WorldWideScience

Sample records for ti nb mo

  1. Development of Ti-12Mo-3Nb alloy for biomedical application; Desenvolvimento da liga Ti-12Mo-3Nb para aplicacao biomedica

    Energy Technology Data Exchange (ETDEWEB)

    Panaino, J.V.P.; Gabriel, S.B., E-mail: josevicentepanaino@hotmail.co [Centro Universidade de Volta Redonda (UNIFOA), RJ (Brazil); Mei, P. [Universidade Estadual de Campinas (DEMa/UNICAMP), SP (Brazil). Dept. de Materiais; Brum, M.V. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais; Nunes, C.A. [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia

    2010-07-01

    The titanium alloys are quite satisfactory for biomedical applications due to their physical, mechanical and biological properties. Recent studies focuses on the development of beta type titanium alloys, composed of toxic elements (Nb, Mo, Ta ,...), because they have more advantages than alpha and alpha + beta (Ti- 6Al-4V) alloys such as lower modulus of elasticity, better plasticity and, moreover, the process variables can be controlled to produce selected results. This project focused on the development and characterization of Ti-12Mo-3Nb alloy in the condition 'as cast' and after thermomechanical treatment. The material was characterized in different conditions by X-ray diffraction, optical microscopy, microhardness measurements and elasticity modulus. The results showed that the forged Ti-12Mo-3Nb alloy showed the best combination of properties, being a promising candidate for use as implant. (author)

  2. Development of Ti-12Mo-3Nb alloy for biomedical application

    International Nuclear Information System (INIS)

    Panaino, J.V.P.; Gabriel, S.B.; Mei, P.; Brum, M.V.; Nunes, C.A.

    2010-01-01

    The titanium alloys are quite satisfactory for biomedical applications due to their physical, mechanical and biological properties. Recent studies focuses on the development of beta type titanium alloys, composed of toxic elements (Nb, Mo, Ta ,...), because they have more advantages than alpha and alpha + beta (Ti- 6Al-4V) alloys such as lower modulus of elasticity, better plasticity and, moreover, the process variables can be controlled to produce selected results. This project focused on the development and characterization of Ti-12Mo-3Nb alloy in the condition 'as cast' and after thermomechanical treatment. The material was characterized in different conditions by X-ray diffraction, optical microscopy, microhardness measurements and elasticity modulus. The results showed that the forged Ti-12Mo-3Nb alloy showed the best combination of properties, being a promising candidate for use as implant. (author)

  3. Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn alloys.

    Science.gov (United States)

    Zhang, D C; Yang, S; Wei, M; Mao, Y F; Tan, C G; Lin, J G

    2012-09-01

    Ti-7.5Nb-4Mo-xSn (x=0-4at%) alloys were developed as the biomedical materials. The effect of the Sn content on the microstructure and superelasticity of the alloys was investigated. It is found that Sn is a strong stabilizer of the β phase, which is effective in suppressing the formation of α″ and ω phases in the alloys. Moreover, the Sn addition has a significant impact on the mechanical properties of the alloys. With the increase of Sn addition, the yield stress of the alloys increase, but their elastic modulus, the fracture strength and the ductility decrease, and the deformation mode of the alloys changes from (322) twining to α″ transformation and then to slip. The Ti-7.5Nb-4Mo-1Sn and Ti-7.5Nb-4Mo-3Sn alloys exhibit a good superelasticity with a high σ(SIM) due to the relatively high athermal ω phases containing or the solution hardening at room temperature. Under the maximum strain of 5%, Ti-7.5Nb-4Mo-3Sn (at%) alloy exhibits higher super elastic stability than that of Ti-7.5Nb-4Mo-1Sn alloy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Metastable beta Ti-Nb-Mo alloys with improved corrosion resistance in saline solution

    International Nuclear Information System (INIS)

    Chelariu, R.; Bolat, G.; Izquierdo, J.; Mareci, D.; Gordin, D.M.; Gloriant, T.; Souto, R.M.

    2014-01-01

    Graphical abstract: - Highlights: • Microstructural and electrochemical characterization of metastable beta Ti-Nb-Mo alloys for biomedical implantation. • Corrosion resistance was established in 0.9 wt% NaCl saline solution at 25 °C using conventional and microelectrochemical techniques. • The materials spontaneously form passivating oxide films on their surface. • Surface films are stable for polarizations more positive than those encountered in the human body. • The addition of niobium to Ti12Mo enhances the capacitive characteristics of the passivating oxide layers. - Abstract: The present study explores the microstructural characteristics and electrochemical responses of four metastable beta Ti-Nb-Mo alloys for biomedical implantation. They were synthesized by the cold crucible levitation melting technique, and compositions were selected to keep the molybdenum equivalency close to 12 wt% Mo eq . For the sake of comparison, Ti12Mo was also investigated. Microstructural characterization reveals that all the alloys are β (body-centred cubic structure), and the surface is composed by β equiaxial grains with dimensions in the range of tens to hundreds μm. The corrosion resistance (potentiodynamic polarization and electrochemical impedance spectroscopy) of the alloys was determined in 0.9 wt% NaCl saline solution at 25 °C. The materials spontaneously form a passivating oxide film on their surface, and they are stable for polarizations up to +1.0 V SCE . No evidence of localized breakdown of the oxide layers is found for polarizations more positive than those encountered in the human body. The passive layers show dielectric characteristics, and the wide frequency ranges displaying capacitive characteristics occur for both higher niobium contents in the alloy and longer exposures to the saline solution. The insulating characteristics of the oxide-covered surfaces were investigated by scanning electrochemical microscopy operated in the feedback mode

  5. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties.

    Science.gov (United States)

    Wang, Shao-Ping; Xu, Jian

    2017-04-01

    Combining the high-entropy alloy (HEA) concept with property requirement for orthopedic implants, we designed a Ti 20 Zr 20 Nb 20 Ta 20 Mo 20 equiatomic HEA. The arc-melted microstructures, compressive properties and potentiodynamic polarization behavior in phosphate buffer solution (PBS) were studied in detail. It was revealed that the as-cast TiZrNbTaMo HEA consisted of dual phases with bcc structure, major bcc1 and minor bcc2 phases with the lattice parameters of 0.3310nm and 0.3379nm, respectively. As confirmed by nanoindentation tests, the bcc1 phase is somewhat harder and stiffer than the bcc2 phase. The TiZrNbTaMo HEA exhibited Young's modulus of 153GPa, Vickers microhardness of 4.9GPa, compressive yield strength of σ y =1390MPa and apparent plastic strain of ε p ≈6% prior to failure. Moreover, the TiZrNbTaMo HEA manifested excellent corrosion resistance in PBS, comparable to the Ti6Al4V alloy, and pitting resistance remarkably superior to the 316L SS and CoCrMo alloys. These preliminary advantages of the TiZrNbTaMo HEA over the current orthopedic implant metals in mechanical properties and corrosion resistance offer an opportunity to explore new orthopedic-implant alloys based on the TiZrNbTaMo concentrated composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Shape memory and superelastic behavior of Ti-7.5Nb-4Mo-1Sn alloy

    International Nuclear Information System (INIS)

    Zhang, D.C.; Lin, J.G.; Jiang, W.J.; Ma, M.; Peng, Z.G.

    2011-01-01

    Research highlights: → A Ti-based shape memory alloy, Ti-7.5Nb-4Mo-1Sn, was designed. → The martensitic transformation start temperature of the alloy, M s , is 261 K. → The alloy exhibits good shape memory and superelastic behaviors. → The alloy also shows a good superelastic stability at room temperature. → The Ti-5Mo-7.5Nb-1Sn alloy has a potential application as a biomedical material. -- Abstract: In the present work, a Ti-based shape memory alloy with the composition of Ti-7.5Nb-4Mo-1Sn was designed based on the d-electron orbit theory. The shape memory and superelastic behavior of the alloy were investigated. It is found that the martensitic transformation temperature of the alloy is near 261 K. The tensile and the thermal cycling testing results show that the alloy exhibits the stable shape memory effect and superelasticity at room temperature. The maximum recovered strain of the alloy is 4.83%.

  7. Alloy Design and Property Evaluation of Ti-Mo-Nb-Sn Alloy for ...

    African Journals Online (AJOL)

    Ti-Mo alloy containing Nb and Sn were arc melted and composition analyzed by EDX. The XRD analysis indicates that the crystal structure and mechanical properties are sensitive to Sn concentration. A combination of Sn and Nb elements in synergy hindered formation athermal w phase and significantly enhanced b phase ...

  8. Mechanical characterization of Ti-12Mo-13Nb alloy for biomedical application hot swaged and aged

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Sinara Borborema; Rezende, Monica Castro; Almeida, Luiz Henrique de, E-mail: sinara@metalmat.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Engenharia Metalurgica e de Materiais; Dille, Jean [Universite Libre de Bruxelles, Brussels (Belgium); Mei, Paulo [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Departamento de Engenharia Mecanica; Baldan, Renato; Nunes, Carlos Angelo [Universidade de Sao Paulo (USP), Lorena, SP (Brazil). Departamento de Engenharia de Materiais

    2015-07-01

    Beta titanium alloys were developed for biomedical applications due to the combination of its mechanical properties including low elasticity modulus, high strength, fatigue resistance, good ductility and with excellent corrosion resistance. With this perspective a metastable beta titanium alloy Ti-12Mo-13Nb was developed with the replacement of both vanadium and aluminum from the traditional alloy Ti-6Al-4V. This paper presents the microstructure, mechanical properties of the Ti-12Mo-13Nb hot swaged and aged at 500 deg C for 24 h under high vacuum and then water quenched. The alloy structure was characterized by X-ray diffraction and transmission electron microscopy. Tensile tests were carried out at room temperature. The results show a microstructure consisting of a fine dispersed α phase in a β matrix and good mechanical properties including low elastic modulus. The results indicate that Ti-12Mo-13Nb alloy can be a promising alternative for biomedical application. (author)

  9. XPS study on the electronic structure of hydrided Ti-V, Ti-Nb and Ti-Mo alloys

    International Nuclear Information System (INIS)

    Tanaka, Kazuhide; Aoki, Hiromasa

    1989-01-01

    Effects of hydrogenation on the core and valence electronic structures of β(bcc)-stabilized Ti-25at%V, Ti-50at%Nb and Ti-20at%Mo alloys are studied with XPS technique using monochromatized Al K α radiation. Small but uniform binding-energy shifts are observed upon hydrogenation for all the core spectra measured. Their valence-band spectra are significantly distorted, providing an evidence of the formation of metal-hydrogen bonding bands in these Ti alloys. Interrelations between the core binding-energy shifts and the valence-band distortion are discussed. (orig.)

  10. Transmission electron microscopy of aged Ti-10Mo-20Nb alloy after hot swaging; Microscopia eletronica de transmissao da liga Ti-10Mo-20Nb envelhecida apos forjamento a quente

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Sinara Borborema, E-mail: sinarab@msn.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Baldan, Renato, E-mail: renatobaldan@gmail.com [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia; Torres, Juliana; Oliveira, Nathalia Rodrigues, E-mail: juliana_torres_5@hotmail.com, E-mail: nathalia_roliveira@yahoo.com.br [Centro Universitario de Volta Redonda (UNIFOA), Volta Redonda, RJ (Brazil); Nunes, Carlos Angelo; Mei, Paulo Roberto, E-mail: cnunes@demar.eel.usp.br, E-mail: pmei@fem.unicamp.br [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil)

    2014-08-15

    Ti alloys are widely used in biomedical applications. Within this class, metastable β -Ti alloys stand, because through thermomechanical processing it is possible to obtain mechanical properties and in particular one suitable Young's modulus for biomedical applications. These alloys require high mechanical strength and a low Young's modulus to avoid stress shielding. Preliminary studies showed that the microstructure of the Ti-10Mo- 20Nb alloy after cold forging and aging 500 °C/24 h consisted in bimodal distribution of α phase in the β matrix. The aim of this study was to characterize the microstructure of Ti-10Mo-20Nb alloy after hot forging and aging at 500 °C for 24 hours. Microstructural characterization consisted of analyzes by X-ray diffraction and transmission electron microscopy. According to the results, while the cold forging resulted in a bimodal α distribution in the β matrix, hot forging resulted in a thin and homogeneous α precipitation in the β matrix. (author)

  11. New intermetallic MIrP (M=Ti, Zr, Nb, Mo) and MgRuP compounds related with MoM'P (M'=Ni and Ru) superconductor

    Science.gov (United States)

    Kito, Hijiri; Iyo, Akira; Wada, Toshimi

    2011-01-01

    Using a cubic-anvil high-pressure apparatus, ternary iridium phosphides MIrP (M=Ti, Zr, Nb, Mo) and MgRuP have been prepared by reaction of stoichiometric amounts of each metal and phosphide powders at around 2 Gpa and above 1523 K for the first time. The structure of these compounds prepared at high-pressure has been characterized by X-ray powder diffraction. Diffraction lines of these compounds are assigned by the index of the Co2Si-type structure. The electrical resistivity and the d.c magnetic susceptibility of MIrP (M=Ti, Zr, Nb, Mo) have measured at low temperatures. Unfortunately, no superconducting transition for MIrP (M=Ti, Zr, Nb, Mo) and MgRuP are observed down to 2 K.

  12. New intermetallic MIrP (M=Ti, Zr, Nb, Mo) and MgRuP compounds related with MoM'P (M'=Ni and Ru) superconductor

    International Nuclear Information System (INIS)

    Kito, Hijiri; Iyo, Akira; Wada, Toshimi

    2011-01-01

    Using a cubic-anvil high-pressure apparatus, ternary iridium phosphides MIrP (M=Ti, Zr, Nb, Mo) and MgRuP have been prepared by reaction of stoichiometric amounts of each metal and phosphide powders at around 2 Gpa and above 1523 K for the first time. The structure of these compounds prepared at high-pressure has been characterized by X-ray powder diffraction. Diffraction lines of these compounds are assigned by the index of the Co 2 Si-type structure. The electrical resistivity and the d.c magnetic susceptibility of MIrP (M=Ti, Zr, Nb, Mo) have measured at low temperatures. Unfortunately, no superconducting transition for MIrP (M=Ti, Zr, Nb, Mo) and MgRuP are observed down to 2 K.

  13. Transmission electron microscopy of Ti-12Mo-13Nb Alloy aged after heat forging; Microscopia eletronica de transmissao da liga Ti-12Mo-13Nb envelhecida apos forjamento a quente

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Nathalia Rodrigues [Centro Universitario de Volta Redonda (UNIFOA), Volta Redonda, RJ (Brazil); Baldan, Renato [Universidade de Sao Paulo (USP), Lorena, SP (Brazil). Escola de Engenharia; Nunes, Carlos Angelo; Mei, Paulo Roberto [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil); Gabriel, Sinara Borborema [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)

    2014-06-15

    Metastable β-Ti alloys possess mechanical properties, in particular a elastic modulus that depends not only on its composition but also the applied thermomechanical treatments. These alloys require high mechanical strength and a low Young’s modulus to avoid stress shielding. Preliminary studies on the development of Ti- 13Nb-12Mo alloy showed than the better properties were obtained at aged at 500 ° C / 24 h after cold forging , whose microstructure consisted of bimodal α phase in the β matrix. In this work, Ti-12Mo-13Nb alloy was heat forged and aged at 500 deg C for 24h and the microstructure was analyzed by employing X-ray diffraction and transmission electron microscopy. According to the results, while the cold forging resulted in bimodal α phase in the β matrix, hot forging resulted in a fine and homogeneous α phase in the β matrix. (author)

  14. Evaluating Strengthening and Impact Toughness Mechanisms for Ferritic and Bainitic Microstructures in Nb, Nb-Mo and Ti-Mo Microalloyed Steels

    Directory of Open Access Journals (Sweden)

    Gorka Larzabal

    2017-02-01

    Full Text Available Low carbon microalloyed steels show interesting commercial possibilities by combining different “micro”-alloying elements when high strength and low temperature toughness properties are required. Depending on the elements chosen for the chemistry design, the mechanisms controlling the strengths and toughness may differ. In this paper, a detailed characterization of the microstructural features of three different microalloyed steels, Nb, Nb-Mo and Ti-Mo, is described using mainly the electron backscattered diffraction technique (EBSD as well as transmission electron microscopy (TEM. The contribution of different strengthening mechanisms to yield strength and impact toughness is evaluated, and its relative weight is computed for different coiling temperatures. Grain refinement is shown to be the most effective mechanism for controlling both mechanical properties. As yield strength increases, the relative contribution of precipitation strengthening increases, and this factor is especially important in the Ti-Mo microalloyed steel where different combinations of interphase and random precipitation are detected depending on the coiling temperature. In addition to average grain size values, microstructural heterogeneity is considered in order to propose a new equation for predicting ductile–brittle transition temperature (DBTT. This equation considers the wide range of microstructures analyzed as well as the increase in the transition temperature related to precipitation strengthening.

  15. Transmission electron microscopy of Ti-12Mo-13Nb Alloy aged after heat forging

    International Nuclear Information System (INIS)

    Oliveira, Nathalia Rodrigues; Baldan, Renato; Gabriel, Sinara Borborema

    2014-01-01

    Metastable β-Ti alloys possess mechanical properties, in particular a elastic modulus that depends not only on its composition but also the applied thermomechanical treatments. These alloys require high mechanical strength and a low Young’s modulus to avoid stress shielding. Preliminary studies on the development of Ti- 13Nb-12Mo alloy showed than the better properties were obtained at aged at 500 ° C / 24 h after cold forging , whose microstructure consisted of bimodal α phase in the β matrix. In this work, Ti-12Mo-13Nb alloy was heat forged and aged at 500 deg C for 24h and the microstructure was analyzed by employing X-ray diffraction and transmission electron microscopy. According to the results, while the cold forging resulted in bimodal α phase in the β matrix, hot forging resulted in a fine and homogeneous α phase in the β matrix. (author)

  16. M5Si3(M=Ti, Nb, Mo) Based Transition-Metal Silicides for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhihong [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Transition metal silicides are being considered for future engine turbine components at temperatures up to 1600 C. Although significant improvement in high temperature strength, room temperature fracture toughness has been realized in the past decade, further improvement in oxidation resistance is needed. Oxidation mechanism of Ti5Si3-based alloys was investigated. Oxidation behavior of Ti5Si3-based alloy strongly depends on the atmosphere. Presence of Nitrogen alters the oxidation behavior of Ti5Si3 by nucleation and growth of nitride subscale. Ti5Si3.2and Ti5Si3C0.5 alloys exhibited an excellent oxidation resistance in nitrogen bearing atmosphere due to limited dissolution of nitrogen and increased Si/Ti activity ratio. MoSi2 coating developed by pack cementation to protect Mo-based Mo-Si-B composites was found to be effective up to 1500 C. Shifting coating composition to T1+T2+Mo3Si region showed the possibility to extend the coating lifetime above 1500 C by more than ten times via formation of slow growing Mo3Si or T2 interlayer without sacrificing the oxidation resistance of the coating. The phase equilibria in the Nb-rich portion of Nb-B system has been evaluated experimentally using metallographic analysis and differential thermal analyzer (DTA). It was shown that Nbss (solid solution) and NbB are the only two primary phases in the 0-40 at.% B composition range, and the eutectic reaction L {leftrightarrow} NbSS + NbB was determined to occur at 2104 ± 5 C by DTA.

  17. Structure and properties of heat-treated Ti-(40-4X)%Nb-X%Mo alloys with IE (SME)

    International Nuclear Information System (INIS)

    Silva, Marcia Almeida; Matlakhova, Lioudmila Aleksandrovna; Matlakhov, Anatoliy Nikolaevich; Paes Junior, Herval Ramos; Goncharenko, Boris Andreevich

    2010-01-01

    Whereas the inelastic effects (IE) are related with reversible martensitic transformation, in this work, was analyzed the structure and properties of heat treated Ti-(40-4x)%Nb-x%Mo alloys, where the contents of niobium and molybdenum are between 24-40%Nb and 0-4%Mo (% weight). The structural and phase analysis were done through optical microscopy and X-rays diffraction. The properties measured in this study were electrical resistivity and density. The Ti-40%Nb alloy shows a structure consisting of the β phase and αα’’ martensite with a minor participation of the α’ and ω. The alloys with 1 to 4%Mo have similar structures consisting of the β phase and traces of the α’’ phase. Thus, was observed greater capacity of Mo as a β stabilizer. The increase in Mo content in the composition of the alloys causes an increase in electrical resistivity of these. The samples may have undergone change in volume, caused by phase transformation, what possibly caused the difference between the density values calculated (theoretical) and experimental. (author)

  18. Precipitation hardening and microstructure evolution of the Ti-7Nb-10Mo alloy during aging.

    Science.gov (United States)

    Yi, Ruowei; Liu, Huiqun; Yi, Danqing; Wan, Weifeng; Wang, Bin; Jiang, Yong; Yang, Qi; Wang, Dingchun; Gao, Qi; Xu, Yanfei; Tang, Qian

    2016-06-01

    A biomedical β titanium alloy (Ti-7Nb-10Mo) was designed and prepared by vacuum arc self-consumable melting. The ingot was forged and rolled to plates, followed by quenching and aging. Age-hardening behavior, microstructure evolution and its influence on mechanical properties of the alloy during aging were investigated, using X-ray diffraction, transmission electron microscopy, tensile and hardness measurements. The electrochemical behavior of the alloy was investigated in Ringer's solution. The microstructure of solution-treated (ST) alloy consists of the supersaturated solid solution β phase and the ωath formed during athermal process. The ST alloy exhibits Young's modulus of 80 GPa, tensile strength of 774 MPa and elongation of 20%. The precipitation sequences during isothermal aging at different temperatures were determined as β+ωath→β+ωiso (144 h) at Taging=350-400 °C, β+ωath→β+ωiso+α→β+α at Taging=500°C, and β+ωath→β+α at Taging=600-650 °C, where ωiso forms during isothermal process. The mechanical properties of the alloy can be tailored easily through controlling the phase transition during aging. Comparing with the conventional Ti-6Al-4V alloy, the Ti-7Nb-10Mo alloy is more resistant to corrosion in Ringer's solution. Results show that the Ti-7Nb-10Mo alloy is promising for biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effect of annealing temperature on microstructure and superelastic properties of a Ti-18Zr-4.5Nb-3Sn-2Mo alloy.

    Science.gov (United States)

    Fu, Jie; Kim, Hee Young; Miyazaki, Shuichi

    2017-01-01

    In this study a new superelastic Ti-18Zr-4.5Nb-3Sn-2Mo alloy was prepared by adding 2at% of Mo as a substitute for Nb to the Ti-18Zr-11Nb-3Sn alloy, and heat treatment at different temperatures was conducted. The temperature dependence of superelasticity and annealing texture was investigated. Texture showed a dependence of annealing temperature: the specimen annealed at 923K for 0.3ks exhibited {113} β β type texture which was similar to the deformation texture, while specimens annealed at 973, 1073K, and 1173K showed {001} β β type recrystallization texture which was preferable for recovery strain. The largest recovery strain of 6.2%, which is the same level as that of the Ti-18Zr-11Nb-3Sn alloy, was obtained in the specimen annealed at 1173K for 0.3ks due to the well-developed {001} β β type recrystallization texture. The Ti-18Zr-3Nb-3Sn-2Mo alloy presented a higher tensile strength compared with the Ti-18Zr-11Nb-3Sn alloy when heat treated at 1173K for 0.3ks, which was due to the solid solution strengthening effect of Mo. Annealing at 923K for 0.3ks was effective in obtaining a good combination of a high strength as 865MPa and a large recovery strain as 5.6%. The high recovery strain was due to the high stress at which the maximum recovery stain was obtained which was attributed to the small grain size formed at low annealing temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Comparison of U-Pu-Mo, U-Pu-Nb, U-Pu-Ti and U-Pu-Zr alloys; Comparaison des alliages U-Pu-Mo, U-Pu-Nb, U-Pu-Ti, U-Pu-Zr

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, R; Barthelemy, P [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    The data concerning the U-Pu, U-Pu-Mo and U-Pu-Nb are recalled. The results obtained with U-Pu-Ti and U-Pu-Zr alloys containing 15-20 per cent Pu and 10 wt. per cent ternary element are reported. The transformation temperatures, the expansion coefficients, the nature of phases, the thermal cycling behaviour have been determined. A list of the principal properties of these different alloys is presented and the possibilities of their use as fast reactor's fuel element are considered. The U-Pu-Ti alloys seem to be quite promising: easiness of fabrication, large thermal stability, excellent behaviour in air, small quantity of zeta phase, temperature of solidus superior to 1100 deg. C. (authors) [French] On rappelle brievement les connaissances acquises sur les alliages U-Pu, U-Pu-Mo et U-Pu-Nb. On presente les resultats obtenus avec les alliages U-Pu-Ti et U-Pu-Zr pour des teneurs de 15 a 20 pour cent de plutonium et 10 pour cent en poids d'element ternaire. On a determine les temperatures de transformation, les coefficients de dilatation, la nature des phases, la conductibilite thermique a 20 deg. C, la tenue au cyclage thermique et diverses autres proprietes. Un tableau resume les principales proprietes des divers alliages. On considere les possibilites d'emploi de ces alliages comme combustibles de reacteur rapide. Les alliages U-Pu-Ti paraissent particulierement interessants: facilite d'elaboration, stabilite thermique etendue, tenue dans l'air excellente, faible quantite de la phase U-Pu zeta, temperature de fusion commencante superieure a 1100 deg. C. (auteurs)

  1. Refining of cast intermetallic alloy Ti - 43 % Al - X (Nb, Mo, B) microstructure using heat treatment

    International Nuclear Information System (INIS)

    Imaev, R.M.; Imaev, V.M.; Khismatullin, T.G.

    2006-01-01

    The microstructure and high temperature mechanical properties are studied in a cast alloy Ti - 43 % Al - X (Nb, Mo, B) using methods of optical and scanning electron microscopy, X ray spectrum microanalysis and differential thermal analysis. The alloy belongs to a new class of β-solidifying γ-TiAl+α 2 -Ti 3 Al alloys. The alloy is investigated as cast and after heat treatment that promotes grain refinement. Mechanical properties are determined on tensile tests at 1000 and 1100 deg C in the air [ru

  2. Anomalous temperature dependence of the superelastic behavior of Ti-Nb-Mo alloys

    International Nuclear Information System (INIS)

    Al-Zain, Y.; Kim, H.Y.; Koyano, T.; Hosoda, H.; Nam, T.H.; Miyazaki, S.

    2011-01-01

    The effect of test temperature on the superelasticity of Ti-27Nb and various Ti-Nb-Mo alloys is investigated. A deviation in the stress at which martensitic transformation starts (σ β-α'' ) from the behavior expected from the Clausius-Clapeyron relationship is confirmed in all alloys. The degree of deviation is found to be in inverse proportion to the electron-to-atom ratio. However, no deviation is observed in the stress at which the reverse transformation finishes (σ α''-β ). All alloys exhibit anomalous electrical resistivity during cooling. X-ray diffraction (XRD) and transmission electron microscopy investigations show that the volume fraction of the athermal ω (ω ath ) phase increases with a decrease in temperature. An in situ XRD experiment obtained during a loading-unloading cycle shows that the β and ω ath phases transform into the α'' phase during loading. The annihilation of the ω ath phase within the α'' phase allows σ α''-β to obey the Clausius-Clapeyron relationship. As a result, a large hysteresis loop is produced.

  3. Structure and magnetic properties of NdFeB thin films with Cr, Mo, Nb, Ta, Ti, and V buffer layers

    International Nuclear Information System (INIS)

    Jiang, H.; O'Shea, M.J.

    2000-01-01

    Layers of NdFeB of the form A(20 nm)/NdFeB(d nm)/A(20 nm) where A represents Cr, Mo, Nb, Ta, Ti, V were prepared on a silicon substrate by magnetron sputtering. The purpose is to determine how (i) the chosen buffer layer and (ii) NdFeB layer thickness d (especially d 2 Fe 14 B with no preferred crystalline orientation. Our highest coercivities occur for buffer layer elements from row five of the periodic table, 20 kOe (1600 kA/m) in a Nb buffered sample with d of 180 nm and 17 kOe (1350 kA/m) in a Mo buffered sample with d of 180 nm. Buffer layers from row four (Ti, V, and Cr) and row six (Ta) all give lower coercivities. Our largest energy product, 10.3 MG-Oe (82 kJ/m 3 ), is obtained for the Mo buffered sample. Average Nd 2 Fe 14 B crystallite size for this sample is 27 nm. Only the Cr and Ti buffered films show a large coercivity (≥2 kOe) for d of 54 nm with the Cr films showing the highest coercivity, 2.7 kOe (215 kA/m). In films subjected to a rapid thermal anneal (anneal time 30 s) we find that both the coercivity and energy product are larger than in samples subjected to a 20 min anneal. In our Nb buffered systems we obtain coercivities as high as 26.3 kOe (2090 kA/m) after a rapid thermal anneal

  4. An investigation of the fatigue and fracture behavior of a Nb-12Al-44Ti-1.5Mo intermetallic alloy

    International Nuclear Information System (INIS)

    Soboyejo, W.O.; Dipasquale, J.; Ye, F.; Mercer, C.

    1999-01-01

    This article presents the results of a study of the fatigue and fracture behavior of a damage-tolerant Nb-12Al-44Ti-1.5Mo alloy. This partially ordered B2 + orthorhombic intermetallic alloy is shown to have attractive combinations of room-temperature ductility (11 to 14 pct), fracture toughness (60 to 92 MPa√m), and comparable fatigue crack growth resistance to IN718, Ti-6Al-4V, and pure Nb at room temperature. The studies show that tensile deformation in the Nb-12Al-44Ti-1.5Mo alloy involves localized plastic deformation (microplasticity via slip-band formation) which initiates at stress levels that are significantly below the uniaxial yield stress (∼9.6 pct of the 0.2 pct offset yield strength (YS)). The onset of bulk yielding is shown to correspond to the spread of microplasticity completely across the gage sections of the tensile specimen. Fatigue crack initiation is also postulated to occur by the accumulation of microplasticity (coarsening of slip bands). Subsequent fatigue crack growth then occurs by the unzipping of cracks along slip bands that form ahead of the dominant crack tip. The proposed mechanism of fatigue crack growth is analogous to the unzipping crack growth mechanism that was suggested originally by Neumann for crack growth in single-crystal copper. Slower near-threshold fatigue crack growth rates at 750 C are attributed to the shielding effects of oxide-induced crack closure. The fatigue and fracture behavior are also compared to those of pure Nb and emerging high-temperature niobium-based intermetallics

  5. DFT investigation of electronic structures and magnetic properties of halides family MeHal3 (Me=Ti, Mo,Zr,Nb, Ru, Hal=Cl,Br,I) one dimensional structures

    Science.gov (United States)

    Kuzubov, A. A.; Kovaleva, E. A.; Popova, M. I.; Kholtobina, A. S.; Mikhaleva, N. S.; Visotin, M. A.; Fedorov, A. S.

    2017-10-01

    Using DFT GGA calculations, electronic structure and magnetic properties of wide family of transition metal trihalides (TMHal3) (Zr, Ti and Nb iodides, Mo, Ru, Ti and Zr bromides and Ti or Zr chlorides) are investigated. These structures consist of transition metal atoms chains surrounded by halides atoms. Chains are connected to each other by weak interactions. All TMHal3 compounds were found to be conductive along chain axis except of MoBr3 which is indirect gap semiconductor. It was shown that NbI3 and MoBr3 have large magnetic moments on metal atoms (1.17 and 1.81 μB, respectively) but other TMHal3 materials have small or zero magnetic moments. For all structures ferromagnetic and anti-ferromagnetic phases have almost the same energies. The causes of these properties are debated.

  6. Photocatalytic activity of TiO2/Nb2O5/PANI and TiO2/Nb2O5/RGO as new nanocomposites for degradation of organic pollutants.

    Science.gov (United States)

    Zarrin, Saviz; Heshmatpour, Felora

    2018-06-05

    In this study, highly active titanium dioxide modified by niobium oxide (Nb 2 O 5 ), polymer (PANI) and reduced graphene oxide (RGO) were successfully prepared. The morphology, structure, surface area and light absorption properties of the present nanocomposites for removal of methylene blue (MB) and methyl orange (MO) were investigated and compared with those of TiO 2 /Nb 2 O 5 and TiO 2 nanoparticles. The characterization techniques such as XRD, FT-IR, UV-vis, SEM, EDX, BET and TEM were employed in order to identify the nanocomposites. Also, photocatalytic properties of TiO 2 /Nb 2 O 5 /PANI and TiO 2 /Nb 2 O 5 /RGO nanocomposites under visible light irradiation were studied. In this way, the obtained results were compared to each other and also compared to TiO 2 /Nb 2 O 5 and TiO 2 nanoparticles. In this context, the chemical oxygen demand (COD) removal follows the photodegradation in observed performance. The results indicate that reduced TiO 2 /Nb 2 O 5 nanocomposite is effectively modified by graphene oxide to give TiO 2 /Nb 2 O 5 /RGO composite. The TiO 2 /Nb 2 O 5 /RGO exhibits significantly higher photocatalytic activity in degradation of organic dyes under visible light rather than that of TiO 2 /Nb 2 O 5 /PANI, TiO 2 /Nb 2 O 5 and pure TiO 2 . Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Phase Composition of a CrMo0.5NbTa0.5TiZr High Entropy Alloy: Comparison of Experimental and Simulated Data

    OpenAIRE

    Fan Zhang; Oleg N. Senkov; Jonathan D. Miller

    2013-01-01

    Microstructure and phase composition of a CrMo0.5NbTa0.5TiZr high entropy alloy were studied in the as-solidified and heat treated conditions. In the as-solidified condition, the alloy consisted of two disordered BCC phases and an ordered cubic Laves phase. The BCC1 phase solidified in the form of dendrites enriched with Mo, Ta and Nb, and its volume fraction was 42%. The BCC2 and Laves phases solidified by the eutectic-type reaction, and their volume fractions were 27% and 31%, respectively....

  8. Phase Composition of a CrMo0.5NbTa0.5TiZr High Entropy Alloy: Comparison of Experimental and Simulated Data

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2013-09-01

    Full Text Available Microstructure and phase composition of a CrMo0.5NbTa0.5TiZr high entropy alloy were studied in the as-solidified and heat treated conditions. In the as-solidified condition, the alloy consisted of two disordered BCC phases and an ordered cubic Laves phase. The BCC1 phase solidified in the form of dendrites enriched with Mo, Ta and Nb, and its volume fraction was 42%. The BCC2 and Laves phases solidified by the eutectic-type reaction, and their volume fractions were 27% and 31%, respectively. The BCC2 phase was enriched with Ti and Zr and the Laves phase was heavily enriched with Cr. After hot isostatic pressing at 1450 °C for 3 h, the BCC1 dendrites coagulated into round-shaped particles and their volume fraction increased to 67%. The volume fractions of the BCC2 and Laves phases decreased to 16% and 17%, respectively. After subsequent annealing at 1000 °C for 100 h, submicron-sized Laves particles precipitated inside the BCC1 phase, and the alloy consisted of 52% BCC1, 16% BCC2 and 32% Laves phases. Solidification and phase equilibrium simulations were conducted for the CrMo0.5NbTa0.5TiZr alloy using a thermodynamic database developed by CompuTherm LLC. Some discrepancies were found between the calculated and experimental results and the reasons for these discrepancies were discussed.

  9. Comparison of U-Pu-Mo, U-Pu-Nb, U-Pu-Ti and U-Pu-Zr alloys

    International Nuclear Information System (INIS)

    Boucher, R.; Barthelemy, P.

    1964-01-01

    The data concerning the U-Pu, U-Pu-Mo and U-Pu-Nb are recalled. The results obtained with U-Pu-Ti and U-Pu-Zr alloys containing 15-20 per cent Pu and 10 wt. per cent ternary element are reported. The transformation temperatures, the expansion coefficients, the nature of phases, the thermal cycling behaviour have been determined. A list of the principal properties of these different alloys is presented and the possibilities of their use as fast reactor's fuel element are considered. The U-Pu-Ti alloys seem to be quite promising: easiness of fabrication, large thermal stability, excellent behaviour in air, small quantity of zeta phase, temperature of solidus superior to 1100 deg. C. (authors) [fr

  10. Preparation, composition, and solid state investigations of TiN, ZrN, NbN, and compounds from the pseudobinary systems NbN-NbC, NbN-TiC, and NbN-TiN

    International Nuclear Information System (INIS)

    Christensen, A.N.; Fregerslev, S.

    1977-01-01

    Single crystals of the cubic phases TiN, ZrN, delta-NbN and of compounds from the pseudobinary systems NbN-NbC, NbN-TiC, and NbN-TiN were obtained by zone melting, zone annealing and annealing of the metal carbides in nitrogen gas of 2 MPa. Single crystals of the tetragonal phase gamma-NbN were obtained in a similar way by annealing of niobium. The nitrides are non-stochiometric. TiN was obtained in the composition range TiNsub(0.99) to TiNsub(0.50), ZrN in the range ZrNsub(1.00) to ZrNsub(0.63), and in niobium nitrides were obtained in the composition range NbNsub(0.90) to NbNsub(0.69). The compounds from the pseudobinary systems have up to 35% vacant sites in the nitrogen-carbon sublattice. TiN and ZrN have only vacant sites in the nitrogen sublattice. A correlation is found between the unit cell parameters for titanium nitride and zirconium nitride and the nitrogen-metal ratios. (orig.) [de

  11. In situ NiTi/Nb(Ti) composite

    International Nuclear Information System (INIS)

    Jiang, Daqiang; Cui, Lishan; Jiang, Jiang; Zheng, Yanjun

    2013-01-01

    Graphical abstract: - Highlights: • In situ NiTi/Nb(Ti) composites were fabricated. • The transformation temperature was affected by the mixing Ti:Ni atomic ratios. • The NiTi component became micron-scale lamella after forging and rolling. • The composite exhibited high strength and high damping capacity. - Abstract: This paper reports on the creation of a series of in situ NiTi/Nb(Ti) composites with controllable transformation temperatures based on the pseudo-binary hypereutectic transformation of NiTi–Nb system. The composite constituent morphology was controlled by forging and rolling. It is found that the thickness of the NiTi lamella in the composite reached micron level after the hot-forging and cold-rolling. The NiTi/Nb(Ti) composite exhibited high damping capacity as well as high yield strength

  12. Microstructures and room temperature fracture toughness of Nb/Nb5Si3 composites alloyed with W, Mo and W–Mo fabricated by spark plasma sintering

    International Nuclear Information System (INIS)

    Xiong, Bowen; Cai, Changchun; Wang, Zhenjun

    2014-01-01

    Highlights: • Microstructure of Nb/Nb 5 Si 3 composite alloyed with W and Mo is change obviously. • W and Mo elements can solid solution in Nb and Nb 5 Si 3 phase respectively. • Alloyed with W and Mo together, the solid solubility of Nb 5 Si 3 phases is undetected. • The Nb/Nb 5 Si 3 composite alloyed with W and Mo together has high fracture toughness. - Abstract: Microstructures and room temperature fracture toughness of Nb/Nb 5 Si 3 composites alloyed with W, Mo and W–Mo fabricated by spark plasma sintering were investigated. The microstructures were examined using scanning electron microscope (SEM). X-ray diffraction (XRD) was performed on the bulk specimens for identification of phases. The chemical species were analyzed using electron-probe micro-analysis (EPMA). Results indicated that the microstructures of Nb/Nb 5 Si 3 composites alloyed with W or Mo is unaltered, including primary Nb and eutectic mixtures of Nb and Nb 5 Si 3 , and the coarse and fine eutectic mixtures. The W and Mo elements solid solution in Nb and Nb 5 Si 3 phase are detected. But that alloyed with W and Mo together, The microstructures are change obviously, including Nb phase, the solid solubility phases of W and Mo atoms in Nb, and the solid solubility phases of Nb atoms in W are also found, but the solid solubility phenomenon of Nb 5 Si 3 phases is not detected. The microhardness of Nb and Nb 5 Si 3 phases increases obviously because of solid solution strengthening. The Nb/Nb 5 Si 3 composite alloyed with W and Mo together hashing high fracture toughness is attributable to the big eutectic Nb and interface of eutectic phases, which can bear large deformation to absorb the crack energy and form the decohesion between eutectic phases

  13. Solid solution cermet: (Ti,Nb)(CN)-Ni cermet.

    Science.gov (United States)

    Kwon, Hanjung; Jung, Sun-A

    2014-11-01

    Solid solution powders without W, (Ti,Nb)(CN) powders with a B1 structure (NaCl like), were synthesized by high energy milling and carbothermal reduction in nitrogen. The range of molar ratios of Ti/Nb for forming complete (Ti,Nb)(CN) phase was broader than that of Ti/W for the (Ti,W)(CN) phase because carbide or carbonitride of Nb had a B1 crystal structure identical to Ti(CN) while WC had a hexagonal crystal structure. The results revealed that the hardness of (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,W)(CN)-Ni cermets. The lower density of the (Ti,Nb)(CN) powder contributed to the higher hardness compared to (Ti,W)(CN) because the volumetric ratio of (Ti,Nb)(CN) in the (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,Nb)(CN) in the (Ti,W)(CN)-Ni cermets at the same weight ratio of Ni. Additionally, it was assumed that intrinsic the properties of (Ti,Nb)(CN) could also be the cause for the high hardness of the (Ti,Nb)(CN)-Ni cermets.

  14. Biological Properties of Ti-Nb-Zr-O Nanostructures Grown on Ti35Nb5Zr Alloy

    Directory of Open Access Journals (Sweden)

    Zhaohui Li

    2012-01-01

    Full Text Available Surface modification of low modulus implant alloys with oxide nanostructures is one of the important ways to achieve favorable biological behaviors. In the present work, amorphous Ti-Nb-Zr-O nanostructures were grown on a peak-aged Ti35Nb5Zr alloy through anodization. Biological properties of the Ti-Nb-Zr-O nanostructures were investigated through in vitro bioactivity testings, stem cell interactions, and drug release experiments. The Ti-Nb-Zr-O nanostructures demonstrated a good capability of inducing apatite formation after immersion in simulated body fluids (SBFs. Drug delivery experiment based on gentamicin and the Ti-Nb-Zr-O nanostructures indicated that a high drug loading content could result in a prolonged release process and a higher quantity of drug residues in the oxide nanostructures after drug release. Quick stem cell adhesion and spreading, as well as fast formation of extracellular matrix materials on the surfaces of the Ti-Nb-Zr-O nanostructures, were found. These findings make it possible to further explore the biomedical applications of the Ti-Nb-Zr-O nanostructure modified alloys especially clinical operation of orthopaedics by utilizing the nanostructures-based drug-release system.

  15. Microstructures and phase relationships in the Ti3Al + Nb system

    International Nuclear Information System (INIS)

    Kestner-Weykamp, H.T.; Kaufman, M.J.

    1989-01-01

    Alloys based on the α 2 -Ti 3 Al compound (hexagonal) DO 19 are currently experiencing limited use as advanced aerospace materials. To date, the alloys with the most desirable properties contain additions of β stabilizers, such as Nb, Mo and V, which promote the formation of a two-phase mixture of α 2 +β or α 2 +B2 (where B2 refers to the ordered CsCl structure). Unfortunately, the phase relationships in these systems have not been established in sufficient detail to allow their more widespread application. Recently, there has been a series of investigations aimed at alleviating this deficiency in the ternary Ti-Al-Nb system. These studies have clearly indicated the existence of the ordered B2 phase, which, in the higher Nb alloys, can be retained at room temperature by rapid cooling from the liquid or solid state. The authors describe (TiNb) 3 Al alloys (from 0 to 30 at. pct. Nb) were studies after conventional and nonequilibrium (i.e., rapid solidification) processing with an emphasis on providing further insight into the transformation sequences and phase equilibria in these alloys

  16. Comparing Thermal Stability of NbTi and Nb$_3$Sn Wires

    CERN Document Server

    Breschi, M; Bottura, L; Devred, A; Trillaud, F

    2009-01-01

    The investigation of quenching in low temperature superconducting wires is of great relevance for a proper design of superconductive cables and magnets. This paper reports the experimental results of a vast measurement campaign of quench induced by laser pulses on NbTi and Nb$_{3}$Sn wires in pool boiling Helium I. A comparison of the quench behavior of two typical NbTi and Nb$_{3}$Sn wires is shown from different standpoints. Different qualitative behaviors of the voltage traces recorded during quenches and recoveries on NbTi and Nb$_{3}$Sn wires are reported and analyzed. It is shown that the Nb$_{3}$Sn wire exhibits a quench or no-quench behavior, whereas quenches and recoveries are exhibited by the NbTi wire. The two wires are also compared considering the behaviors of the two main parameters describing quench, i.e. quench energies and quench velocities, with respect to operation current and pulse duration and magnetic field. It is shown that the Nb$_{3}$Sn wire exhibits a ‘kink’ of the quench energy ...

  17. Diffusion behavior in the films of Nb-Ti systems

    International Nuclear Information System (INIS)

    Yoshitake, Michiko; Yoshihara, Kazuhiro

    1990-01-01

    The diffusion behavior of substrate element into a deposited film was investigated. The observed systems were a Nb film/Ti substrate and a Ti film/Nb substrate. When the Nb film/Ti substrate was heated in a vacuum, Ti diffused very rapidly in the Nb film. The pre-exponential factor of the diffusion constant of Ti in the Nb film was 5.6x10 -2 m 2 s -1 , and the activation energy was 220 kJmol -1 . The observed activation energy is about 60% of that of Ti in the bulk Nb. On the other hand, when the Ti film/Nb substrate was heated in a vacuum, Nb did not diffuse so rapidly. Titanium diffused through the Nb film rapidly and was concentrated on the surface of the Nb film. The chemical state of the concentrated Ti was metallic, and neither titanium oxides nor titanium carbide was observed. Therefore, the driving force of the rapid diffusion of Ti in the Nb film is considered as the reduction of the surface energy of Nb film. The difference in the diffusion behavior between Ti through the Nb film and Nb through the Ti film is explained supposing that the segregation of Ti reduces the surface energy of the Nb film but the segregation of Nb does not reduce the surface energy of the Ti film. After heating of the Nb film/Ti substrate for a long time, a new phase was formed at the interface between the Nb film and the Ti substrate. The chemical composition of the new phase is about 50% of Ti and 50% of Nb. This phase has not been reported in the phase diagram of the bulk Ti-Nb system. The surface area of the Nb film is considered to be quite large, so the contribution of surface energy to the thermodynamic state of the Nb film cannot be neglected. Therefore, the chemical potential of the film is different from that of the bulk. Then, the new phase, which does not exist in the phase diagram of the bulk system, is formed by an interaction of the films. (author)

  18. Effect of Nb Addition to Ti-Bearing Super Martensitic Stainless Steel on Control of Austenite Grain Size and Strengthening

    Science.gov (United States)

    Ma, Xiaoping; Langelier, Brian; Gault, Baptiste; Subramanian, Sundaresa

    2017-05-01

    The role of Nb in normalized and tempered Ti-bearing 13Cr5Ni2Mo super martensitic stainless steel is investigated through in-depth characterization of the bimodal chemistry and size of Nb-rich precipitates/atomic clusters and Nb in solid solution. Transmission electron microscopy and atom probe tomography are used to analyze the samples and clarify precipitates/atom cluster interactions with dislocations and austenite grain boundaries. The effect of 0.1 wt pct Nb addition on the promotion of (Ti, Nb)N-Nb(C,N) composite precipitates, as well as the retention of Nb in solution after cooling to room temperature, are analyzed quantitatively. (Ti, Nb)N-Nb(C,N) composite precipitates with average diameters of approximately 24 ± 8 nm resulting from epitaxial growth of Nb(C,N) on pre-existing (Ti,Nb)N particles, with inter-particle spacing on the order of 205 ± 68 nm, are found to be associated with mean austenite grain size of 28 ± 10 µm in the sample normalized at 1323 K (1050 °C). The calculated Zener limiting austenite grain size of 38 ± 13 µm is in agreement with the experimentally observed austenite grain size distribution. 0.08 wt pct Nb is retained in the as-normalized condition, which is able to promote Nb(C, N) atomic clusters at dislocations during tempering at 873 K (600 °C) for 2 hours, and increases the yield strength by 160 MPa, which is predicted to be close to maximum increase in strengthening effect. Retention of solute Nb before tempering also leads to it preferentially combing with C and N to form Nb(C, N) atom clusters, which suppresses the occurrence of Cr- and Mo-rich carbides during tempering.

  19. In vitro performance assessment of new beta Ti–Mo–Nb alloy compositions

    Energy Technology Data Exchange (ETDEWEB)

    Neacsu, Patricia [University of Bucharest, Department of Biochemistry and Molecular Biology, 91–95 Spl. Independentei, 050095 Bucharest (Romania); Gordin, Doina-Margareta [INSA Rennes, UMR CNRS 6226 ISCR/Chimie-Métallurgie, 20 avenue des Buttes de Coësmes, F-35043 Rennes, Cedex (France); Mitran, Valentina [University of Bucharest, Department of Biochemistry and Molecular Biology, 91–95 Spl. Independentei, 050095 Bucharest (Romania); Gloriant, Thierry [INSA Rennes, UMR CNRS 6226 ISCR/Chimie-Métallurgie, 20 avenue des Buttes de Coësmes, F-35043 Rennes, Cedex (France); Costache, Marieta [University of Bucharest, Department of Biochemistry and Molecular Biology, 91–95 Spl. Independentei, 050095 Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91–95 Spl. Independentei, 050095 Bucharest (Romania)

    2015-02-01

    New β-titanium based alloys with low Young's modulus are currently required for the next generation of metallic implant materials to ensure good mechanical compatibility with bone. Several of these are representatives of the ternary Ti–Mo–Nb system. The aim of this paper is to assess the in vitro biological performance of five new low modulus alloy compositions, namely Ti12Mo, Ti4Mo32Nb, Ti6Mo24Nb, Ti8Mo16Nb and Ti10Mo8Nb. Commercially pure titanium (cpTi) was used as a reference material. Comparative studies of cell activity exhibited by MC3T3-E1 pre-osteoblasts over short- and long-term culture periods demonstrated that these newly-developed metallic substrates exhibited an increased biocompatibility in terms of osteoblast proliferation, collagen production and extracellular matrix mineralization. Furthermore, all analyzed biomaterials elicited an almost identical cell response. Considering that macrophages play a pivotal role in bone remodeling, the behavior of a monocyte-macrophage cell line, RAW 264.7, was also investigated showing a slightly lower inflammatory response to Ti–Mo–Nb biomaterials as compared with cpTi. Thus, the biological performances together with the superior mechanical properties recommend these alloys for bone implant applications. - Highlights: • Ti–Mo–Nb compositions show a fully β-microstructural state by XRD analysis. • Similar osteoblast growth and differentiation is displayed by β-Ti alloys and cpTi. • Ti–Mo–Nb alloys elicit a slightly lower inflammatory response than cpTi.

  20. In vitro performance assessment of new beta Ti–Mo–Nb alloy compositions

    International Nuclear Information System (INIS)

    Neacsu, Patricia; Gordin, Doina-Margareta; Mitran, Valentina; Gloriant, Thierry; Costache, Marieta; Cimpean, Anisoara

    2015-01-01

    New β-titanium based alloys with low Young's modulus are currently required for the next generation of metallic implant materials to ensure good mechanical compatibility with bone. Several of these are representatives of the ternary Ti–Mo–Nb system. The aim of this paper is to assess the in vitro biological performance of five new low modulus alloy compositions, namely Ti12Mo, Ti4Mo32Nb, Ti6Mo24Nb, Ti8Mo16Nb and Ti10Mo8Nb. Commercially pure titanium (cpTi) was used as a reference material. Comparative studies of cell activity exhibited by MC3T3-E1 pre-osteoblasts over short- and long-term culture periods demonstrated that these newly-developed metallic substrates exhibited an increased biocompatibility in terms of osteoblast proliferation, collagen production and extracellular matrix mineralization. Furthermore, all analyzed biomaterials elicited an almost identical cell response. Considering that macrophages play a pivotal role in bone remodeling, the behavior of a monocyte-macrophage cell line, RAW 264.7, was also investigated showing a slightly lower inflammatory response to Ti–Mo–Nb biomaterials as compared with cpTi. Thus, the biological performances together with the superior mechanical properties recommend these alloys for bone implant applications. - Highlights: • Ti–Mo–Nb compositions show a fully β-microstructural state by XRD analysis. • Similar osteoblast growth and differentiation is displayed by β-Ti alloys and cpTi. • Ti–Mo–Nb alloys elicit a slightly lower inflammatory response than cpTi

  1. Anodic Fabrication of Ti-Nb-Zr-O Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2014-01-01

    Full Text Available Highly ordered Ti-Nb-Zr-O nanotube arrays were fabricated through pulse anodic oxidation of Ti-Nb-Zr alloy in 1 M NaH2PO4 containing 0.5 wt% HF electrolytes. The effect of anodization parameters and Zr content on the microstructure and composition of Ti-Nb-Zr-O nanotubes was investigated using a scanning electron microscope equipped with energy dispersive X-ray analysis. It was found that length of the Ti-Nb-Zr-O nanotubes increased with increase of Zr contents. The diameter and the length of Ti-Nb-Zr-O nanotubes could be controlled by pulse voltage. XRD analysis of Ti-Nb-Zr-O samples annealed at 500°C in air indicated that the (101 diffraction peaks shifted from 25.78° to 25.05° for annealed Ti-Nb-Zr-O samples with different Zr contents because of larger lattice parameter of Ti-Nb-Zr-O compared to that of undoped TiO2.

  2. Niobium alloys production with elements of high steam pressure and high ductilidate Nb46,5%Ti, Nb 1%Zr, Nb 1%Ti and Nb20% Ta

    International Nuclear Information System (INIS)

    Pinatti, D.G.; Baldan, C.A.; Dainesi, C.R.; Sandim, H.R.Z.

    1988-01-01

    The melting technology of niobium alloys with high ductilidade and high steam pressure, having the Ti, Zr and Ta as alloying elements is described. The electron beam technique for production of Nb 46,5%Ti, Nb 1%Zr and Nb 20%Ta alloys is analysed, aiming a product with high grade and low cost. (C.G.C.) [pt

  3. Comparing the thermal stability of NbTi and Nb3Sn wires

    International Nuclear Information System (INIS)

    Breschi, M; Trevisani, L; Bottura, L; Devred, A; Trillaud, F

    2009-01-01

    The investigation of quenching in low temperature superconducting wires is of great relevance for a proper design of superconductive cables and magnets. This paper reports the experimental results of a vast measurement campaign of quench induced by laser pulses on NbTi and Nb 3 Sn wires in pool boiling helium I. A comparison of the quench behavior of two typical NbTi and Nb 3 Sn wires is shown from different standpoints. Different qualitative behaviors of the voltage traces recorded during quenches and recoveries on NbTi and Nb 3 Sn wires are reported and analyzed. It is shown that the Nb 3 Sn wire exhibits a quench or no-quench behavior, whereas quenches and recoveries are exhibited by the NbTi wire. The two wires are also compared by considering the behaviors of the two main parameters describing quench, i.e. quench energies and quench velocities, with respect to operating current, pulse duration, and magnetic field. It is shown that the Nb 3 Sn wire exhibits a 'kink' of the quench energy versus current curve that makes the quench energy of Nb 3 Sn lower than that of NbTi at some intermediate current levels. Both the qualitative differences of the voltage traces and the different behaviors of quench energies and velocities are interpreted through a coupled electromagnetic-thermal model, with special emphasis on the detailed description of heat exchange with liquid helium.

  4. Phase composition of Al-Ti-Nb-Mo γ alloys in the heat-treatment temperature range: Calculation and experiment

    Science.gov (United States)

    Belov, N. A.; Dashkevich, N. I.; Bel'tyukova, S. O.

    2015-07-01

    The phase composition of TNM-type Al-Ti-Nb-Mo γ alloys at heat-treatment temperatures is quantitatively studied using the Thermo-Calc program package and experimental methods. Isothermal cross sections are calculated and the joint influence of two alloying elements on the phase composition of the alloy is determined at the mean concentration of a third component. Based on the calculations of vertical cross sections, the boundaries of the four-phase eutectoid reaction α → α2 + β + γ are found. The temperature is shown to significantly influence the phase compositions of the γ alloys, among them the mass fractions of various phases (α, β, γ,α2) and the element concentration in them.

  5. Microstructure and creep behavior of an orthorhombic Ti-25Al-17Nb-1Mo alloy

    International Nuclear Information System (INIS)

    Zhang, J.W.; Zou, D.X.; Li, S.Q.; Lee, C.S.; Lai, J.K.L.

    1998-01-01

    Microstructural evolution during three heat-treatment schedules and the terminal microstructures in an orthorhombic alloy of Ti-25Al-17Nb-1Mo were observed and analyzed with optical microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The creep behavior of the alloy with three different microstructures (a coarse-lath, fine-lath, and fine equiaxed microstructure) was studied over a temperature range of 600 C to 750 C and over a stress range of 150 to 400 MPa in air. The steady-state creep rates, apparent stress exponents, and apparent creep activation energies of the various samples have been determined. The results show that creep behaviors in the alloy are strongly influenced by microstructure. The effect on creep by some of the microstructural features, such as the multivariants within the coarse laths and the interfaces of the laths and the equiaxed grains, is also discussed

  6. Nonvolatile ferroelectric memory based on PbTiO3 gated single-layer MoS2 field-effect transistor

    Science.gov (United States)

    Shin, Hyun Wook; Son, Jong Yeog

    2018-01-01

    We fabricated ferroelectric non-volatile random access memory (FeRAM) based on a field effect transistor (FET) consisting of a monolayer MoS2 channel and a ferroelectric PbTiO3 (PTO) thin film of gate insulator. An epitaxial PTO thin film was deposited on a Nb-doped SrTiO3 (Nb:STO) substrate via pulsed laser deposition. A monolayer MoS2 sheet was exfoliated from a bulk crystal and transferred to the surface of the PTO/Nb:STO. Structural and surface properties of the PTO thin film were characterized by X-ray diffraction and atomic force microscopy, respectively. Raman spectroscopy analysis was performed to identify the single-layer MoS2 sheet on the PTO/Nb:STO. We obtained mobility value (327 cm2/V·s) of the MoS2 channel at room temperature. The MoS2-PTO FeRAM FET showed a wide memory window with 17 kΩ of resistance variation which was attributed to high remnant polarization of the epitaxially grown PTO thin film. According to the fatigue resistance test for the FeRAM FET, however, the resistance states gradually varied during the switching cycles of 109. [Figure not available: see fulltext.

  7. Resistencia a la corrosión a alta temperatura de recubrimientos NiCrAlY y NiCrFeNbMoTiAl depositados por APS

    Directory of Open Access Journals (Sweden)

    José Luis Tristancho-Reyes

    2014-12-01

    Full Text Available La corrosión a alta temperatura de las tuberías utilizadas en equipos generadores de vapor (calderas ha sido reconocida como un grave problema que trae consigo el adelgazamiento de éstas y, por consiguiente, la falla de los equipos. En la última década se han incrementado las investigaciones que involucran recubrimientos protectores que ayudan de alguna manera a prolongar la vida útil de estos equipos. Esta investigación determinó el comportamiento de los recubrimientos NiCrAlY y NiCrFeNbMoTiAl depositados por proyección térmica asistida por plasma (APS sobre la aleación SA213 – T22 (2¼Cr – 1Mo, en un ambiente corrosivo de 80%V2O5–20%K2SO4 a 800°C. Los valores de la cinética de corrosión fueron determinados mediante resistencia a la polarización lineal (RPL y espectroscopia de impedancia electroquímica (EIE. Los resultados obtenidos muestran una menor cinética de corrosión en el recubrimiento NiCrFeNbMoTiAl que la presentada por el recubrimiento NiCrAlY, corroborado por Microscopia Electrónica de Barrido (MEB.

  8. Effect of Nb on the Microstructure, Mechanical Properties, Corrosion Behavior, and Cytotoxicity of Ti-Nb Alloys.

    Science.gov (United States)

    Han, Mi-Kyung; Kim, Jai-Youl; Hwang, Moon-Jin; Song, Ho-Jun; Park, Yeong-Joon

    2015-09-09

    In this paper, the effects of Nb addition (5-20 wt %) on the microstructure, mechanical properties, corrosion behavior, and cytotoxicity of Ti-Nb alloys were investigated with the aim of understanding the relationship between phase/microstructure and various properties of Ti-xNb alloys. Phase/microstructure was analyzed using X-ray diffraction (XRD), SEM, and TEM. The results indicated that the Ti-xNb alloys (x = 10, 15, and 20 wt %) were mainly composed of α + β phases with precipitation of the isothermal ω phase. The volume percentage of the ω phase increased with increasing Nb content. We also investigated the effects of the alloying element Nb on the mechanical properties (including Vickers hardness and elastic modulus), oxidation protection ability, and corrosion behavior of Ti-xNb binary alloys. The mechanical properties and corrosion behavior of Ti-xNb alloys were found to be sensitive to Nb content. These experimental results indicated that the addition of Nb contributed to the hardening of cp-Ti and to the improvement of its oxidation resistance. Electrochemical experiments showed that the Ti-xNb alloys exhibited superior corrosion resistance to that of cp-Ti. The cytotoxicities of the Ti-xNb alloys were similar to that of pure titanium.

  9. Hydrogen solubility and permeability of Nb-W-Mo alloy membrane

    International Nuclear Information System (INIS)

    Awakura, Y.; Nambu, T.; Matsumoto, Y.; Yukawa, H.

    2011-01-01

    Research highlights: → The concept for alloy design of Nb-based hydrogen permeable membrane has been applied to Nb-W-Mo ternary alloy in order to improve further the resistance to hydrogen embrittlement and hydrogen permeability. → The alloying effects of Mo on the hydriding properties of Nb-W alloy have been elucidated. → The addition of Mo and/or W into niobium improves the resistance to hydrogen embrittlement by reducing the dissolved hydrogen concentration in the alloy. → Nb-W-Mo alloy possesses excellent hydrogen permeability together with strong resistance to hydrogen embrittlement. - Abstract: The alloying effects of molybdenum on the hydrogen solubility, the resistance to hydrogen embrittlement and the hydrogen permeability are investigated for Nb-W-Mo system. It is found that the hydrogen solubility decreases by the addition of molybdenum into Nb-W alloy. As a result, the resistance to hydrogen embrittlement improves by reducing the hydrogen concentration in the alloy. It is demonstrated that Nb-5 mol%W-5 mol%Mo alloy possesses excellent hydrogen permeability without showing any hydrogen embrittlement when used under appropriate hydrogen permeation conditions, i.e., temperature and hydrogen pressures.

  10. Improving tribological properties of Ti-5Zr-3Sn-5Mo-15Nb alloy by double glow plasma surface alloying

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lili; Qin, Lin, E-mail: qinlin@tyut.edu.cn; Kong, Fanyou; Yi, Hong; Tang, Bin

    2016-12-01

    Highlights: • The Mo alloyed layers were successfully prepared on TLM surface by DG-PSA. • The surface microhardness of TLM is remarkably enhanced by Mo alloying. • The TLM samples after Mo alloying exhibit good wettability. • The Mo alloyed TLM samples show excellent tribological properties. - Abstract: Molybdenum, an alloying element, was deposited and diffused on Ti-5Zr-3Sn-5Mo-15Nb (TLM) substrate by double glow plasma surface alloying technology at 900, 950 and 1000 °C. The microstructure, composition distribution and micro-hardness of the Mo modified layers were analyzed. Contact angles on deionized water and wear behaviors of the samples against corundum balls in simulated human body fluids were investigated. Results show that the surface microhardness is significantly enhanced after alloying and increases with treated temperature rising, and the contact angles are lowered to some extent. More importantly, compared to as-received TLM alloy, the Mo modified samples, especially the one treated at 1000 °C, exhibit the significant improvement of tribological properties in reciprocating wear tests, with lower specific wear rate and friction coefficient. To conclude, Mo alloying treatment is an effective approach to obtain excellent comprehensive properties including optimal wear resistance and improved wettability, which ensure the lasting and safety application for titanium alloys as the biomedical implants.

  11. Comparison of the costs of superconducting accelerator dipoles using NbTi, Nb3Sn and NbTiTa

    International Nuclear Information System (INIS)

    Hassenzahl, W.

    1981-03-01

    The present study, which is based on the assumption that future, high-energy accelerators will use superconductors, is a comparison of the costs of 5 to 12 Tesla NbTi, Nb 3 S/sub n/, and NbTiTa accelerator magnets operating at 4.2 K or 1.8 K. The object of this evaluation is not to determine the actual cost of future accelerators, rather, its purpose is to provide some rationale for research on the next generation of superconducting accelerator magnets. Thus, though the actual costs of accelerator magnets may be different from those given here, the comparisons are valid

  12. Density of thermal vacancies in γ-Ti-Al-M, M = Si, Cr, Nb, Mo, Ta or W

    International Nuclear Information System (INIS)

    Woodward, C.; Kajihara, S.

    1999-01-01

    Modifications to alloy chemistry are often used to tailor the intrinsic flow behavior of structural materials. Models of creep in intermetallic alloys must account for the influence of chemistry on the available intrinsic creep mechanisms. As in simple metals the presence of vacancies strongly influences bulk diffusion processes in these materials. Limiting the density of constitutional and thermal vacancies by alloying may produce materials with enhanced creep properties. The energy of intrinsic and substitutional point defects in L1 0 TiAl is calculated within a first principles, local density functional theory framework. Relaxed structures and energies for vacancies, antisites and solid solutions are calculated using a plane-wave-pseudopotential method. Calculated defect energies are used within a canonical ensemble formalism to estimate the point defect densities as a function of temperature and composition. The density of vacancies is found to be sensitive to the underlying stoichiometry of TiAl. The dependence of the vacancy concentration for solid solutions of Si, Cr, Nb, Mo, Ta and W is also predicted

  13. Creep behavior of Ti3Al-Nb intermetallic alloys

    International Nuclear Information System (INIS)

    Yu, T.H.; Yue, W.J.; Koo, C.H.

    1997-01-01

    It is well known that Ti 3 Al-Nb alloys are potential materials for aerospace applications. The creep property is an important consideration when materials are used at high temperature. In this article, the effect of microstructure of Ti-25Al-10Nb alloy on the creep property was investigated, and the creep property of Ti-25Al-10Nb alloy modified by small addition of silicon 0.2 at.% or carbon 0.1 at.% was observed. The alloy with the addition of molybdenum to replace part of niobium 2 at.% was also studied. The experimental results show that the furnace-cooled Ti-25Al-10Nb alloy has superior creep resistance to the air-cooled Ti-25Al-10Nb alloy at 200 MPa, but exhibits poor creep resistance at 250 MPa or above. Small addition of silicon to the Ti-25Al-10Nb alloy may increase creep resistance. Small addition of carbon to the Ti-25Al-10Nb alloy may reduce creep resistance but raise rupture strain. Molybdenum is the most effective alloying element to increase creep resistance for the Ti-25Al-10Nb alloy. The creep mechanism of Ti-25Al-10Nb alloy is governed by dislocation climb. (orig.)

  14. Ternary alloying study of MoSi2

    International Nuclear Information System (INIS)

    Yi, D.; Li, C.; Akselsen, O.M.; Ulvensoen, J.H.

    1998-01-01

    Ternary alloying of MoSi 2 with adding a series of transition elements was investigated by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS). Iron, Co, Ni, Cr, V, Ti, and Nb were chosen as alloying elements according to the AB 2 structure map or the atomic size factor. The studied MoSi 2 base alloys were prepared by the arc melting process from high-purity metals. The EDS analysis showed that Fe, Co, and Ni have no solid solubility in as-cast MoSi 2 , while Cr, V, Ti, and Nb exhibit limited solid solubilities, which were determined to be 1.4 ± 0.7, 1.4 ± 0.4, 0.4 ± 0.1, and 0.8 ± 0.1. Microstructural characterization indicated that Mo-Si-M VIII (M VIII = Fe, Co, Ni) and Mo-Si-Cr alloys have a two-phase as-cast microstructure, i.e., MoSi 2 matrix and the second-phase FeSi 2 , CoSi, NiSi 2 , and CrSi 2 , respectively. In as-cast Mo-Si-V, Mo-Si-Ti, and Mo-Si-Nb alloys, besides MoSi 2 and C40 phases, the third phases were observed, which have been identified to be (Mo, V) 5 Si 3 , TiSi 2 , and (Mo, Nb) 5 Si 3

  15. The optimization of NbTi-Nb/sub 3/Sn high field superconducting magnet used for physics experiments

    International Nuclear Information System (INIS)

    Han, B.; Han, S.; Feng, Z.X.

    1989-01-01

    The approach to the optimum cost design of multigraded NbTi-Nb/sub 3/Sn high field superconducting magnet is proposed. Investigation shows that by reasonably choosing the contribution of NbTi and Nb/sub 3/Sn coils to the central field required and properly increasing the parameters β of both NbTi and Nb/sub 2/Sn coils, the optimum cost design of the NbTi-Nb/sub 3/Sn solenoid magnet can be obtained. This is the base on which the minimum cost design of multi-graded NbTi-Nb/sub 3/Sn high field superconducting magnet is reached. As an example, a calculation of a 14T three graded NbT-Nb/sub 3/Sn superconducting magnet with a bore of 31mm in diameter is given

  16. Production of superconducting Nb3Sn wire using Nb or Nb(Ti) and Sn(Ga) solid solution powders

    International Nuclear Information System (INIS)

    Thieme, C.L.H.; Foner, S.

    1991-01-01

    This paper reports on superconducting Nb 3 Sn wire produced by the powder metallurgy method using Nb or Nb-2.9 at% Ti powder in combination with Sn-x at% Ga powders (x = 3, 4.2, 6.2 and 9.0). Ga additions to the Sn caused considerable solid solution hardening which improved its workability. It made the Nb-Sn(Ga) powder combinations convenient for swaging and extensive wire drawing. Anneals at 950 degrees C produced wires with an overall J c of 10 4 A/cm 2 at 21.9 T for wires with both Ti in the Nb and 6.2 at% Ga in the Sn. Comparison of this wire with the best Nb(Ti)-Cu-internal Sn(Ti) shows a higher J c per A15 areas, especially in fields of 22T and above

  17. Energy for the interface system of (Nb, Mo)C/γ-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yanyuan; Wang, Zhenqiang; Zhao, Jiaying; Niu, Zhongyi; Guo, Chunhuan; Jiang, Fengchun [Harbin Engineering University, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin (China); Leng, Zhe [Harbin Engineering University, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin (China); Zhejiang Ocean University, Innovation and Application Institute, Zhoushan (China); Zhang, Zhengyan; Yao, Chunfa [Central Iron and Steel Research Institute, Department of Structural Steels, Beijing (China); Yang, Zhigang [Tsinghua University, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Beijing (China)

    2017-08-15

    The interfacial energies of MC/γ-Fe and formation energies of MC carbides have been investigated using first-principles calculations based on density functional theory (DFT). Results show that the replacement of Nb by Mo in the NbC lattice is unfavorable with respect to the formation energy. However, it reduces the lattice parameter of MC and decreases the σ{sub chemical} (interfacial chemical energy) of MC/γ-Fe, thus favoring the formation of complex (Nb, Mo)C carbide. The substitution of Nb by Mo at the interface of MC/γ-Fe system promotes the hybridizations of Mo-1NNFe and C-1NNFe (or 2NNFe) (the first or second nearest neighboring Fe atoms), which leads to a decrease in σ{sub chemical}. The influence of bond energy is estimated using the discrete lattice plane/nearest neighbor broken bond (DLP/NNBB) model. It is found that the reduced is attributed to the much smaller value of e{sub Fe-C}-e{sub Mo-C} (the difference between Fe-C and Nb-C interactions). The results obtained from the analysis of the precipitates in Nb- and Nb-Mo-bearing steels are in a good agreement with the calculations. (orig.)

  18. Microstructure and mechanical behavior of superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N biomedical alloys.

    Science.gov (United States)

    Ramarolahy, A; Castany, P; Prima, F; Laheurte, P; Péron, I; Gloriant, T

    2012-05-01

    In this study, the microstructure and the mechanical properties of two new biocompatible superelastic alloys, Ti-24Nb-0.5O and Ti-24Nb-0.5N (at.%), were investigated. Special attention was focused on the role of O and N addition on α(″) formation, supereleastic recovery and mechanical strength by comparison with the Ti-24Nb and Ti-26Nb (at.%) alloy compositions taken as references. Microstructures were characterized by optical microscopy, X-ray diffraction and transmission electron microscopy before and after deformation. The mechanical properties and the superelastic behavior were evaluated by conventional and cyclic tensile tests. High tensile strength, low Young's modulus, rather high superelastic recovery and excellent ductility were observed for both superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N alloys. Deformation twinning was shown to accommodate the plastic deformation in these alloys and only the {332} twinning system was observed to be activated by electron backscattered diffraction analyses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Mechanism of generation of large (Ti,Nb,V)(C,N)-type precipitates in H13 + Nb tool steel

    Science.gov (United States)

    Xie, You; Cheng, Guo-guang; Chen, Lie; Zhang, Yan-dong; Yan, Qing-zhong

    2016-11-01

    The characteristics and generation mechanism of (Ti,Nb,V)(C,N) precipitates larger than 2 μm in Nb-containing H13 bar steel were studied. The results show that two types of (Ti,Nb,V)(C,N) phases exist—a Ti-V-rich one and an Nb-rich one—in the form of single or complex precipitates. The sizes of the single Ti-V-rich (Ti,Nb,V)(C,N) precipitates are mostly within 5 to 10 μm, whereas the sizes of the single Nb-rich precipitates are mostly 2-5 μm. The complex precipitates are larger and contain an inner Ti-V-rich layer and an outer Nb-rich layer. The compositional distribution of (Ti,Nb,V)(C,N) is concentrated. The average composition of the single Ti-V-rich phase is (Ti0.511V0.356Nb0.133)(C x N y ), whereas that for the single Nb-rich phase is (Ti0.061V0.263Nb0.676)(C x N y ). The calculation results based on the Scheil-Gulliver model in the Thermo-Calc software combining with the thermal stability experiments show that the large phases precipitate during the solidification process. With the development of solidification, the Ti-V-rich phase precipitates first and becomes homogeneous during the subsequent temperature reduction and heat treatment processes. The Nb-rich phase appears later.

  20. Characterization of a High Strength, Refractory High Entropy Alloy, AlMo0.5NbTa0.5TiZr

    Science.gov (United States)

    Jensen, Jacob

    High entropy alloys (HEAs) are a relatively new class of materials that have garnered significant interest over the last decade due to their intriguing balance of properties including high strength, toughness, and corrosion resistance. In contrast to conventional alloy systems, HEAs are based on four or more principal elements with near equimolar concentrations and tend to have simple microstructures due to the preferential formation of solid solution phases. HEAs appear to offer new pathways to lightweighting in structural applications, new alloys for elevated temperature components, and new magnetic materials, but more thorough characterization studies are needed to assess the viability of the recently developed multicomponent materials. One such HEA, AlMo0.5NbTa0.5TiZr, was selected to be the basis for this characterization study in part due to its strength at elevated temperatures (sigma0.2 = 1600 MPa at T = 800 °C) and low density compared with commercially available Ni-based superalloys. The refractory element containing HEA composition was developed in order to balance the high temperature strength of the refractory elements with the desirable properties achieved by the high entropy alloying design approach for potential use in aerospace thermal protection and structural applications. Ingots of AlMo0.5NbTa0.5TiZr were cast by vacuum arc melting followed by hot isostatic pressing (HIP) and homogenization at 1400 °C for 24 hrs with a furnace cool of 10 °C/min. The resulting microstructure was characterized at multiple length scales using x-ray diffraction (XRD), scanning transmission electron microscopy (SEM), conventional and scanning transmission electron microscopy (TEM and STEM), and x-ray energy dispersive spectroscopy (XEDS). The microstructure was found to consist of a periodic, coherent two phase mixture, where a disordered bcc phase is aligned orthogonally in an ordered B2 phase. Through microstructural evolution heat treatment studies, the

  1. Effect of Nb-doped TiO{sub 2} on nanocomposited aligned ZnO nanorod/TiO{sub 2}:Nb for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Saurdi, I., E-mail: saurdy788@gmail.com; Ishak, A. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM),40450 Shah Alam, Selangor (Malaysia); UiTM Sarawak Kampus Kota Samarahan Jalan Meranek, Sarawak (Malaysia); Shafura, A. K.; Azhar, N. E. A.; Mamat, M. H. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM),40450 Shah Alam, Selangor (Malaysia); Malek, M. F.; Rusop, M. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM),40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), (Centre for Nano-Science and Nano-Technology), Institute of Science, Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia); Alrokayan, A. H. Salman; Khan, Haseeb A. [Department of Biochemistry, College of Science, Bldg. 5, King Saud University (KSU) P.O: 2455 Riyadh 1145 (Saudi Arabia)

    2016-07-06

    The Nb-doped TiO{sub 2} films were deposited on glass substrate at different Nb concentrations of 0 at.%, 1 at.%, 3 at.%, 5 at.% and 7 at.%, respectively and their electrical and structural properties were investigated. Subsequently, the Nb-doped TiO{sub 2} films were deposited on top of aligned ZnO Nanorod on ITO glass substrates using spin coating technique. The nanocomposited aligned ZnO nanorod/Nb-doped TiO{sub 2} (TiO{sub 2}:Nb) were coated with different Nb concentrations of 0 at.%, 1 at.%, 3 at.%, 5 at.% and 7 at.%, respectively. The Dye-sensitized solar cells were fabricated from the nanocomposited aligned ZnO nanorod/TiO{sub 2}:Nb photoanodes and their effects on the performance of the DSSCs were investigated. From the solar simulator measurement of DSSC the solar energy conversion efficiency (η) of 5.376% under AM 1.5 was obtained for the ZnO nanorod/TiO{sub 2}:Nb-5at.%.

  2. Dissolving of Nb and Ti carbonitride precipitates in microalloyed steels

    Institute of Scientific and Technical Information of China (English)

    Wenjin Nie; Shanwu Yang; Shaoqiang Yuan; Xinlai He

    2003-01-01

    The dissolving behaviour of Nb and Ti carbonitride precipitates in microalloyed steels during isothermal holding at 1300℃ was investigated by Transmission electron microscopy (TEM) and energy dispersion x-ray spectrum (EDX). It was found that all precipitates in Nb-Ti microalloyed steel are (Nb, Ti)(C,N). With holding time increasing, the atomic ratio of Nb/Ti in precipitates decrease gradually. These precipitates still existe even after holding for 48 h at 1300℃ while Nb(C,N) precipitates dissolve away in Nb microalloyed steel only after 4 h at the same temperature. These results show that formation and thermostability of precipitates are considerably influenced by interaction between Nb and Ti.

  3. Supporting data for senary refractory high-entropy alloy CrxMoNbTaVW

    Directory of Open Access Journals (Sweden)

    B. Zhang

    2015-12-01

    Full Text Available This data article is related to the research paper entitled “senary refractory high-entropy alloy CrxMoNbTaVW [1]”. In this data article, the pseudo-binary Cr-MoNbTaVW phase diagram is presented to show the impact of Cr content to the senary Cr-MoNbTaVW alloy system; the sub-lattice site fractions are presented to show the disordered property of the Cr-MoNbTaVW BCC structures; the equilibrium and Scheil solidification results with the actual sample elemental compositions are presented to show the thermodynamic information of the melted/solidified CrxMoNbTaVW samples; and the raw EDS scan data of the arc-melted CrxMoNbTaVW samples are also provided.

  4. Thermomechanical processing of In-containing β-type Ti-Nb alloys.

    Science.gov (United States)

    Pilz, Stefan; Geissler, David; Calin, Mariana; Eckert, Jürgen; Zimmermann, Martina; Freudenberger, Jens; Gebert, Annett

    2018-03-01

    In this study, the effect of thermomechanical processing on microstructure evolution of the indium-containing β-type Ti alloys (Ti-40Nb)-3.5In and (Ti-36Nb)-3.5In was examined. Both alloys show an increased β-phase stability compared to binary alloys due to In additions. This leads to a reduced α''-phase fraction in the solution treated and recrystallized state in the case of (Ti-36Nb)-3.5In and to the suppression of stress-induced α'' formation and deformation twinning for (Ti-40Nb)-3.5In. The mechanical properties of the alloys were subsequently studied by quasistatic tensile tests in the recrystallized state, revealing reduced Young's modulus values of 58GPa ((Ti-40Nb)-3.5In) and 56GPa ((Ti-36Nb)-3.5In) compared to 60GPa as determined for Ti-40Nb. For both In-containing alloys the ultimate tensile strength is in the range of 560MPa. Due to the suppressed α'' formation, (Ti-40Nb)-3.5In exhibits a linear elastic deformation behavior during tensile loading together with a low Young's modulus and is therefore promising for load-bearing implants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Effect of nitrogen addition on superelasticity of Ti-Zr-Nb alloys

    International Nuclear Information System (INIS)

    Tahara, Masaki; Kim, Hee Young; Miyazaki, Shuichi; Inamura, Tomonari; Hosoda, Hideki

    2008-01-01

    Recently, the Ti-Zr-Nb alloys have been developed as Ni-free shape memory and superelastic alloys. In this study, the effect of Nb and nitrogen (N) contents on martensitic transformation behavior, shape memory effect and superelasticity in Ti-18Zr-(12-16)Nb-(0-1.0)N (at%) alloys were investigated using tensile tests, optical microscopy and X-ray diffraction. Shape memory effect was observed in Ti-18Zr-(12-13)Nb and Ti-18Zr-12Nb-0.5N alloys at room temperature. The superelastic behavior appeared by the increase of Nb or N content. The Ti-18Zr-(14-15)Nb, Ti-18Zr-(13-14)Nb-0.5N and Ti-18Zr-(12-14)Nb-1.0N alloys exhibited the superelasticity at room temperature. The martensitic transformation start temperature (M s ) decreased by 75 K with 1 at% increase of N content for Ti-18Zr-13Nb alloy. The critical stress for slip deformation and the stress for inducing the martensitic transformation increased with increasing N content. The superelastic recovery strain was also increased by adding N. The maximum recovery strain of 5.0% was obtained in the Ti-18Zr-14Nb-0.5N alloy. (author)

  6. Structural stability of characteristic interface for NiTi/Nb Nanowire: First-Principle study

    Science.gov (United States)

    Li, G. F.; Zheng, H. Z.; Shu, X. Y.; Peng, P.

    2016-01-01

    Compared with some other conventional interface models, the interface of NiTi(211)/Nb(220) in NiTiNb metal nanocomposite had been simulated and analyzed carefully. Results show that only several interface models, i.e., NiTi(100)/Nb(100)(Ni⃡Nb), NiTi(110)/Nb(110) and NiTi(211)/Nb(220), can be formed accordingly with their negative formation enthalpy. Therein the cohesive energy Δ E and Griffith rupture work W of NiTi(211)/Nb(220) interface model are the lowest among them. Density of states shows that there exists only one electronic bonding peak for NiTi(211)/Nb(220) interface model at -2.5 eV. Electron density difference of NiTi(211)/ Nb(220) shows that the Nb-Nb, Nb-Ti and Nb-Ni bonding characters seem like so peaceful as a fabric twisting every atom, which is different from conventional metallic bonding performance. Such appearance can be deduced that the metallic bonding between Nb-Nb, Nb-Ti and Nb-Ni in NiTi(211)/Nb(220) may be affected by its nanostructure called nanometer size effect. Thus, our findings open an avenue for detailed and comprehensive studies of nanocomposite.

  7. Solubilization and precipitation of {omega} and {alpha} phases in Ti-30 Nb and Ti-35 Nb alloys; Solubilizacao e precipitacao de fases {omega} e {alpha} nas ligas Ti-30Nb e Ti-35Nb

    Energy Technology Data Exchange (ETDEWEB)

    Hayama, A.O.F.; Lopes, J.F.S.C.; Caram, R., E-mail: alexandrah@fem.unicamp.b [Universidade Estadual de Campinas (DEMa/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Engenharia de Materiais

    2010-07-01

    This work presents the main results of the characterization of Ti-30Nb and Ti-35Nb alloys (wt%) submitted to the solutioning heat treatment following by aging. Samples were obtained by electric arc melting, followed by solution heat treatment at 1000 deg C during 8 hours and cooling in water, the microstructure obtained is formed by {beta} and {alpha} phases. Samples were aged at 260 and 400 deg C during periods of time varying from 1 to 240 min. Characterization was performed using light optical microscopy, X-ray diffraction, Young's modulus measurements by acoustic emission and Vickers hardness. The results show the presence of {beta} and {alpha}{sup '}' phases in samples of the Ti-30Nb alloy aged at 260 deg C. In samples aged at 400 deg C, precipitation of {omega} and {alpha}{sup '}' phases took place, and due to this fact, an increase in Young's modulus and in hardness occurred. (author)

  8. AC loss time constant measurements on Nb3Al and NbTi multifilamentary superconductors

    International Nuclear Information System (INIS)

    Painter, T.A.

    1988-03-01

    The AC loss time constant is a previously univestigated property of Nb 3 Al, a superconductor which, with recent technological developments, shows some advantages over the more commonly used superconductors, NbTi and Nb 3 Sn. Four Nb 3 Al samples with varying twist pitches and one NbTi sample are inductively measured for their AC loss time constants. The measured time constants are compared to the theoretical time constant limits imposed by the limits of the transverse resistivity found by Carr [5] and to the theoretical time constants found using the Bean Model as well as to each other. The measured time constants of the Nb 3 Al samples fall approximately halfway between the theoretical time constant limits, and the measured time constants of the NbTi sample is close to the theoretical lower time constant limit. The Bean Model adequately accounts for the variance of the permeability of the Nb 3 Al superconductor in a background magnetic field. Finally, the measured time constant values of the Nb 3 Al samples vary approximately according to the square of their twist pitch. (author)

  9. Effect of increasing disorder on superconductivity of Mo/Nb superlattices

    International Nuclear Information System (INIS)

    Pereiro, Juan; Saerbeck, Thomas; Schuller, Ivan K

    2015-01-01

    We investigated the superconducting properties of Nb/Mo superlattices (SLs). The structural changes as a function of Nb and Mo layer thickness allow us to investigate the effect of disorder on the superconducting properties in a controlled fashion. Systematic structural studies provide quantitative measures of disorder parameters, such as roughness, interdiffusion, and strain, which allow separating their effect on the individual superconducting layers. The Mo critical temperature does not change as the layer thickness decreases below its coherence length. Thus, the SL critical temperatures in the presence of disorder and proximity effects can be modeled by considering only the effects of the Nb mean free path and coherence length. With increasing layer thickness, the SL critical temperatures approach Nb bulk values. Contrary to expectations the T c of Mo remains below the Nb T c . We discuss the results using existing theories based on Coulomb repulsion or changes in the density of states at the Fermi surface as a function of disorder. Questions about current understanding of the effect of disorder on superconductivity arise from the results. (paper)

  10. Effect of increasing disorder on superconductivity of Mo/Nb superlattices

    Science.gov (United States)

    Pereiro, Juan; Saerbeck, Thomas; Schuller, Ivan K.

    2015-08-01

    We investigated the superconducting properties of Nb/Mo superlattices (SLs). The structural changes as a function of Nb and Mo layer thickness allow us to investigate the effect of disorder on the superconducting properties in a controlled fashion. Systematic structural studies provide quantitative measures of disorder parameters, such as roughness, interdiffusion, and strain, which allow separating their effect on the individual superconducting layers. The Mo critical temperature does not change as the layer thickness decreases below its coherence length. Thus, the SL critical temperatures in the presence of disorder and proximity effects can be modeled by considering only the effects of the Nb mean free path and coherence length. With increasing layer thickness, the SL critical temperatures approach Nb bulk values. Contrary to expectations the Tc of Mo remains below the Nb Tc. We discuss the results using existing theories based on Coulomb repulsion or changes in the density of states at the Fermi surface as a function of disorder. Questions about current understanding of the effect of disorder on superconductivity arise from the results.

  11. Surface microstructures and corrosion resistance of Ni-Ti-Nb shape memory thin films

    Science.gov (United States)

    Li, Kun; Li, Yan; Huang, Xu; Gibson, Des; Zheng, Yang; Liu, Jiao; Sun, Lu; Fu, Yong Qing

    2017-08-01

    Ni-Ti-Nb and Ni-Ti shape memory thin films were sputter-deposited onto silicon substrates and annealed at 600 °C for crystallization. X-ray diffraction (XRD) measurements indicated that all of the annealed Ni-Ti-Nb films were composed of crystalline Ni-Ti (Nb) and Nb-rich grains. X-ray photoelectron spectroscopy (XPS) tests showed that the surfaces of Ni-Ti-Nb films were covered with Ti oxides, NiO and Nb2O5. The corrosion resistance of the Ni-Ti-Nb films in 3.5 wt.% NaCl solution was investigated using electrochemical tests such as open-circuit potential (OCP) and potentio-dynamic polarization tests. Ni-Ti-Nb films showed higher OCPs, higher corrosion potentials (Ecorr) and lower corrosion current densities (icorr) than the binary Ni-Ti film, which indicated a better corrosion resistance. The reason may be that Nb additions modified the passive layer on the film surface. The OCPs of Ni-Ti-Nb films increased with further Nb additions, whereas no apparent difference of Ecorr and icorr was found among the Ni-Ti-Nb films.

  12. Effect of plastic deformation on the supercooled austenite transformations of the Cr-Mo steel with Nb, Ti and B microadditions

    International Nuclear Information System (INIS)

    Adamczyk, J.; Opiela, M.

    1998-01-01

    Effect of plastic deformation at austenizing temperature was investigated on phase transformations, structure and hardness of the supercooled austenite transformation products of the Cr-Mo constructional steel with Nb, Ti and B microadditions. Basing on the analysis of the phase transformation plots of the supercooled undeformed austenite and of the supercooled and plastically deformed one, it was found out that direct cooling of specimens after completing their plastic deformation in the above mentioned conditions, results in significant acceleration of the α→β, and ferritic and pearlitic transformations, and in the decrease of transformation products hardness. These phenomena are of great importance for working out of the thermo-mechanical treatment of products made from the heat-treated microalloyed steel. (author)

  13. Surface microstructures and corrosion resistance of Ni-Ti-Nb shape memory thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kun [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom); Li, Yan, E-mail: liyan@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Huang, Xu [Memry Corporation, Bethel, CT 06801 (United States); Gibson, Des [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of the West of Scotland, Paisley PA1 2BE (United Kingdom); Zheng, Yang; Liu, Jiao; Sun, Lu [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Fu, Yong Qing, E-mail: richard.fu@northumbria.ac.uk [Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom)

    2017-08-31

    Highlights: • The corrosion resistance of Ni-Ti-Nb shape memory thin films is investigated. • Modified surface oxide layers improve the corrosion resistance of Ni-Ti-Nb films. • Further Nb additions reduce the potential corrosion tendency of the films. - Abstract: Ni-Ti-Nb and Ni-Ti shape memory thin films were sputter-deposited onto silicon substrates and annealed at 600 °C for crystallization. X-ray diffraction (XRD) measurements indicated that all of the annealed Ni-Ti-Nb films were composed of crystalline Ni-Ti (Nb) and Nb-rich grains. X-ray photoelectron spectroscopy (XPS) tests showed that the surfaces of Ni-Ti-Nb films were covered with Ti oxides, NiO and Nb{sub 2}O{sub 5}. The corrosion resistance of the Ni-Ti-Nb films in 3.5 wt.% NaCl solution was investigated using electrochemical tests such as open-circuit potential (OCP) and potentio-dynamic polarization tests. Ni-Ti-Nb films showed higher OCPs, higher corrosion potentials (E{sub corr}) and lower corrosion current densities (i{sub corr}) than the binary Ni-Ti film, which indicated a better corrosion resistance. The reason may be that Nb additions modified the passive layer on the film surface. The OCPs of Ni-Ti-Nb films increased with further Nb additions, whereas no apparent difference of E{sub corr} and i{sub corr} was found among the Ni-Ti-Nb films.

  14. Multifunctional Beta Ti Alloy with Improved Specific Strength

    Science.gov (United States)

    Park, Chan Hee; Hong, Jae-Keun; Lee, Sang Won; Yeom, Jong-Taek

    2017-12-01

    Gum metals feature properties such as ultrahigh strength, ultralow elastic modulus, superelasticity, and superplasticity. They are composed of elements from Groups 4 and 5 of the periodic table and exist when the valance electron concentration (\\overline{e/a}) is 4.24; the bond order (\\overline{Bo}) is 2.87; and the "d" electron-orbital energy level (\\overline{Md}) is 2.45 eV. Typical compositions include Ti-23Nb-2Zr-0.7Ta-O and Ti-12Ta-9Nb-6Zr-3 V-O, which contain large amounts of heavy Group-5 elements such as Nb and Ta. In the present study, to improve the specific strength of a multifunctional beta Ti alloy, three alloys (Ti-20Nb-5Zr-1Fe-O, Ti-12Zr-10Mo-4Nb-O, and Ti-24Zr-9Cr-3Mo-O) were designed by satisfying the above three requirements while adding Fe, Mo, and Cr, which are not only lightweight but also have strong hardening effects. Microstructural and mechanical property analyses revealed that Ti-20Nb-5Zr-1Fe-O has a 25% higher specific strength than gum metal while maintaining an ultralow elastic modulus.

  15. A nano lamella NbTi–NiTi composite with high strength

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiang [Jiangxi Key Laboratory of Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China); Institute of Applied Physics of Jiangxi Academy of Sciences, Nanchang 330029 (China); State Key Laboratory of Heavy Oil Processing and Department of Materials Science and engineering, China University of Petroleum, Beijing 102249 (China); Jiang, Daqiang [State Key Laboratory of Heavy Oil Processing and Department of Materials Science and engineering, China University of Petroleum, Beijing 102249 (China); School of Mechanical and Chemical Engineering, The University of Western Australia, WA 6009 (Australia); Hao, Shijie; Yu, Cun; Zhang, Junsong [State Key Laboratory of Heavy Oil Processing and Department of Materials Science and engineering, China University of Petroleum, Beijing 102249 (China); Ren, Yang [X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Lu, Deping; Xie, Shifang [Jiangxi Key Laboratory of Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China); Institute of Applied Physics of Jiangxi Academy of Sciences, Nanchang 330029 (China); Cui, Lishan, E-mail: lishancui63@126.com [State Key Laboratory of Heavy Oil Processing and Department of Materials Science and engineering, China University of Petroleum, Beijing 102249 (China)

    2015-05-01

    A hypereutectic Nb{sub 60}Ti{sub 24}Ni{sub 16} (at%) alloy was prepared by vacuum induction melting, and a nano lamellae NbTi–NiTi composite was obtained by hot-forging and wire-drawing of the ingot. Microscopic analysis showed that NbTi and NiTi nano lamellae distributed alternatively in the composite, and aligned along the wire axial direction, with a high volume fraction (~70%) of NbTi nano lamellae. In situ synchrotron X-ray diffraction analysis revealed that stress induced martensitic transformation occurred upon loading, which would effectively weaken the stress concentration at the interface and avoid the introduction of defects into the nano reinforced phase. Then the embedded NbTi nano lamellae exhibited a high elastic strain up to 2.72%, 1.5 times as high as that of the Nb nanowires embedded in a conventional plastic matrix, and the corresponding stress carried by NbTi was evaluated as 2.53 GPa. The high volume fraction of NbTi nano lamellae improved the translation of high strength from the nano reinforced phase into bulk properties of the composite, with a platform stress of ~1.7 GPa and a fracture strength of ~1.9 GPa.

  16. ADHESION OF BIOCOMPATIBLE TiNb COATING

    Directory of Open Access Journals (Sweden)

    Tomas Kolegar

    2017-06-01

    Full Text Available Preparation of a coating with a high quality requires good adhesion of the film to the substrate. The paper deals with the adhesion of biocompatible TiNb coating with different base materials. Several materials such as titanium CP grade 2, titanium alloys Ti6Al4V and stainless steel AISI 316L were measured. Testing samples were made in the shape of small discs. Those samples were coated with a TiNb layer by using the PVD method (magnetron sputtering. Onto the measured layer of TiNb an assistant cylinder was stuck using a high strength epoxy adhesive E1100S. The sample with the assistant cylinder was fixed into a special fixture and the whole assembly underwent pull-off testing for adhesion. The main result of this experiment was determining the strength needed to peel the layer and morphology and size of the breakaway. As a result, we will be able to determine the best base material and conditions where the coating will be remain intact with the base material.

  17. Isoelectronic substitutions and aluminium alloying in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    Science.gov (United States)

    von Rohr, Fabian O.; Cava, Robert J.

    2018-03-01

    High-entropy alloys (HEAs) are a new class of materials constructed from multiple principal elements statistically arranged on simple crystallographic lattices. Due to the large amount of disorder present, they are excellent model systems for investigating the properties of materials intermediate between crystalline and amorphous states. Here we report the effects of systematic isoelectronic replacements, using Mo-Y, Mo-Sc, and Cr-Sc mixtures, for the valence electron count 4 and 5 elements in the body-centered cubic (BCC) Ta-Nb-Zr-Hf-Ti high-entropy alloy (HEA) superconductor. We find that the superconducting transition temperature Tc strongly depends on the elemental makeup of the alloy, and not exclusively its electron count. The replacement of niobium or tantalum by an isoelectronic mixture lowers the transition temperature by more than 60%, while the isoelectronic replacement of hafnium, zirconium, or titanium has a limited impact on Tc. We further explore the alloying of aluminium into the nearly optimal electron count [TaNb] 0.67(ZrHfTi) 0.33 HEA superconductor. The electron count dependence of the superconducting Tc for (HEA)Al x is found to be more crystallinelike than for the [TaNb] 1 -x(ZrHfTi) x HEA solid solution. For an aluminum content of x =0.4 the high-entropy stabilization of the simple BCC lattice breaks down. This material crystallizes in the tetragonal β -uranium structure type and superconductivity is not observed above 1.8 K.

  18. Analysis of sodium metal by X-ray fluorescence spectrometry (I). Determination of Hf, Mo, Nb, Ta, Ti, V and Zr; Analisis de sodio metal por espectrometria de fluorescencia de rayos X. Determinacion de Hf, Mo, Nb, Ta, Ti, V y Zr

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Guerra, J P

    1981-07-01

    A method allowing the determination of trace quantities of Hf, Mo, Nb, Ta, Ti, Vi and Zr in sodium metal previous transformation into Na{sub 2}S0{sub 4} is described. The enrichment of the impurities is performed through a coprecipitation technique in sulfuric medium by using Fe{sup 3}+ as a collector and cupferron or phenyfluorone as the precipitating reagent. The matrix influence and the best concentration of the collector (10/{mu}/ml), adequate pH (1,3 or 4, respectively) and optimum filter type (Millipore BSWP02500 or BDWP04700, respectively) have been studied, as well as the precipitation recoveries corresponding to the reagent above. It has been demonstrated the batter efficiency of the cupferron for determining all the Impurities. Detection limits range from 0.01 to 0.2 ppm., depending on the element, for samples 4 g in weight. An automatic spectrometer attached to a 16 K minicomputer and X-ray tube with a gold anode (2250-2700 W) are used. The Interferences between the lines ZrK{alpha} (2{sup n}d order) - HfL{alpha} and TiK{beta} - VK {alpha} have been studied and the respective correction coefficients have been deduced. (Author) 8 refs.

  19. Carbide precipitation kinetics in austenite of a Nb-Ti-V microalloyed steel

    International Nuclear Information System (INIS)

    Jung, Jae-Gil; Park, June-Soo; Kim, Jiyoung; Lee, Young-Kook

    2011-01-01

    Highlights: → Carbide precipitation kinetic was fastest at 950 deg. C and accelerated by strain. → Nucleation sites for (Nb,Ti)C above 950 deg. C were mainly undissolved (Ti,Nb)(C,N). → Strain enabled (Nb,Ti)C to nucleate on all sides of (Ti,Nb)(C,N) above 950 deg. C. → Strain changed nucleation sites from (Ti,Nb)(C,N) to dislocations below 900 deg. C. → Strain also accelerated the change in particle composition to equilibrium one. - Abstract: The isothermal precipitation kinetics of carbides in both strain-free and strained austenite (γ) of a microalloyed steel were quantitatively investigated through the electrical resistivity and transmission electron microscopy. The (Nb,Ti)C carbides at the interfaces of the undissolved (Ti,Nb)(C,N) carbonitrides were observed at all temperatures in strain-free γ. However, for strain-induced precipitation, above 950 deg. C, the precipitation of (Nb,Ti)C carbides near the undissolved (Ti,Nb)(C,N) carbonitrides was predominant due to the recrystallization of strained γ. Meanwhile, the fine (Nb,Ti,V)C carbides were homogeneously precipitated in non-recrystallized γ at 850 deg. C and 900 deg. C, as well as near the undissolved (Ti,Nb)(C,N) particles. The electrical resistivity method was successfully used to quantitatively measure the isothermal precipitation kinetics of carbides in both strain-free and strained γ. The precipitation-time-temperature diagrams of the carbide in strain-free and strained γ, with nose temperatures of 950 deg. C, were generated and the precipitation kinetics were greatly accelerated by the applied strain.

  20. A survey of the mechanical properties of uranium alloys U-5Mo-3Nb wt.% and U-3Mo-3Nb wt.%

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, G.

    1969-04-15

    In a continuing program on the development of soft and ductile uranium alloys for armament applications, two compositions were studied. These gamma extruded uranium alloys were U-5Mo-3Nb wt.% and U-3Mo-3Nb wt.%. This study was carried out to determine the influence of tempering heat treatments associated with extrusion on the ductility of these uranium alloys. The mechanical properties of both alloys were measured in the extruded condition, in the extruded and annealed condition and in the quenched and tempered condition. A maximum elongation of 13.7% in tension with a low amount of work hardening was obtained for the U-3Mo-3Nb wt.% alloy after 1 1/2 hours anneal at 1200 deg F (650 deg C) followed by a rapid cooling in water at 70 deg F (21 deg C). A maximum elongation of 17.3% with a large amount of work hardening was obtained for alloy U-5Mo-3Nb wt.% after vacuum annealing, normalizing, gamma phase solubilizing at 1500 deg F (815 deg C) and quenching in water at 700 deg F (210 deg C). The maximum ductility achieved in these two alloys by our approaches is low compared with the ductility of Armco Iron employed for the same applications in the field of ballistics.

  1. Upper critical fields in multifilamentary NbTi alloy superconducting wires

    International Nuclear Information System (INIS)

    Watanabe, Kazuo; Muto, Yoshio; Noto, Koshichi.

    1991-01-01

    In order to improve the high field performance of superconducting magnets, the upper critical field B c2 for practical multifilamentary alloy wires of NbTi, NbTiTa and NbTiHf were examined in respect with the usage of a pressurized superfluid cooling technique. The addition of Ta or Hf to NbTi enhanced by 0.5 T for B c2 at 1.8 K. Although the addition of a heavy element such as Ta or Hf has been regarded as suppressing Pauli-paramagnetism so far, it was found that the mechanism for B c2 enhancement by Hf addition is different from that by Ta addition. (author)

  2. Microstructural and mechanical characterization of biomedical Ti-Nb-Zr(-Ta) alloys

    International Nuclear Information System (INIS)

    Elias, L.M.; Schneider, S.G.; Schneider, S.; Silva, H.M.; Malvisi, F.

    2006-01-01

    In recent years there has been a significant development of novel implant alloys based on β-Ti such as Ti-Nb-Zr and Ti-Nb-Zr-Ta alloys systems. The purpose of this work is to provide characterization of Ti-35.3Nb-5.1Ta-7.1Zr and Ti-41.1Nb-7.1Zr alloys, in which Nb will substitute the atomic amount of Ta, with emphasis in the property-microstructure-composition relationships. These alloys are produced from commercially pure materials (Ti, Nb, Zr and Ta) by an arc melting method. All ingots were submitted to sequences of heat treatment (1000 deg. C/2 h - WQ), cold working by swaging procedures and other heat treatment (1000 deg. C/2 h - WQ). Specimens, in as cast and heat-treated condition, were examined by light and scanning electron microscopy (SEM). These results suggested the presence of β- and ω-phases. Mechanical properties were based on tensile and hardness tests. These alloys exhibit a lower modulus than that of conventional Ti alloys and the other mechanical properties are suitable for biomedical applications

  3. Solubilization and precipitation of ω and α phases in Ti-30 Nb and Ti-35 Nb alloys

    International Nuclear Information System (INIS)

    Hayama, A.O.F.; Lopes, J.F.S.C.; Caram, R.

    2010-01-01

    This work presents the main results of the characterization of Ti-30Nb and Ti-35Nb alloys (wt%) submitted to the solutioning heat treatment following by aging. Samples were obtained by electric arc melting, followed by solution heat treatment at 1000 deg C during 8 hours and cooling in water, the microstructure obtained is formed by β and α phases. Samples were aged at 260 and 400 deg C during periods of time varying from 1 to 240 min. Characterization was performed using light optical microscopy, X-ray diffraction, Young's modulus measurements by acoustic emission and Vickers hardness. The results show the presence of β and α ' ' phases in samples of the Ti-30Nb alloy aged at 260 deg C. In samples aged at 400 deg C, precipitation of ω and α ' ' phases took place, and due to this fact, an increase in Young's modulus and in hardness occurred. (author)

  4. Topotactic dehydration of the lamellar oxide HK2Ti5NbO14 x H2O: the oxide K4Ti10Nb2O27

    International Nuclear Information System (INIS)

    Grandin, A.; Borel, M.M.; Hervieu, M.; Raveau, B.

    1987-01-01

    The lamellar oxide HK 2 Ti 5 NbO 14 x H 2 O can be topotactically dehydrated to K 4 Ti 10 Nb 2 O 27 . Electron diffraction and X-ray diffraction studies of this phase lead to a monoclinic cell with the parameters a = 17.005, b = 3.78, c = 9.01 A and β 92.14 0 . Diffusion streaks on the electron diffraction patterns indicate disorder whereas the existence of two sets of lattices on the same crystal give evidence of the topotactic character of the reaction. A structural model is proposed for K 4 Ti 10 Nb 2 O 27 , which corresponds to the intergrowth of K 3 TiNbO 14 layers with the K 2 Ti 6 O 13 tunnel structure. The possibility of formation of various intergrowths such as (KTi 5 NbO 13 )/sub n/ (HK 2 Ti 5 NbO 14 )/sub n/' is suggested

  5. Technology development of fabrication NbTi and Nb3 Sn superconducting wires

    International Nuclear Information System (INIS)

    Rodrigues Junior, D.; Bormio, C.; Baldan, C.A.; Ramos, M.J.; Pinatti, D.G.

    1988-01-01

    The technology development of NbTi and Nb 3 Sn superconducting wires are studied, mentioning the use of fluxes capture theory in the sizing of wires fabrication. The fabrication process, the thermal treatment and the experimental datas of critical temperature and current of Nb 3 Sn wires are described. (C.G.C.) [pt

  6. Enhanced carrier density in Nb-doped SrTiO3 thermoelectrics

    KAUST Repository

    Ozdogan, K.

    2012-03-08

    We study epitaxial SrTiO3 interfaced with Nb-doped SrTi1-x Nb x O3 (x = 0, 0.125, 0.25, 0.375, and 0.5) by full-potential density functional theory. From the electronic band structures obtained by our ab-initio calculations we determine the dependence of the induced metallicity on the Nb concentration. We obtain a monotonous increase of the carrier density with the Nb concentration. The results are confirmed by experiments for SrTi0.88Nb0.12O3 and SrTi0.8Nb0.2O3, demonstrating the predictive power and limitations of our theoretical approach. We also show that the Seebeck coefficient decreases monotonously with increasing temperature.

  7. Enhanced carrier density in Nb-doped SrTiO3 thermoelectrics

    KAUST Repository

    Ozdogan, K.; Upadhyay Kahaly, M.; Sarath Kumar, S. R.; Alshareef, Husam N.; Schwingenschlö gl, Udo

    2012-01-01

    We study epitaxial SrTiO3 interfaced with Nb-doped SrTi1-x Nb x O3 (x = 0, 0.125, 0.25, 0.375, and 0.5) by full-potential density functional theory. From the electronic band structures obtained by our ab-initio calculations we determine the dependence of the induced metallicity on the Nb concentration. We obtain a monotonous increase of the carrier density with the Nb concentration. The results are confirmed by experiments for SrTi0.88Nb0.12O3 and SrTi0.8Nb0.2O3, demonstrating the predictive power and limitations of our theoretical approach. We also show that the Seebeck coefficient decreases monotonously with increasing temperature.

  8. Structure and mechanical properties of as-cast Ti-5Nb-xFe alloys

    International Nuclear Information System (INIS)

    Hsu, Hsueh-Chuan; Hsu, Shih-Kuang; Wu, Shih-Ching; Lee, Chih-Jhan; Ho, Wen-Fu

    2010-01-01

    In this study, as-cast Ti-5Nb and a series of Ti-5Nb-xFe alloys were investigated and compared with commercially pure titanium (c.p. Ti) in order to determine their structure and mechanical properties. The series of Ti-5Nb-xFe alloys contained an iron content ranging from 1 to 5 mass% and were prepared by using a commercial arc-melting vacuum-pressure casting system. Additionally, X-ray diffraction (XRD) for phase analysis was conducted with a diffractometer, and three-point bending tests were performed to evaluate the mechanical properties of all specimens. The fractured surfaces were observed by using scanning electron microscopy (SEM). The experimental results indicated that these alloys possessed a range of different structures and mechanical properties dependent upon the various additions of Fe. With an addition of 1 mass% Fe, retention of the metastable β phase began. However, when 4 mass% Fe or greater was added, the β phase was entirely retained with a bcc crystal structure. Moreover, the ω phase was only detected in the Ti-5Nb-2Fe, Ti-5Nb-3Fe and Ti-5Nb-4Fe alloys. The largest quantity of ω phase and the highest bending modulus were found in the Ti-5Nb-3Fe alloy. The Ti-5Nb-2Fe alloy had the lowest bending modulus, which was lower than that of c.p. Ti by 20%. This alloy exhibited the highest bending strength/modulus ratio of 26.7, which was higher than that of c.p. Ti by 214%, and of the Ti-5Nb alloy (14.4 ) by 85%. Additionally, the elastically recoverable angles of the ductile Ti-5Nb-1Fe (19.9 o ) and Ti-5Nb-5Fe (29.5 o ) alloys were greater than that of c.p. Ti (2.7 o ) by as much as 637% and 993%, respectively. Furthermore, the preliminary cell culturing results revealed that the Ti-5Nb-xFe alloys were not only biocompatible, but also supported cell attachment.

  9. Structure and mechanical properties of as-cast Ti-5Nb-xFe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsueh-Chuan; Hsu, Shih-Kuang; Wu, Shih-Ching [Department of Dental Laboratory Technology, Central Taiwan University of Science and Technology, Taichung 40605, Taiwan (China); Institute of Biomedical Engineering and Material Science, Central Taiwan University of Science and Technology, Changhua 51591, Taiwan (China); Lee, Chih-Jhan [Department of Materials Science and Engineering, Da-Yeh University, Changhua 51591, Taiwan (China); Ho, Wen-Fu, E-mail: fujii@mail.dyu.edu.tw [Department of Materials Science and Engineering, Da-Yeh University, Changhua 51591, Taiwan (China)

    2010-09-15

    In this study, as-cast Ti-5Nb and a series of Ti-5Nb-xFe alloys were investigated and compared with commercially pure titanium (c.p. Ti) in order to determine their structure and mechanical properties. The series of Ti-5Nb-xFe alloys contained an iron content ranging from 1 to 5 mass% and were prepared by using a commercial arc-melting vacuum-pressure casting system. Additionally, X-ray diffraction (XRD) for phase analysis was conducted with a diffractometer, and three-point bending tests were performed to evaluate the mechanical properties of all specimens. The fractured surfaces were observed by using scanning electron microscopy (SEM). The experimental results indicated that these alloys possessed a range of different structures and mechanical properties dependent upon the various additions of Fe. With an addition of 1 mass% Fe, retention of the metastable {beta} phase began. However, when 4 mass% Fe or greater was added, the {beta} phase was entirely retained with a bcc crystal structure. Moreover, the {omega} phase was only detected in the Ti-5Nb-2Fe, Ti-5Nb-3Fe and Ti-5Nb-4Fe alloys. The largest quantity of {omega} phase and the highest bending modulus were found in the Ti-5Nb-3Fe alloy. The Ti-5Nb-2Fe alloy had the lowest bending modulus, which was lower than that of c.p. Ti by 20%. This alloy exhibited the highest bending strength/modulus ratio of 26.7, which was higher than that of c.p. Ti by 214%, and of the Ti-5Nb alloy (14.4 ) by 85%. Additionally, the elastically recoverable angles of the ductile Ti-5Nb-1Fe (19.9{sup o}) and Ti-5Nb-5Fe (29.5{sup o}) alloys were greater than that of c.p. Ti (2.7{sup o}) by as much as 637% and 993%, respectively. Furthermore, the preliminary cell culturing results revealed that the Ti-5Nb-xFe alloys were not only biocompatible, but also supported cell attachment.

  10. Performance of Nb protective diffusion coating on U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-Hyeon; Sohn, Dong-Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Kim, Sunghwan; Nam, Ji Min; Lee, Kyu Hong; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    To achieve this aim, it is necessary to increase the volume fraction of fuel particles inside the meat. However, the technical limit is reached at approximately 55 vol.% of fuel particles in the aluminum matrix. As a solution, an uranium compound with an higher uranium density than existing U3Si2 fuel has to be selected. Also alloying the uranium must stabilize γ-phase of uranium at room temperature because adequate properties of the γ -phase of uranium showed a good irradiation behavior in the past. Hence, U-Mo alloys were selected as the best candidates. The formation of interaction phase is a critical problem to apply U-Mo alloys to the high performance research reactor. Different means have been proposed to reduce the interaction between U-Mo fuel and Al matrix. There are three means. : 1. Addition of a diffusion limiting element to the matrix 2. Insertion of a diffusion barrier at the interface between the U-Mo and the Al 3. Alloying of the U-Mo with a third element Here we present the effect of Nb coating as diffusion barrier on formation of interaction layers between UMo powders and Al matrix. We present the effect of Nb coating on formation of interaction layers between U-Mo powders and Al matrix. Centrifugally atomized U-7 wt.% Mo powders were used, and Nb was coated on the surface of U-7 wt.% Mo by sputtering. Subsequently, the Nb-coated U-7 wt.% Mo powders were mixed with pure Al powders, and were made into compacts. The compacts were annealed at 550 .deg. C for 1, 3, 5 hours, respectively, and the result showed that the Nb coating on U-7 wt.% Mo effectively suppressed the growth of interaction layers between U-7 wt.% Mo and Al matrix.

  11. High temperature oxidation of β-NbTi alloys

    International Nuclear Information System (INIS)

    Parida, S.C.; Gupta, N.K.; Rama Rao, G.A.; Sen, B.K.; Krishnan, K.

    2008-01-01

    The isothermal oxidation kinetics of pure Ti metal and two different β-NbTi alloys with compositions of 85 and 75 at.% Ti were studied using thermogravimetric technique in the temperature range of 1073-1323 K at an interval of 50 K. The value of the power exponent n of the rate equation was found to be close to one suggesting that each reaction follows first order kinetic rate law. X-ray diffraction analysis of oxidation products at each temperature revealed the simultaneous formation of TiO 2 and TiNb 2 O 7 . The rate constants and the activation energies of oxidation reactions for each alloy compositions were evaluated. (author)

  12. Analysis of sodium metal by X-ray fluorescence spectrometry (I). Determination of Hf, Mo, Nb, Ta, Ti, V and Zr

    International Nuclear Information System (INIS)

    Diaz-Guerra, J. P.

    1981-01-01

    A method allowing the determination of trace quantities of Hf, Mo, Nb, Ta, Ti, Vi and Zr in sodium metal previous transformation into Na 2 S0 4 is described. The enrichment of the impurities is performed through a coprecipitation technique in sulfuric medium by using Fe 3 + as a collector and cupferron or phenyfluorone as the precipitating reagent. The matrix influence and the best concentration of the collector (10/μ/ml), adequate pH (1,3 or 4, respectively) and optimum filter type (Millipore BSWP02500 or BDWP04700, respectively) have been studied, as well as the precipitation recoveries corresponding to the reagent above. It has been demonstrated the batter efficiency of the cupferron for determining all the Impurities. Detection limits range from 0.01 to 0.2 ppm., depending on the element, for samples 4 g in weight. An automatic spectrometer attached to a 16 K minicomputer and X-ray tube with a gold anode (2250-2700 W) are used. The Interferences between the lines ZrKα (2 n d order) - HfLα and TiKβ - VK α have been studied and the respective correction coefficients have been deduced. (Author) 8 refs

  13. Electrochemical and surface behavior of hydyroxyapatite/Ti film on nanotubular Ti-35Nb-xZr alloys

    International Nuclear Information System (INIS)

    Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2012-01-01

    In this paper, we investigated the electrochemical and surface behavior of hydroxyapatite (HA)/Ti films on the nanotubular Ti-35Nb-xZr alloy. The Ti-35Nb-xZr ternary alloys with 3-10 wt.% Zr content were made by an arc melting method. The nanotubular oxide layers were developed on the Ti-35Nb-xZr alloys by an anodic oxidation method in 1 M H 3 PO 4 electrolyte containing 0.8 wt% NaF at room temperature. The HA/Ti composite films on the nanotubular oxide surfaces were deposited by a magnetron sputtering method. Their surface characteristics were analyzed by field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and an X-ray diffractometer (XRD). The corrosion behavior of the specimens was examined through potentiodynamic and AC impedance tests in 0.9% NaCl solution. From the results, the Ti-35Nb-xZr alloys showed a solely β phase microstructure that resulted from the addition of Zr. The nanotubular structure formed with a diameter of about 200 nm, and the HA/Ti thin film was deposited on the nanotubular structure. The HA/Ti thin film-coated nanotubular Ti-35Nb-xZr alloys showed good corrosion resistance in 0.9% NaCl solution.

  14. Structural evolution of Ba8Ti3Nb4O24 from BaTiO3 using a series of Ba(Ti1−5xNb4x)O3 solid solutions

    International Nuclear Information System (INIS)

    Barrientos Hernández, F.R.; Lira Hernández, I.A.; Gómez Yáñez, C.; Arenas Flores, A.; Cabrera Sierra, R.; Pérez Labra, M.

    2014-01-01

    Highlights: • The evolution phase Ba 8 Ti 3 Nb 4 O 24 was obtained through the mechanism Ba(Ti 1-5x Nb 4x )O 3 . • Addition of niobium can accelerate grain growth of BaTiO 3 ceramics. • Ba 8 Ti 3 Nb 4 O 24 presents a dielectric loss of 0.0035 and permittivity value of 54.6. • Electrical measurements showed that Nb 5+ content drops Curie temperature. • Samples with x ⩾ 0.0625 shows an insulating behavior. -- Abstract: In this work, the structural evolution of hexagonal phase Ba 8 Ti 3 Nb 4 O 24 by adding Nb 2 O 5 to perovskite structure of BaTiO 3 was investigated. The compositions Ba(Ti 1-5x Nb 4x )O 3 ceramics, with 0.00025 ⩽ x ⩽ 0.125 were prepared by the conventional solid state route in air atmosphere, the powders precursors, BaTiO 3 , BaCO 3 and Nb 2 O 5 , were mixed in stoichiometric proportions and ground in a ball mill using alumina balls and acetone. The mixed powders were calcined at temperatures up to 1500 °C. The phase transformation of Ba 8 Ti 3 Nb 4 O 24 from BaTiO 3 was studied by DRX, Raman spectroscopy, SEM, electrical measurements (relative permittivity and P–E hysteresis loops); Rietveld’s refinement was used to structurally characterize the samples. For the devices obtained capacitance was measured at 1 kHz; with these values we calculated the relative permittivity. The samples show typical P–E hysteresis loops at room temperature accompanied by saturation polarization (Ps) and remnant polarization (Pr). The DRX and Rietveld’s refinement results show x ⩽ 0.01 has a ferroelectric behavior. When the doped level is increased x ⩾ 0.02, a peak displacement is observed, this is due to the phase transformation of tetragonal to cubic into the unit cell. Finally, with x = 0.125 the crystal structure transforms to the characteristic hexagonal phase Ba 8 Ti 3 Nb 4 O 24 which resonates at microwave frequencies

  15. Systematic study on the electronic structure and mechanical properties of X2BC (X = Mo, Ti, V, Zr, Nb, Hf, Ta and W)

    International Nuclear Information System (INIS)

    Bolvardi, H; Emmerlich, J; To Baben, M; Music, D; Schneider, J M; Von Appen, J; Dronskowski, R

    2013-01-01

    In this work the electronic structure and mechanical properties of the phases X 2 BC with X =Ti, V, Zr, Nb, Mo, Hf, Ta, W (Mo 2 BC-prototype) were studied using ab initio calculations. As the valence electron concentration (VEC) per atom is increased by substitution of the transition metal X, the six very strong bonds between the transition metal and the carbon shift to lower energies relative to the Fermi level, thereby increasing the bulk modulus to values of up to 350 GPa, which corresponds to 93% of the value reported for c-BN. Systems with higher VEC appear to be ductile as inferred from both the more positive Cauchy pressure and the larger value of the bulk to shear modulus ratio (B/G). The more ductile behavior is a result of the more delocalized interatomic interactions due to larger orbital overlap in smaller unit cells. The calculated phase stabilities show an increasing trend as the VEC is decreased. This rather unusual combination of high stiffness and moderate ductility renders X 2 BC compounds with X = Ta, Mo and W as promising candidates for protection of cutting and forming tools.

  16. Structural Stabilities of β-Ti Alloys Studied Using a New Mo Equivalent Derived from [ β/( α + β)] Phase-Boundary Slopes

    Science.gov (United States)

    Wang, Qing; Dong, Chuang; Liaw, Peter K.

    2015-08-01

    Structural stabilities of β-Ti alloys are generally investigated by an empirical Mo equivalent, which quantifies the stability contribution of each alloying element, M, in comparison to that of the major β-Ti stabilizer, Mo. In the present work, a new Mo equivalent (Moeq)Q is proposed, which uses the slopes of the boundary lines between the β and ( α + β) phase zones in binary Ti-M phase diagrams. This (Moeq)Q reflects a simple fact that the β-Ti stability is enhanced, when the β phase zone is enlarged by a β-Ti stabilizer. It is expressed as (Moeq)Q = 1.0 Mo + 0.74 V + 1.01 W + 0.23 Nb + 0.30 Ta + 1.23 Fe + 1.10 Cr + 1.09 Cu + 1.67 Ni + 1.81 Co + 1.42 Mn + 0.38 Sn + 0.34 Zr + 0.99 Si - 0.57 Al (at. pct), where the equivalent coefficient of each element is the slope ratio of the [ β/( α + β)] boundary line of the binary Ti-M phase diagram to that of the Ti-Mo. This (Moeq)Q is shown to reliably characterize the critical stability limit of multi-component β-Ti alloys with low Young's moduli, where the critical lower limit for β stabilization is (Moeq)Q = 6.25 at. pct or 11.8 wt pct Mo.

  17. Growth (AlCrNbSiTiV)N thin films on the interrupted turning and properties using DCMS and HIPIMS system

    Science.gov (United States)

    Chang, Kai-Sheng; Chen, Kuan-Ta; Hsu, Chun-Yao; Hong, Po-Da

    2018-05-01

    This paper determines the optimal settings in the deposition parameters for (AlCrNbSiTiV)N high-entropy alloy (HEAs) nitride films that are deposited on CBN cutting tools and glass substrates. We use direct current magnetron sputtering (DCMS) and high power impulse magnetron sputtering (HIPIMS), with Ar plasma and N2 reactive gases. Experiments with the grey-Taguchi method are conducted to determine the effect of deposition parameters (deposition time, substrate DC bias, DC power and substrate temperature) on interrupted turning 50CrMo4 steel machining and the films' structural properties. Experimental result shows that the multiple performance characteristics for these (AlCrNbSiTiV)N HEAs film coatings can be improved using the grey-Taguchi method. As can be seen, the coated film is homogeneous, very compact and exhibits perfect adherence to the substrate. The distribution of elements is homogeneous through the depth of the (AlCrNbSiTiV)N film, as measured by an auger electron nanoscope. After interrupted turning with an (AlCrNbSiTiV)N film coated tool, we obtain much longer tool life than when using uncoated tools. The correlation of these results with microstructure analysis and tool life indicates that HIPIMS discharge induced a higher (AlCrNbSiTiV)N film density, a smoother surface structure and a higher hardness surface.

  18. High-field superconductivity in the Nb-Ti-Zr ternary system

    International Nuclear Information System (INIS)

    Ralls, K.M.; Rose, R.M.; Wulff, J.

    1980-01-01

    Resistive critical current densities, critical fields, and normal-state electrical resistivities were obtained at 4.2 0 K for 55 alloys in the Nb-Ti-Zr ternary alloy system, excepting Ti-Zr binary compositions. The resistive critical field as a function of ternary composition has a saddle point between the Nb-Ti and Nb-Zr binaries, so that ternary alloying in this system is not expected to result in higher critical fields than the binary alloys

  19. High-field superconductivity in the Nb-Ti-Zr ternary system

    Science.gov (United States)

    Ralls, K. M.; Rose, R. M.; Wulff, J.

    1980-06-01

    Resistive critical current densities, critical fields, and normal-state electrical resistivities were obtained at 4.2 °K for 55 alloys in the Nb-Ti-Zr ternary alloy system, excepting Ti-Zr binary compositions. The resistive critical field as a function of ternary composition has a saddle point between the Nb-Ti and Nb-Zr binaries, so that ternary alloying in this system is not expected to result in higher critical fields than the binary alloys.

  20. Influence of Annealing on Microstructure and Mechanical Properties of Refractory CoCrMoNbTi0.4 High-Entropy Alloy

    Science.gov (United States)

    Zhang, Mina; Zhou, Xianglin; Zhu, Wuzhi; Li, Jinghao

    2018-04-01

    A novel refractory CoCrMoNbTi0.4 high-entropy alloy (HEA) was prepared via vacuum arc melting. After annealing treatment at different temperatures, the microstructure evolution, phase stability, and mechanical properties of the alloy were investigated. The alloy was composed of two primary body-centered cubic structures (BCC1 and BCC2) and a small amount of (Co, Cr)2Nb-type Laves phase under different annealing conditions. The microhardness and compressive strength of the heat-treated alloy was significantly enhanced by the solid-solution strengthening of the BCC phase matrix and newborn Laves phase. Especially, the alloy annealed at 1473 K (1200 °C) achieved the maximum hardness and compressive strength values of 959 ± 2 HV0.5 and 1790 MPa, respectively, owing to the enhanced volume fraction of the dispersed Laves phase. In particular, the HEAs exhibited promising high-temperature mechanical performance, when heated to an elevated temperature of 1473 K (1200 °C), with a compressive fracture strength higher than 580 MPa without fracture at a strain of more than 20 pct. This study suggests that the present refractory HEAs have immense potential for engineering applications as a new class of high-temperature structural materials.

  1. Liquid phase interaction in TiC0,5N0,5-TiNi-Mo and TiC0,5N0,5-TiNi-Ti-Mo

    International Nuclear Information System (INIS)

    Askarova, L.Kh; Grigorov, I.G.; Zajnulin, Yu.G.

    1998-01-01

    Using the methods of X ray diffraction analysis, electron microscopy and X ray spectrum microanalysis a study was made into specific features of phase and structure formation in alloys TiC 0,5 N 0,5 -TiNi-Mo and TiC 0,5 N 0,5 -TiNi-Mo in the presence of a liquid phase at temperatures of 1380-1600 deg C. It is revealed that the physical and chemical processes taking place during the liquid-phase sintering result in the formation of a three-phase alloy consisting of nonstoichiometric titanium carbonitride TiC 0.5-x N 0.5-x , a molybdenum base solid solution of titanium, nickel and carbon Mo(Ti, Ni, C) and one of two intermetallic compounds, either TiNi or Ni 3 Ti. Metallic element concentration in individual phase constituents of the alloy is determined by means of X ray spectrum microanalysis

  2. Comparative study of heat transfer from Nb-Ti and Nb_{3}Sn coils to He II

    Directory of Open Access Journals (Sweden)

    Marco La China

    2008-08-01

    Full Text Available In superconducting magnets, the energy deposited or generated in the coil must be evacuated to prevent temperature rise and consequent transition of the superconductor to the resistive state. The main barrier to heat extraction is represented by the electric insulation wrapped around superconducting cables. In the LHC, insulation improvement is a key point in the development of interaction region magnets and injector chain fast-pulsed magnets for luminosity upgrade; the high heat load of these magnets, in fact, is not compatible with the use of current insulation schemes. We review the standard insulation schemes for Nb-Ti and Nb_{3}Sn technology from the thermal point of view. We implement, in an analytical model, the strongly nonlinear thermal resistances of the different coil components including the permeability to superfluid helium of Nb-Ti insulations, measured during the LHC main dipole development. We use such a model to compare Nb-Ti and Nb_{3}Sn technologies by taking into account their specific operating margin in different working conditions. Finally, we propose an insulation scheme to enhance the heat transfer capability of Nb-Ti coils.

  3. Influence of boron vacancies on phase stability, bonding and structure of MB2 (M  =  Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) with AlB2 type structure

    International Nuclear Information System (INIS)

    Dahlqvist, Martin; Rosen, Johanna; Jansson, Ulf

    2015-01-01

    Transition metal diborides in hexagonal AlB 2 type structure typically form stable MB 2 phases for group IV elements (M  =  Ti, Zr, Hf). For group V (M  =  V, Nb, Ta) and group VI (M  =  Cr, Mo, W) the stability is reduced and an alternative hexagonal rhombohedral MB 2 structure becomes more stable. In this work we investigate the effect of vacancies on the B-site in hexagonal MB 2 and its influence on the phase stability and the structure for TiB 2 , ZrB 2 , HfB 2 , VB 2 , NbB 2 , TaB 2 , CrB 2 , MoB 2 , and WB 2 using first-principles calculations. Selected phases are also analyzed with respect to electronic and bonding properties. We identify trends showing that MB 2 with M from group V and IV are stabilized when introducing B-vacancies, consistent with a decrease in the number of states at the Fermi level and by strengthening of the B–M interaction. The stabilization upon vacancy formation also increases when going from M in period 4 to period 6. For TiB 2 , ZrB 2 , and HfB 2 , introduction of B-vacancies have a destabilizing effect due to occupation of B–B antibonding orbitals close to the Fermi level and an increase in states at the Fermi level. (paper)

  4. Electrochemical characterization and redox behavior of Nb-doped SrTiO3

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Kammer Hansen, Kent; Wallenberg, L. Reine

    2009-01-01

    Sr-vacancy compensated Nb-doped SrTiO3 with the nominal composition Sr0.94Ti0.9Nb0.1O3 has been evaluated as a solid oxide fuel cell (SOFC) anode material in terms of redox stability and electrochemical properties. Sr0.94Ti0.9Nb0.1O3 has been synthesized with a recently developed modified glycine......-nitrate process. The phase purity and redox behavior have been analyzed with XRD and TGA. The electrochemical properties of Sr0.94Ti0.9Nb0.1O3 and a composite electrode of Sr0.94Ti0.9Nb0.1O3/YSZ have been investigated by electrochemical impedance spectroscopy (EIS) on cone shaped electrodes and on electrodes...... in a symmetrical cell configuration. The experiments indicated that the Nb-doped SrTiO3 electrodes were redox stable and showed a potential ability to be used as a part of a SOFC anode. The electrochemical activity appeared to be governed by the concentration of defect species (especially Ti3+ and V-0...

  5. Thermal expansion and elastic moduli of the silicide based intermetallic alloys Ti5Si3(X) and Nb5Si3

    International Nuclear Information System (INIS)

    Zhang, L.; Wu, J.

    1997-01-01

    Silicides are among those potential candidates for high temperature application because of their high melting temperature, low density and good oxidation resistance. Recent interest is focused on molybdenum silicides and titanium silicides. Extensive investigation has been carried out on MoSi 2 , yet comparatively less work was performed on titanium silicides such as Ti 5 Si 3 and Ti 3 and TiSi 2 which are of lower density than MoSi 2 . Fundamental understanding of the titanium silicides' properties for further evaluation their potential for practical application are thus needed. The thermal expansion coefficients and elastic moduli of intermetallic compounds are two properties important for evaluation as a first step. The thermal expansion determines the possible stress that might arise during cooling for these high melting point compounds, which is crucial to the preparation of defect free specimens; and the elastic moduli are usually reflections of the cohesion in crystal. In Frommeyer's work and some works afterwards, the coefficients of thermal expansion were measured on both polycrystalline and single crystal Ti 5 Si 3 . The elastic modulus of polycrystalline Ti 5 Si 3 was measured by Frommeyer and Rosenkranz. However, in the above works, the referred Ti 5 Si 3 was the binary one, no alloying effect has been reported on this matter. Moreover, the above parameters (coefficient of thermal expansion and elastic modulus) of Nb 5 Si 3 remain unreported so far. In this paper, the authors try to extend the knowledge of alloyed Ti 5 Si 3 compounds with Nb and Cr additions. Results on the coefficients of thermal expansion and elastic moduli of Ti 5 Si 3 compounds and Nb 5 Si 3 are presented and the discussion is focused on the alloying effect

  6. On the hardenability of Nb-modified metastable beta Ti-5553 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Campo, K.N.; Andrade, D.R.; Opini, V.C.; Mello, M.G.; Lopes, E.S.N.; Caram, R., E-mail: caram@fem.unicamp.br

    2016-05-15

    Among the commercially available titanium alloys, the metastable β Ti-5553 alloy (Ti–5Al–5V–5Mo–3Cr–0.5Fe wt.%) is an object of great interest because it is employed in aerospace structural applications, primarily in the replacement of steel components. One of the primary advantages of this alloy is its high hardenability, which allows it to retain the β phase at room temperature, even at low cooling rates, thereby allowing the thermoprocessing of thick parts. The aim of this investigation was to evaluate the effect of the replacement of V with Nb on the hardenability of Ti-5553. Based on the molybdenum equivalent criterion, the Nb-modified Ti-5553 alloy was designed to present 12 wt.% of Nb instead of 5 wt.% of V. Samples of both alloys were prepared by melting them in an arc furnace under an inert atmosphere, heat-treated at high temperatures for 12 h and plastic deformed using swage forging. Finally, these samples were solution heat-treated at temperatures above the β-transus followed by cooling at different rates using water quenching, furnace cooling and a modified Jominy end quench test. Characterization was performed by measuring Vickers hardness, X-ray diffraction, and light optical, scanning electron and transmission electron microscopy. The results obtained indicate that metastable β phase can be retained when the cooling rate is higher than 21 °C/s for both alloys. At lower cooling rates, α phase precipitation was observed, but it appeared to be less evident in the Nb-modified Ti-5553, suggesting that the replacement of V with Nb increased the hardenability of the alloy. - Highlights: • Hardenability of Ti alloys are assessed using a modified Jominy end quench test. • Ti-5553 and Nb-modified Ti-5553 are subjected to continuous cooling experiments. • β phase decomposition kinetics is reduced by replacing V with Nb in Ti-5553. • Nb-modified Ti-5553 features improved hardenability. • Replacement of V with Nb causes the

  7. 微量TiC对Mo-Ti-Zr-TiC合金性能与显微组织的影响%Effect of Trace TiC on Property and Microstructure of Mo-Ti-Zr-TiC Alloy

    Institute of Scientific and Technical Information of China (English)

    钱昭; 范景莲; 成会朝; 田家敏

    2012-01-01

    采用粉末冶金方法制备Mo-Ti-Zr-TiC合金,研究微量TiC的添加对Mo-Ti-Zr-TiC合金的拉伸性能和显微组织的影响.结果表明,在Mo-Ti-Zr合金中添加微量TiC(0.1%~0.5%,质量分数)后,合金的相对密度和室温抗拉强度得到了提高,当TiC添加量为0.4%时,合金强度最高,较Mo-Ti-Zr合金提高了28.1%.微量TiC的添加,阻碍了合金烧结过程中的晶粒长大,合金晶粒尺寸随TiC添加量的增加而降低.添加的细小TiC粒子在高温烧结过程中或与坯体中的微量氧发生反应形成了由Mo、Ti、C及O 4种元素组成的(Mo,Ti)xOyCz细小复合第二相粒子,或发生团聚结成大颗粒,对合金起到净化晶界氧和弥散强化的作用,因而合金的性能相比Mo-Ti-Zr合金有了较明显的提高.%Mo-Ti-Zr-TiC alloy was prepared via powder metallurgy method. The effects of trace TiC additive on the mechanical properties and microstructure of TiC reinforced Mo-Ti-Zr-TiC alloy were studied. The results indicate that the relative density and the tensile strength at room temperature of Mo-Ti-Zr-TiC alloy is effectively enhanced by adding trace TiC (0.1wt%~0.5wt%). The tensile strength achieves the highest value when the content of TiC is 0.4wt%, which is 28.1% higher than that of Mo-Ti-Zr alloy. The adding of trace TiC can inhibit the grain growth during alloy sintering process, which leads to the decrease of grain sizes with the rise of TiC content. A part of the fine TiC particles react with trace oxygen in molybdenum matrix to form (Mo,Ti)xOyC2 compound second phase particles during high temperature sintering, while the other part are agglomerated into large particles, which play a role in grain boundaries purification and dispersion-strengthening.

  8. Cu-Ti Formation in Nb-Ti/Cu Superconducting Strand Monitored by in situ Techniques

    CERN Document Server

    Pong, I; Pong, Ian; Gerardin, Alexandre; Scheuerlein, Christian; Bottura, Luca

    2010-01-01

    In order to investigate the high temperature exposure effect on Nb-Ti/Cu superconducting strands, as might be encountered in joining by soldering and in cabling annealing, X-ray diffraction and resistometry measurements were performed in situ during heat treatment, and complemented by conventional metallography, mechanical tests and superconducting properties measurements. Changes of the Nb-Ti nanostructure at temperatures above 300 degrees C are manifested in the degradation of critical current in an applied external magnetic field, although degradation at self field was insignificant up to 400 degrees C for several minutes. Above 500 degrees C, the formation of various Cu-Ti intermetallic compounds, due to Ti diffusion from Nb-Ti into Cu, is detected by in situ XRD albeit not resolvable by SEM-EDS. There is a ductile to brittle transition near 600 degrees C, and liquid formation is observed below 900 degrees C. The formation of Cu-Ti causes a delayed reduction of the residual resistivity ratio (RRR) and adv...

  9. Internal friction peaks observed in explosively deformed polycrystalline Mo, Nb, and Cu

    Science.gov (United States)

    Rieu, G. E.; Grimes, H. H.; Romain, J. P.; Defouquet, J.

    1974-01-01

    Explosive deformation (50 kbar range) induced, in Cu, Mo and Nb, internal friction peaks identical to those observed after large normal deformation. The variation of the peaks with pressure for Mo and Nb lead to an explanation of these processes in terms of double kink generation in screw and edge dislocations.

  10. Study on soft magnetic properties of Finemet-type nanocrystalline alloys with Mo substituting for Nb

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Dehui; Zhou, Bingwen; Jiang, Boyu; Ya, Bin; Zhang, Xingguo [School of Materials Science and Engineering, Dalian University of Technology, Dalian (China)

    2017-10-15

    The thermal stability, microstructure, and soft magnetic properties as a function of annealing time were studied for Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 3-x}Mo{sub x} (x = 0, 1, 2, 3) (atom percent, at.%,) ribbons. It was found that substituting Nb by Mo reduced the thermal stability. After 15 min short time vacuum annealing, Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 2}Mo{sub 1} and Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 1}Mo{sub 2} samples obtained higher permeability and similar coercivity compared to the original Finemet alloy (Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 3}), Mo substituting Nb reduced the optimum annealing time in Finemet-type alloys, and meanwhile marginally increased the saturation magnetization. Substituting all Nb by Mo led to the earlier formation of non-soft magnetic phase, thus deteriorated the soft magnetic properties. XRD and TEM structural analysis showed that in Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 2}Mo{sub 1} and Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 1}Mo{sub 2} samples (annealed for 15 min), nanocrystals ∝10 nm in size were obtained, and the good soft magnetic properties of these alloys could be attributed to the small grain size. The relationship between annealing time, soft magnetic properties, and microstructure was established. Reducing annealing time and temperature to obtain best soft magnetic properties could cut down the production costs of Finemet-type alloys. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Thermal analysis of precipitation reactions in a Ti-25Nb-3Mo-3Zr-2Sn alloy

    International Nuclear Information System (INIS)

    Kent, Damon; Wang, Gui; Dargusch, Matthew S.; Pas, Steven; Zhu, Suming

    2012-01-01

    A study was undertaken on a Ti-25Nb-3Mo-3Zr-2Sn alloy using differential scanning calorimetry (DSC) in order to improve understanding of the precipitation reactions occurring during aging heat treatments. The investigation showed that isothermal ω phase can be formed in the cast and solution treated alloy at low aging temperatures. An exothermic peak in the temperature range of 300 to 400 C was detected for precipitation of the ω phase, with approximate activation energy of 176 kJ/mol. The ω phase begins to dissolve at temperatures around 400 C and precipitation of the α phase is favoured at higher temperatures between 400 C and 600 C. An exothermic peak with activation energy of 197 kJ/mol was measured for precipitation of the α phase. Deformation resulting in the formation of the stress induced α'' phase altered the DSC heating profile for the solution treated alloy. The exothermic peak associated with precipitation of the ω phase was not detected during heating of the deformed material and increased endothermic heating associated with recovery and recrystallisation was observed. (orig.)

  12. Comparative Study of Heat Transfer from Nb-Ti and Nb$_3$Sn coils to He II

    CERN Document Server

    La China, M

    2008-01-01

    In superconducting magnets, the energy deposited or generated in the coil must be evacuated to prevent temperature rise and consequent transition of the superconductor to the resistive state. The main barrier to heat extraction is represented by the electric insulation wrapped around superconducting cables. In the LHC, insulation improvement is a key point in the development of interaction region magnets and injector chain fast-pulsed magnets for luminosity upgrade; the high heat load of these magnets, in fact, is not compatible with the use of current insulation schemes. We review the standard insulation schemes for Nb-Ti and Nb$_{3}$Sn technology from the thermal point of view. We implement, in an analytical model, the strongly nonlinear thermal resistances of the different coil components including the permeability to superfluid helium of Nb-Ti insulations, measured during the LHC main dipole development. We use such a model to compare Nb-Ti and Nb$_{3}$Sn technologies by taking into account their specific...

  13. High-temperature fracture and fatigue resistance of a ductile β-TiNb reinforced γ-TiAl intermetallic composite

    International Nuclear Information System (INIS)

    Rao, K.T.V.; Ritchie, R.O.

    1998-01-01

    The high-temperature fatigue-crack propagation and fracture resistance of a model γ-TiAl intermetallic composite reinforced with 20 vol. % ductile β-TiNb particles is examined at elevated temperatures of 650 and 800 C and compared with behavior at room temperature. TiNb reinforcements are found to enhance the fracture toughness of γ-TiAl, even at high temperatures, from about 123 to ∼40 MPa m 1/2 , although their effectiveness is lower compared to room temperature due to the reduction in strength of TiNb particles. Under monotonic loading, crack-growth response in the composite is characterized by resistance-curve behavior arising from crack trapping, renucleation and resultant crack bridging effects attributable to the presence of TiNb particles. In addition, crack-tip blunting associated with plasticity increases the crack-initiation (matrix) toughness of the composite, particularly at 800 C, above the ductile-to-brittle transition temperature (DBTT) for γ-TiAl. High-temperature fatigue-crack growth resistance, however, is marginally degraded by the addition of TiNb particles in the C-R (edge) orientation, similar to observations made at room temperature; premature fatigue failure of TiNb ligaments in the crack wake diminishes the role of bridging under cyclic loading. Both fatigue and fracture resistance of the composite are slightly lower at 650 C (just below the DBTT for TiAl) compared to the behavior at ambient and 800 C. Overall, the beneficial effect of adding ductile TiNb reinforcements to enhance the room-temperature fracture and fatigue resistance of γ-TiAl alloys is retained up to 800 C, in air environments. There is concern, however, regarding the long-term environmental stability of these composite microstructures in unprotected atmospheres

  14. Temperature Induced Degradation of Nb Ti/Cu Composite Superconductors

    CERN Document Server

    Scheuerlein, C; Senatore, C; Di Michiel, M; Thilly, L; Gerardin, A; Reluner, B; Oberli, L; Willering, G; Bottura, L

    2009-01-01

    The degradation mechanisms of state-of-the-art Nb-Ti/Cu superconductors are described, based on in-situ synchrotron X-ray diffraction measurements during heat treatment. A quantitative description of the Nb-Ti/Cu degradation in terms of critical current density, Cu stabiliser resistivity and mechanical composite strength is presented. In an applied magnetic field a significant critical current degradation is already observed after a 5-minute 400 °C heat treatment, due to variations of a-Ti precipitate size and distribution within the Nb-Ti alloy filaments. A strong degradation of the strand mechanical properties is observed after several minutes heating above 550 °C, which is also the temperature at which the formation of Cu Ti intermetallic phases is detected. Several minutes heating at 250 °C are sufficient to increase the RRR of the strongly cold work strands inside a Rutherford type cable from about 80 to about 240. Heating for several minutes at 400 °C does not cause a significant conductor degradati...

  15. Perovskite-related Ca(Nb,Ti)O3.33

    International Nuclear Information System (INIS)

    Guevarra, J.; Smaalen, S. van; Daniels, P.; Rotiroti, N.; Lichtenberg, F.

    2005-01-01

    Crystals of nominal composition Ca(Nb 0.8 Ti 0.2 )O 3.4 , an n = 5 member of the homologous series A n B n O 3n+2 , have been synthesized by floating-zone melting. The material was found to be multiphase consisting also of the n = 6 type. A good single crystal of this n = 6 type was found and the crystal structure at room temperature was determined by X-ray diffraction using synchrotron radiation. Structure refinements indicate a composition of Ca(Nb 0.76 Ti 0.24 )O 3.33 . The crystal structure is monoclinic P2 1 and consists of slabs of corner-sharing (Nb,Ti)O 6 octahedra interrupted by layers of oxygen atoms. Ca atoms within the slabs are 12-fold coordinated whereas those at the borders show irregular coordination geometries. The octahedral distortion is greatest near the borders of the slabs and least near the middle of the slabs. Ti 4+ preferentially occupy octahedral sites in the middle of slabs. The non-stoichiometry in the refined composition and the insulating character of the material may be explained in terms of extra oxygen, vacancies on the cation sites, or by localization of the electrons in the 4d orbitals of Nb at the borders of slabs. (orig.)

  16. Thermo-mechanical treatment of the Cr-Mo constructional steel plates with Nb, Ti and B additions

    International Nuclear Information System (INIS)

    Adamczyk, J.; Opiela, M.

    2002-01-01

    Results of investigations of the influence of parameters of thermomechanical treatment, carried out by rolling with controlled recrystallization, on the microstructure and mechanical properties of Cr-Mo constructional steel with Nb, Ti and B microadditions, destined for the manufacturing of weldable heavy plates, are presented. These plates show a yield point of over 960 MPa after heat treatment. Two variants of thermomechanical treatment were worked out, based on the obtained results of investigations, when rolling a plate 40 mm thick in several passes to a plate 15 mm thick in a temperature range from 1100 to 900 o C. It was found that the lack of complete recrystallization of the austenite in the first rolling variant, leads to localization of plastic deformation in form of shear bands. There exists a segregation of MC-type carbides and alloying elements in these bands, causing a distinctive reduction of the crack resistance of the steel, as also a disadvantageous anisotropy of plastic properties of plate after tempering. For plates rolled under the same conditions, using a retention shield, a nearly three times higher impact energy in - 40 o C was obtained, as also only a slight anisotropy of plastic properties, saving the required mechanical properties. (author)

  17. Epitaxial NbN/AlN/NbN tunnel junctions on Si substrates with TiN buffer layers

    Directory of Open Access Journals (Sweden)

    Rui Sun

    2016-06-01

    Full Text Available We have developed epitaxial NbN/AlN/NbN tunnel junctions on Si (100 substrates with a TiN buffer layer. A 50-nm-thick (200-oriented TiN thin film was introduced as the buffer layer for epitaxial growth of NbN/AlN/NbN trilayers on Si substrates. The fabricated NbN/AlN/NbN junctions demonstrated excellent tunneling properties with a high gap voltage of 5.5 mV, a large IcRN product of 3.8 mV, a sharp quasiparticle current rise with a ΔVg of 0.4 mV, and a small subgap leakage current. The junction quality factor Rsg/RN was about 23 for the junction with a Jc of 47 A/cm2 and was about 6 for the junction with a Jc of 3.0 kA/cm2. X-ray diffraction and transmission electron microscopy observations showed that the NbN/AlN/NbN trilayers were grown epitaxially on the (200-orientated TiN buffer layer and had a highly crystalline structure with the (200 orientation.

  18. Epitaxial NbN/AlN/NbN tunnel junctions on Si substrates with TiN buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Rui [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Makise, Kazumasa; Terai, Hirotaka [Advanced ICT Research Institute, National Institute of Information and Communications Technology (Japan); Zhang, Lu [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Wang, Zhen, E-mail: zwang@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Shanghai Tech University, Shanghai 201210 (China)

    2016-06-15

    We have developed epitaxial NbN/AlN/NbN tunnel junctions on Si (100) substrates with a TiN buffer layer. A 50-nm-thick (200)-oriented TiN thin film was introduced as the buffer layer for epitaxial growth of NbN/AlN/NbN trilayers on Si substrates. The fabricated NbN/AlN/NbN junctions demonstrated excellent tunneling properties with a high gap voltage of 5.5 mV, a large I{sub c}R{sub N} product of 3.8 mV, a sharp quasiparticle current rise with a ΔV{sub g} of 0.4 mV, and a small subgap leakage current. The junction quality factor R{sub sg}/R{sub N} was about 23 for the junction with a J{sub c} of 47 A/cm{sup 2} and was about 6 for the junction with a J{sub c} of 3.0 kA/cm{sup 2}. X-ray diffraction and transmission electron microscopy observations showed that the NbN/AlN/NbN trilayers were grown epitaxially on the (200)-orientated TiN buffer layer and had a highly crystalline structure with the (200) orientation.

  19. Beta Ti-45Nb and Ti-50Nb alloys produced by powder metallurgy for aerospace application

    Energy Technology Data Exchange (ETDEWEB)

    Martins, G.V.; Trava-Airoldi, V.J.; Machado, J.P.B., E-mail: givmartins@yahoo.com.br, E-mail: vladimir@las.inpe.br, E-mail: joaopaulo@las.inpe.br [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Silva, C.R.M., E-mail: cosmeroberto@gmail.com [Universidade de Brasilia (UnB), Brasilia, DF (Brazil); Nunes, C.A., E-mail: cnunes@demar.eel.usp.br [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Polo Urbo Industrial; Borges Junior, L.A., E-mail: borges.jr@itelefonica.com.br [Centro Universitario de Volta Redond (UNIFOA), Volta Redonda, RJ (Brazil)

    2009-07-01

    Beta titanium alloys parts are used on advanced aerospace systems because of their high strength to weight ratio and excellent corrosion resistance. Production of powder metallurgy titanium alloys components may lead to a substantial reduction in the cost, compared to those produced by conventional cast and wrought processes, because additional working operations and material waste can be avoided. In this work, beta Ti-45Nb and Ti- 50Nb were produced by the blended elemental technique, followed by uniaxial and cold isostatic pressing with subsequent densification by sintering. Sintered samples were characterized for phase composition by XRD, microstructure by SEM, hardness by Vickers indentation, specific mass by the Archimedes method and elastic modulus by resonance ultrasound. The sintered samples presented only the beta phase, higher hardness and lower elastic modulus when compared to Ti6Al4V alloy and experimental specific mass value near theoretical specific mass. These characteristics are adequate for application on several aerospace parts. (author)

  20. Beta Ti-45Nb and Ti-50Nb alloys produced by powder metallurgy for aerospace application

    International Nuclear Information System (INIS)

    Martins, G.V.; Trava-Airoldi, V.J.; Machado, J.P.B.; Silva, C.R.M.; Nunes, C.A.

    2009-01-01

    Beta titanium alloys parts are used on advanced aerospace systems because of their high strength to weight ratio and excellent corrosion resistance. Production of powder metallurgy titanium alloys components may lead to a substantial reduction in the cost, compared to those produced by conventional cast and wrought processes, because additional working operations and material waste can be avoided. In this work, beta Ti-45Nb and Ti- 50Nb were produced by the blended elemental technique, followed by uniaxial and cold isostatic pressing with subsequent densification by sintering. Sintered samples were characterized for phase composition by XRD, microstructure by SEM, hardness by Vickers indentation, specific mass by the Archimedes method and elastic modulus by resonance ultrasound. The sintered samples presented only the beta phase, higher hardness and lower elastic modulus when compared to Ti6Al4V alloy and experimental specific mass value near theoretical specific mass. These characteristics are adequate for application on several aerospace parts. (author)

  1. Multiscale simulation of mechanical properties of TiNb alloy

    Science.gov (United States)

    Nikonov, A. Yu.

    2017-12-01

    The article presents a numerical simulation of the mechanical properties of a Ti-Nb β-alloy on three different scales. The ab-initio approach is used to estimate the concentrations of the Ti alloy with required elastic properties. On the basis of molecular dynamics simulation, we calculate the adhesive force between individual particles of the alloy. The calculated dependence is implemented within the movable cellular automata method to determine the mechanical properties of Ti-Nb depending on the interparticle free space.

  2. Shape-memory effect in Ti-Nb alloys

    International Nuclear Information System (INIS)

    Peradze, T.; Berikashvili, T.; Chelidze, T.; Gorgadze, K.; Bochorishvili, M.; Taktakishvili, M.

    2009-01-01

    The work deals with the investigation of the binary alloy of titanium with niobium and is aimed at demonstrating the functional-mechanical possibilities of Ti-Nb alloys from the viewpoint of their potential application in practice. The shape-memory effect, super elasticity and reactive stress in alloys of Ti-Nb system were studied. It turned out that the work carried out expanded the interval of Nb content in the investigated alloys from 25.9 to 33.1 wt%. The shape recovery made up not less than 90% at the deformation of 6-8%. The reactive stress reached 350-450 MPa. In the alloys under study another (high-temperature) shape-memory effect was found, and the influence of hydrogen and oxygen on the inelastic properties of alloys was studied. (author)

  3. Structural and vibrational investigations of Nb-doped TiO2 thin films

    International Nuclear Information System (INIS)

    Uyanga, E.; Gibaud, A.; Daniel, P.; Sangaa, D.; Sevjidsuren, G.; Altantsog, P.; Beuvier, T.; Lee, Chih Hao; Balagurov, A.M.

    2014-01-01

    Highlights: • We studied the evolutions of structure for TiO 2 thin film as changes with Nb doping and temperatures. • Up to 800 °C, the grain size of Nb 0.1 Ti 0.9 O 2 is smaller than for pure TiO 2 because doped Nb hinders the growth of the TiO 2 grains. • There was no formation of the rutile phase at high temperature. • Nb doped TiO 2 films have high electron densities at 400–700 °C. • Nb dope extends the absorbance spectra of TiO 2 which leads to the band gap reduce. - Abstract: Acid-catalyzed sol–gel and spin-coating methods were used to prepare Nb-doped TiO 2 thin film. In this work, we studied the effect of niobium doping on the structure, surface, and absorption properties of TiO 2 by energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray reflectometry (XRR), X-ray photoelectron spectroscopy (XPS), Raman, and UV–vis absorption spectroscopy at various annealing temperatures. EDX spectra show that the Nb:Ti atomic ratios of the niobium-doped titania films are in good agreement with the nominal values (5 and 10%). XPS results suggest that charge compensation is achieved by the formation of Ti vacancies. Specific niobium phases are not observed, thus confirming that niobium is well incorporated into the titania crystal lattice. Thin films are amorphous at room temperature and the formation of anatase phase appeared at an annealing temperature close to 400 °C. The rutile phase was not observed even at 900 °C (XRD and Raman spectroscopy). Grain sizes and electron densities increased when the temperature was raised. Nb-doped films have higher electron densities and lower grain sizes due to niobium doping. Grain size inhibition can be explained by lattice stress induced by the incorporation of larger Nb 5+ ions into the lattice. The band gap energy of indirect transition of the TiO 2 thin films was calculated to be about 3.03 eV. After niobium doping, it decreased to 2.40 eV

  4. Method of treating Ti--Nb--Zr--Ta superconducting alloys

    International Nuclear Information System (INIS)

    Horiuchi, T.; Monju, Y.; Tatara, I.; Nagai, N.; Hisata, M.; Matsumoto, K.

    1975-01-01

    A superconducting alloy is formulated from 10 to 50 at. percent Ti, 20 to 50 at. percent Nb, 10 to 40 at. percent Zr, and 5 to 12 at. percent Ta. A Ti--Nb--Zr--Ta superconducting alloy with a fine, non-homogeneous structure is obtained by forming a β solid solution of Ti--Nb--Zr--Ta alloy by heating to a temperature within the β solid solution range, cooling, and then cold working the heated alloy. The cold worked alloy is heated to a temperature within the (β' + β'') alloy to maintain the peritectoid structure, cold worked, then heated to a temperature within the eutectoid range to form a multiphase alloy structure and then cooled and finally cold worked. (U.S.)

  5. On the role of Nb-related sites of an oxidized β-TiNb alloy surface in its interaction with osteoblast-like MG-63 cells

    Energy Technology Data Exchange (ETDEWEB)

    Jirka, Ivan, E-mail: Ivan.Jirka@jh-inst.cas.cz [J. Heyrovský Institute of Physical Chemistry, Acad. Sci. CR, v.v.i. Dolejškova 3, 182 23 Prague 8 (Czech Republic); Vandrovcová, Marta [Institute of Physiology, Acad. Sci. CR, v.v.i., Vídeňská 1083, Prague 4 (Czech Republic); Frank, Otakar [J. Heyrovský Institute of Physical Chemistry, Acad. Sci. CR, v.v.i. Dolejškova 3, 182 23 Prague 8 (Czech Republic); Tolde, Zdeněk [Faculty of Mechanical Engineering, Czech Technical University in Prague, Institute of Materials Engineering, Karlovo nám. 13, Prague 2 (Czech Republic); Plšek, Jan [J. Heyrovský Institute of Physical Chemistry, Acad. Sci. CR, v.v.i. Dolejškova 3, 182 23 Prague 8 (Czech Republic); Luxbacher, Thomas [Anton Paar GmbH, Anton Paar Str. 20, 8054 Graz (Austria); Bačáková, Lucie [Institute of Physiology, Acad. Sci. CR, v.v.i., Vídeňská 1083, Prague 4 (Czech Republic); Starý, Vladimír [Faculty of Mechanical Engineering, Czech Technical University in Prague, Institute of Materials Engineering, Karlovo nám. 13, Prague 2 (Czech Republic)

    2013-04-01

    β-Stabilized titanium (Ti) alloys containing non-toxic elements, particularly niobium (Nb), are promising materials for the construction of bone implants. Their biocompatibility can be further increased by oxidation of their surface. Therefore, in this study, the adhesion, growth and viability of human osteoblast-like MG 63 cells in cultures on oxidized surfaces of a β-TiNb alloy were investigated and compared with the cell behavior on thermally oxidized Ti, i.e. a metal commonly used for constructing bone implants. Four experimental groups of samples were prepared: Ti or TiNb samples annealed to 600 °C for 60 min in a stream of dry air, and Ti and TiNb samples treated in Piranha solution prior to annealing. We found that on all TiNb-based samples, the cell population densities on days 1, 3 and 7 after seeding were higher than on the corresponding Ti-based samples. As revealed by XPS and Raman spectroscopy, and also by isoelectric point measurements, these results can be attributed to the presence of T-Nb{sub 2}O{sub 5} oxide phase in the surface of the alloy sample, which decreased its negative zeta (ζ)-potential in comparison with zeta (ζ)-potential of the Ti sample at physiological pH. This effect was tentatively explained by the presence of positively charged defects acting as Lewis sites of the surface Nb{sub 2}O{sub 5} phase. Piranha treatment slightly decreases the biocompatibility of the samples, which for the alloy samples may be explained by a decrease in the number of defective sites with this treatment. Thus, the presence of Nb and thermal oxidation of β-stabilized Ti alloys play a significant role in the increased biocompatibility of TiNb alloys. - Highlights: ► T-Nb{sub 2}O{sub 5} and rutile are the main components of the oxidized β-TiNb alloy surface. ► Negative value of ζ potential is reduced by presence of Nb in the alloy surface. ► Less negative ζ potential is beneficial for interaction of the alloy with cells. ► The β-TiNb alloy

  6. Novel transparent conducting oxide: Anatase Ti1-xNb xO2

    International Nuclear Information System (INIS)

    Furubayashi, Yutaka; Hitosugi, Taro; Yamamoto, Yukio; Hirose, Yasushi; Kinoda, Go; Inaba, Kazuhisa; Shimada, Toshihiro; Hasegawa, Tetsuya

    2006-01-01

    Single-crystalline Ti 1-x Nb x O 2 (x = 0.2) films of 40 nm thickness were deposited on SrTiO 3 (100) substrates by the pulsed laser deposition (PLD) technique. X-ray diffraction measurement confirmed epitaxial growth of anatase (001) film. The resistivity of Ti 1-x Nb x O 2 films with x ≥ 0.03 is 2-3 x 10 -4 Ω cm at room temperature. The carrier density of Ti 1-x Nb x O 2 , which is almost proportional to the Nb concentration, can be controlled in a range of 1 x 10 19 to 2 x 10 21 cm -3 . Optical measurements revealed that internal transmittance in the visible and near-infrared region for films with x = 0.03 was more than 97%. These results demonstrate that the presently developed anatase Ti 1-x Nb x O 2 is one of the promising candidates for the practical TCOs

  7. Nb-doped rutile TiO₂: a potential anode material for Na-ion battery.

    Science.gov (United States)

    Usui, Hiroyuki; Yoshioka, Sho; Wasada, Kuniaki; Shimizu, Masahiro; Sakaguchi, Hiroki

    2015-04-01

    The electrochemical properties of the rutile-type TiO2 and Nb-doped TiO2 were investigated for the first time as Na-ion battery anodes. Ti(1-x)Nb(x)O2 thick-film electrodes without a binder and a conductive additive were prepared using a sol-gel method followed by a gas-deposition method. The TiO2 electrode showed reversible reactions of Na insertion/extraction accompanied by expansion/contraction of the TiO2 lattice. Among the Ti(1-x)Nb(x)O2 electrodes with x = 0-0.18, the Ti(0.94)Nb(0.06)O2 electrode exhibited the best cycling performance, with a reversible capacity of 160 mA h g(-1) at the 50th cycle. As the Li-ion battery anode, this electrode also attained an excellent rate capability, with a capacity of 120 mA h g(-1) even at the high current density of 16.75 A g(-1) (50C). The improvements in the performances are attributed to a 3 orders of magnitude higher electronic conductivity of Ti(0.94)Nb(0.06)O2 compared to that of TiO2. This offers the possibility of Nb-doped rutile TiO2 as a Na-ion battery anode as well as a Li-ion battery anode.

  8. Mechanical Properties of TiTaHfNbZr High-Entropy Alloy Coatings Deposited on NiTi Shape Memory Alloy Substrates

    Science.gov (United States)

    Motallebzadeh, A.; Yagci, M. B.; Bedir, E.; Aksoy, C. B.; Canadinc, D.

    2018-04-01

    TiTaHfNbZr high-entropy alloy (HEA) thin films with thicknesses of about 750 and 1500 nm were deposited on NiTi substrates by RF magnetron sputtering using TiTaHfNbZr equimolar targets. The thorough experimental analysis on microstructure and mechanical properties of deposited films revealed that the TiTaHfNbZr films exhibited amorphous and cauliflower-like structure, where grain size and surface roughness increased concomitant with film thickness. More importantly, the current findings demonstrate that the TiTaHfNbZr HEA films with mechanical properties of the same order as those of the NiTi substrate constitute promising biomedical coatings effective in preventing Ni release.

  9. Mechanical Properties of TiTaHfNbZr High-Entropy Alloy Coatings Deposited on NiTi Shape Memory Alloy Substrates

    Science.gov (United States)

    Motallebzadeh, A.; Yagci, M. B.; Bedir, E.; Aksoy, C. B.; Canadinc, D.

    2018-06-01

    TiTaHfNbZr high-entropy alloy (HEA) thin films with thicknesses of about 750 and 1500 nm were deposited on NiTi substrates by RF magnetron sputtering using TiTaHfNbZr equimolar targets. The thorough experimental analysis on microstructure and mechanical properties of deposited films revealed that the TiTaHfNbZr films exhibited amorphous and cauliflower-like structure, where grain size and surface roughness increased concomitant with film thickness. More importantly, the current findings demonstrate that the TiTaHfNbZr HEA films with mechanical properties of the same order as those of the NiTi substrate constitute promising biomedical coatings effective in preventing Ni release.

  10. Nb46, 5wt% Ti Eb-melting for AC and DC superconducting applications

    International Nuclear Information System (INIS)

    Bormio, C.; Ramos, M.J.; Pinatti, D.G.

    1990-01-01

    This paper reports on the superconductor alloy Nb46, 5wt % Ti which presents the best superconducting and mechanical properties for the systems Nb-Ti. The greatest difficulty in obtaining this alloy is related to the difference between the raw materials melting temperatures, which is about 700 degrees C. As a result the alloy homogeneity as well as Ti desired content, turn to be hard to control. The authors choose an electrode sandwich type, where Nb and Ti sheets are interposed. The electrode dimensions calculation is based on the Ti evaporation rate, energy balance and superficial tension of liquid titanium between Nb sheets. The ingots were electron beam melted. Herein, we present the following ingot results: Ti, intersticial and trace contents compared to international manufactures as well as its mechanical workability. This alloy will be used in NbTi wire production for AC and DC applications. The AC and DC wires are produced by coswaging and codrawing of NbTi bars and C u Ni-tubes for AC wires and Cu-tubes for DC wires. High area reductions of about 2 x 10 8 are reached without intermediate heat treatment, and they are essential since they are precursors of collective pinning centers, responsible for high critical current densities

  11. Microstructure control of Zr-Nb-Sn alloy with Mo addition for HWR pressure tube application

    International Nuclear Information System (INIS)

    Hwang, S. K.; Kim, M. H.; Kim, J. H.; Kwon, S. I.; Kim, Y. S.

    1997-01-01

    As a basic research to develop the material for heavy water reactor pressure tube application the effect of Mo addition to Zr-Nb-Sn alloy was studied for the purpose of minimizing the amount of cold working while maintaining a high strength. To select the target alloy system we first designed various alloy compositions and chose Zr-Nb-Sn and Zr-Nb-Mo through multi-regression analysis of the relationship between the basic properties and the compositions. Plasma arc melting was used to produce the alloys and the microstructure change introduced by the processing steps including hot forging, beta-heat treatment, hot rolling, cold rolling and recrystallization heat treatment was investigated. Recrystallization of Zr-Nb-Sn was retarded by adding Mo and this resulted in a fine grain structure in Zr-Nb-Sn-Mo alloy. Beside the retarding effect recrystallization, Mo increased the amount of residual beta phase and showed an indication of precipitation hardening, which added up to the possibility of applying the alloy for the desired usage. (author)

  12. Carrier compensation mechanism in heavily Nb-doped anatase Ti{sub 1-x}Nb{sub x}O{sub 2+{delta}} epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nogawa, H; Chikamatsu, A; Hirose, Y; Hasegawa, T [Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Nakao, S [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Kumigashira, H; Oshima, M, E-mail: chikamatsu@chem.s.u-tokyo.ac.jp [Department of Applied Chemistry, University of Tokyo, Tokyo 113-8656 (Japan)

    2011-09-14

    We investigated the electronic structures of anatase Ti{sub 1-x}Nb{sub x}O{sub 2+{delta}} (TNO) thin films as a function of Nb concentration x using photoemission spectroscopy (PES) measurements to elucidate the origin of the abrupt decrease in carrier activation in heavily Nb-doped regime. The existing intensity ratio of Nb{sup 5+} evaluated from Nb 3d core-level PES spectra maintained a constant value of {approx}0.8 at x = 0.06-0.3, implying that electron carriers generated by Nb doping are compensated by p-type defects. Ti 2p-3d and O1s-2p resonant PES measurements of x = 0.06-0.3 films revealed that the in-gap states positioned {approx}1 eV below the Fermi level (E{sub F}) have a mixed character of Ti 3d and O 2p orbitals, whereas the states at E{sub F} mainly have a Ti 3d nature. We proposed a carrier compensation mechanism that interstitial oxygen atoms strongly combined with surrounding Nb atoms kill conduction electrons in heavily Nb-doped anatase TiO{sub 2}.

  13. Experimental Determination of Impurity and Interdiffusion Coefficients in Seven Ti and Zr Binary Systems Using Diffusion Multiples

    Science.gov (United States)

    Chen, Zhangqi; Liu, Zi-Kui; Zhao, Ji-Cheng

    2018-05-01

    Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.

  14. Fatigue and strain effects in NbTi, Nb3Sn, and V2(Hf, Zr) multifilamentary superconductors

    International Nuclear Information System (INIS)

    Kuroda, T.; Wada, H.; Tachikawa, K.

    1988-01-01

    The effects of cyclic strain on critical current were studied in NbTi, bronze processed Nb 3 Sn, and composite diffusion processed V 2 (Hf,Zr) multifilamentary wires. No appreciable changes in critical current were found in NbTi wires until just prior to fatigue-induced fracture. Critical current degradation was also not observed in Nb 3 Sn or V 2 (Hf,Zr) as long as the wires were strained below the reversible limit strain. For strains beyond this limit strain the critical current was first degraded by an increasing number of cycles and then remained constant after a certain cycle number was passed

  15. Microstructures and Electrochemical Behavior of Ti-Mo Alloys for Biomaterials

    Directory of Open Access Journals (Sweden)

    Back-Sub Sung

    2015-01-01

    Full Text Available The Ti alloy with 7 wt% Mo revealed a microstructure that contained only the orthorhombic α′′ phase of a fine acicular martensitic structure. The corrosion resistance of the Ti-Mo alloys increased as the Mo content increased. Based on the results obtained from the polarization curve and electrochemical impedance, the Ti-Mo alloys were shown to be corrosion resistant because of the passive films formed on their surfaces. No ion release was detected in SBF (simulated body fluid solution, while Ti ions were released in 0.1% lactic acid ranging from 0.05 to 0.12 μg/mL for the Ti-Mo alloys. In vitro tests showed that MC3T3-E1 cell proliferation on Ti-7 wt% Mo alloy was rather active compared to other Ti-Mo alloys and commercial-grade pure Ti.

  16. Effects of substitution of Mo for Nb on less-common properties of Finemet alloys

    International Nuclear Information System (INIS)

    Butvin, P.; Butvinova, B.; Silveyra, J.M.; Chromcikova, M.; Janickovic, D.; Sitek, J.; Svec, P.; Vlasak, G.

    2010-01-01

    Particular properties of Fe-Nb/Mo-Cu-B-Si rapidly quenched ribbons were examined. Apart from minor variation, no significant difference due to the Mo for Nb substitution was observed in alloy density and its annealing-induced changes. The same holds for the anisotropic thermal expansion of as-cast ribbon when annealed and for induced anisotropy when annealed under stress. The Mo-substituted ribbons show only slightly higher crystallinity and lower coercivity if annealed in inert gas ambience than in vacuum. Some diversity in surface to interior heterogeneity of the differently annealed ribbons can still be distinguished. Preserving a minor percentage of Nb together with Mo does not seem substantiated to obtain favorable soft magnetic properties of ribbons annealed in inert gas.

  17. Effects of substitution of Mo for Nb on less-common properties of Finemet alloys

    Energy Technology Data Exchange (ETDEWEB)

    Butvin, P., E-mail: pavol.butvin@savba.s [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Butvinova, B. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Silveyra, J.M. [Instituto de Technologias y Ciencias de la Ingenieria H.F. Long, Facultad de Ingenieria, UBA-CONICET, Buenos Aires (Argentina); Chromcikova, M. [Vitrum Laugaricio - Joint Glass Centre of the Inst. of Inorg. Chem., SAS Bratislava and A. Dubcek University of Trencin, 911 50 Trencin (Slovakia); Janickovic, D. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Sitek, J. [Dept. of Nuclear Phys. and Technol., FEI, Slovak University of Technology, 812 19 Bratislava (Slovakia); Svec, P.; Vlasak, G. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia)

    2010-10-15

    Particular properties of Fe-Nb/Mo-Cu-B-Si rapidly quenched ribbons were examined. Apart from minor variation, no significant difference due to the Mo for Nb substitution was observed in alloy density and its annealing-induced changes. The same holds for the anisotropic thermal expansion of as-cast ribbon when annealed and for induced anisotropy when annealed under stress. The Mo-substituted ribbons show only slightly higher crystallinity and lower coercivity if annealed in inert gas ambience than in vacuum. Some diversity in surface to interior heterogeneity of the differently annealed ribbons can still be distinguished. Preserving a minor percentage of Nb together with Mo does not seem substantiated to obtain favorable soft magnetic properties of ribbons annealed in inert gas.

  18. Effects of substitution of Mo for Nb on less-common properties of Finemet alloys

    Science.gov (United States)

    Butvin, P.; Butvinová, B.; Silveyra, J. M.; Chromčíková, M.; Janičkovič, D.; Sitek, J.; Švec, P.; Vlasák, G.

    2010-10-01

    Particular properties of Fe-Nb/Mo-Cu-B-Si rapidly quenched ribbons were examined. Apart from minor variation, no significant difference due to the Mo for Nb substitution was observed in alloy density and its annealing-induced changes. The same holds for the anisotropic thermal expansion of as-cast ribbon when annealed and for induced anisotropy when annealed under stress. The Mo-substituted ribbons show only slightly higher crystallinity and lower coercivity if annealed in inert gas ambience than in vacuum. Some diversity in surface to interior heterogeneity of the differently annealed ribbons can still be distinguished. Preserving a minor percentage of Nb together with Mo does not seem substantiated to obtain favorable soft magnetic properties of ribbons annealed in inert gas.

  19. Crystal structure and ion conducting properties of La5NbMo2O16

    KAUST Repository

    Vu, T.D.

    2016-01-29

    The new compound La5NbMo2O16 with high ionic conduction has been discovered during the study of the ternary phase diagram of La2O3-MoO3-Nb2O5. The material crystallizes in the cubic space group Pn 3n (no 222) with the unit cell parameter a=11.2250(1) Å. La5NbMo2O16 is a new analogue of the R5Mo3O16 series (R=Pr, Nd). The structure was refined from a combined data X-ray and neutron powder diffraction. The ionic conductivity of the compound is then measured on sintered pellets, by means of complex impedance spectroscopy. © 2016 Elsevier Inc. All rights reserved.

  20. Confining jackets for concrete cylinders using NiTiNb and NiTi shape memory alloy wires

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eunsoo; Yoon, Soon-Jong [Department of Civil Engineering, Hongik University, Seoul 121-791 (Korea, Republic of); Nam, Tae-Hyun [School of Materials Science and Engineering and ERI, Gyeongsang National University, Jinju, Gyeongnam 600-701 (Korea, Republic of); Cho, Sun-Kyu [School of Civil Engineering, Seoul National University of Technology, Seoul 139-743 (Korea, Republic of); Park, Joonam, E-mail: eunsoochoi@hongik.ac.k [Department of Railroad Structure Research, Korea Railroad Research Institute, Uiwang 437-050, Korea (Korea, Republic of)

    2010-05-01

    This study used prestrained NiTiNb and NiTi shape memory alloy (SMA) wires to confine concrete cylinders. The recovery stress of the wires was measured with respect to the maximal prestrain of the wires. SMA wires were preelongated during the manufacturing process and then wrapped around concrete cylinders of 150 mmx300 mm ({phi}xL). Unconfined concrete cylinders were tested for compressive strength and the results were compared to those of cylinders confined by SMA wires. NiTiNb SMA wires increased the compressive strength and ductility of the cylinders due to the confining effect. NiTiNb wires were found to be more effective in increasing the peak strength of the cylinders and dissipating energy than NiTi wires. This study showed the potential of the proposed method to retrofit reinforced concrete columns using SMA wires to protect them from earthquakes.

  1. Niobium Nb and tantalum Ta

    International Nuclear Information System (INIS)

    Busev, A.I.; Tiptsova, V.G.; Ivanov, V.M.

    1978-01-01

    The basic methods for determining niobium and tantalum in various objects are described. Nb and Ta are separated with the aid of N-benzoyl-N-phenylhydroxylamine by precipitating Nb(5) from a tartaric acid solution with subsequent precipitation of Ta from the filtrate. The gravimetric determination of Nb and Ta in steels is based on their quantitative separation from a diluted solution by way of hydrolysis with subsequent after-precipitation with phenylarsonic acid (in the absence of W). The gravimetric determination of Nb in the presence of W is carried out with the aid of Cupferron. To determine Nb in its carbide, Nb(5) reduced to Nb(3) is titrated with a solution of K 2 Cr 2 O 7 in the presence of phenyl-anthranilic acid. The photometric determination of Nb in tungsten-containing steels and in ores containing Ti, W, Mo and Cr is based on the rhodanide method. Nb is determined in alloys with Zr and Ti photometrically with the aid of 4-(2-pyridylazo)-resorcin and in alloyed steels with the aid of benzhydroxamic acid. The latter complex is extracted with chloroform. This method is used to determine Nb in rocks. The photometric determination of Ta in TiCl 4 is carried out with the aid of pyrogallol, in commercial niobium with the aid of methyl violet, and in steel with the aid of 4-(-pyridylazo)-resorcin. Also described is the polarographic determination of Nb in tantalum pentoxide

  2. Evaluation of APC NbTi superconductor in a model dipole magnet

    International Nuclear Information System (INIS)

    Scanlan, R.M.; Lietzke, A.; Royet, J.; Wandesforde, A.; Taylor, C.E.; Wong, J.; Rudziak, M.K.

    1993-01-01

    The artificial pinning center (APC) approach to NbTi superconductor fabrication offers the potential benefits of higher current density and lower cost than the conventional process for NbTi. We have been evaluating several approaches for fabricating NbTi via the APC approach to determine whether these advantages can be realized in a practical conductor. The study began with the fabrication by several vendors of 10kg size samples which were evaluated as short samples. This was followed by the scale-up of one process to 150mm diameter billets. This material was evaluated first in a solenoid configuration and recently in a one-meter long dipole. We will report here on the results of these coil tests and other characterization results for this new material. We will also describe the plans to continue the scale-up to full size billets and we will discuss the potential cost savings of this approach compared with conventional NbTi fabrication

  3. Evaluation of mechanical properties of nanocrystalline Ti-Mo-Fe-Sn alloys system; Avaliacao de propriedades mecanicas de ligas nanocristalinas do sistema Ti-Mo-Fe-Sn

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, M.O.A; Vidilli, A.L.; Afonso, C.R.M., E-mail: andre.vidilli@gmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2014-07-01

    The Ti-6Al-4V, widely used in biomaterials, exhibits elastic modulus (E) of approximately 110GPa, which is significantly higher than the one of human bone (E = 10 to 30 GPa). In this project, a process of rapid solidification was utilized in 4 different alloys of Ti-Mo-Fe-Sn, in order to produce ultrafine nanocrystalline eutectic alloys, which present high strength (1800-2500 MPa), low elastic modulus (50-110 GPa) and good corrosion resistance. The alloys Ti{sub 62}Fe{sub 30}Mo{sub 8}, Ti{sub 56}Fe{sub 30}Mo{sub 8}Sn{sub 6}, Ti{sub 63}Fe{sub 23}Mo{sub 8}Sn{sub 6}, Ti{sub 60}Fe{sub 23}Mo{sub 8}Sn{sub 9} show Vickers microhardness de, respectively, 745 (1mm), 733 (1mm), 609 (1mm) e 651(1mm) HV. The characterization was performed using scanning electron microscopy (SEM) and X- ray diffraction (XRD). The results indicated the presence of a β-Ti (bcc) matrix and the intermetallic TiFe and Ti{sub 3}Sn phases, and the microstructure were formed by dendrites, and eutectic constituents, which were present in the compositions Ti{sub 62}Fe{sub 30}Mo{sub 8}, Ti{sub 56}Fe{sub 30}Mo{sub 8}Sn{sub 6}, Ti{sub 63}Fe{sub 23}Mo{sub 8}Sn{sub 6}, Ti{sub 60}Fe{sub 23}Mo{sub 8}Sn{sub 9}. (author)

  4. Effect of alloying Mo on mechanical strength and corrosion resistance of Zr-1% Sn-1% Nb-1% Fe alloy

    International Nuclear Information System (INIS)

    Sugondo

    2011-01-01

    It had been done research on Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy. The ingot was prepared by means of electrical electrode technique. The chemical analysis was identified by XRF, the metallography examination was perform by an optical microscope, the hardness test was done by Vickers microhardness, and the corrosion test was done in autoclave. The objective of this research were making Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy with Mo concentration; comparing effect of Mo concentration to metal characteristics of Zr-1%Sn-1%Nb-1%Fe which covered microstructure; composition homogeneity, mechanical strength; and corrosion resistance in steam, and determining the optimal Mo concentration in Zr-1%Sn-1%Nb-1%Fe-(x)% Mo alloy for nuclear fuel cladding which had corrosion resistance and high hardness. The results were as follow: The alloying Mo refined grains at concentration in between 0,1%-0,3% and the concentration more than that could coarsened grains. The hardness of the Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was controlled either by the flaw or the dislocation, the intersection of the harder alloying element, the solid solution of the alloying element and the second phase formation of ZrMo 2 . The corrosion rate of the Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was controlled by the second phase of ZrMo 2 . The 0.3% Mo concentration in Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was the best for second phase formation. The Mo concentration in between 0,3-0,5% in Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was good for the second phase formation and the solid solution. (author)

  5. Corrosion Characteristics of Ti-29Nb-xHf Ternary Alloy for Biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Pak, Sun Young; Choi, Han Chul [Chosun Univ., Kwangju (Korea, Republic of)

    2015-12-15

    The Cp-Ti and Ti-6Al-4V alloys were widely used for dental materials due to their mechanical properties and good corrosion resistance. However, Cp-Ti was known as bio-inert materials, Ti-6Al-4V alloy has a problem such as high Young modulus, potential loss of the surrounding bone, and to the release of potentially toxic ions from the alloy. To overcome this problem, Ti alloys containing Nb and Hf elements have been used for biomaterials due to low toxicity and high corrosion resistance. Especially, alloying element of Nb was known as β phase stabilizer. The β phase alloy was widely used to replace currently used implant materials. The corrosion resistances of Ti-29Nb-xHf ternary alloys were dependent on Hf content in oral environment solution.

  6. Growth mechanism, distribution characteristics and reinforcing behavior of (Ti, Nb)C particle in laser cladded Fe-based composite coating

    International Nuclear Information System (INIS)

    Li, Qingtang; Lei, Yongping; Fu, Hanguang

    2014-01-01

    Highlights: • Reinforced (Ti, Nb)Cp can be synthesized in the molten pool during laser cladding. • Formation mechanism of (Ti, Nb)Cp are impacted by Ti/Nb atomic ratio. • Appropriate Ti element can improve the precipitation of carbide particle. • Excess Ti weakens this effect above-mentioned. • The wear resistance of the coating was improved when Ti/Nb = 1. - Abstract: Over the past decade, researchers have demonstrated much interest in laser cladded metal matrix composite coatings for its good wear resistance, corrosion resistance, and high temperature properties. In this paper, in-situ (Ti, Nb)C particle reinforced Fe-based composite coatings were produced by laser cladding. The effects of Ti/Nb(atomic ratio) in the cladding powder on the formation mechanism and distribution characteristics of multiple particle were investigated. The results showed that when Ti/Nb > 1, Ti had a stronger ability to bond with C compared with Nb. (Ti, Nb)C multiple particles with TiC core formed in the molten pool. With the decrease of Ti/Nb, core-shell structure disappeared, the structure of particle got close to that of NbC gradually. It is found that the amount, area ratio and distribution of the reinforced particle in the coating containing Ti and Nb elements were improved, compared with these in the coating containing equal Nb element. When Ti/Nb = 1, the effects above-mentioned is most prominent, and the wear resistance of the coating is promoted obviously

  7. Growth mechanism, distribution characteristics and reinforcing behavior of (Ti, Nb)C particle in laser cladded Fe-based composite coating

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingtang, E-mail: liqingtang123@126.com; Lei, Yongping, E-mail: yplei@bjut.edu.cn; Fu, Hanguang

    2014-10-15

    Highlights: • Reinforced (Ti, Nb)Cp can be synthesized in the molten pool during laser cladding. • Formation mechanism of (Ti, Nb)Cp are impacted by Ti/Nb atomic ratio. • Appropriate Ti element can improve the precipitation of carbide particle. • Excess Ti weakens this effect above-mentioned. • The wear resistance of the coating was improved when Ti/Nb = 1. - Abstract: Over the past decade, researchers have demonstrated much interest in laser cladded metal matrix composite coatings for its good wear resistance, corrosion resistance, and high temperature properties. In this paper, in-situ (Ti, Nb)C particle reinforced Fe-based composite coatings were produced by laser cladding. The effects of Ti/Nb(atomic ratio) in the cladding powder on the formation mechanism and distribution characteristics of multiple particle were investigated. The results showed that when Ti/Nb > 1, Ti had a stronger ability to bond with C compared with Nb. (Ti, Nb)C multiple particles with TiC core formed in the molten pool. With the decrease of Ti/Nb, core-shell structure disappeared, the structure of particle got close to that of NbC gradually. It is found that the amount, area ratio and distribution of the reinforced particle in the coating containing Ti and Nb elements were improved, compared with these in the coating containing equal Nb element. When Ti/Nb = 1, the effects above-mentioned is most prominent, and the wear resistance of the coating is promoted obviously.

  8. Diffusion of titanium and niobium in b.c.c. Ti--Nb alloys

    International Nuclear Information System (INIS)

    Pontau, A.E.

    1978-01-01

    The diffusion coefficients for titanium and niobium radioactive tracers were simultaneously measured in Ti, Ti 94 6 Nb 5 4 , Ti 80 4 Nb 19 6 , and Ti 64 3 Nb 35 . 7 over the temperature range from 950 0 C to 1511 0 C using standard lathe sectioning techniques. The samples were initially heat treated by annealing above the α-β phase transition temperature and then either cooling slowly to room temperature or quenching. The room temperature crystal morphology was then examined using x-ray diffraction. Alloy concentrations were chosen both to suppress the β-α transition and to obtain the metastable ω-phase

  9. Structural properties, deformation behavior and thermal stability of martensitic Ti-Nb alloys

    Energy Technology Data Exchange (ETDEWEB)

    Boenisch, Matthias

    2016-06-10

    Ti-Nb alloys are characterized by a diverse metallurgy which allows obtaining a wide palette of microstructural configurations and physical properties via careful selection of chemical composition, heat treatment and mechanical processing routes. The present work aims to expand the current state of knowledge about martensite forming Ti-Nb alloys by studying 15 binary Ti-c{sub Nb}Nb (9 wt.% ≤ c{sub Nb} ≤ 44.5 wt.%) alloy formulations in terms of their structural and mechanical properties, as well as their thermal stability. The crystal structures of the martensitic phases, α{sup '} and α'', and the influence of the Nb content on the lattice (Bain) strain and on the volume change related to the β → α{sup '}/α'' martensitic transformations are analyzed on the basis of Rietveld-refinements. The magnitude of the shuffle component of the β → α{sup '}/α'' martensitic transformations is quantified in relation to the chemical composition. The largest transformation lattice strains are operative in Nb-lean alloys. Depending on the composition, both a volume dilatation and contraction are encountered and the volume change may influence whether hexagonal martensite α{sup '} or orthorhombic martensite α'' forms from β upon quenching. The mechanical properties and the deformation behavior of martensitic Ti-Nb alloys are studied by complementary methods including monotonic and cyclic uniaxial compression, nanoindentation, microhardness and impulse excitation technique. The results show that the Nb content strongly influences the mechanical properties of martensitic Ti-Nb alloys. The elastic moduli, hardness and strength are minimal in the vicinity of the limiting compositions bounding the interval in which orthorhombic martensite α'' forms by quenching. Uniaxial cyclic compressive testing demonstrates that the elastic properties of strained samples are different than those of unstrained ones

  10. Temperature dependence of residual stress in TiC coated Mo

    International Nuclear Information System (INIS)

    Yoshizawa, I.; Fukutomi, M.; Kamada, K.

    1984-01-01

    The effects of fabrication temperature and heat treatment on the residual stress in TiC coated Mo have been studied by using X-ray diffractometry. TiC coatings on Mo single crystal substrates with (100) and (111) surfaces were carried out with the Activated Reactive Evaporation (ARE) method. It was found that all Mo substrates measured show tensile residual stresses, and their values decrease as the fabrication temperature increases from 300 to 700 0 C. On the other hand, TiC films measured showed compressive residual stresses, for both TiC/Mo(100) and TiC/Mo(111) specimens. These compressive stresses also decreased with increasing the fabrication temperature. The residual stresses measured were higher in TiC/Mo(100) than in TiC/Mo(111). It was found that the compressive stresses in as-grown TiC films change to the tensile stresses after annealing at 1700 0 C for 30 min. The preferred orientations of TiC films were observed to depend on the fabrication temperature. However, no epitaxial growth of TiC films was found as far as the present experiment was concerned. (orig.)

  11. Effect of Nb on plasticity and oxidation behavior of TiA1Nb intermetallic compound by density functional theory

    Institute of Scientific and Technical Information of China (English)

    LI Yan-feng; XU Hui; SONG Zhao-quan; MA Song-shan

    2010-01-01

    Based on the pseudo potential plane-wave method of density functional theory(DFT),Ti1-xNbxA1(x=0,0.062 5,0.083 3,0.125,0.250)crystals' geometry structure,elastic constants,electronic structure and Mulliken populations were calculated,and the effects of doping on the geometric structure,electronic structure and bond strength were systematically analyzed.The results show that the influence of Nb on the geometric structure is little in terms of the plasticity,and with the increase of Nb content,the covalent bond strength remarkably reduces,and Ti-A1,Nb-M(M=Ti,A1)and other hybrid bonds enhance; meanwhile,the peak district increases and the pseudo-energy gap first decreases and then increases,the overall band structure narrows,the covalent bond and direction of bonds reduce.The population analysis also shows that the results are consistent with the electronic structure analysis.The density of states of TiAlNb shows that Nb doping can enhance the activity of Al and benefit the form of Al2O3 film.All the calculations reveal that the room temperature plasticity and the antioxidation properties of the compounds can be improved with the Nb content of 8.33%-12.5%(mole fraction).

  12. The effect of niobium morphology on the fracture behavior of MoSi2/Nb composites

    International Nuclear Information System (INIS)

    Alman, D.E.; Stoloff

    1995-01-01

    The morphology of the niobium reinforcement added to MoSi 2 affected the fracture behavior (and hence toughness) of MoSi 2 /20 vol pct Nb composites. The addition of discontinuous random niobium in the form of particles or short fibers deflected cracks that propagated through the MoSi 2 matrix. However, this did not result in any improvements in toughness, as matrix cracks preferentially propagated through the Nb/MoSi 2 interphase region. The addition of aligned niobium fibers, oriented perpendicular to the direction of matrix crack propagation, directly participated in the fracture of the composite. Depending on the diameter of Nb embedded in the MoSi 2 matrix, these fibers either fractured in a brittle manner or ruptured in a ductile manner. Small (400-μm) diameter continuously aligned Nb fibers fractured by brittle cleavage during testing. Therefore, the addition of these fibers was not as effective in improving the toughness of MoSi 2 as the addition of larger (800-μm) diameter continuously aligned Nb fibers, which ruptured in a ductile manner. It was observed that the larger diameter fibers had separated from the matrix through the propagation of cracks in the reaction zone adjacent to the fibers and that these cracks formed prior to yielding of these fibers. In contrast, the smaller diameter fibers remained well bonded to the matrix and, thus, were constrained by the MoSi 2 matrix from yielding. This resulted in brittle fracture behavior of the Nb fiber. There appeared to be an effect of aspect ratio on the fracture of the ductile embedded fibers

  13. Preparation and Oxidation Resistance of Mo-Si-B Coating on Nb-Si Based Alloy Surface

    Directory of Open Access Journals (Sweden)

    PANG Jie

    2018-02-01

    Full Text Available Mo-Si-B coating was prepared on Nb-Si alloys to improve the high-temperature oxidation. The influence of the halide activators (NaF and AlF3 on Si-B co-depositing to obtain Mo-Si-B coating on Nb-Si alloys was analyzed by thermochemical calculations. The results show that NaF proves to be more suitable than AlF3 to co-deposit Si and B. Then Mo-Si-B can be coated on Nb-Si based alloys using detonation gun spraying of Mo followed by Si and B co-deposition. The fabricated coatings consist of outer MoSi2 layer with fine boride phase and inner unreacted Mo layer. The mass gain of the Mo-Si-B coating is 1.52mg/cm2 after oxidation at 1250℃ for 100h. The good oxidation resistance results in a protective borosilicate scale formed on the coating.

  14. Microstructures and phase transformations of Ti-30Zr-xNb (x = 5, 7, 9, 13 at.%) shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Wentao; Sun, Xuguang; Yuan, Bifei [School of Mechanical Engineering, Xi' an Shiyou University, Xi' an 710065 (China); Xiong, Chengyang; Zhang, Fei [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li, Yan, E-mail: liyan@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Sun, Baohui [Lanzhou Seemine SMA Co. Ltd., Lanzhou 730010 (China)

    2016-12-15

    The microstructures, phase transformations and shape memory properties of Ti-30Zr-xNb (x = 5, 7, 9, 13 at.%) alloys were investigated. The X-ray diffraction and transmission electron microscopy observations showed that the Ti-30Zr-5Nb, Ti-30Zr-7/9Nb and Ti-30Zr-13Nb alloys were composed of the hcp α′-martensite, orthorhombic α″-martensite and β phases, respectively. The results indicated the enhanced β-stabilizing effect of Nb in Ti-30Zr-xNb alloys than that in Ti-Nb alloys due to the high content of Zr. The differential scanning calorimetry test indicated that the Ti-30Zr-5Nb alloy displayed a reversible transformation with a high martensitic transformation start temperature of 776 K and a reverse martensitic transformation start temperature (A{sub s}) of 790 K. For the Ti-30Zr-7Nb and Ti-30Zr-9Nb alloys, the martensitic transformation temperatures decreased with the increasing Nb content. Moreover, an ω phase transformation occurred in the both alloys upon heating at a temperature lower than the corresponding A{sub s}, which is prompted by more addition of Nb. Although the critical stress in tension of the three martensitic alloys decreased with increasing Nb content, the Ti-30Zr-9Nb alloy showed a critical stress of as high as 300 MPa. Among all the alloys, the Ti-30Zr-9Nb alloy exhibited the maximum shape memory effect of 1.61%, due to the lowest critical stress for the martensite reorientation. - Highlights: •Ti-30Zr-5Nb alloy is composed of hcp α′-martensite with the M{sub s} of 776 K. •Ti-30Zr-7Nb and Ti-30Zr-9Nb alloys are predominated by orthorhombic α″-martensite. •Ti-30Zr-13Nb alloy consists of a single β phase due to the β-stabilizing effect of Nb. •The martensitic transformation temperatures decrease with increasing Nb content. •Ti-30Zr-9Nb alloy shows the maximum shape memory effect of 1.61%.

  15. 热压Mo-Nb-TiC原位复合材料的机械性能

    Institute of Scientific and Technical Information of China (English)

    廖际常

    2001-01-01

    @@ 由于TiC熔点高、比重小、强度好、耐高温,TiC基复合材料如Ni-Mo-TiC、Ni-Cr-TiC等已研究用作高温结构材料,但这些材料的高温强度仍不如镍基高温合金,因此只用作切削工具.铌和钼作TiC中稳定的第二相来提高TiC的低温断裂韧性,而且从状态图上可见TiC、Nb、Mo在很宽的成分范围共存,因而可以通过改变相结构的含量来提高材料的机械性能.但熔炼加工很难控制材料的成分和显微组织,因此采用粉末冶金工艺来制作这种材料.

  16. Synthesis and characterization of Ag-doped TiO2 nanotubes on Ti-6Al-4V and Ti-6Al-7Nb alloy

    Science.gov (United States)

    Ulfah, Ika Maria; Bachtiar, Boy M.; Murnandityas, Arnita Rut; Slamet

    2018-05-01

    The present paper is focused on comparative behavior of nanotubes growth on Ti-6Al-4V and Ti-6Al-7Nb alloy using electrochemical anodization method. These alloys were anodized in electrolytes solution containing glycerol, water and 0.5wt.% of NH4F. Silver-doped TiO2 nanotubes were synthesized using photo-assisted deposition (PAD) at various Ag loading concentration in 0.05 M, 0.10 M, and 0.15 M. The phase composition and morphological characteristics were investigated by XRD and FESEM/EDX, respectively. The surface wettability was measured by contact angle meter. The results showed that TiO2 nanotubes can be grown on these surface alloys. XRD profiles revealed crystal formation of anatase, rutile and Ag on these surface alloys. According to FESEM images, the average nanotube diameter of Ti-6Al-4V alloy and Ti-6Al-7Nb alloy are 134 nm and 120 nm, respectively. EDX-Mapping analysis showed that Ag desposited over surface of TiO2 nanotubes. The surface wettability indicated hydrophilicity properties on Ti-4Al-4V alloy and Ti-6Al-7Nb alloy surface. This study may contribute to the development of silver-doped TiO2 nanotubes on Ti-6Al-4V alloy and Ti-6Al-7Nb alloy can be considered in various photocatalytic applications such as biomedical devicesdue to photocatalytic mechanism and antibacterial ability.

  17. Tuning electronic structure and optical properties of SrTiO{sub 3} by site-specific doping by Nb with N/B from hybrid functional calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanyu; Zhou, Wei; Wu, Ping, E-mail: pingwu@tju.edu.cn

    2017-07-01

    In this study, the extensive density functional theory calculations are performed to modify the electronic structure of perovskite SrTiO{sub 3} by doping with Nb and N/B. The unoccupied states induced by the Nb monodoping at the Sr or Ti site, which were passivated in the codoped systems (the substitution of Nb at Ti site with the replacement of N at O site: Nb@Ti/N@O and the substitution of Nb at Sr site with the replacement of B at O site: Nb@Sr/B@O). The charge-compensated donor-acceptor pair codoping creates the new occupied states within the band gap, which yields the absorption edge extend to visible light. And the calculated defect formation energy implies that the codoped systems are energetically favorable under the O-rich condition. Moreover, the band-edge alignment confirmed that the Nb@Ti/N@O system is desirable for the spontaneous water splitting under visible light and the Nb@Sr/B@O system can split water into hydrogen in presence of sacrificial agent. - Highlights: • A systematical study has been employed on SrTiO{sub 3} with the donor-acceptor codoping. • The donor-acceptor pair codoping yields the absorption edge extend to visible light. • The formation energy implies that the codoped systems are favorable under the O-rich condition. • The Nb@Ti/N@O system is desirable for the spontaneous water splitting under visible light. • The Nb@Sr/B@O system can split water into hydrogen in presence of sacrificial agent.

  18. Structural evolution of Ba{sub 8}Ti{sub 3}Nb{sub 4}O{sub 24} from BaTiO{sub 3} using a series of Ba(Ti{sub 1−5x}Nb{sub 4x})O{sub 3} solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Barrientos Hernández, F.R., E-mail: frbh68@hotmail.com [Academic Area of Earth Sciences and Materials, Autonomous University of Hidalgo State, Road Pachuca-Tulancingo km 4.5, Mineral de la Reforma zip code 42184, Hidalgo (Mexico); Department of Metallurgical and Materials Engineering, ESIQIE, National Polytechnic Institute, UPALM, Zacatenco, Mexico City, zip code 07738 (Mexico); Lira Hernández, I.A. [Department of Metallurgical and Materials Engineering, ESIQIE, National Polytechnic Institute, UPALM, Zacatenco, Mexico City, zip code 07738 (Mexico); Industrial Engineering Department, Technological Institute of Pachuca, Road México-Pachuca km. 87.5, Pachuca de Soto zip code 42080, Hidalgo (Mexico); Gómez Yáñez, C. [Department of Metallurgical and Materials Engineering, ESIQIE, National Polytechnic Institute, UPALM, Zacatenco, Mexico City, zip code 07738 (Mexico); Arenas Flores, A. [Academic Area of Earth Sciences and Materials, Autonomous University of Hidalgo State, Road Pachuca-Tulancingo km 4.5, Mineral de la Reforma zip code 42184, Hidalgo (Mexico); Cabrera Sierra, R. [Department of Metallurgical and Materials Engineering, ESIQIE, National Polytechnic Institute, UPALM, Zacatenco, Mexico City, zip code 07738 (Mexico); Pérez Labra, M. [Academic Area of Earth Sciences and Materials, Autonomous University of Hidalgo State, Road Pachuca-Tulancingo km 4.5, Mineral de la Reforma zip code 42184, Hidalgo (Mexico)

    2014-01-15

    Highlights: • The evolution phase Ba{sub 8}Ti{sub 3}Nb{sub 4}O{sub 24} was obtained through the mechanism Ba(Ti{sub 1-5x}Nb{sub 4x})O{sub 3}. • Addition of niobium can accelerate grain growth of BaTiO{sub 3} ceramics. • Ba{sub 8}Ti{sub 3}Nb{sub 4}O{sub 24} presents a dielectric loss of 0.0035 and permittivity value of 54.6. • Electrical measurements showed that Nb{sup 5+} content drops Curie temperature. • Samples with x ⩾ 0.0625 shows an insulating behavior. -- Abstract: In this work, the structural evolution of hexagonal phase Ba{sub 8}Ti{sub 3}Nb{sub 4}O{sub 24} by adding Nb{sub 2}O{sub 5} to perovskite structure of BaTiO{sub 3} was investigated. The compositions Ba(Ti{sub 1-5x}Nb{sub 4x})O{sub 3} ceramics, with 0.00025 ⩽ x ⩽ 0.125 were prepared by the conventional solid state route in air atmosphere, the powders precursors, BaTiO{sub 3}, BaCO{sub 3} and Nb{sub 2}O{sub 5}, were mixed in stoichiometric proportions and ground in a ball mill using alumina balls and acetone. The mixed powders were calcined at temperatures up to 1500 °C. The phase transformation of Ba{sub 8}Ti{sub 3}Nb{sub 4}O{sub 24} from BaTiO{sub 3} was studied by DRX, Raman spectroscopy, SEM, electrical measurements (relative permittivity and P–E hysteresis loops); Rietveld’s refinement was used to structurally characterize the samples. For the devices obtained capacitance was measured at 1 kHz; with these values we calculated the relative permittivity. The samples show typical P–E hysteresis loops at room temperature accompanied by saturation polarization (Ps) and remnant polarization (Pr). The DRX and Rietveld’s refinement results show x ⩽ 0.01 has a ferroelectric behavior. When the doped level is increased x ⩾ 0.02, a peak displacement is observed, this is due to the phase transformation of tetragonal to cubic into the unit cell. Finally, with x = 0.125 the crystal structure transforms to the characteristic hexagonal phase Ba{sub 8}Ti{sub 3}Nb{sub 4}O{sub 24} which

  19. Microwave-Hydrothermal Synthesis and Characterization of High-Purity Nb Doped BaTiO3 Nanocrystals

    Directory of Open Access Journals (Sweden)

    A. Khanfekr

    2014-01-01

    Full Text Available The synthesis of Nb doped BaTiO3 has been investigated under Microwave-Hydrothermal (MH conditions in the temperature of 150°C for only 2 h using C16H36O4Ti, BaH2O2.8H2O and NbCl5 as Ba, Ti and  Nb sources, respectively.  Typical experiments performed on MH processing have not yet reported for Nb doped BaTiO3.  In the MH process, the formation of high purity nano tetragonal Nb-BaTiO3 was strongly enhanced. New hydrothermal method was used instead of the previous solid state reaction for the BaTiO3±Nb2O3 system. The new method uses high pressure to create nano dimension particles in a lower time and temperature. In case of the phase evolution studies, the XRD pattern measurements and Raman spectroscopy were performed. TEM and FE-SEM images were taken for the detailed analysis of the particle size, surface and morphology.  Synthesis of Nb doped BaTiO3 with the Microwave-hydrothermal provides an advantage of fast crystallization and reduced crystal size when compared to existing methods.

  20. Optical and semiconductive properties of binary and ternary thin films from the Nb-Ti-O system

    Science.gov (United States)

    Aperador, W.; Yate, L.; Pinzón, M. J.; Caicedo, J. C.

    2018-06-01

    A study has been conducted based on the Mott-Schottky model acquisition by potentiodynamic electrochemical impedance spectroscopy, to determine the physical-chemical properties of binary TiO2, Nb2O5 and ternary Nb-Ti-O thin films (semiconductor type) based on Nb,Ti, O elements. The technique used for the study of optical properties was that of spectral transmittance, measurements were performed using a spectrophotometer. The consistency of the impedance data has been studied by calculating the Kramers-Kronig relations. The structural properties were analyzed by XRD patterns; the chemical composition measurements for all thin films were made by using XPS technique. So, in this research the transmittance values change from 72.74% for Nb2O5 to 59.68% for Ti-Nb-O with wavelength around 355 nm. The absorption coefficients for all films were analyzed from 31823.87 cm-1 for Nb2O5 to 91240.90 cm-1 for Nb-Ti-O with wavelength around 355 nm evidencing thus a 65% reduction. The direct band gap it was found that the photon energy (band gap Eg) changes in all films from 3.56 eV for Nb2O5 to 3.96 eV for Ti-Nb-O evidencing a 10% reduction. The extinction coefficient values change in all films from 0.038 cm-1 for Nb2O5 to 0.277 cm-1 for Ti-Nb-O films with wavelength around 355 nm, exhibiting an 86% increasing. Finally, it was observed by the Mott-Schottky analysis that the reference potential (Ag/AgCl) changes for all films from -2.09 V for Nb2O5 to -0.80 V for Ti-Nb-O material showing a 62% reduction.

  1. Representation of the properties 10 CrMoNiNb 9 10

    International Nuclear Information System (INIS)

    Dette, M.; Hahn, H.; Nieuwland, H.C.D.; Tichler, J.W.

    The high-temperature ferritic steal 10 CrMoNiNb 9 10 is used as structural material in nuclear steam generators. It is exposed to loads within the creep range. In order to resist safety also loads caused by incidents after long temperature stress, the time-independent stability parameters must not fall below specified minimum values. The material is characterised by the stability degree Nb/C+N and the niobium excess δ Nb. (orig.) [de

  2. Mechanical properties and grindability of dental cast Ti-Nb alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takahashi, Masatoshi; Okuno, Osamu

    2003-09-01

    Aiming at developing a dental titanium alloy with better mechanical properties and machinability than unalloyed titanium, a series of Ti-Nb alloys with Nb concentrations up to 30% was made. They were cast into magnesia-based molds using a dental casting machine and the mechanical properties and grindability of the castings were examined. The hardness of the alloys with Nb concentrations of 5% and above was significantly higher than that of titanium. The yield strength and tensile strength of the alloys with Nb concentrations of 10% and above were significantly higher than those of titanium, while the elongation was significantly lower. A small addition of niobium to titanium did not contribute to improving the grindability of titanium. The Ti-30% Nb alloy exhibited significantly better grindability at low grinding speed with higher hardness, strength, and Young's modulus than titanium, presumably due to precipitation of the omega phase in the beta matrix.

  3. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study.

    Science.gov (United States)

    Ribeiro, Ana Lúcia Roselino; Hammer, Peter; Vaz, Luís Geraldo; Rocha, Luís Augusto

    2013-12-01

    The main aim of this work was to assess the electrochemical behavior of new Ti35Nb5Zr and Ti35Nb10Zr alloys in artificial saliva at 37 °C to verify if they are indicated to be used as biomaterials in dentistry as alternatives to Ti6Al4V alloys in terms of corrosion protection efficiency of the material. Electrochemical impedance spectroscopy (EIS) experiments were carried out for different periods of time (0.5-216 h) in a three-electrode cell, where the working electrode (Ti alloys) was exposed to artificial saliva at 37 °C. The near-surface region of the alloys was investigated using x-ray photoelectron spectroscopy (XPS). All alloys exhibited an increase in corrosion potential with the immersion time, indicating the growth and stabilization of the passive film. Ti35Nb5Zr and Ti6Al4V alloys had their EIS results interpreted by a double-layer circuit, while the Ti35Nb10Zr alloy was modeled by a one-layer circuit. In general, the new TiNbZr alloys showed similar behavior to that observed for the Ti6Al4V. XPS results suggest, in the case of the TiNbZr alloys, the presence of a thicker passive layer containing a lower fraction of TiO2 phase than that of Ti6Al4V. After long-term immersion, all alloys develop a calcium phosphate phase on the surface. The new TiNbZr alloys appear as potential candidates to be used as a substitute to Ti6Al4V in the manufacturing of dental implant-abutment sets.

  4. Analysis of Ti/Mo film by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Mou Fangming; Tu Bing; Yao Bing; Liu Jinhua; Long Xinggui

    2002-01-01

    Chemical elements and their electronic binding energy on surface of Ti film and bulk are analyzed by X-ray photoelectron spectroscopy (XPS) and Ar + etching. The results show that the surface of specimens is contaminated by carbon and oxygen. Mo on surface of Ti film is from substrate. The XPS spectra of Ti 2p of the etched specimens are fitted on. The results show that Ti chemical states on surface of Ti film are TiO 2 with a content of approaching to 100% and a little Ti. Some TiO 2 will be reduced to low chemical states with the increasing of etching time. The chemical states of Mo on surface of Ti film are MoO 3 and Mo. The content of Mo increases as etching time increasing. Chemical state of carbon on the surface of film is graphite and carbide with binding energy of 288.2-288.9 eV

  5. Dynamic globularization of a-phase in Ti6Al4V alloy during hot compression

    CSIR Research Space (South Africa)

    Mutombo, K

    2013-12-01

    Full Text Available composition dependence of the martensite start temperature (Ms) has been done for Ti-Fe, Ti-Cr, Ti-Mo, Ti-V, Ti-Nb, Ti-Zr and Ti-Al alloys [1], [2]. The beneficial effect on the formation of hexagonal-structured martensite (α′) of Al, Mn, Cr, Sn and Fe... alloying elements, has been discussed by Lin et al [4]. However, the formation of the orthorhombic-structured martensite (α′′) which is favoured by elements such as Nb, Mo, Zr, W and V (strong β stabilizers) or H (a strong β stabilizer), has been reported...

  6. Thermal effect of TiC in the Mo/TiC/SiC system at elevated temperature

    International Nuclear Information System (INIS)

    Roger, Jerome; Audubert, Fabienne; Le Petitcorps, Yann

    2010-01-01

    In this study, we examined the effect induced by the addition of a TiC interlayer on the stability of the Mo/SiC system at high temperature. Indeed, Mo/SiC couple is unstable at high temperature with formation of Mo 2 C and Mo 5 Si 3 C x phases. In order to limit the degradation of Mo mechanical properties, a TiC film was inserted between Mo and SiC. Samples used in this work were prepared on metallic wires substrates, SiC and TiC being deposited by CVD. The protection given by TiC layer was considered in the 1473-1673 K temperature range and for TiC thicknesses up to about 60 μm. From our results, TiC is not effective enough to mitigate C and Si atoms diffusion. Nevertheless, a notable reduction of the reaction extent is obtained at any temperatures. The so-observed effect depends on the TiC thickness and the temperature. In actual fact, TiC efficiency increases when temperature and/or TiC layer thickness increases without reaching a complete protection.

  7. Determination of the electrostatic potential distribution in Pt/Fe:SrTiO₃/Nb:SrTiO₃ thin-film structures by electron holography.

    Science.gov (United States)

    Marchewka, Astrid; Cooper, David; Lenser, Christian; Menzel, Stephan; Du, Hongchu; Dittmann, Regina; Dunin-Borkowski, Rafal E; Waser, Rainer

    2014-11-10

    We determined the electrostatic potential distribution in pristine Pt/Fe:SrTiO3/Nb:SrTiO3 structures by electron holography experiments, revealing the existence of a depletion layer extending into the Nb-doped bottom electrode. Simulations of potential profiles in metal-insulator-metal structures were conducted assuming different types and distributions of dopants. It is found that the presence of acceptor-type dopant concentrations at the Fe:SrTiO3/Nb:SrTiO3 interface with a donor-doped insulating layer provides a good match to the measured profile. Such acceptor-type interface concentrations may be associated with Sr vacancies on the Nb:SrTiO3 side of the bottom interface.

  8. Effect of Nb on glass forming ability and plasticity of (Ti-Cu)-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Suo, Z.Y.; Qiu, K.Q.; Li, Q.F.; Ren, Y.L.; Hu, Z.Q.

    2010-01-01

    A Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 bulk metallic glass has been developed by Nb partial substitution for Zr in Ti 33 Cu 47 Zr 11 Ni 6 Sn 2 Si 1 alloy. The glass forming ability Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 alloy has been investigated using differential scanning calorimetry and X-ray diffractometry. Partial Nb substitutes for Zr promote the glass forming ability. Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 BMG with diameter of 3 mm can be fabricated by Cu-mold injection casting method. The glass forming ability of Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 alloy is enhanced by stabilizing the undercooled liquid against crystallization. The plastic strain up to 2.5% was obtained for Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 BMG compared to 0.15% for Ti 33 Cu 47 Zr 11 Ni 6 Sn 2 Si 1 BMG, which demonstrates that small amount of Nb addition can have a dramatic effect on plasticity enhancement in Ti-Cu-based BMG. The intersection and branching of the shear bands are observed. The plastic strain of the Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 BMG can be improved by the generation of nanocrystalline particles, which lead to multiple shear bands.

  9. Selective Laser Melting of Ti-45Nb Alloy

    Directory of Open Access Journals (Sweden)

    Holger Schwab

    2015-04-01

    Full Text Available Ti-45Nb is one of the potential alloys that can be applied for biomedical applications as implants due to its low Young’s modulus. Ti-45Nb (wt.% gas atomized powders were used to produce bulk samples by selective laser melting with three different parameter sets (energy inputs. A β-phase microstructure consisting of elliptical grains with an enriched edge of titanium was observed by scanning electron microscopy and X-ray diffraction studies. The mechanical properties of these samples were evaluated using hardness and compression tests, which suggested that the strength of the samples increases with increasing energy input within the range considered.

  10. Mutual Effects of Hydrogenation and Deformation in Ti-Nb Alloys

    National Research Council Canada - National Science Library

    Zander, D

    2002-01-01

    ...), transmission electron microscopy (TEM), thermal desorption spectroscopy (TDS), and microhardness tests, the influence of hydrogen at high fugacities on the phase stability, desorption behavior, and microhardness in Ti-Nb (20 to 45 wt pct Nb...

  11. Vanadium Oxide Thin Films Alloyed with Ti, Zr, Nb, and Mo for Uncooled Infrared Imaging Applications

    Science.gov (United States)

    Ozcelik, Adem; Cabarcos, Orlando; Allara, David L.; Horn, Mark W.

    2013-05-01

    Microbolometer-grade vanadium oxide (VO x ) thin films with 1.3 Nb, Mo, and Zr using a second gun and radiofrequency (RF) reactive co-sputtering to probe the effects of the transition metals on the film charge transport characteristics. The results reveal that the temperature coefficient of resistance (TCR) and resistivity are unexpectedly similar for alloyed and unalloyed films up to alloy compositions in the ˜20 at.% range. Analysis of the film structures for the case of the 17% Nb-alloyed film by glancing-angle x-ray diffraction and transmission electron microscopy shows that the microstructure remains even with the addition of high concentrations of alloy metal, demonstrating the robust character of the VO x films to maintain favorable electrical transport properties for bolometer applications. Postdeposition thermal annealing of the alloyed VO x films further reveals improvement of electrical properties compared with unalloyed films, indicating a direction for further improvements in the materials.

  12. Stress-induced phase transformation and room temperature aging in Ti-Nb-Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cai, S.; Schaffer, J.E. [Fort Wayne Metals Research Products Corp, 9609 Ardmore Ave., Fort Wayne, IN 46809 (United States); Ren, Y. [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

    2017-01-05

    Room temperature deformation behavior of Ti-17Nb-1Fe and Ti-17Nb-2Fe alloys was studied by synchrotron X-ray diffraction and tensile testing. It was found that, after proper heat treatment, both alloys were able to recover a deformation strain of above 3.5% due to the Stress-induced Martensite (SIM) phase transformation. Higher Fe content increased the beta phase stability and onset stress for SIM transformation. A strong {110}{sub β} texture was produced in Ti-17Nb-2Fe compared to the {210}{sub β} texture that was observed in Ti-17Nb-1Fe. Room temperature aging was observed in both alloys, where the formation of the omega phase increased the yield strength (also SIM onset stress), and decreased the ductility and strain recovery. Other metastable beta Ti alloys may show a similar aging response and this should draw the attention of materials design engineers.

  13. Mechanical Properties of a Newly Additive Manufactured Implant Material Based on Ti-42Nb.

    Science.gov (United States)

    Schulze, Christian; Weinmann, Markus; Schweigel, Christoph; Keßler, Olaf; Bader, Rainer

    2018-01-13

    The application of Ti-6Al-4V alloy or commercially pure titanium for additive manufacturing enables the fabrication of complex structural implants and patient-specific implant geometries. However, the difference in Young's modulus of α + β-phase Ti alloys compared to the human bone promotes stress-shielding effects in the implant-bone interphase. The aim of the present study is the mechanical characterization of a new pre-alloyed β-phase Ti-42Nb alloy for application in additive manufacturing. The present investigation focuses on the mechanical properties of SLM-printed Ti-42Nb alloy in tensile and compression tests. In addition, the raw Ti-42Nb powder, the microstructure of the specimens prior to and after compression tests, as well as the fracture occurring in tensile tests are characterized by means of the SEM/EDX analysis. The Ti-42Nb raw powder exhibits a dendrite-like Ti-structure, which is melted layer-by-layer into a microstructure with a very homogeneous distribution of Nb and Ti during the SLM process. Tensile tests display Young's modulus of 60.51 ± 3.92 GPa and an ultimate tensile strength of 683.17 ± 16.67 MPa, whereas, under a compressive load, a compressive strength of 1330.74 ± 53.45 MPa is observed. The combination of high mechanical strength and low elastic modulus makes Ti-42Nb an interesting material for orthopedic and dental implants. The spherical shape of the pre-alloyed material additionally allows for application in metal 3D printing, enabling the fabrication of patient-specific structural implants.

  14. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study

    International Nuclear Information System (INIS)

    Ribeiro, Ana Lúcia Roselino; Hammer, Peter; Vaz, Luís Geraldo; Rocha, Luís Augusto

    2013-01-01

    The main aim of this work was to assess the electrochemical behavior of new Ti35Nb5Zr and Ti35Nb10Zr alloys in artificial saliva at 37 °C to verify if they are indicated to be used as biomaterials in dentistry as alternatives to Ti6Al4V alloys in terms of corrosion protection efficiency of the material. Electrochemical impedance spectroscopy (EIS) experiments were carried out for different periods of time (0.5–216 h) in a three-electrode cell, where the working electrode (Ti alloys) was exposed to artificial saliva at 37 °C. The near-surface region of the alloys was investigated using x-ray photoelectron spectroscopy (XPS). All alloys exhibited an increase in corrosion potential with the immersion time, indicating the growth and stabilization of the passive film. Ti35Nb5Zr and Ti6Al4V alloys had their EIS results interpreted by a double-layer circuit, while the Ti35Nb10Zr alloy was modeled by a one-layer circuit. In general, the new TiNbZr alloys showed similar behavior to that observed for the Ti6Al4V. XPS results suggest, in the case of the TiNbZr alloys, the presence of a thicker passive layer containing a lower fraction of TiO 2  phase than that of Ti6Al4V. After long-term immersion, all alloys develop a calcium phosphate phase on the surface. The new TiNbZr alloys appear as potential candidates to be used as a substitute to Ti6Al4V in the manufacturing of dental implant-abutment sets. (paper)

  15. Shape memory characteristics of Ti-22Nb-(2-8)Zr(at.%) biomedical alloys

    International Nuclear Information System (INIS)

    Kim, J.I.; Kim, H.Y.; Inamura, T.; Hosoda, H.; Miyazaki, S.

    2005-01-01

    Shape memory characteristics of Ti-22Nb-(2-8)Zr(at.%) biomedical alloys were investigated by using tensile tests and X-ray diffraction (XRD) measurement. The alloy ingots were fabricated by an arc melting method. The ingots were cold-rolled by a reduction up to 95% in thickness at room temperature. All the alloys were solution-treated at 1173 K for 1.8 ks. The alloys subjected to the solution treatment exhibited large elongations ranging between 28 and 40%. The martensitic transformation temperature decreased by 38 K with 1 at.% increase of Zr content. The maximum recovered strain of 4.3% was obtained in the Ti-22Nb-4Zr(at.%) alloy. Ti-22Nb-(2-4)Zr(at.%) and Ti-22Nb-6Zr(at.%) alloys exhibited stable shape memory effect and superelastic behavior at room temperature, respectively

  16. Control of the interfacial reactions in Nb-toughened MoSi2

    International Nuclear Information System (INIS)

    Shaw, L.; Abbaschian, R.

    1993-01-01

    Toughening of MoSi 2 for high-temperature applications can be achieved by incorporating ductile refractory-metal reinforcements, provided that a coating is applied to prevent interdiffusion and reaction between the matrix and the reinforcements. In the present study, three different coating techniques for applying a thin Al 2 O 3 film on Nb reinforcements as a diffusion barrier have been studied. The techniques consisted of (1) sol-gel coating; (2) physical vapor deposition (PVD); (3) hot dipping in molten Al, followed by anodizing Al to form Al 2 O 3 . The processing parameters for the techniques were evaluated and the effectiveness of each coating as a diffusion barrier was assessed. For the present MoSi 2 matrix which contains SiO 2 , PVD coatings provided the most effective diffusion barrier for processing MoSi 2 /Nb composites

  17. Maximisation of the ratio of microhardness to the Young's modulus of Ti-12Mo-13Nb alloy through microstructure changes.

    Science.gov (United States)

    Gabriel, Sinara B; de Almeida, Luiz H; Nunes, Carlos A; Dille, Jean; Soares, Glória A

    2013-08-01

    Alloys for orthopaedic and dentistry applications require high mechanical strength and a low Young's modulus to avoid stress shielding. Metastable β titanium alloys appear to fulfil these requirements. This study investigated the correlation of phases precipitated in a Ti-12Mo-13Nb alloy with changes in hardness and the Young's modulus. The alloy was produced by arc melting under an argon atmosphere, after which, it was heat treated and cold forged. Two different routes of heat treatment were employed. Phase transformations were studied by employing X-ray diffraction and transmission electron microscopy. Property characterisation was based on Vickers microhardness tests and Young's modulus measurements. The highest ratio of microhardness to the Young's modulus was obtained using thermomechanical treatment, which consists of heating at 1000°C for 24h, water quenching, cold forging to reduce 80% of the area, and ageing at 500°C for 24h, where the final microstructure consisted of an α phase dispersed in a β matrix. The α phase appeared in two different forms: as fine lamellas (with 240±100 nm length) and massive particles of 200-500 nm size. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Cr3+ and Nb5+ co-doped Ti2Nb10O29 materials for high-performance lithium-ion storage

    Science.gov (United States)

    Yang, Chao; Yu, Shu; Ma, Yu; Lin, Chunfu; Xu, Zhihao; Zhao, Hua; Wu, Shunqing; Zheng, Peng; Zhu, Zi-Zhong; Li, Jianbao; Wang, Ning

    2017-08-01

    Ti2Nb10O29 is an advanced anode material for lithium-ion batteries due to its large specific capacity and high safety. However, its poor electronic/ionic conductivity significantly limits its rate capability. To tackle this issue, a Cr3+-Nb5+ co-doping is employed, and a series of CrxTi2-2xNb10+xO29 compounds are prepared. The co-doping does not change the Wadsley-Roth shear structure but increases the unit-cell volume and decreases the particle size. Due to the increased unit-cell volumes, the co-doped samples show increased Li+-ion diffusion coefficients. Experimental data and first-principle calculations reveal significantly increased electronic conductivities arising from the formation of impurity bands after the co-doping. The improvements of the electronic/ionic conductivities and the smaller particle sizes in the co-doped samples significantly contribute to improving their electrochemical properties. During the first cycle at 0.1 C, the optimized Cr0.6Ti0.8Nb10.6O29 sample delivers a large reversible capacity of 322 mAh g-1 with a large first-cycle Coulombic efficiency of 94.7%. At 10 C, it retains a large capacity of 206 mAh g-1, while that of Ti2Nb10O29 is only 80 mAh g-1. Furthermore, Cr0.6Ti0.8Nb10.6O29 shows high cyclic stability as demonstrated in over 500 cycles at 10 C with tiny capacity loss of only 0.01% per cycle.

  19. Mechanical Properties of a Newly Additive Manufactured Implant Material Based on Ti-42Nb

    Directory of Open Access Journals (Sweden)

    Christian Schulze

    2018-01-01

    Full Text Available The application of Ti-6Al-4V alloy or commercially pure titanium for additive manufacturing enables the fabrication of complex structural implants and patient-specific implant geometries. However, the difference in Young’s modulus of α + β-phase Ti alloys compared to the human bone promotes stress-shielding effects in the implant–bone interphase. The aim of the present study is the mechanical characterization of a new pre-alloyed β-phase Ti-42Nb alloy for application in additive manufacturing. The present investigation focuses on the mechanical properties of SLM-printed Ti-42Nb alloy in tensile and compression tests. In addition, the raw Ti-42Nb powder, the microstructure of the specimens prior to and after compression tests, as well as the fracture occurring in tensile tests are characterized by means of the SEM/EDX analysis. The Ti-42Nb raw powder exhibits a dendrite-like Ti-structure, which is melted layer-by-layer into a microstructure with a very homogeneous distribution of Nb and Ti during the SLM process. Tensile tests display Young’s modulus of 60.51 ± 3.92 GPa and an ultimate tensile strength of 683.17 ± 16.67 MPa, whereas, under a compressive load, a compressive strength of 1330.74 ± 53.45 MPa is observed. The combination of high mechanical strength and low elastic modulus makes Ti-42Nb an interesting material for orthopedic and dental implants. The spherical shape of the pre-alloyed material additionally allows for application in metal 3D printing, enabling the fabrication of patient-specific structural implants.

  20. High Temperature Mechanical Constitutive Modeling of a High-Nb TiAl Alloy

    Directory of Open Access Journals (Sweden)

    DONG Chengli

    2018-02-01

    Full Text Available Uniaxial tensile, low cycle fatigue, fatigue-creep interaction and creep experiments of a novel high-Nb TiAl alloy (i.e. Ti-45Al-8Nb-0.2W-0.2B-0.02Y (atom fraction/% were conducted at 750℃ to obtain its tested data and curves. Based on Chaboche visco-plasticity unified constitutive model, Ohno-Wang modified non-linear kinematic hardening was introduced in Chaboche constitutive model to describe the cyclic hardening/softening, and Kachanov damage was coupled in Chaboche constitutive model to characterize the accelerated creep stage. The differential equations of the constitutive model discretized by explicit Euler method were compiled in to ABAQUS/UMAT to simulate the mechanical behavior of high-Nb TiAl alloy at different test conditions. The results show that Chaboche visco-plasticity unified constitutive model considering both Ohno-Wang modified non-linear kinematic hardening and Kachanov damage is able to simulate the uniaxial tensile, low cycle fatigue, fatigue-creep interaction and creep behavior of high-Nb TiAl alloy and has high accuracy.

  1. High heat load properties of TiC dispersed Mo alloys

    International Nuclear Information System (INIS)

    Tokunaga, Kazutoshi; Yoshida, Naoaki; Miura, Yasushi; Kurishita, Hiroaki; Kitsunai, Yuji; Kayano, Hideo.

    1996-01-01

    Electron beam high heat load experiment of new developed three kinds of TiC dispersed Mo alloys (Mo-0.1wt%TiC, Mo-0.5wt%TiC and Mo-1.0wt%TiC) was studied so as to evaluate it's high heat load at using as the surface materials of divertor. The obtained results indicated that cracks were not observed by embrittlement by recrystallization until about 2200degC of surface temperature and the gas emission properties were not different from sintered molibdenum. However, at near melting point, deep cracks on grain boundary and smaller gas emission than that of sintered Mo were observed. So that, we concluded that TiC dispersed Mo alloy was good surface materials used under the conditions of the stationary heat flux and less than the melting point, although not good one to be melted under nonstationary large heat flux. (S.Y.)

  2. Effect of Ti and Nb Addition on Precipitation and Sensitization Behavior in Ferritic Stainless Steel Welded Joint

    International Nuclear Information System (INIS)

    Kim, Jong Min; Lee, Hae Woo

    2013-01-01

    The precipitation and sensitization characteristics in AISI436 weld metal were investigated in different chemical composition ranges of Ti and Nb content. We manufactured four welding wires made of 0-0.2 wt% of Ti and 0-1.0 wt% of Nb and did flux cored arc welding. After heat treatment at 900 °C for 20 hours, we made a Double Loop Electrochemical Potentiokinetic Reactivation (DL-EPR) test, Electron Backscattering Diffraction and SEM. The DL-EPR test revealed that as the amount of addition of Ti and Nb rose, the degree of sensitization fell. The microstructure became more refined, and Cr carbide formed at the grain boundary that had no addition of Ti and Nb. Furthermore, in the specimen with the addition of Ti, Nb, the Ti, Nb carbide and nitride were precipitated in the intergranular boundary, and the laves phase was precipitated at the grain boundary.

  3. Mn-coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetron sputtering for dental applications

    Science.gov (United States)

    Park, Seon-Yeong; Choe, Han-Cheol

    2018-02-01

    In this study, Mn-coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetrons sputtering for dental applications were studied using different experimental techniques. Mn coating films were formed on Ti-29Nb-xHf alloys by a radio frequency magnetron sputtering technique for 0, 1, 3, and 5 min at 45 W. The microstructure, composition, and phase structure of the coated alloys were examined by optical microscopy, field emission scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The microstructure of Ti-29Nb alloy showed α" phase in the needle-like structure and Ti-29Nb-15Hf alloy showed β phase in the equiaxed structure. As the sputtering time increased, the circular particles of Mn coatings on the Ti-29Nb alloy increased at inside and outside surfaces. As the sputtering time increased, [Mn + Ca/P] ratio of the plasma electrolytic oxidized films in Ti- 29Nb-xHf alloys increased. The corrosion potential (Ecorr) of Mn coatings on the Ti-29Nb alloy showed higher than that of Mn coatings on the Ti-29Nb-15Hf alloy. The passive current density (Ipass) of the Mn coating on the Ti-29Nb alloy and Mn coatings on the Ti-29Nb-15Hf alloy was less noble than the non-Mn coated Ti-29Nb and Ti-29Nb-15Hf alloys surface.

  4. 9.1-T iron-free Nb-Ti dipole magnet with pancake windings

    International Nuclear Information System (INIS)

    Gilbert, W.; Caspi, S.; Hassenzahl, W.; Meuser, R.; Peters, C.; Rechen, J.; Schafer, R.; Taylor, C.; Wolgast, R.

    1983-03-01

    An eight-pancake Nb-Ti dipole magnet, with bent up ends, called D-108B has been built and tested. This magnet is a Nb-Ti version of a Nb 3 Sn magnet designed to produce a 10-tesla dipole field in a 40 mm diameter aperture. The pancack design is used for the heavy 12,000 ampere Nb 3 Sn cable because of the mechanical difficulty in winding such a heavy cable into the conventional nested cylindrical shell configuration with a 2'' inner winding diameter. The Nb-Ti version operates at 1.8K, in He II, has superconducting cable half as thick as the Nb 3 Sn cable, and operates at half the operating current: 6000 A rather than 12,000 A at 10 tesla. Both magnets are approximately one meter long. D-10B was tested from January 26 to February 2, 1983 and reached short-sample performance in both He I and He II after moderate training. The central field at 4.3K is 7.0 (+- 0.1) tesla, and at 1.8K is 9.1 (+- 0.2) tesla. Ramp rate sensitivity and cyclic heating data were also measured

  5. Impulse Pressuring Diffusion Bonding of TiC Cermet to Stainless Steel Using Ti/Nb Interlayer

    Directory of Open Access Journals (Sweden)

    LI Jia

    2017-03-01

    Full Text Available Impulse pressuring diffusion bonding(IPDB and constant pressuring diffusion bonding(CPDB of TiC cermet to 304 stainless steel(304SS using Ti/Nb interlayer was carried out at 890℃ under a impulse pressuring of 2-10MPa and a constant pressuring of 10MPa within a duration of only 4-12min, and a robust metallurgical bonding was achieved. Microstructure characterization and shear performance of the IPDB and CPDB joints were analyzed by SEM, EDS, XRD and shearing test. The results show that the interface phases in those two kinds of joints are similar, which are mainly σ phase,(β-Ti, Nb and α+β-Ti solid solution. When the joint is bonded for 10min, shear strength of TiC/304SS CPDB joints is 55.6MPa, while the shear strength of IPDB joints reaches 110MPa. The fracture of CPDB joints is TiC cermet fracture, while that of IPDB joints is mixed fracture by alternated between TiC cermet and reaction layer.

  6. Emergence of Nb-Ti as supermagnet material

    Energy Technology Data Exchange (ETDEWEB)

    Berlincourt, T G

    1987-06-01

    The discovery and emergence of Nb-Ti as a high field superconductor are reviewed. The prehistory and setting for its discovery are described, and an anecdotal history follows its development up to the first successful large scale applications.

  7. Interplay between lattice distortions, vibrations and phase stability in NbMoTaW high entropy alloys

    NARCIS (Netherlands)

    Kormann, F.H.W.; Sluiter, M.H.F.

    2016-01-01

    Refractory high entropy alloys (HEA), such as BCC NbMoTaW, represent a promising materials class for next-generation high-temperature applications, due to their extraordinary mechanical properties. A characteristic feature of HEAs is the formation of single-phase solid solutions. For BCC NbMoTaW,

  8. The system K2NbF7-K2TiF6-KCl

    International Nuclear Information System (INIS)

    Kamenskaya, L.A.; Matveev, A.M.

    1984-01-01

    Using visual-polythermal and thermographical methods the ternary system K 2 NbF 7 -K 2 TiE 6 -KCl has been studied. Crystallization fields of initial components and the field of solid solutions of double compounds K 3 NbClF 7 and K 3 TiClF 6 are outlined. Ternary eutectics at 654 deg C, having the composition K 2 NbF 6 -41, K 2 TiP 6 -41, KCl-18 mol.%, is determined. Potassium fluoroniobate and fluorotitanate form continuous solid solutions unstable in the presence of the third component, potassium chloride

  9. In vitro corrosion behaviour of Ti-Nb-Sn shape memory alloys in Ringer's physiological solution.

    Science.gov (United States)

    Rosalbino, F; Macciò, D; Scavino, G; Saccone, A

    2012-04-01

    The nearly equiatomic Ni-Ti alloy (Nitinol) has been widely employed in the medical and dental fields owing to its shape memory or superelastic properties. The main concern about the use of this alloy derives form the fact that it contains a large amount of nickel (55% by mass), which is suspected responsible for allergic, toxic and carcinogenic reactions. In this work, the in vitro corrosion behavior of two Ti-Nb-Sn shape memory alloys, Ti-16Nb-5Sn and Ti-18Nb-4Sn (mass%) has been investigated and compared with that of Nitinol. The in vitro corrosion resistance was assessed in naturally aerated Ringer's physiological solution at 37°C by corrosion potential and electrochemical impedance spectroscopy (EIS) measurements as a function of exposure time, and potentiodynamic polarization curves. Corrosion potential values indicated that both Ni-Ti and Ti-Nb-Sn alloys undergo spontaneous passivation due to spontaneously formed oxide film passivating the metallic surface, in the aggressive environment. It also indicated that the tendency for the formation of a spontaneous oxide is greater for the Ti-18Nb-5Sn alloy. Significantly low anodic current density values were obtained from the polarization curves, indicating a typical passive behaviour for all investigated alloys, but Nitinol exhibited breakdown of passivity at potentials above approximately 450 mV(SCE), suggesting lower corrosion protection characteristics of its oxide film compared to the Ti-Nb-Sn alloys. EIS studies showed high impedance values for all samples, increasing with exposure time, indicating an improvement in corrosion resistance of the spontaneous oxide film. The obtained EIS spectra were analyzed using an equivalent electrical circuit representing a duplex structure oxide film, composed by an outer and porous layer (low resistance), and an inner barrier layer (high resistance) mainly responsible for the alloys corrosion resistance. The resistance of passive film present on the metals' surface

  10. First-principles analysis of MoS2/Ti2C and MoS2/Ti2CY2 (Y=F and OH) all-2D semiconductor/metal contacts

    KAUST Repository

    Gan, Liyong

    2013-06-13

    First-principles calculations are used to explore the geometry, bonding, and electronic properties of MoS2/Ti2C and MoS2/Ti2CY2 (Y = F and OH) semiconductor/metal contacts. The structure of the interfaces is determined. Strong chemical bonds formed at the MoS2/Ti2C interface result in additional states next to the Fermi level, which extend over the three atomic layers of MoS2 and induce a metallic character. The interaction in MoS2/Ti2CY2, on the other hand, is weak and not sensitive to the specific geometry, and the semiconducting nature thus is preserved. The energy level alignment implies weak and strong n-type doping of MoS2 in MoS2/Ti2CF2 and MoS2/Ti2C(OH)2, respectively. The corresponding n-type Schottky barrier heights are 0.85 and 0.26 eV. We show that the MoS2/Ti2CF2 interface is close to the Schottky limit. At the MoS2/Ti2C(OH)2 interface, we find that a strong dipole due to charge rearrangement induces the Schottky barrier. The present interfaces are well suited for application in all-two-dimensional devices.

  11. First-principles analysis of MoS2/Ti2C and MoS2/Ti2CY2 (Y=F and OH) all-2D semiconductor/metal contacts

    KAUST Repository

    Gan, Liyong; Huang, Dan; Schwingenschlö gl, Udo; Zhao, Yu-Jun

    2013-01-01

    First-principles calculations are used to explore the geometry, bonding, and electronic properties of MoS2/Ti2C and MoS2/Ti2CY2 (Y = F and OH) semiconductor/metal contacts. The structure of the interfaces is determined. Strong chemical bonds formed at the MoS2/Ti2C interface result in additional states next to the Fermi level, which extend over the three atomic layers of MoS2 and induce a metallic character. The interaction in MoS2/Ti2CY2, on the other hand, is weak and not sensitive to the specific geometry, and the semiconducting nature thus is preserved. The energy level alignment implies weak and strong n-type doping of MoS2 in MoS2/Ti2CF2 and MoS2/Ti2C(OH)2, respectively. The corresponding n-type Schottky barrier heights are 0.85 and 0.26 eV. We show that the MoS2/Ti2CF2 interface is close to the Schottky limit. At the MoS2/Ti2C(OH)2 interface, we find that a strong dipole due to charge rearrangement induces the Schottky barrier. The present interfaces are well suited for application in all-two-dimensional devices.

  12. Emergence of Nb-Ti as supermagnet material

    International Nuclear Information System (INIS)

    Berlincourt, T.G.

    1987-01-01

    The discovery and emergence of Nb-Ti as a high field superconductor are reviewed. The prehistory and setting for its discovery are described, and an anecdotal history follows its development up to the first successful large scale applications. (author)

  13. Voltage spikes in Nb3Sn and NbTi strands

    International Nuclear Information System (INIS)

    Bordini, B.; Ambrosio, G.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.V.; Lamm, M.J.; Orris, D.; Tartaglia, M.; Tompkins, J.C.; Turrioni, D.; Yamada, R.; Zlobin, A.V.; Fermilab

    2005-01-01

    As part of the High Field Magnet program at Fermilab several NbTi and Nb 3 Sn strands were tested with particular emphasis on the study of voltage spikes and their relationship to superconductor instabilities. The voltage spikes were detected under various experimental conditions using voltage-current (V-I) and voltage-field (V-H) methods. Two types of spikes, designated ''magnetization'' and ''transport current'' spikes, have been identified. Their origin is most likely related to magnetization flux jump and transport current redistribution, respectively. Many of the signals observed appear to be a combination of these two types of spikes; the combination of these two instability mechanisms should play a dominant role in determining the minimum quench current

  14. Beta decomposition processes in Hf-rich Hf--Nb alloys

    International Nuclear Information System (INIS)

    Jones, W.B.; Taggart, R.; Polonis, D.H.

    1978-01-01

    The decomposition of the bcc β-phase by both athermal and isothermal processes has been investigated in Hf-rich Hf--Nb alloys. An all β-phase structure is retained in chill-cast alloys containing 30 to 50 at.% Nb (Cb), although electron diffraction streaking effects and the behavior of the temperature coefficient of electrical resistivity indicate the presence of a bcc lattice instability similar to that reported in solute lean Ti and Zr alloys. Aging a Hf 0 . 65 Nb 0 . 35 alloy at 400 and 600 0 C resulted in the direct precipitation of a fine dispersion of α-phase needles; this morphology differs from the discs of transition α (α/sub t/) which Carpenter et al observed in Nb-rich Nb 0 . 68 Hf 0 . 32 . During continued aging, the needles grow selectively to form colonies or groups of needles in which both the individual needles and the groups of needles have major axes aligned along (110)/sub β/ type directions. The initial α-phase particles exhibit the Burgers orientation relationship with the parent matrix; continued aging changes the electron diffraction patterns in a way that is similar to that observed in aged Ti--Mo and Ti--Mo--Al alloys where they were attributed to the α-phase having a different crystallographic relationship to the β-phase (Type 2 α-phase). The observed changes in the electron diffraction patterns of aged Hf 0 . 65 Nb 0 . 35 cannot be described as resulting from strained Burgers α-phase

  15. Nanostructured TiO2 Doped with Nb as a Novel Support for PEMFC

    Directory of Open Access Journals (Sweden)

    Edgar Valenzuela

    2013-01-01

    Full Text Available Nowadays, one of the major issues of the PEMFC concerns the durability. Historically, carbon has been used as a catalyst support in PEMFC; nevertheless, under the environmental conditions of the cell, the carbon is oxidized, leaving the catalyst unsupported. In order to increase the stability and durability of the catalyst in the PEMFC, a novel nanostructured metallic oxide support is proposed. In this work, TiO2 was doped with Nb to obtain a material that combines chemical stability, high surface area, and an adequate electronic conductivity in order to be a successful catalyst support candidate for long-term PEMFC applications. The TiO2-Nb nanostructured catalyst support was physically and electrochemically characterized. According to the results, the TiO2-Nb offers high surface area and good particle dispersion; also, the electrochemical activity and stability of the support were evaluated under high potential conditions, where the TiO2-Nb proved to be much more stable than carbon.

  16. Porous TiNb24O62 microspheres as high-performance anode materials for lithium-ion batteries of electric vehicles.

    Science.gov (United States)

    Yang, Chao; Deng, Shengjue; Lin, Chunfu; Lin, Shiwei; Chen, Yongjun; Li, Jianbao; Wu, Hui

    2016-11-10

    TiNb 24 O 62 is explored as a new anode material for lithium-ion batteries. Microsized TiNb 24 O 62 particles (M-TiNb 24 O 62 ) are fabricated through a simple solid-state reaction method and porous TiNb 24 O 62 microspheres (P-TiNb 24 O 62 ) are synthesized through a facile solvothermal method for the first time. TiNb 24 O 62 exhibits a Wadsley-Roth shear structure with a structural unit composed of a 3 × 4 octahedron-block and a 0.5 tetrahedron at the block-corner. P-TiNb 24 O 62 with an average sphere size of ∼2 μm is constructed by nanoparticles with an average size of ∼100 nm, forming inter-particle pores with a size of ∼8 nm and inter-sphere pores with a size of ∼55 nm. Such desirable porous microspheres are an ideal architecture for enhancing the electrochemical performances by shortening the transport distance of electrons/Li + -ions and increasing the reaction area. Consequently, P-TiNb 24 O 62 presents outstanding electrochemical performances in terms of specific capacity, rate capability and cyclic stability. The reversible capacities of P-TiNb 24 O 62 are, respectively, as large as 296, 277, 261, 245, 222, 202 and 181 mA h g -1 at 0.1, 0.5, 1, 2, 5, 10 and 20 C, which are obviously larger than those of M-TiNb 24 O 62 (258, 226, 210, 191, 166, 147 and 121 mA h g -1 ). At 10 C, the capacity of P-TiNb 24 O 62 still remains at 183 mA h g -1 over 500 cycles with a decay of only 0.02% per cycle, whereas the corresponding values of M-TiNb 24 O 62 are 119 mA h g -1 and 0.04%. These impressive results indicate that P-TiNb 24 O 62 can be a promising anode material for lithium-ion batteries of electric vehicles.

  17. The impact of Ti and temperature on the stability of Nb5Si3 phases: a first-principles study.

    Science.gov (United States)

    Papadimitriou, Ioannis; Utton, Claire; Tsakiropoulos, Panos

    2017-01-01

    Nb-silicide based alloys could be used at T > 1423 K in future aero-engines. Titanium is an important additive to these new alloys where it improves oxidation, fracture toughness and reduces density. The microstructures of the new alloys consist of an Nb solid solution, and silicides and other intermetallics can be present. Three Nb 5 Si 3 polymorphs are known, namely αNb 5 Si 3 ( tI 32 Cr 5 B 3 -type, D8 l ), βNb 5 Si 3 ( tI 32 W 5 Si 3 -type, D8 m ) and γNb 5 Si 3 ( hP 16 Mn 5 Si 3 -type, D8 8 ). In these 5-3 silicides Nb atoms can be substituted by Ti atoms. The type of stable Nb 5 Si 3 depends on temperature and concentration of Ti addition and is important for the stability and properties of the alloys. The effect of increasing concentration of Ti on the transition temperature between the polymorphs has not been studied. In this work first-principles calculations were used to predict the stability and physical properties of the various Nb 5 Si 3 silicides alloyed with Ti. Temperature-dependent enthalpies of formation were computed, and the transition temperature between the low (α) and high (β) temperature polymorphs of Nb 5 Si 3 was found to decrease significantly with increasing Ti content. The γNb 5 Si 3 was found to be stable only at high Ti concentrations, above approximately 50 at. % Ti. Calculation of physical properties and the Cauchy pressures, Pugh's index of ductility and Poisson ratio showed that as the Ti content increased, the bulk moduli of all silicides decreased, while the shear and elastic moduli and the Debye temperature increased for the αNb 5 Si 3 and γNb 5 Si 3 and decreased for βNb 5 Si 3 . With the addition of Ti the αNb 5 Si 3 and γNb 5 Si 3 became less ductile, whereas the βNb 5 Si 3 became more ductile. When Ti was added in the αNb 5 Si 3 and βNb 5 Si 3 the linear thermal expansion coefficients of the silicides decreased, but the anisotropy of coefficient of thermal expansion did not change significantly.

  18. Multi-component solid solution alloys having high mixing entropy

    Science.gov (United States)

    Bei, Hongbin

    2015-10-06

    A multi-component high-entropy alloy includes a composition selected from the following group: VNbTaTiMoWRe, VNbTaTiMoW, VNbTaTiMoRe, VNbTaTiWRe, VNbTaMoWRe, VNbTiMoWRe, VTaTiMoWRe, NbTaTiMoWRe, VNbTaTiMo, VNbTaTiW, VNbTaMoW, VNbTiMoW, VTaTiMoW, NbTaTiMoW, VNbTaTiRe, VNbTaMoRe, VNbTiMoRe, VTaTiMoRe, NbTaTiMoRe, VNbTaWRe, VNbTiWRe, VTaTiWRe, NbTaTiWRe, VNbMoWRe, VTaMoWRe, NbTaMoWRe, VTiMoWRe, NbTiMoWRe, TaTiMoWRe, wherein relative amounts of each element vary by no more than .+-.15 atomic %.

  19. Determination of the electrostatic potential distribution in Pt/Fe:SrTiO3/Nb:SrTiO3 thin-film structures by electron holography

    Science.gov (United States)

    Marchewka, Astrid; Cooper, David; Lenser, Christian; Menzel, Stephan; Du, Hongchu; Dittmann, Regina; Dunin-Borkowski, Rafal E.; Waser, Rainer

    2014-11-01

    We determined the electrostatic potential distribution in pristine Pt/Fe:SrTiO3/Nb:SrTiO3 structures by electron holography experiments, revealing the existence of a depletion layer extending into the Nb-doped bottom electrode. Simulations of potential profiles in metal-insulator-metal structures were conducted assuming different types and distributions of dopants. It is found that the presence of acceptor-type dopant concentrations at the Fe:SrTiO3/Nb:SrTiO3 interface with a donor-doped insulating layer provides a good match to the measured profile. Such acceptor-type interface concentrations may be associated with Sr vacancies on the Nb:SrTiO3 side of the bottom interface.

  20. Influence of different grained powders and pellets made of Niobium and Ti-42Nb on human cell viability

    Energy Technology Data Exchange (ETDEWEB)

    Markhoff, Jana, E-mail: markhoffj@gmail.com [University Medicine Rostock, Department of Orthopedics, Biomechanics and Implant Technology Laboratory, Doberaner Strasse 142, 18057 Rostock (Germany); Weinmann, Markus [H.C. Starck Tantalum and Niobium GmbH, Im Schleeke 78-91, 38642 Goslar (Germany); Schulze, Christian; Bader, Rainer [University Medicine Rostock, Department of Orthopedics, Biomechanics and Implant Technology Laboratory, Doberaner Strasse 142, 18057 Rostock (Germany)

    2017-04-01

    Nowadays, biomaterials can be used to maintain or replace several functions of the human body if necessary. Titanium and its alloys, i.e. Ti6Al4V are the most common materials (70 to 80%) used for structural orthopedic implants due to their unique combination of good mechanical properties, corrosion resistance and biocompatibility. Addition of β-stabilizers, e.g. niobium, can improve the mechanical properties of such titanium alloys further, simultaneously offering excellent biocompatibility. In this in vitro study, human osteoblasts and fibroblasts were cultured on different niobium specimens (Nb Amperit, Nb Ampertec), Nb sheets and Ti-42Nb (sintered and 3D-printed by selective laser melting, SLM) and compared with forged Ti6Al4V specimens. Furthermore, human osteoblasts were incubated with particulates of the Nb and Ti-42Nb specimens in three concentrations over four and seven days to imitate influence of wear debris. Thereby, the specimens with the roughest surfaces, i.e. Ti-42Nb and Nb Ampertec, revealed excellent and similar results for both cell types concerning cell viability and collagen synthesis superior to forged Ti6Al4V. Examinations with particulate debris disclosed a dose-dependent influence of all powders with Nb Ampertec showing the highest decrease of cell viability and collagen synthesis. Furthermore, interleukin synthesis was only slightly increased for all powders. In summary, Nb Ampertec (sintered Nb) and Ti-42Nb materials seem to be promising alternatives for medical applications compared to common materials like forged or melted Ti6Al4V. - Highlights: • Titanium and its alloys most common materials used for structural orthopedic implants • Addition of β-stabilizers to improve mechanical properties • Roughest surfaces, Nb ampertec and Ti-42Nb, with excellent results concerning cell viability and collagen synthesis • No cell-specific differences between human osteoblasts and fibroblasts • Niobium based powders with dose- and partly

  1. Microstructure and mechanical properties of the NiNbZrTiAl amorphous alloys with 10 and 25 at.% Nb content.

    Science.gov (United States)

    Czeppe, T; Ochin, P; Sypień, A; Major, L

    2010-03-01

    The results of investigation of two different Ni-based glasses with compositions Ni(58)Nb(10)Zr(13)Ti(12)Al(7) and Ni(58)Nb(25)Zr(8)Ti(6)Al(3) are presented. The structure of the melt spun ribbons was amorphous. The supercooled liquid range decreased and primary crystallization temperature increased with increasing Nb content while the parameter T(g)/T(m) slightly increased. The crystallization process proceeded in a different way. The ribbon containing 10 at.% Nb showed typical primary crystallization of the 50 nm grains of the NiTi(Nb) cubic phase; the ribbon containing 25 at.% of Nb revealed high thermal stability of the amorphous phase, which crystallized only in a small amount in the range of primary crystallization, preserving large fraction of the amorphous phase even high above the end of the crystallization. The tensile load-displacement curves were also different. In both cases, the ribbons revealed quite a large range of the plastic elongation. The ribbon containing 10% Nb showed stress relaxation and was maximally elongated up to 0.6. The ribbon with 25 at.% Nb revealed a hardening effect and the slightly smaller maximal elongation following it. The microstructure of the deformed specimens showed deformation bands parallel to the tensile axis, microcracks formation along shear bands and river-like pattern at the fracture surfaces. In both cases, high resolution electron microscope did not reveal any crystallization after deformation.

  2. Fine filament NbTi superconductive composite

    International Nuclear Information System (INIS)

    Hong, S.; Grabinsky, G.; Marancik, W.; Pattanayak, D.

    1986-01-01

    The large superconducting magnet for the high energy physics accelerator requires fine filament composite to minimize the field error due to the persistent current in the filaments. New concepts toward the fine filament composite and its cable fabrication are discussed. Two-stage cables of fine wire with intermediate number of filaments were introduced. The first stage was six wires cables around one and in the second stage this was used to produce a Rutherford cable. The advantage of this process is in the ease of billet fabrication since the number of filaments in a single wire is within the range of easy billet fabrication. The disadvantage is in the cable fabrication. One of the major concerns in the fabrication of fine NbTi filaments composite in a copper matrix is the intermetallic compound formation during the extrusion and heat treatment steps. The hard intermetallic particles degrade the uniformity of the filaments and reduce the critical current density. The process of using Nb barrier between the filaments and copper matrix in order to prevent this CuTi intermetallic particle formation is described

  3. Measurement of cross-sections for the 93Nb(p,n)93mMo and 93Nb(p,pn)92mNb reactions up to ∼20 MeV energy

    Science.gov (United States)

    Lawriniang, B.; Ghosh, R.; Badwar, S.; Vansola, V.; Santhi Sheela, Y.; Suryanarayana, S. V.; Naik, H.; Naik, Y. P.; Jyrwa, B.

    2018-05-01

    Excitation functions of the 93Nb(p,n)93mMo and 93Nb(p,pn)92mNb reactions were measured from threshold energies to ∼ 20MeV by employing stacked foil activation technique in combination with the off-line γ-ray spectroscopy at the BARC-TIFR Pelletron facility, Mumbai. For the 20 MeV proton beam, the energy degradation along the stack was calculated using the computer code SRIM 2013. The proton beam intensity was determined via the natCu(p,x)62Zn monitor reaction. The experimental data obtained were compared with the theoretical results from TALYS-1.8 as well as with the literature data available in EXFOR. It was found that for the 93Nb(p,n)92mMo reaction, the present data are in close agreement with some of the recent literature data and the theoretical values based on TALYS-1.8 but are lower than the other literature data. In the case of 93Nb(p,pn)93mNb reaction, present data agree very well with the literature data and the theoretical values.

  4. Fabrication and characterization of perovskite-type solar cells with Nb-doped TiO{sub 2} layers

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Jo; Oku, Takeo, E-mail: oku@mat.usp.ac.jp; Suzuki, Atsushi; Akiyama, Tsuyoshi [The University of Shiga Prefecture, Hikone, Shiga 522-8533 (Japan)

    2016-02-01

    Organic-inorganic hybrid heterojunction solar cells containing perovskite CH{sub 3}NH{sub 3}PbI{sub 3} using Nb-doped TiO{sub 2} as an electron-transporting layer were fabricated and characterized. Nb-doped TiO{sub 2} layer showed an improvement of the short-circuit current density and power conversion efficiency using Ti{sub 0.95}Nb{sub 0.05}O{sub 2}.

  5. Study on properties of stress relaxation for NiTiNb shape memory alloy

    International Nuclear Information System (INIS)

    Zhou Xuchang; Mo Huaqiang; Zeng Guangting; Shen Baoluo; Huo Yongzhong

    2002-01-01

    Stress relaxation tests at high temperature are performed for NiTiNb shape memory alloy to obtain the properties of stress relaxation. The relaxation curve fitted with the expression, which is deduced based on the relation between the relaxation and the creep. With the aid of experimental data, relaxation characteristic coefficient and remaining stress ratio are obtained, which characterize the relaxation behavior. The results of the study show that stress relaxation would be more evident with the higher temperature and/or greater initial stress. NiTiNb alloy has good relaxation resistance in the temperature range 300-400 degree C and the initial stress range 260-360 MPa. NiTiNb has better properties to resist relaxation than NiTiFe, therefore it is more applicable to work at high temperature

  6. Characterizations of MoTiO5 flash memory devices with post-annealing

    International Nuclear Information System (INIS)

    Kao, Chyuan Haur; Chen, Hsiang; Chen, Su Zhien; Chen, Yu Jie; Chu, Yu Cheng

    2014-01-01

    In this study, high-K MoTiO 5 dielectrics were applied as charge trapping layers in fabricated metal-oxide-high-K MoTiO 5 -oxide-Si-type memory devices. Among the applied MoTiO 5 trapping layer treatment conditions, annealing at 900 °C yielded devices that exhibited superior memory performance, such as a larger memory window and faster programming/erasing speed. Multiple material analyses, namely X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy, confirmed that annealing at 900 °C can improve the material quality as a result of crystallization. The fabricated MoTiO 5 -based memory devices show potential for future commercial memory device applications. - Highlights: • MoTiO5-based flash memories have been fabricated. • MoTiO5 trapping layers could be formed by co-sputtering. • MoTiO5 layers with annealing exhibited a good memory performance. • Multiple material analyses confirm that annealing enhanced crystallization

  7. Voltage spikes in Nb3Sn and NbTi strands

    Energy Technology Data Exchange (ETDEWEB)

    Bordini, B.; Ambrosio, G.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.V.; Lamm, M.J.; Orris, D.; Tartaglia, M.; Tompkins, J.C.; Turrioni, D.; Yamada, R.; Zlobin,; /Fermilab

    2005-09-01

    As part of the High Field Magnet program at Fermilab several NbTi and Nb{sub 3}Sn strands were tested with particular emphasis on the study of voltage spikes and their relationship to superconductor instabilities. The voltage spikes were detected under various experimental conditions using voltage-current (V-I) and voltage-field (V-H) methods. Two types of spikes, designated ''magnetization'' and ''transport current'' spikes, have been identified. Their origin is most likely related to magnetization flux jump and transport current redistribution, respectively. Many of the signals observed appear to be a combination of these two types of spikes; the combination of these two instability mechanisms should play a dominant role in determining the minimum quench current.

  8. The effect of Ti(CN/TiNb(CN coating on erosion–corrosion resistance

    Directory of Open Access Journals (Sweden)

    William Aperador Chaparro

    2012-05-01

    Full Text Available The goal of this work was to study electrochemical behaviour in corrosion-erosion conditions for Ti(CN/TiNb(CN multilayer coatings having 1, 50, 100, 150 and 200 bilayer periods on AISI 4140 steel substrates by using a multi-target magnetron reactive sputtering device, with an r.f. source (13.56 MHz, two cylindrical magnetron cathodes and two stoichiometric TiC and Nb targets. The multi-layers were evaluated by comparing them to corrosion, erosion and erosion corrosion for a 30º impact angle in a solution of 0.5 M NaCl and silica, analysing the effect of impact angle and the number of bilayers on these coatings’ corrosion resistance. The electrochemical characterisation was performed using electrochemical impedance spectroscopy for analysing corrosion surface; surface morphology was characterised by using a high-resolution scanning electron microscope (SEM. The results showed a de-creased corrosion rate for multilayer systems tested at 30°.

  9. Major enhancement of the thermoelectric performance in Pr/Nb-doped SrTiO3 under strain

    KAUST Repository

    Amin, B.

    2013-07-16

    The electronic structure and thermoelectric properties of strained (biaxially and uniaxially) Sr0.95Pr0.05TiO3 and SrTi0.95Nb0.05O3 are investigated in the temperature range from 300 K to 1200 K. Substitutions of Pr at the Sr site and Nb at the Ti site generate n-type doping and thus improve the thermoelectric performance as compared to pristine SrTiO3. Further enhancement is achieved by the application of strain, for example, of the Seebeck coefficient by 21% for Sr0.95Pr0.05TiO3 and 10% for SrTi0.95Nb0.05O3 at room temperature in the case of 5% biaxial strain. At 1200 K, we predict figures of merit of 0.58 and 0.55 for 2.5% biaxially strained Sr0.95Pr0.05TiO3 and SrTi0.95Nb0.05O3 , respectively, which are the highest values reported for rare earth doped SrTiO3.

  10. NbTaV-(Ti,W) refractory high-entropy alloys: Experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Yao, H.W. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Qiao, J.W., E-mail: qiaojunwei@gmail.com [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Gao, M.C., E-mail: michael.gao@netl.doe.gov [National Energy Technology Laboratory, 1450 Queen Ave SW, Albany, OR 97321 (United States); AECOM, P.O. Box 1959, Albany, OR 97321 (United States); Hawk, J.A. [National Energy Technology Laboratory, 1450 Queen Ave SW, Albany, OR 97321 (United States); Ma, S.G. [Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhou, H.F. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Y. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-09-30

    This study reports the design and development of ductile and strong refractory single-phase high-entropy alloys (HEAs) for high temperature applications, based on NbTaV with addition of Ti and W. Assisted by CALPHAD modeling, a single body-centered cubic solid solution phase was experimentally confirmed in the as-cast ingots using X-ray diffraction and scanning electron microscopy. The observed elemental segregation in each alloy qualitatively agrees with CALPHAD prediction. The Vickers microhardnesses (and yield strengths) of the alloys are about 3 (and 3.5–4.4) times that those estimated from the rule of mixture. While NbTaTiVW shows an impressive yield strength of 1420 MPa with fracture strain of 20%, NbTaTiV exhibits exceptional compressive ductility at room temperature.

  11. Effect of Mo and C additions on magnetic properties of TiC–TiN–Ni cermets

    International Nuclear Information System (INIS)

    Zhang, Man; Yang, Qingqing; Xiong, Weihao; Zheng, Liyun; Huang, Bin; Chen, Shan; Yao, Zhenhua

    2015-01-01

    The effect of 2–8 mol.% Mo and 4 mol.% C additions on magnetic properties of TiC–10TiN–30Ni (mol.%) cermet was investigated. Saturation magnetization M_s, remanence M_r and Curie temperature T_c of as-sintered cermets (1420 °C, 1 h) decreased with increasing Mo. This was mainly attributed to that the total content of non-magnetic alloying elements Mo and Ti in Ni-based binder phase increased with increasing Mo in cermets, leading to the weakening of magnetic exchange interaction among Ni atoms in binder phase. The further addition of 4 mol.% C inversely increased M_s, M_r and T_c of cermets, which was mainly attributed to that it decreased the total content of Mo and Ti in binder phase, leading to the strengthening of magnetic exchange interaction among Ni atoms in binder phase. T_c of cermets without C addition was about 250 K at 6 mol.% Mo and 115 K at 8 mol.% Mo, respectively, and that of cermets with 4 mol.% C addition was about 194 K at 8 mol.% Mo. - Highlights: • M_s, M_r and T_c of TiC–10TiN–30Ni–xMo cermets decreased with the increase of Mo content, x. • Further addition of 4 mol.% C inversely increased M_s, M_r and T_c of cermets at the same Mo content. • T_c of cermets without C addition was about 250 K at x = 6 and 115 K at x = 8, respectively. • T_c of cermets with 4 mol.% C addition was about 194 K at x = 8.

  12. Synthesis and Photocatalytic Activity of Mo-Doped TiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ji-guo Huang

    2015-01-01

    Full Text Available The undoped and Mo-doped TiO2 nanoparticles were synthesized by sol-gel method. The as-prepared samples were characterized by X-ray diffraction (XRD, diffuse reflectance UV-visible absorption spectra (UV-vis DRS, X-ray photoelectron spectra (XPS, and transmission electron microscopy (TEM. The photocatalytic activity was evaluated by photocatalytic degradation of methylene blue under irradiation of a 500 W xenon lamp and natural solar light outdoor. Effects of calcination temperatures and Mo doping amounts on crystal phase, crystallite size, lattice distortion, and optical properties were investigated. The results showed that most of Mo6+ took the place of Ti4+ in the crystal lattice of TiO2, which inhibited the growth of crystallite size, suppressed the transformation from anatase to rutile, and led to lattice distortion of TiO2. Mo doping narrowed the band gap (from 3.05 eV of TiO2 to 2.73 eV of TiMo0.02O and efficiently increased the optical absorption in visible region. Mo doping was shown to be an efficient method for degradation of methylene blue under visible light, especially under solar light. When the calcination temperature was 550°C and the Mo doping amount was 2.0%, the Mo-doped TiO2 sample exhibited the highest photocatalytic activity.

  13. A 9.1-T iron-free Nb- Ti dipole magnet with pancake windings

    International Nuclear Information System (INIS)

    Gilbert, W.; Caspi, S.; Hassenzahl, W.; Meuser, R.; Peters, C.; Rechen, J.; Schafer, R.; Taylor, C.; Wolgast, R.

    1983-01-01

    An eight-pancake Nb-Ti dipole magnet with bent-up ends and called D-10B has been built and tested. This magnet is a Nb-Ti version of a Nb 3 Sn magnet designed to produce a 10-tesla dipole field in a 40 mm diameter aperture. The pancake design is used for the heavy 12,000 ampere Nb 3 Sn cable because of the mechanical difficulty in winding such a heavy cable into the conventional nested cylindrical shell configuration with a 2'' inner winding diameter. The Nb-Ti version operates at 1.8 K in helium II, has superconducting cable half as thick as the Nb 3 Sn cable, and operates at half the current (6,000 amperes) at 10 tesla. Both magnets are approximately one meter long. D-10B was tested from January 26 to February 2, 1983, and reached short-sample performance in both helium I and helium II after moderate training. The central field at 4.3 K is 7.0 tesla and at 1.8 K is 9.1 tesla. Ramp rate sensitivity and cyclic heating data were also measured

  14. Highly Stable and Active Pt/Nb-TiO2 Carbon-Free Electrocatalyst for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Shuhui Sun

    2012-01-01

    Full Text Available The current materials used in proton exchange membrane fuel cells (PEMFCs are not sufficiently durable for commercial deployment. One of the major challenges lies in the development of an inexpensive, efficient, and highly durable and active electrocatalyst. Here a new type of carbon-free Pt/Nb-TiO2 electrocatalyst has been reported. Mesoporous Nb-TiO2 hollow spheres were synthesized by the sol-gel method using polystyrene (PS sphere templates. Pt nanoparticles (NPs were then deposited onto mesoporous Nb-TiO2 hollow spheres via a simple wet-chemical route in aqueous solution, without the need for surfactants or potentiostats. The growth densities of Pt NPs on Nb-TiO2 supports could be easily modulated by simply adjusting the experimental parameters. Electrochemical studies of Pt/Nb-TiO2 show much enhanced activity and stability than commercial E-TEK Pt/C catalyst. PtNP/Nb-TiO2 is a promising new cathode catalyst for PEMFC applications.

  15. Microstructural Characterization of Melt Extracted High-Nb-Containing TiAl-Based Fiber

    Directory of Open Access Journals (Sweden)

    Shuzhi Zhang

    2017-02-01

    Full Text Available The microstructure of melt extracted Ti-44Al-8Nb-0.2W-0.2B-1.5Si fiber were investigated. When the rotation speed increased from 2000 to 2600 r/min, the appearance of the wire was uniform with no Rayleigh-wave default. The structure was mainly composed of fine α2 (α phase dendritic crystal and a second phase between dendrite arms and grain boundaries. The precipitated second phases were confirmed to be Ti5Si3 from the eutectic reaction L→Ti5Si3 + α and TiB. As the lower content of Si and higher cooling rate, a divorced eutectic microstructure was obtained. Segregation of Ti, Nb, B, Si, and Al occurred during rapid solidification.

  16. Microstructure and mechanical behavior of metal injection molded Ti-Nb binary alloys as biomedical material.

    Science.gov (United States)

    Zhao, Dapeng; Chang, Keke; Ebel, Thomas; Qian, Ma; Willumeit, Regine; Yan, Ming; Pyczak, Florian

    2013-12-01

    The application of titanium (Ti) based biomedical materials which are widely used at present, such as commercially pure titanium (CP-Ti) and Ti-6Al-4V, are limited by the mismatch of Young's modulus between the implant and the bones, the high costs of products, and the difficulty of producing complex shapes of materials by conventional methods. Niobium (Nb) is a non-toxic element with strong β stabilizing effect in Ti alloys, which makes Ti-Nb based alloys attractive for implant application. Metal injection molding (MIM) is a cost-efficient near-net shape process. Thus, it attracts growing interest for the processing of Ti and Ti alloys as biomaterial. In this investigation, metal injection molding was applied to the fabrication of a series of Ti-Nb binary alloys with niobium content ranging from 10wt% to 22wt%, and CP-Ti for comparison. Specimens were characterized by melt extraction, optical microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). Titanium carbide formation was observed in all the as-sintered Ti-Nb binary alloys but not in the as-sintered CP-Ti. Selected area electron diffraction (SAED) patterns revealed that the carbides are Ti2C. It was found that with increasing niobium content from 0% to 22%, the porosity increased from about 1.6% to 5.8%, and the carbide area fraction increased from 0% to about 1.8% in the as-sintered samples. The effects of niobium content, porosity and titanium carbides on mechanical properties have been discussed. The as-sintered Ti-Nb specimens exhibited an excellent combination of high tensile strength and low Young's modulus, but relatively low ductility. © 2013 Elsevier Ltd. All rights reserved.

  17. Electrochemical corrosion and bioactivity of Ti-Nb-Sn-hydroxyapatite composites fabricated by pulse current activated sintering.

    Science.gov (United States)

    Xiaopeng, Wang; Fantao, Kong; Biqing, Han; Yuyong, Chen

    2017-11-01

    Ti-Nb-Sn-hydroxyapatite (HA) composites were prepared by mechanical alloying for different times (unmilled, 4, 8 and 12h), followed by pulse current activated sintering. The effects of the milling time on the electrochemical corrosion resistance and bioactivity of the sintered Ti-35Nb-2.5Sn-15HA composites were investigated. Potentiodynamic polarization test results indicated that the sintered Ti-35Nb-2.5Sn-15HA composites exhibited higher corrosion resistance with increasing milling time. The corrosion potential and current of the Ti-35Nb-2.5Sn-15HA composite sintered by 12h milled powders were - 0.261V and 0.18μA/cm 2 , respectively, and this sintered composite showed a stable and wide passivation region. The hemolysis rate of the sintered Ti-35Nb-2.5Sn-15HA composites reduced with increasing milling time and the lowest hemolytic rate of the composites was 0.87%. In addition, the in vitro cell culture results indicated that the composite sintered by 12h milled powders had good biocompatibility. These results indicate the significant potential of Ti-35Nb-2.5Sn/xHA composites for biomedical implant applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effect of Mo2C content on the properties of TiC/TiB2 base cermets

    International Nuclear Information System (INIS)

    Takagi, Ken-ichi; Osada, Ken; Koike, Wataru; Fujima, Takuya

    2009-01-01

    The effects of Mo 2 C content on the microstructure and mechanical properties of TiC/TiB 2 base cermets were studied using the model cermets with the compositions of TiC/TiB 2 -(11-17)Mo 2 C-24Ni (mass%). TiC and TiB 2 ratio is set to molar ratio of 59:41 that is near quasi-eutectic composition. As a result, both transverse rupture strength and hardness of the cermets showed maxima for the cermet containing 13% Mo 2 C. The cermet achieved remarkable microstructural refinement and still maintained characteristic core-rim structure of the TiC base cermets. TiC/TiB 2 cermets, in addition to TiCN base cermets, are a good alternative material to cemented carbides.

  19. Influence of Nb dopant on the structural and optical properties of nanocrystalline TiO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kaleji, Behzad Koozegar, E-mail: bkaleji@yahoo.com [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box:14115-143, Tehran (Iran, Islamic Republic of); Sarraf-Mamoory, Rasoul, E-mail: rsarrafm@modares.ac.ir [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box:14115-143, Tehran (Iran, Islamic Republic of); Fujishima, Akira [Photo-catalyst Group, Kanagawa Academy of Science and Technology, KSP East 412, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012 (Japan)

    2012-01-16

    Highlights: Black-Right-Pointing-Pointer We coated Nb-doped TiO{sub 2} films on glazed porcelain via sol-gel dip coating method. Black-Right-Pointing-Pointer We examined coatings by degradation of MB solution and optical light transmittance. Black-Right-Pointing-Pointer Coatings show enhanced photo-catalytic activity in 1 mol% Nb. Black-Right-Pointing-Pointer Nb doping inhibited the grain growth, and which are found to inhibit the anatase to rutile phase transformation. - Abstract: In this study, preparation of Nb-doped (0-20 mol% Nb) TiO{sub 2} dip-coated thin films on glazed porcelain substrates via sol-gel process has been investigated. The effects of Nb on the structural, optical, and photo-catalytic properties of applied thin films have been studied by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. Surface topography and surface chemical state of thin films was examined by atomic force microscope and X-ray photoelectron spectroscopy. XRD and Raman study showed that the Nb doping inhibited the grain growth. The photo-catalytic activity of the film was tested on degradation of methylene blue. Best photo-catalytic activity of Nb-doped TiO{sub 2} thin films were measured in the TiO{sub 2}-1 mol% Nb sample. The average optical transmittance of about 47% in the visible range and the band gap of films became wider with increasing Nb doping concentration. The Nb{sup 5+} dopant presented substitutional Ti{sup 4+} into TiO{sub 2} lattice.

  20. Phase relations, crystal structure, and phase transformation of In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) in In_2O_3–Nb_2O_5–TiO_2 system

    International Nuclear Information System (INIS)

    Su, Liumei; Fan, Xing; Cai, Gemei; Liu, Huashan; Jin, Zhanpeng

    2015-01-01

    Phase relations, crystal structures, and phase transformation of In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) in In_2O_3–Nb_2O_5–TiO_2 ternary system were investigated for the first time. A number of samples with different compositions were prepared by a solid-state reaction method, and phase assembles were analyzed by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe micro-analysis (EPMA). Five three-phase regions, ten two-phase regions, and six single-phase solid solutions were determined in this system. The solid solution of In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) is composed of both ordered monoclinic wolframite-type structure (0 ≤ x < 0.35) and disordered orthorhombic α-PbO_2 type structure (0.35 < x < 0.45). Driving force for composition-driven phase transformation in In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) stems from the ordering of cations. The ever reported compound InNbTiO_6 with an orthorhombic α-PbO_2 type structure was amended to be a monoclinic wolframite-type structure. Present investigations will be useful for the whole ceramic community working with In_2O_3–Nb_2O_5–TiO_2 ternary system as well as for the development of functional materials. - Highlights: • Phase relations of In_2O_3–Nb_2O_5–TiO_2 ternary system were constructed. • Crystal structures of a novel solid solution In_1_−_xNb_1_−_xTi_2_xO_4 were determined. • Crystal structure of InNbTiO_6 was amended to be a wolframite-type structure. • Composition-driven phase transformation of In_1_−_xNb_1_−_xTi_2_xO_4 was investigated.

  1. Elastic stiffnesses of an Nb-Ti/Cu-composite superconductive wire

    Science.gov (United States)

    Kim, Sudook; Ledbetter, Hassel; Ogi, Hirotsugu

    2000-09-01

    Elastic-stiffness coefficients were determined on a 1.4-mm-diameter wire consisting of superconducting Nb-Ti fibers in a copper matrix, with a polyvinyl-resin coating. The matrix contained 324 Nb-Ti fibers. An electromagnetic-acoustic-resonance method was used to obtain five independent elastic-stiffness coefficients assuming transverse-isotropic symmetry. From these we calculated Young moduli, bulk modulus, and principal Poisson ratios. As a check, we used a mechanical-impulse-excitation method to directly measure the Young modulus in the fiber direction. The three-phase composite wire showed a 10% anisotropy in the Young modulus.

  2. Atomic displacements in dilute alloys of Cr, Nb and Mo

    Indian Academy of Sciences (India)

    physics pp. 497–514. Atomic displacements in dilute alloys of Cr, Nb and Mo ... used to calculate dynamical matrix and the impurity-induced forces up to second nearest ... origin, the lattice is strained, and the host atoms get displaced to new ...

  3. Metal-metal bonding and aromaticity in [M2(NHCHNH)3]2 (μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh).

    Science.gov (United States)

    Yan, Xiuli; Meng, Lingpeng; Sun, Zheng; Li, Xiaoyan

    2016-02-01

    The nature of M-M bonding and aromaticity of [M2(NHCHNH)3]2(μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh) was investigated using atoms in molecules (AIM) theory, electron localization function (ELF), natural bond orbital (NBO) and molecular orbital analysis. These analyses led to the following main conclusions: in [M2(NHCHNH)3]2(μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh), the Nb-Nb, Ru-Ru, and Rh-Rh bonds belong to "metallic" bonds, whereas Mo-Mo and Tc-Tc drifted toward the "dative" side; all these bonds are partially covalent in character. The Nb-Nb, Mo-Mo, and Tc-Tc bonds are stronger than Ru-Ru and Rh-Rh bonds. The M-M bonds in [M2(NHCHNH)3]2(μ-S)2 are stronger than those in [M2(NHCHNH)3]2(μ-O)2 for M = Nb, Mo, Tc, and Ru. The NICS(1)ZZ values show that all of the studied molecules, except [Ru2(NHCHNH)3]2(μ-O)2, are aromaticity molecules. O-bridged compounds have more aromaticity than S-bridged compounds. Graphical Abstract Left Molecular graph, and right electron localization function (ELF) isosurface of [M2(NHCHNH)3]2(μ-E)2(E = O, S; M = Nb, Mo, Tc, Ru, Rh).

  4. Effect of Mo and C additions on magnetic properties of TiC–TiN–Ni cermets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Man [State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Yang, Qingqing, E-mail: yqqah@sina.com [State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Xiong, Weihao [State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Zheng, Liyun [School of Equipment Manufacture, Hebei University of Engineering, Handan 056038 (China); Huang, Bin; Chen, Shan; Yao, Zhenhua [State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-11-25

    The effect of 2–8 mol.% Mo and 4 mol.% C additions on magnetic properties of TiC–10TiN–30Ni (mol.%) cermet was investigated. Saturation magnetization M{sub s}, remanence M{sub r} and Curie temperature T{sub c} of as-sintered cermets (1420 °C, 1 h) decreased with increasing Mo. This was mainly attributed to that the total content of non-magnetic alloying elements Mo and Ti in Ni-based binder phase increased with increasing Mo in cermets, leading to the weakening of magnetic exchange interaction among Ni atoms in binder phase. The further addition of 4 mol.% C inversely increased M{sub s}, M{sub r} and T{sub c} of cermets, which was mainly attributed to that it decreased the total content of Mo and Ti in binder phase, leading to the strengthening of magnetic exchange interaction among Ni atoms in binder phase. T{sub c} of cermets without C addition was about 250 K at 6 mol.% Mo and 115 K at 8 mol.% Mo, respectively, and that of cermets with 4 mol.% C addition was about 194 K at 8 mol.% Mo. - Highlights: • M{sub s}, M{sub r} and T{sub c} of TiC–10TiN–30Ni–xMo cermets decreased with the increase of Mo content, x. • Further addition of 4 mol.% C inversely increased M{sub s}, M{sub r} and T{sub c} of cermets at the same Mo content. • T{sub c} of cermets without C addition was about 250 K at x = 6 and 115 K at x = 8, respectively. • T{sub c} of cermets with 4 mol.% C addition was about 194 K at x = 8.

  5. Impacts of trace carbon on the microstructure of as-sintered biomedical Ti-15Mo alloy and reassessment of the maximum carbon limit.

    Science.gov (United States)

    Yan, M; Qian, M; Kong, C; Dargusch, M S

    2014-02-01

    The formation of grain boundary (GB) brittle carbides with a complex three-dimensional (3-D) morphology can be detrimental to both the fatigue properties and corrosion resistance of a biomedical titanium alloy. A detailed microscopic study has been performed on an as-sintered biomedical Ti-15Mo (in wt.%) alloy containing 0.032 wt.% C. A noticeable presence of a carbon-enriched phase has been observed along the GB, although the carbon content is well below the maximum carbon limit of 0.1 wt.% specified by ASTM Standard F2066. Transmission electron microscopy (TEM) identified that the carbon-enriched phase is face-centred cubic Ti2C. 3-D tomography reconstruction revealed that the Ti2C structure has morphology similar to primary α-Ti. Nanoindentation confirmed the high hardness and high Young's modulus of the GB Ti2C phase. To avoid GB carbide formation in Ti-15Mo, the carbon content should be limited to 0.006 wt.% by Thermo-Calc predictions. Similar analyses and characterization of the carbide formation in biomedical unalloyed Ti, Ti-6Al-4V and Ti-16Nb have also been performed. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Direct measurements of inter-filament resistance in various multi-filamentary superconducting NbTi and Nb3Sn strands

    NARCIS (Netherlands)

    Zhou, Chao; Miyoshi, Y.; van Lanen, E.P.A.; Dhalle, Marc M.J.; Nijhuis, Arend

    2012-01-01

    For a proper characterization of multi-filamentary NbTi and Nb3Sn strands and a better understanding of their performance in short sample tests, as well as for increased understanding of inter-strand current redistribution in cabled conductors, a quantitative knowledge of the inter-filament

  7. Stress-assisted discontinuous precipitation during creep of Ti3Al-Nb alloys

    International Nuclear Information System (INIS)

    Rowe, R.G.; Hall, E.L.

    1991-01-01

    Stress-assisted discontinuous precipitation was observed during creep of Ti-25Al-12.5Nb at. pct and associated with microstructures in which large primary creep strains were observed earlier. It was found that a large shift between the equilibrium beta(0) (B2) phase composition at the heat treatment temperature and disordered beta (bcc) phase at the creep temperature provided a driving force for discontinuous precipitation of disordered beta phase. Applied stress accelerated the growth of discontinuous beta phase at grain boundaries perpendicular to the principal stress axis, but did not produce a significant shift in composition. The difference between beta and ordered beta phase boundaries in the Ti-Al-Nb system at 650 C and 1040 C suggests that discontinuous precipitation or related dissolution should occur in all Ti3Al-Nb alloys. 11 refs

  8. Growth and surface characterization of TiNbZr thin films deposited by magnetron sputtering for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Tallarico, D.A. [Federal University of Sao Carlos, Materials Science and Engineering Graduation Program, Via Washington Luis km 235, CEP 13565-905 Sao Carlos, SP (Brazil); Gobbi, A.L. [Brazilian Nanotechnology National Laboratory, Rua Giuseppe Máximo Scolfaro 10.000, CEP 13083-100 Campinas, SP (Brazil); Paulin Filho, P.I. [Federal University of Sao Carlos, Department of Materials Engineering, Via Washington Luis km 235, CEP 13565-905 Sao Carlos, SP (Brazil); Maia da Costa, M.E.H. [Pontifical Catholic University of Rio de Janeiro, Department of Physics, CEP 22451-900 Rio de Janeiro, RJ (Brazil); Nascente, P.A.P., E-mail: nascente@ufscar.br [Federal University of Sao Carlos, Department of Materials Engineering, Via Washington Luis km 235, CEP 13565-905 Sao Carlos, SP (Brazil)

    2014-10-01

    Low modulus of elasticity and the presence of non-toxic elements are important criteria for the development of materials for implant applications. Low modulus Ti alloys can be developed by designing β-Ti alloys containing non-toxic alloying elements such as Nb and Zr. Actually, most of the metallic implants are produced with stainless steel (SS) because it has adequate bulk properties to be used as biomaterials for orthopedic or dental implants and is less expensive than Ti and its alloys, but it is less biocompatible than them. The coating of this SS implants with Ti alloy thin films may be one alternative to improve the biomaterial properties at a relatively low cost. Sputtering is a physical deposition technique that allows the formation of nanostructured thin films. Nanostructured surfaces are interesting when it comes to the bone/implant interface due to the fact that both the surface and the bone have nanoscale particle sizes and similar mechanical properties. TiNbZr thin films were deposited on both Si(111) and stainless steel (SS) substrates. The TiNbZr/Si(111) film was used as a model system, while the TiNbZr/SS film might improve the biocompatibility and extend the life time of stainless steel implants. The morphology, chemical composition, Young's modulus, and hardness of the films were analyzed by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and nanoindentation. - Highlights: • TiNbZr thin films were deposited on Si(111) and stainless steel (SS). • Their Young's modulus differences are within 5.3% and hardness 1.7%. • TiNbZr/SS film chemical composition remained almost constant with depth. • TiNbZr films presented nanostructured grains and low roughness for substrates. • TiNbZr/SS film hardness was about 100% greater than the SS substrate hardness.

  9. Growth and surface characterization of TiNbZr thin films deposited by magnetron sputtering for biomedical applications

    International Nuclear Information System (INIS)

    Tallarico, D.A.; Gobbi, A.L.; Paulin Filho, P.I.; Maia da Costa, M.E.H.; Nascente, P.A.P.

    2014-01-01

    Low modulus of elasticity and the presence of non-toxic elements are important criteria for the development of materials for implant applications. Low modulus Ti alloys can be developed by designing β-Ti alloys containing non-toxic alloying elements such as Nb and Zr. Actually, most of the metallic implants are produced with stainless steel (SS) because it has adequate bulk properties to be used as biomaterials for orthopedic or dental implants and is less expensive than Ti and its alloys, but it is less biocompatible than them. The coating of this SS implants with Ti alloy thin films may be one alternative to improve the biomaterial properties at a relatively low cost. Sputtering is a physical deposition technique that allows the formation of nanostructured thin films. Nanostructured surfaces are interesting when it comes to the bone/implant interface due to the fact that both the surface and the bone have nanoscale particle sizes and similar mechanical properties. TiNbZr thin films were deposited on both Si(111) and stainless steel (SS) substrates. The TiNbZr/Si(111) film was used as a model system, while the TiNbZr/SS film might improve the biocompatibility and extend the life time of stainless steel implants. The morphology, chemical composition, Young's modulus, and hardness of the films were analyzed by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and nanoindentation. - Highlights: • TiNbZr thin films were deposited on Si(111) and stainless steel (SS). • Their Young's modulus differences are within 5.3% and hardness 1.7%. • TiNbZr/SS film chemical composition remained almost constant with depth. • TiNbZr films presented nanostructured grains and low roughness for substrates. • TiNbZr/SS film hardness was about 100% greater than the SS substrate hardness

  10. Further investigations of the upper critical field and the high field critical current density in Nb-Ti and its alloys

    International Nuclear Information System (INIS)

    Hawksworth, D.G.; Larbalestier, D.C.

    1980-09-01

    This paper reports further measurements of Hc 2 in the Nb-Ti-Ta and Nb-Ti-Hf systems. Whilst we find only small enhancements of approx. 0.3 Tesla in μ 0 Hc 2 (4.2 0 K) compared to binary Nb-Ti, at 2 0 K there is a wide composition range in the Nb-Ti-Ta system where μ 0 Hc 2 (2 0 K) exceeds 15 Tesla, reaching a maximum of 15.5 Tesla. This represents an enhancement of 1.3 Tesla over unalloyed Nb-Ti. By comparison alloys in the Nb-Ti-Hf system show a maximum enhancement in μ 0 Hc 2 (2 0 K) of only 0.3 Tesla. The reasons both for the enhancements in Hc 2 and for the differences in behavior shown by alloys containing Ta and Hf are briefly discussed. This paper also discusses common features in the behavior of the high field critical current density, J/sub c/, of four commercial Nb-Ti composites and upon the basis of this behavior predict the enhancements in high field J/sub c/ to be expected from using Nb-Ti-Ta and its alloys

  11. MoSe2 modified TiO2 nanotube arrays with superior photoelectrochemical performance

    Science.gov (United States)

    Zhang, Yaping; Zhu, Haifeng; Yu, Lianqing; He, Jiandong; Huang, Chengxing

    2018-04-01

    TiO2 nanotube arrays (TNTs) are first prepared by anodization Ti foils in ethylene glycol electrolyte. Then, MoSe2 deposites electrochemically on TNTs. The as-synthesized MoSe2/TiO2 composite has a much higher photocurrent density of 1.07 mA cm‑2 at 0 V than pure TNTs of 0.38 mA cm‑2, which suggests that the MoSe2/TiO2 composite film has optimum photoelectrocatalysis properties. The electron transport resistances of the MoSe2/TiO2 decreases to half of pure TiO2, at 295.6 ohm/cm2. Both photocurrent-time and Mott-Schottky plots indicate MoSe2 a p-type semiconductor characteristics. MoSe2/TiO2 composite can achieve a maximum 5 orders of magnitude enhancement in carrier density (4.650 × 1027 cm‑3) than that of pure TiO2 arrays. It can be attributed to p-n heterojunction formed between MoSe2 and TiO2, and the composite can be potentially applied in photoelectrochemical, photocatalysis fields.

  12. A thermodynamic evaluation of the Ti-Mo-C system

    International Nuclear Information System (INIS)

    Shim, J.H.; Oh, C.S.; Lee, D.N.

    1996-01-01

    A thermodynamic assessment of the Ti-Mo-C system has been made, employing a two-sublattice regular solution model for the solid solution and carbide phases and an ordinary subregular solution model for the liquid phase. A set of thermodynamic parameters describing the Gibbs energy of each individual phase in the Ti-Mo-C as well as the Ti-Mo systems was evaluated from thermochemical and phase equilibria information available in the literature through a computer-aided optimization procedure called the CALPHAD method. The comparison between the calculated and experimental results was made and practically important phase diagrams are also presented

  13. Effect of quenching in the Ti-Nb-2%Al alloys structure; Efeito da tempera na estrutura das ligas Ti-Nb-2%Al

    Energy Technology Data Exchange (ETDEWEB)

    Santos, L.C.O.; Matlakhova, L.A.; Matlakhov, A.N.; Toledo, R. [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil). Centro de Ciencias e Tecnologia. Lab. de Materiais Avancados (LAMAV)], e-mail: lucascunhasantos@terra.com.br

    2006-07-01

    In the present work, the Ti-Nb-2%Al alloys, with the rate varied Nb from 15 to 40%, they were submitted to the quenched since 1000 deg C, in water, to verify the influence of Nb in the structure and phase composition. The alloys were obtained in a process of five coalitions in an oven to electric arch and, soon afterwards, wrought the hot and homogenized to 1200 deg C, for 10 hours. After the quenching and conventional metallographic preparation of the samples obliquely cut, the alloys were examined through the optic microscopic, diffraction of ray-X and Vickers hardness. The very defined correlation was shown between the niobium rate and the structure resulting from the quenched alloys. The phase martensitic was revealed in the alloy with 15% Nb, the phases martensitic and beta metastable in the alloys containing above 30% Nb and the phase beta in the alloys with 38% Nb and 40% Nb. the hardness of the phase martensitic increases with the increment of the niobium rate. (author)

  14. Characterization of ultra-thin TiO2 films grown on Mo(112)

    International Nuclear Information System (INIS)

    Kumar, D.; Chen, M.S.; Goodman, D.W.

    2006-01-01

    Ultra-thin TiO 2 films were grown on a Mo(112) substrate by stepwise vapor depositing of Ti onto the sample surface followed by oxidation at 850 K. X-ray photoelectron spectroscopy showed that the Ti 2p peak position shifts from lower to higher binding energy with an increase in the Ti coverage from sub- to multilayer. The Ti 2p peak of a TiO 2 film with more than a monolayer coverage can be resolved into two peaks, one at 458.1 eV corresponding to the first layer, where Ti atoms bind to the substrate Mo atoms through Ti-O-Mo linkages, and a second feature at 458.8 eV corresponding to multilayer TiO 2 where the Ti atoms are connected via Ti-O-Ti linkages. Based on these assignments, the single Ti 2p 3/2 peak at 455.75 eV observed for the Mo(112)-(8 x 2)-TiO x monolayer film can be assigned to Ti 3+ , consistent with our previous results obtained with high-resolution electron energy loss spectroscopy

  15. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    Directory of Open Access Journals (Sweden)

    Qijun Li

    Full Text Available Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20–110 μm. With the decrease of particle size, a transformation from typical dendrite solidification structure to fine cell microstructure occurs. The surface of the spheroidized powder is coated by a layer of oxides consisting mainly of TiO2 and Nb2O5. Probabilities of sinter-neck formation and particle coalescence increases with increasing sintering temperature. Porous skeleton with relatively homogeneous pore distribution and open pore channel is formed after vacuum sintering at 1700 °C, and the porosity is 32%. The sintering kinetic analysis indicates that grain boundary diffusion is the primary mass transport mechanism during sintering process. Keywords: Powder metallurgy, Nb-Ti based alloy, Porous material, Mechanical alloying, Plasma spheroidizing, Solidification microstructure

  16. Nanostructured Ti-Zr-Pd-Si-(Nb) bulk metallic composites: Novel biocompatible materials with superior mechanical strength and elastic recovery.

    Science.gov (United States)

    Hynowska, A; Blanquer, A; Pellicer, E; Fornell, J; Suriñach, S; Baró, M D; Gebert, A; Calin, M; Eckert, J; Nogués, C; Ibáñez, E; Barrios, L; Sort, J

    2015-11-01

    The microstructure, mechanical behaviour, and biocompatibility (cell culture, morphology, and cell adhesion) of nanostructured Ti45 Zr15 Pd35- x Si5 Nbx with x = 0, 5 (at. %) alloys, synthesized by arc melting and subsequent Cu mould suction casting, in the form of rods with 3 mm in diameter, are investigated. Both Ti-Zr-Pd-Si-(Nb) materials show a multi-phase (composite-like) microstructure. The main phase is cubic β-Ti phase (Im3m) but hexagonal α-Ti (P63/mmc), cubic TiPd (Pm3m), cubic PdZr (Fm3m), and hexagonal (Ti, Zr)5 Si3 (P63/mmc) phases are also present. Nanoindentation experiments show that the Ti45 Zr15 Pd30 Si5 Nb5 sample exhibits lower Young's modulus than Ti45 Zr15 Pd35 Si5 . Conversely, Ti45 Zr15 Pd35 Si5 is mechanically harder. Actually, both alloys exhibit larger values of hardness when compared with commercial Ti-40Nb, (HTi-Zr-Pd-Si ≈ 14 GPa, HTi-Zr-Pd-Si-Nb ≈ 10 GPa and HTi-40Nb ≈ 2.7 GPa). Concerning the biological behaviour, preliminary results of cell viability performed on several Ti-Zr-Pd-Si-(Nb) discs indicate that the number of live cells is superior to 94% in both cases. The studied Ti-Zr-Pd-Si-(Nb) bulk metallic system is thus interesting for biomedical applications because of the outstanding mechanical properties (relatively low Young's modulus combined with large hardness), together with the excellent biocompatibility. © 2014 Wiley Periodicals, Inc.

  17. Nb-TiO{sub 2}/polymer hybrid solar cells with photovoltaic response under inert atmosphere conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lira-Cantu, Monica; Khoda Siddiki, Mahbube; Munoz-Rojas, David; Amade, Roger [Centre d' Investigacio en Nanociencia i Nanotecnologia (CIN2, CSIC), Laboratory of Nanostructured Materials for Photovoltaic Energy, Campus UAB, Barcelona (Spain); Gonzalez-Pech, Natalia I. [Centre d' Investigacio en Nanociencia i Nanotecnologia (CIN2, CSIC), Laboratory of Nanostructured Materials for Photovoltaic Energy, Campus UAB, Barcelona (Spain); Instituto Tecnologico y de Estudios Superiores de Monterrey (ITESM), Ave. Eugenio Garza Sada, 64640 Monterrey, N.L. (Mexico)

    2010-07-15

    Hybrid Solar Cells (HSC) applying Nb-TiO{sub 2} in direct contact with a conducting organic polymer, MEH-PPV, show higher stability than the bare TiO{sub 2}-based HSC when analyzed under inert atmosphere conditions. IPCE analyses revealed that inert atmospheres affect directly the semiconductor oxide in the first stages of the analyses but photovoltaic performance stabilizes after several hours. A 20 wt% Nb-doped TiO{sub 2} presented the highest stability and photovoltaic properties. The behavior has been attributed to the solubility limit of Nb within the TiO{sub 2} beyond 20 wt% doping level where the co-existence of NbO{sub 2} is observed. The HSCs were analyzed under controlled N{sub 2} atmosphere and 1000 W/m{sup 2} (AM 1.5) irradiation. (author)

  18. Corrosion-Resistant Ti- xNb- xZr Alloys for Nitric Acid Applications in Spent Nuclear Fuel Reprocessing Plants

    Science.gov (United States)

    Manivasagam, Geetha; Anbarasan, V.; Kamachi Mudali, U.; Raj, Baldev

    2011-09-01

    This article reports the development, microstructure, and corrosion behavior of two new alloys such as Ti-4Nb-4Zr and Ti-2Nb-2Zr in boiling nitric acid environment. The corrosion test was carried out in the liquid, vapor, and condensate phases of 11.5 M nitric acid, and the potentiodynamic anodic polarization studies were performed at room temperature for both alloys. The samples subjected to three-phase corrosion testing were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDAX). As Ti-2Nb-2Zr alloy exhibited inferior corrosion behavior in comparison to Ti-4Nb-4Zr in all three phases, weldability and heat treatment studies were carried out only on Ti-4Nb-4Zr alloy. The weldability of the new alloy was evaluated using tungsten inert gas (TIG) welding processes, and the welded specimen was thereafter tested for its corrosion behavior in all three phases. The results of the present investigation revealed that the newly developed near alpha Ti-4Nb-4Zr alloy possessed superior corrosion resistance in all three phases and excellent weldability compared to conventional alloys used for nitric acid application in spent nuclear reprocessing plants. Further, the corrosion resistance of the beta heat-treated Ti-4Nb-4Zr alloy was superior when compared to the sample heat treated in the alpha + beta phase.

  19. Porous TiNb2O7 Nanospheres as ultra Long-life and High-power Anodes for Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Cheng, Qiushi; Liang, Jianwen; Lin, Ning; Guo, Cong; Zhu, Yongchun; Qian, Yitai

    2015-01-01

    Graphical abstract: Due to the combinative merits of porosity and nanostructure, porous TiNb 2 O 7 nanospheres exhibit ultra long cyclic life and excellent rate performance for lithium ion batteries. - Highlights: • Porous TiNb 2 O 7 nanospheres have been fabricated with the assistance of block copolymer P123. • The as-prepared TiNb 2 O 7 anodes present a reversible capacity of 160 mA h/g after 10000 cycles at 5 C with a capacity loss of only 0.0033% per cycle. • The TiNb 2 O 7 anodes show good rate performance of 167 mA h/g at 50C. • The TiNb 2 O 7 materials maintain the morphology of nanospheres and the porous structure even after 10000 cycles. - Abstract: Porous TiNb 2 O 7 nanospheres comprised of nanoparticles have been synthesized with the assistance of block copolymer P123 (EO 20 PO 70 EO 20 ). Such porous TiNb 2 O 7 nanospheres, with diameter of 500 nm, exhibit a BET surface area of 23.4 m 2 /g and pore volume of 0.155 cm 3 /g. As the anodes for lithium-ion batteries, the TiNb 2 O 7 nanospheres present a reversible capacity of 160 mA h/g after 10000 cycles at 5 C with a capacity loss of only 0.0033% per cycle, and good rate performance of 167 mA h/g at 50 C. Furthermore, the TiNb 2 O 7 materials still maintain the morphology of nanospheres and the porous structure even after 10000 cycles

  20. Characterization of the critical current and physical properties of superconducting epitaxial NbTiN sub-micron structures

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, A., E-mail: aklimov@ite.waw.pl [Institute of Electron Technology, Al. Lotników 32/46, 02-668 Warsaw (Poland); Słysz, W.; Guziewicz, M. [Institute of Electron Technology, Al. Lotników 32/46, 02-668 Warsaw (Poland); Kolkovsky, V.; Zaytseva, I.; Malinowski, A. [Institute of Physics Polish Academy of Science, Al. Lotników 32/46, 02-668 Warsaw (Poland)

    2017-05-15

    Highlights: • This manuscript presents investigation of the critical current dependence of Nb(Ti)N nanostructured superconducting single photon detectors (SNSPD) in function of temperature and applied magnetic field. • Presented results are complimentary and compared with the same data received for submicron-wide single bridge Nb(Ti)N structures. • Our data demonstrate significant influence of local constrictions on physical properties of our SNSPD detectors. - Abstract: Measurements of critical current in NbTiN as a function of applied magnetic field and temperature are reported for two samples: 700-nm-wide bridge and 100-nm-wide meander. In 700-nm-wide NbTiN bridge we pinpointed the limiting factors for the critical current density to be current-driven vortex de-pinning at low temperatures and thermally activated flux flow closer to the transition temperature. In 100-nm-wide NbTiN meander we found phase slips activation, accompanied by hotspots formation at all measured temperatures. These two types of structures demonstrate different dependence of the critical current on the applied magnetic field. Although our NbTiN meander structures has high de-pairing critical current densities ∼10{sup 7} A/cm{sup 2} at low temperatures, the real critical currents are smaller due to the presence of the local constrictions.

  1. Crack resistance behaviour of an intermetallic Ti-Al-Si-Nb alloy at room temperature

    International Nuclear Information System (INIS)

    Wittkowsky, B.U.; Pfuff, M.J.

    1996-01-01

    The room temperature crack growth behaviour of a Ti-Al-Si-Nb alloy consisting of the two intermetallic phases (Ti, Nb) 3 (Al, Si) and (Ti, Nb) 5 (Si, Al) 3 is investigated in the present paper. The material exhibits a heterogeneous disordered microstructure and fails in a brittle manner. Crack growth is associated with a pronounced crack resistance behaviour. For a sample of nominally identical specimens the R-curves scatter around a mean curve with a standard deviation which remains roughly constant as the crack grows. A natural extension of the bundle model introduced in a previous paper is used to simulate R-curves and their scatter is in reasonably good agreement with the experimental findings. (orig.)

  2. Production of low oxygen contamination orthorhombic Ti-Al-Nb intermetallic foil

    International Nuclear Information System (INIS)

    Gill, S.C.; Peters, J.A.; Blatter, P.; Jaquet, J.C.; Morris, M.A.

    1996-01-01

    Aerospace industries continue the search for high performance materials, and recent years have seen rapid developments being made in the capabilities of Ti-Al based intermetallic alloys. Interest in these alloys is caused by their attractive combination of strength and density, but major drawbacks include brittleness at low temperature and sensitivity to interstitial contamination. Development of a relatively new class of alloys was stimulated in 1988 by the discovery of Banerjee et al. of a Ti-Al-Nb orthorhombic (O) phase based on the Ti 2 AlNb composition. Some important applications for these alloys require the use of foil ( 2 phase and leads to material embrittlement. ELIT (Extra Low Interstitial Transfer) pack-rolling, developed by Sulzer Innotec, offers a technique to avoid oxygen contamination

  3. Irradiation performance of U-Mo-Ti and U-Mo-Zr dispersion fuels in Al-Si matrixes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Hofman, G.L. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Robinson, A.B.; Wachs, D.M. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Ryu, H.J.; Park, J.M.; Yang, J.H. [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2012-08-15

    Performance of U-7 wt.%Mo with 1 wt.%Ti, 1 wt.%Zr or 2 wt.%Zr, dispersed in an Al-5 wt.%Si alloy matrix, was investigated through irradiation tests in the ATR at INL and HANARO at KAERI. Post-irradiation metallographic features show that the addition of Ti or Zr suppresses interaction layer growth between the U-Mo and the Al-5 wt.%Si matrix. However, higher fission gas swelling was observed in the fuel with Zr addition, while no discernable effect was found in the fuel with Ti addition as compared to U-Mo without the addition. Known to have a destabilizing effect on the {gamma}-phase U-Mo, Zr, either as alloy addition or fission product, is ascribed for the disadvantageous result. Considering its benign effect on fuel swelling, with slight disadvantage from neutron economy point of view, Ti may be a better choice for this purpose.

  4. The effect of microstructure on the deformation modes and mechanical properties of Ti-6Al-2Nb-1Ta-0.8Mo: Part II. Equiaxed structures

    Science.gov (United States)

    Lin, Fu-Shiong; Starke, E. A.; Gysler, A.

    1984-10-01

    The Ti-6Al-2Nb-lTa-0.8Mo alloy was processed to develop both near-basal and transverse textures. Samples were annealed at different temperatures to vary the equiaxed alpha grain size and the thick-ness of the grain boundary beta, and subsequently quenched in order to transform the beta phase to either martensite, tempered martensite, or Widmanstätten alpha + beta. The effect of microstructure and texture on tensile properties and on fracture toughness was investigated. In addition, yield locus diagrams were constructed in order to study the texture strengthening effect. The yield strength was found to be strongly dependent on the thickness and Burgers relationship of the transformed beta phase surrounding the alpha grains. A texture hardening effect as large as 60 pct was found for the basal-texture material but only 15 pct for the transverse texture material. These variations are asso-ciated with differences in deformation behavior.

  5. Phase stability and elastic properties of β Ti-Nb-X (X = Zr, Sn) alloys: an ab initio density functional study

    Science.gov (United States)

    K, Rajamallu; Niranjan, Manish K.; Ameyama, Kei; Dey, Suhash R.

    2017-12-01

    Alloying effects of Zr and Sn on β phase stability and elastic properties in Ti-Nb alloys are investigated within the framework of first-principles density functional theory. Our results suggest that the stability of β phase can be significantly enhanced by the addition of Zr and Sn in Ti-Nb alloys. The computed results indicate that Zr and Sn behave as strong β stabilizers in the Ti-Nb system. The elastic properties are found to be altered considerably by the addition of ternary alloying elements (Zr and Sn). The computed elastic moduli of Ti18.75 at%Nb6.25 at%Zr and Ti25 at%NbxZr compositions are found to be lower than that for Ti18.75 at%Nb6.25 at%Sn and Ti25 at%NbxSn system. The lowest value of ˜54 GPa is obtained for Ti25 at%Nb6.25 at%Zr composition. Furthermore, the directional Young’s modulus is found to be in the order of E 100 system.

  6. Properties of carbides, nitrides and carbonitrides based on Ti and Mo multicomponent layers

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, J.; Markowski, J.; Prajzner, A.; Zdanowski, J. [Politechnika Wroclawska (Poland). Inst. Technologii Elektronowej

    1998-01-01

    Coating have been produced by bias activated reactive evaporation method (BARE) [1] on polished HSS steel and Corning glass substrates. Titanium and molybdenum were co-evaporated using a special two-hearth electron gun with separate Ti and Mo evaporation sources. Various chemical compositions were obtained by means of heating time control of respective materials. The working gases were nitrogen, acetylene and a 1:1 mixture of both. The investigation of properties of layers with various chemical compositions covered samples: TiC, TiCN, TiN, (Ti,Mo)C, (Ti,Mo)CN, (Ti,Mo)N, MoC, MoCN, MoN. The chemical film compositions were determined using the energy-dispersive X-ray analysis (EDAX) method. Vickers hardness measurements were made. The structures of the deposited layers were examined by means of X-ray diffraction. The electrical measurements of the deposited layers covered resistivity ({rho}) and temperature coefficient of resistivity (TCR). It has been found that the measurements of electrical properties may be very sensitive indicators of the layer composition and structure. (orig.) 5 refs.

  7. Phase transformation and microstructure evolution of the deformed Ti-30Zr-5Nb shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Wentao, E-mail: wtqu@xsyu.edu.cn [School of Mechanical Engineering, Xi' an Shiyou University, Xi' an 710065 (China); Sun, Xuguang; Yuan, Bifei [School of Mechanical Engineering, Xi' an Shiyou University, Xi' an 710065 (China); Xiong, Chengyang [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li, Yan, E-mail: liyan@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Nie, Yongsheng [Lanzhou Seemine SMA Co. Ltd., Lanzhou 730010 (China)

    2017-04-15

    The phase transformation and microstructures of the deformed Ti-30Zr-5Nb shape memory alloy were investigated. The X-ray diffraction measurements indicated that the Ti-30Zr-5Nb alloy was composed of a single orthorhombic α″-martensite phase. The alloy exhibited one yielding behavior in the tensile test, with a critical stress of ~ 600 MPa and a tensile strain of approximately 15%. A shape memory recovery accompanied by a permanent strain was exhibited in the deformed alloys when heated at 873 K. The permanent strain increased with increasing pre-strain. The microstructure evolution of the deformed alloy was investigated by transmission electron microscopy. The results showed that the martensite reorientation occurred and the dislocations were generated during deformation. The alloy displayed a reversible martensite transformation start temperature as high as 763 K. However, no strain-induced martensite stabilization was found in the deformed alloy with different pre-strain levels, potentially because the large chemical energy of the Ti-30Zr-5Nb alloy depressed the effects of the elastic energy and the dissipative energy. - Highlights: • Ti-30Zr-5Nb alloy is composed of single orthorhombic α″-martensite phase with M{sub s} of 721 K. • No martensite stabilization has been found in Ti-30Zr-5Nb alloy with different pre-strain. • Ti-30Zr-5Nb shows the maximum shape memory effect of 2.75% with a pre-strain of 8%.

  8. Review of the early AP penetrator work at LASL which led to the selection of U-3/4 Ti alloy

    International Nuclear Information System (INIS)

    Sandstrom, D.J.

    1976-01-01

    A historical review is presented of the depleted uranium penetrator work. The following alloys were studied: U--Ti, U--Mo, U--Nb, and U--Nb--Ti. Ballistic properties, armor penetration, and corrosion resistance were studied. The U--Ti alloy was found to offer the best combination of properties. 12 figures

  9. Thermodynamic calculation and an experimental study of the combustion synthesis of (Mo{sub 1−x}Nb{sub x})Si{sub 2} (0 ⩽ x ⩽ 1)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaohong, E-mail: matinbow@163.com; Lu, Qiong; Wu, Guangzhi; Shi, Jialing; Sun, Zhi

    2015-08-25

    Highlights: • (Mo{sub 1−x}Nb{sub x})Si{sub 2} alloys were synthesized by a simple and energy-saving process of SHS. • Theoretical adiabatic temperature of (Mo{sub 1−x}Nb{sub x})Si{sub 2} was calculated for the first time. • The variation of the actual temperature is consistent with theoretical temperature. - Abstract: The theoretical adiabatic temperature of (Mo{sub 1−x}Nb{sub x})Si{sub 2} (0 ⩽ x ⩽ 1) is calculated. The results indicate that the theoretical adiabatic temperature of (Mo{sub 1−x}Nb{sub x})Si{sub 2} increases with an increasing Nb content when (Mo{sub 1−x}Nb{sub x})Si{sub 2} is of a single-phase structure, but decreases with an increasing Nb content when (Mo{sub 1−x}Nb{sub x})Si{sub 2} is of a double-phase structure. All of the temperatures are higher than 1800 K, indicating that (Mo{sub 1−x}Nb{sub x})Si{sub 2} (0 ⩽ x ⩽ 1) can be prepared by the combustion synthesis method. In this work, (Mo{sub 1−x}Nb{sub x})Si{sub 2} (0 ⩽ x ⩽ 1) alloys are successfully synthesized by the combustion synthesis process from elemental powders of Mo, Nb, and Si. The highest combustion temperature and combustion product structure are studied. The results confirm that the variation of the experimental maximum combustion temperature of (Mo{sub 1−x}Nb{sub x})Si{sub 2} is consistent with that of the theoretical adiabatic temperature. The combustion products are non-equilibrium species, and a supersaturated solid solution of C11{sub b} type (Mo{sub 1−x}Nb{sub x})Si{sub 2} forms during combustion synthesis.

  10. First-principles predictions of structural, mechanical and electronic properties of βTiNb under high pressure

    Science.gov (United States)

    Wang, Z. P.; Fang, Q. H.; Li, J.; Liu, B.

    2018-04-01

    Structural, mechanical and electronic properties of βTiNb alloy under high pressure have been investigated based on the density functional theory (DFT). The dependences of dimensionless volume ratio, elastic constants, bulk modulus, Young's modulus, shear modulus, ductile/brittle, anisotropy and Poisson's ratio on applied pressure are all calculated successfully. The results reveal that βTiNb alloy is mechanically stable under pressure below 23.45 GPa, and the pressure-induced phase transformation could occur beyond this critical value. Meanwhile, the applied pressure can effectively promote the mechanical properties of βTiNb alloy, including the resistances to volume change, elastic deformation and shear deformation, as well as the material ductility and metallicity. Furthermore, the calculated electronic structures testify that βTiNb alloy performs the metallicity and the higher pressure reduces the structural stability of unit cell.

  11. PLD prepared bioactive BaTiO.sub.3./sub. films on TiNb implants

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Vaněk, Přemysl; Tolde, Z.; Buixaderas, Elena; Kocourek, Tomáš; Studnička, Václav; Drahokoupil, Jan; Petzelt, Jan; Remsa, Jan; Tyunina, Marina

    2017-01-01

    Roč. 70, Jan (2017), s. 334-339 ISSN 0928-4931 R&D Projects: GA ČR(CZ) GA15-05864S; GA ČR(CZ) GA15-01558S Institutional support: RVO:68378271 Keywords : BaTiO 3 * thin films * pld * implants * TiNb * ferroelectricity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.)

  12. Phase equilibria and crystal chemistry in the ternary system BaO-TiO 2-Nb 2O 5. II. New barium polytitanates with <5 mole% Nb 2O 5

    Science.gov (United States)

    Roth, R. S.; Ettlinger, L. D.; Parker, H. S.

    1987-06-01

    Four new compounds were found in the BaO-TiO 2-Nb 2O 5 system, each containing orth ≈ 9.9A˚, b mon ≈ a orth ≈ 17A˚). Ba 14Ti 40Nb 2O 99 is a 20-layer orthorhombic phase, Cmc*, withc ≈ 46.86A˚. Ba 10Ti 28Nb 2O 72 is a 7-layer monoclinic phase, C2m, c ≈ 16.72A˚, β ≈ 101.2°. Ba 18Ti 54Nb 2O 132 is a 13-layer monoclinic phase, C2m, c ≈ 30.65A˚, β ≈ 96°. The compositions were derived by analogy to the layers in Ba 4Ti 13 O 30 and Ba 6Ti 17O 40 and are consistent with limited phase equilibria data.

  13. Is magnetic pinning a dominant mechanism in Nb-Ti

    International Nuclear Information System (INIS)

    Cooley, L.D.; Lee, P.J.; Larbalestier, D.C.

    1991-01-01

    In this paper, the authors compare the pinning behavior of an artificial pinning center (APC) composite and a nanometer-filament Nb 46.5 wt% Ti composite to that of a conventional Nb 48 wt% Ti composite. The microstructure of the APC composite resembles the conventional composite, where ribbons of normal metal form the pinning centers, whereas the nanometer-filament composite has no internal normal metal but pins instead at the filament surface. The APC composite exhibits much stronger pinning relative to B c 2 than the conventional composite (21.4 GN/m 3 , 7 T vs. 18.9 GN/m 3 , 11 T), which is possibly due to the increased amount of pinning center (50 vol.% vs. 25 vol.%), however the proximity effect reduces the B c 2 unfavorably

  14. A novel layered titanoniobate LiTiNbO5: topotactic synthesis and electrochemistry versus lithium.

    Science.gov (United States)

    Colin, J-F; Pralong, V; Caignaert, V; Hervieu, M; Raveau, B

    2006-09-04

    A new layered titanoniobate, LiTiNbO5, an n = 2 member of the A(x)M(2n)O(4n+2) family, has been synthesized using a molten salt reaction between HTiNbO5 and an eutectic "LiOH/LiNO3". This compound crystallizes in the P2(1)/m space group with a = 6.41 A, b = 3.77 A, c = 8.08 A, and beta = 92 degrees . It exhibits |TiNbO5|(infinity) layers similar to HTiNbO5, but differs from the latter by a "parallel configuration" of its |TiNbO6|(infinity) ribbons between the two successive layers. The topotactic character of the reaction suggests that exfoliation plays a prominent role in the synthesis of this new form. This new phase intercalates reversibly 0.8 lithium through a first-order transformation leading to a capacity of 94 mAh/g at a potential of 1.67 V vs Li/Li+.

  15. Inter-filament resistance, effective transverse resistivity and coupling loss in superconducting multifilamentary NbTi and Nb3Sn strands

    NARCIS (Netherlands)

    Zhou, Chao; Dhalle, Marc M.J.; Nijhuis, Arend

    2012-01-01

    The effective transverse resistivity of a range of multi-filamentary Nb3Sn and NbTi strands is measured with a direct four-probe method and the data are compared to the transverse resistivity values obtained from AC coupling loss experiments. Correspondence between both is satisfactory provided that

  16. Ammonia Synthesis using Ti and Nb Nitride Nano-particles Prepared by Mesoporous Graphitic C3N4

    KAUST Repository

    Kumagai, Hiromu

    2015-01-22

    TiN and NbN nanoparticles were synthesized from mesoporous graphitic C3N4 (mpg-C3N4) as a reactive template and used as the catalyst for ammonia synthesis. The obtained TiN and NbN nanoparticles possess high surface areas of 299 and 275 m2 g-1, respectively, making them attractive in the use of catalysis and support. Although most of the TiN and NbN particles show no measurable activity for ammonia formation, the nanoparticles enabled an ammonia synthesis rate of 31 μmol h-1 g-cat-1 at 673 K and 0.1 MPa of synthesis gas (N2 + 3H2) for both TiN and NbN catalysts. It is evident that the formation of nanoparticles with high nitride surface area is essential for the materials to function as catalysts in ammonia synthesis. The addition of Fe to TiN enhanced the ammonia synthesis activity, whereas it had detrimental effects on the catalytic activity of NbN. The properties of these catalysts in ammonia synthesis are discussed.

  17. FT-NMR of {sup 93}Nb in TiO{sub 2} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kazunori; Akai, Hisazumi [Osaka Univ., Toyonaka (Japan). Faculty of Science; Takeda, Sadamu [and others

    1997-03-01

    We determined the electric field gradient (EFG) at the impurity Nb site in TiO{sub 2} experimentally. It was shown that the principal component and the asymmetry parameter differ significantly from those of the host Ti site in TiO{sub 2}. Ab initio calculations of the EFG`s by the KKR method with the super-cell reproduced this experimental results if Nb{sup 5+} ion is simulated by shifting {epsilon}{sub f}. It was shown that considering the charge state of impurities was indispensable in calculating the EFG`s at impurity sites. (J.P.N.)

  18. Optical properties of Nb and Mo calculated from augmented-plane-wave band structures

    International Nuclear Information System (INIS)

    Pickett, W.E.; Allen, P.B.

    1975-01-01

    Nonrelativistic band calculations of Mattheiss for Nb and Petroff and Viswanathan for Mo are used to calculate the imaginary part epsilon 2 of the dielectric function for these metals. The structure resulting from interband transitions in the frequency range 0.1--0.5 Ry is found to give fairly good agreement with experiment. The calculation indicates that structure in epsilon 2 can arise from transitions away from symmetry points and lines in the Brillouin zone. The difficulty in distinguishing between the direct and indirect transition models for epsilon 2 is shown to arise from a lack of strong optical critical points. Predictions of the rigid-band model for the optical properties of Nb-Mo alloys are presented

  19. Mesostructured niobium-doped titanium oxide-carbon (Nb-TiO2-C) composite as an anode for high-performance lithium-ion batteries

    Science.gov (United States)

    Hwang, Keebum; Sohn, Hiesang; Yoon, Songhun

    2018-02-01

    Mesostructured niobium (Nb)-doped TiO2-carbon (Nb-TiO2-C) composites are synthesized by a hydrothermal process for application as anode materials in Li-ion batteries. The composites have a hierarchical porous structure with the Nb-TiO2 nanoparticles homogenously distributed throughout the porous carbon matrix. The Nb content is controlled (0-10 wt%) to investigate its effect on the physico-chemical properties and electrochemical performance of the composite. While the crystalline/surface structure varied with the addition of Nb (d-spacing of TiO2: 0.34-0.36 nm), the morphology of the composite remained unaffected. The electrochemical performance (cycle stability and rate capability) of the Nb-TiO2-C composite anode with 1 wt% Nb doping improved significantly. First, a full cut-off potential (0-2.5 V vs. Li/Li+) of Nb-doped composite anode (1 wt%) provides a higher energy utilization than that of the un-doped TiO2-C anode. Second, Nb-TiO2-C composite anode (1 wt%) exhibits an excellent long-term cycle stability (100% capacity retention, 297 mAh/g at 0.5 C after 100 cycles and 221 mAh/g at 2 C after 500 cycles) and improved rate-capability (192 mAh/g at 5 C), respectively (1 C: 150 mA/g). The superior electrochemical performance of Nb-TiO2-C (1 wt%) could be attributed to the synergistic effect of improved electronic conductivity induced by optimal Nb doping (1 wt%) and lithium-ion penetration (high diffusion kinetics) through unique pore structures.

  20. Carbothermic reduction behaviors of Ti-Nb-bearing Fe concentrate from Bayan Obo ore in China

    Science.gov (United States)

    Wang, Guang; Du, Ya-xing; Wang, Jing-song; Xue, Qing-guo

    2018-01-01

    To support the development of technology to utilize low-grade Ti-Nb-bearing Fe concentrate, the reduction of the concentrate by coal was systematically investigated in the present paper. A liquid phase formed when the Ti-Nb-bearing Fe concentrate/coal composite pellet was reduced at temperatures greater than 1100°C. The addition of CaCO3 improved the reduction rate when the slag basicity was less than 1.0 and inhibited the formation of the liquid phase. Mechanical milling obviously increased the metallization degree compared with that of the standard pellet when reduced under the same conditions. Evolution of the mineral phase composition and microstructure of the reduced Ti-Nb-bearing Fe concentrate/coal composite pellet at 1100°C were analyzed by X-ray diffraction and scanning electron microscopy-energy-dispersive spectroscopy. The volume shrinkage value of the reduced Ti-Nb-bearing Fe concentrate/coal composite pellet with a basicity of 1.0 was approximately 35.2% when the pellet was reduced at 1100°C for 20 min, which enhanced the external heat transfer to the lower layers when reduced in a practical rotary hearth furnace. The present work provides key parameters and mechanism understanding for the development of carbothermic reduction technology of a Ti-Nb-bearing Fe concentrate incorporated in a pyrometallurgical utilization flow sheet.

  1. Growth of a TiNb adhesion interlayer for bioactive coatings

    Czech Academy of Sciences Publication Activity Database

    Tolde, Z.; Starý, V.; Cvrček, L.; Vandrovcová, Marta; Remsa, J.; Daniš, S.; Krčil, J.; Bačáková, Lucie; Špatenka, P.

    2017-01-01

    Roč. 80, Nov 1 (2017), s. 652-658 ISSN 0928-4931 R&D Projects: GA ČR(CZ) GA15-01558S Institutional support: RVO:67985823 Keywords : biomaterials * PVD * TiNb * surface properties * BaTiO3 Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Biomaterials (as related to medical implants, devices, sensors) Impact factor: 4.164, year: 2016

  2. Me-Si-C (Me= Nb, Ti or Zr) : Nanocomposite and Amorphous Thin Films

    OpenAIRE

    Tengstrand, Olof

    2012-01-01

    This thesis investigates thin films of the transition metal carbide systems Ti-Si-C, Nb-Si-C, and Zr-Si-C, deposited at a low substrate temperature (350 °C) with dc magnetron sputtering in an Ar discharge. Both the electrical and mechanical properties of these systems are highly affected by their structure. For Nb-Si-C, both the ternary Nb-Si-C and the binary Nb-C are studied. I show pure NbC films to consist of crystalline NbC grains embedded in a matrix of amorphous carbon. The best combina...

  3. Limitation of critical current density by intermetallic formation in fine filament Nb-Ti superconductors

    International Nuclear Information System (INIS)

    Larbalestier, D.C.; Chengren, L.; Starch, W.; Lee, P.J.

    1985-01-01

    Two experiments have been performed to investigate the role that the intermetallic reaction between the copper matrix and the Nb-Ti filaments plays in limiting the critical current density (J/sub c/) of Nb 45.6 wt% Ti composites. The first experiment involved composites which were industrially extruded. It was found that as the number of heat treatments increased, the J/sub c/ declined, the resistive transition broadened and the filaments sausaged. The filament sausaging was initiated by intermetallic particles at the filament matrix interface. A series of many heat treatment procedures were then applied to composites fabricated in the authors own laboratories without extrusion. Very high J/sub c/ values were obtained at filament sizes of 20 μm. When the same heat treatment procedures were applied to 4 - 5 μm conductors, extensive sausaging and degraded J/sub c/ values resulted. This degradation was also found to be due to the formation of Cu-Nb-Ti intermetallic compounds. It is concluded that a reliable filament diffusion barrier technology is necessary to permit full flexibility in the heat treatment of 2 - 5 μ filament Nb-Ti composites

  4. Limitation of critical current density by intermetallic formation in fine filament Nb-Ti superconductors

    International Nuclear Information System (INIS)

    Larbalestier, D.C.; Chengren, Li; Lee, P.J.; Starch, W.

    1985-01-01

    Two experiments have been performed to investigate the role that the intermetallic reaction between the copper matrix and the Nb-Ti filaments plays in limiting the critical current density (J /SUB c/ ) of Nb 46.5 wt% Ti composites. The first experiment involved composites which were industrially extruded. It was found that as the number of heat treatments increased, the J /SUB c/ declined, the resistive transition broadened and the filaments sausaged. The filament sausaging was initiated by intermetallic particles at the filament matrix interface. A series of many heat treatment procedures were then applied to composites fabricated in our own laboratories without extrusion. Very high J /SUB c/ values were obtained at filament sizes of 20 μm. When the same heat treatment procedures were applied to 4 - 5 μm conductors, extensive sausaging and degraded J /SUB c/ values resulted. This degradation was also found to be due to the formation of Cu-Nb-Ti intermetallic compounds. It is concluded that a reliable filament diffusion barrier technology is necessary to permit full flexibility in the heat treatment of 2 - 5 μm filament Nb-Ti composites

  5. Effect of nitrogen addition and annealing temperature on superelastic properties of Ti-Nb-Zr-Ta alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, Masaki [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Kim, Hee Young, E-mail: heeykim@ims.tsukuba.ac.jp [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Hosoda, Hideki [Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Nam, Tae-hyun [School of Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processingnd ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of); Miyazaki, Shuichi, E-mail: miyazaki@ims.tsukuba.ac.jp [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); School of Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processingnd ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of)

    2010-10-15

    Research highlights: In this study, the effects of composition and annealing temperature on microstructure, shape memory effect and superelastic properties were investigated in Ti-Nb-4Zr-2Ta-N alloys by measuring stress-strain curves at various temperatures and using transmission electron microscopy. Dissolution of {alpha} phase increases M{sub s} and decreases the critical stress for slip for the Ti-22Nb-4Zr-2Ta alloy while it causes the decrease of M{sub s} and the increase of the critical stress for slip for the Ti-20Nb-4Zr-2Ta-0.6N alloy. The different effect of dissolution of {alpha} phase can be attributed to the fact that N is absorbed in {alpha} phase. - Abstract: The composition dependence of the mechanical properties and martensitic transformation behavior of Ti-Nb-4Zr-2Ta-N alloys is investigated. The effect of annealing temperature on the microstructural evolution and superelastic properties in the N-added and N-free alloys is compared. The addition of N decreases M{sub s} of Ti-Nb-4Zr-2Ta alloys by about 200 K per 1 at.%N and improves the superelastic properties of Ti-Nb-4Zr-2Ta alloys. The dissolution of {alpha} phase increases the martensitic transformation start temperature and decreases the superelastic recovery strain for the N-free alloy, whereas it causes opposite effects for the N-added alloy. The different annealing temperature dependences of superelastic properties are discussed on the basis of microstructure observation.

  6. Effect of nitrogen addition and annealing temperature on superelastic properties of Ti-Nb-Zr-Ta alloys

    International Nuclear Information System (INIS)

    Tahara, Masaki; Kim, Hee Young; Hosoda, Hideki; Nam, Tae-hyun; Miyazaki, Shuichi

    2010-01-01

    Research highlights: In this study, the effects of composition and annealing temperature on microstructure, shape memory effect and superelastic properties were investigated in Ti-Nb-4Zr-2Ta-N alloys by measuring stress-strain curves at various temperatures and using transmission electron microscopy. Dissolution of α phase increases M s and decreases the critical stress for slip for the Ti-22Nb-4Zr-2Ta alloy while it causes the decrease of M s and the increase of the critical stress for slip for the Ti-20Nb-4Zr-2Ta-0.6N alloy. The different effect of dissolution of α phase can be attributed to the fact that N is absorbed in α phase. - Abstract: The composition dependence of the mechanical properties and martensitic transformation behavior of Ti-Nb-4Zr-2Ta-N alloys is investigated. The effect of annealing temperature on the microstructural evolution and superelastic properties in the N-added and N-free alloys is compared. The addition of N decreases M s of Ti-Nb-4Zr-2Ta alloys by about 200 K per 1 at.%N and improves the superelastic properties of Ti-Nb-4Zr-2Ta alloys. The dissolution of α phase increases the martensitic transformation start temperature and decreases the superelastic recovery strain for the N-free alloy, whereas it causes opposite effects for the N-added alloy. The different annealing temperature dependences of superelastic properties are discussed on the basis of microstructure observation.

  7. Creep-fatigue-environment interaction of 9Cr-1Mo-V-Nb steel

    International Nuclear Information System (INIS)

    Shibata, Hiroyuki; Ishikawa, Akiyoshi; Asada, Yasuhide

    1996-01-01

    An extension of the creep-fatigue damage model has been conducted in the present study. The original damage model has been developed to the predict the creep-fatigue life of 9Cr-1Mo-V-Nb steel (Modified 9Cr-1Mo steel) in a very high vacuum environment. The present study is to extend an applicability of the model to the creep-fatigue damage accumulation in the air environment. (orig.)

  8. A tri-junction diffusion couple analysis of the Nb-Cr-Ti system at 950{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Thoma, D.J. [Los Alamos National Lab., NM (United States); Perepezko, J.H. [Wisconsin Univ., Madison, WI (United States). Dept. of Materials Science and Engineering

    1993-11-01

    With a three-way diffusion couple consisting of a tri-junction between three elements, a whole spectrum of phase development and ternary equilibria is available within a single isothermal sample. Binary equilibria (for the three binary systems) are also available in single sample by analyzing diffusion zones at composition limits outside the field of ternary interaction. The tri-junction approach was employed to evaluate ternary phase formation, ternary solubility limits of binary phases, and diffusion paths in a candidate high-temperature structural system (Nb-Cr-Ti). Ternary phase equilibria and tie lines have been defined at 950C and results confirmed with isothermal anneals of two-phase ternary alloys. The continuous solubility in TiCr{sub 2}-NbCr{sub 2} region is broadened by at least 5 at. % from binary intermetallic phase fields. No new ternary phases were detected in the Nb-CrTi system at 950C. By examining the relative shifts in the diffusion interfaces, a qualitative ranking of interdiffusion suggests that addition of Nb restricts diffusion of Cr into Ti compared to binary (Cr/Ti) behavior.

  9. Development and manufacture of ultra-fine NbTi filament wires at ALSTHOM

    International Nuclear Information System (INIS)

    Hoang, G.K.; Laumond, Y.; Sabrie, J.L.; Dubots, P.

    1986-01-01

    Ultra-fine NbTi filament wires have been developed and manufactured by ALSTHOM. It is now possible to produce industrial copper -copper-nickel matrix wires with 0.6 mu m NbTi filaments for use in 50 / 60 Hz machines. Smaller filaments with diameters down to 0.08 mu m have been obtained with 254 100 filament wire samples. Studies are now being carried out on copper matrix conductors to reduce the filament diameter. The first results show that it is possible to obtain submicron filaments even in copper matrix wires

  10. The X-ray electronic spectra of TiC-NbC solid solution

    International Nuclear Information System (INIS)

    Cherkashenko, V.M.; Ezhov, A.V.; Nazarova, S.Z.; Kurmaev, Eh.Z.; Nojmann, M.

    2001-01-01

    X-ray photoelectronic spectra of inner levels and valency lands in TiC-NbC solid solutions were studied. Results of combining TiL α -, NbL β2.15 -, CK α - X-ray emission spectra and photoelectronic spectra of valency bands in one energy scale in reference to the Fermi level were analyzed. It is shown that a change in crystal lattice parameters, as well as charge redistribution between titanium and niobium atoms, produce a strong effect on electronic structure formation in the mixed carbides mentioned [ru

  11. Influence of Nb content on the structural and optical properties of anatase TiO{sub 2} polycrystalline thin film by e-beam technique

    Energy Technology Data Exchange (ETDEWEB)

    Shah, A., E-mail: attaullah77@yahoo.com; Mahmood, Arshad; Aziz, Uzma; Rashid, Rashad; Raza, Qaiser; Ali, Zahid

    2016-09-01

    In this paper, we report the structural and optical properties of Nb-doped TiO{sub 2} thin films deposited by e-beam evaporation technique. After post annealing in air at 500 °C for 1 h, the samples were characterized by various techniques such as X-ray diffraction (XRD), Raman spectroscopy, UV–Vis spectrophotometry and spectroscopic Ellipsometer. Both XRD and Raman analyses indicate that the films were crystallized into the polycrystalline anatase TiO{sub 2} structure. However it was observed that the crystallinity of the films decreases with the addition of Nb atoms and tends to become amorphous at 20% Nb content in TiO{sub 2} film. Moreover, no new phases such as Nb{sub 2}O{sub 5}, NbO{sub 2} or Nb metal were observed. The band gap energy was found to decrease with the increasing of Nb concentration which was verified by ellipsometric study. Ellipsomtric measurements also indicate that refractive index (n) of the films decreases while extinction coefficient (k) increases with the increasing of Nb content. All these analyses elucidate that the incorporation of Nb atom into TiO{sub 2} may tune the structural and optical properties of TiO{sub 2} thin films. - Highlights: • The addition of Nb into TiO{sub 2} film has strongly influenced its physical properties. • Anatase polycrystalline Nb:TiO{sub 2} films were grown up to 15% Nb content. • The film becomes an amorphous at 20% Nb doping. • Band gap energy of TiO{sub 2} film was decreased with increasing of Nb content in the film. • The Optical constants (n, k) of Nb:TiO{sub 2} film were varied as a function of Nb content.

  12. The characteristics of precipitates in 18% Cr/30% Ni cast steel with additions of Nb and Ti

    International Nuclear Information System (INIS)

    Piekarski, B.

    1995-01-01

    The microstructure of austenitic cast steel with approx. 0.3%C, 4.37%Si, 0.69%Mn, 17.8%Cr, 29.3%Ni, 1.47%Nb and 1.07%Ti have been examined after ageing at 900 C for 300 h. There was found five precipitates: M 23 C 6 , MnS, Ni 3 Fe, (Ti,Nb)C and an intermetallic Ni-Nb-S phase. Ni, Nb, Si-rich precipitate could have been formed in as cast condition. (author)

  13. Magnetization and critical currents of NbTi wires with fine filaments

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Sampson, W.B.

    1985-01-01

    In high energy accelerators such as the SSC, the magnetization of the superconductor is an important component in determining the harmonic fields at injection (approx.0.3T). In an effort to reduce these residual fields, interest has focused on NbTi conductors with fine filaments which are expected to have a reduced magnetization as dictated by the critical state model. With this in view, the magnetization and critical currents were measured at 4.3K for a set of NbTi wires with filament diameters, d, ranging from 1.0 to 5.0 microns. The data show that, although the magnetization scales linearly with d, it does not do so with the product J/sub c/d for d less than 3 μm. However, at these d values, the critical transport current density, J/sub c/ of NbTi was observed to decrease rapidly as a function of d. The origin of this J/sub c/ degradation and its effect on the scaling of magnetization within the framework of the critical state model is explored. We also examine the question of the observed asymmetry of the hysteretic magnetization

  14. Structural and electronic properties of Mg and Mg-Nb co-doped TiO2 (101) anatase surface

    International Nuclear Information System (INIS)

    Sasani, Alireza; Baktash, Ardeshir; Mirabbaszadeh, Kavoos; Khoshnevisan, Bahram

    2016-01-01

    Highlights: • Formation energy of Mg and Mg-Nb co-doped TiO_2 anatase surface (101) is studied. • Effect of Mg defect to the TiO_2 anatase (101) surface and bond length distribution of the surface is studied and it is shown that Mg defects tend to stay far from each other. • Effect of Mg and Nb to the bond length distribution of the surface studied and it is shown that these defects tend to stay close to each other. • Effects of Mg and Mg-Nb defects on DSSCs using TiO_2 anatase hosting these defects are studied. - Abstract: In this paper, by using density functional theory, Mg and Nb-Mg co-doping of TiO_2 anatase (101) surfaces are studied. By studying the formation energy of the defects and the bond length distribution of the surface, it is shown that Mg defects tend to stay as far as possible to induce least possible lattice distortion while Nb and Mg defects stay close to each other to cause less stress to the surface. By investigating band structure of the surface and changes stemmed from the defects, potential effects of Mg and Mg-Nb co-doping of TiO_2 surface on dye-sensitized solar cells are investigated. In this study, it is shown that the Nb-Mg co-doping could increase J_S_C of the surface while slightly decreasing V_O_C compared to Mg doped surface, which might result in an increase in efficiency of the DSSCs compared to Nb or Mg doped surfaces.

  15. Effect of graphite content on magnetic and mechanical properties of TiC-TiN-Mo-Ni cermets

    Science.gov (United States)

    Zhang, Man; Yang, Qingqing; Xiong, Weihao; Huang, Bin; Ruan, Linji; Mao, Qiao; Li, Shengtao

    2018-04-01

    TiC-10TiN-6Mo-xGr-yNi (mol%, Gr represents graphite, x = 0, 2, 4, 6, 8, and y = 15, 30) cermets were prepared by powder metallurgy method, in order to inverstigate the effect of Gr content on magnetic and mechanical properties of TiC-TiN-Mo-Ni cermets. Room-temperature (RT) saturation magnetization (Ms) and remanence (Mr) of cermets increased with increasing x. This was mainly attributed to that the total content of non-ferromagnetic carbonitride-forming elements Ti and Mo in Ni-based binder phase decreased with increasing x. At the same x, cermets for y = 15 had lower RT Ms and Mr than those for y = 30. Cermets containing more than 2 mol% Gr became ferromagnetic at RT. Bending strength of cermets first increased and then decreased with increasing x. It reached the maximum at x = 2, mainly due to high total content of solutes Ti and Mo in Ni-based binder phase, and moderate thickness of outer rim of Ti(C,N) ceramic grains. Hardness of cermets was not significantly affected by x, mainly due to the combined action of the decrease of the total content of Ti and Mo in binder phase and the increase of the volume fraction of ceramic grains. At the same x, cermets for y = 15 had lower bending strength and higher hardness than those for y = 30.

  16. Ti2Nb10O29-x mesoporous microspheres as promising anode materials for high-performance lithium-ion batteries

    Science.gov (United States)

    Deng, Shengjue; Luo, Zhibin; Liu, Yating; Lou, Xiaoming; Lin, Chunfu; Yang, Chao; Zhao, Hua; Zheng, Peng; Sun, Zhongliang; Li, Jianbao; Wang, Ning; Wu, Hui

    2017-09-01

    Ti2Nb10O29 has recently been reported as a promising anode material for lithium-ion batteries. However, its poor electronic conductivity and insufficient Li+-ion diffusion coefficient significantly limit its rate capability. To tackle this issue, a strategy combining nanosizing and crystal-structure modification is employed. Ti2Nb10O29-x mesoporous microspheres with a sphere-size range of 0.5-4 μm are prepared by a one-step solvothermal method followed by thermal treatment in N2. These Ti2Nb10O29-x mesoporous microspheres exhibit primary nanoparticles, a large specific surface area (22.9 m2 g-1) and suitable pore sizes, leading to easy electron/Li+-ion transport and good interfacial reactivity. Ti2Nb10O29-x shows a defective shear ReO3 crystal structure with O2- vacancies and an increased unit cell volume, resulting in its increased Li+-ion diffusion coefficient. Besides Ti4+ and Nb5+ ions, Ti2Nb10O29-x comprises Nb4+ ions with unpaired 4d electrons, which significantly increase its electronic conductivity. As a result of these improvements, the Ti2Nb10O29-x mesoporous microspheres reveal superior electrochemical performances in term of large reversible specific capacity (309 mAh g-1 at 0.1 C), outstanding rate capability (235 mAh g-1 at 40 C) and durable cyclic stability (capacity retention of 92.1% over 100 cycles at 10 C).

  17. Mechanical properties of heat treated and worn PVD, TiN, (Ti, Al)N, (Ti, Nb)N and Ti(C, N) coatings as measured by nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Vancoille, E.; Celis, J.P.; Roos, J.R. (Dept. of Metallurgy and Materials Engineering, Katholieke Univ. Leuven, Heverlee (Belgium))

    1993-03-15

    Steered arc ion plated TiN, (Ti[sub 50], Al[sub 50])N, (Ti[sub 85], Nb[sub 15])N and Ti(C[sub 60], N[sub 40]) coatings were heat treated in an inert argon atmosphere at temperatures up to 900degC. The hardness, Young's modulus and plasticity of the coatings were measured with nanoindentation after heating. As the coatings were annealed at higher temperatures, the hardness decreased and the plasticity increased. X-ray diffraction of the coatings showed that this corresponds to a decrease in internal stress and a change of crystallographic texture. The nanohardness of the cutting edge of coated drills was also measured after these were used in AISI 4140 steel. Scanning electron microscopy demonstrated the presence of a silicate layer located near the cutting edge of (Ti[sub 85], Nb[sub 15])N coated drills. Nanoindentation showed that the mechanical signature of the surface film further away from the cutting edge corresponded to a heat-treated coating covered with an oxide layer. (orig.).

  18. Measurements of emissivities on JT-60 first wall materials (inconel 625, Mo, TiC-coated Mo)

    International Nuclear Information System (INIS)

    Nakamura, Hiroo; Shimizu, Masatsugu; Makino, Toshiro; Kunitomo, Takeshi.

    1985-02-01

    To evaluate heat removal performance of JT-60 first wall, emissivities and reflectivities on Inconel 625, Mo, TiC coated Mo with optically smooth surface and actual surface are measured at temperature from a room temperature to 1300 K. Spectra are measured in the rnage of wave lengthes from 0.34 μm to 20 μm. Actual surfaces are machined/pickled surfaces for Inconel 625, electro-polished surfaces for molybdenum, and as-coated surfaces for TiC-coated molybdenum. Results of Inconel 625 and molybdenum with oplically smooth surfaces are examined by a two-electrons-type dispersion model of optical constants. Electronic constants of the equation are given and formulated in order to correlates the macroscopic properties of the radiative heat transfer. Total emissivities, obtained from the spectral emissivities of optically smooth surface, are 0.13(RT) -- 0.21(1300 K) for Inconel 625, 0.035(RT) -- 0.18(1300 K) for Mo, and 0.053(RT) for TiC-coated Mo. Moreover, total emissivities of the actual surface at a room temperature are 0.35(Inconel 625), 0.124(Mo), and 0.073(TiC-coated Mo). Large dependence of the emissivities on temperature and wave length shows that the model including these dependences is necessary for an accurate evaluation of the radiative heat transfer. (author)

  19. Tribological behavior and self-healing functionality of TiNbCN-Ag coatings in wide temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Bondarev, A.V., E-mail: abondarev88@gmail.com; Kiryukhantsev-Korneev, Ph.V.; Levashov, E.A.; Shtansky, D.V., E-mail: shtansky@shs.misis.ru

    2017-02-28

    Highlights: • TiNbCN–Ag coatings for wide temperature range tribological applications. • Alloying with Nb and Ag improve tribological properties and oxidation resistance. • Ag-rich TiNbCN coatings show friction coefficient below 0.45 in range of 25–700 °C. • Ag-doped coatings show active oxidation protection and self-healing functionality. - Abstract: Ag- and Nb-doped TiCN coatings with about 2 at.% of Nb and Ag contents varied between 4.0 and 15.1 at.% were designed as promising materials for tribological applications in a wide temperature range. We report on the structure, mechanical, and tribological properties of TiNbCN-Ag coatings fabricated by simultaneous co-sputtering of TiC{sub 0.5} + 10%Nb{sub 2}C and Ag targets in comparison with those of Ag-free coating. The tribological characteristics were evaluated during constant-temperature tests both at room temperature and 300 °C, as well as during dynamic temperature ramp tests in the range of 25–700 °C. The coating structure and elemental composition were studied by means of X-ray diffraction, scanning and transmission electron microscopy, and glow discharge optical emission spectroscopy. The coating microstructures and elemental compositions inside wear tracks, as well as the wear products, were examined by scanning electron microscopy, energy-dispersive spectroscopy, and Raman spectroscopy. We demonstrate that simultaneous alloying with Nb and Ag permits to overcome the main drawbacks of TiCN coatings such as their relatively high values of friction coefficient at elevated temperatures and low oxidation resistance. It is shown that a relatively high amount of Ag (15 at.%) is required to provide enhanced tribological behavior in a wide temperature range of 25–700 °C. In addition, the prepared Ag-doped coatings demonstrated active oxidation protection and self-healing functionality due to the segregation of Ag metallic particles in damage areas such as cracks, pin-holes, or oxidation sites.

  20. Phase diagrams for pseudo-binary carbide systems TiC-NbC, TiC-TaC, ZrC-NbC, ZrC-TaC and HfC-TaC

    International Nuclear Information System (INIS)

    Gusev, A.I.

    1985-01-01

    Parameters of interaction and energy of mutual exchange in the liquid and solid phases of pseudobinary TiC-NbC, TiC-TaC, ZrC-NbC, ZrC-TaC, HfC-TaC systems are calculated with account of dependence on composition and temperature. Positions of liquidus-solidus phase boundaries on the phase diagrams of the mentioned systems are calculated on the basis of the determined mutual exchange energies in approximati.on of subregular solutions. The existance of latent decomposition ranges in the solid phase on the phase diagrams of the investgated systems is established

  1. Oxidation behavior of U-2wt%Nb, Ti, and Ni alloys in air

    International Nuclear Information System (INIS)

    Ju, J. S.; Yoo, K. S.; Jo, I. J.; Gug, D. H.; Su, H. S.; Lee, E. P.; Bang, K. S.; Kim, H. D.

    2003-01-01

    For the long term storage safety study of the metallic spent fuel, U-Nb, U-Ti, U-Ni, U-Zr, and U-Hf simulated metallic uranium alloys, known as corrosion resistant alloys, were fabricated and oxidized in oxygen gas at 200 .deg. C-300 .deg. C. Simulated metallic uranium alloys were more corrosion resistant than pure uranium metal, and corrosion resistance increases Nb, Ni, Ti in that order. The oxidation rates of uranium alloys determined and activation energy was calculated for each alloy. The matrix microstructure of the test specimens were analyzed using OM, SEM, and EPMA. It was concluded that Nb was the best acceptable alloying elements for reducing corrosion of uranium metal considered to suitable as candidate

  2. Surface modification by electrolytic plasma processing for high Nb-TiAl alloys

    Science.gov (United States)

    Gui, Wanyuan; Hao, Guojian; Liang, Yongfeng; Li, Feng; Liu, Xiao; Lin, Junpin

    2016-12-01

    Metal surface modification by electrolytic plasma processing (EPP) is an innovative treatment widely commonly applied to material processing and pretreatment process of coating and galvanization. EPP involves complex processes and a great deal of parameters, such as preset voltage, current, solution temperature and processing time. Several characterization methods are presented in this paper for evaluating the micro-structure surfaces of Ti45Al8Nb alloys: SEM, EDS, XRD and 3D topography. The results showed that the oxide scale and other contaminants on the surface of Ti45Al8Nb alloys can be effectively removed via EPP. The typical micro-crater structure of the surface of Ti45Al8Nb alloys were observed by 3D topography after EPP to find that the mean diameter of the surface structure and roughness value can be effectively controlled by altering the processing parameters. The mechanical properties of the surface according to nanomechanical probe testing exhibited slight decrease in microhardness and elastic modulus after EPP, but a dramatic increase in surface roughness, which is beneficial for further processing or coating.

  3. Colossal Dielectric Behavior of Ga+Nb Co-Doped Rutile TiO2.

    Science.gov (United States)

    Dong, Wen; Hu, Wanbiao; Berlie, Adam; Lau, Kenny; Chen, Hua; Withers, Ray L; Liu, Yun

    2015-11-18

    Stimulated by the excellent colossal permittivity (CP) behavior achieved in In+Nb co-doped rutile TiO2, in this work we investigate the CP behavior of Ga and Nb co-doped rutile TiO2, i.e., (Ga(0.5)Nb(0.5))(x)Ti(1-x)O2, where Ga(3+) is from the same group as In(3+) but with a much smaller ionic radius. Colossal permittivity of up to 10(4)-10(5) with an acceptably low dielectric loss (tan δ = 0.05-0.1) over broad frequency/temperature ranges is obtained at x = 0.5% after systematic synthesis optimizations. Systematic structural, defect, and dielectric characterizations suggest that multiple polarization mechanisms exist in this system: defect dipoles at low temperature (∼10-40 K), polaronlike electron hopping/transport at higher temperatures, and a surface barrier layer capacitor effect. Together these mechanisms contribute to the overall dielectric properties, especially apparent observed CP. We believe that this work provides comprehensive guidance for the design of new CP materials.

  4. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications.

    Science.gov (United States)

    Oliveira, N T C; Guastaldi, A C

    2009-01-01

    Electrochemical behavior of pure Ti and Ti-Mo alloys (6-20wt.% Mo) was investigated as a function of immersion time in electrolyte simulating physiological media. Open-circuit potential values indicated that all Ti-Mo alloys studied and pure Ti undergo spontaneous passivation due to spontaneously formed oxide film passivating the metallic surface, in the chloride-containing solution. It also indicated that the addition of Mo to pure Ti up to 15wt.% seems to improve the protection characteristics of its spontaneous oxides. Electrochemical impedance spectroscopy (EIS) studies showed high impedance values for all samples, increasing with immersion time, indicating an improvement in corrosion resistance of the spontaneous oxide film. The fit obtained suggests a single passive film present on the metals' surface, improving their resistance with immersion time, presenting the highest values to Ti-15Mo alloy. Potentiodynamic polarization showed a typical valve-metal behavior, with anodic formation of barrier-type oxide films, without pitting corrosion, even in chloride-containing solution. In all cases, the passive current values were quite small, and decrease after 360h of immersion. All these electrochemical results suggest that the Ti-15Mo alloy is a promising material for orthopedic devices, since electrochemical stability is directly associated with biocompatibility and is a necessary condition for applying a material as biomaterial.

  5. Investigation of microstructure and irradiation behavior of W–Nb/Ti composites prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Chen, Jing-Bo; Luo, Lai-Ma; Zhao, Mei-Ling; Xu, Qiu; Zan, Xiang; Wu, Yu-Cheng

    2016-01-01

    W–Nb/Ti composites were prepared by machine milling and spark plasma sintering. Field–emission scanning electron microscopy, high–resolution transmission electron microscopy, and X-ray diffraction analyses were used to characterize the samples. Thermal desorption spectroscopy (TDS) was used to measure the deuterium retention after only deuterium irradiation. The deuterium retention in W–4wt%Ti–wt1%Nb was lower than that in pure W (D_2"+ flux ∼10"2"2 ions/(m"2 s), ion energy ∼5 keV), Nb and Ti will improve the deuterium irradiation resistance of tungsten composite. In addition, transgranular and intergranular fractures were observed on the surface of the W–4 wt% Ti–1 wt% Nb composite. A Ti_(_X_)W_(_1_−_X_) solid solution was formed during sintering. The maximum tensile strength (410.53 MPa) was detected in the W–4wt%Ti–1wt%Nb composite at 600 °C.

  6. The Application of 40Ti-35Ni-25Nb Filler Foil in Brazing Commercially Pure Titanium

    Directory of Open Access Journals (Sweden)

    Shan-Bo Wang

    2018-03-01

    Full Text Available The clad ternary 40Ti-35Ni-25Nb (wt % foil has been applied in brazing commercially pure titanium (CP-Ti. The wavelength dispersive spectroscope (WDS was utilized for quantitative chemical analyses of various phases/structures, and electron back scattered diffraction (EBSD was used for crystallographic analyses in the brazed joint. The microstructure of brazed joint relies on the Nb and Ni distributions across the joint. For the β-Ti alloyed with high Nb and low Ni contents, the brazed zone (BZ, consisting of the stabilized β-Ti at room temperature. In contrast, eutectoid decomposition of the β-Ti into Ti2Ni and α-Ti is widely observed in the transition zone (TZ of the joint. Although average shear strengths of joints brazed at different temperatures are approximately the same level, their standard deviations decreased with increasing the brazing temperature. The presence of inherent brittle Ti2Ni intermetallics results in higher standard deviation in shear test. Because the Ni content is lowered in TZ at a higher brazing temperature, the amount of eutectoid is decreased in TZ. The fracture location is changed from TZ into BZ mixed with α and β-Ti.

  7. Bactericidal activity of the Ti-13Nb-13Zr alloy against different species of bacteria related with implant infection.

    Science.gov (United States)

    Aguilera-Correa, John-Jairo; Conde, Ana; Arenas, Maria-Angeles; de-Damborenea, Juan-Jose; Marin, Miguel; Doadrio, Antonio L; Esteban, Jaime

    2017-08-11

    The Ti-6Al-4V alloy is one of the most commonly used in orthopedic surgery. Despite its advantages, there is an increasing need to use new titanium alloys with no toxic elements and improved biomechanical properties, such as Ti-13Nb-13Zr. Prosthetic joint infections (PJI) are mainly caused by Gram-positive bacteria; however, Gram-negative bacteria are a growing problem due to associated multidrug resistance. In this study, the bacterial adherence and viability on the Ti-13Nb-13Zr alloy have been compared to that of the Ti-6Al-4V alloy using 16 collection and clinical strains of bacterial species related to PJI: Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa. When compared with the Ti-6Al-4V alloy, bacterial adherence on the Ti-13Nb-13Zr alloy was significantly higher in most staphylococcal and P. aeruginosa strains and lower for E. coli strains. The proportion of live bacteria was significantly lower for both Gram-negative species on the Ti-13Nb-13Zr alloy than on the Ti-6Al-4V alloy pointing to some bactericidal effect of the Ti-13Nb-13Zr alloy. This bactericidal effect appears to be a consequence of the formation of hydroxyl radicals, since this effect is neutralized when dimethylsulfoxide was added to both the saline solution and water used to wash the stain. The antibacterial effect of the Ti-13Nb-13Zr alloy against Gram-negative bacteria is an interesting property useful for the prevention of PJI caused by these bacteria on this potential alternative to the Ti-6Al-4V alloy for orthopedic surgery.

  8. Comparative Effect of Mo and Cr on Microstructure and Mechanical Properties in NbV-Microalloyed Bainitic Steels

    Directory of Open Access Journals (Sweden)

    Andrii Kostryzhev

    2018-02-01

    Full Text Available Steel product markets require the rolled stock with further increasing mechanical properties and simultaneously decreasing price. The steel cost can be reduced via decreasing the microalloying elements contents, although this decrease may undermine the mechanical properties. Multi-element microalloying with minor additions is the route to optimise steel composition and keep the properties high. However, this requires deep understanding of mutual effects of elements on each other’s performance with respect to the development of microstructure and mechanical properties. This knowledge is insufficient at the moment. In the present work we investigate the microstructure and mechanical properties of bainitic steels microalloyed with Cr, Mo, Nb and V. Comparison of 0.2 wt. % Mo and Cr additions has shown a more pronounced effect of Mo on precipitation than on phase balance. Superior strength of the MoNbV-steel originated from the strong solid solution strengthening effect. Superior ductility of the CrNbV-steel corresponded to the more pronounced precipitation in this steel. Nature of these mechanisms is discussed.

  9. Wear behaviour of wear-resistant adaptive nano-multilayered Ti-Al-Mo-N coatings

    Science.gov (United States)

    Sergevnin, V. S.; Blinkov, I. V.; Volkhonskii, A. O.; Belov, D. S.; Kuznetsov, D. V.; Gorshenkov, M. V.; Skryleva, E. A.

    2016-12-01

    Coating samples in the Ti-Al-Mo-N system were obtained by arc-PVD method at variable bias voltage Ub applied to the substrate, and the partial pressure of nitrogen P(N2) used as a reaction gas. The deposited coatings were characterized by a nanocrystalline structure with an average grain size of 30-40 nm and multilayered architecture with alternating layers of (Ti,Al)N nitride and Mo-containing phases with a thickness comparable to the grain size. Coatings of (Ti,Al)N-Mo-Mo2N and (Ti,Al)N-Mo2N compositions were obtained by changing deposition parameters. The obtained coatings had hardness of 40 GPa and the relative plastic deformation under microindentation up to 60%. (Ti,Al)N-Mo2N coatings demonstrated better physicomechanical characteristics, showing high resistance to crack formation and destruction through the plastic deformation mechanism without brittle fracturing, unlike (Ti,Al)N-Mo-Mo2N. The friction coefficient of the study coatings (against Al2O3 balls under dry condition using a pin-on-disc method) reached the values of 0.35 and 0.5 at 20 °C and 500 °C respectively, without noticeable wear within this temperature range. These tribological properties were achieved by forming MoO3 acting as a solid lubricant. At higher temperatures the deterioration in the tribological properties is due to the high rate of MoO3 sublimation from friction surfaces.

  10. Enhanced upper critical fields in binary Nb-Ti alloys

    International Nuclear Information System (INIS)

    Hariharan, Y.; Sastry, V.S.; Janawadkar, M.P.; Radhakrishnan, T.S.

    1986-01-01

    The authors report the enhancement of H/sub c2/ in quenched and suitably heat treated binary Nb-65 at % Ti alloys. The inherent metastability of the bcc β phase and its instability towards athermal ω are used to realise high values of normal state resistivity ε/sub n/. The consequences of this on the upper critical field have been experimentally determined by the measurement of dH/sub c2//dT at T/sub c/ and of T/sub c/. These together with our similar measurements on Nb-83 at % Ti alloy to which at 1 at % N was added (to retain it in the β phase) are analysed in terms of the existing theories for upper critical fields. It is shown that a peak in H/sub c2/(o) occurs at 17 - 18 T when ε/sub n/ has a value of approximately 100 μΩcm

  11. Structural and electronic properties of Mg and Mg-Nb co-doped TiO2 (101) anatase surface

    Energy Technology Data Exchange (ETDEWEB)

    Sasani, Alireza [Department of Science, Karaj Islamic Azad University, Karaj, Alborz, P.O. Box 31485-313 (Iran, Islamic Republic of); Baktash, Ardeshir [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Mirabbaszadeh, Kavoos, E-mail: mirabbas@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, P. O. Box 15875-4413 (Iran, Islamic Republic of); Khoshnevisan, Bahram [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of)

    2016-10-30

    Highlights: • Formation energy of Mg and Mg-Nb co-doped TiO{sub 2} anatase surface (101) is studied. • Effect of Mg defect to the TiO{sub 2} anatase (101) surface and bond length distribution of the surface is studied and it is shown that Mg defects tend to stay far from each other. • Effect of Mg and Nb to the bond length distribution of the surface studied and it is shown that these defects tend to stay close to each other. • Effects of Mg and Mg-Nb defects on DSSCs using TiO{sub 2} anatase hosting these defects are studied. - Abstract: In this paper, by using density functional theory, Mg and Nb-Mg co-doping of TiO{sub 2} anatase (101) surfaces are studied. By studying the formation energy of the defects and the bond length distribution of the surface, it is shown that Mg defects tend to stay as far as possible to induce least possible lattice distortion while Nb and Mg defects stay close to each other to cause less stress to the surface. By investigating band structure of the surface and changes stemmed from the defects, potential effects of Mg and Mg-Nb co-doping of TiO{sub 2} surface on dye-sensitized solar cells are investigated. In this study, it is shown that the Nb-Mg co-doping could increase J{sub SC} of the surface while slightly decreasing V{sub OC} compared to Mg doped surface, which might result in an increase in efficiency of the DSSCs compared to Nb or Mg doped surfaces.

  12. Application of NiMoNb adhesion layer on plasma-treated polyimide substrate for flexible electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Bang, S.-H.; Kim, K.-K.; Jung, H.-Y.; Kim, T.-H.; Jeon, S.-H. [Metal and Material Technology Group, R and D Center, LS Mtron Ltd., Gyeonggi 431-080 (Korea, Republic of); Seol, Jae-Bok, E-mail: zptkfm20@hanmail.net [Max-Planck-Insititut für Eisenforschung, Max-Planck-Str. 1, D-40237 Düsseldorf (Germany)

    2014-05-02

    A thin film, NiMoNb, was introduced as an adhesion layer between the Cu metal and the insulator polyimide substrate in a flexible Cu-clad laminated structure. Using 90° peel test, we evaluated the peel strength of the system as a function of the thickness of the adhesion layer. An increase in the NiMoNb thickness from 7 to 40 nm enhanced the peel strength of the deposited systems. After plasma treatment by the roll-to-roll method, the multilayer structure showed an outstanding peel strength of ∼ 529 N/m, even after thermal annealing at 150 °C for 168 h. We also studied the role of plasma treatment of the polyimide substrate on the adhesion strength and microstructure of a flexible Cu-clad laminated structure by peel strength, atomic force microscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. These experimental observations showed that the plasma-treated polyimide substrate with the deposition of NiMoNb showed the enhanced adhesion of ∼ 656 N/m, because of the change of functional groups, which affected the bonding force and crystallinity of the thin films deposited on polyimide, rather than an increase in the surface roughness. - Highlights: • NiMoNb film on polyimide substrate was employed for higher peel strength. • Plasma-treated substrate enhances the peel strength of multilayer. • Even when annealed at 150 °C, plasma-treated films showed enhanced peel strength.

  13. Application of NiMoNb adhesion layer on plasma-treated polyimide substrate for flexible electronic devices

    International Nuclear Information System (INIS)

    Bang, S.-H.; Kim, K.-K.; Jung, H.-Y.; Kim, T.-H.; Jeon, S.-H.; Seol, Jae-Bok

    2014-01-01

    A thin film, NiMoNb, was introduced as an adhesion layer between the Cu metal and the insulator polyimide substrate in a flexible Cu-clad laminated structure. Using 90° peel test, we evaluated the peel strength of the system as a function of the thickness of the adhesion layer. An increase in the NiMoNb thickness from 7 to 40 nm enhanced the peel strength of the deposited systems. After plasma treatment by the roll-to-roll method, the multilayer structure showed an outstanding peel strength of ∼ 529 N/m, even after thermal annealing at 150 °C for 168 h. We also studied the role of plasma treatment of the polyimide substrate on the adhesion strength and microstructure of a flexible Cu-clad laminated structure by peel strength, atomic force microscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. These experimental observations showed that the plasma-treated polyimide substrate with the deposition of NiMoNb showed the enhanced adhesion of ∼ 656 N/m, because of the change of functional groups, which affected the bonding force and crystallinity of the thin films deposited on polyimide, rather than an increase in the surface roughness. - Highlights: • NiMoNb film on polyimide substrate was employed for higher peel strength. • Plasma-treated substrate enhances the peel strength of multilayer. • Even when annealed at 150 °C, plasma-treated films showed enhanced peel strength

  14. Characterization of hydrogenation behavior on Mo-modified Zr-Nb alloys as nuclear fuel cladding materials

    International Nuclear Information System (INIS)

    Yang, H.L.; Shibukawa, S.; Abe, H.; Satoh, Y.; Matsukawa, Y.; Kido, T.

    2014-01-01

    The effects of Mo in Zr-Nb alloys are investigated in terms of their mechanical properties associated with microstructure, as well as their behavior under hydrogen environment. Zr-Nb-Mo alloys were fabricated by arc melting and subsequently cold rolling and annealing below the eutectoid temperature. Hydrogen was absorbed in a furnace under argon and hydrogen gas flow environment at high temperature. X-Ray diffraction, electron backscatter diffraction, and tensile test were jointly utilized to carry out detailed microstructural characterization and mechanical properties. Results showed that fcc-δ-ZrH 1.66 was formed in all hydrogen-absorbed alloys, and the amount of hydride enhanced with increasing of hydrogen content. In addition, it was clear that δ-ZrH 1.66 was precipitated both in grain boundary and interior, and preferential precipitation was observed on the habit planes of (0001) and {101-bar7}. Moreover, the strengthening effect by Mo addition was observed. The ductility loss by hydrogen absorption was found from fracture surface observation. Large area cleavage facets were found in Mo-free specimen, and less cleavage facets was observed in Mo-containing specimen, showing an appropriate addition of Mo can increase the tolerance to hydrogen embrittlement. (author)

  15. Influence of cold deformation on martensite transformation and mechanical properties of Ti-Nb-Ta-Zr alloy

    International Nuclear Information System (INIS)

    Wang Liqiang; Lu Weijie; Qin Jining; Zhang Fan; Zhang Di

    2009-01-01

    Ti-35Nb-2Ta-3Zr alloy was fabricated by vacuum consumable arc melting furnace and hot pressing. Microstructure and phase transformation of solution-treated (ST) and cold-rolled (CR) plates of Ti-Nb-Ta-Zr alloy were observed. Different microstructure of strain-induced martensite transformation during cold deformation were investigated. With the increase of reduction of cold rolling, microstructure of α''-phase changed from acicular martensite to butterfly shaped martensite and showed variant crossed and cross-hatched when the reduction of cold rolling was over 60%. Mechanical properties and SEM images of the fracture surface indicated that the alloy fabricated by cold deformation showed favorable strength and plasticity. Owing to the excellent cold workability and biomedical safety of elements of Nb, Ta and Zr, Ti-Nb-Ta-Zr alloy contributed much to medical applications

  16. Oxidation behavior of Al/Cr coating on Ti2AlNb alloy at 900 °C

    Science.gov (United States)

    Yang, Zhengang; Liang, Wenping; Miao, Qiang; Chen, Bowen; Ding, Zheng; Roy, Nipon

    2018-04-01

    In this paper, the Al/Cr coating was fabricated on the surface of Ti2AlNb alloy via rf magnetron sputtering and double glow treatment to enhance oxidation resistance. The protective coating with an outer layer of Al and inner layer of Cr has great bonding strength due to the in-diffusion of Cr and the inter-diffusion between Al and Cr to form Al-Cr alloyed layer which has great hardness. Acoustic emission curve which was detected via WS-2005 scratch tester indicates the bonding strength between Al/Cr coating and substrate is great. Morphology of Ti2AlNb alloy with Al/Cr coating after scratch test shows that the scratch is smooth without disbanding, and the depth and breadth of scratch are changed uniformly. The mass change was reduced after oxidation test due to the Al/Cr protective coating. Isothermal oxidation test at 900 °C was researched. Results indicate that Al/Cr coating provided oxidation resistance of Ti2AlNb alloy with prolonged air exposure at 900 °C. Al2O3 was detected by XRD patterns and SEM images, and was formed on the surface of Ti2AlNb alloy to protect substrate during oxidation test. A certain content of Cr is beneficial for the formation of Al2O3. Besides, Cr2O3 was produced under Al2O3 by outward diffusion of Cr to protect substrate sequentially, no cracks were discovered on Al/Cr protective coating. The process of Ti outward diffusion into surface was suppressive due to integration of Cr-Ti and Al-Ti intermetallics. A steady, adherent and continuous coated layer of Al/Cr on Ti2AlNb alloy increases oxidation resistance.

  17. Effects of Nb doping level on the electronic transport, photoelectric effect and magnetoresistance across La0.5Ca0.5MnO3/Nb:SrTiO3 junctions

    Science.gov (United States)

    Wang, J. F.; Jiang, Y. C.; Chen, M. G.; Gao, J.

    2013-12-01

    Heterojunctions composed of La0.5Ca0.5MnO3 and Nb doped SrTiO3 were fabricated, and the effects of the Nb doping level on their electronic transport, photoelectric effect, and magnetoresistance were investigated. A lower doping concentration of Nb led to better rectifying properties and higher open circuit voltages. The I-V curves for La0.5Ca0.5MnO3/0.7 wt. % Nb-SrTiO3 showed a negligible response to magnetic fields for all temperatures, whereas La0.5Ca0.5MnO3/0.05 wt. % Nb-SrTiO3 exhibited distinct magnetoresistance, which depended on both the bias voltage and temperature. These results are discussed with the assistance of conventional semiconductor theories.

  18. Crystal structure and ion conducting properties of La5NbMo2O16

    KAUST Repository

    Vu, T.D.; Krichen, F.; Barre, M.; Busselez, R.; Adil, Karim; Jouanneaux, A.; Suard, E.; Goutenoire, F.

    2016-01-01

    .2250(1) Å. La5NbMo2O16 is a new analogue of the R5Mo3O16 series (R=Pr, Nd). The structure was refined from a combined data X-ray and neutron powder diffraction. The ionic conductivity of the compound is then measured on sintered pellets, by means of complex

  19. Magnetization measurements on multifilamentary Nb3Sn and NbTi conductors

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Robins, K.E.; Sampson, W.B.

    1984-01-01

    The effective filament size has been determined for a number of high current Nb 3 Sn multifilamentary composites. In most cases it is much larger than the nominal filament size. For the smallest filaments (approx. 1 micron) the effective size can be as much as a factor of forty times the nominal size. Samples made by the internal tin, bronze route, and jelly roll methods have been examined with filaments in the range one to ten microns. Rate dependent magnetization and flux jumping have been observed in some cases. NbTi composites ranging in filament size from nine to two hundred microns and with copper to super-conductor ratios between 1.6:1 and 7:1 have been examined in the same apparatus. Low field flux jumping was only observed in conductors with very large filaments and relatively little stabilizing copper. 9 references, 6 figures, 3 tables

  20. Effect of ion plating TiN on the oxidation of sputtered NiCrAlY-coated Ti3Al-Nb in air at 850-950 C

    International Nuclear Information System (INIS)

    Rizzo, F.C.; Zeng, C.; Chinese Academy of Sciences, Shenyang; Wu, W.

    1998-01-01

    A single sputtered NiCrAlY coating and a complex coating of inner ion-plated TiN and outer sputtered NiCrAlY were prepared on the intermetallic compound Ti 3 Al-Nb. Their oxidation behavior was examined at 850, 900, and 950 C in air by thermal gravimetry combined with XRD, SEM, and EDAX. The results showed that Ti 3 Al-Nb followed approximately parabolic oxidation, forming an outer thin Al 2 O 3 -rich scale and an inner TiO 2 -rich layer doped with Nb at the three temperatures. The TiO 2 -rich layer doped with Nb dominated the oxidation reaction. The single NiCrAlY coating did not follow parabolic oxidation exactly at 850 and 950 C, but oxidized approximately in a parabolic manner, because the instantaneous parabolic constants changed slightly with time. Besides the Al 2 O 3 scale, TiO 2 formed from the coating surface at the coating-substrate interface. The deterioration of the coating accelerated with increasing temperature. The NiCrAlY-TiN coating showed two-stage parabolic oxidation at 850 and 900 C, and an approximate parabolic oxidation at 950 C. The TiN layer was effective as a barrier to inhibit coating-alloy interdiffusion

  1. Mo-V-Te-Nb oxides as catalysts for ethene production by oxidative dehydrogenation of ethane

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, D. [Technische Universitaet Muenchen, Garching (Germany). Dept. of Chemistry and Catalysis Research Center; Meiswinkel, A.; Thaller, C.; Bock, M.; Alvarado, L. [Linde AG, Pullach (Germany)

    2013-11-01

    The availability of ethane in shale gas, as well as the interest in valorising previously underutilized carbon feedstocks, makes the oxidative dehydrogenation (ODH) of ethane an attractive alternative to the industrially established processes for production of ethylene. Mo-V-Te-Nb mixed oxide has been chosen as catalyst for the ODH reaction in view of its outstanding ability to activate alkane molecules. Catalytic test results showed that this type of catalyst can selectively oxidize ethane to ethene at moderate temperatures (350-400 C) with minor production of CO{sub x}. The catalytic performance of Mo-V-Te-Nb mixed-oxide is mainly attributable to the crystalline phase 'M1'. Rietveld analysis of the X-Ray diffractograms allowed us to quantify the amount of MoVTeNb oxide that has crystallized as M1. In this way, it was possible to find a linear correlation of the reaction rate with the abundance of M1 in the solid. Therefore, it is clear that for improving the efficiency of MoVTeNb oxide in ODH, the amount of M1 in the catalyst should be maximized. With this purpose, several MoVTeNb oxides were subject to different thermal treatments prior to the catalytic test. Structural changes in the catalyst were monitored by in-situ XRD technique. Under oxidative atmosphere, it was observed a recrystallization of M2 and possibly, amorphous oxide, into M1 phase, leading to correspondingly more active and selective catalysts (selectivities above 95 % for ethane conversions up to 40 % under industrially relevant conditions). The active site of M1 involves V species, likely with redox properties enhanced by the proximity of Mo and Te species, while the function of the crystalline structure itself is to provide the spatial configuration that allows interaction between these species. However, ethene formation rate was observed to be independent of the V content of the samples. The vanadium species exposed at the surface were studied by LEIS and by IR spectroscopy of CO

  2. Synthesis and characterization of Ti-27.5Nb alloy made by CLAD® additive manufacturing process for biomedical applications

    International Nuclear Information System (INIS)

    Fischer, M.; Laheurte, P.; Acquier, P.; Joguet, D.; Peltier, L.; Petithory, T.; Anselme, K.; Mille, P.

    2017-01-01

    Biocompatible beta-titanium alloys such as Ti-27.5(at.%)Nb are good candidates for implantology and arthroplasty applications as their particular mechanical properties, including low Young's modulus, could significantly reduce the stress-shielding phenomenon usually occurring after surgery. The CLAD® process is a powder blown additive manufacturing process that allows the manufacture of patient specific (i.e. custom) implants. Thus, the use of Ti-27.5(at.%)Nb alloy formed by CLAD® process for biomedical applications as a mean to increase cytocompatibility and mechanical biocompatibility was investigated in this study. The microstructural properties of the CLAD-deposited alloy were studied with optical microscopy and electron back-scattered diffraction (EBSD) analysis. The conservation of the mechanical properties of the Ti-27.5Nb material after the transformation steps (ingot-powder atomisation-CLAD) were verified with tensile tests and appear to remain close to those of reference material. Cytocompatibility of the material and subsequent cell viability tests showed that no cytotoxic elements are released in the medium and that viable cells proliferated well. - Highlights: • Biomimetic implants can be provided from additive manufacturing with beta-titanium alloys. • We studied the properties of a Ti-Nb alloy elaborated with a laser deposition process. • TiNb alloy processed by LMD consists of only beta phase due to rapid cooling. • No preferential crystallographic texture is observed with EBSD analyses. • TiNb samples showed a combination of high strength and low Young's modulus.

  3. Large room-temperature tunneling anisotropic magnetoresistance and electroresistance in single ferromagnet/Nb:SrTiO3 Schottky devices.

    Science.gov (United States)

    Kamerbeek, Alexander M; Ruiter, Roald; Banerjee, Tamalika

    2018-01-22

    There is a large effort in research and development to realize electronic devices capable of storing information in new ways - for instance devices which simultaneously exhibit electro and magnetoresistance. However it remains a challenge to create devices in which both effects coexist. In this work we show that the well-known electroresistance in noble metal-Nb:SrTiO 3 Schottky junctions can be augmented by a magnetoresistance effect in the same junction. This is realized by replacing the noble metal electrode with ferromagnetic Co. This magnetoresistance manifests as a room temperature tunneling anisotropic magnetoresistance (TAMR). The maximum room temperature TAMR (1.6%) is significantly larger and robuster with bias than observed earlier, not using Nb:SrTiO 3 . In a different set of devices, a thin amorphous AlO x interlayer inserted between Co and Nb:SrTiO 3 , reduces the TAMR by more than 2 orders of magnitude. This points to the importance of intimate contact between the Co and Nb:SrTiO 3 for the TAMR effect. This is explained by electric field enhanced spin-orbit coupling of the interfacial Co layer in contact with Nb:SrTiO 3 . We propose that the large TAMR likely has its origin in the 3d orbital derived conduction band and large relative permittivity of Nb:SrTiO 3 and discuss ways to further enhance the TAMR.

  4. Synthesis and characterization of Ti-27.5Nb alloy made by CLAD® additive manufacturing process for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, M. [LEM3, Université de Lorraine, Ile du Saulcy, 57045 Metz (France); Laheurte, P., E-mail: pascal.laheurte@univ-lorraine.fr [LEM3, Université de Lorraine, Ile du Saulcy, 57045 Metz (France); Acquier, P. [IREPA Laser, Institut Carnot Mica, Parc d' Innovation, 67400 Illkirch (France); Joguet, D. [LERMPS, Université de Technologie de Belfort Montbéliard, Sevenans, 90010 Belfort (France); Peltier, L. [LEM3, Ecole Nationale Supérieure d' Arts et Métiers, 57078 Metz (France); Petithory, T.; Anselme, K. [IS2M, CNRS UMR7361, Université de Haute-Alsace, 68057 Mulhouse (France); Mille, P. [LGECO Institut National des Sciences Appliquées, 67000 Strasbourg (France)

    2017-06-01

    Biocompatible beta-titanium alloys such as Ti-27.5(at.%)Nb are good candidates for implantology and arthroplasty applications as their particular mechanical properties, including low Young's modulus, could significantly reduce the stress-shielding phenomenon usually occurring after surgery. The CLAD® process is a powder blown additive manufacturing process that allows the manufacture of patient specific (i.e. custom) implants. Thus, the use of Ti-27.5(at.%)Nb alloy formed by CLAD® process for biomedical applications as a mean to increase cytocompatibility and mechanical biocompatibility was investigated in this study. The microstructural properties of the CLAD-deposited alloy were studied with optical microscopy and electron back-scattered diffraction (EBSD) analysis. The conservation of the mechanical properties of the Ti-27.5Nb material after the transformation steps (ingot-powder atomisation-CLAD) were verified with tensile tests and appear to remain close to those of reference material. Cytocompatibility of the material and subsequent cell viability tests showed that no cytotoxic elements are released in the medium and that viable cells proliferated well. - Highlights: • Biomimetic implants can be provided from additive manufacturing with beta-titanium alloys. • We studied the properties of a Ti-Nb alloy elaborated with a laser deposition process. • TiNb alloy processed by LMD consists of only beta phase due to rapid cooling. • No preferential crystallographic texture is observed with EBSD analyses. • TiNb samples showed a combination of high strength and low Young's modulus.

  5. Microstructure and thermal conductivity of Mo-TiC cermets processed by hot isostatic pressing

    International Nuclear Information System (INIS)

    Le Flem, Marion; Allemand, Alexandre; Urvoy, Stephane; Cedat, Denis; Rey, Colette

    2008-01-01

    In the scope of refractory material development for structural applications in the core of future nuclear reactors (gas fast reactors working between 500 o C and at least 800 o C in nominal conditions and up to 1650 o C in accidental scenarios), five Mo-TiC cermets, and single-phase TiC and Mo, were processed by hot isostatic pressing. Starting TiC volume contents were 0%, 12.5%, 25%, 37.5%, 50%, 75% and 100%. First, high dense specimens were characterized in terms of microstructure, composition and phase volume fractions. Cermets exhibited two phases in agreement with phase diagram previsions (Mo-TiC 1-2at.% and TiC-Mo 10-15at.% ), and a residual non-reacted TiC-rich phase (TiC-Mo 1at.% ). Second, heat capacity and thermal diffusivity were measured up to 1000 o C which allowed to evaluate the thermal conductivity of each cermet: this lays between TiC conductivity (12-18 W/m K) and Mo conductivity (95-125 W/m K), thermal properties continuously decreasing with starting TiC content. An analytical approach based on the volume fraction and properties of each constituent allowed to highlight the existence of thermal resistance at the interphases at low temperature

  6. Optical temperature sensing by upconversion luminescence of Er doped Bi5TiNbWO15ferroelectric materials

    Directory of Open Access Journals (Sweden)

    Hua Zou

    2014-12-01

    Full Text Available The Er3+ doped Bi5TiNbWO15 ceramics have been synthesized using conventional solid-state reaction techniques. The crystal structure, ferroelectric properties, UC emission properties and especially the temperature sensing behaviors were systematically studied. With increasing Er3+ content, the investigation of XRD pattern, the ferroelectric loop and the UC emission indicated that the Er3+ ions dopants preferentially substituted the A sites of Bi3TiNbO9 and then Bi2WO6. Based on fluorescence intensity ratio (FIR technique, the observed results implied the ceramics were promising candidates for temperature sensors in the temperature range of 175 K −550 K. More importantly, this study provided a contrast of temperature sensitivity between emission from the same part (Bi3TiNbO9 in bismuth layered-structure and emission from the different part (Bi3TiNbO9 and Bi2WO6 in bismuth layered-structure for the first time.

  7. Martensitic transformations and the shape memory effect in Ti-Zr-Nb-Al high-temperature shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fei; Yu, Zhiguo; Xiong, Chengyang [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing 100191 (China); Qu, Wentao; Yuan, Bifei [School of Mechanical Engineering, Xi’an Shiyou University, Xi’an 710065 (China); Wang, Zhenguo [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing 100191 (China); Li, Yan, E-mail: liyan@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing 100191 (China)

    2017-01-02

    The microstructures, phase transformations, mechanical properties and shape memory effect of Ti-20Zr-10Nb-xAl (x=1, 2, 3, 4 at%) alloys were investigated. The X-ray diffraction results show that the alloys are composed of a single martensitic α″-phase and that the corresponding unit cell volume decreases with increasing Al content. The reverse martensitic transformation start temperature (A{sub s}) of the Ti-20Zr-10Nb-Al alloy is 534 K and decreases with increasing Al content. The addition of Al results in solid solution strengthening and grain refinement strengthening, thus improving the mechanical properties and the shape memory effect of the Ti-20Zr-10 Nb-xAl alloys. The Ti-20Zr-10Nb-3Al alloy shows the greatest shape memory strain (3.2%) and the largest tensile strain (17.6%) as well as a very high tensile strength (886 MPa).

  8. A Comparative Study on Corrosion Behavior of Ti-35Nb-5Ta-7Zr Ti-6Al-4V and CP-Ti in 0.9 wt% NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Viswanathan S.; Jeong, Yong Hoon; Choe, Han Cheol [Andong National University, Andong (Korea, Republic of)

    2009-08-15

    Recently, quaternary titanium alloys of the system Ti-Nb-Ta-Zr received considerable research considerable research interest as potential implant materials because of their excellent mechanical properties and biocompatibility. However, only few reported works were available on the corrosion behavior of such alloys. Hence, in the present work, electrochemical corrosion of Ti-35Nb-5Ta-7Zr alloy, which has been fabricated by are melting and heat treatment, was studied in 0.9 wt% NaCl at 37{+-}1 .deg. C, along with biomedical grade Ti-6Al-4V and CP-Ti. The phase and microstructure of the alloys were investigated employing XRD and SEM. The results of electrochemical studies indicated that the corrosion resistance of the quaternary alloy was inferior to that of Ti-6Al-4V and CP Ti.

  9. Surface characterization of Zr/Ti/Nb tri-layered films deposited by magnetron sputtering on Si(111) and stainless steel substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tallarico, Denise A.; Gobbi, Angelo L.; Filho, Pedro I. Paulin; Galtayries, Anouk; Nascente, Pedro A. P. [Federal University of Sao Carlos, Department of Materials Engineering, Via Washington Luis km 235, CEP 13565-905, Sao Carlos, SP (Brazil); Brazilian Synchrotron Light Laboratory, Microfabrication Laboratory, Rua Giuseppe Maximo Scolfaro 10.000, CEP 13083-100, Campinas, SP (Brazil); Federal University of Sao Carlos, Department of Materials Engineering, Via Washington Luis km 235, CEP 13565-905, Sao Carlos, SP (Brazil); Ecole Nationale Superieure de Chimie de Paris (Chimie ParisTech), Laboratoire de Physico-Chimie des Surfaces, UMR CNRS 7045, F-75231 Paris cedex 05 (France); Federal University of Sao Carlos, Department of Materials Engineering, Via Washington Luis km 235, CEP 13565-905, Sao Carlos, SP (Brazil)

    2012-09-15

    Among metallic materials, commercially pure titanium and titanium alloys are very often used as biomaterials for implants. Among these alloys, titanium-aluminum-vanadium alloy Ti-6 A-4 V is one of the most commonly used due to its excellent biocompatibility and ability to allow bone-implant integration. A new class of Ti alloys employs Zr for solid-solution hardening and Nb as {beta}-phase stabilizer. Metals such as Ti, Nb, and Zr-known as valve metals-usually have their surfaces covered by a thin oxide film that forms spontaneously in air. This oxide film constitutes a barrier between the metal and the medium. The Ti-Nb-Zr alloys have mechanical and corrosion resistance characteristics which make them suitable for use as implants. Tri-layered films of Ti-Nb-Zr were deposited on both Si(111) and stainless steel (SS) substrates using dc magnetron sputtering equipment, under an argon atmosphere according to the following methodology: a 100 nm thick layer of Nb was deposited on the substrate, followed by a 200 nm thick layer of Ti, and finally a 50 nm thick layer of Zr, on top of the multilayer stack. The morphology and chemical composition of the films were analyzed by atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). AFM images showed that the Zr/Ti/Nb tri-layer films presented nanostructured grains and low roughness. The ToF-SIMS depth profiles confirmed the formation of a three-layered film on Si(111) with well-defined and sharp interfaces between the layers, while the deposition on the stainless steel substrate caused slight intermixing at the different alloy/Nb, Nb/Ti and Ti/Zr interfaces, reflecting the greater roughness of the raw substrate. The XPS results for the Zr/Ti/Nb layers deposited on Si(111) and SS confirmed that the outermost layer consisted of Zr only, with a predominance of ZrO{sub 2}, as the metal layer is passivated in air. An oxidation treatment of 1000 Degree

  10. Structure, mechanical properties and grindability of dental Ti-10Zr-X alloys

    International Nuclear Information System (INIS)

    Ho, W.-F.; Cheng, C.-H.; Pan, C.-H.; Wu, S.-C.; Hsu, H.-C.

    2009-01-01

    This study aimed to investigate the structure, mechanical properties and grindability of a binary Ti-Zr alloy added to a series of alloying elements (Nb, Mo, Cr and Fe). The phase and structure of Ti-10Zr-X alloys were evaluated using an X-ray diffraction (XRD) for phase analysis and optical microscope for microstructure of the etched alloys. Three-point bending tests were performed using a desk-top mechanical tester. Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1 min at each of the four rotational speeds of the wheel (500, 750, 1000 or 1200 m/min). Results were compared with c.p. Ti, which was chosen as a control. Results indicated that the phase/crystal structure, microstructure, mechanical properties and grindability of the Ti-10Zr alloy can be significantly changed by adding small amounts of alloying elements. The alloying elements Nb, Mo, Cr and Fe contributed significantly to increasing the grinding ratio under all grinding conditions, although the grinding rate of all the metals was found to be largely dependent on grinding speed. The Ti-10Zr-1Mo alloy showed increases in microhardness (63%), bending strength (40%), bending modulus (30%) and elastic recovery angle (180%) over those of c.p. Ti, and was also found to have better grindability. The Ti-10Zr-1Mo alloy could therefore be used for prosthetic dental applications if other conditions necessary for dental casting are met

  11. Investigation of B2 and related phases in the Ti-Al-Nb ternary systems

    International Nuclear Information System (INIS)

    Bendersky, L.A.; Boettinger, W.J.

    1989-01-01

    Alloy compositions around Ti 2 AlNb were studied to establish phase equilibria and transformations during cooling from 1100 degrees C and 1400 degrees C. In addition to general results obtained on a wide range of compositions, which include evidence for a broad B2 phase field, transformation of BCC Ti 4 Al 3 Nb to a phase with an omega-type structure is reported. Detailed analysis indicates that this phase has the B8 2 structure after annealing at 700 degrees C

  12. Comparative study on the corrosion behavior of Ti-Nb and TMA alloys for dental application in various artificial solutions

    International Nuclear Information System (INIS)

    Bai, Y.J.; Wang, Y.B.; Cheng, Y.; Deng, F.; Zheng, Y.F.; Wei, S.C.

    2011-01-01

    The corrosion behavior of Ti-Nb dental alloy in artificial saliva with and without the addition of lactic acid and sodium fluoride was investigated by electrochemical techniques, with the commercial Titanium-molybdenum alloy (TMA) as a comparison. The chemical composition, microstructure and constitutional phase were characterized via energy dispersive spectrometry, optical microscope and X-ray diffraction, meanwhile the open circuit potential, electrochemical impedance spectroscopy and potentiodynamic polarization measurements were carried out to study the corrosion resistance of experimental alloys, with the corroded surface being further characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. It was found that the corrosion behavior of Ti-Nb alloy was similar to those TMA alloy samples in both artificial and acidified saliva solutions, whereas statistical analysis of the electrochemical impedance spectroscopy and polarization parameters showed Ti-Nb alloy exhibited better corrosion resistance in fluoridated saliva and fluoridated acidified saliva. SEM observation indicated that TMA alloy corroded heavily than Ti-Nb alloy in fluoride containing saliva. XPS surface analysis suggested that Nb 2 O 5 played an important role in anti-corrosion from the attack of fluoride ion. Based on the above finding, Ti-Nb alloy is believed to be suitable for the usage in certain fluoride treated dental works with excellent corrosion resistance in fluoride-containing oral media.

  13. Ti-24Nb-4Zr-8Sn Alloy Pedicle Screw Improves Internal Vertebral Fixation by Reducing Stress-Shielding Effects in a Porcine Model.

    Science.gov (United States)

    Qu, Yang; Zheng, Shuang; Dong, Rongpeng; Kang, Mingyang; Zhou, Haohan; Zhao, Dezhi; Zhao, Jianwu

    2018-01-01

    To ensure the biomechanical properties of Ti-24Nb-4Zr-8Sn, stress-shielding effects were compared between Ti-24Nb-4Zr-8Sn and Ti-6Al-4V fixation by using a porcine model. Twelve thoracolumbar spines (T12-L5) of 12-month-old male pigs were randomly divided into two groups: Ti-24Nb-4Zr-8Sn (EG, n = 6) and Ti-6Al-4V (RG, n = 6) fixation. Pedicle screw was fixed at the outer edge of L4-5 vertebral holes. Fourteen measuring points were selected on the front of transverse process and middle and posterior of L4-5 vertebra. Electronic universal testing machine was used to measure the strain resistance of measuring points after forward and backward flexion loading of 150 N. Meanwhile, stress resistance was compared between both groups. The strain and stress resistance of measurement points 1, 2, 5, 6, 9, and 10-14 in Ti-24Nb-4Zr-8Sn fixation was lower than that of Ti-6Al-4V fixation after forward and backward flexion loading ( P Ti-24Nb-4Zr-8Sn fixation than that of Ti-6Al-4V fixation ( P Ti-24Nb-4Zr-8Sn internal fixation were less than that of Ti-6Al-4V internal fixation. These results suggest that Ti-24Nb-4Zr-8Sn elastic fixation has more biomechanical goals than conventional Ti-6Al-4V internal fixation by reducing stress-shielding effects.

  14. Fabrication of TiNb{sub 2}O{sub 7} thin film electrodes for Li-ion micro-batteries by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Daramalla, V. [Materials Research Centre, Indian Institute of Science, Bengalore 560012 (India); Penki, Tirupathi Rao; Munichandraiah, N. [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengalore 560012 (India); Krupanidhi, S.B., E-mail: sbk@mrc.iisc.ernet.in [Materials Research Centre, Indian Institute of Science, Bengalore 560012 (India)

    2016-11-15

    Graphical abstract: The TiNb{sub 2}O{sub 7} thin film electrodes as anode material in Li-ion rechargeable micro-batteries are successfully demonstrated. The pulsed laser deposited TiNb{sub 2}O{sub 7} thin film electrode delivers high discharge specific capacity of 143 μAh μm{sup −1} cm{sup −2} at 50 μA cm{sup −2} current density, with 92% coulombic efficiency. The thin films are very stable in crystal structure, with good fast reversible reaction at average Li-insertion voltage 1.65 V. - Highlights: • TiNb{sub 2}O{sub 7} thin films fabricated by pulsed laser deposition. • TiNb{sub 2}O{sub 7} as anode thin films demonstrated successfully. • High discharge specific capacity with 92% coulombic efficiency. • Excellent crystal stability and good reversible reaction. - Abstract: Pulsed laser deposited TiNb{sub 2}O{sub 7} thin films are demonstrated as anode materials in rechargeable Li-ion micro-batteries. The monoclinic and chemically pure TiNb{sub 2}O{sub 7} films in different morphologies were successfully deposited at 750 °C. The single phase formation was confirmed by grazing incident X-ray diffraction, micro-Raman spectroscopy, high resolution transmission electron microscopy, field emission scanning electron microscopy and X-ray photoelectron spectroscopy. The oxygen partial pressure during the deposition significantly influenced the properties of TiNb{sub 2}O{sub 7} films. The TiNb{sub 2}O{sub 7} thin films exhibited excellent stability with fast kinetics reversible reaction. The TiNb{sub 2}O{sub 7} films showed initial discharge specific capacity of 176, 143 μAh μm{sup −1} cm{sup −2} at 30, 50 μA cm{sup −2} current densities respectively with 92% coulombic efficiency in a non-aqueous electrolyte consisting of Li{sup +} ions. The high discharge specific capacity of TiNb{sub 2}O{sub 7} thin films may be attributed to nanometer grain size with high roughness which offers high surface area for Li-diffusion during charge and discharge

  15. Stability, elastic properties and fracture toughness of Al0.75X0.75B14 (X=Sc, Ti, V, Cr, Y, Zr, Nb, Mo) investigated using ab initio calculations

    International Nuclear Information System (INIS)

    Emmerlich, Jens; Thieme, Niklas; To Baben, Moritz; Music, Denis; Schneider, Jochen M

    2013-01-01

    The effect of the transition metal valence electron concentration on the energy of formation, effective charge of B icosahedra, elastic properties, surface energy and fracture toughness was calculated using density functional theory for icosahedral transition metal borides of AlXB 14 (X=Sc, Ti, V, Cr, Y, Zr, Nb, Mo). Consistent with previous work on AlYB 14 (Kölpin et al 2009 J. Phys.: Condens. Matter 21 355006) it is shown that phase stability is generally dependent on the effective charge of the icosahedral transition metal borides. Also, ionization potential and electronegativity are identified as parameters affecting the effective charge of B icosahedra suitable for use in predicting the phase stability. Al 0.75 Y 0.75 B 14 , Al 0.75 Sc 0.75 B 14 and Al 0.75 Zr 0.75 B 14 have been identified as promising phases for application as protective coatings as they exhibit high phase stability and stiffness combined with a comparatively high fracture toughness. (paper)

  16. Performance-Microstructure Relations in Ni/CGO Infiltrated Nb-doped SrTiO3 SOFC Anodes

    DEFF Research Database (Denmark)

    Ramos, Tania; Bernuy-Lopez, Carlos; Reddy Sudireddy, Bhaskar

    2012-01-01

    Nb-doped SrTiO3 solid oxide fuel cell (SOFC) anodes, infiltrated with CGO/Ni, were investigated by electrochemical impedance spectroscopy (EIS) and high resolution microscopy techniques, upon varying production and testing parameters. The electrochemical analysis involved a combination of distrib......Nb-doped SrTiO3 solid oxide fuel cell (SOFC) anodes, infiltrated with CGO/Ni, were investigated by electrochemical impedance spectroscopy (EIS) and high resolution microscopy techniques, upon varying production and testing parameters. The electrochemical analysis involved a combination...... of distribution of relaxation times (DRT) and complex non-linear least squares (CNLS) fitting routine. These electrodes were studied as singlephase or as composites with 8YSZ. Sr0.94Ti0.9Nb0.1O3-δ/ 10 vol.% 8YSZ composite infiltrated electrodes were the best overall performers, with enhanced performance stability...

  17. Spectro-photometric determination of niobium in Nb-Ti alloy using in-situ separation of Ti by masking with H3PO4

    International Nuclear Information System (INIS)

    Ghosh, Prasun; Dutta, M.; Jat, J.R.; Reddy, G.B.; Balaji Rao, Y.; Subba Rao, Y.

    2016-01-01

    The present paper details a simple procedure for the determination of Nb content in Nb-Ti alloy. The method involves dissolution of alloy in mixture of HNO 3 and HF followed by fuming with H 2 SO 4 . Subsequently, solution is taken for UV-Vis Spectro-photometric measurement after addition of Conc. H 3 PO 4 and H 2 O 2 . Hydrogen peroxide is added as coloring agent. Hydrogen peroxide (H 2 O 2 ) is known to form yellow color peroxo complex with both Niobium and Titanium in sulfuric acid medium and thus Ti will interfere with Nb in absorbance measurement. In view of this practical difficulty, in-situ separation of Ti during measurement has been resorted by masking Ti using Conc. H 3 PO 4 . Standard synthetic sample solution of Nb-Ti was prepared having Niobium and titanium in the ratio of 60:40, 50:50 and 40:60. Quantitative measurement of Niobium was carried out by UV-Visible spectrophotometer at 365 nm. The interference of titanium is prominent from the obtained Niobium concentration. Different ratios of H 3 PO 4 and H 2 SO 4 tried to arrive at optimum ratio to eliminate titanium interference and results are as shown. Quantitative measurement of Niobium was carried out at 355 nm as absorption maxima shifted from 365 nm to 355 nm in presence of phosphoric acid. Results show a good agreement with synthetic standard at 80:20 sulfuric to phosphoric acid ratio

  18. Ammonia Synthesis using Ti and Nb Nitride Nano-particles Prepared by Mesoporous Graphitic C3N4

    KAUST Repository

    Kumagai, Hiromu; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2015-01-01

    TiN and NbN nanoparticles were synthesized from mesoporous graphitic C3N4 (mpg-C3N4) as a reactive template and used as the catalyst for ammonia synthesis. The obtained TiN and NbN nanoparticles possess high surface areas of 299 and 275 m2 g-1

  19. Performance Limits and IR Design Challenges of a Possible LHC Luminosity Upgrade Based on Nb-Ti SC Magnet Technology

    CERN Document Server

    Brüning, Oliver Sim; Ostojic, R; Rossi, L; Ruggiero, F; Scandale, Walter; Taylor, T

    2004-01-01

    We investigate the maximum LHC performance for a standard IR design based on classical NbTi insertion magnets. We include in our analysis a ternary Nb-based ductile allow such as NbTi(Ta), a less developed but relatively cheap superconducting material which may allow to gain about 1 T in the peak field in the coils, and discuss the corresponding luminosity reach for a possible LHC upgrade compared to that based on Nb$_{3}$Sn magnets.

  20. Phase Transformation Study in Nb-Mo Microalloyed Steels Using Dilatometry and EBSD Quantification

    Science.gov (United States)

    Isasti, Nerea; Jorge-Badiola, Denis; Taheri, Mitra L.; Uranga, Pello

    2013-08-01

    A complete microstructural characterization and phase transformation analysis has been performed for several Nb and Nb-Mo microalloyed low-carbon steels using electron backscattered diffraction (EBSD) and dilatometry tests. Compression thermomechanical schedules were designed resulting in the undeformed and deformed austenite structures before final transformation. The effects of microalloying additions and accumulated deformation were analyzed after CCT diagram development and microstructural quantification. The resulting microstructures ranged from polygonal ferrite and pearlite at slow cooling ranges, to a combination of quasipolygonal ferrite and granular ferrite for intermediate cooling rates, and finally, to bainitic ferrite with martensite for fast cooling rates. The addition of Mo promotes a shift in the CCT diagrams to lower transformation start temperatures. When the amount of Nb is increased, CCT diagrams show little variations for transformations from the undeformed austenite and higher initial transformation temperatures in the transformations from the deformed austenite. This different behavior is due to the effect of niobium on strain accumulation in austenite and its subsequent acceleration of transformation kinetics. This article shows the complex interactions between chemical composition, deformation, and the phases formed, as well as their effect on microstructural unit sizes and homogeneity.

  1. Hardness enhancement and oxidation resistance of nanocrystalline TiN/Mo xC multilayer films

    International Nuclear Information System (INIS)

    Liu, Q.; Wang, X.P.; Liang, F.J.; Wang, J.X.; Fang, Q.F.

    2006-01-01

    In this paper the influence of the layer's microstructure on the hardness enhancement in multilayer nanocrystalline films and the oxidation resistance are studied. The TiN/Mo x C multilayer films at different modulation period, and Mo x C and TiN monolayer films were deposited on the (0 0 1) silicon wafers and molybdenum sheets by rf and dc magnetron sputtering. The monolayer TiN films with a thickness of about 2 μm are of pure face-center cubic TiN phase, while the monolayer Mo x C films consist of two phases, one of which is body-center cubic Mo and the other is hexagonal Mo 2 C as determined by XRD. The coarse columnar grains of about 200 nm in the monolayer TiN films become much smaller or disappear in the multilayer films. The hardness enhancement of the multilayer films takes place at the modulation period of 320 nm, which can reach to 26 GPa and is much higher than the values of Mo x C and TiN monolayer films. This enhancement in hardness can be explained as the decrease in the size and/or disappearance of columnar grains in the TiN layer. The Young's modulus in the temperature range from 100 to 400 deg. C increases with decreasing modulation period. It is found that about 100 nm thick TiN films can increase largely the oxidation resistance of Mo x C films

  2. Obtaining beta phase in Ti through processing in high energy mill powders of Ti and Nb; Obtencao de fase beta no Ti atraves de processamento em moinho de alta energia de pos de Ti e Nb

    Energy Technology Data Exchange (ETDEWEB)

    Milanez, Mateus; Ferretto, Aline; Rocha, Marcio Roberto da; Arnt, Angela Coelho [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil). Departamento de Engenharia de Materiais; Milanez, Alexandre [Faculdade SATC (FASATC), Criciuma, SC (Brazil). Departamento de Engenharia Mecanica; Schaeffer, Lirio [Universidade Federal do Rio Grande do Sul (LdTM/UFRGS), RS (Brazil). Lab. de Transformacao Mecanica

    2014-07-01

    An orthopedic implant, ideal, must meet the requirements of biocompatibility, have good mechanical properties among others. Titanium and Niobium exhibit biocompatibility and the β-Ti phase relationships have the highest strength / weight among all titanium alloys, presenting lower values of elastic modulus. The alloy has mechanically produced specific microstructural characteristics and improved mechanical properties compared with conventional powder metallurgy. In this study, a titanium alloy with different additions of niobium was used. The metal powders were mixed via mechanical alloy in high energy mill (attritor). The powder samples were analyzed by X-ray diffraction (X-RD) and property held by adhesive wear testing with a Pin-on-Disk. The present study revealed that through the high-energy milling is possible the atomic interaction between Ti and Nb particles and the mechanical properties are affected by the concentration of Nb. (author)

  3. Characterization of nitride formation in NbTi-50% weight alloy by x-ray diffraction

    International Nuclear Information System (INIS)

    Teixeira, S.R.

    1990-01-01

    Titanium and niobium are so main metals for technology as structural materials, refractories and resistance alloys for corrosion. This interest is based in application of this metals and alloys in aerospacial industry, nuclear reactors, construction of superconductor magnets and in the production of superconductors wires. The NbTi (50% wt. Ti) alloy nitretation under nitrogen atmosphere (p + 760 mm) at 800 - 1000 C was studied by x-ray diffractometry. TEM and optical metallography. During the reaction the two phases (Ti sub(2) N - ε and TiN - δ) growed continuously, the (Ti sub(2) N, N sub(2)) reaction front growed faster than the (TiN,N sub(2)). A method for study the scale growing was proposed using x-ray diffractometry data. By using this method, the growth of TiN scale was analysed and the activation energy of 19 Kcal/mole was determinated using a linear timming law indicating a mechanism not controlled by diffusion through TiN layer. The present results suggest that the diffusion through the tight tunnels, rich in Nb, allow a fast transport of nitrogen through the TiN layer. (author)

  4. Glass forming ability and mechanical properties of the NiZrTiSi amorphous alloys modified with Al, Cu and Nb additions

    International Nuclear Information System (INIS)

    Czeppe, Tomasz; Ochin, Patrick; Sypien, Anna

    2007-01-01

    The composition of the amorphous alloy Ni 59 Zr 20 Ti 16 Si 5 was modified with 2-9 at.% additions of Cu, Al and Nb. The ribbons and the bars 2.7 mm in diameter were prepared by melt spinning and injection casting from the alloys of the compositions: Ni 56 Zr 18 Ti 16 Si 5 Al 3 Cu 2 , Ni 56 Zr 18 Ti 13 Al 6 Si 5 Cu 2 , Ni 56 Zr 16 Ti 12 Nb 9 Al 3 Cu 2 Si 2 and Ni 56 Zr 16 Ti 12 Nb 6 Al 6 Cu 2 Si 2 . All ribbons were amorphous up to the resolution of the X-ray diffraction and conventional transmission electron microscopy, however rods were partially crystalline. Increase of Al content lowered and Nb content slightly increased crystallization start temperature T x and glass transition temperature T g . The influence of composition changes on the overcooled liquid range ΔT was more complicated. The increase of Nb and decrease of Ti and Zr content led to the remarkable increase of the liquidus temperature T l . As a result GFA calculated as T g /T l was lowered to the values about 0.63 for 6 and 9 at.% Nb addition. The activation energies for primary crystallization in alloy with 6 at.% Al and 6 at.% of Nb, were determined. The changes of tensile test strength and microhardness with Al and Nb additions showed hardening effect caused by Nb additions and increase in fracture strength with increasing Al content

  5. Mechanical and electrochemical characterization of Ti-12Mo-5Zr alloy for biomedical application

    International Nuclear Information System (INIS)

    Zhao Changli; Zhang Xiaonong; Cao Peng

    2011-01-01

    Highlights: → A new β metastable titanium alloy with composition of Ti-12Mo-5Zr that comprised of non-toxic elements Mo and Zr has been developed. → The elastic modulus of the Ti-12Mo-5Zr alloy is as low as 64 GPa, which is much lower than those of pure Ti and Ti-6Al-4V alloy. → The Ti-12Mo-5Zr alloy has moderate strength and much higher microhardness as compared with Ti-6Al-4V, which showing better mechanical biocompatibility. → The corrosion resistance is much higher than that of Ti-6Al-4V in a simulated body fluid (Hank's solution). - Abstract: We have fabricated a new β metastable titanium alloy that comprised of non-toxic elements Mo and Zr. Ingot with composition of Ti-12Mo-5Zr is prepared by melting pure metals in a vacuum non-consumable arc melting furnace. The alloy is then homogenized and solution treated under different temperature. The alloy is characterized by optical microscopy, X-ray diffraction, tensile tests and found to have an acicular martensitic α'' + β structure and dominant β phase for the 1053 K and 1133 K solution treatment samples, respectively. The elastic modulus of the latter is about 64 GPa, which is much lower than those of pure Ti and Ti-6Al-4V alloy. In addition, it had moderate strength and much higher microhardness as compared with Ti-6Al-4V alloy. The results show better mechanical biocompatibility of this alloy, which will avoid stress shielding and thus prevent bone resorption in orthopedic implants applications. As long-term stability in biological environment is required, we have also evaluated the electrochemical behavior in a simulated body fluid (Hank's solution). Potentiodynamic polarization curves exhibits that the 1133 K solution treatment Ti-12Mo-5Zr sample has better corrosion properties than Ti-6Al-4V and is comparable to the pure titanium. The good corrosion resistance combined with better mechanical biocompatibility makes the Ti-12Mo-5Zr alloy suitable for use as orthopedic implants.

  6. Hadfield steels with Nb and Ti carbides

    International Nuclear Information System (INIS)

    Vatavuk, J.; Goldenstein, H.

    1987-01-01

    The Hadfield Steels and the mechanisms responsible for its high strain hardening rate were reviewed. Addition of carbide forming alloying elements to the base compostion was discussed, using the matrix sttel concept. Three experimental crusher jaws were cast, with Nb and Nb + Ti added to the usual Hadfiedl compostion, with enough excess carbon to allow the formation of MC carbides. Samples for metallographic analysis were prepared from both as cast and worn out castings. The carbic morphology was described. Partition of alloying elements was qualitatively studied, using Energy Dispersive Espectroscopy in SEM. The structure of the deformed layer near the worn surface was studied by optical metalography and microhardness measurements. The results showed that fatigue cracking is one of the wear mechanisms is operation in association with the ciclic work hardening of the surface of worn crusher jaws. (Author) [pt

  7. Corrosion Behavior of Ni3(Si,Ti + 2Mo in Hydrochloric Acid Solution

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2013-10-01

    Full Text Available The corrosion behavior of Ni3(Si,Ti + 2Mo intermetallic compound (L12 and (L12 + Niss mixture region has been investigated using an immersion test, polarization method and surface analytical method (scanning electron microscope and energy-dispersive X-Ray spectrometry in 0.5 kmol/m3 hydrochloric acid (HCl solution at 303 K.  In addition, the results obtained were compared to those of the L12 single-phase Ni3(Si,Ti intermetallic compound and C 276 alloy.  It was found that Ni3(Si,Ti + 2Mo had the preferential dissolution of L12 with a lower Mo concentration compared to (L12 + Niss mixture region.  From the immersion test and polarization curves, Ni3(Si,Ti + 2Mo and C276 showed the lowest corrosion resistance and the highest corrosion resistance in the solution, respectively.  From this work, It implied that unlike C276, Ni3(Si,Ti +2Mo intermetallic compound was difficult to form a stable passive film in HCl solution as well as Ni3(Si,Ti in the same solution.

  8. Effect of applied bias voltage on corrosion-resistance for TiC 1- xN x and Ti 1- xNb xC 1- yN y coatings

    Science.gov (United States)

    Caicedo, J. C.; Amaya, C.; Yate, L.; Aperador, W.; Zambrano, G.; Gómez, M. E.; Alvarado-Rivera, J.; Muñoz-Saldaña, J.; Prieto, P.

    2010-02-01

    Corrosion-resistance behavior of titanium carbon nitride (Ti-C-N) and titanium niobium carbon nitride (Ti-Nb-C-N) coatings deposited onto Si(1 0 0) and AISI 4140 steel substrates via r.f. magnetron sputtering process was analyzed. The coatings in contact with a solution of sodium chloride at 3.5% were studied by Tafel polarization curves and impedance spectroscopy methods (EIS). Variations of the bias voltage were carried out for each series of deposition to observe the influence of this parameter upon the electrochemical properties of the coatings. The introduction of Nb in the ternary Ti-C-N film was evaluated via X-ray diffraction (XRD) analysis. The structure was characterized by using Raman spectroscopy to identify ternary and quaternary compounds. Surface corrosion processes were characterized using optical microscopy and scanning electron microscopy (SEM). XRD results show conformation of the quaternary phase, change in the strain of the film, and lattice parameter as the effect of the Nb inclusion. The main Raman bands were assigned to interstitial phases and "impurities" of the coatings. Changes in Raman intensities were attributed to the incorporation of niobium in the Ti-C-N structure and possibly to resonance enhancement. Finally, the corrosion data obtained for Ti-C-N were compared with the results of corrosion tests of Ti-Nb-C-N coating. The results obtained showed that the incorporation of niobium to Ti-C-N coatings led to an increase in the corrosion-resistance. On another hand, an increase in the bias voltage led to a decrease in the corrosion-resistance for both Ti-C-N and Ti-Nb-C-N coatings.

  9. Layered surface structure of gas-atomized high Nb-containing TiAl powder and its impact on laser energy absorption for selective laser melting

    Science.gov (United States)

    Zhou, Y. H.; Lin, S. F.; Hou, Y. H.; Wang, D. W.; Zhou, P.; Han, P. L.; Li, Y. L.; Yan, M.

    2018-05-01

    Ti45Al8Nb alloy (in at.%) is designed to be an important high-temperature material. However, its fabrication through laser-based additive manufacturing is difficult to achieve. We present here that a good understanding of the surface structure of raw material (i.e. Ti45Al8Nb powder) is important for optimizing its process by selective laser melting (SLM). Detailed X-ray photoelectron spectroscopy (XPS) depth profiling and transmission electron microscopy (TEM) analyses were conducted to determine the surface structure of Ti45Al8Nb powder. An envelope structure (∼54.0 nm in thickness) was revealed for the powder, consisting of TiO2 + Nb2O5 (as the outer surface layer)/Al2O3 + Nb2O5 (as the intermediate layer)/Al2O3 (as the inner surface layer)/Ti45Al8Nb (as the matrix). During SLM, this layered surface structure interacted with the incident laser beam and improved the laser absorptivity of Ti45Al8Nb powder by ∼32.21%. SLM experiments demonstrate that the relative density of the as-printed parts can be realized to a high degree (∼98.70%), which confirms good laser energy absorption. Such layered surface structure with appropriate phase constitution is essential for promoting SLM of the Ti45Al8Nb alloy.

  10. Wear resistance of laser-deposited boride reinforced Ti-Nb-Zr-Ta alloy composites for orthopedic implants

    International Nuclear Information System (INIS)

    Samuel, Sonia; Nag, Soumya; Scharf, Thomas W.; Banerjee, Rajarshi

    2008-01-01

    The inherently poor wear resistance of titanium alloys limits their application as femoral heads in femoral (hip) implants. Reinforcing the soft matrix of titanium alloys (including new generation β-Ti alloys) with hard ceramic precipitates such as borides offers the possibility of substantially enhancing the wear resistance of these composites. The present study discusses the microstructure and wear resistance of laser-deposited boride reinforced composites based on Ti-Nb-Zr-Ta alloys. These composites have been deposited using the LENS TM process from a blend of elemental Ti, Nb, Zr, Ta, and boron powders and consist of complex borides dispersed in a matrix of β-Ti. The wear resistance of these composites has been compared with that of Ti-6Al-4V ELI, the current material of choice for orthopedic femoral implants, against two types of counterfaces, hard Si 3 N 4 and softer SS440C stainless steel. Results suggest a substantial improvement in the wear resistance of the boride reinforced Ti-Nb-Zr-Ta alloys as compared with Ti-6Al-4V ELI against the softer counterface of SS440. The presence of an oxide layer on the surface of these alloys and composites also appears to have a substantial effect in terms of enhanced wear resistance

  11. TEXTURE AND MECHANICAL BEHAVIOUR OF Ti AND Nb-Ti STABILIZED IF STEELS

    Directory of Open Access Journals (Sweden)

    Fabio Moreira da Silva Dias

    2013-12-01

    Full Text Available An analysis of the crystallographic texture and mechanical behavior of two types of IF steels is presented. Two steels, Ti and Nb-Ti, were submitted to different thermal annealing cycles in a continuous hot-dip galvanizing line, heat treated at temperatures of 860°C and 760°C. The more relevant characteristics of mechanical properties are evaluated. The crystallographic texture of the samples is determined by electron diffraction technique of back-scattering (SEM-EBSD. The intensity of orientation //ND is evaluated and compared. Metallographic characterization is done, and the ferritic grain size is measured with optical microscopy. The mechanical behavior of materials is characterized in the tensile test with 80 mm gauge length.

  12. Obtaining beta phase in Ti through processing in high energy mill powders of Ti and Nb

    International Nuclear Information System (INIS)

    Milanez, Mateus; Ferretto, Aline; Rocha, Marcio Roberto da; Arnt, Angela Coelho; Milanez, Alexandre; Schaeffer, Lirio

    2014-01-01

    An orthopedic implant, ideal, must meet the requirements of biocompatibility, have good mechanical properties among others. Titanium and Niobium exhibit biocompatibility and the β-Ti phase relationships have the highest strength / weight among all titanium alloys, presenting lower values of elastic modulus. The alloy has mechanically produced specific microstructural characteristics and improved mechanical properties compared with conventional powder metallurgy. In this study, a titanium alloy with different additions of niobium was used. The metal powders were mixed via mechanical alloy in high energy mill (attritor). The powder samples were analyzed by X-ray diffraction (X-RD) and property held by adhesive wear testing with a Pin-on-Disk. The present study revealed that through the high-energy milling is possible the atomic interaction between Ti and Nb particles and the mechanical properties are affected by the concentration of Nb. (author)

  13. Effects of cold-working on pinning behaviour and critical current densities in NbTi-based superconductors

    International Nuclear Information System (INIS)

    Yamada, Y.; Murase, S.; Wada, H.; Tachikawa, K.

    1985-01-01

    The effects of cold-working on high-field pinning behaviour at 1.8 K and 4.2 K have been studied for multifilamentary NbTi, NbTiHf and NbTiTa superconductors, which were subjected to cold-working, heat treatment and cold-working, in sequence. It is found that the cold-working, either before or after heat treatment, shifts the peak in pinning force density to a higher field, while the maximum pinning force value is first increased with increasing amount of cold-working, and then decreased. This result can not be predicted by existing pinning theories, and we conclude that for pinning behaviour induced by cold-working, not only the introduction of pinning centres but also their size and spacing must be taken into account. (author)

  14. Effects of intramedullary nails composed of a new β-type Ti-Nb-Sn alloy with low Young's modulus on fracture healing in mouse tibiae.

    Science.gov (United States)

    Fujisawa, Hirokazu; Mori, Yu; Kogure, Atsushi; Tanaka, Hidetatsu; Kamimura, Masayuki; Masahashi, Naoya; Hanada, Shuji; Itoi, Eiji

    2018-01-23

    The influence of Young's moduli of materials on the fracture healing process remains unclear. This study aimed to assess the effects of intramedullary nails composed of materials with low Young's moduli on fracture repair. We previously developed a β-type Ti-Nb-Sn alloy with low Young's modulus close to that of human cortical bone. Here, we prepared two Ti-Nb-Sn alloys with Young's moduli of 45 and 78 GPa by heat treatment, and compared their effects on fracture healing. Fracture and nailing were performed in the right tibiae of C57BL/6 mice. The bone healing process was evaluated by microcomputed tomography (micro-CT), histomorphometry, and RT-PCR. We found larger bone volumes of fracture callus in the mice treated with the 45-GPa Ti-Nb-Sn alloy as compared with the 78-GPa Ti-Nb-Sn alloy in micro-CT analyses. This was confirmed with histology at day 14, with accelerated new bone formation and cartilage absorption in the 45-GPa Ti-Nb-Sn group compared with the 78-GPa Ti-Nb-Sn group. Acp5 expression was lower in the 45-GPa Ti-Nb-Sn group than in the 78-GPa Ti-Nb-Sn group at day 10. These findings indicate that intramedullary fixation with nails with a lower Young's modulus offer a greater capacity for fracture repair. Our 45-GPa Ti-Nb-Sn alloy is a promising material for fracture treatment implants. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  15. Development of β Type Ti23Mo-45S5 Bioglass Nanocomposites for Dental Applications

    Directory of Open Access Journals (Sweden)

    Karolina Jurczyk

    2015-11-01

    Full Text Available Titanium β-type alloys attract attention as biomaterials for dental applications. The aim of this work was the synthesis of nanostructured β type Ti23Mo-x wt % 45S5 Bioglass (x = 0, 3 and 10 composites by mechanical alloying and powder metallurgy methods and their characterization. The crystallization of the amorphous material upon annealing led to the formation of a nanostructured β type Ti23Mo alloy with a grain size of approximately 40 nm. With the increase of the 45S5 Bioglass contents in Ti23Mo, nanocomposite increase of the α-phase is noticeable. The electrochemical treatment in phosphoric acid electrolyte resulted in a porous surface, followed by bioactive ceramic Ca-P deposition. Corrosion resistance potentiodynamic testing in Ringer solution at 37 °C showed a positive effect of porosity and Ca-P deposition on nanostructured Ti23Mo 3 wt % 45S5 Bioglass nanocomposite. The contact angles of glycerol on the nanostructured Ti23Mo alloy were determined and show visible decrease for bulk Ti23Mo 3 wt % 45S5 Bioglass and etched Ti23Mo 3 wt % 45S5 Bioglass nanocomposites. In vitro tests culture of normal human osteoblast cells showed very good cell proliferation, colonization, and multilayering. The present study demonstrated that porous Ti23Mo 3 wt % 45S5 Bioglass nanocomposite is a promising biomaterial for bone tissue engineering.

  16. Nb-doped TiO2 cathode catalysts for oxygen reduction reaction of polymer electrolyte fuel cells

    KAUST Repository

    Arashi, Takuya

    2014-09-01

    Nb-doped TiO2 particles were studied as electrocatalysts for the oxygen reduction reaction (ORR) under acidic conditions. The Nb-doped TiN nanoparticles were first synthesized by meso-porous C3N4 and then fully oxidized to Nb-doped TiO2 by immersing in 0.1 M H 2SO4 at 353 K for 24 h. Although the ORR activity of the as-obtained sample was low, a H2 treatment at relatively high temperature (1173 K) dramatically improved the ORR performance. An onset potential as high as 0.82 VRHE was measured. No degradation of the catalysts was observed during the oxidation-reduction cycles under the ORR condition for over 127 h. H2 treatment at temperatures above 1173 K caused the formation of a Ti4O7 phase, resulting in a decrease in ORR current. Elemental analysis indicated that the Nb-doped TiO 2 contained 25 wt% residual carbon. Calcination in air at 673 or 973 K eliminated the residual carbon in the catalyst, which was accompanied by a dramatic decrease in ORR activity. This post-calcination process may reduce the conductivity of the sample by filling the oxygen vacancies, and the carbon residue in the particle aggregates may enhance the electrocatalytic activity for ORR. The feasibility of using conductive oxide materials as electrocatalysts is discussed. © 2013 Elsevier B.V.

  17. Nb-doped TiO2 cathode catalysts for oxygen reduction reaction of polymer electrolyte fuel cells

    KAUST Repository

    Arashi, Takuya; Seo, Jeongsuk; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2014-01-01

    Nb-doped TiO2 particles were studied as electrocatalysts for the oxygen reduction reaction (ORR) under acidic conditions. The Nb-doped TiN nanoparticles were first synthesized by meso-porous C3N4 and then fully oxidized to Nb-doped TiO2 by immersing in 0.1 M H 2SO4 at 353 K for 24 h. Although the ORR activity of the as-obtained sample was low, a H2 treatment at relatively high temperature (1173 K) dramatically improved the ORR performance. An onset potential as high as 0.82 VRHE was measured. No degradation of the catalysts was observed during the oxidation-reduction cycles under the ORR condition for over 127 h. H2 treatment at temperatures above 1173 K caused the formation of a Ti4O7 phase, resulting in a decrease in ORR current. Elemental analysis indicated that the Nb-doped TiO 2 contained 25 wt% residual carbon. Calcination in air at 673 or 973 K eliminated the residual carbon in the catalyst, which was accompanied by a dramatic decrease in ORR activity. This post-calcination process may reduce the conductivity of the sample by filling the oxygen vacancies, and the carbon residue in the particle aggregates may enhance the electrocatalytic activity for ORR. The feasibility of using conductive oxide materials as electrocatalysts is discussed. © 2013 Elsevier B.V.

  18. Working of Mo-TiC cermets for 'future nuclear systems'

    International Nuclear Information System (INIS)

    Allemand, Alexandre; Le Flem, Marion; Rousselet, Jerome

    2006-01-01

    The nuclear reactor cores (generation IV) will form an extremely severe environment (high temperature, severe and long irradiation...). These drastic criteria and the preoccupation to ensure a higher and higher safety level lead, beyond the preoccupations due to the feasibility of such reactors, to harsh choices in materials able to be used. Innovating materials such as Mo-TiC cermet are the subject of intense researches in the CEA. This study presents and compares two modes of Mo-TiC cermet working: the hot isostatic compression and the extrusion. Different compositions of Mo-TiC cermets are prepared by hot isostatic compression and extrusion, and then characterized in term of microstructural properties. At last, this study concludes to a very satisfying working by hot isostatic compression, nevertheless the extrusion has still to be improved. (O.M.)

  19. Functional regulation of Pb-Ti/MoS_2 composite coatings for environmentally adaptive solid lubrication

    International Nuclear Information System (INIS)

    Ren, Siming; Li, Hao; Cui, Mingjun; Wang, Liping; Pu, Jibin

    2017-01-01

    Highlights: • Co-doped Pb-Ti/MoS_2 composite coatings were successfully fabricated by unbalanced magnetron sputtering system. • Co-doped Pb-Ti/MoS_2 composite coatings showed lower friction coefficient and longer wear life in both humid and vacuum environments than that of single-doped ones. • The wear behaviours of Pb-Ti/MoS_2 composite coatings with the increase of Pb content is in accordance with the variation in H/E ratio that higher H/E is corresponding to the lower wear rate of coating. - Abstract: The lubrication of molybdenum disulfide coatings has commonly been limited by the application environments, for instance, the crystal MoS_2 are easily affected by water to form MoO_3 that causes a higher friction coefficient and short lifetime. Therefore, to improve the tribolgical performance of MoS_2 in high humidity condition, the co-doped Pb-Ti/MoS_2 composite coatings are deposited by unbalanced magnetron sputtering system. The design of the co-doping elements in MoS_2-based coatings can not only maintain the characteristic of low humidity-sensitivity as the Ti/MoS_2 coating but also improve the mechanical properties and tribological performance of coatings as a comparison with single-doped ones. Moreover, the ultra-low friction coefficient with a minimum value of 0.006 under the vacuum condition is achieved for Pb-Ti/MoS_2 composite coating containing about 4.6 at.% Pb, depending on the densification structure of coating. Intriguingly, the wear behaviours of Pb-Ti/MoS_2 composite coatings are in accordance with the variation in H/E (hardness to the elastic modulus) ratio that the coating with higher H/E exhibits lower wear rate. These results demonstrate that the lubricating properties of MoS_2 coatings in both humid environment and vacuum condition can be achieved through the Pb and Ti co-doped, which is of great significant for developing MoS_2 coatings as the environmentally adaptive lubricants.

  20. Nb and Ta layer doping effects on the interfacial energetics and electronic properties of LaAlO3/SrTiO3 heterostructure: first-principles analysis.

    Science.gov (United States)

    Nazir, Safdar; Behtash, Maziar; Cheng, Jianli; Luo, Jian; Yang, Kesong

    2016-01-28

    The two-dimensional electron gas (2DEG) formed at the n-type (LaO)(+1)/(TiO2)(0) interface in the polar/nonpolar LaAlO3/SrTiO3 (LAO/STO) heterostructure (HS) has emerged as a prominent research area because of its great potential for nanoelectronic applications. Due to its practical implementation in devices, desired physical properties such as high charge carrier density and mobility are vital. In this respect, 4d and 5d transition metal doping near the interfacial region is expected to tailor electronic properties of the LAO/STO HS system effectively. Herein, we studied Nb and Ta-doping effects on the energetics, electronic structure, interfacial charge carrier density, magnetic moment, and the charge confinements of the 2DEG at the n-type (LaO)(+1)/(TiO2)(0) interface of LAO/STO HS using first-principles density functional theory calculations. We found that the substitutional doping of Nb(Ta) at Ti [Nb(Ta)@Ti] and Al [Nb(Ta)@Al] sites is energetically more favorable than that at La [Nb(Ta)@La] and Sr [Nb(Ta)@Sr] sites, and under appropriate thermodynamic conditions, the changes in the interfacial energy of HS systems upon Nb(Ta)@Ti and Nb(Ta)@Al doping are negative, implying that the formation of these structures is energetically favored. Our calculations also showed that Nb(Ta)@Ti and Nb(Ta)@Al doping significantly improve the interfacial charge carrier density with respect to that of the undoped system, which is because the Nb(Ta) dopant introduces excess free electrons into the system, and these free electrons reside mainly on the Nb(Ta) ions and interfacial Ti ions. Hence, along with the Ti 3d orbitals, the Nb 4d and Ta 5d orbitals also contribute to the interfacial metallic states; accordingly, the magnetic moments on the interfacial Ti ions increase significantly. As expected, the Nb@Al and Ta@Al doped LAO/STO HS systems show higher interfacial charge carrier density than the undoped and other doped systems. In contrast, Nb@Ti and Ta@Ti doped systems may

  1. Precipitation Behaviour of Carbonitrides in Ti-Nb-C-N Microalloyed Steels and an Engineering Application with Homogenously Precipitated Nano-particles

    Directory of Open Access Journals (Sweden)

    Yanlin WANG

    2015-11-01

    Full Text Available A thermodynamic model enabling calculation of equilibrium carbonitride composition and relative amounts as a function of steel composition and temperature has been developed previously based on the chemical equilibrium method. In the present work, actual carbonitride precipitation behaviour has been verified in the Ti-Nb-C-N microalloyed steels. The Ti microalloyed steel after refining with 0.012 % Nb exhibited highly improved tensile strength without sacrificing ductility. According to further detailed SEM and TEM analysis, the improved mechanical properties of Ti/Nb microalloyed steel could be attributed to the larger solubility of Nb and Ti, inducing fine dispersion of the carbonitrides with particle size of 2 – 10 nm in the ferrite matrix.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9622

  2. Investigation of the corrosion resistance of Ti-13Nb-13Zr alloy by electrochemical techniques and surface analysis; Investigacao da resistencia a corrosao da liga Ti-13Nb-13Zr por meio de tecnicas eletroquimicas e de analise de superficie

    Energy Technology Data Exchange (ETDEWEB)

    Assis, Sergio Luiz de

    2006-07-01

    In this work, the in vitro corrosion resistance of the Ti-13Nb-13Zr alloy, manufactured at a national laboratory, and used for orthopedic applications, has been investigated in solutions that simulate the body fluids. The electrolytes used were 0.9 % (mass) NaCl, Hanks' solution, a culture medium (MEM), and the two last electrolytes, without and with addition of hydrogen peroxide. The aim of peroxide addition was to simulate the conditions found when inflammatory reactions occur due to surgical procedures. The corrosion resistance of alloys commercially in use as biomaterials, Ti-6Al-7Nb and Ti-6Al-4V, as well as of the pure titanium (Ti-cp), was also studied for comparison with the Ti-13Nb-13Zr alloy. The corrosion resistance characterization was carried out by electrochemical and surface analysis techniques. The electrochemical tests used were: open circuit potential measurements as a function of tim; potentiodynamic polarization; and electrochemical impedance spectroscopy (EIE). The impedance experimental diagrams were interpreted using equivalent electric circuits that simulate an oxide film with a duplex structure composed of an internal and compact, barrier type layer, and an external porous layer. The results showed that the corrosion resistance is due mainly to the barrier type layer. The titanium alloys and the Ti-cp showed high corrosion resistance in all electrolytes used. The oxides formed on the Ti-13Nb-13Zr, either naturally or during immersion in MEM ar Hank's solution was characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (MEV). The results showed that the presence of hydrogen peroxide in MEM promotes the growth of the porous layer and incorporation of mineral ions, besides favouring hydroxyapatite formation. The cytotoxicity of the Ti-13Nb-13Zr alloy was also evaluated and it was shown to be non-toxic. (author)

  3. Investigation of the corrosion resistance of Ti-13Nb-13Zr alloy by electrochemical techniques and surface analysis; Investigacao da resistencia a corrosao da liga Ti-13Nb-13Zr por meio de tecnicas eletroquimicas e de analise de superficie

    Energy Technology Data Exchange (ETDEWEB)

    Assis, Sergio Luiz de

    2006-07-01

    In this work, the in vitro corrosion resistance of the Ti-13Nb-13Zr alloy, manufactured at a national laboratory, and used for orthopedic applications, has been investigated in solutions that simulate the body fluids. The electrolytes used were 0.9 % (mass) NaCl, Hanks' solution, a culture medium (MEM), and the two last electrolytes, without and with addition of hydrogen peroxide. The aim of peroxide addition was to simulate the conditions found when inflammatory reactions occur due to surgical procedures. The corrosion resistance of alloys commercially in use as biomaterials, Ti-6Al-7Nb and Ti-6Al-4V, as well as of the pure titanium (Ti-cp), was also studied for comparison with the Ti-13Nb-13Zr alloy. The corrosion resistance characterization was carried out by electrochemical and surface analysis techniques. The electrochemical tests used were: open circuit potential measurements as a function of tim; potentiodynamic polarization; and electrochemical impedance spectroscopy (EIE). The impedance experimental diagrams were interpreted using equivalent electric circuits that simulate an oxide film with a duplex structure composed of an internal and compact, barrier type layer, and an external porous layer. The results showed that the corrosion resistance is due mainly to the barrier type layer. The titanium alloys and the Ti-cp showed high corrosion resistance in all electrolytes used. The oxides formed on the Ti-13Nb-13Zr, either naturally or during immersion in MEM ar Hank's solution was characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (MEV). The results showed that the presence of hydrogen peroxide in MEM promotes the growth of the porous layer and incorporation of mineral ions, besides favouring hydroxyapatite formation. The cytotoxicity of the Ti-13Nb-13Zr alloy was also evaluated and it was shown to be non-toxic. (author)

  4. Recent development of the Cu/Nb-Ti superconducting cables for SSC in Hitachi Cable, Ltd

    International Nuclear Information System (INIS)

    Sakai, S.; Iwaki, G.; Sawada, Y.; Moriai, H.; Ishigami, Y.

    1989-01-01

    In these few years, Cu/Nb-Ti superconducting cables for the dipole magnets of SSC projects have been developed in the industrial scale in Hitachi Cable, Ltd. The features of these developed conductors are as follows. (1) The diameter of Nb-Ti filaments is very small, 4-6 μm. (2) The critical current density (J c ) is very high, 2,850-3,050 A/mm 2 at 5 T on wires, 2750-2950 A/mm 2 at 5 T on cables in industrial scale. The champion J c of wires is 3,460 A/mm 2 at 5 T in the laboratory scale. (3) The RRR Residual Resistivity Ratio values of developed cables is very high, approximately 200, due to the newly developed high purity Oxygen Free Copper (OFC). (4) The conductors have been wound to the 1 m length dipole magnet in Hitachi Ltd., and it has generated 6.7 T in the central magnetic field at 6,595 A. The Cu/Cu-Mn/Nb-Ti composite wires which avoid the possibility of electrical coupling of the filaments have been produced in laboratory scale. The RRR of the copper stabilizer and J c properties have not degraded because of no metallurgical reactions between Cu and Mn, Nb-Ti and Mn. 7 refs., 9 figs., 4 tabs

  5. The effect of Ti and Nb on nitrogen dissolution reaction in stainless steel melt

    International Nuclear Information System (INIS)

    Jang, Min Whan; Hong, In Kook; Pak, Jong Jin; Song, Hyo Seok; Lee, Yong Deuk

    2002-01-01

    A kinetic study of nitrogen dissolution in STS304 stainless steel melt containing Ti and Nb has been carried out at 1500 degree C using an induction furnace and a levitation melting furnace. At low O and S levels, the nitrogen dissolution rate showed the first-order kinetics being controlled by the mass transfer of nitrogen in the melt. Ti addition to STS304 stainless melt significantly retarded the nitrogen dissolution rate by the formation of solid Ti oxide layer adhered on the melt surface. Nb did not affect the rate of nitrogen dissolution. In the levitation melting experiment where the oxide layer was removed from the melt surface, Ti did not retard the nitrogen dissolution rate. Simultaneous addition of Ti and Al increased the dissolution rate by the formation of non-wetting Al 2 O 3 on the melt surface. A small addition of CaO-Al 2 O 3 synthetic flux to Ti containing melt was very effective to remove the oxide layer, hence to increase the nitrogen dissolution rate

  6. The effect of Ti and Nb on nitrogen dissolution reaction in stainless steel melt

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Min Whan; Hong, In Kook; Pak, Jong Jin [Hanyang Univ., Ansan (Korea, Republic of); Song, Hyo Seok; Lee, Yong Deuk [POSCO, Pohang (Korea, Republic of)

    2002-03-01

    A kinetic study of nitrogen dissolution in STS304 stainless steel melt containing Ti and Nb has been carried out at 1500 degree C using an induction furnace and a levitation melting furnace. At low O and S levels, the nitrogen dissolution rate showed the first-order kinetics being controlled by the mass transfer of nitrogen in the melt. Ti addition to STS304 stainless melt significantly retarded the nitrogen dissolution rate by the formation of solid Ti oxide layer adhered on the melt surface. Nb did not affect the rate of nitrogen dissolution. In the levitation melting experiment where the oxide layer was removed from the melt surface, Ti did not retard the nitrogen dissolution rate. Simultaneous addition of Ti and Al increased the dissolution rate by the formation of non-wetting Al{sub 2}O{sub 3} on the melt surface. A small addition of CaO-Al{sub 2}O{sub 3} synthetic flux to Ti containing melt was very effective to remove the oxide layer, hence to increase the nitrogen dissolution rate.

  7. Laminated NbTi-on-Kapton Microstrip Cables for Flexible Sub-Kelvin RF Electronics

    Science.gov (United States)

    Walter, Alex B.; Bockstiegel, Clinton; Mazin, Benjamin A.; Daal, Miguel

    2017-11-01

    Large arrays of superconducting devices such as microwave kinetic inductance detectors require high density interconnects from higher temperatures with minimal heat load, low loss, and negligible crosstalk capable of carrying large and overlapping bandwidth signals. We report the fabrication of superconducting 53 wt% Nb-47 wt% Ti (Nb-47Ti) microstrip transmission lines laminated onto flexible polyimide substrates with lengths up to 40 cm and up to ten traces. The 50 Ω traces terminate in G3PO coaxial push-on connectors. We found transmission losses of 2.5 dB and a nearest-neighbor forward crosstalk of -25 dB at 8 GHz on a typical 5 trace, 1.8-cm-wide, 0.198-mm-thick, 22-cm-long flex cable at 30 mK. A simple two-port analytical model and subsequent Sonnet simulations indicate that this loss is mainly due to a complex impedance mismatch from wirebonds at the end connector without which the insertion loss would be data show that the 0.198-mm-thick flex cables tested have roughly equivalent thermal conductance per trace below 4 K compared to the 0.86 mm Nb-47Ti coaxial cables.

  8. Comparative evaluation of metal ions release from titanium and Ti-6Al-7Nb into bio-fluids

    Directory of Open Access Journals (Sweden)

    Lori A Joseph

    2009-01-01

    Full Text Available Background: The study was designed to investigate the effects of pH, chloride ions and nature of some bio-fluids on the amount of metal ions released from titanium and TiAl 6 Nb 7 plates following incubation in actual and simulated bio-fluids over time. Methods: The amounts of released metal ions from commercially pure titanium (CpTi and TiAl 6 Nb 7 of surgical grade on immersion in 20 mL Hank′s solution of pH 4.0 or 7.0, Hank′s solution of high chloride ions concentration, Whole Blood Serum (WBS and Phosphate Buffered Saline (PBS at 37° C were determined over an incubation time of 20 weeks using atomic absorption spectrophotometry. The levels of released metal ions were compared by two-way ANOVA and Duncan′s post-hoc tests. The amounts of titanium ions released by the samples were analyzed by Pearson′s correlation. Results: TiAl 6 Nb 7 plate showed no release of Ti ions into the test solutions until after 12 weeks of incubation, while Ti ions were released from the CpTi plate from the 1 day immersion time. The re-lease of measurable amount of Al ions from TiAl 6 Nb 7 was after 12 weeks of incubation. The rate of release of Ti and Al ions from the samples increased initially with incubation time and then stabilized due to adsorption-desorption equilibrium. Conclusion: The results showed that variations in pH and chloride ions of the test media has a sig-nificant effect on the amounts of Ti ions released, while increase in chloride ions concentration sig-nificantly elevates the release of Al ions into the bio-fluids.

  9. Mass production system and technology of NbTi superconductors

    International Nuclear Information System (INIS)

    Fukutsuka, Toshiro; Monju, Yoshiyuki; Tatara, Isamu; Noguchi, Masataka; Yokochi, Katsuhiro; Matsubara, Mitsuharu.

    1984-01-01

    A mass production system for NbTi superconductors is described, involving vacuum arc melting of the alloys, hot hydrostatic extrusion of the composite billets and special drawing and stranding techniques for the rods and wires. The qualities required for superconducting wires are assured by a variety of instrument measurement and inspection techniques drawn from accumulated cryogenic experiences. (author)

  10. Oxidation characteristics of Ti-14Al-21Nb alloy at high temperature in purified oxygen; Ti-14Al?-21Nb gokin no sansochu ni okeru koon sanka tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Akai, M; Taniguchi, S; Shibata, T [Osaka University, Osaka (Japan). Faculty of Engineering

    1994-10-20

    The Ti-14Al-21Nb alloy called Super {alpha}{sub 2} is an alloy which has been improved of plastic transformation ability by adding Nb into Ti3Al with high specific strength, and is used for member materials in aircraft engines. In order to identify its oxidation characteristics, this paper discusses the oxidation characteristics under purified oxygen and atmospheric pressure in temperatures ranging from 1000 K to 1300 K. The experiment made a button-formed ingot with a diameter of 50 mm and a thickness of about 10 mm by melting and thermal refining, and used a thermobalance. Main conclusion thus obtained may be summarized as follows: the amount of increase due to oxidation after 100 ks oxidation at 1000 K is very small; oxidation between 1100 K and 1200 K follows nearly the parabolic rate laws; the scale consisted mainly of rutile, but a thin alumina concentration layer is formed; Nb is concentrated in the rutile-alumina mixed layer, and local fracture and regeneration are repeated at temperatures higher than 1300 K. 21 refs., 8 figs., 2 tabs.

  11. Mechanical properties and microstructure of Ti-35.5Nb-5.7Ta beta alloy.

    Science.gov (United States)

    Bartakova, S; Prachar, P; Dvorak, I; Hruby, V; Vanek, J; Pospichal, M; Svoboda, E; Martikan, A; Konecna, H; Sedlak, I

    2015-01-01

    Titanium and titanium alloys represent generally accepted metallic biomaterials for clinical dentistry and dental implantology. In this paper, we present a Ti-35.5Nb-5.7Ta alloy with a special respect to its microstructure and mechanical characteristics, such as Young modulus of elasticity. Three thermal treatments differing in temperature and time of annealing were used during the Ti-35.5Nb-5.7Ta processing in order to evaluate the effects of ageing, melting annealing, and annealing on mechanical characteristics and microstructure. Using microscopy, the alloy was analyzed and the differences in shares of beta phase grains, alpha particles and precipitates evaluated. The three thermal treatments were evaluated also from technological point of view. The following thermal treatment was found optimal for the Ti-35.5Nb-5.7Ta alloy: melting annealing at 800 °C for 0.5 hour followed by a cold swaging with a 52-79 % deformation, and final hardening at 500 °C for 2 hours in water(Tab. 2, Fig. 3, Ref. 24).

  12. Investigation of the corrosion resistance of Ti-13Nb-13Zr alloy by electrochemical techniques and surface analysis

    International Nuclear Information System (INIS)

    Assis, Sergio Luiz de

    2006-01-01

    In this work, the in vitro corrosion resistance of the Ti-13Nb-13Zr alloy, manufactured at a national laboratory, and used for orthopedic applications, has been investigated in solutions that simulate the body fluids. The electrolytes used were 0.9 % (mass) NaCl, Hanks' solution, a culture medium (MEM), and the two last electrolytes, without and with addition of hydrogen peroxide. The aim of peroxide addition was to simulate the conditions found when inflammatory reactions occur due to surgical procedures. The corrosion resistance of alloys commercially in use as biomaterials, Ti-6Al-7Nb and Ti-6Al-4V, as well as of the pure titanium (Ti-cp), was also studied for comparison with the Ti-13Nb-13Zr alloy. The corrosion resistance characterization was carried out by electrochemical and surface analysis techniques. The electrochemical tests used were: open circuit potential measurements as a function of tim; potentiodynamic polarization; and electrochemical impedance spectroscopy (EIE). The impedance experimental diagrams were interpreted using equivalent electric circuits that simulate an oxide film with a duplex structure composed of an internal and compact, barrier type layer, and an external porous layer. The results showed that the corrosion resistance is due mainly to the barrier type layer. The titanium alloys and the Ti-cp showed high corrosion resistance in all electrolytes used. The oxides formed on the Ti-13Nb-13Zr, either naturally or during immersion in MEM ar Hank's solution was characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (MEV). The results showed that the presence of hydrogen peroxide in MEM promotes the growth of the porous layer and incorporation of mineral ions, besides favouring hydroxyapatite formation. The cytotoxicity of the Ti-13Nb-13Zr alloy was also evaluated and it was shown to be non-toxic. (author)

  13. Severe plastic deformation of α+β Ti-5Ta-1.8Nb alloy by cryo-rolling

    International Nuclear Information System (INIS)

    Dasgupta, Arup; Parida, Pradyumna Kumar; Saroja, S.; Vijayalakshmi, M.

    2010-01-01

    The α-β (β ∼ 8%) Ti5Ta1.8Nb alloy is under development at IGCAR for reprocessing applications owing to its superior corrosion resistance and weldability. A possible method to strengthen the alloy is to engineer the grain size to finer dimensions through severe plastic deformation (SPD). A detailed analysis of the study of evolution of microstructure and micro-texture in the SPD Ti-Ta-Nb alloy is presented

  14. Corrosion and bioactivity performance of graphene oxide coating on TiNb shape memory alloys in simulated body fluid.

    Science.gov (United States)

    Saud, Safaa N; Hosseinian S, Raheleh; Bakhsheshi-Rad, H R; Yaghoubidoust, F; Iqbal, N; Hamzah, E; Ooi, C H Raymond

    2016-11-01

    In the present work, the microstructure, corrosion, and bioactivity of graphene oxide (GO) coating on the laser-modified and -unmodified surfaces of TiNb shape memory alloys (SMAs) were investigated. The surface morphology and chemical composition was examined using field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The surface modification was carried out via a femtosecond laser with the aim to increase the surface roughness, and thus increase the adhesion property. FE-SEM analysis of the laser-treated Ti-30at.% Nb revealed the increase in surface roughness and oxygen/nitrogen containing groups on the Ti-30at.% Nb surface after being surface modified via a femtosecond laser. Furthermore, the thickness of GO was increased from 35μm to 45μm after the surface was modified. Potentiodynamic polarisation and electrochemical impedance spectroscopy studies revealed that both the GO and laser/GO-coated samples exhibited higher corrosion resistance than that of the uncoated TiNb SMA sample. However, the laser/GO-coated sample presented the highest corrosion resistance in SBF at 37°C. In addition, during soaking in the simulated body fluid (SBF), both the GO and laser/GO coating improved the formation of apatite layer. Based on the bioactivity results, the GO coating exhibited a remarkable antibacterial activity against gram-negative bacteria compared with the uncoated. In conclusion, the present results indicate that Ti-30at.% Nb SMAs may be promising alternatives to NiTi for certain biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Phase composition, microstructure, and mechanical properties of porous Ti-Nb-Zr alloys prepared by a two-step foaming powder metallurgy method.

    Science.gov (United States)

    Rao, X; Chu, C L; Zheng, Y Y

    2014-06-01

    Porous Ti-Nb-Zr alloys with different porosities from 6.06 to 62.8% are prepared by a two-step foaming powder metallurgy method using TiH2, Nb, and Zr powders together with 0 to 50wt% of NH4HCO3. The effects of the amounts of Nb and Zr as well as the sintering temperature (1473 to 1673K) on their phase composition, porosity, morphology, and mechanical characteristics are investigated. By controlling the porosity, Nb and Zr concentrations as well as the sintering temperature, porous Ti-Nb-Zr alloys with different mechanical properties can be obtained, for example, the hardness between 290 and 63HV, the compressive strength between 1530.5 and 73.4MPa, and the elastic modulus between 10.8 and 1.2GPa. The mechanical properties of the sintered porous Ti-Nb-Zr alloys can be tailored to match different requirements for the human bones and are thus potentially useful in the hard tissue implants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. IR emission and electrical conductivity of Nd/Nb-codoped TiO{sub x} (1.5 < x < 2) thin films grown by pulsed-laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tchiffo-Tameko, C.; Cachoncinlle, C. [GREMI, UMR 7344 CNRS-Université Orléans, 45067 Orléans Cedex 2 (France); Perriere, J. [Sorbonne Universités, UPMC Université Paris 06, UMR 7588, INSP, 75005 Paris (France); CNRS, UMR 7588, INSP, 75005 Paris (France); Nistor, M. [NILPRP, L 22 P.O. Box MG-36, 77125 Bucharest-Magurele (Romania); Petit, A.; Aubry, O. [GREMI, UMR 7344 CNRS-Université Orléans, 45067 Orléans Cedex 2 (France); Pérez Casero, R. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Millon, E., E-mail: eric.millon@univ-orleans.fr [GREMI, UMR 7344 CNRS-Université Orléans, 45067 Orléans Cedex 2 (France)

    2016-12-15

    Highlights: • Nd/Nb-codoped TiO{sub 2} PLD films are electrically insulating and transparent in the UV visible NIR spectral domain. • Nd/Nb-codoped oxygen deficient TiO{sub x} (x ≈ 1.5) films are conductive and absorbent. • IR emission of Nd{sup 3+} in codoped TiO{sub x} films is quenched due to oxygen deficiency. • High Nb-doping rate decreases the IR emission of Nd{sup 3+} in Nd/Nb-codoped TiO{sub 2} films. - Abstract: The effect of the co-doping with Nd and Nb on electrical and optical properties of TiO{sub x} films is reported. The role of oxygen vacancies on the physical properties is also evidenced. The films are grown by pulsed-laser deposition onto (001) sapphire and (100) silicon substrates. The substrate temperature was fixed at 700 °C. To obtain either stoichiometric (TiO{sub 2}) or highly oxygen deficient (TiO{sub x} with x < 1.6) thin films, the oxygen partial pressure was adjusted at 10{sup −1} and 10{sup −6} mbar, respectively. 1%Nd-1%Nb, 1%Nd-5%Nb and 5%Nd-1%Nb co-doped TiO{sub 2} were used as bulk ceramic target. Composition, structural and morphological properties of films determined by Rutherford backscattering spectroscopy, X-ray diffraction and scanning electron microscopy, are correlated to their optical (UV–vis transmission and photoluminescence) and electrical properties (resistivity at room temperature). The most intense Nd{sup 3+} emission in the IR domain is obtained for stoichiometric films. Codoping Nd-TiO{sub x} films by Nb{sup 5+} ions is found to decrease the photoluminescence efficiency. The oxygen pressure during the growth allows to tune the optical and electrical properties: insulating and highly transparent (80% in the visible range) Nd/Nb codoped TiO{sub 2} films are obtained at high oxygen pressure, while conductive and absorbent films are grown under low oxygen pressure (10{sup −6} mbar).

  17. Neutron scattering studies of the defect structures in TiCsub(1-x) and NbCsub(1-x)

    International Nuclear Information System (INIS)

    Moisy-Maurice, V.; Novion, C.H. de; Lorenzelli, N.

    1981-08-01

    Single crystals of TiCsub(1-x) and NbCsub(1-x) were studied by elastic neutron diffuse scattering at room temperature in the (110) reciprocal lattice plane; the spectra of TiCsub(0.76), TiCsub(0.79) and NbCsub(0.73) were analysed by the Sparks and Borie method, which allowed to determine the first Cowley-Warren short-range order coefficients and a shortening (0.03 A) of the average first neighbour metal-carbon distances. The order-disorder transformation in TiCsub(1-x) (0.52 0 C) and critical coefficients β were determined. The results are discussed in terms of interatomic pair potentials

  18. Surface structures and osteoblast response of hydrothermally produced CaTiO{sub 3} thin film on Ti-13Nb-13Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Woo, E-mail: jinwoo@knu.ac.kr [Department of Periodontology, School of Dentistry, Kyungpook National University, 188-1, Samduk 2Ga, Jung-Gu, Daegu 700-412 (Korea, Republic of); Tustusmi, Yusuke [Department of Metals, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental Univeristy, Tokyo 101-0062 (Japan); Lee, Chong Soo; Park, Chan Hee [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kim, Youn-Jeong; Jang, Je-Hee [Department of Periodontology, School of Dentistry, Kyungpook National University, 188-1, Samduk 2Ga, Jung-Gu, Daegu 700-412 (Korea, Republic of); Khang, Dongwoo; Im, Yeon-Min [School of Materials Science and Engineering, Gyeongsang National University, Jinju 600-701 (Korea, Republic of); Doi, Hisashi; Nomura, Naoyuki; Hanawa, Takao [Department of Metals, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental Univeristy, Tokyo 101-0062 (Japan)

    2011-06-15

    This study investigated the surface characteristics and in vitro biocompatibility of a titanium (Ti) oxide layer incorporating calcium ions (Ca) obtained by hydrothermal treatment with or without post heat-treatment in the Ti-13Nb-13Zr alloy. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, atomic force microscopy and contact angle measurements. In vitro biocompatibility of the Ca-containing surfaces was assessed in comparison with untreated surfaces using a pre-osteoblast cell line. Hydrothermal treatment produced a crystalline CaTiO{sub 3} layer. Post heat-treatment at 400 deg. C for 2 h in air significantly decreased water contact angles in the CaTiO{sub 3} layer (p < 0.001). The Ca-incorporated alloy surfaces displayed markedly increased cell viability and ALP activity compared with untreated surfaces (p < 0.001), and also an upregulated expression of various integrin genes ({alpha}1, {alpha}2, {alpha}5, {alpha}v, {beta}1 and {beta}3) at an early incubation time-point. Post heat-treatment further increased attachment and ALP activity in cells grown on Ca-incorporated Ti-13Nb-13Zr alloy surfaces. The results indicate that the Ca-incorporated oxide layer produced by hydrothermal treatment and a simple post heat-treatment may be effective in improving bone healing in Ti-13Nb-13Zr alloy implants by enhancing the viability and differentiation of osteoblastic cells.

  19. Tribological Testing, Analysis and Characterization of D.C. Magnetron Sputtered Ti-Nb-N Thin Film Coatings on Stainless Steel

    Science.gov (United States)

    Joshi, Prathmesh

    To enhance the surface properties of stainless steel, the substrate was coated with a 1μm thick coating of Ti-Nb-N by reactive DC magnetron sputtering at different N2 flow rates, substrate biasing and Nb-Ti ratio. The characterization of the coated samples was performed by the following techniques: hardness by Knoop micro-hardness tester, phase analysis by X-ray Diffraction (XRD), compositional analysis by Energy Dispersive X-ray Spectroscopy (EDS) and adhesion by scratch test. The tribology testing was performed on linearly reciprocating ball-on-plate wear testing machine and wear depth and wear volume were evaluated by white light interferometer. The micro-hardness test yielded appreciable enhancement in the surface hardness with the highest value being 1450 HK. Presence of three prominent phases namely NbN, Nb2N3 and TiN resulted from the XRD analysis. EDS analysis revealed the presence of Ti, Nb and Nitrogen. Adhesion was evaluated on the basis of critical loads for cohesive (Lc1) and adhesive (Lc2) failures with values varying between 7-12 N and 16-25 N respectively, during scratch test for coatings on SS substrates.

  20. Tribological behavior and self-healing functionality of TiNbCN-Ag coatings in wide temperature range

    Science.gov (United States)

    Bondarev, A. V.; Kiryukhantsev-Korneev, Ph. V.; Levashov, E. A.; Shtansky, D. V.

    2017-02-01

    Ag- and Nb-doped TiCN coatings with about 2 at.% of Nb and Ag contents varied between 4.0 and 15.1 at.% were designed as promising materials for tribological applications in a wide temperature range. We report on the structure, mechanical, and tribological properties of TiNbCN-Ag coatings fabricated by simultaneous co-sputtering of TiC0.5 + 10%Nb2C and Ag targets in comparison with those of Ag-free coating. The tribological characteristics were evaluated during constant-temperature tests both at room temperature and 300 °C, as well as during dynamic temperature ramp tests in the range of 25-700 °C. The coating structure and elemental composition were studied by means of X-ray diffraction, scanning and transmission electron microscopy, and glow discharge optical emission spectroscopy. The coating microstructures and elemental compositions inside wear tracks, as well as the wear products, were examined by scanning electron microscopy, energy-dispersive spectroscopy, and Raman spectroscopy. We demonstrate that simultaneous alloying with Nb and Ag permits to overcome the main drawbacks of TiCN coatings such as their relatively high values of friction coefficient at elevated temperatures and low oxidation resistance. It is shown that a relatively high amount of Ag (15 at.%) is required to provide enhanced tribological behavior in a wide temperature range of 25-700 °C. In addition, the prepared Ag-doped coatings demonstrated active oxidation protection and self-healing functionality due to the segregation of Ag metallic particles in damage areas such as cracks, pin-holes, or oxidation sites.

  1. MoSx-coated NbS2 nanoflakes growth on glass carbon: an advanced electrocatalyst for the hydrogen evolution reaction

    KAUST Repository

    Zhou, Xiaofeng; Lin, Shi-Hsin; Yang, Xiulin; Li, Henan; Hedhili, Mohamed N.; Li, Lain-Jong; Zhang, Wenjing; Shi, Yumeng

    2018-01-01

    Recent experimental and theoretical studies have demonstrated that two-dimensional (2D) transition metal dichalcogenide (TMDC) nanoflakes are one of the most promising candidates for non-noblemetal electrocatalysts for hydrogen evolution reaction (HER). However, it is still demanding to optimize their conductivity and enrich active sites for the high efficient electrochemical performance. Herein, we report a chemical vapor deposition (CVD) and thermal annealing two-step strategy to controllably synthesize hybrid electrocatalysts consisting of metallic NbS2 nanoflake backbones and highly catalytic active MoSx nanocrystalline shell on polished commercial glass carbon (GC). In addition, the amounts of MoSx in the hybrids can be easily adjusted, we first demonstrate that small amount of MoSx obviously promotes the HER activity of 2D NbS2 nanoflakes, which is in good consistence with the density functional theory (DFT) calculation results. Meanwhile, the optimized MoSx@NbS2/GC electrocatalyst displays a superior HER activity with an overpotential of -164 mV at -10 mA/cm2, a small Tafel slope of 43.2 mV/dec, and prominent electrochemical stability. This study provides a new path for enhancing the HER performance of 2D TMDC nanoflakes.

  2. MoSx-coated NbS2 nanoflakes growth on glass carbon: an advanced electrocatalyst for the hydrogen evolution reaction

    KAUST Repository

    Zhou, Xiaofeng

    2018-01-19

    Recent experimental and theoretical studies have demonstrated that two-dimensional (2D) transition metal dichalcogenide (TMDC) nanoflakes are one of the most promising candidates for non-noblemetal electrocatalysts for hydrogen evolution reaction (HER). However, it is still demanding to optimize their conductivity and enrich active sites for the high efficient electrochemical performance. Herein, we report a chemical vapor deposition (CVD) and thermal annealing two-step strategy to controllably synthesize hybrid electrocatalysts consisting of metallic NbS2 nanoflake backbones and highly catalytic active MoSx nanocrystalline shell on polished commercial glass carbon (GC). In addition, the amounts of MoSx in the hybrids can be easily adjusted, we first demonstrate that small amount of MoSx obviously promotes the HER activity of 2D NbS2 nanoflakes, which is in good consistence with the density functional theory (DFT) calculation results. Meanwhile, the optimized MoSx@NbS2/GC electrocatalyst displays a superior HER activity with an overpotential of -164 mV at -10 mA/cm2, a small Tafel slope of 43.2 mV/dec, and prominent electrochemical stability. This study provides a new path for enhancing the HER performance of 2D TMDC nanoflakes.

  3. Hydrogenation Properties of Mg-5 wt.% TiCr_10NbX (x=1,3,5) Composites by Mechanical Alloying Process

    International Nuclear Information System (INIS)

    Kim, Kyeong-Il; Hong, Tae-Whan

    2011-01-01

    Hydrogen and hydrogen energy have been recognized as clean energy sources and high energy carrier. Mg and Mg alloys are attractive hydrogen storage materials because of their lightweight and low cost materials with high hydrogen capacity (about 7.6 wt.%). However, the commercial applications of the Mg hydrides are currently hinder by its high absorption/desorption temperature, and very slow reaction kinetics. However, Ti and Ti based hydrogen storage alloys have been thought to be the third generation of alloys with a high hydrogen capacity, which makes it difficult to handle because of high reactivity. One of the most methods to develop kinetics was addition of transition metal. Therefore, Mg-Ti-Cr-Nb alloy was fabricated to add TiCrNb by hydrogen induced mechanical alloying. TiCrNb systems have included transition metals, low operating temperatures and hydrogen storage materials. As-received specimens were characterized using X-ray Diffraction analysis (XRD), Scanning Electron Microscopy (SEM) and Thermo Gravimetric analysis/Differential Scanning Calorimetry (TG/DSC). Mg-TiCr_10Nb systems were evaluated for hydrogen kinetics by Sievert’s type Pressure-Composition-Isotherm (PCI) equipment. The operating temperature range was 473, 523, 573 and 623 K.

  4. Is there an ordered tetragonal phase in the Ti3Al-Nb system?

    International Nuclear Information System (INIS)

    Banerjee, D.

    1994-01-01

    In a recent series of papers, describing aging transformations in plasma sprayed Ti-24Al-11Nb, Hsiung and co-workers proposed a new ordered tetragonal structure as the first metastable phase to form in a series of transformations from quenched-in B2 to the equilibrium phase. They describe this new phase as a ''DO 3 like tetragonal structure'' with a composition Ti 5 Al 2 Nb, and lattice parameters, a = 0.65 nm and c/a ≅ 1.02. Their unit cell is constituted by 8 bcc unit cells, and the atomic coordinates of their structure are given in Table 1 on this basis. The symmetry of this structure is P4/mm. Though it is not the smallest possible unit cell for the structure, comparison with other bcc binary derivative structures is easily possible on this basis. The atomic coordinates for the latter, for a ternary composition Ti 2 AlNb, are also given. They note that the site occupation for the Hsiung et al. structure is quite distinct from that for a ternary DO 3 phase or any of the other possible bcc derivative structures (neglecting 2 possibilities with 128 or 432 atoms per unit cell(8) and interstitial ordering)

  5. Design of Refractory High-Entropy Alloys

    Science.gov (United States)

    Gao, M. C.; Carney, C. S.; Doğan, Ö. N.; Jablonksi, P. D.; Hawk, J. A.; Alman, D. E.

    2015-11-01

    This report presents a design methodology for refractory high-entropy alloys with a body-centered cubic (bcc) structure using select empirical parameters (i.e., enthalpy of mixing, atomic size difference, Ω-parameter, and electronegativity difference) and CALPHAD approach. Sixteen alloys in equimolar compositions ranging from quinary to ennead systems were designed with experimental verification studies performed on two alloys using x-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy. Two bcc phases were identified in the as-cast HfMoNbTaTiVZr, whereas multiple phases formed in the as-cast HfMoNbTaTiVWZr. Observed elemental segregation in the alloys qualitatively agrees with CALPHAD prediction. Comparisons of the thermodynamic mixing properties for liquid and bcc phases using the Miedema model and CALPHAD are presented. This study demonstrates that CALPHAD is more effective in predicting HEA formation than empirical parameters, and new single bcc HEAs are suggested: HfMoNbTiZr, HfMoTaTiZr, NbTaTiVZr, HfMoNbTaTiZr, HfMoTaTiVZr, and MoNbTaTiVZr.

  6. Microscope Raman scattering and X-ray diffraction study of near-stoichiometric Ti:LiNbO3 waveguides

    International Nuclear Information System (INIS)

    Zhang, De-Long; Siu, G.G.; Pun, E.Y.B.

    2005-01-01

    The crystalline phase within guiding layers of near-stoichiometric strip and planar Ti:LiNbO 3 wave-guides, prepared by the method of simultaneous work of vapour transport equilibration (VTE) treatment and indiffusion of Ti film, was studied by combined confocal microscope Raman scattering and X-ray powder diffraction. The results show that the strip and planar waveguide layers still retain the LiNbO 3 phase and no other non-LiNbO 3 phases can be identified within the guiding layer. Li/Nb ratios inside and outside the strip and planar waveguide layers were determined from the microscope Raman scattering results and compared to those obtained from the measured optical absorption edge. It is shown that the Li/Nb ratios are homogeneous within the waveguide layer and are close inside and outside the waveguide layer. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Corrosion behavior of Nb-based and Mo-based super heat-resisting alloys in liquid Li

    International Nuclear Information System (INIS)

    Saito, J.; Kano, S.; Morinaga, M.

    1998-07-01

    Research on structural materials which will be utilized even in the severe environment of high-temperature liquid alkali metals has been promoted in order to develop the frontiers of materials techniques. The super-heat resisting alloys which are based on refractory metals, Nb and Mo, are aimed as promising materials used in such an environment. The corrosion resistance in liquid Li and the mechanical properties such as creep and tensile strengths at high temperatures are important for these structural materials. On the basis of many experiments and analyses of these properties at 1473 K, the material design of Nb-based and Mo-based alloys has been carried out successfully. In this report, all the previous experimental results of corrosion tests in liquid Li were summarized systematically for Nb-based and Mo-based alloys. The corrosion mechanism was proposed on the basis of a series of analyses, in particular, focussing on the deposition mechanism of corrosion products on the surface and also on the initiation and growth mechanism of cracks on the corroded surface of Nb-based alloys. The principal results are as follows. (1) For the deposition mechanism, a reaction took place first between dissolved metallic elements and nitrogen which existed as an impurity in liquid Li and then corrosion products (nitrides) precipitated on the metal surface. Subsequently, another reaction took place between dissolved metallic elements in liquid Li, and corrosion products (intermetallic compounds) precipitated on the metal surface. The composition of deposited corrosion products could be predicted on the basis of the deposition mechanism. (2) For the crack initiation mechanism, the chemical potential diagrams were utilized in order to understand the formation of Li-M-O ternary oxides which caused cracks to be formed on the corroded surface. Consequently, it was evident that not only the concentration of the dissolved oxygen in the alloy but also the concentration of Li which

  8. Bone bonding bioactivity of Ti metal and Ti-Zr-Nb-Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments.

    Science.gov (United States)

    Fukuda, A; Takemoto, M; Saito, T; Fujibayashi, S; Neo, M; Yamaguchi, S; Kizuki, T; Matsushita, T; Niinomi, M; Kokubo, T; Nakamura, T

    2011-03-01

    Ti15Zr4Nb4Ta and Ti29Nb13Ta4.6Zr, which do not contain the potentially cytotoxic elements V and Al, represent a new generation of alloys with improved corrosion resistance, mechanical properties, and cytocompatibility. Recently it has become possible for the apatite forming ability of these alloys to be ascertained by treatment with alkali, CaCl2, heat, and water (ACaHW). In order to confirm the actual in vivo bioactivity of commercially pure titanium (cp-Ti) and these alloys after subjecting them to ACaHW treatment at different temperatures, the bone bonding strength of implants made from these materials was evaluated. The failure load between implant and bone was measured for treated and untreated plates at 4, 8, 16, and 26 weeks after implantation in rabbit tibia. The untreated implants showed almost no bonding, whereas all treated implants showed successful bonding by 4 weeks, and the failure load subsequently increased with time. This suggests that a simple and economical ACaHW treatment could successfully be used to impart bone bonding bioactivity to Ti metal and Ti-Zr-Nb-Ta alloys in vivo. In particular, implants heat treated at 700 °C exhibited significantly greater bone bonding strength, as well as augmented in vitro apatite formation, in comparison with those treated at 600 °C. Thus, with this improved bioactive treatment process these advantageous Ti-Zr-Nb-Ta alloys can serve as useful candidates for orthopedic devices. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Corrosion resistance of Mo-Fe-Ti alloy for overpack in simulating underground environment

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Toshiyasu, E-mail: NISHIMURA.Toshiyasu@nims.go.jp [Structural metals Center, National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Aging heat-treated Mo-Fe-Ti alloy showed lower corrosion resistance than solution treated one, but much higher than pure Ti in EIS measurement. Black-Right-Pointing-Pointer As {alpha}-phases showed lower Mo content by TEM, they were preferentially dissolved from base metal in the corrosion test. Black-Right-Pointing-Pointer As Fe was involved in {beta} (b)-phase with Mo which increased the corrosion resistance, the addition of Fe did not decrease the corrosion resistance. - Abstract: In order to examine the application of Mo-Fe-Ti alloy for overpak, the corrosion resistance of heat-treated its alloys was investigated by electrochemical impedance spectroscopy (EIS) and transmission electron microscopy (TEM). The sample subjected to solution heat treatment (ST) had a single {beta} phase and samples subjected to aging heat treatment at 600-700 Degree-Sign C had {alpha} phase precipitation in {beta} phase. EIS results showed that the corrosion resistance of the aging heat-treated samples was lower than that of the ST sample, but much higher than that of pure Ti in 10% NaCl solution of pH 0.5 at 97 Degree-Sign C which simulating the crevice solution. Laser micrographs of the aging heat-treated samples indicated that {alpha} phase was caused selective dissolution in test solution. The TEM combined with EDAX (energy dispersive X-ray) analyses showed that {beta} phase matrix composed of 2.7 wt.% Mo and 4.8 wt.% Fe, and {alpha} phase composed of 0.7 wt.% Mo and 0.1 wt.% Fe in sample aged at 600 Degree-Sign C. Thus, Mo-poor {alpha} phase was selectively dissolved in a test solution. In EIS, the ST sample of only {beta} phase showed the highest resistance, and aging heat-treated samples containing {alpha} phase (0.7 wt.% Mo) showed higher values than pure Ti in the corrosion test. As Fe was involved in {beta} phase with Mo which increased remarkably the corrosion resistance, the addition of Fe did not decrease the corrosion resistance

  10. Fabrication of Intermetallic Titanium Alloy Based on Ti2AlNb by Rapid Quenching of Melt

    Science.gov (United States)

    Senkevich, K. S.; Serov, M. M.; Umarova, O. Z.

    2017-11-01

    The possibility of fabrication of rapidly quenched fibers from alloy Ti - 22Al - 27Nb by extracting a hanging melt drop is studied. The special features of the production of electrodes for spraying the fibers by sintering mechanically alloyed powdered components of the alloy, i.e., titanium hydride, niobium, and aluminum dust, are studied. The rapidly quenched fibers with homogeneous phase composition and fine-grained structure produced from alloy Ti - 22Al - 27Nb are suitable for manufacturing compact semiproducts by hot pressing.

  11. Improvement of NiMoNb to polyimide adhesion by inductively coupled nitrogen plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bang, S.-H., E-mail: zxclucy@snu.ac.kr

    2016-01-01

    Graphical abstract: - Highlights: • NiMoNb was introduced as the adhesion layer for flexible Cu-clad laminate structure. • The effect of sputtering and plasma power on the peel strength was studied. • Plasma pretreatment in inductively coupled plasma greatly affects the peel strength. • FCCL with NiMoNb adhesion layer show outstanding peel strength. - Abstract: In this study, the effect of sputtering power on the peel strength of the flexible copper clad laminate (FCCL) was evaluated before and after heat treatment using 180° peel test. An increase in the sputtering powers from 200 W to 600 W increased film density and improved peel strength. To enhance peel strength much more, an inductively coupled plasma (ICP) was treated on the PI surface using N{sub 2} gas with Ar as a function of RF power. A dramatic enhancement of the peel strength, 923 N/m was achieved, especially after heat treatment by changing ICP power from 200 W to 900 W. The reduction ratio of the peel strength for the 900 W plasma-treated FCCL was only 12%, whereas that for the 200 W plasma-treated FCCL was 43%. The root mean square (RMS) surface roughness with PIs exposed to both 200 W and 900 W plasma treatments was rarely changed, while X-ray photoelectron spectroscopy (XPS) showed the substantial increase of C–N functional groups. To obtain insight the film characteristics, the NiMoNb/PI interfaces were investigated by a high resolution transmission electron microscopy (HR-TEM).

  12. Peculiarities of α- and ω-phase precipitations in cold-deformed Ti-Nb alloys

    International Nuclear Information System (INIS)

    Kadykova, G.N.

    1978-01-01

    The peculiar features of the depositions of ω and α-phases have been examined, the depositions being evolved under the following conditions: holding in vacuum of 10 -5 mm Hg at the temperature of about 250 to 450 deg C, of an alloy containing 30% Ti, 35% Nb, and 7.5% Zr, which was previously subjected to quenching and cold deformation up to the thickness of about 0.1 mm. The structure of the alloys was examined by resorting to the X-ray, metallographic, and electron-microscopic analysis methods. The microhardness was measured. It is the cold deformation that promotes intensely the formation of α-phase in the ageing of Ti-Nb alloys. In this case, the formation of ω-phase is suppressed. At the initial stages of decomposition, the equiaxial particles of α phase are formed in titanium alloys containing about 30 to 35% Nb and up to 7.5% Zr: then the acicular α particles are formed in less distorted areas of β-matrix. A variation in their dimensions depending on the treatment conditions is shown. An increase in hardness of the examined cold-strained alloys in ageing, within the temperature range of up to about 350 deg C, is attributed to the formation of α+β structure. On cold straining and ageing, it proves to be possible to create β+ω+α structure in Ti-Nb alloys. For this purpose, before starting the cold straining, it will be necessary to obtain the structure containing a considerable proportion of ω-phase

  13. Apatite Formation and Biocompatibility of a Low Young's Modulus Ti-Nb-Sn Alloy Treated with Anodic Oxidation and Hot Water.

    Directory of Open Access Journals (Sweden)

    Hidetatsu Tanaka

    Full Text Available Ti-6Al-4V alloy is widely prevalent as a material for orthopaedic implants because of its good corrosion resistance and biocompatibility. However, the discrepancy in Young's modulus between metal prosthesis and human cortical bone sometimes induces clinical problems, thigh pain and bone atrophy due to stress shielding. We designed a Ti-Nb-Sn alloy with a low Young's modulus to address problems of stress disproportion. In this study, we assessed effects of anodic oxidation with or without hot water treatment on the bone-bonding characteristics of a Ti-Nb-Sn alloy. We examined surface analyses and apatite formation by SEM micrographs, XPS and XRD analyses. We also evaluated biocompatibility in experimental animal models by measuring failure loads with a pull-out test and by quantitative histomorphometric analyses. By SEM, abundant apatite formation was observed on the surface of Ti-Nb-Sn alloy discs treated with anodic oxidation and hot water after incubation in Hank's solution. A strong peak of apatite formation was detected on the surface using XRD analyses. XPS analysis revealed an increase of the H2O fraction in O 1s XPS. Results of the pull-out test showed that the failure loads of Ti-Nb-Sn alloy rods treated with anodic oxidation and hot water was greater than those of untreated rods. Quantitative histomorphometric analyses indicated that anodic oxidation and hot water treatment induced higher new bone formation around the rods. Our findings indicate that Ti-Nb-Sn alloy treated with anodic oxidation and hot water showed greater capacity for apatite formation, stronger bone bonding and higher biocompatibility for osteosynthesis. Ti-Nb-Sn alloy treated with anodic oxidation and hot water treatment is a promising material for orthopaedic implants enabling higher osteosynthesis and lower stress disproportion.

  14. Regulation of depletion layer width in Pb(Zr,Ti)O3/Nb:SrTiO3 heterostructures

    Science.gov (United States)

    Bai, Yu; Jie Wang, Zhan; Cui, Jian Zhong; Zhang, Zhi Dong

    2018-05-01

    Improving the tunability of depletion layer width (DLW) in ferroelectric/semiconductor heterostructures is important for the performance of some devices. In this work, 200-nm-thick Pb(Zr0.4Ti0.6)O3 (PZT) films were deposited on different Nb-doped SrTiO3 (NSTO) substrates, and the tunability of DLW at PZT/NSTO interfaces were studied. Our results showed that the maximum tunability of the DLW was achieved at the NSTO substrate with 0.5 wt% Nb. On the basis of the modified capacitance model and the ferroelectric semiconductor theory, we suggest that the tunability of the DLW in PZT/NSTO heterostructures can be attributed to a delicate balance of the depletion layer charge and the ferroelectric polarization charge. Therefore, the performance of some devices related to the tunability of DLW in ferroelectric/semiconductor heterostructures can be improved by modulating the doping concentration in semiconducting electrode materials.

  15. Critical current and electric transport properties of superconducting epitaxial Nb(Ti)N submicron structures

    Science.gov (United States)

    Klimov, A.; Słysz, W.; Guziewicz, M.; Kolkovsky, V.; Wegrzecki, M.; Bar, J.; Marchewka, M.; Seredyński, B.

    2016-12-01

    Critical current and current-voltage characteristics of epitaxial Nb(Ti)N submicron ultrathin structures were measured as function of temperature. For 700-nm-wide bridge we found current-driven vortex de-pinning at low temperatures and thermally activated flux flow closer to the transition temperature, as the limiting factors for the critical current density. For 100-nm-wide meander we observed combination of phase-slip activation and vortex-anti-vortex pair (VAP) thermal excitation. Our Nb(Ti)N meander structure demonstrates high de-pairing critical current densities 107 A/cm2 at low temperatures, but the critical currents are much smaller due to presence of the local constrictions.

  16. Crystallographic and magnetic properties of (Nd,Dy)3Fe27.5(Ti,Mo)1.5 compounds

    International Nuclear Information System (INIS)

    Han, S.B.; Liu, X.F.; Lv, J.Y.; Peng, J.; Hao, Y.M.; Li, X.J.; Chen, D.F.; Xue, Y.J.; Li, J.H.; Hu, Z.B.

    2006-01-01

    A systematic study of the formation, structure and magnetic properties of (Nd,Dy) 3 Fe 27.5 (Ti,Mo) 1.5 compounds has been performed. Rietveld analyses of the X-ray patterns of the samples indicate that the concentrations of Ti and Mo affect the formation and structural properties slightly, whereas different rare-earth (Nd and Dy) contents influence them significantly. It is found that high Dy contents make it difficult to form the 3:29-type structures. The Curie temperatures of Nd 2.1 Dy 0.9 Fe 27.5 Ti 1.5- x Mo x decrease monotonically as more Ti was replaced by Mo but their saturation magnetizations remain almost unchanged; in contrast, for Nd 3- y Dy y Fe 27.5 TiMo 0.5 , their saturation magnetizations decrease monotonically with increasing Dy contents while their Curie temperatures are constant

  17. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    Science.gov (United States)

    Li, Qijun; Zhang, Lin; Wei, Dongbin; Ren, Shubin; Qu, Xuanhui

    Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20-110 μm. With the decrease of particle size, a transformation from typical dendrite solidification structure to fine cell microstructure occurs. The surface of the spheroidized powder is coated by a layer of oxides consisting mainly of TiO2 and Nb2O5. Probabilities of sinter-neck formation and particle coalescence increases with increasing sintering temperature. Porous skeleton with relatively homogeneous pore distribution and open pore channel is formed after vacuum sintering at 1700 °C, and the porosity is 32%. The sintering kinetic analysis indicates that grain boundary diffusion is the primary mass transport mechanism during sintering process.

  18. Calculation of superalloy phase diagrams. IV

    International Nuclear Information System (INIS)

    Kaufman, L.; Nesor, H.

    1975-01-01

    Explicit descriptions of the Fe--Mo, Fe--W, Fe--Nb, W--Cr and Ti--W binary systems have been developed in line with lattice stability, thermochemical and phase diagram data. These descriptions, along with similar results derived previously, have been employed to calculate isothermal sections in the Cr--Al--Fe, Fe--Mo--Cr, Fe--W--Cr, Ni--Al--Co, Nb--Ti--W, Ti--W--Mo, Cr--W--Mo, Ni--Mo--W, and Ni--W--Ti systems for comparison with experimental results. The effects of carbon impurities on miscibility gap formation in the Ti--W, Nb--Ti--W, Ti--W--Mo and Cr--W--Mo systems are discussed

  19. Texture Evolution in a Ti-Ta-Nb Alloy Processed by Severe Plastic Deformation

    Science.gov (United States)

    Cojocaru, Vasile-Danut; Raducanu, Doina; Gloriant, Thierry; Cinca, Ion

    2012-05-01

    Titanium alloys are extensively used in a variety of applications because of their good mechanical properties, high biocompatibility, and corrosion resistance. Recently, β-type Ti alloys containing Ta and Nb have received much attention because they feature not only high specific strength but also biocorrosion resistance, no allergic problems, and biocompatibility. A Ti-25Ta-25Nb β-type titanium alloy was subjected to severe plastic deformation (SPD) processing by accumulative roll bonding and investigated with the aim to observe the texture developed during SPD processing. Texture data expressed by pole figures, inverse pole figures, and orientation distribution functions for the (110), (200), and (211) β-Ti peaks were obtained by XRD investigations. The results showed that it is possible to obtain high-intensity share texture modes ({001}) and well-developed α and γ-fibers; the most important fiber is the α-fiber ({001} to {114} to {112} ). High-intensity texture along certain crystallographic directions represents a way to obtain materials with high anisotropic properties.

  20. Proximity effect depression of the critical temperature in two-phase Nb-Ti superconductors

    International Nuclear Information System (INIS)

    Meingast, C.; Daeumling, M.; Lee, P.J.; Larbalestier, D.C.

    1987-01-01

    The superconducting critical temperature of high critical current density Nb-Ti composites has been measured at various stages in the critical current optimization process. This process involves heat treatment steps which cause precipitation of normal α-Ti and make the matrix more Nb rich. T/sub c/ rises from 9.1 to 9.5 K during this stage. The final optimization stage involves extensive wire drawing during which the α-Ti precipitates are reduced to less than a coherence length in thickness. This does not result in a reduction in J/sub c/ but T/sub c/ is found to fall from 9.44 to 8.7 K during this step. The depression of T/sub c/ is found to be in fair agreement with the predicted proximity effect suppression of T/sub c/. Wires of optimum transport critical current density are seen to have T/sub c/ of around 9 K

  1. Corrosion behavior of Ti-13Nb-13Zr alloy used as a biomaterial

    International Nuclear Information System (INIS)

    Niemeyer, T.C.; Grandini, C.R.; Pinto, L.M.C.; Angelo, A.C.D.; Schneider, S.G.

    2009-01-01

    Titanium alloys were developed as an alternative to stainless steels and have been extensively used as biomaterials ever since. One of these alloys is Ti-13Nb-13Zr (TNZ), a near-beta phase alloy containing elements with excellent biocompatibility. The main advantage of the TNZ alloy, compared to other titanium alloys, such as Ti-6Al-4V and Ti-6Al-7Nb, widely used as biomaterials, is its low elasticity modulus, closer to that of bone, and the absence of aluminum and vanadium, which have been reported to cause long-term adverse effects. In this paper, the corrosion and electrochemical behavior of TNZ alloy (as cast and after oxygen charge) was studied in a PBS solution. The results showed that, with the oxygen load, there is a significant reduction of the anodic current in almost the whole potential spam explored in this work, meaning that the corrosion rate decreases when the doping is performed.

  2. Functional regulation of Pb-Ti/MoS{sub 2} composite coatings for environmentally adaptive solid lubrication

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Siming [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Li, Hao [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Cui, Mingjun [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Wang, Liping, E-mail: wangliping@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Pu, Jibin, E-mail: pujibin@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2017-04-15

    Highlights: • Co-doped Pb-Ti/MoS{sub 2} composite coatings were successfully fabricated by unbalanced magnetron sputtering system. • Co-doped Pb-Ti/MoS{sub 2} composite coatings showed lower friction coefficient and longer wear life in both humid and vacuum environments than that of single-doped ones. • The wear behaviours of Pb-Ti/MoS{sub 2} composite coatings with the increase of Pb content is in accordance with the variation in H/E ratio that higher H/E is corresponding to the lower wear rate of coating. - Abstract: The lubrication of molybdenum disulfide coatings has commonly been limited by the application environments, for instance, the crystal MoS{sub 2} are easily affected by water to form MoO{sub 3} that causes a higher friction coefficient and short lifetime. Therefore, to improve the tribolgical performance of MoS{sub 2} in high humidity condition, the co-doped Pb-Ti/MoS{sub 2} composite coatings are deposited by unbalanced magnetron sputtering system. The design of the co-doping elements in MoS{sub 2}-based coatings can not only maintain the characteristic of low humidity-sensitivity as the Ti/MoS{sub 2} coating but also improve the mechanical properties and tribological performance of coatings as a comparison with single-doped ones. Moreover, the ultra-low friction coefficient with a minimum value of 0.006 under the vacuum condition is achieved for Pb-Ti/MoS{sub 2} composite coating containing about 4.6 at.% Pb, depending on the densification structure of coating. Intriguingly, the wear behaviours of Pb-Ti/MoS{sub 2} composite coatings are in accordance with the variation in H/E (hardness to the elastic modulus) ratio that the coating with higher H/E exhibits lower wear rate. These results demonstrate that the lubricating properties of MoS{sub 2} coatings in both humid environment and vacuum condition can be achieved through the Pb and Ti co-doped, which is of great significant for developing MoS{sub 2} coatings as the environmentally adaptive

  3. Defect and electrical transport properties of Nb-doped SrTiO3

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Hagen, Anke; Kammer Hansen, Kent

    2008-01-01

    analyzed with SEM, XRD, TGA, and XANES. The electrical conductivity of Nb-doped strontium titanate (Sr0.94Ti0.9Nb0.1O3 - sintered in 9% H-2/N-2 at 1400 degrees C for 12 h) decreased with increasing temperature and showed a phonon scattering conduction mechanism with (sigma>120 S/cm at 1000 degrees C (in 9...

  4. Stability analysis of NbTi-Ta-based high field conductor cooled by pool boiling below 4 K

    International Nuclear Information System (INIS)

    Chen, W.Y.; Alcorn, J.S.; Hsu, Y.H.; Purcell, J.R.

    1980-09-01

    Stability analysis has been performed for cabled NbTi-Ta-based superconductors intended for the high field (12 T) toroidal field coils for a large scale tokamak device such as ETF. Ternary NbTi-Ta was selected as the superconductor because of its superior critical current density at high field as compared to the binary alloy NbTi. The operating temperature was chosen to be 2.5 K or below to optimize the performance of the superconductor. A cabled conductor was selected to minimize the pulsed field losses. The conductor is cooled by pool boiling in a subcooled (approx. 2.5 K, 0.25 atm) bath, or in a superfluid helium (He-II) bath (approx. 1.8 K, 0.02 atm). The analysis was based on numerically simulating the evolution of a normal zone in the conductor. Appropriate superconductor properties and heat transfer characteristics were utilized in the simulation

  5. The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-35Nb-xZr alloys

    International Nuclear Information System (INIS)

    Ning Congqin; Zhai Wanyin; Chen Lei; Ding Dongyan; Dai Kerong

    2010-01-01

    β-type low elastic modulus alloys of the Ti-Nb-Zr system have recently attracted much attention for both orthopedic and dental applications. In the present study, meta-stable β alloys of Ti-35Nb-xZr with different Zr contents were developed. The effect of Zr content on the microstructure, mechanical properties and cell attachment was investigated. It was found that the addition of Zr improved the tensile strength and elongation of Ti-35Nb-xZr alloys, and simultaneously reduced the elastic modulus. Moreover, the Zr element helped to stabilize the β phase. Cell culture work indicated that the addition of Zr enhanced the attachment and spreading of bone marrow stem cells. Cell attachment and spreading on the surface of titanium alloys were dominated not only by the wettability but also by the inherent biocompatibility of alloying elements. The peak-aged alloy with 5 wt% Zr had a highest tensile strength of 874 MPa, while its elastic modulus was only 65 GPa, presenting a much higher strength/modulus ratio than Ti-6Al-4V. The Ti-35Nb-5Zr alloy exhibited a great potential for orthopedic and dental applications.

  6. First-principles studies of the local structure and relaxor behavior of Pb(Mg 1 /3Nb2 /3) O3-PbTiO3 -derived ferroelectric perovskite solid solutions

    Science.gov (United States)

    Tan, Hengxin; Takenaka, Hiroyuki; Xu, Changsong; Duan, Wenhui; Grinberg, Ilya; Rappe, Andrew M.

    2018-05-01

    We have investigated the effect of transition-metal dopants on the local structure of the prototypical 0.75 Pb (Mg1 /3Nb2 /3) O3-0.25 PbTiO3 relaxor ferroelectric. We find that these dopants give rise to very different local structure and other physical properties. For example, when Mg is partially substituted by Cu or Zn, the displacement of Cu or Zn is much larger than that of Mg and is even comparable to that of Nb. The polarization of these systems is also increased, especially for the Cu-doped solution, due to the large polarizability of Cu and Zn. As a result, the predicted maximum dielectric constant temperatures Tm are increased. On the other hand, the replacement of a Ti atom with a Mo or Tc atom dramatically decreases the displacements of the cations and the polarization, and thus, the Tm values are also substantially decreased. The higher Tm cannot be explained by the conventional argument based on the ionic radii of the cations. Furthermore, we find that Cu, Mo, or Tc doping increases the cation displacement disorder. The effect of the dopants on the temperature dispersion Δ Tm , which is the change in Tm for different frequencies, is also discussed. Our findings lay the foundation for further investigations of unexplored dopants.

  7. Working of Mo-TiC cermets for 'future nuclear systems'; Mise en forme de cermets Mo-TiC pour les 'Systemes Nucleaires du futur'

    Energy Technology Data Exchange (ETDEWEB)

    Allemand, Alexandre [CEA-Saclay, DRT/LITEN/LTMEx, 91191 Gif-sur-Yvette (France); Le Flem, Marion [CEA-Saclay, DEN/DMN/SRMA, 91191 Gif-sur-Yvette (France); Rousselet, Jerome [UTT Troyes, 10010 Troyes (France)

    2006-07-01

    The nuclear reactor cores (generation IV) will form an extremely severe environment (high temperature, severe and long irradiation...). These drastic criteria and the preoccupation to ensure a higher and higher safety level lead, beyond the preoccupations due to the feasibility of such reactors, to harsh choices in materials able to be used. Innovating materials such as Mo-TiC cermet are the subject of intense researches in the CEA. This study presents and compares two modes of Mo-TiC cermet working: the hot isostatic compression and the extrusion. Different compositions of Mo-TiC cermets are prepared by hot isostatic compression and extrusion, and then characterized in term of microstructural properties. At last, this study concludes to a very satisfying working by hot isostatic compression, nevertheless the extrusion has still to be improved. (O.M.)

  8. Engineering MoSx/Ti/InP Hybrid Photocathode for Improved Solar Hydrogen Production.

    Science.gov (United States)

    Li, Qiang; Zheng, Maojun; Zhong, Miao; Ma, Liguo; Wang, Faze; Ma, Li; Shen, Wenzhong

    2016-07-19

    Due to its direct band gap of ~1.35 eV, appropriate energy band-edge positions, and low surface-recombination velocity, p-type InP has attracted considerable attention as a promising photocathode material for solar hydrogen generation. However, challenges remain with p-type InP for achieving high and stable photoelectrochemical (PEC) performances. Here, we demonstrate that surface modifications of InP photocathodes with Ti thin layers and amorphous MoSx nanoparticles can remarkably improve their PEC performances. A high photocurrent density with an improved PEC onset potential is obtained. Electrochemical impedance analyses reveal that the largely improved PEC performance of MoSx/Ti/InP is attributed to the reduced charge-transfer resistance and the increased band bending at the MoSx/Ti/InP/electrolyte interface. In addition, the MoSx/Ti/InP photocathodes function stably for PEC water reduction under continuous light illumination over 2 h. Our study demonstrates an effective approach to develop high-PEC-performance InP photocathodes towards stable solar hydrogen production.

  9. Enhancement of wear and corrosion resistance of low modulus β-type Zr-20Nb-xTi (x=0, 3) dental alloys through thermal oxidation treatment.

    Science.gov (United States)

    Zhang, Jianfeng; Gan, Xiaxia; Tang, Hongqun; Zhan, Yongzhong

    2017-07-01

    In order to obtain material with low elastic modulus, good abrasion resistance and high corrosion stability as screw for dental implant, the biomedical Zr-20Nb and Zr-20Nb-3Ti alloy with low elastic modulus were thermal oxidized respectively at 700°C for 1h and 600°C for 1.25h to obtain the compact oxidized layer to improve its wear resistance and corrosion resistance. The results show that smooth compact oxidized layer (composed of monoclinic ZrO 2 , tetragonal ZrO 2 and 6ZrO 2 -Nb 2 O 5 ) with 22.6μm-43.5μm thickness and 1252-1306HV hardness can be in-situ formed on the surface of the Zr-20Nb-xTi (x=0, 3). The adhesion of oxidized layers to the substrates is determined to be 58.35-66.25N. The oxidized Zr-20Nb-xTi alloys reveal great improvement of the pitting corrosion resistance in comparison with the un-oxidized alloys. In addition, the oxidized Zr-20Nb-3Ti exhibits sharply reduction of the corrosion rates and the oxidized Zr-20Nb shows higher corrosion rates than un-oxidized alloys, which is relevant with the content of the t-ZrO 2 . Wear test in artificial saliva demonstrates that the wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) are superior to pure Ti. All of the un-oxidized Zr-20Nb-xTi (x=0, 3) alloys suffer from serious adhesive wear due to its high plasticity. Because of the protection from compact oxide layer with high adhesion and high hardness, the coefficients of friction and wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) alloys decrease 50% and 95%, respectively. The defects on the oxidized Zr-20Nb have a negative effect on the friction and wear properties. In addition, after the thermal oxidation, compression test show that elastic modulus and strength of Zr-20Nb-xTi (x=0, 3) increase slightly with plastic deformation after 40% of transformation. Furthermore, stripping of the oxidized layer from the alloy matrix did not occur during the whole experiments. As the surface oxidized Zr-20Nb-3Ti alloy has a combination of excellent performance

  10. Experimental and numerical study of the high temperature mechanical behaviour of the MoTiC cermets

    International Nuclear Information System (INIS)

    Cedat, Denis

    2006-01-01

    In this work, in order to study the mechanical behaviour of Mo-TiC cermets, compression tests have been carried out on different compositions as well as on different temperatures on the composition (MoTiC 25at% ) which will be extruded. The main results show that: 1)the increase of the (TiC) ceramic rate in the cermet increases the rupture stress but decreases the rupture resistance of this material. Moreover, a transition of behaviour seems to be observed for a critical TiC rate (MoTiC 25at% ), this transition seems to be due to the percolation of the ceramic particles. 2)the behaviour of the MoTiC 25at% cermet is brittle at ambient temperature and begins to have a plastic deformation at 300 C. Thus, the rupture stress decreases proportionally to the increase of the temperature whereas the rupture deformation increases. (O.M.)

  11. Apatite Formation and Biocompatibility of a Low Young’s Modulus Ti-Nb-Sn Alloy Treated with Anodic Oxidation and Hot Water

    Science.gov (United States)

    Tanaka, Hidetatsu; Mori, Yu; Noro, Atsushi; Kogure, Atsushi; Kamimura, Masayuki; Yamada, Norikazu; Hanada, Shuji; Masahashi, Naoya; Itoi, Eiji

    2016-01-01

    Ti-6Al-4V alloy is widely prevalent as a material for orthopaedic implants because of its good corrosion resistance and biocompatibility. However, the discrepancy in Young’s modulus between metal prosthesis and human cortical bone sometimes induces clinical problems, thigh pain and bone atrophy due to stress shielding. We designed a Ti-Nb-Sn alloy with a low Young’s modulus to address problems of stress disproportion. In this study, we assessed effects of anodic oxidation with or without hot water treatment on the bone-bonding characteristics of a Ti-Nb-Sn alloy. We examined surface analyses and apatite formation by SEM micrographs, XPS and XRD analyses. We also evaluated biocompatibility in experimental animal models by measuring failure loads with a pull-out test and by quantitative histomorphometric analyses. By SEM, abundant apatite formation was observed on the surface of Ti-Nb-Sn alloy discs treated with anodic oxidation and hot water after incubation in Hank’s solution. A strong peak of apatite formation was detected on the surface using XRD analyses. XPS analysis revealed an increase of the H2O fraction in O 1s XPS. Results of the pull-out test showed that the failure loads of Ti-Nb-Sn alloy rods treated with anodic oxidation and hot water was greater than those of untreated rods. Quantitative histomorphometric analyses indicated that anodic oxidation and hot water treatment induced higher new bone formation around the rods. Our findings indicate that Ti-Nb-Sn alloy treated with anodic oxidation and hot water showed greater capacity for apatite formation, stronger bone bonding and higher biocompatibility for osteosynthesis. Ti-Nb-Sn alloy treated with anodic oxidation and hot water treatment is a promising material for orthopaedic implants enabling higher osteosynthesis and lower stress disproportion. PMID:26914329

  12. Fast photoelectro-reduction of Cr{sup VI} over MoS{sub 2}@TiO{sub 2} nanotubes on Ti wire

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lixia; Zheng, Xutong; Liu, Ming [High Level Laboratory of Jiangxi Province for Persistent Pollutants Control, Recycle and Reuse, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Shenglian, E-mail: sllou@hnu.edu.cn [High Level Laboratory of Jiangxi Province for Persistent Pollutants Control, Recycle and Reuse, Nanchang Hangkong University, Nanchang 330063 (China); College of Material Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Yan [High Level Laboratory of Jiangxi Province for Persistent Pollutants Control, Recycle and Reuse, Nanchang Hangkong University, Nanchang 330063 (China); Li, Guifa [College of Material Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2017-05-05

    Highlights: • Few-layer MoS{sub 2} nanosheets decorated on the TiO{sub 2} NTAs via a facile hydrothermal method. • The composites possess a stable construction benefiting to the utilization of sunlight and electron transfer. • High concentration Cr{sup VI} can be fast reduced over MoS{sub 2}@TiO{sub 2} in the presence of appropriate LOAs and applied voltage. • Effect of LOAs, applied voltages and initial concentrations were performed. - Abstract: A stable MoS{sub 2} nanosheets@TiO{sub 2} NTAs composite was prepared via a simple hydrothermal process. Few-layer MoS{sub 2} nanosheets distributed on the TiO{sub 2} nanotube top surface and the inner walls rather than filling in the tubes, allowing abundant tubular channels open to environment and benefiting for efficient mass transport. Photocatalytic (PE) and photoelectrocatalytic (PEC) performance of the composite were evaluated on Cr{sup VI} reduction, with variable low molecule weight organic acids (LOAs) added as sacrificial electron donor to form a charge-transfer-complex (CTC) between LOAs and TiO{sub 2}/MoS{sub 2}, which is sensitive to the visible light illumination and could induce the photo-reduction of Cr{sup VI} and photo-oxidation of LOAs. The overall trend of Cr{sup VI} PEC rates are in the order as: L(+)-Tartaric acid > oxalic acid > citric acid > malic acid > amber acid, which is 103.9 > 62.5 > 31.2 > 21.6 > 2.5 mg/L min{sup −1} cm{sup −2}, respectively. The improved catalytic performance and excellent stability of the composite can be attributed to the abundant active adsorption and reaction sites on MoS{sub 2} nanosheets and the formation of a heterojunction between TiO{sub 2} and MoS{sub 2}. Moreover, the appropriate application of LOAs and voltage also have a great contribution to the utilization of sunlight and efficient separation of photogenerated carriers.

  13. Surface energy effects on the stability of anatase and rutile nanocrystals: A predictive diagram for Nb_2O_5-doped-TiO_2

    International Nuclear Information System (INIS)

    Silva, Andre Luiz da; Hotza, Dachamir; Castro, Ricardo H.R.

    2017-01-01

    Highlights: • Anatase-rutile phase transition diagram was built for nano Nb_2O_5-doped-TiO_2. • Nb_2O_5-doping postpones the anatase-to-rutile transition. • The stability crossover for TiO_2 was 17.3 nm, for 2 mol% Nb_2O_5-doped-TiO_2 ∼30 nm. • The surface energy for Nb_2O_5-doped-TiO_2 decreases systematically with Nb concentration. - Abstract: Titanium dioxide nanoparticles are widely used for photocatalysis, and the relative fraction of titanium dioxide polymorph, i.e. anatase, rutile, or brookite, significantly affects the final performance. Even though conventional phase diagrams indicate a higher stability for the rutile polymorph, it is well established that nanosizes benefit the anatase phase due to its smaller surface energy. However, doping elements are expected to change this behavior, once changes in both surface and bulk energies may occur. Nb_2O_5 is commonly added to TiO_2 to allow property control. However, the effect of niobium on the relative stability of anatase and rutile phases is not well understood from the thermodynamic point of view. The objective of this work was to build a new predictive nanoscale phase diagram for Nb_2O_5-doped TiO_2. Water adsorption microcalorimetry and high temperature oxide melt solution were used to obtain the surface and bulk enthalpies. The phase diagram obtained shows the stable titania polymorph as a function of the composition and size.

  14. The effect of aging on the critical current density in superconducting Nb-Ti-Zr alloys

    International Nuclear Information System (INIS)

    Ishida, Fumihiko; Doi, Toshio

    1979-01-01

    The effect of aging temperature, cold-reduction prior to aging, O 2 content and composition on the variation in the critical current density, J sub(c), by isothermal aging was investigated in heavily cold-worked Nb-Ti-Zr alloys on the Nb-Ti side. The results are summarized as follows: (1) When these alloys are aged isothermally at temperatures from 350 to 500 0 C, J sub(c) increases initially, reaches a maximum value and then decreases. Increase in J sub(c) of three orders of magnitude is possible as a result of aging. (2) The maximum value of J sub(c) on the isothermal aging curve becomes higher at a lower aging temperature, at a less cold-reduction prior to aging or with a higher O 2 content. (3) The J sub(c) of aged alloy becomes a maximum in composition containing 35 at%Nb, 60 to 65 at%Ti and less than 5 at%Zr. (4) The maximum value of J sub(c) was obtained for Nb-60.0 at%Ti-5.0 at%Zr alloy containing 1200 wt ppm O 2 , aged at 350 0 C for 330 h after 98.44% cold-reduction. The values of J sub(c) at 4.2 K were 2.4 x 10 9 A/m 2 at 5.0 T, 1.1 x 10 9 A/m 2 at 7.0 T and 3.0 x 10 8 A/m 2 at 9.0 T, respectively. The upper critical field of this specimen was 11.3 T at 4.2 K and its critical temperature was 8.6 K. (author)

  15. Tailoring the Activity for Oxygen Evolution Electrocatalysis on Rutile TiO2(110) by Transition-Metal Substitution

    DEFF Research Database (Denmark)

    Garcia-Mota, Monica; Vojvodic, Aleksandra; Metiu, Horia

    2011-01-01

    The oxygen evolution reaction (OER) on the rutile M-TiO2(110) (M = V, Nb, Ta, Cr, Mo, W, Mn, Fe, Ru, Ir, Ni) surfaces was investigated by using density functional theory calculations. The stability of different doped TiO2 systems was analyzed. The scaling relationship between the binding energies...... of OER intermediates (HOO* versus HO*) is found to follow essentially the same trend as for undoped oxides. Our theoretical analysis shows a lower overpotential associated with OER on the doped M-TiO2(110) than on the undoped TiO2(110). The theoretical activity of Cr-, Mo-, Mn-, and Ir-doped TiO2...

  16. Castability of Ti-6Al-7Nb alloy for dental casting

    OpenAIRE

    Wang, Tie Jun; 小林, 郁夫; 土居, 壽; 米山, 隆之

    1999-01-01

    Castability of Ti-6Al-7Nb alloy, CP Ti, and Co-Cr alloy was examined for mesh type and plate type specimens. The casting was carried out with a pressure type casting machine and commercial molding material. The castability of the mesh type specimen was evaluated in terms of the number of cast segments (castability index), and that of the plate type was evaluated by the area of the speci­men (casting rate). X-ray images processed by a digital imaging technique were used to identify the casting...

  17. Understanding the role of carbon atoms on microstructure and phase transformation of high Nb containing TiAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zeen; Hu, Rui; Zhang, Tiebang, E-mail: tiebangzhang@nwpu.edu.cn; Zhang, Fan; Kou, Hongchao; Li, Jinshan

    2017-02-15

    The microstructure and solidification behavior of high Nb containing TiAl alloys with the composition of Ti-46Al-8Nb-xC (x = 0.1, 0.7, 1.4, 2.5 at.%) prepared by arc-melting method have been investigated in this work. The results give evidence that the addition of carbon changes the solidification behavior from solidification via the β phase to the peritectic solidification. And carbon in solid solution enriches in the α{sub 2} phase and increases the microhardness. As the carbon content increases to 1.4 at.%, plate-shape morphology carbides Ti{sub 2}AlC (H phase) precipitate from the TiAl matrix which leads to the refinement microstructure. By aging at 1173 K for 24 h after quenching treatment, fine needle-like and granular shape Ti{sub 3}AlC (P phase) carbides are observed in the matrix of Ti-46Al-8Nb-2.5C alloy, which distribute along the lamellar structure or around the plate-shape Ti{sub 2}AlC. Transmission electron microscope observation shows that the Ti{sub 3}AlC carbides precipitate at dislocations. The phase transformation in-situ observations indicate that the Ti{sub 2}AlC carbides partly precipitate during the solid state phase transformation process. - Highlights: •Carbon changes the solidification behavior from β phase to peritectic solidification. •Dislocations in solution treated γ phase act as nucleation sites of Ti{sub 3}AlC precipitations. •Ti{sub 3}AlC precipitates as fine needle-like or granular shape in the solution treated matrix. •Ti{sub 2}AlC carbides precipitate during the solid state phase transformation process.

  18. Phase Stability in the Mo-Ti-Zr-C System via Thermodynamic Modeling and Diffusion Multiple Validation

    Science.gov (United States)

    Kar, Sujoy Kumar; Dheeradhada, Voramon S.; Lipkin, Don M.

    2013-08-01

    Alloys in the Mo-rich corner of the Mo-Ti-Zr-C system have found broad applications in non-oxidizing environments requiring structural integrity well beyond 1273 K (1000 °C). Alloys such as TZM (Mo-0.5Ti-0.08Zr-0.03C by weight %) and TZC (Mo-1.2Ti-0.3Zr-0.1C by weight) owe much of their high temperature strength and microstructural stability to MC and M2C carbide phases. In turn, the stability of the respective carbides and the subsequent mechanical behavior of the alloys are strongly dependent on the alloying additions and thermal history. A CALPHAD-based thermodynamic modeling approach is employed to develop a quaternary thermodynamic database for the Mo-Ti-Zr-C system. The thermodynamic database thus developed is validated with diffusion multiple experiments and the validated database is exercised to elucidate the effects of alloying and thermal history on the phase equilibrium in Mo-rich alloys.

  19. Synthesis and photocatalytic activity of hydrated layered perovskite K2-xLa2Ti3-xNb xO10 (0 ≤ x ≤ 1) and protonated derivatives

    International Nuclear Information System (INIS)

    Huang Yunfang; Wu Jihuai; Wei Yuelin; Hao Sancun; Huang Miaoliang; Lin Jianming

    2007-01-01

    A series of photocatalytic intercalated materials K 2-x La 2 Ti 3-x Nb x O 10 (0 ≤ x ≤ 1) and a series of its protonated derivatives H 2-x La 2 Ti 3-x Nb x O 10 were prepared by solid-state reaction and ion-exchange reaction. The photocatalytic activities of samples were evaluated using methanol as electron donor under UV irradiation. All H 2-x La 2 Ti 3-x Nb x O 10 samples possessed approximately twofold higher photocatalytic activity than the corresponding K 2-x La 2 Ti 3-x Nb x O 10 . This difference was most pronounced for the photocatalyst H 1.9 La 2 Ti 2.9 Nb 0.1 O 10 which showed the highest activity: 22 μmol H 2 /catalyst (g) for 5 h, more than three times the activity of K 1.9 La 2 Ti 2.9 Nb 0.1 O 10

  20. Synthesis of MoVTeNb Oxide Catalysts with Tunable Particle Dimensions

    DEFF Research Database (Denmark)

    Kolenko, Yury V.; Zhang, Wei; d'Alnoncourt, Raoul Naumann

    2011-01-01

    Reliable procedures for the controlled synthesis of phase-pure MoVTeNb mixed oxides with M1 structure (ICSD 55097) and tunable crystal dimensions were developed to study the structure sensitivity of the selective oxidation of propane to acrylic acid. A series of powdered M1 catalysts...... catalysts were studied in the selective oxidation of propane to acrylic acid, revealing that active sites appear on the entire M1 surface and illustrating the high sensitivity of catalyst performance on the catalyst synthesis method....

  1. Processing and properties of Nb-Ti-based alloys

    International Nuclear Information System (INIS)

    Sikka, V.K.; Viswanathan, S.

    1992-01-01

    The processing characteristics, tensile properties, and oxidation response of two Nb-Ti-Al-Cr alloys were investigated. One creep test at 650 C and 172 MPa was conducted on the base alloy which contained 40Nb-40Ti-10Al-10Cr. A second alloy was modified with 0.11 at. % carbon and 0.07 at. % yttrium. Alloys were arc melted in a chamber backfilled with argon, drop cast into a water-cooled copper mold, and cold rolled to obtain a 0.8-mm sheet. The sheet was annealed at 1,100 C for 0.5 h. Longitudinal tensile specimens and oxidation specimens were obtained for both the base alloy and the modified alloy. Tensile properties were obtained for the base alloy at room temperature, 400, 600, 700, 800, 900, and 1,000 C, and for the modified alloy at room temperature, 400, 600, 700, and 800 C. Oxidation tests on the base alloy and modified alloy, as measured by weight change, were carried out at 600, 700, 800, and 900 C. Both the base alloy and the modified alloy were extremely ductile and were cold rolled to the final sheet thickness of 0.8 mm without an intermediate anneal. The modified alloy exhibited some edge cracking during cold during cold rolling. Both alloys recrystallized at the end of a 0.5-h annealing treatment. The alloys exhibited moderate strength and oxidation resistance below 600 C, similar to the results of alloys reported in the literature

  2. Multi-level resistive switching behaviors and retention characteristics in ZnO/Nb:SrTiO3 heterojunction

    Science.gov (United States)

    Ren, Yong; Li, Jiachen; Zhang, Weifeng; Jia, Caihong

    2017-10-01

    Epitaxial ZnO thin films were grown on SrTiO3:Nb (NSTO) substrates by rf magnetron sputtering method. The multi-level resistance states were observed by applying different amplitudes and/or polarities of voltage pulses, which is supposed to be related to the drift of oxygen vacancies. Furthermore, the decay of retention is also corresponding to the migration of oxygen vacancies. The retention and cycle stability implies that the ZnO/Nb:SrTiO3 heterojunctions are promising for high density memory application.

  3. Phase evolution in Al-Ni-(Ti, Nb, Zr) powder blends by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, A. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India); Manna, I. [Metallurgical and Materials Engineering Department, I.I.T., Kharagpur 721302 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India)], E-mail: c.partha@mailcity.com

    2007-08-25

    Mechanical alloying of Al-rich Al-Ni-ETM (ETM = Ti, Nb, Zr) elemental powder blends by planetary ball milling yielded amorphous and/or nanocrystalline products after ball milling for suitable duration. Powder samples collected at different stages of ball milling have been examined by X-ray diffraction, differential scanning caloremetry and high-resolution transmission electron microscopy to examine the solid-state phase evolution. Powder blends having nominal composition of Al{sub 80}Ni{sub 10}Ti{sub 10} and Al{sub 80}Ni{sub 10}Nb{sub 10} yielded predominantly amorphous products, while the other alloys formed composite microstructures comprising nanaocrystalline and amorphous solid solutions. The amorphous Al{sub 80}Ni{sub 10}Ti{sub 10} alloy was mixed with different amounts of Al powder, and subjected to warm rolling after consolidation within the Al-cans with or without intermediate annealing for 10 min at 500 K to obtain sheet of 2.5 mm thickness. Notable improvement in mechanical properties has been achieved for the composite sheets in comparison to the pure Al.

  4. Influence of Ta and Ti Doping on the High Field Performance of (Nb, Ta, Ti)3Sn Multifilamentary Wires based on Osprey Bronze with High Tin Content

    International Nuclear Information System (INIS)

    Abaecherli, V; Uglietti, D; Lezza, P; Seeber, B; Fluekiger, R; Cantoni, M; Buffat, P-A

    2006-01-01

    Ta and Ti are the most widely used additions for technical Nb 3 Sn multifilamentary superconductors. These elements are known to influence grain growth, grain morphology and chemical composition in the A15 layer, hence the current carrying properties of the wires over a wide magnetic field range. So far only few studies tried to compare systematically Ta and Ti doped and undoped Nb 3 Sn wires in the frame of the same work, down to a nanometric scale. We present an investigation on several multifilamentary (Nb, Ta, Ti) 3 Sn bronze route wires, fabricated at a laboratory scale, with various amounts of additives. The wires consist of fine filaments embedded in a Cu-Sn or Cu-Sn-Ti Osprey bronze with > 15 wt.% Sn and an external Cu stabilization. Microstructural observations are compared with the results of J c and n values measured up to 21 T at 4.2 and 2.2 K, and for longitudinal strains up to 0.5%. Non-Cu J c values up to 300 Amm -2 and n values up to 50 at 17 T and 4.2 K show clearly that wires with Ti addition to the bronze have a better performance with respect to wires with Ti additions to the filaments

  5. In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders.

    Science.gov (United States)

    Fischer, M; Joguet, D; Robin, G; Peltier, L; Laheurte, P

    2016-05-01

    Ti-Nb alloys are excellent candidates for biomedical applications such as implantology and joint replacement because of their very low elastic modulus, their excellent biocompatibility and their high strength. A low elastic modulus, close to that of the cortical bone minimizes the stress shielding effect that appears subsequent to the insertion of an implant. The objective of this study is to investigate the microstructural and mechanical properties of a Ti-Nb alloy elaborated by selective laser melting on powder bed of a mixture of Ti and Nb elemental powders (26 at.%). The influence of operating parameters on porosity of manufactured samples and on efficacy of dissolving Nb particles in Ti was studied. The results obtained by optical microscopy, SEM analysis and X-ray microtomography show that the laser energy has a significant effect on the compactness and homogeneity of the manufactured parts. Homogeneous and compact samples were obtained for high energy levels. Microstructure of these samples has been further characterized. Their mechanical properties were assessed by ultrasonic measures and the Young's modulus found is close to that of classically elaborated Ti-26 Nbingot. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Surface Characterization, Corrosion Resistance and in Vitro Biocompatibility of a New Ti-Hf-Mo-Sn Alloy

    Science.gov (United States)

    Ion, Raluca; Drob, Silviu Iulian; Ijaz, Muhammad Farzik; Vasilescu, Cora; Osiceanu, Petre; Gordin, Doina-Margareta; Cimpean, Anisoara; Gloriant, Thierry

    2016-01-01

    A new superelastic Ti-23Hf-3Mo-4Sn biomedical alloy displaying a particularly large recovery strain was synthesized and characterized in this study. Its native passive film is very thick (18 nm) and contains very protective TiO2, Ti2O3, HfO2, MoO2, and SnO2 oxides (XPS analysis). This alloy revealed nobler electrochemical behavior, more favorable values of the corrosion parameters and open circuit potentials in simulated body fluid in comparison with commercially pure titanium (CP-Ti) and Ti-6Al-4V alloy taken as reference biomaterials in this study. This is due to the favorable influence of the alloying elements Hf, Sn, Mo, which enhance the protective properties of the native passive film on alloy surface. Impedance spectra showed a passive film with two layers, an inner, capacitive, barrier, dense layer and an outer, less insulating, porous layer that confer both high corrosion resistance and bioactivity to the alloy. In vitro tests were carried out in order to evaluate the response of Human Umbilical Vein Endothelial Cells (HUVECs) to Ti-23Hf-3Mo-4Sn alloy in terms of cell viability, cell proliferation, phenotypic marker expression and nitric oxide release. The results indicate a similar level of cytocompatibility with HUVEC cells cultured on Ti-23Hf-3Mo-4Sn substrate and those cultured on the conventional CP-Ti and Ti-6Al-4V metallic materials. PMID:28773939

  7. The Structure and Magnetic Properties of Pr 3MO7 with M = Nb, Ta, and Sb

    Science.gov (United States)

    Vente, J. F.; Helmholdt, R. B.; IJdo, D. J. W.

    1994-01-01

    The crystal structure of the fluorite-related praseodymium compounds with the composition Pr 3MO7, M = Nb, Ta, and Sb, have been determined using Rietveld refinement from X-ray and neutron powder diffraction data at 293 and 4 K. The structure described is orthorhombic with space group Cmcm (No. 63). It is a superstructure of the cubic fluorite structure with unit cell parameters a orth ≈ 2a c, b orth ≈ c orth ≈ a c2, as in La 3NbO 7. This structure consists of chains of corner linked MO 6 octahedra parallel with the c-axis. The magnetic susceptibility was measured between 4 and 300 K. The compounds obey the Curie-Weiss law including a Van Vleck temperature independent term. Pr 3SbO 7 shows a small deviation from this law below 25 K.

  8. The Mechanical Properties and In Vitro Biocompatibility of PM-Fabricated Ti-28Nb-35.4Zr Alloy for Orthopedic Implant Applications.

    Science.gov (United States)

    Xu, Wei; Li, Ming; Wen, Cuie; Lv, Shaomin; Liu, Chengcheng; Lu, Xin; Qu, Xuanhui

    2018-03-30

    A biocompatible Ti-28Nb-35.4Zr alloy used as bone implant was fabricated through the powder metallurgy process. The effects of mechanical milling and sintering temperatures on the microstructure and mechanical properties were investigated systematically, before in vitro biocompatibility of full dense Ti-28Nb-35.4Zr alloy was evaluated by cytotoxicity tests. The results show that the mechanical milling and sintering temperatures have significantly effects on the density and mechanical properties of the alloys. The relative density of the alloy fabricated by the atomized powders at 1500 °C is only 83 ± 1.8%, while the relative density of the alloy fabricated by the ball-milled powders can rapidly reach at 96.4 ± 1.3% at 1500 °C. When the temperature was increased to 1550 °C, the alloy fabricated by ball-milled powders achieve full density (relative density is 98.1 ± 1.2%). The PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C can achieve a wide range of mechanical properties, with a compressive yield strength of 1058 ± 35.1 MPa, elastic modulus of 50.8 ± 3.9 GPa, and hardness of 65.8 ± 1.5 HRA. The in vitro cytotoxicity test suggests that the PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C has no adverse effects on MC3T3-E1 cells with cytotoxicity ranking of 0 grade, which is nearly close to ELI Ti-6Al-4V or CP Ti. These properties and the net-shape manufacturability makes PM-fabricated Ti-28Nb-35.4Zr alloy a low-cost, highly-biocompatible, Ti-based biomedical alloy.

  9. The Mechanical Properties and In Vitro Biocompatibility of PM-Fabricated Ti-28Nb-35.4Zr Alloy for Orthopedic Implant Applications

    Science.gov (United States)

    Xu, Wei; Li, Ming; Wen, Cuie; Lv, Shaomin; Liu, Chengcheng; Lu, Xin

    2018-01-01

    A biocompatible Ti-28Nb-35.4Zr alloy used as bone implant was fabricated through the powder metallurgy process. The effects of mechanical milling and sintering temperatures on the microstructure and mechanical properties were investigated systematically, before in vitro biocompatibility of full dense Ti-28Nb-35.4Zr alloy was evaluated by cytotoxicity tests. The results show that the mechanical milling and sintering temperatures have significantly effects on the density and mechanical properties of the alloys. The relative density of the alloy fabricated by the atomized powders at 1500 °C is only 83 ± 1.8%, while the relative density of the alloy fabricated by the ball-milled powders can rapidly reach at 96.4 ± 1.3% at 1500 °C. When the temperature was increased to 1550 °C, the alloy fabricated by ball-milled powders achieve full density (relative density is 98.1 ± 1.2%). The PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C can achieve a wide range of mechanical properties, with a compressive yield strength of 1058 ± 35.1 MPa, elastic modulus of 50.8 ± 3.9 GPa, and hardness of 65.8 ± 1.5 HRA. The in vitro cytotoxicity test suggests that the PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C has no adverse effects on MC3T3-E1 cells with cytotoxicity ranking of 0 grade, which is nearly close to ELI Ti-6Al-4V or CP Ti. These properties and the net-shape manufacturability makes PM-fabricated Ti-28Nb-35.4Zr alloy a low-cost, highly-biocompatible, Ti-based biomedical alloy. PMID:29601517

  10. Optical and structural properties of Mo-doped NiTiO{sub 3} materials synthesized via modified Pechini methods

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Thanh-Truc; Kang, Sung Gu; Shin, Eun Woo, E-mail: ewshin@ulsan.ac.kr

    2017-07-31

    Highlights: • Mo-doped NiTiO{sub 3} materials were well prepared by a modified Pechini method. • Recombination rates of the materials were significantly inhibited by Mo doping. • Defect sites were generated by the substitution of Mo for Ni or Ti positions. • The generation of defect sites gradually decreased the grain sizes of the materials. • The surface areas of the materials were increased with decreasing the grain sizes. - Abstract: In this study, molybdenum (Mo)-doped nickel titanate (NiTiO{sub 3}) materials were successfully synthesized as a function of Mo content through a modified Pechini method followed by a solvothermal treatment process. Various characterization methods were employed to investigate the optical and structural properties of the materials. XRD patterns clearly showed that the NiTiO{sub 3} structure maintained a single phase with no observed crystalline structure transformations, even after the addition of 10 wt.% Mo. In the Raman spectra and XRD patterns, peak positions shifted with a change in Mo content, confirming that the NiTiO{sub 3} lattice was doped with Mo. On the other hand, Mo doping of NiTiO{sub 3} materials changed their optical properties. DRS-UV demonstrated that the addition of Mo increased photon absorption within the UV region. Relaxation processes were inhibited by Mo doping, which was evident in the PL spectra. Structural properties of the prepared materials were studied via FE-SEM and HR-TEM. The measured surface area increased proportionally with Mo content due to a reduction in grain size of the materials.

  11. MoNbTaV Medium-Entropy Alloy

    Directory of Open Access Journals (Sweden)

    Hongwei Yao

    2016-05-01

    Full Text Available Guided by CALPHAD (Calculation of Phase Diagrams modeling, the refractory medium-entropy alloy MoNbTaV was synthesized by vacuum arc melting under a high-purity argon atmosphere. A body-centered cubic solid solution phase was experimentally confirmed in the as-cast ingot using X-ray diffraction and scanning electron microscopy. The measured lattice parameter of the alloy (3.208 Å obeys the rule of mixtures (ROM, but the Vickers microhardness (4.95 GPa and the yield strength (1.5 GPa are about 4.5 and 4.6 times those estimated from the ROM, respectively. Using a simple model on solid solution strengthening predicts a yield strength of approximately 1.5 GPa. Thermodynamic analysis shows that the total entropy of the alloy is more than three times the configurational entropy at room temperature, and the entropy of mixing exhibits a small negative departure from ideal mixing.

  12. Synthesis and characterization of MoS2/Ti composite coatings on Ti6Al4V prepared by laser cladding

    Science.gov (United States)

    Yang, Rongjuan; Liu, Zongde; Wang, Yongtian; Yang, Guang; Li, Hongchuan

    2013-02-01

    The MoS2/Ti composite coating with sub-micron grade structure has been prepared on Ti6Al4V by laser method under argon protection. The morphology, microstructure, microhardness and friction coefficient of the coating were examined. The results indicated that the molybdenum disulfide was decomposed during melting and resolidification. The phase organization of composite coating mainly consisted of ternary element sulfides, molybdenum sulfides and titanium sulfides. The friction coefficient of and the surface roughness the MoS2/Ti coating were lower than those of Ti6Al4V. The composite coating exhibits excellent adhesion to the substrates, less surface roughness, good wear resistance and harder surface.

  13. Structural Properties and Thermodynamic Stability of Metastable Phases in the Zr-Nb and Ti-V Systems

    International Nuclear Information System (INIS)

    Aurelio, Gabriela

    2003-01-01

    The structural properties and relative stability of metastable phases have been studied in the Zr-Nb and Ti-V systems.The first part of this Thesis is connected to a previous work performed in our Group (G. Grad, PhD Thesis, Instituto Balseiro, Argentina, 1999).It presents a phenomenological analysis of the systematics of interatomic distances in the omega (Ω ) and bcc (β) phases of the transition metals, which concerns a parameter entering into Pauling's resonating-valence- bond-theory and the structural and bonding properties of the Ω and β phases.Neutron diffraction experiments in Zr-Nb and Ti-V alloys are reported, aimed at studying possible atomic ordering in the Ω phase and the composition dependence of its interatomic distances.An extensive neutron diffraction study was performed on a series of Zr-Nb and Ti-V alloys quenched from high temperatures, where β is the stable phase.Upon quenching, three metastable structures are formed, viz., the hcp (∝ q ) phase, the Ω q phase, and the untransformed β q phase.The structural properties of these metastable phases were determined as a function of the Nb and V contents to generate a reliable experimental database.With such data, a series of issues are discussed related to the structure, relative stability, and phase relations in the alloys and its constitutive elements.The effect of composition upon the lattice parameters of the metastable β q and Ω q phases was combined in a consistent way with a critical analysis of structural and thermophysical data on the metastable phases of Ti and Zr.The relative stability of the metastable ∝ q , Ω q and β q phases in Zr-Nb alloys, and its evolution towards thermodynamic equilibrium, were studied combining neutron thermodiffraction and analytical electron microscopy techniques.During isothermal heat treatments performed at high temperature, the structural properties of the alloys were determined as a function of temperature, time and composition.A method of

  14. Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective.

    Science.gov (United States)

    Chen, Biao; Meng, Yuhuan; Sha, Junwei; Zhong, Cheng; Hu, Wenbin; Zhao, Naiqin

    2017-12-21

    The rapidly increasing severity of the energy crisis and environmental degradation are stimulating the rapid development of photocatalysts and rechargeable lithium/sodium ion batteries. In particular, MoS 2 /TiO 2 based nanocomposites show great potential and have been widely studied in the areas of both photocatalysis and rechargeable lithium/sodium ion batteries due to their superior combination properties. In addition to the low-cost, abundance, and high chemical stability of both MoS 2 and TiO 2 , MoS 2 /TiO 2 composites also show complementary advantages. These include the strong optical absorption of TiO 2 vs. the high catalytic activity of MoS 2 , which is promising for photocatalysis; and excellent safety and superior structural stability of TiO 2 vs. the high theoretic specific capacity and unique layered structure of MoS 2 , thus, these composites are exciting as anode materials. In this review, we first summarize the recent progress in MoS 2 /TiO 2 -based nanomaterials for applications in photocatalysis and rechargeable batteries. We highlight the synthesis, structure and mechanism of MoS 2 /TiO 2 -based nanomaterials. Then, advancements and strategies for improving the performance of these composites in photocatalytic degradation, hydrogen evolution, CO 2 reduction, LIBs and SIBs are critically discussed. Finally, perspectives on existing challenges and probable opportunities for future exploration of MoS 2 /TiO 2 -based composites towards photocatalysis and rechargeable batteries are presented. We believe the present review would provide enriched information for a deeper understanding of MoS 2 /TiO 2 composites and open avenues for the rational design of MoS 2 /TiO 2 based composites for energy and environment-related applications.

  15. Ferroelectric BaTiO3 and LiNbO3 Nanoparticles Dispersed in Ferroelectric Liquid Crystal Mixtures: Electrooptic and Dielectric (Postprint)

    Science.gov (United States)

    2016-10-14

    strength for non- doped LF4 and LiNbO3/LF4 nanocolloids at temperature 30C. 146 R. K . SHUKLA ET AL. 6 Distribution A. Approved for public release (PA...AFRL-RX-WP-JA-2017-0210 FERROELECTRIC BaTiO3 AND LiNbO3 NANOPARTICLES DISPERSED IN FERROELECTRIC LIQUID CRYSTAL MIXTURES: ELECTROOPTIC...COMMAND UNITED STATES AIR FORCE Ferroelectric BaTiO3 and LiNbO3 nanoparticles dispersed in ferroelectric liquid crystal mixtures: Electrooptic and

  16. Dielectric and Energy Storage Properties of Ba0.65Sr0.35TiO3 Ceramics Modified by BiNbO4

    Science.gov (United States)

    Zheng, Yi; Zhang, Jihua; Wei, Meng; Dong, Xiangxiang; Huang, Jiapeng; Wu, Kaituo; Chen, Hongwei

    2018-02-01

    (1 - x) (Ba0.65Sr0.35TiO3)-xBiNbO4 (x = 0.0-0.15) ceramic were prepared by solid-state reaction method. The phase composition, microstructure, dielectric properties, polarization-electric field, breakdown strength and energy storage behaviors for the BiNbO4-modified Ba0.65Sr0.35TiO3 ceramics were investigated. With the addition of BiNbO4, the remnant polarization and saturation polarization decreased and the nonlinearity was suppressed. When x = 0.07, the maximum recoverable energy storage achieved was 0.5 J/cm3, 1.5 times that of un-doped Ba0.65Sr0.35TiO3 ceramics, with an efficiency of 96.89% and a breakdown electric field reaching 15.3 kV/mm. Therefore, BiNbO4 doping could improve the energy storage properties of Ba0.65Sr0.35TiO3 for high-energy pulse capacitor application.

  17. Self propagating high temperature synthesis (SHS) of the Fe(TiMo)C master alloy using ferroalloys

    International Nuclear Information System (INIS)

    Erauskin, J. I.; Sargyan, A.; Arana, J. L.

    2009-01-01

    Titanium monocarbide TiC is very hard, stable both at high and low temperatures and relatively easy to synthesize from its constituent elements by SHS. Nevertheless, it is difficult to use, as alloying element, in the reinforcement of steels manufactured by liquid metallurgy due to its low wettability by molten steel. To achieve this purpose and due to its better wettability, it is more appropriate to use a master alloy formed by the complex carbide (TiMo)C bonded in Fe. The simplest and most economic way to fabricate such a master alloy Fe(TiMo)C is, again, by SHS, with the added advantage that it can be manufactured using the commercial ferroalloys FeTi and FeMo instead of the individual elements Fe, Ti and Mo. In this work, we describe such a process as well as the characteristics of the master alloy obtained. (Author) 13 refs

  18. Experimental studies on the dynamic tensile behavior of Ti-6Al-2Sn-2Zr-3Mo-1Cr-2Nb-Si alloy with Widmanstatten microstructure at elevated temperatures

    International Nuclear Information System (INIS)

    Gong Xuhui; Wang Yu; Xia Yuanming; Ge Peng; Zhao Yongqing

    2009-01-01

    The tensile behavior of a newly developed Ti-6Al-2Sn-2Zr-3Mo-1Cr-2Nb-Si alloy, referred as TC21, is investigated at temperatures ranging from 298 to 1023 K and under constant strain rate loadings ranging from 0.001 to 1270 s -1 . The results show that temperature and strain rate have significant effects on the tensile behavior of the material. At low strain rates of 0.001 and 0.05 s -1 , a discontinuity is found in the yield stress-temperature curve. And the discontinuity temperature increases with increasing strain rate. The analysis of temperature and strain rate dependence of unstable strain indicates a high-velocity-ductility phenomenon at elevated temperatures. Scanning electron microscope (SEM) analysis shows that the material is broken in a mixture manner of ductile fracture and intergranular fracture under low strain rates at room temperature, while the fracture manner changes to totally ductile fracture under other testing conditions. The width and depth of ductile dimples increase with increasing temperature. No adiabatic shear band is found in the tensile deformation of the material.

  19. Effect of applied bias voltage on corrosion-resistance for TiC{sub 1-x}N{sub x} and Ti{sub 1-x}Nb{sub x}C{sub 1-y}N{sub y} coatings

    Energy Technology Data Exchange (ETDEWEB)

    Caicedo, J.C., E-mail: Jcesarca@calima.univalle.edu.co [Department of Physics, Universidad del Valle, Ciudad Universitaria Melendez, A.A. 25360 Cali (Colombia); Department de Fisica Aplicada i Optica, Universitat de Barcelona, Catalunya (Spain); Amaya, C. [Department of Physics, Universidad del Valle, Ciudad Universitaria Melendez, A.A. 25360 Cali (Colombia); Laboratorio de Recubrimientos Duros DT-ASTIN SENA, Cali (Colombia); Yate, L. [Department de Fisica Aplicada i Optica, Universitat de Barcelona, Catalunya (Spain); Aperador, W.; Zambrano, G.; Gomez, M.E. [Department of Physics, Universidad del Valle, Ciudad Universitaria Melendez, A.A. 25360 Cali (Colombia); Alvarado-Rivera, J.; Munoz-Saldana, J. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Queretaro (Mexico); Prieto, P. [Department of Physics, Universidad del Valle, Ciudad Universitaria Melendez, A.A. 25360 Cali (Colombia); Centro de Excelencia en Nuevos Materiales, Calle 13 100-00 Edificio 320, espacio 1026, Cali (Colombia)

    2010-02-15

    Corrosion-resistance behavior of titanium carbon nitride (Ti-C-N) and titanium niobium carbon nitride (Ti-Nb-C-N) coatings deposited onto Si(1 0 0) and AISI 4140 steel substrates via r.f. magnetron sputtering process was analyzed. The coatings in contact with a solution of sodium chloride at 3.5% were studied by Tafel polarization curves and impedance spectroscopy methods (EIS). Variations of the bias voltage were carried out for each series of deposition to observe the influence of this parameter upon the electrochemical properties of the coatings. The introduction of Nb in the ternary Ti-C-N film was evaluated via X-ray diffraction (XRD) analysis. The structure was characterized by using Raman spectroscopy to identify ternary and quaternary compounds. Surface corrosion processes were characterized using optical microscopy and scanning electron microscopy (SEM). XRD results show conformation of the quaternary phase, change in the strain of the film, and lattice parameter as the effect of the Nb inclusion. The main Raman bands were assigned to interstitial phases and 'impurities' of the coatings. Changes in Raman intensities were attributed to the incorporation of niobium in the Ti-C-N structure and possibly to resonance enhancement. Finally, the corrosion data obtained for Ti-C-N were compared with the results of corrosion tests of Ti-Nb-C-N coating. The results obtained showed that the incorporation of niobium to Ti-C-N coatings led to an increase in the corrosion-resistance. On another hand, an increase in the bias voltage led to a decrease in the corrosion-resistance for both Ti-C-N and Ti-Nb-C-N coatings.

  20. Synthesis of anatase nanoparticles with extremely wide solid solution range and ScTiNbO6 with α-PbO2 structure

    International Nuclear Information System (INIS)

    Hirano, Masanori; Ito, Takaharu

    2009-01-01

    Anatase-type nanoparticles Sc X Ti 1-2X Nb X O 2 with wide solid solution range (X=0-0.35) were hydrothermally formed at 180 deg. C for 5 h. The lattice parameters a 0 and c 0 , and the optical band gap of anatase gradually and linearly increased with the increase of the content of niobium and scandium from X=0 to 0.35. Their photocatalytic activity and adsorptivity by the measurement of the concentration of methylene blue (MB) that remained in the solution in the dark or under UV-light irradiation were evaluated. The anatase phase existed stably up to 900 deg. C for the samples with X=0.25-0.30 and 750 deg. C for that with X=0.35 during heat treatment in air. The phase with α-PbO 2 structure and the rutile phases coexisted in the samples with X=0.25-0.30 after heated at temperatures above 900-950 deg. C. The α-PbO 2 structure having composition ScTiNbO 6 with possibly some cation order similar to that seen in wolframite existed as almost completely single phase after heat treatment at temperatures 900-1500 deg. C through phase transformation from anatase-type ScTiNbO 6 . - Graphical abstract: Anatase-type Sc X Ti 1-2X Nb X O 2 solid solutions with wide solid solution range (X=0-0.35) were hydrothermally formed as nanoparticles from the precursor solutions of Sc(NO 3 ) 3 , TiOSO 4 , NbCl 5 at 180 deg. C for 5 h using the hydrolysis of urea. Anatase-type ScTiNbO 6 was synthesized under hydrothermal condition. ScTiNbO 6 having α-PbO 2 structure with possibly some cation order similar to that seen in wolframite was formed through phase transformation above 900 deg. C.

  1. Synthesis and some properties of monocrystals. [Monocrystals-SbTiNbO6

    Energy Technology Data Exchange (ETDEWEB)

    Popolitov, V I; Yaroslavskij, I M

    1985-01-01

    The Sb2O3-Nb2O5-TiO2- KHF2-H2O2-H2O system was studied in search for new ferroelectric monocrystals containing oxide forms of antimony, niobium and tantalum. The new compounds were synthesized in batch autoclaves at 500-600 deg, temperature gradient along the vertical autoclave axis being 0.2-0.5 degr/cm. The SbTiNbO6 monocrystals formed as a result of hydrothermal synthesis are assigned to rhombic crystal structure, their electric conductivity and dielectric permittivity at room temperature are 10 S xcm and 75, respectively. Differential thermal analysis of samples has shown the presence of phase transformation in them in the 270 to 280 range. Pyroelectric effect has been observed in monocrystals in the -180 to +280 deg range. The synthesized antimony titaniobate is concluded to be a ferroelectric with the Curie point Tsub(C)=280 +- 10 deg.

  2. Alkali-heat treatment of a low modulus biomedical Ti-27Nb alloy

    International Nuclear Information System (INIS)

    Zhou, Y; Wang, Y B; Zhang, E W; Cheng, Y; Xiong, X L; Zheng, Y F; Wei, S C

    2009-01-01

    This study focuses on the surface modification of a near β-type Ti-27 wt.% Nb alloy by alkali-heat treatment. The influence of alkali concentration, alkali-treated time and alkali-treated temperature on the microstructure and constitutional phases of the modified surface is investigated by SEM, XRD and ICP. Immersion experiments in a simulated body fluid (SBF) were carried out to examine the Ca-P phase forming ability of the modified surfaces. The SEM observation and XRD analysis revealed that a sodium titanate layer is formed after alkali-heat treatment. The morphology and Ca-P phase forming of the layer are greatly affected by the surface roughness of the samples, the alkali concentration, the alkali-treated time and alkali-treated temperature. The results of SBF immersion, which are obtained by ICP analysis, indicate that the activated sodium titanate layer prepared by alkali-heat treatment is beneficial to further improving the biocompatibility of the Ti-27 wt.% Nb alloy.

  3. Electric Properties of Pb(Sb1/2Nb1/2)O3 PbTiO3 PbZrO3 Ceramics

    Science.gov (United States)

    Kawamura, Yasushi; Ohuchi, Hiromu

    1994-09-01

    Solid-solution ceramics of ternary system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 were prepared by the solid-state reaction of powder materials. Ceramic, electric, dielectric and piezoelectric properties and crystal structures of the system were studied. Sintering of the system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 is much easier than that of each end composition, and well-sintered high-density ceramics were obtained for the compositions near the morphotropic transformation. Piezoelectric ceramics with high relative dielectric constants, high radial coupling coefficient and low resonant resistance were obtained for the composition near the morphotropic transformation. The composition Pb(Sb1/2Nb1/2)0.075Ti0.45Zr0.475O3 showed the highest dielectric constant (ɛr=1690), and the composition Pb(Sb1/2Nb1/2)0.05Ti0.45Zr0.5O3 showed the highest radial coupling coefficient (kp=64%).

  4. Hyperfine Interaction Studies on Y, Zr, Nb, Mo, Rh, In and Xe in Co

    International Nuclear Information System (INIS)

    Seewald, G.; Zech, E.; Ratai, H.; Schmid, R.; Stadler, R.; Schramm, O.; Koenig, C.; Hinfurtner, B.; Hagn, E.; Deicher, M.; Eder, R.; Forkel-Wirth, D.

    2004-01-01

    Nuclear magnetic resonance on oriented nuclei and modulated adiabatic fast passage on oriented nuclei measurements were performed on several 4d and 5sp impurities in polycrystalline Co(fcc) foils and Co(hcp) single crystals. The hyperfine fields of Y and Zr in Co(fcc), the hyperfine fields of Y, Zr, Nb, Mo, Rh, In and Xe in Co(hcp), the electric field gradients of Zr, Nb and In in Co(hcp), and the nuclear spin-lattice relaxations of Zr, Nb, Rh and In in Co(hcp) were determined. The dependence of the hyperfine fields and electric field gradients in Co(hcp) on the angle between the magnetization and the c axis was investigated in most cases. The magnetic-field dependence of the spin-lattice relaxation was studied for Nb, Rh and In in Co(hcp), applying the magnetic field perpendicular to the c axis. The known hyperfine interaction parameters of the4d and 5sp impurities in Co(fcc) and Co(hcp) are summarized. The new results provide a more detailed picture of the hyperfine interaction in Co.

  5. Production and fabrication of 2500-lb Nb--Ti ingots to rod

    International Nuclear Information System (INIS)

    Cordier, T.E.; McDonald, W.K.

    1975-01-01

    Interest in Nb--Ti superconducting devices is exploding. This paper outlines the critical production criteria for this material. Areas discussed include ingot blending, melting, forging, extrusion, and rod reducing with emphasis on the metallurgical considerations affecting mechanical properties. Data are included relating process parameters to TEM finding as well as R.T. ductility and optical microscopy

  6. Chemical state and phase structure of (TaNbTiW)N films prepared by combined magnetron sputtering and PBII

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xingguo [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Tang, Guangze [National Key Laboratory of Materials Behavior and Evaluation in Space Environment, Harbin Institute of Technology, Harbin 150001 (China); Sun, Mingren [National Key Laboratory of Science and Technology on Precision Hot Processing of Metals Harbin Institute of Technology, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin, E-mail: maxin@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 (China)

    2013-09-01

    (TaNbTiW)N films with thickness of ∼1000 nm are prepared on titanium alloy substrate by combined magnetron sputtering deposition and nitrogen plasma based ion implantation (N-PBII). Chemical state of the elements and phase structure of the films are investigated using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The bonds of Ta-N, Nb-N, Ti-N-O and Ta-O are detected in the (TaNbTiW)N films, however both W-N and W-O are not found. The initial alloy film has a BCC structure, while the films with N-PBII treatment are composed of BCC and FCC structures. The hardness and elastic modulus of the films can be improved by increasing nitrogen implantation dose and reach maximum values of 9.0 GPa and 154.1 GPa, respectively.

  7. MoRe-based and NbN-based tunnel junctions and their characteristics

    International Nuclear Information System (INIS)

    Shaternik, V.E.; Noskov, V.L.; Chubatyy, V.V.; Larkin, S.Yu.; Sizontov, V.M.; Miroshnikov, A.M.; Karmazin, A.A.

    2007-01-01

    Full text: Perspective [1] Josephson Mo-Re alloy-oxide-Pb, Mo-Re alloy-normal metal-oxide-Pb and Mo-Re alloy-normal metal-oxide- normal metal-Mo-Re alloy junctions have been fabricated and investigated. Thin (∼50-100 nm) MoRe superconducting films are deposited on Al 2 O 3 substrates by using a dc magnetron sputtering of MoRe target. Normal metal (Sn, Al) thin films are deposited on the MoRe films surfaces by thermal evaporation of metals in vacuum and oxidized to fabricate junctions oxide barriers. Quasiparticle I-V curves of the fabricated junctions were measured in wide range of voltages. To investigate a transparency spread for the fabricated junctions barriers the computer simulation of the measured quasiparticle I-V curves have been done in framework of the model of multiple Andreev reflections in double-barrier junction interfaces. It's demonstrated the investigated junctions can be described as highly asymmetric double-barrier Josephson junctions with great difference between the two barrier transparencies [2,3]. The result of the comparison of experimental quasiparticle I-V curves and calculated ones is proposed and discussed. Results of computer simulation of quasiparticles I-V curves of NbN-based junctions are presented and discussed. Also I-V curves of the fabricated junctions have been measured under microwave irradiation with 60 GHz frequency , clear Shapiro steps in the measured I-V curves were observed and discussed. (authors)

  8. Defect assisted coupling of a MoS2/TiO2 interface and tuning of its electronic structure.

    Science.gov (United States)

    Chen, Guifeng; Song, Xiaolin; Guan, Lixiu; Chai, Jianwei; Zhang, Hui; Wang, Shijie; Pan, Jisheng; Tao, Junguang

    2016-09-02

    Although MoS2 based heterostructures have drawn increased attention, the van der Waals forces within MoS2 layers make it difficult for the layers to form strong chemical coupled interfaces with other materials. In this paper, we demonstrate the successful strong chemical attachment of MoS2 on TiO2 nanobelts after appropriate surface modifications. The etch-created dangling bonds on TiO2 surfaces facilitate the formation of a steady chemically bonded MoS2/TiO2 interface. With the aid of high resolution transmission electron microscope measurements, the in-plane structure registry of MoS2/TiO2 is unveiled at the atomic scale, which shows that MoS2[1-10] grows along the direction of TiO2[001] and MoS2[110] parallel to TiO2[100] with every six units of MoS2 superimposed on five units of TiO2. Electronically, type II band alignments are realized for all surface treatments. Moreover, the band offsets are delicately correlated to the surface states, which plays a significant role in their photocatalytic performance.

  9. Effects of shot-peening and atmospheric-pressure plasma on aesthetic improvement of Ti-Nb-Ta-Zr alloy for dental applications

    Science.gov (United States)

    Miura-Fujiwara, Eri; Suzuki, Yuu; Ito, Michiko; Yamada, Motoko; Matsutake, Sinpei; Takashima, Seigo; Sato, Hisashi; Watanabe, Yoshimi

    2018-01-01

    Ti and Ti alloys are widely used for biomedical applications such as artificial joints and dental devices because of their good mechanical properties and biochemical compatibility. However, dental devices made of Ti and Ti alloys do not have the same color as teeth, so they are inferior to ceramics and polymers in terms of aesthetic properties. In a previous study, Ti-29Nb-13Ta-4.6Zr was coated with a white Ti oxide layer by heat treatment to improve its aesthetic properties. Shot-peening is a severe plastic deformation process and can introduce a large shear strain on the peened surface. In this study, the effects of shot-peening and atmospheric-pressure plasma on Ti-29Nb-13Ta-4.6Zr were investigated to form a white layer on the surface for dental applications.

  10. A pressure tuned stop-flow atomic layer deposition process for MoS2 on high porous nanostructure and fabrication of TiO2/MoS2 core/shell inverse opal structure

    Science.gov (United States)

    Li, Xianglin; Puttaswamy, Manjunath; Wang, Zhiwei; Kei Tan, Chiew; Grimsdale, Andrew C.; Kherani, Nazir P.; Tok, Alfred Iing Yoong

    2017-11-01

    MoS2 thin films are obtained by atomic layer deposition (ALD) in the temperature range of 120-150 °C using Mo(CO)6 and dimethyl disulfide (DMDS) as precursors. A pressure tuned stop-flow ALD process facilitates the precursor adsorption and enables the deposition of MoS2 on high porous three dimensional (3D) nanostructures. As a demonstration, a TiO2/MoS2 core/shell inverse opal (TiO2/MoS2-IO) structure has been fabricated through ALD of TiO2 and MoS2 on a self-assembled multilayer polystyrene (PS) structure template. Due to the self-limiting surface reaction mechanism of ALD and the utilization of pressure tuned stop-flow ALD processes, the as fabricated TiO2/MoS2-IO structure has a high uniformity, reflected by FESEM and FIB-SEM characterization. A crystallized TiO2/MoS2-IO structure can be obtained through a post annealing process. As a 3D photonic crystal, the TiO2/MoS2-IO exhibits obvious stopband reflecting peaks, which can be adjusted through changing the opal diameters as well as the thickness of MoS2 layer.

  11. Synthesis and characterization of MoS2/Ti composite coatings on Ti6Al4V prepared by laser cladding

    Directory of Open Access Journals (Sweden)

    Rongjuan Yang

    2013-02-01

    Full Text Available The MoS2/Ti composite coating with sub-micron grade structure has been prepared on Ti6Al4V by laser method under argon protection. The morphology, microstructure, microhardness and friction coefficient of the coating were examined. The results indicated that the molybdenum disulfide was decomposed during melting and resolidification. The phase organization of composite coating mainly consisted of ternary element sulfides, molybdenum sulfides and titanium sulfides. The friction coefficient of and the surface roughness the MoS2/Ti coating were lower than those of Ti6Al4V. The composite coating exhibits excellent adhesion to the substrates, less surface roughness, good wear resistance and harder surface.

  12. Non-destructive Residual Stress Analysis Around The Weld-Joint of Fuel Cladding Materials of ZrNbMoGe Alloys

    Directory of Open Access Journals (Sweden)

    Parikin

    2003-08-01

    Full Text Available The residual stress measurements around weld-joint of ZrNbMoGe alloy have been carried out by using X-ray diffraction technique in PTBIN-BATAN. The research was performed to investigate the structure of a cladding material with high temperature corrosion resistance and good weldability. The equivalent composition of the specimens (in %wt. was 97.5%Zr1%Nb1%Mo½%Ge. Welding was carried out by using TIG (tungsten inert gas technique that completed butt-joint with a current 20 amperes. Three region tests were taken in specimen while diffraction scanning, While diffraction scanning, tests were performed on three regions, i.e., the weldcore, the heat-affected zone (HAZ and the base metal. The reference region was determined at the base metal to be compared with other regions of the specimen, in obtaining refinement structure parameters. Base metal, HAZ and weldcore were diffracted by X-ray, and lattice strain changes were calculated by using Rietveld analysis program. The results show that while the quantity of minor phases tend to increase in the direction from the base metal to the HAZ and to the weldcore, the quantity of the ZrGe phase in the HAZ is less than the quantity of the ZrMo2 phase due to tGe element evaporation. The residual stress behavior in the material shows that minor phases, i.e., Zr3Ge and ZrMo2, are more dominant than the Zr matrix. The Zr3Ge and ZrMo2 experienced sharp straining, while the Zr phase was weak-lined from HAZ to weldcore. The hydrostatic residual stress ( in around weld-joint of ZrNbMoGe alloy is compressive stress which has minimum value at about -2.73 GPa in weldcore region

  13. Lave phase precipitation in Nb- and Ti-based alloys

    International Nuclear Information System (INIS)

    Tewari, R.; Vishwanadh, B.; Dey, G.K.

    2010-01-01

    In multicomponent Nb-based alloys system, which are potential candidate materials for high temperature applications, the presence of Laves phase was noticed along with the silicides in equilibrium with the soft β-matrix. In Ti-Cr alloys, which show a tendency for inverse melting, the formation of the phase was noticed in the β matrix upon aging. The Laves phase being topologically closed pack structure appears to have strong tendency for the formation provided the criterion of atomic size factor is met

  14. Influence of Si addition on the microstructure and mechanical properties of Ti-35Nb alloy for applications in orthopedic implants.

    Science.gov (United States)

    Tavares, A M G; Ramos, W S; de Blas, J C G; Lopes, E S N; Caram, R; Batista, W W; Souza, S A

    2015-11-01

    In the development of new materials for orthopedic implants, special attention has been given to Ti alloys that show biocompatible alloy elements and that are capable of reducing the elastic modulus. Accordingly, Ti-Nb-Si alloys show great potential for application. Thus, this is a study on the microstructures and properties of Ti-35Nb-xSi alloys (x=0, 0.15, 0.35 and 0.55) (wt%) which were thermally treated and cooled under the following conditions: furnace cooling (FC), air cooling (AC), and water quenching (WQ). The results showed that Si addition is effective to reduce the density of omega precipitates making beta more stable, and to produce grain refinement. Silicides, referred as (Ti,Nb)3Si, were formed for alloys containing 0.55% Si, and its formation presumably occurred during the heating at 1000°C. In all cooling conditions, the hardness values increased with the increasing of Si content, as a result from the strong Si solid solution strengthening effect, while the elastic modulus underwent a continuous reduction due to the reduction of omega precipitates in beta matrix. Lower elastic moduli were observed in water-quenched alloys, which concentration of 0.15% Si was more effective in their reduction, with value around 65 GPa. Regarding Ti-35Nb-xSi alloys (x=0, 0.15 and 0.35), the "double yield point" phenomenon, which is typical of alloys with shape memory effect, was observed. The increase in Si concentration also produced an increase from 382 MPa to 540 MPa in the alloys' mechanical strength. Ti-35Nb-0.55Si alloy, however, showed brittle mechanical behavior which was related to the presence of silicides at the grain boundary. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Enhanced thermoelectric performance of xMoS{sub 2}–TiS{sub 2} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Yang; Wang, Yulong; Shen, YaWei [College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Wang, Yifeng, E-mail: yifeng.wang@njtech.edu.cn [College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Pan, Lin [College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Tu, Rong [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Lu, Chunhua [College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Huang, Rong [School of Information Science and Technology, East China Normal University, Shanghai 200062 (China); Koumoto, Kunihito [Toyota Physical and Chemical Research Institute, Nagakute 4801192 (Japan)

    2016-05-05

    A series of nanocomposite ceramics of micro-scale TiS{sub 2} containing MoS{sub 2} nanoparticles mainly embedded along grain boundaries were prepared and investigated attempting to enhance the thermoelectric performance of TiS{sub 2}. Results show that, compared with that of pristine TiS{sub 2} ceramic, the power factor of the composites was improved by virtues of enhanced Seebeck coefficient that should be brought out due to reduced carrier concentration and electron scattering or filtering at the MoS{sub 2}/matrix interfaces. Moreover, thanks to the significantly reduced thermal conductivity that originated from the intensified multi-scale phonon scattering and the decreased electronic contribution, a maximal ZT value of 0.29 at 573 K was obtained in the sample with 3 mol % MoS{sub 2}, which is 60% higher than that of pristine TiS{sub 2}. These findings promise nanocomposite as an effective approach to suppress its thermal conduction without degradation of power factor and thus to enhance the performance of TiS{sub 2}-based thermoelectrics. - Highlights: • Nanocomposites of TiS{sub 2} including nano-MoS{sub 2} were prepared by SPS. • Distribution of MoS{sub 2} mainly along the boundaries was confirmed. • Seebeck coefficient increased by reduced electron density with electron filtering. • Thermal conductivity decreased by suppressed phonon and electron transport. • A maximal ZT value of 0.29 was obtained at 573 K.

  16. Further developments in NbTi superconductors with artificial pinning centers

    International Nuclear Information System (INIS)

    Kanithi, H.C.; Valaris, P.; Motowidlo, L.R.; Zeitlin, B.A.; Scanlan, R.M.

    1992-01-01

    Artificial pinning centers (APC) have been successfully incorporated in multifilamentary NbTi based superconductors. using pure niobium as the pinning material and applying state-of-the-art processing technology, we have developed conductors which exhibit record low-field current densities. Two volume fractions of Nb have been investigated. One of the objectives of the present development effort is the feasibility study of billet scale-up from earlier work. A J 3 (3T) of ∼7500 A/mm 2 , which is twice that of the present MRI conductors, and a J c (5T) of ∼3400 A/mm 2 , have been achieved in samples. The results of this ongoing effort, in terms of conductor configuration, microstructure, critical current density, and pinning force, are presented in this paper. Appropriate comparisons with past performances are made

  17. Structure, tribological and electrochemical properties of low friction TiAlSiCN/MoSeC coatings

    International Nuclear Information System (INIS)

    Bondarev, A.V.; Kiryukhantsev-Korneev, Ph.V.; Sheveyko, A.N.; Shtansky, D.V.

    2015-01-01

    Highlights: • TiAlSiCN/MoSeC coatings for tribological applications. • Doping with MoSeC reduces friction coefficient in humid air from 0.8–0.9 to 0.05. • Doping with MoSeC increases wear resistance by one-two orders of magnitude. • TiAlSiCN/MoSeC coatings demonstrated low friction coefficient in distilled water. • TiAlSiCN/MoSeC coatings showed superior tribological properties at moderate temperatures. - Abstract: The present paper is focused on the development of hard tribological coatings with low friction coefficient (CoF) in different environments (humid air, distilled water) and at elevated temperatures. TiAlSiCN/MoSeC coatings were deposited by magnetron sputtering of four-segment targets consisting of quarter circle TiAlSiCN segments, obtained by self-propagating high-temperature synthesis, and one or two cold pressed segments made of MoSe 2 and C powders in a ratio 1:1 wt%. The structure and phase composition of coatings were investigated by means of X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. The coatings were characterized in terms of their hardness, elastic modulus, and elastic recovery. The tribological properties of coatings were investigated first at room temperature against Al 2 O 3 and WC–Co balls, after which studied in distilled water and during continuous heating in air in the temperature range of 25–400 °C against Al 2 O 3 counterpart material. To evaluate their electrochemical characteristics, the coatings were tested in 1 N H 2 SO 4 solution. The obtained results show that the coating hardness depends on the amount of MoSeC additives and decreased from 40 to 28 (one MoSeC segment) and 12 GPa (two MoSeC segments). Doping with MoSeC resulted in a significant reduction of CoF values measured in humid air (RH 60 ± 5%) from 0.8–0.9 to 0.05 and an increase of wear resistance by one or two orders of magnitude depending on counterpart material. This was attributed

  18. Structure, tribological and electrochemical properties of low friction TiAlSiCN/MoSeC coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bondarev, A.V.; Kiryukhantsev-Korneev, Ph.V.; Sheveyko, A.N.; Shtansky, D.V., E-mail: shtansky@shs.misis.ru

    2015-02-01

    Highlights: • TiAlSiCN/MoSeC coatings for tribological applications. • Doping with MoSeC reduces friction coefficient in humid air from 0.8–0.9 to 0.05. • Doping with MoSeC increases wear resistance by one-two orders of magnitude. • TiAlSiCN/MoSeC coatings demonstrated low friction coefficient in distilled water. • TiAlSiCN/MoSeC coatings showed superior tribological properties at moderate temperatures. - Abstract: The present paper is focused on the development of hard tribological coatings with low friction coefficient (CoF) in different environments (humid air, distilled water) and at elevated temperatures. TiAlSiCN/MoSeC coatings were deposited by magnetron sputtering of four-segment targets consisting of quarter circle TiAlSiCN segments, obtained by self-propagating high-temperature synthesis, and one or two cold pressed segments made of MoSe{sub 2} and C powders in a ratio 1:1 wt%. The structure and phase composition of coatings were investigated by means of X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. The coatings were characterized in terms of their hardness, elastic modulus, and elastic recovery. The tribological properties of coatings were investigated first at room temperature against Al{sub 2}O{sub 3} and WC–Co balls, after which studied in distilled water and during continuous heating in air in the temperature range of 25–400 °C against Al{sub 2}O{sub 3} counterpart material. To evaluate their electrochemical characteristics, the coatings were tested in 1 N H{sub 2}SO{sub 4} solution. The obtained results show that the coating hardness depends on the amount of MoSeC additives and decreased from 40 to 28 (one MoSeC segment) and 12 GPa (two MoSeC segments). Doping with MoSeC resulted in a significant reduction of CoF values measured in humid air (RH 60 ± 5%) from 0.8–0.9 to 0.05 and an increase of wear resistance by one or two orders of magnitude depending on

  19. Development of the dentistry alloy Ni-Cr-Nb; Desenvolvimento de ligas odontologicas Ni-Cr-Nb

    Energy Technology Data Exchange (ETDEWEB)

    Souza, M.A.; Ramos, A.S.; Hashimoto, T.M., E-mail: mari_sou@hotmail.co [UNESP/FEG, Guaratingueta, SP (Brazil). Fac. de Engenharia. Dept. de Materiais e Tecnologia

    2010-07-01

    This work reports on the structural characterization of Ni-Cr-Mo and Ni-Cr-Nb alloys produced by arc melting. Samples were characterized by means of optical microscopy, X-ray diffraction, scanning electron microscopy, and EDS analysis. Results indicated that the arc melting process was efficient to produce homogeneous structures in Ni-Cr-Mo and Ni-Cr-Nb alloys. The nickel dissolved large amounts of Cr, Mo and Nb, which was detected by EDS analysis and X-ray diffraction. The alloy containing molybdenum indicated the presence of structure based on Ni{sub SS}, while that the alloys containing niobium presented primary grains of Ni{sub SS} and precipitates formed by the simultaneous transformation of the Ni and Ni{sub 3}Nb phases. (author)

  20. Search for high entropy alloys in the X-NbTaTiZr systems (X = Al, Cr, V, Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Poletti, Marco Gabriele, E-mail: marcogabriele.poletti@unito.it [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy); Fiore, Gianluca [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy); Szost, Blanka A. [Strategic and Emerging Technologies Team (TEC-TS), European Space Agency, ESTEC, 1 Keplerlaan, 2201 AZ Noordwijk (Netherlands); Battezzati, Livio [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy)

    2015-01-25

    Highlights: • Composition of refractory high entropy alloys predicted. • Solid solutions found in VNbTaTiZr and AlNbTaTiZr. • Alloys containing Cr and Sn are multi-phased. - Abstract: High entropy alloys, i.e. solid solution phases, are sought in the X-NbTaTiZr equiatomic system where the X element was chosen as Al, Cr, V and Sn by applying recent criteria based on size and electronegativity mismatch of alloy components, number of itinerant and total valence electrons, and the temperature at which the free energy of mixing changes at the alloy composition. The alloys containing V and Al are mostly constituted by solid solutions in good agreement with prediction.

  1. Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode

    International Nuclear Information System (INIS)

    Jiang, Lei; You, Ting; Deng, Wei-Qiao

    2013-01-01

    In this work Nb-doped anatase TiO 2 nanocrystals are used as the photoanode of quantum-dot-sensitized solar cells. A solar cell with CdS/CdSe quantum dots co-sensitized 2.5 mol% Nb-doped anatase TiO 2 nanocrystals can achieve a photovoltaic conversion efficiency of 3.3%, which is almost twice as high as the 1.7% obtained by a cell based on undoped TiO 2 nanocrystals. The incident photon-to-current conversion efficiency can reach as high as 91%, which is a record for all quantum-dot-sensitized solar cells. Detailed analysis shows that such an enhancement is due to improved lifetime and diffusion length of electrons in the solar cell. (paper)

  2. Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode.

    Science.gov (United States)

    Jiang, Lei; You, Ting; Deng, Wei-Qiao

    2013-10-18

    In this work Nb-doped anatase TiO2 nanocrystals are used as the photoanode of quantum-dot-sensitized solar cells. A solar cell with CdS/CdSe quantum dots co-sensitized 2.5 mol% Nb-doped anatase TiO2 nanocrystals can achieve a photovoltaic conversion efficiency of 3.3%, which is almost twice as high as the 1.7% obtained by a cell based on undoped TiO2 nanocrystals. The incident photon-to-current conversion efficiency can reach as high as 91%, which is a record for all quantum-dot-sensitized solar cells. Detailed analysis shows that such an enhancement is due to improved lifetime and diffusion length of electrons in the solar cell.

  3. High temperature oxidation of carbide-carbon materials of NbC-C, NbC-TiC-C systems

    International Nuclear Information System (INIS)

    Afonin, Yu.D.; Shalaginov, V.N.; Beketov, A.R.

    1981-01-01

    The effect of titanium carbide additions on the oxidation of carbide - carbon composition NbC-TiC-C in oxygen under the pressure of 10 mm Hg and in the air at atmospheric pressure in the temperature range 800-1300 deg is studied. It is shown that the region of negative temperature coefficient during oxidation in the system NbC+C is determined by the processes of sintering and polymorphous transformation. The specific character of the oxide film, formed during oxidation of Nbsub(x)Tisub(y)C+C composites is connected with non-equilibrium nature of carbide grain in its composition. Carbon gasification takes place with the formation of carbon dioxide. Composite materials, containing titanium carbide in complex carbide up to 50-83 mol. %, are the most corrosion resisting ones [ru

  4. Development of multifilamentary NbTi and Nb3Sn composite conductors with very fine filaments

    International Nuclear Information System (INIS)

    Ogasawara, T.; Hubota, T.; Makiura, T.; Oda, Y.; Okon, H.; Yasohama, K.

    1986-01-01

    A NbTi multifilamentary composite conductor with about 10,000 filaments has been manufactured in long lengths. A filament diameter of 0.52 μm, a twist pitch of 1.13 mm, a strand diameter of 0.1 mm and a Cu/CuNi mixed matrix result in strongly reduced a.c. losses. The hysteresis loss and the coupling loss are 73 kW/m 3 and 56 kW/m 3 for a 50 Hz magnetic field with an amplitude of 1.5 T. From three strands a conductor was formed with a twist pitch of 2.4 mm. Several small coils were wound and operated at 50 Hz. One of the coils generated a maximum field of 1.52 T(center) at an operating current of the same size as the static critical current. Similarily the construction of a Nb 3 Sn multifilamentary composite conductor with about 280,000 sub-micron filaments for a.c. use was tried

  5. Correlation between hardness and stress in Al-(Nb, Mo, Ta) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Car, T., E-mail: car@irb.h [Rudjer Boskovic Institute, Division of Materials Science, Bijenicka cesta 54, 10000 Zagreb, P.O.B. 1016 (Croatia); Radic, N. [Rudjer Boskovic Institute, Division of Materials Science, Bijenicka cesta 54, 10000 Zagreb, P.O.B. 1016 (Croatia); Panjan, P.; Cekada, M. [Jozef Stefan Institute, Ljubljana (Slovenia); Tonejc, A. [Department of Physics, Bijenicka cesta 32, 10000 Zagreb, P.O.B. 331 (Croatia)

    2009-06-30

    The thin films of Al{sub x}Nb{sub 1-x} (95 {>=} x {>=} 20), Al{sub x}Mo{sub x} (90 {>=} x {>=} 20) and Al{sub x}Ta{sub 1-x} (95 {>=} x {>=} 20) were prepared by magnetron codeposition at room temperature. The average film thickness was from 325 to 400 nm, depending on the film composition. The structure of the as-deposited films was examined by the X-ray diffraction. The stress of the films was determined from the substrate deformation by the profilometer, and the microhardness (load 2 mN) was examined by the micro- and nano-hardness device. For the purpose of the examination of the hardness, the samples were deposited onto the sapphire wafers, while the examination of the film stress, was performed by using thin glass substrates. For all the Al-(Nb, Mo, Ta) alloy compositions, the microhardness is predominantly under the influence of the harder element, and monotonically decreases with the increase of the aluminum content. However, the microhardness of the amorphous AlTa films was higher than the bulk value of a harder element (Ta) in the alloy. A simple empirical linear relationship between the Vickers hardness, the bulk value hardness of the transition metal (harder element) and the elastic energy fraction of the identation deformation, was established. The elastic energy fraction in the microhardness is also linearly correlated with the stress in films.

  6. Mechanical properties of steel 8 CrMoNiNb 9 10 in dependence on the microstructural condition

    International Nuclear Information System (INIS)

    Fabritius, H.; Schnabel, E.

    1976-01-01

    Tension tests at room temperature to 600 0 C and creep-rupture tests at 500 to 600 0 C lasting up to about 75,000 h on two casts of steel 8 CrMoNiNb 9 10 with about 0.08% C, 0.3% Si, 0.7% Mn, 0.012% N, 0.005% Al, 2.34% Cr, 0.95% Mo, 0.8% Nb and 0.64% Ni in bainitic and ferritic microstructural condition. Influence of annealing at 650 to 800 0 C on the properties in the tension test. Influence of aging at 500 to 600 0 C lasting up to 30,000 h with and without mechanical stress on the properties in the tension test at aging temperature and on the toughness behaviour in the notched bar impact bend test at room temperature. (orig.) [de

  7. Fabrication of TiO2/MoS2@zeolite photocatalyst and its photocatalytic activity for degradation of methyl orange under visible light

    International Nuclear Information System (INIS)

    Zhang, Weiping; Xiao, Xinyan; Zheng, Lili; Wan, Caixia

    2015-01-01

    Graphical abstract: A novel approach was developed for fabrication of TiO 2 /MoS 2 @zeolite photocatalyst using bulk MoS 2 as a photosensitizer and zeolite as carrier. The as-prepared TiO 2 /MoS 2 @zeolite composite exhibited excellent photocatalytic performance for degradation of methyl orange under visible-light irradiation. - Highlights: • Ultrasound-exfoliation and hydrothermal reforming technique were employed for generating nano-MoS 2 from micro-MoS 2 . • The embedded sensitizer composite mode of (TiO 2 /MoS 2 /TiO 2 ) was used in the fabrication of TiO 2 /MoS 2 @zeolite composite photocatalyst. • The photocatalytic mechanism of TiO 2 /MoS 2 @zeolite photocatalyst was presented. - Abstract: TiO 2 /MoS 2 @zeolite composite photocatalysts with visible-light activity were fabricated via a simple ultrasonic-hydrothermal synthesis method, using TiCl 4 as Ti source, MoS 2 as a direct sensitizer, glycerol water solution with certain dispersion agent as hydrolytic agent, and zeolite as carrier. The structure, morphology, composition, optical properties, and specific surface area of the as-prepared photocatalysts were characterized by using XRD, FTIR, SEM–EDS, TEM, XPS, UV–vis, PL and BET analyzer, respectively. And the photocatalytic degradation of methyl orange (MO) in aqueous suspension has been employed to evaluate the photocatalytic activity and degradation kinetics of as-prepared photocatalysts with xenon lamp as irradiation source. The results indicate that: (1) TiO 2 /MoS 2 @zeolite composite photocatalysts exhibit enhanced photocatalytic activities for methyl orange (MO) degradation compared to Degussa P25; (2) photocatalytic degradation of MO obeys Langmuir–Hinshelwood kinetic model (pseudo-first order reaction), and its degradation rate constant (k app ) (2.304 h −1 ) is higher than that of Degussa P25 (0.768 h −1 ); (3) the heterostructure consisted of zeolite, MoS 2 and TiO 2 nanostructure could provide synergistic effect for degradation

  8. Effect of Mo2C/(Mo2C + WC) weight ratio on the microstructure and mechanical properties of Ti(C,N)-based cermet tool materials

    International Nuclear Information System (INIS)

    Xu, Qingzhong; Zhao, Jun; Ai, Xing; Qin, Wenzhen; Wang, Dawei; Huang, Weimin

    2015-01-01

    To optimize the Mo 2 C content in Ti(C,N)-based cermet tool materials used for cutting the high-strength steel of 42CrMo (AISI 4140/4142 steel), the cermets with different Mo 2 C/(Mo 2 C + WC) weight ratios were prepared. And the microstructure and mechanical properties of cermets were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD) and measurements of transverse rupture strength (TRS), Vickers hardness (HV) and fracture toughness (K IC ). The results indicate that the Mo 2 C/(Mo 2 C + WC) ratios have great influences on the microstructure features and mechanical properties of Ti(C,N)-based cermets. When the Mo 2 C/(Mo 2 C + WC) ratio increases, the Ti(C,N) grains become finer with smaller black cores surrounded by thinner rims, and the structure of cermets tends to be more compact with smaller binder mean free path. Owing to the medium grains and moderate rims, the cermets with a Mo 2 C/(Mo 2 C + WC) ratio of 0.4 exhibit better mechanical properties, and can be chosen as the tool material for machining 42CrMo steel due to the lower Mo content. - Highlights: • Mo 2 C/(Mo 2 C + WC) ratios affect microstructure and mechanical properties of cermets. • Grains become fine and structure of cermets tends to be compact with raised Mo 2 C. • The cermets with a Mo 2 C/(Mo 2 C + WC) ratio of 0.4 can be used to machine 42CrMo steel

  9. Formation of Cr-modified silicide coatings on a Ti-Nb-Si based ultrahigh-temperature alloy by pack cementation process

    Science.gov (United States)

    Qiao, Yanqiang; Guo, Xiping

    2010-10-01

    Cr-modified silicide coatings were prepared on a Ti-Nb-Si based ultrahigh temperature alloy by Si-Cr co-deposition at 1250 °C, 1350 °C and 1400 °C for 5-20 h respectively. It was found that both coating structure and phase constituents changed significantly with increase in the co-deposition temperature and holding time. The outer layers in all coatings prepared at 1250 °C for 5-20 h consisted of (Ti,X) 5Si 3 (X represents Nb, Cr and Hf elements). (Ti,X) 5Si 4 was found as the only phase constituent in the intermediate layers in both coatings prepared at 1250 °C for 5 and 10 h, but the intermediate layers in the coatings prepared at 1250 °C for 15 and 20 h were mainly composed of (Ti,X) 5Si 3 phase that was derived from the decomposition of (Ti,X) 5Si 4 phase. In the coating prepared at 1350 °C for 5 h, single (Ti,X) 5Si 3 phase was found in its outmost layer, the same as that in the outer layers in the coatings prepared at 1250 °C; but in the coatings prepared at 1350 °C for 10-20 h, (Nb 1.95Cr 1.05)Cr 2Si 3 ternary phase was found in the outmost layers besides (Ti,X) 5Si 3 phase. In the coatings prepared at 1400 °C for 5-20 h, (Nb 1.95Cr 1.05)Cr 2Si 3 ternary phase was the single phase constituent in their outmost layers. The phase transformation (Ti,X) 5Si 4 → (Ti,X) 5Si 3 + Si occurred in the intermediate layers of the coatings prepared at 1350 and 1400 °C with prolonging co-deposition time, similar to the situation in the coatings prepared at 1250 °C for 15 and 20 h, but this transformation has been speeded up by increase in the co-deposition temperature. The transitional layers were mainly composed of (Ti,X) 5Si 3 phase in all coatings. The influence of co-deposition temperature on the diffusion ability of Cr atoms was greater than that of Si atoms in the Si-Cr co-deposition processes investigated. The growth of coatings obeyed inverse logarithmic laws at all three co-deposition temperatures. The Si-Cr co-deposition coating prepared at 1350

  10. In vivo behavior of surface modified Ti6Al7Nb alloys used in selective laser melting for custom-made implants. A preliminary study.

    Science.gov (United States)

    Rotaru, H; Armencea, G; Spîrchez, Diana; Berce, C; Marcu, Teodora; Leordean, D; Kim, Seong Gon; Lee, Sang Woon; Dinu, C; Băciuţ, G; Băciuţ, Mihaela

    2013-01-01

    The objectives of this study were to test the biocompatibility and to evaluate the osseointegration of Titanium-Aluminum-Niobium (Ti6Al7Nb) alloy used in the manufacturing of personalized implants with selective laser melting (SLM) technology and to compare the growth viability of osteoblastic-like cells on different Ti6Al7Nb alloy samples (plain, coated with hydroxyapatite or SiO2-TiO2) implanted into the cranial bone of Wistar rats. In terms of biocompatibility, the cone-beam computer-tomography head scans taken at the moment of sacrifice of each group (one, two and three months) showed no implant displacement, no osteolysis and no liquid collection around the implants. At one month, around all types of implants new bone formation was noticed, although around the plain Ti6Al7Nb implant a large amount of powder debris was present. Still, no inflammatory reaction was seen. At two months, the distance between the implants and the calvarial bone margins diminished. A thin layer of fibrous tissue was noticed around the Ti6Al7Nb implant coated with hydroxyapatite but no bone contact was achieved. In the group sacrificed at three months there was still no bone contact, but noticeable were the SiO2-TiO2. In the group sacrificed at three months SiO2-TiO2 particles detached from the implant and completely integrated in the tissue were noticeable. All results suggested that the Ti6Al7Nb alloy with or without infiltration is well biologically tolerated.

  11. Synthesis, structural characterization and dielectric properties of Nb doped BaTiO3/SiO2 core–shell heterostructure

    International Nuclear Information System (INIS)

    Cernea, M.; Vasile, B.S.; Boni, A.; Iuga, A.

    2014-01-01

    Highlights: • Optimal parameters for preparation by sol–gel of core–shell (BT-Nb 0.005 )/SiO 2 are presented in this paper. • Single crystalline BT-Nb 0.005 /SiO 2 core–shell composite with ∼34 nm shell thick was prepared. • The core–shell ceramic exhibits good dielectric properties and ferroelectric characteristics. -- Abstract: Perovskite complex ceramic oxides, BaTiO 3 doped with 0.5 mol%Nb 2 O 5 and then nanocoated with SiO 2 (abbreviated as BT-Nb 0.005 /SiO 2 ) was successful prepared using conventional sol–gel processing. Phase composition, particle morphology, structure, and electric properties of BT-Nb 0.005 core and BT-Nb 0.005 /SiO 2 core–shell were examined and compared, using X-ray diffraction, transmission electron microscopy and, dielectric and ferroelectric measurements. Core–shell composite with well-defined perovskite tetragonal phase of BaTiO 3 was achieved. Furthermore, single crystalline BT-Nb 0.005 /SiO 2 core–nanoshell heterostructure with ∼34 nm shell thick was prepared, which is a novelty in ferroelectrics field. The ferroelectric quality of BT-Nb 0.005 has suffered an alteration when the (BT-Nb 0.005 )/SiO 2 core–shell heterostructure was realized. One-dimensional BT-Nb 0.005 /SiO 2 core–shell heterostructure exhibits an improvement of dielectric losses and a decrease of dielectric constant, compared to uncoated BT-Nb 0.005 . The (BT-Nb 0.005 )/SiO 2 core–shell material could be interesting for application in the composite capacitors

  12. Enhanced photovoltaic performance of fully flexible dye-sensitized solar cells based on the Nb{sub 2}O{sub 5} coated hierarchical TiO{sub 2} nanowire-nanosheet arrays

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenwu; Hong, Chengxun; Wang, Hui-gang; Zhang, Mei; Guo, Min, E-mail: guomin@ustb.edu.cn

    2016-02-28

    Graphical abstract: Nb{sub 2}O{sub 5} coated hierarchical TiO{sub 2} nanowire-sheet arrays photoanode was synthesized on Ti-mesh substrate by using a hydrothermal approach for fully flexible dye-sensitized solar cells which exhibited well photovoltaic efficiency of 4.55%. - Highlights: • Nb{sub 2}O{sub 5} coated hierarchical TiO{sub 2} nanowire-nanosheet arrays were prepared on Ti-mesh. • Nb{sub 2}O{sub 5} coated TiO{sub 2} HNWAs/Pt-ITO-PEN flexible DSSC was constructed. • The fully flexible DSSC exhibited an enhanced photovoltaic performance of 4.55%. • The reasons for the improved conversion efficiency of the DSSC were discussed. - Abstract: Nb{sub 2}O{sub 5} coated hierarchical TiO{sub 2} nanowire-sheet arrays photoanode was synthesized on flexible Ti-mesh substrate by using a hydrothermal approach. The effect of TiO{sub 2} morphology and Nb{sub 2}O{sub 5} coating layer on the photovoltaic performance of the flexible dye sensitized solar cells (DSSCs) based on Ti-mesh supported nanostructures were systematically investigated. Compared to the TiO{sub 2} nanowire arrays (NWAs), hierarchical TiO{sub 2} nanowire arrays (HNWAs) with enlarged internal surface area and strong light scattering properties exhibited higher overall conversion efficiency. The introduction of thin Nb{sub 2}O{sub 5} coating layers on the surface of the TiO{sub 2} HNWAs played a key role in improving the photovoltaic performance of the flexible DSSC. By separating the TiO{sub 2} and electrolyte (I{sup –}/I{sub 3}{sup –}), the Nb{sub 2}O{sub 5} energy barrier decreased the electron recombination rate and increased electron collection efficiency and injection efficiency, resulting in improved J{sub sc} and V{sub oc}. Furthermore, the influence of Nb{sub 2}O{sub 5} coating amounts on the power conversion efficiency were discussed in detail. The fully flexible DSSC based on Nb{sub 2}O{sub 5} coated TiO{sub 2} HNWAs films with a thickness of 14 μm displayed a well photovoltaic property

  13. (Nd0⋅065Ti0⋅87Nb0⋅065)O3 ceramic

    Indian Academy of Sciences (India)

    Unknown

    Polycrystalline ceramic samples of sodium bismuth titanate with simultaneous doping at A and B sites have been studied for the influence of ... of Nd and Nb at B site in BaTiO3 (BaNdxTi1–2xNbxO3). (Mahboob et al 2005a). Dielectric ..... hence the conduction arises due to short range translation hopping via large polarons.

  14. Fine-scale precipitation and mechanical properties of thin slab processed titanium-niobium bearing high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Z. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); Misra, R.D.K., E-mail: dmisra@louisiana.edu [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); O' Malley, R. [Nucor Steel Decatur, LLC, 4301 Iverson Blvd., Trinity, AL 35673 (United States); Jansto, S.J. [CBMM-Reference Metals Company, 1000 Old Pond Road, Bridgeville, PA 15017 (United States)

    2011-08-25

    Highlights: {yields} Precipitation and mechanical behavior of Ti-Nb and Ti-Nb-Mo-V steels were elucidated. {yields} Distribution of precipitates was analyzed with microscopy and diffraction pattern. {yields} During austenite-ferrite transformation, interface precipitation of NbC was observed. {yields} Epitaxial precipitation of NbC on TiC surface results in mixed precipitates Ti(Nb)C. - Abstract: We describe here the precipitation behavior and mechanical properties of 560 MPa Ti-Nb and 770 MPa Ti-Nb-Mo-V steels. The precipitation characteristics were analyzed in terms of chemistry and size distribution of precipitates, with particular focus on the crystallography of precipitates through an analysis of electron diffraction patterns. In addition to pure carbides (NbC, TiC, Mo{sub 2}C, and VC), Nb containing titanium-rich carbides were also observed. These precipitates were of a size range of 4-20 nm. The mechanism of formation of these Ti-rich niobium containing carbides is postulated to involve epitaxial nucleation of NbC on previously precipitated TiC. Interface precipitation of NbC was an interesting observation in compact strip processing which is characterized by an orientation relationship of [0 0 1]{sub NbC}//[0 0 1]{sub {alpha}-Fe}, implying that the precipitation of NbC occurred during austenite-ferrite transformation.

  15. Fine-scale precipitation and mechanical properties of thin slab processed titanium-niobium bearing high strength steels

    International Nuclear Information System (INIS)

    Jia, Z.; Misra, R.D.K.; O'Malley, R.; Jansto, S.J.

    2011-01-01

    Highlights: → Precipitation and mechanical behavior of Ti-Nb and Ti-Nb-Mo-V steels were elucidated. → Distribution of precipitates was analyzed with microscopy and diffraction pattern. → During austenite-ferrite transformation, interface precipitation of NbC was observed. → Epitaxial precipitation of NbC on TiC surface results in mixed precipitates Ti(Nb)C. - Abstract: We describe here the precipitation behavior and mechanical properties of 560 MPa Ti-Nb and 770 MPa Ti-Nb-Mo-V steels. The precipitation characteristics were analyzed in terms of chemistry and size distribution of precipitates, with particular focus on the crystallography of precipitates through an analysis of electron diffraction patterns. In addition to pure carbides (NbC, TiC, Mo 2 C, and VC), Nb containing titanium-rich carbides were also observed. These precipitates were of a size range of 4-20 nm. The mechanism of formation of these Ti-rich niobium containing carbides is postulated to involve epitaxial nucleation of NbC on previously precipitated TiC. Interface precipitation of NbC was an interesting observation in compact strip processing which is characterized by an orientation relationship of [0 0 1] NbC //[0 0 1] α-Fe , implying that the precipitation of NbC occurred during austenite-ferrite transformation.

  16. Hydrothermal fabrication of few-layer MoS2 nanosheets within nanopores on TiO2 derived from MIL-125(Ti) for efficient photocatalytic H2 evolution

    Science.gov (United States)

    Ye, Fei; Li, Houfen; Yu, Hongtao; Chen, Shuo; Quan, Xie

    2017-12-01

    Protons tend to bond strongly with unsaturated-coordinate S element located at the edge of nano-MoS2 and are consequently reduced to H2. Therefore, increasing the active S atoms quantity will be a feasible approach to enhance hydrogen evolution. Herein we developed a porous TiO2 derived from metal organic frameworks (MOFs) as scaffold to restrict the growth and inhibit the aggregation of MoS2 nanosheets. As a result, the thickness of the prepared MoS2 nanosheets was less than 3 nm (1-4 layers), with more edges and active S atoms being exposed. This few-layer MoS2-porous TiO2 exhibits a H2 evolution rate of 897.5 μmol h-1 g-1, which is nearly twice as much as free-stand MoS2 nanosheets and twenty times more than physical mixture of MoS2 with porous TiO2. The high performance is attributed to that more active edge sites in few-layer MoS2-porous TiO2 are exposed than pure MoS2. This work provides a new method to construct MOFs derived porous structures for controlling MoS2 to expose active sites for HER.

  17. Sandwich structured MoO2@TiO2@CNT nanocomposites with high-rate performance for lithium ion batteries

    International Nuclear Information System (INIS)

    Yuan, Dandan; Yang, Wanli; Ni, Jiangfeng; Gao, Lijun

    2015-01-01

    Titanium dioxide (TiO 2 ) is an important anode candidate for Li-ion battery (LIB) due to its properties of excellent cycle, high safety and low cost. However, the poor electrical conductivity of TiO 2 presents a significant challenge hampering its practical application in LIBs. Most researches have been concentrated on developing TiO 2 composites with metals, metal oxides and carbonaceous materials to improve its conductivity. In this work, we investigated a sandwich structured MoO 2 @TiO 2 @CNT nanocomposite through a simple three-step synthesis method. The CNT and highly conductive MoO 2 under/on the TiO 2 layer are served as flexible and strong electronic paths for rapid electron and ion transport. The resulting MoO 2 @TiO 2 @CNT hybrid structures show improved specific capacity and cycling stability compared with TiO 2 @CNT. In addition, the MoO 2 @TiO 2 @CNT composites also show a favorable rate capability, demonstrating its potential as anode material for LIBs

  18. Direct observation of solute segregation to voids in a fast-neutron irradiated (Mo/1.0 at. % Ti alloy

    International Nuclear Information System (INIS)

    Wagner, A.; Seidman, D.N.

    1978-11-01

    The atom-probe field-ion microscope was used to study segregation effects to voids in a Mo--Ti alloy which had been irradiated with fast neutrons. The Ti does not segregate significantly to voids, concentration of Ti in solid solution and the spacial distribution of Ti was not affected by irradiation, carbon was not detected, resolution of TiC or MoC precipitates did not occur

  19. On the Influence of Nb/Ti Ratio on Environmentally-Assisted Crack Growth in High-Strength Nickel-Based Superalloys

    Science.gov (United States)

    Németh, A. A. N.; Crudden, D. J.; Collins, D. M.; Kuksenko, V.; Liebscher, C. H.; Armstrong, D. E. J.; Wilkinson, A. J.; Reed, R. C.

    2018-05-01

    The effect of Nb/Ti ratio on environmentally-assisted crack growth of three prototype Ni-based superalloys is studied. For these alloys, the yield strength is unaltered with increasing Nb/Ti ratio due to an increase in grain size. This situation has allowed the rationalization of the factors influencing damage tolerance at 700 °C. Primary intergranular cracks have been investigated using energy-dispersive X-ray spectroscopy in a scanning transmission electron microscope and the analysis of electron back-scatter diffraction patterns. Any possible detrimental effect of Nb on the observed crack tip damage due to Nb-rich oxide formation is not observed. Instead, evidence is presented to indicate that the tertiary γ'-precipitates are dissolving ahead of the crack consistent with the formation of oxides such as alumina and rutile. Our results have implications for alloy design efforts; at any given strength level, both more and less damage-tolerant variants of these alloys can be designed.

  20. Near-surface effects of transient oxidation and reduction on Nb-doped SrTiO3 epitaxial thin films

    Science.gov (United States)

    Chang, C. F.; Chen, Q. Y.; Wadekar, P. V.; Lozano, O.; Wong, M. S.; Hsieh, W. C.; Lin, W. Y.; Ko, H. H.; Lin, Q. J.; Huang, H. C.; Ho, N. J.; Tu, L. W.; Liao, H. H.; Chinta, P. V.; Chu, W. K.; Seo, H. W.

    2014-03-01

    We studied the effects of transient oxidation and reduction of Nb-doped epitaxial thin films through variations of PAr and PO2. The samples were prepared by co-sputtering of Nb and SrTiO3 on LaAlO3 substrates. The Nb-content were varied from 0-33.7%, as determined by PIXE. Contact resistance, sheet resistance, and optical properties are used to discriminate the effects.

  1. Anion exchange behavior of Ti, Zr, Hf, Nb and Ta as homologues of Rf and Db in mixed HF-acetone solutions

    International Nuclear Information System (INIS)

    Aksenov, N.V.; Bozhikov, G.A.; Starodub, G.Ya.; Dmitriev, S.N.; Filosofov, D.V.; Jon Sun Jin; Radchenko, V.I.; Lebedev, N.A.; Novgorodov, A.F.

    2009-01-01

    We studied in detail the sorption behavior of Ti, Zr, Hf, Nb and Ta on AG 1 anion exchange resin in HF-acetone mixed solutions as a function of organic cosolvent and acid concentrations. Anion exchange behavior was found to be strongly acetone concentration dependent. The distribution coefficients of Ti, Zr, Hf and Nb increased and those of Ta decreased with increasing content of acetone in HF solutions. With increasing HF concentration, anion exchange equilibrium analysis indicated the formation of fluoride complexes of group-4 elements with charge -3 and Ta with charge -2. For Nb the slope of -2 increased up to -5. Optimal conditions for separation of the elements using AIX chromatography were found. Group-4 elements formed MF 7 3- (M = Ti, Zr, Hf) complexes whose sorption decreased Ti > Hf > Zr in reverse order of complex stability. This fact is of particular interest for studying ion exchange behavior of Rf compared to Ti. The advantages of studying chemical properties of Rf and Db in aqueous HF solutions mixed with organic solvents are briefly discussed

  2. Mo/Si multilayers with enhanced TiO II- and RuO II-capping layers

    Science.gov (United States)

    Yulin, Sergiy; Benoit, Nicolas; Feigl, Torsten; Kaiser, Norbert; Fang, Ming; Chandhok, Manish

    2008-03-01

    The lifetime of Mo/Si multilayer-coated projection optics is one of the outstanding issues on the road of commercialization of extreme-ultraviolet lithography (EUVL). The application of Mo/Si multilayer optics in EUVL requires both sufficient radiation stability and also the highest possible normal-incidence reflectivity. A serious problem of conventional high-reflective Mo/Si multilayers capped by silicon is the considerable degradation of reflective properties due to carbonization and oxidation of the silicon surface layer under exposure by EUV radiation. In this study, we focus on titanium dioxide (TiO II) and ruthenium dioxide (RuO II) as promising capping layer materials for EUVL multilayer coatings. The multilayer designs as well as the deposition parameters of the Mo/Si systems with different capping layers were optimized in terms of maximum peak reflectivity at the wavelength of 13.5 nm and longterm stability under high-intensive irradiation. Optimized TiO II-capped Mo/Si multilayer mirrors with an initial reflectivity of 67.0% presented a reflectivity drop of 0.6% after an irradiation dose of 760 J/mm2. The reflectivity drop was explained by the partial oxidation of the silicon sub-layer. No reflectivity loss after similar irradiation dose was found for RuO II-capped Mo/Si multilayer mirrors having initial peak reflectivity of 66%. In this paper we present data on improved reflectivity of interface-engineered TiO II- and RuO II-capped Mo/Si multilayer mirrors due to the minimization of both interdiffusion processes inside the multilayer stack and absorption loss in the oxide layer. Reflectivities of 68.5% at the wavelength of 13.4 nm were achieved for both TiO II- and RuO II-capped Mo/Si multilayer mirrors.

  3. Structure and properties of porous TiNi(Co, Mo)-based alloy produced by the reaction sintering

    Science.gov (United States)

    Artyukhova, Nadezda; Yasenchuk, Yuriy; Chekalkin, Timofey; Gunther, Victor; Kim, Ji-Soon; Kang, Ji-Hoon

    2016-10-01

    Modern medical technologies have developed many new devices that can be implanted into humans to repair, assist or take the place of diseased or defective bones, arteries and even organs. The materials, especially porous ones, used for these devices have evolved steadily over the past twenty years with TiNi-based alloys replacing stainless steels and titanium. The aim of the paper is to presents results for examination of porous TiNi(Co,Mo)-based alloys intended further to be used in clinical practice. The structure and properties of porous TiNi-based alloys obtained by reaction sintering of Ti and Ni powders with additions of Co and Mo have been studied. It has been shown that alloying additions both Co and Mo inhibit the compaction of nickel powders in the initial stage of sintering. The maximum irreversible strain of porous samples under loading in the austenitic state is fixed with the Co addition, and the minimum one is fixed with the Mo addition. The Co addition leads to the fact that the martensite transformation in the TiNi phase becomes close to a one-step, and the Mo addition leads to the fact that the martensite transformation becomes more uniform. Both Co and Mo lead to an increase in the maximum accumulated strain as a result of the formation of temperature martensite. The additional increase in the maximum accumulated strain of the Ti50Ni49Co1 alloy is caused by decreased resistance of the porous Ni γ -based mass during the load.

  4. Effect of Al content on structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yurchenko, N.Yu. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Stepanov, N.D., E-mail: stepanov@bsu.edu.ru [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Shaysultanov, D.G. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Tikhonovsky, M.A. [National Science Center “Kharkov Institute of Physics and Technology”, NAS of Ukraine, Kharkov, 61108 (Ukraine); Salishchev, G.A. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation)

    2016-11-15

    In present study, structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys after arc melting and annealing at 1200 °C for 24 h are investigated. The CrNbTiVZr alloy is composed of body centered cubic (bcc) and C15 (face centered cubic) Laves phases while the Al{sub x}CrNbTiVZr (x = 0.25; 0.5; 1) alloys consist of bcc and two C14 (hexagonal close packed) Laves phases with different chemical compositions. Thermodynamic modeling predicts existence of two phases – bcc and C15 Laves phase and broadening of single bcc phase field due to Al addition. The density of the alloys decreases with the increase of Al content. The alloys are found to be extremely brittle at room temperature and 600 °C. The alloys have high strength at temperatures of 800–1000 °C. For example, yield strength at 800 °C increases from 440 MPa for the CrNbTiVZr alloy to 1250 MPa for the AlCrNbTiVZr alloy. The experimental phase composition of the Al{sub x}CrNbTiVZr alloys is compared with predicted equilibrium phases and the factors governing the transformation of C15 to C14 Laves phases due to Al addition to the CrNbTiVZr alloy analyzed. Specific properties of the alloys are compared with other high-entropy alloys and commercial Ni-based superalloys. - Highlights: •Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) alloys are arc melted and annealed at 1200 °C. •The CrNbTiVZr alloy has bcc and C15 Laves phases. •The Al-containing alloys are composed of bcc and two C14 Laves phases. •The alloys demonstrate high specific strength at temperatures of 800 °C and 1000 °C. •The strength of the alloys increases in proportion with increase of Al content.

  5. Effect of microstructure on the mechanical properties of as-cast Ti-Nb-Al-Cu-Ni alloys for biomedical application.

    Science.gov (United States)

    Okulov, I V; Pauly, S; Kühn, U; Gargarella, P; Marr, T; Freudenberger, J; Schultz, L; Scharnweber, J; Oertel, C-G; Skrotzki, W; Eckert, J

    2013-12-01

    The correlation between the microstructure and mechanical behavior during tensile loading of Ti68.8Nb13.6Al6.5Cu6Ni5.1 and Ti71.8Nb14.1Al6.7Cu4Ni3.4 alloys was investigated. The present alloys were prepared by the non-equilibrium processing applying relatively high cooling rates. The microstructure consists of a dendritic bcc β-Ti solid solution and fine intermetallic precipitates in the interdendritic region. The volume fraction of the intermetallic phases decreases significantly with slightly decreasing the Cu and Ni content. Consequently, the fracture mechanism in tension changes from cleavage to shear. This in turn strongly enhances the ductility of the alloy and as a result Ti71.8Nb14.1Al6.7Cu4Ni3.4 demonstrates a significant tensile ductility of about 14% combined with the high yield strength of above 820 MPa already in the as-cast state. The results demonstrate that the control of precipitates can significantly enhance the ductility and yet maintaining the high strength and the low Young's modulus of these alloys. The achieved high bio performance (ratio of strength to Young's modulus) is comparable (or even superior) with that of the recently developed Ti-based biomedical alloys. © 2013.

  6. Study of structure of the TiO{sub 2}–MoO{sub 3} bilayer films by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Elias de Barros; Sigoli, Fernando Aparecido; Mazali, Italo Odone, E-mail: mazali@iqm.unicamp.br

    2014-12-15

    Highlights: • TiO{sub 2}–MoO{sub 3} bilayer thin films were easily prepared by dip-coating technique. • Ti and Mo metallo-organic compounds were used as source of its respective oxide. • TiO{sub 2} in anatase phase and orthorhombic phase of α-MoO{sub 3} were identified. • The bilayer structure was investigated by Raman spectroscopy. - Abstract: In this work, TiO{sub 2}–MoO{sub 3} films were easily prepared by dip-coating technique and metallo-organic decomposition process (MOD). Raman analyses indicate the formation of TiO{sub 2} in anatase phase and orthorhombic phase of α-MoO{sub 3}. It was observed that the Raman bands intensities attributed to TiO{sub 2} and MoO{sub 3} oxides were dependent on the number of decomposition–deposition cycles (DDC). The different number of DDC generates films with different thicknesses and the Raman signal was sensitive to this variation. Raman analyses provided qualitative information about the bilayer structure of the bi-component TiO{sub 2}–MoO{sub 3} films, which was confirmed by scanning electron microscopy. In this direction, the dip-coating technique and MOD process can be an efficient strategy to facile preparation of many samples to be used in applications.

  7. Few-Layer MoS2 Nanodomains Decorating TiO2 Nanoparticles: A Case Study for the Photodegradation of Carbamazepine

    Directory of Open Access Journals (Sweden)

    Sara Cravanzola

    2018-03-01

    Full Text Available S-doped TiO2 and hybrid MoS2/TiO2 systems have been synthesized, via the sulfidation with H2S of the bare TiO2 and of MoOx supported on TiO2 systems, with the aim of enhancing the photocatalytic properties of TiO2 for the degradation of carbamazepine, an anticonvulsant drug, whose residues and metabolites are usually inefficiently removed in wastewater treatment plants. The focus of this study is to find a relationship between the morphology/structure/surface properties and photoactivity. The full characterization of samples reveals the strong effects of the H2S action on the properties of TiO2, with the formation of defects at the surface, as shown by transmission electron microscopy (TEM and infrared spectroscopy (IR, while also the optical properties are strongly affected by the sulfidation treatment, with changes in the electronic states of TiO2. Meanwhile, the formation of small and thin few-layer MoS2 domains, decorating the TiO2 surface, is evidenced by both high-resolution transmission electron microscopy (HRTEM and UV-Vis/Raman spectroscopies, while Fourier-transform infrared (FTIR spectra give insights into the nature of Ti and Mo surface sites. The most interesting findings of our research are the enhanced photoactivity of the MoS2/TiO2 hybrid photocatalyst toward the carbamazepine mineralization. Surprisingly, the formation of hazardous compounds (i.e., acridine derivatives, usually obtained from carbamazepine, is precluded when treated with MoS2/TiO2 systems.

  8. Adhesive and tribocorrosive behavior of TiAlPtN/TiAlN/TiAl multilayers sputtered coatings over CoCrMo

    Science.gov (United States)

    Canto, C. E.; Andrade, E.; Rocha, M. F.; Alemón, B.; Flores, M.

    2017-09-01

    The tribocorrosion resistance and adherence of multilayer coatings of TiAlPtN/TiAlN/TiAl synthesized by PVD reactive magnetron sputtering over a CoCrMo alloy substrate in 10 periods of 30 min each were analyzed and compared to those of the substrate alone and to that of a TiAlPtN single layer coating of the same thickness. The objective of the present work was to create multilayers with different amounts of Pt in order to enhance the tribocorrosion resistance of a biomedical alloy of CoCrMo. Tribocorrosion tests were performed using Simulated Body Fluid (SBF) at typical body temperature with a tribometer in a pin on disk test. The elemental composition and thickness of the coating which behave better at the tribocorrosion tests were evaluated by means of RBS (Rutherford Backscattering Spectroscopy) IBA (Ion Beam Analysis) technique, using an alpha particles beam of 1.8 MeV, before and after the reciprocating motion in the tribocorrosion test. In order to simulate the elemental profile of the samples, the SIMNRA simulation computer code was used. Measurements of the adhesion of the coatings to the substrate were carried on by means of a scratch test using a tribometer. By taking micrographs of the produced tracks, the critical loads at which the coatings are fully separated from the substrate were determined. From these tests it was observed that a coating with 10 min of TiAlPtN in a TiAlPtN/TiAl period of 30 min in multilayers of 10 periods and with an average thickness of 145 nm for the TiAlPtN nanolayers had the best tribocorrosion resistance behavior, compared to that of the CoCrMo alloy. The RBS experiments showed a reduction of the thickness of the films along with some loss of the multilayer structure after the reciprocating motion. The adhesion tests indicated that the multilayer with the average TiAlPtN thickness of 145 nm displayed the highest critical load. These results indicate a high correlation between the adherence and the tribocorrosion behavior.

  9. A Humidity Sensor Based on Nb-doped Nanoporous TiO2 Thin Film

    Directory of Open Access Journals (Sweden)

    Mansoor Anbia

    2011-11-01

    Full Text Available The humidity sensing properties of the sensor fabricated from Nb-doped nanoporous TiO2 by screen-printing on the alumina substrate with Ag-Pd interdigital electrodes have been investigated. The nanoporous thin film has been prepared by sol-gel technique. The product has been characterized by X-ray diffraction and scanning electron microscopy to analyze the structure and its morphology. It is found that the impedance of this sensor changes more than four orders of magnitude in the relative humidity (RH range of 11–95 % at 25 °C. The response and recovery time of the sensor are about 19 and 25 s, respectively, during the RH variation from 11 to 95 %. The sensor shows high humidity sensitivity, rapid response and recovery, prominent stability, good repeatability and narrow hysteresis loop. These results indicate that Nb-doped nanoporous TiO2 thin films have a great potential for humidity sensing applications in room temperature operations.

  10. Lifetime measurements of nuclear states in 92,91,90Mo, 89,88Nb

    International Nuclear Information System (INIS)

    Chakrawarthy, R.S.; Singh, Pragya; Pillay, R.G.; Devare, H.G.

    1993-01-01

    In order to test the correctness of the wave functions calculated by the shell-model calculations, the knowledge of transition probabilities is important. This, in turn, requires the determination of half lives of these states. We have performed two different experiments, based on Recoil Distance Method (RDM), to measure the lifetime in picosecond range, of states belonging to 92,91,90 Mo and 89,88 Nb nuclei. (author). 3 refs., 1 tab., 1 fig

  11. Test results of the first 50 kA NbTi full size sample for ITER

    International Nuclear Information System (INIS)

    Ciazynski, D.; Zani, L.; Huber, S.; Stepanov, B.; Karlemo, B.

    2003-01-01

    Within the framework of the research studies for the International Thermonuclear Experimental Reactor (ITER) project, the first full size NbTi conductor sample was fabricated in industry and tested in the SULTAN facility (Villigen, Switzerland). This sample (PF-FSJS), which is relevant to the Poloidal Field coils of ITER, is composed of two parallel straight bars of conductor, connected at bottom through a joint designed according to the Cea twin-box concept. The two conductor legs are identical except for the use of different strands: a nickel plated NbTi strand with a pure copper matrix in one leg, and a bare NbTi strand with copper matrix and internal CuNi barrier in the other leg. The two conductors and the joint were extensively tested regarding DC (direct current) and AC (alternative current) properties. This paper reports on the tests results and analysis, stressing the differences between the two conductor legs and discussing the impact of the test results on the ITER design criteria for conductor and joint. While joint DC resistance, conductors and joint AC losses, fulfilled the ITER requirements, neither conductor could reach its current sharing temperature at relevant ITER currents, due to instabilities. Although the drop in temperature is slight for the CuNi strand cable, it is more significant for the Ni plated strand cable. (authors)

  12. Ferroelectricity-induced resistive switching in Pb(Zr0.52Ti0.48)O3/Pr0.7Ca0.3MnO3/Nb-doped SrTiO3 epitaxial heterostructure

    Science.gov (United States)

    Md. Sadaf, Sharif; Mostafa Bourim, El; Liu, Xinjun; Hasan Choudhury, Sakeb; Kim, Dong-Wook; Hwang, Hyunsang

    2012-03-01

    We investigated the effect of a ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) thin film on the generation of resistive switching in a stacked Pr0.7Ca0.3MnO3 (PCMO)/Nb-doped SrTiO3 (Nb:STO) heterostructure forming a p-n junction. To promote the ferroelectric effect, the thin PZT active layer was deposited on an epitaxially grown p-type PCMO film on a lattice-matched n-type Nb:STO single crystal. It was concluded that the observed resistive switching behavior in the all-perovskite Pt/PZT/PCMO/Nb:STO heterostructure was related to the modulation of PCMO/Nb:STO p-n junction's depletion width, which was caused either by the PZT ferroelectric polarization field effect, the electrochemical drift of oxygen ions under an electric field, or both simultaneously.

  13. Analysis of diamond-like carbon and Ti/MoS2 coatings on Ti-6Al-4V substrates for applicability to turbine engine applications

    International Nuclear Information System (INIS)

    Wu, L.; Holloway, B.C.; Kalil, C.; Manos, D.M.

    2000-01-01

    Ti-6Al-4V substrates have been coated by diamond-like carbon (DLC) films, with no surface pretreatment, and have been coated by Ti/MoS 2 films, with a simple surface pre-cleaning. The DLC films were deposited by planar coil r.f. inductively-coupled plasma-enhanced chemical vapor deposition (r.f. ICPECVD); the Ti/MoS 2 films were deposited by magnetron sputtering. Both the DLC and Ti/MoS 2 films were characterized by pull tests, hardness tests, scanning electron microscopy (SEM), and wear tests (pin-on-disk and block-on-ring) to compare their adhesion, hardness, surface topology, and wear properties to plasma-sprayed Cu-Ni-In coating currently used for turbine engine applications. The DLC films were easily characterized by their optical properties because they were highly transparent. We used variable-angle spectroscopic ellipsometry (VASE) to characterize thickness and to unequivocally extract real and complex index of refraction, providing a rapid assessment of film quality. Thicker coatings yielded the largest hardness values. The DLC coatings did not require abrasive pretreatment or the formation of bond-layers to ensure good adhesion to the substrate. Simple surface pre-cleaning was also adequate to form well-adhered Ti/MoS 2 on Ti-6Al-4V. The results show that the DLC and Ti/MoS 2 coatings are both much better fretting- and wear-resistant coatings than plasma-sprayed Cu-Ni-In. Both show excellent adhesion to the substrates, less surface roughness, harder surfaces, and more wear resistance than the Cu-Ni-In films. (orig.)

  14. Band-gap engineering and comparative investigation of Ti2Nb10O29 photocatalysts obtained by Various synthetic routes

    Science.gov (United States)

    Xie, Meiling; Zhu, Hekai; Fang, Minghao; Huang, Zhaohui; Liu, Yan'gai; Wu, Xiaowen

    2018-03-01

    Ti2Nb10O29 photocatalysts were successfully synthesized by three different methods. Ti2Nb10O29 fabricated by the solvothermal method (ST-TNO) exhibited unique microspheres compared to the larger irregular particles observed for the samples annealed in air (Air-TNO) and Ar (Ar-TNO). X-ray Photoelectron Spectroscopy (XPS) results revealed that a partial reduction process from Ti4+ into Ti3+ occurs in Ar-TNO, because of the introduction of oxygen defects. Ar-TNO exhibited visible-light absorption with a band gap of 2.85 eV, while the absorption edges of Air-TNO and ST-TNO were approximately 400 nm. Under UV light irradiation (λ semiconductors. Moreover, the novel semiconductor photocatalyst can be further applied for constructing the heterojunction and designing the band structure.

  15. Structural and electrical properties of Nb doped TiO{sub 2} films prepared by the sol–gel layer-by-layer technique

    Energy Technology Data Exchange (ETDEWEB)

    Duta, M., E-mail: mduta@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Simeonov, S. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784 Sofia (Bulgaria); Teodorescu, V. [National Institute of Material Physics, 105 bis Atomistilor Street, 077125 Bucharest, Magurele (Romania); Predoana, L.; Preda, S.; Nicolescu, M.; Marin, A. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Spasov, D. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784 Sofia (Bulgaria); Gartner, M.; Zaharescu, M. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Szekeres, A. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784 Sofia (Bulgaria)

    2016-02-15

    Highlights: • TiO{sub 2}:Nb (1.2 at.%) multilayer films were deposited by sol–gel method on glass and Si. • 5 and 10 layers TiO{sub 2}:Nb films crystallize only in the anatase phase. • E{sub g} values are within 3.24–3.32 eV showing a decrease with increasing the layer number. • The specific resistivity, effective donor and sheet energy densities were obtained. • Nb donor compensation by acceptor levels in TiO{sub 2}:Nb film was suggested. - Abstract: Thin films of 5 and 10-layered sol–gel TiO{sub 2} were doped with 1.2 at.% Nb and their structural, optical and electrical properties were investigated. The films crystallized only in anatase phase, as evidenced by X-ray diffraction and selected area electron diffraction analyses. High resolution transmission electron microscopy revealed nanosized crystallites with amorphous boundaries. Current-voltage measurements on metal-TiO{sub 2}–Si structures showed the formation of n{sup +}–n heterojunction at the TiO{sub 2}–Si interface with a rectification ratio of 10{sup 4}. The effective donor density varies between 10{sup 16} and 10{sup 17} cm{sup −3}, depending on film thickness. The sheet energy densities under forward and reverse bias are in the order of 10{sup 12} and 10{sup 10} cm{sup −2} eV{sup −1}, respectively. These values and the high specific resistivity (10{sup 4} Ω cm) support the existence of compensating acceptor levels in these films. It was established that the conduction mechanism is based on space charge limited current via deep levels with different energy positions in the band gap.

  16. 4p-5s transitions in YVII, VIII, ZrVIII, IX, NbIX, X and MoX, XI

    International Nuclear Information System (INIS)

    Rahimullah, K.; Chaghtai, M.S.Z.; Khatoon, S.

    1976-01-01

    The spectra of Y VII, VIII, Zr VIII, IX, Nb X and Mo X, XI are studied for the first time and the 1971 analysis of Nb IX is improved. By analyses of the transitions 4s 2 4psup(k)-4s 2 4psup(k-1)5s all the levels of the configurations 4p 3 , 4p 2 5s, 4p 2 and 4p5s are established in the spectra concerned. (Auth.)

  17. New Layered Oxide-Fluoride Perovskites: KNaNbOF5 and KNaMO2F4 (M = Mo6+, W6+

    Directory of Open Access Journals (Sweden)

    Rachelle Ann F. Pinlac

    2011-03-01

    Full Text Available KNaNbOF5 and KNaMO2F4 (M = Mo6+, W6+, three new layered oxide-fluoride perovskites with the general formula ABB’X6, form from the combination of a second-order Jahn-Teller d0 transition metal and an alkali metal (Na+ on the B-site. Alternating layers of cation vacancies and K+ cations on the A-site complete the structure. The K+ cations are found in the A-site layer where the fluoride ions are located. The A-site is vacant in the adjacent A-site layer where the axial oxides are located. This unusual layered arrangement of unoccupied A-sites and under bonded oxygen has not been observed previously although many perovskite-related structures are known.

  18. Synthesis and characterization of Ti-27.5Nb alloy made by CLAD® additive manufacturing process for biomedical applications.

    Science.gov (United States)

    Fischer, M; Laheurte, P; Acquier, P; Joguet, D; Peltier, L; Petithory, T; Anselme, K; Mille, P

    2017-06-01

    Biocompatible beta-titanium alloys such as Ti-27.5(at.%)Nb are good candidates for implantology and arthroplasty applications as their particular mechanical properties, including low Young's modulus, could significantly reduce the stress-shielding phenomenon usually occurring after surgery. The CLAD® process is a powder blown additive manufacturing process that allows the manufacture of patient specific (i.e. custom) implants. Thus, the use of Ti-27.5(at.%)Nb alloy formed by CLAD® process for biomedical applications as a mean to increase cytocompatibility and mechanical biocompatibility was investigated in this study. The microstructural properties of the CLAD-deposited alloy were studied with optical microscopy and electron back-scattered diffraction (EBSD) analysis. The conservation of the mechanical properties of the Ti-27.5Nb material after the transformation steps (ingot-powder atomisation-CLAD) were verified with tensile tests and appear to remain close to those of reference material. Cytocompatibility of the material and subsequent cell viability tests showed that no cytotoxic elements are released in the medium and that viable cells proliferated well. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Bridge toughening enhancement in double-notched MoSi2/Nb model composites

    International Nuclear Information System (INIS)

    Pickard, S.M.; Ghosh, A.K.

    1996-01-01

    Single-ply composites containing both laminate and continuous Nb fiber reinforcement coated with Al 2 O 3 debond coatings in an MoSi 2 matrix are used as model systems for investigating bridge toughening concepts for various precrack configurations., When cracks are introduced symmetrically on either side of the ductile phase with zero crack offset spacing (S = 0), a minimum amount of energy is expended in plastic deformation and the local rupture process in the metal, as measured by the area of the force displacement curve in tension. For asymmetric precracks introduced on either side of the ductile reinforcement, as the offset spacing, S, was varied from 1 to 20 R (R being the ductile phase half-thickness), the overall extension continuously increased within the bridging ligament. The effective ligament gage length was nearly equal to the crack spacing in the limiting case of a weak interface. However, the ductile Nb phase developed a Nb 5 Si 3 reaction layer on its surface which was strongly bonded to the Nb and was found to undergo periodic cracking, leading to numerous shear bands within the ductile phase. This unique and previously unreported mode of metal deformation in shear loading has been analyzed using a simple geometric model. The results indicate that the profusion of shear bands is the primary source of toughening enhancement in the case of asymmetric crack geometry, which was not recognized in prior work of this type

  20. New technology for fabrication of multifilament NbTi composite

    International Nuclear Information System (INIS)

    Yang, Y.K.; Ma, W.M.; Peng, W.N.

    1988-01-01

    Explosive bonding-rolling-drawing process has been developed to produce NbTi multifilamentary superconductors. Multifilamentary wires of 0.5mm in diameter and 2.5km in length with 199 filaments of 25μm in dia. have been produced using this process. The critical current density (Jc) is 1.94x10 5 A/cm 2 at 4.2K and 5T for short samples and 4.9x10 4 A/cm 2 and 4.2/K and 8.5T for the magnet have been reached

  1. From Porous to Dense Nanostructured β-Ti alloys through High-Pressure Torsion.

    Science.gov (United States)

    Afonso, Conrado R M; Amigó, Angelica; Stolyarov, Vladimir; Gunderov, Dmitri; Amigó, Vicente

    2017-10-19

    β-Ti alloys have low elastic modulus, good specific strength and high corrosion resistance for biomaterial applications. Noble elements, such as Nb, Ta and Mo, are used to obtain β-Ti due to their chemical biocompatibility. However, due to their refractory nature, β-Ti requires specific processing routes. Powder metallurgy (P/M) allows for the development of new β-Ti alloys with decreasing costs, but dealing with high-elemental-content alloys can lead to a lack of diffusion and grain growth. One method to refine the structure and improve mechanical properties is a severe plastic deformation technique through high-pressure torsion (HPT). The aim of this work was to evaluate the conversion of P/M porous β-Ti-35Nb-10Ta-xFe alloys to dense nanostructures through high-pressure torsion in one deformation step and the influence of the structure variation on the properties and microstructure. TEM analysis and ASTAR crystallographic mapping was utilized to characterize the nanostructures, and the properties of P/M β Ti-35Nb-10Ta-xFe alloys processed by HPT were compared. The initial microstructure consisted mainly by the β-Ti phase with some α-Ti phase at the grain boundaries. The HPT process refined the microstructure from 50 µm (P/M) down to nanostructured grains of approximately 50 nm.

  2. Corrosion Behavior of Ti-13Nb-13Zr and Ti-6Al-4V Alloys for Biomaterial Application

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Viswanathan S.; Jeong, Yong Hoon; Choe, Han Cheol [Chosun University, Gwangju (Korea, Republic of); Yu, Jin Woo [Shingyeong University, Hwaseong (Korea, Republic of)

    2010-02-15

    Ti-13Nb-13Zr (TNZ) alloy has attracted considerable research attention in the last decade as a suitable substitute for the commercially used Ti-6Al-4V (TAV) alloy for orthopedic and dental implant applications. Hence, in the present work, a comparative evaluation has been performed on the electrochemical corrosion behavior of TNZ and TAV alloys in 0.9 wt.% NaCl solution. The result of the study showed that both the alloys had similar electrochemical behavior. The corrosion resistance of TAV alloy is found to be marginally superior to that of TNZ alloy.

  3. Corrosion Behavior of Ti-13Nb-13Zr and Ti-6Al-4V Alloys for Biomaterial Application

    International Nuclear Information System (INIS)

    Saji, Viswanathan S.; Jeong, Yong Hoon; Choe, Han Cheol; Yu, Jin Woo

    2010-01-01

    Ti-13Nb-13Zr (TNZ) alloy has attracted considerable research attention in the last decade as a suitable substitute for the commercially used Ti-6Al-4V (TAV) alloy for orthopedic and dental implant applications. Hence, in the present work, a comparative evaluation has been performed on the electrochemical corrosion behavior of TNZ and TAV alloys in 0.9 wt.% NaCl solution. The result of the study showed that both the alloys had similar electrochemical behavior. The corrosion resistance of TAV alloy is found to be marginally superior to that of TNZ alloy

  4. Effect of Mo on Microstructures and Wear Properties of In Situ Synthesized Ti(C,N)/Ni-Based Composite Coatings by Laser Cladding.

    Science.gov (United States)

    Wu, Fan; Chen, Tao; Wang, Haojun; Liu, Defu

    2017-09-06

    Using Ni60 alloy, C, TiN and Mo mixed powders as the precursor materials, in situ synthesized Ti(C,N) particles reinforcing Ni-based composite coatings are produced on Ti6Al4V alloys by laser cladding. Phase constituents, microstructures and wear properties of the composite coatings with 0 wt % Mo, 4 wt % Mo and 8 wt % Mo additions are studied comparatively. Results indicate that Ti(C,N) is formed by the in situ metallurgical reaction, the (Ti,Mo)(C,N) rim phase surrounding the Ti(C,N) ceramic particle is synthesized with the addition of Mo, and the increase of Mo content is beneficial to improve the wear properties of the cladding coatings. Because of the effect of Mo, the grains are remarkably refined and a unique core-rim structure that is uniformly dispersed in the matrix appears; meanwhile, the composite coatings with Mo addition exhibit high hardness and excellent wear resistance due to the comprehensive action of dispersion strengthening, fine grain strengthening and solid solution strengthening.

  5. Stable MoS2 Field-Effect Transistors Using TiO2 Interfacial Layer at Metal/MoS2 Contact

    KAUST Repository

    Park, Woojin

    2017-09-07

    Molybdenum disulphide (MoS2) is an emerging 2-dimensional (2D) semiconductor for electronic devices. However, unstable and low performance of MoS2 FETs is an important concern. In this study, inserting an atomic layer deposition (ALD) titanium dioxide (TiO2) interfacial layer between contact metal and MoS2 channel is suggested to achieve more stable performances. The reduced threshold voltage (VTH) shift and reduced series resistance (RSD) were simultaneously achieved.

  6. Formation of Cr-modified silicide coatings on a Ti-Nb-Si based ultrahigh-temperature alloy by pack cementation process

    Energy Technology Data Exchange (ETDEWEB)

    Qiao Yanqiang [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Guo Xiping, E-mail: xpguo@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China)

    2010-10-01

    Cr-modified silicide coatings were prepared on a Ti-Nb-Si based ultrahigh temperature alloy by Si-Cr co-deposition at 1250 deg. C, 1350 deg. C and 1400 deg. C for 5-20 h respectively. It was found that both coating structure and phase constituents changed significantly with increase in the co-deposition temperature and holding time. The outer layers in all coatings prepared at 1250 deg. C for 5-20 h consisted of (Ti,X){sub 5}Si{sub 3} (X represents Nb, Cr and Hf elements). (Ti,X){sub 5}Si{sub 4} was found as the only phase constituent in the intermediate layers in both coatings prepared at 1250 deg. C for 5 and 10 h, but the intermediate layers in the coatings prepared at 1250 deg. C for 15 and 20 h were mainly composed of (Ti,X){sub 5}Si{sub 3} phase that was derived from the decomposition of (Ti,X){sub 5}Si{sub 4} phase. In the coating prepared at 1350 deg. C for 5 h, single (Ti,X){sub 5}Si{sub 3} phase was found in its outmost layer, the same as that in the outer layers in the coatings prepared at 1250 deg. C; but in the coatings prepared at 1350 deg. C for 10-20 h, (Nb{sub 1.95}Cr{sub 1.05})Cr{sub 2}Si{sub 3} ternary phase was found in the outmost layers besides (Ti,X){sub 5}Si{sub 3} phase. In the coatings prepared at 1400 deg. C for 5-20 h, (Nb{sub 1.95}Cr{sub 1.05})Cr{sub 2}Si{sub 3} ternary phase was the single phase constituent in their outmost layers. The phase transformation (Ti,X){sub 5}Si{sub 4} {yields} (Ti,X){sub 5}Si{sub 3} + Si occurred in the intermediate layers of the coatings prepared at 1350 and 1400 deg. C with prolonging co-deposition time, similar to the situation in the coatings prepared at 1250 deg. C for 15 and 20 h, but this transformation has been speeded up by increase in the co-deposition temperature. The transitional layers were mainly composed of (Ti,X){sub 5}Si{sub 3} phase in all coatings. The influence of co-deposition temperature on the diffusion ability of Cr atoms was greater than that of Si atoms in the Si-Cr co

  7. Anomalous enhancement of the thermoelectric figure of merit by V co-doping of Nb-SrTiO3

    KAUST Repository

    Ozdogan, K.

    2012-05-10

    The effect of V co-doping of Nb-SrTiO3 is studied by full-potential density functional theory. We obtain a stronger increase of the carrier density for V than for Nbdopants. While in Nb-SrTiO3 a high carrier density counteracts a high thermoelectric figure of merit, the trend is inverted by V co-doping. The mechanism leading to this behavior is explained in terms of a local spin-polarization introduced by the V ions. Our results indicate that magnetic co-doping can be a prominent tool for improving the thermoelectric figure of merit.

  8. Anomalous enhancement of the thermoelectric figure of merit by V co-doping of Nb-SrTiO3

    KAUST Repository

    Ozdogan, K.; Alshareef, Husam N.; Schwingenschlö gl, Udo; Upadhyay Kahaly, M.

    2012-01-01

    The effect of V co-doping of Nb-SrTiO3 is studied by full-potential density functional theory. We obtain a stronger increase of the carrier density for V than for Nbdopants. While in Nb-SrTiO3 a high carrier density counteracts a high thermoelectric figure of merit, the trend is inverted by V co-doping. The mechanism leading to this behavior is explained in terms of a local spin-polarization introduced by the V ions. Our results indicate that magnetic co-doping can be a prominent tool for improving the thermoelectric figure of merit.

  9. Mo-doped Gray Anatase TiO2: Lattice Expansion for Enhanced Sodium Storage

    International Nuclear Information System (INIS)

    Liao, Hanxiao; Xie, Lingling; Zhang, Yan; Qiu, Xiaoqing; Li, Simin; Huang, Zhaodong; Hou, Hongshuai; Ji, Xiaobo

    2016-01-01

    Gray-colored Mo 6+ -doped anatase TiO 2 is prepared uniformly with particle size of 10–20 nm, and is firstly employed as anode material in sodium-ion batteries (SIBs), presenting excellent electrochemical performances. It delivered reversible specific capacities of 231.8 mAh g −1 at 0.1 C (33.5 mA g −1 ) after 100 cycles and 108.3 mAh g −1 at 5 C (1.68 A g −1 ), comparing to 170.5 mAh g −1 at 0.1 C and only 41.7 mAh g −1 at 5C for the bare TiO 2 . The improved electrochemical performances might be beneficial from the doping of Mo 6+ , which can effectively enhance the conductivity of TiO 2 resulting from induced conduction band electrons, interstitial oxygen defects and vacancies. In addition, the doping can also lead to the lattice expansion, which can facilitate the diffusion of Na + . In combination with natural abundance and environmental benignity, Mo 6+ -doped TiO 2 can be expected to be utilized as an anode material for enhanced sodium storage.

  10. Growth of aluminum-free porous oxide layers on titanium and its alloys Ti-6Al-4V and Ti-6Al-7Nb by micro-arc oxidation.

    Science.gov (United States)

    Duarte, Laís T; Bolfarini, Claudemiro; Biaggio, Sonia R; Rocha-Filho, Romeu C; Nascente, Pedro A P

    2014-08-01

    The growth of oxides on the surfaces of pure Ti and two of its ternary alloys, Ti-6Al-4V and Ti-6Al-7Nb, by micro-arc oxidation (MAO) in a pH 5 phosphate buffer was investigated. The primary aim was to form thick, porous, and aluminum-free oxide layers, because these characteristics favor bonding between bone and metal when the latter is implanted in the human body. On Ti, Ti-6Al-4 V, and Ti-6Al-7Nb, the oxides exhibited breakdown potentials of about 200 V, 130 V, and 140 V, respectively, indicating that the oxide formed on the pure metal is the most stable. The use of the MAO procedure led to the formation of highly porous oxides, with a uniform distribution of pores; the pores varied in size, depending on the anodizing applied voltage and time. Irrespective of the material being anodized, Raman analyses allowed us to determine that the oxide films consisted mainly of the anatase phase of TiO2, and XPS results indicated that this oxide is free of Al and any other alloying element. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Numerical simulation of mold shape’s influence on NbTi cold-pressing superconducting joint

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Feng, E-mail: zhoufeng@mail.iee.ac.cn; Cheng, Junsheng; Dai, Yinming; Wang, Qiuliang; Yan, Luguang

    2014-03-15

    Highlights: • Four different shape molds’ influence on NbTi cold-pressing joint are analyzed. • Deformation of filaments is the most uniform in the case of radial compression. • The square mold is the optimum one for decreasing joint resistance in practice. - Abstract: The cold-pressing welding methods are employed to fabricate joints between NbTi multi-filamentary conductors, and a series of joints are made with the molds of different shapes for nuclear magnetic resonance (NMR) magnet applications. The Abaqus–Explicit method was used to do a quasi-static analysis of the cold-pressing welding process. In the simulation, we analyzed four molds with different shapes: plate mold, cap mold, square mold, and radial compression. The simulation shows that the deformation of filaments is the most uniform in the case of radial compression and the square mold is the optimum one for decreasing joint resistance.

  12. Phase analyses of silicide or nitride coated U–Mo and U–Mo–Ti particle dispersion fuel after out-of-pile annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Jeong [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Palancher, Hervé [CEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex (France); Ryu, Ho Jin, E-mail: hojinryu@kaist.ac.kr [Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong, Daejeon 305-701 (Korea, Republic of); Park, Jong Man; Nam, Ji Min [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Bonnin, Anne [CEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex (France); ESRF, 6, rue J. Horowitz, F-38000 Grenoble Cedex (France); Honkimäki, Veijo [ESRF, 6, rue J. Horowitz, F-38000 Grenoble Cedex (France); Charollais, François [CEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex (France); Lemoine, Patrick [CEA, DEN, DISN, 91191 Gif sur Yvette (France)

    2014-03-15

    Highlights: • Silicide or nitride layers were coated on atomized U–Mo or U–Mo–Ti powder. • The constituent phases after annealing were identified through high-energy XRD. • U{sub 3}Si{sub 5} and U{sub 4}Mo(Mo{sub x}Si{sub 1−x})Si{sub 2} were identified in the silicide coating layers. • UN was identified for U–Mo particles and UN and U{sub 4}N{sub 7} formed on U–Mo–Ti particles. -- Abstract: The coating of silicide or nitride layers on U–7 wt%Mo or U–7 wt%Mo–1 wt%Ti particles has been proposed for the minimization of the interaction phase growth in U–Mo/Al dispersion fuel during irradiation. Out-of-pile annealing tests show reduced inter-diffusion by forming silicide or nitride protective layers on U–Mo and U–Mo–Ti particles. To characterize the constituent phases of the coated layers on U–Mo and U–Mo–Ti particles and the interaction phases of coated U–Mo and U–Mo–Ti particle dispersed Al matrix fuel, synchrotron X-ray diffraction experiments have been performed. It was identified that silicide coating layers consisted mainly of U{sub 3}Si{sub 5} and U{sub 4}Mo(Mo{sub x}Si{sub 1−x})Si{sub 2}, and nitride coating layers were composed of mainly UN and U{sub 4}N{sub 7}. The interaction phases obtained after annealing of coated U–Mo and U–Mo–Ti particle dispersion samples were identical to those found in U–Mo/Al–Si and U–Mo/Al systems. Nitride-coated particles showed less interaction formation than silicide-coated particles after annealing at 580 °C for 1 h owing to the higher susceptibility to breakage of the silicide coating layers during hot extrusion.

  13. Self-assembled Bi{sub 2}MoO{sub 6}/TiO{sub 2} nanofiber heterojunction film with enhanced photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hua [School of Chemical Engineering, Northwest University, Xi’an 710069 (China); Zhang, Tianxi [School of Physics, Northwest University, Xi’an 710069 (China); Pan, Chao; Pu, Chenchen; Hu, Yang [School of Chemical Engineering, Northwest University, Xi’an 710069 (China); Hu, Xiaoyun [School of Physics, Northwest University, Xi’an 710069 (China); Liu, Enzhou, E-mail: liuenzhou@nwu.edu.cn [School of Chemical Engineering, Northwest University, Xi’an 710069 (China); Fan, Jun, E-mail: fanjun@nwu.edu.cn [School of Chemical Engineering, Northwest University, Xi’an 710069 (China)

    2017-01-01

    Highlights: • Self-assembled Bi{sub 2}MoO{sub 6}/TiO{sub 2} nanofiber film was synthesized. • TiO{sub 2} nanofiber film exhibits excellent visible light scattering property. • The scattering light from TiO{sub 2} overlaps with the absorption light of Bi{sub 2}MoO{sub 6}. • Bi{sub 2}MoO{sub 6}/TiO{sub 2} heterojunction photocatalysts show higher photocatalytic activity. - Abstract: TiO{sub 2} nanofiber film (TiO{sub 2} NFF) was successfully fabricated by an ethylene glycol-assisted hydrothermal method, and then self-assembled flake-like Bi{sub 2}MoO{sub 6} was grown on the surface of TiO{sub 2} nanofiber under alcohol thermal condition. The investigations indicate that the nanofiber structure of TiO{sub 2} films exhibits excellent visible light scattering property, the scattering light overlaps with the absorption band of Bi{sub 2}MoO{sub 6}, which can enhance the utility of incident light. The prepared Bi{sub 2}MoO{sub 6}/TiO{sub 2} composites show obviously enhanced photocatalytic activity for methylene blue (MB) degradation compared with pure TiO{sub 2} nanofiber under visible light irradiation (λ > 420 nm). The enhanced photocatalytic activity is primarily attributed to the synergistic effect of visible light absorption and effective electron-hole separation at the interfaces of the two semiconductors, which is confirmed by photoluminescence (PL) and electrochemical tests.

  14. Modification of TiO{sub 2} nanorods by Bi{sub 2}MoO{sub 6} nanoparticles for high performance visible-light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Li Na; Zhu Li [School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640 (China); Zhang Weide, E-mail: zhangwd@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640 (China); Yu Yuxiang; Zhang Wenhui; Hou Meifang [School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640 (China)

    2011-10-13

    Highlights: > Bi{sub 2}MoO{sub 6}/TiO{sub 2} heterojunction photocatalysts. > Effective separation of photoexcited electrons and holes. > High visible light photocatalytic activity. - Abstract: In this work, TiO{sub 2} nanorods were prepared by a hydrothermal process and then Bi{sub 2}MoO{sub 6} nanoparticles were deposited onto the TiO{sub 2} nanorods by a solvothermal process. The nanostructured Bi{sub 2}MoO{sub 6}/TiO{sub 2} composites were extensively characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The photocatalytic activity of the Bi{sub 2}MoO{sub 6}/TiO{sub 2} composites was evaluated by degradation of methylene blue. The Bi{sub 2}MoO{sub 6}/TiO{sub 2} composites exhibit higher catalytic activity than pure Bi{sub 2}MoO{sub 6} and TiO{sub 2} for degradation of methylene blue under visible light irradiation ({lambda} > 420 nm). Further investigation revealed that the ratio of Bi{sub 2}MoO{sub 6} to TiO{sub 2} in the composites greatly influenced their photocatalytic activity. The experimental results indicated that the composite with Bi{sub 2}MoO{sub 6}:TiO{sub 2} = 1:3 exhibited the highest photocatalytic activity. The enhancement mechanism of the composite catalysts was also discussed.

  15. Critical current studies on fine filamentary NbTi accelerator wires

    International Nuclear Information System (INIS)

    Garber, M.; Sabatini, R.L.; Sampson, W.B.; Suenaga, M.

    1986-01-01

    The magnets for the Superconducting Super Collider, a high energy proton colliding beam accelerator, require a superconductor with very high current density (> 2400 A/mm 2 at 5 T) and very small filaments ( about 2μ m in diameter). Previous work has shown that by controling the formation of Cu 4 Ti compound particles on the filament surfaces it is possible to make fine filamentary NbTi wire with high critical current density. The performance of multi-filamentary wire is characterized by the current density and the quantity ''n'' which describes the superconducting-normal transition. Micrographs of wires having high J /SUB c/ and high n show smooth, uniform filaments. Recently wires of very high critical current and high n have been produced in experimental quantities by commercial manufacturers

  16. Critical current studies on fine filamentary NbTi accelerator wires

    International Nuclear Information System (INIS)

    Garber, M.; Suenaga, M.; Sampson, W.B.; Sabatini, R.L.

    1985-01-01

    The magnets for the Superconductig Super Collider, a high energy proton colliding beam accelerator, require a superconductor with very high current density (>2400 A/mm 2 at 5 T) and very small filaments (approx. 2μm in diameter). Previous work has shown that by controlling the formation of Cu 4 Ti compound particles on the filament surfaces it is possible to make fine filamentary NbTi wire with high critical current density. The performance of multi-filamentary wire is characterized by the current density and the quantity ''n'' which describes the superconducting-normal transition. Micrographs of wires having high J/sub c/ and high n show smooth, uniform filaments. Recently wires of very high critical current and high n have been produced in experimental quantities by commercial manufactures

  17. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    OpenAIRE

    Li, Qijun; Zhang, Lin; Wei, Dongbin; Ren, Shubin; Qu, Xuanhui

    2017-01-01

    Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20–110 μm. With the decr...

  18. Improved superheater tubing material - Ti and Nb bearing austenitic steel

    International Nuclear Information System (INIS)

    Kinoshita, K.; Mimino, T.; Minegishi, I.

    1975-01-01

    A newly developed 18 Cr-8 Ni stainless steel modified with small amounts of Ti and Nb has considerably high stress-rupture strength and is considered to be suitable for superheater material for power boilers. Data for stress-rupture and creep for long times, the strength of welded joints, the changes of characteristics due to exposure to high temperatures, etc., are presented and discussed. Some investigations after trial services indicate that the experimental data are applicable to actual applications. (author)

  19. Favorable ultraviolet photoelectric effects in TbMnO3/Nb-SrTiO3 heterostructures

    KAUST Repository

    Jin, Kexin; Zhai, Y. X.; Li, Hui; Tian, Y. F.; Luo, B. C.; Wu, Tao

    2014-01-01

    The rectifying properties and ultraviolet photoelectric effects in TbMnO3/Nb-doped SrTiO3 heterostructures have been investigated. The ideality factors and the diffusion voltages obtained from the current-voltage curves nonlinearly decrease

  20. The structural and electronic properties of cubic AgMO{sub 3} (M=Nb, Ta) by first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, K. Ganga; Niranjan, Manish K.; Asthana, Saket [Department of Physics, Indian Institute of Technology Hyderabad, India, 502205 (India)

    2016-05-06

    We report the electronic structure of the AgMO{sub 3}(M=Nb, Ta) within the frame work of density functional theory and calculations are performed within the generalized gradient approximation (GGA) by using ultrasoft pseudopotentials. The calculated equilibrium lattice parameters and volumes are extracted from fitting of Birch third order equation of state and which are reasonable agreement with the available experimental results. The density of states,band structure of Ag(Nb,Ta)O{sub 3} reveals that the valance bands mostly occupied with O-2p and O-2s states and whereas conduction band occupied with Nb (Ta) 4d(5d) states including less contribution from Ag 5s states.