite Formation and Biocompatibility of a Low Young’s Modulus Ti-Nb-Sn Alloy Treated with Anodic Oxidation and Hot Water

    Science.gov (United States)

    Tanaka, Hidetatsu; Mori, Yu; Noro, Atsushi; Kogure, Atsushi; Kamimura, Masayuki; Yamada, Norikazu; Hanada, Shuji; Masahashi, Naoya; Itoi, Eiji

    2016-01-01

    Ti-6Al-4V alloy is widely prevalent as a material for orthopaedic implants because of its good corrosion resistance and biocompatibility. However, the discrepancy in Young’s modulus between metal prosthesis and human cortical bone sometimes induces clinical problems, thigh pain and bone atrophy due to stress shielding. We designed a Ti-Nb-Sn alloy with a low Young’s modulus to address problems of stress disproportion. In this study, we assessed effects of anodic oxidation with or without hot water treatment on the bone-bonding characteristics of a Ti-Nb-Sn alloy. We examined surface analyses and apatite formation by SEM micrographs, XPS and XRD analyses. We also evaluated biocompatibility in experimental animal models by measuring failure loads with a pull-out test and by quantitative histomorphometric analyses. By SEM, abundant apatite formation was observed on the surface of Ti-Nb-Sn alloy discs treated with anodic oxidation and hot water after incubation in Hank’s solution. A strong peak of apatite formation was detected on the surface using XRD analyses. XPS analysis revealed an increase of the H2O fraction in O 1s XPS. Results of the pull-out test showed that the failure loads of Ti-Nb-Sn alloy rods treated with anodic oxidation and hot water was greater than those of untreated rods. Quantitative histomorphometric analyses indicated that anodic oxidation and hot water treatment induced higher new bone formation around the rods. Our findings indicate that Ti-Nb-Sn alloy treated with anodic oxidation and hot water showed greater capacity for apatite formation, stronger bone bonding and higher biocompatibility for osteosynthesis. Ti-Nb-Sn alloy treated with anodic oxidation and hot water treatment is a promising material for orthopaedic implants enabling higher osteosynthesis and lower stress disproportion. PMID:26914329

  4. Nanostructured 3D-porous graphene hydrogel based Ti/Sb-SnO2-Gr electrode with enhanced electrocatalytic activity.

    Science.gov (United States)

    Asim, Sumreen; Zhu, Yunqing; Rana, Masud; Yin, Jiao; Shah, Muhammad Wajid; Li, Yingxuan; Wang, Chuanyi

    2017-02-01

    Nanostructured highly porous 3D-Ti/Sb-SnO 2 -Gr electrode, based on 3D porous graphene hydrogel was fabricated via a fast-evaporation technique through layer by layer (LBL) deposition. The 3D pores are uniformly distributed on the high fidelity of substrate with pore sizes of 7-12 nm, as confirmed by SEM analysis. Compared to Ti/Sb-SnO 2 electrode, the fabricated 3D porous electrode possesses high oxygen evolution potential (2.40 V), smaller charge transfer resistance (29.40 Ω cm -2 ), higher porosity (0.90), enhanced roughness factor (181), and larger voltammetric charge value (57.4 mC cm -2 ). Electrocatalytic oxidation of Rhodamine B (RhB) was employed to evaluate the efficiency of the fabricated 3D-Ti/Sb-SnO 2 -Gr anode. The results show that the electrochemical reaction follows pseudo first order kinetics with rate constant (k) value of 4.93 × 10 -2 min -1 , which is about 3.91 times higher compared to flat Ti/Sb-SnO 2 . The fabricated electrode demonstrates better stability and low specific energy consumption signifying its potential usage in electrocatalysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Electronic structure of the misfit layer compound (SnS)(1.20)TiS2 : Band structure calculations and photoelectron spectra

    NARCIS (Netherlands)

    Fang, CM; deGroot, RA; Wiegers, GA; Haas, C

    1996-01-01

    In order to understand the electronic structure of the incommensurate misfit layer compound (SnS)(1.20)TiS2 we carried out an ab initio band structure calculation in the supercell approximation. The band structure is compared with that of the components 1T-TiS2 and hypothetical SnS with a similar

  6. Electronic structure of the misfit layer compound (SnS)1.20TiS2 : band structure calculations and photoelectron spectra

    NARCIS (Netherlands)

    Fang, C.M.; Groot, R.A. de; Wiegers, G.A.; Haas, C.

    1996-01-01

    In order to understand the electronic structure of the incommensurate misfit layer compound (SnS)1.20TiS2 we carried out an ab initio band structure calculation in the supercell approximation. The band structure is compared with that of the components 1T-TiS2 and hypothetical SnS with a similar

  7. Mn/TiO2 and Mn–Fe/TiO2 catalysts synthesized by deposition precipitation—promising for selective catalytic reduction of NO with NH3 at low temperatures

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Schill, Leonhard; Jensen, Anker Degn

    2015-01-01

    Mn/TiO2and Mn–Fe/TiO2catalysts have been prepared by impregnation (IMP) and deposition-precipitation (DP) techniques and characterized by N2 physisorption, XRPD, NH3-TPD, H2-TPR, XPS and TGA. 25 wt% Mn0.75Fe0.25Ti-DP catalyst, prepared by deposition precipitation with ammonium carbamate (AC......) as a precipitating agent, showed superior low-temperature SCR (selective catalytic reduction) of NO with NH3. The superior catalytic activity of the 25 wt% Mn0.75Fe0.25Ti-DP catalyst is probably due to the presence of amorphous phases of manganese oxide, iron oxide, high surface area, high total acidity......, acidstrength and ease of reduction of manganese oxide and iron oxide on TiO2in addition to formation of an SCR active MnOx phase with high content of chemisorbed oxygen (Oα). The optimum catalyst might beused as tail-end SCR catalysts in, e.g., biomass-fired power plants and waste incineration plants....

  8. Surface decoration with MnO{sub 2} nanoplatelets on graphene/TiO{sub 2} (B) hybrids for rechargeable lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinlu, E-mail: lixinlu@cqu.edu.cn; Zhang, Yonglai; Zhong, Qineng; Li, Tongtao; Li, Hongyi; Huang, Jiamu

    2014-09-15

    Graphical abstract: - Highlights: • The surface of graphene/TiO{sub 2} (B) hybrids is decorated by ultrathin MnO{sub 2} nanoplatelets. • MnO{sub 2}@graphene/TiO{sub 2} (B) composites exhibit high specific surface area of 283.9 m{sup 2} g{sup −1}. • The reversible capacity of graphene/TiO{sub 2} (B) hybrids is greatly improved by surface decoration with low content of MnO{sub 2}. - Abstract: Hierarchically ultrathin MnO{sub 2} nanoplatelets are decorated on the surface of graphene-based TiO{sub 2} (B) hybrids by a facile water-bath reaction to fabricate MnO{sub 2}@graphene/TiO{sub 2} (B) composites. The multi-component composites show high specific surface area of 283.9 m{sup 2} g{sup −1}, facilitating the electrochemical reactions with solvented lithium ions in the enlarged interface area. The reversible capacity of the composites remains 243 mA h g{sup −1} after 150 cycles, with capacity retention of 83.5%. In comparison with graphene/TiO{sub 2} (B) hybrids, the MnO{sub 2}@graphene/TiO{sub 2} (B) composites perform better rate capability, suggesting that surface decoration with MnO{sub 2} nanoplatelets can be a promising strategy to enhance the electrochemical performance of anode materials for lithium ion batteries.

  9. Influence of the electronic structures on the heterogeneous photoelectrocatalytic performance of Ti/Ru{sub x}Sn{sub 1-x}O{sub 2} electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhijie, E-mail: 1061739408@qq.com [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China); Zhu, Junqiu, E-mail: zhujunqiu@xmut.edu.com [School of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000 (China); Zhang, Shuai, E-mail: 601314274@qq.com [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China); Shao, Yanqun, E-mail: yqshao1989@163.com [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China); Lin, Deyuan, E-mail: lindeyuan_fj@126.com [Electric Power Research Institute of State Grid Fujian Electric Power Co. Ltd., Fuzhou 350007 (China); Zhou, Jianfeng, E-mail: 1277018923@qq.com [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China); Chen, Yunxiang, E-mail: rogerchen@163.com [Electric Power Research Institute of State Grid Fujian Electric Power Co. Ltd., Fuzhou 350007 (China); Tang, Dian, E-mail: diantang@fzu.edu.cn [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China)

    2017-07-05

    Highlights: • Ti/Ru{sub x}Sn{sub 1-x}O{sub 2} electrodes possessed photocatalytic and electrocatalytic activity were prepared by thermal decomposition method. • The effect of electronic structure on electronic conductivity, electrocatalytic and photocatalytic activity were studied. • The photoelectric-synergistic catalytic activity of the Ti/Ru{sub x}Sn{sub 1-x}O{sub 2} electrodes was studied upon UV irradiation. • The Ti/Ru{sub 0.05}Sn{sub 0.95}O{sub 2} electrode has good catalytic activity and excellent stability. - Abstract: DSA-type Ti/Ru{sub x}Sn{sub 1-x}O{sub 2} electrodes were prepared by thermal decomposition method as photoelectrocatalysts (PECs) and extensively characterized by various sophisticated techniques. First-principles calculations was employed to study the effects of Ru content on the electronic structures of the Ru{sub x}Sn{sub 1-x}O{sub 2} coatings. The photoelectric-synergistic catalytic activity of the Ti/Ru{sub x}Sn{sub 1-x}O{sub 2} electrodes was evaluated for the degradation of methyl orange (MO) in aqueous solution. The results show that the RuO{sub 2}−SnO{sub 2} solid solution could be formed. The band gaps of the Ru{sub x}Sn{sub 1-x}O{sub 2} coatings gradually decreased and eventually turned into metallic conductivity with the increase of ruthenium content. As a PEC electrode, reducing band gap is helpful to improve electronic conductivity and the electrocatalytic activity, but not always advantageous to increase the photocatalytic activity. Because too narrow band gap will sacrifice the photogenerated charge carriers and thus reduce photocatalytic activity of the electrode. In our experiments, the rate constant of Ti/Ru{sub 0.05}Sn{sub 0.95}O{sub 2} electrode increased with increasing Ru content and exhibited the maximum rate for 5% Ru loading. The stability test showed the photoelectrocatalytic activity of the Ti/Ru{sub 0.05}Sn{sub 0.95}O{sub 2} electrode almost had no attenuation after 100 h photoelectrolysis, revealing

  10. Enhanced electrochemical performance of Ti substituted P2-Na2/3Ni1/4Mn3/4O2 cathode material for sodium ion batteries

    International Nuclear Information System (INIS)

    Zhao, Wenwen; Tanaka, Akinobu; Momosaki, Kyoko; Yamamoto, Shinji; Zhang, Fabi; Guo, Qixin; Noguchi, Hideyuki

    2015-01-01

    Highlights: • Ti substituted P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 cathode was synthesized. • Structural and electrochemical properties of Na 2/3 Ni 1/4 Ti x Mn 3/4-x O 2 were studied. • Ti substituted cathodes exhibit enhanced cycleability and rate performance. • Ti substitution has impact on stabilizing the P2 structure during cycling. -- Abstract: Ti substituted P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 cathode material with the composition of Na 2/3 Ni 1/4 Ti x Mn 3/4-x O 2 has been synthesized by solid state method. The influence of Ti substitution for Mn on the structure, morphology and electrochemical performances of P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 has been investigated. X-ray diffraction (XRD) results of Ti substituted sample show that they exhibit same diffraction patterns as those of pristine P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 . Progressive change in the lattice parameters of Ti substituted samples suggests that Mn was successfully substituted by Ti. In contrast to P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 which shows step-type voltage profiles, Ti substituted samples show sloping voltage profiles. Drastic capacity fade occurred for P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 cathode, while Ti substituted cathodes still show high capacity retention over 92% after 25 cycles at the voltage range of 2.0-4.3 V. Even cycled at high upper cut-off voltage of 4.5 V, Ti=0.20 sample can deliver a reversible capacity of 140 mAhg −1 with the capacity retention over 92% after 25 cycles. Furthermore, Ti substituted cathodes exhibit enhanced rate capability over pristine P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 cathode. Comparison of the Ex-situ XRD results of the cycled P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 and its substituted samples provides evidence that the improved electrochemical performance of Ti substituted cathodes would be attributed to the stabilization of the structure with Ti substitution

  11. Toward an Active and Stable Catalyst for Oxygen Evolution in Acidic Media: Ti-Stabilized MnO2

    DEFF Research Database (Denmark)

    Frydendal, Rasmus; Paoli, Elisa Antares; Chorkendorff, Ib

    2015-01-01

    Catalysts are required for the oxygen evolution reaction, which are abundant, active, and stable in acid. MnO2 is a promising candidate material for this purpose. However, it dissolves at high overpotentials. Using first-principles calculations, a strategy to mitigate this problem by decorating...... undercoordinated surface sites of MnO2 with a stable oxide is developed here. TiO2 stands out as the most promising of the different oxides in the simulations. This prediction is experimentally verified by testing sputter-deposited thin films of MnO2 and Ti-MnO2. A combination of electrochemical measurements...

  12. Lattice parameter values and phase transitions for the Cu{sub 2}Cd{sub 1-z}Mn{sub z}SnSe{sub 4} and Cu{sub 2}Cd{sub 1-z}Fe{sub z}SnSe{sub 4} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, E. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Quintero, M., E-mail: mquinter@ula.v [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Morocoima, M.; Quintero, E.; Grima, P.; Tovar, R.; Bocaranda, P. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Delgado, G.E.; Contreras, J.E. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Mora, A.E.; Briceno, J.M.; Avila Godoy, R.; Fernandez, J.L. [Laboratorio de Analisis Quimico y Estructural de Materiales, Departamento de Fisica, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Henao, J.A.; Macias, M.A. [Grupo de Investigacion en Quimica Estructural (GIQUE), Facultad de Ciencias, Escuela de Quimica, Universidad Industrial de Santander, Apartado aereo 678, Bucaramanga (Colombia)

    2009-11-03

    X-ray powder diffraction measurements and differential thermal analysis (DTA) were made on polycrystalline samples of the Cu{sub 2}Cd{sub 1-z}Mn{sub z}SnSe{sub 4} and Cu{sub 2}Cd{sub 1-z}Fe{sub z}SnSe{sub 4} alloy systems. The diffraction patterns were used to show the equilibrium conditions and to derive lattice parameter values. For Cu{sub 2}Cd{sub 0.8}Fe{sub 0.2}SnSe{sub 4} as well as for Cu{sub 2}Cd{sub 0.2}Fe{sub 0.8}SnSe{sub 4} the crystal structures were refined using the Rietveld method. It was found that the internal distortion parameter sigma decreases as Cd is replaced by either Mn and/or Fe. For the Cu{sub 2}Cd{sub 1-z}Mn{sub z}SnSe{sub 4} and Cu{sub 2}Cd{sub 1-z}Fe{sub z}SnSe{sub 4} alloy systems, only two single solid phase fields, the tetragonal stannite alpha(I4-bar2m) and the wurtz-stannite delta (Pmn2{sub 1}) structures were found to occur in the diagram. In addition to the tetragonal stannite alpha phase extra X-ray diffraction lines due to MnSe and/or FeSe{sub 2} were observed for as grown samples in the range 0.7 < z < 1.0. However, it was found that the amount of the extra phase decreased for the compressed samples.

  13. Dynamic globularization of a-phase in Ti6Al4V alloy during hot compression

    CSIR Research Space (South Africa)

    Mutombo, K

    2013-12-01

    Full Text Available composition dependence of the martensite start temperature (Ms) has been done for Ti-Fe, Ti-Cr, Ti-Mo, Ti-V, Ti-Nb, Ti-Zr and Ti-Al alloys [1], [2]. The beneficial effect on the formation of hexagonal-structured martensite (α′) of Al, Mn, Cr, Sn and Fe... alloying elements, has been discussed by Lin et al [4]. However, the formation of the orthorhombic-structured martensite (α′′) which is favoured by elements such as Nb, Mo, Zr, W and V (strong β stabilizers) or H (a strong β stabilizer), has been reported...

  14. Effect of Sn addition on phases stability and mechanical properties of aged Ti-10Mo Alloy

    International Nuclear Information System (INIS)

    Cardoso, F.F.; Lopes, E.S.N.; Cremasco, A.; Contieri, R.J.; Mello, M.G.; Caram, R.

    2010-01-01

    Nowadays there is considerable effort in order to develop new titanium alloys using non-toxic elements such as Mo and Sn. This work deals with the alloys Ti-Mo-Sn. The samples were melted, homogenized and hot swaged. Afterwards they were solubilized and water quenched. The alloys were also aged at several temperatures Characterization involved determination of Young's modulus, hardness, X-ray diffraction and optical microscopy. The X-ray diffraction indicated the presence of athermal and isothermal ω phase for Ti-10Mo alloy. One also evidenced that the Vickers hardness varies with the temperature and the time of aging heat treatment. (author)

  15. Novel Montmorillonite/TiO₂/MnAl-Mixed Oxide Composites Prepared from Inverse Microemulsions as Combustion Catalysts.

    Science.gov (United States)

    Napruszewska, Bogna D; Michalik-Zym, Alicja; Rogowska, Melania; Bielańska, Elżbieta; Rojek, Wojciech; Gaweł, Adam; Wójcik-Bania, Monika; Bahranowski, Krzysztof; Serwicka, Ewa M

    2017-11-19

    A novel design of combustion catalysts is proposed, in which clay/TiO₂/MnAl-mixed oxide composites are formed by intermixing exfoliated organo-montmorillonite with oxide precursors (hydrotalcite-like in the case of Mn-Al oxide) obtained by an inverse microemulsion method. In order to assess the catalysts' thermal stability, two calcination temperatures were employed: 450 and 600 °C. The composites were characterized with XRF (X-ray fluorescence), XRD (X-ray diffraction), HR SEM (high resolution scanning electron microscopy, N₂ adsorption/desorption at -196 °C, and H₂ TPR (temperature programmed reduction). Profound differences in structural, textural and redox properties of the materials were observed, depending on the presence of the TiO₂ component, the type of neutralization agent used in the titania nanoparticles preparation (NaOH or NH₃ (aq)), and the temperature of calcination. Catalytic tests of toluene combustion revealed that the clay/TiO₂/MnAl-mixed oxide composites prepared with the use of ammonia showed excellent activity, the composites obtained from MnAl hydrotalcite nanoparticles trapped between the organoclay layers were less active, but displayed spectacular thermal stability, while the clay/TiO₂/MnAl-mixed oxide materials obtained with the aid of NaOH were least active. The observed patterns of catalytic activity bear a direct relation to the materials' composition and their structural, textural, and redox properties.

  16. Hydrogen storage in Ti-Mn-(FeV) BCC alloys

    International Nuclear Information System (INIS)

    Santos, S.F.; Huot, J.

    2009-01-01

    Recently, the replacement of vanadium by the less expensive (FeV) commercial alloy has been investigated in Ti-Cr-V BCC solid solutions and promising results were reported. In the present work, this approach of using (FeV) alloys is adopted to synthesize alloys of the Ti-Mn-V system. Compared to the V-containing alloys, the alloys containing (FeV) have a smaller hydrogen storage capacity but a larger reversible hydrogen storage capacity, which is caused by the increase of the plateau pressure of desorption. Correlations between the structure and the hydrogen storage properties of the alloys are also discussed.

  17. Solid solution limits and selected mechanical properties of the quaternary L12 trialuminide Al-Ti-Mn-Mo

    International Nuclear Information System (INIS)

    Schneibel, J.H.

    1994-01-01

    Intermetallics based on the trialuminide Al 3 Ti, or on Al 11 Ti 5 , have been extensively researched in recent years. Alloying with approximately 10 at.% of first-row transition elements, such as Cr or Mn, converts the DO 22 structure of Al 3 Ti to L1 2 . Although this transition to the L1 2 structure increases the number of independent slip systems to five and causes substantial softening, room-temperature tensile ductilities and fracture toughnesses remain low. Typical values for the room-temperature ductilities of Al-25Ti-8Cr and Al-25Ti-9Mn are 0.2% and room-temperature fracture toughnesses of trialuminides range from 2 to 5 MPa m 1/2 . Reasons for the low fracture toughness of trialuminides have been discussed by Turner et al. and George et al. On a phenomenological basis, it appears that fracture toughnesses might improve, if either Poisson's ratio or the ratio of the bulk and shear moduli can be increased. In principle, this might be achieved by macroalloying ternary L1 2 trialuminides, while at the same time maintaining the L1 2 crystal structure. Focusing on first-row transition elements, Kumar and Brown investigated a range of such quaternary compounds. They did not observe any improvement in ductility, as compared to the ternary compounds. In the present work, it was decided to focus on a second-row transition element, namely, 2 molybdenum. As compared to Cr and Mn, which are only slightly soluble in Al 3 Ti, up to 20 at. % Mo dissolves in Al 3 Ti at 1,198 K. This raises the question whether substantial amounts of Mo also dissolve in the cubic ternary trialuminides such as Al-Ti-Mn. In order to verify this possibility, the extent of the single-phase region of cubic Al-Ti-Mn-Mo intermetallic was mapped out at 1,473 K. In addition, a limited characterization of room-temperature mechanical properties was carried out

  18. Large anomalous Nernst and spin Nernst effects in the noncollinear antiferromagnets Mn3X (X =Sn ,Ge ,Ga )

    Science.gov (United States)

    Guo, Guang-Yu; Wang, Tzu-Cheng

    2017-12-01

    Noncollinear antiferromagnets have recently been attracting considerable interest partly due to recent surprising discoveries of the anomalous Hall effect (AHE) in them and partly because they have promising applications in antiferromagnetic spintronics. Here we study the anomalous Nernst effect (ANE), a phenomenon having the same origin as the AHE, and also the spin Nernst effect (SNE) as well as AHE and the spin Hall effect (SHE) in noncollinear antiferromagnetic Mn3X (X =Sn , Ge, Ga) within the Berry phase formalism based on ab initio relativistic band structure calculations. For comparison, we also calculate the anomalous Nernst conductivity (ANC) and anomalous Hall conductivity (AHC) of ferromagnetic iron as well as the spin Nernst conductivity (SNC) of platinum metal. Remarkably, the calculated ANC at room temperature (300 K) for all three alloys is huge, being 10-40 times larger than that of iron. Moreover, the calculated SNC for Mn3Sn and Mn3Ga is also larger, being about five times larger than that of platinum. This suggests that these antiferromagnets would be useful materials for thermoelectronic devices and spin caloritronic devices. The calculated ANC of Mn3Sn and iron are in reasonably good agreement with the very recent experiments. The calculated SNC of platinum also agrees with the very recent experiments in both sign and magnitude. The calculated thermoelectric and thermomagnetic properties are analyzed in terms of the band structures as well as the energy-dependent AHC, ANC, SNC, and spin Hall conductivity via the Mott relations.

  19. Effect of Sn addition on phases stability and mechanical properties of aged Ti-10Mo Alloy; Efeito da adicao de Sn na estabilidade de fases e propriedades de ligas Ti-10Mo resfriadas rapidamente e envelhecidas

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, F.F.; Lopes, E.S.N.; Cremasco, A.; Contieri, R.J.; Mello, M.G.; Caram, R., E-mail: flaviamec@fem.unicamp.b [Universidade Estadual de Campinas (FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica

    2010-07-01

    Nowadays there is considerable effort in order to develop new titanium alloys using non-toxic elements such as Mo and Sn. This work deals with the alloys Ti-Mo-Sn. The samples were melted, homogenized and hot swaged. Afterwards they were solubilized and water quenched. The alloys were also aged at several temperatures Characterization involved determination of Young's modulus, hardness, X-ray diffraction and optical microscopy. The X-ray diffraction indicated the presence of athermal and isothermal {omega} phase for Ti-10Mo alloy. One also evidenced that the Vickers hardness varies with the temperature and the time of aging heat treatment. (author)

  20. Scalable Synthesis of Triple-Core-Shell Nanostructures of TiO2 @MnO2 @C for High Performance Supercapacitors Using Structure-Guided Combustion Waves.

    Science.gov (United States)

    Shin, Dongjoon; Shin, Jungho; Yeo, Taehan; Hwang, Hayoung; Park, Seonghyun; Choi, Wonjoon

    2018-03-01

    Core-shell nanostructures of metal oxides and carbon-based materials have emerged as outstanding electrode materials for supercapacitors and batteries. However, their synthesis requires complex procedures that incur high costs and long processing times. Herein, a new route is proposed for synthesizing triple-core-shell nanoparticles of TiO 2 @MnO 2 @C using structure-guided combustion waves (SGCWs), which originate from incomplete combustion inside chemical-fuel-wrapped nanostructures, and their application in supercapacitor electrodes. SGCWs transform TiO 2 to TiO 2 @C and TiO 2 @MnO 2 to TiO 2 @MnO 2 @C via the incompletely combusted carbonaceous fuels under an open-air atmosphere, in seconds. The synthesized carbon layers act as templates for MnO 2 shells in TiO 2 @C and organic shells of TiO 2 @MnO 2 @C. The TiO 2 @MnO 2 @C-based electrodes exhibit a greater specific capacitance (488 F g -1 at 5 mV s -1 ) and capacitance retention (97.4% after 10 000 cycles at 1.0 V s -1 ), while the absence of MnO 2 and carbon shells reveals a severe degradation in the specific capacitance and capacitance retention. Because the core-TiO 2 nanoparticles and carbon shell prevent the deformation of the inner and outer sides of the MnO 2 shell, the nanostructures of the TiO 2 @MnO 2 @C are preserved despite the long-term cycling, giving the superior performance. This SGCW-driven fabrication enables the scalable synthesis of multiple-core-shell structures applicable to diverse electrochemical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Photocatalytic Decomposition of Amoxicillin Trihydrate Antibiotic in Aqueous Solutions under UV Irradiation Using Sn/TiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Robab Mohammadi

    2012-01-01

    Full Text Available TiO2 and Sn/TiO2 nanoparticles were successfully synthesized by sol-gel method. The resulting nanoparticles were characterized by XRD, TEM, SEM, UV-Vis reflectance spectroscopy, and BET analysis methods. The effects of Sn-doping on the crystal structure, surface area, adsorption properties, pore size distribution, and optical absorption properties of the catalysts were investigated. The effect of different Sn content on the amount of hydroxyl radical was discussed by using salicylic acid as probe molecule. The photocatalytic activity of samples was tested by photocatalytic mineralization of amoxicillin trihydrate (AMOX as a model pollutant. Sn/TiO2 nanoparticles exhibited high photocatalytic activity during the mineralization of AMOX under UV light due to increase in the generated hydroxyl radicals, band gap energy, specific surface area, and decrease in the crystallite size. The kinetic of the mineralization of AMOX can be explained in terms of the Langmuir-Hinshelwood model. The values of the adsorption equilibrium constant (AMOX and the kinetic rate constant of surface reaction (c were 0.56 (mg L−1−1 and 1.86 mg L−1 min−1, respectively.

  2. Electrodeposition synthesis of MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposites and their visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xuyao [School of Chemistry Science and Technology, and Institute of Physical Chemistry, Zhanjiang Normal University, Zhanjiang 524048 (China); Zhou, Xiaosong, E-mail: zxs801213@163.com [School of Chemistry Science and Technology, and Institute of Physical Chemistry, Zhanjiang Normal University, Zhanjiang 524048 (China); Li, Xiaoyu, E-mail: lixiaoyu@iga.ac.cn [Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun 130012 (China); Yang, Fei [The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research of Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101 (China); Jin, Bei; Xu, Tan; Li, Guosheng; Li, Manyi [School of Chemistry Science and Technology, and Institute of Physical Chemistry, Zhanjiang Normal University, Zhanjiang 524048 (China)

    2014-11-15

    Highlights: • MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposites are prepared by electrodeposition. • MnO{sub 2}/TiO{sub 2} exhibits high visible light photocatalytic activity. • The results of XRD show the depositions are attributed to α-MnO{sub 2}. • A photocatalytic mechanism is discussed under visible light irradiation. - Abstract: MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposite photocatalysts have been synthesized through an electrodeposition method. X-ray powder diffraction analysis and X-ray photoelectron spectroscopy measurements reveal that the products of electrodeposition method are MnO{sub 2}. Scanning electron microscopy measurements suggest that the depositions are deposited on the surface or internal of the nanotube. UV–vis light absorbance spectra demonstrate the excellent adsorption properties of MnO{sub 2}/TiO{sub 2} over the whole region of visible light, which enables this novel photocatalytic material to possess remarkable activity in the photocatalytic degradation of acid Orange II under visible light radiation. Moreover, a possible photocatalytic mechanism is discussed.

  3. First-principles study of magnetic properties of stoichiometric and O deficient low-index surfaces of rutile SnO{sub 2} and TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Han, Ruilin; Yang, Hui [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Department of Physics, Jilin University, Changchun 130012 (China); Wang, Dingdi [Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Du, Xiaobo [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Department of Physics, Jilin University, Changchun 130012 (China); Yan, Yu, E-mail: yanyu@jlu.edu.cn [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Department of Physics, Jilin University, Changchun 130012 (China)

    2015-01-15

    In consideration of experimental evidences of O vacancies or/and surface state as the possible origin of d{sup 0} ferromagnetism in SnO{sub 2} and TiO{sub 2}, the electronic structure and magnetic properties of stoichiometric and O deficient (110), (100), (101) and (001) surfaces of rutile SnO{sub 2} and TiO{sub 2} are investigated using first-principles calculations. The calculations show that the stoichiometric (110), (100), (101) and (001) surfaces of rutile SnO{sub 2} and TiO{sub 2} are nonmagnetic. The O vacancy at these low-index surfaces of SnO{sub 2} do not induce magnetic moment due to extended character of 5s and 5p orbitals of the reduced Sn atom, while the vacancy at the low-index surfaces of TiO{sub 2} produce spin splitting defect states in the band gap, resulting in the formation of magnetic moment of 2.0 μ{sub B}. The induced magnetic moment by surface O vacancy is mainly contributed by partially filled 3d orbitals of the reduced Ti atoms. It is noticed that the magnetic coupling between magnetic moments induced by two O vacancies at the low-index surfaces of rutile TiO{sub 2} are long-range ferromagnetic, which can be explained by the overlap of spin density around the common Ti or O atoms among reduced Ti atoms produced by two O vacancies. - Highlights: • Surface O vacancy does not induce magnetic moment in SnO{sub 2}. • Coupling between the moments induced by O vacancies at surfaces of TiO{sub 2} is ferromagnetic. • d{sup 0} ferromagnetism of TiO{sub 2} can be attributed to surface O vacancy.

  4. A -Site Ordered Double Perovskite CaMnTi 2 O 6 as a Multifunctional Piezoelectric and Ferroelectric–Photovoltaic Material

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Gaoyang [Frontier Institute; Charles, Nenian [Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States; Shi, Jing [MOE Key Laboratory; Rondinelli, James M. [Department; Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States

    2017-09-11

    The double perovskite CaMnTi2O6, is a rare A site ordered perovskite oxide that exhibits a sizable ferroelectric polarization and relatively high Curie temperature. Using first-principles calculations combined with detailed symmetry analyses, we identify the origin of the ferroelectricity in CaMnTi2O6. We further explore the material properties of CaMnTi2O6, including its ferroelectric polarization, dielectric and piezoelectric responses, magnetic order, electronic structure, and optical absorption coefficient. It is found that CaMnTi2O6 exhibits room-temperature-stable ferroelectricity and moderate piezoelectric responses. Moreover, CaMnTi2O6 is predicted to have a semiconducting energy band gap similar to that of BiFeO3, and its band gap can further be tuned-via distortions of the planar Mn-O bond lengths. CaMnTi2O6 exemplifies a new class of single-phase semiconducting ferroelectric perovskites for potential applications in ferroelectric photovoltaic solar cells.

  5. Fabrication of band gap engineered nanostructured tri-metallic (Mn-Co-Ti) oxide thin films

    Science.gov (United States)

    Mansoor, Muhammad Adil; Yusof, Farazila Binti; Nay-Ming, Huang

    2018-04-01

    In continuation of our previous studies on photoelectrochemical (PEC) properties of titanium based composite oxide thin films, an effort is made to develop thin films of 1:1:2 manganese-cobalt-titanium oxide composite, Mn2O3-Co2O3-4TiO2 (MCT), using Co(OAc)2 and a bimetallic manganese-titanium complex, [Mn2Ti4(TFA)8(THF)6(OH)4(O)2].0.4THF (1), where OAc = acetato, TFA = trifluoroacetato and THF = tetrahydrofuran, via aerosol-assisted chemical vapour deposition (AACVD) technique. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) spectroscopic analyses confirmed formation of thin film of Mn2O3-Co2O3-4TiO2 composite material with uniformly distributed agglomerated particles. The average size of 39.5 nm, of the particles embedded inside agglomerates, was estimated by Scherer's equation. Further, UV-Vis spectroscopy was used to estimate the band gap of 2.62 eV for MCT composite thin film.

  6. Magnetic properties of Mn3-xFexSn compounds with tuneable Curie temperature by Fe content for thermomagnetic motors

    Science.gov (United States)

    Felez, Marissol R.; Coelho, Adelino A.; Gama, Sergio

    2017-12-01

    Mn3-xFexSn system (0.00 ≤ x ≤ 3.00 with Δx = 0.25) alloys present the Curie temperature (TC) or transition temperature (TT) tuneable by the Fe content. A piece-wise linear profile for TC,T as a function of x is observed in a two wide temperature ranges, between 155 K up to 759 K and 259 K up to 155 K. Their equations are TC,T = (59 ± 15) + (240 ± 7)·x and TC,T = (257 ± 1) - (206 ± 4)·x, respectively. The alloys are low cost and easy manufacturing, rare earth free, with second order magnetic transition (SOMT), and have good magnetic properties. These features suggest an immediate application of the material in cascade thermomagnetic motors that operate with a large temperature range between hot and cold sources. Furthermore, SOMT Mn-Fe-Sn system materials are also reported with advantages that could make alloys of the Mn3-xFexSn system, (0.88 ≤ x ≤ 1.20), promising candidate for magnetic refrigeration. The typical ferromagnetic behaviour is achieved only by samples with x ≥ 1. The samples with x between 0.00 and 0.75 do not show the saturation magnetization even using fields up to 13 T.

  7. Effect of Ti doping on magnetic properties and magnetoresistance in LaSr2Mn2O7

    International Nuclear Information System (INIS)

    Feng, J.; Che, P.; Wang, J.P.; Lu, M.F.; Liu, J.F.; Cao, X.Q.; Meng, J.

    2005-01-01

    The effect of Ti substitution for Mn on magnetic and transport properties has been investigated for layered manganese oxides LaSr 2 Mn 2-x Ti x O 7 . Titanium doping hampered the canted antiferromagnetic (AFM) exchange at low temperature and their Neel temperature (T N ) decreased from 138 K (x = 0) to 106 K (x = 0.1). Meanwhile, spin glass, charge ordering and metal-insulator transition are suppressed by Ti addition. This can be attributed to Mn-site disorder caused by random substitution of Ti 4+ . The suppression of charge ordering leads to magntetoresistance (MR) ratio increase and MR reaches maximum at x = 0.3. The resistivity increases obviously with x increasing because of double exchange interaction channel broken by Ti 4+ addition. The resistivity of all samples in low temperature range fits to the Mott's variable range hopping (VRH) model, while it fits to nearest neighbor hopping of small polarons model in high temperature range. We also found that both disorder and distortion in A-site and B-site will induce the similar effect to electrical and magnetic properties

  8. Search for high entropy alloys in the X-NbTaTiZr systems (X = Al, Cr, V, Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Poletti, Marco Gabriele, E-mail: marcogabriele.poletti@unito.it [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy); Fiore, Gianluca [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy); Szost, Blanka A. [Strategic and Emerging Technologies Team (TEC-TS), European Space Agency, ESTEC, 1 Keplerlaan, 2201 AZ Noordwijk (Netherlands); Battezzati, Livio [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy)

    2015-01-25

    Highlights: • Composition of refractory high entropy alloys predicted. • Solid solutions found in VNbTaTiZr and AlNbTaTiZr. • Alloys containing Cr and Sn are multi-phased. - Abstract: High entropy alloys, i.e. solid solution phases, are sought in the X-NbTaTiZr equiatomic system where the X element was chosen as Al, Cr, V and Sn by applying recent criteria based on size and electronegativity mismatch of alloy components, number of itinerant and total valence electrons, and the temperature at which the free energy of mixing changes at the alloy composition. The alloys containing V and Al are mostly constituted by solid solutions in good agreement with prediction.

  9. First-principles study on the structural, electronic and magnetic properties of the Ti{sub 2}VZ (Z = Si, Ge, Sn) full-Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Santao; Shen, Jiang [Institute for Applied Physics, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Chuan-Hui, E-mail: zhangch@ustb.edu.cn [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-08-15

    In the present work, we have investigated the structural, electronic and magnetic properties of Ti{sub 2}VZ (Z = Si, Ge, Sn) alloys with Hg{sub 2}CuTi-type structure in the framework of density functional theory with generalized gradient approximation (GGA). The calculated results show that Ti{sub 2}VSi and Ti{sub 2}VGe alloys belong to half-metallic compounds with a perfect 100% spin polarization at the Fermi level while Ti{sub 2}VSn alloy is just a conventional ferrimagnetism compound. And the total magnetic moment of Ti{sub 2}VSi and Ti{sub 2}VGe obey the Slater–Pauling (SP) rule. In a moderate variation range of lattice distortion, Ti{sub 2}VSi and Ti{sub 2}VGe remain half-metallicity. We expect that our calculated results may trigger Ti{sub 2}VZ (Z = Si, Ge, Sn) applying in the future spintronics field. - Highlights: • Structural properties of Ti{sub 2}VZ (Z = Si, Ge, Sn) have been achieved by ab initio. • The calculations proved Ti{sub 2}VSi and Ti{sub 2}VGe to be half-metallic compounds. • The total magnetic moments of Ti{sub 2}VSi and Ti{sub 2}VGe followed the SP rule M{sub t} = Z{sub t} − 18. • Their magnetic and half-metallic properties changed with lattice distortion.

  10. Enhanced high-potential and elevated-temperature cycling stability of LiMn2O4 cathode by TiO2 modification for Li-ion battery

    International Nuclear Information System (INIS)

    Yu Lihong; Qiu Xinping; Xi Jingyu; Zhu Wentao; Chen Liquan

    2006-01-01

    The surface of spinel LiMn 2 O 4 was modified with TiO 2 by a simple sol-gel method to improve its electrochemical performance at elevated temperatures and higher working potentials. Compared with pristine LiMn 2 O 4 , surface-modification improved the cycling stability of the material. The capacity retention of TiO 2 -modified LiMn 2 O 4 was more than 85% after 60 cycles at high potential cycles between 3.0 and 4.8 V at room temperature and near to 90% after 30 cycles at elevated temperature of 55 deg. C at 1C charge-discharge rate. SEM studies shows that the surface morphology of TiO 2 -modified LiMn 2 O 4 was different from that of pristine LiMn 2 O 4 . Powder X-ray diffraction indicated that spinel was the only detected phase in TiO 2 -modified LiMn 2 O 4 . Introduction of Ti into LiMn 2 O 4 changed the electronic structures of the particle surface. Therefore a surface solid compound of LiTi x Mn 2-x O 4 may be formed on LiMn 2 O 4 . The improved electrochemical performance of surface-modified LiMn 2 O 4 was attributed to the improved stability of crystalline structure and the higher Li + conductivity

  11. Electronic structure, magnetism and thermoelectricity in layered perovskites: Sr2SnMnO6 and Sr2SnFeO6

    Science.gov (United States)

    Khandy, Shakeel Ahmad; Gupta, Dinesh C.

    2017-11-01

    Layered structures especially perovskites have titanic potential for novel device applications and thanks to the multifunctional properties displayed in these materials. We forecast and justify the robust spin-polarized ferromagnetism in half-metallic Sr2SnFeO6 and semiconducting Sr2SnMnO6 perovskite oxides. Different approximation methods have been argued to put forward their physical properties. The intriguingly intricate electronic band structures favor the application of these materials in spintronics. The transport parameters like Seebeck coefficient, electrical and thermal conductivity, have been put together to establish their thermoelectric response. Finally, the layered oxides are found to switch their application as thermoelectric materials and hence, these concepts design the principles of the technologically desired thermoelectric and spin based devices.

  12. Band gap depiction of quaternary FeMnTiAl alloy using Hubbard (U) potential

    Science.gov (United States)

    Bhat, Tahir Mohiuddin; Yousuf, Saleem; Khandy, Shakeel Ahmad; Gupta, Dinesh C.

    2018-05-01

    We have employed self-consistent ab-initio calculations to investigate new quaternary alloy FeMnTiAl by applying Hubbard potential (U). The alloy is found to be stable in ferromagnetic phase with cubic structure. The alloy shows half-metallic (HM) ferromagnet character. The values of minority band gap FeMnTiAl are found to be 0.33 eV respectively. Electronic charge density reveals that both types of bonds covalent as well as ionic are present in the alloy. Thus the new quaternary alloy can be proved as vital contender for spin valves and spin generator devices.

  13. High mobility half-metallicity in the (LaMnO3)2/(SrTiO3)8 superlattice

    KAUST Repository

    Cossu, Fabrizio

    2013-01-28

    First principles calculations have been performed to investigate the LaMnO3/SrTiO3 superlattice. Structural relaxation within the generalized gradient approximation results in no significant tiltings or rotations of oxygen octahedra, but in distinct distortions in the SrTiO3 region. Taking into account the onsite Coulomb interaction, we find that the Mn spins order ferromagnetically, in contrast to the antiferromagnetic state of bulk LaMnO3. Most importantly, the interface strain combined with charge transfer across the interface induces half-metallicity within the MnO2 layers. The superlattice is particulary interesting for spintronics applications because the half-metallic states are characterized by an extraordinary high mobility.

  14. High mobility half-metallicity in the (LaMnO3)2/(SrTiO3)8 superlattice

    KAUST Repository

    Cossu, Fabrizio; Schwingenschlö gl, Udo; Singh, Nirpendra

    2013-01-01

    First principles calculations have been performed to investigate the LaMnO3/SrTiO3 superlattice. Structural relaxation within the generalized gradient approximation results in no significant tiltings or rotations of oxygen octahedra, but in distinct distortions in the SrTiO3 region. Taking into account the onsite Coulomb interaction, we find that the Mn spins order ferromagnetically, in contrast to the antiferromagnetic state of bulk LaMnO3. Most importantly, the interface strain combined with charge transfer across the interface induces half-metallicity within the MnO2 layers. The superlattice is particulary interesting for spintronics applications because the half-metallic states are characterized by an extraordinary high mobility.

  15. Effects of flue gas components on removal of elemental mercury over Ce–MnO_x/Ti-PILCs

    International Nuclear Information System (INIS)

    He, Chuan; Shen, Boxiong; Li, Fukuan

    2016-01-01

    Highlights: • Ce–MnO_x/Ti-PILC exhibited high Hg"0 removal activity. • SO_2 restrained Hg"0 oxidation and adsorption due to the formation of SO_4"2"−. • The formation of NH_3 to NH_4"+ restrained the Hg"0 adsorption and oxidation. - Abstract: The adsorption and oxidation of elemental mercury (Hg"0) under various flue gas components were investigated over a series of Ce–MnO_x/Ti-PILC catalysts, which were synthesized by an impregnation method. To discuss the mechanism, the catalysts were characterized by various techniques such as N_2 adsorption–desorption, scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) analysis and X-ray photoelectron spectroscopy (XPS). The results indicated that the presence of 500 ppm SO_2 in the flue gas significantly restrained the Hg"0 adsorption and oxidation over 6%Ce–6%MnO_x/Ti-PILC due to the formation of SO_4"2"− species. Hg"0 could be oxidized to HgCl_2 in the presence of HCl, because the Deacon process occurred. NO would react with active oxygen to form NO_2-containing species, which facilitated Hg"0 oxidation. While the presence of NO limited the Hg"0 adsorption on 6%Ce–6%MnO_x/Ti-PILC due to the competitive adsorption of NO with Hg"0. The addition of NH_3 in the flue gas significantly restrained Hg"0 adsorption and oxidation, because the formed NH_4"+ species covered the active adsorption sites on the surfaces, and further limited Hg"0 oxidation. However, when NO and NH_3 were simultaneously added into the flue gas, the Hg"0 oxidation efficiency of 6%Ce–6%MnO_x/Ti-PILC exhibited a relatively high value (72%) at 250 °C, which indicated the practicability to use Ce–MnO_x/Ti-PILC for Hg"0 removal under SCR conditions.

  16. Epitaxial TiO 2/SnO 2 core-shell heterostructure by atomic layer deposition

    KAUST Repository

    Nie, Anmin; Liu, Jiabin; Li, Qianqian; Cheng, Yingchun; Dong, Cezhou; Zhou, Wu; Wang, Pengfei; Wang, Qingxiao; Yang, Yang; Zhu, Yihan; Zeng, Yuewu; Wang, Hongtao

    2012-01-01

    Taking TiO 2/SnO 2 core-shell nanowires (NWs) as a model system, we systematically investigate the structure and the morphological evolution of this heterostructure synthesized by atomic layer deposition/epitaxy (ALD/ALE). All characterizations

  17. Inhomogeneous distribution of manganese atoms in ferromagnetic ZnSnAs{sub 2}:Mn thin films on InP revealed by three-dimensional atom probe investigation

    Energy Technology Data Exchange (ETDEWEB)

    Uchitomi, Naotaka, E-mail: uchitomi@nagaokaut.ac.jp; Inoue, Hiroaki; Kato, Takahiro; Toyota, Hideyuki [Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan); Uchida, Hiroshi [Toshiba Nanoanalysis Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan)

    2015-05-07

    Atomic-scale Mn distributions in ferromagnetic ZnSnAs{sub 2}:Mn thin films grown on InP substrates have been studied by applying three-dimensional atom probe (3DAP) microscopy. It is found that Mn atoms in cross-sectional 3DAP maps show the presence of inhomogeneities in Mn distribution, which is characteristic patterns of a spinoidal decomposition phase with slightly high and low concentration regions. The high Mn concentration regions are expected to be coherently clustered MnAs in the zinc-blende structure, resulting in the formation of Mn-As random connecting patterns. The origin of room-temperature ferromagnetism in ZnSnAs{sub 2}:Mn on InP can be well explained by the formation of atomic-scale magnetic clustering by spinoidal decomposition without breaking the continuity of the zinc-blende structure, which has been suggested by previous theoretical works. The lattice-matching between magnetic epi-layers and substrates should be one of the most important factors to avoid the formation of secondary hexagonal MnAs phase precipitates in preparing ferromagnetic semiconductor thin films.

  18. Synthesis and enhanced electrochemical performance of the honeycomb TiO2/LiMn2O4 cathode materials

    DEFF Research Database (Denmark)

    Zhang, J.Y.; Shen, J.X.; Wei, C.B.

    2016-01-01

    angle compare to LiMn2O4, implying that TiO2 doping induced a change of crystal structure. By performing electrochemical measurements, we observed an enhancement of specific capacity (127.28 mAhg−1) and an improvement of cycling stability in the TiO2/LiMn2O4 hybrid materials. After 100 cycles of charge...

  19. Tuning martensitic transformation, large magnetoresistance and strain in Ni50-xFexMn36Sn14 Heusler alloys

    Science.gov (United States)

    Liao, Pan; Jing, Chao; Zheng, Dong; Li, Zhe; Kang, Baojuan; Deng, Dongmei; Cao, Shixun; Lu, Bo; Zhang, Jincang

    2015-09-01

    We have investigated the martensitic transformation, exchange bias, magnetoresistance (MR) and strain in Ni50-xFexMn36Sn14 (x=1, 2, 3, 4) Heusler alloys. With the increase of Fe content, the austenite phase could be stabilized with L21 structure and hence the martensitic transition shifts to a lower temperature and finally disappears. This behavior can be understood by the weakening of Ni-Mn hybridization to suppress AFM interactions and enhancement of Fe-Fe ferromagnetic exchange interactions. The same reason can account for the slight decrease of exchange bias field (HEB) with the increase of the Fe content from x=1 to 2 and the disappearance of HEB for x=3. We observed MR effect for x=3, and a maximum MR value of -52% was achieved, which can be explained by the change in the electronic structure during martensitic transformation induced by the magnetic field. In addition, a large strain of 0.207% in Ni49Fe1Mn36Sn14 was observed due to the changes of lattice parameters during the martensitic transformation induced by temperature.

  20. Electronic structure and magnetism of new ilmenite compounds for spintronic devices: FeBO{sub 3} (B = Ti, Hf, Zr, Si, Ge, Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, R.A.P. [Department of Chemistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR (Brazil); Camilo, A. [Department of Physics, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR (Brazil); Lazaro, S.R. de, E-mail: srlazaro@uepg.br [Department of Chemistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR (Brazil)

    2015-11-15

    First-principles calculations were performed in the framework of Density Functional Theory (DFT) within hybrid functional (B3LYP) to study the electronic structure and magnetic properties of new ilmenite FeBO{sub 3} (B=Ti, Hf, Zr, Si, Ge, Sn) materials. In particular, the magnetic exchange interaction between Fe{sup 2+} layers is dependent on the interlayer distance and it can be controlled by ionic radius of B-site cation. Thus, Fe(Ti, Si, Ge)O{sub 3} are antiferromagnetic materials, while Fe(Zr, Hf, Sn)O{sub 3} are ferromagnetic. We also argue that antiferromagnetic materials and FeZrO{sub 3} are convectional semiconductors, whereas FeHfO{sub 3} and FeSnO{sub 3} exhibit intrinsic half-metallic behavior, making them promising candidates for spintronic devices. - Highlights: • We study electronic structure and magnetism of new FeBO{sub 3} (B=Ti, Hf, Zr, Si, Ge, Sn) ilmenite materials. • We found that magnetic ordering of Fe-based ilmenite materials can be controlled by size of B-site cation. • Fe(Ti, Zr, Si, Ge)O{sub 3} are convectional semiconductors. • FeHfO{sub 3} and FeSnO{sub 3} exhibit intrinsic half-metallic behavior with potential application for spintronic devices.

  1. Defect annealing in Mn/Fe-implanted TiO2 (rutile)

    International Nuclear Information System (INIS)

    Gunnlaugsson, H P; Svane, A; Weyer, G; Mantovan, R; Masenda, H; Naidoo, D; Mølholt, T E; Gislason, H; Ólafsson, S; Johnston, K; Bharuth-Ram, K; Langouche, G

    2014-01-01

    A study of the annealing processes and charge state of dilute Fe in rutile TiO 2 single crystals was performed in the temperature range 143–662 K, utilizing online 57 Fe emission Mössbauer spectroscopy following low concentrations (<10 −3  at%) implantation of 57 Mn (T 1/2  = 1.5 min). Both Fe 3+ and Fe 2+ were detected throughout the temperature range. Three annealing stages were distinguished: (i) a broad annealing stage below room temperature leading to an increased Fe 3+ fraction; (ii) a sharp annealing stage at ∼330 K characterized by conversion of Fe 3+ to Fe 2+ and changes in the hyperfine parameters of Fe 2+ , attributed to the annealing of Ti vacancies in the vicinity of the probe atoms; and (iii) an annealing stage in the temperature range from 550 to 600 K, where all Fe ions are transformed to Fe 3+ , attributed to the annealing of the nearby O vacancies. The dissociation energy of Mn Ti –V O pairs was estimated to be 1.60(15) eV. Fe 2+ is found in an environment where it can probe the lattice structure through the nuclear quadrupole interaction evidencing the extreme radiation hardness of rutile TiO 2 . Fe 3+ is found in a paramagnetic state with slow spin–lattice relaxation which follows a ∼T n temperature dependence with 4.1 < n < 6.3 at T > 350 K. (paper)

  2. Uso de métodos químicos para obtener polvos cerámicos del sistema (Sn, TiO2

    Directory of Open Access Journals (Sweden)

    Rodríguez-Páez, J E.

    2005-08-01

    Full Text Available The (Sn,TiO2 system has a great interest due to its technological applications such as gas sensor and varistor. Although the thermodynamic properties and the kinetics of spinoidal decomposition in this system have been extensively studied, the general properties and applications of SnO2 – TiO2 binary compositions have been not investigated yet in depth. On the other hand, little work has been done to optimize the synthesis methods to obtain (Sn,TiO2 ceramic powders, with pre – determinate physical and chemical characteristics. In this work the ceramic powders has been obtained by coprecipitation and polymeric precursor (Pechini methods. The different physical chemistry phenomena that occurred during the synthesis were discussed. The (Sn,TiO2 ceramic powders were characterized with X- ray diffraction (XRD, thermal analysis (DTA/ TG and scanning electron microscopy (SEM. The knowledge about of steps and variables of synthesis process acquired with development of this work, we permited to obtain (Sn, TiO2 nanometers particles to low temperatures: to 450°C for coprecipitation method and to 600°C for Pechini method. The spinodal decomposition that ocurr to 900°C was discussed also.El sistema (Sn,TiO2, puro o dopado, tiene gran interés por las potencialidades tecnológicas que presenta como sensor de gas y varistor. A pesar del amplio estudio realizado de este sistema binario, respecto a las propiedades termodinámicas y cinéticas de la descomposición espinoidal que en él se presenta, sus propiedades y sus posibles aplicaciones no se han abordado con profundidad. Por otro lado, se ha realizado muy poco trabajo para optimizar métodos de síntesis que permitan obtener polvos cerámicos de (Sn,TiO2, puro o dopado, con características físicas y químicas pre-determinadas. En este trabajo se realizó la síntesis de polvos cerámicos de este sistema utilizando los métodos de coprecipitación y precursor polimérico (Pechini y se discutieron

  3. Site occupancy, composition and magnetic structure dependencies of martensitic transformation in Mn2Ni1 + x Sn1-x.

    Science.gov (United States)

    Kundu, Ashis; Ghosh, Subhradip

    2017-11-29

    A delicate balance between various factors such as site occupancy, composition and magnetic ordering seems to affect the stability of the martensitic phase in [Formula: see text] [Formula: see text] [Formula: see text]. Using first-principles DFT calculations, we explore the impacts of each one of these factors on the martensitic stability of this system. Our results on total energies, magnetic moments and electronic structures upon changes in the composition, the magnetic configurations and the site occupancies show that the occupancies at the 4d sites in the inverse Heusler crystal structure play the most crucial role. The presence of Mn at the 4d sites originally occupied by Sn and its interaction with the Mn atoms at other sites decide the stability of the martensitic phases. This explains the discrepancy between the experiments and earlier DFT calculations regarding phase stability in [Formula: see text]NiSn. Our results qualitatively explain the trends observed experimentally with regard to martensitic phase stability and the magnetisations in Ni-excess, Sn-deficient [Formula: see text]NiSn system.

  4. First-principles prediction of shape memory behavior and ferrimagnetism in Mn2NiSn

    International Nuclear Information System (INIS)

    Paul, Souvik; Ghosh, Subhradip

    2011-01-01

    Using first-principles density functional theory, we show that, in Mn 2 NiSn, an energy lowering phase transition from the cubic to tetragonal phase occurs which indicates a martensitic phase transition. This structural phase transition is nearly volume-conserving, implying that this alloy can exhibit shape memory behavior. The magnetic ground state is a ferrimagnetic one with antiparallel Mn spin moments. The calculated moments with different electronic structure methods in the cubic phase compare well with each other but differ from the experimental values by more than 1 μ B . The reason behind this discrepancy is explored by considering antisite disorder in our calculations, which indicates that the site ordering in this alloy can be quite complex.

  5. H–TiO{sub 2}/C/MnO{sub 2} nanocomposite materials for high-performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Di, Jing; Fu, Xincui; Zheng, Huajun, E-mail: zhenghj@zjut.edu.cn [Zhejiang University of Technology, Department of Applied Chemistry (China); Jia, Yi [Griffith University, Nathan Campus, Queensland Micro and Nanotechnology Centre (Australia)

    2015-06-15

    Functionalized TiO{sub 2} nanotube arrays with decoration of MnO{sub 2} nanoparticles (denoted as H–TiO{sub 2}/C/MnO{sub 2}) have been synthesized in the application of electrochemical capacitors. To improve both areal and gravimetric capacitance, hydrogen treatment and carbon coating process were conducted on TiO{sub 2} nanotube arrays. By scanning electron microscopy and X-ray photoelectron spectroscopy, it is confirmed that the nanostructure is formed by the uniform incorporation of MnO{sub 2} nanoparticles growing round the surface of the TiO{sub 2} nanotube arrays. Impedance analysis proves that the enhanced capacitive is due to the decrease of charge transfer resistance and diffusion resistance. Electrochemical measurements performed on this H–TiO{sub 2}/C/MnO{sub 2} nanocomposite when used as an electrode material for an electrochemical pseudocapacitor presents quasi-rectangular shaped cyclic voltammetry curves up to 100 mV/s, with a large specific capacitance (SC) of 299.8 F g{sup −1} at the current density of 0.5 A g{sup −1} in 1 M Na{sub 2}SO{sub 4} electrolyte. More importantly, the electrode also exhibits long-term cycling stability, only ∼13 % of SC loss after 2000 continuous charge–discharge cycles. Based on the concept of integrating active materials on highly ordered nanostructure framework, this method can be widely applied to the synthesis of high-performance electrode materials for energy storage.

  6. Microstructure Of A SIC/(Ti/V/Cr/Sn/Al) Composite

    Science.gov (United States)

    Lerch, Bradley A.; Hull, David R.; Leonhardt, Todd A.

    1990-01-01

    NASA technical memorandum reports on analysis of composite material made of SiC fibers in matrix of 0.76 Ti/0.15 V/0.03 Cr/0.03 Sn/0.03 Al (parts by weight) alloy. Purposes of study to investigate suitability of some metallographic techniques for use on composite materials in general and to obtain information about macrostructure and microstructure of this specific composite to provide guidance for experimental and theoretical studies of more advanced composites.

  7. Photoreduction of Carbon Dioxide to Methane Over Sb1.5Sn8.5-x Ti x O19.0 with High Conductivity.

    Science.gov (United States)

    Do, Jeong Yeon; Kwak, Byeong Sub; Kang, Misook

    2018-09-01

    In order to enhance the photoreduction of CO2 to CH4, a new type of photocatalyst, Sb1.5Sn8.5-xTixO19.0, with high conductivity and low bandgap was developed by partially incorporating Ti into the framework of Sb1.5Sn8.5O19.0 (antimony-doped tin oxide, ATO) using a controlled hydrothermal method. XRD and TEM analyses indicated that the Sb1.5Sn8.5-xTixO19.0 particles exhibited a tetragonal crystal structure and were approximately 20 nm in size. Furthermore, the bandgap and conductivity of these materials increased with increasing Ti content. A study of the photoreduction of CO2 with H2O revealed a remarkable increase in the generation of CH4 over the Sb1.5Sn8.5-xTixO19.0 catalysts. In particular, CH4 generation was the highest when Sb1.5Sn8.5Ti1.0O19.0 was used as the photocatalyst, and was three-fold higher than that achieved by using anatase TiO2. Photoluminescence studies showed that the enhanced photocatalytic activity of the Sb1.5Sn8.5-xTixO19.0 materials could be attributed to the interfacial transfer of photogenerated charges, which led to an effective charge separation and inhibition of the recombination of photogenerated electron-hole (e-/h+) pairs.

  8. SnCl2/TiCl3-Mediated Deoximation of Oximes in an Aqueous Solvent

    Directory of Open Access Journals (Sweden)

    Tsung-Hsun Chuang

    2012-03-01

    Full Text Available A simple procedure for SnCl2/TiCl3-mediated deoximation of ketoximes in an aqueous solvent is reported. Under the conditions developed in this effort, various ketones and aldehydes are produced in good to excellent yields.

  9. Evaluation of Surface Mechanical Properties and Grindability of Binary Ti Alloys Containing 5 wt % Al, Cr, Sn, and V

    Directory of Open Access Journals (Sweden)

    Hae-Soon Lim

    2017-11-01

    Full Text Available This study aimed to investigate the relationship between the surface mechanical properties and the grindability of Ti alloys. Binary Ti alloys containing 5 wt % concentrations of Al, Cr, Sn, or V were prepared using a vacuum arc melting furnace, and their surface properties and grindability were compared to those of commercially pure Ti (cp-Ti. Ti alloys containing Al and Sn had microstructures that consisted of only α phase, while Ti alloys containing Cr and V had lamellar microstructures that consisted of α + β phases. The Vickers microhardness of Ti alloys was increased compared to those of cp-Ti by the solid solution strengthening effect. Among Ti alloys, Ti alloy containing Al had the highest Vickers microhardness. At a low SiC wheel speed of 5000 rpm, the grinding rates of Ti alloys showed an increasing tendency as the hardness values of Ti alloys decreased. At a high SiC wheel speed of 10,000 rpm, the grinding rates of Ti alloys showed an increasing tendency as the tensile strength values increased. The Ti alloy containing Al, which showed the lowest tensile strength, had the lowest grinding rate. The grinding ratios of the Ti alloys were higher than those of cp-Ti at both wheel revolution speeds of 5000 and 10,000 rpm. The grinding ratio of the Ti alloy containing Al was significantly increased at 10,000 rpm (p < 0.05.

  10. The Adsorption Langmuir Model of Transfer Metal Ti, V and Mn on System Water-Sediment in Along Side Code River, Yogyakarta

    International Nuclear Information System (INIS)

    Rini Jati Wardani; Muzakky; Agus Taftazani

    2007-01-01

    The adsorption langmuir model of transfer metal Ti, V and Mn on system water-sediment in along side Code river, Yogyakarta has been studied. For that purpose, the study is to make prediction about adsorption langmuir model of identified metal Ti, V and Mn from upstream until downstream samples water and sediment in along side Code river. The factor influenced of langmuir adsorption on transfer metal Ti, V and Mn in system water-sediment is Total Suspended Solid (TSS). The analysis showed that between TSS with metal concentration in sediment have linear correlation. The result of calculation from curve of langmuir isotherm, showed for Ti has R 2 = 0.8006 with capacities of adsorption = 0.5 mol/l and energy of adsorption = 13.286 J/mol, V has R 2 = 0.9883 with capacities of adsorption = 0.0137 mol/l and energy of adsorption = 16.64 J/mol, Mn has R 2 = 0.9624 with capacities of adsorption 0.152 mol/l and energy of adsorption = 10.51 J/mol. The conclusion from this topic about adsorption langmuir for metal Ti, V and Mn according to energy of langmuir adsorption by chemisorption process above 10 J/mo. (author)

  11. Novel Montmorillonite/TiO2/MnAl-Mixed Oxide Composites Prepared from Inverse Microemulsions as Combustion Catalysts

    Directory of Open Access Journals (Sweden)

    Bogna D. Napruszewska

    2017-11-01

    Full Text Available A novel design of combustion catalysts is proposed, in which clay/TiO2/MnAl-mixed oxide composites are formed by intermixing exfoliated organo-montmorillonite with oxide precursors (hydrotalcite-like in the case of Mn-Al oxide obtained by an inverse microemulsion method. In order to assess the catalysts’ thermal stability, two calcination temperatures were employed: 450 and 600 °C. The composites were characterized with XRF (X-ray fluorescence, XRD (X-ray diffraction, HR SEM (high resolution scanning electron microscopy, N2 adsorption/desorption at −196 °C, and H2 TPR (temperature programmed reduction. Profound differences in structural, textural and redox properties of the materials were observed, depending on the presence of the TiO2 component, the type of neutralization agent used in the titania nanoparticles preparation (NaOH or NH3 (aq, and the temperature of calcination. Catalytic tests of toluene combustion revealed that the clay/TiO2/MnAl-mixed oxide composites prepared with the use of ammonia showed excellent activity, the composites obtained from MnAl hydrotalcite nanoparticles trapped between the organoclay layers were less active, but displayed spectacular thermal stability, while the clay/TiO2/MnAl-mixed oxide materials obtained with the aid of NaOH were least active. The observed patterns of catalytic activity bear a direct relation to the materials’ composition and their structural, textural, and redox properties.

  12. Fatigue and strain effects in NbTi, Nb3Sn, and V2(Hf, Zr) multifilamentary superconductors

    International Nuclear Information System (INIS)

    Kuroda, T.; Wada, H.; Tachikawa, K.

    1988-01-01

    The effects of cyclic strain on critical current were studied in NbTi, bronze processed Nb 3 Sn, and composite diffusion processed V 2 (Hf,Zr) multifilamentary wires. No appreciable changes in critical current were found in NbTi wires until just prior to fatigue-induced fracture. Critical current degradation was also not observed in Nb 3 Sn or V 2 (Hf,Zr) as long as the wires were strained below the reversible limit strain. For strains beyond this limit strain the critical current was first degraded by an increasing number of cycles and then remained constant after a certain cycle number was passed

  13. Coupling catalytic hydrolysis and oxidation on Mn/TiO2-Al2O3 for HCN removal

    Science.gov (United States)

    Wang, Langlang; Wang, Xueqian; Cheng, Jinhuan; Ning, Ping; Lin, Yilong

    2018-05-01

    The manganese-modified titania-alumina (Mn/TiO2-Al2O3) catalyst synthesized by sol-gol method was used to remove hydrogen cyanide (HCN) from simulated flue gas. Further, effects of the mass ratios of Ti/Al, Mn loading, calcination temperature, and relative humidity on HCN conversion efficiency and catalytic activity were systematically investigated. The results indicated that the Mn/TiO2-Al2O3 catalyst exhibited significantly enhanced HCN removal efficiency, and the maximum yield of N2 increased to 68.02% without the participation of water vapor. When water vapor was added into the flue gas, the yield of N2 decreased and the formation of NOx was also inhibited. The XRD and XPS results indicated that Mn was mainly present in the form of Mn2+, Mn3+, and Mn4+ on the surface of catalyst and chemisorbed oxygen played a major role in the HCN catalytic oxidation process. The results of DSC-TGA analysis and H2-TPR indicated that the catalyst also exhibited a good thermal and chemical stability. NH3-TPD and CO2-TPD indicated that the surface of the catalyst mainly contained acidic sites. During the reaction, part of NH3 was adsorbed by Brönsted and Lewis acid sites. NH3 adsorbed on Lewis acid sites participated in NH3-SCR, which reduced the amount of NOx produced and resulted in a high N2 yield.

  14. Spin-polarized electron gas in Co2MSi/SrTiO3(M= Ti, V, Cr, Mn, and Fe) heterostructures

    KAUST Repository

    Nazir, S.

    2016-06-08

    Spin-polarized density functional theory is used to study the TiO2 terminated interfaces between the magnetic Heusler alloys Co2Si (M = Ti, V, Cr, Mn, and Fe) and the non-polar band insulator SrTiO3. The structural relaxation at the interface turns out to depend systematically on the lattice mis- match. Charge transfer from the Heusler alloys (mainly the M 3d orbitals) to the Ti dxy orbitals of the TiO2 interface layer is found to gradually grow from M = Ti to Fe, resulting in an electron gas with increasing density of spin-polarized charge carriers. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  15. Comparative Study of Heat Transfer from Nb-Ti and Nb$_3$Sn coils to He II

    CERN Document Server

    La China, M

    2008-01-01

    In superconducting magnets, the energy deposited or generated in the coil must be evacuated to prevent temperature rise and consequent transition of the superconductor to the resistive state. The main barrier to heat extraction is represented by the electric insulation wrapped around superconducting cables. In the LHC, insulation improvement is a key point in the development of interaction region magnets and injector chain fast-pulsed magnets for luminosity upgrade; the high heat load of these magnets, in fact, is not compatible with the use of current insulation schemes. We review the standard insulation schemes for Nb-Ti and Nb$_{3}$Sn technology from the thermal point of view. We implement, in an analytical model, the strongly nonlinear thermal resistances of the different coil components including the permeability to superfluid helium of Nb-Ti insulations, measured during the LHC main dipole development. We use such a model to compare Nb-Ti and Nb$_{3}$Sn technologies by taking into account their specific...

  16. Improvement of thermoelectric properties for half-Heusler TiNiSn by interstitial Ni defects

    International Nuclear Information System (INIS)

    Hazama, Hirofumi; Matsubara, Masato; Asahi, Ryoji; Takeuchi, Tsunehiro

    2011-01-01

    We have synthesized off-stoichiometric Ti-Ni-Sn half-Heusler thermoelectrics in order to investigate the relation between randomly distributed defects and thermoelectric properties. A small change in the composition of Ti-Ni-Sn causes a remarkable change in the thermal conductivity. An excess content of Ni realizes a low thermal conductivity of 2.93 W/mK at room temperature while keeping a high power factor. The low thermal conductivity originates in the defects generated by an excess content of Ni. To investigate the detailed defect structure, we have performed first-principles calculations and compared with x ray photoemission spectroscopy measurement. Based on these analyses, we conclude that the excess Ni atoms randomly occupy the vacant sites in the half-Heusler structure, which play as phonon scattering centers, resulting in significant improvement of the figure of merit without any substitutions of expensive heavy elements, such as Zr and Hf.

  17. Preparation, characterization, and application of Ti/TiO2-NTs/Sb-SnO2 electrode in photo-electrochemical treatment of industrial effluents under mild conditions.

    Science.gov (United States)

    Subba Rao, Anantha N; Venkatarangaiah, Venkatesha T

    2018-04-01

    Ti/TiO 2 -NTs/Sb-SnO 2 electrode was prepared by gradient pulsed electrodeposition, and its electrochemical properties were evaluated. The catalytic activity and reusability of the electrode were tested by electrochemical oxidation (EO) and photoelectrochemical oxidation (PEO) of organics present in textile industry wastewater (TWW) and coffee bean processing industry wastewater (CWW). COD removal of ~ 41% was achieved after 5-h electrolysis under a constant applied current density of 30 mA cm -2 for TWW and 50 mA cm -2 for CWW. Nearly 14 and 18% increment in COD removal was observed under PEO for TWW and CWW, respectively. The turbidity of TWW reduced from 15 to ~ 3 NTU and the turbidity of CWW reduced from 27 to ~ 3 NTU by both EO and PEO. The % COD removal observed after 5-h electrolysis remained consistent for 7 repeated cycles; however, the catalytic activity of the electrode reduced gradually. These results suggested that the Ti/TiO 2 -NTs/Sb-SnO 2 can be a potential electrode for the treatment of industrial wastewater.

  18. Proximity effects on the spin density waves in X/Cr(001) multilayers (X = Sn, V, and Mn)

    Energy Technology Data Exchange (ETDEWEB)

    Amitouche, F. [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-Ouzou, B.P. No17 RP, 15000 Tizi-Ouzou (Algeria); Bouarab, S., E-mail: bouarab_said@mail.ummto.d [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-Ouzou, B.P. No17 RP, 15000 Tizi-Ouzou (Algeria); Tazibt, S. [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-Ouzou, B.P. No17 RP, 15000 Tizi-Ouzou (Algeria); Vega, A. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, Prado de la Magdalena s/n, E-47011 Valladolid (Spain); Demangeat, C. [Institut de Physique, 3 rue de l' Universite 67000 Strasbourg (France)

    2011-01-03

    We present ab initio density functional calculations of the electronic structure and magnetic properties of X{sub 2}/Cr{sub 36}(001) and X{sub 1}/Cr{sub 37}(001) multilayers, with X = Sn, V and Mn, to investigate the impact of the proximity effects of the X layers on the spin density waves of the Cr slab. We find different magnetic profiles corresponding to the spin density wave and to the layered antiferromagnetic configurations. The nature of the different magnetic solutions is discussed in terms of the different interfacial environments in the proximity of Sn, V or Mn. The magnetic behavior at the interface is discussed in connection with the electronic structure through the density of electronic states projected at the interfacial X and Cr sites. We compare the results with those previously obtained for Fe{sub 3}/X{sub 1}/Cr{sub 37}/X{sub 1}(001) multilayers to analyze the role played by the ferromagnetic iron slab.

  19. Proximity effects on the spin density waves in X/Cr(001) multilayers (X = Sn, V, and Mn)

    International Nuclear Information System (INIS)

    Amitouche, F.; Bouarab, S.; Tazibt, S.; Vega, A.; Demangeat, C.

    2011-01-01

    We present ab initio density functional calculations of the electronic structure and magnetic properties of X 2 /Cr 36 (001) and X 1 /Cr 37 (001) multilayers, with X = Sn, V and Mn, to investigate the impact of the proximity effects of the X layers on the spin density waves of the Cr slab. We find different magnetic profiles corresponding to the spin density wave and to the layered antiferromagnetic configurations. The nature of the different magnetic solutions is discussed in terms of the different interfacial environments in the proximity of Sn, V or Mn. The magnetic behavior at the interface is discussed in connection with the electronic structure through the density of electronic states projected at the interfacial X and Cr sites. We compare the results with those previously obtained for Fe 3 /X 1 /Cr 37 /X 1 (001) multilayers to analyze the role played by the ferromagnetic iron slab.

  20. Effect of Mn and AlTiB Addition and Heattreatment on the Microstructures and Mechanical Properties of Al-Si-Fe-Cu-Zr Alloy.

    Science.gov (United States)

    Yoo, Hyo-Sang; Kim, Yong-Ho; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-09-01

    The microstructure and mechanical properties of as-extruded Al-0.1 wt%Si-0.2 wt%Fe- 0.4 wt%Cu-0.04 wt%Zr-xMn-xAlTiB (x = 1.0 wt%) alloys under various annealing processes were investigated and compared. After the as-cast billets were kept at 400 °C for 1 hr, hot extrusion was carried out with a reduction ratio of 38:1. In the case of the as-extruded Al-Si-Fe-Cu-Zr alloy at annealed at 620 °C, large equiaxed grain was observed. When the Mn content is 1.0 wt%, the phase exhibits a skeleton morphology, the phase formation in which Mn participated. Also, the volume fraction of the intermetallic compounds increased with Mn and AlTiB addition. For the Al-0.1Si-0.2Fe-0.4Cu-0.04Zr alloy with Mn and AlTiB addition from 1.0 wt%, the ultimate tensile strength increased from 100.47 to 119.41 to 110.49 MPa. The tensile strength of the as-extruded alloys improved with the addition of Mn and AlTiB due to the formation of Mn and AlTiB-containing intermetallic compounds.

  1. Thermo-mechanical treatment of low-cost alloy Ti-4.5Al-6.9Cr-2.3Mn and microstructure and mechanical characteristics

    Science.gov (United States)

    Chen, Guangyao; Kang, Juyun; Wang, Shusen; Wang, Shihua; Lu, Xionggang; Li, Chonghe

    2018-04-01

    In this study, the thermo-mechanical treatment process for low-cost Ti-4.5Al-6.9Cr-2.3Mn alloy were designed on the basis of assessment of Ti-Al-Cr-Mn thermodynamic system. The microstructure and mechanical properties of Ti-4.5Al-6.9Cr-2.3Mn forging and sheet were investigated by using the OM, SEM and universal tensile testing machine. The results show that both the forging and sheet were consisted of α + β phase, which is consistent with the expectation, and no element Cr and Mn existed in the grain boundaries of the sheet after quenching, and the C14 laves phase was not detected. The average ultimate tensile strength (σ b), 0.2% proof strength (σ 0.2) and elongation (EI) of alloy sheet after quenching can reach 1059 MPa, 1051 MPa and 24.6 Pct., respectively. Moreover, the average ultimate tensile strength of Ti-4.5Al-6.9Cr-2.3Mn forgings can reach 1599 MPa and the average elongation can reach 11.2 Pct., and a more excellent property of Ti-4.5Al-6.9Cr-2.3Mn forging is achieved than that of TC4 forging. It provides a theoretical support for further developing this low-cost alloy.

  2. Calculation of phase equilibria in Ti-Al-Cr-Mn quaternary system for developing lower cost titanium alloys

    International Nuclear Information System (INIS)

    Lu, X.G.; Li, C.H.; Chen, L.Y.; Qiu, A.T.; Ding, W.Z.

    2011-01-01

    Highlights: → This paper is about the concept of designing the lower cost titanium alloy. → The thermodynamic database of Ti-Al-Cr-Mn system is built up by Calphad method. → The pseudobinary sections with Cr: Mn = 3:1 and Al = 3, 4.5 and 6.0 wt% are calculated. → This may provide the theoretical support for designing the lower cost titanium alloy. - Abstract: The Ti-Al-Cr-Mn system is a potentially useful system for lower cost titanium alloy development; however, there are few reports about the experimental phase diagrams and the thermodynamical assessment for this system. In this study, the previous investigations for the thermodynamic descriptions of the sub-systems in the Ti-Al-Cr-Mn system are reviewed, our previous assessment for the related sub-systems in this quaternary system is summarized, the thermodynamical database of this quaternary system is built up by directly extrapolating from all sub-systems assessed by means of the Calphad method, then the pseudobinary sections with Cr:Mn = 3:1 and Al = 0.0, 3.0, 4.5 and 6.0 wt% are calculated, respectively. These pseudobinary phase diagrams may provide the theoretical support for designing the lower cost titanium alloys with different microstructures (α, α + β, and β titanium alloy).

  3. Evidence from EXAFS for Different Ta/Ti Site Occupancy in High Critical Current Density Nb3Sn Superconductor Wires.

    Science.gov (United States)

    Heald, Steve M; Tarantini, Chiara; Lee, Peter J; Brown, Michael D; Sung, ZuHawn; Ghosh, Arup K; Larbalestier, David C

    2018-03-19

    To meet critical current density, J c , targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb 3 Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed Extended X-ray Absorption Fine Structure (EXAFS) to determine the lattice site location of dopants in modern high-performance Nb 3 Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.

  4. Comparative study of heat transfer from Nb-Ti and Nb_{3}Sn coils to He II

    Directory of Open Access Journals (Sweden)

    Marco La China

    2008-08-01

    Full Text Available In superconducting magnets, the energy deposited or generated in the coil must be evacuated to prevent temperature rise and consequent transition of the superconductor to the resistive state. The main barrier to heat extraction is represented by the electric insulation wrapped around superconducting cables. In the LHC, insulation improvement is a key point in the development of interaction region magnets and injector chain fast-pulsed magnets for luminosity upgrade; the high heat load of these magnets, in fact, is not compatible with the use of current insulation schemes. We review the standard insulation schemes for Nb-Ti and Nb_{3}Sn technology from the thermal point of view. We implement, in an analytical model, the strongly nonlinear thermal resistances of the different coil components including the permeability to superfluid helium of Nb-Ti insulations, measured during the LHC main dipole development. We use such a model to compare Nb-Ti and Nb_{3}Sn technologies by taking into account their specific operating margin in different working conditions. Finally, we propose an insulation scheme to enhance the heat transfer capability of Nb-Ti coils.

  5. Fluorescence and afterglow of Ca2Sn2Al2O9:Mn2+

    Science.gov (United States)

    Takemoto, Minoru; Iseki, Takahiro

    2018-03-01

    By using a polymerized complex method, we synthesized manganese (Mn)-doped Ca2Sn2Al2O9, which exhibits yellow fluorescence and afterglow at room temperature when excited by UV radiation. The material emits a broad, featureless fluorescence band centered at 564 nm, which we attribute to the presence of Mn2+ ions. The afterglow decay is well fit by a power-law function, rather than an exponential function. In addition, thermoluminescence analyses demonstrate that two different types of electron traps form in this material. Based on experimental results, we conclude that the fluorescence and afterglow both result from thermally assisted tunneling, in which trapped electrons are thermally excited to higher-level traps and subsequently tunnel to recombination centers.

  6. Lithium-Excess Research of Cathode Material Li2MnTiO4 for Lithium-Ion Batteries

    OpenAIRE

    Zhang, Xinyi; Yang, Le; Hao, Feng; Chen, Haosen; Yang, Meng; Fang, Daining

    2015-01-01

    Lithium-excess and nano-sized Li2+xMn1−x/2TiO4 (x = 0, 0.2, 0.4) cathode materials were synthesized via a sol-gel method. The X-ray diffraction (XRD) experiments indicate that the obtained main phases of Li2.0MnTiO4 and the lithium-excess materials are monoclinic and cubic, respectively. The scanning electron microscope (SEM) images show that the as-prepared particles are well distributed and the primary particles have an average size of about 20–30 nm. The further electrochemical tests revea...

  7. Effects of alloying elements on the Snoek-type relaxation in Ti–Nb–X–O alloys (X = Al, Sn, Cr, and Mn)

    International Nuclear Information System (INIS)

    Lu, H.; Li, C.X.; Yin, F.X.; Fang, Q.F.; Umezawa, O.

    2012-01-01

    Highlights: ► The O Snoek-type relaxation in the Ti–Nb–X–O alloys was investigated. ► The dipole shape factor (δλ) and critical temperature T c were deduced from the peak. ► The δλ and T c were analyzed in terms of the d-orbital energy level (Md). ► With decreasing Md, the δλ increases and saturates at last while the T c decreases. ► The Md can be taken as a key parameter in designing high damping β-Ti alloys. - Abstract: The effect of alloying elements on the oxygen Snoek-type relaxation in the Ti–24Nb–X–1.7O alloys (X = 1Al, 2Al, 1Sn, 2Sn, 2Cr, 2Mn) was investigated in order to develop high damping materials based on point defect relaxation process. The relaxation strength of the Ti–Nb–Al–O and Ti–Nb–Sn–O alloys is the highest while that of the Ti–Nb–Mn–O and Ti–Nb–Cr–O alloys is the lowest. The dipole shape factor (δλ) and critical temperature T c , which are intrinsic to the Snoek-type relaxation, were figured out and analyzed in terms of the d-orbital energy level (Md) for each alloy based on the measured damping peak. With the decreasing Md, the δλ increases and saturates at last when the Md decreases to a certain value (about 2.435 eV), while the critical temperature T c decreases linearly. The parameter Md can be taken as a key parameter in designing high damping β-Ti alloys, that is, to design an intermediate value of Md at which the values of both δλ and T c are as high as possible.

  8. Mixed phase in cubic and hexagonal HoMn{sub 2} {sup 111}Cd PAC and {sup 119}Sn, {sup 57}Fe Moessbauer studies

    Energy Technology Data Exchange (ETDEWEB)

    Cottenier, S.; Meersschaut, J.; Demuynck, S.; Swinnen, B.; Rots, M. [Leuven Univ. (Belgium). Inst. voor Kern- en Stralingsfysika; Krop, K.; Marzec, J.; Zukrowski, J.; Przewoznik, J.; Japa, E. [Dept. of Solid State Physics, Univ. of Mining and Metallurgy, Krakow (Poland)

    1998-01-01

    Hyperfine parameters on {sup 57}Fe, {sup 119}Sn and {sup 111}Cd substituted into the Mn sublattice were measured by Moessbauer and PAC spectroscopies. From these results it is tentatively concluded that C15 and C14 HoMn{sub 2} are mixed-phase compounds. In C14 HoMn{sub 2} there is no (or small) moment on the 2a site. (orig.) 6 refs.

  9. Electrochemical Degradation of Rhodamine B over Ti/SnO2-Sb Electrode.

    Science.gov (United States)

    Maharana, Dusmant; Niu, Junfeng; Gao, Ding; Xu, Zesheng; Shi, Jianghong

    2015-04-01

    Electrochemical degradation of rhodamine B (C28H31ClN2O3) over Ti/SnO2-Sb anode was investigated in a rectangular cell. The degradation reaction follows pseudo-first-order kinetics. The degradation efficiency of rhodamine B attained >90.0% after 20 minutes of electrolysis at initial concentrations of 5 to 200 mg/L at a constant current density of 20 mA/cm2 with a 10 mmol/L Na2SO4 supporting electrolyte solution. Rhodamine B (50 mg/L) degradation and total organic carbon (TOC) removal ratio achieved 99.9 and 86.7%, respectively, at the optimal conditions after 30 minutes of electrolysis. The results showed that the energy efficiency of rhodamine B (50 mg/L) degradation at the optimal current densities from 2 to 30 mA/cm2 were 23.2 to 84.6 Wh/L, whereas the electrolysis time for 90% degradation of rhodamine B with Ti/SnO2-Sb anode was 36.6 and 7.3 minutes, respectively. The electrochemical method can be an advisable option for the treatment of dyes such as rhodamine B in wastewater.

  10. K{sub 2}MnF{sub 5}·H{sub 2}O as reactant for synthesizing highly efficient red emitting K{sub 2}TiF{sub 6}:Mn{sup 4+} phosphors by a modified cation exchange approach

    Energy Technology Data Exchange (ETDEWEB)

    Han, Tao, E-mail: danbaiht@126.com; Wang, Jun; Lang, Tianchun; Tu, Mingjing; Peng, Lingling

    2016-11-01

    As reactant for synthesizing K{sub 2}TiF{sub 6}:Mn{sup 4+} phosphors, the cross-shaped and cuboid-shaped K{sub 2}MnF{sub 5}·H{sub 2}O powders were prepared by the simple chemical method. Based on the reaction mechanism, oxidizing K{sub 2}MnF{sub 5}·H{sub 2}O (Mn{sup 3+}) to Mn{sup 4+} by KMnO{sub 4} (Mn{sup 7+}), a modified cation exchange approach for synthesizing highly efficient red emitting K{sub 2}TiF{sub 6}:Mn{sup 4+} phosphor was proposed. The obtained K{sub 2}TiF{sub 6}:Mn{sup 4+} (2.7–5.3 at.%) phosphors have the size of 30–80 μm with a rough surface, their emission spectra consist of five narrow bands extending from 580 to 660 nm with the strongest peak at 634.8 nm, whose relative emitting intensity depends on the molar ratio of KMnO{sub 4} to K{sub 2}MnF{sub 5}·H{sub 2}O (the platform value = 3.2), and two broad excitation bands are peaking at ∼365 nm and ∼460 nm. The internal quantum yield of our synthesized K{sub 2}TiF{sub 6}:Mn{sup 4+} phosphors is up to 82.5%, which is higher than the commercial CaAlSiN{sub 3}:Eu{sup 2+} value, their excitation bands peak at ∼460 and ∼365 nm are consistent with those of Y{sub 3}A{sub 5}O{sub 12}:Ce{sup 3+} phosphors and their emission bands are more suitable for the sensitivity curve of photopic human vision. In addition, our synthesized phosphors show better thermal quenching properties. These findings show a large potential of the synthesized K{sub 2}TiF{sub 6}:Mn{sup 4+} phosphors for commercialization. - Highlights: • We synthesize the cross-shaped and cuboid-shaped K{sub 2}MnF{sub 5}·H{sub 2}O. • K{sub 2}MnF{sub 5}·H{sub 2}O is as a reactant for synthesizing K{sub 2}TiF{sub 6}:Mn{sup 4+} phosphors. • K{sub 2}TiF{sub 6}:Mn{sup 4+} will improve the current white LED with high CRI for indoor lighting.

  11. Effect of annealing temperature on microstructure and superelastic properties of a Ti-18Zr-4.5Nb-3Sn-2Mo alloy.

    Science.gov (United States)

    Fu, Jie; Kim, Hee Young; Miyazaki, Shuichi

    2017-01-01

    In this study a new superelastic Ti-18Zr-4.5Nb-3Sn-2Mo alloy was prepared by adding 2at% of Mo as a substitute for Nb to the Ti-18Zr-11Nb-3Sn alloy, and heat treatment at different temperatures was conducted. The temperature dependence of superelasticity and annealing texture was investigated. Texture showed a dependence of annealing temperature: the specimen annealed at 923K for 0.3ks exhibited {113} β β type texture which was similar to the deformation texture, while specimens annealed at 973, 1073K, and 1173K showed {001} β β type recrystallization texture which was preferable for recovery strain. The largest recovery strain of 6.2%, which is the same level as that of the Ti-18Zr-11Nb-3Sn alloy, was obtained in the specimen annealed at 1173K for 0.3ks due to the well-developed {001} β β type recrystallization texture. The Ti-18Zr-3Nb-3Sn-2Mo alloy presented a higher tensile strength compared with the Ti-18Zr-11Nb-3Sn alloy when heat treated at 1173K for 0.3ks, which was due to the solid solution strengthening effect of Mo. Annealing at 923K for 0.3ks was effective in obtaining a good combination of a high strength as 865MPa and a large recovery strain as 5.6%. The high recovery strain was due to the high stress at which the maximum recovery stain was obtained which was attributed to the small grain size formed at low annealing temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Synthesis and Piezoelectric Properties of Li, Ca and Mn-codoped BaTiO3 by a Solvothermal Approach

    International Nuclear Information System (INIS)

    Kimura, T; Dong, Q; Yin, S; Sato, T; Hashimoto, T; Sasaki, A; Aisawa, S

    2013-01-01

    3 at.% Li-doped (Ba 1-x Ca x )(Ti 1-y Mn y )O 3 particles with the Ca 2+ mole fraction, x, of 0–0.09 and Mn mole fraction, y, of 0 and 0.0005 were synthesized by a solvothermal approach at 200°C. The products consisted of nanoparticles of 50–100 nm in diameter, and did not change very much depending on the amount of Li, Ca and Mn-codoping. The change in relative dielectric constant, Δε r , in around room temperature decreased by doping Ca 2+ , and the lowest Δε r (4.51%) could be realized at x value of 0.03. The mechanical quality factor, Q m , of 3 at.% Li-doped (Ba 0.97 Ca 0.03 )(Ti 0.9995 Mn 0.0005 )O 3 increased to 521, and Δε r decreased to 1.72%, while the piezoelectric constant, d 33 (234pC/N), and electromechanical coupling factor, k p (40.0%), did not change very much compared with 3 at.% Li-doped BaTiO 3

  13. Tribological behavior of the kinetic sprayed Ni59Ti16Zr20Si2Sn3 bulk metallic glass

    International Nuclear Information System (INIS)

    Choi, Hanshin; Jo, Hyungho; An, Kyoungjun; Yoon, Sanghoon; Lee, Changhee

    2007-01-01

    Gas atomized amorphous Ni 59 Ti 16 Zr 20 Si 2 Sn 3 feedstock particles were fed into warm gas dynamics and they were successfully overlaid onto the mild steel substrate. Through the X-ray diffractometry and differential scanning calorimetry, it could be confirmed that thermally activated processes such as crystallization and in-flight particle oxidation were effectively suppressed during the modified kinetic spraying process. In order to evaluate the tribological behavior of the kinetic sprayed Ni 59 Ti 16 Zr 20 Si 2 Sn 3 BMG coating, a partially crystallized coating and a fully crystallized coating were prepared by isothermal heat treatments

  14. Neutron diffraction study of the inverse spinels Co2TiO4 and Co2SnO4

    Science.gov (United States)

    Thota, S.; Reehuis, M.; Maljuk, A.; Hoser, A.; Hoffmann, J.-U.; Weise, B.; Waske, A.; Krautz, M.; Joshi, D. C.; Nayak, S.; Ghosh, S.; Suresh, P.; Dasari, K.; Wurmehl, S.; Prokhnenko, O.; Büchner, B.

    2017-10-01

    We report a detailed single-crystal and powder neutron diffraction study of Co2TiO4 and Co2SnO4 between the temperature 1.6 and 80 K to probe the spin structure in the ground state. For both compounds the strongest magnetic intensity was observed for the (111)M reflection due to ferrimagnetic ordering, which sets in below TN=48.6 and 41 K for Co2TiO4 and Co2SnO4 , respectively. An additional low intensity magnetic reflection (200)M was noticed in Co2TiO4 due to the presence of an additional weak antiferromagnetic component. Interestingly, from both the powder and single-crystal neutron data of Co2TiO4 , we noticed a significant broadening of the magnetic (111)M reflection, which possibly results from the disordered character of the Ti and Co atoms on the B site. Practically, the same peak broadening was found for the neutron powder data of Co2SnO4 . On the other hand, from our single-crystal neutron diffraction data of Co2TiO4 , we found a spontaneous increase of particular nuclear Bragg reflections below the magnetic ordering temperature. Our data analysis showed that this unusual effect can be ascribed to the presence of anisotropic extinction, which is associated to a change of the mosaicity of the crystal. In this case, it can be expected that competing Jahn-Teller effects acting along different crystallographic axes can induce anisotropic local strain. In fact, for both ions Ti3 + and Co3 +, the 2 tg levels split into a lower dx y level yielding a higher twofold degenerate dx z/dy z level. As a consequence, one can expect a tetragonal distortion in Co2TiO4 with c /a <1 , which we could not significantly detect in the present work.

  15. Microstructure and gas sensitive properties of alpha-Fe2O3-MO2 (M: Sn and Ti) materials prepared by ball milling

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Lin, R.; Mørup, Steen

    1998-01-01

    Metastable alpha-Fe2O3-MO2 (M: Sn and Ti) solid solutions can be synthesized by mechanical alloying. The alloy formation, microstructure, and gas sensitive properties of mechanically milled alpha-Fe2O3-SnO2 materials are discussed. Tin ions in alpha-Fe2O3 are found to occupy the empty octahedral...... holes in the alpha-Fe2O3 lattice. This interstitial model can also describe the structure of alpha-Fe2O3-TiO2 solid solutions. Finally, a correlation of gas sensitive properties with microstructure of alpha-Fe2O3-SnO2 materials is presented....

  16. Ti-44 Gamma-Ray Emission Lines from SN1987A Reveal an Asymmetric Explosion

    Science.gov (United States)

    Boggs, S. E.; Harrison, F. A.; Miyasaka, H.; Grefenstette, B. W.; Zoglauer, A.; Fryer, C. L.; Reynolds, S. P.; Alexander, D. M.; An, H.; Barret, D.; hide

    2015-01-01

    In core-collapse supernovae, titanium-44 (Ti-44) is produced in the innermost ejecta, in the layer of material directly on top of the newly formed compact object. As such, it provides a direct probe of the supernova engine. Observations of supernova 1987A (SN1987A) have resolved the 67.87- and 78.32-kilo-electron volt emission lines from decay of Ti-44 produced in the supernova explosion. These lines are narrow and redshifted with a Doppler velocity of 700 kilometers per second, direct evidence of large-scale asymmetry in the explosion.

  17. 44Ti gamma-ray emission lines from SN1987A reveal an asymmetric explosion

    DEFF Research Database (Denmark)

    Boggs, S. E.; Harrison, F. A.; Miyasaka, H.

    2015-01-01

    In core-collapse supernovae, titanium-44 (44Ti) is produced in the innermost ejecta, in the layer of material directly on top of the newly formed compact object. As such, it provides a direct probe of the supernova engine. Observations of supernova 1987A (SN1987A) have resolved the 67.87- and 78.......32–kilo–electron volt emission lines from decay of 44Ti produced in the supernova explosion. These lines are narrow and redshifted with a Doppler velocity of ~700 kilometers per second, direct evidence of large-scale asymmetry in the explosion....

  18. Effect of Spark Plasma Sintering on the Structure and Properties of Ti1−xZrxNiSn Half-Heusler Alloys

    Directory of Open Access Journals (Sweden)

    Ruth A. Downie

    2014-10-01

    Full Text Available XNiSn (X = Ti, Zr and Hf half-Heusler alloys have promising thermoelectric properties and are attracting enormous interest for use in waste heat recovery. In particular, multiphase behaviour has been linked to reduced lattice thermal conductivities, which enables improved energy conversion efficiencies. This manuscript describes the impact of spark plasma sintering (SPS on the phase distributions and thermoelectric properties of Ti0.5Zr0.5NiSn based half-Heuslers. Rietveld analysis reveals small changes in composition, while measurement of the Seebeck coefficient and electrical resistivities reveals that all SPS treated samples are electron doped compared to the as-prepared samples. The lattice thermal conductivities fall between 4 W·m−1·K−1 at 350 K and 3 W·m−1·K−1 at 740 K. A maximum ZT = 0.7 at 740 K is observed in a sample with nominal Ti0.5Zr0.5NiSn composition.

  19. Ni-M-O (M=Sn, Ti and W) catalysts prepared from dry mixing method for oxidative dehydrogenation of ethane

    KAUST Repository

    Zhu, Haibo; Rosenfeld, Devon C.; Harb, Moussab; Anjum, Dalaver H.; Hedhili, Mohamed N.; Ould-Chikh, Samy; Basset, Jean-Marie

    2016-01-01

    A new generation of Ni-Sn-O, Ni-Ti-O, and Ni-W-O catalysts has been prepared by a solid state grinding method. In each case the doping metal varied from 2.5% to 20%. These catalysts exhibited higher activity and selectivity for ethane oxidative dehydrogenation (ODH) than conventionally prepared mixed oxides. Detailed characterisation was achieved using XRD, N2 adsorption, H2-TPR, SEM, TEM, and HAADF-STEM in order to study the detailed atomic structure and textural properties of the synthesized catalysts. Two kinds of typical structures are found in these mixed oxides, which are (major) “NixMyO” (M = Sn, Ti or W) solid solution phases (NiO crystalline structure with doping atom incorporated in the lattice) and (minor) secondary phases (SnO2, TiO2 or WO3). The secondary phase exists as a thin layer around small “NixMyO” particles, lowering the aggregation of nanoparticles during the synthesis. DFT calculations on the formation energies of M-doped NiO structures (M = Sn, Ti, W) clearly confirm the thermodynamic feasibility of incorporating these doping metals into NiO struture. The incorporation of doping metals into the NiO lattice decreases the number of holes (h+) localized on lattice oxygen (O2- + h+ ➔ O●-), which is the main reason for the improved catalytic performance (O●- is known to favor complete ethane oxidation to CO2). The high efficiency of ethylene production achieved in these particularly prepared mixed oxide catalysts indicates that the solid grinding method could serve as a general and practical approach for the preparation of doped NiO based catalysts.

  20. Ni-M-O (M=Sn, Ti and W) catalysts prepared from dry mixing method for oxidative dehydrogenation of ethane

    KAUST Repository

    Zhu, Haibo

    2016-03-25

    A new generation of Ni-Sn-O, Ni-Ti-O, and Ni-W-O catalysts has been prepared by a solid state grinding method. In each case the doping metal varied from 2.5% to 20%. These catalysts exhibited higher activity and selectivity for ethane oxidative dehydrogenation (ODH) than conventionally prepared mixed oxides. Detailed characterisation was achieved using XRD, N2 adsorption, H2-TPR, SEM, TEM, and HAADF-STEM in order to study the detailed atomic structure and textural properties of the synthesized catalysts. Two kinds of typical structures are found in these mixed oxides, which are (major) “NixMyO” (M = Sn, Ti or W) solid solution phases (NiO crystalline structure with doping atom incorporated in the lattice) and (minor) secondary phases (SnO2, TiO2 or WO3). The secondary phase exists as a thin layer around small “NixMyO” particles, lowering the aggregation of nanoparticles during the synthesis. DFT calculations on the formation energies of M-doped NiO structures (M = Sn, Ti, W) clearly confirm the thermodynamic feasibility of incorporating these doping metals into NiO struture. The incorporation of doping metals into the NiO lattice decreases the number of holes (h+) localized on lattice oxygen (O2- + h+ ➔ O●-), which is the main reason for the improved catalytic performance (O●- is known to favor complete ethane oxidation to CO2). The high efficiency of ethylene production achieved in these particularly prepared mixed oxide catalysts indicates that the solid grinding method could serve as a general and practical approach for the preparation of doped NiO based catalysts.

  1. Ti@δ-MnO_2 core-shell nanowire arrays as self-supported electrodes of supercapacitors and Li ion batteries

    International Nuclear Information System (INIS)

    Zhao, Guangyu; Zhang, Dong; Zhang, Li; Sun, Kening

    2016-01-01

    Highlights: • Ti@δ-MnO_2 core-shell nanowire arrays prepared by a electrochemical method. • Remarkable rate capability as both Li ion battery and supercapacitor electrodes. • Good electronic conductivity and facilitated mass transport. - Abstract: δ-MnO_2 is a promissing electrode material of supercapacitors and Li ion batteries (LIBs) owing to its low cost, layer structure and composite valence of Mn. However, the unfavorable electronic conductivity of δ-MnO_2 restricts its rate capability in both of the two devices. Herein, a vertically standing Ti nanowire array modified with δ-MnO_2 nanoflakes is prepared by a electrodeposition method, and the electrochemical properties of Ti@δ-MnO_2 nanowire arrays in supercapacitors and LIBs are investigated. The results show that, the arrays have a capacity of 195 F g"−"1 at 1.0 A g"−"1 and can cycle more than 10000 rounds at 10 A g"−"1 as electrodes of supercapacitors. On the other hand, the arrays behave good rate capability as LIB cathodes, which can release a capacity of 70 mAh g"−"1 at 10C rate charge/discharge. We suggest that, the good electronic conductivity owing to the core-shell structure and the facilitated mass transport supplied by the array architecture are responsible for the enhanced rate performances in the two devices.

  2. Magnetic Properties and Magnetocaloric Effect in Layered NdMn1.9Ti0.1Si2

    Directory of Open Access Journals (Sweden)

    M.F. Md Din

    2014-04-01

    Full Text Available The structural and magnetic properties of the NdMn1.9Ti0.1Si2 compund have been studied by high-intensity x-ray and high-resolution neutron powder diffraction, specific heat, dc magnetization, and differential scanning calorimetry measurements over the temperature range of 3-450 K. The Curie temperature and Néel temperature of layered NdMn1.9Ti0.1Si2 are indicated as TC ~ 22 K and TN ~ 374 K respectively. The first order magnetic transition from antiferromagnetic [AFil-type] to ferromagnetic [F(Nd+Fmc] around TC is found in layered NdMn1.9Ti0.1Si2 and is associated with large magnetocaloric effect. This behavior has been confirmed as a contribution of the magnetostructural coupling by using neutron and x-ray powder diffraction. The magnetic entropy change –ΔSM ~ 15.3 J kg-1 K-1 and adiabatic temperature change ΔTad ~ 4.7 K have been determined using magnetization and specific heat measurement under 0-5 T applied fields. This compound exhibits almost no thermal and magnetic hysteresis, thus potentially applicable in low temperature region for magnetic refrigerator material

  3. The design of an Fe-12Mn-O.2Ti alloy steel for low temperature use

    Science.gov (United States)

    Hwang, S. K.; Morris, J. W., Jr.

    1977-01-01

    An investigation was made to improve the low temperature mechanical properties of Fe-8 approximately 12% Mn-O 2Ti alloy steels. A two-phase(alpha + gamma) tempering in combination with cold working or hot working was identified as an effective treatment. A potential application as a Ni-free cryogenic steel was shown for this alloy. It was also shown that an Fe-8Mn steel could be grain-refined by a purely thermal treatment because of its dislocated martensitic structure and absence of epsilon phase. A significant reduction of the ductile-brittle transition temperature was obtained in this alloy. The nature and origin of brittle fracture in Fe-Mn alloys were also investigated. Two embrittling regions were found in a cooling curve of an Fe-12Mn-O 2Ti steel which was shown to be responsible for intergranular fracture. Auger electron spectroscopy identified no segregation during solution-annealing treatment. Avoiding the embrittling zones by controlled cooling led to a high cryogenic toughness in a solution-annealed condition.

  4. Increased photocatalytic activity induced by TiO2/Pt/SnO2 heterostructured films

    Science.gov (United States)

    Testoni, Glaucio O.; Amoresi, Rafael A. C.; Lustosa, Glauco M. M. M.; Costa, João P. C.; Nogueira, Marcelo V.; Ruiz, Miguel; Zaghete, Maria A.; Perazolli, Leinig A.

    2018-02-01

    In this work, a high photocatalytic activity was attained by intercalating a Pt layer between SnO2 and TiO2 semiconductors, which yielded a TiO2/Pt/SnO2 - type heterostructure used in the discoloration of blue methylene (MB) solution. The porous films and platinum layer were obtained by electrophoretic deposition and DC Sputtering, respectively, and were both characterized morphologically and structurally by FE-SEM and XRD. The films with the Pt interlayer were evaluated by photocatalytic activity through exposure to UV light. An increase in efficiency of 22% was obtained for these films compared to those without platinum deposition. Studies on the reutilization of the films pointed out high efficiency and recovery of the photocatalyst, rendering the methodology favorable for the construction of fixed bed photocatalytic reactors. A proposal associated with the mechanism is discussed in this work in terms of the difference in Schottky barrier between the semiconductors and the electrons transfer and trapping cycle. These are fundamental factors for boosting photocatalytic efficiency.

  5. The Poisoning Effect of Na Doping over Mn-Ce/TiO2 Catalyst for Low-Temperature Selective Catalytic Reduction of NO by NH3

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2014-01-01

    Full Text Available Sodium carbonate (Na2CO3, sodium nitrate (NaNO3, and sodium chloride (NaCl were chosen as the precursors to prepare the Na salts deposited Mn-Ce/TiO2 catalysts through an impregnation method. The influence of Na on the performance of the Mn-Ce/TiO2 catalyst for low-temperature selective catalytic reduction of NOx by NH3 was investigated. Experimental results showed that Na salts had negative effects on the activity of Mn-Ce/TiO2 and the precursors of Na salts also affected the catalytic activity. The precursor Na2CO3 had a greater impact on the catalytic activity, while NaNO3 had minimal effect. The characterization results indicated that the significant changes in physical and chemical properties of Mn-Ce/TiO2 were observed after Na was doped on the catalysts. The significant decreases in surface areas and NH3 adsorption amounts were observed after Na was doped on the catalysts, which could be considered as the main reasons for the deactivation of Na deposited Mn-Ce/TiO2.

  6. OPTIMIZATION OF STEEL SATURATION PROCESSES USING CARBIDE-FORMING ELEMENTS IN SYSTEMS BASED ON Cr-Ti-V AND Cr-Ti-Mn

    Directory of Open Access Journals (Sweden)

    A. A. Shmatov

    2007-01-01

    Full Text Available Optimization of saturating mixture compositions has been carried out in two three-component systems, namely: Cr-Ti-V and Cr-Ti-Mn in respect of micro-hardness and wear resistance of carbide coatings obtained by thermo-chemical treatment of high carbon steel. «Composition - properties» diagrams have been plotted using mathematical models. Treatment with optimum compositions of powder media permits to increase wear resistance of steel by factor of 30-70 as compared with untreated steel. 

  7. Ab initio study of the magnetic ordering in the semiconductors Mn{sub x}Ti{sub 1-x}O{sub 2}, Co{sub x}Ti{sub 1-x}O{sub 2} and Fe{sub x}Ti{sub 1-x}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Errico, L.A. [Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67, 1900, La Plata (Argentina)]. E-mail: errico@fisica.unlp.edu.ar; Weissmann, M. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avda. del Libertador 8250, 1429 Buenos Aires (Argentina); Renteria, M. [Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67, 1900, La Plata (Argentina)

    2004-12-31

    In this work we present a set of density-functional-theory calculations in the systems Mn{sub x}Ti{sub 1-x}O{sub 2}, Fe{sub x}Ti{sub 1-x}O{sub 2}, and Co{sub x}Ti{sub 1-x}O{sub 2}. The calculations were performed with the full-potential linearized augmented plane wave method, assuming that the magnetic impurities substitutionally replace the Ti ions and considering different distributions of them in the host lattice. Our results show that the system Co{sub x}Ti{sub 1-x}O{sub 2} is ferromagnetic, while Mn{sub x}Ti{sub 1-x}O{sub 2} is antiferromagnetic. In both cases, this is independent of the distribution of the impurities in the TiO{sub 2} lattice. First results obtained in the system Fe{sub x}Ti{sub 1-x}O{sub 2} are also presented.

  8. First-principles study of ZnSnAs2-based dilute magnetic semiconductors

    Science.gov (United States)

    Kizaki, Hidetoshi; Morikawa, Yoshitada

    2018-02-01

    The electronic structure and magnetic properties of chalcopyrite Zn(Sn,TM)As2 and (Zn,TM)SnAs2 have been investigated by the Korringa-Kohn-Rostoker method combined with the coherent potential approximation within the local spin density approximation, where TM denotes a 3d transition metal element. We find that the half-metallic and high-spin ferromagnetic state can be obtained in Zn(Sn,V)As2, Zn(Sn,Cr)As2, Zn(Sn,Mn)As2, (Zn,V)SnAs2, and (Zn,Cr)SnAs2. The calculated result of Zn(Sn,Mn)As2 is in good agreement with the experimentally observed room-temperature ferromagnetism if we can control selective Mn doping at Sn sites. In addition, (Zn,V)SnAs2 and (Zn,Cr)SnAs2 are predicted to exhibit high-Curie-temperature ferromagnetism.

  9. Room temperature inverse magnetocaloric effect in Pd substituted Ni{sub 50}Mn{sub 37}Sn{sub 13} Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Ritwik, E-mail: ritwik.saha@tifr.res.in; Nigam, A.K.

    2014-09-01

    The structural, magnetic and magnetocaloric effects for Ni{sub 50−x}Pd{sub x}Mn{sub 37}Sn{sub 13} Heusler alloys have been investigated around both structural and magnetic transitions. The room temperature X-ray diffraction indicates 10 M modulated martensitic structure with an orthorhombic unit cell for x=0 and 1. However, the superstructure reflections for x=2 alloy imply that the pattern is related to the L2{sub 1} phase. The maximum entropy change occurring at the martensitic transition is found to be 21 J kg{sup −1} K{sup −1} for Ni{sub 50}Mn{sub 37}Sn{sub 13} alloy around room temperature. Despite the smaller change in entropy around room temperature, 3.8 times larger value of refrigerant capacity (184.6 J/kg) is achieved for 2% substitution of Pd, due to occurrence of magnetic entropy change in a broader temperature region.

  10. Photocatalytic performance of Sn-doped TiO2 nanostructured mono and double layer thin films for Malachite Green dye degradation under UV and vis-lights

    International Nuclear Information System (INIS)

    Sayilkan, F.; Asiltuerk, M.; Tatar, P.; Kiraz, N.; Arpac, E.; Sayilkan, H.

    2007-01-01

    Nanostructure Sn 4+ -doped TiO 2 based mono and double layer thin films, contain 50% solid ratio of TiO 2 in coating have been prepared on glass surfaces by spin-coating technique. Their photocatalytic performances were tested for degradation of Malachite Green dye in solution under UV and vis irradiation. Sn 4+ -doped nano-TiO 2 particle a doping ratio of about 5[Sn 4+ /Ti(OBu n ) 4 ; mol/mol%] has been synthesized by hydrotermal process at 225 deg. C. The structure, surface and optical properties of the thin films and/or the particles have been investigated by XRD, BET and UV/vis/NIR techniques. The results showed that the double layer coated glass surfaces have a very high photocatalytic performance than the other one under UV and vis lights. The results also proved that the hydrothermally synthesized nano-TiO 2 particles are fully anatase crystalline form and are easily dispersed in water. The results also reveal that the coated surfaces have hydrophilic property

  11. Influence of elemental diffusion on low temperature formation of MgH2 in TiMn1.3T0.2-Mg (T = 3d-transition elements)

    International Nuclear Information System (INIS)

    Yamamoto, K.; Tanioka, S.; Tsushio, Y.; Shimizu, T.; Morishita, T.; Orimo, S.; Fujii, H.

    1996-01-01

    In order to examine the influence of the elemental diffusion from the host compound into the Mg region on low temperature formation of MgH 2 , we have investigated the hydriding properties and the microstructures of the composite materials TiMn 1.3 T 0.2 -Mg (T = V, Cr, Mn, Fe, Co, Ni and Cu). MgH 2 is formed at 353 K in all composite materials. Of all the substitutions, the amount of MgH 2 is the largest in the case of the Cu substitution, which originates from the existence of the Mg-Mg 2 Cu eutectic formed by Cu diffusion from the host compound TiMn 1.3 Cu 0.2 into the Mg region during the liquid phase sintering. In addition, the hydrogen capacity of TiMn 1.3 Cu 0.2 -Mg (that is TiMn 1.3 Cu 0.1 -(Mg+Mg 2 Cu) after the sintering) easily saturates in comparison with TiMn 1.5 -(Mg+Mg 2 Cu) without Cu diffusion. It is concluded that Cu diffusion promotes the mobility of hydrogen atoms at the complex interface between the host compound and the Mg region. (orig.)

  12. Electron diffraction and microscopy study of the structure and microstructure of the hexagonal perovskite Ba3Ti2MnO9

    International Nuclear Information System (INIS)

    Maunders, C.

    2007-01-01

    This paper reports a structural and microstructural investigation of the hexagonal perovskite Ba 3 Ti 2 MnO 9 using electron microscopy and diffraction. Convergent-beam electron diffraction (CBED) revealed the structure has the noncentrosymmetric space group P6 3 mc (186) at room temperature and at ∝ 110 K. Compared with the centrosymmetric parent structure BaTiO 3 , with space group P6 3 /mmc, this represents a break in mirror symmetry normal to the c axis. This implies the Ti and Mn atoms are ordered on alternate octahedral sites along the left angle 0001 right angle direction in Ba 3 Ti 2 MnO 9 . Using high-resolution electron microscopy (HREM), we observed occasional 6H/12R interfaces on (0001) planes, however, no antiphase boundaries were observed, as were seen in Ba 3 Ti 2 RuO 9 . Using powder X-ray Rietveld refinement we have measured the lattice parameters from polycrystalline samples to be a=5.6880±0.0005, c=13.9223±0.0015 Aa at room temperature. (orig.)

  13. Magneto-electric properties and magnetic entropy change in perovskite La{sub 0.7}Sr{sub 0.3}Mn{sub 1−x}Ti{sub x}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Bau, Le Viet, E-mail: levietbau@hdu.edu.vn; An, Nguyen Manh

    2016-12-15

    The ceramic samples of La{sub 0.7}Sr{sub 0.3}Mn{sub 1−x}Ti{sub x}O{sub 3}(x=0; 0.05; 0.1; 0.2 and 0.3) were synthesized by the conventional solid state reaction method. Their electric, magnetic and magnetocaloric properties have been investigated. The transition temperature declines and a significant influence on the width of the ferro-paramagnetic phase transition is observed as increasing Ti concentration. Moreover, the sign of spin-glass is expected to exist in the high concentration samples. For fully replacing Ti{sup 4+} for Mn{sup 4+}, the canted spin state is formed. The substitution Ti for Mn increases resistivity quickly and the insulating–metallic transition temperature shifts toward lower temperature. For x>0.1 samples, the insulating state is observed even in ferromagnetic phase. The substitution Ti shifts the CME to room temperature while almost persists the value of entropy change. Although the maximum value of CME reduces slightly, the temperature range happening MCE is expended and then improves the relative cooling power. These properties could be explained in term of DE interaction and phase separation phenomenon. - Highlights: • Electro-magnetic properties and CME of La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Ti{sub x}O{sub 3} have been investigated. • T{sub C} declines and the width of the F-M phase transition is observed as increasing Ti concentration. • For fully replacing Ti{sup 4+} for Mn{sup 4+}, the canted spin state is formed. • The substitution Ti for Mn increases resistivity quickly and T{sub P} shifts toward lower temperature. • The substitution Ti shifts CME to 300 K while almost persists the value of entropy change. • Relative cooling power (RCP) increases with substitution 5% Ti for Mn.

  14. Low temperature stability of 4O martensite in Ni{sub 49.1}Mn{sub 38.9}Sn{sub 12} metamagnetic Heusler alloy ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Czaja, P., E-mail: p.czaja@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., Kraków, 30-059 Poland (Poland); Technische Universität Dresden, Dresden Center for Nanoanalysis (DCN), Dresden, 01062 Germany (Germany); Przewoźnik, J.; Gondek, Ł. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Department of Solid State Physics, Al. Mickiewicza 30, Kraków, 30-059 Poland (Poland); Hawelek, L. [Institute of Non Ferrous Metals, 5 Sowinskiego Str., Gliwice, 44-100 Poland (Poland); Żywczak, A. [AGH University of Science and Technology, Academic Centre of Materials and Nanotechnology, Al. Mickiewicza 30, Kraków, 30-059 Poland (Poland); Zschech, E. [Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Dresden, 01109 Germany (Germany)

    2017-01-01

    The structural transformation sequence in Ni{sub 49.1}Mn{sub 38.9}Sn{sub 12} ribbons is studied using calorimetric, thermomagnetic, resistivity and in-situ XRD measurements. It is confirmed that the ferromagnetic L2{sub 1} austenite phase transforms into 4O martensite at 242 K. The austenite phase persists in the sample to well below the T{sub C} of martensite. Upon further cooling the 4O martensite phase is stable down to the low temperature range, what is ascribed to its limited Ni/Mn and e/a ratios. On heating lattice constants assume lower values resulting from stress relief upon thermal cycling. - Highlights: • Transformation sequence in Ni{sub 49.1}Mn{sub 38.9}Sn{sub 12} ribbons is studied. • ferromagnetic L2{sub 1} austenite phase transforms into 4O martensite at 242 K. • austenite persists to well below the T{sub C} of martensite. • 4O martensite is stable to low temperature range.

  15. Fully Ab-Initio Determination of the Thermoelectric Properties of Half-Heusler NiTiSn: Crucial Role of Interstitial Ni Defects.

    Science.gov (United States)

    Berche, Alexandre; Jund, Philippe

    2018-05-23

    For thermoelectric applications, ab initio methods generally fail to predict the transport properties of the materials because of their inability to predict properly the carrier concentrations that control the electronic properties. In this work, a methodology to fill in this gap is applied on the NiTiSn half Heusler phase. For that, we show that the main defects act as donor of electrons and are responsible of the electronic properties of the material. Indeed, the presence of Ni i interstitial defects explains the experimental valence band spectrum and its associated band gap reported in the literature. Moreover, combining the DOS of the solid solutions with the determination of the energy of formation of charged defects, we show that Ni i defects are also responsible of the measured carrier concentration in experimentally supposed "pure" NiTiSn compounds. Subsequently the thermoelectric properties of NiTiSn can be calculated using a fully ab initio description and an overall correct agreement with experiments is obtained. This methodology can be extended to predict the result of extrinsic doping and thus to select the most efficient dopant for specific thermoelectric applications.

  16. Influence of Copper on the Hot Ductility of 20CrMnTi Steel

    Science.gov (United States)

    Peng, Hong-bing; Chen, Wei-qing; Chen, Lie; Guo, Dong

    2015-02-01

    The hot ductility of 20CrMnTi steel with x% copper (x = 0, 0.34) was investigated. Results show that copper can reduce its hot ductility, but there is no significant copper-segregation at the boundary tested by EPMA. The average copper content at grain boundaries and substrate is 0.352% and 0.318% respectively in steel containing 0.34% copper tensile-tested at 950 °C. The fracture morphology was examined with SEM and many small and shallow dimples were found on the fracture of steel with copper, and fine copper sulfide was found from carbon extraction replicas using TEM. Additionally, adding 0.34% copper caused an increase in the dynamic recrystallization temperature from 950 °C to 1000 °C, which indicates that copper can retard the dynamic recrystallization (DRX) of austenite. The detrimental influence of copper on hot ductility of 20CrMnTi steel is due mainly to the fine copper sulfide in the steel and its retarding the DRX.

  17. Ab initio study of domain structures in half-metallic CoTi{sub 1−x}Mn{sub x}Sb and thermoelectric CoTi{sub 1−x}Sc{sub x}Sb half-Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Miranda Mena, Joaquin, E-mail: joaquin.miranda@uni-bayreuth.de; Schoberth, Heiko G.; Gruhn, Thomas; Emmerich, Heike

    2015-11-25

    We present first-principles calculations of the electronic density of state, the structures in CoTi{sub 1−x}Sc{sub x}Sb and CoTi{sub 1−x}Mn{sub x}Sb. In addition for the latter we calculate magnetic moments. Systems with different stoichiometries are compared and low energy configurations are determined using a cluster expansion procedure. For all studied manganese concentrations, x > 0, CoTi{sub 1−x}Mn{sub x}Sb is half-metallic and magnetic, which make it interesting for spintronic applications. In contrast, with increasing scandium concentration, the band gap of CoTi{sub x}Sc{sub 1-x}Sb closes continuously, while the material changes from a semiconductor to a non-magnetic metal. For low Sc doping this material is well suited for thermoelectric applications. The electronic states close to the Fermi energy are strongly influenced by the distribution of Ti and Mn (or Ti and Sc). This has important consequences for the usage of materials in application fields like spintronics and thermoelectrics. In general, a phase separation of the alloys into a Ti rich and a Ti poor phase is energetically favored. Using mean field theory we create a phase diagram that shows the coexistence and the spinodal region. A spontaneous demixing can be used for the creation of nanodomains within the material. In the case of CoTi{sub 1−x}Sc{sub x}Sb, the resulting reduced lattice thermal conductivity is beneficial for thermoelectric applications, while in CoTi{sub 1−x}Mn{sub x}Sb the nanodomains are detrimental for polarization.

  18. Quantifying Local and Cooperative Components in the Ferroelectric Distortion of BaTiO3: Learning from the Off-Center Motion in the MnCl65– Complex Formed in KCl:Mn+

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; García-Fernández, P.; Calle-Vallejo, F.

    2014-01-01

    → C4v → Oh local transformations occurring in the 10–50 K temperature range for the MnCl65– complex formed in KCl:Mn+ that mimic the behavior of BaTiO3. From Boltzmann analysis of the vibronic levels derived from ab initio calculations and considering decoherence introduced by random strains......, the present calculations reproduce the experimental phase sequence and transition temperatures. Furthermore, our calculations show that the off-center instability in KCl:Mn+ would be suppressed by reducing by only 1% the lattice parameter, a situation that then becomes comparable to that found for BaTiO3...

  19. Influence of thermo hydrogen treatment on microstructure and mechanical properties of Ti-5Al-2.5Sn ELI alloy

    Directory of Open Access Journals (Sweden)

    Ya-fei Ren

    2017-01-01

    Full Text Available Thermo hydrogen treatment (THT of titanium is a process in which hydrogen is used as a temporary alloying element in titanium alloys. It is an attractive approach for controlling the microstructure and thereby improving the final mechanical properties. In the present study, the microstructure of the original (non-hydrogenated sample has only α phase and the grains is coarse with an average size of ~ 650 μm. While the grain size of thermo hydrogen treated Ti-5Al-2.5Sn ELI alloy became finer and the mechanical properties were improved significantly. When the hydrogen content of the hydrogenated Ti-5Al-2.5Sn ELI alloy is 0.321wt.%, β phase and δ titanium hydride appear. Also the average grain size decreases to 450 μm. When the hydrogen content is 0.515wt.%, the grain size decreases to 220 μm. The mechanical properties were tested after dehydrogenation, and the mechanical properties improved significantly compared to the unhydrogenated specimens. The tensile strength of the Ti-5Al-2.5Sn ELI alloy improved by 17.7% when the hydrogen content increased to 0.920wt.%, at the same time the percentage reduction of area (Z increased by 33% and the impact toughness increased by 37%.

  20. Au and Pd nanoparticles supported on CeO{sub 2}, TiO{sub 2}, and Mn{sub 2}O{sub 3} oxides

    Energy Technology Data Exchange (ETDEWEB)

    Nascente, P.A.P., E-mail: nascente@ufscar.br [Federal University of Sao Carlos, Department of Materials Engineering, Sao Carlos, SP (Brazil); Maluf, S.S.; Afonso, C.R.M. [Federal University of Sao Carlos, Department of Materials Engineering, Sao Carlos, SP (Brazil); Landers, R. [State University of Campinas, Institute of Physics, Department of Applied Physics, Campinas, SP (Brazil); Pinheiro, A.N.; Leite, E.R. [Federal University of Sao Carlos, Department of Chemistry, Sao Carlos, SP (Brazil)

    2014-10-01

    Highlights: • CeO{sub 2}, TiO{sub 2}, and Mn{sub 2}O{sub 3} supported Au and Pd nanoparticles. • Additions of 0.5 wt% of Au and Pd onto CeO{sub 2}, TiO{sub 2}, and Mn{sub 2}O{sub 3} supports. • Characterization by XRD, XPS, EDS, TEM, HRTEM, STEM, and EFTEM. - Abstract: Gold and palladium nanoparticles were incorporated on CeO{sub 2}, TiO{sub 2}, and Mn{sub 2}O{sub 3} supports prepared by a sol–gel method. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high resolution TEM (HRTEM), scanning TEM (STEM) in high angle annular dark field mode (HAADF), and energy filtered TEM (EFTEM) using electron energy loss spectroscopy (EELS). The XRD diffractograms presented sharp and intense peaks indicating that the samples are highly crystalline, but it did not detected any peak corresponding to Au or Pd phases. This indicates that the Au and Pd NPs were incorporated into the structures of the oxides. It was not possible to obtain an Au 4f spectrum for Au/Mn{sub 2}O{sub 3} due to an overlap with the Mn 3p spectrum. The XPS Au 4f spectra for Au/CeO{sub 2} and Au/TiO{sub 2} present negative chemical shifts that could be attributed to particle-size-related properties. The XPS Pd 3d spectra indicate that for both CeO{sub 2} and TiO{sub 2} substrates, the Pd NPs were in the metallic state, while for the Mn{sub 2}O{sub 3} substrate, the Pd NPs were oxidized. The HRTEM results show the formation of nanocrystalline oxides having particles sizes between 50 and 200 nm. TEM micrographs show that the addition of Au caused the formation of Au clusters in between the CeO{sub 2} NPS, formation of Au NPs for the TiO{sub 2} support, and homogeneous distribution of Au clusters for the Mn{sub 2}O{sub 3} support. The addition of Pd yielded a homogeneous dispersion throughout the CeO{sub 2} and TiO{sub 2}, but caused the formation of Pd clusters for the Mn{sub 2}O

  1. Deposition of Li{sub 4}Ti{sub 5}O{sub 12} and LiMn{sub 2}O{sub 4} films on the lithium-ion conductor of Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} sintered pellet

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xian Ming, E-mail: xianmingwu@163.com [College of Chemistry and Chemical Engineering, Jishou University, Jishou Hunan 416000 (China); Xiangxi Minerals and New Materials Research and Service Center, Jishou Hunan 416000 (China); Chen, Shang [College of Chemistry and Chemical Engineering, Jishou University, Jishou Hunan 416000 (China); Xiangxi Minerals and New Materials Research and Service Center, Jishou Hunan 416000 (China); He, Ze Qiang; Chen, Shou Bin; Li, Run Xiu [College of Chemistry and Chemical Engineering, Jishou University, Jishou Hunan 416000 (China)

    2015-08-31

    LiMn{sub 2}O{sub 4} and Li{sub 4}Ti{sub 5}O{sub 12} films were deposited on the lithium-ion conductor of Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} sintered pellet by spray technique. The effect of annealing temperature, annealing time, Li:Ti and Li:Mn molar ratio on the phase and crystallization of the films were investigated with X-ray diffraction. The LiMn{sub 2}O{sub 4}/Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3}/Li{sub 4}Ti{sub 5}O{sub 12} thin-film lithium-ion battery using Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} sintered pellet as both electrolyte and substrate was also studied. The results show that the effect of annealing temperature, annealing time, Li:Ti and Li:Mn molar ratio has great effect on the phase and crystallization of Li{sub 4}Ti{sub 5}O{sub 12} and LiMn{sub 2}O{sub 4} films deposited on the Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} sintered pellet. The optimal Li:Ti and Li:Mn molar ratio for the deposition of Li{sub 4}Ti{sub 5}O{sub 12} and LiMn{sub 2}O{sub 4} films on Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} sintered pellet are 7.2:5 and 1.05:2, respectively. The optimal annealing temperature and time for the deposition of LiMn{sub 2}O{sub 4} film on Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} sintered pellet are 650 °C and 10 min. While those for Li{sub 4}Ti{sub 5}O{sub 12} film are 700 °C and 10 min. The LiMn{sub 2}O{sub 4}/Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3}/Li{sub 4}Ti{sub 5}O{sub 12} thin-film battery offers a working voltage about 2.25 V and can be easily cycled. - Highlights: • LiMn{sub 2}O{sub 4} and Li{sub 4}Ti{sub 5}O{sub 12} films spray deposited on Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} sintered pellet • Film crystal phase depends on the spray solution composition and annealing conditions. • Prepared thin-film lithium-ion battery employs sintered pellet as electrolyte and substrate. • LiMn{sub 2}O{sub 4}/Li{sub 1.3}Al{sub 0.3}Ti{sub 1

  2. Piper Ornatum and Piper Betle as Organic Dyes for TiO2 and SnO2 Dye Sensitized Solar Cells

    Science.gov (United States)

    Hayat, Azwar; Putra, A. Erwin E.; Amaliyah, Novriany; Hayase, Shuzi; Pandey, Shyam. S.

    2018-03-01

    Dye sensitized solar cell (DSSC) mimics the principle of natural photosynthesis are now currently investigated due to low manufacturing cost as compared to silicon based solar cells. In this report, we utilized Piper ornatum (PO) and Piper betle (PB) as sensitizer to fabricate low cost DSSCs. We compared the photovoltaic performance of both sensitizers with Titanium dioxide (TiO2) and Tin dioxide (SnO2) semiconductors. The results show that PO and PB dyes have higher Short circuit current (Jsc) when applied in SnO2 compared to standard TiO2 photo-anode film even though the Open circuit voltage (Voc) was hampered on SnO2 device. In conclusion, from the result, higher electron injections can be achieved by choosing appropriate semiconductors with band gap that match with dyes energy level as one of strategy for further low cost solar cell.

  3. Cytocompatibility and early osseointegration of nanoTiO{sub 2}-modified Ti-24 Nb-4 Zr-7.9 Sn surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.H. [Department of Prosthodontics, China Medical University School of Stomatology, Shenyang (China); Wu, L., E-mail: wulin13@163.com [Department of Prosthodontics, China Medical University School of Stomatology, Shenyang (China); Ai, H.J. [Department of Prosthodontics, China Medical University School of Stomatology, Shenyang (China); Han, Y. [State Key laboratory for Mechanical Behaviour of Materials, Xi' an Jiaotong University, Xi' an (China); Hu, Y. [Department of Prosthodontics, China Medical University School of Stomatology, Shenyang (China)

    2015-03-01

    This study aimed to evaluate the cytocompatibility and early osseointegration of Ti-24 Nb-4 Zr-7.9 Sn (Ti-2448) surfaces that were modified with a nanoscale TiO{sub 2} coating. The coating was fabricated using a hydrothermal synthesis method to generate nanoTiO{sub 2}/Ti-2448. The surface characteristics of the samples were evaluated using scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). The cytotoxicity of the fabricated nanoTiO{sub 2}/Ti-2448 was determined using MTT assays. The proliferation and alkaline phosphatase (ALP) activity of MC3T3-E1 osteoblasts cultured on nanoTiO{sub 2}/Ti-2448 were compared with those cultured on Ti-2448. Disk-shaped implants were placed in Wistar rats. The histological sections were stained with haematoxylin and eosin (HE), and the histocompatibility was analysed at 4 and 12 weeks post-implantation. Cylindrical implants were embedded in Japanese white rabbits, and the histological sections were stained with HE and anti-TGF-β1 to evaluate the histocompatibility and early osseointegration at 4, 12 and 26 weeks post-implantation. NanoTiO{sub 2}/Ti-2448 exhibited a rougher surface than did Ti-2448. NanoTiO{sub 2}/Ti-2448 was determined to be non-cytotoxic. More osteoblasts and higher ALP activity were observed for nanoTiO{sub 2}/Ti-2448 than Ti-2448 (p < 0.05). Few inflammatory cells were detected around nanoTiO{sub 2}/Ti-2448, and the expression of TGF-β1 on nanoTiO{sub 2}/Ti-2448 peaked at earlier time than that on Ti-2448. The results indicate that the cytocompatibility and early osseointegration were enhanced by the nanoTiO{sub 2} coating. - Highlights: • The cytocompatibility of nanoTiO2/Ti-2448 is first reported in our work. • The early osseointegration of nanoTiO2/Ti-2448 is first reported in our work. • We evaluate the biocompatibility of nanoTiO2/Ti-2448 by in-vitro and in-vivo tests.

  4. TiO2 Surface Coating of Mn-Zn Dopped Ferrites Study

    DEFF Research Database (Denmark)

    Solný, Tomáš; Ptacek, Petr; Másilko, Jiří

    2016-01-01

    This study deals with TiO2 coating of powder Mn-Zn ferrite in order to recieve photocatalytic layer on the top of these particles, forming core-shell catalyst. Powder catalysts are of great advance over the world due to the high surface area, considering the kinetics proceeds through heterogenous...... phase boundary catalysis. However their withdrawal from cleaning systems often requires energetically and economically demanding processes such as filtration and ultrafiltration. Since the ferrite is magnetic, the advantage of such formed core-shell photocatalyst is easibility of removing from...... photocatalytic decomposition system using external magnetic field. In this study the surface coating is performed, using Ti alkoxides mixtures with nanosized TiO2 particles and C and Au coating to form film layer of TiO2 on the surface of ferrite. XRD, SEM – EDS analyses are employed to study surface coating....

  5. Effect of ball-milling time on the structural characteristics of biomedical porous Ti-Sn-Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nouri, Alireza, E-mail: alireza_nouri@yahoo.com [CQM-Centro de Quimica da Madeira, MMRG, Universidade da Madeira, Campus Universitario da Penteada, 9000-390 Funchal (Portugal); Institute for Technology Research and Innovation, Deakin University, Geelong, Victoria 3217 (Australia); Hodgson, Peter D. [Institute for Technology Research and Innovation, Deakin University, Geelong, Victoria 3217 (Australia); Wen Cuie [IRIS, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, 543-454 Burwood Road, Hawthorn, Victoria 3122 Australia (Australia)

    2011-07-20

    The structural characteristics of biomedical porous materials are crucial for bone tissue to grow into a porous structure and can also influence the fixation and remodeling between the implant and the human tissues. The current study has been investigating the effect of the ball-milling variable of time on the structural characteristics and pore morphology of a biomedical porous Ti-16Sn-4Nb (wt.%) alloy. The alloy was synthesized using high-energy ball milling for different periods of time, and the porous Ti-16Sn-4Nb alloy was fabricated by using a space holder sintering process. The resultant powder particles, bulk, and porous samples were characterized using a scanning electron microscope (SEM), laser particle-size analyzer, chemical analysis, X-ray diffraction analysis (XRD), and the Vickers hardness test. The results indicated that the inner pore surface, pore wall architecture, degree of porosity, pore size and the inter-pore connectivity of the sintered porous alloy are all considerably affected by ball-milling time.

  6. Dielectric properties of Mn doped SrTiO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Savinov, Maxim; Trepakov, Vladimír; Syrnikov, P. P.; Železný, Vladimír; Pokorný, Jan; Deyneka, Alexander; Jastrabík, Lubomír; Galinetto, P.

    2008-01-01

    Roč. 20, - (2008), 095221/1-095221/6 ISSN 0953-8984 R&D Projects: GA AV ČR KAN301370701; GA AV ČR 1QS100100563; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522; CEZ:AV0Z10100521 Keywords : dielectric permittivity * IR reflectivity * SrTiO3:Mn Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.900, year: 2008

  7. The direct synthesis of mesoporous structured MnO2/TiO2 nanocomposite: a novel visible-light active photocatalyst with large pore size

    Science.gov (United States)

    Xue, Min; Huang, Li; Wang, Jian-Qiang; Wang, Ying; Gao, Ling; Zhu, Jian-hua; Zou, Zhi-Gang

    2008-05-01

    A series of visible-light-driven mesoporous structured MnO2/TiO2 nanocrystal photocatalysts have been synthesized through a modified sol-gel method, and the N2 adsorption-desorption isotherm confirms that the mesoporous materials possess large pore size (up to 9.2 nm) and a narrow pore size distribution. X-ray powder diffraction (XRD) analyses and complementary x-ray photoelectron spectroscopy (XPS) measurements reveal that the doping of the transition metal Mn inhibits the growth of TiO2 anatase nanocrystals and the Mn species are highly dispersed on the surface of TiO2. The ultraviolet (UV)-vis spectrum demonstrates the excellent adsorption properties of MnO2/TiO2 over the whole region of visible light, which enables this novel photocatalysis material to possess remarkable activity in the photocatalytic degradation of methylene blue under visible light radiation. Moreover, a 'coating mechanism' based on the nucleation of titania nanocrystals along with the interaction between the dopant precursors and titania clusters has been suggested.

  8. The direct synthesis of mesoporous structured MnO2/TiO2 nanocomposite: a novel visible-light active photocatalyst with large pore size

    International Nuclear Information System (INIS)

    Xue Min; Huang Li; Wang Jianqiang; Wang Ying; Zou Zhigang; Gao Ling; Zhu Jianhua

    2008-01-01

    A series of visible-light-driven mesoporous structured MnO 2 /TiO 2 nanocrystal photocatalysts have been synthesized through a modified sol-gel method, and the N 2 adsorption-desorption isotherm confirms that the mesoporous materials possess large pore size (up to 9.2 nm) and a narrow pore size distribution. X-ray powder diffraction (XRD) analyses and complementary x-ray photoelectron spectroscopy (XPS) measurements reveal that the doping of the transition metal Mn inhibits the growth of TiO 2 anatase nanocrystals and the Mn species are highly dispersed on the surface of TiO 2 . The ultraviolet (UV)-vis spectrum demonstrates the excellent adsorption properties of MnO 2 /TiO 2 over the whole region of visible light, which enables this novel photocatalysis material to possess remarkable activity in the photocatalytic degradation of methylene blue under visible light radiation. Moreover, a 'coating mechanism' based on the nucleation of titania nanocrystals along with the interaction between the dopant precursors and titania clusters has been suggested

  9. A comparative study of the magnetization in transition metal ion doped CeO2, TiO2 and SnO2 nanoparticles

    Science.gov (United States)

    Apostolov, A. T.; Apostolova, I. N.; Wesselinowa, J. M.

    2018-05-01

    Using the microscopic s-d model taking into account anharmonic spin-phonon interactions we have studied the magnetic properties of Co and Cu ion doped CeO2 and TiO2 nanoparticles and compared them with those of SnO2. By Co-doping there is a maximum in the magnetization M(x) curve for all nanoparticles observed in the most transition metal doped ones. The s-d interaction plays an important role by the decrease of M at higher dopant concentration. We have discussed the magnetization in dependence of different model parameters. By small Cu-ion doping there are some differences. In CeO2M decreases with the Cu-concentration, whereas in TiO2 and SnO2M increases. For higher Cu dopant concentrations M(X) decreases in TiO2 nanoparticles. We obtain room temperature ferromagnetism also in Zn doped CeO2, TiO2 and SnO2 nanoparticles, i.e. in non-transition metal ion doped ones. The different behavior of M in Co and Cu doped nanoparticles is due to a combination effect of multivalent metal ions, oxygen vacancies, different radius of cation dopants, connection between lattice and magnetism, as well as competition between the s-d and d-d ferromagnetic or antiferromagnetic interactions.

  10. Thermoelectric performance and the role of anti-site disorder in the 24-electron Heusler TiFe2Sn

    Science.gov (United States)

    Buffon, Malinda L. C.; Laurita, Geneva; Lamontagne, Leo; Levin, Emily E.; Mooraj, Shahryar; Lloyd, Demetrious L.; White, Natalie; Pollock, Tresa M.; Seshadri, Ram

    2017-10-01

    Heusler compounds XY 2 Z with 24 valence electrons per formula unit are potential thermoelectric materials, given their thermal and chemical stability and their relatively earth-abundant constituent elements. We present results on the 24-electron compound TiFe2Sn here. First principles calculations on this compound suggest semiconducting behavior. A relatively flat conduction band that could be associated with a high Seebeck coefficient upon electron doping is found. A series of compounds have been prepared and characterized using a combination of synchrotron x-ray and neutron diffraction studies to understand the effects of site order/disorder phenomena and n-type doping. Samples fabricated by a three step processing approach were subjected to high temperature Seebeck and electrical resistivity measurements. Ti:Fe anti-site disorder is present in the stoichiometric compound and these defects are reduced when starting Ti-rich compositions are employed. Additionally, we investigate control of the Seebeck coefficient through the introduction of carriers through the substitution of Sb on the Sn site in these intrinsically p-type materials.

  11. Thermoelectric performance and the role of anti-site disorder in the 24-electron Heusler TiFe2Sn.

    Science.gov (United States)

    Buffon, Malinda L C; Laurita, Geneva; Lamontagne, Leo; Levin, Emily E; Mooraj, Shahryar; Lloyd, Demetrious L; White, Natalie; Pollock, Tresa M; Seshadri, Ram

    2017-10-11

    Heusler compounds XY 2 Z with 24 valence electrons per formula unit are potential thermoelectric materials, given their thermal and chemical stability and their relatively earth-abundant constituent elements. We present results on the 24-electron compound TiFe 2 Sn here. First principles calculations on this compound suggest semiconducting behavior. A relatively flat conduction band that could be associated with a high Seebeck coefficient upon electron doping is found. A series of compounds have been prepared and characterized using a combination of synchrotron x-ray and neutron diffraction studies to understand the effects of site order/disorder phenomena and n-type doping. Samples fabricated by a three step processing approach were subjected to high temperature Seebeck and electrical resistivity measurements. Ti:Fe anti-site disorder is present in the stoichiometric compound and these defects are reduced when starting Ti-rich compositions are employed. Additionally, we investigate control of the Seebeck coefficient through the introduction of carriers through the substitution of Sb on the Sn site in these intrinsically p-type materials.

  12. The influence of the oxygen partial pressure on the quasi-ternary system Cr-Mn-Ti-oxide

    International Nuclear Information System (INIS)

    Garcia-Rosales, C.; Schulze, H.A.; Naoumidis, A.; Nickel, H.

    1991-05-01

    The passivation layers formed by the oxidizing corrosion of high temperature alloys consist primarily of oxides and mixed oxides of the elements chromium, manganese and titanium. For a reproducible formation and characterization of such oxide layers it is necessary to know the phase equilibria of these oxide systems at temperature and oxygen partial pressure conditions which will be relevant during their application. For the investigation of the quasi-ternary system Cr-Mn-Ti-oxide, oxide powders were prepared and annealed at 1000deg C under different oxygen partial pressures ranging from 0.21 bar to 10 -21 bar. Phase identification and determination of lattice parameter using X-ray diffraction analysis as well as the direct measurement of phase boundaries as a function of oxygen partial pressure using the emf-methode were carried out for these investigations. In the quasi-ternary system Cr-Mn-Ti-oxide the spinels play a decisive role in the oxigen partial pressure range examined. The spinel MnCr 2 O 4 may be regarded as the most significant compound. Part of the chronium can be replaced by trivalent manganese at high oxygen partial pressures and by trivalent titanium at low pressures, and the formation of a solid solution with the spinel Mn 2 TiO 4 is possible in all cases. In this way a coherent single-phase spinel region is observed which extends over the entire oxygen partial pressure range form 0.21 bar to 10 -21 bar examined at 1000deg C. (orig.) [de

  13. Probing the ground state and zero-field cooled exchange bias by magnetoresistance measurement in Mn{sub 50}Ni{sub 41}Sn{sub 9} ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiyun [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); School of Materials Science and Engineering, China University of Mining & Technology, Xuzhou 221116 (China); Tu, Ruikang [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); School of Materials Science and Engineering, Soochow University, Suzhou 215000 (China); Fang, Xiaoting [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); Gu, Quanchao [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); School of Materials Science and Engineering, Soochow University, Suzhou 215000 (China); Zhou, Yanying [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); Cui, Rongjing [Department of Chemistry, Changshu Institute of Technology, Changshu 215500 (China); Han, Zhida, E-mail: han@cslg.edu.cn [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); Zhang, Lei; Fang, Yong [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); Qian, Bin, E-mail: njqb@cslg.edu.cn [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); Zhang, Chengliang [School of Science, Jiangnan University, Wuxi 214122 (China); Jiang, Xuefan [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China)

    2017-03-15

    Recently, a new type of exchange bias (EB) after zero-field cooling has attracted considerable interest mainly in bulk magnetic competing systems. Here, we use a detailed magnetotransport investigation to probe the ground state and zero-field cooled EB (ZEB) in Mn{sub 50}Ni{sub 41}Sn{sub 9} ribbon. Both ZEB and field cooled EB were detected in magnetoresistance results consistent with magnetic measurement. A pure spin-glass ground state is proposed based on parabolic shape of low-field magnetoresistance combined with AC magnetization, memory effect. The appearance of ZEB is attributed to the field-induced nucleation and growth of ferromagnetic domains in the spin glass matrix forming unidirectional anisotropy at the interface. - Highlights: • Magnetoresistance was first used to probe the ground state and ZEB in Ni-Mn-based alloys. • A pure spin-glass ground state is proposed in Mn{sub 50}Ni{sub 41}Sn{sub 9} ribbon. • Field-induced nucleation and growth of ferromagnetic domains in SG results in ZEB.

  14. Martensitic transition, inverse magnetocaloric effect and shape memory characteristics in Mn{sub 48−x}Cu{sub x}Ni{sub 42}Sn{sub 10} Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Changqin [Department of Physics, Shanghai University, Shanghai 200444 (China); Li, Zhe [Reasearch center for magnetic materials and devices & Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education Institute, Qujing Normal University, Qujing 655011 (China); Zhang, Yuanlei [Department of Physics, Shanghai University, Shanghai 200444 (China); Reasearch center for magnetic materials and devices & Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education Institute, Qujing Normal University, Qujing 655011 (China); Liu, Yang; Sun, Junkun; Huang, Yinsheng; Kang, Baojuan [Department of Physics, Shanghai University, Shanghai 200444 (China); Xu, Kun [Reasearch center for magnetic materials and devices & Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education Institute, Qujing Normal University, Qujing 655011 (China); Deng, Dongmei [Department of Physics, Shanghai University, Shanghai 200444 (China); Jing, Chao, E-mail: cjing@staff.shu.edu.cn [Department of Physics, Shanghai University, Shanghai 200444 (China)

    2017-03-01

    In this paper, we have systematically prepared a serials of polycrystalline Mn{sub 48−x}Cu{sub x}Ni{sub 42}Sn{sub 10} alloys (x=0, 1, 3, 5, 6, 8, 10 and 12) and investigated the influence of the Cu doping on martensitic transition (MT) as well as magnetic properties. Experimental results indicate that the MT temperature and the martensite Curie temperature (T{sub c}{sup M}) shift to high temperature with increasing the substitution of Cu (from Mn rich alloy to Ni rich alloy), while the austenite Curie temperature (T{sub c}{sup A}) is almost unchanged. It was found that the structures undergo L2{sub 1} and 4O with the increasing of Cu concentration near room temperature. Therefore, the magnetostructural transition can be tuned by appropriate Cu doping in these alloys. Moreover, we mainly studied the multiple functional properties for inverse magnetocaloric effect and shape memory characteristics associated with the martensitic transition. A large positive isothermal entropy change of Mn{sub 48}Ni{sub 42}Sn{sub 10} was obtained, and the maximum transition entropy change achieves about 48 J/kg K as x=8. In addition, a considerable temperature-induced spontaneous strain with the value of 0.16% was obtained for Mn{sub 48}Ni{sub 42}Sn{sub 10} alloys.

  15. Characterization and Catalytic Activity of Mn-Co/TiO2 Catalysts for NO Oxidation to NO2 at Low Temperature

    Directory of Open Access Journals (Sweden)

    Lu Qiu

    2016-01-01

    Full Text Available A series of Mn-Co/TiO2 catalysts were prepared by wet impregnation method and evaluated for the oxidation of NO to NO2. The effects of Co amounts and calcination temperature on NO oxidation were investigated in detail. The catalytic oxidation ability in the temperature range of 403–473 K was obviously improved by doping cobalt into Mn/TiO2. These samples were characterized by nitrogen adsorption-desorption, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, transmission electron microscope (TEM and hydrogen temperature programmed reduction (H2-TPR. The results indicated that the formation of dispersed Co3O4·CoMnO3 mixed oxides through synergistic interaction between Mn-O and Co-O was directly responsible for the enhanced activities towards NO oxidation at low temperatures. Doping of Co enhanced Mn4+ formation and increased chemical adsorbed oxygen amounts, which also accelerated NO oxidation.

  16. Favorable ultraviolet photoelectric effects in TbMnO3/Nb-SrTiO3 heterostructures

    KAUST Repository

    Jin, Kexin; Zhai, Y. X.; Li, Hui; Tian, Y. F.; Luo, B. C.; Wu, Tao

    2014-01-01

    The rectifying properties and ultraviolet photoelectric effects in TbMnO3/Nb-doped SrTiO3 heterostructures have been investigated. The ideality factors and the diffusion voltages obtained from the current-voltage curves nonlinearly decrease

  17. Explosive device of conduit using Ti Ni alloy

    Directory of Open Access Journals (Sweden)

    A. Yu. Kolobov

    2014-01-01

    Full Text Available Presently, materials have been developed which are capable at changing temperate to return significant inelastic deformations, exhibit rubber-like elasticity, convert heat into mechanical work, etc. The aggregate of these effects is usually called the shape memory effect.At present a great number of compounds and alloys with a shape memory effect has been known.These are alloys based on titanium nickelide (TiNi, copper-based alloys (Cu-Al, Cu-Sn, Cu-Al-Ni, Cu-Zn-Si, etc., gold and silver (Ag-Cd, Au-Ag-Cd, Au-Cd-Cu, Au-Zn-Cu, etc., manganese (Mn-Cr, Fe-Cu, Mn-Cu-Ni, Mn-Cu-Zr, Mn-Ni, etc., iron (Fe-Mn, Fe-Ni, Fe-Al, etc., and other compounds.The alloys based on titanium nickelide (nitinol are the most widely used.Alloys with shape memory effect find various applications in engineering and medicine, namely connecting devices, actuators, transformable design, multipurpose medical implants, etc.There is a task of breaking fuel conduit during separating the spacecraft from the rocket in space technology.The paper examines the procedure for design calculation of the separating device of conduit with the use of Ti-Ni alloy. This device can be used instead of the pyro-knives.The device contains two semi-rings from Ti-Ni alloy. In the place of break on the conduit an annular radius groove is made.At a temperature of martensite passage the semi-rings undergo deformation and in the strained state are set in the device. With heating to the temperature of the austenitic passage of bushing macro-deformation the energy stored by the nitinol bushing is great enough to break the conduit on the neck.The procedures of design calculation and response time of device are given.

  18. Influence of Sn doping in BaSnxTi1-xO3 ceramics on microstructural and dielectric properties

    Science.gov (United States)

    Ansari, Mohd. Azaj; Sreenivas, K.

    2018-05-01

    BaSnxTi1-x O3 solid solutions with varying Sn content (x = 0.00, 0.05, 0.15, 0.25) prepared by solid state reaction method have been studied for their structural and dielectric properties. X-ray diffraction and Raman spectroscopic analysis show composition induced modifications in the crystallographic structure, and with increasing Sn content the structure changes from tetragonal to cubic structure. The tetragonal distortion decreases with increasing Sn, and the structure becomes purely cubic for x =0.25. Changes in the structure are reflected in the temperature dependent dielectric properties. For increasing Sn content the peak dielectric constant is found to increase and the phase transition temperature (Tc) decreases to lower temperature. The purely cubic structure with x=0.25 shows a diffused phased transition.

  19. Electrochemical activity of Li{sub 2}FeTiO{sub 4} and Li{sub 2}MnTiO{sub 4} as potential active materials for Li ion batteries: A comparison with Li{sub 2}NiTiO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Kuezma, Mirjana; Dominko, Robert; Bele, Marjan; Jamnik, Janko [National Institute of Chemistry, Ljubljana (Slovenia); Meden, Anton [Faculty of Chemistry and Chemical Technology, University of Ljubljana (Slovenia); Makovec, Darko [Jozef Stefan Institute, Ljubljana (Slovenia); Gaberscek, Miran [National Institute of Chemistry, Ljubljana (Slovenia); Faculty of Chemistry and Chemical Technology, University of Ljubljana (Slovenia)

    2009-04-01

    We demonstrate, for the first time, a considerable electrochemical activity of two members of lithium transition element titanates: Li{sub 2}FeTiO{sub 4} and Li{sub 2}MnTiO{sub 4}. Both materials consist of 10-20 nm particles embedded in a conductive carbon coating. We show that not the coating but the small particle size is decisive for materials' activity. Li{sub 2}FeTiO{sub 4} shows a stable reversible capacity of up to 123 mA hg{sup -1} at C/20 and 60 C which is 83% of the theoretical value for exchange of 1 electron (148 mA hg{sup -1}). Li{sub 2}MnTiO{sub 4} could only be prepared in a nanosized form that contained about 30% of impurities. The capacity of the whole material (including impurities) is comparable to that of Li{sub 2}FeTiO{sub 4} but the cycling stability is much poorer. In contrast to the Fe and Mn analogues, the third member of the titanate family, Li{sub 2}NiTiO{sub 4}, shows a good electrochemistry even when the particle size is much larger (about 100 nm). During initial cycles at C/10 and 60 C, exchange of more than 1 electron per compound formula has been observed. The cycling stability at high temperatures, however, is poor. (author)

  20. Effect of Tin, Copper and Boron on the Hot Ductility of 20CrMnTi Steel between 650 °C and 1100 °C

    Science.gov (United States)

    Peng, Hong-bing; Chen, Wei-qing; Chen, Lie; Guo, Dong

    2015-02-01

    The hot ductility of 20CrMnTi steel with x% tin, y% copper and z ppm boron (x = 0, 0.02; y = 0, 0.2; z = 0, 60) was investigated. The results show that tin and copper in 20CrMnTi steel are detrimental to its hot ductility while adding boron can eliminate the adverse effect and enhance hot ductility greatly. Tin is found to segregate to the boundaries tested by EPMA in 20CrMnTi steel containing tin and copper and tin-segregation is suppressed by adding boron, moreover, copper was found not to segregate to boundaries, however, fine copper sulfide was found from carbon extraction replicas using TEM. The adverse effect of tin and copper on the hot ductility was due mainly to tin segregation and fine copper sulfide in the steel. The proeutectoid ferrite film precipitating along the austenite grain boundary causes the ductility trough of the three examined steels. Tin and copper in 20CrMnTi steel can retard the occurrence of dynamic recrystallization (DRX) while boron-addition can compensate for that change. The beneficial effect of boron on 20CrMnTi steel containing tin and copper might be ascribed to the fact that boron segregates to grain boundaries, accelerates onset of DRX, retards austenite/ferrite transformation and promotes intragranular nucleation of ferrite.

  1. Blue photoluminescence in Ti-doped alkaline-earth stannates

    International Nuclear Information System (INIS)

    Yamashita, Takahiro; Ueda, Kazushige

    2007-01-01

    Blue photoluminescence properties of Ti-doped alkaline-earth stannates, A 2 (Sn 1- x Ti x )O 4 (A=Ca, Sr, Ba) (x=0.005-0.15), were examined at room temperature. These stannates showed intense broad emission bands peaking at 445 nm for Ca 2 SnO 4 , at 410 nm for Sr 2 SnO 4 , and at 425 nm for Ba 2 SnO 4 under UV excitation. Emission intensities were relatively insensitive to Ti concentration and no sharp concentration quenching was observed. Mixing alkaline-earth ions in the crystal structures did not increase the emission intensities in the A 2 (Sn 1- x Ti x )O 4 system. The excitation spectra of these stannates exhibited broad bands just below the fundamental absorption edges, implying that luminescence centers do not consist of the component elements in the host materials. It was suggested that the isolated TiO 6 complexes are possible luminescence centers in these materials, as previously proposed in other Ti-doped stannates such as Mg 2 SnO 4 and Y 2 Sn 2 O 7 . - Graphical abstract: Blue photoluminescence properties of Ti-doped alkaline-earth stannates, A 2 (Sn 1- x Ti x )O 4 (A=Ca, Sr, Ba) (x=0.005-0.15), were examined at room temperature. These stannates showed intense broad emission bands peaking at 445 nm for Ca 2 SnO 4 , at 410 nm for Sr 2 SnO 4 , and at 425 nm for Ba 2 SnO 4 under UV excitation

  2. Temperature compensation effects of TiO2 on Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ microwave dielectric ceramic

    Science.gov (United States)

    Hu, Mingzhe; Wei, Huanghe; Xiao, Lihua; Zhang, Kesheng; Hao, Yongde

    2017-10-01

    The crystal structure and dielectric properties of TiO2-modified Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ microwave ceramics are investigated in the present paper. The crystal structure is probed by XRD patterns and their Rietveld refinement, results show that a single perovskite phase is formed in TiO2-modified Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ ceramics with the crystal structure belonging to the orthorhombic Pbnm 62 space group. Raman spectra results indicate that the B-site order-disorder structure transition is a key point to the dielectric loss of TiO2-modified Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ ceramics at microwave frequencies. After properly modified by TiO2, the large negative temperature coefficient of Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ ceramic can be compensated and the optimal microwave dielectric properties can reach 𝜀r = 25.66, Qf = 18,894 GHz and TCF = -6.3 ppm/∘C when sintered at 1170∘C for 2.5 h, which manifests itself for potential use in microwave dielectric devices for modern wireless communication.

  3. Non-enzymatic detection of glucose in fruits using TiO2-Mn3O4 hybrid nano interface

    Science.gov (United States)

    Jayanth Babu, K.; Sasya, Madhurantakam; Nesakumar, Noel; Shankar, Prabakaran; Gumpu, Manju Bhargavi; Ramachandra, Bhat Lakshmishri; Kulandaisamy, Arockia Jayalatha; Rayappan, John Bosco Balaguru

    2017-08-01

    Consumption of fruits leads to increase in glucose level in blood for diabetic patients, which in turn leads to peripheral, vascular, ocular complications and cardiac diseases. In this context, a non-enzymatic hybrid glucose biosensor was fabricated for the first time to detect glucose by immobilizing titanium oxide-manganese oxide (TiO2-Mn3O4) nanocomposite and chitosan membrane on to the surface of Pt working electrode (Pt/TiO2-Mn3O4/chitosan). TiO2-Mn3O4 nanocomposite catalyzed the oxidation of glucose to gluconolactone in the absence of glucose oxidase enzyme with high electron transfer rate, good biocompatibility and large surface coverage. Electrochemical measurements revealed the excellent sensing response of the developed biosensor towards glucose with a high sensitivity of 7.073 µA mM-1, linearity of 0.01-0.1 mM, low detection limit of 0.01 µM, reproducibility of 1.5% and stability of 98.8%. The electrochemical parameters estimated from the anodic process were subjected to linear regression models for the detection of unknown concentration of glucose in different fruit samples.

  4. Topological crystalline insulator PbxSn1-xTe thin films on SrTiO3 (001 with tunable Fermi levels

    Directory of Open Access Journals (Sweden)

    Hua Guo

    2014-05-01

    Full Text Available In this letter, we report a systematic study of topological crystalline insulator PbxSn1-xTe (0 < x < 1 thin films grown by molecular beam epitaxy on SrTiO3(001. Two domains of PbxSn1-xTe thin films with intersecting angle of α ≈ 45° were confirmed by reflection high energy diffraction, scanning tunneling microscopy, and angle-resolved photoemission spectroscopy (ARPES. ARPES study of PbxSn1-xTe thin films demonstrated that the Fermi level of PbTe could be tuned by altering the temperature of substrate whereas SnTe cannot. An M-shaped valance band structure was observed only in SnTe but PbTe is in a topological trivial state with a large gap. In addition, co-evaporation of SnTe and PbTe results in an equivalent variation of Pb concentration as well as the Fermi level of PbxSn1-xTe thin films.

  5. Voltage spikes in Nb3Sn and NbTi strands

    International Nuclear Information System (INIS)

    Bordini, B.; Ambrosio, G.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.V.; Lamm, M.J.; Orris, D.; Tartaglia, M.; Tompkins, J.C.; Turrioni, D.; Yamada, R.; Zlobin, A.V.; Fermilab

    2005-01-01

    As part of the High Field Magnet program at Fermilab several NbTi and Nb 3 Sn strands were tested with particular emphasis on the study of voltage spikes and their relationship to superconductor instabilities. The voltage spikes were detected under various experimental conditions using voltage-current (V-I) and voltage-field (V-H) methods. Two types of spikes, designated ''magnetization'' and ''transport current'' spikes, have been identified. Their origin is most likely related to magnetization flux jump and transport current redistribution, respectively. Many of the signals observed appear to be a combination of these two types of spikes; the combination of these two instability mechanisms should play a dominant role in determining the minimum quench current

  6. Enhanced magnetocaloric effect tuning efficiency in Ni-Mn-Sn alloy ribbons

    Science.gov (United States)

    Quintana-Nedelcos, A.; Sánchez Llamazares, J. L.; Daniel-Perez, G.

    2017-11-01

    The present work was undertaken to investigate the effect of microstructure on the magnetic entropy change of Ni50Mn37Sn13 ribbon alloys. Unchanged sample composition and cell parameter of austenite allowed us to study strictly the correlation between the average grain size and the total magnetic field induced entropy change (ΔST). We found that a size-dependent martensitic transformation tuning results in a wide temperature range tailoring (>40 K) of the magnetic entropy change with a reasonably small variation on the peak value of the total field induced entropy change. The peak values varied from 6.0 J kg-1 K-1 to 7.7 J kg-1 K-1 for applied fields up to 2 T. Different tuning efficiencies obtained by diverse MCE tailoring approaches are compared to highlight the advantages of the herein proposed mechanism.

  7. Leakage current phenomena in Mn-doped Bi(Na,K)TiO_3-based ferroelectric thin films

    International Nuclear Information System (INIS)

    Walenza-Slabe, J.; Gibbons, B. J.

    2016-01-01

    Mn-doped 80(Bi_0_._5Na_0_._5)TiO_3-20(Bi_0_._5K_0_._5)TiO_3 thin films were fabricated by chemical solution deposition on Pt/TiO_2/SiO_2/Si substrates. Steady state and time-dependent leakage current were investigated from room temperature to 180 °C. Undoped and low-doped films showed space-charge-limited current (SCLC) at high temperatures. The electric field marking the transition from Ohmic to trap-filling-limited current increased monotonically with Mn-doping. With 2 mol. % Mn, the current was Ohmic up to 430 kV/cm, even at 180 °C. Modeling of the SCLC showed that all films exhibited shallow trap levels and high trap concentrations. In the regime of steady state leakage, there were also observations of negative differential resistivity and positive temperature coefficient of resistivity near room temperature. Both of these phenomena were confined to relatively low temperatures (below ∼60 °C). Transient currents were observed in the time-dependent leakage data, which was measured out to several hundred seconds. In the undoped films, these were found to be a consequence of oxygen vacancy migration modulating the electronic conductivity. The mobility and thermal activation energy for oxygen vacancies was extracted as μ_i_o_n ≈ 1.7 × 10"−"1"2 cm"2 V"−"1 s"−"1 and E_A_,_i_o_n ≈ 0.92 eV, respectively. The transient current displayed different characteristics in the 1 mol. % Mn-doped films which were not readily explained by oxygen vacancy migration.

  8. High Efficiency Dye-sensitized Solar Cells Constructed with Composites of TiO2 and the Hot-bubbling Synthesized Ultra-Small SnO2 Nanocrystals.

    Science.gov (United States)

    Mao, Xiaoli; Zhou, Ru; Zhang, Shouwei; Ding, Liping; Wan, Lei; Qin, Shengxian; Chen, Zhesheng; Xu, Jinzhang; Miao, Shiding

    2016-01-13

    An efficient photo-anode for the dye-sensitized solar cells (DSSCs) should have features of high loading of dye molecules, favorable band alignments and good efficiency in electron transport. Herein, the 3.4 nm-sized SnO2 nanocrystals (NCs) of high crystallinity, synthesized via the hot-bubbling method, were incorporated with the commercial TiO2 (P25) particles to fabricate the photo-anodes. The optimal percentage of the doped SnO2 NCs was found at ~7.5% (SnO2/TiO2, w/w), and the fabricated DSSC delivers a power conversion efficiency up to 6.7%, which is 1.52 times of the P25 based DSSCs. The ultra-small SnO2 NCs offer three benefits, (1) the incorporation of SnO2 NCs enlarges surface areas of the photo-anode films, and higher dye-loading amounts were achieved; (2) the high charge mobility provided by SnO2 was confirmed to accelerate the electron transport, and the photo-electron recombination was suppressed by the highly-crystallized NCs; (3) the conduction band minimum (CBM) of the SnO2 NCs was uplifted due to the quantum size effects, and this was found to alleviate the decrement in the open-circuit voltage. This work highlights great contributions of the SnO2 NCs to the improvement of the photovoltaic performances in the DSSCs.

  9. Magnetic, Electrical Transport and Impedance Spectroscopy Studies on Ti Substituted La0.67Sr0.33MnO3 Ceramics

    International Nuclear Information System (INIS)

    Zalita, Z.; Halim, S.A.; Lim, K.P.; Talib, Z.A.; Hishamuddin, Z.; Walter, C.P.

    2009-01-01

    La 0.67 Sr 0.33 Mn 1-x Ti x O 3 samples with x = 0.0, 0.2, 0.4 and 0.6 have been prepared using the conventional solid-state reaction method. The structure, magnetic and electrical transport properties as well as the impedance spectroscopy of the samples were investigated. The powder XRD analysis showed that all samples were single phase with rhombohedral perovskite structure. The magnetization curve suggests that the Ti substituted samples exhibit weak ferromagnetic behaviour. The highest magnetoresistance (MR) value was obtained for sample x = 0.2 at temperature 200 K and field 1 T, which was 32.5 %. Low field magnetoresistance (LFMR) effect was observed for the x = 0.0 sample. The metal-like resistivity curve for the x = 0.0 sample was best fitted with ρ = ρo + ρ2T2 equation, indicating the grain boundary effects and electron-electron scattering process contribution. Semiconductor-like transport behaviour was observed for the Ti substituted samples and can be fitted by variable range hopping (VRH) and small polaron hopping (SPH) mechanisms. The activation energy of the samples increased when the Ti composition increased. An equivalent circuit was proposed for the impedance plot with a series of two parallel RC circuits. The grain, grain boundary and electrode resistance values increased with Ti composition due to the reduction of the Mn 3+ / Mn 4+ ratio. (author)

  10. Modification of the stability of polymorph nanometric TiO{sub 2} by surface excess of SnO{sub 2}; Modificacao da estabilidade dos polimorfos de TiO{sub 2} nanometrico pelo excesso de superficie de SnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Matioli, A.; Miagava, J.; Gouvea, D., E-mail: dgouvea@usp.br [Laboratorio de Processos Ceramicos, Departamento de Engenharia Metalurgica e de Materiais, Escola Politecnica da Universidade de Sao Paulo, SP (Brazil)

    2012-01-15

    Some oxides present stable polymorph forms only for nanometric size. Anatase (TiO{sub 2}) is stable in nanosized particles while the rutile phase is stable for larger ones. This results from the surface energies contribution, which modifies the total energy of the system and the phase stability. In turn, surface energy can be altered by the heterogeneous additives distribution, such as surface segregation or surface excess. This study investigated the action of the SnO{sub 2} on the polymorph stability of nanosized TiO{sub 2} prepared by polymeric precursor derived from the Pechini method. It appears that there is a strong effect on the stability of anatase and rutile with the SnO{sub 2} concentration while various surface properties are altered as well as a strong change in particle size, indicating that even though there are no large differences in the charge and size between the two cations, a surface phenomenon may underlie the stability of crystalline phases (author)

  11. Interrelation between domain structures and polarization switching in hybrid improper ferroelectric Ca3(Mn,Ti)2O7

    Science.gov (United States)

    Gao, Bin; Huang, Fei-Ting; Wang, Yazhong; Kim, Jae-Wook; Wang, Lihai; Lim, Seong-Joon; Cheong, Sang-Wook

    2017-05-01

    Ca3Mn2O7 and Ca3Ti2O7 have been proposed as the prototypical hybrid improper ferroelectrics (HIFs), and a significant magnetoelectric (ME) coupling in magnetic Ca3Mn2O7 is, in fact, reported theoretically and experimentally. Although the switchability of polarization is confirmed in Ca3Ti2O7 and other non-magnetic HIFs, there is no report of switchable polarization in the isostructural Ca3Mn2O7. We constructed the phase diagram of Ca3Mn2-xTixO7 through our systematic study of a series of single crystalline Ca3Mn2-xTixO7 (x = 0, 0.1, 1, 1.5, and 2). Using transmission electron microscopy, we have unveiled the unique domain structure of Ca3Mn2O7: the high-density 90° stacking of a- and b-domains along the c-axis due to the phase transition through an intermediate Acca phase and the in-plane irregular wavy ferroelastic twin domains. The interrelation between domain structures and physical properties is unprecedented: the stacking along the c-axis prevents the switching of polarization and causes the irregular in-plane ferroelastic domain pattern. In addition, we have determined the magnetic phase diagram and found complex magnetism of Ca3Mn2O7 with isotropic canted moments. These results lead to negligible observable ME coupling in Ca3Mn2O7 and guide us to explore multiferroics with large ME coupling.

  12. Enhanced electrical and magnetic properties in La0.7Sr0.3MnO3 thin films deposited on CaTiO3-buffered silicon substrates

    Directory of Open Access Journals (Sweden)

    C. Adamo

    2015-06-01

    Full Text Available We investigate the suitability of an epitaxial CaTiO3 buffer layer deposited onto (100 Si by reactive molecular-beam epitaxy (MBE for the epitaxial integration of the colossal magnetoresistive material La0.7Sr0.3MnO3 with silicon. The magnetic and electrical properties of La0.7Sr0.3MnO3 films deposited by MBE on CaTiO3-buffered silicon (CaTiO3/Si are compared with those deposited on SrTiO3-buffered silicon (SrTiO3/Si. In addition to possessing a higher Curie temperature and a higher metal-to-insulator transition temperature, the electrical resistivity and 1/f noise level at 300 K are reduced by a factor of two in the heterostructure with the CaTiO3 buffer layer. These results are relevant to device applications of La0.7Sr0.3MnO3 thin films on silicon substrates.

  13. Stability and charge separation of different CH3NH3SnI3/TiO2 interface: A first-principles study

    Science.gov (United States)

    Yang, Zhenzhen; Wang, Yuanxu; Liu, Yunyan

    2018-05-01

    Interface has an important effect on charge separation of perovskite solar cells. Using first-principles calculations, we studied several different interfaces between CH3NH3SnI3 and TiO2. The interfacial structure and electronic structure of these interfaces are thoroughly explored. We found that the SnI2/anatase (SnI2/A) system is more stable than the other three systems, because an anatase surface can make Snsbnd I bond faster restore to the pristine value than a rutile surface, and SnI2/A system has a smaller standard deviation. The calculated plane-averaged electrostatic potential and the density of states suggest that SnI2/anatase interface has a better separation of photo-generated electron-hole pairs.

  14. Hybrid selective noncatalytic reduction (SNCR)/selective catalytic reduction (SCR) for NOx removal using low-temperature SCR with Mn-V2O5/TiO2 catalyst.

    Science.gov (United States)

    Choi, Sung-Woo; Choi, Sang-Ki; Bae, Hun-Kyun

    2015-04-01

    A hybrid selective noncatalytic reduction/selective catalytic reduction (SNCR/SCR) system that uses two types of technology, low-temperature SCR process and SNCR process, was designed to develop nitrogen oxide (NOx) reduction technology. SCR was conducted with space velocity (SV)=2400 hr(-1) and hybrid SNCR/SCR with SV=6000 hr(-1), since the study focused on reducing the amount of catalyst and both achieved 98% NOx reduction efficiency. Characteristics of NOx reduction by NH3 were studied for low-temperature SCR system at 150 °C using Mn-V2O5/TiO2 catalyst. Mn-added V2O5/TiO2 catalyst was produced, and selective catalyst reduction of NOx by NH3 was experimented. NOx reduction rate according to added Mn content in Mn-V2O5/TiO2 catalyst was studied with varying conditions of reaction temperature, normalized stoichiometric ratio (NSR), SV, and O2 concentration. In the catalyst experiment according to V2O5 concentration, 1 wt.% V2O5 catalyst showed the highest NOx reduction rate: 98% reduction at temperature window of 200~250 °C. As a promoter of the V2O5 catalyst, 5 wt.% Mn was added, and the catalyst showed 47~90% higher efficiency even with low temperatures, 100~200 °C. Mn-V2O5/TiO2 catalyst, prepared by adding 5 wt.% Mn in V2O5/TiO2 catalyst, showed increments of catalyst activation at 150 °C as well as NOx reduction. Mn-V2O5/TiO2 catalyst showed 8% higher rate for NOx reduction compared with V2O5/TiO2 catalyst in 150 °C SCR. Thus, (5 wt.%)Mn-(1 wt.%)V2O5/TiO2 catalyst was applied in SCR of hybrid SNCR/SCR system of low temperature at 150 °C. Low-temperature SCR hybrid SNCR/SCR (150 °C) system and hybrid SNCR/SCR (350 °C) showed 91~95% total reduction rate with conditions of SV=2400~6000 hr(-1) SCR and 850~1050 °C SNCR, NSR=1.5~2.0, and 5% O2. Hybrid SNCR/SCR (150 °C) system proved to be more effective than the hybrid SNCR/SCR (350 °C) system at low temperature. NOx control is very important, since they are the part of greenhouse gases as well as the

  15. [Effect of TiO2-SiO2-SnOx film with different firing temperatures on bond strength of low-fusing dental porcelain to pure titanium].

    Science.gov (United States)

    Zhang, Zichuan; Zhang, Pei

    2015-07-01

    To evaluate the influence of TiO(2)-SiO(2)-SnOx nano-coatings with different firing temperatures on the bond strength of low-fusing dental porcelain to pure titanium. The surface of pure titanium was coated uniformly with TiO(2)-SiO(2)-SnOx nano-coatings by solution-gelatin (Sol-Gel) technology and then fired at 300 °C (group A) or 750 °C (group B) for 1 h. The specimens without any coatings were the control group (group C). There were 10 specimens in each group. Dental porcelain was sintered on the surface of titanium specimens. Surface roughness and contact angle of the coatings were also detected. The titanium-porcelain bond strength was investigated according to YY 0621-2008 standards using three-point flexure bond test. The phase composition of the TiO(2)-SiO(2)-SnOx nano-coatings was characterized by X-ray diffraction(XRD). The interface of titanium-porcelain and TiO(2)-SiO(2)-SnOx nano-coatings were observed using scanning electron microscope (SEM). No rutile phase was found in these specimens of group A and group B. The surface roughness of group A, B, C was (0.97 ± 0.06), (0.99 ± 0.03), (0.96 ± 0.07) µm, respectively. No significant difference was found among the three groups. Compared with that of group C (64.37° ± 3.01°), contact angles detected in group A (52.04° ± 3.15°) and group B (85.27° ± 4.17°) were significantly different (P porcelain in group A [(35.66 ± 2.65) MPa] was significantly increased compared with those in group B [(26.18 ± 2.22) MPa] and group C [(31.66 ± 3.52) MPa]. SEM photomicrographs of titanium-porcelain interface morphology of the specimens before porcelain sintering showed that TiO(2)-SiO(2)-SnOx nano-coatings in group A were compact and homogeneous with petty cracks and those in group B was loose and arranged disorderly. TiO(2)-SiO(2)-SnOx nano-coating fired at 300 °C is significantly effective in improving the titanium-porcelain bond strength.

  16. Standard enthalpies of formation of selected Rh2YZ Heusler compounds

    International Nuclear Information System (INIS)

    Yin, Ming; Nash, Philip

    2015-01-01

    The standard enthalpies of formation (Δ f H°) of selected ternary Rh-based Rh 2 YZ (Y = Cu, Fe, Mn, Ni, Ru, Ti, V; Z = Al, Ga, In, Si, Ge, Sn) compounds were measured using high temperature direct reaction calorimetry. The measured standard enthalpies of formation (in kJ/mol of atoms) are, for the Heusler compound Rh 2 MnSn (−40.1 ± 3.6), for the B2-structured compounds: Rh 2 FeAl (−48.5 ± 2.9); Rh 2 MnAl (−72.4 ± 2.7); Rh 2 MnGa (−55.3 ± 2.0); Rh 2 MnIn (−35.3 ± 1.9), for the tetragonal compounds: Rh 2 FeSn (−28.9 ± 1.3); Rh 2 TiAl (−97.6 ± 2.2); Rh 2 TiGa (−79.0 ± 1.8); Rh 2 TiSn (−74.7 ± 3.1). Values are compared with those from first principles calculations in published papers and the Open Quantum Materials Database (OQMD). Lattice parameters of these compounds are determined using X-ray diffraction analysis (XRD). Microstructures were characterized using scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). - Highlights: • Standard enthalpies of formation of Rh 2 YZ were measured using a drop calorimeter. • Measured enthalpies agree with first principles data in general. • Lattice parameters and related phase relationships were consistent with literature data. • Rh 2 TiSn of tI8 structure were reported for the first time.

  17. Kα X-ray satellite spectra of Ti, V, Cr and Mn induced by photons

    Indian Academy of Sciences (India)

    K X-ray emission spectra of Ti, V, Cr and Mn generated by photon excitation have been studied with a crystal spectrometer. The measured energy shifts of K satellite relative to the diagram line are compared with values obtained by electron excitation and with different theoretical estimates. The present experimental ...

  18. Electrochemical evaluation of adsorption and oxidation of the carbon monoxide towards ordered intermetallic phases Pt-M (M=Mn, Pb, Sb e Sn); Avaliacao eletroquimica da adsorcao e oxidacao do monoxido de carbono sobre fases intermetalicas ordenadas Pt-M (M=Mn, Pb, Sb e Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, A L; Miguel-Junior, E; Silva, R I.V. da; Angelo, A C.D. [UNESP, Bauru, SP (Brazil). Depto. de Quimica. Lab. de Eletrocatalise

    2004-07-01

    This paper presents the experimental results obtained from the electrochemical evaluation of Pt ordered intermetallic phases (PtMn, PtPb, PtSb, PtSn) as electrode materials towards the CO oxidation reaction. The intermetallics showed a higher performance than pure Pt in the same experimental conditions. PtSn has presented the highest performance among the evaluated materials. There was not observed a clear relationship between the electrocatalytic activity of the materials and their ability in producing oxygen species at lower anodic potentials, suggesting that surface electronic density and structural characteristics of the electrode surfaces must be the properties to be investigated in order to explain the obtained results. (author)

  19. Effect of Dopant Loading on the Structural and Catalytic Properties of Mn-Doped SrTiO3 Catalysts for Catalytic Soot Combustion

    Directory of Open Access Journals (Sweden)

    Santiago Iván Suárez-Vázquez

    2018-02-01

    Full Text Available Soot particles have been associated with respiratory diseases and cancer. To decrease these emissions, perovskite-mixed oxides have been proposed due to their thermal stability and redox surface properties. In this work, SrTiO3 doped with different amounts of Mn were synthesized by the hydrothermal method and tested for soot combustion. Results show that at low Mn content, structural distortion, and higher Oads/Olat ratio were observed which was attributed to the high content of Mn3+ in Ti sites. On the other hand, increasing the Mn content led to surface segregation of manganese oxide. All synthesized catalysts showed mesopores in the range of 32–47 nm. In the catalytic combustion of soot, the samples synthesized in this work lowered the combustion temperature by more than 100 °C compared with the uncatalyzed reaction. The sample doped with 1 wt % of Mn showed the best catalytic activity. The activation energy of these samples was also calculated, and the order of decreasing activation energy is as follows: uncatalyzed > Mn0 > Mn8 > Mn4 > Mn1. The best catalytic activity for Mn1 was attributed to its physicochemical properties and the mobility of the oxygen from the bulk to the surface at temperatures higher than 500 °C.

  20. Mo, Mn and La doped TiO{sub 2}: Synthesis, characterization and photocatalytic activity for the decolourization of three different chromophoric dyes

    Energy Technology Data Exchange (ETDEWEB)

    Umar, K.; Haque, M.M. [Department of Chemistry, Aligarh Muslim University, Aligarh 202 002 (India); Muneer, M., E-mail: readermuneer@gmail.com [Department of Chemistry, Aligarh Muslim University, Aligarh 202 002 (India); Harada, T.; Matsumura, M. [Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka 560-8531 (Japan)

    2013-11-25

    Highlights: •Detail study on synthesis, characterization and photocatalytic activity of doped-TiO{sub 2}. •SEM images indicates partial crystalline nature with rough surfaces. •The XRD analysis shows the partial crystalline nature and anatase phase. •The UV–Vis absorption spectra showed λ{sub max} shift towards longer wavelength. •TiO{sub 2} with dopant 0.75% (Mo), 1.0% (Mn, La) showed best photocatalytic efficiency. -- Abstract: Nanocrystalline TiO{sub 2} particles doped with different concentrations of Molybdenum (Mo), Manganese (Mn) and Lanthanum (La) (0.25–1.0%) were synthesized using sol–gel method and characterized by standard analytical techniques such as X-ray diffraction (XRD), UV–Vis spectroscopy and Scanning Electron Microscopy (SEM). The XRD analysis shows the partial crystalline nature and anatase phase. The SEM images of undoped and doped TiO{sub 2} at different magnifications also show the partial crystalline nature with rough surfaces. The photocatalytic activity of the synthesized particles (TiO{sub 2} doped with Mo, Mn and La) was tested by studying the decolourization of three different chromophoric dyes such as Acid Red 88 (azo dye), Gentian Violet (triphenylmethane dye) and Remazol Brilliant Blue R (anthraquinone dye) as a function of time on irradiation in aqueous suspension in an immersion well photochemical reactor with a 500 W halogen linear lamp in the presence of atmospheric oxygen. The results indicate that TiO{sub 2} with dopant concentration of 0.75% (Mo) and 1.0% (Mn, La) showed the highest photocatalytic activity as compared to the other dopant concentrations for the decolourization of all the dyes.

  1. Hot-dipped tin-zinc on U-0.75 w/o Ti

    International Nuclear Information System (INIS)

    Weirick, L.J.

    1979-09-01

    Conventional Zn galvanizing of U-0.75 Ti results in nonuniform coatings and reduced elongation because of thermal aging of the surface of the U-Ti. A lower melting material which would give sacrificial galvanic protection to the U-Ti was found in the Sn-Zn alloy system. The present work describes: (1) the metallography of the Sn-Zn system, (2) the electrochemistry of the Sn-Zn system with respect to U-Ti, (3) the mechanics of applying a Sn-Zn coating to U-Ti, (4) salt spray corrosion test results of various Sn-Zn alloys applied to U-Ti coupons, and (5) mechanical property tests of coated U-Ti tensile bars. An 80 Sn-20 Zn alloy (MP-280 0 C) was chosen for the galvanizing study because of its lower melting point. The results showed that all alloys of the Sn-Zn system galvanically protected the U-Ti in salt fog environments. The lack of a suitable low temperature flux prevented the operation of the Sn-Zn bath at its optimum temperature and low elongations were obtained with this coating system

  2. Effect of calcination temperature on the structure and performance of CeO{sub x}–MnO{sub x}/TiO{sub 2} nanoparticles for the catalytic combustion of chlorobenzene

    Energy Technology Data Exchange (ETDEWEB)

    He, Fei; Chen, Yong; Zhao, Pei; Liu, Shantang, E-mail: anliu123@hotmail.com [Wuhan Institute of Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering (China)

    2016-05-15

    In this study, MnO{sub x}/TiO{sub 2}, CeO{sub x}/TiO{sub 2}, and CeO{sub x}–MnO{sub x}/TiO{sub 2} catalysts were prepared by the homogeneous precipitation method. The effect of calcination temperature on the structure and catalytic performance of CeO{sub x}–MnO{sub x}/TiO{sub 2} mixed oxide catalyst in the catalytic combustion of chlorobenzene was investigated. The samples were characterized by X-ray diffraction, nitrogen adsorption–desorption, transmission electron microscopy, Raman spectra, hydrogen temperature-programmed reduction, and X-ray photoelectron spectroscopy. The results indicate that calcination significantly affect the activity of the prepared catalysts. When calcined at a low temperature such as 400 °C, Ce, and Mn species form a solid solution of MnCeO{sub x} in the catalyst, thus locating the O atoms in a perturbed chemical surrounding in the catalysts. This increases the mobility of the O atoms during the reaction, probably contributing to the highest catalytic activity of CeO{sub x}–MnO{sub x}/TiO{sub 2} among all the tested catalysts. However, a further increase in the calcination temperature decreased the performance of the catalyst for the catalytic combustion of chlorobenzene. This is probably because of a reduction in surface chemisorbed oxygen concentration, a decrease in the interface area between metal oxides and MnCeO{sub x} caused by the isolation of MnO{sub x} or CeO{sub 2} from MnCeO{sub x}, and a decrease in the specific surface area of CeO{sub x}–MnO{sub x}/TiO{sub 2} catalyst due to the sintering of catalyst.Graphical Abstract.

  3. Effects of electron correlations application to Ti atoms on physical properties of (LaMnO{sub 3}){sub m}/(SrTiO{sub 3}){sub n} superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Aezami, A., E-mail: a.aezami@gmail.com; Abolhassani, M.; Elahi, M.

    2016-05-15

    Magnetic structures and Curie temperatures of the (LaMnO{sub 3}){sub m}/(SrTiO{sub 3}){sub n} superlattices (SLm–n) with m=1, 2, 3 and n=1, 2, 3, 8 were investigated, using density functional theory implemented in Quantum-Espresso open source code. By applying on-site coulomb interaction (Hubbard term U) to Ti atoms for all of these superlattices, using Stoner–Wolfarth model, it was found that the magnetic order of interfacial atoms of these superlattices changed to ferromagnetic by implying U=5 eV on Ti atoms. The inclusion of electron–electron correlation with U=5 eV on the Ti atoms for all of the superlattices made the two dimensional electron gas (2DEG) formed at the interfaces, half-metallic. The obtained values of Curie temperature, calculated within mean field approximation with U=5 eV on the Ti atoms, are in good agreement with the experimental results. - Highlights: • Calculated the magnetic structure and Curie temperature of the (LaMnO{sub 3}){sub m}/(SrTiO{sub 3}){sub n} superlattices with m=1, 2, 3 and n=1, 2, 3, 8 by mean field approximation. • By implying U=5 eV on the Ti atoms, the magnetic order of interfacial atoms of these superlattices has changed to ferromagnetic. • The 2DEG formed at the interface half-metallic have made in these superlattices by the inclusion of electron-electron correlation with U=5 eV on the Ti atoms for all of the superlattices.

  4. Effect of titanium on structure and martensitic transformation in rapidly solidified Cu-Al-Ni-Mn-Ti alloys

    International Nuclear Information System (INIS)

    Dutkiewicz, J.; Czeppe, T.; Morgiel, J.

    1999-01-01

    Alloys of composition Cu-(11.8-13.5)%Al-(3.2-4)%Ni-(2-3)%Mn and 0-1%Ti (wt.%) were cast using the melt spinning method in He atmosphere. Ribbons obtained in this process showed grains from 0.5 to 30 μm depending on the type of alloy and wheel speed. Bulk alloys and most of the ribbons contained mixed 18R and 2H type martensite at room temperature (RT). Some ribbons, crystallizing at the highest cooling rate, retained also β phase due to a drop of M s below RT. The M s temperatures in ribbons were strongly lowered with increasing wheel speed controlling the solidification rate. This drop of M s shows a linear relationship with d -1/2 , where d is grain size. The strongest decrease of M s and smallest grains were found in the ribbons containing titanium due to its grain refinement effect. The cubic Ti rich precipitates, present in both Cu-Al-Ni-Ti and Cu-Al-Ni-Mn-Ti bulk, were dispersed in ribbons cast with intermediate cooling rates of up to 26 m s -1 , but suppressed for higher cooling rates. The transformation hysteresis loop was much broader in ribbons due to presence of coherent Ti rich precipitates and differences in grain size which is particularly important in the ultra small grain size range. (orig.)

  5. Structure and magnetic properties of Sm{sub 2}Rh{sub 3}Sn{sub 5}. An intergrowth of TiNiSi- and NdRh{sub 2}Sn{sub 4}-related slabs

    Energy Technology Data Exchange (ETDEWEB)

    Heying, Birgit; Koesters, Jutta; Hoffmann, Rolf-Dieter; Heletta, Lukas; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2017-07-01

    The stannide Sm{sub 2}Rh{sub 3}Sn{sub 5} was obtained by arc-melting of the elements and subsequent annealing at 1070 K in a silica tube. Sm{sub 2}Rh{sub 3}Sn{sub 5} crystallizes with the orthorhombic Y{sub 2}Rh{sub 3}Sn{sub 5} type structure, space group Cmc2{sub 1}, Z=4: a=444.46(8), b=2636.2(4), c=718.3(1) pm, wR=0.0711, 1761 F{sup 2} values and 61 variables. The three crystallographically independent rhodium atoms show tricapped trigonal prismatic coordination by samarium and tin atoms. Sm{sub 2}Rh{sub 3}Sn{sub 5} can be considered as a simple 1:1 intergrowth structure of TiNiSi- and NdRh{sub 2}Sn{sub 4}-related slabs of compositions SmRhSn and SmRh{sub 2}Sn{sub 4}. Temperature dependent magnetic susceptibility data revealed van Vleck type behavior caused by the proximity of the exited {sup 6}H{sub 7/2} state to the {sup 6}H{sub 5/2} ground state of Sm{sup 3+}, and an antiferromagnetic ordering occurs at T{sub N}=3.5(5) K.

  6. Evolution of a novel Si-18Mn-16Ti-11P alloy in Al-Si melt and its influence on microstructure and properties of high-Si Al-Si alloy

    Directory of Open Access Journals (Sweden)

    Xiao-Lu Zhou

    Full Text Available A novel Si-18Mn-16Ti-11P master alloy has been developed to refine primary Si to 14.7 ± 1.3 μm, distributed uniformly in Al-27Si alloy. Comparing with traditional Cu-14P and Al-3P, Si-18Mn-16Ti-11P provided a much better refining effect, with in-situ highly active AlP. The refined Al-27Si alloy exhibited a CTE of 16.25 × 10−6/K which is slightly higher than that of Sip/Al composites fabricated by spray deposition. The UTS and elongation of refined Al-27Si alloy were increased by 106% and 235% comparing with those of unrefined alloy. It indicates that the novel Si-18Mn-16Ti-11P alloy is more suitable for high-Si Al-Si alloys and may be a candidate for refining hypereutectic Al-Si alloy for electronic packaging applications. Moreover, studies showed that TiP is the only P-containing phase in Si-18Mn-16Ti-11P master alloy. A core-shell reaction model was established to reveal mechanism of the transformation of TiP to AlP in Al-Si melts. The transformation is a liquid-solid diffusion reaction driven by chemical potential difference and the reaction rate is controlled by diffusion. It means sufficient holding time is necessary for Si-18Mn-16Ti-11P master alloy to achieve better refining effect. Keywords: Hypereutectic Al-Si alloy, Primary Si, Refinement, AlP, Thermal expansion behavior, Si-18Mn-16Ti-11P master alloy

  7. Voltage spikes in Nb3Sn and NbTi strands

    Energy Technology Data Exchange (ETDEWEB)

    Bordini, B.; Ambrosio, G.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.V.; Lamm, M.J.; Orris, D.; Tartaglia, M.; Tompkins, J.C.; Turrioni, D.; Yamada, R.; Zlobin,; /Fermilab

    2005-09-01

    As part of the High Field Magnet program at Fermilab several NbTi and Nb{sub 3}Sn strands were tested with particular emphasis on the study of voltage spikes and their relationship to superconductor instabilities. The voltage spikes were detected under various experimental conditions using voltage-current (V-I) and voltage-field (V-H) methods. Two types of spikes, designated ''magnetization'' and ''transport current'' spikes, have been identified. Their origin is most likely related to magnetization flux jump and transport current redistribution, respectively. Many of the signals observed appear to be a combination of these two types of spikes; the combination of these two instability mechanisms should play a dominant role in determining the minimum quench current.

  8. Direct measurements of inter-filament resistance in various multi-filamentary superconducting NbTi and Nb3Sn strands

    NARCIS (Netherlands)

    Zhou, Chao; Miyoshi, Y.; van Lanen, E.P.A.; Dhalle, Marc M.J.; Nijhuis, Arend

    2012-01-01

    For a proper characterization of multi-filamentary NbTi and Nb3Sn strands and a better understanding of their performance in short sample tests, as well as for increased understanding of inter-strand current redistribution in cabled conductors, a quantitative knowledge of the inter-filament

  9. Improvement of the stability of TiSnSb anode under lithiation using SEI forming additives and room temperature ionic liquid/DMC mixed electrolyte

    International Nuclear Information System (INIS)

    Zhang, W.; Ghamouss, F.; Mery, A.; Lemordant, D.; Dedryvère, R.; Monconduit, L.; Martinez, H.

    2015-01-01

    Highlights: • Lithiation and delithiation of TiSnSb conversion anode material • Room temperature ionic liquid based electrolyte • Fluoroethylene carbonate SEI builder additives • XPS and electrochemical analysis of the anode/electrolyte interface -- Abstract: The electrochemical behavior and the stability under cycling of TiSnSb anode for Li-ion batteries were investigated in room temperature ionic liquids based electrolyte. X-ray photoelectron spectroscopy (XPS), cyclic voltammetry, and electrochemical impedance (EIS) measurements have been performed to study the formation of surface film on the TiSnSb anode. Surface analysis was performed by a combined XPS core peaks and quantification data analysis, to establish the main components of the solid electrolyte interphase film (SEI). The key observation is that the thickness and the chemical nature of the SEI layer is strongly related to the electrolyte formulation and the addition of SEI layer forming additives. Vinylene carbonate (VC) and fluoroethylene carbonate (FEC) were applied in order to improve the anode/electrolyte interface. From XPS, EIS results and galvanostatic cycling the role of additives and ionic liquids as an effective stability improver has been highlighted

  10. Large recoverable electrostrain in Mn-doped (Ba,Sr) TiO3 ceramics

    International Nuclear Information System (INIS)

    Zhang, L.X.; Chen, W.; Ren, X.

    2004-01-01

    In this letter we demonstrate that with a different principle, BaTiO 3 ceramics, so far considered as inferior piezoelectrics compared with Pb(Zr,Ti)O 3 (PZT), can show a large recoverable electrostrain. This principle utilizes a point-defect-mediated reversible domain switching mechanism, which can in theory generate 0.368% strain for BaTiO 3 ceramics at the best condition. Experimental results showed that, after aging at room temperature, 1.0 mol % Mn-doped (Ba 0.95 Sr 0.05 )TiO 3 ceramics generate a large recoverable nonlinear strain of about 0.12%-0.15% at a field of 3 kV/mm. This value exceeds that of conventional hard PZT piezoelectric ceramics. A microscopic model for the domain-related electrostrain effect in ceramics is proposed. It is also found that the large electrostrain effect is quite stable with respect to both changing frequency and fatigue cycles. Large electrostrain remains recoverable down to 0.05 Hz and after 10 000 cycles. These results demonstrate the potential of our approach in achieving large recoverable electrostrain in environmental-friendly (Pb-free) ceramics

  11. Robust electrodes based on coaxial TiC/C-MnO2 core/shell nanofiber arrays with excellent cycling stability for high-performance supercapacitors.

    Science.gov (United States)

    Zhang, Xuming; Peng, Xiang; Li, Wan; Li, Limin; Gao, Biao; Wu, Guosong; Huo, Kaifu; Chu, Paul K

    2015-04-17

    A coaxial electrode structure composed of manganese oxide-decorated TiC/C core/shell nanofiber arrays is produced hydrothermally in a KMnO4 solution. The pristine TiC/C core/shell structure prepared on the Ti alloy substrate provides the self-sacrificing carbon shell and highly conductive TiC core, thus greatly simplifying the fabrication process without requiring an additional reduction source and conductive additive. The as-prepared electrode exhibits a high specific capacitance of 645 F g(-1) at a discharging current density of 1 A g(-1) attributable to the highly conductive TiC/C and amorphous MnO2 shell with fast ion diffusion. In the charging/discharging cycling test, the as-prepared electrode shows high stability and 99% capacity retention after 5000 cycles. Although the thermal treatment conducted on the as-prepared electrode decreases the initial capacitance, the electrode undergoes capacitance recovery through structural transformation from the crystalline cluster to layered birnessite type MnO2 nanosheets as a result of dissolution and further electrodeposition in the cycling. 96.5% of the initial capacitance is retained after 1000 cycles at high charging/discharging current density of 25 A g(-1). This study demonstrates a novel scaffold to construct MnO2 based SCs with high specific capacitance as well as excellent mechanical and cycling stability boding well for future design of high-performance MnO2-based SCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Microplasticity and fracture in a Ti-15V-3Cr-3Al-3Sn alloy

    International Nuclear Information System (INIS)

    Rabeeh, B.M.; Rokhlin, S.I.; Soboyejo, W.O.

    1996-01-01

    Linear Elasticity is generally considered to occur in most standard textbooks by the strengthening of chemical bonds in the regime below the proportional limit in most materials. In some cases, however, a number of researchers have recognized the possible role of localized microplasticity (microplasticity in this paper refers to localized plasticity on a microstructural level at stresses below the so-called bulk yield stress) in the so-called elastic deformation regime. There is, therefore, a need for careful studies of the micromechanisms of microplasticity in the so-called elastic regime. Micromechanisms of microplasticity will be presented in this paper for a metastable β Ti-15V-3Cr-3Al-3Sn (Ti-15-3) alloy deformed in incremental stages to failure under monotonic loading. Micromechanisms of tensile deformation and fracture will be elucidated for a Ti-15-3 plate with single phase β and Widmanstaetten α+β microstructures

  13. Growth and photovoltaic performance of SnS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Deepa, K.G., E-mail: deepachaithanya@gmail.com [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore (India); Nagaraju, J. [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore (India)

    2012-08-01

    Highlights: Black-Right-Pointing-Pointer Orthorhombic SnS quantum dots are synthesized by chemical method. Black-Right-Pointing-Pointer HOMO-LUMO level alignments confirmed the electron transport from SnS to TiO{sub 2}. Black-Right-Pointing-Pointer Cell characteristics are analyzed with different size quantum dots. Black-Right-Pointing-Pointer FF increased drastically from 15 to 51% on adding a buffer layer to the structure. Black-Right-Pointing-Pointer The SnS QDSSC showed highest V{sub oc} of 504 mV and 2.3 mA/cm{sup 2}. - Abstract: Tin sulphide (SnS) quantum dots of size ranging from 2.4 to 14.4 nm are prepared by chemical precipitation method in aqueous media. Growth of the SnS particles is monitored by controlling the deposition time. Both XRD and SAED patterns confirm that the particles possess orthorhombic structure. The uncapped SnS particles showed secondary phases like Sn{sub 2}S{sub 3} and SnS{sub 2} which is visible in the SAED pattern. From the electrochemical characterization, HOMO-LUMO levels of both TiO{sub 2} and SnS are determined and the band alignment is found to be favorable for electron transfer from SnS to TiO{sub 2}. Moreover, the HOMO-LUMO levels varied for different particle sizes. Solar cell is fabricated by sensitizing porous TiO{sub 2} thin film with SnS QDs. Cell structure is characterized with and without buffer layer between FTO and TiO{sub 2}. Without the buffer layer, cell showed an open circuit voltage (V{sub oc}) of 504 mV and short circuit current density (J{sub sc}) of 2.3 mA/cm{sup 2} under AM1.5 condition. The low fill factor of this structure (15%) is seen to be increased drastically to 51%, on the incorporation of the buffer layer. The cell characteristics are analyzed using two different size quantum dots.

  14. Hybrid improper ferroelectricity in Ruddlesden-Popper Ca{sub 3}(Ti,Mn){sub 2}O{sub 7} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. Q., E-mail: xqliu@zju.edu.cn, E-mail: xmchen59@zju.edu.cn; Wu, J. W.; Shi, X. X.; Zhao, H. J.; Zhou, H. Y.; Chen, X. M., E-mail: xqliu@zju.edu.cn, E-mail: xmchen59@zju.edu.cn [Laboratory of Dielectric Materials, School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027 (China); Qiu, R. H.; Zhang, W. Q. [Department of Physics, Shanghai University, 99 Shangda Road, Shanghai 200444 (China)

    2015-05-18

    The hybrid improper ferroelectricity (HIF) has been proposed as a promising way to create multiferroic materials with strong magnetoelectric coupling by the first-principle calculation, and the experimental evidences of HIF in Ruddlesden-Poper Ca{sub 3}(Ti{sub 1−x}Mn{sub x}){sub 2}O{sub 7} (x = 0, 0.05, 0.1, and 0.15) ceramics have been shown in the present work. The room temperature ferroelectric hysteresis loops are observed in these ceramics, and a polar orthorhombic structure with two oxygen tilting modes has been confirmed by the X-ray powder diffraction. A first-order phase transition around 1100 K in Ca{sub 3}Ti{sub 2}O{sub 7} was evidenced, and the temperatures of phase transitions decrease linearly with increasing of the contents of Mn{sup 4+} ions. Based on the result of first-principle calculations, the polarization should be reversed by switching through the mediated Amam phase in Ca{sub 3}Ti{sub 2}O{sub 7} ceramics.

  15. Standard enthalpies of formation of selected Rh{sub 2}YZ Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ming, E-mail: myin1@hawk.iit.edu; Nash, Philip

    2015-11-25

    The standard enthalpies of formation (Δ{sub f}H°) of selected ternary Rh-based Rh{sub 2}YZ (Y = Cu, Fe, Mn, Ni, Ru, Ti, V; Z = Al, Ga, In, Si, Ge, Sn) compounds were measured using high temperature direct reaction calorimetry. The measured standard enthalpies of formation (in kJ/mol of atoms) are, for the Heusler compound Rh{sub 2}MnSn (−40.1 ± 3.6), for the B2-structured compounds: Rh{sub 2}FeAl (−48.5 ± 2.9); Rh{sub 2}MnAl (−72.4 ± 2.7); Rh{sub 2}MnGa (−55.3 ± 2.0); Rh{sub 2}MnIn (−35.3 ± 1.9), for the tetragonal compounds: Rh{sub 2}FeSn (−28.9 ± 1.3); Rh{sub 2}TiAl (−97.6 ± 2.2); Rh{sub 2}TiGa (−79.0 ± 1.8); Rh{sub 2}TiSn (−74.7 ± 3.1). Values are compared with those from first principles calculations in published papers and the Open Quantum Materials Database (OQMD). Lattice parameters of these compounds are determined using X-ray diffraction analysis (XRD). Microstructures were characterized using scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). - Highlights: • Standard enthalpies of formation of Rh{sub 2}YZ were measured using a drop calorimeter. • Measured enthalpies agree with first principles data in general. • Lattice parameters and related phase relationships were consistent with literature data. • Rh{sub 2}TiSn of tI8 structure were reported for the first time.

  16. Systematic study of hyperfine fields in Rh2 Y Z type Heusler alloys with 119 Sn impurity using Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Ramos, S.M.M.

    1985-01-01

    The magnetic hyperfine fields in the Heusler alloys Rh 2 Mn .98 Ge Sn 02 , Rh 2 Mn Ge .98 Sn .02 , Rh 2 Mn Pb .98 Sn .02 and Rh 2 Mn Sn has been studied by 119 Sn Moessbauer spectroscopy at 293 K, 77 K, 4.2 K and 293 K with applied external magnetic field. The results show that when one compare the magnetic hyperfine fields systematic with the Heusler alloys X 2 Mn Z (X = Co, Ni, Cu, Pd, and Z = s p metal), this systematic is similar to the Co alloys, although can not explained by the currents models for the Heusler alloys. (author)

  17. Low-temperature heteroepitaxial growth of InAlAs layers on ZnSnAs{sub 2}/InP(001)

    Energy Technology Data Exchange (ETDEWEB)

    Oomae, Hiroto; Suzuki, Akiko; Toyota, Hideyuki; Uchitomi, Naotaka [Department of Electrical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Niigata (Japan); Nakamura, Shin' ichi [Center for Instrumental Analysis, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara 252-0206, Kanagawa (Japan)

    2015-06-15

    We studied the epitaxial growth of InAlAs on ZnSnAs{sub 2} thin films to establish magnetic heterostructures involving ferromagnetic Mn-doped ZnSnAs{sub 2} (ZnSnAs{sub 2}:Mn) thin films. These heterostructures were successfully grown at temperatures around 300 C to maintain room-temperature ferromagnetism in ZnSnAs{sub 2}:Mn. Reflection high-energy electron diffraction, X-ray diffraction measurements and cross-sectional transmission electron microscopy revealed that the InAlAs layers were pseudomorphically lattice-matched with ZnSnAs{sub 2,} even at the low temperature of 300 C. We attempted to prepare magnetic quantum well structures from the InAlAs/ZnSnAs{sub 2}:Mn magnetic multilayer structure. We found that InAlAs layers heteroepitaxially grown on ZnSnAs{sub 2} and ferromagnetic ZnSnAs{sub 2}:Mn films are suitable for preparing InP-based magnetic semiconductor quantum structures. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)

    International Nuclear Information System (INIS)

    Schuon, S.R.

    1982-01-01

    The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life

  19. Fabrication of lead-free piezoelectric Li2CO3-added (Ba,Ca)(Ti,Sn)O3 ceramics under controlled low oxygen partial pressure and their properties

    Science.gov (United States)

    Noritake, Kouta; Sakamoto, Wataru; Yuitoo, Isamu; Takeuchi, Teruaki; Hayashi, Koichiro; Yogo, Toshinobu

    2018-02-01

    Reduction-resistant lead-free (Ba,Ca)(Ti,Sn)O3 piezoceramics with high piezoelectric constants were fabricated by optimizing the amount of Li2CO3 added. Oxygen partial pressure was controlled during the sintering of (Ba,Ca)(Ti,Sn)O3 ceramics in a reducing atmosphere using H2-CO2 gas. Enhanced grain growth and a high-polarization state after poling treatment were achieved by adding Li2CO3. Optimizing the amount of Li2CO3 added to (Ba0.95Ca0.05)(Ti0.95Sn0.05)O3 ceramics sintered under a low oxygen partial pressure resulted in improved piezoelectric properties while maintaining the high sintered density. The prepared Li2CO3-added ceramic samples had homogeneous microstructures with a uniform dispersion of each major constituent element. However, the residual Li content in the 3 mol % Li2CO3-added (Ba0.95Ca0.05)(Ti0.95Sn0.05)O3 ceramics after sintering was less than 0.3 mol %. Sintered bodies of this ceramic prepared in a CO2 (1.5%)-H2 (0.3%)/Ar reducing atmosphere (PO2 = 10-8 atm at 1350 °C), exhibited sufficient electrical resistivity and a piezoelectric constant (d 33) exceeding 500 pC/N. The piezoelectric properties of this nonreducible ceramic were comparable or superior to those of the same ceramic sintered in air.

  20. The electrochemical properties of Zr-Ti-V-Ni-Mn hydrogen storage alloys with various compositions for an electrode of Ni-MH secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung Jun; Jung, So Yi; Park, Choong Nyeon [Dept. of Metallurgical Engineering, Chonnam National University, Kwangju (Korea)

    1999-12-01

    Effects of alloy modification for the Zr{sub 0.7}Ti{sub 0.3}V{sub 0.4}Ni{sub 1.2}Mn{sub 0.4} alloy as an electrode materials have been investigated. When Ti in the alloy was partially substituted by Zr, the hydrogen storage capacity and subsequently the discharge capacity increased significantly, however, the activation characteristic and rate capability decreased. By substituting Mn with other elements (Cr, Co and Fe) in the alloy, discharge capacity decreased but the cycle life and rate capability were improved. Considering both the discharge capacity, the high rate discharge property and cycle life, the Zaire.{sub 7}Ti{sub 0.3}V{sub 0.4}Ni{sub 1.2}Mn{sub 0.3}Cr{sub 0.1} alloy among the alloys subjected to the test was found to be a prominent alloy for a practical usage. 11 refs., 5 figs., 2 tabs.

  1. Moessbauer study of the magnetic phase transformations in SnMn3N

    International Nuclear Information System (INIS)

    Nagy, D.L.; Zimmer, G.J.; Lohner, T.; Senateur, J.P.

    1975-01-01

    Moessbauer measurements were performed on SnMn 3 N with the aim of verifying the magnetic phase transformations at 175 and 230 K and the Neel transition at 475 K as well as of seeking an explanation for the anomalous peak in magnetic susceptibility about 380 K. Moessbauer spectra were taken at several temperatures between 83 and 475 K and evaluated by a least square fitting program. Abrupt changes in the hyperfine field were found at 175, 230 and 350 K indicating first-order magnetic phase transformations at these temperatures; the 350 K transformation is certainly related to the anomaly in susceptibility. About 475 only a smooth change in the hyperfine field was found suggesting the Neel transition to be of the second order. An attempt is made to explain the relatively high hyperfine field in the cubic antiferromagnetic phase. (A.K.)

  2. Electrochemical treatment of 2, 4-dichlorophenol using a nanostructured 3D-porous Ti/Sb-SnO2-Gr anode: Reaction kinetics, mechanism, and continuous operation.

    Science.gov (United States)

    Asim, Sumreen; Zhu, Yunqing; Batool, Aisha; Hailili, Reshalaiti; Luo, Jianmin; Wang, Yuanhao; Wang, Chuanyi

    2017-10-01

    2, 4-dichlorophenol (2, 4-DCP) is considered to be a highly toxic, mutagenic, and possibly carcinogenic pollutant. This study is focused on the electrochemical oxidation of 2, 4-DCP on nanostructured 3D-porous Ti/Sb-SnO 2 -Gr anodes, with the aim of presenting a comprehensive elucidation of mineralization process through the investigation of influential kinetics, the reactivity of hydroxyl radical's and analysis of intermediates. High efficiency was achieved at pH of 3 using Na 2 SO 4 electrolytes at a current density of 30 mA cm -2 . Under the optimized conditions, a maximum removal of 2, 4-DCP of up to 99.9% was reached, whereas a TOC removal of 81% was recorded with the lowest EC TOC (0.49 kW h g -1 ) within 40 min of electrolysis. To explore the stability of the 3D-Ti/Sb-SnO 2 -Gr electrodes, a continuous electrochemical operation was established, and the consistent mineralization results indicated the effectiveness of the 3D-Ti/Sb-SnO 2 -Gr system concerning its durability and practical utilization. EPR studies demonstrated the abundant generation of OH radicals on 3D-Ti/Sb-SnO 2 -Gr, resulting in fast recalcitrant pollutant incineration. From dechlorination and the reactivity of the OH radicals, several intermediates including six cyclic byproducts and three aliphatic carboxylic acids were detected, and two possible degradation pathways were proposed that justify the complete mineralization of 2, 4-DCP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Stability and magnetic properties of SnSe monolayer doped by transition metal atom (Mn, Fe, and Co): a first-principles study

    Science.gov (United States)

    Tang, Chao; Li, Qinwen; Zhang, Chunxiao; He, Chaoyu; Li, Jin; Ouyang, Tao; Li, Hongxing; Zhong, Jianxin

    2018-06-01

    Two dimensional (2D) tin selenium (SnSe) is an intriguing material with desired thermal and electric properties in nanoelectronics. In this paper, we carry on a density functional theory study on the stability and dilute magnetism of the 3d TM (Mn, Fe, and Co) doped 2D SnSe. Both the adsorption and substitution are in consideration here. We find that all the defects are electrically active and the cation substitutional doping (TM@Sn) is energetically favorable. The TM@Sn prefers to act as accepters and exhibits high-spin state with nonzero magnetic moment. The magnetic moment is mainly contributed by the spin-polarized charge density of the TM impurities. The magnetism is determined by the arrangement of the TM-3d orbitals, which is the result of the crystal field splitting and spin exchange splitting under specific symmetry. The magnetic and electronic properties of the TM@Sn are effectively modulated by external electric field (Eext) and charge doping. The Eext shifts the TM impurities relative to the SnSe host and then modifies the crystal field splitting. In particular, the magnetic moment is sensitive to the Eext in the Fe@Sn because the Eext induces distinct structure transformation. Based on the formation energy, doping electrons is a viable way to modulate the magnetic moment of TM@Sn. Doping electrons shift the 3d states towards low energy level, which induces the occupation of more 3d states and then the reduction of magnetism. These results render SnSe monolayer a promising 2D material for applications in future spintronics.

  4. Tunable magnetocaloric effect in Sr{sub 1-x}Ca{sub x}Mn{sub 0.5}Ti{sub 0.5}O{sub 3} perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugapriya, K.; Palanivel, Balan [Pondicherry Engineering College, Department of Physics, Puducherry (India); Radheep, D.M.; Murugan, Ramaswamy [Pondicherry University, Department of Physics, Puducherry (India)

    2017-07-15

    Sr{sub 1-x}Ca{sub x}Mn{sub 0.5}Ti{sub 0.5}O{sub 3} (x = 0.25, 0.5 and 0.75) polycrystalline samples were synthesized by conventional solid-state reaction. Magnetic characterizations of Sr{sub 1-x}Ca{sub x}Mn{sub 0.5}Ti{sub 0.5}O{sub 3} revealed signature of antiferromagnetic ordering at temperatures (T{sub N}) ∝ 19, 25 and 29.5 K for x = 0.25, x = 0.5 and for x = 0.75, respectively. Sr{sub 1-x}Ca{sub x}Mn{sub 0.5}Ti{sub 0.5}O{sub 3} (x = 0.75) exhibits field-induced antiferromagnetic to ferromagnetic transition at ∝ 30 K with applied magnetic field of 4 and 5 T. Magnetocaloric change (ΔS{sub M}) increases from 3.5 to 19 J/kg K by increasing calcium concentration in the A-site. Those ΔS{sub M} values are relatively very high in these classes of antiferromagnetic perovskite systems and equal to the magnetisation values of the ferromagnetic perovskite manganites. This is the first report for the Sr{sub 1-x}Ca{sub x}Mn{sub 0.5}Ti{sub 0.5}O{sub 3} (x = 0.75) having large magnetic entropy changes induced by the low magnetic field. (orig.)

  5. Electro-caloric effect in lead-free Sn doped BaTiO3 ceramics at room temperature and low applied fields

    International Nuclear Information System (INIS)

    Upadhyay, Sanjay Kumar; Reddy, V. Raghavendra; Bag, Pallab; Rawat, R.; Gupta, S. M.; Gupta, Ajay

    2014-01-01

    Structural, dielectric, ferroelectric (FE), 119 Sn Mössbauer, and specific heat measurements of polycrystalline BaTi 1–x Sn x O 3 (x = 0% to 15%) ceramics are reported. Phase purity and homogeneous phase formation with Sn doping is confirmed from x-ray diffraction and 119 Sn Mössbauer measurements. With Sn doping, the microstructure is found to change significantly. Better ferroelectric properties at room temperature, i.e., increased remnant polarization (38% more) and very low field switchability (225% less) are observed for x = 5% sample as compared to other samples and the results are explained in terms of grain size effects. With Sn doping, merging of all the phase transitions into a single one is observed for x ≥ 10% and for x = 5%, the tetragonal to orthorhombic transition temperature is found close to room temperature. As a consequence better electro-caloric effects are observed for x = 5% sample and therefore is expected to satisfy the requirements for non-toxic, low energy (field) and room temperature based applications.

  6. Investigation of multifunctional properties of Mn{sub 50}Ni{sub 40−x}Co{sub x}Sn{sub 10} (x = 0–6) Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Jyoti; Suresh, K.G., E-mail: suresh@phy.iitb.ac.in

    2015-01-25

    Highlights: • Mn{sub 50}Ni{sub 40−x}Co{sub x}Sn{sub 10} Heusler alloys exhibit multifunctional properties. • Co doping results decrease in martensitic transition temperature and increase in T{sub C}{sup A}. • Ferromagnetic coupling increases with increase in Co concentration. • Large positive ΔS{sub M} of 10.5 J/kg K and large RCP of 125 J/kg was obtained for x = 1. • Large exchange bias field of 833 Oe was observed for Mn{sub 50}Ni{sub 39}Co{sub 1}Sn{sub 10} alloy. - Abstract: A series of Co doped Mn{sub 50}Ni{sub 40−x}Co{sub x}Sn{sub 10} (x = 0, 1, 2, 2.5, 3, 4 and 6) Heusler alloys has been investigated for their structural, magnetic, magnetocaloric and exchange bias properties. The martensitic transition temperatures are found to decrease with the increase in Co concentration due to the decrease in valence electron concentration (e/a ratio). The Curie temperature of austenite phase increases significantly with increasing Co concentration. A large positive magnetic entropy change (ΔS{sub M}) of 8.6 and 10.5 J/kg K, for a magnetic field change of 50 kOe is observed for x = 0 and 1 alloys, and ΔS{sub M} values decreases for higher Co concentrations. The relative cooling power shows a monotonic increase with the increase in Co concentration. Large exchange bias fields of 920 Oe and 833 Oe have been observed in the alloys with compositions x = 0 and 1, after field cooling in presence of 10 kOe. The unidirectional anisotropy arising at the interface between the frustrated and ferromagnetic phases is responsible for the large exchange bias observed in these alloys. With increase in Co, the magnetically frustrated phase diminishes in strength, giving rise to a decrease in the exchange bias effect for larger Co concentration. The exchange bias fields observed for compositions x = 0 and 1, in the present case are larger than that reported for Co doped Ni–Mn–Z (Z = Sn, Sb, and Ga) alloys. Temperature and cooling field dependence of the exchange bias

  7. Synthesis And Characterization Of SiO2, SnO2 And TiO2 Metal Oxide Shells Covering Cu2O Particles

    Directory of Open Access Journals (Sweden)

    Yu Ri

    2015-06-01

    Full Text Available In this work is described a means of improving the chemical stability of Cu2O@SiO2, Cu2O@SnO2 and Cu2O@TiO2 materials. The SiO2, SnO2 and TiO2 coated samples were stable from pH 3 to pH 10 for up to seven days. To determine the stability of the coated nanoparticles, and their colloidal solutions under acidic and basic conditions, colloidal nanoparticle solutions with various pH values were prepared and monitored over time. Details of the effect of variations in pH on the phase stability of core-shell type Cu2O were characterized using transmission electron microscopy and X-ray diffraction.

  8. Photocatalytic performance of Sn-doped and undoped TiO2 nanostructured thin films under UV and vis-lights

    International Nuclear Information System (INIS)

    Arpac, E.; Sayilkan, F.; Asiltuerk, M.; Tatar, P.; Kiraz, Nadir; Sayilkan, H.

    2007-01-01

    Sn-doped and undoped nano-TiO 2 particles have been synthesized by hydrotermal process without solvent at 200 deg. C in 1 h. Nanostructure-TiO 2 based thin films have been prepared on glass substrate by spin-coating technique. The structure, surface morphology and optical properties of the thin films and the particles have been investigated by element analysis and XRD, SEM, BET and UV-vis-NIR techniques. The photocatalytic performance of the films were tested for degradation of Malachite Green dye in solution under UV and vis-lights. The results showed that (a) hydrothermally synthesized nano-TiO 2 particles are fully anatase crystalline form and are easily dispersed in water, (b) the coated surfaces have nearly super-hydrophilic properties and (c) the doping of transition metal ion efficiently improved the photocatalytic performance of the TiO 2 thin film

  9. Electrical resistivity at high temperatures of Heusler alloys of the Cu2MnAl sub(1-x) Sn sub (x)

    International Nuclear Information System (INIS)

    Grandi, T.A.

    1978-01-01

    The structural fase L2 1 of the Heusler alloys Cu 2 MnAl sub (1-x) Sn sub(x), with x varying between 0 and 1, was studied. X-ray diffraction, metallography and diferential termoanalysis techniques were employed. For the alloys with x = 0; 0,05; 0,10 and 0,15 the electrical resistivity measurements were performed in the temperature range 300 K [pt

  10. Forced volume magnetostriction in Mn3.3Sn0.7C compound at room temperature

    International Nuclear Information System (INIS)

    Wen Yongchun; Wang Cong; Sun Ying; Nie Man; Chu Lihua

    2010-01-01

    The negative volume magnetostriction in the external magnetic field for antiperovskite Mn 3.3 Sn 0.7 C compound is discovered. Its magnetic transition temperature from paramagnetism to ferrimagnetism is 348 K. The linear and volume magnetostrictions were investigated by measuring the change in length along the three-dimensional directions of the square samples at room temperature. Volume contraction was observed along all of the three directions throughout the whole magnetization. The value of volume magnetostriction is -44x10 -6 at 1.5 T. The magnetization saturates basically at 1.5 T, however the volume magnetostriction should be higher with further increase in magnetic field.

  11. Large coercivity in nanocrystalline TbMn6Sn6 permanent magnets prepared by mechanical milling

    International Nuclear Information System (INIS)

    Zhang Hongwei; Zhao Tongyun; Zhang Jian; Rong Chuanbing; Zhang Shaoying; Shen Baogen; Li Lu; Zhang Ligang

    2003-01-01

    Isotropic TbMn 6 Sn 6 was prepared by mechanical milling and subsequent annealing. Although the crystalline grain size was a little larger than 15 nm, no remanence enhancement resulting from intergrain exchange coupling was observed. The coercivity μ 0 H c = 0.96 T at 293 K was much larger than that expected from magnetocrystalline anisotropy. The smallest effective anisotropy constant is suggested to be 0.25 MJ m -3 when the coercivity mechanism is controlled by coherent rotation of magnetization in a single-domain grain. The contributions of shape anisotropy and magnetoelastic anisotropy are considered in order to explain the large coercivity in the magnets

  12. Investigation on the parameter optimization and performance of laser cladding a gradient composite coating by a mixed powder of Co50 and Ni/WC on 20CrMnTi low carbon alloy steel

    Science.gov (United States)

    Shi, Yan; Li, Yunfeng; Liu, Jia; Yuan, Zhenyu

    2018-02-01

    In this study, a gradient composite coating was manufactured on 20CrMnTi alloy steel by laser cladding. The laser power, cladding scan velocity and powder flow rate were selected as influencing factors of the orthogonal cladding experiments. The influencing factors were optimized by the comprehensive analysis of Taguchi OA and TOPSIS method. The high significant parameters and the predicted results were confirmed by the ANOVA method. The macromorphology and microstructures are characterized by using laser microscope, SEM, XRD and microhardness tester. Comparison tests of wear resistance of gradient composite coating, 20CrMnTi cemented quenching sample and the 20CrMnTi sample were conducted on the friction-wear tester. The results show that the phases are γ-Co solid solution, Co3B, M23C6 and etc. The interlayers and wear-resisting layer also contain new hard phases as WC, W2C. The microhardness of the gradient coating was increased to 3 times as compared with that of the 20CrMnTi substrate. The wear resistance of the gradient composite coating and 20CrMnTi cemented quenching sample was enhanced to 36.4 and 15.9 times as compared with that of the 20CrMnTi.

  13. Determination of photo-catalytic activity of un-doped and Mn-doped TiO2 anatase powders on acetaldehyde under UV and visible light

    International Nuclear Information System (INIS)

    Papadimitriou, Vassileios C.; Stefanopoulos, Vassileios G.; Romanias, Manolis N.; Papagiannakopoulos, Panos; Sambani, Kyriaki; Tudose, Valentin; Kiriakidis, George

    2011-01-01

    Titanium dioxide (TiO 2 ) photocatalytic powder materials doped with various levels of manganese (Mn) were synthesized to be used as additives to wall painting in combating indoor and outdoor air pollution. The heterogeneous photocatalytic degradation of gaseous acetaldehyde (CH 3 CHO) on Mn–TiO 2 surfaces under ultraviolet and visible (UV/Vis) irradiation was investigated, by employing the Photochemical Static Reactor coupled with Fourier-Transformed Infrared spectroscopy (PSR/FTIR) technique. Experiments were performed by exposing acetaldehyde (∼ 400 Pa) and synthetic air mixtures (∼ 1.01 × 10 5 Pa total pressure) on un-doped TiO 2 and doped with various levels of Mn (0.1–33% mole percentage) under UV and visible irradiation at room temperature. Photoactivation was initiated using either UV or visible light sources with known emission spectra. Initially, the photo-activity of CH 3 CHO under the above light sources, and the physical adsorption of CH 3 CHO on Mn–TiO 2 samples in the absence of light were determined prior to the photocatalytic experiments. The photocatalytic loss of CH 3 CHO on un-doped TiO 2 and Mn–TiO 2 samples in the absence and presence of UV or visible irradiation was measured over a long time period (≈ 60 min), to evaluate their relative photocatalytic activity. The gaseous photocatalytic end products were also determined using absorption FTIR spectroscopy. Carbon dioxide (CO 2 ) was identified as the main photocatalysis product. It was found that 0.1% Mn–TiO 2 samples resulted in the highest photocatalytic loss of CH 3 CHO under visible irradiation. This efficiency was drastically diminished at higher levels of Mn doping (1–33%). The CO 2 yields were the highest for 0.1% Mn–TiO 2 samples under UV irradiation, in agreement with the observed highest CH 3 CHO decomposition rates. It was demonstrated that low-level (0.1%) doping of TiO 2 with Mn results in a significant increase of their photocatalytic activity in the visible

  14. Experimental and first-principles study of ferromagnetism in Mn-doped zinc stannate nanowires

    KAUST Repository

    Deng, Rui; Zhou, Hang; Li, Yong-Feng; Wu, Tao; Yao, Bin; Qin, Jie-Ming; Wan, Yu-Chun; Jiang, Da-Yong; Liang, Qing-Cheng; Liu, Lei

    2013-01-01

    Room temperature ferromagnetism was observed in Mn-doped zinc stannate (ZTO:Mn) nanowires, which were prepared by chemical vapor transport. Structural and magnetic properties and Mn chemical states of ZTO:Mn nanowires were investigated by X-ray diffraction, superconducting quantum interference device (SQUID) magnetometry and X-ray photoelectron spectroscopy. Manganese predominantly existed as Mn2+ and substituted for Zn (Mn Zn) in ZTO:Mn. This conclusion was supported by first-principles calculations. MnZn in ZTO:Mn had a lower formation energy than that of Mn substituted for Sn (MnSn). The nearest neighbor MnZn in ZTO stabilized ferromagnetic coupling. This observation supported the experimental results. © 2013 AIP Publishing LLC.

  15. Experimental and first-principles study of ferromagnetism in Mn-doped zinc stannate nanowires

    KAUST Repository

    Deng, Rui

    2013-07-17

    Room temperature ferromagnetism was observed in Mn-doped zinc stannate (ZTO:Mn) nanowires, which were prepared by chemical vapor transport. Structural and magnetic properties and Mn chemical states of ZTO:Mn nanowires were investigated by X-ray diffraction, superconducting quantum interference device (SQUID) magnetometry and X-ray photoelectron spectroscopy. Manganese predominantly existed as Mn2+ and substituted for Zn (Mn Zn) in ZTO:Mn. This conclusion was supported by first-principles calculations. MnZn in ZTO:Mn had a lower formation energy than that of Mn substituted for Sn (MnSn). The nearest neighbor MnZn in ZTO stabilized ferromagnetic coupling. This observation supported the experimental results. © 2013 AIP Publishing LLC.

  16. Synthesis and electrochemical properties of LiNi0.4Mn1.5Cr0.1O4 and Li4Ti5O12

    CSIR Research Space (South Africa)

    Liu, GQ

    2011-08-01

    Full Text Available Spinel compound LiNi0.4Mn1.5Cr0.1O4 (LNMCO) and Li4Ti5O12 (LTO) were synthesized by the sol-gel method and the solid-state method, respectively. The particle sizes of the products LiNi0.4Mn1.5Cr0.1O4 and Li4Ti5O12 were 0.5 to 2 um and 0.5 to 0.8 um...

  17. Preparation and characterization of electrically conducting polypyrrole Sn(IV phosphate cation-exchanger and its application as Mn(II ion selective membrane electrode

    Directory of Open Access Journals (Sweden)

    A.A. Khan

    2011-10-01

    Full Text Available Polypyrrole Sn(IV phosphate, an organic–inorganic composite cation-exchanger was synthesized via sol-gel mixing of an organic polymer, polypyrrole, into the matrices of the inorganic precipitate of Sn(IV phosphate. The physico-chemical properties of the material were determined using Atomic Absorption Spectrometry (AAS, CHN elemental analysis (inductively coupled plasma mass spectrometry, ICP-MS, UV–VIS spectrophotometry, FTIR (Fourier Transform Infra-Red, SEM (Scanning Electron Microscopy, TGA–DTA (Thermogravimetric Analysis–Differential Thermal Analysis, and XRD (X-ray diffraction. Ion-exchange behavior was observed to characterize the material. On the basis of distribution studies, the material was found to be highly selective for toxic heavy metal ion Mn2+. Due to its selective nature, the material was used as an electroactive component for the construction of an ion-selective membrane electrode. The proposed electrode shows fairly good discrimination of mercury ion over several other inorganic ions. The analytical utility of this electrode was established by employing it as an indicator electrode in electrometric titrations for Mn(II in water.

  18. Research on Cu2ZnSnTe4 crystals and heterojunctions based on such crystals

    Directory of Open Access Journals (Sweden)

    Kovaliuk T. T.

    2015-12-01

    Full Text Available The paper reports on the results of the studies of magnetic, kinetic and optical properties of Cu2ZnSnTe4 crystals. The Cu2ZnSnTe4 crystals showed diamagnetic properties (the magnetic susceptibility almost independent of the magnetic field and temperature. The Cu2ZnSnTe4 crystals possessed p-type of conductivity and the Hall coefficient was independent on temperature. The temperature dependence of the electrical conductivity of the Cu2ZnSnTe4 crystal shows metallic character, i. e. decreases with the increase of temperature, that is caused by the lower charge carrier mobility at higher temperature. Thermoelectric power of the samples ispositive that also indicates on the prevalence of p-type conductivity. Heterojunctions n-TiN/p-Cu2ZnSnTe4, n-TiO2/p-Cu2ZnSnTe4 and n-MoO/p-Cu2ZnSnTe4 were fabricated by the reactive magnetron sputtering of TiN, TiO2 and MoOx thin films, respectively, onto the substrates made of the Cu2ZnSnTe4 crystals. The dominating current transport mechanisms in the n-TiN/p-Cu2ZnSnTe4 and n-TiO2/p-Cu2ZnSnTe4 heterojunctions were established to be the tunnel-recombination mechanism at forward bias and tunneling at reverse bias.

  19. The poisoning effect of PbO on Mn-Ce/TiO{sub 2} catalyst for selective catalytic reduction of NO with NH{sub 3} at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lingling [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Li, Caiting, E-mail: ctli@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zhao, Lingkui; Zeng, Guangming; Gao, Lei; Wang, Yan; Yu, Ming’e [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2016-12-15

    Highlights: • The poisoning effects of PbO-doped Mn-Ce/TiO{sub 2} catalysts for low temperature NH{sub 3}-SCR were investigated. • Low concentration of Mn{sup 4+} and chemisorbed oxygen (O{sub b}) were not favorable for the generation of intermediates. • The decreased Ce{sup 3+} and less reducible of manganese oxides hindered the redox cycle (Mn{sup 3+} + Ce{sup 4+} ↔ Mn{sup 4+} + Ce{sup 3+}). • The doping of PbO not only altered acid sites but also inhibited ammonia adsorption as well as activation. • The poisoning of PbO resulted in the decrease of ad-NO{sub x} species (only a spot of bidentate nitrates remained). - Abstract: Lead oxide (PbO) as one of the typical heavy metals in flue gas from power plants has strong accumulation as well as poisoning effects on SCR catalysts. In this paper, a series of PbO-doped Mn-Ce/TiO{sub 2} catalysts were synthesized by impregnation method. The poisoning effects of PbO over Mn-Ce/TiO{sub 2} samples for selective catalytic reduction of NO by NH{sub 3} were investigated based on catalytic activity test and characterizations. The NO conversion of Mn-Ce/TiO{sub 2} was greatly decreased after the addition of PbO. It was obvious that the NO conversion efficiency of Mn-Ce/TiO{sub 2} catalyst declined from 96.75% to about 40% at 200 °C when Pb:Mn molar ratio reached 0.5. Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Hydrogen temperature programmed reduction (H{sub 2}-TPR), Ammonia temperature programmed desorption (NH{sub 3}-TPD) and Fourier transform infrared spectroscopy (FT-IR) were carried out to study the deactivation reasons of PbO poisoned catalysts. Manganese oxides’ crystallization, less reducible of manganese and cerium oxides, the decreasing of surface area, Mn{sup 4+} as well as Ce{sup 3+} concentration and chemisorbed oxygen (O{sub b}) after the introduction of PbO, all of these resulted in a poor SCR performance

  20. Inter-filament resistance, effective transverse resistivity and coupling loss in superconducting multifilamentary NbTi and Nb3Sn strands

    NARCIS (Netherlands)

    Zhou, Chao; Dhalle, Marc M.J.; Nijhuis, Arend

    2012-01-01

    The effective transverse resistivity of a range of multi-filamentary Nb3Sn and NbTi strands is measured with a direct four-probe method and the data are compared to the transverse resistivity values obtained from AC coupling loss experiments. Correspondence between both is satisfactory provided that

  1. Microstructure and Wear Resistance of TiC Composite Coating in situ Synthesized on 35CrMnSi Steel by Argon Arc Cladding%35CrMnSi 表面氩弧熔覆原位自生 TiC 复合涂层的组织及耐磨性

    Institute of Scientific and Technical Information of China (English)

    丁天; 孟君晟; 乔盛楠; 吕东亮; 宋永平; 李阳

    2014-01-01

    Objective To improve the wear resistance of cutting tooth and to prolong its service life. Methods The TiC enhanced nickel-based composite coating was prepared on the surface of 35CrMnSi steel by argon arc cladding technique. The microstructure of the coating was analyzed by OM, SEM and XRD. Microhardness and wear resistance at room temperature of the composite coat-ing were examined by means of microhardness testing and impact abrasion resistance testing, respectively. Results The compact microstructure was obtained in the composite coating, and good metallurgical bonding could be obtained between the 35CrMnSi steel and cladding coating, with the main phases of TiC, γ-Ni and M23 C6 . The majority of TiC was blocky. The TiC particles was about 1 ~ 2 μm in size and the particles were dispersed in the coatings. The hardness and wear resistance of the coating were related with the (Ti+C) content. The highest hardness of 20% (Ti+C) coating was 1190HV. The relative wear resistance of the composite coating was 7. 5 times higher than that of 35CrMnSi steel. Conclusion The cladding coating reinforced by TiC particle showed ap-parently improved surface hardness as compared to 35CrMnSi steel. The wear mechanism of the composite coating under impact loading at room temperature was micro-cutting wear. The wear resistance of coating was greatly increased by argon arc cladding.%目的:提高截齿的耐磨性,延长其使用寿命。方法利用氩弧熔覆技术在35CrMnSi 钢表面制备 TiC 增强镍基复合涂层,分析涂层的显微组织和物相组成,测试涂层在室温下的显微硬度和耐磨性,并分析磨损机制。结果氩弧熔覆涂层的显微组织致密均匀,涂层与基体呈冶金结合,主要由 TiC,γ-Ni, M23 C6等物相组成。 TiC 颗粒呈块状,尺寸为1~2μm,弥散分布在涂层中。涂层硬度和耐磨性与(Ti+C)含量有关,熔覆粉末中(Ti+C)质量分数为20%时,涂层最高硬度可达1190HV,耐磨性达到基体的7.5

  2. Effects of homogenization on microstructures and properties of a new type Al-Mg-Mn-Zr-Ti-Er alloy

    International Nuclear Information System (INIS)

    He, L.Z.; Li, X.H.; Liu, X.T.; Wang, X.J.; Zhang, H.T.; Cui, J.Z.

    2010-01-01

    Research highlights: These new type alloys are very potential for increased use in aerospace and automobile industries. However, most of published reports have focused on the effects of Cu, Sc, Zr, Ag, rare metals and Si additions, Portevin-LeChatelier effect, corrosion properties, friction stir welding and superplasticity in 5000-series aluminum alloy, few investigated on Er and stepped homogenization on the precipitation of dispersoids in Al-Mg-Mn alloy. The purpose of this work was to study the effects of Er and homogenization treatment on mechanical properties and microstructural evolution in new type Al-Mg-Mn-Er alloy. - Abstract: Microstructural evolutions and mechanical properties of Al-Mg-Mn-Zr-Ti-Er alloy after homogenization were investigated in detail by optical microscope (OM), scanning electronic microscope (SEM), transmission electronic microscope (TEM), energy dispersive spectrum (EDS) and tensile test. A maximum tensile strength is obtained when the alloy homogenized at 510 deg. C for 16 h. With increasing preheating temperature (200-400 deg. C), the strength of the alloy finial homogenized at 490 deg. C for 16 h increases. When the preheating temperature is ≥300 deg. C, the strengths of the two-step homogenized alloys are higher than those of the single homogenized alloys. The preheating stage plays an important role in the microstructures and properties of the final homogenized alloy. Many fine (Mn,Fe)Al 6 precipitates when the preheating temperature is 400 deg. C. ErAl 3 phase cannot be observed during preheating stage. Plenty of fine (Mn,Fe)Al 6 and ErAl 3 precipitate in finial homogenized alloy when the preheating temperature is ≥300 deg. C. The Al-Mg-Mn-Zr-Ti-Er alloy is effectively strengthened by substructure and dispersoids of (Mn,Fe)Al 6 and ErAl 3 .

  3. Half-Heusler (TiZrHf)NiSn Unileg Module with High Powder Density.

    Science.gov (United States)

    Populoh, Sascha; Brunko, Oliver C; Gałązka, Krzysztof; Xie, Wenjie; Weidenkaff, Anke

    2013-03-27

    (TiZrHf)NiSn half-Heusler compounds were prepared by arc melting and their thermoelectric properties characterized in the temperature range between 325 K and 857 K, resulting in a Figure of Merit ZT ≈ 0.45. Furthermore, the prepared samples were used to construct a unileg module. This module was characterized in a homemade thermoelectric module measurement stand and yielded 275 mW/cm² and a maximum volumetric power density of 700 mW/cm³. This was reached using normal silver paint as a contacting material; from an improved contacting, much higher power yields are to be expected.

  4. Utilizing Co2+/Co3+ Redox Couple in P2-Layered Na0.66Co0.22Mn0.44Ti0.34O2 Cathode for Sodium-Ion Batteries.

    Science.gov (United States)

    Wang, Qin-Chao; Hu, Enyuan; Pan, Yang; Xiao, Na; Hong, Fan; Fu, Zheng-Wen; Wu, Xiao-Jing; Bak, Seong-Min; Yang, Xiao-Qing; Zhou, Yong-Ning

    2017-11-01

    Developing sodium-ion batteries for large-scale energy storage applications is facing big challenges of the lack of high-performance cathode materials. Here, a series of new cathode materials Na 0.66 Co x Mn 0.66- x Ti 0.34 O 2 for sodium-ion batteries are designed and synthesized aiming to reduce transition metal-ion ordering, charge ordering, as well as Na + and vacancy ordering. An interesting structure change of Na 0.66 Co x Mn 0.66- x Ti 0.34 O 2 from orthorhombic to hexagonal is revealed when Co content increases from x = 0 to 0.33. In particular, Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 with a P2-type layered structure delivers a reversible capacity of 120 mAh g -1 at 0.1 C. When the current density increases to 10 C, a reversible capacity of 63.2 mAh g -1 can still be obtained, indicating a promising rate capability. The low valence Co 2+ substitution results in the formation of average Mn 3.7+ valence state in Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 , effectively suppressing the Mn 3+ -induced Jahn-Teller distortion, and in turn stabilizing the layered structure. X-ray absorption spectroscopy results suggest that the charge compensation of Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 during charge/discharge is contributed by Co 2.2+ /Co 3+ and Mn 3.3+ /Mn 4+ redox couples. This is the first time that the highly reversible Co 2+ /Co 3+ redox couple is observed in P2-layered cathodes for sodium-ion batteries. This finding may open new approaches to design advanced intercalation-type cathode materials.

  5. Grain Refinement of Al-Si-Fe-Cu-Zn-Mn Based Alloy by Al-Ti-B Alloy and Its Effect on Mechanical Properties.

    Science.gov (United States)

    Yoo, Hyo-Sang; Kim, Yong-Ho; Jung, Chang-Gi; Lee, Sang-Chan; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-03-01

    We investigated the effects of Al-5.0wt%Ti-1.0wt%B addition on the microstructure and mechanical properties of the as-extruded Al-0.15wt%Si-0.2wt%Fe-0.3wt%Cu-0.15wt%Zn-0.9wt%Mn based alloys. The Aluminum alloy melt was held at 800 °C and then poured into a mould at 200 °C. Aluminum alloys were hot-extruded into a rod that was 12 mm in thickness with a reduction ratio of 38:1. AlTiB addition to Al-0.15Si-0.2Fe-0.3Cu-0.15Zn-0.9Mn based alloys resulted in the formation of Al3Ti and TiB2 intermetallic compounds and grain refinement. With increasing of addition AlTiB, ultimate tensile strength increased from 93.38 to 99.02 to 100.01 MPa. The tensile strength of the as-extruded alloys was improved due to the formation of intermetallic compounds and grain refinement.

  6. Microstructure and mechanical properties of a novel near-α titanium alloy Ti6.0Al4.5Cr1.5Mn

    International Nuclear Information System (INIS)

    Wang, Hong-bin; Wang, Shu-sen; Gao, Peng-yue; Jiang, Tao; Lu, Xiong-gang; Li, Chong-he

    2016-01-01

    Based on previous Ti-Al-Cr-Mn quaternary system thermodynamic database, a novel near-α titanium alloy Ti-6.0Al-4.5Cr-1.5Mn alloy was designed and successfully prepared by the water-cooled copper crucible. Microscopic observation showed that both as-cast and annealing status consist of α phase, which coincides with the theoretical expectation. The mechanical properties at room temperature were measured and this alloy possesses good mechanical properties, its average yield-strength reaches 1051.5 MPa and tensile-strength is up to 1091.2 MPa while its average elongation is just 8.3%. Compared with the TA15, it has better mechanical strength and worse elongation. In the new alloy Laves phase Cr 2 Ti were detected by XRD pattern and TEM, which may cause the alloy's poor plasticity.

  7. Microstructure and mechanical properties of a novel near-α titanium alloy Ti6.0Al4.5Cr1.5Mn

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-bin [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Shanghai Special Casting Engineering Technology Research Center, Shanghai 201605 (China); Wang, Shu-sen; Gao, Peng-yue; Jiang, Tao [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Lu, Xiong-gang; Li, Chong-he [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Shanghai Special Casting Engineering Technology Research Center, Shanghai 201605 (China)

    2016-08-30

    Based on previous Ti-Al-Cr-Mn quaternary system thermodynamic database, a novel near-α titanium alloy Ti-6.0Al-4.5Cr-1.5Mn alloy was designed and successfully prepared by the water-cooled copper crucible. Microscopic observation showed that both as-cast and annealing status consist of α phase, which coincides with the theoretical expectation. The mechanical properties at room temperature were measured and this alloy possesses good mechanical properties, its average yield-strength reaches 1051.5 MPa and tensile-strength is up to 1091.2 MPa while its average elongation is just 8.3%. Compared with the TA15, it has better mechanical strength and worse elongation. In the new alloy Laves phase Cr{sub 2}Ti were detected by XRD pattern and TEM, which may cause the alloy's poor plasticity.

  8. Magnetostructural transformation and magnetocaloric effect in Mn48‑x V x Ni42Sn10 ferromagnetic shape memory alloys

    Science.gov (United States)

    Hassan, Najam ul; Shah, Ishfaq Ahmad; Khan, Tahira; Liu, Jun; Gong, Yuanyuan; Miao, Xuefei; Xu, Feng

    2018-03-01

    In this work, we tuned the magnetostructural transformation and the coupled magnetocaloric properties of Mn48‑x V x Ni42Sn10 (x = 0, 1, 2, and 3) ferromagnetic shape memory alloys prepared by means of partial replacement of Mn by V. It is observed that the martensitic transformation temperatures decrease with the increase of V content. The shift of the transition temperatures to lower temperatures driven by the applied field, the metamagnetic behavior, and the thermal hysteresis indicates the first-order nature for the magnetostructural transformation. The entropy changes with a magnetic field variation of 0–5 T are 15.2, 18.8, and 24.3 {{J}}\\cdot {kg}}-1\\cdot {{{K}}}-1 for the x = 0, 1, and 2 samples, respectively. The tunable martensitic transformation temperature, enhanced field driving capacity, and large entropy change suggest that Mn48‑x V x Ni42Sn10 alloys have a potential for applications in magnetic cooling refrigeration. Project supported by the National Natural Science Foundation of China (Grant Nos. 51601092, 51571121, and 11604148), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 30916011344 and 30916011345), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, China, the Postdoctoral Science Foundation Funded Project (Grant No. 2016M591851), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20160833, 20160829, and 20140035), the Qing Lan Project of Jiangsu Province, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and Shanxi Scholarship Council of China (Grant No. 2016-092).

  9. Mn-Ce-V-WOx/TiO2 SCR Catalysts: Catalytic Activity, Stability and Interaction among Catalytic Oxides

    Directory of Open Access Journals (Sweden)

    Xuteng Zhao

    2018-02-01

    Full Text Available A series of Mn-Ce-V-WOx/TiO2 composite oxide catalysts with different molar ratios (active components/TiO2 = 0.1, 0.2, 0.3, 0.6 have been prepared by wet impregnation method and tested in selective catalytic reduction (SCR of NO by NH3 in a wide temperature range. These catalysts were also characterized by X-ray diffraction (XRD, Transmission Electron Microscope (TEM, in situ Fourier Transform infrared spectroscopy (in situ FTIR, H2-Temperature programmed reduction (H2-TPR and X-ray photoelectron spectroscopy (XPS. The results show the catalyst with a molar ratio of active components/TiO2 = 0.2 exhibits highest NO conversion value between 150 °C to 400 °C and good resistance to H2O and SO2 at 250 °C with a gas hourly space velocity (GHSV value of 40,000 h−1. Different oxides are well dispersed and interact with each other. NH3 and NO are strongly adsorbed on the catalyst surface and the adsorption of the reactant gas leads to a redox cycle with the valence state change among the surface oxides. The adsorption of SO2 on Mn4+ and Ce4+ results in good H2O and SO2 resistance of the catalyst, but the effect of Mn and Ce are more than superior water and sulfur resistance. The diversity of valence states of the four active components and their high oxidation-reduction performance are the main reasons for the high NO conversion in this system.

  10. Chemistry and heat-treatment effects on mechanical and microstructural properties of heat-treated, beta-extruded Ti--6A1--6V--2Sn

    International Nuclear Information System (INIS)

    Ulitchny, M.G.; Rack, H.J.; Dawson, D.B.

    1979-04-01

    The mechanical behavior of beta-extruded Ti--6A1--6V--2Sn was examined after a variety of sub-transus heat treatments. The microstructural variations resulting from the range of heat treatments studied also were examined. A range of alloy chemistries, within commercial limits, was used to evaluate the effect of this variable on mechanical properties. The strength--toughness combinations obtained in beta-extruded Ti--6A1--6V--2Sn ranged from about 895 MPa and 82.5 MPa√m for duplex annealed material to 1200 MPa and 54.9 MPa√m for solution treated and peak aged material. Chemistry variations had less effect on mechanical properties than would have been the case with alpha--beta processing

  11. The effect of a fourth element (Co, Cu, Fe, Pd) on the standard enthalpy of formation of the Heusler compound Ni{sub 2}MnSn

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ming, E-mail: myin1@hawk.iit.edu; Nash, Philip

    2016-05-15

    The standard enthalpies of formation of quaternary Heusler compounds (X, Ni){sub 2}MnSn (X = Co, Cu, Fe, Pd) were investigated experimentally using high temperature direct reaction calorimetry. Lattice parameters of these compounds were determined using X-ray diffraction analysis. Microstructures were identified using scanning electron microscopy and energy dispersive spectroscopy. The effect of an additional X element on the standard enthalpy of formation of the Heusler compound Ni{sub 2}MnSn is discussed. - Highlights: • Enthalpies of formation of (X,Ni){sub 2}YZ (X = Co, Cu, Fe, Pd) were measured by drop calorimeters. • Magnetic contribution to enthalpy of formation plays an important role. • Introducing a fourth element could stabilize an unstable Heusler structure. • Lattice parameters do not necessarily obey the Vegard's law. • It is possible to tailor properties of Heusler compounds with enough background information.

  12. Determination of Cu, Mn, Ni and Sn in gasoline by electrothermal vaporization inductively coupled plasma mass spectrometry, and emulsion sample introduction

    International Nuclear Information System (INIS)

    Saint'Pierre, Tatiana D.; Dias, Lucia Felicidade; Pozebon, Dirce; Aucelio, Ricardo Q.; Curtius, Adilson J.; Welz, Bernhard

    2002-01-01

    Trace metals in fuels, except in the case of additives, are usually undesirable and normally they occur in very low concentrations in gasoline, requiring sensitive techniques for their determination. Coupling of electrothermal vaporization with inductively coupled plasma mass spectrometry minimizes the problems related to the introduction of organic solvents into the plasma. Furthermore, sample preparation as oil-in-water emulsions reduces problems related to gasoline analysis. In this work, a method for determination of Cu, Mn, Ni and Sn in gasoline is proposed. Samples were prepared by forming a 10-fold diluted emulsion with a surfactant (Triton X-100), after treatment with concentrated HNO 3 . The sample emulsion was pre-concentrated in the graphite tube by repeated pipetting and drying. External calibration was used with aqueous standards in a purified gasoline emulsion. Six samples from different gas stations were analyzed, and the analyte concentrations were found to be in the μg l -1 range or below. The limits of detection were 0.22, 0.02, 0.38 and 0.03 μg l -1 for Cu, Mn, Ni and Sn, respectively. The accuracy of the method was estimated using a recovery test

  13. Lattice parameter values and phase transitions for the Cu2Cd1-zMnzSnSe4 and Cu2Cd1-zFezSnSe4 alloys

    International Nuclear Information System (INIS)

    Moreno, E.; Quintero, M.; Morocoima, M.; Quintero, E.; Grima, P.; Tovar, R.; Bocaranda, P.; Delgado, G.E.; Contreras, J.E.; Mora, A.E.; Briceno, J.M.; Avila Godoy, R.; Fernandez, J.L.; Henao, J.A.; Macias, M.A.

    2009-01-01

    X-ray powder diffraction measurements and differential thermal analysis (DTA) were made on polycrystalline samples of the Cu 2 Cd 1-z Mn z SnSe 4 and Cu 2 Cd 1-z Fe z SnSe 4 alloy systems. The diffraction patterns were used to show the equilibrium conditions and to derive lattice parameter values. For Cu 2 Cd 0.8 Fe 0.2 SnSe 4 as well as for Cu 2 Cd 0.2 Fe 0.8 SnSe 4 the crystal structures were refined using the Rietveld method. It was found that the internal distortion parameter σ decreases as Cd is replaced by either Mn and/or Fe. For the Cu 2 Cd 1-z Mn z SnSe 4 and Cu 2 Cd 1-z Fe z SnSe 4 alloy systems, only two single solid phase fields, the tetragonal stannite α(I4-bar2m) and the wurtz-stannite δ (Pmn2 1 ) structures were found to occur in the diagram. In addition to the tetragonal stannite α phase extra X-ray diffraction lines due to MnSe and/or FeSe 2 were observed for as grown samples in the range 0.7 < z < 1.0. However, it was found that the amount of the extra phase decreased for the compressed samples.

  14. Magnetic and transport properties of Ni2MnGa-BaTiO3 metal-insulator particulate composite with percolation threshold

    International Nuclear Information System (INIS)

    Won, C.J.; Kambale, R.C.; Hur, N.

    2011-01-01

    Highlights: → The Ni 2 MnGa-BaTiO 3 type composites were first time prepared by solid state reaction. → Temperature dependent magnetic properties reveal two kinds of transitions in these composite. → The present materials show negative magnetoresistance effect. → The present studies on magnetic and electrical transport of metal/insulator (NMG/BTO) composites shows the resistivity change associated to filamentary conducting path at percolation threshold. - Abstract: Here we report the magnetic and transport properties of the metal/insulator (f NMG )Ni 2 MnGa/(1 - f NMG )BaTiO 3 composites. The X-ray diffraction study confirms the formation of both the phases in composite. The microstructure reveals that the conducting Ni 2 MnGa particles are well dispersed in an insulating BaTiO 3 matrix. Temperature dependent magnetization shows two transitions one above 300 K and other below 150 K. The temperature dependence resistivity near the percolation threshold f NMG = 0.4 had drastic changes which is higher than the f NMG = 0.5. Also the negative magnetoresistance effect was observed for the studied materials. We suggest that magnetic and transport properties at the percolation threshold can be adjusted by the strain from the surrounding insulator particle.

  15. Electron dominated thermoelectric response in MNiSn (M: Ti, Zr, Hf) half-Heusler alloys

    KAUST Repository

    Gandi, Appala

    2016-05-09

    We solve the transport equations of the electrons and phonons to understand the thermoelectric behaviour of the technologically important half-Heusler alloys MNiSn (M: Ti, Zr, Hf). Doping is simulated within the rigid band approximation. We clarify the origin of the electron dominated thermoelectric response and determine the carrier concentrations with maximal figures of merit. The phonon mean free path is studied to calculate the grain size below which grain refinement methods can enforce ballistic heat conduction to enhance the figure of merit. © The Owner Societies 2016.

  16. Electron dominated thermoelectric response in MNiSn (M: Ti, Zr, Hf) half-Heusler alloys

    KAUST Repository

    Gandi, Appala; Schwingenschlö gl, Udo

    2016-01-01

    We solve the transport equations of the electrons and phonons to understand the thermoelectric behaviour of the technologically important half-Heusler alloys MNiSn (M: Ti, Zr, Hf). Doping is simulated within the rigid band approximation. We clarify the origin of the electron dominated thermoelectric response and determine the carrier concentrations with maximal figures of merit. The phonon mean free path is studied to calculate the grain size below which grain refinement methods can enforce ballistic heat conduction to enhance the figure of merit. © The Owner Societies 2016.

  17. Trends in (LaMnO3)n/(SrTiO3)m superlattices with varying layer thicknesses

    KAUST Repository

    Jilili, J.; Cossu, Fabrizio; Schwingenschlö gl, Udo

    2015-01-01

    We investigate the thickness dependence of the structural, electronic, and magnetic properties of (LaMnO3)n/(SrTiO3)m (n, m = 2, 4, 6, 8) superlattices using density functional theory. The electronic structure turns out to be highly sensitive

  18. Enhancement in electrical and magnetic properties with Ti-doping in Bi0.5La0.5Fe0.5Mn0.5O3

    Science.gov (United States)

    Singh, Rahul; Gupta, Prince Kumar; Kumar, Shiv; Joshi, Amish G.; Ghosh, A. K.; Patil, S.; Chatterjee, Sandip

    2017-04-01

    In this investigation, we have synthesized Bi0.5La0.5Fe0.5Mn0.5-xTixO3 (where x = 0 and 0.05) samples. The Rietveld refinement of X-ray diffraction (XRD) patterns shows that the systems crystallize in the orthorhombic phase with the Pnma space group. The observed Raman modes support the XRD results. The appearance of prominent A1-3 and weak E-2 modes in Bi0.5La0.5Fe0.5Mn0.45Ti0.05O3 indicates the presence of chemically more active Bi-O covalent bonds. Ferromagnetism of Bi0.5La0.5Fe0.5Mn0.5O3 is enhanced by Ti doping at the Mn-site, indicating that these particular samples might be interesting for device applications.

  19. Magnetic properties of the HoMn6-xFe xSn6 compounds

    International Nuclear Information System (INIS)

    Cakir, O.; Dincer, I.; Duman, E.; Krenke, T.; Elmali, A.; Elerman, Y.

    2007-01-01

    Intermetallic compounds of HoMn 6-x Fe x Sn 6 (0 ≤ x ≤ 1.2) were studied by means of field-cooled (FC) and zero-field-cooled (ZFC) magnetization measurements in the temperature range 5 K ≤ T ≤ 600 K. The unit cell parameters decrease with the increasing of Fe content. The compounds with x = 0 and 0.3 behave ferrimagnetically in the whole temperature range and spin reorientation transition is observed at 200 and 185 K, respectively. The x = 0.5 and 0.6 compounds show ferrimagnetic-helimagnetic-ferrimagnetic phase transitions with decreasing temperature while the compounds with x = 0.9 and 1.2 only show helimagnetic-ferrimagnetic phase transitions. Additionally, for the x = 0.6 compound the metamagnetic phase transition from helimagnetism to ferrimagnetism is induced by an applied field 20 kOe

  20. Comparison of field swept ferromagnetic resonance methods - A case study using Ni-Mn-Sn films

    Science.gov (United States)

    Modak, R.; Samantaray, B.; Mandal, P.; Srinivasu, V. V.; Srinivasan, A.

    2018-05-01

    Ferromagnetic resonance spectroscopy is used to understand the magnetic behavior of Ni-Mn-Sn Heusler alloy film. Two popular experimental methods available for recording FMR spectra are presented here. In plane angular (φH) variation of magnetic relaxation is used to evaluate the in plane anisotropy (Ku) of the film. The out of plane (θH) variation of FMR spectra has been numerically analyzed to extract the Gilbert damping coefficient, effective magnetization and perpendicular magnetic anisotropy (K1). Magnetic homogeneity of the film had also been evaluated in terms of 2-magnon contribution from FMR linewidth. The advantage and limitations of these two popular FMR techniques are discussed on the basis of the results obtained in this comparative study.

  1. Study of Sn100-xMnx amorphous system by 119Sn Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Drago, V.

    1986-01-01

    Thin films of Sn 100-x Mn x amorphous alloys with large range of concentrations were procedure by vapor condensation technique on substrates at temperatures near to liquid helium. The magnetic and paramagnetic hyperfine spectra, and the ordering temperatures were measured by 119 Sn Moessbauer effect. The electrical resistivity was used for characterizing the amorphous state. All the measurements were done 'in situ'. A magnetic phase diagram is proposed. (M.C.K.) [pt

  2. Peculiarities of component interaction in {Gd, Er}-V-Sn Ternary systems at 870 K and crystal structure of RV6Sn6 stannides

    International Nuclear Information System (INIS)

    Romaka, L.; Stadnyk, Yu.; Romaka, V.V.; Demchenko, P.; Stadnyshyn, M.; Konyk, M.

    2011-01-01

    Highlights: → {Gd, Er}-V-Sn ternary systems at 870 K are characterized by formation of stannides with general compositions RV 6 Sn 6 . → Isostructural RV 6 Sn 6 compounds were also found with Y, Dy, Ho, Tm, and Lu. → The crystal structure of RV 6 Sn 6 compounds was determined by powder diffraction method. → Structural analysis showed that RV 6 Sn 6 compounds (R = Gd, Dy-Tm, Lu) are disordered; YV 6 Sn 6 is characterized by structure ordering. - Abstract: The phase equilibria in the Gd-V-Sn and Er-V-Sn ternary systems were studied at 870 K by means of X-ray and metallographic analyses in the whole concentration range. Both Gd-V-Sn and Er-V-Sn systems are characterized by formation of one ternary compound at investigated temperature, with stoichiometry RV 6 Sn 6 (SmMn 6 Sn 6 -type, space group P6/mmm, a = 0.55322(3) nm, c = 0.91949(7) nm for Gd, a = 0.55191(2) nm, c = 0.91869(8) nm for Er). Solubility of the third component in the binary compounds was not observed. Compounds with the SmMn 6 Sn 6 -type were also found with Dy, Ho, Tm, and Lu, while YV 6 Sn 6 compound crystallizes in HfFe 6 Ge 6 structure type. All investigated compounds are the first ternary stannides with rare earth elements and vanadium.

  3. Formation of high-conductivity regions in SnO2-AOx (A - Ti4+, Zr4+, Sb3+, Sb5+) films exposed to ultraviolet radiation of H2

    International Nuclear Information System (INIS)

    Postovalova, G.G.; Roginskaya, Yu.E.; Zav'yalov, S.A.; Galyamov, B.Sh.; Klimasenko, N.L.

    2000-01-01

    Composition, structure and electron properties of SnO 2 films doped by Ti, Zr and Sb oxides were studied. The doped SnO 2 films were determined to contain nano-regions of SnO 2 base crystalline solid solutions and amorphous SnO 2 containing Sn 2+ or Sb 3+ ions and residing at the surface of crystallites or between them. These composition and structure peculiarities affect essentially both electron structure and electrical properties of films. Localized 5s-states of the conductivity range diffused boundary of amorphous SnO 2 partially filled with 5s-electrons of Sn 2+ or Sb 3+ ions serving as traps capture free electrons in the crystalline ranges and motivate high resistance of films [ru

  4. Appearance and disappearance of ferromagnetism in ultrathin LaMnO3 on SrTiO3 substrate: A viewpoint from first principles

    Science.gov (United States)

    An, Ming; Weng, Yakui; Zhang, Huimin; Zhang, Jun-Jie; Zhang, Yang; Dong, Shuai

    2017-12-01

    The intrinsic magnetic state (ferromagnetic or antiferromagnetic) of ultrathin LaMnO3 films on the most commonly used SrTiO3 substrate is a long-existing question under debate. Either strain effect or nonstoichiometry was argued to be responsible for the experimental ferromagnetism. In a recent experiment [X. R. Wang, C. J. Li, W. M. Lü, T. R. Paudel, D. P. Leusink, M. Hoek, N. Poccia, A. Vailionis, T. Venkatesan, J. M. D. Coey, E. Y. Tsymbal, Ariando, and H. Hilgenkamp, Science 349, 716 (2015), 10.1126/science.aaa5198], one more mechanism, namely, the self-doping due to polar discontinuity, was argued to be the driving force of ferromagnetism beyond the critical thickness. Here systematic first-principles calculations have been performed to check these mechanisms in ultrathin LaMnO3 films as well as superlattices. Starting from the very precise descriptions of both LaMnO3 and SrTiO3, it is found that the compressive strain is the dominant force for the appearance of ferromagnetism, while the open surface with oxygen vacancies leads to the suppression of ferromagnetism. Within LaMnO3 layers, the charge reconstructions involve many competitive factors and certainly go beyond the intuitive polar catastrophe model established for LaAlO3/SrTiO3 heterostructures. Our paper not only explains the long-term puzzle regarding the magnetism of ultrathin LaMnO3 films but also sheds light on how to overcome the notorious magnetic dead layer in ultrathin manganites.

  5. Performance of Nafion-TiO2 hybrid membranes and PtSn/C electrocatalysts in PEM type fuel cells fed with ethanol and H2/CO at high temperature

    International Nuclear Information System (INIS)

    Isidoro, Roberta Alvarenga

    2010-01-01

    In this work, Nafion-TiO 2 hybrid electrolytes and PtSn/C electrocatalysts were synthesized for the application in direct ethanol fuel cell operating at high temperature (130 degree C). For this purpose, TiO 2 particles were incorporated in commercial Nafion membranes by an 'in situ' sol gel route. The resulting materials were characterized by gravimetric analysis, water uptake, DSC, XRD and EDX. Electrocatalysts based on carbon dispersed platinum-tin (PtSn/C), with different composition, were produced by alcohol-reduction method and were employed as anodic electrode. The electrocatalysts were characterized by XRD, EDX, XPS and transmission electronic spectroscopy. The electrochemical characterization was conducted by cyclic voltametry, carbon monoxide linear anodic voltammetry (CO stripping), and chronoamperometry. Membrane-electrodes assembly (MEAs) were formed with PtSn/C anodes, Pt/C cathodes and Nafion-TiO 2 hybrids. The performance of these MEA was evaluated in single-cell fed with H2/CO mixture or ethanol solution at the anode and oxygen at the cathode in the temperature range of 80-130 degree C. The analysis showed that the hybrid membranes improved the DEFC performance due to crossover suppression and that PtSn/C 70:30 electrocatalysts, prepared by an alcohol reduction process, showed better performance in ethanol oxidation. (author)

  6. Characteristic of Ti-based PbO{sub 2} anodes with SnO{sub 2}+Sb{sub 2}O{sub 3} intermediate layers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Tong, H.; Xu, W. [Yangzhou Univ., College of Chemistry and Chemical Engineering, Yangzhou (China)

    2006-07-01

    Ceramic coatings are used in many electrochemical applications, such as organic synthetic applications, wastewater treatment and oxygen production. These processes typically occur in aqueous sulphuric acid. Desirable features for electrode materials include electro-catalytic activity, high stability, low cost, good overall performance under mild conditions and commercial availability. Lead dioxide exhibits excellent chemical stability, high conductivity, high overpotential for oxygen evolution and lower cost in an acid medium. Studies have shown that the stability of active coating prepared by depositing lead dioxide on titanium substrate is poor. In order to solve this problems, methods of doping expensive noble metals or adding an intermediate layer have been examined. Electrode coatings are very sensitive to preparation procedures, in which precursors play an important role in the surface morphology, microstructure, final composition and stability of anodes. However, appreciable inorganic salt loss has been reported using traditional precursors. A polymeric precursor (PP) method commonly used in the preparation of nano-particles has certain advantages, such as easy manipulation and insensitivity to the presence of water. This study characterized the surface morphology and electrochemical behaviour of titanium (Ti)/tin oxide (SnO{sub 2}) plus antimony oxide ((Sb{sub 2}O{sub 3})/lead dioxide (PbO{sub 2}) anode with SnO{sub 2} plus Sb{sub 2}O{sub 3} intermediate coatings. The electrochemical performance of Ti/SnO{sub 2}+Sb{sub 2}O{sub 3}/PbO{sub 2} anode preparing intermediate layer by the PP method was compared with alcohol precursors. It was concluded that adding SnO{sub 2}+Sb2O{sub 3} intermediate layer to Ti/PbO{sub 2} anodes could enhance the lifetime and stability of the anodes, thus its performance. 10 refs., 2 tabs.

  7. Low-temperature processed SnO{sub 2} compact layer for efficient mesostructure perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Jinxia; Xiong, Qiu; Feng, Bingjie; Xu, Yang; Zhang, Jun; Wang, Hao, E-mail: nanoguy@126.com

    2017-01-01

    Highlights: • Low-temperature processed 70 nm cl-SnO{sub 2} device exhibits maximum PCE. • Champion PSC after SnCl{sub 4} treatment acquires PCE of 15.07%. • Cl-SnO{sub 2} PSC via SnCl{sub 4} treatment exhibits superior stability to cl-TiO{sub 2} based PSC. - Abstract: SnO{sub 2} nanoparticle film has been synthesized via low- temperature (∼180 °C) solution-processing and proposed as compact layer in mesostructure perovskite-type solar cell (PSC). Low-temperature processed SnO{sub 2} compact layer (cl-SnO{sub 2}) brings perfect crystal-lattice and band-gap matching between electron selective layer and FTO substrate and close interface-contact between cl-SnO{sub 2} and mesoporous TiO{sub 2} layer (mp-TiO{sub 2}), which contributes to suppressing carrier recombination and optimizing device performance. In varied thickness cells, 70 nm cl-SnO{sub 2} device exhibits maximum power conversion efficiency (PCE). In order to further restrain photoelectron recombination and improve the photovoltaic performance, the surface modification of cl-SnO{sub 2} by SnCl{sub 4} aqueous solution has been carried out. The recombination behavior in the cell interior is greatly retarded via SnCl{sub 4} treatment and champion PSC after SnCl{sub 4} treatment has acquire PCE of 15.07%, which is higher than PCE of cl-TiO{sub 2} based PSC fabricated with same mp-TiO{sub 2} and perovskite procedures (13.3%). The stability of cl-SnO{sub 2} PSC via SnCl{sub 4} treatment has also been measured and its PCE reduces to 13.0% after 2 weeks in air.

  8. Trace metal anomalies in bleached Porites coral at Meiji Reef, tropical South China Sea

    Science.gov (United States)

    Li, Shu; Yu, Kefu; Zhao, Jianxin; Feng, Yuexing; Chen, Tianran

    2017-01-01

    Coral bleaching has generally been recognized as the main reason for tropical coral reef degradation, but there are few long-term records of coral bleaching events. In this study, trace metals including chromium (Cr), copper (Cu), molybdenum (Mo), manganese (Mn), lead (Pb), tin (Sn), titanium (Ti), vanadium (V), and yttrium (Y), were analyzed in two Porites corals collected from Meiji Reef in the tropical South China Sea (SCS) to assess differences in trace metal concentrations in bleached compared with unbleached coral growth bands. Ti, V, Cr, and Mo generally showed irregular fluctuations in both corals. Bleached layers contained high concentrations of Mn, Cu, Sn, and Pb. Unbleached layers showed moderately high concentrations of Mn and Cu only. The different distribution of trace metals in Porites may be attributable to different selectivity on the basis of vital utility or toxicity. Ti, V, Cr, and Mo are discriminated against by both coral polyps and zooxanthellae, but Mn, Cu, Sn, and Pb are accumulated by zooxanthellae and only Mn and Cu are accumulated by polyps as essential elements. The marked increase in Cu, Mn, Pb, and Sn are associated with bleaching processes, including mucus secretion, tissue retraction, and zooxanthellae expulsion and occlusion. Variation in these trace elements within the coral skeleton can be used as potential tracers of short-lived bleaching events.

  9. Fabrication of Mg-X-O (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn) barriers for magnetic tunnel junctions

    Science.gov (United States)

    Yakushiji, K.; Kitagawa, E.; Ochiai, T.; Kubota, H.; Shimomura, N.; Ito, J.; Yoda, H.; Yuasa, S.

    2018-05-01

    We fabricated magnetic tunnel junctions with a 3d-transition material(X)-doped MgO (Mg-X-O) barrier, and evaluated the effect of the doping on magnetoresistance (MR) and microstructure. Among the variations of X (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn), X = Fe and Mn showed a high MR ratio of more than 100%, even at a low resistance-area product of 3 Ωμm2. The microstructure analysis revealed that (001) textured orientation formed for X = Fe and Mn despite substantial doping (about 10 at%). The elemental mappings indicated that Fe atoms in the Mg-Fe-O barrier were segregated at the interfaces, while Mn atoms were evenly involved in the Mg-Mn-O barrier. This suggests that MgO has high adaptability for Fe and Mn dopants in terms of high MR ratio.

  10. Enhancement of localization phenomena driven by covalency in the SrBiMn{sub 1.75}Ti{sub 0.25}O{sub 6} manganite

    Energy Technology Data Exchange (ETDEWEB)

    Asensio de Lucas, E.; Alvarez-Serrano, I. [Depto. Quimica Inorganica I, Facultad Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Cuello, G.J. [Institut Laue-Langevin, 6 rue Jules Horowitz, F-38042 Grenoble (France); Garcia-Hernandez, M. [Instituto de Ciencia de Materiales de Madrid, CSIC, E-28049 Cantoblanco, Madrid (Spain); Lopez, M.L., E-mail: marisal@quim.ucm.es [Depto. Quimica Inorganica I, Facultad Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Pico, C.; Veiga, M.L. [Depto. Quimica Inorganica I, Facultad Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2012-05-05

    Graphical abstract: Enhancement of localization phenomena driven by covalency in the BiSrMn{sub 1.75}Ti{sub 0.25}O{sub 6} manganite. The CO/OO phenomena and magnetic clusters (Mn{sub 4}) stabilization at temperatures up to 520 K in BiSrMn{sub 1.75}Ti{sub 0.25}O{sub 6} are connected to a structural transition. The observed enhancement of electronic localization is interpreted considering covalent effects of Ti{sup 4+} and Bi{sup 3+} cations as the main driving force. Highlights: Black-Right-Pointing-Pointer The structural, electronic and magnetic behaviour of the new SrBiMn{sub 1.75}Ti{sub 0.25}O{sub 6} manganite is reported. Black-Right-Pointing-Pointer A structural transition above 520 K takes place, coinciding with relevant changes in the transport properties. Black-Right-Pointing-Pointer The electronic behavior is interpreted in terms of a remarkably high orbital and charge ordering temperature and cluster models. Black-Right-Pointing-Pointer The observed features are explained considering a scenario in which bonds covalence is enhanced by the Bi{sup 3+} and Ti{sup 4+} cations. - Abstract: Manganites are materials that show remarkable phenomena related to charge orbital ordering (CO/OO) and it is extremely important to understand the fundamental nature of this behaviour. This paper reports on the structural, electronic and magnetic behaviour of the new SrBiMn{sub 1.75}Ti{sub 0.25}O{sub 6} manganite and the dependence of these properties with temperature. A detailed structural analysis has been carried out by electron, X-ray, neutron diffraction between 4 and 700 K. The electron diffraction patterns obtained at room temperature (RT) evidence that the average structure (a{approx}b{approx}{radical}(2)a{sub p} and c {approx} 2a{sub p}) presents a modulation that doubles the a and c lattice parameters. A very high charge ordering (CO) transition temperature of 510 K, similar to that found for the non-doped material, SrBiMn{sub 2}O{sub 6}, is observed. Above this

  11. Effect of MnO2 doping and temperature treatment on optical energy band gap properties in Zn-Bi-Ti-O varistor ceramics

    International Nuclear Information System (INIS)

    Ghazali, M. S. M.; Abdullah, W. R. W.; Zakaria, A.; Kamari, H. M.; Rizwan, Z.

    2016-01-01

    In this study, the optical band-gap energy ( Eg ) was investigated with respect to MnO 2 and sintering temperatures on ZnO based varistor ceramics. Eg of the ceramic (99-x) mol% ZnO + 0.5 mol% Bi 2 O 3 + 0.5 mol% TiO 2 + × MnO 2 where × = 0, 0.2, 0.4, 0.6 and 0.8 mol%, were determined using UV-Vis spectrophotometer. The samples was prepared through solid-state route and sintered at the sintering temperature from 1110, 1140 and 1170 °C for 45 and 90 min in open air. At no doping of MnO 2 , the values of Eg are 2.991 ± 0.001, 2.989 ± 0.001 eV for 45 and 90 min sintering time; respectively. Eg was decreased to 2.192 ± 0.001 eV at 1140 °C at 45 min sintering time. Similar result of Eg was observed at longer heat treatment. Further addition of dopant causing the Eg decreases rapidly to 2.099 and 2.106 ± 0.001 eV at 45 and 90 min sintering time; respectively. XRD analysis indicates that there is hexagonal ZnO and secondary phases, Zn 2 MnO 4 , Bi 4 Ti 3 O 12 and Zn 2 Ti 3 O 8 . The relative density of the sintered ceramics decreased or remain constant with the increase of MnO 2 concentration for 45 min sintering time, however, further prolong sintering time; the relative density decreases form 90.25 to 88.35%. This indicates the pores are increasing with the increase of heat treatment. The variation of sintering temperatures to the optical band gap energy of based ZnO varistor doped with MnO 2 due to the formation of interface states. (paper)

  12. Standard enthalpies of formation of selected Ru{sub 2}YZ Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ming, E-mail: myin1@hawk.iit.edu; Nash, Philip

    2015-06-15

    Highlights: • Standard enthalpies of formation of Ru{sub 2}YZ were measured using a drop calorimeter. • Result of L2{sub 1} structured compounds agrees with first principles data. • Lattice parameters and related phase relationships were consistent with literature data. • Ru{sub 2}HfSn, Ru{sub 2}TiSn, Ru{sub 2}VGa, Ru{sub 2}VSi, Ru{sub 2}VSn of L2{sub 1} structure were reported for the first time. - Abstract: The standard enthalpies of formation of selected ternary Ru-based Heusler compounds Ru{sub 2}YZ (Y = Fe, Hf, Mn, Ti, V; Z = Al, Ga, In, Si, Ge, Sn) were measured using high temperature direct reaction calorimetry. The measured enthalpies of formation (in kJ/mole of atoms) of the Heusler compounds are, Ru{sub 2}FeGe (−19.7 ± 3.3); Ru{sub 2}HfSn (−24.9 ± 3.6); Ru{sub 2}MnSi (−46.0 ± 2.6); Ru{sub 2}MnGe (−29.7 ± 1.0); Ru{sub 2}MnSn (−20.6 ± 2.4); Ru{sub 2}TiSi (−94.9 ± 4.0); Ru{sub 2}TiGe (−79.1 ± 3.2); Ru{sub 2}TiSn (−60.6 ± 1.8); Ru{sub 2}VSi (−55.9 ± 1.7);for the B2-structured compounds, Ru{sub 2}FeSi (−28.5 ± 0.8); Ru{sub 2}HfAl (−70.8 ± 1.9); Ru{sub 2}MnAl (−32.3 ± 1.9); Ru{sub 2}MnGa (−25.3 ± 3.0); Ru{sub 2}TiAl (−62.7 ± 3.5); Ru{sub 2}VAl (−30.9 ± 1.6); Ru{sub 2}ZrAl (−64.5 ± 1.5). Values were compared with those from published first principles calculations and the OQMD (Open Quantum Materials Database). Lattice parameters of these compounds were determined using X-ray diffraction analysis (XRD). Microstructures were identified using scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS)

  13. Properties of reactively radio frequency-magnetron sputtered (Zr,Sn)TiO4 dielectric films

    International Nuclear Information System (INIS)

    Huang, C.-L.; Hsu, C.-H.

    2004-01-01

    Zirconium tin titanium oxide doped 1 wt % ZnO thin films on n-type Si substrate were deposited by rf magnetron sputtering at a fixed rf power of 350 W with various argon-oxygen (Ar/O 2 ) mixture and different substrate temperatures. Electrical properties and microstructures of ZnO-doped (Zr 0.8 Sn 0.2 )TiO 4 thin films prepared by rf magnetron sputtering on n-type Si(100) substrates at different Ar/O 2 ratios and substrate temperatures have been investigated. The surface structural and morphological characteristics analyzed by x-ray diffraction, scanning electron microscopy, and atomic force microscope were sensitive to the deposition conditions, such as Ar/O 2 ratio (100/0-80/20) and substrate temperature (350 deg. C-450 deg. C). The selected-area diffraction pattern showed that the deposited films exhibited a polycrystalline microstructure. All films exhibited ZST (111) orientation perpendicular to the substrate surface and the grain size as well as the deposition rate of the films increased with the increase of both the Ar partial pressure and the substrate temperature. At a Ar/O 2 ratio of 100/0, rf power level of 350 W and substrate temperature of 450 deg. C, the Zr 0.8 Sn 0.2 TiO 4 films with 6.44 μm thickness possess a dielectric constant of 42 (at 10 MHz), a dissipation factor of 0.065 (at 10 MHz), and a leakage current density of 2x10 -7 A/cm 2 at an electrical field of 1 kV/cm

  14. Dielectric permittivity in weakly concentrated SrTiO.sub.3./sub.:Mn crystals and ceramics

    Czech Academy of Sciences Publication Activity Database

    Trepakov, Vladimír; Savinov, Maxim; Železný, Vladimír; Pokorný, Jan; Syrnikov, P.; Azzoni, C. B.; Galinetto, P.; Mozzati, M. C.; Badalyan, A.; Deyneka, Alexander; Jastrabík, Lubomír

    2007-01-01

    Roč. 93, č. 1 (2007), 012017/1-012017/6 ISSN 1742-6588 R&D Projects: GA AV ČR KAN301370701; GA AV ČR 1QS100100563; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100522 Keywords : dielectric permittivity * SrTiO 3 :Mn * crystals and ceramics Subject RIV: BM - Solid Matter Physics ; Magnetism

  15. The effects of small metal additions (Co, Cu, Ga, Mn, Al, Bi, Sn) on the magnetocaloric properties of the Gd5Ge2Si2 alloy

    Czech Academy of Sciences Publication Activity Database

    Shull, R. D.; Provenzano, V.; Shapiro, A. J.; Fu, A.; Lufaso, M. W.; Karapetrova, J.; Kletetschka, Günther; Mikula, V.

    2006-01-01

    Roč. 99, č. 8 (2006), s. 8-8 ISSN 0021-8979 Institutional research plan: CEZ:AV0Z30130516 Keywords : magnetocaloric * (Co, Cu, Ga, Mn, Al, Bi, Sn) additions * Cryogenic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.316, year: 2006

  16. Early effect of Ti-24Nb-4Zr-7.9Sn intramedullary nails on fractured bone

    International Nuclear Information System (INIS)

    Guo, Z.; Fu, J.; Zhang, Y.Q.; Hu, Y.Y.; Wu, Z.G.; Shi, L.; Sha, M.; Li, S.J.; Hao, Y.L.; Yang, R.

    2009-01-01

    A multifunctional titanium Ti-24Nb-4Zr-7.9Sn alloy (abbreviated as Ti2448) with ultra-low elastic modulus and high strength has been developed recently for potential biomedical applications. In this study, the bone healing and stability of implants in a rabbit tibial fracture model were investigated using intramedullary nails made of both the Ti2448 and Ti-6Al-4V ELI alloys. X-ray radiographic analysis showed that the volume fractions of new calluses formed around the fractured tibia increased with implantation times up to 4 weeks in both groups but no obvious difference was found between the alloys at the same time point. The micro-CT analysis revealed that, in the distal end of the tibia, there were many new calluses around nails made of the Ti2448 alloy that were confirmed by histological observations. The above analysis was consistent with tensile testing results performed 4 weeks after implantation. The mean maximum tensile force to failure of the newly formed calluses was similar between both groups whereas the mean maximum pull-out forces of the implanted nails were larger in the group of the Ti2448 alloy. Four weeks after fixation, no obvious difference in the degree of fracture healing was found between both groups. These results suggested that, in the early stage of fixation, the nails with ultra-low elastic modulus improved the new bone formation in the marrow cavity.

  17. Superconducting critical-current densities of commercial multifilamentary Nb3Sn(Ti) wires made by the bronze process

    International Nuclear Information System (INIS)

    Suenaga, M.; Tsuchiya, K.; Higuchi, N.; Tachikawa, K.

    1985-01-01

    Superconducting critical-current densities Jsub(c) in fields up to 24 T and at 4.2 and 1.8 K were measured for a number of commercial Nb 3 Sn wires which were alloyed with Ti. The best values of Jsub(c) at 20 T and at 4.2 and 1.8 K were 78 and 156 A mm -2 , respectively. In order to achieve these high current densities at H>20 T, it was shown that nonuniformity of the filaments had to be minimized. It was also shown that the grain size of Nb 3 Sn is not very important in determining Jsub(c) at these high magnetic fields, and that achieving high values of critical magnetic field Hsub(c2) is more important than small grain size. (author)

  18. Enhancing electrocatalytic performance of Sb-doped SnO ₂ electrode by compositing nitrogen-doped graphene nanosheets.

    Science.gov (United States)

    Duan, Tigang; Wen, Qing; Chen, Ye; Zhou, Yiding; Duan, Ying

    2014-09-15

    An efficient Ti/Sb-SnO2 electrode modified with nitrogen-doped graphene nanosheets (NGNS) was successfully fabricated by the sol-gel and dip coating method. Compared with Ti/Sb-SnO2 electrode, the NGNS-modified electrode possesses smaller unite crystalline volume (71.11Å(3) vs. 71.32Å(3)), smaller electrical resistivity (13Ωm vs. 34Ωm), and lower charge transfer resistance (10.91Ω vs. 21.01Ω). The accelerated lifetime of Ti/Sb-SnO2-NGNS electrode is prolonged significantly, which is 4.45 times as long as that of Ti/Sb-SnO2 electrode. The results of X-ray photoelectron spectroscopy measurement and voltammetric charge analysis indicate that introducing NGNS into the active coating can increase more reaction active sites to enhance the electrocatalytic efficiency. The electrochemical dye decolorization analysis demonstrates that Ti/Sb-SnO2-NGNS presents efficient electrocatalytic performance for methylene blue and orange II decolorization. And its pseudo-first order kinetic rate constants for methylene blue and orange II decolorization are 36.6 and 44.0 min(-1), respectively, which are 6.0 and 7.1 times as efficient as those of Ti/Sb-SnO2, respectively. Considering the significant electrocatalytic activity and low resistivity of Ti/Sb-SnO2-NGNS electrode, the cost of wastewater treatment can be expected to be reduced obviously and the application prospect is broad. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. X-ray photoelectron spectroscopic study of direct reforming catalysts Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (Ln = La, Nd, and Sm) for high temperature-operating solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keunsoo [Department of Engine Research, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Daejeon 305-343 (Korea, Republic of); Jeong, Jihoon [Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712 (United States); Azad, Abul K. [Faculty of Integrated Technologies, University Brunei Darussalam, Jalan Tunku Link, Gadong BE1410 (Brunei Darussalam); Jin, Sang Beom [Department of Advanced Materials Science and Engineering, Hanbat National University, 125, Dongseo-Daero, Yusung-Gu, Daejeon 305-719 (Korea, Republic of); Kim, Jung Hyun, E-mail: jhkim2011@hanbat.ac.kr [Department of Advanced Materials Science and Engineering, Hanbat National University, 125, Dongseo-Daero, Yusung-Gu, Daejeon 305-719 (Korea, Republic of)

    2016-03-01

    Graphical abstract: Measured Ti 2p peaks and deconvolution peaks of Nd{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} under oxidizing condition (left) and NSTM under reducing condition (right). - Highlights: • Chemical states of Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (Ln: La, Nd and Sm) were analyzed. • Charge compensation occurred with the reduction of Mn and Ti. • The Nd substitution effect allowed some Ti to convert into a metallic behavioral component. • NSTM and SSTM had a large amount of lattice oxygen; however, LSTM retained a large quantity of adsorbed oxygen. - Abstract: Chemical states of lanthanide doped perovskite for direct reforming anode catalysts, Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (Ln = La, Nd, and Sm) have been studied by X-ray Photoelectron Spectroscopy (XPS) in order to determine the effects of various lanthanide substitution in complex perovskites for high temperature-operating solid oxide fuel cells (HT-SOFC). The charge state of lanthanide ions remained at 3+ and the binding energies of the lanthanide ions in Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} were located in a relatively lower range compared to those of conventional lanthanide oxides. Mn and Ti were regarded as charge compensation components in Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d}; Mn was more influential than Ti. In the cases of substituting Nd and Sm into Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d}, some portion of Ti showed metallic behavior; the specific Mn satellite peak indicating an electro-catalytic effect had occurred. Three types of oxygen species comprised of lattice oxygen, carbonate species, and adsorbed oxygen species were observed in Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} from the O 1s spectra; a high portion of lattice oxygen was observed in both Nd{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (NSTM) and Sm{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O

  20. Comparisons of multilayer H2O adsorption onto the (110) surfaces of alpha-TiO2 and SnO2 as calculated with density functional theory.

    Science.gov (United States)

    Bandura, Andrei V; Kubicki, James D; Sofo, Jorge O

    2008-09-18

    Mono- and bilayer adsorption of H2O molecules on TiO2 and SnO 2 (110) surfaces has been investigated using static planewave density functional theory (PW DFT) simulations. Potential energies and structures were calculated for the associative, mixed, and dissociative adsorption states. The DOS of the bare and hydrated surfaces has been used for the analysis of the difference between the H2O interaction with TiO2 and SnO 2 surfaces. The important role of the bridging oxygen in the H2O dissociation process is discussed. The influence of the second layer of H2O molecules on relaxation of the surface atoms was estimated.

  1. The influence of interfacial barrier engineering on the resistance switching of In2O3:SnO2/TiO2/In2O3:SnO2 device

    International Nuclear Information System (INIS)

    Liu Zi-Yu; Zhang Pei-Jian; Meng Yang; Li Dong; Meng Qing-Yu; Li Jian-Qi; Zhao Hong-Wu

    2012-01-01

    The I—V characteristics of In 2 O 3 :SnO 2 /TiO 2 /In 2 O 3 :SnO 2 junctions with different interfacial barriers are investigated by comparing experiments. A two-step resistance switching process is found for samples with two interfacial barriers produced by specific thermal treatment on the interfaces. The nonsynchronous occurrence of conducting filament formation through the oxide bulk and the reduction in the interfacial barrier due to the migration of oxygen vacancies under the electric field is supposed to explain the two-step resistive switching process. The unique switching properties of the device, based on interfacial barrier engineering, could be exploited for novel applications in nonvolatile memory devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Pd-MnO2 nanoparticles/TiO2 nanotube arrays (NTAs) photo-electrodes photo-catalytic properties and their ability of degrading Rhodamine B under visible light.

    Science.gov (United States)

    Thabit, Mohamed; Liu, Huiling; Zhang, Jian; Wang, Bing

    2017-10-01

    Pd-MnO 2 /TiO 2 nanotube arrays (NTAs) photo-electrodes were successfully fabricated via anodization and electro deposition subsequently; the obtained Pd-MnO 2 /TiO 2 NTAs photo electrodes were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and characterized accordingly. Moreover, the light harvesting and absorption properties were investigated via ultraviolet-visible diffuse reflectance spectrum (DRS); photo degradation efficiency was investigated via analyzing the photo catalytic degradation of Rhodamine B under visible illumination (xenon light). The performed analyses illustrated that Pd-MnO 2 codoped particles were successfully deposited onto the surface of the TiO 2 nanotube arrays; DRS results showed significant improvement in visible light absorption which was between 400 and 700nm. Finally, the photo catalytic degradation efficiency results of the designated organic pollutant (Rhodamine B) illustrated a superior photocatalytic (PC) efficiency of approximately 95% compared to the bare TiO 2 NTAs, which only exhibited a photo catalytic degradation efficiency of approximately 61%, thus it indicated the significant enhancement of the light absorption properties of fabricated photo electrodes and their yield of OH radicals. Copyright © 2017. Published by Elsevier B.V.

  3. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration.

    Science.gov (United States)

    Li, Xiang; Chen, Tao; Hu, Jing; Li, Shujun; Zou, Qin; Li, Yunfeng; Jiang, Nan; Li, Hui; Li, Jihua

    2016-08-01

    The Ti-24Nb-4Zr-7.9Sn titanium alloy (Ti2448) has shown potential for use in biomedical implants, because this alloy possesses several important mechanical properties, such as a high fracture strength, low elastic modulus, and good corrosion resistance. In this study, we aimed to produce a hierarchical nanostructure on the surface of Ti2448 to endow this alloy with favorable biological properties. The chemical composition of Ti2448 (64.0wt% Ti, 23.9wt% Nb, 3.9wt% Zr, and 8.1wt% Sn) gives this material electrochemical properties that lead to the generation of topographical features under standard anodic oxidation. We characterized the surface properties of pure Ti (Ti), nanotube-Ti (NT), Ti2448, and nanotube-Ti2448 (NTi2448) based on surface morphology (scanning electron microscopy and atomic force microscopy), chemical and phase compositions (X-ray diffraction and X-ray photoelectron spectroscopy), and wettability (water contact angle). We evaluated the biocompatibility and osteointegration of implant surfaces by observing the behavior of bone marrow stromal cells (BMSCs) cultured on the surfaces in vitro and conducting histological analysis after in vivo implantation of the modified materials. Our results showed that a hierarchical structure with a nanoscale bone-like layer was achieved along with nanotube formation on the Ti2448 surface. The surface characterization data suggested the superior biocompatibility of the NTi2448 surface in comparison with the Ti, NT, and Ti2448 surfaces. Moreover, the NTi2448 surface showed better biocompatibility for BMSCs in vitro and better osteointegration in vivo. Based on these results, we conclude that anodic oxidation facilitated the formation of a nanoscale bone-like structure and nanotubes on Ti2448. Unlike the modified titanium surfaces developed to date, the NTi2448 surface, which presents both mechanical compatibility and bioactivity, offers excellent biocompatibility and osteointegration, suggesting its potential for

  4. Effects of Nb doping level on the electronic transport, photoelectric effect and magnetoresistance across La0.5Ca0.5MnO3/Nb:SrTiO3 junctions

    Science.gov (United States)

    Wang, J. F.; Jiang, Y. C.; Chen, M. G.; Gao, J.

    2013-12-01

    Heterojunctions composed of La0.5Ca0.5MnO3 and Nb doped SrTiO3 were fabricated, and the effects of the Nb doping level on their electronic transport, photoelectric effect, and magnetoresistance were investigated. A lower doping concentration of Nb led to better rectifying properties and higher open circuit voltages. The I-V curves for La0.5Ca0.5MnO3/0.7 wt. % Nb-SrTiO3 showed a negligible response to magnetic fields for all temperatures, whereas La0.5Ca0.5MnO3/0.05 wt. % Nb-SrTiO3 exhibited distinct magnetoresistance, which depended on both the bias voltage and temperature. These results are discussed with the assistance of conventional semiconductor theories.

  5. First-principles calculations of the electronic, vibrational, and elastic properties of the magnetic laminate Mn2GaC

    International Nuclear Information System (INIS)

    Thore, A.; Dahlqvist, M.; Alling, B.; Rosén, J.

    2014-01-01

    In this paper, we report the by first-principles predicted properties of the recently discovered magnetic MAX phase Mn 2 GaC. The electronic band structure and vibrational dispersion relation, as well as the electronic and vibrational density of states, have been calculated. The band structure close to the Fermi level indicates anisotropy with respect to electrical conductivity, while the distribution of the electronic and vibrational states for both Mn and Ga depend on the chosen relative orientation of the Mn spins across the Ga sheets in the Mn–Ga–Mn trilayers. In addition, the elastic properties have been calculated, and from the five elastic constants, the Voigt bulk modulus is determined to be 157 GPa, the Voigt shear modulus 93 GPa, and the Young's modulus 233 GPa. Furthermore, Mn 2 GaC is found relatively elastically isotropic, with a compression anisotropy factor of 0.97, and shear anisotropy factors of 0.9 and 1, respectively. The Poisson's ratio is 0.25. Evaluated elastic properties are compared to theoretical and experimental results for M 2 AC phases where M = Ti, V, Cr, Zr, Nb, Ta, and A = Al, S, Ge, In, Sn.

  6. La5M3X (M=Sn, Bi; X=Cl, Br, I): exploring the limit of the Mn5Si3-type hosting lattice

    International Nuclear Information System (INIS)

    Zheng Chong; Mattausch, Hansjuergen; Simon, Arndt

    2002-01-01

    Three new compounds add to the family of the Mn 5 Si 3 type host-guest lattice. These are La 5 Sn 3 X (X=Cl, Br, I) synthesized from stoichiometric mixtures of La, LaX 3 and Sn heated under Ar atmosphere in sealed Ta ampoules at 850-990 deg. C for 13-62 days. La 5 Sn 3 X crystallize in the space group P6 3 /mcm (No. 193) with lattice parameters a=9.603(1) A, 9.637(1) A and 9.673(1) A; c=6.890(1) A, 6.931(1) A and 6.987(1) A, respectively, for X=Cl, Br and I. Computational analysis using both the extended Hueckel and the local density functional methods showed that the Sn and La site acts as electron reservoir, providing electrons to the interstitials as necessary. This gives rise to a metallic behavior. Susceptibility and conductivity measurements confirmed these predictions. The single crystal structure of La 5 Bi 3 Br is also reported

  7. Manipulating the magnetism and resistance state of Mn:ZnO/Pb(Zr0.52Ti0.48)O3 heterostructured films through electric fields

    Science.gov (United States)

    Li, Yong-Chao; Wu, Jun; Pan, Hai-Yang; Wang, Jue; Wang, Guang-Hou; Liu, Jun-Ming; Wan, Jian-Guo

    2018-05-01

    Mn:ZnO/Pb(Zr0.52Ti0.48)O3 (PZT) heterostructured films have been prepared on Pt/Ti/SiO2/Si wafers by a sol-gel process. Nonvolatile and reversible manipulation of the magnetism and resistance by electric fields has been realized. Compared with the saturation magnetic moment (Ms) in the +3.0 V case, the modulation gain of Ms can reach 270% in the -3.0 V case at room temperature. The resistance change is attributed to the interfacial potential barrier height variation and the formation of an accumulation (or depletion) layer at the Mn:ZnO/PZT interface, which can be regulated by the ferroelectric polarization direction. The magnetism of Mn:ZnO originates from bound magnetic polarons. The mobile carrier variation in Mn:ZnO, owing to interfacial polarization coupling and the ferroelectric field effect, enables the electric manipulation of the magnetism in the Mn:ZnO/PZT heterostructured films. This work presents an effective method for modulating the magnetism of magnetic semiconductors and provides a promising avenue for multifunctional devices with both electric and magnetic functionalities.

  8. High-pressure synthesis and magnetic behavior of A-site columnar-ordered double perovskites, LnMn(Ga{sub 0.5}Ti{sub 0.5}){sub 2}O{sub 6} (Ln = Sm, Gd)

    Energy Technology Data Exchange (ETDEWEB)

    Shimura, Gen; Niwa, Ken; Shirako, Yuichi; Hasegawa, Masashi [Department of Crystalline Materials Science, Nagoya University, 464-8601, Nagoya (Japan)

    2017-01-26

    A-site columnar-ordered double perovskites, LnMn(Ga{sub 0.5}Ti{sub 0.5}){sub 2}O{sub 6} (Ln = Sm, Gd), were successfully synthesized under high pressure and high temperature (6 GPa, 1375 K). From the synchrotron powder X-ray diffraction patterns, all of the diffraction peaks can be indexed by the P4{sub 2}/nmc space group with lattice parameters a, c ∼ 2a{sub p} (a{sub p}: primitive cubic perovskite lattice) and no ordering of the B-site cations. Rietveld analysis of the synchrotron powder X-ray diffraction patterns and Curie-Weiss fitting of their magnetizations reveal that the ionic formulae of these perovskites are Ln{sup 3+}Mn{sup 2+}(Ga{sup 3+}{sub 0.5}Ti{sup 4+}{sub 0.5}){sub 2}O{sup 2-}{sub 6}. SmMn(Ga{sub 0.5}Ti{sub 0.5}){sub 2}O{sub 6} shows canted-antiferromagnetic behavior, whereas GdMn(Ga{sub 0.5}Ti{sub 0.5}){sub 2}O{sub 6} exhibits two different magnetic states at low temperature depending on the applied magnetic field and shows an unusual magnetization curve. These magnetic behaviors originate by decreasing the antiferromagnetic interaction by substituting Ga{sup 3+}(d{sup 10}) for Ti{sup 4+}(d{sup 0}) and by decreasing the ferromagnetic interaction between columnar-ordered Ln{sup 3+} and Mn{sup 2+}. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Electrical characteristics for Sn-Ag-Cu solder bump with Ti/Ni/Cu under-bump metallization after temperature cycling tests

    Science.gov (United States)

    Shih, T. I.; Lin, Y. C.; Duh, J. G.; Hsu, Tom

    2006-10-01

    Lead-free solder bumps have been widely used in current flip-chip technology (FCT) due to environmental issues. Solder joints after temperature cycling tests were employed to investigate the interfacial reaction between the Ti/Ni/Cu under-bump metallization and Sn-Ag-Cu solders. The interfacial morphology and quantitative analysis of the intermetallic compounds (IMCs) were obtained by electron probe microanalysis (EPMA) and field emission electron probe microanalysis (FE-EPMA). Various types of IMCs such as (Cu1-x,Agx)6Sn5, (Cu1-y,Agy)3Sn, and (Ag1-z,Cuz)3Sn were observed. In addition to conventional I-V measurements by a special sample preparation technique, a scanning electron microscope (SEM) internal probing system was introduced to evaluate the electrical characteristics in the IMCs after various test conditions. The electrical data would be correlated to microstructural evolution due to the interfacial reaction between the solder and under-bump metallurgy (UBM). This study demonstrated the successful employment of an internal nanoprobing approach, which would help further understanding of the electrical behavior within an IMC layer in the solder/UBM assembly.

  10. Influence of Cu alloying on hot ductility of C-Mn-Al and Ti-Nb microalloyed steels

    Directory of Open Access Journals (Sweden)

    Comineli, O.

    2005-12-01

    Full Text Available A beneficial effect of the copper on the hot ductility was observed in Ti-Nb microalloyed steels over the temperature range 800-1,000 °C at the cooling rate of 0.4 °C/s, but no influence at the cooling rate of 4 °C/s. Precipitates containing Nb and Ti were present whose size was coarser in the Cu-bearing grade as cooled at 0.4 °C/s. Cu-bearing precipitates were not found. In the C-Mn-Al steel, no influence of the copper on the hot ductility was recorded, but CuS particles were detected. Two mechanisms are proposed to explain the positive influence of the copper in the microalloyed steel. The first is that the copper atoms in the solid solution affect the activity of the carbon and the nitrogen analogically to the previously observed effect of the silicon, enhancing the precipitation at high temperatures, and another mechanism that the copper atoms can prolong the lifetime of vacancies generated by straining assisting the formation of TiNb-vacancy complexes and thereby coarsening the precipitates.

    Se ha observado un efecto beneficioso del cobre sobre la ductilidad en caliente del acero microaleado al Ti-Nb, en el rango de temperaturas 800-1.000 °C. La influencia fue observada a velocidades de enfriamiento bajas, 0,4 °C/s, mientras que a 4 °C/s no se aprecia. En el acero C-Mn-Al, la influencia de cobre no fue detectada. En el acero microaleado se detectó la presencia de precipidados que contienen niobio y titanio, la dimensión de los cuales es mayor cuando se enfría a 0,4 °C/s. En este acero no se detectó la presencia de precipitados con contenidos de cobre, en contraste con el acero C-Mn-Al, donde sí se observaron partículas de CuS. Se proponen dos mecanismos para explicar la influencia positiva del cobre en aceros microaleados. El primero es el aumento de la actividad de carbono y nitrógeno en austenita debido a presencia de átomos de cobre en solución sólida, con el mismo efecto que el silicio, el cual aumenta la

  11. Effect of excess Ni on martensitic transition, exchange bias and inverse magnetocaloric effect in Ni{sub 2+x}Mn{sub 1.4−x}Sn{sub 0.6} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Mayukh K., E-mail: mayukh.ray@saha.ac.in; Bagani, K.; Banerjee, S., E-mail: sangam.banerjee@saha.ac.in

    2014-07-05

    Highlights: • Excess Ni causes an increase in the martensite transition temperature. • The system Ni{sub 2+x}Mn{sub 1.4−x}Sn{sub 0.6} exhibit multifunctional properties. • The RCP and EB increases continuously with excess Ni concentration in the system. • Antiferromagnetic interaction increases with excess Ni concentration. - Abstract: The martensitic transition, exchange bias (EB) and inverse magnetocaloric effect (IMCE) of bulk Ni{sub 2+x}Mn{sub 1.4−x}Sn{sub 0.6} (x = 0, 0.06, 0.12, 0.18) Heusler alloy is investigated in this paper. Substitution of Mn by Ni causes an increase in the martensite transition temperature (T{sub M}), decrease in Curie temperature of austenite phase (T{sub C}{sup A}) and also a decrease in the saturation magnetic moment (M{sub sat}). While the decrease in T{sub C}{sup A} and M{sub sat} is explained by the dilution of the magnetic subsystems and on the other hand the increase in T{sub M} is due to the increase of valence electron concentration per atom (e/a). All the alloys shows EB effect below a certain temperature (T{sup ∗}) and EB field (H{sub EB}) value is almost thrice in magnitude for x = 0.18 sample compared to x = 0 sample at 5 K. In these alloys, Ni/Mn atoms at regular site couples antiferromagnetically (AFM) with the excess Ni atoms at Mn or Sn sites and this AFM coupling plays the key role in the observation of EB. For the IMCE, the change in magnetic entropy (ΔS{sub M}) initially increased with excess Ni concentration upto x = 0.12 but then a drastic fall in ΔS{sub M} value is observed for the sample x = 0.18 but the relative cooling power (RCP) value is increased continuously with the excess Ni concentration.

  12. Magnetization measurements on multifilamentary Nb3Sn and NbTi conductors

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Robins, K.E.; Sampson, W.B.

    1984-01-01

    The effective filament size has been determined for a number of high current Nb 3 Sn multifilamentary composites. In most cases it is much larger than the nominal filament size. For the smallest filaments (approx. 1 micron) the effective size can be as much as a factor of forty times the nominal size. Samples made by the internal tin, bronze route, and jelly roll methods have been examined with filaments in the range one to ten microns. Rate dependent magnetization and flux jumping have been observed in some cases. NbTi composites ranging in filament size from nine to two hundred microns and with copper to super-conductor ratios between 1.6:1 and 7:1 have been examined in the same apparatus. Low field flux jumping was only observed in conductors with very large filaments and relatively little stabilizing copper. 9 references, 6 figures, 3 tables

  13. 2D Electron Gas with 100% Spin-Polarization in the (LaMnO3)2/(SrTiO3)2 Superlattice under Uniaxial Strain

    KAUST Repository

    Cossu, Fabrizio

    2014-07-28

    By first-principles calculations we investigate the structural, electronic, and magnetic properties of the (LaMnO3)2/(SrTiO3)2 superlattice. We find that a monoclinic C2h symmetry is energetically favorable and that the spins order ferromagnetically. Under both compressive and tensile uniaxial strain the electronic structure of the superlattice shows a half-metallic character. In particular, a fully spin-polarized two-dimensional electron gas, which traces back to the Ti 3dxy orbitals, is achieved under compressive uniaxial strain. The (LaMnO3)2/(SrTiO3)2 superlattice is analysed with respect to its structure, magnetism, and electronic properties. Our results demonstrate that uniaxial strain in an experimentally accessible range, both tensile and compressive, can be used to induce half-metallicity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Tuning magneto-structural properties of Ni{sub 44}Co{sub 6}Mn{sub 39}Sn{sub 11} Heusler alloy ribbons by Fe-doping

    Energy Technology Data Exchange (ETDEWEB)

    Wójcik, Anna, E-mail: a.wojcik@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Kraków (Poland); Maziarz, Wojciech; Szczerba, Maciej J. [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Kraków (Poland); Sikora, Marcin [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków (Poland); Dutkiewicz, Jan [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Kraków (Poland); Cesari, Eduard [Departament de Física, Universitat de les Illes Balears, Ctra. De Valldemossa, km 7.5, E-07122 Palma de Mallorca (Spain)

    2016-07-15

    Graphical abstract: - Highlights: • Fe substitution for Ni in Ni{sub 44}Co{sub 6}Mn{sub 39}Sn{sub 11} causes a drastic decrease of M{sub T} temperature. • The type of structure changes with increasing of iron (12M → 10M + L2{sub 1} → L2{sub 1}). • Content of Fe above 1 at.% has a negative influence on magneto-structural properties. - Abstract: Microstructure, martensitic transformation behavior and magnetic properties of Ni{sub 44−x}Fe{sub x}Co{sub 6}Mn{sub 39}Sn{sub 11} (x = 0, 1, 2 at.%) melt spun ribbons have been investigated. The influence of iron addition has been thoroughly studied by means of electron microscopy, X-ray diffraction and vibrating sample magnetometry. The results show that addition of 1 at.% of iron into quaternary Ni–Co–Mn–Sn Heusler alloy drastically decreases the martensitic transformation temperature by more than 100 K. Higher concentration of iron leads to complete suppression of martensitic transition. The structure of samples change from fully martensite (12 M) through mixed austenite-martensite (L2{sub 1} + 10 M) to fully austenite (L2{sub 1}) with increase of iron content. Addition of 1 at.% of iron leads to enhance magnetization of both austenitic and martensitic phases and also a small increase of Curie temperature occurs. The largest change of magnetic entropy under 15 kOe measured 2.9 and 0.65 J kg{sup −1} K{sup −1} for alloys where x = 0 and 1, respectively.

  15. Stabilization of mercury over Mn-based oxides: Speciation and reactivity by temperature programmed desorption analysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Haomiao [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Ma, Yongpeng [Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001 (China); Huang, Wenjun; Mei, Jian; Zhao, Songjian; Qu, Zan [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Yan, Naiqiang, E-mail: nqyan@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2017-01-05

    Highlights: • Hg-TPD method was used for speciation of mercury species. • Different elements modified MnO{sub x} have different mercury binding state. • Understanding mercury existed state was beneficial for designing novel materials. - Abstract: Mercury temperature-programmed desorption (Hg-TPD) method was employed to clarify mercury species over Mn-based oxides. The elemental mercury (Hg{sup 0}) removal mechanism over MnO{sub x} was ascribed to chemical-adsorption. HgO was the primary mercury chemical compound adsorbed on the surface of MnO{sub x}. Rare earth element (Ce), main group element (Sn) and transition metal elements (Zr and Fe) were chosen for the modification of MnO{sub x}. Hg-TPD results indicated that the binding strength of mercury on these binary oxides followed the order of Sn-MnO{sub x} < Ce-MnO{sub x} ∼ MnO{sub x} < Fe-MnO{sub x} < Zr-MnO{sub x}. The activation energies for desorption were calculated and they were 64.34, 101.85, 46.32, 117.14, and 106.92 eV corresponding to MnO{sub x}, Ce-MnO{sub x}, Sn-MnO{sub x}, Zr-MnO{sub x} and Fe-MnO{sub x}, respectively. Sn-MnO{sub x} had a weak bond of mercury (Hg-O), while Zr-MnO{sub x} had a strong bond (Hg≡O). Ce-MnO{sub x} and Fe-MnO{sub x} had similar bonds compared with pure MnO{sub x}. Moreover, the effects of SO{sub 2} and NO were investigated based on Hg-TPD analysis. SO{sub 2} had a poison effect on Hg{sup 0} removal, and the weak bond of mercury can be easily destroyed by SO{sub 2}. NO was favorable for Hg{sup 0} removal, and the bond strength of mercury was enhanced.

  16. Reversible twin boundary migration between α″ martensites in a Ti-Nb-Zr-Sn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Tingting; Du, Kui, E-mail: kuidu@imr.ac.cn; Wang, Haoliang; Qi, Lu; He, Suyun; Hao, Yulin; Yang, Rui; Ye, Hengqiang

    2017-03-14

    Cyclic tensile loading tests and transmission electron microscopy investigation are conducted on a Ti-24Nb-4Zr-8Sn (wt%) alloy. Under tensile strain less than 3.3%, most of the deformation strain recovers after unloading but significant energy dissipation occurs during the loading-unloading cycle. Reversible migration of twin boundaries between α″ martensite variants, in virtue of dislocation movement on the twin boundaries, has been revealed by time resolved high-resolution transmission electron microscopy. This twin boundary migration contributes to the energy dissipation effect and consequently the damping property of the titanium alloy.

  17. Structural, dielectric and magnetic properties of Mn modified xBiFeO{sub 3}-(1−x)BaTiO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Zhonghua, E-mail: zhdai@mail.xjtu.edu.cn [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan); Liu, Lu; Ying, Guobing; Yuan, Ming [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Ren, Xiaobing [Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan)

    2017-07-15

    Manganese doped xBiFeO{sub 3}-(1−x)BaTiO{sub 3}(x=0.67–0.82) ceramics were prepared by solid-state method. The structural, dielectric and magnetic properties were investigated after annealing in vacuum at 773 K. X-ray diffraction analysis indicated that all samples crystallized in pure perovskite structure. The ceramics displays a typical ferroelectric loop, with a max remnant polarization P{sub r} of 25.6 µC/cm{sup 2}. The piezoelectric coefficient d{sub 33} of Manganese doped 0.67BiFeO{sub 3}0.33BaTiO{sub 3} is 139 pC/N and its temperature dependence of dielectric constant exhibits a broad anomaly. The Manganese doped 0.75BiFeO{sub 3}0.25BaTiO{sub 3} ceramic shows ferrimagnetism at room temperature, with remnant magnetization M{sub r} of 0.31 emu/g and ferrimagnetic transition temperature T{sub N} of ~420 °C. - Highlights: • In this manuscript, a technique combined Mn doping which is able to fabricate point defects and annealing in vacuum which can stabilize the unstable ion was investigated. We studied the electrical properties of Mn doped BiFeO{sub 3}-BaTiO{sub 3} ceramics after vacuum annealing treatment at appropriate temperature. • Our result is that Mn modification and heat treatment are effective methods to solve the problem of high leakage of BiFeO{sub 3}-BaTiO{sub 3} system ceramic prepared by solid-state method. It exhibited a enhanced field-induced ferromagnetic ordering with promising potential in spintronics and recording media applications.

  18. Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)-PbZrO3-PbTiO3 textured ceramics

    OpenAIRE

    Yan, Yongke; Cho, Kyung-Hoon; Priya, Shashank

    2012-01-01

    In this letter, we report the electromechanical properties of textured 0.4Pb(Mg1/3Nb2/3) O-3-0.25PbZrO(3)-0.35PbTiO(3) (PMN-PZT) composition which has relatively high rhombohedral to tetragonal (R-T) transition temperature (TR-T of 160 degrees C) and Curie temperature (T-C of 234 degrees C) and explore the effect of Mn-doping on this composition. It was found that MnO2-doped textured PMN-PZT ceramics with 5 vol.% BaTiO3 template (T-5BT) exhibited inferior temperature stability. The coupling f...

  19. Preparation and characterization of La/sub 2/TiMnO/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Ramanujachary, K V; Swamy, C S [Indian Inst. of Tech., Madras. Dept. of Chemistry

    1981-01-01

    The compound La/sub 2/TiMnO/sub 6/ has been prepared by solid state reaction of the component ions in suitable form. X-ray analysis shows it to be orthorhombic and the cell constants are a = 5.506 A, b = 5.950 A and c = 7.636 A. It is found to be essentially a p-type semiconductor with ..cap alpha.. = 150 ..mu..VKsup(-1). Weiss constant has a value -88K and it shows IR bands at 400-450 and 575-600 cmsup(-1) characteristic of ..nu../sub 3/ and ..nu../sub 4/ modes of the Tisup(4+) O/sub 6/ octahedra.

  20. Structures and magnetic behaviours of TiO2–Mn–TiO2 multilayers

    International Nuclear Information System (INIS)

    Fa-Min, Liu; Peng, Ding; Jian-Qi, Li

    2010-01-01

    The TiO 2 -Mn-TiO 2 multilayers are successfully grown on glass and silicon substrates by alternately using radio frequency reactive magnetron sputtering and direct current magnetron sputtering. The structures and the magnetic behaviours of these films are characterised with x-ray diffraction, transmission electron microscope (TEM), vibrating sample magnetometer, and superconducting quantum interference device (SQUID). It is shown that the multi-film consists of a mixture of anatase and rutile TiO 2 with an embedded Mn nano-film. It is found that there are two turning points from ferromagnetic phase to antiferromagnetic phase. One is at 42 K attributed to interface coupling between ferromagnetic Mn 3 O 4 and antiferromagnetic Mn 2 O 3 , and the other is at 97 K owing to the interface coupling between ferromagnetic Mn and antiferromagnetic MnO. The samples are shown to have ferromagnetic behaviours at room temperature from hysteresis in the M-H loops, and their ferromagnetism is found to vary with the thickness of Mn nano-film. Moreover, the Mn nano-film has a critical thickness of about 18.5 nm, which makes the coercivity of the multi-film reach a maximum of about 3.965×10 −2 T. (cross-disciplinary physics and related areas of science and technology)

  1. Improving the fast discharge performance of high-voltage LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} spinel by Cu{sup 2+}, Al{sup 3+}, Ti{sup 4+} tri-doping

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Jicheng [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi' an Jiaotong University, Xi' an (China); Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi' an Jiaotong University, Xi' an (China); Xu, Youlong, E-mail: ylxuxjtu@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi' an Jiaotong University, Xi' an (China); Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi' an Jiaotong University, Xi' an (China); Xiong, Lilong; Li, Liang [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi' an Jiaotong University, Xi' an (China); Sun, Xiaofei [Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi' an Jiaotong University, Xi' an (China); Zhang, Yuan [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi' an Jiaotong University, Xi' an (China)

    2016-08-25

    The sluggish Li{sup +} ion diffusion coefficient at ∼4.7 V (vs. Li{sup +}/Li) greatly impairs the fast discharge performance of LiMn{sub 1.5}Ni{sub 0.5}O{sub 4} cathode material. Herein, a tri-doping strategy is proposed where Cu{sup 2+}, Al{sup 3+}, Ti{sup 4+} ions are partially substituted for Ni{sup 2+} and Mn{sup 4+}. Cu{sup 2+}, Al{sup 3+}, Ti{sup 4+} tri-doping effectively suppresses the Li{sub x}Ni{sub 1−x}O impurity phase, increases the cation mixing in the octahedral B-site in the spinel, enlarges the electronic conductivity, and enhances the structural stability. Most importantly, the Li{sup +} diffusion coefficients show a peculiar boost at 4.7 V by two orders of magnitude after tri-doping. Compared to the pristine LiMn{sub 1.5}Ni{sub 0.5}O{sub 4} (denoted P-LNM), the tri-doped Li[Ni{sub 0.455}Cu{sub 0.03}Al{sub 0.03}Mn{sub 1.455}Ti{sub 0.03}]O{sub 4} (denoted TD-LNM) exhibits much better fast discharge performance, delivering a specific capacity of ∼101 mAh g{sup −1} at 100 C discharge rate. - Graphical abstract: For the LiMn{sub 1.5}Ni{sub 0.5}O{sub 4} cathode material, the sluggish Li{sup +} ion diffusion coefficient around the ∼4.7 V (vs. Li{sup +}/Li) plateau greatly impair its fast discharge performance, which therefore limit its application in electric vehicles. Herein, a tri-doping strategy is proposed where Cu{sup 2+}, Al{sup 3+}, Ti{sup 4+} ions are partially substituted for Ni{sup 2+} and Mn{sup 4+}. After tri-doping, the Li{sup +} diffusion coefficient at 4.7 V (vs. Li{sup +}/Li) is boosted by two orders of magnitude. Compared to the pristine LiMn{sub 1.5}Ni{sub 0.5}O{sub 4} (denoted P-LNM), the tri-doped Li[Ni{sub 0.455}Cu{sub 0.03}Al{sub 0.03}Mn{sub 1.455}Ti{sub 0.03}]O{sub 4} (denoted TD-LNM) exhibits much better fast discharge performance, delivering a capacity of ∼101 mAh·g{sup −1} at 100 C discharge rate. - Highlights: • Cu, Al, Ti Tri-doping improves electronic conductivity of LiNi{sub 0.5}Mn{sub 1.5}O{sub 4}. • Cu

  2. Synthesis, structural characteristics and dielectric properties of a new K{sub 2}NiF{sub 4}-type phase Sr{sub 2}Mn{sub 0.5}Ti{sub 0.5}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Chupakhina, T.I., E-mail: chupakhina@ihim.uran.ru [Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences, 91, Pervomaiskaya Str., Ekaterinburg (Russian Federation); Melnikova, N.V. [Ural Federal University, 19, Mira Str., Ekaterinburg (Russian Federation); Gyrdasova, O.I. [Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences, 91, Pervomaiskaya Str., Ekaterinburg (Russian Federation)

    2016-06-15

    A new K{sub 2}NiF{sub 4}-type phase Sr{sub 2}Mn{sub 0,5}Ti{sub 0,5}O{sub 4} have been synthesized by a sol–gel procedure and characterized by X-ray powder diffraction, thermogravimetric analysis and scanning electron microscopy. There are no oxide ion vacancies in these materials; oxidation states of manganese and titanium were estimated as +4. Rietveld profile analysis shows that the phase crystallizes with tetragonal unit cell in the space group I4/mmm. Substitution of Ti{sup 4+} for Mn{sup 4+} does not affect the distortion of coordination polyhedra (Mn,Ti)O{sub 6} and SrO{sub 9}. The dielectric properties of the ceramic samples are caused by structural and charge characteristics, regular coordination polyhedra SrO{sub 9} and lack of charge ordering, which can lead to significant permittivity. Increase of the dielectric constant at temperatures above 453 K is caused mainly by the grain boundary processes explained in terms of the Maxwell–Wagner polarization model. - Highlights: • The new complex oxide Sr{sub 2}Mn{sub 0,5}Ti{sub 0,5}O{sub 4} was prepared. • The structures of the compound were analyzed by Rietveld refinement. • Distortions of SrO{sub 9} and (Mn,Ti)O{sub 6} polyhedra are not strong. • Dielectric properties are determined by regular structure and lack of charge ordering. • Permittivity increase under heat is associated with processes at the grain boundaries.

  3. Synthesis of SnS nanoparticles by SILAR method for quantum dot-sensitized solar cells.

    Science.gov (United States)

    Tsukigase, Hiroki; Suzuki, Yoshikazu; Berger, Marie-Hélène; Sagawa, Takashi; Yoshikawa, Susumu

    2011-03-01

    SnS-sensitized TiO2 electrodes were applied in quantum dot-sensitized solar cells (QDSSCs) which are environmentally more favorable than conventional Cd or Pb-chalcogenide-sensitized electrodes. SnS nanoparticles were well-distributed over the surface of TiO2 nanoparticles by the successive ionic layer adsorption and reaction (SILAR) method. Deposited SnS nanoparticles had diameter about 3 nm. Under AM1.5 irradiation with 100 mW/cm2 light intensity (at 1 sun), the energy conversion efficiency of obtained cells reached a value of 0.21% (0.25 cm2) at SILAR coating cycles of 5. In addition, the photovoltaic performance was improved by additional ZnS coating on the surface of SnS-sensitized TiO2 electrodes.

  4. Microwave dielectric properties of (Ca0.8Sr0.2)(SnxTi1−x)O3 ceramics

    International Nuclear Information System (INIS)

    Hsu, Cheng-Hsing; Chang, Chia-Hao

    2013-01-01

    Highlights: ► New microwave dielectric properties of (Ca 0.8 Sr 0.2 )(Sn x Ti 1−x )O 3 ceramics were investigated. ► A single-phase solid solution containing orthorhombic Pbnm with different Sn contents was formed. ► A significant improvement of Q × f value and τ f were achieved by (Ca 0.8 Sr 0.2 )(Sn x Ti 1−x )O 3 system. ► Second phases were formed and affected the dielectric properties of (Ca 0.8 Sr 0.2 )(Sn x Ti 1−x )O 3 system. ► Low cost and suitable τ f value of (Ca 0.8 Sr 0.2 )(Sn x Ti 1−x )O 3 demonstrate a good potential for use in microwave device. -- Abstract: In this paper, we study the behavior of the B-site behavior with the incorporation of Sn 4+ ion in (Ca 0.8 Sr 0.2 )TiO 3 ceramics. An excess of Sn 4+ resulted in the formation of a secondary phase of CaSnO 3 and SrSnO 3 affecting the microwave dielectric properties of the (Ca 0.8 Sr 0.2 )(Sn x Ti 1−x )O 3 ceramics. The dielectric properties of the (Ca 0.8 Sr 0.2 )(Sn x Ti 1−x )O 3 ceramics were improved because of the solid solution of Sn 4+ substitution in the B-site. The temperature coefficient of resonant frequency (τ f ) of the (Ca 0.8 Sr 0.2 )(Sn x Ti 1−x )O 3 ceramics also improved with increasing Sn content

  5. Effects of Al-Mn-Ti-P-Cu master alloy on microstructure and properties of Al-25Si alloy

    Directory of Open Access Journals (Sweden)

    Xu Chunxiang

    2013-09-01

    Full Text Available To obtain a higher microstructural refining efficiency, and improve the properties and processing ability of hypereutectic Al-25Si alloy, a new environmentally friendly Al-20.6Mn-12Ti-0.9P-6.1Cu (by wt.% master alloy was fabricated; and its modification and strengthening mechanisms on the Al-25Si alloy were studied. The mechanical properties of the unmodified, modified and heat treated alloys were investigated. Results show that the optimal addition amount of the Al-20.6Mn-12Ti-0.9P-6.1Cu master alloy is 4wt.%. In this case, primary Si and eutectic Si as well as メ-Al phase were clearly refined, and this refining effect shows an excellent long residual action as it can be heat-retained for at least 5 h. After being T6 heat treated, the morphology of primary and eutectic Si in the Al-25Si alloys with the addition of 4wt.% Al-20.6Mn-12Ti-0.9P-6.1Cu alloy changes into particles and short rods. The average grain size of the primary and eutectic Si decreases from 250 レm (unmodified to 13.83 レm and 35 レm (unmodified to 7 レm; the メ-Al becomes obviously finer and the distribution of Si phases tends to be uniform and dispersed. Meanwhile, the tensile properties are improved obviously; the tensile strengths at room temperature and 300 ìC reach 241 MPa and 127 MPa, increased by 153.7% and 67.1%, respectively. In addition, the tensile fracture mechanism changes from brittle fracture for the alloy without modification to ductile fracture after modification. Modifying the morphology of Si phase and strengthening the matrix can effectively block the initiation and propagation of cracks, thus improving the strength of the hypereutectic Al-25Si alloy.

  6. Training effect of exchange bias in La0.67Sr0.33MnO3/SrTiO3 superlattice

    International Nuclear Information System (INIS)

    Zhu, S J; Zhao, B R; Xu, B; Zhu, B Y; Cao, L X; Qiu, X G

    2008-01-01

    The training effect of exchange bias has been observed in the superlattice consisting of ferromagnetic La 0.67 Sr 0.33 MnO 3 and non-magnetic SrTiO 3 layers. The exchange field shows an approximately power-law decrease with an increase in the number of hysteresis loop measurements. The vertical shift of the hysteresis loop reveals the existence of the net uncompensated spins at the interface between the La 0.67 Sr 0.33 MnO 3 and the SrTiO 3 layers. The irreversibility of magnetization measurements gives clear evidence that the interfacial spins will be frozen at low temperature. It is suggested that the frozen uncompensated spins at the interface are responsible for the shift of the hysteresis loop and the training effect of exchange bias might be a result of the relaxation process of those interfacial spins when the superlattice is consecutively field-cycled.

  7. The effect of heat treatment variables on the phase transformations at 1,420 C in Ti-48Al and Ti-48Al-2Mn-2Nb alloys

    International Nuclear Information System (INIS)

    Ramanujan, R.V.

    1995-01-01

    The effect of heat treatment variables such as initial microstructure, isothermal reaction time and cooling rate on the phase transformations occurring at 1,420 C in Ti-48Al and Ti-48Al-2Mn-2Nb alloys was studied. The main effect of the initial microstructure, which comprised either lamellae of α 2 and γ or equiaxed γ grains, was to alter the kinetics, through a change in the chemical driving force of the phase transformations. Therefore, the equiaxed γ grains transformed to α much faster than the lamellar structure and in the initially lamellar structure, growth of α resulted in the delineation of the initial dendritic structure formed during solidification. The effect of the rate of cooling from the heat treatment temperature on the final morphology of these alloys was drastic and resulted in a change in morphology from lamellar grains obtained on furnace cooling to a feathery and mottled morphology obtained on water quenching. TEM analysis of water quenched Ti-48Al-2Mn-2Nb revealed complex morphologies including a structure which consisted of equiaxed γ grains and residual α 2 and abutting colonies of γ and α 2 . Based on the TEM results, the early stages of formation of γ from α were studied and mechanisms of nucleation and growth discussed. The relative importance and the coexistence of massive and martensitic transformation products is also discussed

  8. STUDY OF THE INSERTION AND EXTRACTION MECHANISM OF Li3Mn0.5Ti0.25O3

    Directory of Open Access Journals (Sweden)

    JINHE JIANG

    2017-12-01

    Full Text Available The metal oxide [Li3Mn0.5Ti0.25O3] was synthesized by solid state reaction crystallization method in certain temperature. It was an inverse spinel type compound metal oxide. The extraction/insertion reaction of this material was studied by X-ray, saturation exchange capacity value and distribution coefficient (Kd measurement value. In terms of its composition and chemical metrology, this inverse spinel material is very comprehensive; it is worth noting that it can be inserted or extracted by other substitutional ions and changes in lithium and oxygen stoichiometry while maintaining their crystal structure. The metal oxide [Li3Mn0.5Ti0.25O3] is inorganic Li+ exchanger which has an ion-memory capacity. It has high exchange selectivity ability for Li+. This metal oxide can be used to separate or extract Li+ in aqueous solution. The experimental result has confirmed inverse spinel type compound metal oxide which was treated by acid could attain 9.7 mmol‧g-1 Li+ exchanged capacity.

  9. Synthesis, electrochemical investigation and structural analysis of doped Li[Ni0.6Mn0.2Co0.2-xMx]O2 (x = 0, 0.05; M = Al, Fe, Sn) cathode materials

    Science.gov (United States)

    Eilers-Rethwisch, Matthias; Winter, Martin; Schappacher, Falko Mark

    2018-05-01

    Layered Ni-rich Li[Ni0.6Mn0.2Co0.2-xMx]O2 cathode materials (x = 0, 0.05; M = Al, Fe, Sn) are synthesized via a co-precipitation synthesis route and the effect of dopants on the structure and electrochemical performance is investigated. All synthesized materials show a well-defined layered structure of the hexagonal α-NaFeO2 phase investigated by X-ray diffraction (XRD). Undoped LiNi0.6Mn0.2Co0.2O2 exhibits a discharge capacity of 170 mAh g-1 in Li-metal 2032 coin-type cells. Doped materials reach lower capacities between 145 mAh g-1 for Al and 160 mAh g-1 for Sn. However, all doped materials prolong the cycle life by up to 20%. Changes of the lattice parameter before and after delithiation yield information about structural stability. A smaller repulsion of the transition metal layer during delithiation in the Sn-doped material leads to a smaller expansion of the unit cell, which results in enhanced structural stability of the material. The improved structural stability of Sn-doped NMC cathode active material is proven by thermal investigations with the help of Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA).

  10. Observation of giant exchange bias in bulk Mn50Ni42Sn8 Heusler alloy

    Science.gov (United States)

    Sharma, Jyoti; Suresh, K. G.

    2015-02-01

    We report a giant exchange bias (EB) field of 3520 Oe in bulk Mn50Ni42Sn8 Heusler alloy. The low temperature magnetic state of the martensite phase has been studied by DC magnetization and AC susceptibility measurements. Frequency dependence of spin freezing temperature (Tf) on critical slowing down relation and observation of memory effect in zero field cooling mode confirms the super spin glass (SSG) phase at low temperatures. Large EB is attributed to the strong exchange coupling between the SSG clusters formed by small regions of ferromagnetic order embedded in an antiferromagnetic (AFM) matrix. The temperature and cooling field dependence of EB have been studied and related to the change in unidirectional anisotropy at SSG/AFM interface. The training effect also corroborates with the presence of frozen (SSG) moments at the interface and their role in EB.

  11. Effects of coating process on the characteristics of Ag-SnO2 contact materials

    International Nuclear Information System (INIS)

    Liu, X.M.; Wu, S.L.; Chu, Paul K.; Chung, C.Y.; Zheng, J.; Li, S.L.

    2006-01-01

    Good wettability between the SnO 2 and silver matrix can improve the electrical contact performance of Ag-SnO 2 materials. In this work, Ag was deposited onto the surface of Ti-doped SnO 2 particles using chemical plating to enhance the wettability. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the Ag-coated SnO 2 particles. Scanning electron microscopy (SEM), conductivity tests, differential thermal analysis (DTA), and thermogravimetric analysis (TGA) were performed on the Ag-SnO 2 materials. Our results reveal that the chemical plating process can enhance the wettability between the Ti-doped SnO 2 particles and Ag matrix, and the Ag-coated SnO 2 particles are uniformly distributed in the Ag matrix. Both the thermal and electrical conductivity of the Ag-SnO 2 materials are significantly improved

  12. Shape memory and pseudoelastic properties of Fe-Mn-Si and Ti-Ni based alloys

    International Nuclear Information System (INIS)

    Guenin, G.

    1997-01-01

    The aim of this presentation is to analyse and discuss some recent advances in shape memory and pseudoelastic properties of different alloys. Experimental work in connection with theoretical ones will be reviewed. The first part is devoted to the microstructural origin of shape memory properties of Fe-Mn-Si based alloys (γ-ε transformation); the second part is a synthetic analysis of the effects of thermomechanical treatments on shape memory and pseudoelastic effects in Ti-Ni alloys, with some focus on the behaviour of the R phase introduced. (orig.)

  13. A facile one-step synthesis of Mn{sub 3}O{sub 4} nanoparticles-decorated TiO{sub 2} nanotube arrays as high performance electrode for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianfang [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Wang, Yan [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advance Functional Materials and Devices of Anhui Province, Hefei 230009 (China); Qin, Yongqiang, E-mail: albon@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advance Functional Materials and Devices of Anhui Province, Hefei 230009 (China); Yu, Cuiping [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Cui, Lihua [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); School of Materials Science and Engineering, Beifang University of Nationalities, Yinchuan 750021 (China); Shu, Xia [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Cui, Jiewu; Zheng, Hongmei; Zhang, Yong [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advance Functional Materials and Devices of Anhui Province, Hefei 230009 (China); Wu, Yucheng, E-mail: ycwu@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advance Functional Materials and Devices of Anhui Province, Hefei 230009 (China)

    2017-02-15

    Via a facile one-step chemical bath deposition route, homogeneously dispersed Mn{sub 3}O{sub 4} nanoparticles have been successfully deposited onto the inner surface of TiO{sub 2} nanotube arrays (TNAs). The content and size of Mn{sub 3}O{sub 4} can be controlled by changing the deposition time. Field emission scanning electron microscopy and transmission electron microscopy analysis reveal the morphologies structures of Mn{sub 3}O{sub 4}/TNAs composites. The crystal-line structures are characterized by the X-ray diffraction patterns and Raman spectra. X-ray photoelectron spectroscopy further confirms the valence states of the sample elements. The electrochemical properties of Mn{sub 3}O{sub 4}/TNAs electrodes are systematically investigated by the combine use of cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The resulting Mn{sub 3}O{sub 4}/TNAs electrode prepared by deposition time of 3 h shows the highest specific capacitance of 570 F g{sup −1} at a current density of 1 A g{sup −1}. And it also shows an excellent long-term cycling stability at a current density of 5 A g{sup −1}, which remaining 91.8% of the initial capacitance after 2000 cycles. Thus this kind of Mn{sub 3}O{sub 4} nanoparticles decorated TNAs may be considered as an alternative promising candidate for high performance supercapacitor electrodes. - Graphical abstract: Mn{sub 3}O{sub 4} nanoparticles have been uniformly deposited onto the inner surfaces of TiO{sub 2} nanotube arrays through a facile one-step chemical bath deposition method. As electrodes for supercapacitors, they exhibit a relatively high specific capacity and excellent cycling stability. - Highlights: • Mn{sub 3}O{sub 4} nanoparticles have been deposited onto TiO{sub 2} nanotube arrays by chemical bath deposition. • The Mn{sub 3}O{sub 4}/TNAs exhibits a highest specific capacitance of 570 F g{sup –1} at a current density of 1 A g{sup –1}. • The Mn{sub 3}O{sub 4}/TNAs

  14. The effect of secondary abnormal grain growth on the dielectric properties of La/Mn co-doped BaTiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Živković Lj.M.

    2006-01-01

    Full Text Available La/Mn-codoped BaTiO3 systems, obtained by solid state reactions, were investigated regarding their microstructure characteristics and ferroelectric properties. Different concentrations of La2O3 were used for doping, ranging from 0.1 to 5.0 at% La, while a content of Mn was constant at 0.05 at%. For all samples sintered below the eutectic temperature (1332°C, a uniform microstructure was formed with average grain size from 1-3 μm. The appearance of secondary abnormal grains with (111 double twins grains with curved or faceted grain boundaries were observed in La/Mn BaTiO3 ceramics after sintering at temperatures above the eutectic temperature. All sintered samples exhibited a high electrical resistivity. Better dielectric performances were obtained for low doped samples (0.1 at% La sintered at 1350°C. For samples with La content above 1.0 at% a lower value in dielectric permittivity at higher sintering temperature is due to secondary abnormal grain growth, and to the presence of a non-ferroelectric phase rich in La. The Curie constant together with other dielectric parameters were also calculated.

  15. Effect of Nb on glass forming ability and plasticity of (Ti-Cu)-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Suo, Z.Y.; Qiu, K.Q.; Li, Q.F.; Ren, Y.L.; Hu, Z.Q.

    2010-01-01

    A Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 bulk metallic glass has been developed by Nb partial substitution for Zr in Ti 33 Cu 47 Zr 11 Ni 6 Sn 2 Si 1 alloy. The glass forming ability Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 alloy has been investigated using differential scanning calorimetry and X-ray diffractometry. Partial Nb substitutes for Zr promote the glass forming ability. Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 BMG with diameter of 3 mm can be fabricated by Cu-mold injection casting method. The glass forming ability of Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 alloy is enhanced by stabilizing the undercooled liquid against crystallization. The plastic strain up to 2.5% was obtained for Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 BMG compared to 0.15% for Ti 33 Cu 47 Zr 11 Ni 6 Sn 2 Si 1 BMG, which demonstrates that small amount of Nb addition can have a dramatic effect on plasticity enhancement in Ti-Cu-based BMG. The intersection and branching of the shear bands are observed. The plastic strain of the Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 BMG can be improved by the generation of nanocrystalline particles, which lead to multiple shear bands.

  16. Thermal conductivity in Pr{sub 1-x}Ca{sub x}MnO{sub 3} and SrTiO{sub 3} thin film systems

    Energy Technology Data Exchange (ETDEWEB)

    Wiedigen, Stefanie; Kramer, Thilo; Mangipudi, Kodanda R.; Hoffmann, Joerg; Volkert, Cynthia A.; Jooss, Christian [Institute for Materials Physics, University of Goettingen (Germany); Feuchter, Manuel; Kamlah, Marc [Institute for Applied Materials, Karlsruhe Institute of Technology (Germany)

    2012-07-01

    Epitaxial multilayers and superlattices are one recent approach for the design of efficient thermoelectrics. To study the effect of phonon blocking and scattering on thermal conductivity of oxide multilayers, a combination of two perovskites with promising thermoelectric properties is selected: the orthorhombic Pr{sub 1-x}Ca{sub x}MnO{sub 3} and the cubic SrTiO{sub 3}. In order to investigate the effect of microstructure, interfaces and acoustic impedance mismatch on thermal conductivity {kappa} high preparation quality is needed. Our thin films were prepared by ion-beam and magnetron sputtering. Structural analysis is done by XRD and TEM and is presented in combination with thermal conductivity measurements using the 3{omega} method. Single layers of Pr{sub 1-x}Ca{sub x}MnO{sub 3} show low {kappa} values and no significant increase of thermal conductivity with increasing doping. In homoepitaxial single layers of SrTiO{sub 3} preparation conditions have a high impact on {kappa}, most probably due to different concentrations of point defects. Pr{sub 1-x}Ca{sub x}MnO{sub 3}/SrTiO{sub 3} multilayers show a {kappa} decreases systematically with increasing number of double layers. The results are discussed in the light of the theoretically calculated phonon dispersion and the experimentally observed microstructure.

  17. Production of {sup 44}Ti in neutrino-driven aspherical supernova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Shin-ichiro [Kumamoto National College of Technology, 2659-2 Suya, Goshi 861-1102 (Japan); Ono, Masaomi; Hashimoto, Masa-aki [Department of Physics, School of Sciences, Kyushu University, Fukuoka 810-8560 (Japan); Kotake, Kei [National Astronomical Observatory Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2014-05-02

    We examine the synthesis of {sup 44}Ti in a neutrino-driven aspherical supernova (SN), focusing on reaction rates related to {sup 44}Ti and rotation of a progenitor. We have performed 2D hydrodynamic simulations of SN of a 15M{sub ⊙} progenitor, whose angular velocity is manually set to be a cylindrical distribution and have followed explosive nucleosynthesis in the ejecta. We find that the faster rates of {sup 40}Ca(α,γ){sup 44}Ti and the slower rate of {sup 44}Ti(α,p){sup 47}V lead to more massive ejection of {sup 44}Ti and {sup 56}Ni and larger ratios <{sup 44}Ti/{sup 56}Ni>. Faster rotation also results in more massive ejection of {sup 44}Ti and {sup 56}Ni. Ratios <{sup 44}Ti/{sup 56}Ni> are however independent from rotation. Large masses of {sup 44}Ti and large ratios <Ti/{sup 56}Ni> observed in SN 1987A and Cas A (> 1O{sup −4}M{sub ⊙} and 1-2 respectively) are not realized in all the models.

  18. Evolution of electrical properties and domain configuration of Mn modified Pb(In1/2Nb1/2)O3-PbTiO3 single crystals

    Science.gov (United States)

    Qiao, Huimin; He, Chao; Yuan, Feifei; Wang, Zujian; Li, Xiuzhi; Liu, Ying; Guo, Haiyan; Long, Xifa

    2018-04-01

    The acceptor doped relaxor-based ferroelectric materials are useful for high power applications such as probes in ultrasound-guided high intensity focused ultrasound therapy. In addition, a high Curie temperature is desired because of wider temperature usage and improved temperature stability. Previous investigations have focused on Pb(Mg1/3Nb2/3)O3-PbTiO3 and Pb(Zn1/3Nb2/3)O3-PbTiO3 systems, which have a ultrahigh piezoelectric coefficient and dielectric constant, but a relatively low Curie temperature. It is desirable to study the binary relaxor-based system with a high Curie temperature. Therefore, Pb(In1/2Nb1/2)O3-PbTiO3 (PINT) single crystals were chosen to study the Mn-doped influence on their electrical properties and domain configuration. The evolution of ferroelectric hysteresis loops for doped and virgin samples exhibit the pinning effect in Mn-doped PINT crystals. The relaxation behaviors of doped and virgin samples are studied by fit of the modified Curie-Weiss law and Volgel-Fucher relation. In addition, a short-range correlation length was fitted to study the behavior of polar nanoregions based on the domain configuration obtained by piezoresponse force microscopy. Complex domain structures and smaller short-range correlation lengths (100-150 nm for Mn-doped PINT and >400 nm for pure PINT) were obtained in the Mn-doped PINT single crystals.

  19. Study of alpha-case depth in Ti-6Al-2Sn-4Zr-2Mo and Ti-6Al-4V

    International Nuclear Information System (INIS)

    Gaddam, R; Sefer, B; Pederson, R; Antti, M-L

    2013-01-01

    At temperatures exceeding 480°C titanium alloys generally oxidises and forms a hard and brittle layer enriched with oxygen, which is called alpha case. This layer has negative effects on several mechanical properties and lowers the tensile ductility and the fatigue resistance. Therefore any alpha-case formed on titanium alloys during various manufacturing processes, such as heat treatment procedures, must be removed before the final part is mounted in an engine. In addition, long time exposure at elevated temperatures during operation of an engine could possibly also lead to formation of alpha-case on actual parts, therefore knowledge and understanding of the alpha-case formation and its effect on mechanical properties is important. Factors that contribute for growth of alpha-case are: presence of oxygen, exposure time, temperature and pressure. In the present study, isothermal oxidation experiments in air were performed on forged Ti-6Al-2Sn-4Zr-2Mo at 500°C and 593°C up to 500 hours. Similar studies were also performed on Ti-6Al-4V plate at 593°C and 700°C. Alpha-case depth for both alloys was quantified using metallography techniques and compared

  20. Peculiarities of component interaction in {l_brace}Gd, Er{r_brace}-V-Sn Ternary systems at 870 K and crystal structure of RV{sub 6}Sn{sub 6} stannides

    Energy Technology Data Exchange (ETDEWEB)

    Romaka, L., E-mail: romakal@franko.lviv.ua [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv (Ukraine); Stadnyk, Yu. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv (Ukraine); Romaka, V.V. [Department of Materials Engineering and Applied Physics, Lviv Polytechnic National University, Ustyyanovycha Str. 5, 79013 Lviv (Ukraine); Demchenko, P.; Stadnyshyn, M.; Konyk, M. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv (Ukraine)

    2011-09-08

    Highlights: > {l_brace}Gd, Er{r_brace}-V-Sn ternary systems at 870 K are characterized by formation of stannides with general compositions RV{sub 6}Sn{sub 6}. > Isostructural RV{sub 6}Sn{sub 6} compounds were also found with Y, Dy, Ho, Tm, and Lu. > The crystal structure of RV{sub 6}Sn{sub 6} compounds was determined by powder diffraction method. > Structural analysis showed that RV{sub 6}Sn{sub 6} compounds (R = Gd, Dy-Tm, Lu) are disordered; YV{sub 6}Sn{sub 6} is characterized by structure ordering. - Abstract: The phase equilibria in the Gd-V-Sn and Er-V-Sn ternary systems were studied at 870 K by means of X-ray and metallographic analyses in the whole concentration range. Both Gd-V-Sn and Er-V-Sn systems are characterized by formation of one ternary compound at investigated temperature, with stoichiometry RV{sub 6}Sn{sub 6} (SmMn{sub 6}Sn{sub 6}-type, space group P6/mmm, a = 0.55322(3) nm, c = 0.91949(7) nm for Gd, a = 0.55191(2) nm, c = 0.91869(8) nm for Er). Solubility of the third component in the binary compounds was not observed. Compounds with the SmMn{sub 6}Sn{sub 6}-type were also found with Dy, Ho, Tm, and Lu, while YV{sub 6}Sn{sub 6} compound crystallizes in HfFe{sub 6}Ge{sub 6} structure type. All investigated compounds are the first ternary stannides with rare earth elements and vanadium.

  1. Incorporating Small Fatigue Crack Growth in Probabilistic Life Prediction: Effect of Stress Ratio in Ti-6Al-2Sn-4Zr-6-Mo (Preprint)

    Science.gov (United States)

    2012-08-01

    contains color. 14. ABSTRACT The effect of stress ratio on the statistical aspects of small fatigue crack growth behavior was studied in a duplex ...on the statistical aspects of small fatigue crack growth behavior was studied in a duplex microstructure of Ti-6Al-2Sn-4Zr-6Mo (Ti-6-2-4-6) at 260°C...Similarly, an accurate representation of the R effect is required in problems where the crack grows through regions of varying stress state, such as a weld

  2. Orthorhombic martensite formation upon aging in a Ti-30Nb-4Sn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, Camilo A.F.; Lopes, Eder S.N. [University of Campinas (UNICAMP), School of Mechanical Engineering, 13083-860, Campinas, SP (Brazil); Ospina, Carlos A. [Brazilian Nanotechnology National Laboratory (LNNano), Campinas, 13083-970, SP (Brazil); Caram, Rubens, E-mail: caram@fem.unicamp.br [University of Campinas (UNICAMP), School of Mechanical Engineering, 13083-860, Campinas, SP (Brazil)

    2016-11-01

    The characteristics of orthorhombic martensite (α″) formed by step-quenching in a Ti-30Nb-4Sn (wt%) alloy have been investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). According to literature, α″ lattice parameters depend mainly on the composition of the parent β phase. In this study, samples subjected to step quenching heat treatment presented α″ phase formation in the proximity of α phase laths, driven by two combined factors: solute rejection and lattice strain. Our results indicate that as the aging is prolonged, α″ becomes richer in solute content, which makes it more similar to the parent β phase. An average 2.55% lattice strain along [110]β directions was found to be necessary in order to obtain α″ from the β phase after 24 h of aging at 400 °C, followed by water-quenching. The initial lattice strain along the same direction was estimated at approximately 3.60% with zero aging time. The precipitation of the α phase does not inhibit a solute rich α″ phase formation. - Highlights: • A massive α″ martensite formation was observed after 24 h of heat treatment. • Martensite formation occurs in the vicinity of α phase laths. • Incorporation of Sn in the β phase reduces the strain needed to form α″ phase.

  3. Systematic study of the elastic properties of Mn3AC antiperovskite with A = Zn, Al, Ga, In, Tl, Ge and Sn

    International Nuclear Information System (INIS)

    Medkour, Y.; Roumili, A.; Maouche, D.; Saoudi, A.; Louail, L.

    2012-01-01

    Highlights: ► Single crystal elastic constants C 11 , C 12 and C 44 were calculated. ► Elastic moduli for polycrystalline aggregate were obtained. ► Increasing the atomic number of A element reduces B, G′, Y and v. ► Mn 3 AlC has a high melting point and light weight. - Abstract: First principle calculations were made to investigate the elastic properties of Mn 3 AC antiperovskites, A = Zn, Al, Ga, In, Tl, Ge and Sn. The estimated equilibrium lattice parameters are in agreement with the experimental ones. From the single crystal elastic constants we have calculated the polycrystalline elastic moduli: the bulk modulus B, shear modulus G, tetragonal shear modulus G′, Young’s modulus Y, Cauchy’s pressure CP, Poisson’s ratio v, elastic anisotropy factor and Pugh’s criterion G/B. Using Debye’s approximation we have deduced the elastic wave velocities and Debye’s temperature.

  4. Nanocrystalline SnO2-TiO2 thin film deposited on base of equilateral prism as an opto-electronic humidity sensor

    Science.gov (United States)

    Yadav, B. C.; Verma, Nidhi; Singh, Satyendra

    2012-09-01

    Present paper reports the synthesis of SnO2-TiO2 nanocomposite, its characterization and performance as opto-electronic humidity sensor. Nanocrystalline SnO2-TiO2 film was deposited on the base of an equilateral prism using a photo resist spinner and the as prepared film was annealed at 200 °C for 2 h. The crystal structure of the prepared film was investigated using X-ray diffraction (XRD). Minimum crystallite size of the material was found 7 nm. Surface morphology of the film was investigated by Scanning electron microscope (SEM LEO-0430, Cambridge). SEM image shows that the film is porous. Differential scanning calorimetry (DSC) of as synthesized material shows two exothermic peaks at about 40 and 110 °C, respectively which are due to the evaporation of chemical impurities and water. Further the prepared film was investigated through the exposure of humidity and relative humidity (%RH) was measured directly in terms of modulation in the intensity of light recorded on a digital power meter. The maximum sensitivity of sensor was found 4.14 μW/%RH, which is quite significant for sensor fabrication purposes.

  5. Amorphous magnetism in Mnx Sn1-x alloys

    International Nuclear Information System (INIS)

    Drago, V.; Saitovitch, E.M.B.; Abd-Elmeguid, M.M.

    1988-01-01

    Systematic low temperature in situ 119 Sn Moessbauer effect (ME) studies in vapor quenched amorphous Mn x Sn 1-x (0.09≤ x ≤0,95) alloys between 150 and 4.2 K, are presented. Its is shown that the magnetic behavior of the system is correctly displayed by the transferred magnetic hyperfine (hf) interactions, at the 119 Sn site. A complete magnetic phase diagram is proposed, and the effect of an external magnetic field (up to about 3T) on the spin correlations in the spin-glass state is also discussed. (author) [pt

  6. Improved multifilamentary Nb3Sn conductors produced by the titanium-bronze process

    International Nuclear Information System (INIS)

    Tachikawa, K.; Itoh, K.; Kamata, K.; Moriai, H.; Tada, N.

    1985-01-01

    The effects of a titanium addition to the bronze matrix of superconducting Nb 3 Sn wires have been investigated. The titanium addition to the matrix remarkably increases the Nb 3 Sn growth rate and the high-field, critical current density of the wire. An overall critical-current density of 3.8 . 10 4 A/cm 2 at 15 T has been obtained for the multifilamentary Nb/Cu-7.5 at.% Sn-0.4 at.% Ti wire with 4.7 μm-diameter 31 x 331 cores. The anisotropy in the critical current with respect to the field direction becomes larger with increasing aspect ratio of the rectangular-shaped multifilamentary wires. A 9.5 mm wide and 1.8mm thick Nb/Cu-7.5Sn-0.4Ti conductor with 5 μm-diameter 349 x 361=125 989 cores has been successfully fabricated on an industrial scale. This conductor carries a superconducting current of over 1300 A at 16.5 T. The newly developed Ti-bronze Nb 3 Sn conductor makes it feasible to generate a field of proportional 15 T in a large diameter bore. (orig.)

  7. Low-Temperature Catalytic Decomposition of 130 Tetra- to Octa-PCDD/Fs Congeners over CuOX and MnOX Modified V2O5/TiO2-CNTs with the Assistance of O3.

    Science.gov (United States)

    Zhao, Rixiao; Jin, Dongdong; Yang, Hangsheng; Lu, Shengyong; Potter, Phillip M; Du, Cuicui; Peng, Yaqi; Li, Xiaodong; Yan, Jianhua

    2016-10-07

    In this study, a reliable and steady PCDD/F generation system was utilized to investigate the performance of catalysts, in which 130 congeners of tetra- to octapolychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) vapors were studied under simulated flue gas with/without O 3 . TiO 2 and carbon nanotubes (CNTs) supported vanadium oxides (VO X /TiO 2 -CNTs) modified with MnO X and CuO X , which were reported to be beneficial to the decomposition of model molecules, were found to have a negative effect on the removal of real PCDD/Fs in the simulated flue gas without O 3 . Moreover, the addition of MnO X presented different effects depending on whether CuO X existed in catalysts or not, which was also contrary to its effects on the degradation of model molecules. In an O 3 -containing atmosphere, low chlorination level PCDD/Fs congeners were removed well over VO X -MnO X /TiO 2 -CNTs, while high chlorination level PCDD/Fs congeners were removed well over VO X -CuO X /TiO 2 -CNTs. Fortunately, all PCDD/Fs congeners decomposed well over VO X -MnO X -CuO X /TiO 2 -CNTs. Finally, the effects of tetra- to octachlorination level for the adsorption and degradation behaviors of PCDD/Fs congeners were also investigated.

  8. Anatase phase stability and doping concentration dependent refractivity in codoped transparent conducting TiO2 films

    International Nuclear Information System (INIS)

    Chen, T L; Furubayashi, Y; Hirose, Y; Hitosugi, T; Shimada, T; Hasegawa, T

    2007-01-01

    Nb 0.06 Sn x Ti 0.94-x O 2 (x ≤ 0.3) thin films were grown by a pulsed-laser deposition method with varying Sn concentration. Through a combinatorial technique, we find that Sn concentration can reach a maximum of about x = 0.3 while maintaining the stable anatase phase and epitaxy. A doping concentration dependence of the refractivity is revealed, in which refractivity reduction at a wavelength of λ = 500 nm is estimated to be 12.4% for Nb 0.06 Sn 0.3 Ti 0.64 O 2 thin film. Sn doping induced band-gap blue shift can be contributed to the mixing of extended Sn 5s orbitals with the conduction band of TiO 2 . Low resistivity on the order of 10 -4 Ω cm at room temperature and high internal transmittance of more than 95% in the visible light region are exhibited for Nb 0.06 Sn x Ti 0.94-x O 2 thin films (x ≤ 0.2). Optical and transport analyses demonstrate that doping Sn into Nb 0.06 Ti 0.94 O 2 can reduce the refractivity while maintaining low resistivity and high transparency

  9. Design of an efficient photoanode for dye-sensitized solar cells using electrospun one-dimensional GO/N-doped nanocomposite SnO{sub 2}/TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Ibrahim M.A. [Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524 (Egypt); Dao, Van-Duong [Department of Chemical Engineering & Applied Chemistry, Chungnam National University, 220 Gung-Dong, Yuseong-Gu, Daejeon, 305-764 (Korea, Republic of); Yasin, Ahmed S. [Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Barakat, Nasser A.M., E-mail: nasser@jbnu.ac.kr [Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Department of Chemical Engineering, Faculty of Engineering, Minia University, El-Minia (Egypt); Choi, Ho-Suk [Department of Chemical Engineering & Applied Chemistry, Chungnam National University, 220 Gung-Dong, Yuseong-Gu, Daejeon, 305-764 (Korea, Republic of)

    2017-04-01

    Highlights: • GO &N@SnO{sub 2}/TiO{sub 2} NFs are synthesized via facile two steps. • The novel NFs photoanode exhibit high dye-loading ability; 2.164 × 10{sup −7} mol/cm{sup 2}. • Prolonged electron lifetime (20.09 ms) is due to reduced charge recombination. • High power conversion efficiency was achieved; 6.18%. - Abstract: This study presents the combination of N, graphene oxide (GO) and SnO{sub 2} as efficient dopants into TiO{sub 2} nanofibers (NFs) photoanode substrate for highly efficient dye-sensitized solar cells (DSCs). The developed NFs are synthesized by electrospinning and hydrothermal processes and characterized by FESEM, TEM, XPS, FT-IR, Raman and EDX-studies. The formation of short NFs is confirmed through FESEM and TEM measurements. As the results, the major crystal structure of TiO{sub 2} in the prepared NFs has anatase (85.23%) and rutile-structure (14.67%). XPS and EDX studies affirm that the material has Ti, O, Sn, N and C elements. In addition, FT-IR and Raman spectra give an indication about the GO-content. Typically, the DSC based on the novel NFs shows 6.18% efficiency. The J{sub sc}, V{sub oc}, FF and R{sub ct} are estimated and found to be 10.32 mA cm{sup −2}, 0.825 V, 0.73 and 21.66 Ω, respectively. The high-power efficiency is contributed by three reasons. The first one is the high dye-loading (2.16 × 10{sup −7} mol cm{sup −2}). The second reason is the enhanced charge transfer and decreasing of the electrons/holes recombination through formation of wide band-gap oxide (3.246 eV). Finally, the third one is GO-doping which may create new routes for the electron transfer in working electrode layer.

  10. Charge driven metal-insulator transitions in LaMnO3|SrTiO3 (111) superlattices

    KAUST Repository

    Cossu, Fabrizio; Tahini, Hassan Ali; Singh, Nirpendra; Schwingenschlö gl, Udo

    2017-01-01

    Interfaces of perovskite oxides, due to the strong interplay between the lattice, charge and spin degrees of freedom, can host various phase transitions, which is particularly interesting if these transitions can be tuned by external fields. Recently, ferromagnetism was found together with a seemingly insulating state in superlattices of manganites and titanates. We therefore study the (111) oriented $(\\text{LaMnO}_3)_{6-x}\\vert(\\text{SrTiO}_3)_{6+x}~(x = -0.5, 0, 0.5)$ superlattices by means of ab initio calculations, predicting a ferromagnetic ground state due to double exchange in all cases. We shed light on the ferromagnetic coupling in the LaMnO3 region and at the interfaces. The insulating states of specific superlattices can be understood on the basis of Jahn-Teller modes and electron/hole doping.

  11. Charge driven metal-insulator transitions in LaMnO3|SrTiO3 (111) superlattices

    KAUST Repository

    Cossu, Fabrizio

    2017-08-01

    Interfaces of perovskite oxides, due to the strong interplay between the lattice, charge and spin degrees of freedom, can host various phase transitions, which is particularly interesting if these transitions can be tuned by external fields. Recently, ferromagnetism was found together with a seemingly insulating state in superlattices of manganites and titanates. We therefore study the (111) oriented $(\\\\text{LaMnO}_3)_{6-x}\\\\vert(\\\\text{SrTiO}_3)_{6+x}~(x = -0.5, 0, 0.5)$ superlattices by means of ab initio calculations, predicting a ferromagnetic ground state due to double exchange in all cases. We shed light on the ferromagnetic coupling in the LaMnO3 region and at the interfaces. The insulating states of specific superlattices can be understood on the basis of Jahn-Teller modes and electron/hole doping.

  12. Characterization of Li4Ti5O12 and LiMn2O4 spinel materials treated with aqueous acidic solutions

    NARCIS (Netherlands)

    Simon, D.R.

    2007-01-01

    In this thesis an investigation of two spinel materials, Li4Ti5O12 and LiMn2O4 used for Li-ion battery applications is performed interms of formation and reactivity towards acidic solutions. Subsequent characterizations such as structural, magnetic, chemical, and electrochemical characterizations

  13. High-pressure studies on electronic and mechanical properties of FeBO3 (B = Ti, Mn, Cr) ceramics - a first-principles study

    Science.gov (United States)

    Kishore, N.; Nagarajan, V.; Chandiramouli, R.

    2018-04-01

    Using the density functional theory (DFT) method, the electronic and mechanical properties of perovskites FeBO3 (B = Ti, Mn, Cr) nanostructures were studied in the pressure range of 0-100 GPa. The band structure studies show the change in the band structure upon substitution of different B cation in FeBO3 perovskite structure. The density of states spectrum gives the perception of change in the electronic properties of FeBO3 with the substitution of B cation. The bulk, shear and Young's moduli were calculated and an increase in the moduli is noticed. Moreover, the hardness increases under high pressure. The high-pressure studies of FeBO3 perovskite nanostructures are explored at atomistic level. The findings show that ductility and hardness of FeBO3 get increased upon an increase in the applied pressure. The substitution of Ti, Mn and Cr on FeBO3 shows a significant change in the electronic and mechanical properties.

  14. Magnetic interactions in martensitic Ni-Mn based Heusler systems

    Energy Technology Data Exchange (ETDEWEB)

    Aksoy, Seda

    2010-04-22

    In this work, magnetic, magnetocaloric and structural properties are investigated in Ni-Mn-based martensitic Heusler alloys with the aim to tailor these properties as well as to understand in detail the magnetic interactions in the various crystallographic states of these alloys. We choose Ni{sub 50}Mn{sub 34}In{sub 16} as a prototype which undergoes a martensitic transformation and exhibits field-induced strain and the inverse magnetocaloric effect. Using the structural phase diagram of martensitic Ni-Mn-based Heusler alloys, we substitute gallium and tin for indium to carry these effects systematically closer to room temperature by shifting the martensitic transformation. A magneto-calorimeter is designed and built to measure adiabatically the magnetocaloric effect in these alloys. The temperature dependence of strain under an external magnetic field is studied in Ni{sub 50}Mn{sub 50-x}Z{sub x} (Z: Ga, Sn, In and Sb) and Ni{sub 50}Mn{sub 34}In{sub 16-x}Z{sub x} (Z: Ga and Sn). An argument based on the effect of the applied magnetic field on martensite nucleation is adopted to extract information on the direction of the magnetization easy axis in the martensitic unit cell in Heusler alloys. Parallel to these studies, the structure in the presence of an external field is also studied by powder neutron diffraction. It is demonstrated that martensite nucleation is influenced by cooling the sample under a magnetic field such that the austenite phase is arrested within the martensitic state. The magnetic interactions in Ni{sub 50}Mn{sub 37}Sn{sub 13} and Ni{sub 50}Mn{sub 40}Sb{sub 10} are characterized by using neutron polarization analysis. Below the martensitic transformation temperature, M{sub s}, an antiferromagnetically correlated state is found. Ferromagnetic resonance experiments are carried out on Ni{sub 50}Mn{sub 37}Sn{sub 13} and Ni{sub 50}Mn{sub 34}In{sub 16} to gain more detailed information on the nature of the magnetic interactions. The experimental

  15. Sn and Cu oxide nanoparticles deposited on TiO{sub 2} nanoflower 3D substrates by Inert Gas Condensation technique

    Energy Technology Data Exchange (ETDEWEB)

    Kusior, A., E-mail: akusior@agh.edu.pl [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Kollbek, K. [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Kowalski, K. [Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Borysiewicz, M. [Institute of Electron Technology, al. Lotnikow 32/46, 02-668 Warszawa (Poland); Wojciechowski, T. [Institute of Physics Polish Academy of Science, al. Lotnikow 32/46, 02-668 Warszawa (Poland); Adamczyk, A.; Trenczek-Zajac, A.; Radecka, M. [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Zakrzewska, K. [Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland)

    2016-09-01

    Graphical abstract: - Highlights: • Inert Gas Condensation method yields non-agglomerated nanoparticles. • The growth of nanoparticles is controllable at the level of deposition. • Electrical conductivity increases with respect to pure nanostructured TiO{sub 2}. - Abstract: Sn and Cu oxide nanoparticles were deposited by Inert Gas Condensation (IGC) technique combined with dc magnetron sputtering onto nanoflower TiO{sub 2} 3D substrates obtained in the oxidation process of Ti-foil in 30% H{sub 2}O{sub 2}. Sputtering parameters such as insertion length and Ar/He flow rates were optimized taking into account the nanostructure morphology. Comparative studies with hydrothermal method were carried out. Surface properties of the synthesized nanomaterials were studied by Scanning Electron Microscopy, SEM, Atomic Force Microscopy, AFM, and X-ray Photoelectron Spectroscopy, XPS. X-ray diffraction, XRD and Raman spectroscopy were performed in order to determine phase composition. Impedance spectroscopy demonstrated the influence of nanoparticles on the electrical conductivity.

  16. Surface Hardening of Ti-15V-3Al-3Cr-3Sn Alloy after Cyclic Hydrogenation and Subsequent Solution Treatment

    Directory of Open Access Journals (Sweden)

    Chia-Po Hung

    2014-01-01

    Full Text Available The as-received and preheated (1000°C-30 min. and 500°C-30 min. sheets of Ti-15V-3Al-3Cr-3Sn alloy (Ti-153 were treated according to the predetermined process including a cyclic electrolytic hydrogenation (at 50 mA/cm2 for 1 hr and at 5 mA/cm2 for 10 hrs combining a subsequent solution treatment to see the effects of various operating parameters on the evolution of microstructure and the variations of hardness. The hardening effect deriving from solid-solution strengthening of hydrogen eventually overrode that from precipitation hardening. The maximum hardness elevation was from 236.9 to 491.1 VHN.

  17. High field-effect mobility at the (Sr,Ba)SnO{sub 3}/BaSnO{sub 3} interface

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Kohei, E-mail: kfujiwara@imr.tohoku.ac.jp; Nishihara, Kazuki; Shiogai, Junichi; Tsukazaki, Atsushi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2016-08-15

    A perovskite oxide, BaSnO{sub 3}, has been classified as one of transparent conducting materials with high electron mobility, and its application for field-effect transistors has been the focus of recent research. Here we report transistor operation in BaSnO{sub 3}-based heterostructures with atomically smooth surfaces, fabricated on SrTiO{sub 3} substrates by the (Sr,Ba)SnO{sub 3} buffer technique. Indeed, modulation of band profiles at the channel interfaces with the insertion of wide bandgap (Sr,Ba)SnO{sub 3} as a barrier layer results in a significant improvement of field-effect mobility, implying effective carrier doping at the regulated heterointerface. These results provide an important step towards realization of high-performance BaSnO{sub 3}-based field-effect transistors.

  18. Effects of thermo-mechanical treatment and microalloying with Cr, Nb and Ti on phase transformation in C-Mn steel strips produced by compact strip production process

    International Nuclear Information System (INIS)

    Zhu, Y.Z.; Liang, D.M.; Li, J.C.; Xu, J.P.; Xue, Z.L.

    2011-01-01

    Highlights: → The order of solid solution of carbides influences phase transformation of C-Mn steel in cooling. → Evidences of early stage of solid solution of carbides were provides in the paper. → Transitional state evidences such as carbon enriched regions were observed in this study. - Abstract: The C-Mn steel strips microalloyed with Cr, Nb, Ti was produced by compact strip production process and then heat-treated under different conditions. Optical microscopy, scanning electron microscopy, energy dispersive spectroscopy and transmission electron microscopy were used to investigate phase transformations in the steel after different treatments. It was revealed that the phase transformations upon quenching were greatly affected by the austenization temperature and time. When the steel was annealed at 950 deg. C, carbides of Cr, Mn and Fe were dissolved dramatically, while carbides of Nb and Ti are relatively stable at this temperature. When the temperature increases to 1100 deg. C, the carbides of Nb were dissolved rapidly, while the carbides of Ti still show somewhat stable (partial dissolution). Annealing time influences both the amount and the shapes of carbides in the steel, which leads to different phase transformations in the following air cooling processes. Grain growth in the steel in annealing process strongly depends on the dissolution of carbides on grain boundaries. Additionally, a subsequent rolling after annealing treatment at 950 deg. C lead to obvious precipitation of carbides of Ti and Nb in the steel.

  19. A quantum mechanical study of water adsorption on the (110) surfaces of rutile SnO₂ and TiO₂: investigating the effects of intermolecular interactions using hybrid-exchange density functional theory.

    Science.gov (United States)

    Patel, M; Sanches, F F; Mallia, G; Harrison, N M

    2014-10-21

    Periodic hybrid-exchange density functional theory calculations are used to explore the first layer of water at model oxide surfaces, which is an important step for understanding the photocatalytic reactions involved in solar water splitting. By comparing the structure and properties of SnO2(110) and TiO2(110) surfaces in contact with water, the effects of structural and electronic differences on the water chemistry are examined. The dissociative adsorption mode at low coverage (1/7 ML) up to monolayer coverage (1 ML) on both SnO2 and TiO2(110) surfaces is analysed. To investigate further the intermolecular interactions between adjacent adsorbates, monolayer adsorption on each surface is explored in terms of binding energies and bond lengths. Analysis of the water adsorption geometry and energetics shows that the relative stability of water adsorption on SnO2(110) is governed largely by the strength of the chemisorption and hydrogen bonds at the surface of the adsorbate-substrate system. However on TiO2(110), a more complicated scenario of the first layer of water on its surface arises in which there is an interplay between chemisorption, hydrogen bonding and adsorbate-induced atomic displacements in the surface. Furthermore the projected density of states of each surface in contact with a mixture of adsorbed water molecules and adsorbed hydroxyls is presented and sheds some light on the nature of the crystalline chemical bonds as well as on why adsorbed water has often been reported to be unstable on rutile SnO2(110).

  20. Influence of dipping time on cracking during bending of hot dip galvanized coatings with Sn and Ti contents

    Directory of Open Access Journals (Sweden)

    L. Zortea

    2010-10-01

    Full Text Available In the last years, the attention to environmental topics led a new approach solution in classical protection techniques, introducing innovative way oriented to optimize different coating properties. Hot-dip galvanizing is a classical process aimed to generate coatings on iron-based surfaces, used unchanged since 200 years: some chemical elements are added in the bath with different aims (e.g., Pb is really important for its fluidizing properties, sometimes replaced by Sn but sometimes these elements are dangerous for human health (e.g. … Pb!.In this work, the influence of dipping time and coatings chemical compositions on damaging micromechanisms was investigated considering different Sn and Ti contents. Main damaging micromechanisms in hot dip zinc coated ipersandelin steel specimens were investigated by means of bending tests. Longitudinal sections of bended specimens were observed by means of a LOM (Light Optical Microscope: main damage micromechanisms were identified as longitudinal and radial cracks.

  1. Strain-mediated magnetic response in La0.67Sr0.33MnO3/SrTiO3/La0.67Sr0.33MnO3/BaTiO3 structure

    Science.gov (United States)

    Swain, Anupama; Komatsu, Katsuyoshi; Itoh, Mitsuru; Taniyama, Tomoyasu; Gorige, Venkataiah

    2018-05-01

    Electric field controlled magnetism is an exciting area of condensed matter physics to explore the device applications at ultra-low power consumption compared to the conventional current controlled or magnetic field controlled devices. In this study, an attempt was made to demonstrate electric field controlled magnetoresistance (MR) in a tri-layer structure consisting of La0.67Sr0.33MnO3 (LSMO) (40 nm)/SrTiO3 (10 nm)/LSMO (10 nm) grown on a 500-μm-thick BaTiO3 (001) (BTO) single crystal substrate by pulsed laser deposition technique. Epitaxial growth of the trilayer structure was confirmed by x-ray diffraction measurements. Jumps observed in the temperature-dependent magnetization curve at around the structural phase transitions of BTO ensure the strain-mediated magnetoelectric coupling between LSMO and BTO layers. A significant change in MR of this structure in applied electric fields does not show any polarity dependence. The findings are related to the lattice strain-mediated magnetoelectric coupling in ferromagnetic LSMO/ferroelectric BTO heterostructures.

  2. Initial oxidation of TiFe{sub 1−x}Mn{sub x} (x = 0–0.3) by low dose exposures to H{sub 2}O and O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Shwartz, A. [Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Shamir, N., E-mail: noah.shamir@gmail.com [Nuclear research Center – Negev, P.O. Box 9001, Beer-Sheva 84190 (Israel); Froumin, N. [Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Zalkind, S.; Edry, I.; Haim, A. [Nuclear research Center – Negev, P.O. Box 9001, Beer-Sheva 84190 (Israel); Mintz, M.H. [Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Nuclear research Center – Negev, P.O. Box 9001, Beer-Sheva 84190 (Israel)

    2014-10-15

    Highlights: • Thermodynamics of adsorption and initial oxidation of TiFe{sub 1−x}Mn{sub x} by H{sub 2}O versus O{sub 2}. • Explanation of different oxide formations. • Explanation of the role of the different constituents of the alloys in the processes. - Abstract: The very initial room-temperature oxidation processes of the ternary pseudo-binary TiFe{sub 1−x}Mn{sub x} (x = 0–0.3) intermetallics by trace amounts of H{sub 2}O vapor and O{sub 2} were studied utilizing XPS and AES techniques. Different reactivities of the two gases were obtained, with a lower oxidation ability of H{sub 2}O, relative to O{sub 2}, as anticipated from thermodynamic considerations. The exposure to O{sub 2} results in a two stage oxidation of the Ti ingredient, which first converts into a divalent TiO (up to exposures of about 2 L), then proceeds into a tetravalent TiO{sub 2} form. Unlike oxygen, water exposure produces only the divalent oxide through the whole exposure range studied (11 L). The Mn component in these compounds is oxidized only by O{sub 2} and not by H{sub 2}O. The Fe ingredient is not oxidized at all and remains in its metallic form up to exposures of 30 L.

  3. Influence of the Si content on the microstructure and mechanical properties of Ti–Ni–Cu–Si–Sn nanocomposite alloys

    International Nuclear Information System (INIS)

    Fornell, J.; Van Steenberge, N.; Suriñach, S.; Baró, M.D.; Sort, J.

    2012-01-01

    Highlights: ► We study the effects of Si addition of Ti–Ni–Cu–Si–Sn alloy. ► The microstructure evolution is correlated with the obtained mechanical and elastic properties. ► Higher Young's modulus and larger hardness values are obtained in samples with higher Si contents. - Abstract: (Ti 48 Ni 32 Cu 8 Si 8 Sn 4 ) 100−x Si x (x = 0, 2, 4 and 6) alloys were prepared by levitation melting mixtures of the high purity elements in an Ar atmosphere. Rods of 3 mm in diameter were obtained from the melt by copper mould casting. The effects of Si addition on the microstructure, elastic and mechanical properties of the Ti 48 Ni 32 Cu 8 Si 8 Sn 4 alloy were investigated by scanning electron microscopy, X-ray diffraction, acoustic measurements and nanoindentation. The main phases composing the Ti 48 Ni 32 Cu 8 Si 8 Sn 4 alloy are B2 NiTi, B19′ NiTi and tetragonal Ti 2 Ni. Additional phases, like Ti 5 Si 3 or Ni 2 Ti 2 Si, become clearly visible in samples with higher Si contents. The microstructure evolution is correlated with the obtained mechanical and elastic properties. These alloys exhibit very high hardness values, which increase with the Si content, from 9 GPa (for x = 0) to around 10.5 GPa (for x = 6). The Young's modulus of Ti 48 Ni 32 Cu 8 Si 8 Sn 4 (around 115 GPa) also increases significantly with Si addition, up to 160 GPa for x = 6.

  4. Photocatalytic performance of Sn-doped TiO2 nanostructured thin films for photocatalytic degradation of malachite green dye under UV and VIS-lights

    International Nuclear Information System (INIS)

    Sayilkan, F.; Asiltuerk, M.; Tatar, P.; Kiraz, N.; Sener, S.; Arpac, E.; Sayilkan, H.

    2008-01-01

    Sn-doped and undoped nano-TiO 2 particles have been synthesized by hydrotermal process without acid catalyst at 225 deg. C in 1 h. Nanostructure-TiO 2 based thin films, contain at different solid ratio of TiO 2 in coating, have been prepared on glass surfaces by spin-coating technique. The structure, surface morphology and optical properties of the thin films and the particles have been investigated by element analysis and XRD, BET and UV/VIS/NIR techniques. The photocatalytic performance of the films was tested for degradation of malachite green dye in solution under UV and VIS-lights. The results showed that the hydrothermally synthesized nano-TiO 2 particles are fully anatase crystalline form and are easily dispersed in water, the coated surfaces have nearly super-hydrophilic properties and, the doping of transition metal ion efficiently improved the photocatalytic performance of the TiO 2 thin film. The results also proved that malachite green is decomposed catalytically due to the pseudo first-order reaction kinetics

  5. Oxygen-storage behavior and local structure in Ti-substituted YMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Levin, I., E-mail: igor.levin@nist.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Krayzman, V.; Vanderah, T.A. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Tomczyk, M. [Department of Ceramics and Glass Engineering, University of Aveiro, Aveiro 3810-193 (Portugal); Wu, H. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Tucker, M.G. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Playford, H.Y. [ISIS Facility, Rutherford Appleton Laboratory, Didcot, Oxford (United Kingdom); Woicik, J.C.; Dennis, C.L. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Vilarinho, P.M. [Department of Ceramics and Glass Engineering, University of Aveiro, Aveiro 3810-193 (Portugal)

    2017-02-15

    Hexagonal manganates RMnO{sub 3} (R=Y, Ho, Dy) have been recently shown to exhibit oxygen-storage capacities promising for three-way catalysts, air-separation, and related technologies. Here, we demonstrate that Ti substitution for Mn can be used to chemically tune the oxygen-breathing properties of these materials towards practical applications. Specifically, Y(Mn{sub 1−x}Ti{sub x})O{sub 3} solid solutions exhibit facile oxygen absorption/desorption via reversible Ti{sup 3+}↔Ti{sup 4+} and Mn{sup 3+}↔Mn{sup 4+} reactions already in ambient air at ≈400 °C and ≈250 °C, respectively. On cooling, the oxidation of both cations is accompanied by oxygen uptake yielding a formula YMn{sup 3+}{sub 1−x-y}Mn{sup 4+}{sub y}Ti{sup 4+}{sub x}O{sub 3+δ}. The presence of Ti promotes the oxidation of Mn{sup 3+} to Mn{sup 4+}, which is almost negligible for YMnO{sub 3} in air, thereby increasing the uptake of oxygen beyond that required for a given Ti{sup 4+} concentration. The reversibility of the redox reactions is limited by sluggish kinetics; however, the oxidation process continues, if slowly, even at room temperature. The extra oxygen atoms are accommodated by the large interstices within a triangular lattice formed by the [MnO{sub 5}] trigonal bipyramids. According to bond distances from Rietveld refinements using the neutron diffraction data, the YMnO{sub 3} structure features under-bonded Mn and even more severely under-bonded oxygen atoms that form the trigonal bases of the [MnO{sub 5}] bipyramids. The tensile bond strain around the 5-fold coordinated Mn site and the strong preference of Ti{sup 4+}(and Mn{sup 4+}) for higher coordination numbers likely provide driving forces for the oxidation reaction. Reverse Monte Carlo refinements of the local atomic displacements using neutron total scattering revealed how the excess oxygen atoms are accommodated in the structure by correlated local displacements of the host atoms. Large displacements of the under

  6. Catalytic Oxidation of Propene over Pd Catalysts Supported on CeO2, TiO2, Al2O3 and M/Al2O3 Oxides (M = Ce, Ti, Fe, Mn

    Directory of Open Access Journals (Sweden)

    Sonia Gil

    2015-04-01

    Full Text Available In the following work, the catalytic behavior of Pd catalysts prepared using different oxides as support (Al2O3, CeO2 and TiO2 in the catalytic combustion of propene, in low concentration in excess of oxygen, to mimic the conditions of catalytic decomposition of a volatile organic compound of hydrocarbon-type is reported. In addition, the influence of different promoters (Ce, Ti, Fe and Mn when added to a Pd/Al2O3 catalyst was analyzed. Catalysts were prepared by the impregnation method and were characterized by ICP-OES, N2 adsorption, temperature-programmed reduction, temperature-programmed oxidation, X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. Catalyst prepared using CeO2 as the support was less easily reducible, due to the stabilization effect of CeO2 over the palladium oxides. Small PdO particles and, therefore, high Pd dispersion were observed for all of the catalysts, as confirmed by XRD and TEM. The addition of Ce to the Pd/Al2O3 catalysts increased the metal-support interaction and the formation of highly-dispersed Pd species. The addition of Ce and Fe improved the catalytic behavior of the Pd/Al2O3 catalyst; however, the addition of Mn and Ti decreased the catalytic activity in the propene oxidation. Pd/TiO2 showed the highest catalytic activity, probably due to the high capacity of this catalyst to reoxidize Pd into PdO, as has been found in the temperature-programmed oxidation (TPO experiments.

  7. Soft antiphase tilt of oxygen octahedra in the hybrid improper multiferroic Ca3Mn1.9Ti0.1O7

    Science.gov (United States)

    Ye, Feng; Wang, Jinchen; Sheng, Jieming; Hoffmann, C.; Gu, T.; Xiang, H. J.; Tian, Wei; Molaison, J. J.; dos Santos, A. M.; Matsuda, M.; Chakoumakos, B. C.; Fernandez-Baca, J. A.; Tong, X.; Gao, Bin; Kim, Jae Wook; Cheong, S.-W.

    2018-01-01

    We report a single crystal neutron and x-ray diffraction study of the hybrid improper multiferroic Ca3Mn1.9Ti0.1O7 (CMTO), a prototypical system where the electric polarization arises from the condensation of two lattice distortion modes. With increasing temperature (T ), the out-of-plane, antiphase tilt of MnO6 decreases in amplitude while the in-plane, in-phase rotation remains robust and experiences abrupt changes across the first-order structural transition. Application of hydrostatic pressure (P ) to CMTO at room temperature shows a similar effect. The consistent behavior under both T and P reveals the softness of antiphase tilt and highlights the role of the partially occupied d orbital of the transition-metal ions in determining the stability of the octahedral distortion. Polarized neutron analysis indicates the symmetry-allowed canted ferromagnetic moment is less than the 0.04 μB/Mn site, despite a substantial out-of-plane tilt of the MnO6 octahedra.

  8. Magnetic and magnetocaloric properties of martensitic Ni2Mn1.4Sn0.6 Heusler alloy

    International Nuclear Information System (INIS)

    Chernenko, Volodymyr A.; Barandiarán, Jose M.; Rodriguez Fernández, Jesus; Rojas, Daniel P.; Gutiérrez, Jon; Lázpita, Patricia; Orue, Iñaki

    2012-01-01

    The evolutions of magnetic properties at low temperatures and the influence of magnetic field on the temperature dependence of specific heat in martensitic Ni 2 Mn 1.4 Sn 0.6 Heusler alloy are studied. The frequency-dependent blocking temperature and considerable exchange bias below it are measured in the martensitic phase. From the analysis of the specific heat curves under magnetic field, a large inverse magnetocaloric effect manifested as the magnetic field induced rise of isothermal magnetic entropy and/or magnetic field induced adiabatic temperature decrease in the vicinity of the reverse magnetostructural transformation and a significant value of the conventional magnetocaloric effect at the Curie temperature are obtained. The Debye temperature and electronic coefficient equal to Θ D =310±2 K and γ= 16.6±0.3 mJ/K 2 mol, respectively, do not depend on the magnetic field.

  9. Microstructural characterization of the γ-TiAl alloy samples ...

    Indian Academy of Sciences (India)

    A direct laser fabrication technique (DLF) has been used to fabricate near net shape samples of a -TiAl alloy using gas atomized Ti48A148Mn2Nb2 alloy powder as a feed stock material. The microstructures of these Ti48Al48Mn2Nb2 laser treated samples have been characterized using optical, scanning (SEM) and ...

  10. Anatase phase stability and doping concentration dependent refractivity in codoped transparent conducting TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T L [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Furubayashi, Y [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Hirose, Y [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Hitosugi, T [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Shimada, T [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Hasegawa, T [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)

    2007-10-07

    Nb{sub 0.06}Sn{sub x}Ti{sub 0.94-x}O{sub 2} (x {<=} 0.3) thin films were grown by a pulsed-laser deposition method with varying Sn concentration. Through a combinatorial technique, we find that Sn concentration can reach a maximum of about x = 0.3 while maintaining the stable anatase phase and epitaxy. A doping concentration dependence of the refractivity is revealed, in which refractivity reduction at a wavelength of {lambda} = 500 nm is estimated to be 12.4% for Nb{sub 0.06}Sn{sub 0.3} Ti{sub 0.64}O{sub 2} thin film. Sn doping induced band-gap blue shift can be contributed to the mixing of extended Sn 5s orbitals with the conduction band of TiO{sub 2}. Low resistivity on the order of 10{sup -4} {omega} cm at room temperature and high internal transmittance of more than 95% in the visible light region are exhibited for Nb{sub 0.06}Sn{sub x} Ti{sub 0.94-x}O{sub 2} thin films (x {<=} 0.2). Optical and transport analyses demonstrate that doping Sn into Nb{sub 0.06} Ti{sub 0.94}O{sub 2} can reduce the refractivity while maintaining low resistivity and high transparency.

  11. Microstructure and fracture toughness of Mn-stabilized cubic titanium trialuminide

    Science.gov (United States)

    Zbroniec, Leszek Ireneusz

    This thesis project is related to the fracture toughness aspects of the mechanical behavior of the selected Mn-modified cubic Ll2 titanium trialuminicles. Fracture toughness was evaluated using two specimen types: Single-Edge-Precracked-Beam (SEPB) and Chevron-Notched-Beam (CNB). The material tested was in cast, homogenized and HIP-ed condition. In the preliminary stage of the project due to lack of the ASTM Standard for fracture toughness testing of the chevron-notched specimens in bending the analyses of the CNB configuration were done to establish the optimal chevron notch dimensions. Two types of alloys were investigated: (a) boron-free and boron doped low-Mn (9at.% Mn), as well as (b) boron-free and boron-doped high-Mn (14at.% Mn). Toughness was investigated in the temperature range from room temperature to 1000°C and was calculated from the maximum load. It has been found that toughness of coarse-grained "base" 9Mn-25Ti alloy exhibits a broad peak at the 200--500°C temperature range and then decreases with increasing temperature, reaching its room temperature value at 10000°C. However, the work of fracture (gammaWOF) and the stress intensity factor calculated from it (KIWOF) increases continuously with increasing temperature. Also the fracture mode dependence on temperature has been established. To understand the effect of environment on the fracture toughness of coarse-grained "base", boron-free 9Mn-25Ti alloy, the tests were carried out in vacuum (˜1.3 x 10-5 Pa), argon, oxygen, water and liquid nitrogen. It has been shown that fracture toughness at ambient temperature is not affected by the environments containing moisture (water vapor). It seems that at ambient temperatures these materials are completely immune to the water-vapor hydrogen embrittlement and their cause of brittleness is other than environment. To explore the influence of the grain size on fracture toughness the fracture toughness tests were also performed on the dynamically

  12. The mechanism of formation of a fine duplex microstructure in Ti-48Al-2Mn-2Nb alloys

    International Nuclear Information System (INIS)

    Ramanujan, R.V.; Maziasz, P.J.

    1996-01-01

    The mechanism of formation of the fine duplex microstructure resulting from the α → γ transformation in water-quenched Ti-48Al-2Mn-2Nb alloys was studied using transmission and analytical electron microscopy. As-cast Ti-48Al-2Mn-2Nb alloys were heat treated in the α phase field and water quenched to room temperature. The resulting microstructure (referred to as a fine duplex microstructure) consisted of equiaxed grains and abutting lath colonies. Both the colonies and the grains were composed of the γ phase, twinned γ laths, and α 2 laths. It was found that the transformation from α to γ in the fine duplex microstructure took place through long range diffusional processes, and competitive growth between the equiaxed and lath morphology occurred. Nucleation of the γ phase from the α matrix can occur through nucleation on stacking faults, followed by growth through the sympathetic nucleation and growth of new γ laths on a substrate lath. The observed misorientations and the interfacial structures between the laths were found to be consistent with such a mechanism. Competition between such nucleation and growth mechanisms for the equiaxed and lath morphologies of γ leads to the formation of lath colonies (of γ and α 2 ) interspersed with equiaxed grains in these alloys

  13. Structural characterization and electrochemical behaviour of Li{sub (4−x)/3}Ti{sub (5−2x)/3}Mn{sub x}O{sub 4} solid solution with spinel-structure

    Energy Technology Data Exchange (ETDEWEB)

    Martín, P., E-mail: pmartinp@quim.ucm.es; López, M.L.; Pico, C.; Veiga, M.L.

    2013-07-15

    A series of new oxides Li{sub (4−x)/3}Ti{sub (5−2x)/3}Mn{sub x}O{sub 4} (0.1 ≤ x ≤ 0.9) have been synthesized by solid state reactions and characterized by thermal analysis and X-ray and neutron diffraction. In all phases, Li{sup +} cations mainly occupy tetrahedral sites and transition metals cations are located on the octahedral ones. These phases show a structural disorder–order transition associated to the proportion of manganese in the samples and to its oxidation state. All these factors have a marked influence on the electrochemical properties and the phase x = 0.1 shows the best characteristics to be used as anode in a solid state battery. - Highlights: • Lithium spinels anodes in batteries. • Influence of Ti/Mn ratio in the electrochemical behaviour. • Li{sub 1.3}Ti{sub 1.6}Mn{sub 0.1}O{sub 4}: a promising zero-strain material. • Influence of disorder–order transitions on the physical properties.

  14. Photoionization study of Ne-like K9+, Ca10+, Sc11+, Ti12+, V13+, Cr14+, Mn15+, and Fe16+ ions using the screening constant by unit nuclear charge method

    International Nuclear Information System (INIS)

    Goyal, Arun; Khatri, Indu; Sow, Malick; Sakho, Ibrahima; Aggarwal, Sunny; Singh, A.K.; Mohan, Man

    2016-01-01

    Photoionization of the 2s 2 2p 6 ( 1 S 0 ) ground state of the Ne-like (Z=19–29) ions is presented in this paper. Resonance energies and total natural width of the 2s2p 6 np 1 P series of the Ne-like K 9+ , Ca 10+ , Sc 11+ , Ti 12+ , V 13+ , Cr 14+ , Mn 15+ , and Fe 16+ are reported. All the calculations are made using the Screening constant by unit nuclear charge (SCUNC) formalism. New data for Ne-like K 9+ , Sc 11+ , Ti 12+ , V 13+ , Cr 14+ , and Mn 15+ ions are tabulated. Good agreements are found with available literature data. - Highlights: • Photoionization of ground state of the Ne-like (Z=19–29) presented. • good agreements with scarce literature data. • New data for Ne-like K 9+ , Sc 11+ , Ti 12+ , V 13+ , Cr 14+ , and Mn 15+ ions. • Useful guidelines for application in laboratory, astrophysics, and plasma physics.

  15. Experimental and theoretical studies of the thermal behavior of titanium dioxide-SnO2 based composites.

    Science.gov (United States)

    Voga, G P; Coelho, M G; de Lima, G M; Belchior, J C

    2011-04-07

    In this paper we report experimental and theoretical studies concerning the thermal behavior of some organotin-Ti(IV) oxides employed as precursors for TiO(2)/SnO(2) semiconducting based composites, with photocatalytic properties. The organotin-TiO(2) supported materials were obtained by chemical reactions of SnBu(3)Cl (Bu = butyl), TiCl(4) with NH(4)OH in ethanol, in order to impregnate organotin oxide in a TiO(2) matrix. A theoretical model was developed to support experimental procedures. The kinetics parameters: frequency factor (A), activation energy, and reaction order (n) can be estimated through artificial intelligence methods. Genetic algorithm, fuzzy logic, and Petri neural nets were used in order to determine the kinetic parameters as a function of temperature. With this in mind, three precursors were prepared in order to obtain composites with Sn/TiO(2) ratios of 0% (1), 15% (2), and 30% (3) in weight, respectively. The thermal behavior of products (1-3) was studied by thermogravimetric experiments in oxygen.

  16. Electrochemical oxidation of 2,4,5-trichlorophenoxyacetic acid by metal-oxide-coated Ti electrodes.

    Science.gov (United States)

    Maharana, Dusmant; Xu, Zesheng; Niu, Junfeng; Rao, Neti Nageswara

    2015-10-01

    Electrochemical oxidation of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) over metal-oxide-coated Ti anodes, i.e., Ti/SnO2-Sb/Ce-PbO2, Ti/SnO2-Sb and Ti/RuO2, was examined. The degradation efficiency of over 90% was attained at 20 min at different initial concentrations (0.5-20 mg L(-1)) and initial pH values (3.1-11.2). The degradation efficiencies of 2,4,5-T on Ti/SnO2-Sb/Ce-PbO2, Ti/SnO2-Sb and Ti/RuO2 anodes were higher than 99.9%, 97.2% and 91.5% at 30 min, respectively, and the respective total organic carbon removal ratios were 65.7%, 54.6% and 37.2%. The electrochemical degradation of 2,4,5-T in aqueous solution followed pseudo-first-order kinetics. The compounds, i.e., 2,5-dichlorohydroquinone and 2,5-dihydroxy-p-benzoquinone, have been identified as the main aromatic intermediates by liquid chromatography-mass spectrometry. The results showed that the energy efficiencies of 2,4,5-T (20 mg L(-1)) degradation with Ti/SnO2-Sb/Ce-PbO2 anode at the optimal current densities from 2 to 16 mA cm(-2) ranged from 8.21 to 18.73 kWh m(-3). Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The chemistry of hydrothermal magnetite: a review

    Science.gov (United States)

    Nadoll, Patrick; Angerer, Thomas; Mauk, Jeffrey L.; French, David; Walshe, John

    2014-01-01

    States and Indonesia, and (5) plutonic igneous rocks from the Henderson Climax-type Mo deposit, United States, and the un-mineralized Inner Zone Batholith granodiorite, Japan. These five settings represent a diverse suite of geological settings and cover a wide range of formation conditions. The main discriminator elements for magnetite are Mg, Al, Ti, V, Cr, Mn, Co, Ni, Zn, and Ga. These elements are commonly present at detectable levels (10 to > 1000 ppm) and display systematic variations. We propose a combination of Ni/(Cr + Mn) vs. Ti + V, Al + Mn vs. Ti + V, Ti/V and Sn/Ga discriminant plots and upper threshold concentrations to discriminate hydrothermal from igneous magnetite and to fingerprint different hydrothermal ore deposits. The overall trends in upper threshold values for the different settings can be summarized as follows: (I) BIF (hydrothermal) — low Al, Ti, V, Cr, Mn, Co, Ni, Zn, Ga and Sn; (II) Ag–Pb–Zn veins (hydrothermal) — high Mn and low Ga and Sn; (III) Mg-skarn (hydrothermal) — high Mg and Mn and low Al, Ti, Cr, Co, Ni and Ga; (IV) skarn (hydrothermal) — high Mg, Al, Cr, Mn, Co, Ni and Zn and low Sn; (V) porphyry (hydrothermal) — high Ti and V and low Sn; (VI) porphyry (igneous) — high Ti, V and Cr and low Mg; and (VII) Climax-Mo (igneous) — high Al, Ga and Sn and low Mg and Cr.

  18. Novel Sn-Based Contact Structure for GeTe Phase Change Materials.

    Science.gov (United States)

    Simchi, Hamed; Cooley, Kayla A; Ding, Zelong; Molina, Alex; Mohney, Suzanne E

    2018-05-16

    Germanium telluride (GeTe) is a phase change material (PCM) that has gained recent attention because of its incorporation as an active material for radio frequency (RF) switches, as well as memory and novel optoelectronic devices. Considering PCM-based RF switches, parasitic resistances from Ohmic contacts can be a limiting factor in device performance. Reduction of the contact resistance ( R c ) is therefore critical for reducing the on-state resistance to meet the requirements of high-frequency RF applications. To engineer the Schottky barrier between the metal contact and GeTe, Sn was tested as an interesting candidate to alter the composition of the semiconductor near its surface, potentially forming a narrow band gap (0.2 eV) SnTe or a graded alloy with SnTe in GeTe. For this purpose, a novel contact stack of Sn/Fe/Au was employed and compared to a conventional Ti/Pt/Au stack. Two different premetallization surface treatments of HCl and deionized (DI) H 2 O were employed to make a Te-rich and Ge-rich interface, respectively. Contact resistance values were extracted using the refined transfer length method. The best results were obtained with DI H 2 O for the Sn-based contacts but HCl treatment for the Ti/Pt/Au contacts. The as-deposited contacts had the R c (ρ c ) of 0.006 Ω·mm (8 × 10 -9 Ω·cm 2 ) for Sn/Fe/Au and 0.010 Ω·mm (3 × 10 -8 Ω·cm 2 ) for Ti/Pt/Au. However, the Sn/Fe/Au contacts were thermally stable, and their resistance decreased further to 0.004 Ω·mm (4 × 10 -9 Ω·cm 2 ) after annealing at 200 °C. In contrast, the contact resistance of the Ti/Pt/Au stack increased to 0.012 Ω·mm (4 × 10 -8 Ω·cm 2 ). Transmission electron microscopy was used to characterize the interfacial reactions between the metals and GeTe. It was found that formation of SnTe at the interface, in addition to Fe diffusion (doping) into GeTe, is likely responsible for the superior performance of Sn/Fe/Au contacts, resulting in one of the lowest reported

  19. Effect of Sn and Sb element on the magnetism and functional properties of Ni–Mn–Al ferromagnetic shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Sandeep, E-mail: sandeepxag@yahoo.co.in [LCMP, Department of Condensed Matter Physics and Material Sciences, SN Bose National Centre for Basic Sciences, JD Block, Salt Lake, Kolkata 700098 (India); Mukhopadhyay, P.K. [LCMP, Department of Condensed Matter Physics and Material Sciences, SN Bose National Centre for Basic Sciences, JD Block, Salt Lake, Kolkata 700098 (India)

    2016-03-15

    We have replaced Al partially with Sb and Sn in Ni–Mn–Al systems and investigated its effect on magnetism, entropy change and magnetoresistance in the vicinity of martensitic transformation. Both the samples had identical lattice parameters and Mn contents, which are mostly responsible for magnetism in these systems, yet there were marked changes in magnetic and functional properties of these systems. It was found that the magnetization increased in Sb alloy, while entropy change and magnetoresistance decreased as compared to Sn alloy. These changes are attributed to the change in antiferromagnetic interaction as a result of variation in the Ni d–Mn d hybridization arising due to presence of different sp elements. - Highlights: • Sn and Sb system has same Mn and Ni content and lattice parameter. • Both systems has disparity in magnetism, entropy change and magnetoresistance. • Difference was due to change in the Ni 3d–Mn 3d hybridization. • Sb based alloys are more suitable for mechanical devices. • Sn based alloys are more suitable for magnetocaloric effect and magnetoresistance.

  20. Site preference and phase stability of Ti doping Ni–Mn–Ga shape memory alloys from first-principles calculations

    International Nuclear Information System (INIS)

    Gao, Zhiyong; Chen, Baishu; Meng, Xianglong; Cai, Wei

    2013-01-01

    Highlights: •Site preference and phase stability of NiMnGaTi are studied by first-principles. •The Ti atoms prefer to occupy the Ga sites in the Ni 2 MnGa austenitic phase. •The phase stability becomes worse when Ga is replaced by Ti. •The phase stability is discussed based on the densities of states. -- Abstract: The effects of Ti content on martensitic transformation and phase stability of Ni 50 Mn 25 Ga 25−x Ti x shape memory alloys were investigated from first-principles calculations based on density functional theory. The formation energy results indicate that the added Ti preferentially occupies the Ga sites in Ni 2 MnGa alloy due to the lowest formation energy. The total energy difference between austenite and martensite increases with Ti alloying, being relevant to the experimentally reported changes in martensitic transformation temperature. The phase stability of Ni 50 Mn 25 Ga 25−x Ti x austenite decreases with increasing Ti content, which results from the reduced Ni 3d–Mn 3d hybridization when Ga is replaced by Ti

  1. Effects of Mn doping on the ferroelectric properties of PZT thin films

    International Nuclear Information System (INIS)

    Zhang Qi

    2004-01-01

    The effects of Mn doping on the ferroelectric properties of Pb(Zr 0.3 Ti 0.7 )O 3 (PZT) thin films on Pt/Ti/SiO 2 /Si substrates have been investigated. The composition of the PZT and Mn doping level are Pb(Zr 0.3 Ti 0.7 ) 1-x Mn x O 3 (x = 0,0.2,0.5,1,2,4 mol%). The PZT thin films doped with a small amount of Mn 2+ (x ≤ 1) showed almost no hysteretic fatigue up to 10 10 switching bipolar pulse cycles, coupled with excellent retention properties. However, excessive additions of manganese made the fatigue behaviour worse. We propose that the addition of small amounts of Mn is able to reduce the oxygen vacancy concentration due to the combination of Mn 2+ and oxygen vacancies in PZT films, forming Mn 4+ ions. The interfacial layer between the Pt electrode and PZT films and Mn-doped PZT (x = 4) was detected by measuring the dielectric constant of thin films of different thickness. However, this interfacial layer was not detected in Mn-doped PZT (x = 1). These observations support the concept of the preferential electromigration of oxygen vacancies into sites in planes parallel to the electrodes, which is probably responsible for the hysteretic fatigue

  2. Pb(Zr,Ti)O3-Pb(Mn1/3Nb2/3)O3 piezoelectric thick films by aerosol deposition

    International Nuclear Information System (INIS)

    Ryu, Jungho; Choi, Jong-Jin; Hahn, Byung-Dong; Yoon, Woon-Ha; Lee, Byoung-Kuk; Choi, Joon Hwan; Park, Dong-Soo

    2010-01-01

    Piezoelectric thick films of Pb(Zr,Ti)O 3 -Pb(Mn 1/3 Nb 2/3 )O 3 (PZT-PMnN) with Zr:Ti ratios ranging from 0.45:0.55 to 0.60:0.40 were fabricated on a platinized silicon wafer by aerosol deposition (AD). All the films were deposited with a thickness of 10 μm with high density. By adding PMnN to 57:43 PZT, a dielectric constant as low as ∼660 was achieved while the effective piezoelectric constant was over 140 pC/N. PZT-PMnN with a Zr:Ti ratio of 57:43 thus showed a maximum piezoelectric voltage constant (g 33 ) of 23.8 x 10 -3 Vm/N and is a good candidate for high quality thick films for application to high-energy density or high sensitivity, piezoelectric energy harvesters and sensors.

  3. Temperature dependent electrical characteristics of an organic-inorganic heterojunction obtained from a novel organometal Mn complex

    International Nuclear Information System (INIS)

    Ocak, Y.S.; Ebeoglu, M.A.; Topal, G.; Kilicoglu, T.

    2010-01-01

    This study includes synthesizing a Mn hexaamide (MnHA) organometal compound (C 27 H 21 N 9 O 6 MnCl 2 ).(1/2H 2 O), fabrication of MnHA/n-Si organic-inorganic heterojunction and analysis of conduction mechanism of the device over the room temperature. After synthesizing the molecule, the structure of the compound was determined using spectroscopic methods. The Sn/MnHA/n-Si structure was constructed by forming a thin MnHA layer on n-Si inorganic semiconductor and evaporating Sn metal on organic complex. The structure has shown good rectifying behavior and obeys the thermionic emission theory. The current-voltage (I-V) characteristics of the diode have been measured at temperatures ranging from 300 to 380 K at 10 K intervals to determine the temperature dependent electrical characteristics of the device.

  4. New lithium ion batteries exploiting conversion/alloying anode and LiFe0.25Mn0.5Co0.25PO4 olivine cathode

    International Nuclear Information System (INIS)

    Lecce, Daniele Di; Verrelli, Roberta; Hassoun, Jusef

    2016-01-01

    Highlights: • New Li-ion batteries are reported. • LiFe 0.25 Mn 0.5 Co 0.25 PO 4 olivine is used as the cathode. • Either Sn-C or Sn-Fe 2 O 3 -C composites are used as anodes. • The electrode/electrolyte interfaces are monitored by EIS. • The systems are considered suitable for energy storage - Abstract: New Li-ion cells are formed by combining a LiFe 0.25 Mn 0.5 Co 0.25 PO 4 olivine cathode either with Sn-Fe 2 O 3 -C or with Sn-C composite anodes. These active materials exhibit electrochemical properties very attractive in view of practical use, including the higher working voltage of the LiFe 0.25 Mn 0.5 Co 0.25 PO 4 cathode with respect to conventional LiFePO 4 , as well as the remarkable capacity and rate capability of Sn-Fe 2 O 3 -C and Sn-C anodes. The stable electrode/electrolyte interfaces, demonstrated by electrochemical impedance spectroscopy, along with proper mass balancing and anode pre-lithiation, allow stable galvanostatic cycling of the full cells. The two batteries, namely Sn-Fe 2 O 3 -C/LiFe 0.25 Mn 0.5 Co 0.25 PO 4 and Sn-C/LiFe 0.25 Mn 0.5 Co 0.25 PO 4 , reversibly operate revealing promising electrochemical features in terms of delivered capacity, working voltage and stability, thus suggesting these electrodes combinations as suitable alternatives for an efficient energy storage.

  5. Structure and stability of M6N8 clusters (M = Si, Ge, Sn, Ti).

    Science.gov (United States)

    Davydova, Elena I; Timoshkin, Alexey Y; Frenking, Gernot

    2010-06-10

    The structures and stabilities of the M(6)N(8) clusters (M = Si, Ge, Sn, Ti) have been theoretically studied at DFT and ab initio levels of theory. Two new isomers have been considered: cage-like molecules and propeller-like molecules. It is shown that only for M = Si are both isomers true minima on the potential energy surface. The thermodynamics of the dissociation process (1/6)M(6)N(8) --> (1/3)M(3)N(4) is discussed. For each M(3)N(4) molecule, four structures with different multiplicity are considered. The thermodynamic analysis shows that independently of the multiplicity of M(3)N(4) nitrides all M(6)N(8) clusters are stable in the gas phase in a wide temperature range and could be potential intermediates in chemical vapor deposition of the nitride materials.

  6. Variations in the microstructure and properties of Mn-Ti multiple-phase steel with high strength under different tempering temperatures

    Science.gov (United States)

    Li, Dazhao; Li, Xiaonan; Cui, Tianxie; Li, Jianmin; Wang, Yutian; Fu, Peimao

    2015-03-01

    There are few relevant researches on coils by tempering, and the variations of microstructure and properties of steel coil during the tempering process also remain unclear. By using thermo-mechanical control process(TMCP) technology, Mn-Ti typical HSLA steel coils with yield strength of 920 MPa are produced on the 2250 hot rolling production line. Then, the samples are taken from the coils and tempered at the temperatures of 220 °C, 350 °C, and 620 °C respectively. After tempering the strength, ductility and toughness of samples are tested, and meanwhile microstructures are investigated. Precipitates initially emerge inside the ferrite laths and the density of the dislocation drops. Then, the lath-shaped ferrites begin to gather, and the retained austenite films start to decompose. Finally, the retained austenite films are completely decomposed into coarse and short rod-shape precipitates composed of C and Ti compounds. The yield strength increases with increasing tempering temperature due to the pinning effect of the precipitates, and the dislocation density decreases. The yield strength is highest when the steel is tempered at 220 °C because of pinning of the precipitates to dislocations. The total elongation increases in all samples because of the development of ferrites during tempering. The tensile strength and impact absorbed energy decline because the effect of impeding crack propagation weakens as the retained austenite films completely decompose and the precipitates coarsen. This paper clarifies the influence of different tempering temperatures on phase transformation characteristics and process of Mn-Ti typical multiphase steels, as well as its resulting performance variation rules.

  7. Stable Water Oxidation in Acid Using Manganese-Modified TiO2 Protective Coatings.

    Science.gov (United States)

    Siddiqi, Georges; Luo, Zhenya; Xie, Yujun; Pan, Zhenhua; Zhu, Qianhong; Röhr, Jason A; Cha, Judy J; Hu, Shu

    2018-06-06

    Accomplishing acid-stable water oxidation is a critical matter for achieving both long-lasting water-splitting devices and other fuel-forming electro- and photocatalytic processes. Because water oxidation releases protons into the local electrolytic environment, it becomes increasingly acidic during device operation, which leads to corrosion of the photoactive component and hence loss in device performance and lifetime. In this work, we show that thin films of manganese-modified titania, (Ti,Mn)O x , topped with an iridium catalyst, can be used in a coating stabilization scheme for acid-stable water oxidation. We achieved a device lifetime of more than 100 h in pH = 0 acid. We successfully grew (Ti,Mn)O x coatings with uniform elemental distributions over a wide range of manganese compositions using atomic layer deposition (ALD), and using X-ray photoelectron spectroscopy, we show that (Ti,Mn)O x films grown in this manner give rise to closer-to-valence-band Fermi levels, which can be further tuned with annealing. In contrast to the normally n-type or intrinsic TiO 2 coatings, annealed (Ti,Mn)O x films can make direct charge transfer to a Fe(CN) 6 3-/4- redox couple dissolved in aqueous electrolytes. Using the Fe(CN) 6 3-/4- redox, we further demonstrated anodic charge transfer through the (Ti,Mn)O x films to high work function metals, such as iridium and gold, which is not previously possible with ALD-grown TiO 2 . We correlated changes in the crystallinity (amorphous to rutile TiO 2 ) and oxidation state (2+ to 3+) of the annealed (Ti,Mn)O x films to their hole conductivity and electrochemical stability in acid. Finally, by combining (Ti,Mn)O x coatings with iridium, an acid-stable water-oxidation anode, using acid-sensitive conductive fluorine-doped tin oxides, was achieved.

  8. Characterization of mechanically alloyed Ti-based bulk metallic glass composites containing carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C.F. [Institute of Materials Engineering, National Taiwan Ocean University, No. 2, Beining Road, Keelung (China); Lin, H.M. [Department of Materials Engineering, Tatung University, No.40, Sec. 3, Jhongshan N. Rd. Jhongshan District, Taipei 104 Taiwan (China); Lee, P.Y.

    2008-11-15

    This study explored the feasibility of preparing CNT/Ti{sub 50}Cu{sub 28}Ni{sub 15}Sn{sub 7} bulk metallic glass (BMG) composites though powder metallurgy route. The CNT/Ti{sub 50}Cu{sub 28}Ni{sub 15}Sn{sub 7} BMG composites were obtained by consolidating the 8h mechanically alloyed composite powders by vacuum hot pressing process. A significant increase in hardness (9.34 GPa) and fracture strength (1937 MPa) was achieved for the Ti{sub 50}Cu{sub 28}Ni{sub 15}Sn{sub 7} BMG composites containing 12 vol. % CNT. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  9. Preparation and electrochemical properties of core-shell carbon coated Mn-Sn complex metal oxide as anode materials for lithium-ion batteries

    Science.gov (United States)

    Zhang, Ruixue; Fang, Guoqing; Liu, Weiwei; Xia, Bingbo; Sun, Hongdan; Zheng, Junwei; Li, Decheng

    2014-02-01

    In this study, we synthesized a carbon coated Mn-Sn metal oxide composite with core-shell structure (MTO@C) via a simple glucose hydrothermal reaction and subsequent carbonization approach. When the MTO@C composite was applied as an anode material for lithium-ion batteries, it maintained a reversible capacity of 409 mA h g-1 after 200 cycles at a current density of 100 mA g-1. The uniformed and continuous carbon layer formed on the MTO nanoparticles, effectively buffered the volumetric change of the active material and increased electronic conductivity, which thus prolonged the cycling performance of the MTO@C electrode.

  10. Nanoindentation studies on Cu-Ti-Zr-Ni-Si-Sn bulk metallic glasses

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.K.; Belger, A.; Paufler, P.; Kim, D.H.

    2007-01-01

    In the present investigation, Cu 47 Ti 33 Ni 6 Sn 2 Si 1 (numbers indicate at.%) bulk metallic glass (BMG), fabricated by injection casting has been used for indentation experiments. Microindentation and nanoindentation tests were conducted to study the indentation responses of this material. The nanohardness and the Young's modulus were calculated following the standard procedure in literature. Around the indent, shear bands can be clearly observed under scanning electron microscopy examination. Atomic-force microscopy shows the pile of the material in a step-wise manner. The thinned sample near the indent shows the evolution of nanocrystals (∼20-30 nm) by transmission electron microscopy. During nanoindentation (in single- and multi-indent mode) experiments, the load-displacement P-h curves show displacement bursts, which are also known as pop-ins or serrations. The total displacement during indentation can be accounted for by sum total effect of the individual displacement of all the displacement-bursts observed in the P-h curve. Thus the plastic deformation of this glassy material appears to proceed in a discrete manner unlike ductile metallic alloys

  11. A Model for Creep and Creep Damage in the γ-Titanium Aluminide Ti-45Al-2Mn-2Nb.

    Science.gov (United States)

    Harrison, William; Abdallah, Zakaria; Whittaker, Mark

    2014-03-14

    Gamma titanium aluminides (γ-TiAl) display significantly improved high temperature mechanical properties over conventional titanium alloys. Due to their low densities, these alloys are increasingly becoming strong candidates to replace nickel-base superalloys in future gas turbine aeroengine components. To determine the safe operating life of such components, a good understanding of their creep properties is essential. Of particular importance to gas turbine component design is the ability to accurately predict the rate of accumulation of creep strain to ensure that excessive deformation does not occur during the component's service life and to quantify the effects of creep on fatigue life. The theta (θ) projection technique is an illustrative example of a creep curve method which has, in this paper, been utilised to accurately represent the creep behaviour of the γ-TiAl alloy Ti -45Al-2Mn-2Nb. Furthermore, a continuum damage approach based on the θ-projection method has also been used to represent tertiary creep damage and accurately predict creep rupture.

  12. Thermal expansion and microstructural analysis of experimental metal-ceramic titanium alloys.

    Science.gov (United States)

    Zinelis, Spiros; Tsetsekou, Athena; Papadopoulos, Triantafillos

    2003-10-01

    Statement of problem Low-fusing porcelains for titanium veneering have demonstrated inferior color stability and metal-ceramic longevity compared to conventional porcelains. This study evaluated the microstructure and thermal expansion coefficients of some experimental titanium alloys as alternative metallic substrates for low-fusing conventional porcelain. Commercially pure titanium (CP Ti) and various metallic elements (Al, Co, Sn, Ga, In, Mn) were used to prepare 8 titanium alloys using a commercial 2-chamber electric-arc vacuum/inert gas dental casting machine (Cyclarc). The nominal compositions of these alloys were the following (wt%): I: 80Ti-18Sn-1.5In-0.5Mn; II: 76Ti-12Ga-7Sn-4Al-1Co; III: 87Ti-13Ga; IV: 79Ti-13Ga-7Al-1Co; V: 82Ti-18In; VI: 75.5Ti-18In-5Al-1Co-0.5Mn; VII: 85Ti-10Sn-5Al; VIII: 78Ti-12Co-7Ga-3Sn. Six rectangular wax patterns for each test material (l = 25 mm, w = 3 mm, h = 1 mm) were invested with magnesia-based material and cast with grade II CP Ti (control) and the 8 experimental alloys. The porosity of each casting was evaluated radiographically, and defective specimens were discarded. Two cast specimens from CP Ti and alloys I-VIII were embedded in epoxy resin and, after metallographic grinding and polishing, were studied by means of scanning electron microscopy and wavelength dispersive electron probe microanalysis. One specimen of each material was utilized for the determination of coefficient of thermal expansion (CTE) with a dilatometer operating from room temperature up to 650 degrees C at a heating rate of 5 degrees C/minute. Secondary electron images (SEI) and compositional backscattered electron images (BEI-COMPO) revealed that all cast specimens consisted of a homogeneous matrix except Alloy VIII, which contained a second phase (possibly Ti(2)Co) along with the titanium matrix. The results showed that the coefficient of thermal expansion (CTE) varied from 10.1 to 13.1 x 10(-6)/ degrees C (25 degrees -500 degrees C), depending on

  13. Improving low-temperature performance of spinel LiNi0.5Mn1.5O4 electrode and LiNi0.5Mn1.5O4/Li4Ti5O12 full-cell by coating solid-state electrolyte Li-Al-Ti-P-O

    Science.gov (United States)

    Bi, Kun; Zhao, Shi-Xi; Huang, Chao; Nan, Ce-Wen

    2018-06-01

    Octahedral cathode materials LiNi0.5Mn1.5O4 (LNMO), with primary particles size of 300-600 nm are prepared through one-step co-precipitation. Then solid-state electrolyte Li2O-Al2O3-TiO2-P2O5 (LATP) was coated on LNMO to form continuous surface-modification layer. There is no obviously difference of structure, morphology between coated LATP LiNi0.5Mn1.5O4 (LATP-LNMO) and pristine LiNi0.5Mn1.5O4 (P-LNMO). Low-temperature electrochemical performance of P-LNMO and LATP-LNMO electrodes, including charge-discharge capacity, cycle performance, middle discharge voltage and electrochemical impedance spectra (EIS), were measured systematically with three electrode. The results reveal that LATP-LNMO electrode presents superior electrochemical performance at low temperature, compared to P-LNMO electrode. At -20 °C, the capacity retention of LATP-LNMO (61%) is much higher than that of P-LNMO (39%). According to EIS, the enhancement of performance of LATP-LNMO cathode at low temperature can be attribute to LATP coating, which not only promotes lithium-ion diffusion at electrode/electrolyte interface but also decreases the charge transfer resistance. Finally, the electrochemical performances of full cell of LATP-LNMO or P-LNMO cathode vs Li4Ti5O12 anode are investigated. The energy density can be achieved to 270 Wh·Kg-1 at -20 °C if using LATP-LNMO, which is much better than that of P-LNMO.

  14. Investigations on Ni-Co-Mn-Sn thin films: Effect of substrate temperature and Ar gas pressure on the martensitic transformations and exchange bias properties

    Energy Technology Data Exchange (ETDEWEB)

    Machavarapu, Ramudu, E-mail: macrams2@gmail.com; Jakob, Gerhard [Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, D-55128 Mainz (Germany)

    2015-03-15

    We report the effect of substrate temperature (T{sub S}) and Ar gas pressure (P{sub D}) on the martensitic transformations, magnetic and exchange bias (EB) properties in Heusler type Ni-Co-Mn-Sn epitaxial thin films. Martensitic transformation temperatures and EB fields at 5 K were found to increase with increasing T{sub S}. The observed maximum EB value of 320 Oe after field cooling in the film deposited at 650 {sup ∘}C is high among the values reported for Ni-Mn-Sn thin films which is attributed to the coexistence of ferromagnetic (FM) and antiferromagnetic (AF) phases in the martensitic state. In the case of P{sub D} variation, with increase in P{sub D}, martensitic transformation temperatures were increased and a sharp transformation was observed in the film deposited at 0.06 mbar. Magnetization values at 5 K were higher for increasing P{sub D}. These observations are attributed to the compositional shift. EB effect is also present in these films. Microstructural features observed using atomic force microscopy (AFM) shows a fine twinning and reduced precipitation with increase in P{sub D}, which is also confirmed from the scanning electron microscopy (SEM) images. EB effects in both series were confirmed from the training effect. Target ageing effect has been observed in the films deposited before and after ninety days of time interval. This has been confirmed both on substrate temperature and Ar gas pressure variations.

  15. Crystallographic disorder and magnetism in UPd2-xSn

    International Nuclear Information System (INIS)

    Suellow, S.; Mattheus, C.C.; Becker, B.; Snel, C.E.; Nieuwenhuys, G.J.; Mydosh, J.A.; Schenck, A.

    1997-01-01

    The intermetallic compound UPd 2 Sn has been shown in previous investigations to crystallize in an orthorhombic structure (space group Pnma). No indications for magnetic or superconducting transitions were found. However, if the Pd content is reduced, then, similar to UNi 2 Sn, a structural transition occurs. We prepared UPd 1.85 Sn and found it to crystallize as a Heusler compound in the MnCu 2 Al-structure (space group Fm anti 3m). Now the system undergoes a transition into a disordered magnetic state at T mag ≅ 28 K. Here, we present our measurements of the specific heat, susceptibility and muon relaxation of UPd 1.85 Sn, and discuss the nature of the magnetic state in relation to the crystallographic structure. (orig.)

  16. Solution-deposited F:SnO₂/TiO₂ as a base-stable protective layer and antireflective coating for microtextured buried-junction H₂-evolving Si photocathodes.

    Science.gov (United States)

    Kast, Matthew G; Enman, Lisa J; Gurnon, Nicholas J; Nadarajah, Athavan; Boettcher, Shannon W

    2014-12-24

    Protecting Si photocathodes from corrosion is important for developing tandem water-splitting devices operating in basic media. We show that textured commercial Si-pn(+) photovoltaics protected by solution-processed semiconducting/conducting oxides (plausibly suitable for scalable manufacturing) and coupled to thin layers of Ir yield high-performance H2-evolving photocathodes in base. They also serve as excellent test structures to understand corrosion mechanisms and optimize interfacial electrical contacts between various functional layers. Solution-deposited TiO2 protects Si-pn(+) junctions from corrosion for ∼24 h in base, whereas junctions protected by F:SnO2 fail after only 1 h of electrochemical cycling. Interface layers consisting of Ti metal and/or the highly doped F:SnO2 between the Si and TiO2 reduce Si-emitter/oxide/catalyst contact resistance and thus increase fill factor and efficiency. Controlling the oxide thickness led to record photocurrents near 35 mA cm(-2) at 0 V vs RHE and photocathode efficiencies up to 10.9% in the best cells. Degradation, however, was not completely suppressed. We demonstrate that performance degrades by two mechanisms, (1) deposition of impurities onto the thin catalyst layers, even from high-purity base, and (2) catastrophic failure via pinholes in the oxide layers after several days of operation. These results provide insight into the design of hydrogen-evolving photoelectrodes in basic conditions, and highlight challenges.

  17. Binding energy, phonon spectra and thermodynamic properties of elements with type structures A1 (Al, Cu), A2 (V, Ti2), A3 (Mg, Tiβ), A4 (Si, Sn)

    International Nuclear Information System (INIS)

    Sirota, N.N.; Soshnina, T.M.; Sirota, I.M.; Sokolovskij, T.D.

    2001-01-01

    One calculated dependences of binding energy on spacing between the nearest atoms of Al and Cu elements with A 1 type structure, of V and Ti α elements with A 2 type structure, of Mg and Ti β elements with A 3 type structure, Si and Sn elements with A 4 type structure. To calculate one applied the methods based on the Thomas-Fermi statistic theory of atom. The derived dependences were approximated using the expression in the form of the Mie-Grueneisen potential. On the basis of the Born-von-Karman model of solid body one calculated the phonon spectra using which one determined temperature dependences of specific heat, free and internal energy of the investigated elements. The calculated values of energy of atomization, equilibrium closest interatomic spacing and temperature dependences of specific heat are in compliance with the experimental data [ru

  18. Nb$_{3}$Sn quadrupole magnets for the LHC IR

    CERN Document Server

    Sabbi, G L; Chiesa, L; Coccoli, M; Dietderich, D R; Ferracin, P; Gourlay, S A; Hafalia, R R; Lietzke, A F; McInturff, A D; Scanlan, R M

    2003-01-01

    The development of insertion quadrupoles with 205 T/m gradient and 90 mm bore represents a promising strategy to achieve the ultimate luminosity goal of 2.5 * 10/sup 34/ cm/sup -2/s/sup -1/ at the Large Hadron Collider (LHC). At present, Nb/sub 3/Sn is the only practical conductor which can meet these requirements. Since Nb/sub 3/Sn is brittle, and considerably more strain sensitive than NbTi, the design concepts and fabrication techniques developed for NbTi magnets need to be modified appropriately. In addition, IR magnets must provide high field quality and operate reliably under severe radiation loads. The results of conceptual design studies addressing these issues are presented. (25 refs).

  19. Nb3Sn Quadrupole Magnets for the LHC IR

    International Nuclear Information System (INIS)

    Sabbi, G.; Caspi, S.; Chiesa, L.; Coccoli, M.; Dietderich, D.R.; Ferracin, P.; Gourlay, S.A.; Hafalia, R.R.; Lietzke, A.F.; McInturff, A.D.; Scanlan, R.M.

    2001-01-01

    The development of insertion quadrupoles with 205 T/m gradient and 90 mm bore represents a promising strategy to achieve the ultimate luminosity goal of 2.5 x 10 34 cm -2 s -1 at the Large Hadron Collider (LHC). At present, Nb 3 Sn is the only practical conductor which can meet these requirements. Since Nb 3 Sn is brittle, and considerably more strain sensitive than NbTi, the design concepts and fabrication techniques developed for NbTi magnets need to be modified appropriately. In addition, IR magnets must provide high field quality and operate reliably under severe radiation loads. The results of conceptual design studies addressing these issues are presented.

  20. Nb3Sn accelerator magnet development around the world

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Lamm

    2003-06-23

    During the past 30 years superconducting magnet systems have enabled accelerators to achieve energies and luminosities that would have been impractical if not impossible with resistive magnets. By far, NbTi has been the preferred conductor for this application because of its ductility and insensitivity of Jc to mechanical strain. This is despite the fact that Nb{sub 3}Sn has a more favorable Jc vs. B dependence and can operate at much higher temperatures. Unfortunately, NbTi conductor is reaching the limit of it usefulness for high field applications. Despite incremental increases in Jc and operation at superfluid temperatures, magnets are limited to approximately a 10 T field. Improvements in conductor performance combined with future requirements for accelerator magnets to have bore fields greater than 10 T or operate in areas of large beam-induced heat loads now make Nb{sub 3}Sn look attractive. Thus, laboratories in several countries are actively engaged in programs to develop Nb{sub 3}Sn accelerator magnets for future accelerator applications. A summary of this important research activity is presented along with a brief history of Nb{sub 3}Sn accelerator magnet development and a discussion of requirements for future accelerator magnets.