WorldWideScience

Sample records for thyrotropin receptor activation

  1. Activating thyrotropin receptor mutations in histologically heterogeneous hyperfunctioning nodules of multinodular goiter.

    Science.gov (United States)

    Tonacchera, M; Vitti, P; Agretti, P; Giulianetti, B; Mazzi, B; Cavaliere, R; Ceccarini, G; Fiore, E; Viacava, P; Naccarato, A; Pinchera, A; Chiovato, L

    1998-07-01

    Activating thyrotropin (TSH) receptor mutations have been found in toxic adenomas and in hot nodules contained in toxic multinodular goiter. The typical feature of multinodular goiter is the heterogeneity in morphology and function of different follicles within the same enlarged gland. In this report we describe a patient with a huge multinodular goiter, normal free triiodothyronine (FT3) and free thyroxine (FT4) serum values, and subnormal TSH serum concentration. Thyroid scintiscan showed two hot areas corresponding to the basal and apical nodules of the left lobe. The right lobe was poorly visualized by the radioisotope. The patient underwent thyroidectomy, and histological examination of the tissue was performed. Genomic DNA was extracted from the tissue specimen and direct sequencing of the TSH receptor and Gs alpha genes was done. At histology, one hyperfunctioning nodule had the typical microscopic structure of thyroid adenomas, and the other contained multiple macrofollicular areas not confined by a capsule. In spite of this histological difference, both hyperfunctioning nodules harbored a mutation of the thyrotropin receptor (TSHr) gene: an isoleucine instead of a threonine in position 632 (T632I) in the first nodule and a methionine instead of an isoleucine in position 486 (I486M) in the second nodule. In conclusion, our findings show for the first time that gain-of-function TSHr mutations are not only present in hyperfunctioning thyroid nodules with the histological features of the true thyroid adenomas, but also in hyperfunctioning hyperplastic nodules contained in the same multinodular goiter.

  2. Mutations that silence constitutive signaling activity in the allosteric ligand-binding site of the thyrotropin receptor.

    Science.gov (United States)

    Haas, Ann-Karin; Kleinau, Gunnar; Hoyer, Inna; Neumann, Susanne; Furkert, Jens; Rutz, Claudia; Schülein, Ralf; Gershengorn, Marvin C; Krause, Gerd

    2011-01-01

    The thyrotropin receptor (TSHR) exhibits elevated cAMP signaling in the basal state and becomes fully activated by thyrotropin. Previously we presented evidence that small-molecule ligands act allosterically within the transmembrane region in contrast to the orthosteric extracellular hormone-binding sites. Our goal in this study was to identify positions that surround the allosteric pocket and that are sensitive for inactivation of TSHR. Homology modeling combined with site-directed mutagenesis and functional characterization revealed seven mutants located in the allosteric binding site that led to a decrease of basal cAMP signaling activity. The majority of these silencing mutations, which constrain the TSHR in an inactive conformation, are found in two clusters when mapped onto the 3D structural model. We suggest that the amino acid positions identified herein are indicating locations where small-molecule antagonists, both neutral antagonists and inverse agonists, might interfere with active TSHR conformations.

  3. Thyrotropin receptor antibody activities significantly correlate with the outcome of radioiodine (131I) therapy for hyperthyroid Graves' disease

    International Nuclear Information System (INIS)

    Kaise, Kazuro; Kaise, Nobuko; Yoshida, Katsumi; Fukazawa, Hiroshi; Mori, Koki; Yamamoto, Makiko; Sakurada, Toshiro; Saito, Shintaro; Yoshinaga, Kaoru

    1991-01-01

    The outcome of 131 I therapy for 109 patients with Graves' disease was analysed according to pretreatment laboratory data including thyrotropin receptor antibody (TRAb) activities. Forty-five percent of patients became euthyroid, and 13% of patients became hypothyroid within one year after 131 I therapy. Forty-two percent of patients remained hyperthyroid one year after 131 I therapy. Pretreatment values for serum T 4 , T 3 , and the estimated weight of the thyroid were significantly higher in the hyperthyroid group. The mean for the TRAb index of the hyperthyroid group was significantly higher than that of the euthyroid group. Life table analysis revealed a significant effect of the TRAb index on the rate of hyperthyroidism after 3 months or later. These results appear to suggest that the TRAb index is one of the factors which influence the outcome of 131 I therapy for Graves' disease. (author)

  4. Hyperfunctioning thyroid nodules in toxic multinodular goiter share activating thyrotropin receptor mutations with solitary toxic adenoma.

    Science.gov (United States)

    Tonacchera, M; Chiovato, L; Pinchera, A; Agretti, P; Fiore, E; Cetani, F; Rocchi, R; Viacava, P; Miccoli, P; Vitti, P

    1998-02-01

    Toxic multinodular goiter is a cause of nonautoimmune hyperthyroidism and is believed to differ in its nature and pathogenesis from toxic adenoma. Gain-of-function mutations of the TSH receptor gene have been identified as a cause of toxic adenoma. The pathogenesis at the molecular level of hyperfunctioning nodules in toxic multinodular goiter has yet not been reported. Six patients with a single hot nodule within a multinodular goiter and 11 patients with toxic thyroid adenoma were enrolled in our study. At histology five hyperfunctioning nodules in multinodular goiters showed the features of adenomas, and one was identified as a hyperplastic nodule. The entire exon 10 of the TSH receptor gene was directly sequenced after PCR amplification from genomic DNA obtained from surgical specimens. Functional studies of mutated receptors were performed in COS-7 cells. Five out of 6 (83%) hyperfunctioning nodules within toxic multinodular goiters harbored a TSH receptor mutation. A TSH receptor mutation was also evident in the hyperfunctioning nodule that at histology had the features of noncapsulated hyperplastic nodule. Among toxic adenomas, 8 out of 11 (72%) nodules harbored a TSH receptor mutation. All the mutations were heterozygotic and somatic. Nonfunctioning nodules, whether adenomas or hyperplastic nodules present in association with hyperfunctioning nodules in the same multinodular goiters, had no TSH receptor mutation. All the mutations identified had constitutive activity as assessed by cAMP production after expression in COS-7 cells. Hyperfunctioning thyroid nodules in multinodular goiters recognize the same pathogenetic event (TSH receptor mutation) as toxic adenoma. Other mechanisms are implicated in the growth of nonfunctioning thyroid nodules coexistent in the same gland.

  5. Hyperthyroidism caused by a germline activating mutation of the thyrotropin receptor gene: difficulties in diagnosis and therapy.

    Science.gov (United States)

    Bertalan, Rita; Sallai, Agnes; Sólyom, János; Lotz, Gábor; Szabó, István; Kovács, Balázs; Szabó, Eva; Patócs, Attila; Rácz, Károly

    2010-03-01

    Germline activating mutations of the thyrotropin receptor (TSHR) gene have been considered as the only known cause of sporadic nonautoimmune hyperthyroidism in the pediatric population. Here we describe the long-term follow-up and evaluation of a patient with sporadic nonautoimmune primary hyperthyroidism who was found to have a de novo germline activating mutation of the TSHR gene. The patient was an infant who presented at the age of 10 months in an unconscious state with exsiccation, wet skin, fever, and tachycardia. Nonautoimmune primary hyperthyroidism was diagnosed, and brain magnetic resonance imaging and computed tomography showed also Arnold-Chiari malformation type I. Continuous propylthiouracil treatment resulted in a prolonged clinical cure lasting for 10 years. At the age of 11 years and 5 months the patient underwent subtotal thyroidectomy because of symptoms of trachea compression caused by a progressive multinodular goiter. However, 2 months after surgery, hormonal evaluation indicated recurrent hyperthyroidism and the patient was treated with propylthiouracil during the next 4 years. At the age of 15 years the patient again developed symptoms of trachea compression. Radioiodine treatment resulted in a regression of the recurrent goiter and a permanent cure of hyperthyroidism without relapse during the last 3 years of his follow-up. Sequencing of exon 10 of the TSHR gene showed a de novo heterozygous germline I630L mutation, which has been previously described as activating mutation at somatic level in toxic thyroid nodules. The I630L mutation of the TSHR gene occurs not only at somatic level in toxic thyroid nodules, but also its presence in germline is associated with nonautoimmune primary hyperthyroidism. Our case report demonstrates that in this disorder a continuous growth of the thyroid occurs without any evidence of elevated TSH due to antithyroid drug overdosing. This may justify previous recommendations for early treatment of affected

  6. Activating thyrotropin receptor mutations are present in nonadenomatous hyperfunctioning nodules of toxic or autonomous multinodular goiter.

    Science.gov (United States)

    Tonacchera, M; Agretti, P; Chiovato, L; Rosellini, V; Ceccarini, G; Perri, A; Viacava, P; Naccarato, A G; Miccoli, P; Pinchera, A; Vitti, P

    2000-06-01

    Toxic multinodular goiter, a heterogeneous disease producing hyperthyroidism, is frequently found in iodine-deficient areas. The pathogenesis of this common clinical entity is still unclear. The aim of the present study was to search for activating TSH receptor (TSHr) or Gs alpha mutations in areas of toxic or functionally autonomous multinodular goiters that appeared hyperfunctioning at thyroid scintiscan but did not clearly correspond to definite nodules at physical or ultrasonographic examination. Surgical tissue specimens from nine patients were carefully dissected, matching thyroid scintiscan and thyroid ultrasonography, to isolate hyperfunctioning and nonfunctioning areas even if they did not correspond to well-defined nodules. TSHr and Gs alpha mutations were searched for by direct sequencing after PCR amplification of genomic DNA. Only 2 adenomas were identified at microscopic examination, whereas the remaining 18 hyperfunctioning areas corresponded to hyperplastic nodules containing multiple aggregates of micromacrofollicules not surrounded by a capsule. Activating TSHr mutations were detected in 14 of these 20 hyperfunctioning areas, whereas no mutation was identified in nonfunctioning nodules or areas contained in the same gland. No Gs alpha mutation was found. In conclusion, activating TSHr mutations are present in the majority of nonadenomatous hyperfunctioning nodules scattered throughout the gland in patients with toxic or functionally autonomous multinodular goiter.

  7. Monoclonal Antibodies to the Thyrotropin Receptor

    Directory of Open Access Journals (Sweden)

    Takao Ando

    2005-01-01

    Full Text Available The thyrotropin receptor (TSHR is a seven transmembrane G-protein linked glycoprotein expressed on the thyroid cell surface and which, under the regulation of TSH, controls the production and secretion of thyroid hormone from the thyroid gland. This membrane protein is also a major target antigen in the autoimmune thyroid diseases. In Graves' disease, autoantibodies to the TSHR (TSHR-Abs stimulate the TSHR to produce thyroid hormone excessively. In autoimmune thyroid failure, some patients exhibit TSHR-Abs which block TSH action on the receptor. There have been many attempts to generate human stimulating TSHR-mAbs, but to date, only one pathologically relevant human stimulating TSHR-mAb has been isolated. Most mAbs to the TSHR have been derived from rodents immunized with TSHR antigen from bacteria or insect cells. These antigens lacked the native conformation of the TSHR and the resulting mAbs were exclusively blocking or neutral TSHR-mAbs. However, mAbs raised against intact native TSHR antigen have included stimulating mAbs. One such stimulating mAb has demonstrated a number of differences in its regulation of TSHR post-translational processing. These differences are likely to be reflective of TSHR-Abs seen in Graves' disease.

  8. Molecular Insights into the Transmembrane Domain of the Thyrotropin Receptor.

    Directory of Open Access Journals (Sweden)

    Vanessa Chantreau

    Full Text Available The thyrotropin receptor (TSHR is a G protein-coupled receptor (GPCR that is member of the leucine-rich repeat subfamily (LGR. In the absence of crystal structure, the success of rational design of ligands targeting the receptor internal cavity depends on the quality of the TSHR models built. In this subfamily, transmembrane helices (TM 2 and 5 are characterized by the absence of proline compared to most receptors, raising the question of the structural conformation of these helices. To gain insight into the structural properties of these helices, we carried out bioinformatics and experimental studies. Evolutionary analysis of the LGR family revealed a deletion in TM5 but provided no information on TM2. Wild type residues at positions 2.58, 2.59 or 2.60 in TM2 and/or at position 5.50 in TM5 were substituted to proline. Depending on the position of the proline substitution, different effects were observed on membrane expression, glycosylation, constitutive cAMP activity and responses to thyrotropin. Only proline substitution at position 2.59 maintained complex glycosylation and high membrane expression, supporting occurrence of a bulged TM2. The TSHR transmembrane domain was modeled by homology with the orexin 2 receptor, using a protocol that forced the deletion of one residue in the TM5 bulge of the template. The stability of the model was assessed by molecular dynamics simulations. TM5 straightened during the equilibration phase and was stable for the remainder of the simulations. Our data support a structural model of the TSHR transmembrane domain with a bulged TM2 and a straight TM5 that is specific of glycoprotein hormone receptors.

  9. Thyrotropin receptor antibody activities significantly correlate with the outcome of radioiodine ( sup 131 I) therapy for hyperthyroid Graves' disease

    Energy Technology Data Exchange (ETDEWEB)

    Kaise, Kazuro; Kaise, Nobuko; Yoshida, Katsumi; Fukazawa, Hiroshi; Mori, Koki; Yamamoto, Makiko; Sakurada, Toshiro; Saito, Shintaro; Yoshinaga, Kaoru (Tohoku Univ., Sendai (Japan). School of Medicine)

    1991-08-01

    The outcome of {sup 131}I therapy for 109 patients with Graves' disease was analysed according to pretreatment laboratory data including thyrotropin receptor antibody (TRAb) activities. Forty-five percent of patients became euthyroid, and 13% of patients became hypothyroid within one year after {sup 131}I therapy. Forty-two percent of patients remained hyperthyroid one year after {sup 131}I therapy. Pretreatment values for serum T{sub 4}, T{sub 3}, and the estimated weight of the thyroid were significantly higher in the hyperthyroid group. The mean for the TRAb index of the hyperthyroid group was significantly higher than that of the euthyroid group. Life table analysis revealed a significant effect of the TRAb index on the rate of hyperthyroidism after 3 months or later. These results appear to suggest that the TRAb index is one of the factors which influence the outcome of {sup 131}I therapy for Graves' disease. (author).

  10. Thyrotropin-luteinizing hormone/chorionic gonadotropin receptor extracellular domain chimeras as probes for thyrotropin receptor function

    International Nuclear Information System (INIS)

    Nagayama, Yuji; Wadsworth, H.L.; Chazenbalk, G.D.; Russo, D.; Seto, Pui; Rapoport, B.

    1991-01-01

    To define the sites in the extracellular domain of the human thyrotropin (TSH) receptor that are involved in TSH binding and signal transduction the authors constructed chimeric thyrotropin-luteinizing hormone/chorionic gonadotropin (TSH-LH/CG) receptors. The extracellular domain of the human TSH receptor was divided into five regions that were replaced, either singly or in various combinations, with homologous regions of the rat LH/CG receptor. The chimeric receptors were stably expressed in Chinese hamster ovary cells. The data obtained suggest that the carboxyl region of the extracellular domain (amino acid residues 261-418) and particularly the middle region (residues 171-260) play a role in signal transduction. The possibility is also raised of an interaction between the amino and carboxyl regions of the extracellular domain in the process of signal transduction. In summary, these studies suggest that the middle region and carboxyl half of the extracellular domain of the TSH receptor are involved in signal transduction and that the TSH-binding region is likely to span the entire extracellular domain, with multiple discontinuous contact sites

  11. Deletion of thyrotropin receptor residue Asp403 in a hyperfunctioning thyroid nodule provides insight into the role of the ectodomain in ligand-induced receptor activation.

    Science.gov (United States)

    Nishihara, E; Chen, C-R; Mizutori-Sasai, Y; Ito, M; Kubota, S; Amino, N; Miyauchi, A; Rapoport, B

    2012-01-01

    Somatic mutations of the TSH receptor (TSHR) gene are the main cause of autonomously functioning thyroid nodules. Except for mutations in ectodomain residue S281, all of the numerous reported activating mutations are in the TSHR membrane-spanning region. Here, we describe a patient with a toxic adenoma with a novel heterozygous somatic mutation caused by deletion of ectodomain residue Asp403 (Del-D403). Subsequent in vitro functional studies of the Del-D403 TSHR mutation demonstrated greatly increased ligand-independent constitutive activity, 8-fold above that of the wild-type TSHR. TSH stimulation had little further effect, indicating that the mutation produced near maximal activation of the receptor. In summary, we report only the second TSHR ectodomain activating mutation (and the first ectodomain deletion mutation) responsible for development of a thyroid toxic adenoma. Because Del-D403 causes near maximal activation, our finding provides novel insight into TSHR structure and function; residue D403 is more likely to be involved in the ligand-mediated activating pathway than in the ectodomain inverse agonist property.

  12. Subclinical hyperthyroidism due to a thyrotropin receptor (TSHR) gene mutation (S505R).

    Science.gov (United States)

    Pohlenz, Joachim; Pfarr, Nicole; Krüger, Silvia; Hesse, Volker

    2006-12-01

    To identify the molecular defect by which non-autoimmune subclinical hyperthyroidism was caused in a 6-mo-old infant who presented with weight loss. Congenital non-autoimmune hyperthyroidism is caused by activating germline mutations in the thyrotropin receptor (TSHR) gene. Therefore, the TSHR gene was sequenced directly from the patient's genomic DNA. Molecular analysis revealed a heterozygous point mutation (S505R) in the TSHR gene as the underlying defect. A constitutively activating mutation in the TSHR gene has to be considered not only in patients with severe congenital non-autoimmune hyperthyroidism, but also in children with subclinical non-autoimmune hyperthyroidism.

  13. Signaling-sensitive amino acids surround the allosteric ligand binding site of the thyrotropin receptor.

    Science.gov (United States)

    Kleinau, Gunnar; Haas, Ann-Karin; Neumann, Susanne; Worth, Catherine L; Hoyer, Inna; Furkert, Jens; Rutz, Claudia; Gershengorn, Marvin C; Schülein, Ralf; Krause, Gerd

    2010-07-01

    The thyrotropin receptor [thyroid-stimulating hormone receptor (TSHR)], a G-protein-coupled receptor (GPCR), is endogenously activated by thyrotropin, which binds to the extracellular region of the receptor. We previously identified a low-molecular-weight (LMW) agonist of the TSHR and predicted its allosteric binding pocket within the receptor's transmembrane domain. Because binding of the LMW agonist probably disrupts interactions or leads to formation of new interactions among amino acid residues surrounding the pocket, we tested whether mutation of residues at these positions would lead to constitutive signaling activity. Guided by molecular modeling, we performed site-directed mutagenesis of 24 amino acids in this spatial region, followed by functional characterization of the mutant receptors in terms of expression and signaling, measured as cAMP accumulation. We found that mutations V421I, Y466A, T501A, L587V, M637C, M637W, S641A, Y643F, L645V, and Y667A located in several helices exhibit constitutive activity. Of note is mutation M637W at position 6.48 in transmembrane helix 6, which has a significant effect on the interaction of the receptor with the LMW agonist. In summary, we found that a high proportion of residues in several helices surrounding the allosteric binding site of LMW ligands in the TSHR when mutated lead to constitutively active receptors. Our findings of signaling-sensitive residues in this region of the transmembrane bundle may be of general importance as this domain appears to be evolutionarily retained among GPCRs.

  14. Defining structural and functional dimensions of the extracellular thyrotropin receptor region.

    Science.gov (United States)

    Kleinau, Gunnar; Mueller, Sandra; Jaeschke, Holger; Grzesik, Paul; Neumann, Susanne; Diehl, Anne; Paschke, Ralf; Krause, Gerd

    2011-06-24

    The extracellular region of the thyrotropin receptor (TSHR) can be subdivided into the leucine-rich repeat domain (LRRD) and the hinge region. Both the LRRD and the hinge region interact with thyrotropin (TSH) or autoantibodies. Structural data for the TSHR LRRD were previously determined by crystallization (amino acids Glu(30)-Thr(257), 10 repeats), but the structure of the hinge region is still undefined. Of note, the amino acid sequence (Trp(258)-Tyr(279)) following the crystallized LRRD comprises a pattern typical for leucine-rich repeats with conserved hydrophobic side chains stabilizing the repeat fold. Moreover, functional data for amino acids between the LRRD and the transmembrane domain were fragmentary. We therefore investigated systematically these TSHR regions by mutagenesis to reveal insights into their functional contribution and potential structural features. We found that mutations of conserved hydrophobic residues between Thr(257) and Tyr(279) cause TSHR misfold, which supports a structural fold of this peptide, probably as an additional leucine-rich repeat. Furthermore, we identified several new mutations of hydrophilic amino acids in the entire hinge region leading to partial TSHR inactivation, indicating that these positions are important for intramolecular signal transduction. In summary, we provide new information regarding the structural features and functionalities of extracellular TSHR regions. Based on these insights and in context with previous results, we suggest an extracellular activation mechanism that supports an intramolecular agonistic unit as a central switch for activating effects at the extracellular region toward the serpentine domain.

  15. Clinical Value of Thyrotropin Receptor Antibodies for the Differential Diagnosis of Interferon Induced Thyroiditis.

    Science.gov (United States)

    Benaiges, D; Garcia-Retortillo, M; Mas, A; Cañete, N; Broquetas, T; Puigvehi, M; Chillarón, J J; Flores-Le Roux, J A; Sagarra, E; Cabrero, B; Zaffalon, D; Solà, R; Pedro-Botet, J; Carrión, J A

    2016-01-01

    The clinical value of thyrotropin receptor antibodies for the differential diagnosis of thyrotoxicosis induced by pegylated interferon-alpha remains unknown. We analyzed the diagnostic accuracy of thyrotropin receptor antibodies in the differential diagnosis of thyrotoxicosis in patients with chronic hepatitis C (CHC) receiving pegylated interferon-alpha plus ribavirin. Retrospective analysis of 274 patients with CHC receiving pegylated interferon-alpha plus ribavirin. Interferon-induced thyrotoxicosis was classified according to clinical guidelines as Graves disease, autoimmune and non- autoimmune destructive thyroiditis. 48 (17.5%) patients developed hypothyroidism, 17 (6.2%) thyrotoxicosis (6 non- autoimmune destructive thyroiditis, 8 autoimmune destructive thyroiditis and 3 Graves disease) and 22 "de novo" thyrotropin receptor antibodies (all Graves disease, 2 of the 8 autoimmune destructive thyroiditis and 17 with normal thyroid function). The sensitivity and specificity of thyrotropin receptor antibodies for Graves disease diagnosis in patients with thyrotoxicosis were 100 and 85%, respectively. Patients with destructive thyroiditis developed hypothyroidism in 87.5% of autoimmune cases and in none of those with a non- autoimmune etiology (pthyroid scintigraphy for the differential diagnosis of thyrotoxicosis in CHC patients treated with pegylated interferon. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Structural–Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work

    Directory of Open Access Journals (Sweden)

    Gerd Krause

    2017-04-01

    Full Text Available The thyroid-stimulating hormone receptor (TSHR is a member of the glycoprotein hormone receptors, a sub-group of class A G-protein-coupled receptors (GPCRs. TSHR and its endogenous ligand thyrotropin (TSH are of essential importance for growth and function of the thyroid gland and proper function of the TSH/TSHR system is pivotal for production and release of thyroid hormones. This receptor is also important with respect to pathophysiology, such as autoimmune (including ophthalmopathy or non-autoimmune thyroid dysfunctions and cancer development. Pharmacological interventions directly targeting the TSHR should provide benefits to disease treatment compared to currently available therapies of dysfunctions associated with the TSHR or the thyroid gland. Upon TSHR activation, the molecular events conveying conformational changes from the extra- to the intracellular side of the cell across the membrane comprise reception, conversion, and amplification of the signal. These steps are highly dependent on structural features of this receptor and its intermolecular interaction partners, e.g., TSH, antibodies, small molecules, G-proteins, or arrestin. For better understanding of signal transduction, pathogenic mechanisms such as autoantibody action and mutational modifications or for developing new pharmacological strategies, it is essential to combine available structural data with functional information to generate homology models of the entire receptor. Although so far these insights are fragmental, in the past few decades essential contributions have been made to investigate in-depth the involved determinants, such as by structure determination via X-ray crystallography. This review summarizes available knowledge (as of December 2016 concerning the TSHR protein structure, associated functional aspects, and based on these insights we suggest several receptor complex models. Moreover, distinct TSHR properties will be highlighted in comparison to other

  17. Structural-Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work.

    Science.gov (United States)

    Kleinau, Gunnar; Worth, Catherine L; Kreuchwig, Annika; Biebermann, Heike; Marcinkowski, Patrick; Scheerer, Patrick; Krause, Gerd

    2017-01-01

    The thyroid-stimulating hormone receptor (TSHR) is a member of the glycoprotein hormone receptors, a sub-group of class A G-protein-coupled receptors (GPCRs). TSHR and its endogenous ligand thyrotropin (TSH) are of essential importance for growth and function of the thyroid gland and proper function of the TSH/TSHR system is pivotal for production and release of thyroid hormones. This receptor is also important with respect to pathophysiology, such as autoimmune (including ophthalmopathy) or non-autoimmune thyroid dysfunctions and cancer development. Pharmacological interventions directly targeting the TSHR should provide benefits to disease treatment compared to currently available therapies of dysfunctions associated with the TSHR or the thyroid gland. Upon TSHR activation, the molecular events conveying conformational changes from the extra- to the intracellular side of the cell across the membrane comprise reception, conversion, and amplification of the signal. These steps are highly dependent on structural features of this receptor and its intermolecular interaction partners, e.g., TSH, antibodies, small molecules, G-proteins, or arrestin. For better understanding of signal transduction, pathogenic mechanisms such as autoantibody action and mutational modifications or for developing new pharmacological strategies, it is essential to combine available structural data with functional information to generate homology models of the entire receptor. Although so far these insights are fragmental, in the past few decades essential contributions have been made to investigate in-depth the involved determinants, such as by structure determination via X-ray crystallography. This review summarizes available knowledge (as of December 2016) concerning the TSHR protein structure, associated functional aspects, and based on these insights we suggest several receptor complex models. Moreover, distinct TSHR properties will be highlighted in comparison to other class A GPCRs to

  18. Structural–Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work

    Science.gov (United States)

    Kleinau, Gunnar; Worth, Catherine L.; Kreuchwig, Annika; Biebermann, Heike; Marcinkowski, Patrick; Scheerer, Patrick; Krause, Gerd

    2017-01-01

    The thyroid-stimulating hormone receptor (TSHR) is a member of the glycoprotein hormone receptors, a sub-group of class A G-protein-coupled receptors (GPCRs). TSHR and its endogenous ligand thyrotropin (TSH) are of essential importance for growth and function of the thyroid gland and proper function of the TSH/TSHR system is pivotal for production and release of thyroid hormones. This receptor is also important with respect to pathophysiology, such as autoimmune (including ophthalmopathy) or non-autoimmune thyroid dysfunctions and cancer development. Pharmacological interventions directly targeting the TSHR should provide benefits to disease treatment compared to currently available therapies of dysfunctions associated with the TSHR or the thyroid gland. Upon TSHR activation, the molecular events conveying conformational changes from the extra- to the intracellular side of the cell across the membrane comprise reception, conversion, and amplification of the signal. These steps are highly dependent on structural features of this receptor and its intermolecular interaction partners, e.g., TSH, antibodies, small molecules, G-proteins, or arrestin. For better understanding of signal transduction, pathogenic mechanisms such as autoantibody action and mutational modifications or for developing new pharmacological strategies, it is essential to combine available structural data with functional information to generate homology models of the entire receptor. Although so far these insights are fragmental, in the past few decades essential contributions have been made to investigate in-depth the involved determinants, such as by structure determination via X-ray crystallography. This review summarizes available knowledge (as of December 2016) concerning the TSHR protein structure, associated functional aspects, and based on these insights we suggest several receptor complex models. Moreover, distinct TSHR properties will be highlighted in comparison to other class A GPCRs to

  19. Multiple thyrotropin β-subunit and thyrotropin receptor-related genes arose during vertebrate evolution.

    Directory of Open Access Journals (Sweden)

    Gersende Maugars

    Full Text Available Thyroid-stimulating hormone (TSH is composed of a specific β subunit and an α subunit that is shared with the two pituitary gonadotropins. The three β subunits derive from a common ancestral gene through two genome duplications (1R and 2R that took place before the radiation of vertebrates. Analysis of genomic data from phylogenetically relevant species allowed us to identify an additional Tshβ subunit-related gene that was generated through 2R. This gene, named Tshβ2, present in cartilaginous fish, little skate and elephant shark, and in early lobe-finned fish, coelacanth and lungfish, was lost in ray-finned fish and tetrapods. The absence of a second type of TSH receptor (Tshr gene in these species suggests that both TSHs act through the same receptor. A novel Tshβ sister gene, named Tshβ3, was generated through the third genomic duplication (3R that occurred early in the teleost lineage. Tshβ3 is present in most teleost groups but was lostin tedraodontiforms. The 3R also generated a second Tshr, named Tshrb. Interestingly, the new Tshrb was translocated from its original chromosomic position after the emergence of eels and was then maintained in its new position. Tshrb was lost in tetraodontiforms and in ostariophysians including zebrafish although the latter species have two TSHs, suggesting that TSHRb may be dispensable. The tissue distribution of duplicated Tshβs and Tshrs was studied in the European eel. The endocrine thyrotropic function in the eel would be essentially mediated by the classical Tshβ and Tshra, which are mainly expressed in the pituitary and thyroid, respectively. Tshβ3 and Tshrb showed a similar distribution pattern in the brain, pituitary, ovary and adipose tissue, suggesting a possible paracrine/autocrine mode of action in these non-thyroidal tissues. Further studies will be needed to determine the binding specificity of the two receptors and how these two TSH systems are interrelated.

  20. Principles and determinants of G-protein coupling by the rhodopsin-like thyrotropin receptor.

    Directory of Open Access Journals (Sweden)

    Gunnar Kleinau

    Full Text Available In this study we wanted to gain insights into selectivity mechanisms between G-protein-coupled receptors (GPCR and different subtypes of G-proteins. The thyrotropin receptor (TSHR binds G-proteins promiscuously and activates both Gs (cAMP and Gq (IP. Our goal was to dissect selectivity patterns for both pathways in the intracellular region of this receptor. We were particularly interested in the participation of poorly investigated receptor parts.We systematically investigated the amino acids of intracellular loop (ICL 1 and helix 8 using site-directed mutagenesis alongside characterization of cAMP and IP accumulation. This approach was guided by a homology model of activated TSHR in complex with heterotrimeric Gq, using the X-ray structure of opsin with a bound G-protein peptide as a structural template.We provide evidence that ICL1 is significantly involved in G-protein activation and our model suggests potential interactions with subunits G alpha as well as G betagamma. Several amino acid substitutions impaired both IP and cAMP accumulation. Moreover, we found a few residues in ICL1 (L440, T441, H443 and helix 8 (R687 that are sensitive for Gq but not for Gs activation. Conversely, not even one residue was found that selectively affects cAMP accumulation only. Together with our previous mutagenesis data on ICL2 and ICL3 we provide here the first systematically completed map of potential interfaces between TSHR and heterotrimeric G-protein. The TSHR/Gq-heterotrimer complex is characterized by more selective interactions than the TSHR/Gs complex. In fact the receptor interface for binding Gs is a subset of that for Gq and we postulate that this may be true for other GPCRs coupling these G-proteins. Our findings support that G-protein coupling and preference is dominated by specific structural features at the intracellular region of the activated GPCR but is completed by additional complementary recognition patterns between receptor and G

  1. Principles and determinants of G-protein coupling by the rhodopsin-like thyrotropin receptor.

    Science.gov (United States)

    Kleinau, Gunnar; Jaeschke, Holger; Worth, Catherine L; Mueller, Sandra; Gonzalez, Jorge; Paschke, Ralf; Krause, Gerd

    2010-03-18

    In this study we wanted to gain insights into selectivity mechanisms between G-protein-coupled receptors (GPCR) and different subtypes of G-proteins. The thyrotropin receptor (TSHR) binds G-proteins promiscuously and activates both Gs (cAMP) and Gq (IP). Our goal was to dissect selectivity patterns for both pathways in the intracellular region of this receptor. We were particularly interested in the participation of poorly investigated receptor parts.We systematically investigated the amino acids of intracellular loop (ICL) 1 and helix 8 using site-directed mutagenesis alongside characterization of cAMP and IP accumulation. This approach was guided by a homology model of activated TSHR in complex with heterotrimeric Gq, using the X-ray structure of opsin with a bound G-protein peptide as a structural template.We provide evidence that ICL1 is significantly involved in G-protein activation and our model suggests potential interactions with subunits G alpha as well as G betagamma. Several amino acid substitutions impaired both IP and cAMP accumulation. Moreover, we found a few residues in ICL1 (L440, T441, H443) and helix 8 (R687) that are sensitive for Gq but not for Gs activation. Conversely, not even one residue was found that selectively affects cAMP accumulation only. Together with our previous mutagenesis data on ICL2 and ICL3 we provide here the first systematically completed map of potential interfaces between TSHR and heterotrimeric G-protein. The TSHR/Gq-heterotrimer complex is characterized by more selective interactions than the TSHR/Gs complex. In fact the receptor interface for binding Gs is a subset of that for Gq and we postulate that this may be true for other GPCRs coupling these G-proteins. Our findings support that G-protein coupling and preference is dominated by specific structural features at the intracellular region of the activated GPCR but is completed by additional complementary recognition patterns between receptor and G-protein subtypes.

  2. Intracellular postsynaptic cannabinoid receptors link thyrotropin-releasing hormone receptors to TRPC-like channels in thalamic paraventricular nucleus neurons.

    Science.gov (United States)

    Zhang, L; Kolaj, M; Renaud, L P

    2015-12-17

    In rat thalamic paraventricular nucleus of thalamus (PVT) neurons, activation of thyrotropin-releasing hormone (TRH) receptors enhances excitability via concurrent decrease in G protein-coupled inwardly-rectifying potassium (GIRK)-like and activation of transient receptor potential cation (TRPC)4/5-like cationic conductances. An exploration of intracellular signaling pathways revealed the TRH-induced current to be insensitive to phosphatidylinositol-specific phospholipase C (PI-PLC) inhibitors, but reduced by D609, an inhibitor of phosphatidylcholine-specific PLC (PC-PLC). A corresponding change in the I-V relationship implied suppression of the cationic component of the TRH-induced current. Diacylglycerol (DAG) is a product of the hydrolysis of PC. Studies focused on the isolated cationic component of the TRH-induced response revealed a reduction by RHC80267, an inhibitor of DAG lipase, the enzyme involved in the hydrolysis of DAG to the endocannabinoid 2-arachidonoylglycerol (2-AG). Further investigation revealed enhancement of the cationic component in the presence of either JZL184 or WWL70, inhibitors of enzymes involved in the hydrolysis of 2-AG. A decrease in the TRH-induced response was noted in the presence of rimonabant or SR144528, membrane permeable CB1 and CB2 receptor antagonists, respectively. A decrease in the TRH-induced current by intracellular, but not by bath application of the membrane impermeable peptide hemopressin, selective for CB1 receptors, suggests a postsynaptic intracellular localization of these receptors. The TRH-induced current was increased in the presence of arachidonyl-2'-chloroethylamide (ACEA) or JWH133, CB1 and CB2 receptor agonists, respectively. The PI3-kinase inhibitor LY294002, known to inhibit TRPC translocation, decreased the response to TRH. In addition, a TRH-induced enhancement of the low-threshold spike was prevented by both rimonabant, and SR144528. TRH had no influence on excitatory or inhibitory miniature

  3. Effect of gamma irradiation on biological activity of thyrotropin

    Energy Technology Data Exchange (ETDEWEB)

    Strbak, V; Macho, L; Sedlak, J; Hromadova, M

    1976-03-01

    The biological activity of thyrotropin (TSH) was tested after sterilization by 0.5 and 12.5 Mrad of gamma irradiation. It was found that the biological activity (McKenzie's assay) of TSH irradiated in dry state was not affected during the first month after sterilization by doses of 0.5 and 2.5 Mrad. However, substantial decrease of TSH biological activity was observed 3 to 5 months after the irradiation, the lower activity being after the former dose. The irradiation of TSH by 12.5 Mrad in dry state and by 0.5 and 2.5 Mrad in solution resulted in a decrease of biological activity already during first month. The structural changes in the molecule of TSH were apparently not very extensive, since a decrease of disulfide bonds from 0.96 to 0.77 M per 1M of TSH was found immediately after the irradiation, while uv absorbancy and electrophoretic mobility on polyacrylamide gel electrophoresis were unaffected. These changes were followed by the decrease of TSH stability during storage in dry state. It is hypothesized that TSH molecule may be affected in ..beta.. subunit or in its connection with ..cap alpha...

  4. Effect of gamma irradiation on biological activity of thyrotropin

    International Nuclear Information System (INIS)

    Strbak, V.; Macho, L.; Sedlak, J.; Hromadova, M.

    1976-01-01

    The biological activity of thyrotropin (TSH) was tested after sterilization by 0.5 and 12.5 Mrad of gamma radiation. It was found that the biological activity (McKenzie's assay) of TSH irradiated in dry state was not affected during the first month after sterilization by doses of 0.5 and 2.5 Mrad. However, substantial decrease of TSH biological activity was observed 3 to 5 months after the irradiation, the lower activity after the 0.5 Mrad dose. The irradiation of TSH by 12.5 Mrad in dry state and by 0.5 and 2.5 Mrad in solution resulted in decreased biological activity already during the first month. The structural changes in the TSH molecule were apparently not very extensive, as a decrease of disulfide bonds from 0.96 to 0.77 M per 1 M of TSH was found immediately after the irradiation, while UV absorbancy and electrophoretic mobility on polyacrylamide gel electrophoresis were unaffected. These changes were followed by a decrease of TSH stability during storage in dry state. It is hypothesized that a TSH molecule may be affected in a β subunit or in its connection with α. (author)

  5. Two novel mutations in the sixth transmembrane segment of the thyrotropin receptor gene causing hyperfunctioning thyroid nodules.

    Science.gov (United States)

    Gozu, Hulya; Avsar, Melike; Bircan, Rifat; Claus, Maren; Sahin, Serap; Sezgin, Ozlem; Deyneli, Oguzhan; Paschke, Ralf; Cirakoglu, Beyazit; Akalin, Sema

    2005-04-01

    Autonomously functioning thyroid nodules (AFTNs) can present as hyperfunctioning adenomas or toxic multinodular goiters. In the last decade, a large number of activating mutations have been identified in the thyrotropin receptor (TSHR) gene in autonomously functioning thyroid nodules. Most have been situated close to, or within the sixth transmembrane segment and third intracellular loop of the TSHR where the receptor interacts with the Gs protein. In this study we describe two novel mutations in the sixth transmembrane segment of the TSHR causing hyperfunctioning thyroid nodules. Genomic DNAs were isolated from four hyperfunctioning thyroid nodules, normal tissues and peripheral leukocytes of two patients with toxic multinodular goiter. After amplifying the related regions, TSHR and G(s)alpha genes were analyzed by single-strand conformation polymorphism (SSCP) analysis. The precise localization of the mutations was identified by automatic DNA sequence analysis. Functional studies were done by site-directed mutagenesis and transfection of a mutant construct into COS-7 cells. We identified two novel TSHR mutations in two hyperfunctioning thyroid nodules: Phe631Val in the first patient and Iso630Met in the second patient. Both mutant receptors display an increase in constitutive stimulation of basal cyclic adenosine monophosphate (cAMP) levels compared to the wild-type receptor. This confirms that these mutant receptors cause hyperfunctioning thyroid nodules.

  6. Thyrotropin Receptor Autoantibodies in differential diagnosis of hyperthyroidism in children

    Directory of Open Access Journals (Sweden)

    A V Kiyaev

    2006-03-01

    Full Text Available There was investigation carried out in group of 54 children (42 females and 12 males aged between 10.3 and 17.2 years (median - 13. years for the purpose of the estimation of the clinical significance determination of the general autoantibodies to the TSH recepetor (TBII in differential diagnostics hyperthyroidism. In 45 from 54 cases (83.3 % there was Graves’ disease (GD diagnosis set, while high level of TBII was detected amongst 44 from those children (97.8%. Amongst patients with subacute thyroiditis and uninodal toxic goiter together with 7 children, initially estimated by us as “AIT, hyperthyroidism” the values TBII were in limit of reference interval. But for all of that unexpectedly there was detected normal level of Ab-TPO amongst all patients in this group, and - normal echogenic in 6 from 7 cases. From the one hand, high level of Ab-TG and heterogeneous structure may be estimated as particular qualities of hyperthyroidism clinical course during AIT by amongst children. However, absence of the row of diagnostic signs with long-lasting euthyroid condition do not allow us to estimate that cases as hyperthyroidism phase of AIT. From the other hand, we can suppose that we observe the diagnostic of natural clinical course of GD cases in phase of immunological remission. The detection of normal level of TBII in absence of typical clinical signs of GD amongst children with manifestation of hyperthyroidism let us retreat from active therapeutic intervention and choose the method of dynamic observation.

  7. Autoradiographic localization of thyrotropin releasing hormone (TRH) receptors in the central nervous system

    International Nuclear Information System (INIS)

    Manaker, S.

    1985-01-01

    Quantitative autoradiography was used to examine the distribution of thyrotropin-releasing hormone (TRH) receptors in the rat and human central nervous system (CNS). The binding of [ 3 H]-3-methyl-histidine 2 -TRH ([ 3 H]-MeTRH) to TRH receptors was saturable, of a high affinity (K/sub d/ = 5 nM), and specific for TRH analogs. Studies with neurotoxins ibotenic acid and 6-hydroxydopamine (6-OHDA) suggest that TRH receptors within the amygdala are predominantly located on cell bodies, and not nerve terminals. Finally, an examination was made of the concentrations of TRH receptors in spinal cords of patients with amyotrophic lateral sclerosis (ALS), a degenerative disease of the motor neurons located in Lamina IX. Large decreases in TRH receptors were noted in ALS spinal cords, when compared to non-neurological controls, probably reflecting the loss of motor neurons. In addition, decreases in the TRH receptor concentration of Lamina II were observed. This finding may reflect the sensitivity of neurons throughout the CNS to the pathophysiologic mechanisms of neuronal degeneration which cause ALS

  8. Processing of thyrotropin-releasing hormone prohormone (pro-TRH) generates a biologically active peptide, prepro-TRH-(160-169), which regulates TRH-induced thyrotropin secretion

    International Nuclear Information System (INIS)

    Bulant, M.; Vaudry, H.; Roussel, J.P.; Astier, H.; Nicolas, P.

    1990-01-01

    Rat thyrotropin-releasing hormone (TRH) prohormone contains five copies of the TRH progenitor sequence Gln-His-Pro-Gly linked together by connecting sequences whose biological activity is unknown. Both the predicted connecting peptide prepro-TRH-(160-169) (Ps4) and TRH are predominant storage forms of TRH precursor-related peptides in the hypothalamus. To determine whether Ps4 is co-released with TRH, rat median eminence slices were perfused in vitro. Infusion of depolarizing concentrations of KCl induced stimulation of release of Ps4- and TRH-like immunoreactivity. The possible effect of Ps4 on thyrotropin release was investigated in vitro using quartered anterior pituitaries. Infusion of Ps4 alone had no effect on thyrotropin secretion but potentiated TRH-induced thyrotropin release in a dose-dependent manner. In addition, the occurrence of specific binding sites for 125 I-labeled Tyr-Ps4 in the distal lobe of the pituitary was demonstrated by binding analysis and autoradiographic localization. These findings indicate that these two peptides that arise from a single multifunctional precursor, the TRH prohormone, act in a coordinate manner on the same target cells to promote hormonal secretion. These data suggest that differential processing of the TRH prohormone may have the potential to modulate the biological activity of TRH

  9. Thyrotropin Receptor and Membrane Interactions in FRTL-5 Thyroid Cell Strain in Microgravity

    Science.gov (United States)

    Albi, E.; Ambesi-Impiombato, F. S.; Peverini, M.; Damaskopoulou, E.; Fontanini, E.; Lazzarini, R.; Curcio, F.; Perrella, G.

    2011-01-01

    The aim of this work was to analyze the possible alteration of thyrotropin (TSH) receptors in microgravity, which could explain the absence of thyroid cell proliferation in the space environment. Several forms of the TSH receptor are localized on the plasma membrane associated with caveolae and lipid rafts. The TSH regulates the fluidity of the cell membrane and the presence of its receptors in microdomains that are rich in sphingomyelin and cholesterol. TSH also stimulates cyclic adenosine monophosphate (cAMP) accumulation and cell proliferation. Reported here are the results of an experiment in which the FRTL-5 thyroid cell line was exposed to microgravity during the Texus-44 mission (launched February 7, 2008, from Kiruna, Sweden). When the parabolic flight brought the sounding rocket to an altitude of 264km, the culture media were injected with or without TSH in the different samples, and weightlessness prevailed on board for 6 minutes and 19 seconds. Control experiments were performed, in parallel, in an onboard 1g centrifuge and on the ground in Kiruna laboratory. Cell morphology and function were analyzed. Results show that in microgravity conditions the cells do not respond to TSH treatment and present an irregular shape with condensed chromatin, a modification of the cell membrane with shedding of the TSH receptor in the culture medium, and an increase of sphingomyelin-synthase and Bax proteins. It is possible that real microgravity induces a rearrangement of specific sections of the cell membrane, which act as platforms for molecular receptors, thus influencing thyroid cell function in astronauts during space missions.

  10. Spinal cord thyrotropin releasing hormone receptors of morphine tolerant-dependent and abstinent rats

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, N.H.; Gulati, A.; Bhargava, H.N. (Univ. of Illinois, Chicago (USA))

    1990-07-01

    The effect of chronic administration of morphine and its withdrawal on the binding of 3H-(3-MeHis2)thyrotropin releasing hormone (3H-MeTRH) to membranes of the spinal cord of the rat was determined. Male Sprague-Dawley rats were implanted with either 6 placebo or 6 morphine pellets (each containing 75-mg morphine base) during a 7-day period. Two sets of animals were used. In one, the pellets were left intact at the time of sacrificing (tolerant-dependent) and in the other, the pellets were removed 16 hours prior to sacrificing (abstinent rats). In placebo-pellet-implanted rats, 3H-MeTRH bound to the spinal cord membranes at a single high affinity binding site with a Bmax of 21.3 +/- 1.6 fmol/mg protein, and an apparent dissociation constant Kd of 4.7 +/- 0.8 nM. In morphine tolerant-dependent or abstinent rats, the binding constants of 3H-MeTRH to spinal cord membranes were unaffected. Previous studies from this laboratory indicate that TRH can inhibit morphine tolerance-dependence and abstinence processes without modifying brain TRH receptors. Together with the present results, it appears that the inhibitory effect of TRH on morphine tolerance-dependence and abstinence is probably not mediated via central TRH receptors but may be due to its interaction with other neurotransmitter systems.

  11. Thyrotropin receptor autoantibodies and early miscarriages in patients with Hashimoto thyroiditis: a case-control study.

    Science.gov (United States)

    Toulis, Konstantinos A; Goulis, Dimitrios G; Tsolakidou, Konstantina; Hilidis, Ilias; Fragkos, Marios; Polyzos, Stergios A; Gerofotis, Antonios; Kita, Marina; Bili, Helen; Vavilis, Dimitrios; Daniilidis, Michail; Tarlatzis, Basil C; Papadimas, Ioannis

    2013-08-01

    We have previously hypothesized that early miscarriage in women with Hashimoto thyroiditis might be the result of a cross-reactivity process, in which blocking autoantibodies against thyrotropin receptor (TSHr-Ab) antagonize hCG action on its receptor on the corpus luteum. To test this hypothesis from the clinical perspective, we investigated the presence of TSHr-Ab in Hashimoto thyroiditis patients with apparently unexplained, first-trimester recurrent miscarriages compared to that in Hashimoto thyroiditis patients with documented normal fertility. A total of 86 subjects (43 cases and 43 age-matched controls) were finally included in a case-control study. No difference in the prevalence of TSHr-Ab positivity was detected between cases and controls (Fisher's exact test, p value = 1.00). In patients with recurrent miscarriages, TSHr-Ab concentrations did not predict the number of miscarriages (univariate linear regression, p value = 0.08). These results were robust in sensitivity analyses, including only cases with full investigation or those with three or more miscarriages. We conclude that no role could be advocated for TSHr-Ab in the aetiology of recurrent miscarriages in women with Hashimoto thyroiditis.

  12. Direct evidence that ganglioside is an integral component of the thyrotropin receptor

    International Nuclear Information System (INIS)

    Kielczynski, W.; Harrison, L.C.; Leedman, P.J.

    1991-01-01

    Gangliosides were extracted from purified human and porcine thyrotropin (TSH) receptors (TSH-R) and were detected by probing with an 125 I-labeled sialic acid-specific lectin, Limax flavus agglutinin. Gangliosides copurified with human and porcine TSH-R migrated between monosialoganglioside GM1 and disialoganglioside GD1a. Ceramide glycanase digestion of the purified human TSH-R-associated glycolipid confirmed its ganglioside nature. It was resistant to Vibrio cholerae sialidase, which digest all gangliosides except GM1, but was sensitive to Arthrobacter ureafaciens sialidase, which digests all gangliosides including GM1. These findings indicate that the human TSH-R contains ganglioside that belongs to the galactosyl(β1→ 3)-N-acetylgalactosaminyl(β1→ 4)-[N-acetylneuraminyl(α2→ 3)]galactosyl(β1 → 4)glucosyl(β1 → 1)ceramide (GM1) family. Its intimate association with receptor protein implies a key role for ganglioside in the structure and function of the TSH-R

  13. Brain receptors for thyrotropin releasing hormone in morphine tolerant-dependent rats

    Energy Technology Data Exchange (ETDEWEB)

    Bhargava, H.N.; Das, S.

    1986-03-01

    The effect of chronic treatment of rats with morphine and its subsequent withdrawal on the brain receptors for thyrotropin releasing hormone (TRH) labeled with /sup 3/H-(3MeHis/sup 2/)TRH (MeTRH). Male Sprague Dawley rats were implanted with 4 morphine pellets (each containing 75 mg morphine base) during a 3-day period. Placebo pellet implanted rats served as controls. Both tolerance to and dependence on morphine developed as a result of this procedure. For characterization of brain TRH receptors, the animals were sacrificed 72 h after the implantation of first pellet. In another set of animals the pellets were removed and were sacrificed 24 h later. The binding of /sup 3/H-MeTRH to membranes prepared from brain without the cerebellum was determined. /sup 3/H-MeTRH bound to brain membranes prepared from placebo pellet implanted rats at a single high affinity site with a B/sub max/ value of 33.50 +/- 0.97 fmol/mg protein and a K/sub d/ of 5.18 +/- 0.21 nM. Implantation of morphine pellets did not alter the B/sub max/ value of /sup 3/H-MeTRH but decreased the K/sub d/ value significantly. Abrupt or naloxone precipitated withdrawal of morphine did not alter B/sub max/ or the K/sub d/ values. The binding of /sup 3/H-MeTRH to brain areas was also determined. The results suggest that the development of tolerance to morphine is associated with enhanced sensitivity of brain TRH receptors, however abrupt withdrawal of morphine does not change the characteristics of brain TRH receptors.

  14. Novel germline mutation (Leu512Met) in the thyrotropin receptor gene (TSHR) leading to sporadic non-autoimmune hyperthyroidism.

    Science.gov (United States)

    Roberts, Stephanie A; Moon, Jennifer E; Dauber, Andrew; Smith, Jessica R

    2017-03-01

    Primary nonautoimmune hyperthyroidism is a rare cause of neonatal hyperthyroidism. This results from an activating mutation in the thyrotropin-receptor (TSHR). It can be inherited in an autosomal dominant manner or occur sporadically as a de novo mutation. Affected individuals display a wide phenotype from severe neonatal to mild subclinical hyperthyroidism. We describe a 6-month-old boy with a de novo mutation in the TSHR gene who presented with accelerated growth, enlarging head circumference, tremor and thyrotoxicosis. Genomic DNA from the patient's and parents' peripheral blood leukocytes was extracted. Exons 9 and 10 of the TSHR gene were amplified by PCR and sequenced. Sequencing exon 10 of the TSHR gene revealed a novel heterozygous missense mutation substituting cytosine to adenine at nucleotide position 1534 in the patient's peripheral blood leukocytes. This leads to a substitution of leucine to methionine at amino acid position 512. The mutation was absent in the parents. In silico modeling by PolyPhen-2 and SIFT predicted the mutation to be deleterious. The p.Leu512Met mutation (c.1534C>A) of the TSHR gene has not been previously described in germline or somatic mutations. This case presentation highlights the possibility of mild thyrotoxicosis in affected individuals and contributes to the understanding of sporadic non-autoimmune primary hyperthyroidism.

  15. Novel germline mutation (Leu512Met) in the thyrotropin receptor gene (TSHR) leading to sporadic non-autoimmune hyperthyroidism

    Science.gov (United States)

    Roberts, Stephanie A.; Moon, Jennifer E.; Dauber, Andrew; Smith, Jessica R.

    2018-01-01

    Background Primary nonautoimmune hyperthyroidism is a rare cause of neonatal hyperthyroidism. This results from an activating mutation in the thyrotropin-receptor (TSHR). It can be inherited in an autosomal dominant manner or occur sporadically as a de novo mutation. Affected individuals display a wide phenotype from severe neonatal to mild subclinical hyperthyroidism. We describe a 6-month-old boy with a de novo mutation in the TSHR gene who presented with accelerated growth, enlarging head circumference, tremor and thyrotoxicosis. Methods Genomic DNA from the patient’s and parents’ peripheral blood leukocytes was extracted. Exons 9 and 10 of the TSHR gene were amplified by PCR and sequenced. Results Sequencing exon 10 of the TSHR gene revealed a novel heterozygous missense mutation substituting cytosine to adenine at nucleotide position 1534 in the patient’s peripheral blood leukocytes. This leads to a substitution of leucine to methionine at amino acid position 512. The mutation was absent in the parents. In silico modeling by PolyPhen-2 and SIFT predicted the mutation to be deleterious. Conclusions The p.Leu512Met mutation (c.l534C>A) of the TSHR gene has not been previously described in germline or somatic mutations. This case presentation highlights the possibility of mild thyrotoxicosis in affected individuals and contributes to the understanding of sporadic non-autoimmune primary hyperthyroidism. PMID:28195550

  16. Thyrotropin modulates receptor-mediated processing of the atrial natriuretic peptide receptor in cultured thyroid cells

    International Nuclear Information System (INIS)

    Tseng, Y.L.; Burman, K.D.; Lahiri, S.; Abdelrahim, M.M.; D'Avis, J.C.; Wartofsky, L.

    1991-01-01

    In a prior study of atrial natriuretic peptide (ANP) binding to cultured thyroid cells, we reported that at 4 C, more than 95% of bound ANP is recovered on cell membranes, with negligible ANP internalization observed. Since ANP binding was inhibited by TSH, we have further studied TSH effects on postbinding ANP processing to determine whether this phenomenon reflects enhanced endocytosis of the ANP-receptor complex. An ANP chase study was initiated by binding [125I] ANP to thyroid cells at 4 C for 2 h, followed by incubation at 37 C. ANP processing was then traced by following 125I activity at various time intervals in three fractions: cell surface membranes, incubation medium, and inside the cells. Radioactivity released into medium represented processed ANP rather than ANP dissociated from surface membranes, since prebound [125I]ANP could not be competitively dissociated by a high concentration of ANP (1 mumol/L) at 37 C. Chase study results showed that prebound ANP quickly disappeared from cell membranes down to 34% by 30 min. Internalized ANP peaked at 10 min, with 21% of initial prebound ANP found inside the cells. At the same time, radioactivity recovered in incubation medium sharply increased between 10-30 min from 8% to 52%. Preincubation of cells with chloroquine (which blocks degradation of the ANP-receptor complex by inhibiting lysosomal hydrolase) caused a 146% increase in internalized [125I]ANP by 30 min (39% compared to 15% control), while medium radioactivity decreased from 52% to 16%, suggesting that processing of the receptor complex is mediated via lysosomal enzymes. In chase studies employing cells pretreated with chloroquine, TSH stimulated the internalization rate of ANP-receptor complex. By 30 min, TSH significantly reduced the membrane-bound ANP, and the decrease was inversely correlated to the increase in internalized radioactivity

  17. Production of thyrotropin receptor antibodies in acute phase of infectious mononucleosis due to Epstein-Barr virus primary infection: a case report of a child.

    Science.gov (United States)

    Nagata, Keiko; Okuno, Keisuke; Ochi, Marika; Kumata, Keisuke; Sano, Hitoshi; Yoneda, Naohiro; Ueyama, Jun-Ichi; Matsushita, Michiko; Kuwamoto, Satoshi; Kato, Masako; Murakami, Ichiro; Kanzaki, Susumu; Hayashi, Kazuhiko

    2015-01-01

    Various autoantibodies have been reported to be detected during the progression of infectious mononucleosis. We observed a case of infectious mononucleosis due to Epstein-Barr virus primary infection for 2 months, and noticed the transiently increased titer of thyrotropin receptor autoantibodies detected at the acute phase on the 3rd day after admission. At that time, real-time quantitative PCR also revealed the mRNA expressions of an immediate early lytic gene, BZLF1, and a latent gene, EBNA2. The expression of BZLF1 mRNA means that Epstein-Barr virus infects lytically, and EBNA2 protein has an important role in antibody production as well as the establishment of Epstein-Barr virus latency. These results suggest that Epstein-Barr virus lytic infection is relevant to thyrotropin receptor autoantibody production. Thyrotropin receptor autoantibodies stimulate thyroid follicular cells to produce excessive thyroid hormones and cause Graves' disease. Recently, we reported the thyrotropin receptor autoantibody production from thyrotropin receptor autoantibody-predisposed Epstein-Barr virus-infected B cells by the induction of Epstein-Barr virus lytic infection in vitro. This case showed in vivo findings consistent with our previous reports, and is important to consider the pathophysiology of Graves' disease and one of the mechanisms of autoimmunity.

  18. Extended and structurally supported insights into extracellular hormone binding, signal transduction and organization of the thyrotropin receptor.

    Directory of Open Access Journals (Sweden)

    Gerd Krause

    Full Text Available The hormone thyrotropin (TSH and its receptor (TSHR are crucial for the growth and function of the thyroid gland. The TSHR is evolutionary linked with the receptors of follitropin (FSHR and lutropin/choriogonadotropin (LHR and their sequences and structures are similar. The extracellular region of TSHR contains more than 350 amino acids and binds hormone and antibodies. Several important questions related to functions and mechanisms of TSHR are still not comprehensively understood. One major reason for these open questions is the lack of any structural information about the extracellular segment of TSHR that connects the N-terminal leucine-rich repeat domain (LRRD with the transmembrane helix (TMH 1, the hinge region. It has been shown experimentally that this segment is important for fine tuning of signaling and ligand interactions. A new crystal structure containing most of the extracellular hFSHR region in complex with hFSH has recently been published. Now, we have applied these new structural insights to the homologous TSHR and have generated a structural model of the TSHR LRRD/hinge-region/TSH complex. This structural model is combined and evaluated with experimental data including hormone binding (bTSH, hTSH, thyrostimulin, super-agonistic effects, antibody interactions and signaling regulation. These studies and consideration of significant and non-significant amino acids have led to a new description of mechanisms at the TSHR, including ligand-induced displacements of specific hinge region fragments. This event triggers conformational changes at a convergent center of the LRRD and the hinge region, activating an "intramolecular agonistic unit" close to the transmembrane domain.

  19. Extended and structurally supported insights into extracellular hormone binding, signal transduction and organization of the thyrotropin receptor.

    Science.gov (United States)

    Krause, Gerd; Kreuchwig, Annika; Kleinau, Gunnar

    2012-01-01

    The hormone thyrotropin (TSH) and its receptor (TSHR) are crucial for the growth and function of the thyroid gland. The TSHR is evolutionary linked with the receptors of follitropin (FSHR) and lutropin/choriogonadotropin (LHR) and their sequences and structures are similar. The extracellular region of TSHR contains more than 350 amino acids and binds hormone and antibodies. Several important questions related to functions and mechanisms of TSHR are still not comprehensively understood. One major reason for these open questions is the lack of any structural information about the extracellular segment of TSHR that connects the N-terminal leucine-rich repeat domain (LRRD) with the transmembrane helix (TMH) 1, the hinge region. It has been shown experimentally that this segment is important for fine tuning of signaling and ligand interactions. A new crystal structure containing most of the extracellular hFSHR region in complex with hFSH has recently been published. Now, we have applied these new structural insights to the homologous TSHR and have generated a structural model of the TSHR LRRD/hinge-region/TSH complex. This structural model is combined and evaluated with experimental data including hormone binding (bTSH, hTSH, thyrostimulin), super-agonistic effects, antibody interactions and signaling regulation. These studies and consideration of significant and non-significant amino acids have led to a new description of mechanisms at the TSHR, including ligand-induced displacements of specific hinge region fragments. This event triggers conformational changes at a convergent center of the LRRD and the hinge region, activating an "intramolecular agonistic unit" close to the transmembrane domain.

  20. Functional diagnostics for thyrotropin hormone receptor autoantibodies: bioassays prevail over binding assays.

    Science.gov (United States)

    Lytton, Simon David; Schluter, Anke; Banga, Paul J

    2018-06-01

    Autoantibodies to the thyrotropin hormone receptor (TSH-R) are directly responsible for the hyperthyroidism in Graves' disease and mediate orbital manifestations in Graves' orbitopathy (otherwise known as thyroid eye disease). These autoantibodies are heterogeneous in their function and collectively referred to as TRAbs. Measurement of TRAbs is clinically important for diagnosis of a variety of conditions and different commercial assays with high sensitivity and specificity are available for diagnostic purposes. This review provides overwhelming evidence that the TRAbs detected in binding assays by mainly the automated electrochemical luminescence immunoassays (ECLIA) do not distinguish TRAbs that stimulate the TSH-R (called TSIs or TSAbs) and TRAbs that just inhibit the binding of TSH without stimulating the TSH-R (called TBAbs). However, TSAbs and TBAbs have divergent pathogenic roles, and depending which fraction predominates cause different clinical symptoms and engender different therapeutic regimen. Therefore, diagnostic distinction of TSAbs and TBAbs is of paramount clinical importance. To date, only bioassays such as the Mc4 TSH-R bioassay (Thyretain TM , Quidel) and the Bridge assay (Immulite 2000, Siemens) can measure TSAbs, with only the former being able to distinguish between TSAbs and TBAbs. On this note, it is strongly recommended to only use the term TSI or TSAb when reporting the results of bioassays, whereas the results of automated TRAb binding assays should be reported as TRAbs (of undetermined functional significance). This review aims to present a technical and analytical account of leading commercial diagnostic methods of anti-TSH-R antibodies, a metaanalysis of their clinical performance and a perspective for the use of cell based TSH-R bioassays in the clinical diagnostics of Graves' disease.

  1. The utility of peripheral thyrotropin receptor mRNA in the management of differentiated thyroid cancer.

    Science.gov (United States)

    Aliyev, Altay; Soundararajan, Saranya; Bucak, Emre; Gupta, Manjula; Hatipoglu, Betul; Nasr, Christian; Siperstein, Allan; Berber, Eren

    2015-10-01

    Our aim was to analyze the utility of peripheral thyrotropin receptor (TSHR) messenger RNA (mRNA) in predicting and detecting the recurrence of differentiated thyroid cancer. Peripheral blood TSHR-mRNA was obtained in 103 patients before and after total thyroidectomy. An analysis was performed to correlate peripheral blood TSHR-mRNA concentration with oncologic outcomes. Tumor types were papillary (n = 92), follicular (n = 9) and Hürthle cell (n = 2) cancer. Preoperative TSHR-mRNA was ≥1.02 ng/μg in 85% (88/103). On follow-up (median 48 months), 10 patients (10 %) developed recurrence. Recurrence rate in patients with a preoperative TSHR-mRNA ≥ 1.02 ng/μg was 11% versus 0% in those with a lesser concentration. TSHR-mRNA correctly diagnosed 7 (70%) of 10 recurrences. Of 19 patients with positive thyroglobulin (Tg) antibodies, TSHR-mRNA confirmed disease-free status in 12 (63%) and recurrence in 1 (5%). For Tg, TSHR-mRNA and whole-body radioactive iodine scan, sensitivity was 70%, 70%, and 75%; specificity 94%, 76%, 97%; PPV 54%, 24%, and 67%; and NPV 97%, 96%, and 98%, respectively, in detecting recurrent disease. This study shows that patients with preoperative TSHR-mRNA ≥1.02 ng/μg may be at a greater risk for recurrence compared with those with a lesser concentration. In the presence of Tg antibodies, TSHR-mRNA accurately predicted disease status in 68% of patients. Its overall performance in detecting recurrence was similar to Tg and whole-body radioactive iodine scan, albeit with lower specificity and PPV. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Total Thyroidectomy for Thyroid Cancer Followed by Thyroid Storm due to Thyrotropin Receptor Antibody Stimulation of Metastatic Thyroid Tissue

    DEFF Research Database (Denmark)

    Folkestad, Lars; Brandt, Frans; Brix, Thomas

    2017-01-01

    BACKGROUND: Graves disease (GD) is an autoimmune condition characterized by the presence of antibodies against the thyrotropin receptor (TRAB), which stimulate the thyroid gland to produce excess thyroid hormone. Theoretically, TRAB could stimulate highly differentiated thyroid cancer tissue and...... treatment continued until after the fourth RAI dose. Hypothyroidism did not occur until following the fifth RAI treatment. SUMMARY AND CONCLUSIONS: We present a patient initially diagnosed with thyrotoxicosis and subsequently with metastatic follicular variant of papillary thyroid cancer. It is suggested...... that TRAB stimulated the highly differentiated extrathyroidal metastatic thyroid tissue to produce excessive amounts of thyroid hormone, delayed diagnosis, and potential aggravation of the course of thyroid cancer....

  3. Induction of stimulating thyrotropin receptor antibodies after radioiodine therapy for toxic multinodular goitre and Graves' disease measured with a novel bioassay

    NARCIS (Netherlands)

    Hovens, Guido C.; Heemstra, Karen A.; Buiting, Antoinette M. J.; Stokkel, Marcel P.; Karperien, Marcel; Ballieux, Bart E.; Pereira, Alberto M.; Romijn, Johannes A.; Smit, Johannes W.

    2007-01-01

    Radioactive iodine therapy (RaI) in toxic multinodular goitre (TMNG) has been associated with the occurrence of Graves'-like hyperthyroidism. It has been postulated that pre-existing autoimmunity may contribute to this phenomenon. To study whether RaI induces thyrotropin receptor stimulating

  4. Radioreceptor assay study of thyrotropin receptor antibody (TRAb) in Grave's diseases

    International Nuclear Information System (INIS)

    Lu Chao; Lin Xiangtong

    1989-01-01

    Here was reported the assay system using pig thyroid TSH receptor and 125 I-bTSH purified by receptor of thyroid cell membrane for the study of TRAb activity. The binding rate of ASH soluble receptor with 125 I-bTSH was 22.2 ∼ 37.4%, while as the control was only 1.0 ∼ 2.1%. TRAb was measured clinically in 48 cases of Grave's diseases and 25 normal persons. The TSH binding inhabitory index(TRII) was introduced for reflection of TRAb activity. The results showed that TBII was positure in 30 of 48 patients of Grave's diseases, the detctactibility was 79.2%

  5. Thyrotropin-releasing hormone (TRH) receptors. Localization by light microscopic autoradiography in rat brain using [3H][3-Me-His2]TRH as the radioligand

    International Nuclear Information System (INIS)

    Mantyh, P.W.; Hunt, S.P.

    1985-01-01

    Thyrotropin releasing hormone (TRH) is a putative neurotransmitter in both the central and peripheral nervous system. In the present report, we have used autoradiography coupled with densitometric analysis of tritium-sensitive film to investigate the distribution of [ 3 H][3-Me-His2]TRH [( 3 H]MeTRH)-binding sizes in the rat brain. Previous pharmacological reports have established that many of these [ 3 H]MeTRH-binding sites have a structure-activity profile consistent with being a physiological TRH receptor. A high level of TRH receptors were observed in the accessory olfactory bulb, lateral nucleus of the amygdala, dentate gyrus, and entorhinal cortex. Moderate levels of TRH receptors were observed in the rhinal cortex, hypothalamus, superior colliculus, several brainstem motor nuclei, and lamina I of the spinal trigeminal nucleus pars candalis, while low concentrations of receptors are present in the cerebral cortex, striatum and ventral horn of the spinal cord. Very low levels of receptors were observed in the globus pallidus and in most nuclei of the dorsal thalamus. Comparisons of the distribution of TRH receptors to TRH-immunoreactive content indicates that, while in some areas of the brain there is a rough correlation between levels of TRH peptide and its receptor, in most brain areas there is little obvious correlation between the two. While such a discrepancy has been observed for other peptides and their receptors, the extensive distribution of TRH receptors in the central nervous system does provide an explanation for the variety of behavioral effects observed when TRH is infused into the central nervous system

  6. The assay of thyrotropin receptor antibodies with human TSH/LH-CG chimeric receptor expressed on chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Yi, Ka Hee; Kim, Chang Min

    1996-12-01

    TSH/LH-CG chimera cDNA is transfected to CHO-K1 cell to obtain the chimeric receptor expressed on the cell surface. The optimal conditions for TSAb and TSBAb measurements are determined using chimeric receptors and under these conditions activity of TSAb and TSBAb in the sera of the Graves' patients. The results obtained are compared to those of TSAb assays using FRTL5 cells CHO-TSHR cells which have wild type human TSH receptor. The transfection procedure of chimeric receptor gene to CHO-K1 cells are on going. The optimal conditions for TSAb and TSBAb measurement using chimeric receptor will be determined after success of transfection procedure. If this study is successfully completed, not only the heterogeneity of Graves. IgG but also pathogenesis of Graves' disease will be elucidated. (author). 25 refs

  7. The assay of thyrotropin receptor antibodies with human TSH/LH-CG chimeric receptor expressed on chinese hamster ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ka Hee; Kim, Chang Min [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1996-12-01

    TSH/LH-CG chimera cDNA is transfected to CHO-K1 cell to obtain the chimeric receptor expressed on the cell surface. The optimal conditions for TSAb and TSBAb measurements are determined using chimeric receptors and under these conditions activity of TSAb and TSBAb in the sera of the Graves` patients. The results obtained are compared to those of TSAb assays using FRTL5 cells CHO-TSHR cells which have wild type human TSH receptor. The transfection procedure of chimeric receptor gene to CHO-K1 cells are on going. The optimal conditions for TSAb and TSBAb measurement using chimeric receptor will be determined after success of transfection procedure. If this study is successfully completed, not only the heterogeneity of Graves. IgG but also pathogenesis of Graves` disease will be elucidated. (author). 25 refs.

  8. Mutations in the thyrotropin receptor signal transduction pathway in the hyperfunctioning thyroid nodules from multinodular goiters: a study in the Turkish population.

    Science.gov (United States)

    Gozu, Hulya; Avsar, Melike; Bircan, Rifat; Sahin, Serap; Deyneli, Oguzhan; Cirakoglu, Beyazit; Akalin, Sema

    2005-10-01

    Many studies have been carried out to determine G(s) alpha and TSHR mutations in autonomously functioning thyroid nodules. Variable prevalences for somatic constitutively activating TSHR mutations in hot nodules have been reported. Moreover, the increased prevalence of toxic multinodular goiters in iodine-deficient regions is well known. In Turkey, a country with high incidence rates of goiter due to iodine deficiency, the frequency of mutations in the thyrotropin receptor signal transduction pathway has not been evaluated up to now. In the present study, a part of the genes of the TSHR, G(s)alpha and the catalytic subunit of the PKA were checked for activating mutations. Thirty-five patients who underwent thyroidectomy for multinodular goiters were examined. Genomic DNAs were extracted from 58 hyperactive nodular specimens and surrounding normal thyroid tissues. Mutation screening was done by single-strand conformational polymorphism (SSCP) analysis. In those cases where a mutation was detected, the localization of the mutation was determined by automatic DNA sequencing. No G(s)alpha or PKA mutations were detected, whereas ten mutations (17%) were identified in the TSHR gene. All mutations were somatic and heterozygotic. In conclusion, the frequency of mutations in the cAMP signal transduction pathway was found to be lower than expected in the Turkish population most likely because of the use of SSCP as a screening method and sequencing only a part of TSHR exon 10.

  9. The negative correlation between thyrotropin receptor-stimulating antibodies and bone mineral density in postmenopausal patients with Graves' disease.

    Science.gov (United States)

    Amashukeli, Medea; Korinteli, Maka; Zerekidze, Tamar; Jikurauli, Nino; Shanava, Shorena; Tsagareli, Marina; Giorgadze, Elen

    2013-06-01

    Graves' disease is an autoimmune disorder with various clinical manifestations. Thyrotropin receptor antibodies (TRAbs), the circulating autoantibodies specific to Graves' disease, are the cause for hyperthyroidism, the most prevalent abnormality. Hyperthyroidism leads to increased bone turnover and a negative bone balance. The aims of the present study were to determine the relationship between TRAbs and bone mineral density (BMD), to assess the extent of BMD change in patients with Graves' disease, and to determine the impact of conservative and surgical therapy on BMD. Fifty female postmenopausal patients with Graves' disease were chosen for this study. Twenty women had a recent diagnosis of Graves' disease, 30 women presented with a compensated disease state after either conservative or surgical treatment, and 30 healthy postmenopausal women served as controls. Thyroid parameters were measured, and BMD values were obtained by dual energy x-ray absorptiometry scan.Femoral neck and lumbar spine BMD and T-scores were significantly lower in newly diagnosed patients compared with the control group, but a difference was not observed between the treated and control groups. Statistical analysis revealed a strong and significant negative correlation between femoral neck and lumbar spine BMD and TRAb values.Both surgical and conservative therapies are effective for restoring BMD in postmenopausal patients with Graves' disease, and the increased level of TRAb can be a useful marker of bone density impairment.

  10. The study on mutations of the gene of extracellular domain of human thyrotropin receptor in the patients with thyroid diseases

    International Nuclear Information System (INIS)

    Zhang Zuncheng; Fang Peihua; Tan Jian; Lu Mei

    2002-01-01

    Objective: To define the sequence of the gene of extracellular domain of normal human thyrotropin receptor (hTSHR) and to investigate the mutations of the gene in the patients with thyroid diseases. Methods: Total RNAs were extracted from the thyroid tissue of four normal controls, twelve Graves' disease, four Hashimoto's thyroiditis and eleven nodular goiter patients. The extracellular domain of hTSHR genes were amplified by reverse transcription-polymerase chain reaction (RT-PCR) and sequenced with CEQ 2000 Genetic Analyzer. Results: The normal controls and the patients with thyroid disease had the same gene sequences of the extracellular domain of hTSHR. No mutation was found, except a silent base exchange in exon 7 (Asn187) at 661 base, in which 20 samples were 'T', 11 samples were 'C', without changes of amino acid of the TSHR. Conclusions: This study has not revealed mutations in the gene of extracellular domain of hTSHR. Other molecular pathogenetic mechanisms may be involved and more research is demanded

  11. Thyrotropin receptor mutations and thyroid hyperfunctioning adenomas ten years after their first discovery: unresolved questions.

    Science.gov (United States)

    Arturi, F; Scarpelli, D; Coco, A; Sacco, R; Bruno, R; Filetti, S; Russo, D

    2003-04-01

    Ten years after the first description of activating mutations in the thyroid stimulating hormone receptor (TSHR) gene in sporadic autonomous hyperfunctioning thyroid adenomas, there is general agreement in assigning a major pathogenic role of this genetic abnormality, acting via the constitutive activation of the cAMP pathway, in both the growth and functional characteristic of these tumours. From the beginning, however, the pathophysiological and clinical relevance of somatic TSHR mutations has been debated and some arguments still exist against a fully causative role of these mutations and the practical value of detecting these mutations for the diagnosis, treatment and prognosis of thyroid hot nodules. Some major issues will be examined herein, including (a) the frequency of TSHR alterations in various reports showing that the genetic abnormality underlying the pathogenesis of a substantial subset of thyroid tumours has yet to be identified; (b) the limitations of the present experimental models, which suggest greater caution in the interpretation of in vitro results; (c) the still unresolved question of absence of genotype-phenotype correlation. Clarification of these issues may hopefully provide new and useful tools for improving the clinical management of this disease.

  12. Nonclassical ligands for the thyrotropin receptor: functional studies on thyrostimulin and Graves’ disease immunoglobulins

    NARCIS (Netherlands)

    van Zeijl, C.J.J.

    2011-01-01

    Clementine van Zeijl onderzocht twee liganden (verbindingsmoleculen) voor TSHR, de receptor voor schildklierstimulerend hormoon (TSH). Ze bestudeerde bij muizen de rol van thyrostimuline (een recentelijk ontdekt TSHR-stimulerend glycoproteïnehormoon) in de hypothalamus-hypofyse-schildklieras (HPT)

  13. Anti-thyrotropin receptor antibody levels after radioiodine therapy in patients of childbearing age with Graves' disease

    International Nuclear Information System (INIS)

    Takeuchi, Mizuho; Tojo, Katsuyoshi; Tajima, Naoko; Yoshimura, Hiroshi; Ito, Koichi

    2006-01-01

    Following radioiodine therapy for Graves' disease, transient elevation of anti-thyrotropin receptor antibody (TRAb) is observed. Elevation of TRAb causes neonatal hyperthyroidism. Serum TRAb levels before radioiodine therapy, 2 months to 1 year, 1 to 2 years, 2 to 3 years, and 3 to 4 years after radioiodine therapy were retrospectively analyzed in 25 women of childbearing age with Graves' disease. The normal range for TRAb is ≤15%. The one patient with serum TRAb levels <10% before radioiodine therapy did not have TRAb levels ≥50% after radioiodine therapy. However, in patients with serum TRAb levels of 10% to 30% before radioiodine therapy (n=8), TRAb were ≥50% in 75.0% 2 months to 1 year after radioiodine therapy, in 25.0% 1 to 2 years after, and in 37.5% 2 to 4 years after. In patients with serum TRAb levels of 30% to 50% before radioiodine therapy (n=3), TRAb levels were ≥50% in 33.3% 2 months to 1 year after radioiodine therapy and in 0.0% 1 to 4 years after. In patients with serum TRAb levels of 50% to 70% before radioiodine therapy (n=6), TRAb were ≥50% in 83.3% 2 months to 1 year after radioiodine therapy, in 66.6% 1 to 2 years after, and in 33.3% 2 to 4 years after. In patients with serum TRAb levels ≥70% before radioiodine therapy (n=7), TRAb levels were ≥50% in 100% 2 months to 1 year after radioiodine therapy, in 85.7% 1 to 2 years after, in 71.4% 2 to 3 years after, and in 57.1% 3 to 4 years after. Serum TRAb levels are more likely to be ≥50% after radioiodine therapy in patients with high serum TRAb levels before radioiodine therapy. (author)

  14. Effects of sodium ions on rat thyrocyte (FRTL-5 cells) swelling- and thyrotropin-activated taurine efflux dependent on cAMP and Epac.

    Science.gov (United States)

    Fugelli, Kjell

    2016-03-01

    Cellular osmolyte release is important in preventing water accumulation and swelling. However, the signaling pathways that detect volume increase and activate solute efflux are still not fully understood. We investigated efflux activation of the osmolyte taurine which is actively accumulated in rat thyrocytes (FRTL-5). Efflux of accumulated [(3)H]taurine was stimulated by cellular swelling and thyrotropin (TSH). These effects were significantly diminished in cells having reduced TSH receptor concentrations. Phosphodiesterase inhibitors (IBMX, Rolipram) enhanced both responses. An analog of forskolin (FSK; 7-deacetyl-7-[O-(N-methylpiperazino)-γ-butyryl] dihydrochloride) and an analog of cAMP, specific for activating exchange protein activated directly by cAMP (Epac; 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate, acetoxymethyl ester), significantly stimulated [(3)H]taurine efflux. A cAMP analog specific for activating protein kinase A (PKA; N6-benzoyladenosine-3',5'-cyclic monophosphate, acetoxymethyl ester) had no significant stimulatory effect on [(3)H]taurine efflux rate. The amiloride analog, 5-(N-ethyl-N-isopropyl)-amiloride, which inhibits a TSH-stimulated Na(+)/H(+) exchanger, enhanced (100 %) and ouabain inhibited (50 %) the TSH-stimulated [(3)H]taurine efflux rate. The effect of FSK on efflux was strongly potentiated by Na(+)-free iso-osmotic conditions and by osmolality/cell volume that affected also the db-cAMP-stimulated efflux. The TSH receptors and downstream elements of the signaling pathway comprising adenylyl cyclase, cAMP and Epac appeared to mediate the hormone-induced signal for [(3)H]taurine efflux from FRTL-5 cells. With less evidence, the cell volume/osmolality-induced [(3)H]taurine efflux cascade appeared to share some of the hormone signaling elements and to modulate the hormone signaling pathway at two levels through cellular Na(+).

  15. 64 kDa protein is a candidate for a thyrotropin-releasing hormone receptor in prolactin-producing rat pituitary tumor cells (GH4C1 cells)

    International Nuclear Information System (INIS)

    Wright, M.; Hogset, A.; Alestrom, P.; Gautvik, K.M.

    1988-01-01

    A thyrotropin-releasing hormone (TRH) binding protein of 64 kDa has been identified by covalently crosslinking [ 3 H]TRH to GH4C1 cells by ultraviolet illumination. The crosslinkage of [ 3 H]TRH is UV-dose dependent and is inhibited by an excess of unlabeled TRH. A 64 kDa protein is also detected on immunoblots using an antiserum raised against GH4C1 cell surface epitopes. In a closely related cell line (GH12C1) which does not bind [ 3 H]TRH, the 64 kDa protein cannot be demonstrated by [ 3 H]TRH crosslinking nor by immunoblotting. These findings indicate that the 64 kDa protein is a candidate for a TRH-receptor protein in GH4C1 cells

  16. Thyrotropin Receptor Antibody (TRAb)-IgM Levels Are Markedly Higher Than TRAb-IgG Levels in Graves' Disease Patients and Controls, and TRAb-IgM Production Is Related to Epstein-Barr Virus Reactivation.

    Science.gov (United States)

    Kumata, Keisuke; Nagata, Keiko; Matsushita, Michiko; Kuwamoto, Satoshi; Kato, Masako; Murakami, Ichiro; Fukata, Shuji; Hayashi, Kazuhiko

    2016-10-01

    Graves' disease is an autoimmune thyroid disorder that mainly presents as hyperthyroidism and is caused by thyrotropin receptor antibodies (TRAbs) that stimulate thyroid-stimulating hormone receptors. We previously reported that Graves' disease patients and healthy controls both had Epstein-Barr virus (EBV)-infected TRAb-positive B cells and the EBV-reactivated induction of these B cells in cultures may induce the production of TRAbs. In the present study, we quantified serum TRAb-IgG and TRAb-IgM levels in 34 Graves' disease patients and 15 controls using ELISA to elucidate the mechanisms underlying EBV-related antibody production. As expected, TRAb-IgG and TRAb-IgM levels were higher in Graves' disease patients than in controls; however, TRAb-IgM levels were significantly higher than those of TRAb-IgG levels, whereas total IgM levels were lower than total IgG levels. On the other hand, the enhanced production of TRAb-IgM was frequently observed in patients with EBV reactivation. These results are consistent with the fact that the percentage of autoreactive IgM B cells are higher than that of autoreactive IgG B cells, and support the EBV-related polyclonal B cell activation. It is necessary to clarify the biological characteristics of TRAb-IgM and the relationship between TRAb isotypes and the biology of Graves' disease.

  17. Functional characteristics of three new germline mutations of the thyrotropin receptor gene causing autosomal dominant toxic thyroid hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Tonacchera, M.; Van Sande, J.; Cetani, F. [Universite Libre de Bruxelles, Brussels (Belgium)] [and others

    1996-02-01

    We report three unrelated families in which hyperthyroidism associated with thyroid hyperplasia was transmitted in an autosomal dominant fashion, in the absence of signs of autoimmunity. Exon 10 of the TSH receptor gene was directly sequenced after PCR amplification from DNA of peripheral leukocytes. In one family, a C to A transversion resulted in an S505R substitution in the third transmembrane segment; in the second, an A to T transversion caused an N650Y substitution in the sixth transmembrane segment; and in the third family, an A to G transition resulted in an N670S substitution in the seventh transmembrane segment. When expressed by transfection in COS-7 cells, each mutated receptor displayed an increase in constitutive stimulation of cAMP production; no effect on basal accumulation of inositol phosphates (IP) could be detected. In binding studies, cells transfected with wild-type of mutated receptors showed similar levels of expression, with the mutated receptors displaying similar or slightly increased affinity for bovine TSH (bTSH) binding. Cells transfected with S505R and N650Y mutants showed a similar cAMP maximal TSH-stimulated accumulation over the cells transfected with the wild type, whereas N670S transfectants showed a blunted response with an increase in EC{sub 50}. A higher IP response to 100 mU/mL bTSH over that obtained with the wild-type receptor was obtained in cells transfected with N650Y; in contrast, cells transfected with S505R showed a blunted IP production (50% less), and the N670S mutant completely lost the ability to stimulate IP accumulation in response to bTSH. The differential effects of individual mutations on stimulation by bTSH of cAMP or IP accumulation suggest that individual mutant receptors may achieve different active conformations with selective abilities to couple to G{sub s}{alpha} and to G{sub q}{alpha}. 17 refs., 8 figs.

  18. Diagnostic accuracy of circulating thyrotropin receptor messenger RNA combined with neck ultrasonography in patients with Bethesda III-V thyroid cytology.

    Science.gov (United States)

    Aliyev, Altay; Patel, Jinesh; Brainard, Jennifer; Gupta, Manjula; Nasr, Christian; Hatipoglu, Betul; Siperstein, Allan; Berber, Eren

    2016-01-01

    The aim of this study was to analyze the usefulness of thyrotropin receptor messenger RNA (TSHR-mRNA) combined with neck ultrasonography (US) in the management of thyroid nodules with Bethesda III-V cytology. Cytology slides of patients with a preoperative fine needle aspiration (FNA) and TSHR-mRNA who underwent thyroidectomy between 2002 and 2011 were recategorized based on the Bethesda classification. Results of thyroid FNA, TSHR-mRNA, and US were compared with the final pathology. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated. There were 12 patients with Bethesda III, 112 with Bethesda IV, and 58 with Bethesda V cytology. The sensitivity of TSHR-mRNA in predicting cancer was 33%, 65%, and 79 %, and specificity was 67%, 66%, and 71%, for Bethesda III, IV, and V categories, respectively. For the same categories, the PPV of TSHR-mRNA was 25%, 33%, and 79%, respectively; whereas the NPV was 75%, 88%, and 71%, respectively. The addition of neck US to TSHR-mRNA increased the NPV to 100% for Bethesda III, and 86%, for Bethesda IV, and 82% for Bethesda V disease. This study documents the potential usefulness of TSHR-mRNA for thyroid nodules with Bethesda III-V FNA categories. TSHR-mRNA may be used to exclude Bethesda IV disease. A large sample analysis is needed to determine its accuracy for Bethesda category III nodules. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Frequency and Clinical Implication of the R450H Mutation in the Thyrotropin Receptor Gene in the Japanese Population Detected by Smart Amplification Process 2

    Science.gov (United States)

    Yanagawa, Yoshimaro; Aoki, Tomoyuki; Morimura, Tadashi; Araki, Osamu; Kimura, Takao; Ogiwara, Takayuki; Kotajima, Nobuo; Yanagawa, Masumi; Murakami, Masami

    2014-01-01

    In Japanese pediatric patients with thyrotropin (TSH) resistance, the R450H mutation in TSH receptor gene (TSHR) is occasionally observed. We studied the frequency and clinical implication of the R450H mutation in TSHR in the general population of Japanese adults using smart amplification process 2 (SmartAmp2). We designed SmartAmp2 primer sets to detect this mutation using a drop of whole blood. We analyzed thyroid function, antithyroid antibodies, and this mutation in 429 Japanese participants who had not been found to have thyroid disease. Two cases without antithyroid antibodies were heterozygous for the R450H mutation in TSHR. Thus, the prevalence of this mutation was 0.47% in the general population and 0.63% among those without antithyroid antibodies. Their serum TSH concentrations were higher than the average TSH concentration not only in subjects without antithyroid antibodies but also in those with antithyroid antibodies. The R450H mutation in TSHR is relatively common in the Japanese population and potentially affects thyroid function. The present study demonstrates that the SmartAmp2 method is useful to detect the R450H mutation in TSHR, which is one of the common causes of TSH resistance in the Japanese population. PMID:24895636

  20. Fourth ventricular thyrotropin induces satiety and increases body temperature in rats.

    Science.gov (United States)

    Smedh, Ulrika; Scott, Karen A; Moran, Timothy H

    2018-05-01

    Besides its well-known action to stimulate thyroid hormone release, thyrotropin mRNA is expressed within the brain, and thyrotropin and its receptor have been shown to be present in brain areas that control feeding and gastrointestinal function. Here, the hypothesis that thyrotropin acts on receptors in the hindbrain to alter food intake and/or gastric function was tested. Fourth ventricular injections of thyrotropin (0.06, 0.60, and 6.00 µg) were given to rats with chronic intracerebroventricular cannulas aimed at the fourth ventricle. Thyrotropin produced an acute reduction of sucrose intake (30 min). The highest dose of thyrotropin caused inhibition of overnight solid food intake (22 h). In contrast, subcutaneous administration of corresponding thyrotropin doses had no effect on nutrient intake. The highest effective dose of fourth ventricular thyrotropin (6 µg) did not produce a conditioned flavor avoidance in a standardized two-bottle test, nor did it affect water intake or gastric emptying of glucose. Thyrotropin injected in the fourth ventricle produced a small but significant increase in rectal temperature and lowered plasma levels of tri-iodothyronin but did not affect plasma levels of thyroxine. In addition, there was a tendency toward a reduction in blood glucose 2 h after fourth ventricular thyrotropin injection ( P = 0.056). In conclusion, fourth ventricular thyrotropin specifically inhibits food intake, increases core temperature, and lowers plasma levels of tri-iodothyronin but does not affect gastromotor function.

  1. Analog specificity of the thyrotropin-releasing hormone receptor in the central nervous system: possible clinical implications

    International Nuclear Information System (INIS)

    Hawkins, E.F.; Engel, W.K.

    1985-01-01

    TRH has rapid-onset (30 sec), slow-offset (1-12 days) clinical benefit in patients with amyotrophic lateral sclerosis and other motor neuron disorders. This benefit is probably receptor-mediated and may have at least 2 components. To obtain a better understanding of the various responses to TRH of the spinal lower motor neurons (LMNs) in patients, and possibly to help guide selection of additional therapeutic agents, the authors utilized rat CNS (spinal-cord and brain membranes) to analyze the ability of certain molecules to inhibit specific binding of [ 3 H]methyl TRH ([ 3 H]MeTRH) to the TRH receptor. They found: a) lack of high-affinity binding of the TRH-analog DN-1417 by spinal-cord and brain TRH receptor, despite its known strong TRH-like action physiologically on LMNs; b) lack of high-affinity binding of the TRH-product cyclo(His-Pro) by spinal cord and brain TRH receptor despite its having some strong TRH-like physiologic actions on the CNS; and c) lack of any identifiable high-affinity receptor for cyclo(His-Pro) in spinal cord and brain. From these data the authors hypothesize that the acute transmitter-like action of DN-1417, TRH, and possibly other TRH-analogs and products on LMNs is via a non-TRH receptor, such as an amine or amino acid neurotransmitter receptor, e.g. a 5-hydroxytryptamine receptor. They further postulate that the CNS TRH-receptor may modulate a trophic-like influence of TRH on LMNs

  2. Presence of Epstein-Barr virus-infected B lymphocytes with thyrotropin receptor antibodies on their surface in Graves' disease patients and in healthy individuals.

    Science.gov (United States)

    Nagata, Keiko; Higaki, Katsumi; Nakayama, Yuji; Miyauchi, Hiromi; Kiritani, Yui; Kanai, Kyosuke; Matsushita, Michiko; Iwasaki, Takeshi; Sugihara, Hirotsugu; Kuwamoto, Satoshi; Kato, Masako; Murakami, Ichiro; Nanba, Eiji; Kimura, Hiroshi; Hayashi, Kazuhiko

    2014-05-01

    Graves' disease is an autoimmune hyperthyroidism caused by thyrotropin receptor antibodies (TRAbs). Because Epstein-Barr virus (EBV) persists in B cells and is occasionally reactivated, we hypothesized that EBV contributes to TRAbs production in Graves' disease patients by stimulating the TRAbs-producing B cells. In order for EBV to stimulate antibody-producing cells, EBV must be present in those cells but that have not yet been observed. We examined whether EBV-infected (EBV(+)) B cells with TRAbs on their surface (TRAbs(+)) as membrane immunoglobulin were present in peripheral blood of Graves' disease patients. We analyzed cultured or non-cultured peripheral blood mononuclear cells (PBMCs) from 13 patients and 11 healthy controls by flow-cytometry and confocal laser microscopy, and confirmed all cultured PBMCs from 8 patients really had TRAbs(+) EBV(+) double positive cells. We unexpectedly detected TRAbs(+) cells in all healthy controls, and TRAbs(+) EBV(+) double positive cells in all cultured PBMC from eight healthy controls. The frequency of TRAbs(+) cells in cultured PBMCs was significantly higher in patients than in controls (p = 0.021). In this study, we indicated the presence of EBV-infected B lymphocytes with TRAbs on their surface, a possible player of the production of excessive TRAbs, the causative autoantibody for Graves' disease. This is a basic evidence for our hypothesis that EBV contributes to TRAbs production in Graves' disease patients. Our results further suggest that healthy controls have the potential for TRAbs production. This gives us an important insight into the pathogenesis of Graves' disease.

  3. A genomic point mutation in the extracellular domain of the thyrotropin receptor in patients with Graves` ophthalmopathy

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, R.S.; Dutton, C.M.; Heufelder, A.E.; Sarkar, G. [Mayo Clinic/Foundation, Rochester, MN (United States)]|[Ludwig-Maximilians-Universitat, Munich (Germany)

    1994-02-01

    Orbital and pretibial fibroblasts are targets of autoimmune attack in Graves` ophthalmopathy (GO) and pretibial dermopathy (PTD). The fibroblast autoantigen involved in these peripheral manifestations of Graves` disease and the reason for the association of GO and PTD with hyperthyroidism are unknown. RNA encoding the full-length extracellular domain of the TSH receptor has been demonstrated in orbital and dermal fibroblasts from patients with GO and normal subjects, suggesting a possible antigenic link between fibroblasts and thyrocytes. RNA was isolated from cultured orbital, pretibial, and abdominal fibroblasts obtained from patients with severe GO (n = 22) and normal subjects (n = 5). RNA was reverse transcribed, and the resulting cDNA was amplified by the polymerase chain reaction, using primers spanning overlapping regions of the entire extracellular domain of the TSH receptor. Nucleotide sequence analysis showed an A for C substitution in the first position of codon 52 in 2 of the patients, both of whom had GO, PTD, and acropachy. Genomic DNA isolated from the 2 affected patients, and not from an additional 12 normal subjects, revealed the codon 52 mutation by direct sequencing and AciI restriction enzyme digestions. In conclusion, the authors have demonstrated the presence of a genomic point mutation, leading to a threonine for proline amino acid shift in the predicted peptide, in the extracellular domain of the TSH receptor in two patients with severe GO, PTD, acropachy, and high thyroid-stimulating immunoglobulin levels. RNA encoding this mutant product was demonstrated in the fibroblasts of these patients. They suggest that the TSH receptor may be an important fibroblast autoantigen in GO and PTD, and that this mutant form of the receptor may have unique immunogenic properties. 28 refs., 3 figs., 2 tabs.

  4. Methimazole, but not betamethasone, prevents 131I treatment-induced rises in thyrotropin receptor autoantibodies in hyperthyroid Graves' disease

    International Nuclear Information System (INIS)

    Gamstedt, A.; Wadman, B.; Karlsson, A.

    1986-01-01

    The effects of methimazole or betamethasone therapy on the TSH receptor antibody response to radioiodine therapy were compared in a prospective randomized study of 60 patients with hyperthyroidism due to Graves' disease. The patients were followed for 1 yr after treatment with 131I. Twenty-three patients received 131I alone, 17 were treated with methimazole for 2 months before and 3 months after 131I therapy, and 20 patients were treated with betamethasone for 3 weeks before and 4 weeks after 131I therapy. 131I induced a transient rise in the mean serum level of TSH receptor autoantibodies, measured as TSH binding inhibitory immunoglobulin (TBII), but in patients receiving methimazole treatment, no such rise occurred. In the betamethasone-treated patients, TBII increased similarly to that in patients treated with 131I alone. In addition, in patients given betamethasone, there was an early decrease in total serum immunoglobulin G, which persisted throughout the follow-up period. In the other 2 groups, no changes in total immunoglobulin G were found. The results demonstrate that in hyperthyroid Graves' disease, TBII production is influenced by therapy. Methimazole abolished the 131I-induced increase in TBII, whereas betamethasone did not have such an inhibitory effect

  5. Loss-of-function mutations in the thyrotropin receptor gene as a major determinant of hyperthyrotropinemia in a consanguineous community.

    Science.gov (United States)

    Tenenbaum-Rakover, Yardena; Grasberger, Helmut; Mamanasiri, Sunee; Ringkananont, Usanee; Montanelli, Lucia; Barkoff, Marla S; Dahood, Ahmad Mahameed-Hag; Refetoff, Samuel

    2009-05-01

    Resistance to TSH (RTSH) is a condition of impaired responsiveness of the thyroid gland to TSH, characterized by elevated serum TSH, low or normal thyroid hormone levels, and hypoplastic or normal-sized thyroid gland. The aim of the study was to evaluate the clinical course and the genotype-phenotype relationship of RTSH caused by two different TSH receptor (TSHR) gene mutations in a consanguineous population. We conducted a clinical and genetic investigation of 46 members of an extended family and 163 individuals living in the same town. In vitro functional studies of the mutant TSHRs were also performed. Two TSHR gene mutations (P68S and L653V) were identified in 33 subjects occurring as homozygous L653V (five subjects), heterozygous L653V (20 subjects), heterozygous P68S (four subjects), and compound heterozygous L653V/P68S (four subjects). With the exception of one individual with concomitant autoimmune thyroid disease, all homozygotes and compound heterozygotes presented with compensated RTSH (high TSH with free T(4) and T(3) in the normal range). Only nine of 24 heterozygotes had mild hyperthyrotropinemia. The L653V mutation resulted in a higher serum TSH concentration and showed a more severe in vitro abnormality than P68S. Haplotype analysis predicted a founder of the L653V six to seven generations earlier, whereas the P68S is older. Cross-sectional and prospective longitudinal studies indicate that TSH and T(4) concentrations remain stable over time. High frequency hyperthyrotropinemia in an Israeli Arab-Muslim consanguineous community is attributed to two inactivating TSHR gene mutations. Concordant genotype-phenotype was demonstrated clinically and by in vitro functional analysis. Retrospective and prospective studies indicate that in the absence of concomitant autoimmune thyroid disease, elevated TSH levels reflect stable compensated RTSH.

  6. Protein alterations induced by long-term agonist treatment of HEK293 cells expressing thyrotropin-releasing hormone receptor and G11alpha protein

    Czech Academy of Sciences Publication Activity Database

    Drastichová, Z.; Bouřová, Lenka; Hejnová, L.; Jedelský, P.; Svoboda, Petr; Novotný, J.

    2010-01-01

    Roč. 109, č. 1 (2010), s. 255-264 ISSN 0730-2312 R&D Projects: GA MŠk(CZ) LC554; GA ČR(CZ) GA309/06/0121; GA ČR(CZ) GD305/08/H037 Institutional research plan: CEZ:AV0Z50110509 Keywords : Thyrotropin-releasing hormone * Gq/11 protein * proteomics Subject RIV: ED - Physiology Impact factor: 3.122, year: 2010

  7. Clinical evaluation of the 2nd generation radio-receptor assay for anti-thyrotropin receptor antibodies (TRAb) in Graves' disease

    International Nuclear Information System (INIS)

    Giovanella, L.; Ceriani, L.; Garancini, S.

    2002-01-01

    Full text: Detection of autoantibodies to the TSH receptor by radioreceptorial assays (RRA) is largely requested in clinical practice for the diagnosis of Graves' disease and its differentiation from diffuse thyroid autonomy. Additionally, TRAb measurement during antithyroid drug treatment can be useful to evaluate the risk of disease's relapse alter therapy discontinuation. Nevertheless, some patients affected by Graves' disease are TRAb negative when 1st generation assay is used. Recently a new RRA method for TRAb assay was developed by using human recombinant TSH-receptor and solid-phase technique. Aim of our work was the comparison between 1st and 2nd generation TRAb assays in Graves' disease patients and, particularly, the evaluation of 2nd generation test in a sub-group of patients affected by Graves' disease but with negative 1st generation TRAb assay. We evaluated the diagnostic performance of a newly developed 2nd generation TRAb assay (DYNOtest(r) TRAK human, BRAHMS Diagnostica GmbH, Germany) in 46 patients affected by Graves' disease with negative 1st generation TRAb assay (TRAK Assay(r), BRAHMS Diagnostica GmbH, Germany) . A control groups of 50 Graves' disease patients with positive 1st generation TRAb assay, 50 patients affected by Hashimoto's thyroiditis and 50 patients affected by nodular goiter were also examined. 41 out of 46 patients affected by Graves' disease with negative 1st generation TRAb assay showed a positive 2nd generation test. The overall sensitivity of the 2nd generation test was significantly improved respect the 1st generation assay in Graves' disease patients (χ 2 = 22.5, p<0.0001). 1 and 3 out of 50 patients affected by Hashimoto's thyroiditis were positive by 1st and 2nd generation TRAB assay, respectively. All these patients showed primary hypothyroidism. No differences resulted in euthyroid Hashimoto's thyroiditis sub-group and in nodular goiter control group. The 2nd generation TRAB assay is clearly more sensitive than the 1

  8. Intrauterine Zn Deficiency Favors Thyrotropin-Releasing Hormone-Increasing Effects on Thyrotropin Serum Levels and Induces Subclinical Hypothyroidism in Weaned Rats

    Directory of Open Access Journals (Sweden)

    Viridiana Alcántara-Alonso

    2017-10-01

    Full Text Available Individuals who consume a diet deficient in zinc (Zn-deficient develop alterations in hypothalamic-pituitary-thyroid axis function, i.e., a low metabolic rate and cold insensitivity. Although those disturbances are related to primary hypothyroidism, intrauterine or postnatal Zn-deficient adults have an increased thyrotropin (TSH concentration, but unchanged thyroid hormone (TH levels and decreased body weight. This does not support the view that the hypothyroidism develops due to a low Zn intake. In addition, intrauterine or postnatal Zn-deficiency in weaned and adult rats reduces the activity of pyroglutamyl aminopeptidase II (PPII in the medial-basal hypothalamus (MBH. PPII is an enzyme that degrades thyrotropin-releasing hormone (TRH. This hypothalamic peptide stimulates its receptor in adenohypophysis, thereby increasing TSH release. We analyzed whether earlier low TH is responsible for the high TSH levels reported in adults, or if TRH release is enhanced by Zn deficiency at weaning. Dams were fed a 2 ppm Zn-deficient diet in the period from one week prior to gestation and up to three weeks after delivery. We found a high release of hypothalamic TRH, which along with reduced MBH PPII activity, increased TSH levels in Zn-deficient pups independently of changes in TH concentration. We found that primary hypothyroidism did not develop in intrauterine Zn-deficient weaned rats and we confirmed that metal deficiency enhances TSH levels since early-life, favoring subclinical hypothyroidism development which remains into adulthood.

  9. Lack of association between autonomously functioning thyroid nodules and germline polymorphisms of the thyrotropin receptor and Gαs genes in a mild to moderate iodine-deficient Caucasian population.

    Science.gov (United States)

    Vicchio, Teresa Manuela; Giovinazzo, Salvatore; Certo, Rosaria; Cucinotta, Mariapaola; Micali, Carmelo; Baldari, Sergio; Benvenga, Salvatore; Trimarchi, Francesco; Campennì, Alfredo; Ruggeri, Rosaria Maddalena

    2014-07-01

    Mutations of the thyrotropin receptor (TSHR) and/or Gαs gene have been found in a number of, but not all, autonomously functioning thyroid nodules (AFTNs). Recently, in a 15-year-old girl with a hyperfunctioning papillary thyroid carcinoma, we found two somatic and germline single nucleotide polymorphisms (SNPs): a SNP of the TSHR gene (exon 7, codon 187) and a SNP of Gαs gene (exon 8, codon 185). The same silent SNP of the TSHR gene had been reported in patients with AFTN or familial non-autoimmune hyperthyroidism. No further data about the prevalence of the two SNPs in AFTNs as well as in the general population are available in the literature. To clarify the possible role of these SNPs in predisposing to AFTN. Germline DNA was extracted from blood leukocytes of 115 patients with AFTNs (43 males and 72 females, aged 31-85 years, mean ± SD = 64 ± 13) and 100 sex-matched healthy individuals from the same geographic area, which is marginally iodine deficient. The genotype distribution of the two SNPs was investigated by restriction fragment length polymorphism-polymerase chain reaction. The prevalence of the two SNPs in our study population was low and not different to that found in healthy individuals: 8 % of patients vs. 9 % of controls were heterozygous for the TSHR SNP and 4 % patients vs. 6 % controls were heterozygous for the Gαs SNP. One patient harbored both SNPs. These results suggest that these two SNPs do not confer susceptibility for the development of AFTN.

  10. Thyrotropin-producing pituitary adenoma simultaneously existing with Graves' disease: a case report.

    Science.gov (United States)

    Arai, Nobuhiko; Inaba, Makoto; Ichijyo, Takamasa; Kagami, Hiroshi; Mine, Yutaka

    2017-01-06

    Thyrotropin-producing pituitary tumor is relatively rare. In particular, concurrent cases associated with Graves' disease are extremely rare and only nine cases have been reported so far. We describe a case of a thyrotropin-producing pituitary adenoma concomitant with Graves' disease, which was successfully treated. A 40-year-old Japanese woman presented with mild signs of hyperthyroidism. She had positive anti-thyroid-stimulating hormone receptor antibody, anti-thyroglobulin antibody, and anti-thyroid peroxidase antibody. Her levels of serum thyroid-stimulating hormone, which ranged from low to normal in the presence of high levels of serum free thyroid hormones, were considered to be close to a state of syndrome of inappropriate secretion of thyroid-stimulating hormone. Magnetic resonance imaging showed a macropituitary tumor. The coexistence of thyrotropin-producing pituitary adenoma and Graves' disease was suspected. Initial therapy included anti-thyroid medication, which was immediately discontinued due to worsening symptoms. Subsequently, surgical therapy for the pituitary tumor was conducted, and her levels of free thyroid hormones, including the thyroid-stimulating hormone, became normal. On postoperative examination, her anti-thyroid-stimulating hormone receptor antibody levels decreased, and the anti-thyroglobulin antibody became negative. The coexistence of thyrotropin-producing pituitary adenoma and Graves' disease is rarely reported. The diagnosis of this condition is complicated, and the appropriate treatment strategy has not been clearly established. This case suggests that physicians should consider the coexistence of thyrotropin-producing pituitary adenoma with Graves' disease in cases in which thyroid-stimulating hormone values range from low to normal in the presence of thyrotoxicosis, and the surgical treatment of thyrotropin-producing pituitary adenoma could be the first-line therapy in patients with both thyrotropin-producing pituitary adenoma

  11. Does thyroidectomy, radioactive iodine therapy, or antithyroid drug treatment alter reactivity of patients` T cells to epitopes of thyrotropin receptor in autoimmune thyroid diseases?

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, M.; Kaplan, E.; Abdel-Latif, A. [Univ. of Chicago, IL (United States)] [and others

    1995-08-01

    The effect of treatment on thyroid antibody production and T cell reactivity to thyroid antigens was studied in 15 patients with Graves` disease (GD) before and after thyroidectomy, 19 patients with GD before and after radioactive iodine (RAI) therapy, and 9 patients maintained euthyroid on antithyroid drugs (ATD). In GD patients, the responses of peripheral blood mononuclear cells (PBMC) and TSH receptor (TSHR)-specific T cell lines to recombinant human TSHR extracellular domain, thyroglobulin, and TSHR peptides were examined on the day of surgery or RAI therapy (day 0) and also 6-8 weeks and 3-6 months thereafter. Reactivity to TSHR peptides before surgery was heterogeneous and spanned the entire extracellular domain. Six to 8 weeks after subtotal thyroidectomy, the number of patients` PBMC responding to any peptide and the average number of recognized peptides decreased. A further decrease in the T cell reactivity to TSHR peptides was observed 3-6 months after surgery. The responses of PBMC from Graves` patients before RAI therapy were less than those in the presurgical group. Six to 8 weeks after RAI therapy, the number of patients responding to any peptide and the average number of recognized peptides increased. Three to 6 months after RAI, T cell responses to TSHR peptides were less than those 6-8 weeks after RAI therapy, but still higher than the values on day 0. Responses of PBMC from patients with GD, maintained euthyroid on ATD, were lower than those before surgery or RAI therapy. The reactivity of T cell lines in different groups reflected a pattern similar to PBMC after treatment. TSHR antibody and microsomal antibody levels decreased after surgery, but increased after RAI therapy. The difference in the number of recognized peptides by patients` PBMC before RAI and surgery may reflect the effect of long term therapy with ATD in the patients before RAI vs. the shorter period in patients before surgery. 38 refs., 2 figs., 5 tabs.

  12. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data from a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) demonstrating using predictive computational...

  13. Chapter 8. Activation mechanisms of chemokine receptors

    DEFF Research Database (Denmark)

    Jensen, Pia C; Rosenkilde, Mette M

    2009-01-01

    binding. Attempts to unravel the activation mechanism of 7TM receptors have led to the conclusion that activation involves movements of the transmembrane segments VI and VII in particular, as recently gathered in the Global Toggle Switch Model. However, to understand the activation mechanism completely......, more research has to be done in this field. Chemokine receptors are interesting tools in this matter. First, the chemokine system has a high degree of promiscuity that allows several chemokines to target one receptor in different ways, as well as a single chemokine ligand to target several receptors...

  14. Dominant portion of thyrotropin-releasing hormone receptor is excluded from lipid domains. Detergent-resistant and detergent-sensitive pools of TRH receptor and Gq alpha/G11 alpha protein

    Czech Academy of Sciences Publication Activity Database

    Rudajev, Vladimír; Novotný, Jiří; Hejnová, Lucie; Milligan, G.; Svoboda, Petr

    2005-01-01

    Roč. 138, č. 2 (2005), s. 111-125 ISSN 0021-924X R&D Projects: GA MŠk(CZ) LC554 Grant - others:GA-(GB) Wellcome Trust Institutional research plan: CEZ:AV0Z50110509 Keywords : TRH receptor * lipid domains * trimeric G proteins Subject RIV: CE - Biochemistry Impact factor: 1.827, year: 2005

  15. Expression and Activation of Gonadotropin Receptors

    NARCIS (Netherlands)

    R. Kraaij (Robert)

    1996-01-01

    textabstractAmong the many hormones that are produced by the anterior pituitary gland, luteinizing hormone (LH, lutropin), follicle-stimulating hormone (FSH, follitropin), and thyroidstimulating hormone (TSH, thyrotropin) form the separate family of so-called glycoprotein hormones (reviewed by

  16. NR4A1 (Nur77 mediates thyrotropin-releasing hormone-induced stimulation of transcription of the thyrotropin β gene: analysis of TRH knockout mice.

    Directory of Open Access Journals (Sweden)

    Yasuyo Nakajima

    Full Text Available Thyrotropin-releasing hormone (TRH is a major stimulator of thyrotropin-stimulating hormone (TSH synthesis in the anterior pituitary, though precisely how TRH stimulates the TSHβ gene remains unclear. Analysis of TRH-deficient mice differing in thyroid hormone status demonstrated that TRH was critical for the basal activity and responsiveness to thyroid hormone of the TSHβ gene. cDNA microarray and K-means cluster analyses with pituitaries from wild-type mice, TRH-deficient mice and TRH-deficient mice with thyroid hormone replacement revealed that the largest and most consistent decrease in expression in the absence of TRH and on supplementation with thyroid hormone was shown by the TSHβ gene, and the NR4A1 gene belonged to the same cluster as and showed a similar expression profile to the TSHβ gene. Immunohistochemical analysis demonstrated that NR4A1 was expressed not only in ACTH- and FSH- producing cells but also in thyrotrophs and the expression was remarkably reduced in TRH-deficient pituitary. Furthermore, experiments in vitro demonstrated that incubation with TRH in GH4C1 cells increased the endogenous NR4A1 mRNA level by approximately 50-fold within one hour, and this stimulation was inhibited by inhibitors for PKC and ERK1/2. Western blot analysis confirmed that TRH increased NR4A1 expression within 2 h. A series of deletions of the promoter demonstrated that the region between bp -138 and +37 of the TSHβ gene was responsible for the TRH-induced stimulation, and Chip analysis revealed that NR4A1 was recruited to this region. Conversely, knockdown of NR4A1 by siRNA led to a significant reduction in TRH-induced TSHβ promoter activity. Furthermore, TRH stimulated NR4A1 promoter activity through the TRH receptor. These findings demonstrated that 1 TRH is a highly specific regulator of the TSHβ gene, and 2 TRH mediated induction of the TSHβ gene, at least in part by sequential stimulation of the NR4A1-TSHβ genes through a PKC and

  17. Androgen insensitivity syndrome: gonadal androgen receptor activity

    International Nuclear Information System (INIS)

    Coulam, C.B.; Graham, M.L.; Spelsberg, T.C.

    1984-01-01

    To determine whether abnormalities of the androgen receptor previously observed in skin fibroblasts from patients with androgen insensitivity syndrome also occur in the gonads of affected individuals, androgen receptor activity in the gonads of a patient with testicular feminization syndrome was investigated. Using conditions for optimal recovery of androgen receptor from human testes established by previous studies, we detected the presence of a high-affinity (dissociation constant . 3.2 X 10(-10) mol/L), low-capacity (4.2 X 10(-12) mol/mg DNA), androgen-binding protein when tritium-labeled R1881 was incubated at 4 degrees C with nuclear extracts from the gonads of control patients or from a patient with testicular feminization syndrome but not when incubated at 37 degrees C. Thus this patient has an androgen receptor with a temperature lability similar to that of receptors from normal persons

  18. Neurokinin-1 receptor activation in globus pallidus

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2009-10-01

    Full Text Available The undecapeptide substance P has been demonstrated to modulate neuronal activity in a number of brain regions by acting on neurokinin-1 receptors. Anatomical studies revealed a moderate level of neurokinin-1 receptor in rat globus pallidus. To determine the electrophysiological effects of neurokinin-1 receptor activation in globus pallidus, whole-cell patch-clamp recordings were performed in the present study. Under current-clamp recordings, neurokinin-1 receptor agonist, [Sar9, Met(O211] substance P (SM-SP at 1 μM, depolarized globus pallidus neurons and increased their firing rate. Consistently, SM-SP induced an inward current under voltage-clamp recording. The depolarization evoked by SM-SP persisted in the presence of tetrodotoxin, glutamate and GABA receptor antagonists, indicating its direct postsynaptic effects. The neurokinin-1 receptor antagonist, SR140333B, could block SM-SP-induced depolarization. Further experiments showed that suppression of potassium conductance was the predominant ionic mechanism of SM-SP-induced depolarization. To determine if neurokinin-1 receptor activation exerts any effects on GABAergic and glutamatergic neurotransmission, the action of SM-SP on synaptic currents was studied. SM-SP significantly increased the frequency of spontaneous inhibitory postsynaptic currents, but only induced a transient increase in the frequency of miniature inhibitory postsynaptic currents. No change was observed in both spontaneous and miniature excitatory postsynaptic currents. Based on the direct excitatory effects of SM-SP on pallidal neurons, we hypothesize that neurokinin-1 receptor activation in globus pallidus may be involved in the beneficial effect of substance P in Parkinson’s disease.

  19. Measurement of thyrotropin receptor antibodies (TRAK) with a second generation assay in patients with Graves' disease; Die Bestimmung von Thyreotropin-Rezeptor-Antikoerpern (TRAK) mit einem Assay der zweiten Generation bei Patienten mit Morbus Basedow

    Energy Technology Data Exchange (ETDEWEB)

    Zoephel, K.; Wunderlich, G.; Franke, W.G. [Klinik und Poliklinik fuer Nuklearmedizin, Technische Univ. Dresden (Germany); Koch, R. [Inst. fuer Medizinische Informatik und Biometrie, Technische Univ. Dresden (Germany)

    2000-06-01

    Aim: The detection of TSH-receptor-antibodies (TRAb) in patients (pts) with Graves' disease (GD) is routinely used in nuclear medicine laboratories. It is performed by commercial, porcine radioreceptorassays (RRA) measuring TSH binding inhibitory activity. A second generation assay using the human, recombinant TSH-receptor was developed during the last years. The manufacturer composed this new assay as a coated tube RRA (CT RRA) and claimed a higher sensitivity for GD. Methods: TRAb was measured in 207 pts with various thyroid disorders and 205 healthy controls using the new coated tube RRA (Fa. B.R.A.H.M.S. Diagnostica GmbH, Berlin, Germany) as well as a conventional RRA (Fa. Medipan Diagnostica GmbH, Selchow, Germany): 60 pts suffering from GD showing a relapse after anti-thyroid drug treatment and before radioiodine therapy, 109 pts with disseminated autonomia (DA) and 38 pts suffering from Hashimoto's thyroiditis. A ROC-analysis was performed to find the optimal decision threshold level for positivity. Results: We found 42/60 TRAb-positive pts with GD in the established RRA (threshold 6 U/L) and 52/60 in the CT RRA, respectively. The sensitivity increased from 70% (RRA) to 86,7% (CT RRA). The CT RRA found 2 false positives (one Hashimoto's and one healthy control) and the RRA detected 3 Hashimoto's and 2 healthy controls as false positive. Conclusion: The increased sensitivity of CT RRA for GD provides an advantage compared to conventional RRA, especially in GD-patients relapsing afte antithyroid drug treatment. Functional sensitivity and Interassayvariation of CT RRA are very precisely compared to conventional RRA. Handling of the new assay is also improved. (orig.) [German] Ziel: Die Bestimmung der TSH-Rezeptorantikoerper (TRAK) bei Patienten mit Morbus Basedow ist fester Bestandteil der nuklearmedizinischen In-vitro-Diagnostik. Seit kurzem ist die Bestimmung mit einem TRAK-Assay moeglich, bei dem im Gegensatz zu den herkoemmlichen

  20. Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor.

    Science.gov (United States)

    Göttlicher, M; Widmark, E; Li, Q; Gustafsson, J A

    1992-01-01

    Peroxisome proliferators such as clofibric acid, nafenopin, and WY-14,643 have been shown to activate PPAR (peroxisome proliferator-activated receptor), a member of the steroid nuclear receptor superfamily. We have cloned the cDNA from the rat that is homologous to that from the mouse [Issemann, I. & Green, S. (1990) Nature (London) 347, 645-650], which encodes a 97% similar protein with a particularly well-conserved putative ligand-binding domain. To search for physiologically occurring activators, we established a transcriptional transactivation assay by stably expressing in CHO cells a chimera of rat PPAR and the human glucocorticoid receptor that activates expression of the placental alkaline phosphatase reporter gene under the control of the mouse mammary tumor virus promoter. Testing of compounds related to lipid metabolism or peroxisomal proliferation revealed that 150 microM concentrations of arachidonic or linoleic acid but not of dehydroepiandrosterone, cholesterol, or 25-hydroxy-cholesterol, activate the receptor chimera. In addition, saturated fatty acids induce the reporter gene. Shortening the chain length to n = 6 or introduction of an omega-terminal carboxylic group abolished the activation potential of the fatty acid. In conclusion, the present results indicate that fatty acids can regulate gene expression mediated by a member of the steroid nuclear receptor superfamily. Images PMID:1316614

  1. CERAPP: Collaborative estrogen receptor activity prediction project

    DEFF Research Database (Denmark)

    Mansouri, Kamel; Abdelaziz, Ahmed; Rybacka, Aleksandra

    2016-01-01

    ). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program. oBjectives: We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project...... States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure-activity relationship models and docking approaches were employed, mostly using a common training set of 1,677 chemical structures provided by the U.S. EPA, to build a total of 40 categorical......: Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high priority actives and 6,742 potential actives (20.8%) to be considered for further testing. conclusion: This project demonstrated...

  2. Structural basis for activation of G-protein-coupled receptors

    DEFF Research Database (Denmark)

    Gether, Ulrik; Asmar, Fazila; Meinild, Anne Kristine

    2002-01-01

    into conformational changes accompanying GPCR activation and the underlying molecular mechanism governing transition of the receptor between its active and inactive states. Using the beta2-adrenergic receptor as a model system we have obtained evidence for an evolutionary conserved activation mechanism where...... changes and receptor activation. At the current stage we are exploring the possibility of reaching this goal by direct in situ labeling of the beta2-adrenergic receptor in Xenopus laevis oocytes with conformationally sensitive fluorescent probes and parallel detection of receptor activation by co...

  3. Protease activated receptors (PARS) mediation in gyroxin biological activity

    International Nuclear Information System (INIS)

    Silva, Jose Alberto Alves da

    2009-01-01

    Gyroxin is a serine protease enzyme from the South American rattlesnake (Crotalus durissus terrificus) venom; it is only partially characterized and has multiple activities. Gyroxin induces blood coagulation, blood pressure decrease and a neurotoxic behavior named barrel rotation. The mechanisms involved in this neurotoxic activity are not known. Whereas gyroxin is a member of enzymes with high potential to become a new drug with clinical applications such as thrombin, batroxobin, ancrod, tripsyn and kalicrein, it is important to find out how gyroxin works. The analysis on agarose gel electrophoresis and circular dichroism confirmed the molecules' integrity and purity. The gyroxin intravenous administration in mice proved its neurotoxicity (barrel rotation). In vivo studies employing intravital microscopy proved that gyroxin induces vasodilation with the participation of protease activated receptors (PARs), nitric oxide and Na+K+ATPase. The leukocytes' adherence and rolling counting indicated that gyroxin has no pro inflammatory activity. Gyroxin induced platelet aggregation, which was blocked by inhibitors of PAR1 and PAR4 receptors (SCH 79797 and tcY-NH 2 , respectively). Finally, it was proved that the gyroxin temporarily alter the permeability of the blood brain barrier (BBB). Our study has shown that both the protease-activated receptors and nitric oxide are mediators involved in the biological activities of gyroxin. (author)

  4. Retinoid X receptor and peroxisome proliferator-activated receptor activate an estrogen responsive gene independent of the estrogen receptor.

    Science.gov (United States)

    Nuñez, S B; Medin, J A; Braissant, O; Kemp, L; Wahli, W; Ozato, K; Segars, J H

    1997-03-14

    Estrogen receptors regulate transcription of genes essential for sexual development and reproductive function. Since the retinoid X receptor (RXR) is able to modulate estrogen responsive genes and both 9-cis RA and fatty acids influenced development of estrogen responsive tumors, we hypothesized that estrogen responsive genes might be modulated by RXR and the fatty acid receptor (peroxisome proliferator-activated receptor, PPAR). To test this hypothesis, transfection assays in CV-1 cells were performed with an estrogen response element (ERE) coupled to a luciferase reporter construct. Addition of expression vectors for RXR and PPAR resulted in an 11-fold increase in luciferase activity in the presence of 9-cis RA. Furthermore, mobility shift assays demonstrated binding of RXR and PPAR to the vitellogenin A2-ERE and an ERE in the oxytocin promoter. Methylation interference assays demonstrated that specific guanine residues required for RXR/PPAR binding to the ERE were similar to residues required for ER binding. Moreover, RXR domain-deleted constructs in transfection assays showed that activation required RXR since an RXR delta AF-2 mutant completely abrogated reporter activity. Oligoprecipitation binding studies with biotinylated ERE and (35)S-labeled in vitro translated RXR constructs confirmed binding of delta AF-2 RXR mutant to the ERE in the presence of baculovirus-expressed PPAR. Finally, in situ hybridization confirmed RXR and PPAR mRNA expression in estrogen responsive tissues. Collectively, these data suggest that RXR and PPAR are present in reproductive tissues, are capable of activating estrogen responsive genes and suggest that the mechanism of activation may involve direct binding of the receptors to estrogen response elements.

  5. Evidence That Graves' Ophthalmopathy Immunoglobulins Do Not Directly Activate IGF-1 Receptors.

    Science.gov (United States)

    Marcus-Samuels, Bernice; Krieger, Christine C; Boutin, Alisa; Kahaly, George J; Neumann, Susanne; Gershengorn, Marvin C

    2018-05-01

    Graves' ophthalmopathy (GO) pathogenesis involves thyrotropin (TSH) receptor (TSHR)-stimulating autoantibodies. Whether there are autoantibodies that directly stimulate insulin-like growth factor 1 receptors (IGF-1Rs), stimulating insulin-like growth factor receptor antibodies (IGFRAbs), remains controversial. This study attempted to determine whether there are stimulating IGFRAbs in patients with GO. Immunoglobulins (Igs) were purified from normal volunteers (NV-Igs) and patients with GO (GO-Igs). The effects of TSH, IGF-1, NV-Igs, and GO-Igs on pAKT and pERK1/2, members of pathways used by IGF-1R and TSHR, were compared in orbital fibroblasts from GO patients (GOFs) and U2OS-TSHR cells overexpressing TSHRs, and U2OS cells that express TSHRs at very low endogenous levels. U2OS-TSHR and U2OS cells were used because GOFs are not easily manipulated using molecular techniques such as transfection, and U2OS cells because they express TSHRs at levels that do not measurably stimulate signaling. Thus, comparing U2OS-TSHR and U2OS cells permits specifically distinguishing signaling mediated by the TSHR and IGF-1R. In GOFs, all GO-Igs stimulated pERK1/2 formation and 69% stimulated pAKT. In U2OS-TSHR cells, 15% of NV-IGs and 83% of GO-Igs stimulated increases in pERK1/2, whereas all NV-Igs and GO-Igs stimulated increases in pAKT. In U2OS cells, 70% of GO-Igs stimulated small increases in pAKT. Knockdown of IGF-1R caused a 65 ± 6.3% decrease in IGF-1-stimulated pAKT but had no effect on GO-Igs stimulation of pAKT. Thus, GO-Igs contain factor(s) that stimulate pAKT formation. However, this factor(s) does not directly activate IGF-1R. Based on the findings analyzing these two signaling pathways, it is concluded there is no evidence of stimulating IGFRAbs in GO patients.

  6. Mediator subunit MED1 is a T3-dependent and T3-independent coactivator on the thyrotropin β gene promoter

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Keiji; Oda, Kasumi; Mizuta, Shumpei; Ishino, Ruri; Urahama, Norinaga; Hasegawa, Natsumi [Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142 (Japan); Roeder, Robert G. [Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States); Ito, Mitsuhiro, E-mail: itomi@med.kobe-u.ac.jp [Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142 (Japan); Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States); Department of Family and Community Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 654-0142 (Japan); Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 159-8555 (Japan)

    2013-10-11

    Highlights: •MED1 is a bona fide T3-dependent coactivator on TSHB promoter. •Mice with LxxLL-mutant MED1 have attenuated TSHβ mRNA and thyroid hormone levels. •MED1 activates TSHB promoter T3-dependently in cultured cells. •T3-dependent MED1 action is enhanced when SRC1/SRC2 or HDAC2 is downregulated. •MED1 is also a T3-independent GATA2/Pit1 coactivator on TSHB promoter. -- Abstract: The MED1 subunit of the Mediator transcriptional coregulator complex is a nuclear receptor-specific coactivator. A negative feedback mechanism of thyroid-stimulating hormone (TSH, or thyrotropin) expression in the thyrotroph in the presence of triiodothyronine (T3) is employed by liganded thyroid hormone receptor β (TRβ) on the TSHβ gene promoter, where conventional histone-modifying coactivators act as corepressors. We now provide evidence that MED1 is a ligand-dependent positive cofactor on this promoter. TSHβ gene transcription was attenuated in MED1 mutant mice in which the nuclear receptor-binding ability of MED1 was specifically disrupted. MED1 stimulated GATA2- and Pit1-mediated TSHβ gene promoter activity in a ligand-independent manner in cultured cells. MED1 also stimulated transcription from the TSHβ gene promoter in a T3-dependent manner. The transcription was further enhanced when the T3-dependent corepressors SRC1, SRC2, and HDAC2 were downregulated. Hence, MED1 is a T3-dependent and -independent coactivator on the TSHβ gene promoter.

  7. Apparent genetic difference between hypothyroid patients with blocking-type thyrotropin receptor antibody and those without, as shown by restriction fragement length polymorphism analyses of HLA-DP loci

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Daisuke; Sugawa, Hideo; Akamizu, Takashi; Mori, Toru (Kyoto Univ. School of Medicine, Kyoto (Japan)); Sato, Kaoru; Inoko, Hidetoshi; Tsuji, Kimiyoshi (Tokai Univ. School of Medicine, Kanagawa (Japan)); Maeda, Masahiro (Nichirei Corp., Tokyo (Japan))

    1993-09-01

    HLA types in Japanese patients with primary hypothyroidism were analyzed to see whether those with blocking-type TSH receptor antibody (TSH-R BAb M) differed genetically from those with idiopathic myxedema (IM). HLA typings of -A, -B, -C, -DR, and -DQ (73 antigens) were performed serologically, and those of -D and -DP (29 antigens) were analyzed by the restriction fragment length polymorphism method. Thirty patients were studied with TSH-R BAb M, and 28 with IM. The data were analyzed and compared with previous results from 88 Graves' patients, 46 Hashimoto patients, and 186 control subjects. Overall, 192 patients with 4 autoimmune thyroid disorders showed a decrease in -Aw19 and an increase in -DQw4 (corrected P < 0.05) and significant associations of -Aw33, -Bw46, -Cw3, -DRw8, -DR9, and -DQw3. In TSH-R BAb M patients, increases in -B35, -Bw60, and -Dw8 and decreases in -DR4 and -DPw2 were seen, whereas IM patients showed increased -DPw2, -Bw61, and -Dw23. In comparisons between TSH-R-BAb M and IM, the difference in -DPw2 was highly significant. HLA-B35 differed significantly in these 2 types of hypothyroidism. In conclusion, TSH-R BAb M patients have decreased frequency of -DPw2 and are genetically similar to Graves' disease, whereas IM patients are characterized by high frequency of -DPw2 and are genetically similar to Hashimoto's thyroiditis. 39 refs., 2 figs., 3 tabs.

  8. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Directory of Open Access Journals (Sweden)

    Nicolas Schleinitz

    2008-09-01

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  9. The WSXWS motif in cytokine receptors is a molecular switch involved in receptor activation

    DEFF Research Database (Denmark)

    Dagil, Robert; Knudsen, Maiken J.; Olsen, Johan Gotthardt

    2012-01-01

    The prolactin receptor (PRLR) is activated by binding of prolactin in a 2:1 complex, but the activation mechanism is poorly understood. PRLR has a conserved WSXWS motif generic to cytokine class I receptors. We have determined the nuclear magnetic resonance solution structure of the membrane...

  10. The thyroid nodule. Thyrotropin and peripheral thyroid hormones

    International Nuclear Information System (INIS)

    Zimny, M.

    2008-01-01

    Thyrotropin, free triodothyronine and thyroxine represent the standard serological parameters for the diagnostic work-up of the thyroid but only a minority of thyroid nodules present with subclinical or overt thyroid disorders. Besides a review of the regulation and principle of function of thyroid hormones as well as the effects of subclinical or overt hyperthyroidism, the significant role of these parameters beyond the assessment of hyperthyroidism in thyroid nodules is discussed. There is evidence that the level of thyrotropin within the normal range is predictive for the relevance of autonomous functioning nodules and the risk of malignancy of non-functioning thyroid nodules. Furthermore, the ratio of triodothyronine and thyroxine indicates the etiology of hyperthyroidism. Thyrotropin represents the main parameter to determine the adequate dose of thyroid hormone therapy of thyroid nodules. (orig.)

  11. Activation of glucocorticoid receptors increases 5-HT2A receptor levels

    DEFF Research Database (Denmark)

    Trajkovska, Viktorija; Kirkegaard, Lisbeth; Krey, Gesa

    2009-01-01

    an effect of GR activation on 5-HT2A levels, mature organotypic hippocampal cultures were exposed to corticosterone with or without GR antagonist mifepristone and mineralocorticoid receptor (MR) antagonist spironolactone. In GR under-expressing mice, hippocampal 5-HT2A receptor protein levels were decreased......Major depression is associated with both dysregulation of the hypothalamic pituitary adrenal axis and serotonergic deficiency, not the least of the 5-HT2A receptor. However, how these phenomena are linked to each other, and whether a low 5-HT2A receptor level is a state or a trait marker...... of depression is unknown. In mice with altered glucocorticoid receptor (GR) expression we investigated 5-HT2A receptor levels by Western blot and 3H-MDL100907 receptor binding. Serotonin fibre density was analyzed by stereological quantification of serotonin transporter immunopositive fibers. To establish...

  12. Modulating Estrogen Receptor-related ReceptorActivity Inhibits Cell Proliferation*

    OpenAIRE

    Bianco, Stéphanie; Lanvin, Olivia; Tribollet, Violaine; Macari, Claire; North, Sophie; Vanacker, Jean-Marc

    2009-01-01

    High expression of the estrogen receptor-related receptor (ERR)-α in human tumors is correlated to a poor prognosis, suggesting an involvement of the receptor in cell proliferation. In this study, we show that a synthetic compound (XCT790) that modulates the activity of ERRα reduces the proliferation of various cell lines and blocks the G1/S transition of the cell cycle in an ERR...

  13. The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X. Edward; Suino-Powell, Kelly M.; Xu, Yong; Chan, Cee-Wah; Tanabe, Osamu; Kruse, Schoen W.; Reynolds, Ross; Engel, James Douglas; Xu, H. Eric (Michigan-Med); (Van Andel)

    2015-11-30

    Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.

  14. Family C 7TM receptor dimerization and activation

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Sheikh, Søren P; Hansen, Jakob Lerche

    2006-01-01

    The family C seven transmembrane (7TM) receptors constitutes a small and especially well characterized subfamily of the large 7TM receptor superfamily. Approximately 50% of current prescription drugs target 7TM receptors, this biologically important family represents the largest class of drug...... to be fully defined. This review presents the biochemical support for family C 7TM receptor dimerization and discusses its importance for receptor biosynthesis, surface expression, ligand binding and activation, since lessons learnt here may well be applicable to the whole superfamily of 7TM receptors.......-targets today. It is well established that family C 7TM receptors form homo- or hetero-dimers on the cell surface of living cells. The large extra-cellular domains (ECD) have been crystallized as a dimer in the presence and absence of agonist. Upon agonist binding, the dimeric ECD undergoes large conformational...

  15. Interaction of chemokines with their receptors--from initial chemokine binding to receptor activating steps

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Rosenkilde, Mette Marie

    2014-01-01

    and surveillance. Chemokines are a group of 8-12 kDa large peptides with a secondary structure consisting of a flexible N-terminus and a core-domain usually stabilized by two conserved disulfide bridges. They mainly interact with the extracellular domains of their cognate 7TM receptors. Affinityand activity......-contributing interactions are attributed to different domains and known to occur in two steps. Here, knowledge on chemokine and receptor domains involved in the first binding-step and the second activation-step is reviewed. A mechanism comprising at least two steps seems consistent; however, several intermediate...... interactions possibly occur, resulting in a multi-step process, as recently proposed for other 7TM receptors. Overall, the N-terminus of chemokine receptors is pivotal for binding of all chemokines. During receptor activation, differences between the two major chemokine subgroups occur, as CC-chemokines mainly...

  16. Pulsatile thyrotropin secretion in patients with Cushing's syndrome

    NARCIS (Netherlands)

    Adriaanse, R.; Brabant, G.; Endert, E.; Wiersinga, W. M.

    1994-01-01

    Pulsatile and circadian thyrotropin (TSH) secretion were studied in 16 healthy controls and in three patients with Cushing's syndrome who were studied twice (before and after treatment). Blood was sampled every 10 minutes over 24 hours for TSH (immunoradiometric assay [IRMA]). Mean 24-hour TSH in

  17. Preparation of standards of triiodothyronine, thyroxine and thyrotropin

    International Nuclear Information System (INIS)

    Lavalley E, C.; Delgado S, B.; Ruiz J, A.; Zambrano A, F.

    1991-10-01

    The standards preparation requires of certain basic principles, some of which are described in this work, which was made with the purpose of establishing the most appropriate conditions for the preparation of standards of triiodothyronine, thyroxine and thyrotropin to be used in radioimmunoanalysis essays. The diverse standards show a balanced displacement, that which is observed in the graphs presented in this work. (Author)

  18. Serum Levels of Thyroid Hormones and Thyrotropin in Some Sickle ...

    African Journals Online (AJOL)

    The serum levels of the thyroid hormones (T4 and T3) and thyrotropin (TSH) were measured by radio-immunoassay (RIA) in the steady state of 10 homozygous sickle cell anaemia patients and 10 normal subjects of the same age group in years (15-25) who were the control group. The results showed that sickle cell disease ...

  19. Thyrotropin regulates IL-6 expression in CD34+ fibrocytes: clear delineation of its cAMP-independent actions.

    Directory of Open Access Journals (Sweden)

    Nupur Raychaudhuri

    Full Text Available IL-6 plays diverse roles in normal and disease-associated immunity such as that associated with Graves' disease (GD. In that syndrome, the orbit undergoes remodeling during a process known as thyroid-associated ophthalmopathy (TAO. Recently, CD34(+ fibrocytes were found to infiltrate the orbit in TAO where they transition into CD34(+ orbital fibroblasts. Surprisingly, fibrocytes display high levels of functional thyrotropin receptor (TSHR, the central antigen in GD. We report here that TSH and the pathogenic anti-TSHR antibodies that drive hyperthyroidism in GD induce IL-6 expression in fibrocytes and orbital fibroblasts. Unlike TSHR signaling in thyroid epithelium, that occurring in fibrocytes is completely independent of adenylate cyclase activation and cAMP generation. Instead TSH activates PDK1 and both AKT/PKB and PKC pathways. Expression and use of PKCβII switches to that of PKCµ as fibrocytes transition to TAO orbital fibroblasts. This shift is imposed by CD34(- orbital fibroblasts but reverts when CD34(+ fibroblasts are isolated. The up-regulation of IL-6 by TSH results from coordinately enhanced IL-6 gene promoter activity and increased IL-6 mRNA stability. TSH-dependent IL-6 expression requires activity at both CREB (-213 to -208 nt and NF-κB (-78 to -62 nt binding sites. These results provide novel insights into the molecular action of TSH and signaling downstream for TSHR in non-thyroid cells. Fibrocytes neither express adenylate cyclase nor generate cAMP and thus these findings are free from any influence of cAMP-related signaling. They identify potential therapeutic targets for TAO.

  20. A different approach to the radioimmunoassay of thyrotropin releasing hormone

    International Nuclear Information System (INIS)

    Visser, T.J.; Klootwijk, W.; Docter, R.; Hennemann, G.

    1977-01-01

    Thyrotropin releasing hormone (TRH) was linked to hemocyanin by means of a dinitrophenylene moiety. TRH (pGlu-His-Pro-NH 2 ) was made to react with a large excess of 1,5-difluoro-2,4-dinitrobenzene to yield Nsup(im)-[5-fluoro-2,4-dinitrophenyl]TRH. After removal of excess reagent the derivative was coupled to hemocyanin with a minimum of side-reactions. From two rabbits out of four immunized with this material valuable antisera were obtained, which were used in the radioimmunoassay of the hypothalamic hormone at a final dilution of 1:7,500 and 1:15,000, respectively. The properties, especially with regard to specificity, of these antisera were studied and compared with another antiserum, which was obtained using a conjugate having TRH linked to thyroglobulin via a p-azophenyl-acetyl moiety. Despite the difference between the derivatives, i.e. the nature and the point of attachment of the side chains, the specificities of the assays were very similar. Deamidation of TRH, deletion of either one of the terminal residues, hydrolysis of the lactam of the pyroglutamyl residue, and replacing Pro-NH 2 by Pro-Gly-NH 2 or by an octapeptide chain yield peptides with strongly diminished cross-reactivities. However, Nsup(im)-benzyl-TRH and pGlu-Phe-Pro-NH 2 were 5-10 times as active as TRH probably due to a closer physico-chemical similarity to the arrangement of the haptens in the conjugates. This suggests that the sensitivity of the radioimmunoassay may be increased markedly by conversion of TRH into the Nsup(im)-dinitrophenyl derivative and by using a related compound for radioiodination. (orig.) [de

  1. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    Science.gov (United States)

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  2. Differential trafficking of AMPA receptors following activation of NMDA receptors and mGluRs

    Directory of Open Access Journals (Sweden)

    Sanderson Thomas M

    2011-07-01

    Full Text Available Abstract The removal of AMPA receptors from synapses is a major component of long-term depression (LTD. How this occurs, however, is still only partially understood. To investigate the trafficking of AMPA receptors in real-time we previously tagged the GluA2 subunit of AMPA receptors with ecliptic pHluorin and studied the effects of NMDA receptor activation. In the present study we have compared the effect of NMDA receptor and group I mGluR activation, using GluA2 tagged with super ecliptic pHluorin (SEP-GluA2 expressed in cultured hippocampal neurons. Surprisingly, agonists of the two receptors, which are both able to induce chemical forms of LTD, had clearly distinct effects on AMPA receptor trafficking. In agreement with our previous work we found that transient NMDA receptor activation results in an initial decrease in surface GluA2 from extrasynaptic sites followed by a delayed reduction in GluA2 from puncta (putative synapses. In contrast, transient activation of group I mGluRs, using DHPG, led to a pronounced but more delayed decrease in GluA2 from the dendritic shafts. Surprisingly, there was no average change in the fluorescence of the puncta. Examination of fluorescence at individual puncta, however, indicated that alterations did take place, with some puncta showing an increase and others a decrease in fluorescence. The effects of DHPG were, like DHPG-induced LTD, prevented by treatment with a protein tyrosine phosphatase (PTP inhibitor. The electrophysiological correlate of the effects of DHPG in the SEP-GluA2 infected cultures was a reduction in mEPSC frequency with no change in amplitude. The implications of these findings for the initial mechanisms of expression of both NMDA receptor- and mGluR-induced LTD are discussed.

  3. Transcriptional peroxisome proliferator-activated receptor γ ...

    African Journals Online (AJOL)

    user

    regulates slow fiber type formation during the transformation of muscle fiber type in S. prenanti. Key words: PGC-1ɑ, ... a master regulator of energy metabolism. PGC-1ɑ is identified ..... which is involved in hormone receptor families, such as ...

  4. Helix 11 Dynamics is Critical for Constitutive Androstane Receptor Activity

    OpenAIRE

    Wright, Edward; Busby, Scott A.; Wisecarver, Sarah; Vincent, Jeremy; Griffin, Patrick R.; Fernandez, Elias J.

    2011-01-01

    The constitutive androstane receptor (CAR) transactivation can occur in the absence of exogenous ligand and this activity is enhanced by agonists TCPOBOP and meclizine. We use biophysical and cell-based assays to show that increased activity of CAR(TCPOBOP) relative to CAR(meclizine) corresponds to a higher affinity of CAR(TCPOBOP) for the steroid receptor coactivator-1. Additionally, steady-state fluorescence spectra suggest conformational differences between CAR(TCPOBOP):RXR and CAR(meclizi...

  5. Mincle suppresses Toll-like receptor 4 activation.

    Science.gov (United States)

    Greco, Stephanie H; Mahmood, Syed Kashif; Vahle, Anne-Kristin; Ochi, Atsuo; Batel, Jennifer; Deutsch, Michael; Barilla, Rocky; Seifert, Lena; Pachter, H Leon; Daley, Donnele; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Miller, George

    2016-07-01

    Regulation of Toll-like receptor responses is critical for limiting tissue injury and autoimmunity in both sepsis and sterile inflammation. We found that Mincle, a C-type lectin receptor, regulates proinflammatory Toll-like receptor 4 signaling. Specifically, Mincle ligation diminishes Toll-like receptor 4-mediated inflammation, whereas Mincle deletion or knockdown results in marked hyperresponsiveness to lipopolysaccharide in vitro, as well as overwhelming lipopolysaccharide-mediated inflammation in vivo. Mechanistically, Mincle deletion does not up-regulate Toll-like receptor 4 expression or reduce interleukin 10 production after Toll-like receptor 4 ligation; however, Mincle deletion decreases production of the p38 mitogen-activated protein kinase-dependent inhibitory intermediate suppressor of cytokine signaling 1, A20, and ABIN3 and increases expression of the Toll-like receptor 4 coreceptor CD14. Blockade of CD14 mitigates the increased sensitivity of Mincle(-/-) leukocytes to Toll-like receptor 4 ligation. Collectively, we describe a major role for Mincle in suppressing Toll-like receptor 4 responses and implicate its importance in nonmycobacterial models of inflammation. © Society for Leukocyte Biology.

  6. Nuclear receptor corepressor-dependent repression of peroxisome-proliferator-activated receptor delta-mediated transactivation

    DEFF Research Database (Denmark)

    Krogsdam, Anne-M; Nielsen, Curt A F; Neve, Søren

    2002-01-01

    delta-RXR alpha heterodimer bound to an acyl-CoA oxidase (ACO)-type peroxisome-proliferator response element recruited a glutathione S-transferase-NCoR fusion protein in a ligand-independent manner. Contrasting with most other nuclear receptors, PPAR delta was found to interact equally well......The nuclear receptor corepressor (NCoR) was isolated as a peroxisome-proliferator-activated receptor (PPAR) delta interacting protein using the yeast two-hybrid system. NCoR interacted strongly with the ligand-binding domain of PPAR delta, whereas interactions with the ligand-binding domains...

  7. Inhibitors for Androgen Receptor Activation Surfaces

    Science.gov (United States)

    2007-09-01

    times and the electron-rich iodine groups of Triac representing particularly good markers. Control soaks with solvent ( DMSO ) reveal no similar...electron-rich iodine groups of Triac represent particu- larly good markers. Control soaks with solvent ( DMSO ) reveal no similar effects on coregulator...3-(dibutylamino)-1-(4-hexylphenyl)propan-1-one DMSO , dimethylsulfoxide DTT, dithiothreitol ER, estrogen receptor GST, glutathione S-transferase

  8. Modulation of β-catenin signaling by glucagon receptor activation.

    Directory of Open Access Journals (Sweden)

    Jiyuan Ke

    Full Text Available The glucagon receptor (GCGR is a member of the class B G protein-coupled receptor family. Activation of GCGR by glucagon leads to increased glucose production by the liver. Thus, glucagon is a key component of glucose homeostasis by counteracting the effect of insulin. In this report, we found that in addition to activation of the classic cAMP/protein kinase A (PKA pathway, activation of GCGR also induced β-catenin stabilization and activated β-catenin-mediated transcription. Activation of β-catenin signaling was PKA-dependent, consistent with previous reports on the parathyroid hormone receptor type 1 (PTH1R and glucagon-like peptide 1 (GLP-1R receptors. Since low-density-lipoprotein receptor-related protein 5 (Lrp5 is an essential co-receptor required for Wnt protein mediated β-catenin signaling, we examined the role of Lrp5 in glucagon-induced β-catenin signaling. Cotransfection with Lrp5 enhanced the glucagon-induced β-catenin stabilization and TCF promoter-mediated transcription. Inhibiting Lrp5/6 function using Dickkopf-1(DKK1 or by expression of the Lrp5 extracellular domain blocked glucagon-induced β-catenin signaling. Furthermore, we showed that Lrp5 physically interacted with GCGR by immunoprecipitation and bioluminescence resonance energy transfer assays. Together, these results reveal an unexpected crosstalk between glucagon and β-catenin signaling, and may help to explain the metabolic phenotypes of Lrp5/6 mutations.

  9. CINPA1 Is an Inhibitor of Constitutive Androstane Receptor That Does Not Activate Pregnane X Receptor

    OpenAIRE

    Cherian, Milu T; Lin, Wenwei; Wu, Jing; Chen, Taosheng

    2015-01-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug ...

  10. Established Stem Cell Model of Spinal Muscular Atrophy Is Applicable in the Evaluation of the Efficacy of Thyrotropin-Releasing Hormone Analog.

    Science.gov (United States)

    Ohuchi, Kazuki; Funato, Michinori; Kato, Zenichiro; Seki, Junko; Kawase, Chizuru; Tamai, Yuya; Ono, Yoko; Nagahara, Yuki; Noda, Yasuhiro; Kameyama, Tsubasa; Ando, Shiori; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki; Kaneko, Hideo

    2016-02-01

    Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder characterized by the degeneration of spinal motor neurons. This disease is mainly caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene. Currently, no effective treatment is available, and only symptomatic treatment can be provided. Our purpose in the present study was to establish a human SMA-derived induced pluripotent stem cell (SMA-iPSC) disease model and assay a therapeutic drug in preparation for the development of a novel treatment of SMA. We generated iPSCs from the skin fibroblasts of a patient with SMA and confirmed that they were pluripotent and undifferentiated. The neural differentiation of SMA-iPSCs shortened the dendrite and axon length and increased the apoptosis of the spinal motor neurons. In addition, we found activated astrocytes in differentiated SMA-iPSCs. Using this model, we confirmed that treatment with the thyrotropin-releasing hormone (TRH) analog, 5-oxo-l-prolyl-l-histidyl-l-prolinamide, which had marginal effects in clinical trials, increases the SMN protein level. This increase was mediated through the transcriptional activation of the SMN2 gene and inhibition of glycogen synthase kinase-3β activity. Finally, the TRH analog treatment resulted in dendrite and axon development of spinal motor neurons in differentiated SMA-iPSCs. These results suggest that this human in vitro disease model stimulates SMA pathology and reveal the potential efficacy of TRH analog treatment for SMA. Therefore, we can screen novel therapeutic drugs such as TRH for SMA easily and effectively using the human SMA-iPSC model. Significance: Platelet-derived growth factor (PDGF) has recently been reported to produce the greatest increase in survival motor neuron protein levels by inhibiting glycogen synthase kinase (GSK)-3β; however, motor neurons lack PDGF receptors. A human in vitro spinal muscular atrophy-derived induced pluripotent stem cell model was

  11. Non-hyperfunctioning nodules from multinodular goiters: a minor role in pathogenesis for somatic activating mutations in the TSH-receptor and Gsalpha subunit genes.

    Science.gov (United States)

    Derrien, C; Sonnet, E; Gicquel, I; Le Gall, J Y; Poirier, J Y; David, V; Maugendre, D

    2001-05-01

    Constitutive activation of the cAMP pathway stimulates thyrocyte proliferation. Gain-of-function mutations in Gsalpha protein have already been identified in thyroid nodules which have lost the ability to trap iodine. In contrast, most of the studies failed to detect somatic activating mutations in the thyrotropin receptor (TSH-R) in non-hyperfunctioning thyroid tumors. The aim of this study was to screen for mutations TSH-R exon 10, encoding the whole intracytoplasmic area involved in signal transduction, and Gsalpha exons 8 and 9, containing the two hot-spot codons 201 and 227, in a subset of non-hyperfunctioning nodules from multinodular goiter. Identified by matching ultrasonography and scintiscan, 22 eufunctioning (normal 99Tc uptake) and 15 nonfunctioning (decreased 99Tc uptake) nodules from 27 non-toxic multinodular goiters were isolated. After DNA extraction, TSH-R exon 10 was analyzed by direct sequencing of the PCR products and Gsalpha exons 8 and 9 by Denaturing Gradient Gel Electrophoresis. No mutation of TSH-R or Gsalpha was detected in the 37 nodules analyzed. This absence of mutation, despite the use of two sensitive screening methods associated with the analysis of the TSH-R whole intracytoplasmic area and Gsalpha two hot-spot codons, suggests that TSH-R and Gsalpha play a minor role in the pathogenesis of non-toxic nodules from multinodular goiters.

  12. Pharmacological characterization of receptor-activity-modifying proteins (RAMPs) and the human calcitonin receptor.

    Science.gov (United States)

    Armour, S L; Foord, S; Kenakin, T; Chen, W J

    1999-12-01

    Receptor-activity-modifying proteins (RAMPs) are a family of single transmembrane domain proteins shown to be important for the transport and ligand specificity of the calcitonin gene-related peptide (CGRP) receptor. In this report, we describe the analysis of pharmacological properties of the human calcitonin receptor (hCTR) coexpressed with different RAMPs with the use of the Xenopus laevis melanophore expression system. We show that coexpression of RAMP3 with human calcitonin receptor changed the relative potency of hCTR to human calcitonin (hCAL) and rat amylin. RAMP1 and RAMP2, in contrast, had little effect on the change of hCTR potency to hCAL or rat amylin. When coexpressed with RAMP3, hCTR reversed the relative potency by a 3.5-fold loss in sensitivity to hCAL and a 19-fold increase in sensitivity to rat amylin. AC66, an inverse agonist, produced apparent simple competitive antagonism of hCAL and rat amylin, as indicated by linear Schild regressions. The potency of AC66 was changed in the blockade of rat amylin but not hCAL responses with RAMP3 coexpression. The mean pK(B) for AC66 to hCAL was 9.4 +/- 0.3 without RAMP3 and 9.45 +/- 0.07 with RAMP3. For the antagonism of AC66 to rat amylin, the pK(B) was 9.25 +/- 0.15 without RAMP3 and 8.2 +/- 0.35 with RAMP3. The finding suggests that RAMP3 might modify the active states of calcitonin receptor in such a way as to create a new receptor phenotype that is "amylin-like." Irrespective of the physiological association of the new receptor species, the finding that a coexpressed membrane protein can completely change agonist and antagonist affinities for a receptor raises implications for screening in recombinant receptor systems.

  13. Dynamic regulation of Drosophila nuclear receptor activity in vivo.

    Science.gov (United States)

    Palanker, Laura; Necakov, Aleksandar S; Sampson, Heidi M; Ni, Ruoyu; Hu, Chun; Thummel, Carl S; Krause, Henry M

    2006-09-01

    Nuclear receptors are a large family of transcription factors that play major roles in development, metamorphosis, metabolism and disease. To determine how, where and when nuclear receptors are regulated by small chemical ligands and/or protein partners, we have used a 'ligand sensor' system to visualize spatial activity patterns for each of the 18 Drosophila nuclear receptors in live developing animals. Transgenic lines were established that express the ligand binding domain of each nuclear receptor fused to the DNA-binding domain of yeast GAL4. When combined with a GAL4-responsive reporter gene, the fusion proteins show tissue- and stage-specific patterns of activation. We show that these responses accurately reflect the presence of endogenous and exogenously added hormone, and that they can be modulated by nuclear receptor partner proteins. The amnioserosa, yolk, midgut and fat body, which play major roles in lipid storage, metabolism and developmental timing, were identified as frequent sites of nuclear receptor activity. We also see dynamic changes in activation that are indicative of sweeping changes in ligand and/or co-factor production. The screening of a small compound library using this system identified the angular psoralen angelicin and the insect growth regulator fenoxycarb as activators of the Ultraspiracle (USP) ligand-binding domain. These results demonstrate the utility of this system for the functional dissection of nuclear receptor pathways and for the development of new receptor agonists and antagonists that can be used to modulate metabolism and disease and to develop more effective means of insect control.

  14. Opportunistic activation of TRP receptors by endogenous lipids: exploiting lipidomics to understand TRP receptor cellular communication.

    Science.gov (United States)

    Bradshaw, Heather B; Raboune, Siham; Hollis, Jennifer L

    2013-03-19

    Transient receptor potential channels (TRPs) form a large family of ubiquitous non-selective cation channels that function as cellular sensors and in many cases regulate intracellular calcium. Identification of the endogenous ligands that activate these TRP receptors is still under intense investigation with the majority of these channels still remaining "orphans." That these channels respond to a variety of external stimuli (e.g. plant-derived lipids, changes in temperature, and changes in pH) provides a framework for their abilities as cellular sensors, however, the mechanism of direct activation is still under much debate and research. In the cases where endogenous ligands (predominately lipids) have shown direct activation of a channel, multiple ligands have been shown to activate the same channel suggesting that these receptors are "promiscuous" in nature. Lipidomics of a growing class of endogenous lipids, N-acyl amides, the most famous of which is N-arachidonoyl ethanolamine (the endogenous cannabinoid, Anandamide) is providing a novel set of ligands that have been shown to activate some members of the TRP family and have the potential to deorphanize many more. Here it is argued that activation of TRPV receptors, a subset of the larger family of TRPs, by multiple endogenous lipids that are structurally analogous is a model system to drive our understanding that many TRP receptors are not promiscuous, but are more characteristically "opportunistic" in nature; exploiting the structural similarity and biosynthesis of a narrow range of analogous endogenous lipids. In addition, this manuscript will compare the activation properties of TRPC5 to the activity profile of an "orphan" lipid, N-palmitoyl glycine; further demonstrating that lipidomics aimed at expanding our knowledge of the family of N-acyl amides has the potential to provide novel avenues of research for TRP receptors. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Activation of Adenylyl Cyclase Causes Stimulation of Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Thomas Pleli

    2018-03-01

    Full Text Available Background/Aims: Signaling of Gs protein-coupled receptors (GsPCRs is accomplished by stimulation of adenylyl cyclase, causing an increase of the intracellular cAMP concentration, activation of the intracellular cAMP effectors protein kinase A (PKA and Epac, and an efflux of cAMP, the function of which is still unclear. Methods: Activation of adenylyl cyclase by GsPCR agonists or cholera toxin was monitored by measurement of the intracellular cAMP concentration by ELISA, anti-phospho-PKA substrate motif phosphorylation by immunoblotting, and an Epac-FRET assay in the presence and absence of adenosine receptor antagonists or ecto-nucleotide phosphodiesterase/pyrophosphatase2 (eNPP2 inhibitors. The production of AMP from cAMP by recombinant eNPP2 was measured by HPLC. Extracellular adenosine was determined by LC-MS/MS, extracellular ATP by luciferase and LC-MS/MS. The expression of eNPP isoenzymes 1-3 was examined by RT-PCR. The expression of multidrug resistance protein 4 was suppressed by siRNA. Results: Here we show that the activation of GsPCRs and the GsPCRs-independent activation of Gs proteins and adenylyl cyclase by cholera toxin induce stimulation of cell surface adenosine receptors (A2A or A2B adenosine receptors. In PC12 cells stimulation of adenylyl cyclase by GsPCR or cholera toxin caused activation of A2A adenosine receptors by an autocrine signaling pathway involving cAMP efflux through multidrug resistance protein 4 and hydrolysis of released cAMP to AMP by eNPP2. In contrast, in PC3 cells cholera toxin- and GsPCR-induced stimulation of adenylyl cyclase resulted in the activation of A2B adenosine receptors. Conclusion: Our findings show that stimulation of adenylyl cyclase causes a remarkable activation of cell surface adenosine receptors.

  16. Flavonoids with M1 Muscarinic Acetylcholine Receptor Binding Activity

    Directory of Open Access Journals (Sweden)

    Meyyammai Swaminathan

    2014-06-01

    Full Text Available Muscarinic acetylcholine receptor-active compounds have potential for the treatment of Alzheimer’s disease. In this study, a series of natural and synthetic flavones and flavonols was assayed in vitro for their ability to inhibit radioligand binding at human cloned M1 muscarinic receptors. Several compounds were found to possess competitive binding affinity (Ki = 40–110 µM, comparable to that of acetylcholine (Ki = 59 µM. Despite the fact that these compounds lack a positively-charged ammonium group under physiological conditions, molecular modelling studies suggested that they bind to the orthosteric site of the receptor, mainly through non-polar interactions.

  17. Assembly and activation of neurotrophic factor receptor complexes.

    Science.gov (United States)

    Simi, Anastasia; Ibáñez, Carlos F

    2010-04-01

    Neurotrophic factors play important roles in the development and function of both neuronal and glial elements of the central and peripheral nervous systems. Their functional diversity is in part based on their ability to interact with alternative complexes of receptor molecules. This review focuses on our current understanding of the mechanisms that govern the assembly and activation of neurotrophic factor receptor complexes. The realization that many, if not the majority, of these complexes exist in a preassembled form at the plasma membrane has forced the revision of classical ligand-mediated oligomerization models, and led to the discovery of novel mechanisms of receptor activation and generation of signaling diversity which are likely to be shared by many different classes of receptors.

  18. Quantum chemical study of agonist-receptor vibrational interactions for activation of the glutamate receptor.

    Science.gov (United States)

    Kubo, M; Odai, K; Sugimoto, T; Ito, E

    2001-06-01

    To understand the mechanism of activation of a receptor by its agonist, the excitation and relaxation processes of the vibrational states of the receptor should be examined. As a first approach to this problem, we calculated the normal vibrational modes of agonists (glutamate and kainate) and an antagonist (6-cyano-7-nitroquinoxaline-2,3-dione: CNQX) of the glutamate receptor, and then investigated the vibrational interactions between kainate and the binding site of glutamate receptor subunit GluR2 by use of a semiempirical molecular orbital method (MOPAC2000-PM3). We found that two local vibrational modes of kainate, which were also observed in glutamate but not in CNQX, interacted through hydrogen bonds with the vibrational modes of GluR2: (i) the bending vibration of the amine group of kainate, interacting with the stretching vibration of the carboxyl group of Glu705 of GluR2, and (ii) the symmetric stretching vibration of the carboxyl group of kainate, interacting with the bending vibration of the guanidinium group of Arg485. We also found collective modes with low frequency at the binding site of GluR2 in the kainate-bound state. The vibrational energy supplied by an agonist may flow from the high-frequency local modes to the low-frequency collective modes in a receptor, resulting in receptor activation.

  19. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yasuko Kitagishi

    2013-10-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  20. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Satoru, E-mail: smatsuda@cc.nara-wu.ac.jp; Kitagishi, Yasuko [Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506 (Japan)

    2013-10-21

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  1. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    International Nuclear Information System (INIS)

    Matsuda, Satoru; Kitagishi, Yasuko

    2013-01-01

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer

  2. Increased thyrotropin binding in hyperfunctioning thyroid nodules.

    Science.gov (United States)

    Müller-Gärtner, H W; Schneider, C; Bay, V; Tadt, A; Rehpenning, W; de Heer, K; Jessel, M

    1987-08-01

    The object of this study was to investigate TSH receptors in hyperfunctioning thyroid nodules (HFN). In HFN, obtained from seven patients, 125-I-TSH binding as determined by equilibrium binding analysis on particulate membrane preparations, was found to be significantly increased as compared with normal thyroid tissues (five patients; P less than 0.001). Scatchard analysis of TSH-binding revealed two kinds of binding sites for both normal thyroid tissue and HFN, and displayed significantly increased association constants of high- and low-affinity binding sites in HFN (Ka = 11.75 +/- 6.8 10(9) M-1, P less than 0.001 and Ka = 2.1 +/- 1.0 10(7) M-1, P less than 0.025; x +/- SEM) as compared with normal thyroid tissue (Ka = 0.25 +/- 0.06 10(9) M-1, Ka = 0.14 +/- 0.03 10(7) M-1; x +/- SEM). The capacity of the high-affinity binding sites in HFN was found to be decreased (1.8 +/- 1.1 pmol/mg protein, x +/- SEM) in comparison with normal thyroid tissue (4.26 +/- 1.27 pmol/mg protein; x +/- SEM). TSH-receptor autoradiography applied to cryostatic tissue sections confirmed increased TSH binding of the follicular epithelium in HFN. These data suggest that an increased affinity of TSH-receptor sites in HFN in iodine deficient areas may be an important event in thyroid autonomy.

  3. Neurotrophin receptors expression and JNK pathway activation in human astrocytomas

    International Nuclear Information System (INIS)

    Assimakopoulou, Martha; Kondyli, Maria; Gatzounis, George; Maraziotis, Theodore; Varakis, John

    2007-01-01

    Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC) and p75 NTR neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75 NTR induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75 NTR -induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75 NTR , and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue. Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV) were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75 NTR and phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were used. The labeling index (LI), defined as the percentage of positive (labeled) cells out of the total number of tumor cells counted, was determined. Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75 NTR receptor expression was found in a small percentage of tumor cells (~1%) in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were significantly co-expressed in a tumor

  4. The metabotropic glutamate receptors: structure, activation mechanism and pharmacology.

    Science.gov (United States)

    Pin, Jean-Philippe; Acher, Francine

    2002-06-01

    The metabotropic glutamate receptors are G-protein coupled receptors (GPCR) involved in the regulation of many synapses, including most glutamatergic fast excitatory synapses. Eight subtypes have been identified that can be classified into three groups. The molecular characterization of these receptors revealed proteins much more complex than any other GPCRs. They are composed of a Venus Flytrap (VFT) module where glutamate binds, connected to a heptahelical domain responsible for G-protein coupling. Recent data including the structure of the VFT module determined with and without glutamate, indicate that these receptors function as dimers. Moreover a number of intracellular proteins can regulate their targeting and transduction mechanism. Such structural features of mGlu receptors offer multiple possibilities for synthetic compounds to modulate their activity. In addition to agonists and competitive antagonists acting at the glutamate binding site, a number of non-competitive antagonists with inverse agonist activity, and positive allosteric modulators have been discovered. These later compounds share specific properties that make them good candidates for therapeutic applications. First, their non-amino acid structure makes them pass more easily the blood brain barrier. Second, they are much more selective than any other compound identified so far, being the first subtype selective molecules. Third, for the negative modulators, their non competitive mechanism of action makes them relatively unaffected by high concentrations of glutamate that may be present in disease states (e.g. stroke, epilepsy, neuropathic pain, etc.). Fourth, like the benzodiazepines acting at the GABA(A) receptors, the positive modulators offer a new way to increase the activity of these receptors in vivo, with a low risk of inducing their desensitization. The present review article focuses on the specific structural features of these receptors and highlights the various possibilities these

  5. Neurotrophin receptors expression and JNK pathway activation in human astrocytomas

    Directory of Open Access Journals (Sweden)

    Maraziotis Theodore

    2007-10-01

    Full Text Available Abstract Background Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC and p75NTR neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75NTR induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75NTR -induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75NTR, and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue. Methods Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75NTR and phosphorylated forms of JNK (pJNK and c-Jun (pc-Jun were used. The labeling index (LI, defined as the percentage of positive (labeled cells out of the total number of tumor cells counted, was determined. Results Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75NTR receptor expression was found in a small percentage of tumor cells (~1% in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK and c-Jun (pc-Jun were

  6. Activation-induced proteolysis of cytoplasmic domain of zeta in T cell receptors and Fc receptors.

    Science.gov (United States)

    Taupin, J L; Anderson, P

    1994-12-01

    The CD3-T cell receptor (TCR) complex on T cells and the Fc gamma receptor type III (Fc gamma RIII)-zeta-gamma complex on natural killer cells are functionally analogous activation receptors that associate with a family of disulfide-linked dimers composed of the related subunits zeta and gamma. Immunochemical analysis of receptor complexes separated on two-dimensional diagonal gels allowed the identification of a previously uncharacterized zeta-p14 heterodimer. zeta-p14 is a component of both CD3-TCR and Fc gamma RIII-zeta-gamma. Peptide mapping analysis shows that p14 is structurally related to zeta, suggesting that it is either: (i) derived from zeta proteolytically or (ii) the product of an alternatively spliced mRNA. The observation that COS cells transformed with a cDNA encoding zeta express zeta-p14 supports the former possibility. The expression of CD3-TCR complexes including zeta-p14 increases following activation with phorbol 12-myristate 13-acetate or concanavalin A, suggesting that proteolysis of zeta may contribute to receptor modulation or desensitization.

  7. Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux

    NARCIS (Netherlands)

    Vrins, Carlos L. J.; van der Velde, Astrid E.; van den Oever, Karin; Levels, Johannes H. M.; Huet, Stephane; Elferink, Ronald P. J. Oude; Kuipers, Folkert; Groen, Albert K.

    2009-01-01

    Peroxisome proliferator-activated receptor delta (PPAR delta) is involved in regulation of energy homeostasis. Activation of PPAR delta markedly increases fecal neutral sterol secretion, the last step in reverse cholesterol transport. This phenomenon can neither be explained by increased

  8. Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux

    NARCIS (Netherlands)

    Vrins, Carlos L. J.; van der Velde, Astrid E.; van den Oever, Karin; Levels, Johannes H. M.; Huet, Stephane; Oude Elferink, Ronald P. J.; Kuipers, Folkert; Groen, Albert K.

    2009-01-01

    Peroxisome proliferator-activated receptor delta (PPARdelta) is involved in regulation of energy homeostasis. Activation of PPARdelta markedly increases fecal neutral sterol secretion, the last step in reverse cholesterol transport. This phenomenon can neither be explained by increased hepatobiliary

  9. Regulation of Liver Energy Balance by the Nuclear Receptors Farnesoid X Receptor and Peroxisome Proliferator Activated Receptor α.

    Science.gov (United States)

    Kim, Kang Ho; Moore, David D

    2017-01-01

    The liver undergoes major changes in substrate utilization and metabolic output over the daily feeding and fasting cycle. These changes occur acutely in response to hormones such as insulin and glucagon, with rapid changes in signaling pathways mediated by protein phosphorylation and other post-translational modifications. They are also reflected in chronic alterations in gene expression in response to nutrient-sensitive transcription factors. Among these, the nuclear receptors farnesoid X receptor (FXR) and peroxisome proliferator activated receptor α (PPARα) provide an intriguing, coordinated response to maintain energy balance in the liver. FXR is activated in the fed state by bile acids returning to the liver, while PPARα is activated in the fasted state in response to the free fatty acids produced by adipocyte lipolysis or possibly other signals. Key Messages: Previous studies indicate that FXR and PPARα have opposing effects on each other's primary targets in key metabolic pathways including gluconeogenesis. Our more recent work shows that these 2 nuclear receptors coordinately regulate autophagy: FXR suppresses this pathway of nutrient and energy recovery, while PPARα activates it. Another recent study indicates that FXR activates the complement and coagulation pathway, while earlier studies identify this as a negative target of PPARα. Since secretion is a very energy- and nutrient-intensive process for hepatocytes, it is possible that FXR licenses it in the nutrient-rich fed state, while PPARα represses it to spare resources in the fasted state. Energy balance is a potential connection linking FXR and PPARα regulation of autophagy and secretion, 2 seemingly unrelated aspects of hepatocyte function. FXR and PPARα act coordinately to promote energy balance and homeostasis in the liver by regulating autophagy and potentially protein secretion. It is quite likely that their impact extends to additional pathways relevant to hepatic energy balance, and

  10. Human pregnane X receptor is activated by dibenzazepine carbamate-based inhibitors of constitutive androstane receptor.

    Science.gov (United States)

    Jeske, Judith; Windshügel, Björn; Thasler, Wolfgang E; Schwab, Matthias; Burk, Oliver

    2017-06-01

    Unintentional activation of xenosensing nuclear receptors pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR) by clinical drug use is known to produce severe side effects in patients, which may be overcome by co-administering antagonists. However, especially antagonizing CAR is hampered by the lack of specific inhibitors, which do not activate PXR. Recently, compounds based on a dibenzazepine carbamate scaffold were identified as potent CAR inhibitors. However, their potential to activate PXR was not thoroughly investigated, even if the lead compound was named "CAR inhibitor not PXR activator 1" (CINPA1). Thus, we performed a comprehensive analysis of the interaction of CINPA1 and four analogs with PXR. Cellular assays were used to investigate intra- and intermolecular interactions and transactivation activity of PXR as a function of the compounds. Modulation of PXR target gene expression was analyzed in primary human hepatocytes. Ligand binding to PXR was investigated by molecular docking and limited proteolytic digestion. We show here that CINPA1 induced the assembly of the PXR ligand-binding domain, released co-repressors from and recruited co-activators to the receptor. CINPA1 and its analogs induced the PXR-dependent activation of a CYP3A4 reporter gene and CINPA1 induced the expression of endogenous cytochrome P450 genes in primary hepatocytes, while not consistently inhibiting CAR-mediated induction. Molecular docking revealed favorable binding of CINPA1 and analogs to the PXR ligand-binding pocket, which was confirmed in vitro. Altogether, our data provide consistent evidence that compounds with a dibenzazepine carbamate scaffold, such as CINPA1 and its four analogs, bind to and activate PXR.

  11. Microsomal receptor for steroid hormones: functional implications for nuclear activity.

    Science.gov (United States)

    Muldoon, T G; Watson, G H; Evans, A C; Steinsapir, J

    1988-01-01

    Target tissues for steroid hormones are responsive by virtue of and to the extent of their content of functional intracellular receptors. Recent years have seen a shift in considerations of the cellular dynamics and distribution of these receptors, with current views favoring predominant intranuclear localization in the intact cell. This paper summarizes our analyses of the microsomal estrogen and androgen binding capability of rat uterine and ventral prostate tissue, respectively; these studies have revealed a set of high affinity sites that may act as a conduit for estrogen traversing the cell en route to the nucleus. These sites have many properties in common with cytosolic receptors, with the salient difference of a failure to activate to a more avid DNA-binding form under conditions which permit such activation of cytosolic receptors. The microsomal estrogen-binding proteins also have appreciable affinity for progesterone, another distinction from other known cellular estrogen receptor species. Various experimental approaches were employed to demonstrate that the microsomal receptors were not simply cytosol contaminants; the most convincing evidence is the recent successful separation of the cytosolic and microsomal forms by differential ammonium sulfate precipitation. Discrete subfractionation of subcellular components on successive sucrose gradients, with simultaneous assessments of binding capability and marker enzyme concentrations, indicates that the major portion of the binding is localized within the vesicles of the endoplasmic reticulum free of significant plasma membrane contamination. The microsomal receptors are readily solubilized by extraction with high- or low-salt-containing buffers or with steroid. The residual microsomes following such extraction have the characteristics of saturable acceptor sites for cytosolic estrogen-receptor complexes. The extent to which these sites will accept the cytosolic complexes is equal to the concentration of

  12. Modulating Estrogen Receptor-related ReceptorActivity Inhibits Cell Proliferation*

    Science.gov (United States)

    Bianco, Stéphanie; Lanvin, Olivia; Tribollet, Violaine; Macari, Claire; North, Sophie; Vanacker, Jean-Marc

    2009-01-01

    High expression of the estrogen receptor-related receptor (ERR)-α in human tumors is correlated to a poor prognosis, suggesting an involvement of the receptor in cell proliferation. In this study, we show that a synthetic compound (XCT790) that modulates the activity of ERRα reduces the proliferation of various cell lines and blocks the G1/S transition of the cell cycle in an ERRα-dependent manner. XCT790 induces, in a p53-independent manner, the expression of the cell cycle inhibitor p21waf/cip1 at the protein, mRNA, and promoter level, leading to an accumulation of hypophosphorylated Rb. Finally, XCT790 reduces cell tumorigenicity in Nude mice. PMID:19546226

  13. Thyrotropin-Blocking Autoantibodies and Thyroid-Stimulating Autoantibodies: Potential Mechanisms Involved in the Pendulum Swinging from Hypothyroidism to Hyperthyroidism or Vice Versa

    Science.gov (United States)

    Rapoport, Basil

    2013-01-01

    Background Thyrotropin receptor (TSHR) antibodies that stimulate the thyroid (TSAb) cause Graves' hyperthyroidism and TSHR antibodies which block thyrotropin action (TBAb) are occasionally responsible for hypothyroidism. Unusual patients switch from TSAb to TBAb (or vice versa) with concomitant thyroid function changes. We have examined case reports to obtain insight into the basis for “switching.” Summary TBAb to TSAb switching occurs in patients treated with levothyroxine (LT4); the reverse switch (TBAb to TSAb) occurs after anti-thyroid drug therapy; TSAb/TBAb alterations may occur during pregnancy and are well recognized in transient neonatal thyroid dysfunction. Factors that may impact the shift include: (i) LT4 treatment, usually associated with decreased thyroid autoantibodies, in unusual patients induces or enhances thyroid autoantibody levels; (ii) antithyroid drug treatment decreases thyroid autoantibody levels; (iii) hyperthyroidism can polarize antigen-presenting cells, leading to impaired development of regulatory T cells, thereby compromising control of autoimmunity; (iv) immune-suppression/hemodilution reduces thyroid autoantibodies during pregnancy and rebounds postpartum; (v) maternally transferred IgG transiently impacts thyroid function in neonates until metabolized; (vi) a Graves' disease model involving immunizing TSHR-knockout mice with mouse TSHR-adenovirus and transfer of TSHR antibody-secreting splenocytes to athymic mice demonstrates the TSAb to TBAb shift, paralleling the outcome of maternally transferred “term limited” TSHR antibodies in neonates. Finally, perhaps most important, as illustrated by dilution analyses of patients' sera in vitro, TSHR antibody concentrations and affinities play a critical role in switching TSAb and TBAb functional activities in vivo. Conclusions Switching between TBAb and TSAb (or vice versa) occurs in unusual patients after LT4 therapy for hypothyroidism or anti-thyroid drug treatment for Graves

  14. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shoko, E-mail: satosho@rs.tus.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Shirakawa, Hitoshi, E-mail: shirakah@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Tomita, Shuhei, E-mail: tomita@med.tottori-u.ac.jp [Division of Molecular Pharmacology, Department of Pathophysiological and Therapeutic Science, Yonago 683-8503 (Japan); Tohkin, Masahiro, E-mail: tohkin@phar.nagoya-cu.ac.jp [Department of Medical Safety Science, Graduate School of Pharmaceutical Science, Nagoya City University, Nagoya 267-8603 (Japan); Gonzalez, Frank J., E-mail: gonzalef@mail.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Komai, Michio, E-mail: mkomai@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  15. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    International Nuclear Information System (INIS)

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-01-01

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction

  16. Intramolecular Crosstalk between Catalytic Activities of Receptor Kinases

    KAUST Repository

    Kwezi, Lusisizwe

    2018-01-22

    Signal modulation is important for the growth and development of plants and this process is mediated by a number of factors including physiological growth regulators and their associated signal transduction pathways. Protein kinases play a central role in signaling, including those involving pathogen response mechanisms. We previously demonstrated an active guanylate cyclase (GC) catalytic center in the brassinosteroid insensitive receptor (AtBRI1) within an active intracellular kinase domain resulting in dual enzymatic activity. Here we propose a novel type of receptor architecture that is characterized by a functional GC catalytic center nested in the cytosolic kinase domain enabling intramolecular crosstalk. This may be through a cGMP-AtBRI1 complex forming that may induce a negative feedback mechanism leading to desensitisation of the receptor, regulated through the cGMP production pathway. We further argue that the comparatively low but highly localized cGMP generated by the GC in response to a ligand is sufficient to modulate the kinase activity. This type of receptor therefore provides a molecular switch that directly and/or indirectly affects ligand dependent phosphorylation of downstream signaling cascades and suggests that subsequent signal transduction and modulation works in conjunction with the kinase in downstream signaling.

  17. Intramolecular Crosstalk between Catalytic Activities of Receptor Kinases

    KAUST Repository

    Kwezi, Lusisizwe; Wheeler, Janet I; Marondedze, Claudius; Gehring, Christoph A; Irving, Helen R

    2018-01-01

    Signal modulation is important for the growth and development of plants and this process is mediated by a number of factors including physiological growth regulators and their associated signal transduction pathways. Protein kinases play a central role in signaling, including those involving pathogen response mechanisms. We previously demonstrated an active guanylate cyclase (GC) catalytic center in the brassinosteroid insensitive receptor (AtBRI1) within an active intracellular kinase domain resulting in dual enzymatic activity. Here we propose a novel type of receptor architecture that is characterized by a functional GC catalytic center nested in the cytosolic kinase domain enabling intramolecular crosstalk. This may be through a cGMP-AtBRI1 complex forming that may induce a negative feedback mechanism leading to desensitisation of the receptor, regulated through the cGMP production pathway. We further argue that the comparatively low but highly localized cGMP generated by the GC in response to a ligand is sufficient to modulate the kinase activity. This type of receptor therefore provides a molecular switch that directly and/or indirectly affects ligand dependent phosphorylation of downstream signaling cascades and suggests that subsequent signal transduction and modulation works in conjunction with the kinase in downstream signaling.

  18. Pituitary Apoplexy After Thyrotropin-releasing Hormone Stimulation Test in a Patient with Pituitary Macroadenoma

    Directory of Open Access Journals (Sweden)

    Huei-Fang Wang

    2007-09-01

    Full Text Available Pituitary apoplexy is a rare complication of pituitary tumors. We report a case of a 41-year-old female with acromegaly due to a pituitary macroadenoma, who developed pituitary apoplexy after a thyrotropin-releasing hormone (TRH 200 mg intravenous injection stimulation test. Neither emergency computed tomography (CT scans nor magnetic resonance imaging (MRI, performed 6 hours and 12 hours, respectively, after the active episode, disclosed the evidence of acute hemorrhage or infarction. Two days later, the pituitary mass, removed by transsphenoidal approach, showed ischemic necrosis and acute hemorrhage. The TRH test is generally safe for evaluating pituitary function, but pituitary apoplexy may occur after the procedure. CT and MRI may miss the diagnosis of pituitary apoplexy, especially if performed immediately after the acute episode.

  19. Structure-activity relationships of strychnine analogues at glycine receptors

    DEFF Research Database (Denmark)

    Mohsen, A.M.Y.; Heller, Eberhard; Holzgrabe, Ulrike

    2014-01-01

    Nine strychnine derivatives including neostrychnine, strychnidine, isostrychnine, 21,22-dihydro-21-hydroxy-22-oxo-strychnine, and several hydrogenated analogs were synthesized, and their antagonistic activities at human α1 and α1β glycine receptors were evaluated. Isostrychnine has shown the best...... pharmacological profile exhibiting an IC50 value of 1.6 μM at α1 glycine receptors and 3.7-fold preference towards the α1 subtype. SAR Analysis indicates that the lactam moiety and the C(21)[DOUBLE BOND]C(22) bond in strychnine are essential structural features for its high antagonistic potency at glycine...

  20. Diabetes and obesity treatment based on dual incretin receptor activation

    DEFF Research Database (Denmark)

    Skow, M A; Bergmann, N C; Knop, F K

    2016-01-01

    , whereas GIP seems to affect lipid metabolism. The introduction of selective GLP-1 receptor (GLP-1R) agonists for the treatment of type 2 diabetes and obesity has increased the scientific and clinical interest in incretins. Combining the body weight-lowering and glucose-lowering effects of GLP-1...... with a more potent improvement of β cell function through additional GIP action could potentially offer a more effective treatment of diabetes and obesity, with fewer adverse effects than selective GLP-1R agonists; therefore, new drugs designed to co-activate both the GIP receptor (GIPR) and the GLP-1R...

  1. Influence of phasic and tonic dopamine release on receptor activation

    DEFF Research Database (Denmark)

    Dreyer, Jakob Kristoffer Kisbye; Herrik, Kjartan F; Berg, Rune W

    2010-01-01

    Tonic and phasic dopamine release is implicated in learning, motivation, and motor functions. However, the relationship between spike patterns in dopaminergic neurons, the extracellular concentration of dopamine, and activation of dopamine receptors remains unresolved. In the present study, we...... develop a computational model of dopamine signaling that give insight into the relationship between the dynamics of release and occupancy of D(1) and D(2) receptors. The model is derived from first principles using experimental data. It has no free parameters and offers unbiased estimation...

  2. Liver X receptor and peroxisome proliferator-activated receptor as integrators of lipid homeostasis and immunity.

    Science.gov (United States)

    Kidani, Yoko; Bensinger, Steven J

    2012-09-01

    Lipid metabolism has emerged as an important modulator of innate and adaptive immune cell fate and function. The lipid-activated transcription factors peroxisome proliferator-activated receptor (PPAR) α, β/δ, γ and liver X receptor (LXR) are members of the nuclear receptor superfamily that have a well-defined role in regulating lipid homeostasis and metabolic diseases. Accumulated evidence over the last decade indicates that PPAR and LXR signaling also influence multiple facets of inflammation and immunity, thereby providing important crosstalk between metabolism and immune system. Herein, we provide a brief introduction to LXR and PPAR biology and review recent discoveries highlighting the importance of PPAR and LXR signaling in the modulation of normal and pathologic states of immunity. We also examine advances in our mechanistic understanding of how nuclear receptors impact immune system function and homeostasis. Finally, we discuss whether LXRs and PPARs could be pharmacologically manipulated to provide novel therapeutic approaches for modulation of the immune system under pathologic inflammation or in the context of allergic and autoimmune disease. © 2012 John Wiley & Sons A/S.

  3. CINPA1 Is an Inhibitor of Constitutive Androstane Receptor That Does Not Activate Pregnane X Receptor

    Science.gov (United States)

    Cherian, Milu T; Lin, Wenwei; Wu, Jing

    2015-01-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug resistance. CAR inhibitors, in combination with existing chemotherapeutics, could therefore be used to attenuate multidrug resistance in cancers. Interestingly, all previously reported CAR inverse-agonists are also activators of PXR, rendering them mechanistically counterproductive in tissues where both these xenobiotic receptors are present and active. We used a directed high-throughput screening approach, followed by subsequent mechanistic studies, to identify novel, potent, and specific small-molecule CAR inhibitors that do not activate PXR. We describe here one such inhibitor, CINPA1 (CAR inhibitor not PXR activator 1), capable of reducing CAR-mediated transcription with an IC50 of ∼70 nM. CINPA1 1) is a specific xenobiotic receptor inhibitor and has no cytotoxic effects up to 30 µM; 2) inhibits CAR-mediated gene expression in primary human hepatocytes, where CAR is endogenously expressed; 3) does not alter the protein levels or subcellular localization of CAR; 4) increases corepressor and reduces coactivator interaction with the CAR ligand-binding domain in mammalian two-hybrid assays; and 5) disrupts CAR binding to the promoter regions of target genes in chromatin immunoprecipitation assays. CINPA1 could be used as a novel molecular tool for understanding CAR function. PMID:25762023

  4. CINPA1 is an inhibitor of constitutive androstane receptor that does not activate pregnane X receptor.

    Science.gov (United States)

    Cherian, Milu T; Lin, Wenwei; Wu, Jing; Chen, Taosheng

    2015-05-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug resistance. CAR inhibitors, in combination with existing chemotherapeutics, could therefore be used to attenuate multidrug resistance in cancers. Interestingly, all previously reported CAR inverse-agonists are also activators of PXR, rendering them mechanistically counterproductive in tissues where both these xenobiotic receptors are present and active. We used a directed high-throughput screening approach, followed by subsequent mechanistic studies, to identify novel, potent, and specific small-molecule CAR inhibitors that do not activate PXR. We describe here one such inhibitor, CINPA1 (CAR inhibitor not PXR activator 1), capable of reducing CAR-mediated transcription with an IC50 of ∼70 nM. CINPA1 1) is a specific xenobiotic receptor inhibitor and has no cytotoxic effects up to 30 µM; 2) inhibits CAR-mediated gene expression in primary human hepatocytes, where CAR is endogenously expressed; 3) does not alter the protein levels or subcellular localization of CAR; 4) increases corepressor and reduces coactivator interaction with the CAR ligand-binding domain in mammalian two-hybrid assays; and 5) disrupts CAR binding to the promoter regions of target genes in chromatin immunoprecipitation assays. CINPA1 could be used as a novel molecular tool for understanding CAR function. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    Science.gov (United States)

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-04-28

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand.

  6. Reduced beta-adrenergic receptor activation decreases G-protein expression and beta-adrenergic receptor kinase activity in porcine heart.

    OpenAIRE

    Ping, P; Gelzer-Bell, R; Roth, D A; Kiel, D; Insel, P A; Hammond, H K

    1995-01-01

    To determine whether beta-adrenergic receptor agonist activation influences guanosine 5'-triphosphate-binding protein (G-protein) expression and beta-adrenergic receptor kinase activity in the heart, we examined the effects of chronic beta 1-adrenergic receptor antagonist treatment (bisoprolol, 0.2 mg/kg per d i.v., 35 d) on components of the myocardial beta-adrenergic receptor-G-protein-adenylyl cyclase pathway in porcine myocardium. Three novel alterations in cardiac adrenergic signaling as...

  7. Activation of peroxisome proliferator-activated receptors (PPARs) by their ligands and protein kinase A activators

    Science.gov (United States)

    Lazennec, Gwendal; Canaple, Laurence; Saugy, Damien; Wahli, Walter

    2000-01-01

    The nuclear peroxisome proliferator-activated receptors (PPARs) α, β and γ activate the transcription of multiple genes involved in lipid metabolism. Several natural and synthetic ligands have been identified for each PPAR isotype but little is known about the phosphorylation state of these receptors. We show here that activators of protein kinase A (PKA) can enhance mouse PPAR activity in the absence and the presence of exogenous ligands in transient transfection experiments. The activation function 1 (AF-1) of PPARs was dispensable for transcriptional enhancement, whereas the activation function 2 (AF-2) was required for this effect. We also show that several domains of PPAR can be phosphorylated by PKA in vitro. Moreover, gel experiments suggest that PKA stabilizes binding of the liganded PPAR to DNA. PKA inhibitors decreased not only the kinase dependent induction of PPARs but also their ligand-dependent induction, suggesting that the ligands may also mobilize the PKA pathway to lead to maximal transcriptional induction by PPARs. Moreover, comparing PPARα KO with PPARα wild-type mice, we show that the expression of the ACO gene can be regulated by PKA-activated PPARα in liver. These data demonstrate that the PKA pathway is an important modulator of PPAR activity and we propose a model associating this pathway in the control of fatty acid β-oxidation under conditions of fasting, stress and exercise. PMID:11117527

  8. Common structural basis for constitutive activity of the ghrelin receptor family

    DEFF Research Database (Denmark)

    Holst, Birgitte; Holliday, Nicholas D; Bach, Anders

    2004-01-01

    Three members of the ghrelin receptor family were characterized in parallel: the ghrelin receptor, the neurotensin receptor 2 and the orphan receptor GPR39. In transiently transfected COS-7 and human embryonic kidney 293 cells, all three receptors displayed a high degree of ligand......-independent signaling activity. The structurally homologous motilin receptor served as a constitutively silent control; upon agonist stimulation, however, it signaled with a similar efficacy to the three related receptors. The constitutive activity of the ghrelin receptor and of neurotensin receptor 2 through the G...... demonstrated that the epitope-tagged ghrelin receptor was constitutively internalized but could be trapped at the cell surface by an inverse agonist, whereas GPR39 remained at the cell surface. Mutational analysis showed that the constitutive activity of both the ghrelin receptor and GPR39 could systematically...

  9. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    Directory of Open Access Journals (Sweden)

    Maryam Rakhshandehroo

    2010-01-01

    Full Text Available The peroxisome proliferator-activated receptor alpha (PPARα is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.

  10. Glycine Receptor α2 Subunit Activation Promotes Cortical Interneuron Migration

    Directory of Open Access Journals (Sweden)

    Ariel Avila

    2013-08-01

    Full Text Available Glycine receptors (GlyRs are detected in the developing CNS before synaptogenesis, but their function remains elusive. This study demonstrates that functional GlyRs are expressed by embryonic cortical interneurons in vivo. Furthermore, genetic disruption of these receptors leads to interneuron migration defects. We discovered that extrasynaptic activation of GlyRs containing the α2 subunit in cortical interneurons by endogenous glycine activates voltage-gated calcium channels and promotes calcium influx, which further modulates actomyosin contractility to fine-tune nuclear translocation during migration. Taken together, our data highlight the molecular events triggered by GlyR α2 activation that control cortical tangential migration during embryogenesis.

  11. Environmental phthalate monoesters activate pregnane X receptor-mediated transcription

    International Nuclear Information System (INIS)

    Hurst, Christopher H.; Waxman, David J.

    2004-01-01

    Phthalate esters, widely used as plasticizers in the manufacture of products made of polyvinyl chloride, induce reproductive and developmental toxicities in rodents. The mechanism that underlies these effects of phthalate exposure, including the potential role of members of the nuclear receptor superfamily, is not known. The present study investigates the effects of phthalates on the pregnane X receptor (PXR), which mediates the induction of enzymes involved in steroid metabolism and xenobiotic detoxification. The ability of phthalate monoesters to activate PXR-mediated transcription was assayed in a HepG2 cell reporter assay following transfection with mouse PXR (mPXR), human PXR (hPXR), or the hPXR allelic variants V140M, D163G, and A370T. Mono-2-ethylhexyl phthalate (MEHP) increased the transcriptional activity of both mPXR and hPXR (5- and 15-fold, respectively) with EC 50 values of 7-8 μM. mPXR and hPXR were also activated by monobenzyl phthalate (MBzP, up to 5- to 6-fold) but were unresponsive to monomethyl phthalate and mono-n-butyl phthalate (M(n)BP) at the highest concentrations tested (300 μM). hPXR-V140M and hPXR-A370T exhibited patterns of phthalate responses similar to the wild-type receptor. By contrast, hPXR-D163G was unresponsive to all phthalate monoesters tested. Further studies revealed that hPXR-D163G did respond to rifampicin, but required approximately 40-fold higher concentrations than wild-type receptor, suggesting that the ligand-binding domain D163G variant has impaired ligand-binding activity. The responsiveness of PXR to activation by phthalate monoesters demonstrated here suggests that these ubiquitous environmental chemicals may, in part, exhibit their endocrine disruptor activities by altering PXR-regulated steroid hormone metabolism with potential adverse health effects in exposed individuals

  12. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects

    Directory of Open Access Journals (Sweden)

    Farhad Dehkhoda

    2018-02-01

    Full Text Available The growth hormone receptor (GHR, although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK–signal transducer and activator of transcription (STAT signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK–STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.

  13. Molecular sampling of the allosteric binding pocket of the TSH receptor provides discriminative pharmacophores for antagonist and agonists.

    Science.gov (United States)

    Hoyer, Inna; Haas, Ann-Karin; Kreuchwig, Annika; Schülein, Ralf; Krause, Gerd

    2013-02-01

    The TSHR (thyrotropin receptor) is activated endogenously by the large hormone thyrotropin and activated pathologically by auto-antibodies. Both activate and bind at the extracellular domain. Recently, SMLs (small-molecule ligands) have been identified, which bind in an allosteric binding pocket within the transmembrane domain. Modelling driven site-directed mutagenesis of amino acids lining this pocket led to the delineation of activation and inactivation sensitive residues. Modified residues showing CAMs (constitutively activating mutations) indicate signalling-sensitive positions and mark potential trigger points for agonists. Silencing mutations lead to an impairment of basal activity and mark contact points for antagonists. Mapping these residues on to a structural model of TSHR indicates locations where an SML may switch the receptor to an inactive or active conformation. In the present article, we report the effects of SMLs on these signalling-sensitive amino acids at the TSHR. Surprisingly, the antagonistic effect of SML compound 52 was reversed to an agonistic effect, when tested at the CAM Y667A. Switching agonism to antagonism and the reverse by changing either SMLs or residues covering the binding pocket provides detailed knowledge about discriminative pharmacophores. It prepares the basis for rational optimization of new high-affinity antagonists to interfere with the pathogenic activation of the TSHR.

  14. Tripeptide amide L-pyroglutamyl-histidyl-L-prolineamide (L-PHP-thyrotropin-releasing hormone, TRH) promotes insulin-producing cell proliferation.

    Science.gov (United States)

    Luo, LuGuang; Luo, John Z Q; Jackson, Ivor

    2013-02-01

    A very small tripeptide amide L-pyroglutamyl-L-histidyl-L-prolineamide (L-PHP, Thyrotropin-Releasing Hormone, TRH), was first identified in the brain hypothalamus area. Further studies found that L-PHP was expressed in pancreas. The biological role of pancreatic L-PHP is still not clear. Growing evidence indicates that L-PHP expression in the pancreas may play a pivotal role for pancreatic development in the early prenatal period. However, the role of L-PHP in adult pancreas still needs to be explored. L-PHP activation of pancreatic β cell Ca2+ flow and stimulation of β-cell insulin synthesis and release suggest that L-PHP involved in glucose metabolism may directly act on the β cell separate from any effects via the central nervous system (CNS). Knockout L-PHP animal models have shown that loss of L-PHP expression causes hyperglycemia, which cannot be reversed by administration of thyroid hormone, suggesting that the absence of L-PHP itself is the cause. L-PHP receptor type-1 has been identified in pancreas which provides a possibility for L-PHP autocrine and paracrine regulation in pancreatic function. During pancreatic damage in adult pancreas, L-PHP may protect beta cell from apoptosis and initiate its regeneration through signal pathways of growth hormone in β cells. L-PHP has recently been discovered to affect a broad array of gene expression in the pancreas including growth factor genes. Signal pathways linked between L-PHP and EGF receptor phosphorylation suggest that L-PHP may be an important factor for adult β-cell regeneration, which could involve adult stem cell differentiation. These effects suggest that L-PHP may benefit pancreatic β cells and diabetic therapy in clinic.

  15. Neurohumoral activation in heart failure: the role of adrenergic receptors

    Directory of Open Access Journals (Sweden)

    Patricia C. Brum

    2006-09-01

    Full Text Available Heart failure (HF is a common endpoint for many forms of cardiovascular disease and a significant cause of morbidity and mortality. The development of end-stage HF often involves an initial insult to the myocardium that reduces cardiac output and leads to a compensatory increase in sympathetic nervous system activity. Acutely, the sympathetic hyperactivity through the activation of beta-adrenergic receptors increases heart rate and cardiac contractility, which compensate for decreased cardiac output. However, chronic exposure of the heart to elevated levels of catecholamines released from sympathetic nerve terminals and the adrenal gland may lead to further pathologic changes in the heart, resulting in continued elevation of sympathetic tone and a progressive deterioration in cardiac function. On a molecular level, altered beta-adrenergic receptor signaling plays a pivotal role in the genesis and progression of HF. beta-adrenergic receptor number and function are decreased, and downstream mechanisms are altered. In this review we will present an overview of the normal beta-adrenergic receptor pathway in the heart and the consequences of sustained adrenergic activation in HF. The myopathic potential of individual components of the adrenergic signaling will be discussed through the results of research performed in genetic modified animals. Finally, we will discuss the potential clinical impact of beta-adrenergic receptor gene polymorphisms for better understanding the progression of HF.A insuficiência cardíaca (IC é a via final comum da maioria das doenças cardiovasculares e uma das maiores causas de morbi-mortalidade. O desenvolvimento do estágio final da IC freqüentemente envolve um insulto inicial do miocárdio, reduzindo o débito cardíaco e levando ao aumento compensatório da atividade do sistema nervoso simpático (SNS. Existem evidências de que apesar da exposição aguda ser benéfica, exposições crônicas a elevadas concentra

  16. Mechanism of A2 adenosine receptor activation. I. Blockade of A2 adenosine receptors by photoaffinity labeling

    International Nuclear Information System (INIS)

    Lohse, M.J.; Klotz, K.N.; Schwabe, U.

    1991-01-01

    It has previously been shown that covalent incorporation of the photoreactive adenosine derivative (R)-2-azido-N6-p-hydroxy-phenylisopropyladenosine [(R)-AHPIA] into the A1 adenosine receptor of intact fat cells leads to a persistent activation of this receptor, resulting in a reduction of cellular cAMP levels. In contrast, covalent incorporation of (R)-AHPIA into human platelet membranes, which contain only stimulatory A2 adenosine receptors, reduces adenylate cyclase stimulation via these receptors. This effect of (R)-AHPIA is specific for the A2 receptor and can be prevented by the adenosine receptor antagonist theophylline. Binding studies indicate that up to 90% of A2 receptors can be blocked by photoincorporation of (R)-AHPIA. However, the remaining 10-20% of A2 receptors are sufficient to mediate an adenylate cyclase stimulation of up to 50% of the control value. Similarly, the activation via these 10-20% of receptors occurs with a half-life that is only 2 times longer than that in control membranes. This indicates the presence of a receptor reserve, with respect to both the extent and the rate of adenylate cyclase stimulation. These observations require a modification of the models of receptor-adenylate cyclase coupling

  17. Functional relevance of G-protein-coupled-receptor-associated proteins, exemplified by receptor-activity-modifying proteins (RAMPs).

    Science.gov (United States)

    Fischer, J A; Muff, R; Born, W

    2002-08-01

    The calcitonin (CT) receptor (CTR) and the CTR-like receptor (CRLR) are close relatives within the type II family of G-protein-coupled receptors, demonstrating sequence identity of 50%. Unlike the interaction between CT and CTR, receptors for the related hormones and neuropeptides amylin, CT-gene-related peptide (CGRP) and adrenomedullin (AM) require one of three accessory receptor-activity-modifying proteins (RAMPs) for ligand recognition. An amylin/CGRP receptor is revealed when CTR is co-expressed with RAMP1. When complexed with RAMP3, CTR interacts with amylin alone. CRLR, initially classed as an orphan receptor, is a CGRP receptor when co-expressed with RAMP1. The same receptor is specific for AM in the presence of RAMP2. Together with human RAMP3, CRLR defines an AM receptor, and with mouse RAMP3 it is a low-affinity CGRP/AM receptor. CTR-RAMP1, antagonized preferentially by salmon CT-(8-32) and not by CGRP-(8-37), and CRLR-RAMP1, antagonized by CGRP-(8-37), are two CGRP receptor isotypes. Thus amylin and CGRP interact specifically with heterodimeric complexes between CTR and RAMP1 or RAMP3, and CGRP and AM interact with complexes between CRLR and RAMP1, RAMP2 or RAMP3.

  18. Activation of Penile Proadipogenic Peroxisome Proliferator-Activated Receptor with an Estrogen: Interaction with Estrogen Receptor Alpha during Postnatal Development

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Mansour

    2008-01-01

    Full Text Available Exposure to the estrogen receptor alpha (ER ligand diethylstilbesterol (DES between neonatal days 2 to 12 induces penile adipogenesis and adult infertility in rats. The objective of this study was to investigate the in vivo interaction between DES-activated ER and the proadipogenic transcription factor peroxisome proliferator-activated receptor gamma (PPAR. Transcripts for PPARs , , and and 1a splice variant were detected in Sprague-Dawley normal rat penis with PPAR predominating. In addition, PPAR1b and PPAR2 were newly induced by DES. The PPAR transcripts were significantly upregulated with DES and reduced by antiestrogen ICI 182, 780. At the cellular level, PPAR protein was detected in urethral transitional epithelium and stromal, endothelial, neuronal, and smooth muscular cells. Treatment with DES activated ER and induced adipocyte differentiation in corpus cavernosum penis. Those adipocytes exhibited strong nuclear PPAR expression. These results suggest a biological overlap between PPAR and ER and highlight a mechanism for endocrine disruption.

  19. Clinical evaluation of thyrotropin-releasing hormone (TRH) test with a sensitive immunoradiometric thyrotropin (TSH) assay kit

    International Nuclear Information System (INIS)

    Nakamura, Saeko; Demura, Reiko; Yamanaka, Yukako; Ishiwatari, Naoko; Jibiki, Kazuko; Odagiri, Emi; Demura, Hiroshi

    1987-01-01

    Thyrotropin-releasing hormone (TRH) test was performed using a commercially available immunoradiometric thyrotropin (TSH) assay kit (RIA-gnost hTSH) in patients with endocrine diseases. The basal serum concentration of TSH ranged from 0.2 to 2.9 μU/ml in healthy subjects. The values for endocrine diseases, except for Graves' disease, were almost within the normal range. A significant increase in TSH values caused by TRH test was observed in females compared with males (4.4 - 24.7 μU/ml vs 4.1 - 12.3 μU/ml). In cases of Graves' disease, there was a good correlation between the basal TSH value and the response of TSH to TRH. However, in the other endocrine diseases, including acromegaly, prolactinoma, anorexia nervosa, Cushing syndrome, and hypopituitarism, the response of TSH to TRH did not necessarily correlated with the basal TSH value. TRH test would be of value in elucidating pathophysiologic features, as well as in accurately diagnosing secretion reserve of TSH. (Namekawa, K.)

  20. Clinical evaluation of thyrotropin-releasing hormone (TRH) test with a sensitive immunoradiometric thyrotropin (TSH) assay kit

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Saeko; Demura, Reiko; Yamanaka, Yukako; Ishiwatari, Naoko; Jibiki, Kazuko; Odagiri, Emi; Demura, Hiroshi

    1987-10-01

    Thyrotropin-releasing hormone (TRH) test was performed using a commercially available immunoradiometric thyrotropin (TSH) assay kit (RIA-gnost hTSH) in patients with endocrine diseases. The basal serum concentration of TSH ranged from 0.2 to 2.9 ..mu..U/ml in healthy subjects. The values for endocrine diseases, except for Graves' disease, were almost within the normal range. A significant increase in TSH values caused by TRH test was observed in females compared with males (4.4 - 24.7 ..mu..U/ml vs 4.1 - 12.3 ..mu..U/ml). In cases of Graves' disease, there was a good correlation between the basal TSH value and the response of TSH to TRH. However, in the other endocrine diseases, including acromegaly, prolactinoma, anorexia nervosa, Cushing syndrome, and hypopituitarism, the response of TSH to TRH did not necessarily correlated with the basal TSH value. TRH test would be of value in elucidating pathophysiologic features, as well as in accurately diagnosing secretion reserve of TSH. (Namekawa, K.).

  1. Endogenous activation of adenosine A(1) receptors accelerates ischemic suppression of spontaneous electrocortical activity

    DEFF Research Database (Denmark)

    Ilie, Andrei; Ciocan, Dragos; Zagrean, Ana-Maria

    2006-01-01

    Cerebral ischemia induces a rapid suppression of spontaneous brain rhythms prior to major alterations in ionic homeostasis. It was found in vitro during ischemia that the rapidly formed adenosine, resulting from the intracellular breakdown of ATP, may inhibit synaptic transmission via the A(1......) receptor subtype. The link between endogenous A(1) receptor activation during ischemia and the suppression of spontaneous electrocortical activity has not yet been established in the intact brain. The aim of this study was to investigate in vivo the effects of A(1) receptor antagonism by 8-cyclopentyl-1...

  2. GRK2 Constitutively Governs Peripheral Delta Opioid Receptor Activity

    Directory of Open Access Journals (Sweden)

    Allison Doyle Brackley

    2016-09-01

    Full Text Available Opioids remain the standard for analgesic care; however, adverse effects of systemic treatments contraindicate long-term administration. While most clinical opioids target mu opioid receptors (MOR, those that target the delta class (DOR also demonstrate analgesic efficacy. Furthermore, peripherally restrictive opioids represent an attractive direction for analgesia. However, opioid receptors including DOR are analgesically incompetent in the absence of inflammation. Here, we report that G protein-coupled receptor kinase 2 (GRK2 naively associates with plasma membrane DOR in peripheral sensory neurons to inhibit analgesic agonist efficacy. This interaction prevents optimal Gβ subunit association with the receptor, thereby reducing DOR activity. Importantly, bradykinin stimulates GRK2 movement away from DOR and onto Raf kinase inhibitory protein (RKIP. protein kinase C (PKC-dependent RKIP phosphorylation induces GRK2 sequestration, restoring DOR functionality in sensory neurons. Together, these results expand the known function of GRK2, identifying a non-internalizing role to maintain peripheral DOR in an analgesically incompetent state.

  3. Identification of an Activating Chicken Ig-like Receptor Recognizing Avian Influenza Viruses

    NARCIS (Netherlands)

    Jansen, Christine A; van Haarlem, Daphne A; Sperling, Beatrice; van Kooten, Peter J; de Vries, Erik; Viertlboeck, Birgit C; Vervelde, Lonneke; Göbel, Thomas W

    2016-01-01

    Chicken Ig-like receptors (CHIRs) represent a multigene family encoded by the leukocyte receptor complex that encodes a variety of receptors that are subdivided into activating CHIR-A, inhibitory CHIR-B, and bifunctional CHIR-AB. Apart from CHIR-AB, which functions as an Fc receptor, CHIR ligands

  4. G protein-coupled receptor mutations and human genetic disease.

    Science.gov (United States)

    Thompson, Miles D; Hendy, Geoffrey N; Percy, Maire E; Bichet, Daniel G; Cole, David E C

    2014-01-01

    Genetic variations in G protein-coupled receptor genes (GPCRs) disrupt GPCR function in a wide variety of human genetic diseases. In vitro strategies and animal models have been used to identify the molecular pathologies underlying naturally occurring GPCR mutations. Inactive, overactive, or constitutively active receptors have been identified that result in pathology. These receptor variants may alter ligand binding, G protein coupling, receptor desensitization and receptor recycling. Receptor systems discussed include rhodopsin, thyrotropin, parathyroid hormone, melanocortin, follicle-stimulating hormone (FSH), luteinizing hormone, gonadotropin-releasing hormone (GNRHR), adrenocorticotropic hormone, vasopressin, endothelin-β, purinergic, and the G protein associated with asthma (GPRA or neuropeptide S receptor 1 (NPSR1)). The role of activating and inactivating calcium-sensing receptor (CaSR) mutations is discussed in detail with respect to familial hypocalciuric hypercalcemia (FHH) and autosomal dominant hypocalemia (ADH). The CASR mutations have been associated with epilepsy. Diseases caused by the genetic disruption of GPCR functions are discussed in the context of their potential to be selectively targeted by drugs that rescue altered receptors. Examples of drugs developed as a result of targeting GPCRs mutated in disease include: calcimimetics and calcilytics, therapeutics targeting melanocortin receptors in obesity, interventions that alter GNRHR loss from the cell surface in idiopathic hypogonadotropic hypogonadism and novel drugs that might rescue the P2RY12 receptor congenital bleeding phenotype. De-orphanization projects have identified novel disease-associated receptors, such as NPSR1 and GPR35. The identification of variants in these receptors provides genetic reagents useful in drug screens. Discussion of the variety of GPCRs that are disrupted in monogenic Mendelian disorders provides the basis for examining the significance of common

  5. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2.

    Science.gov (United States)

    Jamil, Khurram; Pappas, Stephen Chris; Devarakonda, Krishna R

    2018-01-01

    Terlipressin, a synthetic, systemic vasoconstrictor with selective activity at vasopressin-1 (V 1 ) receptors, is a pro-drug for the endogenous/natural porcine hormone [Lys 8 ]-vasopressin (LVP). We investigated binding and receptor-mediated cellular activities of terlipressin, LVP, and endogenous human hormone [Arg 8 ]-vasopressin (AVP) at V 1 and vasopressin-2 (V 2 ) receptors. Cell membrane homogenates of Chinese hamster ovary cells expressing human V 1 and V 2 receptors were used in competitive binding assays to measure receptor-binding activity. These cells were used in functional assays to measure receptor-mediated cellular activity of terlipressin, LVP, and AVP. Binding was measured by [ 3 H]AVP counts, and the activity was measured by fluorometric detection of intracellular calcium mobilization (V 1 ) and cyclic adenosine monophosphate (V 2 ). Binding potency at V 1 and V 2 was AVP>LVP>terlipressin. LVP and terlipressin had approximately sixfold higher affinity for V 1 than for V 2 . Cellular activity potency was also AVP>LVP>terlipressin. Terlipressin was a partial agonist at V 1 and a full agonist at V 2 ; LVP was a full agonist at both V 1 and V 2 . The in vivo response to terlipressin is likely due to the partial V 1 agonist activity of terlipressin and full V 1 agonist activity of its metabolite, LVP. These results provide supportive evidence for previous findings and further establish terlipressin pharmacology for vasopressin receptors.

  6. Acute activation, desensitization and smoldering activation of human acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Barbara G Campling

    Full Text Available The behavioral effects of nicotine and other nicotinic agonists are mediated by AChRs in the brain. The relative contribution of acute activation versus chronic desensitization of AChRs is unknown. Sustained "smoldering activation" occurs over a range of agonist concentrations at which activated and desensitized AChRs are present in equilibrium. We used a fluorescent dye sensitive to changes in membrane potential to examine the effects of acute activation and chronic desensitization by nicotinic AChR agonists on cell lines expressing human α4β2, α3β4 and α7 AChRs. We examined the effects of acute and prolonged application of nicotine and the partial agonists varenicline, cytisine and sazetidine-A on these AChRs. The range of concentrations over which nicotine causes smoldering activation of α4β2 AChRs was centered at 0.13 µM, a level found in smokers. However, nicotine produced smoldering activation of α3β4 and α7 AChRs at concentrations well above levels found in smokers. The α4β2 expressing cell line contains a mixture of two stoichiometries, namely (α4β22β2 and (α4β22α4. The (α4β22β2 stoichiometry is more sensitive to activation by nicotine. Sazetidine-A activates and desensitizes only this stoichiometry. Varenicline, cytisine and sazetidine-A were partial agonists on this mixture of α4β2 AChRs, but full agonists on α3β4 and α7 AChRs. It has been reported that cytisine and varenicline are most efficacious on the (α4β22α4 stoichiometry. In this study, we distinguish the dual effects of activation and desensitization of AChRs by these nicotinic agonists and define the range of concentrations over which smoldering activation can be sustained.

  7. The prostaglandin EP1 receptor potentiates kainate receptor activation via a protein kinase C pathway and exacerbates status epilepticus

    Science.gov (United States)

    Rojas, Asheebo; Gueorguieva, Paoula; Lelutiu, Nadia; Quan, Yi; Shaw, Renee; Dingledine, Raymond

    2014-01-01

    Prostaglandin E2 (PGE2) regulates membrane excitability, synaptic transmission, plasticity, and neuronal survival. The consequences of PGE2 release following seizures has been the subject of much study. Here we demonstrate that the prostaglandin E2 receptor 1 (EP1, or Ptger1) modulates native kainate receptors, a family of ionotropic glutamate receptors widely expressed throughout the central nervous system. Global ablation of the EP1 gene in mice (EP1-KO) had no effect on seizure threshold after kainate injection but reduced the likelihood to enter status epilepticus. EP1-KO mice that did experience typical status epilepticus had reduced hippocampal neurodegeneration and a blunted inflammatory response. Further studies with native prostanoid and kainate receptors in cultured cortical neurons, as well as with recombinant prostanoid and kainate receptors expressed in Xenopus oocytes, demonstrated that EP1 receptor activation potentiates heteromeric but not homomeric kainate receptors via a second messenger cascade involving phospholipase C, calcium and protein kinase C. Three critical GluK5 C-terminal serines underlie the potentiation of the GluK2/GluK5 receptor by EP1 activation. Taken together, these results indicate that EP1 receptor activation during seizures, through a protein kinase C pathway, increases the probability of kainic acid induced status epilepticus, and independently promotes hippocampal neurodegeneration and a broad inflammatory response. PMID:24952362

  8. Deflation-activated receptors, not classical inflation-activated receptors, mediate the Hering-Breuer deflation reflex.

    Science.gov (United States)

    Yu, Jerry

    2016-11-01

    Many airway sensory units respond to both lung inflation and deflation. Whether those responses to opposite stimuli come from one sensor (one-sensor theory) or more than one sensor (multiple-sensor theory) is debatable. One-sensor theory is commonly presumed in the literature. This article proposes a multiple-sensor theory in which a sensory unit contains different sensors for sensing different forces. Two major types of mechanical sensors operate in the lung: inflation- and deflation-activated receptors (DARs). Inflation-activated sensors can be further divided into slowly adapting receptors (SARs) and rapidly adapting receptors (RARs). Many SAR and RAR units also respond to lung deflation because they contain DARs. Pure DARs, which respond to lung deflation only, are rare in large animals but are easily identified in small animals. Lung deflation-induced reflex effects previously attributed to RARs should be assigned to DARs (including pure DARs and DARs associated with SARs and RARs) if the multiple-sensor theory is accepted. Thus, based on the information, it is proposed that activation of DARs can attenuate lung deflation, shorten expiratory time, increase respiratory rate, evoke inspiration, and cause airway secretion and dyspnea.

  9. Sex-Specific Associations Between Thyrotropin and Serum Lipid Profiles

    DEFF Research Database (Denmark)

    Meisinger, Christa; Ittermann, Till; Tiller, Daniel

    2014-01-01

    BACKGROUND: Population-based studies investigating the sex-specific association between thyrotropin (TSH) levels and serum lipid concentrations are scarce. We examined the association between TSH and total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL......) cholesterol, and triglycerides in men and women from the general population. Furthermore, the association with TSH outside and within the reference range and lipid levels was studied. METHODS: Individual data of 13,571 men and women without lipid medication of four population-based studies conducted...... in Western European adults were pooled for cross-sectional analyses. The association between TSH levels and lipid concentrations were analyzed by calculating sex-specific multivariable median regression models. RESULTS: In the pooled population, serum TSH levels were significantly positively associated...

  10. Thyrotropin-producing adenoma. Report of two clinical cases

    Directory of Open Access Journals (Sweden)

    Ani R. Karapetyan

    2017-03-01

    Full Text Available Diagnosis of hyperthyroidism does not present serious difficulties currently. Distribution of imaging techniques increasing the detection of pituitary adenomas every year. Thyrotropin-producing adenoma is a rare cause of hyperthyroidism. Early detection will alert its errors in treatment strategy, unjustified surgery on the thyroid gland, and will improve the quality of patients life. The article presents two clinical cases of thyroid-stimulating hormone (TSH-secreting pituitary adenomas in patients with different disease duration, and thus the presence of hyperthyroidism complications. Both patients were operated in the Federal Center of Neurosurgery Novosibirsk by transnasal transsphenoidal approach. The resistant euthyroidism was reached postoperatively, but in patients with long-term history of the disease, large size of adenoma in the postoperative period developed secondary adrenal insufficiency and her quality of life is significantly lower, taking into account comorbidities. The period of follow-up consists 3 years and one year respectively.

  11. Effect of Thyrotropin Suppression Therapy on Bone in Thyroid Cancer Patients

    OpenAIRE

    Papaleontiou, Maria; Hawley, Sarah T.; Haymart, Megan R.

    2015-01-01

    Background. The thyroid cancer incidence is rising. Despite current guidelines, controversy exists regarding the degree and duration of thyrotropin suppression therapy. Also, its potential skeletal effects remain a concern to physicians caring for thyroid cancer patients. We conducted a review of published data to evaluate existing studies focusing on the skeletal effects of thyrotropin suppression therapy in thyroid cancer patients. Materials and Methods. A systematic search of the PubMed, O...

  12. Comparison of pituitary and recombinant human thyrotropin standards in an immunoradiometric system

    International Nuclear Information System (INIS)

    Blanca Fernandez, Silvia; Rodriguez Gonzalez, Julio Cesar; Nisembaum Alas, Amaparo; Sevy Gonzalez, O.

    1998-01-01

    Results of two standards of human thyrotropin of pituitaries (B) and recombinant (C) origen supplied by the Instituto of pesquisas Energeticas y Nucleares, Brazil, were compared in our immunoradiometric reference system that use an human thyrotropin pituitary standard of local production (A). This work was supported by the International Atomic Energy Agency for an inter-regional comparison and set up of a reference standard

  13. Pharmacology of bovine and human thyrotropin: an historical perspective.

    Science.gov (United States)

    Robbins, J

    1999-05-01

    Before the induction of a brief period of hypothyroidism became the standard method for inducing 131I uptake in thyroid cancer diagnosis and therapy, several other methods were explored and used. At the dawn of this new era of recombinant human thyrotropin (TSH) it is of interest to reflect briefly on some of this work. Partially purified bovine TSH (bTSH) was supplied for many years by the Armour Company as Thytropar for intramuscular injection and was first used in thyroid cancer 50 years ago at the Montefiore Hospital and at the Memorial Sloan Kettering Cancer Center in New York City. Most of the patients were already hypothyroid and bTSH induced further 131I uptake in only a few. Experience over the next 30 years revealed frequent allergic reactions, occasionally serious ones, and in 1961 it was shown that prolonged use could result in resistance to both bTSH and human TSH. bTSH was, therefore, reserved for thyroid cancer patients unable to increase endogenous TSH when hypothyroid. bTSH also was used widely as a test to distinguish between hypothyroidism caused by thyroid or pituitary failure until it was replaced by thyrotropin-releasing hormone (TRH). In a few studies, TRH was also tested as an adjuvant to increase endogenous TSH and thus help to stimulate function in thyroid cancer, but this attracted little interest. Prolonged hypothyroidism, enhanced by antithyroid drugs, was used early on, but this very effective stimulant of thyroid cancer function was, for multiple reasons, discarded. Beginning interest 15 to 25 years ago in obtaining TSH from human pituitary glands, a byproduct of growth hormone production, was interrupted when this product was found to risk development of Creutzfeld-Jakob disease. Recombinant human TSH, a safe and effective substitute, is now ready for widespread use and development in thyroid cancer management.

  14. Implications of compound heterozygous insulin receptor mutations in congenital muscle fibre type disproportion myopathy for the receptor kinase activation

    DEFF Research Database (Denmark)

    Klein, H H; Müller, R; Vestergaard, H

    1999-01-01

    We studied insulin receptor kinase activation in two brothers with congenital muscle fibre type disproportion myopathy and compound heterozygous mutations of the insulin receptor gene, their parents, and their unaffected brother. In the father who has a heterozygote Arg1174-->Gln mutation, in sit...

  15. Urokinase-type plasminogen activator receptor (uPAR), tissue factor (TF) and epidermal growth factor receptor (EGFR)

    DEFF Research Database (Denmark)

    Christensen, Anders; Kiss, Katalin; Lelkaitis, Giedrius

    2017-01-01

    Background: Tumor-specific biomarkers are a prerequisite for the development of targeted imaging and therapy in oral squamous cell carcinoma (OSCC). urokinase-type Plasminogen Activator Receptor (uPAR), Tissue Factor (TF) and Epidermal Growth Factor Receptor (EGFR) are three biomarkers that exhib...... with a reduced survival. uPAR seems to be a prognostic biomarker in oral cancer....

  16. Methamphetamine Increases Locomotion and Dopamine Transporter Activity in Dopamine D5 Receptor-Deficient Mice

    OpenAIRE

    Hayashizaki, Seiji; Hirai, Shinobu; Ito, Yumi; Honda, Yoshiko; Arime, Yosefu; Sora, Ichiro; Okado, Haruo; Kodama, Tohru; Takada, Masahiko

    2013-01-01

    Dopamine regulates the psychomotor stimulant activities of amphetamine-like substances in the brain. The effects of dopamine are mediated through five known dopamine receptor subtypes in mammals. The functional relevance of D5 dopamine receptors in the central nervous system is not well understood. To determine the functional relevance of D5 dopamine receptors, we created D5 dopamine receptor-deficient mice and then used these mice to assess the roles of D5 dopamine receptors in the behaviora...

  17. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    International Nuclear Information System (INIS)

    Teodorov, E.; Ferrari, M.F.R.; Fior-Chadi, D.R.; Camarini, R.; Felício, L.F.

    2012-01-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  18. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Teodorov, E. [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, SP (Brazil); Ferrari, M.F.R. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Fior-Chadi, D.R. [Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Camarini, R. [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Felício, L.F. [Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  19. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Directory of Open Access Journals (Sweden)

    E. Teodorov

    2012-10-01

    Full Text Available The periaqueductal gray (PAG has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc or 0.9% saline (up to 1 mL/kg and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05 because a lower percentage of kappa group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR. A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05 and lactating female rats (P < 0.01, with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in

  20. Stimulation of cannabinoid receptor 2 (CB2 suppresses microglial activation

    Directory of Open Access Journals (Sweden)

    Fernandez Francisco

    2005-12-01

    Full Text Available Abstract Background Activated microglial cells have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD, multiple sclerosis (MS, and HIV dementia. It is well known that inflammatory mediators such as nitric oxide (NO, cytokines, and chemokines play an important role in microglial cell-associated neuron cell damage. Our previous studies have shown that CD40 signaling is involved in pathological activation of microglial cells. Many data reveal that cannabinoids mediate suppression of inflammation in vitro and in vivo through stimulation of cannabinoid receptor 2 (CB2. Methods In this study, we investigated the effects of a cannabinoid agonist on CD40 expression and function by cultured microglial cells activated by IFN-γ using RT-PCR, Western immunoblotting, flow cytometry, and anti-CB2 small interfering RNA (siRNA analyses. Furthermore, we examined if the stimulation of CB2 could modulate the capacity of microglial cells to phagocytise Aβ1–42 peptide using a phagocytosis assay. Results We found that the selective stimulation of cannabinoid receptor CB2 by JWH-015 suppressed IFN-γ-induced CD40 expression. In addition, this CB2 agonist markedly inhibited IFN-γ-induced phosphorylation of JAK/STAT1. Further, this stimulation was also able to suppress microglial TNF-α and nitric oxide production induced either by IFN-γ or Aβ peptide challenge in the presence of CD40 ligation. Finally, we showed that CB2 activation by JWH-015 markedly attenuated CD40-mediated inhibition of microglial phagocytosis of Aβ1–42 peptide. Taken together, these results provide mechanistic insight into beneficial effects provided by cannabinoid receptor CB2 modulation in neurodegenerative diseases, particularly AD.

  1. UV ACTIVATION OF RECEPTOR TYROSINE KINASE-ACTIVITY

    NARCIS (Netherlands)

    COFFER, PJ; BURGERING, BMT; PEPPELENBOSCH, MP; BOS, JL; KRUIJER, W

    1995-01-01

    The exposure of mammalian cells to ultraviolet radiation (UV) may lead to DNA damage resulting in mutation and thus possibly cancer, while irradiation can further act as a potent tumour promoter. In addition UV induces p21ras-mediated signalling leading to activation of transcription factors such as

  2. Facilitation of neocortical presynaptic terminal development by NMDA receptor activation

    Directory of Open Access Journals (Sweden)

    Sceniak Michael P

    2012-02-01

    Full Text Available Abstract Background Neocortical circuits are established through the formation of synapses between cortical neurons, but the molecular mechanisms of synapse formation are only beginning to be understood. The mechanisms that control synaptic vesicle (SV and active zone (AZ protein assembly at developing presynaptic terminals have not yet been defined. Similarly, the role of glutamate receptor activation in control of presynaptic development remains unclear. Results Here, we use confocal imaging to demonstrate that NMDA receptor (NMDAR activation regulates accumulation of multiple SV and AZ proteins at nascent presynaptic terminals of visual cortical neurons. NMDAR-dependent regulation of presynaptic assembly occurs even at synapses that lack postsynaptic NMDARs. We also provide evidence that this control of presynaptic terminal development is independent of glia. Conclusions Based on these data, we propose a novel NMDAR-dependent mechanism for control of presynaptic terminal development in excitatory neocortical neurons. Control of presynaptic development by NMDARs could ultimately contribute to activity-dependent development of cortical receptive fields.

  3. Cross-talk between an activator of nuclear receptors-mediated transcription and the D1 dopamine receptor signaling pathway.

    Science.gov (United States)

    Schmidt, Azriel; Vogel, Robert; Rutledge, Su Jane; Opas, Evan E; Rodan, Gideon A; Friedman, Eitan

    2005-03-01

    Nuclear receptors are transcription factors that usually interact, in a ligand-dependent manner, with specific DNA sequences located within promoters of target genes. The nuclear receptors can also be controlled in a ligand-independent manner via the action of membrane receptors and cellular signaling pathways. 5-Tetradecyloxy-2-furancarboxylic acid (TOFA) was shown to stimulate transcription from the MMTV promoter via chimeric receptors that consist of the DNA binding domain of GR and the ligand binding regions of the PPARbeta or LXRbeta nuclear receptors (GR/PPARbeta and GR/LXRbeta). TOFA and hydroxycholesterols also modulate transcription from NF-kappaB- and AP-1-controlled reporter genes and induce neurite differentiation in PC12 cells. In CV-1 cells that express D(1) dopamine receptors, D(1) dopamine receptor stimulation was found to inhibit TOFA-stimulated transcription from the MMTV promoter that is under the control of chimeric GR/PPARbeta and GR/LXRbeta receptors. Treatment with the D(1) dopamine receptor antagonist, SCH23390, prevented dopamine-mediated suppression of transcription, and by itself increased transcription controlled by GR/LXRbeta. Furthermore, combined treatment of CV-1 cells with TOFA and SCH23390 increased transcription controlled by the GR/LXRbeta chimeric receptor synergistically. The significance of this in vitro synergy was demonstrated in vivo, by the observation that SCH23390 (but not haloperidol)-mediated catalepsy in rats was potentiated by TOFA, thus showing that an agent that mimics the in vitro activities of compounds that activate members of the LXR and PPAR receptor families can influence D1 dopamine receptor elicited responses.

  4. Receptor activity-independent recruitment of βarrestin2 reveals specific signalling modes

    Science.gov (United States)

    Terrillon, Sonia; Bouvier, Michel

    2004-01-01

    The roles of βarrestins in regulating G protein coupling and receptor endocytosis following agonist stimulation of G protein-coupled receptors are well characterised. However, their ability to act on their own as direct modulators or activators of signalling remains poorly characterised. Here, βarrestin2 intrinsic signalling properties were assessed by forcing the recruitment of this accessory protein to vasopressin V1a or V2 receptors independently of agonist-promoted activation of the receptors. Such induction of a stable interaction with βarrestin2 initiated receptor endocytosis leading to intracellular accumulation of the βarrestin/receptor complexes. Interestingly, βarrestin2 association to a single receptor protomer was sufficient to elicit receptor dimer internalisation. In addition to recapitulating βarrestin2 classical actions on receptor trafficking, the receptor activity-independent recruitment of βarrestin2 activated the extracellular signal-regulated kinases. In the latter case, recruitment to the receptor itself was not required since kinase activation could be mediated by βarrestin2 translocation to the plasma membrane in the absence of any interacting receptor. These data demonstrate that βarrestin2 can act as a ‘bonafide' signalling molecule even in the absence of activated receptor. PMID:15385966

  5. DMPD: Receptor tyrosine kinases and the regulation of macrophage activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14726496 Receptor tyrosine kinases and the regulation of macrophage activation. Cor...osine kinases and the regulation of macrophage activation. PubmedID 14726496 Title Receptor tyrosine...rell PH, Morrison AC, Lutz MA. J Leukoc Biol. 2004 May;75(5):731-7. Epub 2004 Jan 14. (.png) (.svg) (.html) (.csml) Show Receptor tyr

  6. Dopamine receptor activation increases HIV entry into primary human macrophages.

    Directory of Open Access Journals (Sweden)

    Peter J Gaskill

    Full Text Available Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers.

  7. Synaptic activity regulates AMPA receptor trafficking through different recycling pathways

    Science.gov (United States)

    Zheng, Ning; Jeyifous, Okunola; Munro, Charlotte; Montgomery, Johanna M; Green, William N

    2015-01-01

    Changes in glutamatergic synaptic strength in brain are dependent on AMPA-type glutamate receptor (AMPAR) recycling, which is assumed to occur through a single local pathway. In this study, we present evidence that AMPAR recycling occurs through different pathways regulated by synaptic activity. Without synaptic stimulation, most AMPARs recycled in dynamin-independent endosomes containing the GTPase, Arf6. Few AMPARs recycled in dynamin-dependent endosomes labeled by transferrin receptors (TfRs). AMPAR recycling was blocked by alterations in the GTPase, TC10, which co-localized with Arf6 endosomes. TC10 mutants that reduced AMPAR recycling had no effect on increased AMPAR levels with long-term potentiation (LTP) and little effect on decreased AMPAR levels with long-term depression. However, internalized AMPAR levels in TfR-containing recycling endosomes increased after LTP, indicating increased AMPAR recycling through the dynamin-dependent pathway with synaptic plasticity. LTP-induced AMPAR endocytosis is inconsistent with local recycling as a source of increased surface receptors, suggesting AMPARs are trafficked from other sites. DOI: http://dx.doi.org/10.7554/eLife.06878.001 PMID:25970033

  8. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    Science.gov (United States)

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  9. Targeting protease activated receptor-1 with P1pal-12 limits bleomycin-induced pulmonary fibrosis

    NARCIS (Netherlands)

    Lin, Cong; Duitman, Janwillem; Daalhuisen, Joost; ten Brink, Marieke; von der Thüsen, Jan; van der Poll, Tom; Borensztajn, Keren; Spek, C. Arnold

    2014-01-01

    Idiopathic pulmonary fibrosis is the most devastating fibrotic diffuse parenchymal lung disease which remains refractory to pharmacological therapies. Therefore, novel treatments are urgently required. Protease-activated receptor (PAR)-1 is a G-protein-coupled receptor that mediates critical

  10. Functionally Selective AT(1) Receptor Activation Reduces Ischemia Reperfusion Injury

    DEFF Research Database (Denmark)

    Hostrup, Anders; Christensen, Gitte Lund; Bentzen, Bo Hjort

    2012-01-01

    of the physiological functions of AngII. The AT(1)R mediates its effects through both G protein-dependent and independent signaling, which can be separated by functionally selective agonists. In the present study we investigate the effect of AngII and the ß-arrestin biased agonist [SII]AngII on ischemia......]AngII had a protective effect. Together these results demonstrate a cardioprotective effect of simultaneous blockade of G protein signaling and activation of G protein independent signaling through AT(1 )receptors....

  11. Vitamin D receptor activation and survival in chronic kidney disease.

    Science.gov (United States)

    Kovesdy, C P; Kalantar-Zadeh, K

    2008-06-01

    Replacement of activated vitamin D has been the cornerstone of therapy for secondary hyperparathyroidism (SHPT). Recent findings from several large observational studies have suggested that the benefits of vitamin D receptor activators (VDRA) may extend beyond the traditional parathyroid hormone (PTH)-lowering effect, and could result in direct cardiovascular and metabolic benefits. The advent of several new analogs of the activated vitamin D molecule has widened our therapeutic armamentarium, but has also made therapeutic decisions more complicated. Treatment of SHPT has become even more complex with the arrival of the first calcium-sensing receptor (CSR) agonist (cinacalcet hydrochloride) and with the uncovering of novel mechanisms responsible for SHPT. We provide a brief overview of the physiology and pathophysiology of SHPT, with a focus on vitamin D metabolism, and discuss various practical aspects of VDRA therapy and its reported association with survival in recent observational studies. A detailed discussion of the available agents is aimed at providing the practicing physician with a clear understanding of the advantages or disadvantages of the individual medications. A number of open questions are also analyzed, including the present and future roles of CSR agonists and 25(OH) vitamin D replacement.

  12. Involvement of Activating NK Cell Receptors and Their Modulation in Pathogen Immunity

    Directory of Open Access Journals (Sweden)

    Francesco Marras

    2011-01-01

    Full Text Available Natural Killer (NK cells are endowed with cell-structure-sensing receptors providing inhibitory protection from self-destruction (inhibitory NK receptors, iNKRs, including killer inhibitory receptors and other molecules and rapid triggering potential leading to functional cell activation by Toll-like receptors (TLRs, cytokine receptors, and activating NK cell receptors including natural cytotoxicity receptors (NCRs, i.e., NKp46, NKp46, and NKp44. NCR and NKG2D recognize ligands on infected cells which may be endogenous or may directly bind to some structures derived from invading pathogens. In this paper, we address the known direct or indirect interactions between activating receptors and pathogens and their expression during chronic HIV and HCV infections.

  13. An improved ivermectin-activated chloride channel receptor for inhibiting electrical activity in defined neuronal populations

    DEFF Research Database (Denmark)

    Lynagh, Timothy Peter; Lynch, Joseph W

    2010-01-01

    The ability to silence the electrical activity of defined neuronal populations in vivo is dramatically advancing our understanding of brain function. This technology may eventually be useful clinically for treating a variety of neuropathological disorders caused by excessive neuronal activity...... conductance, homomeric expression, and human origin may render the F207A/A288G alpha1 glycine receptor an improved silencing receptor for neuroscientific and clinical purposes. As all known highly ivermectin-sensitive GluClRs contain an endogenous glycine residue at the corresponding location, this residue...

  14. Peroxisome Proliferators-Activated Receptor (PPAR Modulators and Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Min-Chul Cho

    2008-01-01

    Full Text Available Overweight and obesity lead to an increased risk for metabolic disorders such as impaired glucose regulation/insulin resistance, dyslipidemia, and hypertension. Several molecular drug targets with potential to prevent or treat metabolic disorders have been revealed. Interestingly, the activation of peroxisome proliferator-activated receptor (PPAR, which belongs to the nuclear receptor superfamily, has many beneficial clinical effects. PPAR directly modulates gene expression by binding to a specific ligand. All PPAR subtypes (α,γ, and σ are involved in glucose metabolism, lipid metabolism, and energy balance. PPAR agonists play an important role in therapeutic aspects of metabolic disorders. However, undesired effects of the existing PPAR agonists have been reported. A great deal of recent research has focused on the discovery of new PPAR modulators with more beneficial effects and more safety without producing undesired side effects. Herein, we briefly review the roles of PPAR in metabolic disorders, the effects of PPAR modulators in metabolic disorders, and the technologies with which to discover new PPAR modulators.

  15. Role of Peroxisome Proliferator-Activated Receptors in Inflammation Control

    Directory of Open Access Journals (Sweden)

    Jihan Youssef

    2004-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs were discovered over a decade ago, and were classified as orphan members of the nuclear receptor superfamily. To date, three PPAR subtypes have been discovered and characterized (PPARα, β/δ, γ. Different PPAR subtypes have been shown to play crucial roles in important diseases and conditions such as obesity, diabetes, atherosclerosis, cancer, and fertility. Among the most studied roles of PPARs is their involvement in inflammatory processes. Numerous studies have revealed that agonists of PPARα and PPARγ exert anti-inflammatory effects both in vitro and in vivo. Using the carrageenan-induced paw edema model of inflammation, a recent study in our laboratories showed that these agonists hinder the initiation phase, but not the late phase of the inflammatory process. Furthermore, in the same experimental model, we recently also observed that activation of PPARδ exerted an anti-inflammatory effect. Despite the fact that exclusive dependence of these effects on PPARs has been questioned, the bulk of evidence suggests that all three PPAR subtypes, PPARα,δ,γ, play a significant role in controlling inflammatory responses. Whether these subtypes act via a common mechanism or are independent of each other remains to be elucidated. However, due to the intensity of research efforts in this area, it is anticipated that these efforts will result in the development of PPAR ligands as therapeutic agents for the treatment of inflammatory diseases.

  16. Cyclic AMP-receptor protein activates aerobactin receptor IutA expression in Vibrio vulnificus.

    Science.gov (United States)

    Kim, Choon-Mee; Kim, Seong-Jung; Shin, Sung-Heui

    2012-04-01

    The ferrophilic bacterium Vibrio vulnificus can utilize the siderophore aerobactin of Escherichia coli for iron acquisition via its specific receptor IutA. This siderophore piracy by V. vulnificus may contribute to its survival and proliferation, especially in mixed bacterial environments. In this study, we examined the effects of glucose, cyclic AMP (cAMP), and cAMP-receptor protein (Crp) on iutA expression in V. vulnificus. Glucose dose-dependently repressed iutA expression. A mutation in cya encoding adenylate cyclase required for cAMP synthesis severely repressed iutA expression, and this change was recovered by in trans complementing cya or the addition of exogenous cAMP. Furthermore, a mutation in crp encoding Crp severely repressed iutA expression, and this change was recovered by complementing crp. Accordingly, glucose deprivation under iron-limited conditions is an environmental signal for iutA expression, and Crp functions as an activator that regulates iutA expression in response to glucose availability.

  17. A thyrotropin-secreting macroadenoma with positive growth hormone and prolactin immunostaining: A case report and literature review.

    Science.gov (United States)

    Kuzu, F; Bayraktaroğlu, T; Zor, F; G N, B D; Salihoğlu, Y S; Kalaycı, M

    2015-01-01

    Thyrotropin (thyroid stimulating hormone [TSH]) secreting pituitary adenomas (TSHoma) are rare adenomas presenting with hyperthyroidism due to impaired negative feedback of thyroid hormone on the pituitary and inappropriate TSH secretion. This article presents a case of TSH-secreting macroadenoma without any clinical hyperthyroidism symptoms accompanying immunoreaction with growth hormone (GH) and prolactin. A 36-year-old female patient was admitted with complaints of irregular menses and blurred vision. On physical exam, she had bitemporal hemianopsia defect. Magnetic resonance imaging (MRI) evaluation showed suprasellar macroadenoma measuring 33 mm × 26 mm × 28 mm was detected on pituitary MRI. She had no hyperthyroidism symptoms clinically. Although free T4 and free T3 levels were elevated, TSH level was inappropriately within the upper limit of normal. Response to T3 suppression and thyrotropin releasing hormone-stimulation test was inadequate. Other pituitary hormones were normal. Transsphenoidal adenomectomy was performed due to parasellar compression findings. Immunohistochemically widespread reaction was observed with TSH, GH and prolactin in the adenoma. The patient underwent a second surgical procedure 2 months later due to macroscopic residual tumor, bitemporal hemianopsia and a suprasellar homogenous uptake with regular borders on indium-111 octreotide scintigraphy. After second surgery; due to ongoing symptoms and residual tumor, she was managed with octreotide and cabergoline treatment. On her follow-up with medical treatment, TSH and free T4 values were within normal limits. Although silent TSHomas are rare, they may arise with compression symptoms as in our case. The differential diagnosis of secondary hyperthyroidism should include TSHomas and thyroid hormone receptor resistance syndrome.

  18. Preoperative Serum Thyrotropin to Thyroglobulin Ratio Is Effective for Thyroid Nodule Evaluation in Euthyroid Patients.

    Science.gov (United States)

    Wang, Lina; Li, Hao; Yang, Zhongyuan; Guo, Zhuming; Zhang, Quan

    2015-07-01

    This study was designed to assess the efficiency of the serum thyrotropin to thyroglobulin ratio for thyroid nodule evaluation in euthyroid patients. Cross-sectional study. Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China. Retrospective analysis was performed for 400 previously untreated cases presenting with thyroid nodules. Thyroid function was tested with commercially available radioimmunoassays. The receiver operating characteristic curves were constructed to determine cutoff values. The efficacy of the thyrotropin:thyroglobulin ratio and thyroid-stimulating hormone for thyroid nodule evaluation was evaluated in terms of sensitivity, specificity, positive predictive value, positive likelihood ratio, negative likelihood ratio, and odds ratio. In receiver operating characteristic curve analysis, the area under the curve was 0.746 for the thyrotropin:thyroglobulin ratio and 0.659 for thyroid-stimulating hormone. With a cutoff point value of 24.97 IU/g for the thyrotropin:thyroglobulin ratio, the sensitivity, specificity, positive predictive value, positive likelihood ratio, and negative likelihood ratio were 78.9%, 60.8%, 75.5%, 2.01, and 0.35, respectively. The odds ratio for the thyrotropin:thyroglobulin ratio indicating malignancy was 5.80. With a cutoff point value of 1.525 µIU/mL for thyroid-stimulating hormone, the sensitivity, specificity, positive predictive value, positive likelihood ratio, and negative likelihood ratio were 74.0%, 53.2%, 70.8%, 1.58, and 0.49, respectively. The odds ratio indicating malignancy for thyroid-stimulating hormone was 3.23. Increasing preoperative serum thyrotropin:thyroglobulin ratio is a risk factor for thyroid carcinoma, and the correlation of the thyrotropin:thyroglobulin ratio to malignancy is higher than that for serum thyroid-stimulating hormone. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  19. Cyprodinil as an activator of aryl hydrocarbon receptor

    International Nuclear Information System (INIS)

    Fang, Chien-Chung; Chen, Fei-Yun; Chen, Chang-Rong; Liu, Chien-Chiang; Wong, Liang-Chi; Liu, Yi-Wen; Su, Jyan-Gwo Joseph

    2013-01-01

    Highlights: ► Cyprodinil activated the aryl hydrocarbon receptor (AHR). ► Cyprodinil induced nuclear translocation of the AHR, and the expression of CYP1A1. ► Cyprodinil enhanced dexamethasone-induced gene expression. ► Cyprodinil phosphorylated ERK, indicating its deregulation of ERK activity. -- Abstract: Cyprodinil is a pyrimidinamine fungicide, used worldwide by agriculture. It is used to protect fruit plants and vegetables from a wide range of pathogens. Benzo[a]pyrene (BaP) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are toxic environmental pollutants and are prototypes of aryl hydrocarbon receptor (AHR) ligands. Although the structure of cyprodinil distinctly differs from those of BaP and TCDD, our results show that cyprodinil induced nuclear translocation of the AHR, and induced the transcriptional activity of aryl hydrocarbon response element (AHRE). Cyprodinil induced the expression of cytochrome P450 (CYP) 1A1, a well-known AHR-targeted gene, in ovarian granulosa cells, HO23, and hepatoma cells, Hepa-1c1c7. Its induction did not appear in AHR signal-deficient cells, and was blocked by the AHR antagonist, CH-223191. Cyprodinil decreased AHR expression in HO23 cells, resulting in CYP1A1 expression decreasing after it peaked at 9 h of treatment in HO23 cells. Dexamethasone is a synthetic agonist of glucocorticoids. Cyprodinil enhanced dexamethasone-induced gene expression, and conversely, its induction of CYP1A1 expression was decreased by dexamethasone in HO23 cells, indicating its induction of crosstalk between the AHR and glucocorticoid receptor and its role as a potential endocrine disrupter. In addition to BaP, TCDD, and an AHR agonist, β-NF, cyprodinil also phosphorylated extracellular signal-regulated kinase (ERK) in HO23 and Hepa-1c1c7 cells, indicating its deregulation of ERK activity. In summary, our results demonstrate that cyprodinil, similar to BaP, acts as an AHR activator, a potential endocrine disrupter, and an ERK disrupter

  20. Regulation of platelet activating factor receptor coupled phosphoinositide-specific phospholipase C activity

    International Nuclear Information System (INIS)

    Morrison, W.J.

    1988-01-01

    The major objectives of this study were two-fold. The first was to establish whether binding of platelet activating factor (PAF) to its receptor was integral to the stimulation of polyphosphoinositide-specific phospholipase C (PLC) in rabbit platelets. The second was to determine regulatory features of this receptor-coupled mechanism. [ 3 H]PAF binding demonstrated two binding sites, a high affinity site with a inhibitory constant (Ki) of 2.65 nM and a low affinity site with a Ki of 0.80 μM. PAF receptor coupled activation of phosphoinositide-specific PLC was studied in platelets which were made refractory, by short term pretreatments, to either PAF or thrombin. Saponin-permeabilized rabbit platelets continue to regulate the mechanism(s) coupling PAF receptors to PLC stimulation. However, TRPγS and GDPβS, which affect guanine nucleotide regulatory protein functions, were unable to modulate the PLC activity to any appreciable extent as compared to PAF. The possible involvement of protein kinase C (PKC) activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets pretreated with staurosporine followed by pretreatments with PAF or phorbol 12-myristate 13-acetate (PMA)

  1. The role of GH receptor tyrosine phosphorylation in Stat5 activation

    DEFF Research Database (Denmark)

    Hansen, J A; Hansen, L H; Wang, X

    1997-01-01

    Stimulation of GH receptors leads to rapid activation of Jak2 kinase and subsequent tyrosine phosphorylation of the GH receptor. Three specific tyrosines located in the C-terminal domain of the GH receptor have been identified as being involved in GH-stimulated transcription of the Spi 2.1 promoter....... Mutated GH receptors lacking all but one of these three tyrosines are able to mediate a transcriptional response when transiently transfected into CHO cells together with a Spi 2.1 promoter/luciferase construct. Similarly, these GH receptors were found to be able to mediate activation of Stat5 DNA......-binding activity, whereas the GH receptor mutant lacking all intracellular tyrosines was not. Synthetic tyrosine phosphorylated peptides corresponding to the GH receptor sequence around the three tyrosines inhibited Stat5 DNA-binding activity while their non-phosphorylated counterparts were ineffective. Tyrosine...

  2. Antibody-induced dimerization activates the epidermal growth factor receptor tyrosine kinase

    NARCIS (Netherlands)

    Spaargaren, M.; Defize, L. H.; Boonstra, J.; de Laat, S. W.

    1991-01-01

    The relationship between epidermal growth factor receptor (EGF-R) protein tyrosine kinase activation and ligand-induced receptor dimerization was investigated using several bivalent anti-EGF-R antibodies directed against various receptor epitopes. In A431 membrane preparations and permeabilized

  3. Molecular pharmacological phenotyping of EBI2. An orphan seven-transmembrane receptor with constitutive activity

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; Benned-Jensen, Tau; Holst, Peter J

    2006-01-01

    Epstein-Barr virus (EBV)-induced receptor 2 (EBI2) is an orphan seven-transmembrane (7TM) receptor originally identified as the most up-regulated gene (>200-fold) in EBV-infected cells. Here we show that EBI2 signals with constitutive activity through Galpha(i) as determined by a receptor...

  4. Serum protein inhibition of thyrotropin binding to human thyroid tissue

    International Nuclear Information System (INIS)

    Beall, G.N.; Chopra, I.J.; Solomon, D.H.; Kruger, S.R.

    1978-01-01

    We used a modificaton of the TSH radioreceptor assay to detect TSH-binding inhibition (TBI) activity in serum and serum fractions from normal subjects and patients with Graves' disease. TBI activity is present in normal IgG prepared by DEAE-Sephadex chromatography and in normal globulins prepared by precipitation at 1.6 M ammonium sulfate. Other normal serum proteins also had TBI activity when large concentrations were tested. Gel filtration chromatography and powder block electrophoresis were used to prepare fractions of normal and Graves' disease sera. In these fractions from normal serum, TBI activity was found in both γ-globulin and α-globulin-albumin fractions electrophoretically and in both 7S and 4S peaks from gel filtration. TBI activity from Graves' disease patients' sera was similarly distributed, but relatively more TBI accompanied the electrophoretic γ-globulins. Sepharose Protein-A and anti-IgG were used as immunoabsorbents to isolate and purify IgG from normal and Graves' disease sera. TBI activity in IgG was proportional to the IgG concentration, indicating that the TBI which migrates as a γ-globulin electrophoretically is an IgG and thus may possibly be an antibody. Inhibitory activity found in normal serum globulins and in the non-IgG fractions of both normal and abnormal sera seriously interferes with attempts to use the TSH radioreceptor assay to study the hypothesized anti-TSH receptor antibody in the serum of patients with Graves' disease

  5. Peroxisome Proliferator-Activated Receptor-γ in Thyroid Autoimmunity

    Directory of Open Access Journals (Sweden)

    Silvia Martina Ferrari

    2015-01-01

    Full Text Available Peroxisome proliferator-activated receptor- (PPAR- γ expression has been shown in thyroid tissue from patients with thyroiditis or Graves’ disease and furthermore in the orbital tissue of patients with Graves’ ophthalmopathy (GO, such as in extraocular muscle cells. An increasing body of evidence shows the importance of the (C-X-C motif receptor 3 (CXCR3 and cognate chemokines (C-X-C motif ligand (CXCL9, CXCL10, and CXCL11, in the T helper 1 immune response and in inflammatory diseases such as thyroid autoimmune disorders. PPAR-γ agonists show a strong inhibitory effect on the expression and release of CXCR3 chemokines, in vitro, in various kinds of cells, such as thyrocytes, and in orbital fibroblasts, preadipocytes, and myoblasts from patients with GO. Recently, it has been demonstrated that rosiglitazone is involved in a higher risk of heart failure, stroke, and all-cause mortality in old patients. On the contrary, pioglitazone has not shown these effects until now; this favors pioglitazone for a possible use in patients with thyroid autoimmunity. However, further studies are ongoing to explore the use of new PPAR-γ agonists in the treatment of thyroid autoimmune disorders.

  6. Topical Rosiglitazone Treatment Improves Ulcerative Colitis by Restoring Peroxisome Proliferator-Activated Receptor-gamma Activity

    DEFF Research Database (Denmark)

    Pedersen, G.; Brynskov, Jørn

    2010-01-01

    OBJECTIVES: Impaired epithelial expression of peroxisome proliferator-activated receptor-gamma (PPAR gamma) has been described in animal colitis models and briefly in patients with ulcerative colitis, but the functional significance in humans is not well defined. We examined PPAR gamma expression...

  7. Activation of Protease-Activated Receptor 2 Induces VEGF Independently of HIF-1

    DEFF Research Database (Denmark)

    Rasmussen, J.G.; Riis, Simone Elkjær; Frøbert, O.

    2012-01-01

    Human adipose stem cells (hASCs) can promote angiogenesis through secretion of proangiogenic factors such as vascular endothelial growth factor (VEGF). In other cell types, it has been shown that induction of VEGF is mediated by both protease activated receptor 2 (PAR2) and hypoxia inducible fact...

  8. Substance P receptor desensitization requires receptor activation but not phospholipase C

    International Nuclear Information System (INIS)

    Sugiya, Hiroshi; Putney, J.W. Jr.

    1988-01-01

    Previous studies have shown that exposure of parotid acinar cells to substance P at 37 degree C results in activation of phospholipase C, formation of [ 3 H]inositol 1,4,5-trisphosphate (IP 3 ), and persistent desensitization of the substance P response. In cells treated with antimycin in medium containing glucose, ATP was decreased to ∼20% of control values, IP 3 formation was completely inhibited, but desensitization was unaffected. When cells were treated with antimycin in the absence of glucose, cellular ATP was decreased to ∼5% of control values, and both IP 3 formation and desensitization were blocked. A series of substance P-related peptides increased the formation of [ 3 H]IP 3 and induced desensitization of the substance P response with a similar rank order of potencies. The substance P antagonist, [D-Pro 2 , D-Try 7,9 ]-substance P, inhibited substance P-induced IP 3 formation and desensitization but did not induce desensitization. These results suggest that the desensitization of substance P-induced IP 3 formation requires agonist activation of a P-type substance P receptor, and that one or more cellular ATP-dependent processes are required for this reaction. However, activation of phospholipase C and the generation of inositol phosphates does not seem to be a prerequisite for desensitization

  9. Multiple metals predict prolactin and thyrotropin (TSH) levels in men

    Energy Technology Data Exchange (ETDEWEB)

    Meeker, John D., E-mail: meekerj@umich.edu [Department of Environmental Health Sciences, University of Michigan School of Public Health, 6635 SPH Tower, 109 S. Observatory St., Ann Arbor, MI 48109 (United States); Rossano, Mary G. [Department of Animal and Food Sciences, University of Kentucky, Lexington, KY (United States); Protas, Bridget [Department of Epidemiology, Michigan State University, East Lansing, MI (United States); Diamond, Michael P.; Puscheck, Elizabeth [Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI (United States); Daly, Douglas [Grand Rapids Fertility and IVF, Grand Rapids, MI (United States); Paneth, Nigel [Department of Obstetrics and Gynecology, Michigan State University, East Lansing, MI (United States); Wirth, Julia J. [Department of Epidemiology, Michigan State University, East Lansing, MI (United States); Department of Obstetrics and Gynecology, Michigan State University, East Lansing, MI (United States)

    2009-10-15

    Exposure to a number of metals can affect neuroendocrine and thyroid signaling, which can result in adverse effects on development, behavior, metabolism, reproduction, and other functions. The present study assessed the relationship between metal concentrations in blood and serum prolactin (PRL) and thyrotropin (TSH) levels, markers of dopaminergic, and thyroid function, respectively, among men participating in a study of environmental influences on male reproductive health. Blood samples from 219 men were analyzed for concentrations of 11 metals and serum levels of PRL and TSH. In multiple linear regression models adjusted for age, BMI and smoking, PRL was inversely associated with arsenic, cadmium, copper, lead, manganese, molybdenum, and zinc, but positively associated with chromium. Several of these associations (Cd, Pb, Mo) are consistent with limited studies in humans or animals, and a number of the relationships (Cr, Cu, Pb, Mo) remained when additionally considering multiple metals in the model. Lead and copper were associated with non-monotonic decrease in TSH, while arsenic was associated with a dose-dependent increase in TSH. For arsenic these findings were consistent with recent experimental studies where arsenic inhibited enzymes involved in thyroid hormone synthesis and signaling. More research is needed for a better understanding of the role of metals in neuroendocrine and thyroid function and related health implications.

  10. Thyrotropin-releasing hormone (TRH) reverses hyperglycemia in rat

    International Nuclear Information System (INIS)

    Luo Luguang; Luo, John Z.Q.; Jackson, Ivor M.D.

    2008-01-01

    Hyperglycemia in thyrotropin-releasing hormone (TRH) null mice indicates that TRH is involved in the regulation of glucose homeostasis. Further, TRH levels in the pancreas peak during the stages of late embryonic and early neonatal β cell development. These observations are consistent in linking TRH to islet cell proliferation and differentiation. In this study, we examined the effect of TRH administration in damaged pancreatic rat (streptozotocin, STZ) to determine whether TRH could improve damaged pancreatic β cells function. We hypothesize that TRH is able to reverse STZ-induced hyperglycemia by increasing pancreatic islet insulin content, preventing apoptosis, and potentially induce islet regeneration. It was found that following intra-peritoneal (ip) injection, TRH (10 μg/kg body weight (bwt)) reverses STZ (65 mg/kg bwt)-induced hyperglycemia (TRH given 3 days after STZ injection). Increased circulating insulin levels and insulin content in extracted pancreas suggests that TRH reversed STZ-induced hyperglycemia through improving pancreatic islet β cell function. Further studies show a significantly lower level of apoptosis in islets treated with TRH as well as the presence of proliferation marker nestin and Brdu, suggesting that the TRH has the potential to prevent apoptosis and stimulate islet proliferation

  11. Serum Thyrotropin and Phase of the Menstrual Cycle

    Directory of Open Access Journals (Sweden)

    Salvatore Benvenga

    2017-09-01

    Full Text Available About one-fifth of patients treated with levothyroxine have serum thyrotropin (TSH above target concentrations but, in approximately 15% of them, the cause of this TSH insufficient normalization remains unknown. We report the cases of two regularly menstruating women with known thyroid disease who had TSH levels consistently >3 mU/L (and sometimes above target levels during mid-cycle, but consistently lower serum levels during the follicular and luteal phases of menstrual cycle. A major TSH release by the thyrotrophs in response to high circulating levels of estradiol (E2 at mid-cycle may increase levels of TSH compared to other phases of the cycle. The increased TSH can be misinterpreted as refractory hypothyroidism if the woman is under L-T4 replacement therapy or as subclinical hypothyroidism if the woman is not. Our findings might have important implications for diagnosis and management of thyroid disease, suggesting to request serum TSH measurements outside of the periovulatory days.

  12. Radioimmunoassay of thyrotropin releasing hormone in plasma and urine

    International Nuclear Information System (INIS)

    Saito, Shiro; Musa, Kimitaka; Yamamoto, Suzuyo; Oshima, Ichiyo; Funato, Toyohiko

    1975-01-01

    A sensitive and specific radioimmunoassay has been developed capable of measuring thyrotropin releasing hormone (TRH) in extracted human plasma and urine. All of three TRH analogues tested had little cross-reactivity to antibody. Luteinizing hormone releasing hormone, lysine vasopressin, rat growth hormone and bovine albumin were without effect, but rat hypothalamic extract produced a displacement curve which was parallel to that obtained with the synthetic TRH. Sensitivity of the radioimmunoassay was 4 pg per tube with intraassay coefficient of variation of 6.2-9.7%. Synthetic TRH could be quantitatively extracted by methanol when added to human plasma in concentration of 25, 50 and 100 pg/ml. TRH immunoreactivity was rapidly reduced in plasma at 20 0 C than at 0 0 C, but addition of peptidase inhibitors, FOY-007 and BAL, prevented the inactivation of TRH for 3 hr at 0 0 C. The TRH in urine was more stable at 0 0 C than 20 0 C, and recovered 75+-4.6% at 24 hr after being added. The plasma levels of TRH were 19 pg/ml or less in normal adults and no sex difference was observed. The rate of disappearance of TRH administered i.v. from the blood could be represented as half-times of 4-12 min. Between 5.3-12.3% of the injected dose was excreted into urine within 1 hr as an immunoreactive TRH. These results indicate the usefulness of TRH radioimmunoassay for clinical investigation. (auth.)

  13. Multiple metals predict prolactin and thyrotropin (TSH) levels in men

    International Nuclear Information System (INIS)

    Meeker, John D.; Rossano, Mary G.; Protas, Bridget; Diamond, Michael P.; Puscheck, Elizabeth; Daly, Douglas; Paneth, Nigel; Wirth, Julia J.

    2009-01-01

    Exposure to a number of metals can affect neuroendocrine and thyroid signaling, which can result in adverse effects on development, behavior, metabolism, reproduction, and other functions. The present study assessed the relationship between metal concentrations in blood and serum prolactin (PRL) and thyrotropin (TSH) levels, markers of dopaminergic, and thyroid function, respectively, among men participating in a study of environmental influences on male reproductive health. Blood samples from 219 men were analyzed for concentrations of 11 metals and serum levels of PRL and TSH. In multiple linear regression models adjusted for age, BMI and smoking, PRL was inversely associated with arsenic, cadmium, copper, lead, manganese, molybdenum, and zinc, but positively associated with chromium. Several of these associations (Cd, Pb, Mo) are consistent with limited studies in humans or animals, and a number of the relationships (Cr, Cu, Pb, Mo) remained when additionally considering multiple metals in the model. Lead and copper were associated with non-monotonic decrease in TSH, while arsenic was associated with a dose-dependent increase in TSH. For arsenic these findings were consistent with recent experimental studies where arsenic inhibited enzymes involved in thyroid hormone synthesis and signaling. More research is needed for a better understanding of the role of metals in neuroendocrine and thyroid function and related health implications.

  14. Evaluation of Six Different Immunoassays for Serum Thyrotropin

    International Nuclear Information System (INIS)

    Ma Donghong; Lu Hankui; Gao Yunchao; Ge Wenli; Xiong Jiang; Liu Qiaoping; Gu Qing

    2010-01-01

    To analyzes the discrepancy and association among six different thyrotropin (TSH) immunoassay methods and to study their impact on the clinical diagnoses of thyroid diseases, the 150 serum samples from three groups consisting of hyperthyroidism, hypothyroidism and healthy subjects, 50 samples in each group were included in this study. The serum TSH levels were measured simultaneously by radioimmunoassay (RIA), immunoradiometric assay (IRMA), three-type chemilumiminescence immunoassay (CLIA) and electrochemiluminescence immunoassay (ECLIA). The results showed that individual serum TSH level varied significantly from one assay to another. There was no correlation between TSH RIA and other five assays in groups of hyperthyroidism and healthy subjects(P>0.05). The correlations between TSH IRMA and four automatic assays in hyperthyroidism group were relatively low (r= 0.38∼0.41). However, among the four automatic assays, TSH levels were well correlated (r= 0.92∼0.99). For clinical diagnoses, TSH RIA alone was not useful in the differentiation of hyperthyroidism and normal subjects, and TSH IRMA was misleading in some hyperthyroidism. There were no significant differences for four TSH automatic immunoassays in differential diagnoses of thyroid diseases. (authors)

  15. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-delta

    DEFF Research Database (Denmark)

    Yan, Zhen Cheng; Liu, Dao Yan; Zhang, Li Li

    2007-01-01

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-delta (PPAR-delta)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow...... or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each p...

  16. Receptor activity modifying proteins (RAMPs) interact with the VPAC1 receptor: evidence for differential RAMP modulation of multiple signalling pathways

    International Nuclear Information System (INIS)

    Christopoulos, G.; Morfis, M.; Sexton, P.M.; Christopoulos, A.; Laburthe, M.; Couvineau, A.

    2001-01-01

    Full text: Receptor activity modifying proteins (RAMP) constitute a family of three accessory proteins that affect the expression and/or phenotype of the calcitonin receptor (CTR) or CTR-like receptor (CRLR). In this study we screened a range of class II G protein-coupled receptors (PTH1, PTH2, GHRH, VPAC1, VPAC2 receptors) for possible RAMP interactions by measurement of receptor-induced translocation of c-myc tagged RAMP1 or HA tagged RAMP3. Of these, only the VPAC1 receptor caused significant translocation of c-myc-RAMP1 or HA-RAMP3 to the cell surface. Co-transfection of VPAC1 and RAMPs did not alter 125 I-VIP binding and specificity. VPAC1 receptor function was subsequently analyzed through parallel determinations of cAMP accumulation and phosphoinositide (PI) hydrolysis in the presence and absence of each of the three RAMPs. In contrast to CTR-RAMP interaction, where there was an increase in cAMP Pharmacologisand a decrease in PI hydrolysis, VPAC1-RAMP interaction was characterized by a specific increase in agonist-mediated PI hydrolysis when co-transfected with RAMP2. This change was due to an enhancement of Emax with no change in EC 50 value for VIP. No significant change in cAMP accumulation was observed. This is the first demonstration of an interaction of RAMPs with a G protein-coupled receptor outside the CTR family and may suggest a more generalized role for RAMPs in modulating G protein-coupled receptor signaling. Copyright (2001) Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists

  17. Calcium is the switch in the moonlighting dual function of the ligand-activated receptor kinase phytosulfokine receptor 1

    KAUST Repository

    Muleya, Victor

    2014-09-23

    Background: A number of receptor kinases contain guanylate cyclase (GC) catalytic centres encapsulated in the cytosolic kinase domain. A prototypical example is the phytosulfokine receptor 1 (PSKR1) that is involved in regulating growth responses in plants. PSKR1 contains both kinase and GC activities however the underlying mechanisms regulating the dual functions have remained elusive. Findings: Here, we confirm the dual activity of the cytoplasmic domain of the PSKR1 receptor. We show that mutations within the guanylate cyclase centre modulate the GC activity while not affecting the kinase catalytic activity. Using physiologically relevant Ca2+ levels, we demonstrate that its GC activity is enhanced over two-fold by Ca2+ in a concentration-dependent manner. Conversely, increasing Ca2+ levels inhibits kinase activity up to 500-fold at 100 nM Ca2+. Conclusions: Changes in calcium at physiological levels can regulate the kinase and GC activities of PSKR1. We therefore propose a functional model of how calcium acts as a bimodal switch between kinase and GC activity in PSKR1 that could be relevant to other members of this novel class of ligand-activated receptor kinases.

  18. The adipogenic acetyltransferase Tip60 targets activation function 1 of peroxisome proliferator-activated receptor gamma

    DEFF Research Database (Denmark)

    van Beekum, Olivier; Brenkman, Arjan B; Grøntved, Lars

    2008-01-01

    The transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) plays a key role in the regulation of lipid and glucose metabolism in adipocytes, by regulating their differentiation, maintenance, and function. The transcriptional activity of PPARgamma is dictated by the set...... in cells, and through use of chimeric proteins, we established that coactivation by Tip60 critically depends on the N-terminal activation function 1 of PPARgamma, a domain involved in isotype-specific gene expression and adipogenesis. Chromatin immunoprecipitation experiments showed that the endogenous Tip...... of proteins with which this nuclear receptor interacts under specific conditions. Here we identify the HIV-1 Tat-interacting protein 60 (Tip60) as a novel positive regulator of PPARgamma transcriptional activity. Using tandem mass spectrometry, we found that PPARgamma and the acetyltransferase Tip60 interact...

  19. Plasticizers May Activate Human Hepatic Peroxisome Proliferator-Activated Receptor α Less Than That of a Mouse but May Activate Constitutive Androstane Receptor in Liver

    Science.gov (United States)

    Ito, Yuki; Nakamura, Toshiki; Yanagiba, Yukie; Ramdhan, Doni Hikmat; Yamagishi, Nozomi; Naito, Hisao; Kamijima, Michihiro; Gonzalez, Frank J.; Nakajima, Tamie

    2012-01-01

    Dibutylphthalate (DBP), di(2-ethylhexyl)phthalate (DEHP), and di(2-ethylhexyl)adipate (DEHA) are used as plasticizers. Their metabolites activate peroxisome proliferator-activated receptor (PPAR) α, which may be related to their toxicities. However, species differences in the receptor functions between rodents and human make it difficult to precisely extrapolate their toxicity from animal studies to human. In this paper, we compared the species differences in the activation of mouse and human hepatic PPARα by these plasticizers using wild-type (mPPARα) and humanized PPARα (hPPARα) mice. At 12 weeks old, each genotyped male mouse was classified into three groups, and fed daily for 2 weeks per os with corn oil (vehicle control), 2.5 or 5.0 mmol/kg DBP (696, 1392 mg/kg), DEHP (977, 1953 mg/kg), and DEHA (926, 1853 mg/kg), respectively. Generally, hepatic PPARα of mPPARα mice was more strongly activated than that of hPPARα mice when several target genes involving β-oxidation of fatty acids were evaluated. Interestingly, all plasticizers also activated hepatic constitutive androstane receptor (CAR) more in hPPARα mice than in mPPARα mice. Taken together, these plasticizers activated mouse and human hepatic PPARα as well as CAR. The activation of PPARα was stronger in mPPARα mice than in hPPARα mice, while the opposite was true of CAR. PMID:22792086

  20. Plasticizers May Activate Human Hepatic Peroxisome Proliferator-Activated Receptor α Less Than That of a Mouse but May Activate Constitutive Androstane Receptor in Liver

    Directory of Open Access Journals (Sweden)

    Yuki Ito

    2012-01-01

    Full Text Available Dibutylphthalate (DBP, di(2-ethylhexylphthalate (DEHP, and di(2-ethylhexyladipate (DEHA are used as plasticizers. Their metabolites activate peroxisome proliferator-activated receptor (PPAR α, which may be related to their toxicities. However, species differences in the receptor functions between rodents and human make it difficult to precisely extrapolate their toxicity from animal studies to human. In this paper, we compared the species differences in the activation of mouse and human hepatic PPARα by these plasticizers using wild-type (mPPARα and humanized PPARα (hPPARα mice. At 12 weeks old, each genotyped male mouse was classified into three groups, and fed daily for 2 weeks per os with corn oil (vehicle control, 2.5 or 5.0 mmol/kg DBP (696, 1392 mg/kg, DEHP (977, 1953 mg/kg, and DEHA (926, 1853 mg/kg, respectively. Generally, hepatic PPARα of mPPARα mice was more strongly activated than that of hPPARα mice when several target genes involving β-oxidation of fatty acids were evaluated. Interestingly, all plasticizers also activated hepatic constitutive androstane receptor (CAR more in hPPARα mice than in mPPARα mice. Taken together, these plasticizers activated mouse and human hepatic PPARα as well as CAR. The activation of PPARα was stronger in mPPARα mice than in hPPARα mice, while the opposite was true of CAR.

  1. Mu-opioid receptor knockout mice show diminished food-anticipatory activity

    NARCIS (Netherlands)

    Kas, Martien J H; van den Bos, Ruud; Baars, Annemarie M; Lubbers, Marianne; Lesscher, Heidi M B; Hillebrand, Jacquelien J G; Schuller, Alwin G; Pintar, John E; Spruijt, Berry M

    We have previously suggested that during or prior to activation of anticipatory behaviour to a coming reward, mu-opioid receptors are activated. To test this hypothesis schedule induced food-anticipatory activity in mu-opioid receptor knockout mice was measured using running wheels. We hypothesized

  2. Targeting the urokinase plasminogen activator receptor inhibits ovarian cancer metastasis.

    Science.gov (United States)

    Kenny, Hilary A; Leonhardt, Payton; Ladanyi, Andras; Yamada, S Diane; Montag, Anthony; Im, Hae Kyung; Jagadeeswaran, Sujatha; Shaw, David E; Mazar, Andrew P; Lengyel, Ernst

    2011-02-01

    To understand the functional and preclinical efficacy of targeting the urokinase plasminogen activator receptor (u-PAR) in ovarian cancer. Expression of u-PAR was studied in 162 epithelial ovarian cancers, including 77 pairs of corresponding primary and metastatic tumors. The effect of an antibody against u-PAR (ATN-658) on proliferation, adhesion, invasion, apoptosis, and migration was assessed in 3 (SKOV3ip1, HeyA8, and CaOV3) ovarian cancer cell lines. The impact of the u-PAR antibody on tumor weight, number, and survival was examined in corresponding ovarian cancer xenograft models and the mechanism by which ATN-658 blocks metastasis was explored. Only 8% of all ovarian tumors were negative for u-PAR expression. Treatment of SKOV3ip1, HeyA8, and CaOV3 ovarian cancer cell lines with the u-PAR antibody inhibited cell invasion, migration, and adhesion. In vivo, anti-u-PAR treatment reduced the number of tumors and tumor weight in CaOV3 and SKOV3ip1 xenografts and reduced tumor weight and increased survival in HeyA8 xenografts. Immunostaining of CaOV3 xenograft tumors and ovarian cancer cell lines showed an increase in active-caspase 3 and TUNEL staining. Treatment with u-PAR antibody inhibited α(5)-integrin and u-PAR colocalization on primary human omental extracellular matrix. Anti-u-PAR treatment also decreased the expression of urokinase, u-PAR, β(3)-integrin, and fibroblast growth factor receptor-1 both in vitro and in vivo. This study shows that an antibody against u-PAR reduces metastasis, induces apoptosis, and reduces the interaction between u-PAR and α(5)-integrin. This provides a rationale for targeting the u-PAR pathway in patients with ovarian cancer and for further testing of ATN-658 in this indication. ©2010 AACR.

  3. Changes in the sialylation and sulfation of secreted thyrotropin in congenital hypothyroidism

    International Nuclear Information System (INIS)

    Gyves, P.W.; Gesundheit, N.; Thotakura, N.R.; Stannard, B.S.; DeCherney, G.S.; Weintraub, B.D.

    1990-01-01

    The authors have examined the oligosaccharide structure of secreted thyrotropin (TSH) in perinatal and mature rats with congenital primary hypothyroidism. Rat pituitaries from euthyroid control animals and those rendered hypothyroid by methimazole treatment were incubated with [ 3 H]glucosamine in vitro. Secreted TSH was purified, and oligosaccharides were enzymatically released and characterized by anion-exchange HPLC. In perinatal hypothyroid animals compared with control animals, oligosaccharides from TSH α and β subunits contained more species with three or more negative charges. Moreover, perinatal hypothyroid animals demonstrated a dramatic increase in the ratio of sialylated to sulfated species within oligosaccharides of the same negative charge. In mature hypothyroid 9-week-old animals compared with control animals, changes were less pronounced, suggesting that endocrine regulation of oligosaccharide structure is dependent upon the maturational state of the animal. Together, these data provide direct evidence and characterization of specific changes in the structure of a secreted pituitary glycoprotein hormone occurring as a result of in vivo endocrine alterations during early development. Moreover, they provide a potential structural basis to explain the delayed clearance of both TSH and the gonadotropins with end-organ deficiency, which may have important implications for the in vivo biological activities of these hormones

  4. Regulated internalization of NMDA receptors drives PKD1-mediated suppression of the activity of residual cell-surface NMDA receptors.

    Science.gov (United States)

    Fang, Xiao-Qian; Qiao, Haifa; Groveman, Bradley R; Feng, Shuang; Pflueger, Melissa; Xin, Wen-Kuan; Ali, Mohammad K; Lin, Shuang-Xiu; Xu, Jindong; Duclot, Florian; Kabbaj, Mohamed; Wang, Wei; Ding, Xin-Sheng; Santiago-Sim, Teresa; Jiang, Xing-Hong; Salter, Michael W; Yu, Xian-Min

    2015-11-19

    Constitutive and regulated internalization of cell surface proteins has been extensively investigated. The regulated internalization has been characterized as a principal mechanism for removing cell-surface receptors from the plasma membrane, and signaling to downstream targets of receptors. However, so far it is still not known whether the functional properties of remaining (non-internalized) receptor/channels may be regulated by internalization of the same class of receptor/channels. The N-methyl-D-aspartate receptor (NMDAR) is a principal subtype of glutamate-gated ion channel and plays key roles in neuronal plasticity and memory functions. NMDARs are well-known to undergo two types of regulated internalization - homologous and heterologous, which can be induced by high NMDA/glycine and DHPG, respectively. In the present work, we investigated effects of regulated NMDAR internalization on the activity of residual cell-surface NMDARs and neuronal functions. In electrophysiological experiments we discovered that the regulated internalization of NMDARs not only reduced the number of cell surface NMDARs but also caused an inhibition of the activity of remaining (non-internalized) surface NMDARs. In biochemical experiments we identified that this functional inhibition of remaining surface NMDARs was mediated by increased serine phosphorylation of surface NMDARs, resulting from the activation of protein kinase D1 (PKD1). Knockdown of PKD1 did not affect NMDAR internalization but prevented the phosphorylation and inhibition of remaining surface NMDARs and NMDAR-mediated synaptic functions. These data demonstrate a novel concept that regulated internalization of cell surface NMDARs not only reduces the number of NMDARs on the cell surface but also causes an inhibition of the activity of remaining surface NMDARs through intracellular signaling pathway(s). Furthermore, modulating the activity of remaining surface receptors may be an effective approach for treating receptor

  5. Hyperthyroidism and acromegaly due to a thyrotropin- and growth hormone-secreting pituitary tumor. Lack of hormonal response to bromocriptine.

    Science.gov (United States)

    Carlson, H E; Linfoot, J A; Braunstein, G D; Kovacs, K; Young, R T

    1983-05-01

    A 47-year-old woman with acromegaly and hyperthyroidism was found to have an inappropriately normal serum thyrotropin level (1.5 to 2.5 microU/ml) that responded poorly to thyrotropin-releasing hormone but showed partial responsiveness to changes in circulating thyroid hormones. Serum alpha-subunit levels were high-normal and showed a normal response to thyrotropin-releasing hormone. Growth hormone and thyrotropin hypersecretion persisted despite radiotherapy and bromocriptine treatment. Selective trans-sphenoidal removal of a pituitary adenoma led to normalization of both growth hormone and thyrotropin levels. Both thyrotropes and somatotropes were demonstrated in the adenoma by the immunoperoxidase technique and electron microscopy.

  6. Repressive effects of resveratrol on androgen receptor transcriptional activity.

    Directory of Open Access Journals (Sweden)

    Wen-feng Shi

    2009-10-01

    Full Text Available The chemopreventive effects of resveratrol (RSV on prostate cancer have been well established; the androgen receptor (AR plays pivotal roles in prostatic tumorigenesis. However, the exact underlying molecular mechanisms about the effects of RSV on AR have not been fully elucidated. A model system is needed to determine whether and how RSV represses AR transcriptional activity.The AR cDNA was first cloned into the retroviral vector pOZ-N and then integrated into the genome of AR-negative HeLa cells to generate the AR(+ cells. The constitutively expressed AR was characterized by monitoring hormone-stimulated nuclear translocation, DNA binding, and transcriptional activation, with the AR(- cells serving as controls. AR(+ cells were treated with RSV, and both AR protein levels and AR transcriptional activity were measured simultaneously. Chromatin immunoprecipitation (ChIP assays were used to detect the effects of RSV on the recruitment of AR to its cognate element (ARE.AR in the AR (+ stable cell line functions in a manner similar to that of endogenously expressed AR. Using this model system we clearly demonstrated that RSV represses AR transcriptional activity independently of any effects on AR protein levels. However, neither the hormone-mediated nucleus translocation nor the AR/ARE interaction was affected by RSV treatment.We demonstrated unambiguously that RSV regulates AR target gene expression, at least in part, by repressing AR transcriptional activity. Repressive effects of RSV on AR activity result from mechanisms other than the affects of AR nuclear translocation or DNA binding.

  7. Activation of postnatal neural stem cells requires nuclear receptor TLX.

    Science.gov (United States)

    Niu, Wenze; Zou, Yuhua; Shen, Chengcheng; Zhang, Chun-Li

    2011-09-28

    Neural stem cells (NSCs) continually produce new neurons in postnatal brains. However, the majority of these cells stay in a nondividing, inactive state. The molecular mechanism that is required for these cells to enter proliferation still remains largely unknown. Here, we show that nuclear receptor TLX (NR2E1) controls the activation status of postnatal NSCs in mice. Lineage tracing indicates that TLX-expressing cells give rise to both activated and inactive postnatal NSCs. Surprisingly, loss of TLX function does not result in spontaneous glial differentiation, but rather leads to a precipitous age-dependent increase of inactive cells with marker expression and radial morphology for NSCs. These inactive cells are mispositioned throughout the granular cell layer of the dentate gyrus during development and can proliferate again after reintroduction of ectopic TLX. RNA-seq analysis of sorted NSCs revealed a TLX-dependent global expression signature, which includes the p53 signaling pathway. TLX regulates p21 expression in a p53-dependent manner, and acute removal of p53 can rescue the proliferation defect of TLX-null NSCs in culture. Together, these findings suggest that TLX acts as an essential regulator that ensures the proliferative ability of postnatal NSCs by controlling their activation through genetic interaction with p53 and other signaling pathways.

  8. Evidence of G-protein-coupled receptor and substrate transporter heteromerization at a single molecule level.

    Science.gov (United States)

    Fischer, Jana; Kleinau, Gunnar; Rutz, Claudia; Zwanziger, Denise; Khajavi, Noushafarin; Müller, Anne; Rehders, Maren; Brix, Klaudia; Worth, Catherine L; Führer, Dagmar; Krude, Heiko; Wiesner, Burkhard; Schülein, Ralf; Biebermann, Heike

    2018-06-01

    G-protein-coupled receptors (GPCRs) can constitute complexes with non-GPCR integral membrane proteins, while such interaction has not been demonstrated at a single molecule level so far. We here investigated the potential interaction between the thyrotropin receptor (TSHR) and the monocarboxylate transporter 8 (MCT8), a member of the major facilitator superfamily (MFS), using fluorescence cross-correlation spectroscopy (FCCS). Both the proteins are expressed endogenously on the basolateral plasma membrane of the thyrocytes and are involved in stimulation of thyroid hormone production and release. Indeed, we demonstrate strong interaction between both the proteins which causes a suppressed activation of G q/11 by TSH-stimulated TSHR. Thus, we provide not only evidence for a novel interaction between the TSHR and MCT8, but could also prove this interaction on a single molecule level. Moreover, this interaction forces biased signaling at the TSHR. These results are of general interest for both the GPCR and the MFS research fields.

  9. The thyroid nodule. Thyrotropin and peripheral thyroid hormones; Der Schilddruesenknoten. TSH und periphere Hormone

    Energy Technology Data Exchange (ETDEWEB)

    Zimny, M. [Klinikum Hanau (Germany). Inst. fuer Nuklearmedizin

    2008-09-15

    Thyrotropin, free triodothyronine and thyroxine represent the standard serological parameters for the diagnostic work-up of the thyroid but only a minority of thyroid nodules present with subclinical or overt thyroid disorders. Besides a review of the regulation and principle of function of thyroid hormones as well as the effects of subclinical or overt hyperthyroidism, the significant role of these parameters beyond the assessment of hyperthyroidism in thyroid nodules is discussed. There is evidence that the level of thyrotropin within the normal range is predictive for the relevance of autonomous functioning nodules and the risk of malignancy of non-functioning thyroid nodules. Furthermore, the ratio of triodothyronine and thyroxine indicates the etiology of hyperthyroidism. Thyrotropin represents the main parameter to determine the adequate dose of thyroid hormone therapy of thyroid nodules. (orig.)

  10. The non-biphenyl-tetrazole angiotensin AT1 receptor antagonist eprosartan is a unique and robust inverse agonist of the active state of the AT1 receptor.

    Science.gov (United States)

    Takezako, Takanobu; Unal, Hamiyet; Karnik, Sadashiva S; Node, Koichi

    2018-03-23

    Conditions such as hypertension and renal allograft rejection are accompanied by chronic, agonist-independent, signalling by angiotensin II AT 1 receptors. The current treatment paradigm for these diseases entails the preferred use of inverse agonist AT 1 receptor blockers (ARBs). However, variability in the inverse agonist activities of common biphenyl-tetrazole ARBs for the active state of AT 1 receptors often leads to treatment failure. Therefore, characterization of robust inverse agonist ARBs for the active state of AT 1 receptors is necessary. To identify the robust inverse agonist for active state of AT 1 receptors and its molecular mechanism, we performed site-directed mutagenesis, competition binding assay, inositol phosphate production assay and molecular modelling for both ground-state wild-type AT 1 receptors and active-state N111G mutant AT 1 receptors. Although candesartan and telmisartan exhibited weaker inverse agonist activity for N111G- compared with WT-AT 1 receptors, only eprosartan exhibited robust inverse agonist activity for both N111G- and WT- AT 1 receptors. Specific ligand-receptor contacts for candesartan and telmisartan are altered in the active-state N111G- AT 1 receptors compared with the ground-state WT-AT 1 receptors, suggesting an explanation of their attenuated inverse agonist activity for the active state of AT 1 receptors. In contrast, interactions between eprosartan and N111G-AT 1 receptors were not significantly altered, and the inverse agonist activity of eprosartan was robust. Eprosartan may be a better therapeutic option than other ARBs. Comparative studies investigating eprosartan and other ARBs for the treatment of diseases caused by chronic, agonist-independent, AT 1 receptor activation are warranted. © 2018 The British Pharmacological Society.

  11. Triclocarban mediates induction of xenobiotic metabolism through activation of the constitutive androstane receptor and the estrogen receptor alpha.

    Directory of Open Access Journals (Sweden)

    Mei-Fei Yueh

    Full Text Available Triclocarban (3,4,4'-trichlorocarbanilide, TCC is used as a broad-based antimicrobial agent that is commonly added to personal hygiene products. Because of its extensive use in the health care industry and resistance to degradation in sewage treatment processes, TCC has become a significant waste product that is found in numerous environmental compartments where humans and wildlife can be exposed. While TCC has been linked to a range of health and environmental effects, few studies have been conducted linking exposure to TCC and induction of xenobiotic metabolism through regulation by environmental sensors such as the nuclear xenobiotic receptors (XenoRs. To identify the ability of TCC to activate xenobiotic sensors, we monitored XenoR activities in response to TCC treatment using luciferase-based reporter assays. Among the XenoRs in the reporter screening assay, TCC promotes both constitutive androstane receptor (CAR and estrogen receptor alpha (ERα activities. TCC treatment to hUGT1 mice resulted in induction of the UGT1A genes in liver. This induction was dependent upon the constitutive active/androstane receptor (CAR because no induction occurred in hUGT1Car(-/- mice. Induction of the UGT1A genes by TCC corresponded with induction of Cyp2b10, another CAR target gene. TCC was demonstrated to be a phenobarbital-like activator of CAR in receptor-based assays. While it has been suggested that TCC be classified as an endocrine disruptor, it activates ERα leading to induction of Cyp1b1 in female ovaries as well as in promoter activity. Activation of ERα by TCC in receptor-based assays also promotes induction of human CYP2B6. These observations demonstrate that TCC activates nuclear xenobiotic receptors CAR and ERα both in vivo and in vitro and might have the potential to alter normal physiological homeostasis. Activation of these xenobiotic-sensing receptors amplifies gene expression profiles that might represent a mechanistic base for

  12. Sulpiride and the role of dopaminergic receptor blockade in the antipsychotic activity of neuroleptics

    Energy Technology Data Exchange (ETDEWEB)

    Memo, M; Battaini, F; Spano, P F; Trabucchi, M [University of Brescia, (Italy). Dept. of Pharmacology

    1981-01-01

    It is now generally recognized that dopamine receptors excist in the CNS as different subtypes: D/sub 1/ receptors, associated with adenylyl cyclase activity, and D/sub 2/ receptor, uncoupled to a cyclic AMP generating system. In order to understand the role of D/sub 1/ and D/sub 2/ receptors in the antipsychotic action of neuroleptics, we have performed subchronic treatment with haloperidol, a drug which acts on D/sub 1/ receptors, and sulpiride, a selective antagonist to D/sub 2/ receptors. Long-term treatment with haloperidol does not induce significant supersensitivity of the D/sub 2/ receptors. In fact under these conditions /sup 3/H-(-)-sulpiride binding, which is a marker of D/sub 2/ receptor function, does not increase in rat striatum, while the long-term administration of sulpiride, itself produces supersensitivity of D/sub 2/ receptors. Moreover, sulpiride does not induce supersensitivity of the D/sub 1/ receptors, characterized by /sup 3/H-spiroperidol binding. These data suggest that both types of dopamine receptors may be involved in the clinical antipsychotic effects of neuroleptics. Unilateral leison of the nigrostriatal dopaminergic pathway produces an increase of striatal dopaminergic receptors, measured either by /sup 3/H-spiroperidol and /sup 3/H-(-)-sulpiride binding. These findings suggest that D/sub 1/ and D/sub 2/ receptors are present in postsynaptic membranes while it is still not known whether they exist in the same cellular elements.

  13. Sulpiride and the role of dopaminergic receptor blockade in the antipsychotic activity of neuroleptics

    International Nuclear Information System (INIS)

    Memo, M.; Battaini, F.; Spano, P.F.; Trabucchi, M.

    1981-01-01

    It is now generally recognized that dopamine receptors excist in the CNS as different subtypes: D 1 receptors, associated with adenylyl cyclase activity, and D 2 receptor, uncoupled to a cyclic APM generating system. In order to understand the role of D 1 and D 2 receptors in the antipsychotic action of neuroleptics, we have performed subchronic treatment with haloperidol, a drug which acts on D 1 receptors, and sulpiride, a selective antagonist to D 2 receptors. Long-term treatment with haloperidol does not induce significant supersensitivity of the D 2 receptors. In fact under these conditions 3 H-(-)-sulpiride binding, which is a marker of D 2 receptor function, does not increase in rat striatum, while the long-term administration of sulpiride, itself produces supersensitivity of D 2 receptors. Moreover, sulpiride does not induce supersensitivity of the D 1 receptors, characterized by 3 H-spiroperidol binding. These data suggest that both types of dopamine receptors may be involved in the clinical antipsychotic effects of neuroleptics. Unilateral leison of the nigrostriatal dopaminergic pathway produces an increase of striatal dopaminergic receptors, measured either by 3 H-spiroperidol and 3 H-(-)-sulpiride binding. These findings suggest that D 1 and D 2 receptors are present in postsynaptic membranes while it is still not known whether they exist in the same cellular elements. (author)

  14. Mechanoreceptor afferent activity compared with receptor field dimensions and pressure changes in feline urinary bladder.

    Science.gov (United States)

    Downie, J W; Armour, J A

    1992-11-01

    The relationship between vesical mechanoreceptor field dimensions and afferent nerve activity recorded in pelvic plexus nerve filaments was examined in chloralose-anesthetized cats. Orthogonal receptor field dimensions were monitored with piezoelectric ultrasonic crystals. Reflexly generated bladder contractile activity made measurements difficult, therefore data were collected from cats subjected to actual sacral rhizotomy. Afferent activity was episodic and was initiated at different pressure and receptor field dimension thresholds. Maximum afferent activity did not correlate with maximum volume or pressure. Furthermore, activity was not linearly related to intravesical pressure, receptor field dimensions, or calculated wall tension. Pressure-length hysteresis of the receptor fields occurred. The responses of identified afferent units and their associated receptor field dimensions to brief contractions elicited by the ganglion stimulant 1,1-dimethyl-4-phenylpiperazinium iodide (2.5-20 micrograms i.a.), studied under constant volume or constant pressure conditions, are compatible with bladder mechanoreceptors behaving as tension receptors. Because activity generated by bladder mechanoreceptors did not correlate in a simple fashion with intravesical pressure or receptor field dimensions, it is concluded that such receptors are influenced by the viscoelastic properties of the bladder wall. Furthermore, as a result of the heterogeneity of the bladder wall, receptor field tension appears to offer a more precise relationship with the activity of bladder wall mechanoreceptors than does intravesical pressure.

  15. Oleamide activates peroxisome proliferator-activated receptor gamma (PPARγ in vitro

    Directory of Open Access Journals (Sweden)

    Dionisi Mauro

    2012-05-01

    Full Text Available Abstract Background Oleamide (ODA is a fatty acid primary amide first identified in the cerebrospinal fluid of sleep-deprived cats, which exerts effects on vascular and neuronal tissues, with a variety of molecular targets including cannabinoid receptors and gap junctions. It has recently been reported to exert a hypolipidemic effect in hamsters. Here, we have investigated the nuclear receptor family of peroxisome proliferator-activated receptors (PPARs as potential targets for ODA action. Results Activation of PPARα, PPARβ and PPARγ was assessed using recombinant expression in Chinese hamster ovary cells with a luciferase reporter gene assay. Direct binding of ODA to the ligand binding domain of each of the three PPARs was monitored in a cell-free fluorescent ligand competition assay. A well-established assay of PPARγ activity, the differentiation of 3T3-L1 murine fibroblasts into adipocytes, was assessed using an Oil Red O uptake-based assay. ODA, at 10 and 50 μM, was able to transactivate PPARα, PPARβ and PPARγ receptors. ODA bound to the ligand binding domain of all three PPARs, although complete displacement of fluorescent ligand was only evident for PPARγ, at which an IC50 value of 38 μM was estimated. In 3T3-L1 cells, ODA, at 10 and 20 μM, induced adipogenesis. Conclusions We have, therefore, identified a novel site of action of ODA through PPAR nuclear receptors and shown how ODA should be considered as a weak PPARγ ligand in vitro.

  16. Molecular vibration-activity relationship in the agonism of adenosine receptors.

    Science.gov (United States)

    Chee, Hyun Keun; Oh, S June

    2013-12-01

    The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands.

  17. Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Hyun Keun Chee

    2013-12-01

    Full Text Available The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands.

  18. E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity

    International Nuclear Information System (INIS)

    Vlasak, R.; Luytjes, W.; Leider, J.; Spaan, W.; Palese, P.

    1988-01-01

    In addition to members of the Orthomyxoviridae and Paramyxoviridae, several coronaviruses have been shown to possess receptor-destroying activities. Purified bovine coronavirus (BCV) preparations have an esterase activity which inactivates O-acetylsialic acid-containing receptors on erythrocytes. Diisopropyl fluorophosphate (DFP) completely inhibits this receptor-destroying activity of BCV, suggesting that the viral enzyme is a serine esterase. Treatment of purified BCV with [ 3 H]DFP and subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the proteins revealed that the esterase/receptor-destroying activity of BCV is associated with the E3 protein was specifically phosphorylated. This finding suggests that the esterase/receptor-destroying activity of BCV is associated with the E3 protein. Furthermore, treatment of BCV with DFP dramatically reduced its infectivity in a plaque assay. It is assumed that the esterase activity of BCV is required in an early step of virus replication, possible during virus entry or uncoating

  19. E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity

    Energy Technology Data Exchange (ETDEWEB)

    Vlasak, R.; Luytjes, W.; Leider, J.; Spaan, W.; Palese, P.

    1988-12-01

    In addition to members of the Orthomyxoviridae and Paramyxoviridae, several coronaviruses have been shown to possess receptor-destroying activities. Purified bovine coronavirus (BCV) preparations have an esterase activity which inactivates O-acetylsialic acid-containing receptors on erythrocytes. Diisopropyl fluorophosphate (DFP) completely inhibits this receptor-destroying activity of BCV, suggesting that the viral enzyme is a serine esterase. Treatment of purified BCV with (/sup 3/H)DFP and subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the proteins revealed that the esterase/receptor-destroying activity of BCV is associated with the E3 protein was specifically phosphorylated. This finding suggests that the esterase/receptor-destroying activity of BCV is associated with the E3 protein. Furthermore, treatment of BCV with DFP dramatically reduced its infectivity in a plaque assay. It is assumed that the esterase activity of BCV is required in an early step of virus replication, possible during virus entry or uncoating.

  20. Renal cells activate the platelet receptor CLEC-2 through podoplanin

    Science.gov (United States)

    Christou, Charita M.; Pearce, Andrew C.; Watson, Aleksandra A.; Mistry, Anita R.; Pollitt, Alice Y.; Fenton-May, Angharad E.; Johnson, Louise A.; Jackson, David G.; Watson, Steve P.; O'Callaghan, Chris A.

    2009-01-01

    We have recently shown that the C-type lectin-like receptor, CLEC-2, is expressed on platelets and that it mediates powerful platelet aggregation by the snake venom toxin, rhodocytin. In addition, we have provided indirect evidence for an endogenous ligand for CLEC-2 in renal cells expressing human immunodeficiency virus type 1 (HIV-1). This putative ligand facilitates transmission of HIV through its incorporation into the viral envelope and binding to CLEC-2 on platelets. The aim of this study was to identify the ligand on these cells which binds to CLEC-2 on platelets. Recombinant CLEC-2 exhibits specific binding to 293T cells in which the HIV can be grown. Further, 293T cells activate both platelets and CLEC-2-transfected DT-40 B cells. The transmembrane protein podoplanin was identified on 293T cells and demonstrated to mediate both binding of 293T cells to CLEC-2 and 293T cell activation of CLEC-2-transfected DT-40 B cells. Podoplanin is expressed on renal cells (podocytes). Further, a direct interaction between CLEC-2 and podoplanin was confirmed using surface plasmon resonance and was shown to be independent of glycosylation of CLEC-2. The interaction has an affinity of 24.5 ± 3.7μM. The present study identifies podoplanin as a ligand for CLEC-2 on renal cells. PMID:18215137

  1. Mechanical stress activates NMDA receptors in the absence of agonists.

    Science.gov (United States)

    Maneshi, Mohammad Mehdi; Maki, Bruce; Gnanasambandam, Radhakrishnan; Belin, Sophie; Popescu, Gabriela K; Sachs, Frederick; Hua, Susan Z

    2017-01-03

    While studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca 2+ entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect. The competitive glutamate antagonists AP5 and GluN2B-selective inhibitor ifenprodil reduced NMDA-activated currents, but had no effect on the mechanically induced Ca 2+ influx. Extracellular Mg 2+ at 2 mM did not significantly affect the shear induced Ca 2+ influx, but at 10 mM it produced significant inhibition. Patch clamp experiments showed mechanical activation of NMDAR and inhibition by MK-801. The mechanical sensitivity of NMDARs may play a role in the normal physiology of fluid flow in the glymphatic system and it has obvious relevance to TBI.

  2. Clinical characteristics of patients with thyrotropin-secreting pituitary adenoma.

    Science.gov (United States)

    Wu, Yung-Yen; Chang, Hung-Yu; Lin, Jen-Der; Chen, Kwang-Wen; Huang, Yu-Yao; Jung, Shih-Ming

    2003-03-01

    Thyroid-stimulating hormone (thyrotropin, TSH)-secreting pituitary adenoma is a very rare cause of hyperthyroidism. Diagnosis of this condition is often delayed due to lack of availability of TSH radioimmunoassay (RIA), the failure to recognize the utility of RIA and the incorrect attribution of the condition to other causes of thyrotoxicosis. This retrospective study analyzed the clinical characteristics of patients with this disorder treated from 1991 to 2002. Seven patients (6 females, 1 male; mean age, 48 years; range, 33 to 72 years) with a diagnosis of TSHsecreting pituitary adenoma based on detectable TSH levels with high serum free thyroid hormone or triiodothyronine concentrations and pituitary lesions found on neuroimaging were included in this study. Patient records including clinical features, endocrine studies, immunohistochemistry studies, and response to treatment were reviewed. All 7 patients had hyperthyroidism, elevated free thyroxine or triiodothyronine levels, and unsuppressed levels of TSH. Imaging studies demonstrated a pituitary mass or lesion in all patients. Six patients had macroadenomas and 1 patient had a microadenoma. One of the patients had coexisting acromegalic features and hypersecretion of growth hormone was diagnosed. All of the patients had been treated with thionamides or thyroidectomy for presumed primary hyperthyroidism. Serum alpha-subunit level was uncharacteristically normal in 2 patients and elevated in 1 patient. Alpha-subunit/TSH molar ratios were elevated in 3 patients. Five patients underwent transsphenoidal adenomectomy but only one of them remained well-controlled at follow-up. Three patients received administration of somatostatin analogs and they achieved normalization of serum TSH and free thyroid hormones during the period of therapy. TSH immunoassay has an important role in the evaluation of hyperthyroid patients to determine the presence of inappropriate secretion. TSH-secreting pituitary adenoma exhibits

  3. β1-adrenergic receptors activate two distinct signaling pathways in striatal neurons

    Science.gov (United States)

    Meitzen, John; Luoma, Jessie I.; Stern, Christopher M.; Mermelstein, Paul G.

    2010-01-01

    Monoamine action in the dorsal striatum and nucleus accumbens plays essential roles in striatal physiology. Although research often focuses on dopamine and its receptors, norepinephrine and adrenergic receptors are also crucial in regulating striatal function. While noradrenergic neurotransmission has been identified in the striatum, little is known regarding the signaling pathways activated by β-adrenergic receptors in this brain region. Using cultured striatal neurons, we characterized a novel signaling pathway by which activation of β1-adrenergic receptors leads to the rapid phosphorylation of cAMP Response Element Binding Protein (CREB), a transcription-factor implicated as a molecular switch underlying long-term changes in brain function. Norepinephrine-mediated CREB phosphorylation requires β1-adrenergic receptor stimulation of a receptor tyrosine kinase, ultimately leading to the activation of a Ras/Raf/MEK/MAPK/MSK signaling pathway. Activation of β1-adrenergic receptors also induces CRE-dependent transcription and increased c-fos expression. In addition, stimulation of β1-adrenergic receptors produces cAMP production, but surprisingly, β1-adrenergic receptor activation of adenylyl cyclase was not functionally linked to rapid CREB phosphorylation. These findings demonstrate that activation of β1-adrenergic receptors on striatal neurons can stimulate two distinct signaling pathways. These adrenergic actions can produce long-term changes in gene expression, as well as rapidly modulate cellular physiology. By elucidating the mechanisms by which norepinephrine and β1-adrenergic receptor activation affects striatal physiology, we provide the means to more fully understand the role of monoamines in modulating striatal function, specifically how norepinephrine and β1-adrenergic receptors may affect striatal physiology. PMID:21143600

  4. Structure-activity relationships of rosiglitazone for peroxisome proliferator-activated receptor gamma transrepression.

    Science.gov (United States)

    Toyota, Yosuke; Nomura, Sayaka; Makishima, Makoto; Hashimoto, Yuichi; Ishikawa, Minoru

    2017-06-15

    Anti-inflammatory effects of peroxisome proliferator-activated receptor gamma (PPRAγ) ligands are thought to be largely due to PPARγ-mediated transrepression. Thus, transrepression-selective PPARγ ligands without agonistic activity or with only partial agonistic activity should exhibit anti-inflammatory properties with reduced side effects. Here, we investigated the structure-activity relationships (SARs) of PPARγ agonist rosiglitazone, focusing on transrepression activity. Alkenic analogs showed slightly more potent transrepression with reduced efficacy of transactivating agonistic activity. Removal of the alkyl group on the nitrogen atom improved selectivity for transrepression over transactivation. Among the synthesized compounds, 3l exhibited stronger transrepressional activity (IC 50 : 14μM) and weaker agonistic efficacy (11%) than rosiglitazone or pioglitazone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Peroxisome proliferators-activated receptor (PPAR) regulation in cardiac metabolism and disease

    NARCIS (Netherlands)

    el Azzouzi, H.

    2009-01-01

    Peroxisome proliferators-activated receptors (PPARs) are members of the nuclear receptor family of ligand activated transcription factors and consist of the three isoforms, PPAR, PPAR/ and PPAR. Considerable evidence has established the importance of PPARs in myocardial lipid homeostasis and

  6. Activation of toll-like receptors and dendritic cells by a broad range of bacterial molecules

    NARCIS (Netherlands)

    Boele, L.C.L.; Bajramovic, J.J.; Vries, A.M.M.B.C. de; Voskamp-Visser, I.A.I.; Kaman, W.E.; Kleij, D. van der

    2009-01-01

    Activation of pattern recognition receptors such as Toll-like receptors (TLRs) by pathogens leads to activation and maturation of dendritic cells (DC), which orchestrate the development of the adaptive immune response. To create an overview of the effects of a broad range of pathogenic bacteria,

  7. Plasma soluble urokinase plasminogen activator receptor in children with urinary tract infection

    DEFF Research Database (Denmark)

    Wittenhagen, Per; Andersen, Jesper Brandt; Hansen, Anita

    2011-01-01

    In this prospective study we investigated the role of plasma levels of soluble urokinase plasminogen activator receptor (suPAR) in children with urinary tract infection.......In this prospective study we investigated the role of plasma levels of soluble urokinase plasminogen activator receptor (suPAR) in children with urinary tract infection....

  8. Modulation of receptors and adenylate cyclase activity during sucrose feeding, food deprivation, and cold exposure

    International Nuclear Information System (INIS)

    Scarpace, P.J.; Baresi, L.A.; Morley, J.E.

    1987-01-01

    Thermogenesis in brown adipose tissue (BAT) serves as a regulator of body temperature and weight maintenance. Thermogenesis can be stimulated by catecholamine activation of adenylate cyclase through the β-adrenergic receptor. To investigate the effects of sucrose feeding, food deprivation, and cold exposure on the β-adrenergic pathway, adenylate cyclase activity and β-adrenergic receptors were assessed in rat BAT after 2 wk of sucrose feeding, 2 days of food deprivation, or 2 days of cold exposure. β-Adrenergic receptors were identified in BAT using [ 125 I]iodocyanopindolol. Binding sites had the characteristics of mixed β 1 - and β 2 -type adrenergic receptors at a ratio of 60/40. After sucrose feeding or cold exposure, there was the expected increase in BAT mitochondrial mass as measured by total cytochrome-c oxidase activity but a decrease in β-adrenergic receptor density due to a loss of the β 1 -adrenergic subtype. This BAT β-adrenergic receptor downregulation was tissue specific, since myocardial β-adrenergic receptors were unchanged with either sucrose feeding or cold exposure. Forskolin-stimulated adenylate cyclase activity increased in BAT after sucrose feeding or cold exposure but not after food deprivation. These data suggest that in BAT, sucrose feeding or cold exposure result in downregulation of β-adrenergic receptors and that isoproterenol-stimulated adenylate cyclase activity was limited by receptor availability

  9. AmTAR2: Functional characterization of a honeybee tyramine receptor stimulating adenylyl cyclase activity.

    Science.gov (United States)

    Reim, Tina; Balfanz, Sabine; Baumann, Arnd; Blenau, Wolfgang; Thamm, Markus; Scheiner, Ricarda

    2017-01-01

    The biogenic monoamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. Insects such as honeybees do not synthesize these neuroactive substances. Instead, they employ octopamine and tyramine for comparable physiological functions. These biogenic amines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Based on pharmacological data obtained on heterologously expressed receptors, α- and β-adrenergic-like octopamine receptors are better activated by octopamine than by tyramine. Conversely, GPCRs forming the type 1 tyramine receptor clade (synonymous to octopamine/tyramine receptors) are better activated by tyramine than by octopamine. More recently, receptors were characterized which are almost exclusively activated by tyramine, thus forming an independent type 2 tyramine receptor clade. Functionally, type 1 tyramine receptors inhibit adenylyl cyclase activity, leading to a decrease in intracellular cAMP concentration ([cAMP] i ). Type 2 tyramine receptors can mediate Ca 2+ signals or both Ca 2+ signals and effects on [cAMP] i . We here provide evidence that the honeybee tyramine receptor 2 (AmTAR2), when heterologously expressed in flpTM cells, exclusively causes an increase in [cAMP] i . The receptor displays a pronounced preference for tyramine over octopamine. Its activity can be blocked by a series of established antagonists, of which mianserin and yohimbine are most efficient. The functional characterization of two tyramine receptors from the honeybee, AmTAR1 (previously named AmTYR1) and AmTAR2, which respond to tyramine by changing cAMP levels in opposite direction, is an important step towards understanding the actions of tyramine in honeybee behavior and physiology, particularly in comparison to the effects of octopamine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Activity-induced and developmental downregulation of the Nogo receptor

    DEFF Research Database (Denmark)

    Josephson, Anna; Trifunovski, Alexandra; Schéele, Camilla

    2003-01-01

    The three axon growth inhibitory proteins, myelin associated glycoprotein, oligodendrocyte-myelin glycoprotein and Nogo-A, can all bind to the Nogo-66 receptor (NgR). This receptor is expressed by neurons with high amounts in regions of high plasticity where Nogo expression is also high. We hypot...

  11. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation

    Science.gov (United States)

    Perception of pathogen-associated molecular patterns (PAMPs) by surface-localised pattern-recognition receptors (PRRs) is a key component of plant innate immunity. Most known plant PRRs are receptor kinases and initiation of PAMP-triggered immunity (PTI) signalling requires phosphorylation of the PR...

  12. Proteolytic regulation of Notch1 receptor activity in cancer

    NARCIS (Netherlands)

    van Tetering, Geert

    2011-01-01

    The Notch receptor is part of a highly conserved signaling pathway essential in development and disease in embryos and adults. Notch proteins coordinate cell-cell communication through receptor-ligand interactions between adjacent cells. First Notch is cleaved in the Golgi by furin at Site-1 (S1)

  13. Peroxisome proliferator-activated receptor α agonist-induced down-regulation of hepatic glucocorticoid receptor expression in SD rats

    International Nuclear Information System (INIS)

    Chen Xiang; Li Ming; Sun Weiping; Bi Yan; Cai Mengyin; Liang Hua; Yu Qiuqiong; He Xiaoying; Weng Jianping

    2008-01-01

    It was reported that glucocorticoid production was inhibited by fenofibrate through suppression of type-1 11β-hydroxysteroid dehydrogenase gene expression in liver. The inhibition might be a negative-feedback regulation of glucocorticoid receptor (GR) activity by peroxisome proliferator-activated receptor alpha (PPARα), which is quickly induced by glucocorticoid in the liver. However, it is not clear if GR expression is changed by fenofibrate-induced PPARα activation. In this study, we tested this possibility in the liver of Sprague-Dawley rats. GR expression was reduced by fenofibrate in a time- and does-dependent manner. The inhibition was observed in liver, but not in fat and muscle. The corticosterone level in the blood was increased significantly by fenofibrate. These effects of fenofibrate were abolished by PPARα inhibitor MK886, suggesting that fenofibrate activated through PPARα. In conclusion, inhibition of GR expression may represent a new molecular mechanism for the negative feedback regulation of GR activity by PPARα

  14. Protease-activated receptor-2 activation exaggerates TRPV1-mediated cough in guinea pigs.

    Science.gov (United States)

    Gatti, Raffaele; Andre, Eunice; Amadesi, Silvia; Dinh, Thai Q; Fischer, Axel; Bunnett, Nigel W; Harrison, Selena; Geppetti, Pierangelo; Trevisani, Marcello

    2006-08-01

    A lowered threshold to the cough response frequently accompanies chronic airway inflammatory conditions. However, the mechanism(s) that from chronic inflammation results in a lowered cough threshold is poorly understood. Irritant agents, including capsaicin, resiniferatoxin, and citric acid, elicit cough in humans and in experimental animals through the activation of the transient receptor potential vanilloid 1 (TRPV1). Protease-activated receptor-2 (PAR2) activation plays a role in inflammation and sensitizes TRPV1 in cultured sensory neurons by a PKC-dependent pathway. Here, we have investigated whether PAR2 activation exaggerates TRPV1-dependent cough in guinea pigs and whether protein kinases are involved in the PAR2-induced cough modulation. Aerosolized PAR2 agonists (PAR2-activating peptide and trypsin) did not produce any cough per se. However, they potentiated citric acid- and resiniferatoxin-induced cough, an effect that was completely prevented by the TRPV1 receptor antagonist capsazepine. In contrast, cough induced by hypertonic saline, a stimulus that provokes cough in a TRPV1-independent manner, was not modified by aerosolized PAR2 agonists. The PKC inhibitor GF-109203X, the PKA inhibitor H-89, and the cyclooxygenase inhibitor indomethacin did not affect cough induced by TRPV1 agonists, but abated the exaggeration of this response produced by PAR2 agonists. In conclusion, PAR2 stimulation exaggerates TRPV1-dependent cough by activation of diverse mechanism(s), including PKC, PKA, and prostanoid release. PAR2 activation, by sensitizing TRPV1 in primary sensory neurons, may play a role in the exaggerated cough observed in certain airways inflammatory diseases such as asthma and chronic obstructive pulmonary disease.

  15. Characterization of human endothelial cell urokinase-type plasminogen activator receptor protein and messenger RNA

    DEFF Research Database (Denmark)

    Barnathan, E S; Kuo, A; Karikó, K

    1990-01-01

    Human umbilical vein endothelial cells in culture (HUVEC) express receptors for urokinase-type plasminogen activators (u-PA). The immunochemical nature of this receptor and its relationship to u-PA receptors expressed by other cell types is unknown. Cross-linking active site-blocked u-PA to HUVEC...... an endothelial cell cDNA library using the polymerase chain reaction (PCR) and oligonucleotide primers corresponding to the DNA sequence of the receptor cloned from transformed human fibroblasts (Roldan et al, EMBO J 9:467, 1990). The size of the cDNA (approximately 1,054 base pairs, bp) and the presence...

  16. Function of the cytoplasmic tail of human calcitonin receptor-like receptor in complex with receptor activity-modifying protein 2

    Energy Technology Data Exchange (ETDEWEB)

    Kuwasako, Kenji, E-mail: kuwasako@fc.miyazaki-u.ac.jp [Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692 (Japan); Kitamura, Kazuo; Nagata, Sayaka; Hikosaka, Tomomi [Division of Circulation and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692 (Japan); Kato, Johji [Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692 (Japan)

    2010-02-12

    Receptor activity-modifying protein 2 (RAMP2) enables calcitonin receptor-like receptor (CRLR) to form an adrenomedullin (AM)-specific receptor. Here we investigated the function of the cytoplasmic C-terminal tail (C-tail) of human (h)CRLR by co-transfecting its C-terminal mutants into HEK-293 cells stably expressing hRAMP2. Deleting the C-tail from CRLR disrupted AM-evoked cAMP production or receptor internalization, but did not affect [{sup 125}I]AM binding. We found that CRLR residues 428-439 are required for AM-evoked cAMP production, though deleting this region had little effect on receptor internalization. Moreover, pretreatment with pertussis toxin (100 ng/mL) led to significant increases in AM-induced cAMP production via wild-type CRLR/RAMP2 complexes. This effect was canceled by deleting CRLR residues 454-457, suggesting Gi couples to this region. Flow cytometric analysis revealed that CRLR truncation mutants lacking residues in the Ser/Thr-rich region extending from Ser{sup 449} to Ser{sup 467} were unable to undergo AM-induced receptor internalization and, in contrast to the effect on wild-type CRLR, overexpression of GPCR kinases-2, -3 and -4 failed to promote internalization of CRLR mutants lacking residues 449-467. Thus, the hCRLR C-tail is crucial for AM-evoked cAMP production and internalization of the CRLR/RAMP2, while the receptor internalization is dependent on the aforementioned GPCR kinases, but not Gs coupling.

  17. Androgen receptor activation: a prospective therapeutic target for bladder cancer?

    Science.gov (United States)

    Mizushima, Taichi; Tirador, Kathleen A; Miyamoto, Hiroshi

    2017-03-01

    Patients with non-muscle-invasive or muscle-invasive bladder cancer undergoing surgery and currently available conventional therapy remain having a high risk of tumor recurrence or progression, respectively. Novel targeted molecular therapy is therefore expected to improve patient outcomes. Meanwhile, substantially higher incidence of bladder cancer in men has prompted research on androgen-mediated androgen receptor (AR) signaling in this malignancy. Indeed, preclinical evidence has suggested that AR signaling plays an important role in urothelial carcinogenesis and tumor outgrowth as well as resistance to some of the currently available conventional non-surgical therapies. Areas covered: We summarize and discuss available data suggesting the involvement of AR and its potential downstream targets in the development and progression of bladder cancer. Associations between AR signaling and sensitivity to cisplatin/doxorubicin or bacillus Calmette-Guérin treatment are also reviewed. Expert opinion: AR activation is likely to correlate with the promotion of urothelial carcinogenesis and cancer outgrowth as well as resistance to conventional therapies. Molecular therapy targeting the AR may thus provide effective chemopreventive and therapeutic approaches for urothelial cancer. Accordingly, bladder cancer can now be considered as an endocrine-related neoplasm. Clinical application of various anti-AR therapies available for AR-dependent prostate cancer to bladder cancer patients is anticipated.

  18. Induction of aryl hydrocarbon receptor-mediated and estrogen receptor-mediated activities, and modulation of cell proliferation by dinaphthofurans

    Czech Academy of Sciences Publication Activity Database

    Vondráček, Jan; Chramostová, Kateřina; Plíšková, M.; Bláha, L.; Brack, W.; Kozubík, Alois; Machala, M.

    2004-01-01

    Roč. 23, č. 9 (2004), s. 2214-2220 ISSN 0730-7268 R&D Projects: GA ČR GA525/03/1527 Institutional research plan: CEZ:AV0Z5004920 Keywords : aryl hydrocarbon receptor-mediated activity * estrogenicity * intercellular communication inhibition Subject RIV: BO - Biophysics Impact factor: 2.121, year: 2004

  19. Thyrotropin-releasing hormone controls mitochondrial biology in human epidermis.

    Science.gov (United States)

    Knuever, Jana; Poeggeler, Burkhard; Gáspár, Erzsébet; Klinger, Matthias; Hellwig-Burgel, Thomas; Hardenbicker, Celine; Tóth, Balázs I; Bíró, Tamás; Paus, Ralf

    2012-03-01

    Mitochondrial capacity and metabolic potential are under the control of hormones, such as thyroid hormones. The most proximal regulator of the hypothalamic-pituitary-thyroid (HPT) axis, TRH, is the key hypothalamic integrator of energy metabolism via its impact on thyroid hormone secretion. Here, we asked whether TRH directly modulates mitochondrial functions in normal, TRH-receptor-positive human epidermis. Organ-cultured human skin was treated with TRH (5-100 ng/ml) for 12-48 h. TRH significantly increased epidermal immunoreactivity for the mitochondria-selective subunit I of respiratory chain complex IV (MTCO1). This resulted from an increased MTCO1 transcription and protein synthesis and a stimulation of mitochondrial biogenesis as demonstrated by transmission electron microscopy and TRH-enhanced mitochondrial DNA synthesis. TRH also significantly stimulated the transcription of several other mitochondrial key genes (TFAM, HSP60, and BMAL1), including the master regulator of mitochondrial biogenesis (PGC-1α). TRH significantly enhanced mitochondrial complex I and IV enzyme activity and enhanced the oxygen consumption of human skin samples, which shows that the stimulated mitochondria are fully vital because the main source for cellular oxygen consumption is mitochondrial endoxidation. These findings identify TRH as a potent, novel neuroendocrine stimulator of mitochondrial activity and biogenesis in human epidermal keratinocytes in situ. Thus, human epidermis offers an excellent model for dissecting neuroendocrine controls of human mitochondrial biology under physiologically relevant conditions and for exploring corresponding clinical applications.

  20. Quantitative structure-activity relationships of selective antagonists of glucagon receptor using QuaSAR descriptors.

    Science.gov (United States)

    Manoj Kumar, Palanivelu; Karthikeyan, Chandrabose; Hari Narayana Moorthy, Narayana Subbiah; Trivedi, Piyush

    2006-11-01

    In the present paper, quantitative structure activity relationship (QSAR) approach was applied to understand the affinity and selectivity of a novel series of triaryl imidazole derivatives towards glucagon receptor. Statistically significant and highly predictive QSARs were derived for glucagon receptor inhibition by triaryl imidazoles using QuaSAR descriptors of molecular operating environment (MOE) employing computer-assisted multiple regression procedure. The generated QSAR models revealed that factors related to hydrophobicity, molecular shape and geometry predominantly influences glucagon receptor binding affinity of the triaryl imidazoles indicating the relevance of shape specific steric interactions between the molecule and the receptor. Further, QSAR models formulated for selective inhibition of glucagon receptor over p38 mitogen activated protein (MAP) kinase of the compounds in the series highlights that the same structural features, which influence the glucagon receptor affinity, also contribute to their selective inhibition.

  1. Results of quality control surveys of radioimmunological determinations of thyrotropin in newborns

    International Nuclear Information System (INIS)

    Roehle, G.; Kruse, R.; Voigt, U.; Torresani, T.

    1983-01-01

    Within the quality control scheme of the Deutsche Gesellschaft fuer Klinische Chemie, seven quality control surveys of thyrotropin (TSH) determinations in blood dried on filter paper have been carried out since 1980. Ninety-six screening laboratories from 12 European countries took part in these surveys. In a single survey each participant usually analysed four different samples; each of these consisted of three spots of dried blood spiked with defined amounts of thyrotropin. For the evaluations of the surveys the participants were asked to give information about their analytical results, and from these, their diagnostic classifications. The medians of the analytical results correlated well with the given thyrotropin concentrations, but the individual estimations from different laboratories varied greatly. Major discrepancies of classification were also apparent, both in the given thyrotropin concentrations and in the individual estimations. Two special collaborative studies with nine selected laboratories showed on the one hand that analysis of the largest possible part of the dried blood sample can help to optimize the precision of the results; on the other hand, considerable drawbacks related to the reagents and the methods were sometimes observed. (orig.) [de

  2. Parity and 11-Year Serum Thyrotropin and Thyroid Autoantibody Change: A Longitudinal Population-Based Study

    DEFF Research Database (Denmark)

    Bjergved, Lena; Carlé, Allan; Jørgensen, Torben

    2016-01-01

    thyrotropin (TSH), as well as change in thyroid peroxidase autoantibody (TPOAb) status. A random sample of 4649 people aged 18-65 years participated in a population-based study in the period 1997-1998. In the study presented here, 1749 non-pregnant women with no history of thyroid disease were included who...

  3. Preparation of standards of triiodothyronine, thyroxine and thyrotropin; Prepracion de estandares de triyodotironina, tiroxina y tirotrofina

    Energy Technology Data Exchange (ETDEWEB)

    Lavalley E, C.; Delgado S, B.; Ruiz J, A.; Zambrano A, F

    1991-10-15

    The standards preparation requires of certain basic principles, some of which are described in this work, which was made with the purpose of establishing the most appropriate conditions for the preparation of standards of triiodothyronine, thyroxine and thyrotropin to be used in radioimmunoanalysis essays. The diverse standards show a balanced displacement, that which is observed in the graphs presented in this work. (Author)

  4. Effects of thyrotropin-releasing hormone on regional cerebral blood flow in man

    DEFF Research Database (Denmark)

    Oturai, P S; Friberg, L; Sam, I

    1992-01-01

    emission computerized tomograph and inhalation of 133Xe. Thyrotropin-releasing hormone caused a significant mean increase of 3.7% (range -8.8-22.7) in blood flow in a region consistent with the left thalamus compared to placebo (3.2% decrease). In 25 other regions no significant change was detected...

  5. Differential Regulation of Receptor Activation and Agonist Selectivity by Highly Conserved Tryptophans in the Nicotinic Acetylcholine Receptor Binding Site

    OpenAIRE

    Williams, Dustin K.; Stokes, Clare; Horenstein, Nicole A.; Papke, Roger L.

    2009-01-01

    We have shown previously that a highly conserved Tyr in the nicotinic acetylcholine receptor (nAChR) ligand-binding domain (LBD) (α7 Tyr188 or α4 Tyr195) differentially regulates the activity of acetylcholine (ACh) and the α7-selective agonist 3-(4-hydroxy,2-methoxybenzylidene)anabaseine (4OH-GTS-21) in α4β2 and α7 nAChR. In this study, we mutated two highly conserved LBD Trp residues in human α7 and α4β2 and expressed the receptors in Xenopus laevis oocytes. α7 Re...

  6. Sulindac metabolites inhibit epidermal growth factor receptor activation and expression

    Directory of Open Access Journals (Sweden)

    Ahnen Dennis

    2005-01-01

    Full Text Available Abstract Background Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs is associated with a decreased mortality from colorectal cancer (CRC. NSAIDs induce apoptotic cell death in colon cancer cells in vitro and inhibit growth of neoplastic colonic mucosa in vivo however, the biochemical mechanisms required for these growth inhibitory effects are not well defined. We previously reported that metabolites of the NSAID sulindac downregulate extracellular-signal regulated kinase 1/2 (ERK1/2 signaling and that this effect is both necessary and sufficient for the apoptotic effects of these drugs. The goal of this project was to specifically test the hypothesis that sulindac metabolites block activation and/or expression of the epidermal growth factor (EGF receptor (EGFR. Methods HT29 human colon cancer cells were treated with EGF, alone, or in the presence of sulindac sulfide or sulindac sulfone. Cells lysates were assayed by immunoblotting for phosphorylated EGFR (pEGFR, pY1068, total EGFR, phosphorylated ERK1/2 (pERK1/2, total ERK1/2, activated caspase-3, and α-tubulin. Results EGF treatment rapidly induced phosphorylation of both EGFR and ERK1/2 in HT29 colon cancer cells. Pretreatment with sulindac metabolites for 24 h blocked EGF-induced phosphorylation of both EGFR and ERK1/2 and decreased total EGFR protein expression. Under basal conditions, downregulation of pEGFR and total EGFR was detected as early as 12 h following sulindac sulfide treatment and persisted through at least 48 h. Sulindac sulfone induced downregulation of pEGFR and total EGFR was detected as early as 1 h and 24 h, respectively, following drug treatment, and persisted through at least 72 h. EGFR downregulation by sulindac metabolites was observed in three different CRC cell lines, occurred prior to the observed downregulation of pERK1/2 and induction of apoptosis by these drugs, and was not dependent of caspase activation. Conclusion These results suggest that

  7. Ligand-independent Thrombopoietin Mutant Receptor Requires Cell Surface Localization for Endogenous Activity*

    OpenAIRE

    Marty, Caroline; Chaligné, Ronan; Lacout, Catherine; Constantinescu, Stefan N.; Vainchenker, William; Villeval, Jean-Luc

    2009-01-01

    The activating W515L mutation in the thrombopoietin receptor (MPL) has been identified in primary myelofibrosis and essential thrombocythemia. MPL belongs to a subset of the cytokine receptor superfamily that requires the JAK2 kinase for signaling. We examined whether the ligand-independent MPLW515L mutant could signal intracellularly. Addition of the endoplasmic reticulum (ER) retention KDEL sequence to the receptor C terminus efficiently locked MPLW515L within its na...

  8. Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors

    OpenAIRE

    Chee, Hyun Keun; Oh, S. June

    2013-01-01

    The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine ...

  9. Effect of Thyrotropin Suppression Therapy on Bone in Thyroid Cancer Patients.

    Science.gov (United States)

    Papaleontiou, Maria; Hawley, Sarah T; Haymart, Megan R

    2016-02-01

    The thyroid cancer incidence is rising. Despite current guidelines, controversy exists regarding the degree and duration of thyrotropin suppression therapy. Also, its potential skeletal effects remain a concern to physicians caring for thyroid cancer patients. We conducted a review of published data to evaluate existing studies focusing on the skeletal effects of thyrotropin suppression therapy in thyroid cancer patients. A systematic search of the PubMed, Ovid/Medline, and Cochrane Central Register of Controlled Trials databases was conducted. The retained studies were evaluated for methodological quality, and the study populations were categorized into premenopausal women, postmenopausal women, and men. Twenty-five pertinent studies were included. Seven studies were longitudinal and 18 were cross-sectional. Of the 25 included studies, 13 were assigned an excellent methodological quality score. Three of 5 longitudinal studies and 3 of 13 cross-sectional studies reported decreased bone mineral density (BMD) in premenopausal women; 2 of 4 longitudinal studies and 5 of 13 cross-sectional studies reported decreased BMD in postmenopausal women. The remaining studies showed no effect on BMD. The only longitudinal study of men showed bone mass loss; however, cross-sectional studies of men did not demonstrate a similar effect. Studies to date have yielded conflicting results on the skeletal effects of thyrotropin suppression therapy and a knowledge gap remains, especially for older adults and men. Existing data should be cautiously interpreted because of the variable quality and heterogeneity. Identifying groups at risk of adverse effects from thyrotropin suppression therapy will be instrumental to providing focused and tailored thyroid cancer treatment. The standard treatment for thyroid cancer includes total thyroidectomy with or without radioactive iodine ablation, often followed by thyrotropin suppression therapy. Despite current guidelines, controversy exists

  10. Endogenous Thyrotropin and Triiodothyronine Concentrations in Individuals with Thyroid Cancer

    Science.gov (United States)

    Nsouli-Maktabi, Hala; Soldin, Steven J.

    2008-01-01

    Background Thyroid hormone suppression therapy is associated with decreased recurrence rates and improved survival in patients with differentiated thyroid cancer. Recently higher baseline thyrotropin (TSH) levels have been found to be associated with a postoperative diagnosis of differentiated thyroid cancer. Our objective was to confirm whether preoperative TSH levels were higher in patients who were diagnosed with differentiated thyroid cancer after undergoing thyroidectomy, compared with patients who were found to have benign disease. We also sought to determine whether thyroid hormone levels were lower in the patients with malignancy. Methods The study was a retrospective analysis of a prospective study. The study setting was the General Clinical Research Center of an Academic Medical Center. Participants were 50 euthyroid patients undergoing thyroidectomy. Thyroxine, triiodothyronine (T3), and TSH levels were documented in patients prior to their scheduled thyroidectomy. Following thyroidectomy, patients were divided into those with a histologic diagnosis of either differentiated thyroid cancer or benign disease. Preoperative thyroid profiles were correlated with patients' postoperative diagnoses. Results All patients had a normal serum TSH concentration preoperatively. One-third of the group was diagnosed with thyroid cancer as a result of their thyroidectomy. These patients had a higher serum TSH level (mean = 1.50 mIU/L, CI 1.22–1.78 mIU/L) than patients with benign disease (mean = 1.01 mIU/mL, CI 0.84–1.18 mIU/L). There was a greater risk of having thyroid cancer in patients with TSH levels in the upper three quartiles of TSH values, compared with patients with TSH concentrations in the lowest quartile of TSH values (odd ratio = 8.7, CI 2.2–33.7). Patients with a thyroid cancer diagnosis also had lower T3 concentrations measured by liquid chromatography tandem mass spectrometry (mean = 112.6 ng/dL, CI 103.8–121.4

  11. Adenosine A2A Receptor Modulates the Activity of Globus Pallidus Neurons in Rats

    Directory of Open Access Journals (Sweden)

    Hui-Ling Diao

    2017-11-01

    Full Text Available The globus pallidus is a central nucleus in the basal ganglia motor control circuit. Morphological studies have revealed the expression of adenosine A2A receptors in the globus pallidus. To determine the modulation of adenosine A2A receptors on the activity of pallidal neurons in both normal and parkinsonian rats, in vivo electrophysiological and behavioral tests were performed in the present study. The extracellular single unit recordings showed that micro-pressure administration of adenosine A2A receptor agonist, CGS21680, regulated the pallidal firing activity. GABAergic neurotransmission was involved in CGS21680-induced modulation of pallidal neurons via a PKA pathway. Furthermore, application of two adenosine A2A receptor antagonists, KW6002 or SCH442416, mainly increased the spontaneous firing of pallidal neurons, suggesting that endogenous adenosine system modulates the activity of pallidal neurons through adenosine A2A receptors. Finally, elevated body swing test (EBST showed that intrapallidal microinjection of adenosine A2A receptor agonist/antagonist induced ipsilateral/contralateral-biased swing, respectively. In addition, the electrophysiological and behavioral findings also revealed that activation of dopamine D2 receptors by quinpirole strengthened KW6002/SCH442416-induced excitation of pallidal activity. Co-application of quinpirole with KW6002 or SCH442416 alleviated biased swing in hemi-parkinsonian rats. Based on the present findings, we concluded that pallidal adenosine A2A receptors may be potentially useful in the treatment of Parkinson's disease.

  12. Insulin receptor binding and protein kinase activity in muscles of trained rats

    International Nuclear Information System (INIS)

    Dohm, G.L.; Sinha, M.K.; Caro, J.F.

    1987-01-01

    Exercise has been shown to increase insulin sensitivity, and muscle is quantitatively the most important tissue of insulin action. Since the first step in insulin action is the binding to a membrane receptor, the authors postulated that exercise training would change insulin receptors in muscle and in this study they have investigated this hypothesis. Female rats initially weighing ∼ 100 g were trained by treadmill running for 2 h/day, 6 days/wk for 4 wk at 25 m/min (0 grade). Insulin receptors from vastus intermedius muscles were solubilized by homogenizing in a buffer containing 1% Triton X-100 and then partially purified by passing the soluble extract over a wheat germ agglutinin column. The 4 wk training regimen resulted in a 65% increase in citrate synthase activity in red vastus lateralis muscle, indicating an adaptation to exercise [ 125 I]. Insulin binding by the partially purified receptor preparations was approximately doubled in muscle of trained rats at all insulin concentrations, suggesting an increase in the number of receptors. Training did not alter insulin receptor structure as evidenced by electrophoretic mobility under reducing and nonreducing conditions. Basal insulin receptor protein kinase activity was higher in trained than untrained animals and this was likely due to the greater number of receptors. However, insulin stimulation of the protein kinase activity was depressed by training. These results demonstrate that endurance training does alter receptor number and function in muscle and these changes may be important in increasing insulin sensitivity after exercise training

  13. Purification of the active C5a receptor from human polymorphonuclear leukocytes as a receptor - G sub i complex

    Energy Technology Data Exchange (ETDEWEB)

    Rollins, T.E.; Siciliano, S.; Kobayashi, S.; Cianciarulo, D.N.; Bonilla-Argudo, V.; Collier, K.; Springer, M.S. (Merck Sharp and Dohme Research Lab., Rahway, NJ (United States))

    1991-02-01

    The authors have isolated, in an active state, the C5a receptor from human polymorphonuclear leukocytes. The purification was achieved in a single step using a C5a affinity column in which the C5a molecule was coupled to the resin through its N terminus. The purified receptor, like the crude solubilized molecule, exhibited a single class of high-affinity binding sites with a K{sub d} of 30 pM. Further, the binding of C5a retained its sensitivity to guanine nucleotides, implying that the purified receptor contained a guanine nucleotide-binding protein (G protein). SDS/PAGE revealed the presence of three polypeptides with molecular masses of 42, 40, and 36 kDa, which were determined to be the C5a-binding subunit and the {alpha} and {beta} subunits of G{sub i}, respectively. The 36- and 40-kDa polypeptides were identified by immunoblotting and by the ability of pertussis toxin to ADP-ribosylate the 40-kDa molecule. These results confirm their earlier hypothesis that the receptor exists as a complex with a G protein in the presence or absence of C5a. The tight coupling between the receptor and G protein should make possible the identification of the G protein(s) involved in the transduction pathways used by C5a to produce its many biological effects.

  14. Purification of the active C5a receptor from human polymorphonuclear leukocytes as a receptor - Gi complex

    International Nuclear Information System (INIS)

    Rollins, T.E.; Siciliano, S.; Kobayashi, S.; Cianciarulo, D.N.; Bonilla-Argudo, V.; Collier, K.; Springer, M.S.

    1991-01-01

    The authors have isolated, in an active state, the C5a receptor from human polymorphonuclear leukocytes. The purification was achieved in a single step using a C5a affinity column in which the C5a molecule was coupled to the resin through its N terminus. The purified receptor, like the crude solubilized molecule, exhibited a single class of high-affinity binding sites with a K d of 30 pM. Further, the binding of C5a retained its sensitivity to guanine nucleotides, implying that the purified receptor contained a guanine nucleotide-binding protein (G protein). SDS/PAGE revealed the presence of three polypeptides with molecular masses of 42, 40, and 36 kDa, which were determined to be the C5a-binding subunit and the α and β subunits of G i , respectively. The 36- and 40-kDa polypeptides were identified by immunoblotting and by the ability of pertussis toxin to ADP-ribosylate the 40-kDa molecule. These results confirm their earlier hypothesis that the receptor exists as a complex with a G protein in the presence or absence of C5a. The tight coupling between the receptor and G protein should make possible the identification of the G protein(s) involved in the transduction pathways used by C5a to produce its many biological effects

  15. Analysis of the epidermal growth factor receptor specific transcriptome: effect of receptor expression level and an activating mutation

    DEFF Research Database (Denmark)

    Pedersen, Mikkel W; Pedersen, Nina; Damstrup, Lars

    2005-01-01

    moderately expressed or overexpressed at an in-itself transforming level. These changes were compared to those induced by the naturally occurring constitutively active variant EGFRvIII. This study provides novel insight on the activities and mechanisms of EGFRvIII and EGFR mediated transformation, as genes...... by interferons. Expression of this module was absent in the EGFRvIII-expressing cell line and the parental cell line. Treatment with the specific EGFR inhibitor AG1478 indicated that the regulations were primary, receptor-mediated events. Furthermore, activation of this module correlated with activation of STAT1...

  16. Confinement of activating receptors at the plasma membrane controls natural killer cell tolerance.

    Science.gov (United States)

    Guia, Sophie; Jaeger, Baptiste N; Piatek, Stefan; Mailfert, Sébastien; Trombik, Tomasz; Fenis, Aurore; Chevrier, Nicolas; Walzer, Thierry; Kerdiles, Yann M; Marguet, Didier; Vivier, Eric; Ugolini, Sophie

    2011-04-05

    Natural killer (NK) cell tolerance to self is partly ensured by major histocompatibility complex (MHC) class I-specific inhibitory receptors on NK cells, which dampen their reactivity when engaged. However, NK cells that do not detect self MHC class I are not autoreactive. We used dynamic fluorescence correlation spectroscopy to show that MHC class I-independent NK cell tolerance in mice was associated with the presence of hyporesponsive NK cells in which both activating and inhibitory receptors were confined in an actin meshwork at the plasma membrane. In contrast, the recognition of self MHC class I by inhibitory receptors "educated" NK cells to become fully reactive, and activating NK cell receptors became dynamically compartmentalized in membrane nanodomains. We propose that the confinement of activating receptors at the plasma membrane is pivotal to ensuring the self-tolerance of NK cells.

  17. Reversal of metabolic disorders by pharmacological activation of bile acid receptors TGR5 and FXR

    Directory of Open Access Journals (Sweden)

    Kavita Jadhav

    2018-03-01

    Full Text Available Objectives: Activation of the bile acid (BA receptors farnesoid X receptor (FXR or G protein-coupled bile acid receptor (GPBAR1; TGR5 improves metabolic homeostasis. In this study, we aim to determine the impact of pharmacological activation of bile acid receptors by INT-767 on reversal of diet-induced metabolic disorders, and the relative contribution of FXR vs. TGR5 to INT-767's effects on metabolic parameters. Methods: Wild-type (WT, Tgr5−/−, Fxr−/−, Apoe−/− and Shp−/− mice were used to investigate whether and how BA receptor activation by INT-767, a semisynthetic agonist for both FXR and TGR5, could reverse diet-induced metabolic disorders. Results: INT-767 reversed HFD-induced obesity dependent on activation of both TGR5 and FXR and also reversed the development of atherosclerosis and non-alcoholic fatty liver disease (NAFLD. Mechanistically, INT-767 improved hypercholesterolemia by activation of FXR and induced thermogenic genes via activation of TGR5 and/or FXR. Furthermore, INT-767 inhibited several lipogenic genes and de novo lipogenesis in the liver via activation of FXR. We identified peroxisome proliferation-activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (CEBPα as novel FXR-regulated genes. FXR inhibited PPARγ expression by inducing small heterodimer partner (SHP whereas the inhibition of CEBPα by FXR was SHP-independent. Conclusions: BA receptor activation can reverse obesity, NAFLD, and atherosclerosis by specific activation of FXR or TGR5. Our data suggest that, compared to activation of FXR or TGR5 only, dual activation of both FXR and TGR5 is a more attractive strategy for treatment of common metabolic disorders. Keywords: Farnesoid X receptor, TGR5, Atherosclerosis, Obesity, NAFLD

  18. A Molecular Mechanism for Sequential Activation of a G Protein-Coupled Receptor

    DEFF Research Database (Denmark)

    Grundmann, Manuel; Tikhonova, Irina G; Hudson, Brian D

    2016-01-01

    Ligands targeting G protein-coupled receptors (GPCRs) are currently classified as either orthosteric, allosteric, or dualsteric/bitopic. Here, we introduce a new pharmacological concept for GPCR functional modulation: sequential receptor activation. A hallmark feature of this is a stepwise ligand...

  19. The minor binding pocket: a major player in 7TM receptor activation

    DEFF Research Database (Denmark)

    Rosenkilde, Mette Marie; Benned-Jensen, Tau; Frimurer, Thomas M.

    2010-01-01

    residue located in one of two adjacent positions. Here we argue that this minor binding pocket is important for receptor activation. Functional coupling of the receptors seems to be mediated through the hydrogen bond network located between the intracellular segments of these TMs, with the allosteric...... targeted in the development of functionally biased drugs....

  20. PKCζ regulates Notch receptor routing and activity in a Notch signaling-dependent manner

    NARCIS (Netherlands)

    Sjöqvist, M.; Antfolk, D.; Ferraris, S.; Rraklli, V.; Haga, C.; Antila, C.; Mutvei, A.; Imanishi, S.Y.; Holmberg, J.; Jin, S.; Eriksson, J.E.; Lendahl, U.; Sahlgren, C.M.

    Activation of Notch signaling requires intracellular routing of the receptor, but the mechanisms controlling the distinct steps in the routing process is poorly understood. We identify PKCζ as a key regulator of Notch receptor intracellular routing. When PKCζ was inhibited in the developing chick

  1. IMPROVED TUMOR CELL KILLING BY TRAIL REQUIRES SELECTIVE AND HIGH AFFINITY RECEPTOR ACTIVATION

    NARCIS (Netherlands)

    Szegezdi, Eva; van der Sloot, Almer M.; Alessandro, Natoni; Mahalingam, Devalingam; Cool, Robbert H.; Munoz, Ines G.; Montoya, Guillermo; Quax, Wim J.; Luis Serrano, Steven de Jong; Samali, Afshin; Wallach, D; Kovalenko, A; Feldman, M

    2011-01-01

    Apoptosis can be activated by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in a wide range of tumor cells, but not in non-transformed cells. TRAIL interaction with receptors DR4 or DR5 induces apoptosis, whereas DcR1, DcR2 and osteoprotegerin are decoy receptors for TRAIL. TRAIL

  2. Interaction between the p21ras GTPase activating protein and the insulin receptor

    NARCIS (Netherlands)

    Pronk, G.J.; Medema, R.H.; Burgering, B.M.T.; Clark, R.; McCormick, F.; Bos, J.L.

    1992-01-01

    We investigated the involvement of the p21ras-GTPase activating protein (GAP) in insulin-induced signal transduction. In cells overexpressing the insulin receptor, we did not observe association between GAP and the insulin receptor after insulin treatment nor the phosphorylation of GAP on tyrosine

  3. Distinct conformational changes in activated agonist-bound and agonist-free glycine receptor subunits

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    Ligand binding to Cys-loop receptors produces either global conformational changes that lead to activation or local conformational changes that do not. We found that the fluorescence of a fluorophore tethered to R271C in the extracellular M2 region of the alpha1 glycine receptor increases during ...

  4. Signaling cross-talk between peroxisome proliferator-activated receptor/retinoid X receptor and estrogen receptor through estrogen response elements.

    Science.gov (United States)

    Keller, H; Givel, F; Perroud, M; Wahli, W

    1995-07-01

    Peroxisome proliferator-activated receptors (PPARs) and retinoid X receptors (RXRs) are nuclear hormone receptors that are activated by fatty acids and 9-cis-retinoic acid, respectively. PPARs and RXRs form heterodimers that activate transcription by binding to PPAR response elements (PPREs) in the promoter of target genes. The PPREs described thus far consist of a direct tandem repeat of the AGGTCA core element with one intervening nucleotide. We show here that the vitellogenin A2 estrogen response element (ERE) can also function as a PPRE and is bound by a PPAR/RXR heterodimer. Although this heterodimer can bind to several other ERE-related palindromic response elements containing AGGTCA half-sites, only the ERE is able to confer transactivation of test reporter plasmids, when the ERE is placed either close to or at a distance from the transcription initiation site. Examination of natural ERE-containing promoters, including the pS2, very-low-density apolipoprotein II and vitellogenin A2 genes, revealed considerable differences in the binding of PPAR/RXR heterodimers to these EREs. In their natural promoter context, these EREs did not allow transcriptional activation by PPARs/RXRs. Analysis of this lack of stimulation of the vitellogenin A2 promoter demonstrated that PPARs/RXRs bind to the ERE but cannot transactivate due to a nonpermissive promoter structure. As a consequence, PPARs/RXRs inhibit transactivation by the estrogen receptor through competition for ERE binding. This is the first example of signaling cross-talk between PPAR/RXR and estrogen receptor.

  5. Effect of propofol on androgen receptor activity in prostate cancer cells.

    Science.gov (United States)

    Tatsumi, Kenichiro; Hirotsu, Akiko; Daijo, Hiroki; Matsuyama, Tomonori; Terada, Naoki; Tanaka, Tomoharu

    2017-08-15

    Androgen receptor is a nuclear receptor and transcription factor activated by androgenic hormones. Androgen receptor activity plays a pivotal role in the development and progression of prostate cancer. Although accumulating evidence suggests that general anesthetics, including opioids, affect cancer cell growth and impact patient prognosis, the effect of those drugs on androgen receptor in prostate cancer is not clear. The purpose of this study was to investigate the effect of the general anesthetic propofol on androgen receptor activity in prostate cancer cells. An androgen-dependent human prostate cancer cell line (LNCaP) was stimulated with dihydrotestosterone (DHT) and exposed to propofol. The induction of androgen receptor target genes was investigated using real-time reverse transcription polymerase chain reaction, and androgen receptor protein levels and localization patterns were analyzed using immunoblotting and immunofluorescence assays. The effect of propofol on the proliferation of LNCaP cells was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Propofol significantly inhibited DHT-induced expression of androgen receptor target genes in a dose- and time-dependent manner, and immunoblotting and immunofluorescence assays indicated that propofol suppressed nuclear levels of androgen receptor proteins. Exposure to propofol for 24h suppressed the proliferation of LNCaP cells, whereas 4h of exposure did not exert significant effects. Together, our results indicate that propofol suppresses nuclear androgen receptor protein levels, and inhibits androgen receptor transcriptional activity and proliferation in LNCaP cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Alternative activation of macrophages and pulmonary fibrosis are modulated by scavenger receptor, macrophage receptor with collagenous structure.

    Science.gov (United States)

    Murthy, Shubha; Larson-Casey, Jennifer L; Ryan, Alan J; He, Chao; Kobzik, Lester; Carter, A Brent

    2015-08-01

    Alternative activation of alveolar macrophages is linked to fibrosis following exposure to asbestos. The scavenger receptor, macrophage receptor with collagenous structure (MARCO), provides innate immune defense against inhaled particles and pathogens; however, a receptor for asbestos has not been identified. We hypothesized that MARCO acts as an initial signaling receptor for asbestos, polarizes macrophages to a profibrotic M2 phenotype, and is required for the development of asbestos-induced fibrosis. Compared with normal subjects, alveolar macrophages isolated from patients with asbestosis express higher amounts of MARCO and have greater profibrotic polarization. Arginase 1 (40-fold) and IL-10 (265-fold) were higher in patients. In vivo, the genetic deletion of MARCO attenuated the profibrotic environment and pulmonary fibrosis in mice exposed to chrysotile. Moreover, alveolar macrophages from MARCO(-/-) mice polarize to an M1 phenotype, whereas wild-type mice have higher Ym1 (>3.0-fold) and nearly 7-fold more active TGF-β1 in bronchoalveolar lavage (BAL) fluid (BALF). Arg(432) and Arg(434) in domain V of MARCO are required for the polarization of macrophages to a profibrotic phenotype as mutation of these residues reduced FIZZ1 expression (17-fold) compared with cells expressing MARCO. These observations demonstrate that a macrophage membrane protein regulates the fibrotic response to lung injury and suggest a novel target for therapeutic intervention. © FASEB.

  7. Novel role for proteinase-activated receptor 2 (PAR2) in membrane trafficking of proteinase-activated receptor 4 (PAR4).

    Science.gov (United States)

    Cunningham, Margaret R; McIntosh, Kathryn A; Pediani, John D; Robben, Joris; Cooke, Alexandra E; Nilsson, Mary; Gould, Gwyn W; Mundell, Stuart; Milligan, Graeme; Plevin, Robin

    2012-05-11

    Proteinase-activated receptors 4 (PAR(4)) is a class A G protein-coupled receptor (GPCR) recognized through the ability of serine proteases such as thrombin and trypsin to mediate receptor activation. Due to the irreversible nature of activation, a fresh supply of receptor is required to be mobilized to the cell surface for responsiveness to agonist to be sustained. Unlike other PAR subtypes, the mechanisms regulating receptor trafficking of PAR(4) remain unknown. Here, we report novel features of the intracellular trafficking of PAR(4) to the plasma membrane. PAR(4) was poorly expressed at the plasma membrane and largely retained in the endoplasmic reticulum (ER) in a complex with the COPI protein subunit β-COP1. Analysis of the PAR(4) protein sequence identified an arginine-based (RXR) ER retention sequence located within intracellular loop-2 (R(183)AR → A(183)AA), mutation of which allowed efficient membrane delivery of PAR(4). Interestingly, co-expression with PAR(2) facilitated plasma membrane delivery of PAR(4), an effect produced through disruption of β-COP1 binding and facilitation of interaction with the chaperone protein 14-3-3ζ. Intermolecular FRET studies confirmed heterodimerization between PAR(2) and PAR(4). PAR(2) also enhanced glycosylation of PAR(4) and activation of PAR(4) signaling. Our results identify a novel regulatory role for PAR(2) in the anterograde traffic of PAR(4). PAR(2) was shown to both facilitate and abrogate protein interactions with PAR(4), impacting upon receptor localization and cell signal transduction. This work is likely to impact markedly upon the understanding of the receptor pharmacology of PAR(4) in normal physiology and disease.

  8. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling

    DEFF Research Database (Denmark)

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co...

  9. The angiotensin II type 1 receptor antagonist Losartan binds and activates bradykinin B2 receptor signaling

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Olsen, Kristine Boisen; Erikstrup, Niels

    2011-01-01

    The angiotensin II type 1 receptor (AT1R) blocker (ARB) Losartan has cardioprotective effects during ischemia-reperfusion injury and inhibits reperfusion arrhythmias -effects that go beyond the benefits of lowering blood pressure. The renin-angiotensin and kallikrein-kinin systems are intricately...

  10. DMPD: Proximal effects of Toll-like receptor activation in dendritic cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17142025 Proximal effects of Toll-like receptor activation in dendritic cells. Watt...) (.svg) (.html) (.csml) Show Proximal effects of Toll-like receptor activation in dendritic cells. PubmedID... 17142025 Title Proximal effects of Toll-like receptor activation in dendritic ce

  11. PET Study in a Patient with Spinocerebellar Degeneration before and after Long-Term Administration of Thyrotropin Releasing Hormone

    Directory of Open Access Journals (Sweden)

    H. Tanji

    1996-01-01

    Full Text Available We studied the chronic effect of thyrotropin releasing hormone (TRH in a patient with spinocerebellar degeneration by measuring cerebral metabolic rate for glucose (CMRG1c using 2-[18F]fluoro-2-deoxy-D-glucose (18FDG and positron emission tomography (PET. A 56-year-old female, who had suffered from progressive ataxia for 2 years, was treated by intravenous administration of 2 mg TRH for 3 weeks, and CMRG1c of the brain was measured before and after treatment. CMRG1c was markedly decreased in the cerebellum and there was no significant difference before and after the treatment, i.e. mean CMRG1c values were 4.92 and 4.90 mg/100 g/min, and the ratios of the cerebellum versus the frontal cortex were 0.50 and 0.51, respectively. The degree of disequilibrium of her body examined with stabilography became better by the 19th day and further improved by the 26th day after the start of TRH treatment. Based on the present study we conclude that long-term administration of TRH did not improve CMRG1c in the cerebellum, but evidently improved the sway of gravity center by stabilography. We speculate that the chronic effect of TRH was not necessarily due to an improvement of cerebellar function, because TRH receptors are widely distributed throughout the central nervous system.

  12. Activation of peroxisome proliferator-activated receptor-α enhances fatty acid oxidation in human adipocytes

    International Nuclear Information System (INIS)

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki; Kawada, Teruo

    2011-01-01

    Highlights: → PPARα activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. → PPARα activation also increased insulin-dependent glucose uptake in human adipocytes. → PPARα activation did not affect lipid accumulation in human adipocytes. → PPARα activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-α (PPARα) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPARα in adipocytes have been unclarified. We examined the functions of PPARα using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPARα by GW7647, a potent PPARα agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPARγ, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPARα activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPARγ is activated. On the other hand, PPARα activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPARα-dependent manner. Moreover, PPARα activation increased the production of CO 2 and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPARα stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPARα agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected effects of PPARα activation are very valuable for managing diabetic conditions accompanied by obesity, because

  13. GABA-B receptor activation and conflict behavior

    International Nuclear Information System (INIS)

    Ketelaars, C.E.J.; Bollen, E.L.; Rigter, H.; Bruinvels, J.

    1988-01-01

    Baclofen and oxazepam enhance extinction of conflict behavior in the Geller-Seifter test while baclofen and diazepam release punished behavior in Vogel's conflict test. In order to investigate the possibility that the effect of the selective GABA-B receptor agonist baclofen is mediated indirectly via the GABA-A/benzodiazepine receptor complex, the effect of pretreatment of rats with baclofen on [ 3 H]-diazepam binding to washed and unwashed cortical and cerebellar membranes of rats has been studied. Baclofen pretreatment increase Bmax in washed cerebellar membranes when bicuculline was present in the incubation mixture. No effect was seen in cortical membranes. The present results render it unlikely that the effect of baclofen on extinction of conflict behavior and punished drinking is mediated via the GABA-A/benzodiazepine receptor complex. 50 references, 1 figure, 4 tables

  14. The effects of thyrotropin-suppressive therapy on bone metabolism in patients with well-differentiated thyroid carcinoma

    NARCIS (Netherlands)

    Heemstra, K. A.; Hamdy, N. A. T.; Romijn, J. A.; Smit, J. W. A.

    2006-01-01

    Patients with differentiated thyroid carcinoma (DTC) are commonly treated long-term with thyrotropin (TSH)- suppressive thyroxine replacement therapy resolving in a state of subclinical hyperthyroidism. The relationship between subclinical hyperthyroidism and osteoporosis is not clear. In this

  15. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state

    Science.gov (United States)

    Cabail, M. Zulema; Li, Shiqing; Lemmon, Eric; Bowen, Mark E.; Hubbard, Stevan R.; Miller, W. Todd

    2015-03-01

    The insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) are highly related receptor tyrosine kinases with a disulfide-linked homodimeric architecture. Ligand binding to the receptor ectodomain triggers tyrosine autophosphorylation of the cytoplasmic domains, which stimulates catalytic activity and creates recruitment sites for downstream signalling proteins. Whether the two phosphorylated tyrosine kinase domains within the receptor dimer function independently or cooperatively to phosphorylate protein substrates is not known. Here we provide crystallographic, biophysical and biochemical evidence demonstrating that the phosphorylated kinase domains of IR and IGF1R form a specific dimeric arrangement involving an exchange of the juxtamembrane region proximal to the kinase domain. In this dimer, the active position of α-helix C in the kinase N lobe is stabilized, which promotes downstream substrate phosphorylation. These studies afford a novel strategy for the design of small-molecule IR agonists as potential therapeutic agents for type 2 diabetes.

  16. The dopamine D2 receptor can directly recruit and activate GRK2 without G protein activation.

    Science.gov (United States)

    Pack, Thomas F; Orlen, Margo I; Ray, Caroline; Peterson, Sean M; Caron, Marc G

    2018-04-20

    The dopamine D2 receptor (D2R) is a G protein-coupled receptor (GPCR) that is critical for many central nervous system functions. The D2R carries out these functions by signaling through two transducers: G proteins and β-arrestins (βarrs). Selectively engaging either the G protein or βarr pathway may be a way to improve drugs targeting GPCRs. The current model of GPCR signal transduction posits a chain of events where G protein activation ultimately leads to βarr recruitment. GPCR kinases (GRKs), which are regulated by G proteins and whose kinase action facilitates βarr recruitment, bridge these pathways. Therefore, βarr recruitment appears to be intimately tied to G protein activation via GRKs. Here we sought to understand how GRK2 action at the D2R would be disrupted when G protein activation is eliminated and the effect of this on βarr recruitment. We used two recently developed biased D2R mutants that can preferentially interact either with G proteins or βarrs as well as a βarr-biased D2R ligand, UNC9994. With these functionally selective tools, we investigated the mechanism whereby the βarr-preferring D2R achieves βarr pathway activation in the complete absence of G protein activation. We describe how direct, G protein-independent recruitment of GRK2 drives interactions at the βarr-preferring D2R and also contributes to βarr recruitment at the WT D2R. Additionally, we found an additive interaction between the βarr-preferring D2R mutant and UNC9994. These results reveal that the D2R can directly recruit GRK2 without G protein activation and that this mechanism may have relevance to achieving βarr-biased signaling. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Characterization of the single transmembrane domain of human receptor activity-modifying protein 3 in adrenomedullin receptor internalization

    International Nuclear Information System (INIS)

    Kuwasako, Kenji; Kitamura, Kazuo; Nagata, Sayaka; Nozaki, Naomi; Kato, Johji

    2012-01-01

    Highlights: ► RAMP3 mediates CLR internalization much less effectively than does RAMP2. ► The RAMP3 TMD participates in the negative regulation of CLR/RAMP3 internalization. ► A new strategy of promoting internalization and resensitization of the receptor was found. -- Abstract: Two receptor activity-modifying proteins (RAMP2 and RAMP3) enable calcitonin receptor-like receptor (CLR) to function as two heterodimeric receptors (CLR/RAMP2 and CLR/RAMP3) for adrenomedullin (AM), a potent cardiovascular protective peptide. Following AM stimulation, both receptors undergo rapid internalization through a clathrin-dependent pathway, after which CLR/RAMP3, but not CLR/RAMP2, can be recycled to the cell surface for resensitization. However, human (h)RAMP3 mediates CLR internalization much less efficiently than does hRAMP2. Therefore, the molecular basis of the single transmembrane domain (TMD) and the intracellular domain of hRAMP3 during AM receptor internalization was investigated by transiently transfecting various RAMP chimeras and mutants into HEK-293 cells stably expressing hCLR. Flow cytometric analysis revealed that substituting the RAMP3 TMD with that of RAMP2 markedly enhanced AM-induced internalization of CLR. However, this replacement did not enhance the cell surface expression of CLR, [ 125 I]AM binding affinity or AM-induced cAMP response. More detailed analyses showed that substituting the Thr 130 –Val 131 sequence in the RAMP3 TMD with the corresponding sequence (Ile 157 –Pro 158 ) from RAMP2 significantly enhanced AM-mediated CLR internalization. In contrast, substituting the RAMP3 target sequence with Ala 130 –Ala 131 did not significantly affect CLR internalization. Thus, the RAMP3 TMD participates in the negative regulation of CLR/RAMP3 internalization, and the aforementioned introduction of the Ile–Pro sequence into the RAMP3 TMD may be a strategy for promoting receptor internalization/resensitization.

  18. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    National Research Council Canada - National Science Library

    Gao, Allen C

    2006-01-01

    .... The experiments proposed in this application are based upon the hypothesis that Stat3 activation alters androgen receptor signaling pathways which in turn results in the loss of growth control in prostate cancer cells...

  19. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    National Research Council Canada - National Science Library

    Gao, Allen

    2004-01-01

    .... The experiments proposed in this application are based upon the hypothesis that stat3 activation alters androgen receptor signaling pathways, that in turn results in the loss of growth control in prostate cancer cells...

  20. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    National Research Council Canada - National Science Library

    Gao, Allen

    2002-01-01

    .... The experiments proposed in this application are based upon the hypothesis that Stat3 activation alters androgen receptor signaling pathways, that in turn results in the loss of growth control in prostate cancer cells...

  1. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    National Research Council Canada - National Science Library

    Gao, Allen C

    2005-01-01

    .... The experiments proposed in this application are based upon the hypothesis that Stat3 activation alters androgen receptor signaling pathways, that in turn results in the loss of growth control in prostate cancer cells...

  2. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    National Research Council Canada - National Science Library

    Gao, Allen

    2003-01-01

    .... The experiments proposed in this application are based upon the hypothesis that Stat3 activation alters androgen receptor signaling pathways, that in turn results in the loss of growth control in prostate cancer cells...

  3. Chronic regulation of colonic epithelial secretory function by activation of G protein-coupled receptors.

    LENUS (Irish Health Repository)

    Toumi, F

    2011-02-01

    Enteric neurotransmitters that act at G protein-coupled receptors (GPCRs) are well known to acutely promote epithelial Cl(-) and fluid secretion. Here we examined if acute GPCR activation might have more long-term consequences for epithelial secretory function.

  4. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity.

    Science.gov (United States)

    Takayama, S; White, M F; Kahn, C R

    1988-03-05

    The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function

  5. Bovine cumulus-granulosa cells contain biologically active retinoid receptors that can respond to retinoic acid

    Directory of Open Access Journals (Sweden)

    Malayer Jerry

    2003-11-01

    Full Text Available Abstract Retinoids, a class of compounds that include retinol and its metabolite, retinoic acid, are absolutely essential for ovarian steroid production, oocyte maturation, and early embryogenesis. Previous studies have detected high concentrations of retinol in bovine large follicles. Further, administration of retinol in vivo and supplementation of retinoic acid during in vitro maturation results in enhanced embryonic development. In the present study, we hypothesized that retinoids administered either in vivo previously or in vitro can exert receptor-mediated effects in cumulus-granulosa cells. Total RNA extracted from in vitro cultured cumulus-granulosa cells was subjected to reverse transcription polymerase chain reaction (RT-PCR and mRNA expression for retinol binding protein (RBP, retinoic acid receptor alpha (RARalpha, retinoic acid receptor beta (RARbeta, retinoic acid receptor gamma (RARgamma, retinoid X receptor alpha (RXRalpha, retinoid X receptor beta (RXRbeta, retinaldehyde dehydrogenase-2 (RALDH-2, and peroxisome proliferator activated receptor gamma (PPARgamma. Transcripts were detected for RBP, RARalpha, RARgamma, RXRalpha, RXRbeta, RALDH-2, and PPARgamma. Expression of RARbeta was not detected in cumulus-granulosa cells. Using western blotting, immunoreactive RARalpha, and RXRbeta protein was also detected in bovine cumulus-granulosa cells. The biological activity of these endogenous retinoid receptors was tested using a transient reporter assay using the pAAV-MCS-betaRARE-Luc vector. Addition of 0.5 and 1 micro molar all-trans retinoic acid significantly (P trans retinol stimulated a mild increase in reporter activity, however, the increase was not statistically significant. Based on these results we conclude that cumulus cells contain endogenously active retinoid receptors and may also be competent to synthesize retinoic acid using the precursor, retinol. These results also indirectly provide evidence that retinoids

  6. Differential Requirement of the Extracellular Domain in Activation of Class B G Protein-coupled Receptors.

    Science.gov (United States)

    Zhao, Li-Hua; Yin, Yanting; Yang, Dehua; Liu, Bo; Hou, Li; Wang, Xiaoxi; Pal, Kuntal; Jiang, Yi; Feng, Yang; Cai, Xiaoqing; Dai, Antao; Liu, Mingyao; Wang, Ming-Wei; Melcher, Karsten; Xu, H Eric

    2016-07-15

    G protein-coupled receptors (GPCRs) from the secretin-like (class B) family are key players in hormonal homeostasis and are important drug targets for the treatment of metabolic disorders and neuronal diseases. They consist of a large N-terminal extracellular domain (ECD) and a transmembrane domain (TMD) with the GPCR signature of seven transmembrane helices. Class B GPCRs are activated by peptide hormones with their C termini bound to the receptor ECD and their N termini bound to the TMD. It is thought that the ECD functions as an affinity trap to bind and localize the hormone to the receptor. This in turn would allow the hormone N terminus to insert into the TMD and induce conformational changes of the TMD to activate downstream signaling. In contrast to this prevailing model, we demonstrate that human class B GPCRs vary widely in their requirement of the ECD for activation. In one group, represented by corticotrophin-releasing factor receptor 1 (CRF1R), parathyroid hormone receptor (PTH1R), and pituitary adenylate cyclase activating polypeptide type 1 receptor (PAC1R), the ECD requirement for high affinity hormone binding can be bypassed by induced proximity and mass action effects, whereas in the other group, represented by glucagon receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R), the ECD is required for signaling even when the hormone is covalently linked to the TMD. Furthermore, the activation of GLP-1R by small molecules that interact with the intracellular side of the receptor is dependent on the presence of its ECD, suggesting a direct role of the ECD in GLP-1R activation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation

    International Nuclear Information System (INIS)

    Reinbothe, Susann; Larsson, Anna-Maria; Vaapil, Marica; Wigerup, Caroline; Sun, Jianmin; Jögi, Annika; Neumann, Drorit; Rönnstrand, Lars; Påhlman, Sven

    2014-01-01

    Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα + ) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells

  8. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Reinbothe, Susann; Larsson, Anna-Maria; Vaapil, Marica; Wigerup, Caroline [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Sun, Jianmin [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); Jögi, Annika [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Neumann, Drorit [Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Rönnstrand, Lars [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); Påhlman, Sven, E-mail: sven.pahlman@med.lu.se [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel)

    2014-02-28

    Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα{sup +}) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.

  9. Environmental polycyclic aromatic hydrocarbons affect androgen receptor activation in vitro

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Hnida, Christina; Larsen, John Christian

    2000-01-01

    Nine structurally different polycyclic aromatic hydrocarbons (PAHs) were tested for their ability to either agonize or antagonize the human androgen receptor (hAR) in a sensitive reporter gene assay based on CHO cells transiently cotransfected with a hAR vector and an MMTV-LUC vector. Benz...

  10. Reciprocal regulation of platelet responses to P2Y and thromboxane receptor activation.

    Science.gov (United States)

    Barton, J F; Hardy, A R; Poole, A W; Mundell, S J

    2008-03-01

    Thromboxane A(2) and ADP are two major platelet agonists that stimulate two sets of G protein-coupled receptors to activate platelets. Although aggregation responses to ADP and thromboxane desensitize, there are no reports currently addressing whether activation by one agonist may heterologously desensitize responses to the other. To demonstrate whether responses to ADP or U46619 may be modulated by prior treatment of platelets with the alternate agonist, revealing a level of cross-desensitization between receptor systems. Here we show that pretreatment of platelets with either agonist substantially desensitizes aggregation responses to the other agonist. Calcium responses to thromboxane receptor activation are desensitized by preactivation of P2Y(1) but not P2Y(12) receptors. This heterologous desensitization is mediated by a protein kinase C (PKC)-independent mechanism. Reciprocally, calcium responses to ADP are desensitized by pretreatment of platelets with the thromboxane analogue, U46619, and P2Y(12)-mediated inhibition of adenylate cyclase is also desensitized by pretreatment with U46619. In this direction, desensitization is comprised of two components, a true heterologous component that is PKC-independent, and a homologous component that is mediated through stimulated release of dense granule ADP. This study reveals cross-desensitization between ADP and thromboxane receptor signaling in human platelets. Cross-desensitization is mediated by protein kinases, involving PKC-dependent and independent pathways, and indicates that alterations in the activation state of one receptor may have effects upon the sensitivity of the other receptor system.

  11. Sch proteins are localized on endoplasmic reticulum membranes and are redistributed after tyrosine kinase receptor activation

    DEFF Research Database (Denmark)

    Lotti, L V; Lanfrancone, L; Migliaccio, E

    1996-01-01

    area of the cell and mostly associated with the cytosolic side of rough endoplasmic reticulum membranes. Upon epidermal growth factor treatment and receptor tyrosine kinase activation, the immunolabeling became peripheral and was found to be associated with the cytosolic surface of the plasma membrane....... The rough endoplasmic reticulum localization of Shc proteins in unstimulated cells and their massive recruitment to the plasma membrane, endocytic structures, and peripheral cytosol following receptor tyrosine kinase activation could account for multiple putative functions of the adaptor protein....

  12. 5-HT7 receptor activation: procognitive and antiamnesic effects.

    Science.gov (United States)

    Meneses, A; Perez-Garcia, G; Liy-Salmeron, G; Ponce-López, T; Lacivita, E; Leopoldo, M

    2015-02-01

    The serotonin (5-hydroxytryptamine (5-HT)) 5-HT7 receptor is localized in brain areas mediating memory; however, the role of this receptor on memory remains little explored. First, demonstrating the associative nature of Pavlovian/instrumental autoshaping (P/I-A) task, rats were exposed (three sessions) to CS-US (Pavlovian autoshaping), truly random control, free operant, and presentations of US or CS, and they were compared with rats trained-tested for one session to the P/I-A procedure. Also, effects of the 5-HT7 receptor agonist LP-211 administered intraperitoneally after training was determined on short- (1.5 h) and long-term memory 24 and 48 h) and on scopolamine-induced memory impairment and cAMP production. Autoshaping and its behavioral controls were studied. Other animals were subjected to an autoshaping training session and immediately afterwards were given (intraperitoneal) vehicle or LP-211 (0.1-10 mg/kg) and/or scopolamine (0.2 mg/kg) and tested for short-term memory (STM) and long-term memory (LTM); their brains were extracted for the cAMP ELISA immunoassay. P/I-A group produced the higher %CR. LP-211 did not affect STM; nonetheless, at 0.5 and 1.0 mg/kg, it improved LTM. The 5-HT7 receptor antagonist SB-269970 (SB; 10.0 mg/kg) alone had no effect; nevertheless, the LP-211 (1.0 mg/kg) LTM facilitation was reversed by SB. The scopolamine (0.2 mg/kg) induced-decrement in CR was accompanied by significant increased cAMP production. The scopolamine-induced decrement in CR and increments in cAMP were significantly attenuated by LP-211. Autoshaping is a reliable associative learning task whose consolidation is facilitated by the 5-HT7 receptor agonist LP-211.

  13. Activation of intracellular angiotensin AT2 receptors induces rapid cell death in human uterine leiomyosarcoma cells

    DEFF Research Database (Denmark)

    Zhao, Yi; Lützen, Ulf; Fritsch, Jürgen

    2015-01-01

    The presence of AT2 receptors in mitochondria and their role in NO generation and cell aging were recently demonstrated in various human and mouse non-tumour cells. We investigated the intracellular distribution of AT2 receptors including their presence in mitochondria and the role in the induction...... agonist, Compound 21 (C21) penetrates the cell membrane of quiescent SK-UT-1 cells, activates intracellular AT2 receptors and induces rapid cell death; approximately 70% of cells died within 24 h. The cells, which escaped from the cell death, displayed activation of the mitochondrial apoptotic pathway, i...

  14. Activation of sigma-1 receptor chaperone in the treatment of neuropsychiatric diseases and its clinical implication

    Directory of Open Access Journals (Sweden)

    Kenji Hashimoto

    2015-01-01

    Full Text Available Endoplasmic reticulum (ER protein sigma-1 receptor represents unique chaperone activity in the central nervous system, and it exerts a potent influence on a number of neurotransmitter systems. Several lines of evidence suggest that activation of sigma-1 receptor plays a role in the pathophysiology of neuropsychiatric diseases, as well as in the mechanisms of some therapeutic drugs and neurosteroids. Preclinical studies showed that some selective serotonin reuptake inhibitors (SSRIs; fluvoxamine, fluoxetine, excitalopram, donepezil, and ifenprodil act as sigma-1 receptor agonists. Furthermore, sigma-1 receptor agonists could improve the N-methyl-D-aspartate (NMDA antagonist phencyclidine (PCP-induced cognitive deficits in mice. A study using positron emission tomography have demonstrated that an oral administration of fluvoxamine or donepezil could bind to sigma-1 receptor in the healthy human brain, suggesting that sigma-1 receptor might be involved in the therapeutic mechanisms of these drugs. Moreover, case reports suggest that sigma-1 receptor agonists, including fluvoxamine, and ifenprodil, may be effective in the treatment of cognitive impairment in schizophrenia, delirium in elderly people, and flashbacks in post-traumatic stress disorder. In this review article, the author would like to discuss the clinical implication of sigma-1 receptor agonists, including endogenous neurosteroids, in the neuropsychiatric diseases.

  15. Proteinase-activated receptors - mediators of early and delayed normal tissue radiation responses

    International Nuclear Information System (INIS)

    Hauer-Jensen, M.

    2003-01-01

    Proteinase-activated receptors (PARs) are G-protein coupled receptors that are activated by proteolytic exposure of a receptor-tethered ligand. The discovery of this receptor family represents one of the most intriguing recent developments in signal transduction. PARs are involved in the regulation of many normal and pathophysiological processes, notably inflammatory and fibroproliferative responses to injury. Preclinical studies performed in our laboratory suggest that proteinase-activated receptor-1 (PAR-1) plays a critical role in the mechanism of chronicity of radiation fibrosis, while proteinase-activated receptor-2 (PAR-2) may mediate important fibroproliferative responses in irradiated intestine. Specifically, activation of PAR-1 by thrombin, and PAR-2 by pancreatic trypsin and mast cell proteinases, appears to be involved in acute radiation-induced inflammation, as well as in subsequent extracellular matrix deposition, leading to the development of intestinal wall fibrosis and clinical complications. Pharmacological modulators of PAR-1 or PAR-2 expression or activation would be potentially useful as preventive or therapeutic agents in patients who receive radiation therapy, especially if blockade could be targeted to specific tissues or cellular compartments

  16. Sulfhydryl group content of chicken progesterone receptor: effect of oxidation on DNA binding activity

    International Nuclear Information System (INIS)

    Peleg, S.; Schrader, W.T.; O'Malley, B.W.

    1988-01-01

    DNA binding activity of chicken progesterone receptor B form (PRB) and A form (PRA) has been examined. This activity is strongly dependent upon the presence of thiols in the buffer. Stability studies showed that PRB was more sensitive to oxidation that was PRA. Receptor preparations were fractionated by DNA-cellulose chromatography to DNA-positive and DNA-negative subpopulations, and sulfhydryl groups were quantified on immunopurified receptor by labeling with [ 3 H]-N-ethylmaleimide. Labeling of DNA-negative receptors with [ 3 H]-N-ethylmaleimide showed 21-23 sulfhydryl groups on either PRA or PRB form when the proteins were reduced and denatured. A similar number was seen without reduction if denatured DNA-positive receptor species were tested. In contrast, the DNA-negative PRB had only 10-12 sulfhydryl groups detectable without reduction. A similar number (12-13 sulfhydryl groups) was found for PRA species that lost DNA binding activity after exposure to a nonreducing environment in vitro. The authors conclude that the naturally occurring receptor forms unable to bind to DNA, as well as receptor forms that have lost DNA binding activity due to exposure to nonreducing environment in vitro, contain 10-12 oxidized cysteine residues, likely present as disulfide bonds. Since they were unable to reduce the disulfide bonds when the native DNA-negative receptor proteins were treated with dithiothreitol (DTT), they speculate that irreversible loss of DNA binding activity of receptor in vitro is due to oxidation of cysteine residues that are not accessible to DTT in the native state

  17. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity

    Directory of Open Access Journals (Sweden)

    Darya V. Bazovkina

    2015-01-01

    Full Text Available In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors.

  18. Activation of dopamine D3 receptors inhibits reward-related learning induced by cocaine.

    Science.gov (United States)

    Kong, H; Kuang, W; Li, S; Xu, M

    2011-03-10

    Memories of learned associations between the rewarding properties of drugs and environmental cues contribute to craving and relapse in humans. The mesocorticolimbic dopamine (DA) system is involved in reward-related learning induced by drugs of abuse. DA D3 receptors are preferentially expressed in mesocorticolimbic DA projection areas. Genetic and pharmacological studies have shown that DA D3 receptors suppress locomotor-stimulant effects of cocaine and reinstatement of cocaine-seeking behaviors. Activation of the extracellular signal-regulated kinase (ERK) induced by acute cocaine administration is also inhibited by D3 receptors. How D3 receptors modulate cocaine-induced reward-related learning and associated changes in cell signaling in reward circuits in the brain, however, have not been fully investigated. In the present study, we show that D3 receptor mutant mice exhibit potentiated acquisition of conditioned place preference (CPP) at low doses of cocaine compared to wild-type mice. Activation of ERK and CaMKIIα, but not the c-Jun N-terminal kinase and p38, in the nucleus accumbens, amygdala and prefrontal cortex is also potentiated in D3 receptor mutant mice compared to that in wild-type mice following CPP expression. These results support a model in which D3 receptors modulate reward-related learning induced by low doses of cocaine by inhibiting activation of ERK and CaMKIIα in reward circuits in the brain. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Tonically Active α5GABAA Receptors Reduce Motoneuron Excitability and Decrease the Monosynaptic Reflex

    Directory of Open Access Journals (Sweden)

    Martha Canto-Bustos

    2017-09-01

    Full Text Available Motoneurons, the final common path of the Central Nervous System (CNS, are under a complex control of its excitability in order to precisely translate the interneuronal pattern of activity into skeletal muscle contraction and relaxation. To fulfill this relevant function, motoneurons are provided with a vast repertoire of receptors and channels, including the extrasynaptic GABAA receptors which have been poorly investigated. Here, we confirmed that extrasynaptic α5 subunit-containing GABAA receptors localize with choline acetyltransferase (ChAT positive cells, suggesting that these receptors are expressed in turtle motoneurons as previously reported in rodents. In these cells, α5GABAA receptors are activated by ambient GABA, producing a tonic shunt that reduces motoneurons’ membrane resistance and affects their action potential firing properties. In addition, α5GABAA receptors shunted the synaptic excitatory inputs depressing the monosynaptic reflex (MSR induced by activation of primary afferents. Therefore, our results suggest that α5GABAA receptors may play a relevant physiological role in motor control.

  20. Class A scavenger receptor promotes osteoclast differentiation via the enhanced expression of receptor activator of NF-{kappa}B (RANK)

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Kenichi [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Sakashita, Naomi; Fujiwara, Yukio; Komohara, Yoshihiro; Lei, XiaoFeng; Ohnishi, Koji [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Suzuki, Hiroshi [National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido (Japan); Kodama, Tatsuhiko [Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo (Japan); Mizuta, Hiroshi [Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Takeya, Motohiro, E-mail: takeya@kumamoto-u.ac.jp [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan)

    2010-01-22

    Osteoclasts originate from bone marrow monocyte/macrophage lineage cells, and their differentiation depends on macrophage colony-stimulating factor (M-CSF) and receptor activator nuclear factor kappa B (RANK) ligand. Class A scavenger receptor (SR-A) is one of the principal functional molecules of macrophages, and its level of expression declines during osteoclast differentiation. To investigate the role of SR-A in osteoclastogenesis, we examined pathological changes in femoral bone and the expression levels of osteoclastogenesis-related molecules in SR-A{sup -/-} mice. The femoral osseous density of SR-A{sup -/-} mice was higher than that of SR-A{sup +/+} mice, and the number of multinucleated osteoclasts was significantly decreased. An in vitro differentiation assay revealed that the differentiation of multinucleated osteoclasts from bone marrow-derived progenitor cells is impaired in SR-A{sup -/-} mice. Elimination of SR-A did not alter the expression level of the M-CSF receptor, c-fms; however, the expression levels of RANK and RANK-related osteoclast-differentiation molecules such as nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) and microphthalmia-associated transcription factor (MITF) significantly decreased. Furthermore, acetylated low-density lipoprotein (AcLDL), an SR-A ligand, significantly increased the expression level of RANK and MITF during osteoclast differentiation. These data indicate that SR-A promotes osteoclastogenesis via augmentation of the expression level of RANK and its related molecules.

  1. Self-phosphorylation of epidermal growth factor receptor: evidence for a model of intermolecular allosteric activation

    International Nuclear Information System (INIS)

    Yarden, Y.; Schlessinger, J.

    1987-01-01

    The membrane receptor for epidermal growth factor (EGF) is a 170,000 dalton glycoprotein composed of an extracellular EGF-binding domain and a cytoplasmic kinase domain connected by a stretch of 23 amino acids traversing the plasma membrane. The binding of EGF to the extracellular domain activates the cytoplasmic kinase function even in highly purified preparations of EGF receptor, suggesting that the activation occurs exclusively within the EGF receptor moiety. Conceivably, kinase activation may require the transfer of a conformational change through the single transmembrane region from the ligand binding domain to the cytoplasmic kinase region. Alternatively, ligand-induced receptor-receptor interactions may activate the kinase and thus bypass this requirement. Both mechanisms were contrasted by employing independent experimental approaches. On the basis of these results, an allosteric aggregation model is formulated for the activation of the cytoplasmic kinase function of the receptor by EGF. This model may be relevant to the mechanism by which the mitogenic signal of EGF is transferred across the membrane

  2. Carbobenzoxy amino acids: Structural requirements for cholecystokinin receptor antagonist activity

    International Nuclear Information System (INIS)

    Maton, P.N.; Sutliff, V.E.; Jensen, R.T.; Gardner, J.D.

    1985-01-01

    The authors used dispersed acini prepared from guinea pig pancreas to examine 28 carbobenzoxy (CBZ) amino acids for their abilities to function as cholecystokinin receptor antagonists. All amino acid derivatives tested, except for CBZ-alanine, CBZ-glycine, and N alpha-CBZ- lysine, were able to inhibit the stimulation of amylase secretion caused by the C-terminal octapeptide of cholecystokinin. In general, there was a good correlation between the ability of a carbobenzoxy amino acid to inhibit stimulated amylase secretion and the ability of the amino acid derivative to inhibit binding of 125 I-cholecystokinin. The inhibition of cholecystokinin-stimulated amylase secretion was competitive, fully reversible, and specific for those secretagogues that interact with the cholecystokinin receptor. The potencies with which the various carbobenzoxy amino acids inhibited the action of cholecystokinin varied 100-fold and CBZ-cystine was the most potent cholecystokinin receptor antagonist. This variation in potency was primarily but not exclusively a function of the hydrophobicity of the amino acid side chain

  3. Interaction of active compounds from Aegle marmelos CORREA with histamine-1 receptor

    Science.gov (United States)

    Nugroho, Agung Endro; Agistia, Dany Dwi; Tegar, Maulana; Purnomo, Hari

    2013-01-01

    The aim of this study is to determine the affinity of six active compounds of Aegle Marmelos Correa, they are (E, R)-Marmin, skimmianine, (S)-aegeline, aurapten, zeorin, and dustanin as antihistamines in histamine H1 receptor in comparison to cetirizin, diphenhydramine and chlorpheniramine as ligands comparison. Previously, in the in vitro study marmin obviously antagonized the histamine H1 receptor in a competitive manner. Methods: molecular docking to determine the interaction of ligand binding to its receptor. Lower docking score indicates more stable binding to that protein. Results: Marmin, skimmianine, aegeline, aurapten, zeorin, and dustanin were potential to develop as antihistamine agents, especially as histamine H1 receptor antagonists by interacting with amino acid residues, Asp107, Lys179, Lys191, Asn198, and Trp428 of histamine H1 receptor. Conclusions: Based on molecular docking, Amino acid residues involved in ligand protein interactions were Asp107, Lys179, Lys191, Asn198, and Trp428. PMID:23750086

  4. Pharmacology of the hypothermic response to 5-HT1A receptor activation in humans.

    Science.gov (United States)

    Lesch, K P; Poten, B; Söhnle, K; Schulte, H M

    1990-01-01

    The selective 5-HT1A receptor ligand ipsapirone (IPS) caused dose-related hypothermia in humans. The response was attenuated by the nonselective 5-HT1/2 receptor antagonist metergoline and was completely antagonized by the nonselective beta-adrenoceptor antagonist pindolol, which interacts stereoselectively with the 5-HT1A receptor. The selective beta 1-adrenergic antagonist betaxolol had no effect. The findings indicate that IPS-induced hypothermia specifically involves activation of (presynaptic) 5-HT1A receptors. Therefore, the hypothermic response to IPS may provide a convenient in vivo paradigma to assess the function of the presynaptic 5-HT receptor in affective disorders and its involvement in the effects of psychotropic drugs.

  5. Attenuation of eph receptor kinase activation in cancer cells by coexpressed ephrin ligands.

    Directory of Open Access Journals (Sweden)

    Giulia Falivelli

    Full Text Available The Eph receptor tyrosine kinases mediate juxtacrine signals by interacting "in trans" with ligands anchored to the surface of neighboring cells via a GPI-anchor (ephrin-As or a transmembrane segment (ephrin-Bs, which leads to receptor clustering and increased kinase activity. Additionally, soluble forms of the ephrin-A ligands released from the cell surface by matrix metalloproteases can also activate EphA receptor signaling. Besides these trans interactions, recent studies have revealed that Eph receptors and ephrins coexpressed in neurons can also engage in lateral "cis" associations that attenuate receptor activation by ephrins in trans with critical functional consequences. Despite the importance of the Eph/ephrin system in tumorigenesis, Eph receptor-ephrin cis interactions have not been previously investigated in cancer cells. Here we show that in cancer cells, coexpressed ephrin-A3 can inhibit the ability of EphA2 and EphA3 to bind ephrins in trans and become activated, while ephrin-B2 can inhibit not only EphB4 but also EphA3. The cis inhibition of EphA3 by ephrin-B2 implies that in some cases ephrins that cannot activate a particular Eph receptor in trans can nevertheless inhibit its signaling ability through cis association. We also found that an EphA3 mutation identified in lung cancer enhances cis interaction with ephrin-A3. These results suggest a novel mechanism that may contribute to cancer pathogenesis by attenuating the tumor suppressing effects of Eph receptor signaling pathways activated by ephrins in trans.

  6. Interactions of ligands with active and inactive conformations of the dopamine D2 receptor.

    Science.gov (United States)

    Malmberg, A; Mohell, N; Backlund Höök, B; Johansson, A M; Hacksell, U; Nordvall, G

    1998-04-10

    The affinities of 19 pharmacologically diverse dopamine D2 receptor ligands were determined for the active and inactive conformations of cloned human dopamine D2 receptors expressed in Ltk cells. The agonist [3H]quinpirole was used to selectively label the guanine nucleotide-binding protein-coupled, active receptor conformation. The antagonist [3H]raclopride, in the presence of the non-hydrolysable GTP-analogue Gpp(NH)p and sodium ions and in the absence of magnesium ions, was used to label the free inactive receptor conformation. The intrinsic activities of the ligands were determined in a forskolin-stimulated cyclic AMP assay using the same cells. An excellent correlation was shown between the affinity ratios (KR/KRG) of the ligands for the two receptor conformations and their intrinsic activity (r=0.96). The ligands included eight structurally related and enantiopure 2-aminotetralin derivatives; the enantiomers of 5-hydroxy-2-(dipropylamino)tetralin, 5-methoxy-2-(dipropylamino)tetralin, 5-fluoro-2-(dipropylamino)tetralin and 2-(dipropylamino)tetralin. The (S)-enantiomers behaved as full agonists in the cyclic AMP assay and displayed a large KR/KRG ratio. The (R)-enantiomers were classified as partial agonists and had lower ratios. The structure-affinity relationships of these compounds at the active and the inactive receptor conformations were analysed separately, and used in conjunction with a homology based receptor model of the dopamine D2 receptor. This led to proposed binding modes for agonists, antagonists and partial agonists in the 2-aminotetralin series. The concepts used in this study should be of value in the design of ligands with predetermined affinity and intrinsic activity.

  7. The role and regulation of the peroxisome proliferator activated receptor alpha in human liver

    NARCIS (Netherlands)

    Kersten, Sander; Stienstra, Rinke

    2017-01-01

    The peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor that is abundantly expressed in liver. PPARα is activated by fatty acids and various other lipid species, as well as by a class of chemicals referred to as peroxisome proliferators. Studies in mice

  8. The soluble urokinase plasminogen activator receptor and its fragments in venous ulcers

    DEFF Research Database (Denmark)

    Ahmad, Anwar; Saha, Prakash; Evans, Colin

    2015-01-01

    OBJECTIVE: Activation of proteolytic mechanisms at the cell surface through the activity of urokinase-type plasminogen activator (uPA) bound to its receptor, uPAR, is an important process in wound healing. The soluble forms of uPAR (suPAR and its fragments I, II, and III) have nonproteolytic func...

  9. Tumorigenesis induced by the HHV8-encoded chemokine receptor requires ligand modulation of high constitutive activity

    DEFF Research Database (Denmark)

    Holst, P J; Rosenkilde, M M; Manfra, D

    2001-01-01

    sarcoma (KS). Here we demonstrate that several lines of mice carrying mutated receptors deficient in either constitutive activity or chemokine regulation fail to develop KS-like disease. In addition, animals expressing a receptor that preserves chemokine binding and constitutive activity but that does...... not respond to agonist stimulation have a much lower incidence of angiogenic lesions and tumors. These results indicate that induction of the KS-like disease in transgenic mice by ORF74 requires not only high constitutive signaling activity but also modulation of this activity by endogenous chemokines....

  10. Protease activated receptors (PARS) mediation in gyroxin biological activity; Mediacao dos receptores ativados por proteases (PARs) em atividades biologicas da giroxina

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jose Alberto Alves da

    2009-07-01

    Gyroxin is a serine protease enzyme from the South American rattlesnake (Crotalus durissus terrificus) venom; it is only partially characterized and has multiple activities. Gyroxin induces blood coagulation, blood pressure decrease and a neurotoxic behavior named barrel rotation. The mechanisms involved in this neurotoxic activity are not known. Whereas gyroxin is a member of enzymes with high potential to become a new drug with clinical applications such as thrombin, batroxobin, ancrod, tripsyn and kalicrein, it is important to find out how gyroxin works. The analysis on agarose gel electrophoresis and circular dichroism confirmed the molecules' integrity and purity. The gyroxin intravenous administration in mice proved its neurotoxicity (barrel rotation). In vivo studies employing intravital microscopy proved that gyroxin induces vasodilation with the participation of protease activated receptors (PARs), nitric oxide and Na+K+ATPase. The leukocytes' adherence and rolling counting indicated that gyroxin has no pro inflammatory activity. Gyroxin induced platelet aggregation, which was blocked by inhibitors of PAR1 and PAR4 receptors (SCH 79797 and tcY-NH{sub 2}, respectively). Finally, it was proved that the gyroxin temporarily alter the permeability of the blood brain barrier (BBB). Our study has shown that both the protease-activated receptors and nitric oxide are mediators involved in the biological activities of gyroxin. (author)

  11. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kawada, Teruo, E-mail: fat@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  12. Radioimmunoassay of Human Thyrotropin - Part 1. Plasma TSH levels in various thyroid functions

    International Nuclear Information System (INIS)

    Koh, Chang Soon; Lee, Hong Kyu; Ro, Heung Kyu; Lee, Mun Ho

    1972-01-01

    The radioimmunoassay of human thyrotropin was performed in various thyroid states, utilizing the anti-h-T.S.H. antibody and purified human thyrotropin supplied from National Institute of Arthritis and Metabolic Diseases, Bethesda, Ma., U.S.A., and human thyrotropin standard-A obtained from National Institute for Biologic Standards, Mill Hill, London, England. 131 I labelled h-TSH was prepared after the Chloramine-T method of Greenwood et al. This double antibody system had a assay sensitivity of about l. 0 μU/ml of plasma HTS-A and could detect the plasma h-TSH level in the euthyroid patients. Plasma h-TSH level of the normal 26 Korean was l.1±0. 83 μU/ml, and that of the 8 hypothyroidisms were 8.3 to 67.5 μU/ml. In hyperthyroidisms, no cases showed the plasma h-TSH levels over l. 0 μU/ ml. Between the hypothyroidism and euthyroidism, no overlap is noticed on plasma h-TSH levels. A case of transient hypothyroid state identified by determination of plasma h-TSH level is presented. These results revealed that the radioimmunoassay of h-TSH in plasma could be a sensitive method to diagnose the hypothyroidism, if not caused by a pituitary disease.

  13. Examination of some factors affecting sensitivity and reproducibility in radioimmunoassay of thyrotropin

    International Nuclear Information System (INIS)

    Moser, R.J.; Hollingsworth, D.R.

    1975-01-01

    Conditions for measuring human thyrotropin by radioimmunoassay have been investigated, to improve the sensitivity and reproducibility of the assay. The Chloramine-T method of iodination was used, the reaction time being 20 s. Doubling the iodination reaction volume from 55 to 95 μl did not affect the immunoreactivity. Purification of labeled hormone by use of anion-exchange resin followed by silica (Quso G-32) instead of Sephadex gel-filtration or anion exchange alone yielded a product that was the least (less than 4 percent) contaminated with Na 125 I. Human serum albumin (2.5 g/liter)in phosphate-buffered saline, instead of bovine serum, should be used as diluent for unknowns; within-assay variance was 3 percent for the former, 62 percent for the latter. The assay worked equally well for both pregnant and nonpregnant patients, with use of 50 to 100 μl of serum per determination. A five-week-old labeled hormone yielded higher values than did two-week-old material. In 29 euthyroid patients the mean thyrotropin value was 5.7 microunits/ml (range 2.8 to 11); nine hypothyroid patients had a mean of 112 microunits/ml (range 38 to 267); and 13 hyperthyroid subjects showed suppressed thyrotropin with a mean of 3.1 microunits/ml (range 2.2 to 4.5). Following these suggestions, one can expect a highly purified immunoreactive tracer and a sensitive assay. (U.S.)

  14. Activation of the kinin B1 receptor attenuates melanoma tumor growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Patricia Dillenburg-Pilla

    Full Text Available Melanoma is a very aggressive tumor that does not respond well to standard therapeutic approaches, such as radio- and chemotherapies. Furthermore, acquiring the ability to metastasize in melanoma and many other tumor types is directly related to incurable disease. The B1 kinin receptor participates in a variety of cancer-related pathophysiological events, such as inflammation and angiogenesis. Therefore, we investigated whether this G protein-coupled receptor plays a role in tumor progression. We used a murine melanoma cell line that expresses the kinin B1 receptor and does not express the kinin B2 receptor to investigate the precise contribution of activation of the B1 receptor in tumor progression and correlated events using various in vitro and in vivo approaches. Activation of the kinin B1 receptor in the absence of B2 receptor inhibits cell migration in vitro and decreases tumor formation in vivo. Moreover, tumors formed from cells stimulated with B1-specific agonist showed several features of decreased aggressiveness, such as smaller size and infiltration of inflammatory cells within the tumor area, higher levels of pro-inflammatory cytokines implicated in the host anti-tumor immune response, lower number of cells undergoing mitosis, a poorer vascular network, no signs of invasion of surrounding tissues or metastasis and increased animal survival. Our findings reveal that activation of the kinin B1 receptor has a host protective role during murine melanoma tumor progression, suggesting that the B1 receptor could be a new anti-tumor GPCR and provide new opportunities for therapeutic targeting.

  15. Activation of synaptic and extrasynaptic glycine receptors by taurine in preoptic hypothalamic neurons.

    Science.gov (United States)

    Bhattarai, Janardhan Prasad; Park, Soo Joung; Chun, Sang Woo; Cho, Dong Hyu; Han, Seong Kyu

    2015-11-03

    Taurine is an essential amino-sulfonic acid having a fundamental function in the brain, participating in both cell volume regulation and neurotransmission. Using a whole cell voltage patch clamp technique, the taurine-activated neurotransmitter receptors in the preoptic hypothalamic area (PHA) neurons were investigated. In the first set of experiments, different concentrations of taurine were applied on PHA neurons. Taurine-induced responses were concentration-dependent. Taurine-induced currents were action potential-independent and sensitive to strychnine, suggesting the involvement of glycine receptors. In addition, taurine activated not only α-homomeric, but also αβ-heteromeric glycine receptors in PHA neurons. Interestingly, a low concentration of taurine (0.5mM) activated glycine receptors, whereas a higher concentration (3mM) activated both glycine and gamma-aminobutyric acid A (GABAA) receptors in PHA neurons. These results suggest that PHA neurons are influenced by taurine and respond via glycine and GABAA receptors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Transcription control and neuronal differentiation by agents that activate the LXR nuclear receptor family.

    Science.gov (United States)

    Schmidt, A; Vogel, R; Holloway, M K; Rutledge, S J; Friedman, O; Yang, Z; Rodan, G A; Friedman, E

    1999-09-10

    LXR and PPAR receptors belong to the nuclear receptor superfamily of transcriptional activating factors. Using ligand-dependent transcription assays, we found that 5-tetradecyloxy-2-furancarboxylic acid (TOFA) transactivates chimeric receptors composed of the glucocorticoid receptor DNA binding domain and the ligand binding regions of PPARalpha, PPARbeta (NUC-1) and LXRbeta (NER) receptors. In the same assays, ligands for PPARs (oleic acid, WY-14643 and L-631,033) and LXRs (hydroxycholesterols) maintain their respective receptor selectivity. TOFA and hydroxycholesterols also stimulate transcription from a minimal fibrinogen promoter that is under the control of AP-1 or NF-kappaB transcription factor binding sites. In addition to their effects on transcription, these LXRbeta activators induce neuronal differentiation in rat pheochromocytoma cells. TOFA and the natural LXR agonist, 22 (R)-hydroxycholesterol, stimulate neurite outgrowth in 55 and 28% of cells, respectively. No neurite outgrowth was induced by the related 22(S)-hydroxycholesterol, which does not activate the LXR family. These results suggest that the hydroxycholesterol signaling pathway has a complex effect on transcription that mediates the activity of TOFA and hydroxycholesterol on neuronal differentiation in pheochromocytoma cells.

  17. Activation of GLP-1 Receptor Promotes Bone Marrow Stromal Cell Osteogenic Differentiation through β-Catenin

    Directory of Open Access Journals (Sweden)

    Jingru Meng

    2016-04-01

    Full Text Available Glucagon-like peptide 1 (GLP-1 plays an important role in regulating bone remodeling, and GLP-1 receptor agonist shows a positive relationship with osteoblast activity. However, GLP-1 receptor is not found in osteoblast, and the mechanism of GLP-1 receptor agonist on regulating bone remodeling is unclear. Here, we show that the GLP-1 receptor agonist exendin-4 (Ex-4 promoted bone formation and increased bone mass and quality in a rat unloading-induced bone loss model. These functions were accompanied by an increase in osteoblast number and serum bone formation markers, while the adipocyte number was decreased. Furthermore, GLP-1 receptor was detected in bone marrow stromal cells (BMSCs, but not in osteoblast. Activation of GLP-1 receptor by Ex-4 promoted the osteogenic differentiation and inhibited BMSC adipogenic differentiation through regulating PKA/β-catenin and PKA/PI3K/AKT/GSK3β signaling. These findings reveal that GLP-1 receptor regulates BMSC osteogenic differentiation and provide a molecular basis for therapeutic potential of GLP-1 against osteoporosis.

  18. Mood states, sympathetic activity, and in vivo beta-adrenergic receptor function in a normal population.

    Science.gov (United States)

    Yu, Bum-Hee; Kang, Eun-Ho; Ziegler, Michael G; Mills, Paul J; Dimsdale, Joel E

    2008-01-01

    The purpose of this study was to examine the relationship between mood states and beta-adrenergic receptor function in a normal population. We also examined if sympathetic nervous system activity is related to mood states or beta-adrenergic receptor function. Sixty-two participants aged 25-50 years were enrolled in this study. Mood states were assessed using the Profile of Mood States (POMS). Beta-adrenergic receptor function was determined using the chronotropic 25 dose isoproterenol infusion test. Level of sympathetic nervous system activity was estimated from 24-hr urine norepinephrine excretion. Higher tension-anxiety, depression-dejection, and anger-hostility were related to decreased beta-adrenergic receptor sensitivity (i.e., higher chronotropic 25 dose values), but tension-anxiety was the only remaining independent predictor of beta-adrenergic receptor function after controlling for age, gender, ethnicity, and body mass index (BMI). Urinary norepinephrine excretion was unrelated to either mood states or beta-adrenergic receptor function. These findings replicate previous reports that anxiety is related to decreased (i.e., desensitized) beta-adrenergic receptor sensitivity, even after controlling for age, gender, ethnicity, and body mass index.

  19. Analgesic tone conferred by constitutively active mu opioid receptors in mice lacking β-arrestin 2

    Directory of Open Access Journals (Sweden)

    Hales Tim G

    2011-04-01

    Full Text Available Abstract Hedonic reward, dependence and addiction are unwanted effects of opioid analgesics, linked to the phasic cycle of μ opioid receptor activation, tolerance and withdrawal. In vitro studies of recombinant G protein coupled receptors (GPCRs over expressed in cell lines reveal an alternative tonic signaling mechanism that is independent of agonist. Such studies demonstrate that constitutive GPCR signaling can be inhibited by inverse agonists but not by neutral antagonists. However, ligand-independent activity has been difficult to examine in vivo, at the systems level, due to relatively low levels of constitutive activity of most GPCRs including μ receptors, often necessitating mutagenesis or pharmacological manipulation to enhance basal signaling. We previously demonstrated that the absence of β-arrestin 2 (β-arr2 augments the constitutive coupling of μ receptors to voltage-activated Ca2+ channels in primary afferent dorsal root ganglion neurons from β-arr2-/- mice. We used this in vitro approach to characterize neutral competitive antagonists and inverse agonists of the constitutively active wild type μ receptors in neurons. We administered these agents to β-arr2-/- mice to explore the role of constitutive μ receptor activity in nociception and hedonic tone. This study demonstrates that the induction of constitutive μ receptor activity in vivo in β-arr2-/- mice prolongs tail withdrawal from noxious heat, a phenomenon that was reversed by inverse agonists, but not by antagonists that lack negative efficacy. By contrast, the aversive effects of inverse agonists were similar in β-arr2-/- and β-arr2+/+ mice, suggesting that hedonic tone was unaffected.

  20. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  1. How does high-frequency sound or vibration activate vestibular receptors?

    Science.gov (United States)

    Curthoys, I S; Grant, J W

    2015-03-01

    The mechanism by which vestibular neural phase locking occurs and how it relates to classical otolith mechanics is unclear. Here, we put forward the hypothesis that sound and vibration both cause fluid pressure waves in the inner ear and that it is these pressure waves which displace the hair bundles on vestibular receptor hair cells and result in activation of type I receptor hair cells and phase locking of the action potentials in the irregular vestibular afferents, which synapse on type I receptors. This idea has been suggested since the early neural recordings and recent results give it greater credibility.

  2. Molecular simulation of receptors of physiologically active compounds for purposes of medical chemistry

    Science.gov (United States)

    Baskin, Igor I.; Palyulin, Vladimir A.; Zefirov, Nikolai S.

    2009-06-01

    The general strategy of the molecular simulation of biological receptors and their interaction with ligands is considered. The procedures for construction of 3D protein models, molecular docking, evaluation of model quality, determination of the free energy of protein binding with ligands are discussed. The methods of molecular design of new medicaments based on molecular models of biological targets: virtual screening and de novo design, are presented. Examples of the above-listed approaches for the simulation of a number of pharmacologically significant receptors, analysis of receptor-ligand interactions and design of new biologically active organic compounds are given.

  3. Molecular simulation of receptors of physiologically active compounds for purposes of medical chemistry

    International Nuclear Information System (INIS)

    Baskin, Igor I; Palyulin, Vladimir A; Zefirov, Nikolai S

    2009-01-01

    The general strategy of the molecular simulation of biological receptors and their interaction with ligands is considered. The procedures for construction of 3D protein models, molecular docking, evaluation of model quality, determination of the free energy of protein binding with ligands are discussed. The methods of molecular design of new medicaments based on molecular models of biological targets: virtual screening and de novo design, are presented. Examples of the above-listed approaches for the simulation of a number of pharmacologically significant receptors, analysis of receptor-ligand interactions and design of new biologically active organic compounds are given.

  4. Molecular simulation of receptors of physiologically active compounds for purposes of medical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Baskin, Igor I; Palyulin, Vladimir A; Zefirov, Nikolai S [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2009-06-30

    The general strategy of the molecular simulation of biological receptors and their interaction with ligands is considered. The procedures for construction of 3D protein models, molecular docking, evaluation of model quality, determination of the free energy of protein binding with ligands are discussed. The methods of molecular design of new medicaments based on molecular models of biological targets: virtual screening and de novo design, are presented. Examples of the above-listed approaches for the simulation of a number of pharmacologically significant receptors, analysis of receptor-ligand interactions and design of new biologically active organic compounds are given.

  5. Rheumatic Disease: Protease-Activated Receptor-2 in Synovial Joint Pathobiology

    Directory of Open Access Journals (Sweden)

    Kendal McCulloch

    2018-05-01

    Full Text Available Protease-activated receptor-2 (PAR2 is one member of a small family of transmembrane, G-protein-coupled receptors. These receptors are activated via cleavage of their N terminus by serine proteases (e.g., tryptase, unveiling an N terminus tethered ligand which binds to the second extracellular loop of the receptor. Increasing evidence has emerged identifying key pathophysiological roles for PAR2 in both rheumatoid arthritis (RA and osteoarthritis (OA. Importantly, this includes both pro-inflammatory and destructive roles. For example, in murine models of RA, the associated synovitis, cartilage degradation, and subsequent bone erosion are all significantly reduced in the absence of PAR2. Similarly, in experimental models of OA, PAR2 disruption confers protection against cartilage degradation, subchondral bone osteosclerosis, and osteophyte formation. This review focuses on the role of PAR2 in rheumatic disease and its potential as an important therapeutic target for treating pain and joint degradation.

  6. Thyroid hormone and retinoic acid nuclear receptors: specific ligand-activated transcription factors

    International Nuclear Information System (INIS)

    Brtko, J.

    1998-01-01

    Transcriptional regulation by both the thyroid hormone and the vitamin A-derived 'retinoid hormones' is a critical component in controlling many aspects of higher vertebrate development and metabolism. Their functions are mediated by nuclear receptors, which comprise a large super-family of ligand-inducible transcription factors. Both the thyroid hormone and the retinoids are involved in a complex arrangement of physiological and development responses in many tissues of higher vertebrates. The functions of 3,5,3'-triiodothyronine (T 3 ), the thyromimetically active metabolite of thyroxine as well as all-trans retinoic acid, the biologically active vitamin A metabolite are mediated by nuclear receptor proteins that are members of the steroid/thyroid/retinoid hormone receptor family. The functions of all members of the receptor super family are discussed. (authors)

  7. Mechanical stress activates NMDA receptors in the absence of agonists

    OpenAIRE

    Maneshi, Mohammad Mehdi; Maki, Bruce; Gnanasambandam, Radhakrishnan; Belin, Sophie; Popescu, Gabriela K.; Sachs, Frederick; Hua, Susan Z.

    2017-01-01

    While studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca2+ entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect. The competitive glutamate antagonists AP5 and GluN2B-selective inhibitor i...

  8. Structural motifs of importance for the constitutive activity of the orphan 7TM receptor EBI2: analysis of receptor activation in the absence of an agonist

    DEFF Research Database (Denmark)

    Benned-Jensen, Tau; Rosenkilde, Mette M

    2008-01-01

    were identified by a systematic mutational analysis of 29 residues in EBI2. The cAMP response element-binding protein transcription factor was used as a measure of receptor activity and was correlated to the receptor surface expression. PheVI:13 (Phe257), and the neighboring CysVI:12 (Cys256......, but not to Lys, decreased the constitutive activity more than 7-fold compared with wt EBI2. IleIII:03 (Ile106) is located only 4 A from ArgII:20, and a favorable electrostatic interaction with ArgII:20 was created by introduction of Glu in III:03, given that the activity increased to 4.4-fold of that wt EBI2...

  9. Congenital Neonatal Hyperthyroidism Caused by Germline Mutations in the TSH Receptor Gene: Case Report and Review of the Literature

    Science.gov (United States)

    Chester, Jeremy; Rotenstein, Deborah; Ringkananont, Usanee; Steuer, Guy; Carlin, Beatrice; Stewart, Lindsay; Grasberger, Helmut; Refetoff, Samuel

    2018-01-01

    Neonatal hyperthyroidism, a rare and serious disorder occurs in two forms. An autoimmune form associated with maternal Graves’ disease, resulting from transplacental passage of maternal thyroid-stimulating antibodies, and a nonautoimmune form, resulting from mutations in the stimulatory G protein or the thyrotropin receptor (TSHR) causing constitutive activation of intracellular signaling cascades. To date, 29 separate cases of thyrotoxicosis caused by germline mutations of the TSHR have been documented. These cases have expressed themselves in a range of clinical consequences. This report describes a new case of a newborn with nonautoimmune hyperthyroidism secondary to a constitutively active TSHR mutation (S281N) whose clinical course was complicated by severe respiratory compromise. Typical clinical findings in this disorder are discussed by a review of all previously published cases. PMID:18655531

  10. Acutely increasing δGABAA receptor activity impairs memory and inhibits synaptic plasticity in the hippocampus

    Science.gov (United States)

    Whissell, Paul D.; Eng, Dave; Lecker, Irene; Martin, Loren J.; Wang, Dian-Shi; Orser, Beverley A.

    2013-01-01

    Extrasynaptic γ-aminobutyric acid type A (GABAA) receptors that contain the δ subunit (δGABAA receptors) are expressed in several brain regions including the dentate gyrus (DG) and CA1 subfields of the hippocampus. Drugs that increase δGABAA receptor activity have been proposed as treatments for a variety of disorders including insomnia, epilepsy and chronic pain. Also, long-term pretreatment with the δGABAA receptor–preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) enhances discrimination memory and increases neurogenesis in the DG. Despite the potential therapeutic benefits of such treatments, the effects of acutely increasing δGABAA receptor activity on memory behaviors remain unknown. Here, we studied the effects of THIP (4 mg/kg, i.p.) on memory performance in wild-type (WT) and δGABAA receptor null mutant (Gabrd−/−) mice. Additionally, the effects of THIP on long-term potentiation (LTP), a molecular correlate of memory, were studied within the DG and CA1 subfields of the hippocampus using electrophysiological recordings of field potentials in hippocampal slices. The results showed that THIP impaired performance in the Morris water maze, contextual fear conditioning and object recognition tasks in WT mice but not Gabrd−/− mice. Furthermore, THIP inhibited LTP in hippocampal slices from WT but not Gabrd−/− mice, an effect that was blocked by GABAA receptor antagonist bicuculline. Thus, acutely increasing δGABAA receptor activity impairs memory behaviors and inhibits synaptic plasticity. These results have important implications for the development of therapies aimed at increasing δGABAA receptor activity. PMID:24062648

  11. Acutely increasing δGABAA receptor activity impairs memory and inhibits synaptic plasticity in the hippocampus

    Directory of Open Access Journals (Sweden)

    Paul David Whissell

    2013-09-01

    Full Text Available Extrasynaptic γ-aminobutyric acid type A (GABAA receptors that contain the δ subunit (δGABAA receptors are expressed in several brain regions including the dentate gyrus (DG and CA1 subfields of the hippocampus. Drugs that increase δGABAA receptor activity have been proposed as treatments for a variety of disorders including insomnia, epilepsy and chronic pain. Also, long-term pretreatment with the δGABAA receptor–preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP enhances discrimination memory and increases neurogenesis in the DG. Despite the potential therapeutic benefits of such treatments, the effects of acutely increasing δGABAA receptor activity on memory behaviors remain unknown. Here, we studied the effects of THIP (4 mg/kg, i.p. on memory performance in wild-type (WT and δGABAA receptor null mutant (Gabrd–/– mice. Additionally, the effects of THIP on long-term potentiation (LTP, a molecular correlate of memory, were studied within the DG and CA1 subfields of the hippocampus using electrophysiological recordings of field potentials in hippocampal slices. The results showed that THIP impaired performance in the Morris water maze, contextual fear conditioning and object recognition tasks in WT mice but not Gabrd–/– mice. Furthermore, THIP inhibited LTP in hippocampal slices from WT but not Gabrd–/– mice, an effect that was blocked by GABAA receptor antagonist bicuculline. Thus, acutely increasing δGABAA receptor activity impairs memory behaviors and inhibits synaptic plasticity. These results have important implications for the development of therapies aimed at increasing δGABAA receptor activity.

  12. Cow's milk increases the activities of human nuclear receptors peroxisome proliferator-activated receptors alpha and delta and retinoid X receptor alpha involved in the regulation of energy homeostasis, obesity, and inflammation.

    Science.gov (United States)

    Suhara, W; Koide, H; Okuzawa, T; Hayashi, D; Hashimoto, T; Kojo, H

    2009-09-01

    The nuclear peroxisome proliferator-activated receptors (PPAR) have been shown to play crucial roles in regulating energy homeostasis including lipid and carbohydrate metabolism, inflammatory responses, and cell proliferation, differentiation, and survival. Because PPAR agonists have the potential to prevent or ameliorate diseases such as hyperlipidemia, diabetes, atherosclerosis, and obesity, we have explored new natural agonists for PPAR. For this purpose, cow's milk was tested for agonistic activity toward human PPAR subtypes using a reporter gene assay. Milk increased human PPARalpha activity in a dose-dependent manner with a 3.2-fold increase at 0.5% (vol/vol). It also enhanced human PPARdelta activity in a dose-dependent manner with an 11.5-fold increase at 0.5%. However, it only slightly affected human PPARgamma activity. Ice cream, butter, and yogurt also increased the activities of PPARalpha and PPARdelta, whereas vegetable cream affected activity of PPARdelta but not PPARalpha. Skim milk enhanced the activity of PPAR to a lesser degree than regular milk. Milk and fresh cream increased the activity of human retinoid X receptor (RXR)alpha as well as PPARalpha and PPARdelta, whereas neither affected vitamin D3 receptor, estrogen receptors alpha and beta, or thyroid receptors alpha and beta. Both milk and fresh cream were shown by quantitative real-time PCR to increase the quantity of mRNA for uncoupling protein 2 (UCP2), an energy expenditure gene, in a dose-dependent manner. The increase in UCP2 mRNA was found to be reduced by treatment with PPARdelta-short interfering (si)RNA. This study unambiguously clarified at the cellular level that cow's milk increased the activities of human PPARalpha, PPARdelta, and RXRalpha. The possible role in enhancing the activities of PPARalpha, PPARdelta, and RXRalpha, and the health benefits of cow's milk were discussed.

  13. Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation.

    Science.gov (United States)

    Rocha, Sandra M; Saraiva, Tatiana; Cristóvão, Ana C; Ferreira, Raquel; Santos, Tiago; Esteves, Marta; Saraiva, Cláudia; Je, Goun; Cortes, Luísa; Valero, Jorge; Alves, Gilberto; Klibanov, Alexander; Kim, Yoon-Seong; Bernardino, Liliana

    2016-06-04

    Histamine is an amine widely known as a peripheral inflammatory mediator and as a neurotransmitter in the central nervous system. Recently, it has been suggested that histamine acts as an innate modulator of microglial activity. Herein, we aimed to disclose the role of histamine in microglial phagocytic activity and reactive oxygen species (ROS) production and to explore the consequences of histamine-induced neuroinflammation in dopaminergic (DA) neuronal survival. The effect of histamine on phagocytosis was assessed both in vitro by using a murine N9 microglial cell line and primary microglial cell cultures and in vivo. Cells were exposed to IgG-opsonized latex beads or phosphatidylserine (PS) liposomes to evaluate Fcγ or PS receptor-mediated microglial phagocytosis, respectively. ROS production and protein levels of NADPH oxidases and Rac1 were assessed as a measure of oxidative stress. DA neuronal survival was evaluated in vivo by counting the number of tyrosine hydroxylase-positive neurons in the substantia nigra (SN) of mice. We found that histamine triggers microglial phagocytosis via histamine receptor 1 (H1R) activation and ROS production via H1R and H4R activation. By using apocynin, a broad NADPH oxidase (Nox) inhibitor, and Nox1 knockout mice, we found that the Nox1 signaling pathway is involved in both phagocytosis and ROS production induced by histamine in vitro. Interestingly, both apocynin and annexin V (used as inhibitor of PS-induced phagocytosis) fully abolished the DA neurotoxicity induced by the injection of histamine in the SN of adult mice in vivo. Blockade of H1R protected against histamine-induced Nox1 expression and death of DA neurons in vivo. Overall, our results highlight the relevance of histamine in the modulation of microglial activity that ultimately may interfere with neuronal survival in the context of Parkinson's disease (PD) and, eventually, other neurodegenerative diseases which are accompanied by microglia

  14. Molecular characterization of the receptor binding structure-activity relationships of influenza B virus hemagglutinin.

    Science.gov (United States)

    Carbone, V; Kim, H; Huang, J X; Baker, M A; Ong, C; Cooper, M A; Li, J; Rockman, S; Velkov, T

    2013-01-01

    Selectivity of α2,6-linked human-like receptors by B hemagglutinin (HA) is yet to be fully understood. This study integrates binding data with structure-recognition models to examine the impact of regional-specific sequence variations within the receptor-binding pocket on selectivity and structure activity relationships (SAR). The receptor-binding selectivity of influenza B HAs corresponding to either B/Victoria/2/1987 or the B/Yamagata/16/88 lineages was examined using surface plasmon resonance, solid-phase ELISA and gel-capture assays. Our SAR data showed that the presence of asialyl sugar units is the main determinant of receptor preference of α2,6 versus α2,3 receptor binding. Changes to the type of sialyl-glycan linkage present on receptors exhibit only a minor effect upon binding affinity. Homology-based structural models revealed that structural properties within the HA pocket, such as a glyco-conjugate at Asn194 on the 190-helix, sterically interfere with binding to avian receptor analogs by blocking the exit path of the asialyl sugars. Similarly, naturally occurring substitutions in the C-terminal region of the 190-helix and near the N-terminal end of the 140-loop narrows the horizontal borders of the binding pocket, which restricts access of the avian receptor analog LSTa. This study helps bridge the gap between ligand structure and receptor recognition for influenza B HA; and provides a consensus SAR model for the binding of human and avian receptor analogs to influenza B HA.

  15. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor

    International Nuclear Information System (INIS)

    Yan Zhencheng; Liu Daoyan; Zhang Lili; Shen Chenyi; Ma Qunli; Cao Tingbing; Wang Lijuan; Nie Hai; Zidek, Walter; Tepel, Martin; Zhu Zhiming

    2007-01-01

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-δ (PPAR-δ)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each p < 0.05). Adipocyte hypertrophy induced by high-fat diet was accompanied by increased CB1 expression in adipose tissue, whereas exercise significantly reduced CB1 expression (each p < 0.05). CB1 receptor expression and adipocyte differentiation were directly regulated by PPAR-δ. Adipocyte hypertrophy induced by high-fat diet was accompanied by reduced PPAR-δ. Furthermore, selective silencing of PPAR-δ by RNA interference in 3T3-L1-preadipocyte cells significantly increased CB1 expression from 1.00 ± 0.06 (n = 3) to 1.91 ± 0.06 (n = 3; p < 0.01) and increased adipocyte differentiation, whereas adenovirus-mediated overexpression of PPAR-δ significantly reduced CB1 expression to 0.39 ± 0.03 (n = 3; p < 0.01) and reduced adipocyte differentiation. In the presence of the CB1 antagonist rimonabant adipocyte differentiation in stimulated 3T3 L1 preadipocyte cells was significantly reduced. The study indicates that high-fat diet-induced hypertrophy of adipocytes is associated with increased CB1 receptor expression which is directly regulated by PPAR-δ. Both CB1 and PPAR-δ are intimately involved in therapeutic interventions against a most important cardiovascular risk factor

  16. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    Science.gov (United States)

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Telmisartan prevents weight gain and obesity through activation of peroxisome proliferator-activated receptor-delta-dependent pathways

    DEFF Research Database (Denmark)

    He, Hongbo; Yang, Dachun; Ma, Liqun

    2010-01-01

    Telmisartan shows antihypertensive and several pleiotropic effects that interact with metabolic pathways. In the present study we tested the hypothesis that telmisartan prevents adipogenesis in vitro and weight gain in vivo through activation of peroxisome proliferator-activated receptor (PPAR)-d...

  18. Conformation guides molecular efficacy in docking screens of activated β-2 adrenergic G protein coupled receptor.

    Science.gov (United States)

    Weiss, Dahlia R; Ahn, SeungKirl; Sassano, Maria F; Kleist, Andrew; Zhu, Xiao; Strachan, Ryan; Roth, Bryan L; Lefkowitz, Robert J; Shoichet, Brian K

    2013-05-17

    A prospective, large library virtual screen against an activated β2-adrenergic receptor (β2AR) structure returned potent agonists to the exclusion of inverse-agonists, providing the first complement to the previous virtual screening campaigns against inverse-agonist-bound G protein coupled receptor (GPCR) structures, which predicted only inverse-agonists. In addition, two hits recapitulated the signaling profile of the co-crystal ligand with respect to the G protein and arrestin mediated signaling. This functional fidelity has important implications in drug design, as the ability to predict ligands with predefined signaling properties is highly desirable. However, the agonist-bound state provides an uncertain template for modeling the activated conformation of other GPCRs, as a dopamine D2 receptor (DRD2) activated model templated on the activated β2AR structure returned few hits of only marginal potency.

  19. Peroxisome Proliferator-activated Receptor gamma Regulates Expression of the Anti-lipolytic G-protein-coupled Receptor 81 (GPR81/Gpr81)

    NARCIS (Netherlands)

    Jeninga, E.H.; Bugge, A.; Nielsen, R.; Kersten, A.H.; Hamers, N.; Dani, C.; Wabitsch, M.; Berger, R.; Stunnenberg, H.G.; Mandrup, S.; Kalkhoven, E.

    2009-01-01

    The ligand-inducible nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR gamma) plays a key role in the differentiation, maintenance, and function of adipocytes and is the molecular target for the insulin-sensitizing thiazoledinediones (TZDs). Although a number of PPAR gamma

  20. Peptides derived from specific interaction sites of the fibroblast growth factor 2 - FGF receptor complexes induce receptor activation and signaling

    DEFF Research Database (Denmark)

    Manfè, Valentina; Kochoyan, Artur; Bock, Elisabeth

    2010-01-01

    J. Neurochem. (2010) 10.1111/j.1471-4159.2010.06718.x Abstract Basic fibroblast growth factor (FGF2, bFGF) is the most extensively studied member of the FGF family and is involved in neurogenesis, differentiation, neuroprotection, and synaptic plasticity in the CNS. FGF2 executes its pleiotropic...... biologic actions by binding, dimerizing, and activating FGF receptors (FGFRs). The present study reports the physiologic impact of various FGF2-FGFR1 contact sites employing three different synthetic peptides, termed canofins, designed based on structural analysis of the interactions between FGF2 and FGFR1...

  1. Reactivation of desensitized formyl peptide receptors by platelet activating factor: a novel receptor cross talk mechanism regulating neutrophil superoxide anion production.

    Directory of Open Access Journals (Sweden)

    Huamei Forsman

    Full Text Available Neutrophils express different chemoattractant receptors of importance for guiding the cells from the blood stream to sites of inflammation. These receptors communicate with one another, a cross talk manifested as hierarchical, heterologous receptor desensitization. We describe a new receptor cross talk mechanism, by which desensitized formyl peptide receptors (FPRdes can be reactivated. FPR desensitization is induced through binding of specific FPR agonists and is reached after a short period of active signaling. The mechanism that transfers the receptor to a non-signaling desensitized state is not known, and a signaling pathway has so far not been described, that transfers FPRdes back to an active signaling state. The reactivation signal was generated by PAF stimulation of its receptor (PAFR and the cross talk was uni-directional. LatrunculinA, an inhibitor of actin polymerization, induced a similar reactivation of FPRdes as PAF while the phosphatase inhibitor CalyculinA inhibited reactivation, suggesting a role for the actin cytoskeleton in receptor desensitization and reactivation. The activated PAFR could, however, reactivate FPRdes also when the cytoskeleton was disrupted prior to activation. The receptor cross talk model presented prophesies that the contact on the inner leaflet of the plasma membrane that blocks signaling between the G-protein and the FPR is not a point of no return; the receptor cross-talk from the PAFRs to the FPRdes initiates an actin-independent signaling pathway that turns desensitized receptors back to a signaling state. This represents a novel mechanism for amplification of neutrophil production of reactive oxygen species.

  2. Structural mechanism of ligand activation in human calcium-sensing receptor

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Yong; Mosyak, Lidia; Kurinov, Igor; Zuo, Hao; Sturchler, Emmanuel; Cheng, Tat Cheung; Subramanyam, Prakash; Brown, Alice P.; Brennan, Sarah C.; Mun, Hee-chang; Bush, Martin; Chen, Yan; Nguyen, Trang X.; Cao, Baohua; Chang, Donald D.; Quick, Matthias; Conigrave, Arthur D.; Colecraft, Henry M.; McDonald, Patricia; Fan, Qing R.

    2016-07-19

    Human calcium-sensing receptor (CaSR) is a G-protein-coupled receptor (GPCR) that maintains extracellular Ca2+homeostasis through the regulation of parathyroid hormone secretion. It functions as a disulfide-tethered homodimer composed of three main domains, the Venus Flytrap module, cysteine-rich domain, and seven-helix transmembrane region. Here, we present the crystal structures of the entire extracellular domain of CaSR in the resting and active conformations. We provide direct evidence that L-amino acids are agonists of the receptor. In the active structure, L-Trp occupies the orthosteric agonist-binding site at the interdomain cleft and is primarily responsible for inducing extracellular domain closure to initiate receptor activation. Our structures reveal multiple binding sites for Ca2+and PO43-ions. Both ions are crucial for structural integrity of the receptor. While Ca2+ions stabilize the active state, PO43-ions reinforce the inactive conformation. The activation mechanism of CaSR involves the formation of a novel dimer interface between subunits.

  3. A peptide antagonist of the ErbB1 receptor inhibits receptor activation, tumor cell growth and migration in vitro and xenograft tumor growth in vivo

    DEFF Research Database (Denmark)

    Xu, Ruodan; Povlsen, Gro Klitgaard; Soroka, Vladislav

    2010-01-01

    The epidermal growth factor family of receptor tyrosine kinases (ErbBs) plays essential roles in tumorigenesis and cancer disease progression, and therefore has become an attractive target for structure-based drug design. ErbB receptors are activated by ligand-induced homo- and heterodimerization...... constitutes part of the dimerization arm of ErbB3. Inherbin3 binds to the extracellular domains of all four ErbB receptors, with the lowest peptide binding affinity for ErbB4. Inherbin3 functions as an antagonist of epidermal growth factor (EGF)-ErbB1 signaling. We show that Inherbin3 inhibits EGF-induced Erb....... Structural studies have revealed that ErbB receptor dimers are stabilized by receptor-receptor interactions, primarily mediated by a region in the second extracellular domain, termed the "dimerization arm". The present study is the first biological characterization of a peptide, termed Inherbin3, which...

  4. ALK receptor activation, ligands and therapeutic targeting in glioblastoma and in other cancers

    International Nuclear Information System (INIS)

    Wellstein, Anton

    2012-01-01

    The intracellular anaplastic lymphoma kinase (ALK) fragment shows striking homology with members of the insulin receptor family and was initially identified as an oncogenic fusion protein resulting from a translocation in lymphoma and more recently in a range of cancers. The full-length ALK transmembrane receptor of ~220 kDa was identified based on this initial work. This tyrosine kinase receptor and its ligands, the growth factors pleiotrophin (PTN) and midkine (MK) are highly expressed during development of the nervous system and other organs. Each of these genes has been implicated in malignant progression of different tumor types and shown to alter phenotypes as well as signal transduction in cultured normal and tumor cells. Beyond its role in cancer, the ALK receptor pathway is thought to contribute to nervous system development, function, and repair, as well as metabolic homeostasis and the maintenance of tissue regeneration. ALK receptor activity in cancer can be up-regulated by amplification, overexpression, ligand binding, mutations in the intracellular domain of the receptor and by activity of the receptor tyrosine phosphatase PTPRz. Here we discuss the evidence for ligand control of ALK activity as well as the potential prognostic and therapeutic implications from gene expression and functional studies. An analysis of 18 published gene expression data sets from different cancers shows that overexpression of ALK, its smaller homolog LTK (leukocyte tyrosine kinase) and the ligands PTN and MK in cancer tissues from patients correlate significantly with worse course and outcome of the disease. This observation together with preclinical functional studies suggests that this pathway could be a valid therapeutic target for which complementary targeting strategies with small molecule kinase inhibitors as well as antibodies to ligands or the receptors may be used.

  5. Increased dopamine D1 receptor binding in the human mesocortical system following central cholinergic activation

    International Nuclear Information System (INIS)

    Fedi, M.; Berkovic, S.F.; Tochon-Danguy, H.J.; Reutens, D.C.

    2002-01-01

    Full text: The interaction between the cholinergic and dopaminergic system has been implicated in many pathological processes including, Alzheimer's disease, schizophrenia and drug addiction. Little is known about the control of dopamine (DA) release following central cholinergic activation in humans, but experimental studies suggest that endogenously released Acetylcholine (ACh) achieved by the administration of cholinesterase inhibitors, can increase dopamine efflux in different regions of the brain. This leads to the activation of different types of post-synaptic dopaminergic receptors which belong to the family of G-protein coupled receptors (GPCRs). A common paradigm of the GPCRs desensitization is that agonist-induced receptor signaling is rapidly attenuated by receptor internalisation. Several experiments have shown that the activation of Dl receptors in acute conditions leads, within minutes, to translocation of the receptor from the surface of the neurons to the endosomal compartment in the cytoplasm and increased receptor turnover. To assess changes in Dl receptor density following an intravenous infusion of the selective cholinesterase inhibitor physostigmine salicylate (PHY), we studied eleven normal subjects (10 male and 1 female, mean age 36.1 and 61617; 9.9) using [11C]-SCH23390 and PET The binding potential (BP) for SCH23390 was significantly (p 0.05). There was no statistically significant difference between baseline and physostigmine Kl ratio (p>0.05) suggesting that BP changes observed were not secondary to regional blood flow changes or to an order effect of the scans. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  6. 5-HT1A receptors modulate small-conductance Ca2+-activated K+ channels

    DEFF Research Database (Denmark)

    Grunnet, Morten; Jespersen, Thomas; Perrier, Jean-François

    2004-01-01

    Small-conductance calcium-activated potassium channels (SK) are responsible for the medium afterhyperpolarisation (mAHP) following action potentials in neurons. Here we tested the ability of serotonin (5-HT) to modulate the activity of SK channels by coexpressing 5-HT1A receptors with different...

  7. Protease-activated receptor-1 impairs host defense in murine pneumococcal pneumonia: a controlled laboratory study

    NARCIS (Netherlands)

    Schouten, Marcel; van't Veer, Cornelis; Roelofs, Joris J. T. H.; Levi, Marcel; van der Poll, Tom

    2012-01-01

    Streptococcus pneumoniae is the most common causative pathogen in community-acquired pneumonia. Protease-activated receptor-1 (PAR-1) is expressed by multiple cell types present in the lungs and can be activated by various proteases generated during acute inflammation. The cellular effect of PAR-1

  8. Morphine withdrawal enhances constitutive μ-opioid receptor activity in the ventral tegmental area

    NARCIS (Netherlands)

    Meye, F.J.; van Zessen, R.; Smidt, M.P.; Adan, R.A.H.; Ramakers, G.M.J.

    2012-01-01

    μ-opioid receptors (MORs) in the ventral tegmental area (VTA) are pivotally involved in addictive behavior. While MORs are typically activated by opioids, they can also become constitutively active in the absence of any agonist. In the current study, we present evidence that MOR constitutive

  9. Prediction of in vitro and in vivo oestrogen receptor activity using hierarchical clustering

    Science.gov (United States)

    In this study, hierarchical clustering classification models were developed to predict in vitro and in vivo oestrogen receptor (ER) activity. Classification models were developed for binding, agonist, and antagonist in vitro ER activity and for mouse in vivo uterotrophic ER bindi...

  10. Identification of a second putative receptor of platelet activating factor on human polymorphonuclear leukocytes

    International Nuclear Information System (INIS)

    Hwang, S.B.

    1987-01-01

    Due to multiple molecular species of platelet activating factor (PAF) and the existence of high affinity binding sites in a variety of cells and tissues, possible existence of PAF receptor subtypes has been suggested. This report shows differences between specific PAF receptors on human leukocytes and platelets. Human PMN leukocyte membranes showed high affinity binding sites for PAF with an equilibrium dissociation constant (Kd) of 4.7 (+/- 1.4) x 10 -10 M. The maximal number (B/sub max/) of receptor sites was estimated to be 3.13 (+/- 1.4) x 10 -13 mol/mg protein. They compared the relative potencies of several PAF agonists and receptor antagonists between human platelet and human leukocyte membranes. One antagonist (Ono-6240) was found to be 8 times less potent at inhibiting the [ 3 H]PAF specific receptor binding to human leukocytes than to human platelets. Mg 2+ , Ca 2+ and K + ions potentiated the [ 3 H]PAF specific binding in both systems. Na + ions inhibited the [ 3 H]PAF specific binding to human platelets but showed no effects in human leukocytes. K + ions decreased the Mg 2+ -potentiated [ 3 H]PAF binding in human leukocytes but showed no effects in human platelets. These results suggest that the PAF specific receptors in human leukocytes are different structurally and possibly functionally from the receptors identified in human platelets

  11. Peroxisome proliferator-activated receptor α activation induces hepatic steatosis, suggesting an adverse effect.

    Directory of Open Access Journals (Sweden)

    Fang Yan

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is characterized by hepatic triglyceride accumulation, ranging from steatosis to steatohepatitis and cirrhosis. NAFLD is a risk factor for cardiovascular diseases and is associated with metabolic syndrome. Antihyperlipidemic drugs are recommended as part of the treatment for NAFLD patients. Although fibrates activate peroxisome proliferator-activated receptor α (PPARα, leading to the reduction of serum triglyceride levels, the effects of these drugs on NAFLD remain controversial. Clinical studies have reported that PPARα activation does not improve hepatic steatosis. In the present study, we focused on exploring the effect and mechanism of PPARα activation on hepatic triglyceride accumulation and hepatic steatosis. Male C57BL/6J mice, Pparα-null mice and HepG2 cells were treated with fenofibrate, one of the most commonly used fibrate drugs. Both low and high doses of fenofibrate were administered. Hepatic steatosis was detected through oil red O staining and electron microscopy. Notably, in fenofibrate-treated mice, the serum triglyceride levels were reduced and the hepatic triglyceride content was increased in a dose-dependent manner. Oil red O staining of liver sections demonstrated that fenofibrate-fed mice accumulated abundant neutral lipids. Fenofibrate also increased the intracellular triglyceride content in HepG2 cells. The expression of sterol regulatory element-binding protein 1c (SREBP-1c and the key genes associated with lipogenesis were increased in fenofibrate-treated mouse livers and HepG2 cells in a dose-dependent manner. However, the effect was strongly impaired in Pparα-null mice treated with fenofibrate. Fenofibrate treatment induced mature SREBP-1c expression via the direct binding of PPARα to the DR1 motif of the SREBP-1c gene. Taken together, these findings indicate the molecular mechanism by which PPARα activation increases liver triglyceride accumulation and suggest an

  12. Dithiothreitol activation of the insulin receptor/kinase does not involve subunit dissociation of the native α2β2 insulin receptor subunit complex

    International Nuclear Information System (INIS)

    Sweet, L.J.; Wilden, P.A.; Pessin, J.E.

    1986-01-01

    The subunit composition of the dithiothreitol- (DTT) activated insulin receptor/kinase was examined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and gel filtration chromatography under denaturing or nondenaturing conditions. Pretreatment of 32 P-labeled insulin receptors with 50 mM DTT followed by gel filtration chromatography in 0.1% SDS demonstrated the dissociation of the α 2 β 2 insulin receptor complex (M/sub r/ 400,000) into the monomeric 95,000 β subunit. In contrast, pretreatment of the insulin receptors with 1-50 mM DTT followed by gel filtration chromatography in 0.1% Triton X-100 resulted in no apparent alteration in mobility compared to the untreated insulin receptors. Resolution of this complex by nonreducing SDS-polyacrylamide gel electrophoresis and autoradiography demonstrated the existence of the α 2 β 2 heterotetrameric complex with essentially no αβ heterodimeric or free monomeric β subunit species present. This suggests that the insulin receptor can reoxidize into the M/sub r/ 400,000 complex after the removal of DTT by gel filtration chromatography. To prevent reoxidation, the insulin receptors were pretreated with 50 mM DTT. Under the conditions the insulin receptors migrated as the M/sub r/ 400,000 α 2 β 2 complex. These results demonstrate that treatment of the insulin receptors with high concentrations of DTT, followed by removal of DTT by gel filtration, results in reoxidation of the reduced α 2 β 2 insulin receptor complex. Further, these results document that although the DTT stimulation of the insulin receptor/kinase does involve reduction of the insulin receptor subunits, it does not result in dissociation of the native α 2 β 2 insulin receptor subunit complex

  13. Protection against methamphetamine-induced neurotoxicity to neostriatal dopaminergic neurons by adenosine receptor activation.

    Science.gov (United States)

    Delle Donne, K T; Sonsalla, P K

    1994-12-01

    Methamphetamine (METH)-induced neurotoxicity to nigrostriatal dopaminergic neurons in experimental animals appears to have a glutamatergic component because blockade of N-methyl-D-aspartate receptors prevents the neuropathologic consequences. Because adenosine affords neuroprotection against various forms of glutamate-mediated neuronal damage, the present studies were performed to investigate whether adenosine plays a protective role in METH-induced toxicity. METH-induced decrements in neostriatal dopamine content and tyrosine hydroxylase activity in mice were potentiated by concurrent treatment with caffeine, a nonselective adenosine antagonist that blocks both A1 and A2 adenosine receptors. In contrast, chronic treatment of mice with caffeine through their drinking water for 4 weeks, which increased the number of adenosine A1 receptors in the neostriatum and frontal cortex, followed by drug washout, prevented the neurochemical changes produced by the treatment of mice with METH treatment. In contrast, this treatment did not prevent 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-induced dopaminergic neurotoxicity. Furthermore, concurrent administration of cyclopentyladenosine, an adenosine A1 receptor agonist, attenuated the METH-induced neurochemical changes. This protection by cyclopentyladenosine was blocked by cyclopentyltheophylline, an A1 receptor antagonist. These results indicate that activation of A1 receptors can protect against METH-induced neurotoxicity in mice.

  14. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors.

    Science.gov (United States)

    Tunaru, Sorin; Althoff, Till F; Nüsing, Rolf M; Diener, Martin; Offermanns, Stefan

    2012-06-05

    Castor oil is one of the oldest drugs. When given orally, it has a laxative effect and induces labor in pregnant females. The effects of castor oil are mediated by ricinoleic acid, a hydroxylated fatty acid released from castor oil by intestinal lipases. Despite the wide-spread use of castor oil in conventional and folk medicine, the molecular mechanism by which ricinoleic acid acts remains unknown. Here we show that the EP(3) prostanoid receptor is specifically activated by ricinoleic acid and that it mediates the pharmacological effects of castor oil. In mice lacking EP(3) receptors, the laxative effect and the uterus contraction induced via ricinoleic acid are absent. Although a conditional deletion of the EP(3) receptor gene in intestinal epithelial cells did not affect castor oil-induced diarrhea, mice lacking EP(3) receptors only in smooth-muscle cells were unresponsive to this drug. Thus, the castor oil metabolite ricinoleic acid activates intestinal and uterine smooth-muscle cells via EP(3) prostanoid receptors. These findings identify the cellular and molecular mechanism underlying the pharmacological effects of castor oil and indicate a role of the EP(3) receptor as a target to induce laxative effects.

  15. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis.

    Science.gov (United States)

    Mahabeleshwar, Ganapati H; Feng, Weiyi; Reddy, Kumar; Plow, Edward F; Byzova, Tatiana V

    2007-09-14

    The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.

  16. Activation of Toll-like receptors nucleates assembly of the MyDDosome signaling hub.

    Science.gov (United States)

    Latty, Sarah Louise; Sakai, Jiro; Hopkins, Lee; Verstak, Brett; Paramo, Teresa; Berglund, Nils A; Cammorota, Eugenia; Cicuta, Pietro; Gay, Nicholas J; Bond, Peter J; Klenerman, David; Bryant, Clare E

    2018-01-24

    Infection and tissue damage induces assembly of supramolecular organizing centres (SMOCs)), such as the Toll-like receptor (TLR) MyDDosome, to co-ordinate inflammatory signaling. SMOC assembly is thought to drive digital all-or-none responses, yet TLR activation by diverse microbes induces anything from mild to severe inflammation. Using single-molecule imaging of TLR4-MyDDosome signaling in living macrophages, we find that MyDDosomes assemble within minutes of TLR4 stimulation. TLR4/MD2 activation leads only to formation of TLR4/MD2 heterotetramers, but not oligomers, suggesting a stoichiometric mismatch between activated receptors and MyDDosomes. The strength of TLR4 signalling depends not only on the number and size of MyDDosomes formed but also how quickly these structures assemble. Activated TLR4, therefore, acts transiently nucleating assembly of MyDDosomes, a process that is uncoupled from receptor activation. These data explain how the oncogenic mutation of MyD88 (L265P) assembles MyDDosomes in the absence of receptor activation to cause constitutive activation of pro-survival NF-κB signalling. © 2018, Latty et al.

  17. Communication over the network of binary switches regulates the activation of A2A adenosine receptor.

    Directory of Open Access Journals (Sweden)

    Yoonji Lee

    2015-02-01

    Full Text Available Dynamics and functions of G-protein coupled receptors (GPCRs are accurately regulated by the type of ligands that bind to the orthosteric or allosteric binding sites. To glean the structural and dynamical origin of ligand-dependent modulation of GPCR activity, we performed total ~ 5 μsec molecular dynamics simulations of A2A adenosine receptor (A2AAR in its apo, antagonist-bound, and agonist-bound forms in an explicit water and membrane environment, and examined the corresponding dynamics and correlation between the 10 key structural motifs that serve as the allosteric hotspots in intramolecular signaling network. We dubbed these 10 structural motifs "binary switches" as they display molecular interactions that switch between two distinct states. By projecting the receptor dynamics on these binary switches that yield 2(10 microstates, we show that (i the receptors in apo, antagonist-bound, and agonist-bound states explore vastly different conformational space; (ii among the three receptor states the apo state explores the broadest range of microstates; (iii in the presence of the agonist, the active conformation is maintained through coherent couplings among the binary switches; and (iv to be most specific, our analysis shows that W246, located deep inside the binding cleft, can serve as both an agonist sensor and actuator of ensuing intramolecular signaling for the receptor activation. Finally, our analysis of multiple trajectories generated by inserting an agonist to the apo state underscores that the transition of the receptor from inactive to active form requires the disruption of ionic-lock in the DRY motif.

  18. Endothelin receptors and activity differ in human, dog, and rabbit lung.

    Science.gov (United States)

    McKay, K O; Armour, C L; Black, J L

    1996-01-01

    In this study, we have examined dog and rabbit airways as potential models for human airways in regard to the activity of endothelin. The receptors involved in the response to endothelin-1 (ET-1) in airway tissue from human, rabbit, and dog lung were investigated, as was the mechanism responsible for the contraction to ET-1 in tissue from the three species. By using specific endothelin receptor agonists and antagonists, we have demonstrated that ETB receptors predominate in rabbit and human airways and ETA receptors in dog airways. The contraction to ET-1 is not dependent on cyclooxygenase products of arachidonic acid, as indomethacin had no effect on the response to ET-1. Extracellular calcium influx via voltage-dependent channels is necessary for contraction to ET-1 in rabbit and dog airways. These results are in contrast to our previously reported results in human airways, in which neither removal of extracellular calcium nor verapamil affected the ET-1 response. The sustained phase of the contraction to ET-1 in all three species may be mediated in part by activation of protein kinase C (PKC), as the inhibitor staurosporine significantly altered the time course of the response to endothelin. We therefore conclude that in rabbit airways ET-1 activates ETB receptors, triggers the influx of extracellular calcium through voltage-dependent channels, and induces a contractile response that is, in part, dependent upon stimulation of PKC. The same mechanism is triggered in dog bronchus; however, the receptors involved in this species are of the ETA type. Finally, in human airways, the contractile response to ET-1, while independent of extracellular calcium influx, is dependent upon PKC activation after binding of the peptide to ETB receptors.

  19. Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor.

    Science.gov (United States)

    Che, Tao; Majumdar, Susruta; Zaidi, Saheem A; Ondachi, Pauline; McCorvy, John D; Wang, Sheng; Mosier, Philip D; Uprety, Rajendra; Vardy, Eyal; Krumm, Brian E; Han, Gye Won; Lee, Ming-Yue; Pardon, Els; Steyaert, Jan; Huang, Xi-Ping; Strachan, Ryan T; Tribo, Alexandra R; Pasternak, Gavril W; Carroll, F Ivy; Stevens, Raymond C; Cherezov, Vadim; Katritch, Vsevolod; Wacker, Daniel; Roth, Bryan L

    2018-01-11

    The κ-opioid receptor (KOP) mediates the actions of opioids with hallucinogenic, dysphoric, and analgesic activities. The design of KOP analgesics devoid of hallucinatory and dysphoric effects has been hindered by an incomplete structural and mechanistic understanding of KOP agonist actions. Here, we provide a crystal structure of human KOP in complex with the potent epoxymorphinan opioid agonist MP1104 and an active-state-stabilizing nanobody. Comparisons between inactive- and active-state opioid receptor structures reveal substantial conformational changes in the binding pocket and intracellular and extracellular regions. Extensive structural analysis and experimental validation illuminate key residues that propagate larger-scale structural rearrangements and transducer binding that, collectively, elucidate the structural determinants of KOP pharmacology, function, and biased signaling. These molecular insights promise to accelerate the structure-guided design of safer and more effective κ-opioid receptor therapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Increased amphetamine-induced locomotor activity, sensitization, and accumbal dopamine release in M5 muscarinic receptor knockout mice

    DEFF Research Database (Denmark)

    Schmidt, Lene S; Miller, Anthony D; Lester, Deranda B

    2010-01-01

    showed that M(5) receptor knockout (M (5) (-/-) ) mice are less sensitive to the reinforcing properties of addictive drugs. MATERIALS AND METHODS: Here, we investigate the role of M(5) receptors in the effects of amphetamine and cocaine on locomotor activity, locomotor sensitization, and dopamine release......-induced hyperactivity and dopamine release as well as amphetamine sensitization are enhanced in mice lacking the M(5) receptor. These results support the concept that the M(5) receptor modulates effects of addictive drugs....

  1. Activation of the Ca2+-sensing receptors increases currents through inward rectifier K+ channels via activation of phosphatidylinositol 4-kinase

    OpenAIRE

    Liu, Chung-Hung; Chang, Hsueh-Kai; Lee, Sue-Ping; Shieh, Ru-Chi

    2016-01-01

    Inward rectifier K+ channels are important for maintaining normal electrical function in many cell types. The proper function of these channels requires the presence of membrane phosphoinositide 4,5-bisphosphate (PIP2). Stimulation of the Ca2+-sensing receptor CaR, a pleiotropic G protein-coupled receptor, activates both Gq/11, which decreases PIP2, and phosphatidylinositol 4-kinase (PI-4-K), which, conversely, increases PIP2. How membrane PIP2 levels are regulated by CaR activation and wheth...

  2. Pancreatic acini possess endothelin receptors whose internalization is regulated by PLC-activating agents.

    Science.gov (United States)

    Hildebrand, P; Mrozinski, J E; Mantey, S A; Patto, R J; Jensen, R T

    1993-05-01

    Endothelin-1 (ET-1) and ET-3 mRNA have been found in the pancreas. We investigated the ability of ET-1, ET-2, and ET-3 to interact with and alter dispersed rat pancreatic acinar cell function. Radiolabeled ETs bound in a time- and temperature-dependent fashion, which was specific and saturable. Analysis demonstrated two classes of receptors, one class (ETA receptor) had a high affinity for ET-1 but a low affinity for ET-3, and the other class (ETB receptor) had equally high affinities for ET-1 and ET-3. No specific receptor for ET-2 was identified. Pancreatic secretagogues that activate phospholipase C (PLC) inhibited binding of 125I-labeled ET-1 (125I-ET-1) or 125I-ET-3, whereas agents that act through adenosine 3',5'-cyclic monophosphate (cAMP) did not. A23187 had no effect on 125I-ET-1 or 125I-ET-3 binding, whereas the phorbol ester 12-O-tetradecanoylphorbol 13-acetate reduced binding. The effect of cholecystokinin octapeptide (CCK-8) was mediated through its own receptor. Stripping of surface bound ligand studies demonstrated that both 125I-labeled ET-1 and 125I-labeled ET-3 were rapidly internalized. CCK-8 decreased the internalization but did not change the amount of surface bound ligand. Endothelins neither stimulate nor alter changes in enzyme secretion, intracellular calcium, cAMP, or [3H]inositol trisphosphate (IP3). This study demonstrates the presence of ETA and ETB receptors on rat pancreatic acini; occupation of both receptors resulted in rapid internalization, which is regulated by PLC-activating secretagogues. Occupation of either ET receptor did not alter intracellular calcium, cAMP, IP3, or stimulate amylase release.

  3. Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung

    Science.gov (United States)

    Jandl, Katharina; Stacher, Elvira; Bálint, Zoltán; Sturm, Eva Maria; Maric, Jovana; Peinhaupt, Miriam; Luschnig, Petra; Aringer, Ida; Fauland, Alexander; Konya, Viktoria; Dahlen, Sven-Erik; Wheelock, Craig E.; Kratky, Dagmar; Olschewski, Andrea; Marsche, Gunther; Schuligoi, Rufina; Heinemann, Akos

    2016-01-01

    Background Prostaglandin (PG) D2 is an early-phase mediator in inflammation, but its action and the roles of the 2 D-type prostanoid receptors (DPs) DP1 and DP2 (also called chemoattractant receptor–homologous molecule expressed on TH2 cells) in regulating macrophages have not been elucidated to date. Objective We investigated the role of PGD2 receptors on primary human macrophages, as well as primary murine lung macrophages, and their ability to influence neutrophil action in vitro and in vivo. Methods In vitro studies, including migration, Ca2+ flux, and cytokine secretion, were conducted with primary human monocyte-derived macrophages and neutrophils and freshly isolated murine alveolar and pulmonary interstitial macrophages. In vivo pulmonary inflammation was assessed in male BALB/c mice. Results Activation of DP1, DP2, or both receptors on human macrophages induced strong intracellular Ca2+ flux, cytokine release, and migration of macrophages. In a murine model of LPS-induced pulmonary inflammation, activation of each PGD2 receptor resulted in aggravated airway neutrophilia, tissue myeloperoxidase activity, cytokine contents, and decreased lung compliance. Selective depletion of alveolar macrophages abolished the PGD2-enhanced inflammatory response. Activation of PGD2 receptors on human macrophages enhanced the migratory capacity and prolonged the survival of neutrophils in vitro. In human lung tissue specimens both DP1 and DP2 receptors were located on alveolar macrophages along with hematopoietic PGD synthase, the rate-limiting enzyme of PGD2 synthesis. Conclusion For the first time, our results show that PGD2 markedly augments disease activity through its ability to enhance the proinflammatory actions of macrophages and subsequent neutrophil activation. PMID:26792210

  4. Levodopa-induced dyskinesia is associated with increased thyrotropin releasing hormone in the dorsal striatum of hemi-parkinsonian rats.

    Directory of Open Access Journals (Sweden)

    Ippolita Cantuti-Castelvetri

    2010-11-01

    Full Text Available Dyskinesias associated with involuntary movements and painful muscle contractions are a common and severe complication of standard levodopa (L-DOPA, L-3,4-dihydroxyphenylalanine therapy for Parkinson's disease. Pathologic neuroplasticity leading to hyper-responsive dopamine receptor signaling in the sensorimotor striatum is thought to underlie this currently untreatable condition.Quantitative real-time polymerase chain reaction (PCR was employed to evaluate the molecular changes associated with L-DOPA-induced dyskinesias in Parkinson's disease. With this technique, we determined that thyrotropin releasing hormone (TRH was greatly increased in the dopamine-depleted striatum of hemi-parkinsonian rats that developed abnormal movements in response to L-DOPA therapy, relative to the levels measured in the contralateral non-dopamine-depleted striatum, and in the striatum of non-dyskinetic control rats. ProTRH immunostaining suggested that TRH peptide levels were almost absent in the dopamine-depleted striatum of control rats that did not develop dyskinesias, but in the dyskinetic rats, proTRH immunostaining was dramatically up-regulated in the striatum, particularly in the sensorimotor striatum. This up-regulation of TRH peptide affected striatal medium spiny neurons of both the direct and indirect pathways, as well as neurons in striosomes.TRH is not known to be a key striatal neuromodulator, but intrastriatal injection of TRH in experimental animals can induce abnormal movements, apparently through increasing dopamine release. Our finding of a dramatic and selective up-regulation of TRH expression in the sensorimotor striatum of dyskinetic rat models suggests a TRH-mediated regulatory mechanism that may underlie the pathologic neuroplasticity driving dopamine hyper-responsivity in Parkinson's disease.

  5. Potentiated antibodies to mu-opiate receptors: effect on integrative activity of the brain.

    Science.gov (United States)

    Geiko, V V; Vorob'eva, T M; Berchenko, O G; Epstein, O I

    2003-01-01

    The effect of homeopathically potentiated antibodies to mu-receptors (10(-100) wt %) on integrative activity of rat brain was studied using the models of self-stimulation of the lateral hypothalamus and convulsions produced by electric current. Electric current was delivered through electrodes implanted into the ventromedial hypothalamus. Single treatment with potentiated antibodies to mu-receptors increased the rate of self-stimulation and decreased the threshold of convulsive seizures. Administration of these antibodies for 7 days led to further activation of the positive reinforcement system and decrease in seizure thresholds. Distilled water did not change the rate of self-stimulation and seizure threshold.

  6. Discoidin domain receptor 1 is activated independently of beta(1) integrin

    DEFF Research Database (Denmark)

    Vogel, W; Brakebusch, C; Fässler, R

    2000-01-01

    independent of the epidermal growth factor (EGF) receptor. In cells that endogenously express both DDR1 and the EGF receptor, stimulation with EGF does not induce DDR activation. Third, we detected full DDR1 activation after collagen stimulation in cells that have been treated with blocking antibodies...... for alpha(2)beta(1) integrin or in cells with a targeted deletion of the beta(1) integrin gene. Finally, we show that overexpression of dominant negative DDR1 in the myoblast cell line C2C12 blocks cellular differentiation and the formation of myofibers....

  7. Similar activation of signal transduction pathways by the herpesvirus-encoded chemokine receptors US28 and ORF74

    DEFF Research Database (Denmark)

    McLean, Katherine A; Holst, Peter J; Martini, Lene

    2004-01-01

    The virally encoded chemokine receptors US28 from human cytomegalovirus and ORF74 from human herpesvirus 8 are both constitutively active. We show that both receptors constitutively activate the transcription factors nuclear factor of activated T cells (NFAT) and cAMP response element binding...

  8. Activation of G-proteins by receptor-stimulated nucleoside diphosphate kinase in Dictyostelium.

    Science.gov (United States)

    Bominaar, A A; Molijn, A C; Pestel, M; Veron, M; Van Haastert, P J

    1993-01-01

    Recently, interest in the enzyme nucleoside diphosphate kinase (EC2.7.4.6) has increased as a result of its possible involvement in cell proliferation and development. Since NDP kinase is one of the major sources of GTP in cells, it has been suggested that the effects of an altered NDP kinase activity on cellular processes might be the result of altered transmembrane signal transduction via guanine nucleotide-binding proteins (G-proteins). In the cellular slime mould Dictyostelium discoideum, extracellular cAMP induces an increase of phospholipase C activity via a surface cAMP receptor and G-proteins. In this paper it is demonstrated that part of the cellular NDP kinase is associated with the membrane and stimulated by cell surface cAMP receptors. The GTP produced by the action of NDP kinase is capable of activating G-proteins as monitored by altered G-protein-receptor interaction and the activation of the effector enzyme phospholipase C. Furthermore, specific monoclonal antibodies inhibit the effect of NDP kinase on G-protein activation. These results suggest that receptor-stimulated NDP kinase contributes to the mediation of hormone action by producing GTP for the activation of GTP-binding proteins. Images PMID:8389692

  9. Therapeutic actions of an insulin receptor activator and a novel peroxisome proliferator-activated receptor gamma agonist in the spontaneously hypertensive obese rat model of metabolic syndrome X.

    Science.gov (United States)

    Velliquette, Rodney A; Friedman, Jacob E; Shao, J; Zhang, Bei B; Ernsberger, Paul

    2005-07-01

    Insulin resistance clusters with hyperlipidemia, impaired glucose tolerance, and hypertension as metabolic syndrome X. We tested a low molecular weight insulin receptor activator, demethylasterriquinone B-1 (DMAQ-B1), and a novel indole peroxisome proliferator-activated receptor gamma agonist, 2-(2-(4-phenoxy-2-propylphenoxy)ethyl)indole-5-acetic acid (PPEIA), in spontaneously hypertensive obese rats (SHROB), a genetic model of syndrome X. Agents were given orally for 19 days. SHROB showed fasting normoglycemia but impaired glucose tolerance after an oral load, as shown by increased glucose area under the curve (AUC) [20,700 mg x min/ml versus 8100 in lean spontaneously hypertensive rats (SHR)]. Insulin resistance was indicated by 20-fold excess fasting insulin and increased insulin AUC (6300 ng x min/ml versus 990 in SHR). DMAQ-B1 did not affect glucose tolerance (glucose AUC = 21,300) but reduced fasting insulin 2-fold and insulin AUC (insulin AUC = 4300). PPEIA normalized glucose tolerance (glucose AUC = 9100) and reduced insulin AUC (to 3180) without affecting fasting insulin. PPEIA also increased food intake, fat mass, and body weight gain (81 +/- 12 versus 45 +/- 8 g in untreated controls), whereas DMAQ-B1 had no effect on body weight but reduced subscapular fat mass. PPEIA but not DMAQ-B1 reduced blood pressure. In skeletal muscle, insulin-stimulated phosphorylation of the insulin receptor and insulin receptor substrate protein 1-associated phosphatidylinositol 3-kinase activity were decreased by 40 to 55% in SHROB relative to lean SHR. PPEIA, but not DMAQ-B1, enhanced both insulin actions. SHROB also showed severe hypertriglyceridemia (355 +/- 42 mg/dl versus 65 +/- 3 in SHR) attenuated by both agents (DMAQ-B1, 228 +/- 18; PPEIA, 79 +/- 3). Both these novel antidiabetic agents attenuate insulin resistance and hypertriglyceridemia associated with metabolic syndrome but via distinct mechanisms.

  10. Phasic dopamine release drives rapid activation of striatal D2-receptors

    Science.gov (United States)

    Marcott, Pamela F; Mamaligas, Aphroditi A; Ford, Christopher P

    2014-01-01

    Summary Striatal dopamine transmission underlies numerous goal-directed behaviors. Medium spiny neurons (MSNs) are a major target of dopamine in the striatum. However, as dopamine does not directly evoke a synaptic event in MSNs, the time course of dopamine signaling in these cells remains unclear. To examine how dopamine release activates D2-receptors on MSNs, G-protein activated inwardly rectifying potassium (GIRK2; Kir 3.2) channels were virally overexpressed in the striatum and the resulting outward currents were used as a sensor of D2-receptor activation. Electrical and optogenetic stimulation of dopamine terminals evoked robust D2-receptor inhibitory post-synaptic currents (IPSCs) in GIRK2-expressing MSNs that occurred in under a second. Evoked D2-IPSCs could be driven by repetitive stimulation and were not occluded by background dopamine tone. Together, the results indicate that D2-receptors on MSNs exhibit functional low affinity and suggest that striatal D2-receptors can encode both tonic and phasic dopamine signals. PMID:25242218

  11. Radioimmunological studies of the thyrotropic function of the hypophysis under the effect of the thyrotropin-releasing hormone in thyroid diseases

    International Nuclear Information System (INIS)

    Vakulenko, A.D.; Matveenko, E.G.; Simakova, G.M.; Sorokina, V.G.; Golubnichaya, L.P.; Dobrova, G.S.

    1979-01-01

    The synthetic thyrotropin-releasing-hormone was stream-injected intravenously to 124 patients and 16 healthy people in doses of 200 μg. It was tolerated satisfactorily at the first and repeated injections. The radioimmunologic method was used prior to the test and 30 min after it to examine thyrotropin content in blood. In normal state the stimulation would result in 3.5-fold increase in thyrotropin level on the average. The hypophysial reserve of thyrotropin was significantly lower in cases of diffuse toxic goiter in grave and semigrave forms and toxic adenoma. It was significantly higher at primary hypothyrosis and retained at nodular euthyroid goiter, neupocirculatopy dystonia and mild thyrotoxicosis. At thyroid gland disturbances the test with thyrotropin-releasing-hormone is of diagnostic value at primary hypothyrosis in the initial latent period; besides, it can be used for control of substitution therapy and as a supplementary test at thyrotoxicosis

  12. Activation of neurotensin receptors and purinoceptors in human colonic adenocarcinoma cells detected with the microphysiometer.

    Science.gov (United States)

    Richards, M; van Giersbergen, P; Zimmermann, A; Lesur, B; Hoflack, J

    1997-10-01

    Activation of endogenous neurotensin (NT) receptors and P2-purinoceptors expressed by human colonic adenocarcinoma HT-29 cells increased extracellular acidification rates that were detected in the microphysiometer. NT (pGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu), NT[8-13] (Arg-Arg-Pro-Tyr-Ile-Leu), NT[9-13] (Arg-Pro-Tyr-Ile-Leu), and NT1 (N alpha methyl-Arg-Lys-Pro-Trp-Tle-Leu [Tle = tert-leucine]) were full agonists, whereas XL 775 (N-[N-[2-[3-[[6-amino-1-oxo-2-[[(phenylmethoxy)carbonyl]-amino]hex yl]amino]phenyl]-3-(4-hydroxyphenyl)-1-oxo-2-propenyl]-L-isoleucyl]-L-le ucine) was a partial agonist for activating NT receptors expressed by HT-29 cells. Desensitization induced by NT was rapid and monophasic with 85% of the initial response lost by a 30-s exposure. Once initiated, the rate and extent of desensitization were similar for different concentrations of a given agonist, for agonists of different potencies, and for agonists of different efficacies, which suggests that desensitization may be independent of receptor occupancy or agonist efficacy. Resensitization was a much slower process, requiring 60 min before the full agonist response to NT was recovered. ATP, via P2-purinoceptors, also activated cellular acidification rates in a concentration-dependent manner. ATP induced a biphasic desensitization of purinoceptors with a loss of ca. 50% of the initial stimulation detectable between 30 and 90 s of exposure to the agonist. Desensitization of NT receptors did not influence the activation of P2-purinoceptors by ATP, suggesting there was no heterologous desensitization between the two types of receptors. Superfusion with NT receptor agonists for 15 min at concentrations that did not elicit changes in extracellular acidification rates blocked, in a concentration-dependent manner, the agonist response induced by 100 nM NT. This may reflect sequestration of the receptor. These results suggest that the high agonist affinity state of NT receptors may

  13. GABAA receptors in visual and auditory cortex and neural activity changes during basic visual stimulation

    Directory of Open Access Journals (Sweden)

    Pengmin eQin

    2012-12-01

    Full Text Available Recent imaging studies have demonstrated that levels of resting GABA in the visual cortex predict the degree of stimulus-induced activity in the same region. These studies have used the presentation of discrete visual stimulus; the change from closed eyes to open also represents a simple visual stimulus, however, and has been shown to induce changes in local brain activity and in functional connectivity between regions. We thus aimed to investigate the role of the GABA system, specifically GABAA receptors, in the changes in brain activity between the eyes closed (EC and eyes open (EO state in order to provide detail at the receptor level to complement previous studies of GABA concentrations. We conducted an fMRI study involving two different modes of the change from EC to EO: An EO and EC block design, allowing the modelling of the haemodynamic response, followed by longer periods of EC and EO to allow the measuring of functional connectivity. The same subjects also underwent [18F]Flumazenil PET measure GABAA receptor binding potentials. It was demonstrated that the local-to-global ratio of GABAA receptor binding potential in the visual cortex predicted the degree of changes in neural activity from EC to EO. This same relationship was also shown in the auditory cortex. Furthermore, the local-to-global ratio of GABAA receptor binding potential in the visual cortex also predicts the change of functional connectivity between visual and auditory cortex from EC to EO. These findings contribute to our understanding of the role of GABAA receptors in stimulus-induced neural activity in local regions and in inter-regional functional connectivity.

  14. Accessibility of receptor-bound urokinase to type-1 plasminogen activator inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Cubellis, M.V.; Andreasen, P.; Ragno, P.; Mayer, M.; Dano, K.; Blasi, F. (Univ. of Copenhagen (Denmark))

    1989-07-01

    Urokinase plasminogen activator (uPA) interacts with a surface receptor and with specific inhibitors, such as plasminogen activator inhibitor type 1 (PAI-1). These interactions are mediated by two functionally independent domains of the molecule: the catalytic domain (at the carboxyl terminus) and the growth factor domain (at the amino terminus). The authors have now investigated whether PAI-1 can bind and inhibit receptor-bound uPA. Binding of {sup 125}I-labeled ATF (amino-terminal fragment of uPA) to human U937 monocyte-like cells can be competed for by uPA-PAI-1 complexes, but not by PAI-1 alone. Preformed {sup 125}I-labeled uPA-PAI-1 complexes can bind to uPA receptor with the same binding specificity as uPA. PAI-1 also binds to, and inhibits the activity of, receptor-bound uPA in U937 cells, as shown in U937 cells by a caseinolytic plaque assay. Plasminogen activator activity of these cells is dependent on exogenous uPA, is competed for by receptor-binding diisopropyl fluorophosphate-treated uPA, and is inhibited by the addition of PAI-1. In conclusion, in U937 cells the binding to the receptor does not shield uPA from the action of PAI-1. The possibility that in adherent cells a different localization of PAI-1 and uPA leads to protection of uPA from PAI-1 is to be considered.

  15. Activation-Dependent Rapid Postsynaptic Clustering of Glycine Receptors in Mature Spinal Cord Neurons

    Science.gov (United States)

    Eto, Kei; Murakoshi, Hideji; Watanabe, Miho; Hirata, Hiromi; Moorhouse, Andrew J.; Ishibashi, Hitoshi

    2017-01-01

    Abstract Inhibitory synapses are established during development but continue to be generated and modulated in strength in the mature nervous system. In the spinal cord and brainstem, presynaptically released inhibitory neurotransmitter dominantly switches from GABA to glycine during normal development in vivo. While presynaptic mechanisms of the shift of inhibitory neurotransmission are well investigated, the contribution of postsynaptic neurotransmitter receptors to this shift is not fully elucidated. Synaptic clustering of glycine receptors (GlyRs) is regulated by activation-dependent depolarization in early development. However, GlyR activation induces hyperpolarization after the first postnatal week, and little is known whether and how presynaptically released glycine regulates postsynaptic receptors in a depolarization-independent manner in mature developmental stage. Here we developed spinal cord neuronal culture of rodents using chronic strychnine application to investigate whether initial activation of GlyRs in mature stage could change postsynaptic localization of GlyRs. Immunocytochemical analyses demonstrate that chronic blockade of GlyR activation until mature developmental stage resulted in smaller clusters of postsynaptic GlyRs that could be enlarged upon receptor activation for 1 h in the mature stage. Furthermore, live cell-imaging techniques show that GlyR activation decreases its lateral diffusion at synapses, and this phenomenon is dependent on PKC, but neither Ca2+ nor CaMKII activity. These results suggest that the GlyR activation can regulate receptor diffusion and cluster size at inhibitory synapses in mature stage, providing not only new insights into the postsynaptic mechanism of shifting inhibitory neurotransmission but also the inhibitory synaptic plasticity in mature nervous system. PMID:28197549

  16. Modulation of the constitutive activity of the ghrelin receptor by use of pharmacological tools and mutagenesis.

    Science.gov (United States)

    Mokrosiński, Jacek; Holst, Birgitte

    2010-01-01

    Ghrelin and its receptor are important regulators of metabolic functions, including appetite, energy expenditure, fat accumulation, and growth hormone (GH) secretion. The ghrelin receptor is characterized by an ability to signal even without any ligand present with approximately 50% of the maximally ghrelin-induced efficacy-a feature that may have important physiological implications. The high basal signaling can be modulated either by administration of specific ligands or by engineering of mutations in the receptor structure. [D-Arg(1), D-Phe(5), D-Trp(7,9), Leu(11)]-substance P was the first inverse agonist to be identified for the ghrelin receptor, and this peptide has been used as a starting point for identification of the structural requirements for inverse agonist properties in the ligand. The receptor binding core motif was identified as D-Trp-Phe-D-Trp-Leu-Leu, and elongation of this peptide in the amino-terminal end determined the efficacy. Attachment of a positively charged amino acid was responsible for full inverse agonism, whereas an alanin converted the peptide into a partial agonist. Importantly, by use of mutational mapping of the residues critical for the modified D-Trp-Phe-D-Trp-Leu-Leu peptides, it was found that space-generating mutations in the deeper part of the receptor improved inverse agonism, whereas similar mutations located in the more extracellular part improved agonism. Modulation of the basal signaling by mutations in the receptor structure is primarily obtained by substitutions in an aromatic cluster that keep TMs VI and VII in close proximity to TM III and thus stabilize the active conformation. Also, substitution of a Phe in TM V is crucial for the high basal activity of the receptor as this residue serves as a partner for Trp VI:13 in the active conformation. It is suggested that inverse agonist and antagonist against the ghrelin receptor provide an interesting possibility in the development of drugs for treatment of obesity and

  17. An Angiotensin II type 1 receptor activation switch patch revealed through Evolutionary Trace analysis

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Yao, Rong; Ma, Jian-Nong

    2010-01-01

    to be completely resolved. Evolutionary Trace (ET) analysis is a computational method, which identifies clusters of functionally important residues by integrating information on evolutionary important residue variations with receptor structure. Combined with known mutational data, ET predicted a patch of residues......) displayed phenotypes associated with changed activation state, such as increased agonist affinity or basal activity, promiscuous activation, or constitutive internalization highlighting the importance of testing different signaling pathways. We conclude that this evolutionary important patch mediates...

  18. Excessive D1 Dopamine Receptor Activation in the Dorsal Striatum Promotes Autistic-Like Behaviors.

    Science.gov (United States)

    Lee, Yunjin; Kim, Hannah; Kim, Ji-Eun; Park, Jin-Young; Choi, Juli; Lee, Jung-Eun; Lee, Eun-Hwa; Han, Pyung-Lim

    2018-07-01

    The dopamine system has been characterized in motor function, goal-directed behaviors, and rewards. Recent studies recognize various dopamine system genes as being associated with autism spectrum disorder (ASD). However, how dopamine system dysfunction induces ASD pathophysiology remains unknown. In the present study, we demonstrated that mice with increased dopamine functions in the dorsal striatum via the suppression of dopamine transporter expression in substantia nigra neurons or the optogenetic stimulation of the nigro-striatal circuitry exhibited sociability deficits and repetitive behaviors relevant to ASD pathology in animal models, while these behavioral changes were blocked by a D1 receptor antagonist. Pharmacological activation of D1 dopamine receptors in normal mice or the genetic knockout (KO) of D2 dopamine receptors also produced typical autistic-like behaviors. Moreover, the siRNA-mediated inhibition of D2 dopamine receptors in the dorsal striatum was sufficient to replicate autistic-like phenotypes in D2 KO mice. Intervention of D1 dopamine receptor functions or the signaling pathways-related D1 receptors in D2 KO mice produced anti-autistic effects. Together, our results indicate that increased dopamine function in the dorsal striatum promotes autistic-like behaviors and that the dorsal striatum is the neural correlate of ASD core symptoms.

  19. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands.

    Directory of Open Access Journals (Sweden)

    Lasse Henriksen

    Full Text Available The epidermal growth factor receptor (EGFR regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF and transforming growth factor-α (TGF-α. For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF or betacellulin (BTC was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown.

  20. Internalization Mechanisms of the Epidermal Growth Factor Receptor after Activation with Different Ligands

    Science.gov (United States)

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe; van Deurs, Bo; Grøvdal, Lene Melsæther

    2013-01-01

    The epidermal growth factor receptor (EGFR) regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown. PMID:23472148

  1. Activation of GABAB receptors inhibits protein kinase B /Glycogen Synthase Kinase 3 signaling

    Directory of Open Access Journals (Sweden)

    Lu Frances Fangjia

    2012-11-01

    Full Text Available Abstract Accumulated evidence has suggested that potentiation of cortical GABAergic inhibitory neurotransmission may be a key mechanism in the treatment of schizophrenia. However, the downstream molecular mechanisms related to GABA potentiation remain unexplored. Recent studies have suggested that dopamine D2 receptor antagonists, which are used in the clinical treatment of schizophrenia, modulate protein kinase B (Akt/glycogen synthase kinase (GSK-3 signaling. Here we report that activation of GABAB receptors significantly inhibits Akt/GSK-3 signaling in a β-arrestin-dependent pathway. Agonist stimulation of GABAB receptors enhances the phosphorylation of Akt (Thr-308 and enhances the phosphorylation of GSK-3α (Ser-21/β (Ser-9 in both HEK-293T cells expressing GABAB receptors and rat hippocampal slices. Furthermore, knocking down the expression of β-arrestin2 using siRNA abolishes the GABAB receptor-mediated modulation of GSK-3 signaling. Our data may help to identify potentially novel targets through which GABAB receptor agents may exert therapeutic effects in the treatment of schizophrenia.

  2. Direct activation of Transient Receptor Potential Vanilloid 1(TRPV1 by Diacylglycerol (DAG

    Directory of Open Access Journals (Sweden)

    Oh Seog

    2008-10-01

    Full Text Available Abstract The capsaicin receptor, known as transient receptor potential channel vanilloid subtype 1 (TRPV1, is activated by a wide range of noxious stimulants and putative ligands such as capsaicin, heat, pH, anandamide, and phosphorylation by protein kinase C (PKC. However, the identity of endogenous activators for TRPV1 under physiological condition is still debated. Here, we report that diacylglycerol (DAG directly activates TRPV1 channel in a membrane-delimited manner in rat dorsal root ganglion (DRG neurons. 1-oleoyl-2-acetyl-sn-glycerol (OAG, a membrane-permeable DAG analog, elicited intracellular Ca2+ transients, cationic currents and cobalt uptake that were blocked by TRPV1-selective antagonists, but not by inhibitors of PKC and DAG lipase in rat DRG neurons or HEK 293 cells heterologously expressing TRPV1. OAG induced responses were about one fifth of capsaicin induced signals, suggesting that OAG displays partial agonism. We also found that endogenously produced DAG can activate rat TRPV1 channels. Mutagenesis of rat TRPV1 revealed that DAG-binding site is at Y511, the same site for capsaicin binding, and PtdIns(4,5P2binding site may not be critical for the activation of rat TRPV1 by DAG in heterologous system. We propose that DAG serves as an endogenous ligand for rat TRPV1, acting as an integrator of Gq/11-coupled receptors and receptor tyrosine kinases that are linked to phospholipase C.

  3. Role of tissue factor and protease-activated receptors in a mouse model of endotoxemia.

    Science.gov (United States)

    Pawlinski, Rafal; Pedersen, Brian; Schabbauer, Gernot; Tencati, Michael; Holscher, Todd; Boisvert, William; Andrade-Gordon, Patricia; Frank, Rolf Dario; Mackman, Nigel

    2004-02-15

    Sepsis is associated with a systemic activation of coagulation and an excessive inflammatory response. Anticoagulants have been shown to inhibit both coagulation and inflammation in sepsis. In this study, we used both genetic and pharmacologic approaches to analyze the role of tissue factor and protease-activated receptors in coagulation and inflammation in a mouse endotoxemia model. We used mice expressing low levels of the procoagulant molecule, tissue factor (TF), to analyze the effects of TF deficiency either in all tissues or selectively in hematopoietic cells. Low TF mice had reduced coagulation, inflammation, and mortality compared with control mice. Similarly, a deficiency of TF expression by hematopoietic cells reduced lipopolysaccharide (LPS)-induced coagulation, inflammation, and mortality. Inhibition of the down-stream coagulation protease, thrombin, reduced fibrin deposition and prolonged survival without affecting inflammation. Deficiency of either protease activated receptor-1 (PAR-1) or protease activated receptor-2 (PAR-2) alone did not affect inflammation or survival. However, a combination of thrombin inhibition and PAR-2 deficiency reduced inflammation and mortality. These data demonstrate that hematopoietic cells are the major pathologic site of TF expression during endotoxemia and suggest that multiple protease-activated receptors mediate crosstalk between coagulation and inflammation.

  4. Peroxisome Proliferator-Activated Receptor Ligands and Their Role in Chronic Myeloid Leukemia: Therapeutic Strategies.

    Science.gov (United States)

    Yousefi, Bahman; Samadi, Nasser; Baradaran, Behzad; Shafiei-Irannejad, Vahid; Zarghami, Nosratollah

    2016-07-01

    Imatinib therapy remains the gold standard for treatment of chronic myeloid leukemia; however, the acquired resistance to this therapeutic agent in patients has urged the scientists to devise modalities for overcoming this chemoresistance. For this purpose, initially therapeutic agents with higher tyrosine kinase activity were introduced, which had the potential for inhibiting even mutant forms of Bcr-Abl. Furthermore, coupling imatinib with peroxisome proliferator-activated receptor ligands also showed beneficial effects in chronic myeloid leukemia cell proliferation. These combination protocols inhibited cell growth and induced apoptosis as well as differentiation in chronic myeloid leukemia cell lines. In addition, peroxisome proliferator-activated receptors ligands increased imatinib uptake by upregulating the expression of human organic cation transporter 1. Taken together, peroxisome proliferator-activated receptors ligands are currently being considered as novel promising therapeutic candidates for chronic myeloid leukemia treatment, because they can synergistically enhance the efficacy of imatinib. In this article, we reviewed the potential of peroxisome proliferator-activated receptors ligands for use in chronic myeloid leukemia treatment. The mechanism of action of these therapeutics modalities are also presented in detail. © 2016 John Wiley & Sons A/S.

  5. Anti-tumor Activity of Toll-Like Receptor 7 Agonists

    Directory of Open Access Journals (Sweden)

    Huju Chi

    2017-05-01

    Full Text Available Toll-like receptors (TLRs are a class of pattern recognition receptors that play a bridging role in innate immunity and adaptive immunity. The activated TLRs not only induce inflammatory responses, but also elicit the development of antigen specific immunity. TLR7, a member of TLR family, is an intracellular receptor expressed on the membrane of endosomes. TLR7 can be triggered not only by ssRNA during viral infections, but also by immune modifiers that share a similar structure to nucleosides. Its powerful immune stimulatory action can be potentially used in the anti-tumor therapy. This article reviewed the anti-tumor activity and mechanism of TLR7 agonists that are frequently applied in preclinical and clinical investigations, and mainly focused on small synthetic molecules, including imiquimod, resiquimod, gardiquimod, and 852A, etc.

  6. Synthetic ligands of the elastin receptor induce elastogenesis in human dermal fibroblasts via activation of their IGF-1 receptors.

    Science.gov (United States)

    Qa'aty, Nour; Vincent, Matthew; Wang, Yanting; Wang, Andrew; Mitts, Thomas F; Hinek, Aleksander

    2015-12-01

    We have previously reported that a mixture of peptides obtained after chemical or enzymatic degradation of bovine elastin, induced new elastogenesis in human skin. Now, we investigated the elastogenic potential of synthetic peptides mimicking the elastin-derived, VGVAPG sequence, IGVAPG sequence that we found in the rice bran, and a similar peptide, VGVTAG that we identified in the IGF-1-binding protein-1 (IGFBP-1). We now demonstrate that treatment with each of these xGVxxG peptides (recognizable by the anti-elastin antibody), up-regulated the levels of elastin-encoding mRNA, tropoelastin protein, and the deposition of new elastic fibers in cultures of human dermal fibroblasts and in cultured explants of human skin. Importantly, we found that such induction of new elastogenesis may involve two parallel signaling pathways triggered after activation of IGF-1 receptor. In the first one, the xGVxxG peptides interact with the cell surface elastin receptor, thereby causing the downstream activation of the c-Src kinase and a consequent cross-activation of the adjacent IGF-1R, even in the absence of its principal ligand. In the second pathway their hydrophobic association with the N-terminal domain (VGVTAG) of the serum-derived IGFBP-1 induces conformational changes of this IGF-1 chaperone allowing for the release of its cargo and a consequent ligand-specific phosphorylation of IGF-1R. We present a novel, clinically relevant mechanism in which products of partial degradation of dermal elastin may stimulate production of new elastic fibers by dermal fibroblasts. Our findings particularly encourage the use of biologically safe synthetic xGVxxG peptides for regeneration of the injured or aged human skin. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Protease-Activated Receptor 4 Variant p.Tyr157Cys Reduces Platelet Functional Responses and Alters Receptor Trafficking.

    Science.gov (United States)

    Norman, Jane E; Cunningham, Margaret R; Jones, Matthew L; Walker, Mary E; Westbury, Sarah K; Sessions, Richard B; Mundell, Stuart J; Mumford, Andrew D

    2016-05-01

    Protease-activated receptor 4 (PAR4) is a key regulator of platelet reactivity and is encoded by F2RL3, which has abundant rare missense variants. We aimed to provide proof of principle that rare F2LR3 variants potentially affect platelet reactivity and responsiveness to PAR1 antagonist drugs and to explore underlying molecular mechanisms. We identified 6 rare F2RL3 missense variants in 236 cardiac patients, of which the variant causing a tyrosine 157 to cysteine substitution (Y157C) was predicted computationally to have the greatest effect on PAR4 structure. Y157C platelets from 3 cases showed reduced responses to PAR4-activating peptide and to α-thrombin compared with controls, but no reduction in responses to PAR1-activating peptide. Pretreatment with the PAR1 antagonist vorapaxar caused lower residual α-thrombin responses in Y157C platelets than in controls, indicating greater platelet inhibition. HEK293 cells transfected with a PAR4 Y157C expression construct had reduced PAR4 functional responses, unchanged total PAR4 expression but reduced surface expression. PAR4 Y157C was partially retained in the endoplasmic reticulum and displayed an expression pattern consistent with defective N-glycosylation. Mutagenesis of Y322, which is the putative hydrogen bond partner of Y157, also reduced PAR4 surface expression in HEK293 cells. Reduced PAR4 responses associated with Y157C result from aberrant anterograde surface receptor trafficking, in part, because of disrupted intramolecular hydrogen bonding. Characterization of PAR4 Y157C establishes that rare F2RL3 variants have the potential to markedly alter platelet PAR4 reactivity particularly after exposure to therapeutic PAR1 antagonists. © 2016 American Heart Association, Inc.

  8. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation

    International Nuclear Information System (INIS)

    Matsui, Takanori; Yamagishi, Sho-ichi; Takeuchi, Masayoshi; Ueda, Seiji; Fukami, Kei; Okuda, Seiya

    2010-01-01

    Research highlights: → Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-γ. → GW9662 treatment alone increased RAGE mRNA levels in tubular cells. → Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-κB activation and increases in intercellular adhesion molecule-1 and transforming growth factor-β gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenic reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-γ (PPARγ). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-κB activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression via PPARγ activation.

  9. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Takanori [Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume (Japan); Yamagishi, Sho-ichi, E-mail: shoichi@med.kurume-u.ac.jp [Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume (Japan); Takeuchi, Masayoshi [Department of Pathophysiological Science, Faculty of Pharmaceutical Science, Hokuriku University, Kanazawa (Japan); Ueda, Seiji; Fukami, Kei; Okuda, Seiya [Department of Medicine, Kurume University School of Medicine, Kurume (Japan)

    2010-07-23

    Research highlights: {yields} Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma}. {yields} GW9662 treatment alone increased RAGE mRNA levels in tubular cells. {yields} Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-{beta} gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenic reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression

  10. Palliation of bone cancer pain by antagonists of platelet-activating factor receptors.

    Directory of Open Access Journals (Sweden)

    Katsuya Morita

    Full Text Available Bone cancer pain is the most severe among cancer pain and is often resistant to current analgesics. Thus, the development of novel analgesics effective at treating bone cancer pain are desired. Platelet-activating factor (PAF receptor antagonists were recently demonstrated to have effective pain relieving effects on neuropathic pain in several animal models. The present study examined the pain relieving effect of PAF receptor antagonists on bone cancer pain using the femur bone cancer (FBC model in mice. Animals were injected with osteolytic NCTC2472 cells into the tibia, and subsequently the effects of PAF receptor antagonists on pain behaviors were evaluated. Chemical structurally different type of antagonists, TCV-309, BN 50739 and WEB 2086 ameliorated the allodynia and improved pain behaviors such as guarding behavior and limb-use abnormalities in FBC model mice. The pain relieving effects of these antagonists were achieved with low doses and were long lasting. Blockade of spinal PAF receptors by intrathecal injection of TCV-309 and WEB 2086 or knockdown of the expression of spinal PAF receptor protein by intrathecal transfer of PAF receptor siRNA also produced a pain relieving effect. The amount of an inducible PAF synthesis enzyme, lysophosphatidylcholine acyltransferase 2 (LPCAT2 protein significantly increased in the spinal cord after transplantation of NCTC 2472 tumor cells into mouse tibia. The combination of morphine with PAF receptor antagonists develops marked enhancement of the analgesic effect against bone cancer pain without affecting morphine-induced constipation. Repeated administration of TCV-309 suppressed the appearance of pain behaviors and prolonged survival of FBC mice. The present results suggest that PAF receptor antagonists in combination with, or without, opioids may represent a new strategy for the treatment of persistent bone cancer pain and improve the quality of life of patients.

  11. Activation of temperature-sensitive TRPV1-like receptors in ARC POMC neurons reduces food intake.

    Directory of Open Access Journals (Sweden)

    Jae Hoon Jeong

    2018-04-01

    Full Text Available Proopiomelanocortin (POMC neurons in the arcuate nucleus of the hypothalamus (ARC respond to numerous hormonal and neural signals, resulting in changes in food intake. Here, we demonstrate that ARC POMC neurons express capsaicin-sensitive transient receptor potential vanilloid 1 receptor (TRPV1-like receptors. To show expression of TRPV1-like receptors in ARC POMC neurons, we use single-cell reverse transcription-polymerase chain reaction (RT-PCR, immunohistochemistry, electrophysiology, TRPV1 knock-out (KO, and TRPV1-Cre knock-in mice. A small elevation of temperature in the physiological range is enough to depolarize ARC POMC neurons. This depolarization is blocked by the TRPV1 receptor antagonist and by Trpv1 gene knockdown. Capsaicin-induced activation reduces food intake that is abolished by a melanocortin receptor antagonist. To selectively stimulate TRPV1-like receptor-expressing ARC POMC neurons in the ARC, we generate an adeno-associated virus serotype 5 (AAV5 carrying a Cre-dependent channelrhodopsin-2 (ChR2-enhanced yellow fluorescent protein (eYFP expression cassette under the control of the two neuronal POMC enhancers (nPEs. Optogenetic stimulation of TRPV1-like receptor-expressing POMC neurons decreases food intake. Hypothalamic temperature is rapidly elevated and reaches to approximately 39 °C during treadmill running. This elevation is associated with a reduction in food intake. Knockdown of the Trpv1 gene exclusively in ARC POMC neurons blocks the feeding inhibition produced by increased hypothalamic temperature. Taken together, our findings identify a melanocortinergic circuit that links acute elevations in hypothalamic temperature with acute reductions in food intake.

  12. Receptor-G Protein Interaction Studied by Bioluminescence Resonance Energy Transfer: Lessons From Protease-Activated Receptor 1

    Directory of Open Access Journals (Sweden)

    Mohammed Akli eAYOUB

    2012-06-01

    Full Text Available Since its development, the bioluminescence resonance energy transfer (BRET approach has been extensively applied to study G protein-coupled receptors (GPCRs in real time and in live cells. One of the major aspects of GPCRs investigated in considerable details is their physical coupling to the heterotrimeric G proteins. As a result, new concepts have emerged, but few questions are still a matter of debate illustrating the complexity of GPCR-G protein interactions and coupling. Here, we summarized the recent advances on our understanding of GPCR-G protein coupling based on BRET approaches and supported by other FRET-based studies. We essentially focused on our recent studies in which we addressed the concept of preassembly versus the agonist-dependent interaction between the protease-activated receptor 1 (PAR1 and its cognate G proteins. We discussed the concept of agonist-induced conformational changes within the preassembled PAR1-G protein complexes as well as the critical question how the multiple coupling of PAR1 with two different G proteins, Gi1 and G12, but also -arrestin 1, can be regulated.

  13. Multiplicity of nuclear receptor activation by PFOA and PFOS in primary human and rodent hepatocytes

    International Nuclear Information System (INIS)

    Bjork, J.A.; Butenhoff, J.L.; Wallace, K.B.

    2011-01-01

    Perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) are surface active fluorochemicals that, due to their exceptional stability to degradation, are persistent in the environment. Both PFOA and PFOS are eliminated slowly in humans, with geometric mean serum elimination half-lives estimated at 3.5 and 4.8 years, respectively. The biological activity of PFOA and PFOS in rodents is attributed primarily to transactivation of the nuclear receptor peroxisome proliferator activated receptor alpha (PPARA), which is an important regulator of lipid and carbohydrate metabolism. However, there are significant species-specific differences in the response to PFOA and PFOS exposure; non-rodent species, including humans, are refractory to several but not all of these effects. Many of the metabolic effects have been attributed to the activation of PPARA; however, recent studies using PPARα knockout mice demonstrate residual PPARA-independent effects, some of which may involve the activation of alternate nuclear receptors, including NR1I2 (PXR), NR1I3 (CAR), NR1H3 (LXRA), and NR1H4 (FXR). The objective of this investigation was to characterize the activation of multiple nuclear receptors and modulation of metabolic pathways associated with exposure to PFOA and PFOS, and to compare and contrast the effects between rat and human primary liver cells using quantitative reverse transcription PCR (RT-qPCR). Our results demonstrate that multiple nuclear receptors participate in the metabolic response to PFOA and PFOS exposure resulting in a substantial shift from carbohydrate metabolism to fatty acid oxidation and hepatic triglyceride accumulation in rat liver cells. This shift in intermediary metabolism was more pronounced for PFOA than PFOS. Furthermore, while there is some similarity in the activation of metabolic pathways between rat and humans, particularly in PPARA regulated responses; the changes in primary human cells were more subtle and possibly reflect an adaptive

  14. Structure-dependent binding and activation of perfluorinated compounds on human peroxisome proliferator-activated receptor γ

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lianying [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085 (China); College of Life Science, Dezhou University, Dezhou 253023 (China); Ren, Xiao-Min; Wan, Bin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085 (China); Guo, Liang-Hong, E-mail: LHGuo@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085 (China)

    2014-09-15

    Perfluorinated compounds (PFCs) have been shown to disrupt lipid metabolism and even induce cancer in rodents through activation of peroxisome proliferator-activated receptors (PPARs). Lines of evidence showed that PPARα was activated by PFCs. However, the information on the binding interactions between PPARγ and PFCs and subsequent alteration of PPARγ activity is still limited and sometimes inconsistent. In the present study, in vitro binding of 16 PFCs to human PPARγ ligand binding domain (hPPARγ-LBD) and their activity on the receptor in cells were investigated. The results showed that the binding affinity was strongly dependent on their carbon number and functional group. For the eleven perfluorinated carboxylic acids (PFCAs), the binding affinity increased with their carbon number from 4 to 11, and then decreased slightly. The binding affinity of the three perfluorinated sulfonic acids (PFSAs) was stronger than their PFCA counterparts. No binding was detected for the two fluorotelomer alcohols (FTOHs). Circular dichroim spectroscopy showed that PFC binding induced distinctive structural change of the receptor. In dual luciferase reporter assays using transiently transfected Hep G2 cells, PFCs acted as hPPARγ agonists, and their potency correlated with their binding affinity with hPPARγ-LBD. Molecular docking showed that PFCs with different chain length bind with the receptor in different geometry, which may contribute to their differences in binding affinity and transcriptional activity. - Highlights: • Binding affinity between PFCs and PPARγ was evaluated for the first time. • The binding strength was dependent on fluorinated carbon chain and functional group. • PFC binding induced distinctive structural change of the receptor. • PFCs could act as hPPARγ agonists in Hep G2 cells.

  15. Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) γ activators and pan-PPAR partial agonists

    NARCIS (Netherlands)

    Liberato, Marcelo Vizoná; Nascimento, Alessandro S; Ayers, Steven D; Lin, Jean Z; Cvoro, Aleksandra; Silveira, Rodrigo L; Martínez, Leandro; Souza, Paulo C T; Saidemberg, Daniel; Deng, Tuo; Amato, Angela Angelica; Togashi, Marie; Hsueh, Willa A; Phillips, Kevin; Palma, Mário Sérgio; Neves, Francisco A R; Skaf, Munir S; Webb, Paul; Polikarpov, Igor

    2012-01-01

    Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) γ to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of

  16. Constitutive Activity among Orphan Class-A G Protein Coupled Receptors.

    Directory of Open Access Journals (Sweden)

    Adam L Martin

    Full Text Available The purpose of this study was to evaluate the extent of constitutive activity among orphan class-A G protein coupled receptors within the cAMP signaling pathway. Constitutive signaling was revealed by changes in gene expression under control of the cAMP response element. Gene expression was measured in Chinese hamster ovary cells transiently co-transfected with plasmids containing a luciferase reporter and orphan receptor. Criteria adopted for defining constitutive activation were: 1 200% elevation over baseline reporter gene expression; 2 40% inhibition of baseline expression; and 3 40% inhibition of expression stimulated by 3 μM forskolin. Five patterns of activity were noted: 1 inhibition under both baseline and forskolin stimulated expression (GPR15, GPR17, GPR18, GPR20, GPR25, GPR27, GPR31, GPR32, GPR45, GPR57, GPR68, GPR83, GPR84, GPR132, GPR150, GPR176; 2 no effect on baseline expression, but inhibition of forskolin stimulated expression (GPR4, GPR26, GPR61, GPR62, GPR78, GPR101, GPR119; 3 elevation of baseline signaling coupled with inhibition of forskolin stimulated expression (GPR6, GPR12; 4 elevation of baseline signaling without inhibition of forskolin stimulated expression (GPR3, GPR21, GPR52, GPR65; and 5 no effect on expression (GPR1, GPR19, GPR22, GPR34, GPR35, GPR39, GPR63, GPR82, GPR85, GPR87. Constitutive activity was observed in 75% of the orphan class-A receptors examined (30 of 40. This constitutive signaling cannot be explained by simple overexpression of the receptor. Inhibition of cAMP mediated expression was far more common (65% than stimulation of expression (15%. Orphan receptors that were closely related based on amino acid homology tended to have similar effects on gene expression. These results suggest that identification of inverse agonists may be a fruitful approach for categorizing these orphan receptors and targeting them for pharmacological intervention.

  17. Constitutive Activity among Orphan Class-A G Protein Coupled Receptors.

    Science.gov (United States)

    Martin, Adam L; Steurer, Michael A; Aronstam, Robert S

    2015-01-01

    The purpose of this study was to evaluate the extent of constitutive activity among orphan class-A G protein coupled receptors within the cAMP signaling pathway. Constitutive signaling was revealed by changes in gene expression under control of the cAMP response element. Gene expression was measured in Chinese hamster ovary cells transiently co-transfected with plasmids containing a luciferase reporter and orphan receptor. Criteria adopted for defining constitutive activation were: 1) 200% elevation over baseline reporter gene expression; 2) 40% inhibition of baseline expression; and 3) 40% inhibition of expression stimulated by 3 μM forskolin. Five patterns of activity were noted: 1) inhibition under both baseline and forskolin stimulated expression (GPR15, GPR17, GPR18, GPR20, GPR25, GPR27, GPR31, GPR32, GPR45, GPR57, GPR68, GPR83, GPR84, GPR132, GPR150, GPR176); 2) no effect on baseline expression, but inhibition of forskolin stimulated expression (GPR4, GPR26, GPR61, GPR62, GPR78, GPR101, GPR119); 3) elevation of baseline signaling coupled with inhibition of forskolin stimulated expression (GPR6, GPR12); 4) elevation of baseline signaling without inhibition of forskolin stimulated expression (GPR3, GPR21, GPR52, GPR65); and 5) no effect on expression (GPR1, GPR19, GPR22, GPR34, GPR35, GPR39, GPR63, GPR82, GPR85, GPR87). Constitutive activity was observed in 75% of the orphan class-A receptors examined (30 of 40). This constitutive signaling cannot be explained by simple overexpression of the receptor. Inhibition of cAMP mediated expression was far more common (65%) than stimulation of expression (15%). Orphan receptors that were closely related based on amino acid homology tended to have similar effects on gene expression. These results suggest that identification of inverse agonists may be a fruitful approach for categorizing these orphan receptors and targeting them for pharmacological intervention.

  18. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J. [Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States); Bridges, Lance C., E-mail: bridgesl@ecu.edu [Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States); East Carolina Diabetes and Obesity Institute, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States)

    2014-11-28

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH){sub 2}D{sub 3}, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion.

  19. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    International Nuclear Information System (INIS)

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J.; Bridges, Lance C.

    2014-01-01

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH) 2 D 3 , a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion

  20. GABAB-receptor activation alters the firing pattern of dopamine neurons in the rat substantia nigra.

    Science.gov (United States)

    Engberg, G; Kling-Petersen, T; Nissbrandt, H

    1993-11-01

    Previous electrophysiological experiments have emphasized the importance of the firing pattern for the functioning of midbrain dopamine (DA) neurons. In this regard, excitatory amino acid receptors appear to constitute an important modulatory control mechanism. In the present study, extracellular recording techniques were used to investigate the significance of GABAB-receptor activation for the firing properties of DA neurons in the substantia nigra (SN) in the rat. Intravenous administration of the GABAB-receptor agonist baclofen (1-16 mg/kg) was associated with a dose-dependent regularization of the firing pattern, concomitant with a reduction in burst firing. At higher doses (16-32 mg/kg), the firing rate of the DA neurons was dose-dependently decreased. Also, microiontophoretic application of baclofen regularized the firing pattern of nigral DA neurons, including a reduction of burst firing. Both the regularization of the firing pattern and inhibition of firing rate produced by systemic baclofen administration was antagonized by the GABAB-receptor antagonist CGP 35348 (200 mg/kg, i.v.). The GABAA-receptor agonist muscimol produced effects on the firing properties of DA neurons that were opposite to those observed following baclofen, i.e., an increase in firing rate accompanied by a decreased regularity. The NMDA receptor antagonist MK 801 (0.4-3.2 mg/kg, i.v.) produced a moderate, dose-dependent increase in the firing rate of the nigral DA neurons as well as a slightly regularized firing pattern. Pretreatment with MK 801 (3.2 mg/kg, i.v., 3-10 min) did neither promote nor prevent the regularization of the firing pattern or inhibition of firing rate on the nigral DA neurons produced by baclofen. The present results clearly show that GABAB-receptors can alter the firing pattern of nigral DA neurons, hereby counterbalancing the previously described ability of glutamate to induce burst firing activity on these neurons.

  1. Activation of muscarinic acetylcholine receptors elicits pigment granule dispersion in retinal pigment epithelium isolated from bluegill.

    Science.gov (United States)

    González, Alfredo; Crittenden, Elizabeth L; García, Dana M

    2004-07-13

    In fish, melanin pigment granules in the retinal pigment epithelium disperse into apical projections as part of the suite of responses the eye makes to bright light conditions. This pigment granule dispersion serves to reduce photobleaching and occurs in response to neurochemicals secreted by the retina. Previous work has shown that acetylcholine may be involved in inducing light-adaptive pigment dispersion. Acetylcholine receptors are of two main types, nicotinic and muscarinic. Muscarinic receptors are in the G-protein coupled receptor superfamily, and five different muscarinic receptors have been molecularly cloned in human. These receptors are coupled to adenylyl cyclase, calcium mobilization and ion channel activation. To determine the receptor pathway involved in eliciting pigment granule migration, we isolated retinal pigment epithelium from bluegill and subjected it to a battery of cholinergic agents. The general cholinergic agonist carbachol induces pigment granule dispersion in isolated retinal pigment epithelium. Carbachol-induced pigment granule dispersion is blocked by the muscarinic antagonist atropine, by the M1 antagonist pirenzepine, and by the M3 antagonist 4-DAMP. Pigment granule dispersion was also induced by the M1 agonist 4-[N-(4-chlorophenyl) carbamoyloxy]-4-pent-2-ammonium iodide. In contrast the M2 antagonist AF-DX 116 and the M4 antagonist tropicamide failed to block carbachol-induced dispersion, and the M2 agonist arecaidine but-2-ynyl ester tosylate failed to elicit dispersion. Our results suggest that carbachol-mediated pigment granule dispersion occurs through the activation of Modd muscarinic receptors, which in other systems couple to phosphoinositide hydrolysis and elevation of intracellular calcium. This conclusion must be corroborated by molecular studies, but suggests Ca2+-dependent pathways may be involved in light-adaptive pigment dispersion.

  2. Activation of muscarinic acetylcholine receptors elicits pigment granule dispersion in retinal pigment epithelium isolated from bluegill

    Directory of Open Access Journals (Sweden)

    Crittenden Elizabeth L

    2004-07-01

    Full Text Available Abstract Background In fish, melanin pigment granules in the retinal pigment epithelium disperse into apical projections as part of the suite of responses the eye makes to bright light conditions. This pigment granule dispersion serves to reduce photobleaching and occurs in response to neurochemicals secreted by the retina. Previous work has shown that acetylcholine may be involved in inducing light-adaptive pigment dispersion. Acetylcholine receptors are of two main types, nicotinic and muscarinic. Muscarinic receptors are in the G-protein coupled receptor superfamily, and five different muscarinic receptors have been molecularly cloned in human. These receptors are coupled to adenylyl cyclase, calcium mobilization and ion channel activation. To determine the receptor pathway involved in eliciting pigment granule migration, we isolated retinal pigment epithelium from bluegill and subjected it to a battery of cholinergic agents. Results The general cholinergic agonist carbachol induces pigment granule dispersion in isolated retinal pigment epithelium. Carbachol-induced pigment granule dispersion is blocked by the muscarinic antagonist atropine, by the M1 antagonist pirenzepine, and by the M3 antagonist 4-DAMP. Pigment granule dispersion was also induced by the M1 agonist 4-[N-(4-chlorophenyl carbamoyloxy]-4-pent-2-ammonium iodide. In contrast the M2 antagonist AF-DX 116 and the M4 antagonist tropicamide failed to block carbachol-induced dispersion, and the M2 agonist arecaidine but-2-ynyl ester tosylate failed to elicit dispersion. Conclusions Our results suggest that carbachol-mediated pigment granule dispersion occurs through the activation of Modd muscarinic receptors, which in other systems couple to phosphoinositide hydrolysis and elevation of intracellular calcium. This conclusion must be corroborated by molecular studies, but suggests Ca2+-dependent pathways may be involved in light-adaptive pigment dispersion.

  3. Activation of neurokinin-1 receptors during ozone inhalation contributes to epithelial injury and repair.

    Science.gov (United States)

    Oslund, Karen L; Hyde, Dallas M; Putney, Leialoha F; Alfaro, Mario F; Walby, William F; Tyler, Nancy K; Schelegle, Edward S

    2008-09-01

    We investigated the importance of neurokinin (NK)-1 receptors in epithelial injury and repair and neutrophil function. Conscious Wistar rats were exposed to 1 ppm ozone or filtered air for 8 hours, followed by an 8-hour postexposure period. Before exposure, we administered either the NK-1 receptor antagonist, SR140333, or saline as a control. Ethidium homodimer was instilled into lungs as a marker of necrotic airway epithelial cells. After fixation, whole mounts of airway dissected lung lobes were immunostained for 5-bromo-2'-deoxyuridine, a marker of epithelial proliferation. Both ethidium homodimer and 5-bromo-2'-deoxyuridine-positive epithelial cells were quantified in specific airway generations. Rats treated with the NK-1 receptor antagonist had significantly reduced epithelial injury and epithelial proliferation compared with control rats. Sections of terminal bronchioles showed no significant difference in the number of neutrophils in airways between groups. In addition, staining ozone-exposed lung sections for active caspase 3 showed no apoptotic cells, but ethidium-positive cells colocalized with the orphan nuclear receptor, Nur77, a marker of nonapoptotic, programmed cell death mediated by the NK-1 receptor. An immortalized human airway epithelial cell line, human bronchial epithelial-1, showed no significant difference in the number of oxidant stress-positive cells during exposure to hydrogen peroxide and a range of SR140333 doses, demonstrating no antioxidant effect of the receptor antagonist. We conclude that activation of the NK-1 receptor during acute ozone inhalation contributes to epithelial injury and subsequent epithelial proliferation, a critical component of repair, but does not influence neutrophil emigration into airways.

  4. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha acts as a tumor suppressor in hepatocellular carcinoma.

    Science.gov (United States)

    Liu, Rui; Zhang, Haiyang; Zhang, Yan; Li, Shuang; Wang, Xinyi; Wang, Xia; Wang, Cheng; Liu, Bin; Zen, Ke; Zhang, Chen-Yu; Zhang, Chunni; Ba, Yi

    2017-04-01

    Peroxisome proliferator-activated receptor gamma coactivator-1 alpha plays a crucial role in regulating the biosynthesis of mitochondria, which is closely linked to the energy metabolism in various tumors. This study investigated the regulatory role of peroxisome proliferator-activated receptor gamma coactivator-1 alpha in the pathogenesis of hepatocellular carcinoma. In this study, the changes of peroxisome proliferator-activated receptor gamma coactivator-1 alpha messenger RNA levels between normal human liver and hepatocellular carcinoma tissue were examined by quantitative reverse transcription polymerase chain reaction. Knockdown of peroxisome proliferator-activated receptor gamma coactivator-1 alpha was conducted by RNA interference in the human liver cell line L02, while overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha was conducted by adenovirus encoding peroxisome proliferator-activated receptor gamma coactivator-1 alpha complementary DNA in the human hepatocarcinoma cell line HepG2. Cellular morphological changes were observed via optical and electron microscopy. Cellular apoptosis was determined by Hoechst 33258 staining. In addition, the expression levels of 21,400 genes in tissues and cells were detected by microarray. It was shown that peroxisome proliferator-activated receptor gamma coactivator-1 alpha expression was significantly downregulated in hepatocellular carcinoma compared with normal liver tissues. After knockdown of peroxisome proliferator-activated receptor gamma coactivator-1 alpha expression in L02 cells, cells reverted to immature and dedifferentiated morphology exhibiting cancerous tendency. Apoptosis occurred in the HepG2 cells after transfection by adenovirus encoding peroxisome proliferator-activated receptor gamma coactivator-1 alpha. Microarray analysis showed consistent results. The results suggest that peroxisome proliferator-activated receptor gamma coactivator-1 alpha acts as a tumor

  5. Effects of histamine H1 receptor signaling on glucocorticoid receptor activity. Role of canonical and non-canonical pathways

    NARCIS (Netherlands)

    Zappia, C.D.; Granja-Galeano, G.; Fernández, N.; Shayo, C.; Davio, C.; Fitzsimons, C.P.; Monczor, F.

    2015-01-01

    Histamine H1 receptor (H1R) antagonists and glucocorticoid receptor (GR) agonists are used to treat inflammatory conditions such as allergic rhinitis, atopic dermatitis and asthma. Consistent with the high morbidity levels of such inflammatory conditions, these receptors are the targets of a vast

  6. Insulin resistance in uremia: Insulin receptor kinase activity in liver and muscle from chronic uremic rats

    International Nuclear Information System (INIS)

    Cecchin, F.; Ittoop, O.; Sinha, M.K.; Caro, J.F.

    1988-01-01

    The authors have studied the structure and function of the partially purified insulin receptors from liver and skeletal muscle in a rat model of severe chronic uremia. 125 I-insulin binding was higher in the liver from uremic rats when compared with ad libitum- and pair-fed controls. Furthermore, the ability of insulin to stimulate the autophosphorylation of the β-subunit and insulin receptor kinase activity using Glu 80 , Tyr 20 as exogenous phosphoacceptor was increased in the liver of the uremic animals. The structural characteristics of the receptors, as determined by electrophoretic mobilities of affinity labeled α-subunit and the phosphorylated β-subunit, were normal in uremia. 125 I-insulin binding and insulin receptor kinase activity were similar in the skeletal muscle from uremic and pair- and ad libitum-fed animals. Thus the data are supportive of the hypothesis that in liver and muscle of chronic uremic rats, insulin resistance is due to a defect(s) distal to the insulin receptor kinase

  7. Modulation of cannabinoid receptor activation as a neuroprotective strategy for EAE and stroke.

    Science.gov (United States)

    Zhang, Ming; Martin, Billy R; Adler, Martin W; Razdan, Raj J; Kong, Weimin; Ganea, Doina; Tuma, Ronald F

    2009-06-01

    Recognition of the importance of the endocannabinoid system in both homeostasis and pathologic responses raised interest recently in the development of therapeutic agents based on this system. The CB(2) receptor, a component of the endocannabinoid system, has significant influence on immune function and inflammatory responses. Inflammatory responses are major contributors to central nervous system (CNS) injury in a variety of diseases. In this report, we present evidence that activation of CB(2) receptors, by selective CB(2) agonists, reduces inflammatory responses that contribute to CNS injury. The studies demonstrate neuroprotective effects in experimental autoimmune encephalomyelitis, a model of multiple sclerosis, and in a murine model of cerebral ischemia/reperfusion injury. In both cases, CB(2) receptor activation results in reduced white cell rolling and adhesion to cerebral microvessels, a reduction in immune cell invasion, and improved neurologic function after insult. In addition, administration of the CB(1) antagonist SR141716A reduces infarct size following ischemia/reperfusion injury. Administration of both a selective CB(2) agonist and a CB(1) antagonist has the unique property of increasing blood flow to the brain during the occlusion period, suggesting an effect on collateral blood flow. In summary, selective CB(2) receptor agonists and CB(1) receptor antagonists have significant potential for neuroprotection in animal models of two devastating diseases that currently lack effective treatment options.

  8. High affinity soluble ILT2 receptor: a potent inhibitor of CD8(+) T cell activation.

    Science.gov (United States)

    Moysey, Ruth K; Li, Yi; Paston, Samantha J; Baston, Emma E; Sami, Malkit S; Cameron, Brian J; Gavarret, Jessie; Todorov, Penio; Vuidepot, Annelise; Dunn, Steven M; Pumphrey, Nicholas J; Adams, Katherine J; Yuan, Fang; Dennis, Rebecca E; Sutton, Deborah H; Johnson, Andy D; Brewer, Joanna E; Ashfield, Rebecca; Lissin, Nikolai M; Jakobsen, Bent K

    2010-12-01

    Using directed mutagenesis and phage display on a soluble fragment of the human immunoglobulin super-family receptor ILT2 (synonyms: LIR1, MIR7, CD85j), we have selected a range of mutants with binding affinities enhanced by up to 168,000-fold towards the conserved region of major histocompatibility complex (MHC) class I molecules. Produced in a dimeric form, either by chemical cross-linking with bivalent polyethylene glycol (PEG) derivatives or as a genetic fusion with human IgG Fc-fragment, the mutants exhibited a further increase in ligand-binding strength due to the avidity effect, with resident half-times (t(1/2)) on the surface of MHC I-positive cells of many hours. The novel compounds antagonized the interaction of CD8 co-receptor with MHC I in vitro without affecting the peptide-specific binding of T-cell receptors (TCRs). In both cytokine-release assays and cell-killing experiments the engineered receptors inhibited the activation of CD8(+) cytotoxic T lymphocytes (CTLs) in the presence of their target cells, with subnanomolar potency and in a dose-dependent manner. As a selective inhibitor of CD8(+) CTL responses, the engineered high affinity ILT2 receptor presents a new tool for studying the activation mechanism of different subsets of CTLs and could have potential for the development of novel autoimmunity therapies.

  9. Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors.

    Science.gov (United States)

    Bhattacharyya, Suchita; Zagórska, Anna; Lew, Erin D; Shrestha, Bimmi; Rothlin, Carla V; Naughton, John; Diamond, Michael S; Lemke, Greg; Young, John A T

    2013-08-14

    Upon activation by the ligands Gas6 and Protein S, Tyro3/Axl/Mer (TAM) receptor tyrosine kinases promote phagocytic clearance of apoptotic cells and downregulate immune responses initiated by Toll-like receptors and type I interferons (IFNs). Many enveloped viruses display the phospholipid phosphatidylserine on their membranes, through which they bind Gas6 and Protein S and engage TAM receptors. We find that ligand-coated viruses activate TAM receptors on dendritic cells (DCs), dampen type I IFN signaling, and thereby evade host immunity and promote infection. Upon virus challenge, TAM-deficient DCs display type I IFN responses that are elevated in comparison to wild-type cells. As a consequence, TAM-deficient DCs are relatively resistant to infection by flaviviruses and pseudotyped retroviruses, but infection can be restored with neutralizing type I IFN antibodies. Correspondingly, a TAM kinase inhibitor antagonizes the infection of wild-type DCs. Thus, TAM receptors are engaged by viruses in order to attenuate type I IFN signaling and represent potential therapeutic targets. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Dreamlike effects of LSD on waking imagery in humans depend on serotonin 2A receptor activation.

    Science.gov (United States)

    Kraehenmann, Rainer; Pokorny, Dan; Vollenweider, Leonie; Preller, Katrin H; Pokorny, Thomas; Seifritz, Erich; Vollenweider, Franz X

    2017-07-01

    Accumulating evidence indicates that the mixed serotonin and dopamine receptor agonist lysergic acid diethylamide (LSD) induces an altered state of consciousness that resembles dreaming. This study aimed to test the hypotheses that LSD produces dreamlike waking imagery and that this imagery depends on 5-HT2A receptor activation and is related to subjective drug effects. Twenty-five healthy subjects performed an audiorecorded guided mental imagery task 7 h after drug administration during three drug conditions: placebo, LSD (100 mcg orally) and LSD together with the 5-HT2A receptor antagonist ketanserin (40 mg orally). Cognitive bizarreness of guided mental imagery reports was quantified as a standardised formal measure of dream mentation. State of consciousness was evaluated using the Altered State of Consciousness (5D-ASC) questionnaire. LSD, compared with placebo, significantly increased cognitive bizarreness (p < 0.001). The LSD-induced increase in cognitive bizarreness was positively correlated with the LSD-induced loss of self-boundaries and cognitive control (p < 0.05). Both LSD-induced increases in cognitive bizarreness and changes in state of consciousness were fully blocked by ketanserin. LSD produced mental imagery similar to dreaming, primarily via activation of the 5-HT2A receptor and in relation to loss of self-boundaries and cognitive control. Future psychopharmacological studies should assess the differential contribution of the D2/D1 and 5-HT1A receptors to cognitive bizarreness.

  11. The role of chemokines and chemokine receptors in eosinophil activation during inflammatory allergic reactions

    Directory of Open Access Journals (Sweden)

    Oliveira S.H.P.

    2003-01-01

    Full Text Available Chemokines are important chemotactic cytokines that play a fundamental role in the trafficking of leukocytes to sites of inflammation. They are also potent cell-activating factors, inducing cytokine and histamine release and free radical production, a fact that makes them particularly important in the pathogenesis of allergic inflammation. The action of chemokines is regulated at the level of agonist production and processing as well as at the level of receptor expression and coupling. Therefore, an analysis of the ligands must necessarily consider receptors. Eosinophils are target cells involved in the allergic inflammatory response since they are able to release a wide variety of mediators including CC and CXC chemokines and express their receptors. These mediators could damage the airway epithelial cells and might be important to stimulate other cells inducing an amplification of the allergic response. This review focuses on recently emerging data pertaining to the importance of chemokines and chemokine receptors in promoting eosinophil activation and migration during the allergic inflammatory process. The analysis of the function of eosinophils and their chemokine receptors during allergic inflammation might be a good approach to understanding the determinants of asthma severity and to developing novel therapies.

  12. Intraindividual variation of triiodothyronine, thyroxine, thyrotropin and thyroxine-binding globulin in fasting serum from healthy men

    International Nuclear Information System (INIS)

    Liappis, N.; Hoffmann, U.; Rao, M.L.

    1986-01-01

    The concentrations of triiodothyronine, thyroxine, thyrotropin and thyroxine-binding globulin were determined in fasting serum from 11 healthy men (age 18-25 years) by radioimmunoassays conducted over a period of 4 weeks on 5 consecutive days per week. The concentrations of thyroxine and thyroxine-binding globulin were very consistent intraindividually, with coefficients of variation of 7.84% and 9.37%, respectively. The triiodothyronine and thyrotropin levels showed significant intraindividual variability with coefficients of variation of 18.38% and 51.85%, respectively. These results point to the type of difficulties encountered in judging serum values, namely intraindividual variations over a given period of time. (orig.) [de

  13. Structural rearrangement of the intracellular domains during AMPA receptor activation

    DEFF Research Database (Denmark)

    Zachariassen, Linda Grønborg; Katchan, Ljudmila; Jensen, Anna Guldvang

    2016-01-01

    -clamp fluorometry of the double- and single-insert constructs showed that both the intracellular C-terminal domain (CTD) and the loop region between the M1 and M2 helices move during activation and the CTD is detached from the membrane. Our time-resolved measurements revealed unexpectedly complex fluorescence...

  14. Prolactin, thyrotropin, and growth hormone release during stress associated with parachute jumping.

    Science.gov (United States)

    Noel, G L; Dimond, R C; Earll, J M; Frantz, A G

    1976-05-01

    Prolactin, growth hormone, and thyrotropin (TSH) release during the stress of parachute jumping has been evaluated in 14 male subjects. Subjects were studied at several times before and immediately after their first military parachute jump. All three hormones had risen significantly 1 to 14 min after the jump, compared to mean levels measured immediately beforehand. Earlier studies of physical exercise by ourselves and others would suggest that emotional stress played a role in producing changes of this magnitude. We conclude that prolactin, TSH, and growth hormone are released in physiologically significant amounts in association with the stress of parachute jumping.

  15. Protease-activated receptor (PAR)-2 is required for PAR-1 signalling in pulmonary fibrosis

    NARCIS (Netherlands)

    Lin, Cong; von der Thüsen, Jan; Daalhuisen, Joost; ten Brink, Marieke; Crestani, Bruno; van der Poll, Tom; Borensztajn, Keren; Spek, C. Arnold

    2015-01-01

    Idiopathic pulmonary fibrosis is the most devastating diffuse fibrosing lung disease of unknown aetiology. Compelling evidence suggests that both protease-activated receptor (PAR)-1 and PAR-2 participate in the development of pulmonary fibrosis. Previous studies have shown that bleomycin-induced

  16. Pharmacological targeting of protease-activated receptor 2 affords protection from bleomycin-induced pulmonary fibrosis

    NARCIS (Netherlands)

    C. Lin (Cong); J. von der Thusen (Jan); J. Daalhuisen (Joost); M. Ten Brink (Marieke); B. Crestani (Bruno); T. van der Poll (Tom); K. Borensztajn (Keren); C. Arnold Spek (C.)

    2015-01-01

    textabstractIdiopathic pulmonary fibrosis is the most devastating diffuse fibrosing lung disease that remains refractory to therapy. Despite increasing evidence that protease-activated receptor 2 (PAR-2) contributes to fibrosis, its importance in pulmonary fibrosis is under debate. We addressed

  17. Pharmacological Targeting of Protease-Activated Receptor 2 Affords Protection from Bleomycin-Induced Pulmonary Fibrosis

    NARCIS (Netherlands)

    Lin, Cong; von der Thüsen, Jan; Daalhuisen, Joost; ten Brink, Marieke; Crestani, Bruno; van der Poll, Tom; Borensztajn, Keren; Spek, C. Arnold

    2015-01-01

    Idiopathic pulmonary fibrosis is the most devastating diffuse fibrosing lung disease that remains refractory to therapy. Despite increasing evidence that protease-activated receptor 2 (PAR-2) contributes to fibrosis, its importance in pulmonary fibrosis is under debate. We addressed whether PAR-2

  18. Distinct neural pathways mediate alpha7 nicotinic acetylcholine receptor-dependent activation of the forebrain

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hay-Schmidt, Anders; Hansen, Henrik H

    2010-01-01

    alpha(7) nicotinic acetylcholine receptor (nAChR) agonists are candidates for the treatment of cognitive deficits in schizophrenia. Selective alpha(7) nAChR agonists, such as SSR180711, activate neurons in the medial prefrontal cortex (mPFC) and nucleus accumbens shell (ACCshell) in rats, regions...

  19. Activation of the Ah receptor by extracts of dietary herbal supplements, vegetables and fruits

    NARCIS (Netherlands)

    Jeuken, A.; Keser, B.J.G.; Khan, E.; Brouwer, A.; Koeman, J.; Denison, M.S.

    2003-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can be activated by a structurally diverse range of synthetic and natural chemicals, and it mediates the toxic and biological effects of environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).

  20. Activation of the Ah receptor by extracts of dietary herbal supplements, vegetables, and fruits

    NARCIS (Netherlands)

    Jeuken, A.; Keser, B.J.G.; Khan, E.; Brouwer, A.; Koeman, J.H.; Denison, M.S.

    2003-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can be activated by a structurally diverse range of synthetic and natural chemicals, and it mediates the toxic and biological effects of environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).

  1. RECEPTOR POTENTIAL AND LIGHT-INDUCED MITOCHONDRIAL ACTIVATION IN BLOWFLY PHOTORECEPTOR MUTANTS

    NARCIS (Netherlands)

    MOJET, MH; TINBERGEN, J; STAVENGA, DG

    1991-01-01

    1. Simultaneous measurements of the receptor potential and the light-induced mitochondrial activation were performed in white-eyed blowflies Calliphora vicina, mutant chalky, and Lucilia cuprina, mutants w(F) and w'nss. The intensity dependence and the temporal dynamics were investigated. 2. The

  2. Soluble receptors for tumor necrosis factor as markers of disease activity in visceral leishmaniasis

    NARCIS (Netherlands)

    Zijlstra, E. E.; van der Poll, T.; Mevissen, M.

    1995-01-01

    Serum concentrations of soluble receptors for tumor necrosis factor (sTNFRs) were measured before and after antimony therapy in 25 Sudanese patients with active visceral leishmaniasis (VL). Both sTNFR types I and II were significantly elevated in patients with VL compared with healthy controls from

  3. The orphan G protein-coupled receptor GPR139 is activated by the peptides

    DEFF Research Database (Denmark)

    Jensen, Anne Cathrine Nøhr; Shehata, Mohamed A; Hauser, Alexander S

    2017-01-01

    GPR139 is an orphan G protein-coupled receptor that is expressed primarily in the brain. Not much is known regarding the function of GPR139. Recently we have shown that GPR139 is activated by the amino acids l-tryptophan and l-phenylalanine (EC50 values of 220 μM and 320 μM, respectively), as well...

  4. Genomic organization of the mouse peroxisome proliferator-activated receptor beta/delta gene

    DEFF Research Database (Denmark)

    Larsen, Leif K; Amri, Ez-Zoubir; Mandrup, Susanne

    2002-01-01

    Peroxisome proliferator-activated receptor (PPAR) beta/delta is ubiquitously expressed, but the level of expression differs markedly between different cell types. In order to determine the molecular mechanisms governing PPARbeta/delta gene expression, we have isolated and characterized the mouse...

  5. A new metabotropic glutamate receptor agonist with in vivo anti-allodynic activity

    DEFF Research Database (Denmark)

    Stanley, Nathan J; Hutchinson, Mark R; Kvist, Trine

    2010-01-01

    -substituted carboxycyclopropylglycines, utilizing novel synthetic chemistry. The reaction between substituted 1,2-dioxines and an aminophosphonate furnished the cyclopropane core in a single step with all required stereochemistry of pendant groups. In vitro binding assays at metabotropic glutamate receptors revealed selective activity...

  6. Epigenetic Basis for the Regulation of Estrogen Receptor Alpha Activity in Breast Cancer Cells

    Science.gov (United States)

    2009-04-01

    Contreras, J.I., Prescott , M.S., Dagenais, S.L., Wu, R., Yee, J., Orringer, M.B., Misek, D.E., Hanash, S.M., et al. (2002). The hepatocyte nuclear... Microbiology . All Rights Reserved. Coactivator Function Defines the Active Estrogen Receptor Alpha Cistrome† Mathieu Lupien,1‡ Jérôme Eeckhoute,1

  7. Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors.

    Science.gov (United States)

    Melis, Miriam; Pillolla, Giuliano; Luchicchi, Antonio; Muntoni, Anna Lisa; Yasar, Sevil; Goldberg, Steven R; Pistis, Marco

    2008-12-17

    Nicotine stimulates the activity of mesolimbic dopamine neurons, which is believed to mediate the rewarding and addictive properties of tobacco use. Accumulating evidence suggests that the endocannabinoid system might play a major role in neuronal mechanisms underlying the rewarding properties of drugs of abuse, including nicotine. Here, we investigated the modulation of nicotine effects by the endocannabinoid system on dopamine neurons in the ventral tegmental area with electrophysiological techniques in vivo and in vitro. We discovered that pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme that catabolizes fatty acid ethanolamides, among which the endocannabinoid anandamide (AEA) is the best known, suppressed nicotine-induced excitation of dopamine cells. Importantly, this effect was mimicked by the administration of the FAAH substrates oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), but not methanandamide, the hydrolysis resistant analog of AEA. OEA and PEA are naturally occurring lipid signaling molecules structurally related to AEA, but devoid of affinity for cannabinoid receptors. They blocked the effects of nicotine by activation of the peroxisome proliferator-activated receptor-alpha (PPAR-alpha), a nuclear receptor transcription factor involved in several aspects of lipid metabolism and energy balance. Activation of PPAR-alpha triggered a nongenomic stimulation of tyrosine kinases, which might lead to phosphorylation and negative regulation of neuronal nicotinic acetylcholine receptors. These data indicate for the first time that the anorexic lipids OEA and PEA possess neuromodulatory properties as endogenous ligands of PPAR-alpha in the brain and provide a potential new target for the treatment of nicotine addiction.

  8. Deletion of protease-activated receptor 2 prolongs survival of scrapie-inoculated mice

    Czech Academy of Sciences Publication Activity Database

    Matěj, R.; Olejár, Tomáš; Janoušková, O.; Holada, K.

    2012-01-01

    Roč. 93, č. 9 (2012), s. 2057-2061 ISSN 0022-1317 Institutional support: RVO:67985823 Keywords : protease-activated receptor (PAR2) * scrapie * neurodegenerative disorders Subject RIV: FN - Epidemiology, Contagious Diseases ; Clinical Immunology Impact factor: 3.127, year: 2012

  9. Metal ion site engineering indicates a global toggle switch model for seven-transmembrane receptor activation

    DEFF Research Database (Denmark)

    Elling, Christian E; Frimurer, Thomas M; Gerlach, Lars-Ole

    2006-01-01

    for monoamine binding in TM-III, was used as the starting point to engineer activating metal ion sites between the extracellular segments of the beta2-adrenergic receptor. Cu(II) and Zn(II) alone and in complex with aromatic chelators acted as potent (EC50 decreased to 0.5 microm) and efficacious agonists...

  10. Soluble urokinase plasminogen activator receptor as a prognostic marker in men participating in prostate cancer screening

    DEFF Research Database (Denmark)

    Kjellman, A; Akre, O; Gustafsson, O

    2011-01-01

    BACKGROUND: The urokinase plasminogen activator (uPA) system is involved in tissue remodelling processes and is up-regulated in many types of malignancies. We investigated whether serum levels of different forms of soluble uPA receptor (suPAR) are associated with survival and in particular with p...

  11. Toll-like receptor activation reveals developmental reorganization and unmasks responder subsets of microglia

    NARCIS (Netherlands)

    Scheffel, Joerg; Regen, Tommy; Van Rossum, Denise; Seifert, Stefanie; Ribes, Sandra; Nau, Roland; Parsa, Roham; Harris, Robert A.; Boddeke, Hendrikus W. G. M.; Chuang, Han-Ning; Pukrop, Tobias; Wessels, Johannes T.; Juergens, Tanja; Merkler, Doron; Brueck, Wolfgang; Schnaars, Mareike; Simons, Mikael; Kettenmann, Helmut; Hanisch, Uwe-Karsten

    2012-01-01

    The sentinel and immune functions of microglia require rapid and appropriate reactions to infection and damage. Their Toll-like receptors (TLRs) sense both as threats. However, whether activated microglia mount uniform responses or whether subsets conduct selective tasks is unknown. We demonstrate

  12. Liver X receptor activation restores memory in aged AD mice without reducing amyloid

    NARCIS (Netherlands)

    Vanmierlo, Tim; Rutten, Kris; Dederen, Jos; Bloks, Vincent W.; van Vark-van der Zee, Leonie C.; Kuipers, Folkert; Kiliaan, Amanda; Blokland, Arjan; Sijbrands, Eric J. G.; Steinbusch, Harry; Prickaerts, Jos; Luetjohann, Dieter; Mulder, Monique

    Alterations in cerebral cholesterol metabolism are thought to play a role in the progression of Alzheimer's disease (AD). Liver X receptors (LXRs) are key regulators of cholesterol metabolism. The synthetic LXR activator, T0901317 has been reported to improve memory functions in animal models for AD

  13. Soluble urokinase-type plasminogen activator receptor forms in plasma as markers of atherosclerotic plaque vulnerability

    DEFF Research Database (Denmark)

    Olson, Fredrik J; Thurison, Tine; Ryndel, Mikael

    2009-01-01

    OBJECTIVES:: To test if circulating forms of the soluble urokinase-type plasminogen activator receptor (suPAR) are potential biomarkers of plaque vulnerability. DESIGN AND METHODS:: Plasma concentrations of suPAR(I-III), suPAR(II-III) and uPAR(I) were measured by time-resolved fluorescence immuno...

  14. The human receptor for urokinase plasminogen activator. NH2-terminal amino acid sequence and glycosylation variants

    DEFF Research Database (Denmark)

    Behrendt, N; Rønne, E; Ploug, M

    1990-01-01

    The receptor for human urokinase-type plasminogen activator (u-PA) was purified from phorbol 12-myristate 13-acetate-stimulated U937 cells by temperature-induced phase separation of detergent extracts, followed by affinity chromatography with immobilized diisopropyl fluorophosphate-treated u...

  15. Importance of the extracellular loops in G protein-coupled receptors for ligand recognition and receptor activation.

    Science.gov (United States)

    Peeters, M C; van Westen, G J P; Li, Q; IJzerman, A P

    2011-01-01

    G protein-coupled receptors (GPCRs) are the major drug target of medicines on the market today. Therefore, much research is and has been devoted to the elucidation of the function and three-dimensional structure of this large family of membrane proteins, which includes multiple conserved transmembrane domains connected by intra- and extracellular loops. In the last few years, the less conserved extracellular loops have garnered increasing interest, particularly after the publication of several GPCR crystal structures that clearly show the extracellular loops to be involved in ligand binding. This review will summarize the recent progress made in the clarification of the ligand binding and activation mechanism of class-A GPCRs and the role of extracellular loops in this process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Biological activity of cloned mammary tumor virus DNA fragments that bind purified glucocorticoid receptor protein in vitro

    International Nuclear Information System (INIS)

    Yamamoto, K.R.; Payvar, F.; Firestone, G.L.; Maler, B.A.; Wrange, O.; Carlstedt-Duke, J.; Gustafsson, J.A.; Chandler, V.L.; Karolinska Institutet, Stockholm, Sweden)

    1983-01-01

    To test whether high-affinity receptor:DNA interactions can be correlated with receptor effects on promoter function in vivo, we have mapped in greater detail the receptor-binding regions on murine mammary tumor virus DNA, using both nitrocellulose-filter binding and electron microscopy. Recombinant plasmids bearing these receptor-binding domains have been transfected into cultured cells, and the expression of the plasmid sequences has been monitored for hormonal regulation. The results are considered in terms of a speculative proposal that the glucocorticoid receptor may effect changes in promoter activity via specific alteration of chromatin and/or DNA structure. 37 references, 6 figures, 2 tables

  17. Multiple autophosphorylation sites of the epidermal growth factor receptor are essential for receptor kinase activity and internalization. Contrasting significance of tyrosine 992 in the native and truncated receptors

    DEFF Research Database (Denmark)

    Sorkin, A; Helin, K; Waters, C M

    1992-01-01

    The role of epidermal growth factor (EGF) receptor autophosphorylation sites in the regulation of receptor functions has been studied using cells transfected with mutant EGF receptors. Simultaneous point mutation of 4 tyrosines (Y1068, Y1086, Y1148, Y1173) to phenylalanine, as well as removal of ...

  18. Insect Repellents: Modulators of Mosquito Odorant Receptor Activity

    Science.gov (United States)

    2010-08-01

    Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Plant Sciences Institute, Agricultural Research Service, United States Department...origin. 2-U is a naturally occurring compound produced by the glandular trichomes of wild tomato plants as part of a plant defense mechanism against...antennal OSNs responding to carboxylic acids and monoterpenes [23]. In our study, we investigate the action of 4 insect repellents on the activities of

  19. Activation of dopamine receptors in the nucleus accumbens promotes sucrose-reinforced cued approach behavior

    Directory of Open Access Journals (Sweden)

    Saleem M. Nicola

    2016-07-01

    Full Text Available Dopamine receptor activation in the nucleus accumbens (NAc promotes vigorous environmentally-cued food-seeking in hungry rats. Rats fed ad libitum, however, respond to fewer food-predictive cues, particularly when the value of food reward is low. Here, we investigated whether this difference could be due to differences in the degree of dopamine receptor activation in the NAc. First, we observed that although rats given ad libitum access to chow in their home cages approached a food receptacle in response to reward-predictive cues, the number of such approaches declined as animals accumulated food rewards. Intriguingly, cued approach to food occurred in clusters, with several cued responses followed by successive non-responses. This pattern suggested that behavior was dictated by transitions between two states, responsive and non-responsive. Injection of D1 or D2 dopamine receptor agonists into the NAc dose-dependently increased cue responding by promoting transitions to the responsive state and by preventing transitions to the non-responsive state. In contrast, antagonists of either D1 or D2 receptors promoted long bouts of non-responding by inducing transitions to the non-responsive state and by preventing transitions to the responsive state. Moreover, locomotor behavior during the inter-trial interval was correlated with the responsive state, and was also increased by dopamine receptor agonists. These results suggest that activation of NAc dopamine receptors plays an important role in regulating the probability of approach to food under conditions of normative satiety.

  20. Insulin receptor substrates 1 and 2 but not Shc can activate the insulin receptor independent of insulin and induce proliferation in CHO-IR cells

    International Nuclear Information System (INIS)

    Niessen, Markus; Jaschinski, Frank; Item, Flurin; McNamara, Morgan P.; Spinas, Giatgen A.; Trueb, Thomas

    2007-01-01

    Ligand-activated insulin receptor (IR) attracts and phosphorylates various substrates such as insulin receptor substrates 1-4 (IRS) and Shc. To investigate how binding affinity for substrate affects signalling we generated chimeric receptors with the β-chain of the insulin receptor containing NPXY motives with different affinities for receptor substrates. We found that the extent of receptor tyrosine phosphorylation positively correlates with binding affinity towards IRS1/2 but not towards Shc. Moreover, overexpression of IRS1 or IRS2 but not of Shc increased IR tyrosine phosphorylation in a dose-dependent manner, also independent of insulin. Molecular truncations of IRS1 revealed that neither the isolated PH and PTB domains nor the C-terminus with the tyrosine phosphorylation sites alone are sufficient for substrate-dependent receptor activation. Overexpression of IRS1 and IRS2 impaired insulin-induced internalization of the IR in a dose-dependent manner suggesting that IRS proteins prevent endosome-associated receptor dephosphorylation/inactivation. IRS1 and IRS2 could therefore target the activated IR to different cellular compartments. Overexpression of IRS1 and IRS2 inhibited insulin-stimulated activation of the MAP kinases Erk1/2 while it increased/induced activation of Akt/PKB. Finally, overexpression of IRS1 and IRS2 but not of Shc induced DNA synthesis in starved CHO-IR cells independent of exogenous growth factors. Our results demonstrate that variations in cellular IRS1 and IRS2 concentration affect insulin signalling both upstream and downstream and that IRS proteins could play instructive rather than just permissive roles in signal transmission

  1. mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR.

    Science.gov (United States)

    Yin, Yancun; Hua, Hui; Li, Minjing; Liu, Shu; Kong, Qingbin; Shao, Ting; Wang, Jiao; Luo, Yuanming; Wang, Qian; Luo, Ting; Jiang, Yangfu

    2016-01-01

    Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORC1) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how mTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unexpected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and activation of IGF-IR/InsR, which is largely dependent on rictor and mTOR. Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamycin- or ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombinant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/1151, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor(+/+) MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor(-/-) MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyr1131 in IGF-IR or Tyr1146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation.

  2. The Fifth Transmembrane Domain of Angiotensin II Type 1 Receptor Participates in the Formation of the Ligand-binding Pocket and Undergoes a Counterclockwise Rotation upon Receptor Activation*

    Science.gov (United States)

    Domazet, Ivana; Martin, Stéphane S.; Holleran, Brian J.; Morin, Marie-Ève; Lacasse, Patrick; Lavigne, Pierre; Escher, Emanuel; Leduc, Richard; Guillemette, Gaétan

    2009-01-01

    The octapeptide hormone angiotensin II exerts a wide variety of cardiovascular effects through the activation of the angiotensin II Type 1 (AT1) receptor, which belongs to the G protein-coupled receptor superfamily. Like other G protein- coupled receptors, the AT1 receptor possesses seven transmembrane domains that provide structural support for the formation of the ligand-binding pocket. The role of the fifth transmembrane domain (TMD5) was investigated using the substituted cysteine accessibility method. All of the residues within Thr-190 to Leu-217 region were mutated one at a time to cysteine, and after expression in COS-7 cells, the mutant receptors were treated with the sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). MTSEA reacts selectively with water-accessible, free sulfhydryl groups of endogenous or introduced point mutation cysteines. If a cysteine is found in the binding pocket, the covalent modification will affect the binding kinetics of the ligand. MTSEA substantially decreased the binding affinity of L197C-AT1, N200C-AT1, I201C-AT1, G203C-AT1, and F204C-AT1 mutant receptors, which suggests that these residues orient themselves within the water-accessible binding pocket of the AT1 receptor. Interestingly, this pattern of acquired MTSEA sensitivity was altered for TMD5 reporter cysteines engineered in a constitutively active N111G-AT1 receptor background. Indeed, mutant I201C-N111G-AT1 became more sensitive to MTSEA, whereas mutant G203C-N111G-AT1 lost some sensitivity. Our results suggest that constitutive activation of AT1 receptor causes an apparent counterclockwise rotation of TMD5 as viewed from the extracellular side. PMID:19773549

  3. The fifth transmembrane domain of angiotensin II Type 1 receptor participates in the formation of the ligand-binding pocket and undergoes a counterclockwise rotation upon receptor activation.

    Science.gov (United States)

    Domazet, Ivana; Martin, Stéphane S; Holleran, Brian J; Morin, Marie-Eve; Lacasse, Patrick; Lavigne, Pierre; Escher, Emanuel; Leduc, Richard; Guillemette, Gaétan

    2009-11-13

    The octapeptide hormone angiotensin II exerts a wide variety of cardiovascular effects through the activation of the angiotensin II Type 1 (AT(1)) receptor, which belongs to the G protein-coupled receptor superfamily. Like other G protein- coupled receptors, the AT(1) receptor possesses seven transmembrane domains that provide structural support for the formation of the ligand-binding pocket. The role of the fifth transmembrane domain (TMD5) was investigated using the substituted cysteine accessibility method. All of the residues within Thr-190 to Leu-217 region were mutated one at a time to cysteine, and after expression in COS-7 cells, the mutant receptors were treated with the sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). MTSEA reacts selectively with water-accessible, free sulfhydryl groups of endogenous or introduced point mutation cysteines. If a cysteine is found in the binding pocket, the covalent modification will affect the binding kinetics of the ligand. MTSEA substantially decreased the binding affinity of L197C-AT(1), N200C-AT(1), I201C-AT(1), G203C-AT(1), and F204C-AT(1) mutant receptors, which suggests that these residues orient themselves within the water-accessible binding pocket of the AT(1) receptor. Interestingly, this pattern of acquired MTSEA sensitivity was altered for TMD5 reporter cysteines engineered in a constitutively active N111G-AT(1) receptor background. Indeed, mutant I201C-N111G-AT(1) became more sensitive to MTSEA, whereas mutant G203C-N111G-AT(1) lost some sensitivity. Our results suggest that constitutive activation of AT(1) receptor causes an apparent counterclockwise rotation of TMD5 as viewed from the extracellular side.

  4. Neuron to astrocyte communication via cannabinoid receptors is necessary for sustained epileptiform activity in rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Guyllaume Coiret

    Full Text Available Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of astrocytes mediated by these neurotransmitters can promote seizure-like activity by initiating a positive feedback loop that induces excessive neuronal discharge. Recent work has demonstrated that astrocytes express cannabinoid 1 (CB1 receptors, which are sensitive to endocannabinoids released by nearby pyramidal cells. In this study, we tested whether this mechanism also contributes to epileptiform activity. In a model of 4-aminopyridine induced epileptic-like activity in hippocampal slice cultures, we show that pharmacological blockade of astrocyte CB1 receptors did not modify the initiation, but significantly reduced the maintenance of epileptiform discharge. When communication in astrocytic networks was disrupted by chelating astrocytic calcium, this CB1 receptor-mediated modulation of epileptiform activity was no longer observed. Thus, endocannabinoid signaling from neurons to astrocytes represents an additional significant factor in the maintenance of epileptiform activity in the hippocampus.

  5. Neuron to astrocyte communication via cannabinoid receptors is necessary for sustained epileptiform activity in rat hippocampus.

    Science.gov (United States)

    Coiret, Guyllaume; Ster, Jeanne; Grewe, Benjamin; Wendling, Fabrice; Helmchen, Fritjof; Gerber, Urs; Benquet, Pascal

    2012-01-01

    Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of astrocytes mediated by these neurotransmitters can promote seizure-like activity by initiating a positive feedback loop that induces excessive neuronal discharge. Recent work has demonstrated that astrocytes express cannabinoid 1 (CB1) receptors, which are sensitive to endocannabinoids released by nearby pyramidal cells. In this study, we tested whether this mechanism also contributes to epileptiform activity. In a model of 4-aminopyridine induced epileptic-like activity in hippocampal slice cultures, we show that pharmacological blockade of astrocyte CB1 receptors did not modify the initiation, but significantly reduced the maintenance of epileptiform discharge. When communication in astrocytic networks was disrupted by chelating astrocytic calcium, this CB1 receptor-mediated modulation of epileptiform activity was no longer observed. Thus, endocannabinoid signaling from neurons to astrocytes represents an additional significant factor in the maintenance of epileptiform activity in the hippocampus.

  6. Activated factor X signaling via protease-activated receptor 2 suppresses pro-inflammatory cytokine production from LPS-stimulated myeloid cells.

    LENUS (Irish Health Repository)

    Gleeson, Eimear M

    2013-07-19

    Vitamin K-dependent proteases generated in response to vascular injury and infection enable fibrin clot formation, but also trigger distinct immuno-regulatory signaling pathways on myeloid cells. Factor Xa, a protease crucial for blood coagulation, also induces protease-activated receptor-dependent cell signaling. Factor Xa can bind both monocytes and macrophages, but whether factor Xa-dependent signaling stimulates or suppresses myeloid cell cytokine production in response to Toll-like receptor activation is not known. In this study, exposure to factor Xa significantly impaired pro-inflammatory cytokine production from lipopolysaccharide-treated peripheral blood mononuclear cells, THP-1 monocytic cells and murine macrophages. Furthermore, factor Xa inhibited nuclear factor-kappa B activation in THP-1 reporter cells, requiring phosphatidylinositide 3-kinase activity for its anti-inflammatory effect. Active-site blockade, γ-carboxyglutamic acid domain truncation and a peptide mimic of the factor Xa inter-epidermal growth factor-like region prevented factor Xa inhibition of lipopolysaccharide-induced tumour necrosis factor-α release. In addition, factor Xa anti-inflammatory activity was markedly attenuated by the presence of an antagonist of protease-activated receptor 2, but not protease-activated receptor 1. The key role of protease-activated receptor 2 in eliciting factor Xa-dependent anti-inflammatory signaling on macrophages was further underscored by the inability of factor Xa to mediate inhibition of tumour necrosis factor-α and interleukin-6 release from murine bone marrow-derived protease-activated receptor 2-deficient macrophages. We also show for the first time that, in addition to protease-activated receptor 2, factor Xa requires a receptor-associated protein-sensitive low-density lipoprotein receptor to inhibit lipopolysaccharide-induced cytokine production. Collectively, this study supports a novel function for factor Xa as an endogenous, receptor

  7. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor

    Energy Technology Data Exchange (ETDEWEB)

    Burg, John S.; Ingram, Jessica R.; Venkatakrishnan, A.J.; Jude, Kevin M.; Dukkipati, Abhiram; Feinberg, Evan N.; Angelini, Alessandro; Waghray, Deepa; Dror, Ron O.; Ploegh, Hidde L.; Garcia, K. Christopher (Stanford); (Stanford-MED); (Whitehead); (MIT)

    2015-03-05

    Chemokines are small proteins that function as immune modulators through activation of chemokine G protein-coupled receptors (GPCRs). Several viruses also encode chemokines and chemokine receptors to subvert the host immune response. How protein ligands activate GPCRs remains unknown. We report the crystal structure at 2.9 angstrom resolution of the human cytomegalovirus GPCR US28 in complex with the chemokine domain of human CX3CL1 (fractalkine). The globular body of CX3CL1 is perched on top of the US28 extracellular vestibule, whereas its amino terminus projects into the central core of US28. The transmembrane helices of US28 adopt an active-state-like conformation. Atomic-level simulations suggest that the agonist-independent activity of US28 may be due to an amino acid network evolved in the viral GPCR to destabilize the receptor’s inactive state.

  8. Effect of purified, soluble urokinase receptor on the plasminogen-prourokinase activation system

    DEFF Research Database (Denmark)

    Behrendt, N; Danø, K

    1996-01-01

    The extracellular proteolytic pathway mediated by the urokinase plasminogen activator (uPA) is a cascade system, initiated by activation of the zymogen, pro-uPA. Pro-uPA as well as uPA binds to the cellular uPA receptor (uPAR) which has a central function in cell-dependent acceleration of the cas......The extracellular proteolytic pathway mediated by the urokinase plasminogen activator (uPA) is a cascade system, initiated by activation of the zymogen, pro-uPA. Pro-uPA as well as uPA binds to the cellular uPA receptor (uPAR) which has a central function in cell-dependent acceleration...

  9. VIP/PACAP receptor mediation of cutaneous active vasodilation during heat stress in humans.

    Science.gov (United States)

    Kellogg, Dean L; Zhao, Joan L; Wu, Yubo; Johnson, John M

    2010-07-01

    Vasoactive intestinal peptide (VIP) is implicated in cutaneous active vasodilation in humans. VIP and the closely related pituitary adenylate cyclase activating peptide (PACAP) act through several receptor types: VIP through VPAC1 and VPAC2 receptors and PACAP through VPAC1, VPAC2, and PAC1 receptors. We examined participation of VPAC2 and/or PAC1 receptors in cutaneous vasodilation during heat stress by testing the effects of their specific blockade with PACAP6-38. PACAP6-38 dissolved in Ringer's was administered by intradermal microdialysis at one forearm site while a control site received Ringer's solution. Skin blood flow was monitored by laser-Doppler flowmetry (LDF). Blood pressure was monitored noninvasively and cutaneous vascular conductance (CVC) calculated. A 5- to 10-min baseline period was followed by approximately 70 min of PACAP6-38 (100 microM) perfusion at one site in normothermia and a 3-min period of body cooling. Whole body heating was then performed to engage cutaneous active vasodilation and was maintained until CVC had plateaued at an elevated level at all sites for 5-10 min. Finally, 58 mM sodium nitroprusside was perfused through both microdialysis sites to effect maximal vasodilation. No CVC differences were found between control and PACAP6-38-treated sites during normothermia (19 +/- 3%max untreated vs. 20 +/- 3%max, PACAP6-38 treated; P > 0.05 between sites) or cold stress (11 +/- 2%max untreated vs. 10 +/- 2%max, PACAP6-38 treated, P > 0.05 between sites). PACAP6-38 attenuated the increase in CVC during whole body heating when compared with untreated sites (59 +/- 3%max untreated vs. 46 +/- 3%max, PACAP6-38 treated, P < 0.05). We conclude that VPAC2 and/or PAC1 receptor activation is involved in cutaneous active vasodilation in humans.

  10. Activation of 5-HT7 receptors reverses NMDA-R-dependent LTD by activating PKA in medial vestibular neurons.

    Science.gov (United States)

    Li, Yan-Hai; Han, Lei; Wu, Kenneth Lap Kei; Chan, Ying-Shing

    2017-09-01

    The medial vestibular nucleus (MVN) is a major output station for neurons that project to the vestibulo-spinal pathway. MVN neurons show capacity for long-term depression (LTD) during the juvenile period. We investigated LTD of MVN neurons using whole-cell patch-clamp recordings. High frequency stimulation (HFS) robustly induced LTD in 90% of type B neurons in the MVN, while only 10% of type A neurons were responsive, indicating that type B neurons are the major contributors to LTD in the MVN. The neuromodulator serotonin (5-HT) is known to modulate LTD in neural circuits of the cerebral cortex and the hippocampus. We therefore aim to determine the action of 5-HT on the LTD of type B MVN neurons and elucidate the relevant 5-HT receptor subtypes responsible for its action. Using specific agonists and antagonists of 5-HT receptors, we found that selective activation of 5-HT 7 receptor in type B neurons in the MVN of juvenile (P13-16) rats completely abolished NMDA-receptor-mediated LTD in a protein kinase A (PKA)-dependent manner. Our finding that 5-HT restricts plasticity of type B MVN neurons via 5-HT 7 receptors offers a mechanism whereby vestibular tuning contributes to the maturation of the vestibulo-spinal circuit and highlights the role of 5-HT in postural control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. In vitro H1-receptor antagonist activity of methanolic extract of tuber of Stephania gla