WorldWideScience

Sample records for thuringiensis cry4ba toxin

  1. Structure and distribution of the Bacillus thuringiensis Cry4Ba toxin in lipid membranes

    International Nuclear Information System (INIS)

    Puntheeranurak, Theeraporn; Stroh, Cordula; Zhu Rong; Angsuthanasombat, Chanan; Hinterdorfer, Peter

    2005-01-01

    Bacillus thuringiensis Cry δ-endotoxins cause death of susceptible insect larvae by forming lytic pores in the midgut epithelial cell membranes. The 65 kDa trypsin activated Cry4Ba toxin was previously shown to be capable of permeabilizing liposomes and forming ionic channels in receptor-free planar lipid bilayers. Here, magnetic ACmode (MACmode) atomic force microscopy (AFM) was used to characterize the lateral distribution and the native molecular structure of the Cry4Ba toxin in the membrane. Liposome fusion and the Langmuir-Blodgett technique were employed for supported lipid bilayer preparations. The toxin preferentially inserted in a self-assembled structure, rather than as a single monomeric molecule. In addition, the spontaneous insertion into receptor-free lipid bilayers lead to formation of characteristic pore-like structures with four-fold symmetry, suggesting that tetramers are the preferred oligomerization state of this toxin

  2. An Intramolecular Salt Bridge in Bacillus thuringiensis Cry4Ba Toxin Is Involved in the Stability of Helix α-3, Which Is Needed for Oligomerization and Insecticidal Activity.

    Science.gov (United States)

    Pacheco, Sabino; Gómez, Isabel; Sánchez, Jorge; García-Gómez, Blanca-Ines; Soberón, Mario; Bravo, Alejandra

    2017-10-15

    Bacillus thuringiensis three-domain Cry toxins kill insects by forming pores in the apical membrane of larval midgut cells. Oligomerization of the toxin is an important step for pore formation. Domain I helix α-3 participates in toxin oligomerization. Here we identify an intramolecular salt bridge within helix α-3 of Cry4Ba (D111-K115) that is conserved in many members of the family of three-domain Cry toxins. Single point mutations such as D111K or K115D resulted in proteins severely affected in toxicity. These mutants were also altered in oligomerization, and the mutant K115D was more sensitive to protease digestion. The double point mutant with reversed charges, D111K-K115D, recovered both oligomerization and toxicity, suggesting that this salt bridge is highly important for conservation of the structure of helix α-3 and necessary to promote the correct oligomerization of the toxin. IMPORTANCE Domain I has been shown to be involved in oligomerization through helix α-3 in different Cry toxins, and mutations affecting oligomerization also elicit changes in toxicity. The three-dimensional structure of the Cry4Ba toxin reveals an intramolecular salt bridge in helix α-3 of domain I. Mutations that disrupt this salt bridge resulted in changes in Cry4Ba oligomerization and toxicity, while a double point reciprocal mutation that restored the salt bridge resulted in recovery of toxin oligomerization and toxicity. These data highlight the role of oligomer formation as a key step in Cry4Ba toxicity. Copyright © 2017 American Society for Microbiology.

  3. Two conformational states of the membrane-associated Bacillus thuringiensis Cry4Ba δ-endotoxin complex revealed by electron crystallography: Implications for toxin-pore formation

    International Nuclear Information System (INIS)

    Ounjai, Puey; Unger, Vinzenz M.; Sigworth, Fred J.; Angsuthanasombat, Chanan

    2007-01-01

    The insecticidal nature of Cry δ-endotoxins produced by Bacillus thuringiensis is generally believed to be caused by their ability to form lytic pores in the midgut cell membrane of susceptible insect larvae. Here we have analyzed membrane-associated structures of the 65-kDa dipteran-active Cry4Ba toxin by electron crystallography. The membrane-associated toxin complex was crystallized in the presence of DMPC via detergent dialysis. Depending upon the charge of the adsorbed surface, 2D crystals of the oligomeric toxin complex have been captured in two distinct conformations. The projection maps of those crystals have been generated at 17 A resolution. Both complexes appeared to be trimeric; as in one crystal form, its projection structure revealed a symmetrical pinwheel-like shape with virtually no depression in the middle of the complex. The other form revealed a propeller-like conformation displaying an obvious hole in the center region, presumably representing the toxin-induced pore. These crystallographic data thus demonstrate for the first time that the 65-kDa activated Cry4Ba toxin in association with lipid membranes could exist in at least two different trimeric conformations, conceivably implying the closed and open states of the pore

  4. Dominant negative phenotype of Bacillus thuringiensis Cry1Ab, Cry11Aa and Cry4Ba mutants suggest hetero-oligomer formation among different Cry toxins.

    NARCIS (Netherlands)

    Carmona, D.; Rodriguez-Almazan, C.; Munoz-Garay, C.; Portugal, L.; Perez, C.; Maagd, de R.A.; Bakker, P.; Soberon, M.; Bravo, A.

    2011-01-01

    Background - Bacillus thuringiensis Cry toxins are used worldwide in the control of different insect pests important in agriculture or in human health. The Cry proteins are pore-forming toxins that affect the midgut cell of target insects. It was shown that non-toxic Cry1Ab helix a-4 mutants had a

  5. Bacillus thuringiensis subsp. israelensis and Its Dipteran-Specific Toxins

    Directory of Open Access Journals (Sweden)

    Eitan Ben-Dov

    2014-03-01

    Full Text Available Bacillus thuringiensis subsp. israelensis (Bti is the first Bacillus thuringiensis to be found and used as an effective biological control agent against larvae of many mosquito and black fly species around the world. Its larvicidal activity resides in four major (of 134, 128, 72 and 27 kDa and at least two minor (of 78 and 29 kDa polypeptides encoded respectively by cry4Aa, cry4Ba, cry11Aa, cyt1Aa, cry10Aa and cyt2Ba, all mapped on the 128 kb plasmid known as pBtoxis. These six δ-endotoxins form a complex parasporal crystalline body with remarkably high, specific and different toxicities to Aedes, Culex and Anopheles larvae. Cry toxins are composed of three domains (perforating domain I and receptor binding II and III and create cation-selective channels, whereas Cyts are composed of one domain that acts as well as a detergent-like membrane perforator. Despite the low toxicities of Cyt1Aa and Cyt2Ba alone against exposed larvae, they are highly synergistic with the Cry toxins and hence their combinations prevent emergence of resistance in the targets. The lack of significant levels of resistance in field mosquito populations treated for decades with Bti-bioinsecticide suggests that this bacterium will be an effective biocontrol agent for years to come.

  6. Activity of a Brazilian strain of Bacillus thuringiensis israelensis against the cotton Boll Weevil Anthonomus grandis Boheman (Coleoptera: Tenebrionidae).

    Science.gov (United States)

    Monnerat, R; Martins, E; Praça, L; Dumas, V; Berry, C

    2012-02-01

    A Brazilian Bacillus thuringiensis subspecies israelensis, toxic to Diptera, including mosquitoes, was found also to show toxicity to the coleopteran boll weevil Anthonomus grandis Boheman at an equivalent level to that of the standard coleopteran-active B. thuringiensis subspecies tenebrionis T08017. Recombinant B. thuringiensis strains expressing the individual Cyt1Aa, Cry4Aa, Cry4Ba and Cry11Aa toxins from this strain were assessed to evaluate their potential contribution to the activity against A. grandis, either alone or in combination. Whilst individual toxins produced mortality, none was sufficiently potent to allow calculation of LC50 values. Combinations of toxins were unable to attain the same potency as the parental B. thuringiensis subsp. israelensis, suggesting a major role for other factors produced by this strain.

  7. Isolation of Bacillus thuringiensis from the state of Amazonas, in Brazil, and screening against Aedes aegypti (Diptera, Culicidae

    Directory of Open Access Journals (Sweden)

    Joelma Soares-da-Silva

    2015-03-01

    Full Text Available We investigated the use of Bacillus thuringiensis isolated in the state of Amazonas, in Brazil, for the biological control of the dengue vector Aedes aegypti. From 25 soil samples collected in nine municipalities, 484 bacterial colonies were obtained, 57 (11.78% of which were identified as B. thuringiensis. Six isolates, IBt-03, IBt-06, IBt-07, IBt-28, IBt-30, and BtAM-27 showed insecticidal activity, and only BtAM-27 presents the five genes investigated cry4Aa, cry4Ba, cry10Aa, cry11Aa, and cry11Ba. The IBt-07 and IBt- 28, with lower LC50 values, showed equal toxicity compared to the standards. The isolates of B. thuringiensis from Amazonas constitute potential new means of biological control for A. aegypti, because of their larvicidal activity and the possibility that they may also contain new combinations of toxins.

  8. Prevalence and Toxin Characteristics of Bacillus thuringiensis Isolated from Organic Vegetables.

    Science.gov (United States)

    Kim, Jung-Beom; Choi, Ok-Kyung; Kwon, Sun-Mok; Cho, Seung-Hak; Park, Byung-Jae; Jin, Na Young; Yu, Yong Man; Oh, Deog-Hwan

    2017-08-28

    The prevalence and toxin characteristics of Bacillus thuringiensis isolated from 39 organic vegetables were investigated. B. thuringiensis was detected in 30 out of the 39 organic vegetables (76.9%) with a mean value of 2.60 log CFU/g. Twenty-five out of the 30 B. thuringiensis isolates (83.3%) showed insecticidal toxicity against Spodoptera exigua . The hblCDA, nheABC , and entFM genes were found to be the major toxin genes, but the ces gene was not detected in any of the tested B. thuringiensis isolates. The hemolysin BL enterotoxin was detected in all 30 B. thuringiensis isolates (100%). The non-hemolytic enterotoxin complex was found in 27 out of 30 B. thuringiensis isolates (90.0%). The B. thuringiensis tested in this study had similar toxin gene characteristics to B. cereus , which possessed more than one toxin gene. B. thuringiensis could have the potential risk of foodborne illness based on the toxin genes and toxin-producing ability.

  9. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity.

    Science.gov (United States)

    Bravo, Alejandra; Gómez, Isabel; Porta, Helena; García-Gómez, Blanca Ines; Rodriguez-Almazan, Claudia; Pardo, Liliana; Soberón, Mario

    2013-01-01

    Insecticidal Cry proteins produced by Bacillus thuringiensis are use worldwide in transgenic crops for efficient pest control. Among the family of Cry toxins, the three domain Cry family is the better characterized regarding their natural evolution leading to a large number of Cry proteins with similar structure, mode of action but different insect specificity. Also, this group is the better characterized regarding the study of their mode of action and the molecular basis of insect specificity. In this review we discuss how Cry toxins have evolved insect specificity in nature and analyse several cases of improvement of Cry toxin action by genetic engineering, some of these examples are currently used in transgenic crops. We believe that the success in the improvement of insecticidal activity by genetic evolution of Cry toxins will depend on the knowledge of the rate-limiting steps of Cry toxicity in different insect pests, the mapping of the specificity binding regions in the Cry toxins, as well as the improvement of mutagenesis strategies and selection procedures. © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  10. Effect of Bacillus thuringiensis parasporal toxin on stimulating of IL-2 and IL-5 cytokines production

    Directory of Open Access Journals (Sweden)

    Marzieh Soleimany

    2018-03-01

    Full Text Available Introduction:Bacillus thuringiensis, is a Gram-positive spore-forming bacterium that produces crystalline parasporal protein (Cry during sporulation. Some of these Cry toxins do not show cytotoxicity against insects but they are capable to kill some human and animal cancer cells. The aim of this study was to verify whether cytocidal parasporal of B thuringiensis strains have immunostimulatory activity on human peripheral blood mononuclear cells (PBMNC and to evaluate the ability of IL-2 and IL-5 production. Materials and methods: B. thuringiensis toxin with cytocidal activity was isolated and treated with proteinase K. PBMNC was cultured and treated with activated crystal proteins. We evaluated the ability of different cytokines production with Flow Cytometry. Results: In this study, immune stimulatory toxins Cry1 were distinguished. This toxin can stimulate production of cytokines IL-2 and stop production of IL-5. Discussion and conclusion: According to anti-cancer effect of B. thuringiensis toxins and also immune stimulatory effect, with more research these toxins can be introduced as immunotherapy drug in cancer treatment.

  11. A Novel Tenebrio molitor Cadherin Is a Functional Receptor for Bacillus thuringiensis Cry3Aa Toxin*

    OpenAIRE

    Fabrick, Jeff; Oppert, Cris; Lorenzen, Marcé D.; Morris, Kaley; Oppert, Brenda; Jurat-Fuentes, Juan Luis

    2009-01-01

    Cry toxins produced by the bacterium Bacillus thuringiensis are effective biological insecticides. Cadherin-like proteins have been reported as functional Cry1A toxin receptors in Lepidoptera. Here we present data that demonstrate that a coleopteran cadherin is a functional Cry3Aa toxin receptor. The Cry3Aa receptor cadherin was cloned from Tenebrio molitor larval midgut mRNA, and the predicted protein, TmCad1, has domain structure and a putative toxin binding region similar to those in lepid...

  12. The occurrence of Photorhabdus-like toxin complexes in Bacillus thuringiensis

    Science.gov (United States)

    Recently, genomic sequencing of a Bacillus thuringiensis (Bt) isolate from our collection revealed the presence of an apparent operon encoding an insecticidal toxin complex (Tca) similar to that first described from the entomopathogen Photorhabdus luminescens. To determine whether these genes are w...

  13. Bacillus thuringiensis Cry3Aa toxin increases the susceptibility of Crioceris quatuordecimpunctata to Beauveria bassiana infection

    Science.gov (United States)

    The spotted asparagus beetle, Crioceris quatuordecimpunctata (Coleoptera: Chrysomelidae), is one of the most devastating pests of asparagus in China and elsewhere. In this study, we investigated the interaction of Bacillus thuringiensis (Bt) Cry3Aa toxin and the entomopathogenic fungus Beauveria bas...

  14. Larvicidal activity of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus.

    Science.gov (United States)

    DE Lara, Ana Paula DE Souza Stori; Lorenzon, Lucas Bigolin; Vianna, Ana Muñoz; Santos, Francisco Denis Souza; Pinto, Luciano Silva; Aires Berne, Maria Elisabeth; Leite, Fábio Pereira Leivas

    2016-10-01

    Effective control of gastrointestinal parasites is necessary in sheep production. The development of anthelmintics resistance is causing the available chemically based anthelmintics to become less effective. Biological control strategies present an alternative to this problem. In the current study, we tested the larvicidal effects of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus larvae. Bacterial suspensions [2 × 108 colony-forming units (CFU) g-1 of the feces] of B. thuringiensis var. israelensis and recombinant Escherichia coli expressing Cry11Aa toxin were added to naturally H. contortus egg-contaminated feces. The larvae were quantified, and significant reductions of 62 and 81% (P var. israelensis and recombinant E. coli expressing Cry11Aa toxin were then orally administered to lambs naturally infected with H. contortus. Twelve hours after administration, feces were collected and submitted to coprocultures. Significant larvae reductions (P var. israelensis is a promising new class of biological anthelmintics for treating sheep against H. contortus.

  15. A Novel Tenebrio molitor Cadherin Is a Functional Receptor for Bacillus thuringiensis Cry3Aa Toxin*

    Science.gov (United States)

    Fabrick, Jeff; Oppert, Cris; Lorenzen, Marcé D.; Morris, Kaley; Oppert, Brenda; Jurat-Fuentes, Juan Luis

    2009-01-01

    Cry toxins produced by the bacterium Bacillus thuringiensis are effective biological insecticides. Cadherin-like proteins have been reported as functional Cry1A toxin receptors in Lepidoptera. Here we present data that demonstrate that a coleopteran cadherin is a functional Cry3Aa toxin receptor. The Cry3Aa receptor cadherin was cloned from Tenebrio molitor larval midgut mRNA, and the predicted protein, TmCad1, has domain structure and a putative toxin binding region similar to those in lepidopteran cadherin B. thuringiensis receptors. A peptide containing the putative toxin binding region from TmCad1 bound specifically to Cry3Aa and promoted the formation of Cry3Aa toxin oligomers, proposed to be mediators of toxicity in lepidopterans. Injection of TmCad1-specific double-stranded RNA into T. molitor larvae resulted in knockdown of the TmCad1 transcript and conferred resistance to Cry3Aa toxicity. These data demonstrate the functional role of TmCad1 as a Cry3Aa receptor in T. molitor and reveal similarities between the mode of action of Cry toxins in Lepidoptera and Coleoptera. PMID:19416969

  16. Investigation of Cytocidal Activity of Bacillus Thuringiensis Parasporal Toxin on CCRF-CEM Cell Line

    Directory of Open Access Journals (Sweden)

    Elham Moazamian

    2013-03-01

    Full Text Available Background & Objective: Parasporin is a parasporal protein of Bacillus thuringiensis and exhibits special cytocidal activity against human cancer cells. Similar to other insecticidal Bacillus thuringiensis crystal toxins, parasporin shows target specificity and damages the cellular membrane. In this study, different strains of Bacillus thuringiensis isolated from various regions of Iran and their cytocidal activity against CCRF-CEM cell line and human erythrocyte were investigated.   Materials & Methods: Fifty soil samples were collected from different Iranian provinces, and characterization was performed based on protein crystal morphology by phase-contrast microscope and variations of Cry protein toxin using SDS-PAGE. After parasporin was processed with proteinase K, the active form was produced and protein activity on the cell line was evaluated. Results: Parasporal inclusion proteins showed different cytotoxicity against acute lymphoblastic leukemia cells (ALL, but not against normal lymphocyte. Isolated parasporin demonstrated no hemolytic activity against human erythrocyte. It appears that these proteins have the ability to differentiate between normal lymphocytes and leukemia cells and have specific receptors on specific cancer cell lines. Conclusion: Our results provide evidence that the parasporin-producing organism is a common member in Bacillus thuringiensis populations occurring in the natural environments of Iran.

  17. An overview of the safety and biological effects of Bacillus thuringiensis Cry toxins in mammals.

    Science.gov (United States)

    Rubio-Infante, Néstor; Moreno-Fierros, Leticia

    2016-05-01

    Crystal proteins (Cry) produced during the growth and sporulation phases of Bacillus thuringiensis (Bt) bacterium are known as delta endotoxins. These toxins are being used worldwide as bioinsecticides to control pests in agriculture, and some Cry toxins are used against mosquitoes to control vector transmission. This review summarizes the relevant information currently available regarding the biosafety and biological effects that Bt and its insecticidal Cry proteins elicit in mammals. This work was performed because of concerns regarding the possible health impact of Cry toxins on vertebrates, particularly because Bt toxins might be associated with immune-activating or allergic responses. The controversial data published to date are discussed in this review considering earlier toxicological studies of B. thuringiensis, spores, toxins and Bt crops. We discussed the experimental studies performed in humans, mice, rats and sheep as well as in diverse mammalian cell lines. Although the term 'toxic' is not appropriate for defining the effects these toxins have on mammals, they cannot be considered innocuous, as they have some physiological effects that may become pathological; thus, trials that are more comprehensive are necessary to determine their effects on mammals because knowledge in this field remains limited. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Localization of Bacillus thuringiensis Cry1A toxin-binding molecules in gypsy moth larval gut sections using fluorescence microscopy

    Science.gov (United States)

    Algimantas P. Valaitis

    2011-01-01

    The microbial insecticide Bacillus thuringiensis (Bt) produces Cry toxins, proteins that bind to the brush border membranes of gut epithelial cells of insects that ingest it, disrupting the integrity of the membranes, and leading to cell lysis and insect death. In gypsy moth, Lymantria dispar, two toxin-binding molecules for the...

  19. Changes in protease activity and Cry3Aa toxin binding in the Colorado potato beetle: implications for insect resistance to Bacillus thuringiensis toxins

    Science.gov (United States)

    Olga Loseva; Mohamed Ibrahim; Mehmet Candas; C. Noah Koller; Leah S. Bauer; Lee A. Jr. Bulla

    2002-01-01

    Widespread commercial use of Bacillus thuringiensis Cry toxins to control pest insects has increased the likelihood for development of insect resistance to this entomopathogen. In this study, we investigated protease activity profiles and toxin-binding capacities in the midgut of a strain of Colorado potato beetle (CPB) that has developed resistance...

  20. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin.

    Directory of Open Access Journals (Sweden)

    Linda J Gahan

    2010-12-01

    Full Text Available Transgenic crops producing insecticidal toxins from Bacillus thuringiensis (Bt are commercially successful in reducing pest damage, yet knowledge of resistance mechanisms that threaten their sustainability is incomplete. Insect resistance to the pore-forming Cry1Ac toxin is correlated with the loss of high-affinity, irreversible binding to the mid-gut membrane, but the genetic factors responsible for this change have been elusive. Mutations in a 12-cadherin-domain protein confer some Cry1Ac resistance but do not block this toxin binding in in vitro assays. We sought to identify mutations in other genes that might be responsible for the loss of binding. We employed a map-based cloning approach using a series of backcrosses with 1,060 progeny to identify a resistance gene in the cotton pest Heliothis virescens that segregated independently from the cadherin mutation. We found an inactivating mutation of the ABC transporter ABCC2 that is genetically linked to Cry1Ac resistance and is correlated with loss of Cry1Ac binding to membrane vesicles. ABC proteins are integral membrane proteins with many functions, including export of toxic molecules from the cell, but have not been implicated in the mode of action of Bt toxins before. The reduction in toxin binding due to the inactivating mutation suggests that ABCC2 is involved in membrane integration of the toxin pore. Our findings suggest that ABC proteins may play a key role in the mode of action of Bt toxins and that ABC protein mutations can confer high levels of resistance that could threaten the continued utilization of Bt-expressing crops. However, such mutations may impose a physiological cost on resistant insects, by reducing export of other toxins such as plant secondary compounds from the cell. This weakness could be exploited to manage this mechanism of Bt resistance in the field.

  1. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin.

    Science.gov (United States)

    Gahan, Linda J; Pauchet, Yannick; Vogel, Heiko; Heckel, David G

    2010-12-16

    Transgenic crops producing insecticidal toxins from Bacillus thuringiensis (Bt) are commercially successful in reducing pest damage, yet knowledge of resistance mechanisms that threaten their sustainability is incomplete. Insect resistance to the pore-forming Cry1Ac toxin is correlated with the loss of high-affinity, irreversible binding to the mid-gut membrane, but the genetic factors responsible for this change have been elusive. Mutations in a 12-cadherin-domain protein confer some Cry1Ac resistance but do not block this toxin binding in in vitro assays. We sought to identify mutations in other genes that might be responsible for the loss of binding. We employed a map-based cloning approach using a series of backcrosses with 1,060 progeny to identify a resistance gene in the cotton pest Heliothis virescens that segregated independently from the cadherin mutation. We found an inactivating mutation of the ABC transporter ABCC2 that is genetically linked to Cry1Ac resistance and is correlated with loss of Cry1Ac binding to membrane vesicles. ABC proteins are integral membrane proteins with many functions, including export of toxic molecules from the cell, but have not been implicated in the mode of action of Bt toxins before. The reduction in toxin binding due to the inactivating mutation suggests that ABCC2 is involved in membrane integration of the toxin pore. Our findings suggest that ABC proteins may play a key role in the mode of action of Bt toxins and that ABC protein mutations can confer high levels of resistance that could threaten the continued utilization of Bt-expressing crops. However, such mutations may impose a physiological cost on resistant insects, by reducing export of other toxins such as plant secondary compounds from the cell. This weakness could be exploited to manage this mechanism of Bt resistance in the field.

  2. Molecular Approaches to Improve the Insecticidal Activity of Bacillus thuringiensis Cry Toxins

    Directory of Open Access Journals (Sweden)

    Wagner A. Lucena

    2014-08-01

    Full Text Available Bacillus thuringiensis (Bt is a gram-positive spore-forming soil bacterium that is distributed worldwide. Originally recognized as a pathogen of the silkworm, several strains were found on epizootic events in insect pests. In the 1960s, Bt began to be successfully used to control insect pests in agriculture, particularly because of its specificity, which reflects directly on their lack of cytotoxicity to human health, non-target organisms and the environment. Since the introduction of transgenic plants expressing Bt genes in the mid-1980s, numerous methodologies have been used to search for and improve toxins derived from native Bt strains. These improvements directly influence the increase in productivity and the decreased use of chemical insecticides on Bt-crops. Recently, DNA shuffling and in silico evaluations are emerging as promising tools for the development and exploration of mutant Bt toxins with enhanced activity against target insect pests. In this report, we describe natural and in vitro evolution of Cry toxins, as well as their relevance in the mechanism of action for insect control. Moreover, the use of DNA shuffling to improve two Bt toxins will be discussed together with in silico analyses of the generated mutations to evaluate their potential effect on protein structure and cytotoxicity.

  3. Expression of Bacillus thuringiensis serovar. israelensis toxins in Asticcacaulis excentricus to control dipteran larvae of vectors of diseases

    Directory of Open Access Journals (Sweden)

    Óscar Enrique Guevara

    2004-01-01

    Full Text Available Bacillus thuringiensis cry genes encode for a diverse group of crystal-forming proteins that exhibit insecticidal activity towards dipteran, lepidopteran and coleopteran larvae. The effectiveness of insecticides based on mosquito larvicidal B. thuringiensis strains can be enhanced by using aquatic prosthecated bacteria as alternative hosts, since they do not sink, cytoplasmic located toxins are protected f rom UV radiation and, most importantly, mosquito larvae feed on them. An Asticcacaulis excentricus reference strain was transformed with the cry1 1Aa gene from Bacillus thuringiensis serovar. israelensis. Western blot and electrophoresis were used to test recombinant protein expression; Western blot revealed a 72 kDa protein corresponding to B. thuringiensis serovar. israelensis Cry1 1 Aa. These aquatic bacte­rias toxicity achieved 50% mortality at 23 ng/mL concentration in f irst instar Culex quinquefasciatus larvae. Other bioassays indicated that recombinant A. excentricus is toxic against Aedes aegyptiand Anopheles albimanus first instar larvae. Buoyancy tests demonstrated the advantage of A. excentricus over B. thuringiensis. Key words: Asticcacaulis excentricus, Bacillus thuringiensis, prosthecated bacteria, dengue, malaria.

  4. In vitro ovicidal and cestocidal effects of toxins from Bacillus thuringiensis on the canine and human parasite Dipylidium caninum.

    Science.gov (United States)

    Peña, Guadalupe; Aguilar Jiménez, Fortino Agustín; Hallal-Calleros, Claudia; Morales-Montor, Jorge; Hernández-Velázquez, Víctor Manuel; Flores-Pérez, Fernando Iván

    2013-01-01

    Bacillus thuringiensis is a gram-positive soil-dwelling bacterium that is commonly used as a biological pesticide. This bacterium may also be used for biological control of helminth parasites in domestic animals. In this study, we evaluated the possible ovicidal and cestocidal effects of a total protein extract of B. thuringiensis native strains on the zoonotic cestode parasite of dogs, Dipylidium caninum (D. caninum). Dose and time response curves were determined by coincubating B. thuringiensis proteins at concentration ranging from 100 to 1000 μ g/mL along with 4000 egg capsules of D. caninum. Egg viability was evaluated using the trypan blue exclusion test. The lethal concentration of toxins on eggs was 600 μ g/ml, and the best incubation time to produce this effect was 3 h. In the adult stage, the motility and the thickness of the tegument were used as indicators of damage. The motility was inhibited by 100% after 8 hours of culture compared to the control group, while the thickness of the cestode was reduced by 34%. Conclusively, proteins of the strain GP526 of B. thuringiensis directly act upon D. caninum showing ovicidal and cestocidal effects. Thus, B. thuringiensis is proposed as a potential biological control agent against this zoonosis.

  5. In Vitro Ovicidal and Cestocidal Effects of Toxins from Bacillus thuringiensis on the Canine and Human Parasite Dipylidium caninum

    Directory of Open Access Journals (Sweden)

    Guadalupe Peña

    2013-01-01

    Full Text Available Bacillus thuringiensis is a gram-positive soil-dwelling bacterium that is commonly used as a biological pesticide. This bacterium may also be used for biological control of helminth parasites in domestic animals. In this study, we evaluated the possible ovicidal and cestocidal effects of a total protein extract of B. thuringiensis native strains on the zoonotic cestode parasite of dogs, Dipylidium caninum (D. caninum. Dose and time response curves were determined by coincubating B. thuringiensis proteins at concentration ranging from 100 to 1000 μg/mL along with 4000 egg capsules of D. caninum. Egg viability was evaluated using the trypan blue exclusion test. The lethal concentration of toxins on eggs was 600 μg/ml, and the best incubation time to produce this effect was 3 h. In the adult stage, the motility and the thickness of the tegument were used as indicators of damage. The motility was inhibited by 100% after 8 hours of culture compared to the control group, while the thickness of the cestode was reduced by 34%. Conclusively, proteins of the strain GP526 of B. thuringiensis directly act upon D. caninum showing ovicidal and cestocidal effects. Thus, B. thuringiensis is proposed as a potential biological control agent against this zoonosis.

  6. Specificity and combinatorial effects of Bacillus thuringiensis Cry toxins in the context of GMO environmental risk assessment

    Directory of Open Access Journals (Sweden)

    Angelika eHilbeck

    2015-11-01

    Full Text Available Stacked GM crops expressing up to six Cry toxins from Bacillus thuringiensis are today replacing the formerly grown single- transgene GM crop varieties. Stacking of multiple Cry toxins not only increase the environmental load of toxins but also raise the question on how possible interactions of the toxins can be assessed for risk assessment, which is mandatory for GM crops. However, no operational guidelines for a testing strategy or testing procedures exist. From the developers point of view, little data testing for combinatorial effects of Cry toxins is necessary as the range of affected organisms is focused on pest species and no evidence is claimed to exists pointing to combinatorial effects on nontarget organisms. We have examined this rationale critically using information reported in the scientific literature. To do so we address the hypothesis of narrow specificity of Cry toxins subdivided into three underlying different conceptual conditions i 'efficacy' in target pests as indicator for 'narrow specificity', ii lack of reported adverse effects of Cry toxins on nontarget organisms, and iii proposed modes of action of Cry toxins (or the lack thereof as mechanisms underlying the reported activity/efficacy/specificity of Cry toxins. Complementary to this information we evaluate reports about outcomes of combinatorial effect testing of Cry toxins in the scientific literature and relate those findings to the practice of the environmental risk assessment of Bt-corps in general and of stacked Bt-events in particular.

  7. Mannose Phosphate Isomerase Isoenzymes in Plutella xylostella Support Common Genetic Bases of Resistance to Bacillus thuringiensis Toxins in Lepidopteran Species

    OpenAIRE

    Herrero, Salvador; Ferré, Juan; Escriche, Baltasar

    2001-01-01

    A strong correlation between two mannose phosphate isomerase (MPI) isoenzymes and resistance to Cry1A toxins from Bacillus thuringiensis has been found in a Plutella xylostella population. MPI linkage to Cry1A resistance had previously been reported for a Heliothis virescens population. The fact that the two populations share similar biochemical, genetic, and cross-resistance profiles of resistance suggests the occurrence of homologous resistance loci in both species.

  8. A theoretical model of the tridimensional structure of Bacillus thuringiensis subsp. medellin Cry 11Bb toxin deduced by homology modelling

    Directory of Open Access Journals (Sweden)

    Gutierrez Pablo

    2001-01-01

    Full Text Available Cry11Bb is an insecticidal crystal protein produced by Bacillus thuringiensis subsp. medellin during its stationary phase; this ¶-endotoxin is active against dipteran insects and has great potential for mosquito borne disease control. Here, we report the first theoretical model of the tridimensional structure of a Cry11 toxin. The tridimensional structure of the Cry11Bb toxin was obtained by homology modelling on the structures of the Cry1Aa and Cry3Aa toxins. In this work we give a brief description of our model and hypothesize the residues of the Cry11Bb toxin that could be important in receptor recognition and pore formation. This model will serve as a starting point for the design of mutagenesis experiments aimed to the improvement of toxicity, and to provide a new tool for the elucidation of the mechanism of action of these mosquitocidal proteins.

  9. Comparative analysis of Bacillus thuringiensis toxin binding to gypsy moth, browntail moth, and douglas-fir tussock moth midgut tissue sections using fluorescence microscopy

    Science.gov (United States)

    Algimantas P. Valaitis; John D. Podgwaite

    2011-01-01

    Many strains of Bacillus thuringiensis (Bt) produce insecticidal proteins, also referred to as Cry toxins, in crystal inclusions during sporulation. When ingested by insects, the Cry toxins bind to receptors on the brush border midgut epithelial cells and create pores in the epithelial gut membranes resulting in the death of...

  10. Isolation and partial characterization of gypsy moth BTR-270, an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis Cry1A toxins with high affinity

    Science.gov (United States)

    Algimantas P. Valaitis; Jeremy L. Jenkins; Mi Kyong Lee; Donald H. Dean; Karen J. Garner

    2001-01-01

    BTR-270, a gypsy moth (Lymantria dispar) brush border membrane molecule that binds Bacillus thuringiensis (Bt) Cry1A toxins with high affinity, was purified by preparative gel electrophoresis. Rabbit antibodies specific for the Bt toxin-binding molecule were raised. Attempts to label BTR-270 by protein-directed techniques were...

  11. Induction of Manduca sexta Larvae Caspases Expression in Midgut Cells by Bacillus thuringiensis Cry1Ab Toxin

    Directory of Open Access Journals (Sweden)

    Helena Porta

    2011-01-01

    Full Text Available Bacillus thuringiensis produces crystal toxins known as Cry that are highly selective against important agricultural and human health-related insect pests. Cry proteins are pore-forming toxins that interact with specific receptors in the midgut cell membrane of susceptible larvae making pores that cause osmotic shock, leading finally to insect death. In the case of pore-forming toxins that are specific to mammalian cells, death responses at low doses may induce apoptosis or pyroptosis, depending on the cell type. The death mechanism induced by Cry toxins in insect midgut cells is poorly understood. Here, we analyze the caspases expression by RT-PCR analysis, showing that the initial response of Manduca sexta midgut cells after low dose of Cry1Ab toxin administration involves a fast and transient accumulation of caspase-1 mRNA, suggesting that pyroptosis was activated by Cry1Ab toxin as an initial response but was repressed later. In contrast, caspase-3 mRNA requires a longer period of time of toxin exposure to be activated but presents a sustained activation, suggesting that apoptosis may be a cell death mechanism induced also at low dose of toxin.

  12. Larvicidal Activities of Indigenous Bacillus thuringiensis Isolates and Nematode Symbiotic Bacterial Toxins against the Mosquito Vector, Culex pipiens (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Ashraf M Ahmed

    2017-06-01

    Full Text Available Background: The incidence of mosquito-borne diseases and the resistance of mosquitoes to conventional pesticides have recently caused a panic to the authorities in the endemic countries. This study was conducted to identify native larvicidal biopesticides against Culex pipiens for utilization in the battle against mosquito-borne diseases.Methods: Larvicidal activities of new indigenous Bacillus thuringiensis isolates and crude toxin complexes (TCs of two nematode bacterial-symbionts, Photorhabdus luminescens akhurstii (HRM1 and Ph. luminescens akhurstii (HS1 that tested against Cx. pipiens. B. thuringiensis isolates were recovered from different environmental samples in Saudi Arabia, and the entomopathogenic nematodes, Heterorhabditis indica (HRM1 and He. sp (HS1 were iso­lated from Egypt. Larvicidal activities (LC50 and LC95 of the potentially active B. thuringiensis strains or TCs were then evaluated at 24 and 48h post-treatment.Results: Three B. thuringiensis isolates were almost as active as the reference B. thuringiensis israelensis (Bti-H14, and seven isolates were 1.6–5.4 times more toxic than Bti-H14. On the other hand, the TCs of the bacterial sym­bionts, HRM1 and HS1, showed promising larvicidal activities. HS1 showed LC50 of 2.54 folds that of HRM1 at 24h post-treatment. Moreover, histopathological examinations of the HS1-treated larvae showed deformations in midgut epithelial cells at 24h post-treatment.Conclusion: Synergistic activity and molecular characterization of these potentially active biocontrol agents are currently being investigated. These results may lead to the identification of eco-friend mosquito larvicidal product(s that could contribute to the battle against mosquito-borne diseases.

  13. Proteome response of Tribolium castaneum larvae to Bacillus thuringiensis toxin producing strains.

    Directory of Open Access Journals (Sweden)

    Estefanía Contreras

    Full Text Available Susceptibility of Tribolium castaneum (Tc larvae was determined against spore-crystal mixtures of five coleopteran specific and one lepidopteran specific Bacillus thuringiensis Cry toxin producing strains and those containing the structurally unrelated Cry3Ba and Cry23Aa/Cry37Aa proteins were found toxic (LC(50 values 13.53 and 6.30 µg spore-crystal mixture/µL flour disc, respectively. Using iTRAQ combined with LC-MS/MS allowed the discovery of seven novel differentially expressed proteins in early response of Tc larvae to the two active spore-crystal mixtures. Proteins showing a statistically significant change in treated larvae compared to non-intoxicated larvae fell into two major categories; up-regulated proteins were involved in host defense (odorant binding protein C12, apolipophorin-III and chemosensory protein 18 and down-regulated proteins were linked to metabolic pathways affecting larval metabolism and development (pyruvate dehydrogenase Eα subunit, cuticular protein, ribosomal protein L13a and apolipoprotein LI-II. Among increased proteins, Odorant binding protein C12 showed the highest change, 4-fold increase in both toxin treatments. The protein displayed amino acid sequence and structural homology to Tenebrio molitor 12 kDa hemolymph protein b precursor, a non-olfactory odorant binding protein. Analysis of mRNA expression and mortality assays in Odorant binding protein C12 silenced larvae were consistent with a general immune defense function of non-olfactory odorant binding proteins. Regarding down-regulated proteins, at the transcriptional level, pyruvate dehydrogenase and cuticular genes were decreased in Tc larvae exposed to the Cry3Ba producing strain compared to the Cry23Aa/Cry37Aa producing strain, which may contribute to the developmental arrest that we observed with larvae fed the Cry3Ba producing strain. Results demonstrated a distinct host transcriptional regulation depending upon the Cry toxin treatment. Knowledge

  14. First report of detection of the putative receptor of Bacillus thuringiensis toxin Vip3Aa from black cutworm (Agrotis ipsilon

    Directory of Open Access Journals (Sweden)

    Gamal H. Osman

    2018-03-01

    Full Text Available Black cutworm (BCW Agrotis ipsilon, an economically important lepidopteran insect, has attracted a great attention. Bacillus thuringiensis (Bt is spore forming soil bacteria and is an excellent environment-friendly approach for the control of phytophagous and disease-transmitting insects. In fact, bio-pesticide formulations and insect resistant transgenic plants based on the bacterium Bt delta-endotoxin have attracted worldwide attention as a safer alternative to harmful chemical pesticides. The major objective of the current study was to understand the mechanism of interaction of Bt toxin with its receptor molecule(s. The investigation involved the isolation, identification, and characterization of a putative receptor – vip3Aa. In addition, the kinetics of vip toxin binding to its receptor molecule was also studied. The present data suggest that Vip3Aa toxin bound specifically with high affinity to a 48-kDa protein present at the brush border membrane vesicles (BBMV prepared from the midgut epithelial cells of BCW larvae. Keywords: Receptor, vip3Aa, Bacillus thuringiensis, BBMV

  15. Persistence of Bt Bacillus thuringiensis Cry1Aa toxin in various soils determined by physicochemical reactions

    Science.gov (United States)

    Helassa, N.; Noinville, S.; Déjardin, P.; Janot, J. M.; Quiquampoix, H.; Staunton, S.

    2009-04-01

    Insecticidal Cry proteins from the soil bacterium, Bacillus thuringiensis (Bt) are produced by a class of genetically modified (GM) crops, and released into soils through root exudates and upon decomposition of residues. In contrast to the protoxin produced by the Bacillus, the protein produced in GM crops does not require activation in insect midguts and thereby potentially looses some of its species specificity. Although gene transfer and resistance emergence phenomena are well documented, the fate of these toxins in soil has not yet been clearly elucidated. Cry proteins, in common with other proteins, are adsorbed on soils and soil components. Adsorption on soil, and the reversibility of this adsorption is an important aspect of the environmental behaviour of these toxins. The orientation of the molecule and conformational changes on surfaces may modify the toxicity and confer some protection against microbial degradation. Adsorption will have important consequences for both the risk of exposition of non target species and the acquisition of resistance by target species. We have adopted different approaches to investigate the fate of Cry1Aa in soils and model minerals. In each series of experiments we endeavoured to maintain the protein in a monomeric form (pH above 6.5 and a high ionic strength imposed with 150 mM NaCl). The adsorption and the desorbability of the Cry1Aa Bt insecticidal protein were measured on two different homoionic clays: montmorillonite and kaolinite. Adsorption isotherms obtained followed a low affinity interaction for both clays and could be fitted using the Langmuir equation. Binding of the toxin decreased as the pH increased from 6.5 (close to the isoelectric point) to 9. Maximum adsorption was about 40 times greater on montmorillonite (1.71 g g-1) than on kaolinite (0.04 g g-1) in line with the contrasting respective specific surface areas of the minerals. Finally, some of the adsorbed toxin was desorbed by water and more, about 36

  16. Sodium Solute Symporter and Cadherin Proteins Act as Bacillus thuringiensis Cry3Ba Toxin Functional Receptors in Tribolium castaneum*

    Science.gov (United States)

    Contreras, Estefanía; Schoppmeier, Michael; Real, M. Dolores; Rausell, Carolina

    2013-01-01

    Understanding how Bacillus thuringiensis (Bt) toxins interact with proteins in the midgut of susceptible coleopteran insects is crucial to fully explain the molecular bases of Bt specificity and insecticidal action. In this work, aminopeptidase N (TcAPN-I), E-cadherin (TcCad1), and sodium solute symporter (TcSSS) have been identified by ligand blot as putative Cry3Ba toxin-binding proteins in Tribolium castaneum (Tc) larvae. RNA interference knockdown of TcCad1 or TcSSS proteins resulted in decreased susceptibility to Cry3Ba toxin, demonstrating the Cry toxin receptor functionality for these proteins. In contrast, TcAPN-I silencing had no effect on Cry3Ba larval toxicity, suggesting that this protein is not relevant in the Cry3Ba toxin mode of action in Tc. Remarkable features of TcSSS protein were the presence of cadherin repeats in its amino acid sequence and that a TcSSS peptide fragment containing a sequence homologous to a binding epitope found in Manduca sexta and Tenebrio molitor Bt cadherin functional receptors enhanced Cry3Ba toxicity. This is the first time that the involvement of a sodium solute symporter protein as a Bt functional receptor has been demonstrated. The role of this novel receptor in Bt toxicity against coleopteran insects together with the lack of receptor functionality of aminopeptidase N proteins might account for some of the differences in toxin specificity between Lepidoptera and Coleoptera insect orders. PMID:23645668

  17. Preferential protection of domains ii and iii of bacillus thuringiensis cry1aa toxin by brush border membrane vesicles

    OpenAIRE

    Hussain, Syed-Rehan A.; Flórez, Álvaro M.; Dean, Donald H.; Alzate, Óscar

    2011-01-01

    Título español: Protección preferencial de los dominios II y III de la toxina Cry1Aa de Bacillus thuringiensis en Vesículas de Membrana de Borde de Cepillo Abstract The surface exposed Leucine 371 on loop 2 of domain II, in Cry1Aa toxin, was mutated to Lysine to generate the trypsin-sensitive mutant, L371K. Upon trypsin digestion L371K is cleaved into approximately 37 and 26 kDa fragments. These are separable on SDS-PAGE, but remain as a single molecule of 65 kDa upon purification by ...

  18. Preferential Protection of Domains II and III of Bacillus thuringiensis Cry1Aa Toxin by Brush Border Membrane Vesicles

    OpenAIRE

    Syed-Rehan A. Hussain; Álvaro M. Flórez; Donald H. Dean; Óscar Alzate

    2011-01-01

    Título español: Protección preferencial de los dominios II y III de la toxina Cry1Aa de Bacillus thuringiensis en Vesículas de Membrana de Borde de Cepillo Abstract The surface exposed Leucine 371 on loop 2 of domain II, in Cry1Aa toxin, was mutated to Lysine to generate the trypsin-sensitive mutant, L371K. Upon trypsin digestion L371K is cleaved into approximately 37 and 26 kDa fragments. These are separable on SDS-PAGE, but remain as a single molecule of 65 kDa upon purification by ...

  19. Monitoring resistance to Bacillus thuringiensis subsp. israelensis in the field by performing bioassays with each Cry toxin separately

    Directory of Open Access Journals (Sweden)

    Guillaume Tetreau

    2013-11-01

    Full Text Available Bacillus thuringiensis subsp. israelensis (Bti is increasingly used worldwide for mosquito control and is the only larvicide used in the French Rhône-Alpes region since decades. The artificial selection of mosquitoes with field-persistent Bti collected in breeding sites from this region led to a moderate level of resistance to Bti, but to relatively high levels of resistance to individual Bti Cry toxins. Based on this observation, we developed a bioassay procedure using each Bti Cry toxin separately to detect cryptic Bti-resistance evolving in field mosquito populations. Although no resistance to Bti was detected in none of the three mosquito species tested (Aedes rusticus, Aedes sticticus and Aedes vexans, an increased tolerance to Cry4Aa (3.5-fold and Cry11Aa toxins (8-fold was found in one Ae. sticticus population compared to other populations of the same species, suggesting that resistance to Bti may be arising in this population. This study confirms previous works showing a lack of Bti resistance in field mosquito populations treated for decades with this bioinsecticide. It also provides a first panorama of their susceptibility status to individual Bti Cry toxins. In combination with bioassays with Bti, bioassays with separate Cry toxins allow a more sensitive monitoring of Bti-resistance in the field.

  20. Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. kurstaki by clay minerals

    Energy Technology Data Exchange (ETDEWEB)

    Fu Qingling; Deng Yali; Li Huishu; Liu Jie [Key Laboratory of Subtropical Agricultural Resource and Environment, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 (China); Hu Hongqing, E-mail: hqhu@mail.hzau.edu.cn [Key Laboratory of Subtropical Agricultural Resource and Environment, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 (China); Chen Shouwen [Key Laboratory of Subtropical Agricultural Resource and Environment, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 (China); Sa Tongmin [Department of Agricultural Chemistry, College of Agriculture, Chungbuk National University, Cheongju, 361-763 (Korea, Republic of)

    2009-02-01

    The persistence of Bacillus thuringiensis (Bt) toxins in soil is further enhanced through association with soil particles. Such persistence may improve the effectiveness of controlling target pests, but impose a hazard to non-target organisms in soil ecosystems. In this study, the equilibrium adsorption of the Bt toxin by four clay minerals (montmorillonite, kaolinite, goethite, and silicon dioxide) was investigated, and the kinetic and thermodynamic parameters were calculated. The results showed that Bt toxin could be adsorbed easily by minerals, and the adsorption was much easier at low temperature than at high temperature at the initial concentration varying from 0 to 1000 mg L{sup -1}. The adsorption fitted well to both Langmuir and Freundlich isotherm models, but the Freundlich equation was more suitable. The pseudo-second-order (PSO) was the best application model to describe the adsorption kinetic. The adsorption process appeared to be controlled by chemical process, and the intra-particle diffusion was not the only rate-controlling step. The negative standard free energy ({Delta}{sub r}G{sub m}{sup {theta}}) values of the adsorption indicated that the adsorption of the Bt toxin by the minerals was spontaneous, and the changes of the standard enthalpy ({Delta}{sub r}H{sub m}{sup {theta}}) showed that the adsorption of the Bt toxin by montmorillonite was endothermic while the adsorption by the other three minerals was exothermic.

  1. Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. kurstaki by clay minerals

    International Nuclear Information System (INIS)

    Fu Qingling; Deng Yali; Li Huishu; Liu Jie; Hu Hongqing; Chen Shouwen; Sa Tongmin

    2009-01-01

    The persistence of Bacillus thuringiensis (Bt) toxins in soil is further enhanced through association with soil particles. Such persistence may improve the effectiveness of controlling target pests, but impose a hazard to non-target organisms in soil ecosystems. In this study, the equilibrium adsorption of the Bt toxin by four clay minerals (montmorillonite, kaolinite, goethite, and silicon dioxide) was investigated, and the kinetic and thermodynamic parameters were calculated. The results showed that Bt toxin could be adsorbed easily by minerals, and the adsorption was much easier at low temperature than at high temperature at the initial concentration varying from 0 to 1000 mg L -1 . The adsorption fitted well to both Langmuir and Freundlich isotherm models, but the Freundlich equation was more suitable. The pseudo-second-order (PSO) was the best application model to describe the adsorption kinetic. The adsorption process appeared to be controlled by chemical process, and the intra-particle diffusion was not the only rate-controlling step. The negative standard free energy (Δ r G m θ ) values of the adsorption indicated that the adsorption of the Bt toxin by the minerals was spontaneous, and the changes of the standard enthalpy (Δ r H m θ ) showed that the adsorption of the Bt toxin by montmorillonite was endothermic while the adsorption by the other three minerals was exothermic.

  2. Impacts of elevated CO2 on exogenous Bacillus thuringiensis toxins and transgene expression in transgenic rice under different levels of nitrogen

    OpenAIRE

    Jiang, Shoulin; Lu, Yongqing; Dai, Yang; Qian, Lei; Muhammad, Adnan Bodlah; Li, Teng; Wan, Guijun; Parajulee, Megha N.; Chen, Fajun

    2017-01-01

    Recent studies have highlighted great challenges of transgene silencing for transgenic plants facing climate change. In order to understand the impacts of elevated CO2 on exogenous Bacillus thuringiensis (Bt) toxins and transgene expression in transgenic rice under different levels of N-fertilizer supply, we investigated the biomass, exogenous Bt toxins, Bt-transgene expression and methylation status in Bt rice exposed to two levels of CO2 concentrations and nitrogen (N) supply (1/8, 1/4, 1/2...

  3. The persistence and ecological impacts of a cyanobacterium genetically engineered to express mosquitocidal Bacillus thuringiensis toxins.

    Science.gov (United States)

    Ketseoglou, Irene; Bouwer, Gustav

    2016-05-10

    The cyanobacterium Anabaena PCC 7120#11 has been genetically engineered to act as a delivery vehicle for Bacillus thuringiensis subspecies israelensis mosquitocidal toxins. To address ecological concerns about releasing this genetically engineered microorganism into the environment for mosquito larva control, the persistence and ecological impacts of PCC 7120#11 was evaluated using multi-species, standardized aquatic microcosms. The microcosms were set up as described in ASTM E1366-02 (Standard Practice for Standardized Aquatic Microcosms: Fresh Water), with a few modifications. The treatment group microcosms were inoculated with PCC 7120#11 and key water quality parameters and non-target effects were compared between the treatment and control groups over a period of 35 days. PCC 7120#11 decreased from a concentration of 4.50 × 10(6) cells/ml (at inoculation) to 1.32 × 10(3) cells/ml after 4 weeks and larvicidal activity against third instar larvae of Anopheles arabiensis was only evident for two weeks after treatment. Both treatment and the interaction of treatment and time had a significant effect on nitrate, phosphate and photosynthetic microorganism concentrations. Treatment with PCC 7120#11 caused a temporary spike in ammonia in the microcosms a week after treatment, but the concentrations were well below acute and chronic criteria values for ammonia in freshwater ecosystems. Cyprinotus vidua concentrations were not significantly different between PCC 7120#11 and control microcosms. In PCC 7120#11 microcosms, Daphnia pulex concentrations were significantly lower than control concentrations between days 18 and 25. By the end of the experiment, none of the measured variables were significantly different between the treatment groups. The standard aquatic microcosm experiments provided more data on the ecological impacts of PCC 7120#11 than single-organism assessments would have. On the basis of the relatively minor, short-term effects that PCC 7120

  4. Comparison and validation of methods to quantify Cry1Ab toxin from Bacillus thuringiensis for standardization of insect bioassays.

    Science.gov (United States)

    Crespo, André L B; Spencer, Terence A; Nekl, Emily; Pusztai-Carey, Marianne; Moar, William J; Siegfried, Blair D

    2008-01-01

    Standardization of toxin preparations derived from Bacillus thuringiensis (Berliner) used in laboratory bioassays is critical for accurately assessing possible changes in the susceptibility of field populations of target pests. Different methods were evaluated to quantify Cry1Ab, the toxin expressed by 80% of the commercially available transgenic maize that targets the European corn borer, Ostrinia nubilalis (Hübner). We compared three methods of quantification on three different toxin preparations from independent sources: enzyme-linked immunosorbent assay (ELISA), sodium dodecyl sulfate-polyacrylamide gel electrophoresis and densitometry (SDS-PAGE/densitometry), and the Bradford assay for total protein. The results were compared to those obtained by immunoblot analysis and with the results of toxin bioassays against susceptible laboratory colonies of O. nubilalis. The Bradford method resulted in statistically higher estimates than either ELISA or SDS-PAGE/densitometry but also provided the lowest coefficients of variation (CVs) for estimates of the Cry1Ab concentration (from 2.4 to 5.4%). The CV of estimates obtained by ELISA ranged from 12.8 to 26.5%, whereas the CV of estimates obtained by SDS-PAGE/densitometry ranged from 0.2 to 15.4%. We standardized toxin concentration by using SDS-PAGE/densitometry, which is the only method specific for the 65-kDa Cry1Ab protein and is not confounded by impurities detected by ELISA and Bradford assay for total protein. Bioassays with standardized Cry1Ab preparations based on SDS-PAGE/densitometry showed no significant differences in LC(50) values, although there were significant differences in growth inhibition for two of the three Cry1Ab preparations. However, the variation in larval weight caused by toxin source was only 4% of the total variation, and we conclude that standardization of Cry1Ab production and quantification by SDS-PAGE/densitometry may improve data consistency in monitoring efforts to identify changes in

  5. Potato expressing beetle-specific Bacillus thuringiensis Cry3Aa toxin reduces performance of a moth

    Czech Academy of Sciences Publication Activity Database

    Hussein, H. M.; Habuštová, Oxana; Turanli, Ferit; Sehnal, František

    2006-01-01

    Roč. 32, č. 1 (2006), s. 1-13 ISSN 0098-0331 R&D Projects: GA ČR(CZ) GA522/02/1507 Institutional research plan: CEZ:AV0Z50070508 Keywords : Bacillus thuringiensis * Spodoptera littoralis * Leptinotarsa decemlineata Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 1.896, year: 2006

  6. Nanobody-based electrochemical immunoassay for Bacillus thuringiensis Cry1Ab toxin by detecting the enzymatic formation of polyaniline

    International Nuclear Information System (INIS)

    Zhu, Min; Li, Guanghui; Li, Min; Zhou, Zikai; Liu, Hong; Lei, Hongtao; Shen, Yanfei; Wan, Yakun

    2015-01-01

    We describe an electrochemical immunoassay for the Cry1Ab toxin that is produced by Bacillus thuringiensis. It is making use of a nanobody (a heavy-chain only antibody) that was selected from an immune phage displayed library. A biotinylated primary nanobody and a HRP-conjugated secondary nanobody were applied in a sandwich immunoassay where horseradish peroxidase (HRP) is used to produce polyaniline (PANI) from aniline. PANI can be easily detected by differential pulse voltammetry at a working voltage as low as 40 mV (vs. Ag/AgCl) which makes the assay fairly selective. This immunoassay for Cry1Ab has an analytical range from 0.1 to 1000 ng∙mL -1 and a 0.07 ng∙mL -1 lower limit of detection. The average recoveries of the toxin from spiked samples are in the range from 102 to 114 %, with a relative standard deviation of <7.5 %. The results demonstrated that the assay represented an attractive alternative to existing immunoassays in enabling affordable, sensitive, robust and specific determination of this toxin. (author)

  7. Reduced levels of membrane-bound alkaline phosphatase are common to lepidopteran strains resistant to Cry toxins from Bacillus thuringiensis.

    Directory of Open Access Journals (Sweden)

    Juan Luis Jurat-Fuentes

    Full Text Available Development of insect resistance is one of the main concerns with the use of transgenic crops expressing Cry toxins from the bacterium Bacillus thuringiensis. Identification of biomarkers would assist in the development of sensitive DNA-based methods to monitor evolution of resistance to Bt toxins in natural populations. We report on the proteomic and genomic detection of reduced levels of midgut membrane-bound alkaline phosphatase (mALP as a common feature in strains of Cry-resistant Heliothis virescens, Helicoverpa armigera and Spodoptera frugiperda when compared to susceptible larvae. Reduced levels of H. virescens mALP protein (HvmALP were detected by two dimensional differential in-gel electrophoresis (2D-DIGE analysis in Cry-resistant compared to susceptible larvae, further supported by alkaline phosphatase activity assays and Western blotting. Through quantitative real-time polymerase chain reaction (qRT-PCR we demonstrate that the reduction in HvmALP protein levels in resistant larvae are the result of reduced transcript amounts. Similar reductions in ALP activity and mALP transcript levels were also detected for a Cry1Ac-resistant strain of H. armigera and field-derived strains of S. frugiperda resistant to Cry1Fa. Considering the unique resistance and cross-resistance phenotypes of the insect strains used in this work, our data suggest that reduced mALP expression should be targeted for development of effective biomarkers for resistance to Cry toxins in lepidopteran pests.

  8. Identification and Characterization of Hyphantria cunea Aminopeptidase N as a Binding Protein of Bacillus thuringiensis Cry1Ab35 Toxin

    Directory of Open Access Journals (Sweden)

    Yakun Zhang

    2017-11-01

    Full Text Available The fall webworm, Hyphantria cunea (Drury is a major invasive pest in China. Aminopeptidase N (APN isoforms in lepidopteran larvae midguts are known for their involvement in the mode of action of insecticidal crystal (Cry proteins from Bacillus thuringiensis. In the present work, we identified a putative Cry1Ab toxin-binding protein, an APN isoform designated HcAPN3, in the midgut of H. cunea by ligand blot and mass spectrometry. HcAPN3 was highly expressed throughout all larval developmental stages and was abundant in the midgut and hindgut tissues. HcAPN3 was down-regulated at 6 h, then was up-regulated significantly at 12 h and 24 h after Cry1Ab toxin treatment. We expressed HcAPN3 in insect cells and detected its interaction with Cry1Ab toxin by ligand blot assays. Furthermore, RNA interference (RNAi against HcAPN3 using oral delivery and injection of double-stranded RNA (dsRNA resulted in a 61–66% decrease in transcript level. Down-regulating of the expression of HcAPN3 was closely associated with reduced susceptibility of H. cunea to Cry1Ab. In addition, the HcAPN3E fragment peptide expressed in Escherichia coli enhanced Cry1Ab toxicity against H. cunea larvae. This work represents the first evidence to suggest that an APN in H. cunea is a putative binding protein involved in Cry1Ab susceptibility.

  9. Induction of rapid and selective cell necrosis in Drosophila using Bacillus thuringiensis Cry toxin and its silkworm receptor.

    Science.gov (United States)

    Obata, Fumiaki; Tanaka, Shiho; Kashio, Soshiro; Tsujimura, Hidenobu; Sato, Ryoichi; Miura, Masayuki

    2015-07-08

    Genetic ablation of target cells is a powerful tool to study the origins and functions of cells, tissue regeneration, or pathophysiology in a human disease model in vivo. Several methods for selective cell ablation by inducing apoptosis have been established, using exogenous toxins or endogenous proapoptotic genes. However, their application is limited to cells with intact apoptotic machinery. Herein, we established a method for inducing rapid and selective cell necrosis by the pore-forming bacterial toxin Cry1Aa, which is specifically active in cells expressing the Cry1Aa receptor (CryR) derived from the silkworm Bombyx mori. We demonstrated that overexpressing CryR in Drosophila melanogaster tissues induced rapid cell death of CryR-expressing cells only, in the presence of Cry1Aa toxin. Cry/CryR system was effective against both proliferating cells in imaginal discs and polyploid postmitotic cells in the fat body. Live imaging analysis of cell ablation revealed swelling and subsequent osmotic lysis of CryR-positive cells after 30 min of incubation with Cry1Aa toxin. Osmotic cell lysis was still triggered when apoptosis, JNK activation, or autophagy was inhibited, suggesting that Cry1Aa-induced necrotic cell death occurred independently of these cellular signaling pathways. Injection of Cry1Aa into the body cavity resulted in specific ablation of CryR-expressing cells, indicating the usefulness of this method for in vivo cell ablation. With Cry toxins from Bacillus thuringiensis, we developed a novel method for genetic induction of cell necrosis. Our system provides a "proteinous drill" for killing target cells through physical injury of the cell membrane, which can potentially be used to ablate any cell type in any organisms, even those that are resistant to apoptosis or JNK-dependent programmed cell death.

  10. Bombyx mori ABC transporter C2 structures responsible for the receptor function of Bacillus thuringiensis Cry1Aa toxin.

    Science.gov (United States)

    Tanaka, Shiho; Endo, Haruka; Adegawa, Satomi; Iizuka, Ami; Imamura, Kazuhiro; Kikuta, Shingo; Sato, Ryoichi

    2017-12-01

    Because Bombyx mori ABC transporter C2 (BmABCC2) has 1000-fold higher potential than B. mori cadherin-like protein as a receptor for Bacillus thuringiensis Cry1Aa toxin (Tanaka et al., 2013), the gate-opening ability of the latent pore under six extracellular loops (ECLs) of BmABCC2 was expected to be the reason for its higher potential (Heckel, 2012). In this study, cell swelling assays in Sf9 cells showed that BmABCC2 mutants lacking substrate-excreting activity retained receptor activity, indicating that the gate-opening activity of BmABCC2 is not responsible for Cry1Aa toxicity. The analysis of 29 BmABCC2 mutants demonstrated that 770 DYWL 773 of ECL 4 comprise a putative binding site to Cry1Aa. This suggests that specific toxicity of Cry1Aa toxin to a restricted range of lepidopteran insects is dependent on conservation and variation in the amino acid residues around 770 DYWL 773 of ECL 4 in the ABCC2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. In Silico Modeling and Functional Interpretations of Cry1Ab15 Toxin from Bacillus thuringiensis BtB-Hm-16

    Directory of Open Access Journals (Sweden)

    Sudhanshu Kashyap

    2013-01-01

    Full Text Available The theoretical homology based structural model of Cry1Ab15 δ-endotoxin produced by Bacillus thuringiensis BtB-Hm-16 was predicted using the Cry1Aa template (resolution 2.25 Å. The Cry1Ab15 resembles the template structure by sharing a common three-domain extending conformation structure responsible for pore-forming and specificity determination. The novel structural differences found are the presence of β0 and α3, and the absence of α7b, β1a, α10a, α10b, β12, and α11a while α9 is located spatially downstream. Validation by SUPERPOSE and with the use of PROCHECK program showed folding of 98% of modeled residues in a favourable and stable orientation with a total energy Z-score of −6.56; the constructed model has an RMSD of only 1.15 Å. These increments of 3D structure information will be helpful in the design of domain swapping experiments aimed at improving toxicity and will help in elucidating the common mechanism of toxin action.

  12. Susceptibility of The Asian Corn Borer, Ostrinia furnacalis, to Bacillus thuringiensis Toxin CRY1AC

    Directory of Open Access Journals (Sweden)

    Aye Kyawt Kyawt Ei

    2008-07-01

    Full Text Available The larval susceptibility of the Asian corn borer, Ostrinia furnacalis (Guenee (Lepidoptera: Crambidae, to a Bacillus thuringiensis protein (Cry1Ac was evaluated using insect feeding bioassays. The founding population of O. furnacalis was originally collected from the experimental station of UGM at Kalitirto and had been reared in the laboratory for three generations using an artificial diet “InsectaLf”. The tested instars were exposed on diets treated with a series of concentrations of Cry1Ac for one week. The LC50 values on the seventh day after treatment for 1st, 2nd, 3rd and 4th instars were 7.79, 21.12, 113.66, and 123.17 ppm, respectively, showing that the higher the instars the lesser the susceptibility to Cry1Ac. When the neonates were exposed to sublethal concentrations of Cry1Ac (0.0583, 0.116, and 0.5830 ppm, growth and development of the surviving larvae were inhibited. The fecundity and viability of females produced from treated larvae decreased with increasing the concentrations. These findings indicate that Cry1Ac is toxic to larva of O. furnacalis and has chronic effects to larvae surviving from Cry1Ac ingestion.   Kepekaan larva penggerek batang jagung Asia, Ostrinia furnacalis (Guenee (Lepidoptera: Crambidae, terhadap protein Bacillus thuringiensis Cry1Ac diuji dengan metode celup pakan. Larva berasal dari pertanaman jagung di KP-4, UGM di Kalitirto dan telah dikembangbiakkan di laboratorium menggunakan pakan buatan (InsectaLF selama tiga generasi sebelum digunakan untuk pengujian. Larva O. furnacalis yang diuji dipaparkan pada pakan buatan yang telah dicelupkan pada seri konsentrasi Cry1Ac. Nilai LC50 pada hari ketujuh setelah perlakukan untuk instar 1, 2, 3, dan 4 berturut-turut adalah 0,79; 21,12; 113,66; dan 123,17 ppm. Hal ini menunjukkan bahwa instar yang semakin tinggi tingkat kepekaannya terhadap Cry1Ac semakin menurun. Larva yang baru menetas dan diberi pakan yang telah dicelupkan pada konsentrasi sublethal Cry1Ac

  13. Screen of Bacillus thuringiensis toxins for transgenic rice to control Sesamia inferens and Chilo suppressalis.

    Science.gov (United States)

    Gao, Yulin; Hu, Yang; Fu, Qiang; Zhang, Jie; Oppert, Brenda; Lai, Fengxiang; Peng, Yufa; Zhang, Zhitao

    2010-09-01

    Transgenic rice to control stem borer damage is under development in China. To assess the potential of Bacillus thuringiensis (Bt) transgenes in stem borer control, the toxicity of five Bt protoxins (Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba and Cry1Ca) against two rice stem borers, Sesamia inferens (pink stem borer) and Chilo suppressalis (striped stem borer), was evaluated in the laboratory by feeding neonate larvae on artificial diets containing Bt protoxins. The results indicated that Cry1Ca exhibited the highest level of toxicity to both stem borers, with an LC(50) of 0.24 and 0.30 microg/g for C. suppressalis and S. inferens, respectively. However, S. inferens was 4-fold lower in susceptibility to Cry1Aa, and 6- and 47-fold less susceptible to Cry1Ab and Cry1Ba, respectively, compared to C. suppressalis. To evaluate interactions among Bt protoxins in stem borer larvae, toxicity assays were performed with mixtures of Cry1Aa/Cry1Ab, Cry1Aa/Cry1Ca, Cry1Ac/Cry1Ca, Cry1Ac/Cry1Ba, Cry1Ab/Cry1Ac, Cry1Ab/Cry1Ba, and Cry1Ab/Cry1Ca at 1:1 (w/w) ratios. All protoxin mixtures demonstrated significant synergistic toxicity activity against C. suppressalis, with values of 1.6- to 11-fold higher toxicity than the theoretical additive effect. Surprisingly, all but one of the Bt protoxin mixtures were antagonistic in toxicity to S. inferens. In mortality-time response experiments, S. inferens demonstrated increased tolerance to Cry1Ab and Cry1Ac compared to C. suppressalis when treated with low or high protoxin concentrations. The data indicate the utility of Cry1Ca protoxin and a Cry1Ac/Cry1Ca mixture to control both stem borer populations. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Acute, sublethal and combination effects of azadirachtin and Bacillus thuringiensis toxins on Helicoverpa armigera (Lepidoptera: Noctuidae) larvae.

    Science.gov (United States)

    Singh, G; Rup, P J; Koul, Opender

    2007-08-01

    The efficacy of neem (1500 ppm azadirachtin (AI)), Delfin WG, a biological insecticide based on selected strain of Bacillus thuringiensis Berliner (Bt) subspecies kurstaki, and Cry1Ac protein, either individually or in combination, were examined against first to fourth instar Helicoverpa armigera (Hübner) larvae. Using an oral administration method, various growth inhibitory concentrations (EC) and lethal concentrations (LC) were determined for each bioagent. Combinations of sublethal concentrations of Bt spray formulation with azadirachtin at EC50 or EC95 levels not only enhanced the toxicity, but also reduced the duration of action when used in a mixture. The LC20 and LC50 values for Cry1Ac toxin were 0.06 and 0.22 microg ml-1, respectively. Bt-azadirachtin combinations of LC50+EC20 and LC50+EC50 result in 100% mortality. The mortality also was significant in LC20+EC20 and LC20+EC50 mixtures. These studies imply that the combined action is not synergistic but complimentary, with azadirachtin particularly facilitating the action of Bt. The Bt spray-azadirachtin combination is more economical than combinations that involve isolating the toxic protein, as the Bt spray formulations can be combined in a spray mixture with neem. These combinations may be useful for controlling bollworm populations that have acquired resistance to Bt as they may not survive the effect of mixture. Azadirachtin may be useful as a means of reducing the endotoxin concentrations in a mixture, to promote increased economic savings and further reduce the probability of resistance development to either insect control agent.

  15. Identification of Bacillus thuringiensis Cry3Aa toxin domain II loop 1 as the binding site of Tenebrio molitor cadherin repeat CR12.

    Science.gov (United States)

    Zúñiga-Navarrete, Fernando; Gómez, Isabel; Peña, Guadalupe; Amaro, Itzel; Ortíz, Ernesto; Becerril, Baltazar; Ibarra, Jorge E; Bravo, Alejandra; Soberón, Mario

    2015-04-01

    Bacillus thuringiensis Cry toxins exert their toxic effect by specific recognition of larval midgut proteins leading to oligomerization of the toxin, membrane insertion and pore formation. The exposed domain II loop regions of Cry toxins have been shown to be involved in receptor binding. Insect cadherins have shown to be functionally involved in toxin binding facilitating toxin oligomerization. Here, we isolated a VHH (VHHA5) antibody by phage display that binds Cry3Aa loop 1 and competed with the binding of Cry3Aa to Tenebrio molitor brush border membranes. VHHA5 also competed with the binding of Cry3Aa to a cadherin fragment (CR12) that was previously shown to be involved in binding and toxicity of Cry3Aa, indicating that Cry3Aa binds CR12 through domain II loop 1. Moreover, we show that a loop 1 mutant, previously characterized to have increased toxicity to T. molitor, displayed a correlative enhanced binding affinity to T. molitor CR12 and to VHHA5. These results show that Cry3Aa domain II loop 1 is a binding site of CR12 T. molitor cadherin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. In vivo binding of the Cry11Bb toxin of Bacillus thuringiensis subsp. medellin to the midgut of mosquito larvae (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Ruiz Lina María

    2004-01-01

    Full Text Available Bacillus thuringiensis subsp. medellin produces numerous proteins among which 94 kDa known as Cry11Bb, has mosquitocidal activity. The mode of action of the Cry11 proteins has been described as similar to those of the Cry1 toxins, nevertheless, the mechanism of action is still not clear. In this study we investigated the in vivo binding of the Cry11Bb toxin to the midgut of the insect species Anopheles albimanus, Aedes aegypti, and Culex quinquefasciatus by immunohistochemical analysis. Spodoptera frugiperda was included as negative control. The Cry11Bb protein was detected on the apical microvilli of the midgut epithelial cells, mostly on the posterior midgut and gastric caeca of the three mosquito species. Additionally, the toxin was detected in the Malpighian tubules of An. albimanus, Ae. aegypti, Cx. quinquefasciatus, and in the basal membrane of the epithelial cells of Ae. aegypti midgut. No toxin accumulation was observed in the peritrophic membrane of any of the mosquito species studied. These results confirm that the primary site of action of the Cry11 toxins is the apical membrane of the midgut epithelial cells of mosquito larvae.

  17. Microimaging of Bacillus thuringiensis Toxin-binding proteins in gypsy moth larval gut using confocal fluorescence microscopy

    Science.gov (United States)

    Daniel J. Krofcheck; Algimantas P. Valaitis

    2010-01-01

    After ingestion by susceptible insect larvae, Bacillus thuringiensis (Bt) insecticidal proteins bind to the brush border membranes of gut epithelial cells and disrupt the integrity of the plasma membrane by forming...

  18. Impacts of elevated CO2 on exogenous Bacillus thuringiensis toxins and transgene expression in transgenic rice under different levels of nitrogen.

    Science.gov (United States)

    Jiang, Shoulin; Lu, Yongqing; Dai, Yang; Qian, Lei; Muhammad, Adnan Bodlah; Li, Teng; Wan, Guijun; Parajulee, Megha N; Chen, Fajun

    2017-11-07

    Recent studies have highlighted great challenges of transgene silencing for transgenic plants facing climate change. In order to understand the impacts of elevated CO 2 on exogenous Bacillus thuringiensis (Bt) toxins and transgene expression in transgenic rice under different levels of N-fertilizer supply, we investigated the biomass, exogenous Bt toxins, Bt-transgene expression and methylation status in Bt rice exposed to two levels of CO 2 concentrations and nitrogen (N) supply (1/8, 1/4, 1/2, 1 and 2 N). It is elucidated that the increased levels of global atmospheric CO 2 concentration will trigger up-regulation of Bt toxin expression in transgenic rice, especially with appropriate increase of N fertilizer supply, while, to some extent, the exogenous Bt-transgene expression is reduced at sub-N levels (1/4 and 1/2N), even though the total protein of plant tissues is reduced and the plant growth is restricted. The unpredictable and stochastic occurrence of transgene silencing and epigenetic alternations remains unresolved for most transgenic plants. It is expected that N fertilization supply may promote the expression of transgenic Bt toxin in transgenic Bt rice, particularly under elevated CO 2 .

  19. The midgut cadherin-like gene is not associated with resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella (L.).

    Science.gov (United States)

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-03-01

    The Gram-positive bacterium Bacillus thuringiensis (Bt) produces Cry toxins that have been used to control important agricultural pests. Evolution of resistance in target pests threatens the effectiveness of these toxins when used either in sprayed biopesticides or in Bt transgenic crops. Although alterations of the midgut cadherin-like receptor can lead to Bt Cry toxin resistance in many insects, whether the cadherin gene is involved in Cry1Ac resistance of Plutella xylostella (L.) remains unclear. Here, we present experimental evidence that resistance to Cry1Ac or Bt var. kurstaki (Btk) in P. xylostella is not due to alterations of the cadherin gene. The bona fide P. xylostella cadherin cDNA sequence was cloned and analyzed, and comparisons of the cadherin cDNA sequence among susceptible and resistant P. xylostella strains confirmed that Cry1Ac resistance was independent of mutations in this gene. In addition, real-time quantitative PCR (qPCR) indicated that cadherin transcript levels did not significantly differ among susceptible and resistant P. xylostella strains. RNA interference (RNAi)-mediated suppression of cadherin gene expression did not affect larval susceptibility to Cry1Ac toxin. Furthermore, genetic linkage assays using four cadherin gDNA allelic biomarkers confirmed that the cadherin gene is not linked to resistance against Cry1Ac in P. xylostella. Taken together, our findings demonstrate that Cry1Ac resistance of P. xylostella is independent of the cadherin gene. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Isolation and characterization of Bacillus thuringiensis from soils in ...

    African Journals Online (AJOL)

    Bioassays were used to test the insecticidal activity of B. thuringiensis strains ... of crystal protein genes, 7 tested positive for cry 4, cry 11, and cyt toxin genes. ... mosquitocidal cry and cyt genes in Bacillus thuringiensis subsp. israelensis.

  1. LC and LD50 values of Bacillus thuringiensis Serovar japonensis strain buibui toxin to Oriental beetle and northern masked chafer larvae (Coleoptera: Scarabaeidae).

    Science.gov (United States)

    Mashtoly, Tamer A; El-Zemaity, Mohamed El-Said; Hussien, Mohamed I; Alm, Steven R

    2009-10-01

    Bacillus thuringiensis serovar japonensis strain Buibui has the potential to be an important control agent for pest scarabs. Bioassays were designed to test B. t. japonensis against two of the major turf and ornamental scarab pests infesting turfgrasses and ornamentals and to serve as a basis for further tests against other scarab pests. LC and LD50 values of B. t. serovarjaponensis strain Buibui toxin and spores were determined by four different bioassays for the oriental beetle, Anomala orientalis (Waterhouse), and northern masked chafer, Cyclocephala borealis Arrow. Oriental beetle larvae were bioassayed in autoclaved and nonautoclaved soil from where they were collected (Kingston, RI [native]), in nonautoclaved soil from where the northern masked chafer larvae were collected (Groton, CT [foreign]), and per os. Northern masked chafer larvae were bioassayed in autoclaved and nonautoclaved soil from where they were collected (Groton, CT [native]), in nonautoclaved soil from where the oriental beetle larvae were collected (Kingston, RI [foreign]) and per os. LC50 values of 3.93 microg toxin/g autoclaved native soil, 1.80 microg toxin/g nonautoclaved native soil, and 0.42 microg toxin/g nonautoclaved foreign soil and an LD50 value of 0.41 microg per os were determined at 14 d forA. orientalis. LC50 values of 588.28 microg toxin/g autoclaved native soil, 155.10 microg toxin/g nonautoclaved native soil, 265.32 microg toxin/g nonautoclaved foreign soil, and LD50 of 5.21 microg per os were determined at 14 d (soils) and 10 d (per os) for C. borealis. There were significant differences in LC50 values for oriental beetles in autoclaved, nonautoclaved native soil and nonautoclaved foreign soil. There were significant differences in LCo values for northern masked chafers in autoclaved and nonautoclaved native soil. B. t. japonensis can be applied now for control of oriental beetles at rates that are economically competitive with synthetic chemicals. If we can determine the

  2. Beetle-specific Bacillus thuringiensis Cry3Aa toxin reduces larval growth and curbs reproduction in Spodoptera littoralis (Boisd.)

    Czech Academy of Sciences Publication Activity Database

    Hussein, Hany; Habuštová, Oxana; Sehnal, František

    2005-01-01

    Roč. 61, - (2005), s. 1186-1192 ISSN 1526-498X R&D Projects: GA ČR(CZ) GA522/02/1507 Institutional research plan: CEZ:AV0Z50070508 Keywords : Bacillus thuringiensis * Spodoptera littoralis * Bt applications Subject RIV: ED - Physiology Impact factor: 1.175, year: 2005

  3. Susceptibility of Anthonomus grandis (cotton boll weevil) and Spodoptera frugiperda (fall armyworm) to a cry1ia-type toxin from a Brazilian Bacillus thuringiensis strain.

    Science.gov (United States)

    Grossi-de-Sa, Maria Fatima; Quezado de Magalhaes, Mariana; Silva, Marilia Santos; Silva, Shirley Margareth Buffon; Dias, Simoni Campos; Nakasu, Erich Yukio Tempel; Brunetta, Patricia Sanglard Felipe; Oliveira, Gustavo Ramos; Neto, Osmundo Brilhante de Oliveira; Sampaio de Oliveira, Raquel; Soares, Luis Henrique Barros; Ayub, Marco Antonio Zachia; Siqueira, Herbert Alvaro Abreu; Figueira, Edson L Z

    2007-09-30

    Different isolates of the soil bacterium Bacillus thuringiensis produce multiple crystal (Cry) proteins toxic to a variety of insects, nematodes and protozoans. These insecticidal Cry toxins are known to be active against specific insect orders, being harmless to mammals, birds, amphibians, and reptiles. Due to these characteristics, genes encoding several Cry toxins have been engineered in order to be expressed by a variety of crop plants to control insectpests. The cotton boll weevil, Anthonomus grandis, and the fall armyworm, Spodoptera frugiperda, are the major economically devastating pests of cotton crop in Brazil, causing severe losses, mainly due to their endophytic habit, which results in damages to the cotton boll and floral bud structures. A cry1Ia-type gene, designated cry1Ia12, was isolated and cloned from the Bt S811 strain. Nucleotide sequencing of the cry1Ia12 gene revealed an open reading frame of 2160 bp, encoding a protein of 719 amino acid residues in length, with a predicted molecular mass of 81 kDa. The amino acid sequence of Cry1Ia12 is 99% identical to the known Cry1Ia proteins and differs from them only in one or two amino acid residues positioned along the three domains involved in the insecticidal activity of the toxin. The recombinant Cry1Ia12 protein, corresponding to the cry1Ia12 gene expressed in Escherichia coli cells, showed moderate toxicity towards first instar larvae of both cotton boll weevil and fall armyworm. The highest concentration of the recombinant Cry1Ia12 tested to achieve the maximum toxicities against cotton boll weevil larvae and fall armyworm larvae were 230 microg/mL and 5 microg/mL, respectively. The herein demonstrated insecticidal activity of the recombinant Cry1Ia12 toxin against cotton boll weevil and fall armyworm larvae opens promising perspectives for the genetic engineering of cotton crop resistant to both these devastating pests in Brazil.

  4. MAPK Signaling Pathway Alters Expression of Midgut ALP and ABCC Genes and Causes Resistance to Bacillus thuringiensis Cry1Ac Toxin in Diamondback Moth

    Science.gov (United States)

    Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhu, Xun; Baxter, Simon W.; Zhou, Xuguo; Jurat-Fuentes, Juan Luis; Zhang, Youjun

    2015-01-01

    Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt) are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.), was previously mapped to a multigenic resistance locus (BtR-1). Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP) outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC) genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK) signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella. PMID:25875245

  5. MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth.

    Directory of Open Access Journals (Sweden)

    Zhaojiang Guo

    2015-04-01

    Full Text Available Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L., was previously mapped to a multigenic resistance locus (BtR-1. Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella.

  6. Study of the allergenic potential of Bacillus thuringiensis Cry1Ac toxin following intra-gastric administration in a murine model of food-allergy.

    Science.gov (United States)

    Santos-Vigil, Karla I; Ilhuicatzi-Alvarado, Damaris; García-Hernández, Ana L; Herrera-García, Juan S; Moreno-Fierros, Leticia

    2018-06-07

    Cry1Ac toxin, from Bacillus thuringiensis, is widely used as a biopesticide and expressed in genetically modified (GM) plants used for human and animal consumption. Since Cry1Ac is also immunogenic and able to activate macrophages, it is crucial to thoroughly evaluate the immunological effects elicited after intra-gastric administration. The allergenic potential of purified Cry1Ac was assessed and compared with that induced in a murine model of food-allergy to ovalbumin (OVA), in which animals are sensitized with the adjuvant Cholera toxin (CT). Mice were weekly intragastrically administered with: i) vehicle phosphate-buffered saline (PBS), ii) OVA, iii) OVA plus CT iv) Cry1Ac or v) OVA plus Cry1Ac. Seven weeks after, mice were intragastrically challenged and allergic reactions along with diverse allergy related immunological parameters were evaluated at systemic and intestinal level. The groups immunized with, Cry1Ac, OVA/Cry1Ac or OVA/CT developed moderate allergic reactions, induced significant IgE response and increased frequencies of intestinal granulocytes, IgE+ eosinophils and IgE+ lymphocytes. These same groups also showed colonic lymphoid hyperplasia, notably in humans, this has been associated with food allergy and intestinal inflammation. Although the adjuvant and allergenic potential of CT were higher than the effects of Cry1Ac, the results show that applied intra-gastrically at 50 μg doses, Cry1Ac is immunogenic, moderately allergenic and able to provoke intestinal lymphoid hyperplasia. Moreover, Cry1Ac is also able to induce anaphylaxis, since when mice were intragastrically sensitized with increasing doses of Cry1Ac, with every dose tested, a significant drop in rectal temperature was recorded after intravenous challenge. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Cry1A(b)16 toxin from Bacillus thuringiensis: Theoretical refinement of three-dimensional structure and prediction of peptides as molecular markers for detection of genetically modified organisms.

    Science.gov (United States)

    Plácido, Alexandra; Coelho, Andreia; Abreu Nascimento, Lucas; Gomes Vasconcelos, Andreanne; Fátima Barroso, Maria; Ramos-Jesus, Joilson; Costa, Vladimir; das Chagas Alves Lima, Francisco; Delerue-Matos, Cristina; Martins Ramos, Ricardo; Marani, Mariela M; Roberto de Souza de Almeida Leite, José

    2017-07-01

    Transgenic maize produced by the insertion of the Cry transgene into its genome became the second most cultivated crop worldwide. Cry gene from Bacillus thuringiensis kurstaki expresses protein derivatives of crystalline endotoxins which confer insect resistance onto the maize crop. Mandatory labeling of processed food containing or made by genetically modified organisms is in force in many countries, so, it is very urgent to develop fast and practical methods for GMO identification, for example, biosensors. In the absence of an available empirical structure of Cry1A(b)16 protein, a theoretical model was effectively generated, in this work, by homology modeling and molecular dynamics simulations based on two available homologous protein structures. Molecular dynamics simulations were carried out to refine the selected model, and an analysis of its global structure was performed. The refined models of Cry1A(b)16 showed a standard fold and structural characteristics similar to those seen in Bacillus thuringiensis Cry1A(a) insecticidal toxin and Bacillus thuringiensis serovar kurstaki Cry1A(c) toxin. After in silico analysis of Cry1A(b)16, two immunoreactive candidate peptides were selected and specific polyclonal antibodies were produced resulting in antibody-peptide interaction. Biosensing devices are expected to be developed for detection of the Cry1A(b) protein as a marker of transgenic maize in food. Proteins 2017; 85:1248-1257. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Uniform Orientation of Biotinylated Nanobody as an Affinity Binder for Detection of Bacillus thuringiensis (Bt) Cry1Ac Toxin

    Science.gov (United States)

    Li, Min; Zhu, Min; Zhang, Cunzheng; Liu, Xianjin; Wan, Yakun

    2014-01-01

    Nanobodies are the smallest natural fragments with useful properties such as high affinity, distinct paratope and high stability, which make them an ideal tool for detecting target antigens. In this study, we generated and characterized nanobodies against the Cry1Ac toxin and applied them in a biotin-streptavidin based double antibodies (nanobodies) sandwich-ELISA (DAS-ELISA) assay. After immunizing a camel with soluble Cry1Ac toxin, a phage displayed library was constructed to generate Nbs against the Cry1Ac toxin. Through successive rounds of affinity bio-panning, four nanobodies with greatest diversity in CDR3 sequences were obtained. After affinity determination and conjugating to HRP, two nanobodies with high affinity which can recognize different epitopes of the same antigen (Cry1Ac) were selected as capture antibody (Nb61) and detection antibody (Nb44). The capture antibody (Nb61) was biotinylated in vivo for directional immobilization on wells coated with streptavidin matrix. Both results of specificity analysis and thermal stability determination add support for reliability of the following DAS-ELISA with a minimum detection limit of 0.005 μg·mL−1 and a working range 0.010–1.0 μg·mL−1. The linear curve displayed an acceptable correlation coefficient of 0.9976. These results indicated promising applications of nanobodies for detection of Cry1Ac toxin with biotin-streptavidin based DAS-ELISA system. PMID:25474492

  9. Uniform Orientation of Biotinylated Nanobody as an Affinity Binder for Detection of Bacillus thuringiensis (Bt Cry1Ac Toxin

    Directory of Open Access Journals (Sweden)

    Min Li

    2014-12-01

    Full Text Available Nanobodies are the smallest natural fragments with useful properties such as high affinity, distinct paratope and high stability, which make them an ideal tool for detecting target antigens. In this study, we generated and characterized nanobodies against the Cry1Ac toxin and applied them in a biotin-streptavidin based double antibodies (nanobodies sandwich-ELISA (DAS-ELISA assay. After immunizing a camel with soluble Cry1Ac toxin, a phage displayed library was constructed to generate Nbs against the Cry1Ac toxin. Through successive rounds of affinity bio-panning, four nanobodies with greatest diversity in CDR3 sequences were obtained. After affinity determination and conjugating to HRP, two nanobodies with high affinity which can recognize different epitopes of the same antigen (Cry1Ac were selected as capture antibody (Nb61 and detection antibody (Nb44. The capture antibody (Nb61 was biotinylated in vivo for directional immobilization on wells coated with streptavidin matrix. Both results of specificity analysis and thermal stability determination add support for reliability of the following DAS-ELISA with a minimum detection limit of 0.005 μg·mL−1 and a working range 0.010–1.0 μg·mL−1. The linear curve displayed an acceptable correlation coefficient of 0.9976. These results indicated promising applications of nanobodies for detection of Cry1Ac toxin with biotin-streptavidin based DAS-ELISA system.

  10. Genetic Basis of Cry1F-Resistance in a Laboratory Selected Asian Corn Borer Strain and Its Cross-Resistance to Other Bacillus thuringiensis Toxins.

    Directory of Open Access Journals (Sweden)

    Yueqin Wang

    Full Text Available The Asian corn borer (ACB, Ostrinia furnacalis (Guenée (Lepidoptera: Crambidae, is the most destructive insect pest of corn in China. Susceptibility to the Cry1F toxin derived from Bacillus thuringiensis has been demonstrated for ACB, suggesting the potential for Cry1F inclusion as part of an insect pest management program. Insects can develop resistance to Cry toxins, which threatens the development and use of Bt formulations and Bt crops in the field. To determine possible resistance mechanisms to Cry1F, a Cry1F-resistant colony of ACB (ACB-FR that exhibited more than 1700-fold resistance was established through selection experiments after 49 generations of selection under laboratory conditions. The ACB-FR strain showed moderate cross-resistance to Cry1Ab and Cry1Ac of 22.8- and 26.9-fold, respectively, marginally cross-resistance to Cry1Ah (3.7-fold, and no cross-resistance to Cry1Ie (0.6-fold. The bioassay responses of progeny from reciprocal F1 crosses to different Cry1 toxin concentrations indicated that the resistance trait to Cry1Ab, Cry1Ac and Cry1F has autosomal inheritance with no maternal effect or sex linked. The effective dominance (h of F1 offspring was calculated at different concentrations of Cry1F, showing that h decreased as concentration of Cry1F increased. Finally, the analysis of actual and expected mortality of the progeny from a backcross (F1 × resistant strain indicated that the inheritance of the resistance to Cry1F in ACB-FR was due to more than one locus. The present study provides an understanding of the genetic basis of Cry1F resistance in ACB-FR and also shows that pyramiding Cry1F with Cry1Ah or Cry1Ie could be used as a strategy to delay the development of ACB resistance to Bt proteins.

  11. Layer-by-layer films containing peptides of the Cry1Ab16 toxin from Bacillus thuringiensis for potential biotechnological applications

    Energy Technology Data Exchange (ETDEWEB)

    Plácido, Alexandra [REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto (Portugal); Oliveira Farias, Emanuel Airton de [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, CMRV, Universidade Federal do Piauí, UFPI, 64202020 Parnaíba, Piaui (Brazil); Marani, Mariela M. [IPEEC-CENPAT-CONICET, Centro Nacional Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas, 9120 Puerto Madryn, Chubut (Argentina); Vasconcelos, Andreanne G. [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, CMRV, Universidade Federal do Piauí, UFPI, 64202020 Parnaíba, Piaui (Brazil); Mafud, Ana C.; Mascarenhas, Yvonne P. [Instituto de Física de São Carlos, Universidade de São Paulo, USP, 13566-590 São Carlos, SP (Brazil); Eiras, Carla [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, CMRV, Universidade Federal do Piauí, UFPI, 64202020 Parnaíba, Piaui (Brazil); Laboratório de Materiais Avançados, LIMAV, Engenharia de Materiais, Centro de Tecnologia, CT, Universidade Federal do Piauí, UFPI, 64049550 Teresina, Piaui (Brazil); and others

    2016-04-01

    Cry1Ab16 is a toxin of crystalline insecticidal proteins that has been widely used in genetically modified organisms (GMOs) to gain resistance to pests. For the first time, in this study, peptides derived from the immunogenic Cry1Ab16 toxin (from Bacillus thuringiensis) were immobilized as layer-by-layer (LbL) films. Given the concern about food and environmental safety, a peptide with immunogenic potential, PcL342–354C, was selected for characterization of the electrochemical, optical, and morphological properties. The results obtained by cyclic voltammetry (CV) showed that the peptide have an irreversible oxidation process in electrolyte of 0.1 mol·L{sup −1} potassium phosphate buffer (PBS) at pH 7.2. It was also observed that the electrochemical response of the peptide is governed mainly by charge transfer. In an attempt to maximize the electrochemical signal of peptide, it was intercalated with natural (agar, alginate and chitosan) or synthetic polymers (polyethylenimine (PEI) and poly(sodium 4-styrenesulfonate (PSS)). The presence of synthetic polymers on the film increased the electrochemical signal of PcL342–354C up to 100 times. Images by Atomic Force Microscopy (AFM) showed that the immobilized PcL342–354C formed self-assembled nanofibers with diameters ranging from 100 to 200 nm on the polymeric film. By UV–Visible spectroscopy (UV–Vis) it was observed that the ITO/PEI/PSS/PcL342–354C film grows linearly up to the fifth layer, thereafter tending to saturation. X-ray diffraction confirmed the presence on the films of crystalline ITO and amorphous polypeptide phases. In general, the ITO/PEI/PSS/PcL342–354C film characterization proved that this system is an excellent candidate for applications in electrochemical sensors and other biotechnological applications for GMOs and environmental indicators. - Highlights: • Peptides of the Cry1Ab16 toxin for potential biotechnological applications • Optimized LbL film deposition for synergic

  12. Layer-by-layer films containing peptides of the Cry1Ab16 toxin from Bacillus thuringiensis for potential biotechnological applications

    International Nuclear Information System (INIS)

    Plácido, Alexandra; Oliveira Farias, Emanuel Airton de; Marani, Mariela M.; Vasconcelos, Andreanne G.; Mafud, Ana C.; Mascarenhas, Yvonne P.; Eiras, Carla

    2016-01-01

    Cry1Ab16 is a toxin of crystalline insecticidal proteins that has been widely used in genetically modified organisms (GMOs) to gain resistance to pests. For the first time, in this study, peptides derived from the immunogenic Cry1Ab16 toxin (from Bacillus thuringiensis) were immobilized as layer-by-layer (LbL) films. Given the concern about food and environmental safety, a peptide with immunogenic potential, PcL342–354C, was selected for characterization of the electrochemical, optical, and morphological properties. The results obtained by cyclic voltammetry (CV) showed that the peptide have an irreversible oxidation process in electrolyte of 0.1 mol·L"−"1 potassium phosphate buffer (PBS) at pH 7.2. It was also observed that the electrochemical response of the peptide is governed mainly by charge transfer. In an attempt to maximize the electrochemical signal of peptide, it was intercalated with natural (agar, alginate and chitosan) or synthetic polymers (polyethylenimine (PEI) and poly(sodium 4-styrenesulfonate (PSS)). The presence of synthetic polymers on the film increased the electrochemical signal of PcL342–354C up to 100 times. Images by Atomic Force Microscopy (AFM) showed that the immobilized PcL342–354C formed self-assembled nanofibers with diameters ranging from 100 to 200 nm on the polymeric film. By UV–Visible spectroscopy (UV–Vis) it was observed that the ITO/PEI/PSS/PcL342–354C film grows linearly up to the fifth layer, thereafter tending to saturation. X-ray diffraction confirmed the presence on the films of crystalline ITO and amorphous polypeptide phases. In general, the ITO/PEI/PSS/PcL342–354C film characterization proved that this system is an excellent candidate for applications in electrochemical sensors and other biotechnological applications for GMOs and environmental indicators. - Highlights: • Peptides of the Cry1Ab16 toxin for potential biotechnological applications • Optimized LbL film deposition for synergic

  13. Expresión de la toxina Cry11Aa de Bacillus thuringiensis serovar. israelensis en Asticcacaulis excentricus, para el control de larvas acuáticas de dípteros de la familia Culicidae, vectores de enfermedades Expression of Bacillus thuringiensis serovar. israelensis toxins in Asticcacaulis excentricus to control dipteran larvae of vectors of diseases

    Directory of Open Access Journals (Sweden)

    Orduz Sergio

    2004-07-01

    insecticides based on mosquito larvicidal B. thuringiensis strains can be enhanced by using aquatic prosthecated bacteria as alternative hosts, since they do not sink, cytoplasmic located toxins are protected f rom UV radiation and, most importantly, mosquito larvae feed on them. An Asticcacaulis excentricus reference strain was transformed with the cry1 1Aa gene from Bacillus thuringiensis serovar. israelensis. Western blot and electrophoresis were used to test recombinant protein expression; Western blot revealed a 72 kDa protein corresponding to B. thuringiensis serovar. israelensis Cry1 1 Aa. These aquatic bacte­rias toxicity achieved 50% mortality at 23 ng/mL concentration in f irst instar Culex quinquefasciatus larvae. Other bioassays indicated that recombinant A. excentricus is toxic against Aedes aegyptiand Anopheles albimanus first instar larvae. Buoyancy tests demonstrated the advantage of A. excentricus over B. thuringiensis. Key words: Asticcacaulis excentricus, Bacillus thuringiensis, prosthecated bacteria, dengue, malaria.

  14. Induction of rapid and selective cell necrosis in Drosophila using Bacillus thuringiensis Cry toxin and its silkworm receptor

    OpenAIRE

    Obata, Fumiaki; Tanaka, Shiho; Kashio, Soshiro; Tsujimura, Hidenobu; Sato, Ryoichi; Miura, Masayuki

    2015-01-01

    Background Genetic ablation of target cells is a powerful tool to study the origins and functions of cells, tissue regeneration, or pathophysiology in a human disease model in vivo. Several methods for selective cell ablation by inducing apoptosis have been established, using exogenous toxins or endogenous proapoptotic genes. However, their application is limited to cells with intact apoptotic machinery. Results Herein, we established a method for inducing rapid and selective cell necrosis by...

  15. Insect Resistance to Bacillus thuringiensis Toxin Cry2Ab Is Conferred by Mutations in an ABC Transporter Subfamily A Protein.

    Directory of Open Access Journals (Sweden)

    Wee Tek Tay

    2015-11-01

    Full Text Available The use of conventional chemical insecticides and bacterial toxins to control lepidopteran pests of global agriculture has imposed significant selection pressure leading to the rapid evolution of insecticide resistance. Transgenic crops (e.g., cotton expressing the Bt Cry toxins are now used world wide to control these pests, including the highly polyphagous and invasive cotton bollworm Helicoverpa armigera. Since 2004, the Cry2Ab toxin has become widely used for controlling H. armigera, often used in combination with Cry1Ac to delay resistance evolution. Isolation of H. armigera and H. punctigera individuals heterozygous for Cry2Ab resistance in 2002 and 2004, respectively, allowed aspects of Cry2Ab resistance (level, fitness costs, genetic dominance, complementation tests to be characterised in both species. However, the gene identity and genetic changes conferring this resistance were unknown, as was the detailed Cry2Ab mode of action. No cross-resistance to Cry1Ac was observed in mutant lines. Biphasic linkage analysis of a Cry2Ab-resistant H. armigera family followed by exon-primed intron-crossing (EPIC marker mapping and candidate gene sequencing identified three independent resistance-associated INDEL mutations in an ATP-Binding Cassette (ABC transporter gene we named HaABCA2. A deletion mutation was also identified in the H. punctigera homolog from the resistant line. All mutations truncate the ABCA2 protein. Isolation of further Cry2Ab resistance alleles in the same gene from field H. armigera populations indicates unequal resistance allele frequencies and the potential for Bt resistance evolution. Identification of the gene involved in resistance as an ABC transporter of the A subfamily adds to the body of evidence on the crucial role this gene family plays in the mode of action of the Bt Cry toxins. The structural differences between the ABCA2, and that of the C subfamily required for Cry1Ac toxicity, indicate differences in the

  16. Different Effects of Bacillus thuringiensis Toxin Cry1Ab on Midgut Cell Transmembrane Potential of Mythimna separata and Agrotis ipsilon Larvae

    Directory of Open Access Journals (Sweden)

    Yingying Wang

    2015-12-01

    Full Text Available Bacillus thuringiensis (Bt Cry toxins from the Cry1A family demonstrate significantly different toxicities against members of the family Noctuidae for unknown reasons. In this study, membrane potential was measured and analyzed in freshly isolated midgut samples from Mythimna separata and Agrotis ipsilon larvae under oral administration and in vitro incubation with Bt toxin Cry1Ab to elucidate the mechanism of action for further control of these pests. Bioassay results showed that the larvae of M. separata achieved a LD50 of 258.84 ng/larva at 24 h after ingestion; M. separata larvae were at least eightfold more sensitive than A. ipsilon larvae to Cry1Ab. Force-feeding showed that the observed midgut apical-membrane potential (Vam of M. separata larvae was significantly depolarized from −82.9 ± 6.6 mV to −19.9 ± 7.2 mV at 8 h after ingestion of 1 μg activated Cry1Ab, whereas no obvious changes were detected in A. ipsilon larvae with dosage of 5 μg Cry1Ab. The activated Cry1Ab caused a distinct concentration-dependent depolarization of the apical membrane; Vam was reduced by 50% after 14.7 ± 0.2, 9.8 ± 0.4, and 7.6 ± 0.6 min of treatment with 1, 5, and 10 μg/mL Cry1Ab, respectively. Cry1Ab showed a minimal effect on A. ipsilon larvae even at 20 μg/mL, and Vam decreased by 26.3% ± 2.3% after 15 min. The concentrations of Cry1Ab displayed no significant effect on the basolateral side of the epithelium. The Vam of A. ipsilon (−33.19 ± 6.29 mV, n = 51 was only half that of M. separata (−80.94 ± 6.95 mV, n = 75. The different degrees of sensitivity to Cry1Ab were speculatively associated with various habits, as well as the diverse physiological or biochemical characteristics of the midgut cell membranes.

  17. Detection of the mosquitocidal toxin genes encoding Cry11 proteins from Bacillus thuringiensis using a novel PCR-RFLP method Detección de genes que codifican proteínas mosquitocidas Cry11 de Bacillus thuringiensis mediante un método de PCR-RFLP novedoso

    Directory of Open Access Journals (Sweden)

    D. H. Sauka

    2010-02-01

    Full Text Available A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP method for detection of cry11 genes from Bacillus thuringiensis was established. Based on the analysis of conserved regions of the cry11 genes, 2 oligonucleotide primers were designed to amplify a 1459-bp fragment of the cry11Aa gene, and a 1471-bp of the cry11Ba and cry11Bb genes. The amplification products were digested with restriction endonuclease HinfI. Exotic B. thuringiensis strains and native isolates collected from soils, leaves and stored product dust of Argentina were analyzed to study the distribution of cry11 genes. The PCR-RFLP patterns revealed the detection of cry11 genes in 3 of 64 exotic strains and in 10 of 107 native B. thuringiensis isolates tested. Just the cry11Aa gene subclass was detected among these bacteria. Since the methodology was also developed to detect cry11Ba and cry11Bb genes, an experimental future confirmation will be required. Based on the results obtained, the PCR-RFLP method presented may be a valuable tool for specific detection of the mosquitocidal toxin genes encoding Cry11 proteins from B. thuringiensis.En el presente estudio se estableció una estrategia basada en la amplificación génica (PCR y el posterior análisis de restricción (RFLP para detectar todos los genes cry11 de Bacillus thuringiensis informados hasta ahora. De acuerdo con el análisis de las regiones conservadas en los genes cry11, se diseñaron dos cebadores para amplificar un fragmento de 1459 pb de los genes cry11Aa y un fragmento de 1471 pb de los genes cry11Ba y cry11Bb. Los productos de la amplificación fueron digeridos con la enzima de restricción HinfI. Se analizaron cepas exóticas de B. thuringiensis y aislamientos nativos de Argentina obtenidos a partir de muestras de suelos, hojas y polvillo de silos, para estudiar la distribución de los genes cry11. Los patrones de PCR-RFLP revelaron la presencia de genes cry11 en 3 de las 64 cepas ex

  18. A Comparison of Soil microbial community structure, protozoa and nematodes in field plots of conventional and genetically modified maize expressing the Bacillus thuringiensis Cry1Ab toxin

    DEFF Research Database (Denmark)

    Griffiths, B. S.; Caul, S.; Thompson, J.

    2005-01-01

    Field trials were established at three European sites (Denmark, Eastern France, South-West France) of genetically modified maize (Zea mays L.) expressing the CryIAb Bacillus thuringiensis toxin (Bt), the near-isogenic non-Bt cultivar, another conventional maize cultivar and grass. Soil from Denmark......) and phospholipid fatty acid analysis (PLFA), and protozoa and nematodes in all samples. Individual differences within a site resulted from: greater nematode numbers under grass than maize on three occasions; different nematode populations under the conventional maize cultivars once; and two occasions when...... there was a reduced protozoan population under Bt maize compared to non-Bt maize. Microbial community structure within the sites only varied with grass compared to maize, with one occurrence of CLPP varying between maize cultivars (Bt versus a conventional cultivar). An overall comparison of Bt versus non-Bt maize...

  19. Mobility of adsorbed Cry1Aa insecticidal toxin from Bacillus thuringiensis (Bt) on montmorillonite measured by fluorescence recovery after photobleaching (FRAP)

    Science.gov (United States)

    Helassa, Nordine; Daudin, Gabrielle; Noinville, Sylvie; Janot, Jean-Marc; Déjardin, Philippe; Staunton, Siobhán; Quiquampoix, Hervé

    2010-06-01

    The insecticidal toxins produced by genetically modified Bt crops are introduced into soil through root exudates and tissue decomposition and adsorb readily on soil components, especially on clays. This immobilisation and the consequent concentration of the toxins in "hot spots" could increase the exposure of soil organisms. Whereas the effects on non-target organisms are well documented, few studies consider the migration of the toxin in soil. In this study, the residual mobility of Bt Cry1Aa insecticidal toxin adsorbed on montmorillonite was assessed using fluorescence recovery after photobleaching (FRAP). This technique, which is usually used to study dynamics of cytoplasmic and membrane molecules in live cells, was applied for the first time to a protein adsorbed on a finely divided swelling clay mineral, montmorillonite. No mobility of adsorbed toxin was observed at any pH and at different degrees of surface saturation.

  20. Establishment of a sensitive time-resolved fluoroimmunoassay for detection of Bacillus thuringiensis Cry1Ie toxin based nanobody from a phage display library.

    Science.gov (United States)

    Xu, Chongxin; Liu, Xiaoqin; Zhang, Cunzheng; Zhang, Xiao; Zhong, Jianfeng; Liu, Yuan; Hu, Xiaodan; Lin, Manman; Liu, Xianjin

    2017-02-01

    Cry1Ie toxin was an insect-resistant protein used in genetically modified crops (GMC). In this study, a large human VH gene nanobodies phage displayed library was employed to select anti-Cry1Ie toxin antibody by affinity panning. After 5 rounds of panning, total 12 positive monoclonal phage particles were obtained. One of the identified positive phage nanobody was expressed in E.coli BL21 and the purified protein was indicated as a molecular mass of approximately 20 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Then a sensitive indirect competitive time-resolved fluoroimmunoassay (IC-TRFIA) was established for detection of Cry1Ie toxin by the purified protein. The working range of detection for Cry1Ie toxin standards in the IC-TRFIA were 0.08-6.44 ng mL -1 and the medium inhibition of control (IC 50 ) was 0.73 ng mL -1 . It showed a weak cross-reactivity with Cry1Ab toxin (at 5.6%), but did not recognize Cry1B, Cry1C, Cry1F, and Cry2A toxins (were <0.1%). The average recoveries of Cry1Ie toxin from respectively spiked in rice, corn and soil samples were in the range of 83.5%-96.6% and with a coefficient of variation (CV) among 2.0%-8.6%. These results showed the IC-TRFIA was promising for detection of Cry1Ie toxin in agricultural and environmental samples. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera

    Directory of Open Access Journals (Sweden)

    Holt Jonathan

    2009-03-01

    Full Text Available Abstract Background Gut microbiota contribute to the health of their hosts, and alterations in the composition of this microbiota can lead to disease. Previously, we demonstrated that indigenous gut bacteria were required for the insecticidal toxin of Bacillus thuringiensis to kill the gypsy moth, Lymantria dispar. B. thuringiensis and its associated insecticidal toxins are commonly used for the control of lepidopteran pests. A variety of factors associated with the insect host, B. thuringiensis strain, and environment affect the wide range of susceptibilities among Lepidoptera, but the interaction of gut bacteria with these factors is not understood. To assess the contribution of gut bacteria to B. thuringiensis susceptibility across a range of Lepidoptera we examined larval mortality of six species in the presence and absence of their indigenous gut bacteria. We then assessed the effect of feeding an enteric bacterium isolated from L. dispar on larval mortality following ingestion of B. thuringiensis toxin. Results Oral administration of antibiotics reduced larval mortality due to B. thuringiensis in five of six species tested. These included Vanessa cardui (L., Manduca sexta (L., Pieris rapae (L. and Heliothis virescens (F. treated with a formulation composed of B. thuringiensis cells and toxins (DiPel, and Lymantria dispar (L. treated with a cell-free formulation of B. thuringiensis toxin (MVPII. Antibiotics eliminated populations of gut bacteria below detectable levels in each of the insects, with the exception of H. virescens, which did not have detectable gut bacteria prior to treatment. Oral administration of the Gram-negative Enterobacter sp. NAB3, an indigenous gut resident of L. dispar, restored larval mortality in all four of the species in which antibiotics both reduced susceptibility to B. thuringiensis and eliminated gut bacteria, but not in H. virescens. In contrast, ingestion of B. thuringiensis toxin (MVPII following antibiotic

  2. Ultra-violet-resistant mutants of Bacillus thuringiensis

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D R; Karunakaran, V [Polytechnic of Central London (UK). Faculty of Engineering and Science, School of Biological and Health Sciences; Burges, H D [Institute of Horticultural Research, Littlehampton (UK); Hacking, A J [Reading Univ. (UK). Dextra Labs.Ltd.

    1991-06-01

    One of the main disadvantages of using Bacillus thuringiensis as an insecticide is that the spore and crystal preparations applied to foliage are readily washed away by rain and are inactivated by sunlight. Spores from some strains of B. thuringiensis have been shown to be highly sensitive to u.v. light. This study has demonstrated how mutants with increased resistance to u.v., isolated by successive rounds of u.v. irradiation, and additionally with increased specific pathogenicity can be isolated. These techniques should be applied to strains that are frequently used in the industrial production of B.thuringiensis toxin. (author).

  3. Ultra-violet-resistant mutants of Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Jones, D.R.; Karunakaran, V.; Hacking, A.J.

    1991-01-01

    One of the main disadvantages of using Bacillus thuringiensis as an insecticide is that the spore and crystal preparations applied to foliage are readily washed away by rain and are inactivated by sunlight. Spores from some strains of B. thuringiensis have been shown to be highly sensitive to u.v. light. This study has demonstrated how mutants with increased resistance to u.v., isolated by successive rounds of u.v. irradiation, and additionally with increased specific pathogenicity can be isolated. These techniques should be applied to strains that are frequently used in the industrial production of B.thuringiensis toxin. (author)

  4. Effects of a diet containing genetically modified rice expressing the Cry1Ab/1Ac protein (Bacillus thuringiensis toxin) on broiler chickens.

    Science.gov (United States)

    Li, Zeyang; Gao, Yang; Zhang, Minhong; Feng, Jinghai; Xiong, Yandan

    2015-01-01

    The aim of this study was to evaluate the effect of feeding Bacillus thuringiensis (Bt) rice expressing the Cry1Ab/1Ac protein on broiler chicken. The genetically modified (GM) Bt rice was compared with the corresponding non-GM rice regarding performance of feeding groups, their health status, relative organ weights, biochemical serum parameters and occurrence of Cry1Ab/1Ac gene fragments. One hundred and eighty day-old Arbor Acres female broilers with the same health condition were randomly allocated to the two treatments (6 replicate cages with 15 broilers in each cage per treatment). They received diets containing GM rice (GM group) or its parental non-GM rice (non-GM group) at 52-57% of the air-dried diet for 42 days. The results show that the transgenic rice had a similar nutrient composition as the non-GM rice and had no adverse effects on chicken growth, biochemical serum parameters and necropsy during the 42-day feeding period. In birds fed the GM rice, no transgenic gene fragments were detected in the samples of blood, liver, kidneys, spleen, jejunum, ileum, duodenum and muscle tissue. In conclusion, the results suggest that Bt rice expressing Cry1Ab/1Ac protein has no adverse effects on broiler chicken. Therefore, it can be considered as safe and used as feed source for broiler chicken.

  5. Lack of fitness costs and inheritance of resistance to Bacillus thuringiensis Cry1Ac toxin in a near-isogenic strain of Plutella xylostella (Lepidoptera: Plutellidae).

    Science.gov (United States)

    Zhu, Xun; Yang, Yanjv; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Guo, Zhaojiang; Kang, Shi; Xia, Jixing; Zhang, Youjun

    2016-02-01

    Resistance to Bacillus thuringiensis (Bt) formulations in insects may be associated with fitness costs. A lack of costs enables resistance alleles to persist, which may contribute to the rapid development and spread of resistance in populations. To assess the fitness costs associated with Bt Cry1Ac resistance in Plutella xylostella, life tables were constructed for a near-isogenic resistant strain (NIL-R) and a susceptible strain in this study. No fitness costs associated with Cry1Ac resistance in NIL-R were detected, based on the duration of egg and larval stages, the survival of eggs and larvae, adult longevity, fecundity, net reproductive rate, gross reproduction rate, finite rate of increase and mean generation time. Based on log dose-probit lines, resistance in NIL-R is incompletely recessive and results from a single, autosomal, recessive locus; the degree of dominance was estimated to be -0.74 and -0.71 for F1 (resistant ♀ × susceptible ♂) and F1 ' (susceptible ♀ × resistant ♂) progeny respectively. Assessment of near-isogenic Cry1Ac-resistant and Cry1Ac-susceptible strains of P. xylostella indicated that resistance is not accompanied with fitness costs, and that resistance is incompletely recessive. These findings should be useful in managing the development of Bt Cry1Ac resistance. © 2015 Society of Chemical Industry.

  6. Comprehensive analysis of gene expression profiles of the beet armyworm Spodoptera exigua larvae challenged with Bacillus thuringiensis Vip3Aa toxin.

    Directory of Open Access Journals (Sweden)

    Yolanda Bel

    Full Text Available Host-pathogen interactions result in complex relationship, many aspects of which are not completely understood. Vip proteins, which are Bacillus thuringensis (Bt insecticidal toxins produced during the vegetative stage, are selectively effective against specific insect pests. This new group of Bt proteins represents an interesting alternative to the classical Bt Cry toxins because current data suggests that they do not share the same mode of action. We have designed and developed a genome-wide microarray for the beet armyworm Spodoptera exigua, a serious lepidopteran pest of many agricultural crops, and used it to better understand how lepidopteran larvae respond to the treatment with the insecticidal protein Vip3Aa. With this approach, the goal of our study was to evaluate the changes in gene expression levels caused by treatment with sublethal doses of Vip3Aa (causing 99% growth inhibition at 8 and 24 h after feeding. Results indicated that the toxin provoked a wide transcriptional response, with 19% of the microarray unigenes responding significantly to treatment. The number of up- and down-regulated unigenes was very similar. The number of genes whose expression was regulated at 8 h was similar to the number of genes whose expression was regulated after 24 h of treatment. The up-regulated sequences were enriched for genes involved in innate immune response and in pathogen response such as antimicrobial peptides (AMPs and repat genes. The down-regulated sequences were mainly unigenes with homology to genes involved in metabolism. Genes related to the mode of action of Bt Cry proteins were found, in general, to be slightly overexpressed. The present study is the first genome-wide analysis of the response of lepidopteran insects to Vip3Aa intoxication. An insight into the molecular mechanisms and components related to Vip intoxication will allow designing of more effective management strategies for pest control.

  7. Geographical and Temporal Variability in Susceptibility to Cry1F Toxin From Bacillus thuringiensis in Spodoptera frugiperda (Lepidoptera: Noctuidae) Populations in Brazil.

    Science.gov (United States)

    Farias, Juliano R; Horikoshi, Renato J; Santos, Antonio C; Omoto, Celso

    2014-12-01

    The genetically modified maize TC1507 event with the cry1F gene (Cry1F maize) has been used to control Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) in Brazil since the 2009-2010 cropping season. As part of the insect resistance management program, we conducted studies to determine the baseline susceptibility to Cry1F before the widespread planting of Cry1F maize. Subsequently, we evaluated the geographical and temporal variability of susceptibility to this toxin in populations of S. frugiperda collected from major maize-growing regions in Brazil. The baseline susceptibility to Cry1F was determined using a diet-overlay bioassay for a susceptible reference population and four field populations of S. frugiperda. We then monitored the susceptibility to Cry1F in 43 populations of S. frugiperda sampled in nine States of Brazil between 2011 and 2013. In the baseline study, the MIC50 (the concentration that inhibits molting to second instars in 50% of individuals) ranged from 3.59 to 72.47 ng Cry1F toxin per centimeter square. Based on the upper limit of the MIC99 value of the joint analysis from the baseline susceptibility data, the concentrations of 200 and 2,000 ng of Cry1F toxin per centimeter square were defined as diagnostic concentrations for potentially resistant individuals, and these were used to monitor the susceptibility of S. frugiperda to Cry1F. Survival at 2,000 ng Cry1F toxin per centimeter square increased significantly throughout the cropping seasons in S. frugiperda populations from São Paulo, Santa Catarina, Rio Grande do Sul, Bahia, Mato Grosso, Goiás, Mato Grosso do Sul, and Paraná. The highest survival (>50%) was reached in populations collected from Bahia, Mato Grosso, Goiás, Mato Grosso do Sul, and Paraná during the 2012-2013 cropping season. Therefore, a significant decrease in susceptibility to Cry1F was detected in S. frugiperda throughout cropping seasons, especially in regions with intensive maize production in Brazil

  8. Ecological aspects of Bacillus thuringiensis in an Oxisol Ecologia do Bacillus thuringiensis num Latossolo

    Directory of Open Access Journals (Sweden)

    Lessandra Heck Paes Leme Ferreira

    2003-02-01

    Full Text Available Bacillus thuringiensis is a Gram positive, sporangial bacterium, known for its insecticidal habilities. Survival and conjugation ability of B. thuringiensis strains were investigated; vegetative cells were evaluated in non-sterile soil. Vegetative cells decreased rapidly in number, and after 48 hours the population was predominantly spores. No plasmid transfer was observed in non-sterile soil, probably because the cells died and the remaining cells sporulated quickly. Soil is not a favorable environment for B. thuringiensis multiplication and conjugation. The fate of purified B. thuringiensis toxin was analyzed by extractable toxin quantification using ELISA. The extractable toxin probably declined due to binding on surface-active particles in the soil.O comportamento de células vegetativas do Bacillus thuringiensis foi estudado em solo não esterilizado. Após o inóculo grande parte das células morrem e o restante esporula em 24 horas. Não foi observada conjugação provavelmente porque poucas células sobrevivem no solo e rapidamente esporulam, mostrando que este não é o ambiente propício para a multiplicação e conjugação desta bactéria. A toxina purificada, portanto livre de células, diminui rapidamente sua quantidade em solo não esterilizado. Provavelmente a ligação da toxina na fração argilosa do solo é a principal responsável por este fenômeno.

  9. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism

    OpenAIRE

    Caccia, Silvia; Di Lelio, Ilaria; La Storia, Antonietta; Marinelli, Adriana; Varricchio, Paola; Franzetti, Eleonora; Banyuls, Núria; Tettamanti, Gianluca; Casartelli, Morena; Giordana, Barbara; Ferré, Juan; Gigliotti, Silvia; Ercolini, Danilo; Pennacchio, Francesco

    2016-01-01

    Bacillus thuringiensis and its toxins are widely used for insect control. Notwithstanding the remarkable importance of this insect pathogen, its killing mechanism has yet to be fully elucidated. Here we show that the microbiota resident in the host midgut triggers a lethal septicemia. The infection process is enhanced by reducing the host immune response and its control on replication of midgut bacteria invading the body cavity through toxin-induced epithelial lesions. The experimental approa...

  10. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism

    Science.gov (United States)

    Caccia, Silvia; Di Lelio, Ilaria; La Storia, Antonietta; Marinelli, Adriana; Varricchio, Paola; Franzetti, Eleonora; Banyuls, Núria; Tettamanti, Gianluca; Casartelli, Morena; Giordana, Barbara; Ferré, Juan; Gigliotti, Silvia; Pennacchio, Francesco

    2016-01-01

    Bacillus thuringiensis is a widely used bacterial entomopathogen producing insecticidal toxins, some of which are expressed in insect-resistant transgenic crops. Surprisingly, the killing mechanism of B. thuringiensis remains controversial. In particular, the importance of the septicemia induced by the host midgut microbiota is still debated as a result of the lack of experimental evidence obtained without drastic manipulation of the midgut and its content. Here this key issue is addressed by RNAi-mediated silencing of an immune gene in a lepidopteran host Spodoptera littoralis, leaving the midgut microbiota unaltered. The resulting cellular immunosuppression was characterized by a reduced nodulation response, which was associated with a significant enhancement of host larvae mortality triggered by B. thuringiensis and a Cry toxin. This was determined by an uncontrolled proliferation of midgut bacteria, after entering the body cavity through toxin-induced epithelial lesions. Consequently, the hemolymphatic microbiota dramatically changed upon treatment with Cry1Ca toxin, showing a remarkable predominance of Serratia and Clostridium species, which switched from asymptomatic gut symbionts to hemocoelic pathogens. These experimental results demonstrate the important contribution of host enteric flora in B. thuringiensis-killing activity and provide a sound foundation for developing new insect control strategies aimed at enhancing the impact of biocontrol agents by reducing the immunocompetence of the host. PMID:27506800

  11. Activity of wild-type and hybrid Bacillus thuringiensis delta-endotoxins against Agrotis ipsilon

    NARCIS (Netherlands)

    Maagd, de R.A.; Weemen-Hendriks, M.; Molthoff, J.W.; Naimov, S.

    2003-01-01

    Twelve Cry1 and two Cry9 ?-endotoxins fromBacillus thuringiensis were tested for their activity against black cutworm (Agrotis ipsilon).A. ipsilon was not susceptible to many toxins, but three toxins had significant activity. Cry9Ca was the most toxic, followed by Cry1Aa and Cry1Fb. Hybrids between

  12. Isolation and identification of some Bacillus thuringiensis strains with insecticidal activity against Ceratitis capitata

    International Nuclear Information System (INIS)

    Majdoub, Nihed

    2010-01-01

    The aims of the present work is to study the effect of toxins (delta-endotoxins), extracted from different strains of Bacillus thuringiensis on Ceratitis capitata, a devastating of citrus and fruit trees. Strains of B. thuringiensis were isolated from the mud of Sebket Sejoumi. Among 70 isolates tested, 15 showed a significant identicalness activity in which 5 isolates led to mortality rates ≥ 90 pour cent . These mortality rates are caused by endotoxins of B. thuringiensis. Analysis of proteins profiles of different isolates of B. thuringiensis revealed variability between them. The preliminary results of this study encourage us towards the characterization of the insecticidal activity produced by B. thuringiensis strains for large scale application.

  13. Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes

    NARCIS (Netherlands)

    Herrero, S.; Gechev, T.; Bakker, P.L.; Moar, W.; Maagd, de R.A.

    2005-01-01

    BACKGROUND: Insecticidal toxins from Bacillus thuringiensis bind to receptors on midgut epithelial cells of susceptible insect larvae. Aminopeptidases N (APNs) from several insect species have been shown to be putative receptors for these toxins. Here we report the cloning and expression analysis of

  14. Methodology for fast evaluation of Bacillus thuringiensis crystal protein content

    Directory of Open Access Journals (Sweden)

    Alves Lúcia M. Carareto

    2000-01-01

    Full Text Available The development of the production and use of Bacillus thuringiensis in Brazil at a commercial scale faces certain difficulties, among them the establishment of efficient methodologies for the quantitation of toxic products to be commercialized. Presently, the amount of toxin is given in percentage by analyzing the samples total protein content. Such methodology however, does not measure the actual amount of active protein present in the product, since most strains express different endotoxin genes and might even produce b-toxin. Since the various types of toxins exhibit different antigenic characteristics, this work has as objective the utilization of fast immunological techniques to quantify the level of crystal protein. Crystal protein produced by a subspecies of Bacillus thuringiensis var. israelensis was purified by ultracentrifugation and utilized to immunize rabbits and to produce hiperimmune sera. Such sera were latter used to evaluate the level of proteins on commercial bioinsecticide and on laboratory cultures of B. thuringiensis through the immunodot technique. The results were obtained by comparison of data obtained from reactions with known concentrations of crystal protein permitting to evaluate the level of such protein on various materials.

  15. Chemical modulators of the innate immune response alter gypsy moth larval susceptibility to Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Broderick Nichole A

    2010-04-01

    Full Text Available Abstract Background The gut comprises an essential barrier that protects both invertebrate and vertebrate animals from invasion by microorganisms. Disruption of the balanced relationship between indigenous gut microbiota and their host can result in gut bacteria eliciting host responses similar to those caused by invasive pathogens. For example, ingestion of Bacillus thuringiensis by larvae of some species of susceptible Lepidoptera can result in normally benign enteric bacteria exerting pathogenic effects. Results We explored the potential role of the insect immune response in mortality caused by B. thuringiensis in conjunction with gut bacteria. Two lines of evidence support such a role. First, ingestion of B. thuringiensis by gypsy moth larvae led to the depletion of their hemocytes. Second, pharmacological agents that are known to modulate innate immune responses of invertebrates and vertebrates altered larval mortality induced by B. thuringiensis. Specifically, Gram-negative peptidoglycan pre-treated with lysozyme accelerated B. thuringiensis-induced killing of larvae previously made less susceptible due to treatment with antibiotics. Conversely, several inhibitors of the innate immune response (eicosanoid inhibitors and antioxidants increased the host's survival time following ingestion of B. thuringiensis. Conclusions This study demonstrates that B. thuringiensis infection provokes changes in the cellular immune response of gypsy moth larvae. The effects of chemicals known to modulate the innate immune response of many invertebrates and vertebrates, including Lepidoptera, also indicate a role of this response in B. thuringiensis killing. Interactions among B. thuringiensis toxin, enteric bacteria, and aspects of the gypsy moth immune response may provide a novel model to decipher mechanisms of sepsis associated with bacteria of gut origin.

  16. Specificity of Bacillus thuringiensis endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts

    International Nuclear Information System (INIS)

    Hofmann, C.; Vanderbruggen, H.; Hoefte, H.; Van Rie, J.; Jansens, S.; Van Mellaert, H.

    1988-01-01

    Binding studies were performed with two 125 I-labeled Bacillus thuringiensis δ-endotoxins on brush border membrane vesicles prepared from the larval midgut of the tobacco hornworm Manduca sexta or the cabbage butterfly Pieris brassicae. One δ-endotoxin, Bt2-protoxin, is a 130-kDa recombinant crystalline protein from B. thuringiensis subsp. berliner. It kills larvae of both insect species. The active Bt2-toxin is a 60-kDa proteolytic fragment of the Bt2-protoxin. It binds saturably and with high affinity to brush border membrane vesicles from the midgut of both species. The other δ-endotoxin, Bt4412-protoxin, is a 136-kDa crystalline protein from B. thuringiensis subsp. thuringiensis, which is highly toxic for P. brassicae, but not for M. sexta larvae. Bt4412-toxin, obtained after proteolytic activation of Bt4412-protoxin, shows high-affinity saturable binding to P. brassicae vesicles but not to M. sexta vesicles. The correlation between toxicity and specific binding is further strengthened by competition studies. Other B. thuringiensis δ-endotoxins active against M. sexta compete for binding of 125 I-labeled Bt2-toxin to M. sexta vesicles, whereas toxins active against dipteran or coleopteran larvae do not compete. Bt2-toxin and Bt4412-toxin bind to different sites on P. brassicae vesicles

  17. Single amino acid insertions in extracellular loop 2 of Bombyx mori ABCC2 disrupt its receptor function for Bacillus thuringiensis Cry1Ab and Cry1Ac but not Cry1Aa toxins.

    Science.gov (United States)

    Tanaka, Shiho; Miyamoto, Kazuhisa; Noda, Hiroaki; Endo, Haruka; Kikuta, Shingo; Sato, Ryoichi

    2016-04-01

    In a previous report, seven Cry1Ab-resistant strains were identified in the silkworm, Bombyx mori; these strains were shown to have a tyrosine insertion at position 234 in extracellular loop 2 of the ABC transporter C2 (BmABCC2). This insertion was confirmed to destroy the receptor function of BmABCC2 and confer the strains resistance against Cry1Ab and Cry1Ac. However, these strains were susceptible to Cry1Aa. In this report, we examined the mechanisms of the loss of receptor function of the transporter by expressing mutations in Sf9 cells. After replacement of one or two of the five amino acid residues in loop 2 of the susceptible BmABCC2 gene [BmABCC2_S] with alanine, cells still showed susceptibility, retaining the receptor function. Five mutants with single amino acid insertions at position 234 in BmABCC2 were also generated, resulting in loop 2 having six amino acids, which corresponds to replacing the tyrosine insertion in the resistant BmABCC2 gene [BmABCC2_R(+(234)Y)] with another amino acid. All five mutants exhibited loss of function against Cry1Ab and Cry1Ac. These results suggest that the amino acid sequence in loop 2 is less important than the loop size (five vs. six amino acids) or loop structure for Cry1Ab and Cry1Ac activity. Several domain-swapped mutant toxins were then generated among Cry1Aa, Cry1Ab, and Cry1Ac, which are composed of three domains. Swapped mutants containing domain II of Cry1Ab or Cry1Ac did not kill Sf9 cells expressing BmABCC2_R(+(234)Y), suggesting that domain II of the Cry toxin is related to the interaction with the receptor function of BmABCC2. This also suggests that different reactions against Bt-toxins in some B. mori strains, that is, Cry1Ab resistance or Cry1Aa susceptibility, are attributable to structural differences in domain II of Cry1A toxins. Copyright © 2016. Published by Elsevier Inc.

  18. TRANSGENIC PLANTS EXPRESSING BACILLUS THURINGIENSIS DELTA-ENDOTOXINS

    Institute of Scientific and Technical Information of China (English)

    Hua-rong,Li; BrendaOppert; KunYanZhu; RandallA.Higgins; Fang-nengHuang; LawrentL.Buschman

    2003-01-01

    Commercial varieties of transgenic Bacillus thuringiensis (Bt) plants have been developed in many countries to control target pests. Initially, the expression of native Bt genes in plants was low due to mRNA instability, improper splicing, and post-translation modifications. Subsequently, modifications of the native Bt genes greatly enhanced expression levels. This is a review of the developments that made modem high-expression transgenic Bt plants possible, with an emphasis on the reasons for the low-level expression of native Bt genes in plant systems, and the techniques that have been used to improve plant expression of Bt toxin genes.

  19. Bacillus thuringiensis delta-endotoxin Cry1 hybrid proteins with increased activity against the Colorado potato beetle

    NARCIS (Netherlands)

    Naimov, S.; Weemen-Hendriks, M.; Dukiandjiev, S.; Maagd, de R.A.

    2001-01-01

    Cry1 delta-endotoxins of Bacillus thuringiensis are generally active against lepidopteran insects, but Cry1Ba and Cry1Ia have additional, though low, levels of activity against coleopterans such as the Colorado potato beetle. Here we report the construction of Cry1Ba/Cry1Ia hybrid toxins which have

  20. A hybrid Bacillus thuringiensis delta-endotoxin gene gives resistance against a coleopteran and a lepidopteran pest in transgenic potato

    NARCIS (Netherlands)

    Naimov, S.; Dukiandjiev, S.; Maagd, de R.A.

    2003-01-01

    Expression of Bacillus thuringiensis delta-endotoxins has proven to be a successful strategy for obtaining insect resistance in transgenic plants. Drawbacks of expression of a single resistance gene are the limited target spectrum and the potential for rapid adaptation of the pest. Hybrid toxins

  1. Stool C difficile toxin

    Science.gov (United States)

    ... toxin; Colitis - toxin; Pseudomembranous - toxin; Necrotizing colitis - toxin; C difficile - toxin ... be analyzed. There are several ways to detect C difficile toxin in the stool sample. Enzyme immunoassay ( ...

  2. Cytotoxicity analysis of three Bacillus thuringiensis subsp. israelensis δ-endotoxins towards insect and mammalian cells.

    Directory of Open Access Journals (Sweden)

    Roberto Franco Teixeira Corrêa

    Full Text Available Three members of the δ-endotoxin group of toxins expressed by Bacillus thuringiensis subsp. israelensis, Cyt2Ba, Cry4Aa and Cry11A, were individually expressed in recombinant acrystalliferous B. thuringiensis strains for in vitro evaluation of their toxic activities against insect and mammalian cell lines. Both Cry4Aa and Cry11A toxins, activated with either trypsin or Spodoptera frugiperda gastric juice (GJ, resulted in different cleavage patterns for the activated toxins as seen by SDS-PAGE. The GJ-processed proteins were not cytotoxic to insect cell cultures. On the other hand, the combination of the trypsin-activated Cry4Aa and Cry11A toxins yielded the highest levels of cytotoxicity to all insect cells tested. The combination of activated Cyt2Ba and Cry11A also showed higher toxic activity than that of toxins activated individually. When activated Cry4Aa, Cry11A and Cyt2Ba were used simultaneously in the same assay a decrease in toxic activity was observed in all insect cells tested. No toxic effect was observed for the trypsin-activated Cry toxins in mammalian cells, but activated Cyt2Ba was toxic to human breast cancer cells (MCF-7 when tested at 20 µg/mL.

  3. Genetic Markers for Western Corn Rootworm Resistance to Bt Toxin

    OpenAIRE

    Flagel, Lex E.; Swarup, Shilpa; Chen, Mao; Bauer, Christopher; Wanjugi, Humphrey; Carroll, Matthew; Hill, Patrick; Tuscan, Meghan; Bansal, Raman; Flannagan, Ronald; Clark, Thomas L.; Michel, Andrew P.; Head, Graham P.; Goldman, Barry S.

    2015-01-01

    Western corn rootworm (WCR) is a major maize (Zea mays L.) pest leading to annual economic losses of more than 1 billion dollars in the United States. Transgenic maize expressing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are widely used for the management of WCR. However, cultivation of Bt-expressing maize places intense selection pressure on pest populations to evolve resistance. Instances of resistance to Bt toxins have been reported in WCR. Developing genet...

  4. Increased toxicity of Bacillus thuringiensis Cry3Aa against Crioceris quatuordecimpunctata, Phaedon brassicae and Colaphellus bowringi by a Tenebrio molitor cadherin fragment

    Science.gov (United States)

    BACKGROUND: Biopesticides containing Cry insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are effective against many lepidopteran pests, but there is a lack of Bt-based pesticides to efficiently control important coleopteran pests. Based on the reported increase of Bt toxin olig...

  5. Bacillus thuringiensis delta-endotoxin Cry1Ac domain III enhances activity against Heliothis virescens in some, but not all Cry1-Cry1Ac hybrids

    NARCIS (Netherlands)

    Karlova, R.B.; Weemen, W.M.J.; Naimov, S.; Ceron, J.; Dukiandjiev, S.; Maagd, de R.A.

    2005-01-01

    We investigated the role of domain III of Bacillus thuringiensis d-endotoxin Cry1Ac in determining toxicity against Heliothis virescens. Hybrid toxins, containing domain III of Cry1Ac with domains I and II of Cry1Ba, Cry1Ca, Cry1Da, Cry1Ea, and Cry1Fb, respectively, were created. In this way Cry1Ca,

  6. The biochemistry of the protein crystal toxin of Bacillus thuringiensis

    Science.gov (United States)

    Paul G. Fast

    1985-01-01

    The crystal consists of dimeric protein subunits. The monomer peptide chains are held together in the subunit and the subunit in the crystal by disulfide and non-covalent bonds. The monomer peptide has a molecular weight of about 130 kdaltons which, in the presence of proteases, is hydrolyzed to a protease-resistant-protein of 65 kda that is toxic both to larvae by...

  7. Identification of Bacillus thuringiensis Cry1AbMod binding-proteins from Spodoptera frugiperda.

    Science.gov (United States)

    Martínez de Castro, Diana L; García-Gómez, Blanca I; Gómez, Isabel; Bravo, Alejandra; Soberón, Mario

    2017-12-01

    Bacillus thuringiensis Cry toxins are currently used for pest control in transgenic crops but evolution of resistance by the insect pests threatens the use of this technology. The Cry1AbMod toxin was engineered to lack the alpha helix-1 of the parental Cry1Ab toxin and was shown to counter resistance to Cry1Ab and Cry1Ac toxins in different insect species including the fall armyworm Spodoptera frugiperda. In addition, Cry1AbMod showed enhanced toxicity to Cry1Ab-susceptible S. frugiperda populations. To gain insights into the mechanisms of this Cry1AbMod-enhanced toxicity, we isolated the Cry1AbMod toxin binding proteins from S. frugiperda brush border membrane vesicles (BBMV), which were identified by pull-down assay and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The LC-MS/MS results indicated that Cry1AbMod toxin could bind to four classes of aminopeptidase (N1, N3, N4 y N5) and actin, with the highest amino acid sequence coverage acquired for APN 1 and APN4. In addition to these proteins, we found other proteins not previously described as Cry toxin binding proteins. This is the first report that suggests the interaction between Cry1AbMod and APN in S. frugiperda. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Structural studies of {delta}-endotoxin Cry 1 C from Bacillus thuringiensis

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, B.G.; Garratt, R.C.; Oliva, G. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica; Lemos, M.V.F. [UNESP, Jaboticabal, SP (Brazil). Dept. de Biologia Aplicada Agropecuaria; Arantes, O.M.N. [Universidade Estadual de Londrina, PR (Brazil). Dept. de Biologia Geral

    1996-12-31

    Full text. The {delta}-endotoxins are a family of crystal protein by a soil bacterium, Bacillus thuringiensis. The study of these proteins has been of great interest due to their highly specific activity against insects of the orders Lepidoptera, Diptera and Coleoptera. Thus, the {delta}a-endotoxins have been used for more than two decades as biological insecticides to control agricultural pests and, more recently, insects vectors of some diseases. The knowledge of their three-dimensional structures is very important to understand their mechanism of action and their high specificity. To date, the structure of only three proteins of the {delta}-endotoxins family have been reported: Cry3A, a coleopteran-specific toxin (beetle toxin){sup 1}, Cry1Aa, a lepidopteran-specific toxin (butterfly toxin){sup 2} and CytB, a dipteran-specific toxin (mosquito toxin){sup 3} Our work is aimed at the determination of the crystallographic structure by X-ray diffraction of {delta}-endotoxin Cry1C, also toxic to insects of the Lepidoptera order but towards families other than those affected by Cry1Aa. A comparison between these structures may lead to important conclusions about the reasons for the specificity and would allow the planning of mutants with more efficient activity. The cry1C gene was cloned into an adequate vector and expressed in an acrystalliferous B. thuringiensis strain. After cell culture and sporulation the microcrystals of Cry1C were separated by ultra-centrifugation in sacharose. The protoxin inclusion bodies were activated by commercial trpsin and the protease-resistant core was purified by anion-exchange chromatography. Crystallization experiments are being conducted in order to obtain single crystals suitable for diffraction measurements. We intend to use the Protein Crystallograph Station of the LNLS to collect data as soon as it is available and we have suitable crystals. (author) 3 refs.

  9. Structural studies of δ-endotoxin Cry 1 C from Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Guimaraes, B.G.; Garratt, R.C.; Oliva, G.; Lemos, M.V.F.; Arantes, O.M.N.

    1996-01-01

    Full text. The δ-endotoxins are a family of crystal protein by a soil bacterium, Bacillus thuringiensis. The study of these proteins has been of great interest due to their highly specific activity against insects of the orders Lepidoptera, Diptera and Coleoptera. Thus, the δa-endotoxins have been used for more than two decades as biological insecticides to control agricultural pests and, more recently, insects vectors of some diseases. The knowledge of their three-dimensional structures is very important to understand their mechanism of action and their high specificity. To date, the structure of only three proteins of the δ-endotoxins family have been reported: Cry3A, a coleopteran-specific toxin (beetle toxin) 1 , Cry1Aa, a lepidopteran-specific toxin (butterfly toxin) 2 and CytB, a dipteran-specific toxin (mosquito toxin) 3 Our work is aimed at the determination of the crystallographic structure by X-ray diffraction of δ-endotoxin Cry1C, also toxic to insects of the Lepidoptera order but towards families other than those affected by Cry1Aa. A comparison between these structures may lead to important conclusions about the reasons for the specificity and would allow the planning of mutants with more efficient activity. The cry1C gene was cloned into an adequate vector and expressed in an acrystalliferous B. thuringiensis strain. After cell culture and sporulation the microcrystals of Cry1C were separated by ultra-centrifugation in sacharose. The protoxin inclusion bodies were activated by commercial trpsin and the protease-resistant core was purified by anion-exchange chromatography. Crystallization experiments are being conducted in order to obtain single crystals suitable for diffraction measurements. We intend to use the Protein Crystallograph Station of the LNLS to collect data as soon as it is available and we have suitable crystals. (author)

  10. Current research efforts with Bacillus thuringiensis

    Science.gov (United States)

    Normand R. Dubois

    1991-01-01

    The bioassay of 260 strains of Bacillus thuringiensis (Bt) and 70 commercial preparations show that regression coefficient estimates may be as critical as LC5O estimates when evaluating them for future consideration.

  11. Isolation of strains of Bacillus thuringiensis insecticidal biological activity against Ceratitis capitata

    International Nuclear Information System (INIS)

    Hmaied, Ezzedine; Ben Mbarek, Wael

    2010-01-01

    The present work is to study the effect of toxins (δ-endotoxins) extracted from strains of Bacillus thuringiensis isolated from the mud on the fly Sabkhat Dejoumi Ceratitis capitata, a pest of citrus and fruit trees. Among 51 isolated tested, 15 showed a very significant insecticidal activity, characterized by mortality rates exceeding 80 pour cent. These mortality rates are caused by endotoxins of Bt revealed variability between them. The preliminary results of this study encourage us towards the characterization of the insecticidal activity produced by strains of Bt for large scale application.

  12. Occurrence of Bacillus thuringiensis in faeces of herbivorous farm ...

    African Journals Online (AJOL)

    Bacillus thuringiensis (Berliner), the insect pathogen has been isolated from a variety of habitat. It is understood that the habitat of B. thuringiensis has always been associated with their biological activity. In the present study, B. thuringiensis was isolated from faeces of cows and goats. The phenotypic characterization ...

  13. Polyamine toxins

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Jensen, Lars S; Vogensen, Stine B

    2005-01-01

    Polyamine toxins, isolated from spiders and wasps, have been used as pharmacological tools for the study of ionotropic receptors, but their use have so far been hampered by their lack of selectivity. In this mini-review, we describe how careful synthetic modification of native polyamine toxins ha...

  14. Exploratory analysis for the optimization of culture media for Bacillus thuringiensis fermentation

    Directory of Open Access Journals (Sweden)

    Jenny M. Escobar

    2004-07-01

    Full Text Available Agrichemical involve health risks for producers and consumers; they can also affect beneficial insects, birds, fish and mammals. Bacillus thuringiensis-based biopesticides specific for insect plagues are available, which, represent an alternative to traditional chemically-based products. Culture media design is an impor-tant factor in the production of biopesticides based on Bacillus thuringiensis. The media have to be economi-cal and they must contain all the nutrition factors required by the bacteria. The yield of active ingredient, comprising the toxin-containing crystal protein and bacterial spores, must be high and with adequate toxi-city to formulate the biopesticide. In this work we studied different culture media and optimised a promi-sing culture medium for B. thuringiensis fermentation to obtain an active ingredient for use as raw material in manufacturing a biopesticide. The final concentration of active ingredient was 15 to 16 g/L and the raw material cost around US $0,30/kg product. Calculations for the experimental phase were done using the response surface technique in a central composite design (CCD, the optimisation phase used Derringer and Suich (1980 method for dual response. Key words: Biopesticides, culture media, surface response, dual response, contour plots, central composite design.

  15. Recent advancement on chemical arsenal of Bt toxin and its application in pest management system in agricultural field.

    Science.gov (United States)

    Chattopadhyay, Pritam; Banerjee, Goutam

    2018-04-01

    Bacillus thuringiensis ( Bt ) is a Gram-positive, spore-forming, soil bacterium, which is very popular bio-control agent in agricultural and forestry. In general, B. thuringiensis secretes an array of insecticidal proteins including toxins produced during vegetative growth phase (such as secreted insecticidal protein, Sip; vegetative insecticidal proteins, Vip), parasporal crystalline δ-endotoxins produced during vegetative stationary phase (such as cytolytic toxin, Cyt; and crystal toxin, Cry), and β-exotoxins. Till date, a wide spectrum of Cry proteins has been reported and most of them belong to three-domain-Cry toxins, Bin-like toxin, and Etx_Mtx2-like toxins. To the best of our knowledge, neither Bt insecticidal toxins are exclusive to Bt nor all the strains of Bt are capable of producing insecticidal Bt toxins. The lacuna in their latest classification has also been discussed. In this review, the updated information regarding the insecticidal Bt toxins and their different mode of actions were summarized. Before applying the Bt toxins on agricultural field, the non-specific effects of toxins should be investigated. We also have summarized the problem of insect resistance and the strategies to combat with this problem. We strongly believe that this information will help a lot to the budding researchers in the field of modern pest control biotechnology.

  16. Resistance to Bacillus thuringiensis by the Indian meal moth, Plodia interpunctella: comparison of midgut proteinases from susceptible and resistant larvae.

    Science.gov (United States)

    Johnson, D E; Brookhart, G L; Kramer, K J; Barnett, B D; McGaughey, W H

    1990-03-01

    Midgut homogenates from susceptible and resistant strains of the Indian meal moth, Plodia interpunctella, were compared for their ability to activate the entomocidal parasporal crystal protein from Bacillus thuringiensis. The properties of midgut proteinases from both types of larvae were also examined. Electrophoretic patterns of crystal protein from B. thuringiensis subspecies kurstaki (HD-1) and aizawai (HD-133 and HD-144) were virtually unchanged following digestion by either type of midgut homogenate. Changes in pH (9.5 to 11.5) or midgut homogenate concentration during digestion failed to substantially alter protein electrophoretic patterns of B. thuringiensis HD-1 crystal toxin. In vitro toxicity of crystal protein activated by either type of midgut preparation was equal toward cultured insect cells from either Manduca sexta or Choristoneura fumiferana. Electrophoresis of midgut extracts in polyacrylamide gels containing gelatin as substrate also yielded matching mobility patterns of proteinases from both types of midguts. Quantitation of midgut proteolytic activity using tritiated casein as a substrate revealed variation between midgut preparations, but no statistically significant differences between proteolytic activities from susceptible and resistant Indian meal moth larvae. Inhibition studies indicated that a trypsin-like proteinase with maximal activity at pH 10 is a major constituent of Indian meal moth midguts. The results demonstrated that midguts from susceptible and resistant strains of P. interpunctella are similar both in their ability to activate B. thuringiensis protoxin and in their proteolytic activity.

  17. [Bacillus thuringiensis: general aspects. An approach to its use in the biological control of lepidopteran insects behaving as agricultural pests].

    Science.gov (United States)

    Sauka, Diego H; Benintende, Graciela B

    2008-01-01

    Bacillus thuringiensis is the most widely applied biological pesticide used to control insects that affect agriculture and forestry and which transmit human and animal pathogens. During the past decades B. thuringiensis has been the subject of intensive research. These efforts have yielded considerable data about the relationships between the structure, mechanism of action, and genetics of their pesticidal crystal proteins. As a result, a coherent picture of these relationships has emerged. Other studies have focused on the ecological role of the B. thuringiensis crystal proteins and their performance in agricultural and other natural settings. With this knowledge as background and the help of biotechnological tools, researchers are now reporting promising results in the development of more useful toxins, recombinant bacteria, new formulations and transgenic plants that express pesticidal activity, in order to assure that these products are utilized with the best efficiency and benefit. This article is an attempt to integrate all these recent developments in the study of B. thuringiensis into a context of biological control of lepidopteran insect pest of agricultural importance.

  18. Midgut GPI-anchored proteins with alkaline phosphatase activity from the cotton boll weevil (Anthonomus grandis) are putative receptors for the Cry1B protein of Bacillus thuringiensis.

    Science.gov (United States)

    Martins, Erica Soares; Monnerat, Rose Gomes; Queiroz, Paulo Roberto; Dumas, Vinicius Fiuza; Braz, Shélida Vasconcelos; de Souza Aguiar, Raimundo Wagner; Gomes, Ana Cristina Menezes Mendes; Sánchez, Jorge; Bravo, Alejandra; Ribeiro, Bergmann Morais

    2010-02-01

    Cry toxins from Bacillus thuringiensis (Bt) are used for insect control. They interact with specific receptors located on the host cell surface and are activated by host proteases following receptor binding resulting in midgut epithelial cells lysis. In this work we had cloned, sequenced and expressed a cry1Ba toxin gene from the B thuringiensis S601 strain which was previously shown to be toxic to Anthonomus grandis, a cotton pest. The Cry1Ba6 protein expressed in an acrystaliferous B. thuringiensis strain was toxic to A. grandis in bioassays. The binding of Cry1Ba6 toxin to proteins located in the midgut brush border membrane of A. grandis was analyzed and we found that Cry1Ba6 binds to two proteins (62 and 65kDa) that showed alkaline phosphatase (ALP) activity. This work is the first report that shows the localization of Cry toxin receptors in the midgut cells of A. grandis. 2009. Published by Elsevier Ltd.

  19. Isolation and molecular characterization of Bacillus thuringiensis found in soils of the Cerrado region of Brazil, and their toxicity to Aedes aegypti larvae

    Directory of Open Access Journals (Sweden)

    Katiane dos Santos Lobo

    Full Text Available ABSTRACT This study investigated the potential of Bacillus thuringiensis isolates obtained in the Cerrado region of the Brazilian state of Maranhão for the biological control of Aedes aegypti larvae. The isolates were obtained from soil samples and the identification of the B. thuringiensis colonies was based on morphological characteristics. Bioassays were run to assess the pathogenicity and toxicity of the different strains of the B. thuringiensis against third-instar larvae of A. aegypti. Protein profiles were obtained by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Polymerase chain reaction assays were used to detect the toxin genes found in the bacterial isolates. Overall, 12 (4.0% of the 300 isolates obtained from 45 soil samples were found to present larvicidal activity, with the BtMA-104, BtMA-401 and BtMA-560 isolates causing 100% of mortality. The BtMA-401 isolate was the most virulent, with the lowest median lethal concentration (LC50 (0.004 × 107 spores/mL, followed by the Bacillus thuringiensis var. israelensis standard (0.32 × 107 spores/mL. The protein profiles of BtMA-25 and BtMA-401 isolates indicated the presence of molecular mass consistent with the presence of the proteins Cry4Aa, Cry11Aa and Cyt1, similar to the profile of Bacillus thuringiensis var. israelensis IPS-82. Surprisingly, however, none of the cry and cyt genes analyzed were amplified in the isolate BtMA-401. The results of the present study revealed the larvicidal potential of B. thuringiensis isolates found in the soils of the Cerrado region from Maranhão, although further research will be necessary to better elucidate and describe other genes associated with the production of insecticidal toxins in these isolates.

  20. Cloning and Characterization of a Unique Cytotoxic Protein Parasporin-5 Produced by Bacillus thuringiensis A1100 Strain

    Directory of Open Access Journals (Sweden)

    Keisuke Ekino

    2014-06-01

    Full Text Available Parasporin is the cytocidal protein present in the parasporal inclusion of the non-insecticidal Bacillus thuringiensis strains, which has no hemolytic activity but has cytocidal activities, preferentially killing cancer cells. In this study, we characterized a cytocidal protein that belongs to this category, which was designated parasporin-5 (PS5. PS5 was purified from B. thuringiensis serovar tohokuensis strain A1100 based on its cytocidal activity against human leukemic T cells (MOLT-4. The 50% effective concentration (EC50 of PS5 to MOLT-4 cells was approximately 0.075 μg/mL. PS5 was expressed as a 33.8-kDa inactive precursor protein and exhibited cytocidal activity only when degraded by protease at the C-terminal into smaller molecules of 29.8 kDa. Although PS5 showed no significant homology with other known parasporins, a Position Specific Iterative-Basic Local Alignment Search Tool (PSI-BLAST search revealed that the protein showed slight homology to, not only some B. thuringiensis Cry toxins, but also to aerolysin-type β-pore-forming toxins (β-PFTs. The recombinant PS5 protein could be obtained as an active protein only when it was expressed in a precursor followed by processing with proteinase K. The cytotoxic activities of the protein against various mammalian cell lines were evaluated. PS5 showed strong cytocidal activity to seven of 18 mammalian cell lines tested, and low to no cytotoxicity to the others.

  1. Toxins for Transgenic Resistance to Hemipteran Pests

    Science.gov (United States)

    Chougule, Nanasaheb P.; Bonning, Bryony C.

    2012-01-01

    The sap sucking insects (Hemiptera), which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt) has provided effective plant protection against some insect pests, Bt toxins exhibit little toxicity against sap sucking insects. Indeed, the pest status of some Hemiptera on Bt-transgenic plants has increased in the absence of pesticide application. The increased pest status of numerous hemipteran species, combined with increased prevalence of resistance to chemical insecticides, provides impetus for the development of biologically based, alternative management strategies. Here, we provide an overview of approaches toward transgenic resistance to hemipteran pests. PMID:22822455

  2. Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes

    Directory of Open Access Journals (Sweden)

    Moar William J

    2005-06-01

    Full Text Available Abstract Background Insecticidal toxins from Bacillus thuringiensis bind to receptors on midgut epithelial cells of susceptible insect larvae. Aminopeptidases N (APNs from several insect species have been shown to be putative receptors for these toxins. Here we report the cloning and expression analysis of four APN cDNAs from Spodoptera exigua. Results Suppression Subtractive Hybridization (SSH was used to construct cDNA libraries of genes that are up-and down-regulated in the midgut of last instar larvae of beet armyworm, S. exigua exposed to B. thuringiensis Cry1Ca toxin. Among the clones from the SSH libraries, cDNA fragments coding for two different APNs were obtained (APN2 and APN4. A similar procedure was employed to compare mRNA differences between susceptible and Cry1Ca resistant S. exigua. Among the clones from this last comparison, cDNA fragments belonging to a third APN (APN1 were detected. Using sequences obtained from the three APN cDNA fragments and degenerate primers for a fourth APN (APN3, the full length sequences of four S. exigua APN cDNAs were obtained. Northern blot analysis of expression of the four APNs showed complete absence of APN1 expression in the resistant insects, while the other three APNs showed similar expression levels in the resistant and susceptible insects. Conclusion We have cloned and characterized four different midgut APN cDNAs from S. exigua. Expression analysis revealed the lack of expression of one of these APNs in the larvae of a Cry1Ca-resistant colony. Combined with previous evidence that shows the importance of APN in the mode of action of B. thuringiensis toxins, these results suggest that the lack of APN1 expression plays a role in the resistance to Cry1Ca in this S. exigua colony.

  3. Binding specificity of Bacillus thuringiensis Cry1Aa for purified, native Bombyx mori aminopeptidase N and cadherin-like receptors

    Directory of Open Access Journals (Sweden)

    Jenkins Jeremy L

    2001-10-01

    Full Text Available Abstract Background To better understand the molecular interactions of Bt toxins with non-target insects, we have examined the real-time binding specificity and affinity of Cry1 toxins to native silkworm (Bombyx mori midgut receptors. Previous studies on B. mori receptors utilized brush border membrane vesicles or purifed receptors in blot-type assays. Results The Bombyx mori (silkworm aminopeptidase N (APN and cadherin-like receptors for Bacillus thuringiensis insecticidal Cry1Aa toxin were purified and their real-time binding affinities for Cry toxins were examined by surface plasmon resonance. Cry1Ab and Cry1Ac toxins did not bind to the immobilized native receptors, correlating with their low toxicities. Cry1Aa displayed moderate affinity for B. mori APN (75 nM, and unusually tight binding to the cadherin-like receptor (2.6 nM, which results from slow dissociation rates. The binding of a hybrid toxin (Aa/Aa/Ac was identical to Cry1Aa. Conclusions These results indicate domain II of Cry1Aa is essential for binding to native B. mori receptors and for toxicity. Moreover, the high-affinity binding of Cry1Aa to native cadherin-like receptor emphasizes the importance of this receptor class for Bt toxin research.

  4. Binding specificity of Bacillus thuringiensis Cry1Aa for purified, native Bombyx mori aminopeptidase N and cadherin-like receptors

    Science.gov (United States)

    Jenkins, Jeremy L; Dean, Donald H

    2001-01-01

    Background To better understand the molecular interactions of Bt toxins with non-target insects, we have examined the real-time binding specificity and affinity of Cry1 toxins to native silkworm (Bombyx mori) midgut receptors. Previous studies on B. mori receptors utilized brush border membrane vesicles or purifed receptors in blot-type assays. Results The Bombyx mori (silkworm) aminopeptidase N (APN) and cadherin-like receptors for Bacillus thuringiensis insecticidal Cry1Aa toxin were purified and their real-time binding affinities for Cry toxins were examined by surface plasmon resonance. Cry1Ab and Cry1Ac toxins did not bind to the immobilized native receptors, correlating with their low toxicities. Cry1Aa displayed moderate affinity for B. mori APN (75 nM), and unusually tight binding to the cadherin-like receptor (2.6 nM), which results from slow dissociation rates. The binding of a hybrid toxin (Aa/Aa/Ac) was identical to Cry1Aa. Conclusions These results indicate domain II of Cry1Aa is essential for binding to native B. mori receptors and for toxicity. Moreover, the high-affinity binding of Cry1Aa to native cadherin-like receptor emphasizes the importance of this receptor class for Bt toxin research. PMID:11722800

  5. Preliminary investigations reveal that Bacillus thuringiensis δ ...

    African Journals Online (AJOL)

    The imminent introduction of transgenic crops into Kenya requires a rigorous assessment of the potential risks involved. This study focused on the possible effect of Bacillus thuringiensisδ-endotoxin [CryIA(c)] on arbuscular mycorrhizal fungi (AMF) associated with sorghum. In green house experiments, sorghum seedlings ...

  6. Bacillus thuringiensis and its application in agriculture

    African Journals Online (AJOL)

    USER

    2010-04-05

    Apr 5, 2010 ... Key words: Bacillus thuringiensis, endotoxins, crop plants. INTRODUCTION ..... of resistance in the pest and unfavorable interactions with beneficial .... with slower resistance evolution in North Carolina compared to .... level of 0.18% cross pollination in the experimental rice lines. .... Ecology and Safety.

  7. Botulinum toxin

    Directory of Open Access Journals (Sweden)

    Nigam P

    2010-01-01

    Full Text Available Botulinum toxin, one of the most poisonous biological substances known, is a neurotoxin produced by the bacterium Clostridium botulinum. C. botulinum elaborates eight antigenically distinguishable exotoxins (A, B, C 1 , C 2 , D, E, F and G. All serotypes interfere with neural transmission by blocking the release of acetylcholine, the principal neurotransmitter at the neuromuscular junction, causing muscle paralysis. The weakness induced by injection with botulinum toxin A usually lasts about three months. Botulinum toxins now play a very significant role in the management of a wide variety of medical conditions, especially strabismus and focal dystonias, hemifacial spasm, and various spastic movement disorders, headaches, hypersalivation, hyperhidrosis, and some chronic conditions that respond only partially to medical treatment. The list of possible new indications is rapidly expanding. The cosmetological applications include correction of lines, creases and wrinkling all over the face, chin, neck, and chest to dermatological applications such as hyperhidrosis. Injections with botulinum toxin are generally well tolerated and side effects are few. A precise knowledge and understanding of the functional anatomy of the mimetic muscles is absolutely necessary to correctly use botulinum toxins in clinical practice.

  8. BACILLUS THURINGIENSIS ELASTASES WITH INSECTICIDE ACTIVITY

    Directory of Open Access Journals (Sweden)

    E. V. Matseliukh

    2015-10-01

    Full Text Available The purpose of the research was a screening of proteases with elastase activity among Bacillus thuringiensis strains, their isolation, partially purification, study of physicochemical properties and insecticide activity in relation to the larvae of the Colorado beetle. The objects of the investigation were 18 strains of B. thuringiensis, isolated from different sources: sea water, dry biological product "Bitoksibatsillin" and also from natural populations of Colorado beetles of the Crimea, Kherson, Odesa, Mykolaiv and Zaporizhiia regions of Ukraine. Purification of enzymes with elastase activity isolated from above mentioned strains was performed by gel-chromatography and insecticide activity was studied on the 3–4 larvae instar of Colorado beetle. The ability of a number of B. thuringiensis strains to synthesize the proteases with elastase activity has been established. The most active were enzymes obtained from strains IMV B-7465, IMV B-7324 isolated from sea water, and strains 9, 902, Bt-H and 0-239 isolated from Colorado beetles. The study of the physicochemical properties of the partially purified proteases of these strains showed that they belonged to enzymes of the serine type. Peptidases of a number of B. thuringiensis strains (IMV B-7324, IMV B-7465, 902, 0-239, 9 are metal-dependent enzymes. Optimal conditions of action of all tested enzymes are the neutral and alkaline рН values and the temperatures of 30–40 °С. The studies of influence of the complex enzyme preparations and partially purified ones of B. thuringiensis strains on the larvae instar of Colorado beetles indicated that enzymes with elastase activity could be responsible for insecticide action of the tested strains.

  9. Efektivitas Bacillus thuringiensis dalam Pengendalian Larva Nyamuk Anopheles sp.

    Directory of Open Access Journals (Sweden)

    Citra Inneke Wibowo

    2017-08-01

    Full Text Available Nyamuk Anopheles sp adalah vektor penyakit malaria. Pengendalian vektor penyakit malaria dapat dilakukan secara biologis yaitu dengan menggunakan Bacillus thuringiensis. Tujuan penelitian adalah untuk mengetahui efektivitas konsentrasi Bacillus thuringiensis dalam pengendalian larva nyamuk Anopheles sp.Penelitian ini dilakukan secara eksperimental menggunakan Rancangan Acak Lengkap Faktorial (RAL Faktorial yang terdiri atas dua faktor yaitu konsentrasi Bacillus thuringiensis dan stadia larva Anopheles dengan pengulangan tiga kali.Perlakuan yang dicobakan adalahkonsentrasi Bacillus thuringiensis (A yang terdiri atas 5 taraf:A0: konsentrasi B.thuringiensis 0 CFU.mL-1, A1: konsentrasi B.thuringiensis 102 CFU.mL-1, A2: konsentrasi B.thuringiensis 104 CFU.mL-1, A3: konsentrasi B.thuringiensis 106CFU.mL-1, A4: konsentrasi B.thuringiensis 108CFU.mL-1. Perlakuan tahapan instar larva Anopheles sp. (B adalah sebagai berikut:B1: stadia larva instar I, B2: stadia larva instar II, B3: stadia larva instar III, B4: stadia larva instar IVsehingga terdapat 60 satuan percobaan. Hasil penelitian  menunjukkan konsentrasi B. thuringiensis isolat CK dan IPB CC yang paling berpengaruh dalam pengendalian larva Anopheles sp adalah 108 CFU.mL-1 . Instar larva yang paling peka terhadap B. thuringiensis isolat IPB CC adalah instar I dan II sedangkan instar yang peka terhadap isolat CK adalah instar II, Perlakuan konsentrasi isolat B. thuringiensis dan tingkat instar larva yang paling baik dalam pengendalian larva Anopheles sp. adalah 108 CFU.mL-1, dan instar I dan II.

  10. Isolation of bacillus thuringiensis from different samples from Mansehra District

    International Nuclear Information System (INIS)

    Younis, F.; Lodhi, A.F.; Raza, G.

    2009-01-01

    The insecticidal activity of Bacillus thuringiensis has made it very interesting for the control of a variety of agricultural pests and human disease vectors. The present study is an attempt to explore the potential and diversity. of Bacillus thuringiensis. from the local environment for the control of cotton spotted bollworm (Earias sp.), a major pest of cotton. Two hundred and ninety eight samples of soil, grain dust, wild animal dung, birds dropping, decaying leaves and dead insects were collected from different ecological environments of Mansehra District yielding 438 Bacillus thuringiensis isolates that produce parasporal crystalline inclusions. In this study the soil samples were found to be the richest source for Bacillus thuringiensis. (author)

  11. A Tenebrio molitor GPI-anchored alkaline phosphatase is involved in binding of Bacillus thuringiensis Cry3Aa to brush border membrane vesicles.

    Science.gov (United States)

    Zúñiga-Navarrete, Fernando; Gómez, Isabel; Peña, Guadalupe; Bravo, Alejandra; Soberón, Mario

    2013-03-01

    Bacillus thuringiensis Cry toxins recognizes their target cells in part by the binding to glycosyl-phosphatidyl-inositol (GPI) anchored proteins such as aminopeptidase-N (APN) or alkaline phosphatases (ALP). Treatment of Tenebrio molitor brush border membrane vesicles (BBMV) with phospholipase C that cleaves out GPI-anchored proteins from the membranes, showed that GPI-anchored proteins are involved in binding of Cry3Aa toxin to BBMV. A 68 kDa GPI-anchored ALP was shown to bind Cry3Aa by toxin overlay assays. The 68 kDa GPI-anchored ALP was preferentially expressed in early instar larvae in comparison to late instar larvae. Our work shows for the first time that GPI-anchored ALP is important for Cry3Aa binding to T. molitor BBMV suggesting that the mode of action of Cry toxins is conserved in different insect orders. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Differential protection of Cry1Fa toxin against Spodoptera frugiperda larval gut proteases by cadherin orthologs correlates with increased synergism.

    Science.gov (United States)

    Rahman, Khalidur; Abdullah, Mohd Amir F; Ambati, Suresh; Taylor, Milton D; Adang, Michael J

    2012-01-01

    The Cry proteins produced by Bacillus thuringiensis (Bt) are the most widely used biopesticides effective against a range of crop pests and disease vectors. Like chemical pesticides, development of resistance is the primary threat to the long-term efficacy of Bt toxins. Recently discovered cadherin-based Bt Cry synergists showed the potential to augment resistance management by improving efficacy of Cry toxins. However, the mode of action of Bt Cry synergists is thus far unclear. Here we elucidate the mechanism of cadherin-based Cry toxin synergism utilizing two cadherin peptides, Spodoptera frugiperda Cad (SfCad) and Manduca sexta Cad (MsCad), which differentially enhance Cry1Fa toxicity to Spodoptera frugiperda neonates. We show that differential SfCad- and MsCad-mediated protection of Cry1Fa toxin in the Spodoptera frugiperda midgut correlates with differential Cry1Fa toxicity enhancement. Both peptides exhibited high affinity for Cry1Fa toxin and an increased rate of Cry1Fa-induced pore formation in S. frugiperda. However, only SfCad bound the S. frugiperda brush border membrane vesicle and more effectively prolonged the stability of Cry1Fa toxin in the gut, explaining higher Cry1Fa enhancement by this peptide. This study shows that cadherin fragments may enhance B. thuringiensis toxicity by at least two different mechanisms or a combination thereof: (i) protection of Cry toxin from protease degradation in the insect midgut and (ii) enhancement of pore-forming ability of Cry toxin.

  13. Application of statistical experimental design for optimisation of bioinsecticides production by sporeless Bacillus thuringiensis strain on cheap medium.

    Science.gov (United States)

    Ben Khedher, Saoussen; Jaoua, Samir; Zouari, Nabil

    2013-01-01

    In order to overproduce bioinsecticides production by a sporeless Bacillus thuringiensis strain, an optimal composition of a cheap medium was defined using a response surface methodology. In a first step, a Plackett-Burman design used to evaluate the effects of eight medium components on delta-endotoxin production showed that starch, soya bean and sodium chloride exhibited significant effects on bioinsecticides production. In a second step, these parameters were selected for further optimisation by central composite design. The obtained results revealed that the optimum culture medium for delta-endotoxin production consists of 30 g L(-1) starch, 30 g L(-1) soya bean and 9 g L(-1) sodium chloride. When compared to the basal production medium, an improvement in delta-endotoxin production up to 50% was noted. Moreover, relative toxin yield of sporeless Bacillus thuringiensis S22 was improved markedly by using optimised cheap medium (148.5 mg delta-endotoxins per g starch) when compared to the yield obtained in the basal medium (94.46 mg delta-endotoxins per g starch). Therefore, the use of optimised culture cheap medium appeared to be a good alternative for a low cost production of sporeless Bacillus thuringiensis bioinsecticides at industrial scale which is of great importance in practical point of view.

  14. Application of statistical experimental design for optimisation of bioinsecticides production by sporeless Bacillus thuringiensis strain on cheap medium

    Directory of Open Access Journals (Sweden)

    Saoussen Ben Khedher

    2013-09-01

    Full Text Available In order to overproduce bioinsecticides production by a sporeless Bacillus thuringiensis strain, an optimal composition of a cheap medium was defined using a response surface methodology. In a first step, a Plackett-Burman design used to evaluate the effects of eight medium components on delta-endotoxin production showed that starch, soya bean and sodium chloride exhibited significant effects on bioinsecticides production. In a second step, these parameters were selected for further optimisation by central composite design. The obtained results revealed that the optimum culture medium for delta-endotoxin production consists of 30 g L-1 starch, 30 g L-1 soya bean and 9g L-1 sodium chloride. When compared to the basal production medium, an improvement in delta-endotoxin production up to 50% was noted. Moreover, relative toxin yield of sporeless Bacillus thuringiensis S22 was improved markedly by using optimised cheap medium (148.5 mg delta-endotoxins per g starch when compared to the yield obtained in the basal medium (94.46 mg delta-endotoxins per g starch. Therefore, the use of optimised culture cheap medium appeared to be a good alternative for a low cost production of sporeless Bacillus thuringiensis bioinsecticides at industrial scale which is of great importance in practical point of view.

  15. Characterization of Bacillus thuringiensis strains from Jordan and ...

    African Journals Online (AJOL)

    Eight serotypes with Bacillus thuringiensis israelensis being the most common. Out of the twenty-six isolated strains, five strains (serotype: kenyae, kurstaki, kurstaki HD1 and thuringiensis) that produced bipyramid crystal proteins were toxic to the lepidoptera larvae of Ephestia kuehniella Zeller. The SDS-PAGE protein ...

  16. Ecology and diversity of Bacillus thuringiensis in soil environment ...

    African Journals Online (AJOL)

    Bacillus thuringiensis populations ranged between 4.23 x 105, 6.52 x 105 cfu/g soil and consist of 11 types of isolates with 3 polymorphic, 7 spherical and 1 bipyramidal type of crystals. Polymorphic crystal containing isolates were further characterized. B. thuringiensis isolates were circular, white, flat and undulate or entire.

  17. Immobilization of alginate-encapsulated Bacillus thuringiensis var. israelensis containing different multivalent counterions for mosquito control.

    Science.gov (United States)

    Prabakaran, G; Hoti, S L

    2008-08-01

    Immobilized techniques have been used widely for the controlled release formulation of mosquitoes. Among the microbial formulations, polymeric matrices play an important role in the controlled release of microbial pesticide at rates sufficiently effective to kill mosquitoes in the field. The advantage of these matrices is that they enhance the stability of both spores and toxin against pH, temperature variations, and UV irradiation. The disadvantage of using calcium alginate beads is that they are unstable upon contact with phosphate of potassium or sodium ions rich in the mosquito habitats. To overcome these problems, attempts were made to encapsulate Bacillus thuringiensis var. israelensis within alginate by using different multivalent counterions, namely, calcium chloride, zinc sulfate, copper sulfate, cobalt chloride, and ferric chloride, and the beads formed were tested for its mosquito larvicidal activity. Among all the beads tested, zinc alginate beads resulted in maximum larvicidal activity of 98% (+/-1.40 SE) against Culex quinquefasciatus IIIrd instar larvae and maximum spore count of 3.36 x 10(5) (+/-5291.50 SE) CFU/ml. Zinc alginate beads maintained their structure for up to 48 h when shaken vigorously on a rotary shaker at 180 rpm in the presence of 10 mM potassium phosphate buffer (pH 6.8 +/- 0.1). In conclusion, our results suggest that the use of zinc sulfate as counterions to encapsulate B. thuringiensis var. israelensis within alginate may be a potent mosquito control program in the habitats where more phosphate ions are present.

  18. A single type of cadherin is involved in Bacillus thuringiensis toxicity in Plutella xylostella.

    Science.gov (United States)

    Park, Y; Herrero, S; Kim, Y

    2015-12-01

    Cadherins have been described as one the main functional receptors for the toxins of the entomopathogenic bacterium, Bacillus thuringiensis (Bt). With the availability of the whole genome of Plutella xylostella, different types of cadherins have been annotated. In this study we focused on determining those members of the cadherin-related proteins that potentially play a role in the mode of action of Bt toxins. For this, we mined the genome of P. xylostella to identify these putative cadherins. The genome screening revealed 52 genes that were annotated as cadherin or cadherin-like genes. Further analysis revealed that six of these putative cadherins had three motifs common to all Bt-related cadherins: a signal peptide, cadherin repeats and a transmembrane domain. From the six selected cadherins, only P. xylostella cadherin 1 (PxCad1) was expressed in the larval midgut and only the silencing of this gene by RNA interference (double-stranded RNA feeding) reduce toxicity and binding to the midgut of the Cry1Ac type toxin from Bt. These results indicate that from the whole set of cadherin-related genes identified in P. xylostella, only PxCad1 is associated with the Cry1Ac mode of action. © 2015 The Royal Entomological Society.

  19. Chitinolitic activity in proteic extracts of Bacillus thuringiensis toxic to boll weevil (Anthonomus grandis)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, T.S; Rocha, T.L. [EMBRAPA Recursos Geneticos e Biotecnologia, DF (Brazil); Vasconcelos, E.A.R [Universidade de Brasilia (UnB), DF (Brazil); Grossi-de-Sa, M.F. [Universidade Catolica de Brasilia, DF (Brazil)

    2008-07-01

    Full text: Bacillus thuringiensis (Bt) is a spore forming bacteria, which produces Cry proteins toxic towards several insect orders. Bt S 811 strain produces at least three Cry toxins: Cry1Ab, Cry1Ia12, and Cry8, and shown toxicity to insects from Coleoptera order. In order to characterize the production of theses toxins, and check its activity against Boll weevil larvae, proteic extracts from Bt cells and supernatant proteins from the bacterial culture, were obtained at different stages of cell cycle; 8, 16, 24, and 32 hours after inoculation (HAI). Proteins from 32 HAI of the supernatant, and 8 HAI of the cellular fractions, shown highest activity towards the Boll weevil larvae. Western blotting assays using anti-Cry8 and anti-Cry1I were carried out to analyse these toxins in the Bt proteic extracts. The existence of a Cry8 was detected at 8 HAI in the cellular fraction, what allow associate this molecule with the toxicity of this fraction. However, toxicity observed at 32 HAI in the supernatant fraction, was not possible to be associated with Cry8 or Cry1Ia toxins, indicating that there are another protein(s) responsible for the toxicity. A protein homo log to Cry1Ab was identified by 'Peptide Mass Fingerprint' at 32 HAI of the supernatant fraction and a chitin binding protein was identified by 2DE/MS/MS in this same stage and chitinolitic activity was also observed by enzymatic assay. All our data suggest a possible synergism between Cry toxins and a chitinase in the activity of this strain towards Boll weevil.

  20. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera.

    Directory of Open Access Journals (Sweden)

    Wenbo Chen

    Full Text Available Evolution of resistance by insects threatens the continued success of pest control using insecticidal crystal (Cry proteins from the bacterium Bacillus thuringiensis (Bt in sprays and transgenic plants. In this study, laboratory selection with Cry1Ac yielded five strains of cotton bollworm, Helicoverpa armigera, with resistance ratios at the median lethal concentration (LC50 of activated Cry1Ac ranging from 22 to 1700. Reduced activity and reduced transcription of an alkaline phosphatase protein that binds Cry1Ac was associated with resistance to Cry1Ac in the four most resistant strains. A Cry1Ac-binding fragment of alkaline phosphatase from H. armigera (HaALP1f was not toxic by itself, but it increased mortality caused by Cry1Ac in a susceptible strain and in all five resistant strains. Although synergism of Bt toxins against susceptible insects by toxin-binding fragments of cadherin and aminopeptidase N has been reported previously, the results here provide the first evidence of synergism of a Bt toxin by a toxin-binding fragment of alkaline phosphatase. The results here also provide the first evidence of synergism of a Bt toxin by any toxin-binding peptide against resistant insects.

  1. Spore prevalence and toxigenicity of Bacillus cereus and Bacillus thuringiensis isolates from U.S. retail spices.

    Science.gov (United States)

    Hariram, Upasana; Labbé, Ronald

    2015-03-01

    Recent incidents of foodborne illness associated with spices as the vehicle of transmission prompted this examination of U.S. retail spices with regard to Bacillus cereus. This study focused on the levels of aerobic-mesophilic spore-forming bacteria and B cereus spores associated with 247 retail spices purchased from five states in the United States. Samples contained a wide range of aerobic-mesophilic bacterial spore counts (spices had high levels of aerobic spores (> 10(7) CFU/g). Using a novel chromogenic agar, B. cereus and B. thuringiensis spores were isolated from 77 (31%) and 11 (4%) samples, respectively. Levels of B. cereus were spice isolates to form spores, produce diarrheal toxins, and grow at moderately abusive temperatures makes retail spices an important potential vehicle for foodborne illness caused by B. cereus strains, in particular those that produce diarrheal toxins.

  2. Plasmid-associated sensitivity of Bacillus thuringiensis to UV light

    International Nuclear Information System (INIS)

    Benoit, T.G.; Wilson, G.R.; Bull, D.L.; Aronson, A.I.

    1990-01-01

    Spores and vegetative cells of Bacillus thuringiensis were more sensitive to UV light than were spores or cells of plasmid-cured B. thuringiensis strains or of the closely related Bacillus cereus. Introduction of B. thuringiensis plasmids into B. cereus by cell mating increased the UV sensitivity of the cells and spores. Protoxins encoded by one or more B. thuringiensis plasmids were not involved in spore sensitivity, since a B. thuringiensis strain conditional for protoxin accumulation was equally sensitive at the permissive and nonpermissive temperatures. In addition, introduction of either a cloned protoxin gene, the cloning vector, or another plasmid not containing a protoxin gene into a plasmid-cured strain of B. thuringiensis all increased the UV sensitivity of the spores. Although the variety of small, acid-soluble proteins was the same in the spores of all strains examined, the quantity of dipicolinic acid was about twice as high in the plasmid-containing strains, and this may account for the differences in UV sensitivity of the spores. The cells of some strains harboring only B. thuringiensis plasmids were much more sensitive than cells of any of the other strains, and the differences were much greater than observed with spores

  3. Susceptibilidade de larvas de Cerotoma arcuata Olivier (Coleoptera: Chrysomelidae a Beauveria bassiana (Bals. Vuillemin, Metarhizium anisopliae (Metsch. Sorokin e Bacillus thuringiensis Berliner Susceptibility of Cerotoma arcuata Olivier (Coleoptera: Chrysomelidae larvae to Beauveria bassiana (Bals. Vuillemin, Metarhizium anisopliae (Metsch. Sorokin and Bacillus thuringiensis Berliner

    Directory of Open Access Journals (Sweden)

    Maria Lucia França Teixeira

    2007-02-01

    Full Text Available Larvas de 2° instar de Cerotoma arcuata foram avaliadas em relação à susceptibilidade aos fungos entomopatogênicos Beauveria bassiana, Metarhizium anisopliae e a bactéria Bacillus thuringiensis com as toxinas Cry3. Os insetos adultos foram mantidos em gaiolas e alimentados com plântulas de feijão (Phaseolus vulgaris L. e as larvas em "gerbox" com cotilédones de plântulas de feijão recém-germinadas. Das oito estirpes de B. bassiana avaliadas, CG 156 e CG 213 causaram 100% de mortalidade das larvas, as duas estirpes de M. anisopliae CG 210 e CG 321 foram patogênicas, eliminando 80 e 100% das larvas de C. arcuata, e, das cinco estirpes de B. thuringiensis testadas, o isolado CG 940 causou 70% de mortalidade das larvas.Second instar larvae of Cerotoma arcuata were evaluated concerning the susceptibility to fungi Beauveria bassiana and Metarhizium anisopliae and Bacillus thuringiensis strains containing Cry3 toxin. Adults of C. arcuata were kept in large cages and fed on bean seedlings and the larvae were reared in ‘gearbox’ feeding on germinated Phaseolus bean cotyledons. Strains CG 156 and CG 213 of B. bassiana killed 100% of the insect larvae and strains CG 210 and CG 321 of M. anisopliae killed 80 and 100% of the insect larvae. Strain CG 940 of B. thuringiensis killed 70% of the insect larvae.

  4. Occurrence of Natural Bacillus thuringiensis Contaminants and Residues of Bacillus thuringiensis-Based Insecticides on Fresh Fruits and Vegetables

    Science.gov (United States)

    Frederiksen, Kristine; Rosenquist, Hanne; Jørgensen, Kirsten; Wilcks, Andrea

    2006-01-01

    A total of 128 Bacillus cereus-like strains isolated from fresh fruits and vegetables for sale in retail shops in Denmark were characterized. Of these strains, 39% (50/128) were classified as Bacillus thuringiensis on the basis of their content of cry genes determined by PCR or crystal proteins visualized by microscopy. Random amplified polymorphic DNA analysis and plasmid profiling indicated that 23 of the 50 B. thuringiensis strains were of the same subtype as B. thuringiensis strains used as commercial bioinsecticides. Fourteen isolates were indistinguishable from B. thuringiensis subsp. kurstaki HD1 present in the products Dipel, Biobit, and Foray, and nine isolates grouped with B. thuringiensis subsp. aizawai present in Turex. The commercial strains were primarily isolated from samples of tomatoes, cucumbers, and peppers. A multiplex PCR method was developed to simultaneously detect all three genes in the enterotoxin hemolysin BL (HBL) and the nonhemolytic enterotoxin (NHE), respectively. This revealed that the frequency of these enterotoxin genes was higher among the strains indistinguishable from the commercial strains than among the other B. thuringiensis and B. cereus-like strains isolated from fruits and vegetables. The same was seen for a third enterotoxin, CytK. In conclusion, the present study strongly indicates that residues of B. thuringiensis-based insecticides can be found on fresh fruits and vegetables and that these are potentially enterotoxigenic. PMID:16672488

  5. Bacillus thuringiensis: generalidades: Un acercamiento a su empleo en el biocontrol de insectos lepidópteros que son plagas agrícolas Bacillus thuringiensis: general aspects: An approach to its use in the biological control of lepidopteran insects behaving as agricultural pests

    Directory of Open Access Journals (Sweden)

    Diego H. Sauka

    2008-06-01

    in agricultural and other natural settings. With this knowledge as background and the help of biotechnological tools, researchers are now reporting promising results in the development of more useful toxins, recombinant bacteria, new formulations and transgenic plants that express pesticidal activity, in order to assure that these products are utilized with the best efficiency and benefit. This article is an attempt to integrate all these recent developments in the study of B. thuringiensis into a context of biological control of lepidopteran insect pest of agricultural importance.

  6. A parasporin from Bacillus thuringiensis native to Peninsular India ...

    Indian Academy of Sciences (India)

    Thomas Chubicka

    2018-05-03

    May 3, 2018 ... Apoptosis; Bacillus thuringiensis; crystal protein; cytotoxicity; ... It acts by creating pores in the intestinal duct ... however diverse types of mechanisms of action have been ... parasporins that can be utilized in the cancer drug.

  7. Ecology and diversity of Bacillus thuringiensis in soil environment

    African Journals Online (AJOL)

    SERVER

    2007-07-04

    Jul 4, 2007 ... B. thuringiensis isolates were circular, white, flat and undulate or entire. ... India exclusively by the multinational organizations (Sax- ena, 2000). However ... tive, reproductive and crystal structure determination. Physiological.

  8. Novel genetic factors involved in resistance to Bacillus thuringiensis in Plutella xylostella.

    Science.gov (United States)

    Ayra-Pardo, C; Raymond, B; Gulzar, A; Rodríguez-Cabrera, L; Morán-Bertot, I; Crickmore, N; Wright, D J

    2015-12-01

    The widespread and sustainable exploitation of the entomopathogen Bacillus thuringiensis (Bt) in pest control is threatened by the evolution of resistance. Although resistance is often associated with loss of binding of the Bt toxins to the insect midgut cells, other factors have been implicated. Here we used suppressive subtractive hybridization and gene expression suppression to identify additional molecular components involved in Bt-resistance in Plutella xylostella. We isolated transcripts from genes that were differentially expressed in the midgut of larvae from a resistant population, following ingestion of a Bt kurstaki HD1 strain-based commercial formulation (DiPel), and compared with a genetically similar susceptible population. Quantitative real-time polymerase-chain reaction (RT-PCR) analysis confirmed the differential basal expression of a subset of these genes. Gene expression suppression of three of these genes (P. xylostella cyclin-dependent kinase 5 regulatory subunit associated protein 1-like 1, stromal cell-derived factor 2-like 1 and hatching enzyme-like 1) significantly increased the pathogenicity of HD1 to the resistant population. In an attempt to link the multitude of factors reportedly influencing resistance to Bt with the well-characterized loss of toxin binding, we also considered Bt-resistance models in P. xylostella and other insects. © 2015 The Royal Entomological Society.

  9. 40 CFR 180.1107 - Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas...

    Science.gov (United States)

    2010-07-01

    ... thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement... killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens is exempt from the...

  10. Botulinum toxin injection - larynx

    Science.gov (United States)

    Injection laryngoplasty; Botox - larynx: spasmodic dysphonia-BTX; Essential voice tremor (EVT)-btx; Glottic insufficiency; Percutaneous electromyography - guided botulinum toxin treatment; Percutaneous indirect laryngoscopy - guided botulinum toxin treatment; ...

  11. Defense against Toxin Weapons

    National Research Council Canada - National Science Library

    Franz, David

    1998-01-01

    .... We typically fear what we do not understand. Although un- derstanding toxin poisoning is less useful in a toxin attack than knowledge of cold injury on an Arctic battlefield, information on any threat reduces its potential to harm...

  12. Long lasting persistence of Bacillus thuringiensis Subsp. israelensis (Bti in mosquito natural habitats.

    Directory of Open Access Journals (Sweden)

    Mathieu Tilquin

    Full Text Available BACKGROUND: The detrimental effects of chemical insecticides on the environment and human health have lead to the call for biological alternatives. Today, one of the most promising solutions is the use of spray formulations based on Bacillus thuringiensis subsp. israelensis (Bti in insect control programs. As a result, the amounts of Bti spread in the environment are expected to increase worldwide, whilst the common belief that commercial Bti is easily cleared from the ecosystem has not yet been clearly established. METHODOLOGY/MAIN FINDINGS: In this study, we aimed to determine the nature and origin of the high toxicity toward mosquito larvae found in decaying leaf litter collected in several natural mosquito breeding sites in the Rhône-Alpes region. From the toxic fraction of the leaf litter, we isolated B. cereus-like bacteria that were further characterized as B. thuringiensis subsp. israelensis using PCR amplification of specific toxin genes. Immunological analysis of these Bti strains showed that they belong to the H14 group. We finally used amplified length polymorphism (AFLP markers to show that the strains isolated from the leaf litter were closely related to those present in the commercial insecticide used for field application, and differed from natural worldwide genotypes. CONCLUSIONS/SIGNIFICANCE: Our results raise the issue of the persistence, potential proliferation and environmental accumulation of human-spread Bti in natural mosquito habitats. Such Bti environmental persistence may lengthen the exposure time of insects to this bio-insecticide, thereby increasing the risk of resistance acquisition in target insects, and of a negative impact on non-target insects.

  13. Biochemical, immunological and toxicological characteristics of the crystal proteins of Bacillus thuringiensis subsp. medellin

    Directory of Open Access Journals (Sweden)

    Sergio Orduz

    1996-04-01

    Full Text Available Characterization of the insecticidal and hemolytic activity of solubilized crystal proteins of Bacillus thuringiensis (Bt subsp. medellin (Btmed was performed and compared to solubilized crystal proteins of isolates 1884 of B. thuringiensis subsp. israelensis (Bti and isolate PG-14 of B. thuringiensis subsp. morrisoni (Btm. In general, at acid pH values solubilization of the Bt crystalline parasporal inclusions (CPI was lower than at alkaline pH. The larvicidal activity demonstrated by the CPI of Btmed indicated that optimal solubilization of CPI takes place at a pH value of 11.3, in Bti at pH values from 5.03 to 11.3 and in Btm at pH values from 9.05 to 11.3. Hemolytic activity against sheep red blood cells was mainly found following extraction at pH 11.3 in all Bt strains tested. Polyacrylamide gel electrophoresis under denaturing conditions revealed that optimal solubilization of the CPI in all Bt strains takes place at the alkaline pH values from 9.05 to 11.3. An enriched preparation of Btmed crystals was obtained, solubilized and crystal proteins were separated on a size exclusion column (Sephacryl S-200. Three main protein peaks were observed on the chromatogram. The first peak had two main proteins that migrate between 90 to 100 kDa. These proteins are apparently not common to other Bt strains isolated to date. The second and third peaks obtained from the size exclusion column yielded polypeptides of 68 and 28-30 kDa, respectively. Each peak independently, showed toxicity against 1st instar Culex quinquefasciatus larvae. Interestingly, combinations of the fractions corresponding to the 68 and 30 kDa protein showed an increased toxicity. These results suggest that the 94 kDa protein is an important component of the Btmed toxins with the highest potency to kill mosquito larvae. When crystal proteins of Bti were probed with antisera raised independently against the three main protein fractions of Btmed, the only crystal protein that showed

  14. Use of endophytic diazotrophic bacteria as a vector to express the cry3A gene from Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Salles Joana Falcão

    2000-01-01

    Full Text Available The goal of this study was to evaluate the potential of endophytic diazotrophic bacteria as a vector to express a cry gene from Bacillus thuringiensis, envisaging the control of pests that attack sugarcane plants. The endophytic nitrogen-fixing bacteria Gluconacetobacter diazotrophicus strain BR11281 and Herbaspirillum seropedicae strain BR11335 were used as models. The cry3A gene was transferred by conjugation using a suicide plasmid and the recombinant strains were selected by their ability to fix nitrogen in semi-solid N-free medium. The presence of the cry gene was detected by Southern-blot using an internal fragment of 1.0 kb as a probe. The production of delta-endotoxin by the recombinant H. seropedicae strain was detected by dot blot while for G. diazotrophicus the Western-blot technique was used. In both cases, a specific antibody raised against the B. thuringiensis toxin was applied. The delta-endotoxin production showed by the G. diazotrophicus recombinant strain was dependent on the nitrogen fixing conditions since the cry3A gene was fused to a nif promoter. In the case of H. seropedicae the delta-endotoxin expression was not affected by the promoter (rhi used. These results suggest that endophytic diazotrophic bacteria can be used as vectors to express entomopathogenic genes envisaging control of sugarcane pests.

  15. Bioterrorism: toxins as weapons.

    Science.gov (United States)

    Anderson, Peter D

    2012-04-01

    The potential for biological weapons to be used in terrorism is a real possibility. Biological weapons include infectious agents and toxins. Toxins are poisons produced by living organisms. Toxins relevant to bioterrorism include ricin, botulinum, Clostridium perfrigens epsilson toxin, conotoxins, shigatoxins, saxitoxins, tetrodotoxins, mycotoxins, and nicotine. Toxins have properties of biological and chemical weapons. Unlike pathogens, toxins do not produce an infection. Ricin causes multiorgan toxicity by blocking protein synthesis. Botulinum blocks acetylcholine in the peripheral nervous system leading to muscle paralysis. Epsilon toxin damages cell membranes. Conotoxins block potassium and sodium channels in neurons. Shigatoxins inhibit protein synthesis and induce apoptosis. Saxitoxin and tetrodotoxin inhibit sodium channels in neurons. Mycotoxins include aflatoxins and trichothecenes. Aflatoxins are carcinogens. Trichothecenes inhibit protein and nucleic acid synthesis. Nicotine produces numerous nicotinic effects in the nervous system.

  16. The diverse nematicidal properties and biocontrol efficacy of Bacillus thuringiensis Cry6A against the root-knot nematode Meloidogyne hapla.

    Science.gov (United States)

    Yu, Ziquan; Xiong, Jing; Zhou, Qiaoni; Luo, Haiyan; Hu, Shengbiao; Xia, Liqiu; Sun, Ming; Li, Lin; Yu, Ziniu

    2015-02-01

    Cry6A toxin from Bacillus thuringiensis is a representative nematicidal crystal protein with a variety of nematicidal properties to free-living nematode Caenorhabditis elegans. Cry6A shares very low homology and different structure with Cry5B, another representative nematicidal crystal protein, and probably acts in a distinct pathway. All these strongly indicate that Cry6A toxin is likely a potent candidate for nematicide. The present study dealt with global investigation to determine the detrimental impacts of Cry6Aa2 toxin on Meloidogyne hapla, a root-knot nematode, and evaluated its biocontrol efficacy in pot experiment. Obtained results indicated that Cry6Aa2 toxin exhibits obvious toxicity to second-stage juvenile of M. hapla, and significantly inhibits egg hatch, motility, and penetration to host plant. Pot experiment suggested that soil drenching with spore-crystal mixture of Cry6Aa2 can clearly lighten the disease of root-knot nematode, including reduction of galling index and egg masses on host plant root, decreasing final population of nematode in soil. Moreover, application of Cry6Aa2 can obviously promote plant growth. These results demonstrated that Cry6Aa2 toxin is a promising nematicidal agent, and possesses great potential in plant-parasitic nematode management and construction of transgenic crop with constant resistance to nematode. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Effects of Bacillus thuringiensis (Bt) corn on soil Folsomia fimetaria, Folsomia candida (Collembola), Hypoaspis aculeifer (Acarina) and Enchytraeus crypticus (Oligochaeta)

    DEFF Research Database (Denmark)

    Ke, X.; Krogh, P. H.

    The effects of the Cry1Ab toxin from Bacillus thuringiensis (corn variety Cascade Bt MON810 and DeKalb variety 618 Bt) were studied on survival and reproduction of the soil collembolan Folsomia fimetaria, Folsomia candida, the collembolan predator mite Hypoaspis aculeifer and enchytraeids....... There was a weak significant reduction by 30% on the reproduction of F. fimetaria fed Bt corn in Petri dishes for 21 days. Likewise there was a weak significant reduction by 40% of the reproduction of H. aculeifer by Bt corn in amounts corresponding to 20 g plant material kg-1 soil in the two species soil......-litter microcosm systems. There were no effects of Bt corn materials on the reproduction of F. fimetaria and E. crypticus in the single species soil-litter microcosms. No effects of Bt corn materials on mortality of all the 4 species were observed in all treatments. The tendency of effects of the Bt corn...

  18. Extraction and Characterization of Polyhydroxybutyrates (PHB from Bacillus thuringiensisKSADL127 Isolated from Mangrove Environments of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Abdullah A. Alarfaj

    2015-10-01

    Full Text Available ABSTRACTPolyhydroxybutyrate (PHB is a renowned biodegradable plastic that do not release any toxins or residues in the environment like petroleum based plastics. In the present study, 50 bacteria isolated from mangrove niche, Saudi Arabia, were screened for maximum PHB production. All the 50 strains showed positive for PHB production, of which one strain showed maximum of 137 mgL-1. The most PHB accumulated bacterium was selected and identified asBacillus thuringiensis KSADL127, based on phenotypic characterization and 16S rRNA sequence analysis. Characterization of extracted PHB was carried out by FT-IR, NMR, UV spectroscopy, DSC, TGA, and LC-MS, which later confirmed the presence of intracellular accumulated polymer and substantiated as PHB.

  19. [Potential of Bacillus thuringiensis israelensis Berliner for controlling Aedes aegypti].

    Science.gov (United States)

    Polanczyk, Ricardo Antonio; Garcia, Marcelo de Oliveira; Alves, Sérgio Batista

    2003-12-01

    The importance of the entomopathogenic bacterium Bacillus thuringiensis israelensis in the control of Aedes aegypti is presented. The use and potential of B. thuringiensis israelensis against the mosquito vector of dengue fever is described. Other aspects such as insect's resistance development against chemicals and advantages and constraints of using microbial control are discussed. Emphasis is given to the importance of the use of this bacterium in Brazil, which could contribute significantly to solving the mosquito problem without affecting the environment, humans and others invertebrate organisms in critical regions.

  20. Activity of vegetative insecticidal proteins Vip3Aa58 and Vip3Aa59 of Bacillus thuringiensis against lepidopteran pests.

    Science.gov (United States)

    Baranek, Jakub; Kaznowski, Adam; Konecka, Edyta; Naimov, Samir

    2015-09-01

    Vegetative insecticidal proteins (Vips) secreted by some isolates of Bacillus thuringiensis show activity against insects and are regarded as insecticides against pests. A number of B. thuringiensis strains harbouring vip3A genes were isolated from different sources and identified by using a PCR based approach. The isolates with the highest insecticidal activity were indicated in screening tests, and their vip genes were cloned and sequenced. The analysis revealed two polymorphic Vip protein forms, which were classified as Vip3Aa58 and Vip3Aa59. After expression of the vip genes, the proteins were isolated and characterized. The activity of both toxins was estimated against economically important lepidopteran pests of woodlands (Dendrolimus pini), orchards (Cydia pomonella) and field crops (Spodoptera exigua). Vip3Aa58 and Vip3Aa59 were highly toxic and their potency surpassed those of many Cry proteins used in commercial bioinsecticides. Vip3Aa59 revealed similar larvicidal activity as Vip3Aa58 against S. exigua and C. pomonella. Despite 98% similarity of amino acid sequences of both proteins, Vip3Aa59 was significantly more active against D. pini. Additionally the effect of proteolytic activation of Vip58Aa and Vip3Aa59 on toxicity of D. pini and S. exigua was studied. Both Vip3Aa proteins did not show any activity against Tenebrio molitor (Coleoptera) larvae. The results suggest that the Vip3Aa58 and Vip3Aa59 toxins might be useful for controlling populations of insect pests of crops and forests. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Radiolabelling of cholera toxin

    Energy Technology Data Exchange (ETDEWEB)

    Santos, R.G.; Neves, Nicoli M.J. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Abdalla, L.F.; Brandao, R.L.; Etchehebehere, L. [Ouro Preto Univ., MG (Brazil). Escola de Farmacia. Lab. de Fisiologia e Bioquimica de Microorganismos; Lima, M.E. de [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Inst. de Ciencias Biologicas. Dept. de Bioquimica e Imunologia; Nicoli, J.R. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Inst. de Ciencias Biologicas. Dept. de Microbiologia

    1999-11-01

    Binding of cholera toxin to ganglioside receptors of enterocyte microvilli catalyzes the activation of adenylate cyclase causing a rise in cAMP which final result is a copious diarrhea. Saccharomyces boulardii, a nonpathogenic yeast has been used to prevent diarrhea. Although the antidiarrheic properties of S. boulardii are widely recognized, this yeast has been used on empirical basis, and the mechanism of this protective effect is unknown. The addition of cholera toxin to S. boulardii induces the raising of cAMP that triggers the activation of neutral trehalase. This suggests that toxin specifically binding to cells, is internalized and active the protein phosphorylation cascade. Our objective is labeling the cholera toxin to verify the presence of binding sites on yeast cell surfaces for the cholera toxin. Cholera toxin was radiolabelled with Na {sup 125} I by a chloramine-T method modified from Cuatrecasas and Griffiths et alii. The {sup 125} I-Cholera toxin showed a specific radioactivity at about 1000 cpm/fmol toxin. Biological activity of labeled cholera toxin measured by trehalase activation was similar to the native toxin. (author) 5 refs., 3 figs.; e-mail: nevesmj at urano.cdtn.br

  2. Radiolabelling of cholera toxin

    International Nuclear Information System (INIS)

    Santos, R.G.; Neves, Nicoli M.J.; Abdalla, L.F.; Brandao, R.L.; Etchehebehere, L.; Lima, M.E. de; Nicoli, J.R.

    1999-01-01

    Binding of cholera toxin to ganglioside receptors of enterocyte microvilli catalyzes the activation of adenylate cyclase causing a rise in cAMP which final result is a copious diarrhea. Saccharomyces boulardii, a nonpathogenic yeast has been used to prevent diarrhea. Although the antidiarrheic properties of S. boulardii are widely recognized, this yeast has been used on empirical basis, and the mechanism of this protective effect is unknown. The addition of cholera toxin to S. boulardii induces the raising of cAMP that triggers the activation of neutral trehalase. This suggests that toxin specifically binding to cells, is internalized and active the protein phosphorylation cascade. Our objective is labeling the cholera toxin to verify the presence of binding sites on yeast cell surfaces for the cholera toxin. Cholera toxin was radiolabelled with Na 125 I by a chloramine-T method modified from Cuatrecasas and Griffiths et alii. The 125 I-Cholera toxin showed a specific radioactivity at about 1000 cpm/fmol toxin. Biological activity of labeled cholera toxin measured by trehalase activation was similar to the native toxin. (author)

  3. Construction and characterization of the interdomain chimeras using Cry11Aa and Cry11Ba from Bacillus thuringiensis and identification of a possible novel toxic chimera.

    Science.gov (United States)

    Sun, Yunjun; Zhao, Qiang; Zheng, Dasheng; Ding, Xuezhi; Wang, Jingfang; Hu, Quanfang; Yuan, Zhiming; Park, Hyun-Woo; Xia, Liqiu

    2014-01-01

    Three structural domains of mosquitocidal Cry11Aa and Cry11Ba from Bacillus thuringiensis were exchanged to produce interdomain chimeras [BAA (11Ba/11Aa/11Aa), ABA (11Aa/11Ba/11Aa), AAB (11Aa/11Aa/11Ba), ABB (11Aa/11Ba/11Ba), BAB (11Ba/11Aa/11Ba), BBA (11Ba/11Ba/11Aa]. Chimeras BAB, BAA, BBA, and AAB formed inclusion bodies in the crystal-negative B. thuringiensis host and produced expected protein bands on SDS-PAGE gel. However, no inclusion body or target protein could be found for chimeras ABA and ABB. In bioassays using the fourth-instar larvae of Culex quinquefasciatus and Aedes aegypti, AAB had ~50 % lethal concentrations of 4.8 and 2.2 μg ml(-1), respectively; however, the rest of chimeras were not toxic. This study thus helps to understand the domain-function relationships of the Cry11Aa and Cry11Ba toxins. The toxic chimera, AAB, might be a candidate for mosquito control as its amino acid sequence is different from the two parental toxins.

  4. [Intoxication of botulinum toxin].

    Science.gov (United States)

    Chudzicka, Aleksandra

    2015-09-01

    Botulinum toxin is an egzotoxin produced by Gram positive bacteria Clostridium botulinum. It is among the most potent toxins known. The 3 main clinical presentations of botulism are as follows: foodborne botulism, infant botulism and wound botulism. The main symptom of intoxication is flat muscles paralysis. The treatment is supportive care and administration of antitoxin. In prevention the correct preparing of canned food is most important. Botulinum toxin is accepted as a biological weapon. © 2015 MEDPRESS.

  5. Environmental Distribution and Diversity of Insecticidal Proteins of Bacillus thuringiensis Berliner

    Directory of Open Access Journals (Sweden)

    Xavier, R.

    2007-01-01

    Full Text Available Bacillus thuringiensis Berliner based biopesticides have been successfully used world over for the control of agricultural pests and vectors of human diseases. Currently there are more than 200 B. thuringiensis strains with differing insecticidal activities are available as biocontrol agents and for developing transgenic plants. However, two major disadvantages are the development of insect resistance and high target specificity (narrow host range. Globally there is a continuous search for new B. thuringiensis strains with novel insecticidal activities. The present study aims to study the environmental distribution of B. thuringiensis and their toxic potential against insect pests. Soil and grain samples were collected from different environments and were processed by a modified acetate selection method. Initially B. thuringiensis isolates were screened on the basis of colony morphology and phase contrast microscopy for the presence of parasporal crystal inclusions. The population dynamics showed that B. thuringiensis is abundant in sericulture environment compared to other niches. Relative abundance of B. thuringiensis strains in sericulture environment shows the persistent association of B. thuringiensis with Bombyx mori (silk worm as insect pathogen. The protein profiles of the selected strains were studied by SDS-PAGE. The protein profiles of majority of B. thuringiensis isolates from grain storage facilities predominantly showing the 130 kDa and 68 kDa proteins, which is characteristics of lepidopteran active B. thuringiensis. However, one isolate BTRX-4 has 80-85 kDa protein, which is novel in that, this strain also exhibits antilepidopteran activity, which is normally presented by B. thuringiensis strains having 130 kDa and 68 kDa proteins. The protein profile of B. thuringiensis isolates from sericulture environment shows two different protein profiles. B. thuringiensis isolates BTRX-16 to BTRX-22 predominantly show 130 kDa protein

  6. Presence and significance of Bacillus thuringiensis Cry proteins associated with the Andean weevil Premnotrypes vorax (Coleoptera: Curculionidae

    Directory of Open Access Journals (Sweden)

    SilvioAlejandro López-Pazos

    2009-12-01

    Full Text Available The Andean weevil Premnotrypes vorax represents an important cause of damage to Colombian potato crops. Due to the impact of this plague on the economy of the country, we searched for new alternatives for its biological control, based on the entomopathogenic bacteria Bacillus thuringiensis. A total of 300 B. thuringiensis strains obtained from potato plantations infested with P. vorax were analyzed through crystal morphology, SDS-PAGE, PCR and bioassays. We used site- directed mutagenesis to modify the Cry3Aa protein. Most of the B. thuringiensis isolates had a bipyramidal crystal morphology. SDS-PAGE analyses had seven strains groups with σ-endotoxins from 35 to 135 kDa. The genes cry 2 and cry 1 were significantly more frequent in the P. vorax habitat (PCR analyses. Three mutant toxins, 1 (D354E, 2 (R345A, ∆Y350, ∆Y351, and 3 (Q482A, S484A, R485A, were analyzed to assess their activity against P. vorax larvae. Toxicity was low, or absent, against P. vorax for isolates, wild type cry 3Aa and cry 3Aa mutants. The genetic characterization of the collection provides opportunities for the selection of strains to be tested in bioassays against other insect pests of agricultural importance, and for designing Cry proteins with improved insecticidal toxicity. Rev. Biol. Trop. 57 (4: 1235-1243. Epub 2009 December 01.El gorgojo andino Premnotrypes vorax es una causa importante de daño en los cultivos colombianos de este tubérculo. Debido al impacto que esta plaga tiene sobre la economía del país, nos interesamos en buscar alternativas nuevas para el control biológico de P. vorax, basadas en la bacteria entomopatógena Bacillus thuringiensis. Se recolectaron un total de 300 cepas de B. thuringiensis a partir de plantaciones de papa infestadas con P. vorax, las cuales fueron analizadas por medio de la morfología del cristal, SDS-PAGE, PCR y ensayos biológicos. La mayoría de los aislamientos de B. thuringiensis presentaron cristales

  7. Insecticide susceptibility of Aedes albopictus and Ae. aegypti from Brazil and the Swiss-Italian border region.

    Science.gov (United States)

    Suter, Tobias; Crespo, Mônica Maria; de Oliveira, Mariana Francelino; de Oliveira, Thaynan Sama Alves; de Melo-Santos, Maria Alice Varjal; de Oliveira, Cláudia Maria Fontes; Ayres, Constância Flávia Junqueira; Barbosa, Rosângela Maria Rodrigues; Araújo, Ana Paula; Regis, Lêda Narcisa; Flacio, Eleonora; Engeler, Lukas; Müller, Pie; Silva-Filha, Maria Helena Neves Lobo

    2017-09-19

    Aedes aegypti and Ae. albopictus are two highly invasive mosquito species, both vectors of several viruses, including dengue, chikungunya and Zika. While Ae. aegypti is the primary vector in the tropics and sub-tropics, Ae. albopictus is increasingly under the public health watch as it has been implicated in arbovirus-transmission in more temperate regions, including continental Europe. Vector control using insecticides is the pillar of most control programmes; hence development of insecticide resistance is of great concern. As part of a Brazilian-Swiss Joint Research Programme we set out to assess whether there are any signs of existing or incipient insecticide resistance primarily against the larvicide Bacillus thuringiensis svar. israelensis (Bti), but also against currently applied and potentially alternative insecticides in our areas, Recife (Brazil) and the Swiss-Italian border region. Following World Health Organization guidelines, dose-response curves for a range of insecticides were established for both colonized and field caught Ae. aegypti and Ae. albopictus. The larvicides included Bti, two of its toxins, Cry11Aa and Cry4Ba, Lysinibacillus sphaericus, Vectomax CG®, a formulated combination of Bti and L. sphaericus, and diflubenzuron. In addition to the larvicides, the Swiss-Italian Ae. albopictus populations were also tested against five adulticides (bendiocarb, dichlorodiphenyltrichloroethane, malathion, permethrin and λ-cyhalothrin). Showing a similar dose-response, all mosquito populations were fully susceptible to the larvicides tested and, in particular, to Bti which is currently used both in Brazil and Switzerland. In addition, there were no signs of incipient resistance against Bti as larvae were equally susceptible to the individual toxins, Cry11Aa and Cry4Ba. The field-caught Swiss-Italian populations were susceptible to the adulticides tested but DDT mortality rates showed signs of reduced susceptibility. The insecticides currently used for

  8. The colonization of Bacillus thuringiensis strains in bryophytes

    Czech Academy of Sciences Publication Activity Database

    Lin, Q.; Zhu, P.; Carballar-Lejarazú, R.; Gelbič, Ivan; Guan, X.; Xu, L.; Zhang, L.

    2017-01-01

    Roč. 41, č. 1 (2017), s. 41-48 ISSN 1300-0152 Institutional support: RVO:60077344 Keywords : Bacillus thuringiensis * GFP * plant colonization Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.038, year: 2016 http://journals.tubitak.gov.tr/biology/issues/biy-17-41-1/biy-41-1-5-1510-16.pdf

  9. Bacillus thuringiensis and its application in agriculture | Ali | African ...

    African Journals Online (AJOL)

    Presently, a number of approaches to pest control via genetic engineering have been developed and genetically engineered crops expressing insecticidal characteristics are under cultivation for the last 15 years. Use of Bacillus thuringiensis genes encoding o̅ endotoxins with insecticidal characteristics is the major ...

  10. Antagonistic activity of selected strains of Bacillus thuringiensis ...

    African Journals Online (AJOL)

    121, were effective in the reduction of R. solani infection. In addition, GM-23 increased the length of pepper seedlings. These results suggest that the B. thuringiensis strains studied have an excellent potential to be used as bio-control agents of R.

  11. Detection of Bacillus thuringiensis genes in transgenic maize by the ...

    African Journals Online (AJOL)

    We optimized the PCR method to detect genetically engineered Bacillus thuringiensis (Bt) maize in open quarantine fields in Kenya. Many factors affect the extraction of the DNA from plants, such as the amount of tissue available, the condition of the plant material, the numbers of steps involved in the extraction procedure, ...

  12. Screening of Local Bacillus thuringiensis Isolates for Toxicity to ...

    African Journals Online (AJOL)

    Stem borers are a major source of pre-harvest maize crop losses in Kenya and many Sub- Saharan African countries. This menace needs to be addressed if food security is to be realized in this region. Seven local isolates of Bacillus thuringiensis (Bt) strains were isolated from soils collected from Kakamega and Machakos ...

  13. Profile of cry from native Bacillus thuringiensis isolates and ...

    African Journals Online (AJOL)

    The characterization of 255 Bacillus thuringiensis isolates of Coorg, Sharavatti and BR hills, containing genes known to be active against coleopteran and lepidopteran insect species was done through PCR amplification using the specific and degenerate primers. The isolates were also tested for their insecticidal activity ...

  14. Impacts of Bacillus thuringiensis var. israelensis and Bacillus ...

    African Journals Online (AJOL)

    The study assessed the impact of bio-larvicides- Bacillus thuringiensis var. israelensis (Bti) and B. sphaericus (Bs) on anopheline mosquito larval densities in four selected areas of Lusaka urban district. Larval densities were determined using a standard WHO protocol at each study area prior to and after larviciding.

  15. The Impact of Bacillus Thuringiensis Israelensis (Bti) on Adult and ...

    African Journals Online (AJOL)

    In the year 2007, the Ministry of Health (MoH) initiated a larviciding program using Bacillus thuringiensis israelensis (Bti) to mitigate the effects of black fly bites. This study was aimed at assessing the impact of Bti on adult and larvae black fly populations. Baseline data was collected prior to Bti application and after ...

  16. Interactions of transgenic Bacillus thuringiensis insecticidal crops with spiders (Araneae)

    Science.gov (United States)

    Genetically modified crops expressing insecticidal proteins from Bacillus thuringiensis (Bt) have dramatically increased in acreage since their introduction in the mid-1990’s. Although the insecticidal mechanisms of Bt target specific pests, concerns persist regarding direct and indirect effects on...

  17. Caracterización de una delta endotoxina mutante de Bacillus thuringiensis con estabilidad y toxicidad aumentadas

    Directory of Open Access Journals (Sweden)

    A. Hussain Syed Rehan

    2012-06-01

    Full Text Available Título en ingles: Characterization of a Mutant Bacillus thuringiensis d-endotoxin With Enhanced Stability and Toxicity SummaryThe centrally located a-helix 5 of Bacillus thuringiensis d-endotoxins is critical for insect toxicity through ion-channel formation. We analyzed the role of the highly conserved residue Histidine 168 (H168 using molecular biology, electrophysiology and biophysical techniques. Toxin H168R was ~3-fold more toxic than the wild type (wt protein whereas H168Q was 3 times less toxic against Manduca sexta. Spectroscopic analysis revealed that the H168Q and H168R mutations did not produce gross structural alterations, and that H168R (Tm= 59 °C was more stable than H168Q (Tm= 57.5 °C or than the wt (Tm= 56 °C toxins. These three toxins had similar binding affinities for larval midgut vesicles (Kcom suggesting that the differences in toxicity did not result from changes in initial receptor binding. Dissociation binding assays and voltage clamping analysis suggest that the reduced toxicity of the H168Q toxin may result from reduced insertion and/or ion channel formation. In contrast, the H168R toxin had a greater inhibition of the short circuit current than the wt toxin and an increased rate of irreversible binding (kobs, consistent with its lower LC50 value.  Molecular modeling analysis suggested that both the H168Q and H168R toxins could form additional hydrogen bonds that could account for their greater thermal stability. In addition to this, it is likely that H168R has an extra positive charge exposed to the surface which could increase its rate of insertion into susceptible membranes. Key words: a-helix 5; Circular dichroism; molecular modeling; site-directed mutagenesis;  thermal stability; Bacillus thuringiensis ResumenLa a-Hélice 5 del domino I de las d-endotoxinas de Bacillus thuringiensis, es crítica para la toxicidad de las toxinas contra insectos al participar en la formación de canales iónicos. La

  18. Persistence of detectable insecticidal proteins from Bacillus thuringiensis (Cry) and toxicity after adsorption on contrasting soils

    International Nuclear Information System (INIS)

    Hung, T.P.; Truong, L.V.; Binh, N.D.; Frutos, R.; Quiquampoix, H.; Staunton, S.

    2016-01-01

    Insecticidal Cry, or Bt, proteins are produced by the soil-endemic bacterium, Bacillus thuringiensis and some genetically modified crops. Their environmental fate depends on interactions with soil. Little is known about the toxicity of adsorbed proteins and the change in toxicity over time. We incubated Cry1Ac and Cry2A in contrasting soils subjected to different treatments to inhibit microbial activity. The toxin was chemically extracted and immunoassayed. Manduca sexta was the target insect for biotests. Extractable toxin decreased during incubation for up to four weeks. Toxicity of Cry1Ac was maintained in the adsorbed state, but lost after 2 weeks incubation at 25 °C. The decline in extractable protein and toxicity were much slower at 4 °C with no significant effect of soil sterilization. The major driving force for decline may be time-dependent fixation of adsorbed protein, leading to a decrease in the extraction yield in vitro, paralleled by decreasing solubilisation in the larval gut. - Graphical abstract: Biotest, presenting Cry-contaminated feed to Manduca sexta larvae in individual Perspex boxes. Display Omitted - Highlights: • Toxicity of Cry protein is initially conserved after adsorption on soil. • Toxicity and extractability decline with time, more rapidly at 25 °C than 4 °C. • Similar dynamics of Cry1AC and Cry2A on soil with varying texture and organic C. • Sterilization of soil does not change Cry dynamics or temperature effect in soil. • Cry decline is determined by progressive fixation on soil not microbial breakdown. - Toxicity was initially maintained after adsorption on soil and both extractable Cry and toxicity declined rapidly, more slowly at low temperature, due to different fixation dynamics. Toxicity of Cry protein is initially conserved after adsorption on soil.

  19. Occurrence of natural Bacillus thuringiensis contaminants and residues of Bacillus thuringiensis-based insecticides on fresh fruits and vegetables

    DEFF Research Database (Denmark)

    Frederiksen, Kristine; Rosenquist, Hanne; Jørgensen, Kirsten

    2006-01-01

    . kurstaki HD1 present in the products Dipel, Biobit, and Foray, and nine isolates grouped with B. thuringiensis subsp. aizawai present in Turex. The commercial strains were primarily isolated from samples of tomatoes, cucumbers, and peppers. A multiplex PCR method was developed to simultaneously detect all...

  20. Treatment of an Aedes aegypti colony with the Cry11Aa toxin for 54 generations results in the development of resistance

    Directory of Open Access Journals (Sweden)

    Gloria Cadavid-Restrepo

    2012-02-01

    Full Text Available To study the potential for the emergence of resistance in Aedes aegypti populations, a wild colony was subjected to selective pressure with Cry11Aa, one of four endotoxins that compose the Bacillus thuringiensis serovar israelensis toxin. This bacterium is the base component of the most important biopesticide used in the control of mosquitoes worldwide. After 54 generations of selection, significant resistance levels were observed. At the beginning of the selection experiment, the half lethal concentration was 26.3 ng/mL and had risen to 345.6 ng/mL by generation 54. The highest rate of resistance, 13.1, was detected in the 54th generation. Because digestive proteases play a key role in the processing and activation of B. thuringiensis toxin, we analysed the involvement of insect gut proteases in resistance to the Cry11Aa B. thuringiensis serovar israelensis toxin. The protease activity from larval gut extracts from the Cry11Aa resistant population was lower than that of the B. thuringiensisserovar israelensis susceptible colony. We suggest that differences in protoxin proteolysis could contribute to the resistance of this Ae. aegypti colony.

  1. Cry64Ba and Cry64Ca, Two ETX/MTX2-Type Bacillus thuringiensis Insecticidal Proteins Active against Hemipteran Pests.

    Science.gov (United States)

    Liu, Yonglei; Wang, Yinglong; Shu, Changlong; Lin, Kejian; Song, Fuping; Bravo, Alejandra; Soberón, Mario; Zhang, Jie

    2018-02-01

    Genetically modified crops that express insecticidal Bacillus thuringiensis (Bt) proteins have become a primary approach for control of lepidopteran (moth) and coleopteran (beetle) pests that feed by chewing the plants. However, the sap-sucking insects (Hemiptera) are not particularly susceptible to Bt toxins. In this study, we describe two Cry toxins (Cry64Ba and Cry64Ca) from Bt strain 1012 that showed toxicity against two important hemipteran rice pests, Laodelphax striatellus and Sogatella furcifera Both of these proteins contain an ETX/MTX2 domain and share common sequence features with the β-pore-forming toxins. Coexpression of cry64Ba and cry64Ca genes in the acrystalliferous Bt strain HD73 - resulted in high insecticidal activity against both hemipteran pests. No toxicity was observed on other pests such as Ostrinia furnacalis , Plutella xylostella , or Colaphellus bowringi Also, no hemolytic activity or toxicity against cancer cells was detected. Binding assays showed specific binding of the Cry64Ba/Cry64Ca toxin complex to brush border membrane vesicles isolated from L. striatellus Cry64Ba and Cry64Ca are Bt Cry toxins highly effective against hemipteran pests and could provide a novel strategy for the environmentally friendly biological control of rice planthoppers in transgenic plants. IMPORTANCE In Asia, rice is an important staple food, whose production is threatened by rice planthoppers. To date, no effective Bacillus thuringiensis (Bt) protein has been shown to have activity against rice planthoppers. We cloned two Bt toxin genes from Bt strain 1012 that showed toxicity against small brown planthoppers ( Laodelphax striatellus ) and white-backed planthoppers ( Sogatella furcifera ). To our knowledge, the proteins encoded by the cry64Ba and cry64Ca genes are the most efficient insecticidal Bt Cry proteins with activity against hemipteran insects reported so far. Cry64Ba and Cry64Ca showed no toxicity against some lepidopteran or coleopteran pests

  2. Microalgal toxin(s): characteristics and importance

    African Journals Online (AJOL)

    Prokaryotic and eukaryotic microalgae produce a wide array of compounds with biological activities. These include antibiotics, algicides, toxins, pharmaceutically active compounds and plant growth regulators. Toxic microalgae, in this sense, are common only among the cyanobacteria and dinoflagellates. The microalgal ...

  3. Modification of Cry4Aa toward Improved Toxin Processing in the Gut of the Pea Aphid, Acyrthosiphon pisum.

    Directory of Open Access Journals (Sweden)

    Michael A Rausch

    Full Text Available Aphids are sap-sucking insects (order: Hemiptera that cause extensive damage to a wide range of agricultural crops. Our goal was to optimize a naturally occurring insecticidal crystalline (Cry toxins produced by the soil-dwelling bacterium Bacillus thuringiensis for use against the pea aphid, Acyrthosiphon pisum. On the basis that activation of the Cry4Aa toxin is a rate-limiting factor contributing to the relatively low aphicidal activity of this toxin, we introduced cathepsin L and cathepsin B cleavage sites into Cry4Aa for rapid activation in the aphid gut environment. Incubation of modified Cry4Aa and aphid proteases in vitro demonstrated enhanced processing of the toxin into the active form for some of the modified constructs relative to non-modified Cry4Aa. Aphids fed artificial diet with toxin at a final concentration of 125 μg/ml showed enhanced mortality after two days for one of the four modified constructs. Although only modest toxin improvement was achieved by use of this strategy, such specific toxin modifications designed to overcome factors that limit aphid toxicity could be applied toward managing aphid populations via transgenic plant resistance.

  4. The Vip3Ag4 Insecticidal Protoxin from Bacillus thuringiensis Adopts A Tetrameric Configuration That Is Maintained on Proteolysis

    Directory of Open Access Journals (Sweden)

    Leopoldo Palma

    2017-05-01

    Full Text Available The Vip3 proteins produced during vegetative growth by strains of the bacterium Bacillus thuringiensis show insecticidal activity against lepidopteran insects with a mechanism of action that may involve pore formation and apoptosis. These proteins are promising supplements to our arsenal of insecticidal proteins, but the molecular details of their activity are not understood. As a first step in the structural characterisation of these proteins, we have analysed their secondary structure and resolved the surface topology of a tetrameric complex of the Vip3Ag4 protein by transmission electron microscopy. Sites sensitive to proteolysis by trypsin are identified and the trypsin-cleaved protein appears to retain a similar structure as an octomeric complex comprising four copies each of the ~65 kDa and ~21 kDa products of proteolysis. This processed form of the toxin may represent the active toxin. The quality and monodispersity of the protein produced in this study make Vip3Ag4 a candidate for more detailed structural analysis using cryo-electron microscopy.

  5. 40 CFR 180.1108 - Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas...

    Science.gov (United States)

    2010-07-01

    ... thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens; exemption from the requirement... into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens is...

  6. Seleção e caracterização de estirpes de Bacillus thuringiensis eficientes contra a Diatraea saccharalis (Lepidoptera: Crambidae Selection and characterization of Bacillus thuringiensis efficient strains against Diatraea saccharalis (Lepidoptera: Crambidae

    Directory of Open Access Journals (Sweden)

    Cristina Lima de Macedo

    2012-12-01

    characterization showed the presence of cry1and cry2 type genes: cry1Aa, cry1Ab, cry1Ac, and cry2Aa. The median lethal concentration of spores and crystals obtained from recombinant strains, which individually expressed the genes cry1Aa, cry1Ab, cry1Ac, and cry2Aa, varied between 222 and 610 ng cm-2, values much higher than the ones of the most toxic native strains, which have the possibility of simultaneously expressing these genes. This result indicates a synergy between the toxins. There are interactions between B. thuringiensis toxins and their receptors in the sugarcane borer.

  7. Characterization of parasporin gene harboring Indian isolates of Bacillus thuringiensis

    OpenAIRE

    Lenina, N. K.; Naveenkumar, A.; Sozhavendan, A. E.; Balakrishnan, N.; Balasubramani, V.; Udayasuriyan, V.

    2013-01-01

    Bacillus thuringiensis (Bt) is popularly known as insecticidal bacterium. However, non-insecticidal Bt strains are more extensively available in natural environment than the insecticidal ones. Parasporin (PS) is a collection of genealogically heterogeneous Cry proteins synthesized in non-insecticidal isolates of Bt. An important character generally related with PS proteins is their strong cytocidal activity preferentially on human cancer cells of various origins. Identification and characteri...

  8. Genetic markers for western corn rootworm resistance to Bt toxin.

    Science.gov (United States)

    Flagel, Lex E; Swarup, Shilpa; Chen, Mao; Bauer, Christopher; Wanjugi, Humphrey; Carroll, Matthew; Hill, Patrick; Tuscan, Meghan; Bansal, Raman; Flannagan, Ronald; Clark, Thomas L; Michel, Andrew P; Head, Graham P; Goldman, Barry S

    2015-01-07

    Western corn rootworm (WCR) is a major maize (Zea mays L.) pest leading to annual economic losses of more than 1 billion dollars in the United States. Transgenic maize expressing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are widely used for the management of WCR. However, cultivation of Bt-expressing maize places intense selection pressure on pest populations to evolve resistance. Instances of resistance to Bt toxins have been reported in WCR. Developing genetic markers for resistance will help in characterizing the extent of existing issues, predicting where future field failures may occur, improving insect resistance management strategies, and in designing and sustainably implementing forthcoming WCR control products. Here, we discover and validate genetic markers in WCR that are associated with resistance to the Cry3Bb1 Bt toxin. A field-derived WCR population known to be resistant to the Cry3Bb1 Bt toxin was used to generate a genetic map and to identify a genomic region associated with Cry3Bb1 resistance. Our results indicate that resistance is inherited in a nearly recessive manner and associated with a single autosomal linkage group. Markers tightly linked with resistance were validated using WCR populations collected from Cry3Bb1 maize fields showing significant WCR damage from across the US Corn Belt. Two markers were found to be correlated with both diet (R2 = 0.14) and plant (R2 = 0.23) bioassays for resistance. These results will assist in assessing resistance risk for different WCR populations, and can be used to improve insect resistance management strategies. Copyright © 2015 Flagel et al.

  9. Topical botulinum toxin.

    Science.gov (United States)

    Collins, Ashley; Nasir, Adnan

    2010-03-01

    Nanotechnology is a rapidly growing discipline that capitalizes on the unique properties of matter engineered on the nanoscale. Vehicles incorporating nanotechnology have led to great strides in drug delivery, allowing for increased active ingredient stability, bioavailability, and site-specific targeting. Botulinum toxin has historically been used for the correction of neurological and neuromuscular disorders, such as torticollis, blepharospasm, and strabismus. Recent dermatological indications have been for the management of axillary hyperhydrosis and facial rhytides. Traditional methods of botulinum toxin delivery have been needle-based. These have been associated with increased pain and cost. Newer methods of botulinum toxin formulation have yielded topical preparations that are bioactive in small pilot clinical studies. While there are some risks associated with topical delivery, the refinement and standardization of delivery systems and techniques for the topical administration of botulinum toxin using nanotechnology is anticipated in the near future.

  10. Bacillus thuringiensis: the legacy to the XXI century

    Directory of Open Access Journals (Sweden)

    M. Realpe

    1998-01-01

    Full Text Available Bacillus thuringiensis-based insecticides are the main production line of the biopesticides world market. The research devoted to this area, promoted by the necessity to solve problems in agriculture and public health has resulted in an exhaustive knowledge of its biology. The diversity of the B. thuringiensis strains has permitted to develop several products mainly, but not exclusively, for insect control. With the new developments in the field of molecular biology, it has been possible to understand the molecular basis of the mode of action and to increase the range of activity as well. As a result of the broad use in several countries, resistant strains of some of the susceptible insects have appeared. The aim of this review is to elaborate a theoretical framework of the current state of research on B. thuringiensis, describing briefly the knowledge on this bacterium, with emphasis on biological phenomena that underlie its toxic activity and the problems that will be faced during the XXI century with the increasingly common resistance, all this analyzed from a biotechnological perspective.

  11. Bacillus thuringiensis Cry1Ia10 and Vip3Aa protein interactions and their toxicity in Spodoptera spp. (Lepidoptera).

    Science.gov (United States)

    Bergamasco, V B; Mendes, D R P; Fernandes, O A; Desidério, J A; Lemos, M V F

    2013-02-01

    The polyphagous pests belonging to the genus Spodoptera are considered to be among the most important causes of damage and are widely distributed throughout the Americas'. Due to the extensive use of genetically modified plants containing Bacillus thuringiensis genes that code for insecticidal proteins, resistant insects may arise. To prevent the development of resistance, pyramided plants, which express multiple insecticidal proteins that act through distinct mode of actions, can be used. This study analyzed the mechanisms of action for the proteins Cry1Ia10 and Vip3Aa on neonatal Spodoptera frugiperda, Spodoptera albula, Spodoptera eridania and Spodoptera cosmioides larvae. The interactions of these toxins with receptors on the intestinal epithelial membrane were also analyzed by binding biotinylated toxins to brush border membrane vesicles (BBMVs) from the intestines of these insects. A putative receptor of approximately 65 kDa was found by ligand blotting in all of these species. In vitro competition assays using biotinylated proteins have indicated that Vip3Aa and Cry1Ia10 do not compete for the same receptor for S. frugiperda, S. albula and S. cosmioides and that Vip3Aa was more efficient than Cry1Ia10 when tested individually, by bioassays. A synergistic effect of the toxins in S. frugiperda, S. albula and S. cosmioides was observed when they were combined. However, in S. eridania, Cry1Ia10 and Vip3Aa might compete for the same receptor and through bioassays Cry1Ia10 was more efficient than Vip3Aa and showed an antagonistic effect when the proteins were combined. These results suggest that using these genes to develop pyramided plants may not prove effective in preventing the development of resistance in S. eridiana. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Germination and conjugation of Bacillus thuringiensis subsp. israelensis in the intestine of gnotobiotic rats

    DEFF Research Database (Denmark)

    Wilcks, Andrea; Ørum-Smidt, Lasse; Bahl, Martin Iain

    2008-01-01

    of growth and sporulation of vegetative cells. For the first time conjugative plasmid transfer in a mammalian intestinal tract was shown between two B. thuringiensis strains. Significance and Impact of the Study: Strains of B. thuringiensis are used worldwide to combat insect pests, and this study brings...

  13. Survival of diverse bacillus thuringiensis strains in gypsy moth (Lepidotera: Lymantriidae) is correlated with urease production

    Science.gov (United States)

    Bacillus thuringiensis is an entomopathogenic bacterium that can kill a variety of pest insects, but seldom causes epizootics because it replicates poorly in insects. By attempting to repeatedly pass lepidopteran-active B. thuringiensis strains through gypsy moth larvae, we found that only those str...

  14. Constitutive Activation of the Midgut Response to Bacillus thuringiensis in Bt-Resistant Spodoptera exigua

    NARCIS (Netherlands)

    Hernandez-Martinez, P.; Navarro-Cerrillo, G.; Caccia, S.; Maagd, de R.A.; Moar, W.J.; Ferre, J.; Escriche, B.; Herrero, S.

    2010-01-01

    Bacillus thuringiensis is the most effective microbial control agent for controlling numerous species from different insect orders. The main threat for the long term use of B. thuringiensis in pest control is the ability of insects to develop resistance. Thus, the identification of insect genes

  15. Distribution and Metabolism of Bt-Cry1Ac Toxin in Tissues and Organs of the Cotton Bollworm, Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Zhuoya Zhao

    2016-07-01

    Full Text Available Crystal (Cry proteins derived from Bacillus thuringiensis (Bt have been widely used in transgenic crops due to their toxicity against insect pests. However, the distribution and metabolism of these toxins in insect tissues and organs have remained obscure because the target insects do not ingest much toxin. In this study, several Cry1Ac-resistant strains of Helicoverpa armigera, fed artificial diets containing high doses of Cry1Ac toxin, were used to investigate the distribution and metabolism of Cry1Ac in their bodies. Cry1Ac was only detected in larvae, not in pupae or adults. Also, Cry1Ac passed through the midgut into other tissues, such as the hemolymph and fat body, but did not reach the larval integument. Metabolic tests revealed that Cry1Ac degraded most rapidly in the fat body, followed by the hemolymph, peritrophic membrane and its contents. The toxin was metabolized slowly in the midgut, but was degraded in all locations within 48 h. These findings will improve understanding of the functional mechanism of Bt toxins in target insects and the biotransfer and the bioaccumulation of Bt toxins in arthropod food webs in the Bt crop ecosystem.

  16. Sequence Analysis of Inducible Prophage phIS3501 Integrated into the Haemolysin II Gene of Bacillus thuringiensis var israelensis ATCC35646

    Directory of Open Access Journals (Sweden)

    Bouziane Moumen

    2012-01-01

    Full Text Available Diarrheic food poisoning by bacteria of the Bacillus cereus group is mostly due to several toxins encoded in the genomes. One of them, cytotoxin K, was recently identified as responsible for severe necrotic syndromes. Cytotoxin K is similar to a class of proteins encoded by genes usually annotated as haemolysin II (hlyII in the majority of genomes of the B. cereus group. The partially sequenced genome of Bacillus thuringiensis var israelensis ATCC35646 contains several potentially induced prophages, one of them integrated into the hlyII gene. We determined the complete sequence and established the genomic organization of this prophage-designated phIS3501. During induction of excision of this prophage with mitomycin C, intact hlyII gene is formed, thus providing to cells a genetic ability to synthesize the active toxin. Therefore, this prophage, upon its excision, can be implicated in the regulation of synthesis of the active toxin and thus in the virulence of bacterial host. A generality of selection for such systems in bacterial pathogens is indicated by the similarity of this genetic arrangement to that of Staphylococcus aureus  β-haemolysin.

  17. Transgenic Bacillus thuringiensis (Bt rice is safer to aquatic ecosystems than its non-transgenic counterpart.

    Directory of Open Access Journals (Sweden)

    Guangsheng Li

    Full Text Available Rice lines genetically modified with the crystal toxin genes from Bacillus thuringiensis (Bt have experienced rapid development, with biosafety certificates for two Bt rice lines issued in 2009. There has still been no commercial release of these lines yet due to public concerns about human health and environmental risks. Some studies confirmed that Bt rice was as safe as conventional rice to non-target organisms when pesticides were not applied, however, pesticides are still required in Bt rice to control non-lepidopteran pests. In this study, we assessed the environmental effects of two Bt rice lines expressing either the cry1Ab/1Ac or cry2A genes, respectively, by using zooplanktons as indicator species under normal field management practices using pesticides when required. In the whole rice growing season, non-Bt rice was sprayed 5 times while Bt rice was sprayed 2 times, which ensured both rice achieved a normal yield. Field investigations showed that rice type (Bt and non-Bt significantly influenced zooplankton abundance and diversity, which were up to 95% and 80% lower in non-Bt rice fields than Bt rice fields. Laboratory rearing showed that water from non-Bt rice fields was significantly less suitable for the survival and reproduction of Daphnia magna and Paramecium caudatum in comparison with water from Bt rice fields. Higher pesticide residues were detected in the water from non-Bt than Bt rice fields, accounting for the bad performance of zooplankton in non-Bt field water. Our results demonstrate that Bt rice is safer to aquatic ecosystems than non-Bt rice, and its commercialization will be beneficial for biodiversity restoration in rice-based ecosystems.

  18. Density Dependence and Growth Rate: Evolutionary Effects on Resistance Development to Bt (Bacillus thuringiensis).

    Science.gov (United States)

    Martinez, Jeannette C; Caprio, Michael A; Friedenberg, Nicholas A

    2018-02-09

    It has long been recognized that pest population dynamics can affect the durability of a pesticide, but dose remains the primary component of insect resistance management (IRM). For transgenic pesticidal traits such as Bt (Bacillus thuringiensis Berliner (Bacillales: Bacillaceae)), dose (measured as the mortality of susceptibles caused by a toxin) is a relatively fixed characteristic and often falls below the standard definition of high dose. Hence, it is important to understand how pest population dynamics modify durability and what targets they present for IRM. We used a deterministic model of a generic arthropod pest to examine how timing and strength of density dependence interacted with population growth rate and Bt mortality to affect time to resistance. As in previous studies, durability typically reached a minimum at intermediate doses. However, high population growth rates could eliminate benefits of high dose. The timing of density dependence had a more subtle effect. If density dependence operated simultaneously with Bt mortality, durability was insensitive to its strengths. However, if density dependence was driven by postselection densities, decreasing its strength could increase durability. The strength of density dependence could affect durability of both single traits and pyramids, but its influence depended on the timing of density dependence and size of the refuge. Our findings suggest the utility of a broader definition of high dose, one that incorporates population-dynamic context. That maximum growth rates and timing and strength of interactions causing density dependent mortality can all affect durability, also highlights the need for ecologically integrated approaches to IRM research. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Marine and freshwater toxins.

    Science.gov (United States)

    Hungerford, James M

    2006-01-01

    In a very busy and exciting year, 2005 included First Action approval of a much needed official method for paralytic shellfish toxins and multiple international toxin symposia highlighted by groundbreaking research. These are the first-year milestones and activities of the Marine and Freshwater Toxins Task Force and Analytical Community. Inaugurated in 2004 and described in detail in last year's General Referee Report (1) this international toxins group has grown to 150 members from many regions and countries. Perhaps most important they are now making important and global contributions to food safety and to providing alternatives to animal-based assays. Official Method 2005.06 was first approved in late 2004 by the Task Force and subsequently Official First Action in 2005 (2) by the Methods Committee on Natural Toxins and Food Allergens and the Official Methods Board. This nonproprietary method (3) is a precolumn oxidation, liquid chromatographic method that makes good use of fluorescence detection to provide high sensitivity detection of the saxitoxins. It has also proven to be rugged enough for regulatory use and the highest level of validation. As pointed out in the report of method principle investigator and Study Director James Lawrence, approval of 2005.06 now provides the first official alternative to the mouse bioassay after many decades of shellfish monitoring. This past year in April 2005 the group also held their first international conference, "Marine and Freshwater Toxins Analysis: Ist Joint Symposium and AOAC Task Force Meeting," in Baiona, Spain. The 4-day conference consisted of research and stakeholder presentations and symposium-integrated subgroup sessions on ciguatoxins, saxitoxin assays and liquid chromatography (LC) methods for saxitoxins and domoic acids, okadaiates and azaspiracids, and yessotoxins. Many of these subgroups were recently formed in 2005 and are working towards their goals of producing officially validated analytical methods

  20. Toxins of filamentous fungi.

    Science.gov (United States)

    Bhatnagar, Deepak; Yu, Jiujiang; Ehrlich, Kenneth C

    2002-01-01

    Mycotoxins are low-molecular-weight secondary metabolites of fungi. The most significant mycotoxins are contaminants of agricultural commodities, foods and feeds. Fungi that produce these toxins do so both prior to harvest and during storage. Although contamination of commodities by toxigenic fungi occurs frequently in areas with a hot and humid climate (i.e. conditions favorable for fungal growth), they can also be found in temperate conditions. Production of mycotoxins is dependent upon the type of producing fungus and environmental conditions such as the substrate, water activity (moisture and relative humidity), duration of exposure to stress conditions and microbial, insect or other animal interactions. Although outbreaks of mycotoxicoses in humans have been documented, several of these have not been well characterized, neither has a direct correlation between the mycotoxin and resulting toxic effect been well established in vivo. Even though the specific modes of action of most of the toxins are not well established, acute and chronic effects in prokaryotic and eukaryotic systems, including humans have been reported. The toxicity of the mycotoxins varies considerably with the toxin, the animal species exposed to it, and the extent of exposure, age and nutritional status. Most of the toxic effects of mycotoxins are limited to specific organs, but several mycotoxins affect many organs. Induction of cancer by some mycotoxins is a major concern as a chronic effect of these toxins. It is nearly impossible to eliminate mycotoxins from the foods and feed in spite of the regulatory efforts at the national and international levels to remove the contaminated commodities. This is because mycotoxins are highly stable compounds, the producing fungi are ubiquitous, and food contamination can occur both before and after harvest. Nevertheless, good farm management practices and adequate storage facilities minimize the toxin contamination problems. Current research is

  1. Co-production of parasporal crystal toxins and antimicrobial ...

    African Journals Online (AJOL)

    Co-production of antimicrobial substances and insecticidal compounds by Bacillus thuringiensis BAR 3 was investigated. The cell free supernatant (CFS) of B. thuringiensis showed inhibitory activities against both Gram positive (B. thuringiensis IFO13866 and Staphylococcus aureus ATCC 25923) and Gram negative ...

  2. Incipient resistance of Helicoverpa punctigera to the Cry2Ab Bt toxin in Bollgard II cotton.

    Directory of Open Access Journals (Sweden)

    Sharon Downes

    Full Text Available Combinations of dissimilar insecticidal proteins ("pyramids" within transgenic plants are predicted to delay the evolution of pest resistance for significantly longer than crops expressing a single transgene. Field-evolved resistance to Bacillus thuringiensis (Bt transgenic crops has been reported for first generation, single-toxin varieties and the Cry1 class of proteins. Our five year data set shows a significant exponential increase in the frequency of alleles conferring Cry2Ab resistance in Australian field populations of Helicoverpa punctigera since the adoption of a second generation, two-toxin Bt cotton expressing this insecticidal protein. Furthermore, the frequency of cry2Ab resistance alleles in populations from cropping areas is 8-fold higher than that found for populations from non-cropping regions. This report of field evolved resistance to a protein in a dual-toxin Bt-crop has precisely fulfilled the intended function of monitoring for resistance; namely, to provide an early warning of increases in frequencies that may lead to potential failures of the transgenic technology. Furthermore, it demonstrates that pyramids are not 'bullet proof' and that rapid evolution to Bt toxins in the Cry2 class is possible.

  3. Headache and botulinum toxin

    OpenAIRE

    Porta, M.; Camerlingo, M.

    2005-01-01

    The authors discuss clinical and international experience about botulinum toxins (BTX types A and B) in headache treatment. Data from literature suggest good results for the treatment of tensiontype headache, migraine and chronic tension–type headache. In the present paper mechanisms of action and injection sites will also be discussed.

  4. Botulinum Toxin for Rhinitis.

    Science.gov (United States)

    Ozcan, Cengiz; Ismi, Onur

    2016-08-01

    Rhinitis is a common clinical entity. Besides nasal obstruction, itching, and sneezing, one of the most important symptoms of rhinitis is nasal hypersecretion produced by nasal glands and exudate from the nasal vascular bed. Allergic rhinitis is an IgE-mediated inflammatory reaction of nasal mucosa after exposure to environmental allergens. Idiopathic rhinitis describes rhinitis symptoms that occur after non-allergic, noninfectious irritants. Specific allergen avoidance, topical nasal decongestants, nasal corticosteroids, immunotherapy, and sinonasal surgery are the main treatment options. Because the current treatment modalities are not enough for reducing rhinorrhea in some patients, novel treatment options are required to solve this problem. Botulinum toxin is an exotoxin generated by Clostridium botulinum. It disturbs the signal transmission at the neuromuscular and neuroglandular junction by inhibiting the acetylcholine release from the presynaptic nerve terminal. It has been widely used in neuromuscular, hypersecretory, and autonomic nerve system disorders. There have been a lot of published articles concerning the effect of this toxin on rhinitis symptoms. Based on the results of these reports, intranasal botulinum toxin A administration appears to be a safe and effective treatment method for decreasing rhinitis symptoms in rhinitis patients with a long-lasting effect. Botulinum toxin type A will be a good treatment option for the chronic rhinitis patients who are resistant to other treatment methods.

  5. Diffusion of Botulinum Toxins

    Directory of Open Access Journals (Sweden)

    Matthew A. Brodsky

    2012-08-01

    Full Text Available Background: It is generally agreed that diffusion of botulinum toxin occurs, but the extent of the spread and its clinical importance are disputed. Many factors have been suggested to play a role but which have the most clinical relevance is a subject of much discussion.Methods: This review discusses the variables affecting diffusion, including protein composition and molecular size as well as injection factors (e.g., volume, dose, injection method. It also discusses data on diffusion from comparative studies in animal models and human clinical trials that illustrate differences between the available botulinum toxin products (onabotulinumtoxinA, abobotulinumtoxinA, incobotulinumtoxinA, and rimabotulinumtoxinB.Results: Neither molecular weight nor the presence of complexing proteins appears to affect diffusion; however, injection volume, concentration, and dose all play roles and are modifiable. Both animal and human studies show that botulinum toxin products are not interchangeable, and that some products are associated with greater diffusion and higher rates of diffusion-related adverse events than others.Discussion: Each of the botulinum toxins is a unique pharmacologic entity. A working knowledge of the different serotypes is essential to avoid unwanted diffusion-related adverse events. In addition, clinicians should be aware that the factors influencing diffusion may range from properties intrinsic to the drug to accurate muscle selection as well as dilution, volume, and dose injected.

  6. Topical Botulinum Toxin

    OpenAIRE

    Collins, Ashley; Nasir, Adnan

    2010-01-01

    Nanotechnology is a rapidly growing discipline that capitalizes on the unique properties of matter engineered on the nanoscale. Vehicles incorporating nanotechnology have led to great strides in drug delivery, allowing for increased active ingredient stability, bioavailability, and site-specific targeting. Botulinum toxin has historically been used for the correction of neurological and neuromuscular disorders, such as torticollis, blepharospasm, and strabismus. Recent dermatological indicati...

  7. Autoproteolytic Activation of Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Aimee Shen

    2010-05-01

    Full Text Available Protease domains within toxins typically act as the primary effector domain within target cells. By contrast, the primary function of the cysteine protease domain (CPD in Multifunctional Autoprocessing RTX-like (MARTX and Clostridium sp. glucosylating toxin families is to proteolytically cleave the toxin and release its cognate effector domains. The CPD becomes activated upon binding to the eukaryotic-specific small molecule, inositol hexakisphosphate (InsP6, which is found abundantly in the eukaryotic cytosol. This property allows the CPD to spatially and temporally regulate toxin activation, making it a prime candidate for developing anti-toxin therapeutics. In this review, we summarize recent findings related to defining the regulation of toxin function by the CPD and the development of inhibitors to prevent CPD-mediated activation of bacterial toxins.

  8. Monoclonal Antibody Analysis and Insecticidal Spectrum of Three Types of Lepidopteran-Specific Insecticidal Crystal Proteins of Bacillus thuringiensis

    Science.gov (United States)

    Höfte, Herman; Van Rie, Jeroen; Jansens, Stefan; Van Houtven, Annemie; Vanderbruggen, Hilde; Vaeck, Mark

    1988-01-01

    We have investigated the protein composition and the insecticidal spectrum of crystals of 29 Bacillus thuringiensis strains active against lepidopteran larvae. All crystals contained proteins of 130 to 140 kilodaltons (kDa) which could be grouped into three types by the molecular weight of the protoxin and the trypsin-activated core fragment. Proteins of the three types showed a characteristic insecticidal spectrum when tested against five lepidopteran species. Type A crystal proteins were protoxins of 130 or 133 kDa, which were processed into 60-kDa toxins by trypsin. Several genes encoding crystal proteins of this type have been cloned and sequenced earlier. They are highly conserved in the N-terminal half of the toxic fragment and were previously classified in three subtypes (the 4.5-, 5.3-, and 6.6-kilobase subtypes) based on the restriction map of their genes. The present study shows that different proteins of these three subtypes were equally toxic against Manduca sexta and Pieris brassicae and had no detectable activity against Spodoptera littoralis. However, the 4.5-, 5.3-, and 6.6-kilobase subtypes differed in their toxicity against Heliothis virescens and Mamestra brassicae. Type B crystal proteins consisted of 140-kDa protoxins with a 55-kDa tryptic core fragment. These were only active against one of the five insect species tested (P. brassicae). The protoxin and the trypsin-activated toxin of type C were 135- and 63-kDa proteins, respectively. Proteins of this type were associated with high toxicity against S. littoralis and M. brassicae. A panel of 35 monoclonal antibodies was used to compare the structural characteristics of crystal proteins of the three different types and subtypes. Each type of protein could be associated with a typical epitope structure, indicating an unambiguous correlation between antigenic structure and insect specificity. Images PMID:16347711

  9. Bacillus thuringiensis Cry3Aa protoxin intoxication of Tenebrio molitor induces widespread changes in the expression of serine peptidase transcripts.

    Science.gov (United States)

    Oppert, Brenda; Martynov, Alexander G; Elpidina, Elena N

    2012-09-01

    The yellow mealworm, Tenebrio molitor, is a pest of stored grain products and is sensitive to the Bacillus thuringiensis (Bt) Cry3Aa toxin. As digestive peptidases are a determining factor in Cry toxicity and resistance, we evaluated the expression of peptidase transcripts in the midgut of T. molitor larvae fed either a control or Cry3Aa protoxin diet for 24 h (RNA-Seq), or in larvae exposed to the protoxin for 6, 12, or 24 h (microarrays). Cysteine peptidase transcripts (9) were similar to cathepsins B, L, and K, and their expression did not vary more than 2.5-fold in control and Cry3Aa-treated larvae. Serine peptidase transcripts (48) included trypsin, chymotrypsin and chymotrypsin-like, elastase 1-like, and unclassified serine peptidases, as well as homologs lacking functional amino acids. Highly expressed trypsin and chymotrypsin transcripts were severely repressed, and most serine peptidase transcripts were expressed 2- to 15-fold lower in Cry3Aa-treated larvae. Many serine peptidase and homolog transcripts were found only in control larvae. However, expression of a few serine peptidase transcripts was increased or found only in Cry3Aa-treated larvae. Therefore, Bt intoxication significantly impacted the expression of serine peptidases, potentially important in protoxin processing, while the insect maintained the production of critical digestive cysteine peptidases. Published by Elsevier Inc.

  10. Improved insecticidal toxicity by fusing Cry1Ac of Bacillus thuringiensis with Av3 of Anemonia viridis.

    Science.gov (United States)

    Yan, Fu; Cheng, Xing; Ding, Xuezhi; Yao, Ting; Chen, Hanna; Li, Wenping; Hu, Shengbiao; Yu, Ziquan; Sun, Yunjun; Zhang, Youming; Xia, Liqiu

    2014-05-01

    Av3, a neurotoxin of Anemonia viridis, is toxic to crustaceans and cockroaches but inactive in mammals. In the present study, Av3 was expressed in Escherichia coli Origami B (DE3) and purified by reversed-phase liquid chromatography. The purified Av3 was injected into the hemocoel of Helicoverpa armigera, rendering the worm paralyzed. Then, Av3 was expressed alone or fusion expressed with the Cry1Ac in acrystalliferous strain Cry(-)B of Bacillus thuringiensis. The shape of Cry1Ac was changed by fusion with Av3. The expressed fusion protein, Cry1AcAv3, formed irregular rhombus- or crescent-shaped crystalline inclusions, which is quite different from the shape of original Cry1Ac crystals. The toxicity of Cry1Ac was improved by fused expression. Compared with original Cry1Ac expressed in Cry(-)B, the oral toxicity of Cry1AcAv3 to H. armigera was elevated about 2.6-fold. No toxicity was detected when Av3 was expressed in Cry(-)B alone. The present study confirmed that marine toxins could be used in bio-control and implied that fused expression with other insecticidal proteins could be an efficient way for their application.

  11. Isolation and partial characterization of a mutant of Bacillus thuringiensis producing melanin Isolamento e caracterização parcial de um mutante de Bacillus thuringiensis produtor de melanina

    Directory of Open Access Journals (Sweden)

    Gislayne T. Vilas-Bôas

    2005-09-01

    Full Text Available A mutant (407-P of Bacillus thuringiensis subsp. thuringiensis strain 407 producing a melanin was obtained after treatment with the mutagenic agent ethyl-methane-sulfonate. Several microbiological and biochemical properties of the two strains were analyzed and the results were similar. The mutant 407-P was also incorporated into non-sterilized soil samples, recovered, easily identified, and quantified, what enables its use in ecology of B. thuringiensis.Um mutante (407-P da linhagem Bacillus thuringiensis subsp. thuringiensis 407 produtor de melanina foi obtido após tratamento com o agente mutagênico etil-metano-sulfonato. Diversas propriedades microbiológicas e bioquímicas das duas linhagens foram analisadas e os resultados foram similares. O mutante 407-P foi incorporado em amostras de solo não esterilizado, recuperado, facilmente identificado e quantificado, possibilitando seu uso em estudos de ecologia de B. thuringiensis.

  12. Toxins and drug discovery.

    Science.gov (United States)

    Harvey, Alan L

    2014-12-15

    Components from venoms have stimulated many drug discovery projects, with some notable successes. These are briefly reviewed, from captopril to ziconotide. However, there have been many more disappointments on the road from toxin discovery to approval of a new medicine. Drug discovery and development is an inherently risky business, and the main causes of failure during development programmes are outlined in order to highlight steps that might be taken to increase the chances of success with toxin-based drug discovery. These include having a clear focus on unmet therapeutic needs, concentrating on targets that are well-validated in terms of their relevance to the disease in question, making use of phenotypic screening rather than molecular-based assays, and working with development partners with the resources required for the long and expensive development process. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  13. Expression of a Synthetic Gene for the Major Cytotoxin (Cyt1Aa of Bacillus thuringiensis subsp. israelensis in the Chloroplast of Wild-Type Chlamydomonas

    Directory of Open Access Journals (Sweden)

    Seongjoon Kang

    2018-05-01

    Full Text Available Chlamydomonas reinhardtii (Chlamydomonas strains that are toxic to mosquito larvae because they express chloroplast transgenes that are based on the mosquitocidal proteins of Bacillus thuringiensis subsp. israelensis (Bti could be very useful in mosquito control. Chlamydomonas has several advantages for this approach, including genetic controls not generally available with industrial algae. The Bti toxin is produced by sporulating bacteria and has been used for mosquito control for >30 years without creating highly resistant mosquito populations. The suite of toxins is four main proteins: three Cry proteins and the cytotoxic Cyt1Aa (27 kDa. Cyt1Aa is not very toxic to mosquitoes by itself, but it prevents the development of resistance. The production of Cyt1Aa in other microbes, however, has been challenging due to its affinity for certain membrane phospholipids. Here we report on the production of recombinant Cyt1Aa (rCyt1A in the chloroplast of photosynthetic Chlamydomonas at levels of at least 0.3% total protein. Live cell bioassays demonstrated toxicity of the rCyt1Aa Chlamydomonas to larvae of Aedes aegypti. We also expressed the chloroplast cyt1Aa gene in a wild-type Chlamydomonas strain (21 gr that can grow on nitrate. These results have implications for developing a Chlamydomonas strain that will be toxic to mosquito larvae but will not induce strongly resistant populations.

  14. Further research on the biological function of inclusion bodies of Anomala cuprea entomopoxvirus, with special reference to the effect on the insecticidal activity of a Bacillus thuringiensis formulation.

    Science.gov (United States)

    Mitsuhashi, Wataru; Asano, Shoji; Miyamoto, Kazuhisa; Wada, Sanae

    2014-01-01

    Entomopoxviruses (EVs) form two types of inclusion body: spheroids, which contain virions, and spindles, which do not. The authors tested whether the spindles from a coleopteran EV, Anomala cuprea EV (ACEV), enhanced the insecticidal activity of a commercial Bacillus thuringiensis (Bt) formulation and the susceptibility of scarabaeid pest species in Japan to the virus's spheroids, to assess whether ACEV inclusion bodies are potential biological control agents for pest insects. Peroral inoculation with both ACEV spindles and the Bt toxin only or the complete Bt formulation shortened the survival and increased the mortality of treated insects compared with those of insects inoculated with Bt without the spindles (8-38 h of decrease in LT50 values among assays). ACEV showed high infectivity to a major scarabaeid pest species in Japanese sugar cane fields. The results suggest that spindles or the constituent protein fusolin can be used as a coagent with Bt formulations, and that fusolin coexpression with a Bt toxin in crops might improve the insecticidal efficacy. In addition, the spheroids are potential biocontrol agents for some scarabaeid pests that are not easy to control because of their underground habitation. © 2013 Society of Chemical Industry.

  15. Presence survival spores of Bacillus thuringiensis varieties in grain warehouse

    Directory of Open Access Journals (Sweden)

    Sánchez-Yáñez Juan Manuel

    2016-08-01

    Full Text Available Genus Bacillus thuringiensis (Bt synthesized spores and crystals toxic to pest-insects in agriculture. Bt is comospolitan then possible to isolate some subspecies or varieties from warehouse. The aims of study were: i to isolate Bt varieties from grain at werehouse ii to evaluate Bt toxicity on Spodoptera frugiperda and Shit-ophilus zeamaisese iii to analyze Bt spores persistence in Zea mays grains at werehouse compared to same Bt on grains exposed to sun radiation. Results showed that at werehouse were recovered more than one variety of Bt spores. According to each isolate Bt1 o Bt2 were toxic to S. frugiperda or S. zeamaisese. One those Bt belong to var morrisoni. At werehouse these spores on Z. mays grains surviving more time, while the same spores exposed to boicide sun radiation they died.

  16. How Quorum Sensing Connects Sporulation to Necrotrophism in Bacillus thuringiensis.

    Science.gov (United States)

    Perchat, Stéphane; Talagas, Antoine; Poncet, Sandrine; Lazar, Noureddine; Li de la Sierra-Gallay, Inès; Gohar, Michel; Lereclus, Didier; Nessler, Sylvie

    2016-08-01

    Bacteria use quorum sensing to coordinate adaptation properties, cell fate or commitment to sporulation. The infectious cycle of Bacillus thuringiensis in the insect host is a powerful model to investigate the role of quorum sensing in natural conditions. It is tuned by communication systems regulators belonging to the RNPP family and directly regulated by re-internalized signaling peptides. One such RNPP regulator, NprR, acts in the presence of its cognate signaling peptide NprX as a transcription factor, regulating a set of genes involved in the survival of these bacteria in the insect cadaver. Here, we demonstrate that, in the absence of NprX and independently of its transcriptional activator function, NprR negatively controls sporulation. NprR inhibits expression of Spo0A-regulated genes by preventing the KinA-dependent phosphorylation of the phosphotransferase Spo0F, thus delaying initiation of the sporulation process. This NprR function displays striking similarities with the Rap proteins, which also belong to the RNPP family, but are devoid of DNA-binding domain and indirectly control gene expression via protein-protein interactions in Bacilli. Conservation of the Rap residues directly interacting with Spo0F further suggests a common inhibition of the sporulation phosphorelay. The crystal structure of apo NprR confirms that NprR displays a highly flexible Rap-like structure. We propose a molecular regulatory mechanism in which key residues of the bifunctional regulator NprR are directly and alternatively involved in its two functions. NprX binding switches NprR from a dimeric inhibitor of sporulation to a tetrameric transcriptional activator involved in the necrotrophic lifestyle of B. thuringiensis. NprR thus tightly coordinates sporulation and necrotrophism, ensuring survival and dissemination of the bacteria during host infection.

  17. The Cry Toxin Operon of Clostridium bifermentans subsp. malaysia Is Highly Toxic to Aedes Larval Mosquitoes

    Science.gov (United States)

    Qureshi, Nadia; Chawla, Swati; Likitvivatanavong, Supaporn; Lee, Han Lim

    2014-01-01

    The management and control of mosquito vectors of human disease currently rely primarily on chemical insecticides. However, larvicidal treatments can be effective, and if based on biological insecticides, they can also ameliorate the risk posed to human health by chemical insecticides. The aerobic bacteria Bacillus thuringiensis and Lysinibacillus sphaericus have been used for vector control for a number of decades. But a more cost-effective use would be an anaerobic bacterium because of the ease with which these can be cultured. More recently, the anaerobic bacterium Clostridium bifermentans subsp. malaysia has been reported to have high mosquitocidal activity, and a number of proteins were identified as potentially mosquitocidal. However, the cloned proteins showed no mosquitocidal activity. We show here that four toxins encoded by the Cry operon, Cry16A, Cry17A, Cbm17.1, and Cbm17.2, are all required for toxicity, and these toxins collectively show remarkable selectivity for Aedes rather than Anopheles mosquitoes, even though C. bifermentans subsp. malaysia is more toxic to Anopheles. Hence, toxins that target Anopheles are different from those expressed by the Cry operon. PMID:25002432

  18. The toxins of Cyanobacteria.

    Science.gov (United States)

    Patocka, J

    2001-01-01

    Cyanobacteria, formerly called "blue-green algae", are simple, primitive photosynthetic microorganism wide occurrence in fresh, brackish and salt waters. Forty different genera of Cyanobacteria are known and many of them are producers of potent toxins responsible for a wide array of human illnesses, aquatic mammal and bird morbidity and mortality, and extensive fish kills. These cyanotoxins act as neurotoxins or hepatotoxins and are structurally and functionally diverse, and many are derived from unique biosynthetic pathways. All known cyanotoxins and their chemical and toxicological characteristics are presented in this article.

  19. Transfer of toxin genes to alternate bacterial hosts for mosquito control

    Directory of Open Access Journals (Sweden)

    Sergio Orduz

    1995-02-01

    Full Text Available Mosquitoes are vector of serious human and animal diseases, such as malaria, dengue, yellow fever, among others. The use of biological control agents has provide an environmentally safe and highly specific alternative to the use of chemical insecticides in the control of vector borne diseases. Bacillus thuringiensis and B. sphaericus produce toxic proteins to mosquito larvae. Great progress has been made on the biochemical and molecular characterization of such proteins and the genes encoding them. Nevertheless, the low residuality of these biological insecticides is one of the major drawbacks. This article present some interesting aspects of the mosquito larvae feeding habits and review the attempts that have been made to genetically engineer microorganisms that while are used by mosquito larvae as a food source should express the Bacillus toxin genes in order to improve the residuality and stability in the mosquito breeding ponds.

  20. Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy.

    Science.gov (United States)

    Kumar, Suresh; Chandra, Amaresh; Pandey, K C

    2008-09-01

    Introduction of DDT (dichloro-diphenyl-trichloroethane) and following move towards indiscriminate use of synthetic chemical insecticides led to the contamination of water and food sources, poisoning of non-target beneficial insects and development of insect-pests resistant to the chemical insecticides. Increased public concems about the adverse environmental effects of indiscriminate use of chemical insecticides prompted search of altemative methods for insect-pest control. One of the promising alternatives has been the use of biological control agents. There is well-documented history of safe application of Bt (B. thuringiensis, a gram positive soil bacterium) as effective biopesticides and a number of reports of expression of delta-endotoxin gene(s) in crop plants are available. Only a few insecticidal sprays are required on Bt transgenic crops, which not only save cost and time, but also reduce health risks. Insects exhibit remarkable ability to develop resistance to different insecticidal compounds, which raises concern about the unsystematic use of Bt transgenic technology also. Though resistance to Bt products among insect species under field conditions has been rare, laboratory studies show that insects are capable of developing high levels of resistance to one ormore Cry proteins. Now it is generally agreed that 'high-dose/refuge strategy' is the most promising and practical approach to prolong the effectiveness of Bt toxins. Although manybiosafety concerns, ethical and moral issues exist, area under Bt transgenic crops is rapidly increasing and they are cultivated on more than 32 million hectares world over Even after reservation of European Union (EU) for acceptance of geneticaly modified (GM) crops, 6 out of 25 countries have already adopted Bt crops and many otherindustrial countries will adopt Bt transgenic crops in near future. While the modem biotechnology has been recognized to have a great potential for the promotion of human well-being, adoption

  1. Lymphocyte receptors for pertussis toxin

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.G.; Armstrong, G.D. (Univ. of Alberta, Edmonton (Canada))

    1990-12-01

    We have investigated human T-lymphocyte receptors for pertussis toxin by affinity isolation and photoaffinity labeling procedures. T lymphocytes were obtained from peripheral human blood, surface iodinated, and solubilized in Triton X-100. The iodinated mixture was then passed through pertussis toxin-agarose, and the fractions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autoradiography of the fixed, dried gels revealed several bands in the pertussis toxin-bound fraction that were not observed in fractions obtained from histone or fetuin-agarose. Further investigations employed a photoaffinity labeling reagent, sulfosuccinimidyl 2-(p-azido-salicylamido)-1,3'-dithiopropionate, to identify pertussis toxin receptors in freshly isolated peripheral blood monocytic cells, T lymphocytes, and Jurkat cells. In all three cell systems, the pertussis toxin affinity probe specifically labeled a single protein species with an apparent molecular weight of 70,000 that was not observed when the procedure was performed in the presence of excess unmodified pertussis toxin. A protein comparable in molecular weight to the one detected by the photoaffinity labeling technique was also observed among the species that bound to pertussis toxin-agarose. The results suggest that pertussis toxin may bind to a 70,000-Da receptor in human T lymphocytes.

  2. Botulinum toxin: bioweapon & magic drug.

    Science.gov (United States)

    Dhaked, Ram Kumar; Singh, Manglesh Kumar; Singh, Padma; Gupta, Pallavi

    2010-11-01

    Botulinum neurotoxins, causative agents of botulism in humans, are produced by Clostridium botulinum, an anaerobic spore-former Gram positive bacillus. Botulinum neurotoxin poses a major bioweapon threat because of its extreme potency and lethality; its ease of production, transport, and misuse; and the need for prolonged intensive care among affected persons. A single gram of crystalline toxin, evenly dispersed and inhaled, can kill more than one million people. The basis of the phenomenal potency of botulinum toxin is enzymatic; the toxin is a zinc proteinase that cleaves neuronal vesicle associated proteins responsible for acetylcholine release into the neuromuscular junction. As a military or terrorist weapon, botulinum toxin could be disseminated via aerosol or by contamination of water or food supplies, causing widespread casualties. A fascinating aspect of botulinum toxin research in recent years has been development of the most potent toxin into a molecule of significant therapeutic utility . It is the first biological toxin which is licensed for treatment of human diseases. In the late 1980s, Canada approved use of the toxin to treat strabismus, in 2001 in the removal of facial wrinkles and in 2002, the FDA in the United States followed suit. The present review focuses on both warfare potential and medical uses of botulinum neurotoxin.

  3. Toxin-Based Therapeutic Approaches

    Directory of Open Access Journals (Sweden)

    Itai Benhar

    2010-10-01

    Full Text Available Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin.

  4. Toxin-Based Therapeutic Approaches

    Science.gov (United States)

    Shapira, Assaf; Benhar, Itai

    2010-01-01

    Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin. PMID:22069564

  5. Potencial de Bacillus thuringiensis israelensis Berliner no controle de Aedes aegypti Potential of Bacillus thuringiensis israelensis Berliner for controlling Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Ricardo Antonio Polanczyk

    2003-12-01

    Full Text Available Relata-se a importância da bactéria entomopatogênica Bacillus thuringiensis israelensis para o controle de Aedes aegypti. São abordados a utilização e potencial de B. thuringiensis israelensis contra o mosquito vetor da dengue. Outros aspectos são discutidos como a evolução da resistência dos insetos em relação aos inseticidas químicos e as vantagens e desvantagens do controle microbiano como estratégia de controle. É dada ênfase à importância da utilização desta bactéria no Brasil como alternativa para resolver o problema em questão sem afetar o ambiente, o homem e outros vertebrados nas áreas de risco.The importance of the entomopathogenic bacterium Bacillus thuringiensis israelensis in the control of Aedes aegypti is presented. The use and potential of B. thuringiensis israelensis against the mosquito vector of dengue fever is described. Other aspects such as insect's resistance development against chemicals and advantages and constraints of using microbial control are discussed. Emphasis is given to the importance of the use of this bacterium in Brazil, which could contribute significantly to solving the mosquito problem without affecting the environment, humans and others invertebrate organisms in critical regions.

  6. Binding of ATP by pertussis toxin and isolated toxin subunits

    International Nuclear Information System (INIS)

    Hausman, S.Z.; Manclark, C.R.; Burns, D.L.

    1990-01-01

    The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of [ 3 H]ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP > GTP > CTP > TTP for pertussis toxin and ATP > GTP > TTP > CTP for the B oligomer. Phosphate ions inhibited the binding of [ 3 H]ATP to pertussis toxin in a competitive manner; however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of [ 3 H]ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site

  7. Binding of ATP by pertussis toxin and isolated toxin subunits

    Energy Technology Data Exchange (ETDEWEB)

    Hausman, S.Z.; Manclark, C.R.; Burns, D.L. (Center for Biologics Evaluation and Research, Bethesda, MD (USA))

    1990-07-03

    The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of ({sup 3}H)ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP > GTP > CTP > TTP for pertussis toxin and ATP > GTP > TTP > CTP for the B oligomer. Phosphate ions inhibited the binding of ({sup 3}H)ATP to pertussis toxin in a competitive manner; however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of ({sup 3}H)ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site.

  8. Screening of Bacillus thuringiensis strains effective against mosquitoes Prospecção de estirpes de Bacillus thuringiensis efetivas contra mosquitos

    Directory of Open Access Journals (Sweden)

    Rose Gomes Monnerat

    2005-02-01

    Full Text Available The objective of this work was to evaluate 210 Bacillus thuringiensis strains against Aedes aegypti and Culex quinquefasciatus larvae to select the most effective. These strains were isolated from different regions of Brazil and are stored in a Bacillus spp. collection at Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil. The selected strains were characterized by morphological (microscopy, biochemical (SDS-PAGE 10% and molecular (PCR methods. Six B. thuringiensis strains were identified as mosquito-toxic after the selective bioassays. None of the strains produced the expected PCR products for detection of cry4, cry11 and cyt1A genes. These results indicate that the activity of mosquitocidal Brazilian strains are not related with Cry4, Cry11 or Cyt proteins, so they could be used as an alternative bioinsecticide against mosquitoes.Neste trabalho foram realizados testes de patogenicidade com 210 estirpes de Bacillus thuringiensis contra larvas de Aedes aegypti e Culex quinquefasciatus, a fim de se determinar as mais eficazes. Estas estirpes foram isoladas de diversas regiões do Brasil e estão armazenadas na coleção de Bacillus spp. da Embrapa Recursos Genéticos e Biotecnologia. As estirpes selecionadas foram caracterizadas por métodos morfológicos (microscopia, bioquímicos (SDS-PAGE 10% e moleculares (Reação em Cadeia da Polimerase. Foram selecionadas seis estirpes entomopatogênicas de Bacillus thuringiensis. Nenhuma das estirpes de Bacillus thuringiensis apresentou produtos de PCR esperados para a detecção dos genes cry4, cry11 e cyt1A. A patogenicidade das estirpes não está associada à presença das toxinas Cry4, Cry11 ou Cyt, assim, essas estirpes poderão ser utilizadas para a formatação de um bioinseticida alternativo contra mosquitos.

  9. An anionic defensin from Plutella xylostella with potential activity against Bacillus thuringiensis.

    Science.gov (United States)

    Xu, X-X; Zhang, Y-Q; Freed, S; Yu, J; Gao, Y-F; Wang, S; Ouyang, L-N; Ju, W-Y; Jin, F-L

    2016-12-01

    Insect defensins, are cationic peptides that play an important role in immunity against microbial infection. In the present study, an anionic defensin from Plutella xylostella, (designated as PxDef) was first cloned and characterized. Amino acid sequence analysis showed that the mature peptide owned characteristic six-cysteine motifs with predicted isoelectric point of 5.57, indicating an anionic defensin. Quantitative real-time polymerase chain reaction analysis showed that PxDef was significantly induced in epidermis, fat body, midgut and hemocytes after injection of heat-inactivated Bacillus thuringiensis, while such an induction was delayed by the injection of live B. thuringiensis in the 4th instar larvae of P. xylostella. Knocking down the expression of nuclear transcription factor Dorsal in P. xylostella by RNA interference significantly decreased the mRNA level of PxDef, and increased the sensitivity of P. xylostella larvae to the infection by live B. thuringiensis. The purified recombinant mature peptide (PxDef) showed higher activity against Gram-positive bacteria, with the minimum inhibition concentrations of 1.6 and 2.6 µM against B. thuringiensis and Bacillus subtilis, respectively. To our knowledge, this is the first report about an anionic PxDef, which may play an important role in the immune system of P. xylostella against B. thuringiensis.

  10. Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: their potential in antifungal biocontrol.

    Science.gov (United States)

    Gomaa, Eman Zakaria

    2012-02-01

    Thirty bacterial strains were isolated from the rhizosphere of plants collected from Egypt and screened for production of chitinase enzymes. Bacillus thuringiensis NM101-19 and Bacillus licheniformis NM120-17 had the highest chitinolytic activities amongst those investigated. The production of chitinase by B. thuringiensis and B. licheniformis was optimized using colloidal chitin medium amended with 1.5% colloidal chitin, with casein as a nitrogen source, at 30°C after five days of incubation. An enhancement of chitinase production by the two species was observed by addition of sugar substances and dried fungal mats to the colloidal chitin media. The optimal conditions for chitinase activity by B. thuringiensis and B. licheniformis were at 40°C, pH 7.0 and pH 8.0, respectively. Na(+), Mg(2+), Cu(2+), and Ca(2+) caused enhancement of enzyme activities whereas they were markedly inhibited by Zn(2+), Hg(2+), and Ag(+). In vitro, B. thuringiensis and B. licheniformis chitinases had potential for cell wall lysis of many phytopathogenic fungi tested. The addition of B. thuringiensis chitinase was more effective than that of B. licheniformis in increasing the germination of soybean seeds infected with various phytopathogenic fungi.

  11. Effect of inherited sterility and bacillus thuringiensis on mortality and reproduction of phthorimaea opercullela zeller (lepidoptera: gelechidae)

    International Nuclear Information System (INIS)

    Makee, H.; Tlas, M. D.; Amer, S.; Abdulla, J.

    2008-01-01

    The effect of a commercial formulation of Bacillus thuringiensis (Dipel 2X) upon F 1 progeny of irradiated and unirradiated phthorimaea operculella male parents was investigated. F 1 progeny of irradiated parents was more susceptible to B. thuringiensis than that of unirradiated parents. A combination of irradiation and B. thuringiensis led to higher mortality in F 1 progeny of P. operculella. The LC 50 was 0.406 g/100ml for F 1 progeny of unirradiated parents, but 0.199 g/100ml for those of irradiated parents. There was a great reduction in the pupal weight, fecundity and egg hatchability of F 1 progeny of irradiated patents compared to those unirradiated parents. Such reduction was increased by applying higher concentration of B. thuringiensis. A combination between inherited sterility technique and B. thuringiensis application could give a good controlling result against P. operculella. (author)

  12. Food toxin detection with atomic force microscope

    Science.gov (United States)

    Externally introduced toxins or internal spoilage correlated pathogens and their metabolites are all potential sources of food toxins. To prevent and protect unsafe food, many food toxin detection techniques have been developed to detect various toxins for quality control. Although several routine m...

  13. Botulinum Toxin (Botox) for Facial Wrinkles

    Science.gov (United States)

    ... Stories Español Eye Health / Eye Health A-Z Botulinum Toxin (Botox) for Facial Wrinkles Sections Botulinum Toxin (Botox) ... Facial Wrinkles How Does Botulinum Toxin (Botox) Work? Botulinum Toxin (Botox) for Facial Wrinkles Leer en Español: La ...

  14. Non-recessive Bt toxin resistance conferred by an intracellular cadherin mutation in field-selected populations of cotton bollworm.

    Directory of Open Access Journals (Sweden)

    Haonan Zhang

    Full Text Available Transgenic crops producing Bacillus thuringiensis (Bt toxins have been planted widely to control insect pests, yet evolution of resistance by the pests can reduce the benefits of this approach. Recessive mutations in the extracellular domain of toxin-binding cadherin proteins that confer resistance to Bt toxin Cry1Ac by disrupting toxin binding have been reported previously in three major lepidopteran pests, including the cotton bollworm, Helicoverpa armigera. Here we report a novel allele from cotton bollworm with a deletion in the intracellular domain of cadherin that is genetically linked with non-recessive resistance to Cry1Ac. We discovered this allele in each of three field-selected populations we screened from northern China where Bt cotton producing Cry1Ac has been grown intensively. We expressed four types of cadherin alleles in heterologous cell cultures: susceptible, resistant with the intracellular domain mutation, and two complementary chimeric alleles with and without the mutation. Cells transfected with each of the four cadherin alleles bound Cry1Ac and were killed by Cry1Ac. However, relative to cells transfected with either the susceptible allele or the chimeric allele lacking the intracellular domain mutation, cells transfected with the resistant allele or the chimeric allele containing the intracellular domain mutation were less susceptible to Cry1Ac. These results suggest that the intracellular domain of cadherin is involved in post-binding events that affect toxicity of Cry1Ac. This evidence is consistent with the vital role of the intracellular region of cadherin proposed by the cell signaling model of the mode of action of Bt toxins. Considered together with previously reported data, the results suggest that both pore formation and cell signaling pathways contribute to the efficacy of Bt toxins.

  15. Bio Warfare and Terrorism: Toxins and Other Mid-Spectrum Agents

    National Research Council Canada - National Science Library

    Madsen, James M

    2005-01-01

    ... counterparts are still by definition toxins. Related terms include phycotoxins (toxins from algae), mycotoxins (fungal toxins), phytotoxins (plant toxins), and venoms (toxins from animals, especially vertebrates...

  16. Bacillus thuringiensis: fermentation process and risk assessment: a short review

    Directory of Open Access Journals (Sweden)

    Deise M. F Capalbo

    1995-02-01

    Full Text Available Several factors make the local production of Bacillus thuringiensis (Bt highly appropriate for pest control in developing nations. Bt can be cheaply produced on a wide variety of low cost, organic substrates. Local production results in considerable savings in hard currency which otherwise would be spent on importation of chemical and biological insecticides. The use of Bt in Brazil has been limited in comparison with chemical insecticides. Although Bt is imported, some Brazilian researchers have been working on its development and production. Fermentation processes (submerged and semi-solid were applied, using by-products from agro-industries. As the semi-solid fermentation process demonstrated to be interesting for Bt endotoxins production, it could be adopted for small scale local production. Although promising results had been achieved, national products have not been registered due to the absence of a specific legislation for biological products. Effective actions are being developed in order to solve this gap. Regardless of the biocontrol agents being considered atoxic and harmless to the environment, information related to direct and indirect effects of microbials are still insufficient in many cases. The risk analysis of the use of microbial control agents is of upmost importance nowadays, and is also discussed.

  17. Adhesion of Spores of Bacillus thuringiensis on a Planar Surface

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eunhyea [Georgia Institute of Technology; Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Lee, Ida [University of Tennessee, Knoxville (UTK); Joy, David Charles [ORNL; Palumbo, Anthony Vito [ORNL; Tsouris, Costas [ORNL

    2010-01-01

    Adhesion of spores of Bacillus thuringiensis (Bt) and spherical silica particles on surfaces was experimentally and theoretically investigated in this study. Topography analysis via atomic force microscopy (AFM) and electron microscopy indicates that Bt spores are rod shaped, {approx}1.3 {mu}m in length and {approx}0.8 {mu}m in diameter. The adhesion force of Bt spores and silica particles on gold-coated glass was measured at various relative humidity (RH) levels by AFM. It was expected that the adhesion force would vary with RH because the individual force components contributing to the adhesion force depend on RH. The adhesion force between a particle and a planar surface in atmospheric environments was modeled as the contribution of three major force components: capillary, van der Waals, and electrostatic interaction forces. Adhesion force measurements for Bt spore (silica particle) and the gold surface system were comparable with calculations. Modeling results show that there is a critical RH value, which depends on the hydrophobicity of the materials involved, below which the water meniscus does not form and the contribution of the capillary force is zero. As RH increases, the van der Waals force decreases while the capillary force increases to a maximum value.

  18. Dynamics of Bacillus thuringiensis var. israelensis and Lysinibacillus sphaericus spores in urban catch basins after simultaneous application against mosquito larvae.

    Directory of Open Access Journals (Sweden)

    Valeria Guidi

    Full Text Available Bacillus thuringiensis var. israelensis (Bti and Lysinibacillus sphaericus (Lsph are extensively used in mosquito control programs. These biocides are the active ingredients of a commercial larvicide. Quantitative data on the fate of both Bti and Lsph applied together for the control of mosquitoes in urban drainage structures such as catch basins are lacking. We evaluated the dynamics and persistence of Bti and Lsph spores released through their concomitant application in urban catch basins in southern Switzerland. Detection and quantification of spores over time in water and sludge samples from catch basins were carried out using quantitative real-time PCR targeting both cry4A and cry4B toxin genes for Bti and the binA gene for Lsph. After treatment, Bti and Lsph spores attained concentrations of 3.76 (± 0.08 and 4.13 (± 0.09 log ml(-1 in water, then decreased progressively over time, reaching baseline values. For both Bti and Lsph, spore levels in the order of 10(5 g(-1 were observed in the bottom sludge two days after the treatment and remained constant for the whole test period (275 days. Indigenous Lsph strains were isolated from previously untreated catch basins. A selection of those was genotyped using pulsed field gel electrophoresis of SmaI-digested chromosomal DNA, revealing that a subset of isolates were members of the clonal population of strain 2362. No safety issues related to the use of this biopesticide in the environment have been observed during this study, because no significant increase in the number of spores was seen during the long observation period. The isolation of native Lysinibacillus sphaericus strains belonging to the same clonal population as strain 2362 from catch basins never treated with Lsph-based products indicates that the use of a combination of Bti and Lsph for the control of mosquitoes does not introduce non-indigenous microorganisms in this area.

  19. Effect of transgenic Bacillus thuringiensis rice lines on mortality and feeding behavior of rice stem borers (Lepidoptera: Crambidae).

    Science.gov (United States)

    Chen, Hao; Zhang, Guoan; Zhang, Qifa; Lin, Yongjun

    2008-02-01

    Ten transgenic Bacillus thuringiensis Bt rice, Oryza sativa L., lines with different Bt genes (two Cry1Ac lines, three Cry2A lines, and five Cry9C lines) derived from the same variety Minghui 63 were evaluated in both the laboratory and the field. Bioassays were conducted by using the first instars of two main rice lepidopteran insect species: yellow stem borer, Scirpophaga incertulas (Walker) and Asiatic rice borer, Chilo suppressalis (Walker). All transgenic lines exhibited high toxicity to these two rice borers. Field evaluation results also showed that all transgenic lines were highly insect resistant with both natural infestation and manual infestation of the neonate larvae of S. incertulas compared with the nontransformed Minghui63. Bt protein concentrations in leaves of 10 transgenic rice lines were estimated by the sandwich enzyme-linked immunosorbent assay. The cry9C gene had the highest expression level, next was cry2A gene, and the cry1Ac gene expressed at the lowest level. The feeding behavior of 7-d-old Asiatic rice borer to three classes of Bt transgenic rice lines also was detected by using rice culm cuttings. The results showed that 7-d-old larvae of Asiatic rice borer have the capacity to distinguish Bt and non-Bt culm cuttings and preferentially fed on non-Bt cuttings. When only Bt culm cuttings with three classes of different Bt proteins (CrylAc, Cry2A, and Cry9C) were fed, significant distribution difference of 7-d-old Asiatic rice borer in culm cuttings of different Bt proteins also was found. In the current study, we evaluate different Bt genes in the same rice variety in both the laboratory and the field, and also tested feeding behavior of rice insect to these Bt rice. These data are valuable for the further development of two-toxin Bt rice and establishment of appropriate insect resistance management in the future.

  20. Development of a Low Cost Bioprocess for Endotoxin Production by Bacillus thuringiensis var israelensis Intended for Biological Control of Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Carlos Ricardo Soccol

    2009-11-01

    Full Text Available Aedes aegypti is the vector of Dengue disease, responsible for 20,000 deaths/year worldwide. Bacillus thuringiensis var israelensis - Bti releases selective and effective toxins (crystal proteins against A. aegypti larvae. We present a low cost bioprocess for toxin production, accomplished by a selected Brazilian strain Bti (BR-LPB01 and employment of low cost substrates. Soybean meal and sugarcane molasses lead to high toxic effectiveness after 2L bioreactor fermentation (LD50=26ng/mL, near to the reference strain IPS82 (LD50=17.3 ng/mL. The pH ranged between 5.8 and 7.0 during the exponential growth period and between 7.0 and 8.4 during the stationary phase, with low activity. Thus, control of foam and pH 7.0 were started and proved to be crucial for high activity. It was verified that the fermentation could be discontinued after 20 hours, when the highest activity was present.A dengue é transmitida pelo Aedes aegypti, doença responsável por 20.000 mortes/ano no mundo. Bacillus thuringiensis var israelensis libera toxinas seletivas e eficazes (proteínas cristal contra larvas de A. aegypti. Propõe-se um bioprocesso de baixo custo para a produção da toxina, pelo emprego de uma cepa brasileira selecionada de Bti (BR-LPB01 e de substratos de baixo custo. Farelo de soja e melaço de cana levaram a eficácia tóxica alta após fermentação em biorreator 2L (DL50=26ng/mL, valor próximo a estirpe de referência IPS82 (DL50=17,3 ng/mL. O pH variou entre 5,8 e 7,0 durante o período de crescimento exponencial e entre 7,0 e 8,4 durante a fase estacionária, com baixa atividade larvicida. Assim, controles de espuma e de pH 7,0 foram iniciados e demonstraram serem cruciais para alta atividade. Verificou-se que a fermentação deve ser interrompida após vinte horas, quando se obtém a maior atividade.

  1. Binding and Oligomerization of Modified and Native Bt Toxins in Resistant and Susceptible Pink Bollworm.

    Directory of Open Access Journals (Sweden)

    Josue Ocelotl

    Full Text Available Insecticidal proteins from Bacillus thuringiensis (Bt are used extensively in sprays and transgenic crops for pest control, but their efficacy is reduced when pests evolve resistance. Better understanding of the mode of action of Bt toxins and the mechanisms of insect resistance is needed to enhance the durability of these important alternatives to conventional insecticides. Mode of action models agree that binding of Bt toxins to midgut proteins such as cadherin is essential for toxicity, but some details remain unresolved, such as the role of toxin oligomers. In this study, we evaluated how Bt toxin Cry1Ac and its genetically engineered counterpart Cry1AcMod interact with brush border membrane vesicles (BBMV from resistant and susceptible larvae of Pectinophora gossypiella (pink bollworm, a global pest of cotton. Compared with Cry1Ac, Cry1AcMod lacks 56 amino acids at the amino-terminus including helix α-1; previous work showed that Cry1AcMod formed oligomers in vitro without cadherin and killed P. gossypiella larvae harboring cadherin mutations linked with >1000-fold resistance to Cry1Ac. Here we found that resistance to Cry1Ac was associated with reduced oligomer formation and insertion. In contrast, Cry1AcMod formed oligomers in BBMV from resistant larvae. These results confirm the role of cadherin in oligomerization of Cry1Ac in susceptible larvae and imply that forming oligomers without cadherin promotes toxicity of Cry1AcMod against resistant P. gossypiella larvae that have cadherin mutations.

  2. Botulinum toxin in trigeminal neuralgia.

    Science.gov (United States)

    Castillo-Álvarez, Federico; Hernando de la Bárcena, Ignacio; Marzo-Sola, María Eugenia

    2017-01-06

    Trigeminal neuralgia is one of the most disabling facial pain syndromes, with a significant impact on patients' quality of life. Pharmacotherapy is the first choice for treatment but cases of drug resistance often require new strategies, among which various interventional treatments have been used. In recent years a new therapeutic strategy consisting of botulinum toxin has emerged, with promising results. We reviewed clinical cases and case series, open-label studies and randomized clinical trials examining the use of botulinum toxin for drug-refractory trigeminal neuralgia published in the literature. The administration of botulinum toxin has proven to be a safe and effective therapeutic strategy in patients with drug-refractory idiopathic trigeminal neuralgia, but many questions remain unanswered as to the precise role of botulinum toxin in the treatment of this disease. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  3. Toxin-Based Therapeutic Approaches

    OpenAIRE

    Itai Benhar; Assaf Shapira

    2010-01-01

    Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmac...

  4. Field evolved resistance in Helicoverpa armigera (Lepidoptera: Noctuidae to Bacillus thuringiensis toxin Cry1Ac in Pakistan.

    Directory of Open Access Journals (Sweden)

    Anwaar H K Alvi

    Full Text Available Helicoverpa armigera (Hübner is one of the most destructive pests of several field and vegetable crops, with indiscriminate use of insecticides contributing to multiple instances of resistance. In the present study we assessed whether H. armigera had developed resistance to Bt cotton and compared the results with several conventional insecticides. Furthermore, the genetics of resistance was also investigated to determine the inheritance to Cry1Ac resistance. To investigate the development of resistance to Bt cotton, and selected foliar insecticides, H. armigera populations were sampled in 2010 and 2011 in several cotton production regions in Pakistan. The resistance ratios (RR for Cry1Ac, chlorpyrifos, profenofos, cypermethrin, spinosad, indoxacarb, abamectin and deltamethrin were 580-fold, 320-, 1110-, 1950-, 200-, 380, 690, and 40-fold, respectively, compared with the laboratory susceptible (Lab-PK population. Selection of the field collected population with Cry1Ac in 2010 for five generations increased RR to 5440-fold. The selection also increased RR for deltamethrin, chlorpyrifos, profenofos, cypermethrin, spinosad, indoxacarb, abamectin to 125-folds, 650-, 2840-, 9830-, 370-, 3090-, 1330-fold. The estimated LC(50s for reciprocal crosses were 105 µg/ml (Cry1Ac-SEL female × Lab-PK male and 81 g µg/ml (Lab-PK female × Cry1Ac-SEL male suggesting that the resistance to Cry1Ac was autosomal; the degree of dominance (D(LC was 0.60 and 0.57 respectively. Mixing of enzyme inhibitors significantly decreased resistance to Cry1Ac suggesting that the resistance to Cry1Ac and other insecticides tested in the present study was primarily metabolic. Resistance to Cry1Ac was probably due to a single but unstable factor suggesting that crop rotation with non-Bt cotton or other crops could reduce the selection pressure for H. armigera and improve the sustainability of Bt cotton.

  5. A 90-day safety study of genetically modified rice expressing Cry1Ab protein (Bacillus thuringiensis toxin) in Wistar rats

    DEFF Research Database (Denmark)

    Schrøder, Malene; Poulsen, Morten; Wilcks, Andrea

    2007-01-01

    An animal model for safety assessment of genetically modified foods was tested as part of the SAFOTEST project. In a 90-day feeding study on Wistar rats, the transgenic KMD1 rice expressing Cry1Ab protein was compared to its non-transgenic parental wild type, Xiushui 11. The KMD1 rice contained 15......, macroscopic and histopathological examinations were performed with only minor changes to report. The aim of the study was to use a known animal model in performance of safety assessment of a GM crop, in this case KMD1 rice. The results show no adverse or toxic effects of KMD1 rice when tested in the design...... used in this 90-day study. Nevertheless the experiences from this study lead to the overall conclusion that safety assessment for unintended effects of a GM crop cannot be done without additional test group(s)....

  6. Expression of the Bacillus thuringiensis toxin from maize does not affect epigeic communities of carabid beetles and spiders

    Czech Academy of Sciences Publication Activity Database

    Spitzer, L.; Růžička, Vlastimil; Hussein, Hany; Habuštová, Oxana; Sehnal, František

    2004-01-01

    Roč. 7, č. 4 (2004), s. 110-112 ISSN 1335-258X R&D Projects: GA AV ČR KJB6007304 Institutional research plan: CEZ:AV0Z5007907 Keywords : GMO * Bt maize * agroecosystems Subject RIV: EH - Ecology, Behaviour

  7. Diversity of Bacillus thuringiensis strains in the maize and bean phylloplane and their respective soils in Colombia.

    Science.gov (United States)

    Jara, S; Maduell, P; Orduz, S

    2006-07-01

    To evaluate the distribution of Bacillus thuringiensis strains from maize and bean phylloplane and their respective soils. B. thuringiensis was isolated from the phylloplane and soil of maize and bean from three municipalities in Antioquia, Colombia. Ninety six samples of phylloplane and 24 of soil were analyzed. A total of 214 isolates were obtained from 96 phylloplane samples while 59 isolates were recovered from 24 soil samples. Sixty five per cent and 12% of the phylloplane and soil isolates, respectively, showed activity against Spodoptera frugiperda. These isolates contained delta-endotoxin proteins of 57 and 130 kDa. The most toxic isolates against S. frugiperda had the genotype cry1Aa, cry1Ac, cry1B, and cry1D. In contrast, 27% of the phylloplane isolates and 88% of the soil isolates were active against Culex quinquefasciatus and had protein profiles similar to B. thuringiensis serovar. medellin and B. thuringiensis serovar. israelensis. The most active isolates contain cry4 and cry11 genes. The predominant population of B. thuringiensis on the phylloplane harbored the cry1 gene and was active against S. frugiperda, whereas in soil, isolates harboring cry11 gene and active against C. quinquefasciatus were the majority. The predominance of specific B. thuringiensis populations, both on the leaves and in the soil, suggests the presence of selection in B. thuringiensis populations on the studied environment.

  8. Estirpes de Bacillus thuringiensis efetivas contra insetos das ordens Lepidoptera, Coleoptera e Diptera Bacillus thuringiensis strains effective against insects of Lepidoptera, Coleoptera and Diptera orders

    Directory of Open Access Journals (Sweden)

    Lílian Botelho Praça

    2004-01-01

    Full Text Available O objetivo deste trabalho foi selecionar entre 300 estirpes de Bacillus thuringiensis as efetivas simultaneamente contra larvas de Spodoptera frugiperda J.E. Smith e Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae, Anthonomus grandis Boheman (Coleoptera: Curculionidae, Aedes aegypti Linnaeus e Culex quinquefasciatus Say (Diptera: Culicidae. Foram selecionadas duas estirpes de B. thuringiensis, denominadas S234 e S997, que apresentaram atividade contra as três ordens de insetos. As estirpes foram caracterizadas por métodos morfológicos, bioquímicos e moleculares. As mesmas apresentaram duas proteínas principais de 130 e 65 kDa, produtos de reação em cadeia da polimerase de tamanho esperado para a detecção dos genes cry1Aa, cry1Ab, cry1Ac, cry1B e cry2 e cristais bipiramidais, cubóides e esféricos.The aim of this work was to select among 300 strains of Bacillus thuringiensis those which are simultaneously effective against larvae of Spodoptera frugiperda J.E. Smith and Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae, Anthonomus grandis Boheman (Coleoptera: Curculionidae, Aedes aegypti Linnaeus and Culex quinquefasciatus Say (Diptera: Culicidae. Two strains of B. thuringiensis were selected, S234 and S997, which presented activity against those three insect orders. Both strains were characterized by morphological, biochemical and molecular methods. They have presented two main proteins with 130 and 65 kDa, polimerase chain reaction products with expected sizes for detection of the genes cry1Aa, cry1Ab, cry1Ac, cry1B and cry2 and bipiramidal, cubical and spherical crystals.

  9. Spatio-Temporal Evolution of Sporulation in Bacillus thuringiensis Biofilm.

    Science.gov (United States)

    El-Khoury, Nay; Majed, Racha; Perchat, Stéphane; Kallassy, Mireille; Lereclus, Didier; Gohar, Michel

    2016-01-01

    Bacillus thuringiensis can produce a floating biofilm which includes two parts: a ring and a pellicle. The ring is a thick structure which sticks to the culture container, while the pellicle extends over the whole liquid surface and joins the ring. We have followed over time, from 16 to 96 h, sporulation in the two biofilm parts. Sporulation was followed in situ in 48-wells polystyrene microtiterplates with a fluorescence binocular stereomicroscope and a spoIID-yfp transcriptional fusion. Sporulation took place much earlier in the ring than in the pellicle. In 20 h-aged biofilms, spoIID was expressed only in the ring, which could be seen as a green fluorescent circle surrounding the non-fluorescent pellicle. However, after 48 h of culture, the pellicle started to express spoIID in specific area corresponding to protrusions, and after 96 h both the ring and the whole pellicle expressed spoIID. Spore counts and microscopy observations of the ring and the pellicle harvested separately confirmed these results and revealed that sporulation occured 24 h-later in the pellicle comparatively to the ring, although both structures contained nearly 100% spores after 96 h of culture. We hypothesize that two mechanisms, due to microenvironments in the biofilm, can explain this difference. First, the ring experiences a decreased concentration of nutrients earlier than the pellicle, because of a lower exchange area with the culture medium. An second, the ring is exposed to partial dryness. Both reasons could speed up sporulation in this biofilm structure. Our results also suggest that spores in the biofilm display a phenotypic heterogeneity. These observations might be of particular significance for the food industry, since the biofilm part sticking to container walls - the ring - is likely to contain spores and will therefore resist both to washing and to cleaning procedures, and will be able to restart a new biofilm when food production has resumed.

  10. Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis).

    Science.gov (United States)

    Oliveira, Gustavo R; Silva, Maria C M; Lucena, Wagner A; Nakasu, Erich Y T; Firmino, Alexandre A P; Beneventi, Magda A; Souza, Djair S L; Gomes, José E; de Souza, José D A; Rigden, Daniel J; Ramos, Hudson B; Soccol, Carlos R; Grossi-de-Sa, Maria F

    2011-09-09

    The cotton boll weevil (Anthonomus grandis) is a serious insect-pest in the Americas, particularly in Brazil. The use of chemical or biological insect control is not effective against the cotton boll weevil because of its endophytic life style. Therefore, the use of biotechnological tools to produce insect-resistant transgenic plants represents an important strategy to reduce the damage to cotton plants caused by the boll weevil. The present study focuses on the identification of novel molecules that show improved toxicity against the cotton boll weevil. In vitro directed molecular evolution through DNA shuffling and phage display screening was applied to enhance the insecticidal activity of variants of the Cry8Ka1 protein of Bacillus thuringiensis. Bioassays carried out with A. grandis larvae revealed that the LC50 of the screened mutant Cry8Ka5 toxin was 3.15-fold higher than the wild-type Cry8Ka1 toxin. Homology modelling of Cry8Ka1 and the Cry8Ka5 mutant suggested that both proteins retained the typical three-domain Cry family structure. The mutated residues were located mostly in loops and appeared unlikely to interfere with molecular stability. The improved toxicity of the Cry8Ka5 mutant obtained in this study will allow the generation of a transgenic cotton event with improved potential to control A. grandis.

  11. Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis

    Directory of Open Access Journals (Sweden)

    Gomes José E

    2011-09-01

    Full Text Available Abstract Background The cotton boll weevil (Anthonomus grandis is a serious insect-pest in the Americas, particularly in Brazil. The use of chemical or biological insect control is not effective against the cotton boll weevil because of its endophytic life style. Therefore, the use of biotechnological tools to produce insect-resistant transgenic plants represents an important strategy to reduce the damage to cotton plants caused by the boll weevil. The present study focuses on the identification of novel molecules that show improved toxicity against the cotton boll weevil. In vitro directed molecular evolution through DNA shuffling and phage display screening was applied to enhance the insecticidal activity of variants of the Cry8Ka1 protein of Bacillus thuringiensis. Results Bioassays carried out with A. grandis larvae revealed that the LC50 of the screened mutant Cry8Ka5 toxin was 3.15-fold higher than the wild-type Cry8Ka1 toxin. Homology modelling of Cry8Ka1 and the Cry8Ka5 mutant suggested that both proteins retained the typical three-domain Cry family structure. The mutated residues were located mostly in loops and appeared unlikely to interfere with molecular stability. Conclusions The improved toxicity of the Cry8Ka5 mutant obtained in this study will allow the generation of a transgenic cotton event with improved potential to control A. grandis.

  12. A new formulation of Bacillus thuringiensis: UV protection and sustained release mosquito larvae studies

    Czech Academy of Sciences Publication Activity Database

    Zhang, L.; Zhang, X.; Zhang, Y.; Wu, S.; Gelbič, Ivan; Xu, L.; Guan, X.

    2016-01-01

    Roč. 6, DEC 22 (2016), č. článku 39425. ISSN 2045-2322 Institutional support: RVO:60077344 Keywords : Bacillus thuringiensis * pest control * UV protection Subject RIV: EE - Microbiology, Virology Impact factor: 4.259, year: 2016 http://www.nature.com/articles/srep39425

  13. Resistance: a threat to the insecticidal crystal proteins of Bacillus thuringiensis

    Science.gov (United States)

    Leah S. Bauer

    1995-01-01

    Insecticidal crystal proteins (also known as d-endotoxins) synthesized by the bacterium Bacillus thuringiensis Berliner (Bt) are the active ingredient of various environmentally friendly insecticides that are 1) highly compatible with natural enemies and other nontarget organisms due to narrow host specificity, 2) harmless to vertebrates, 3) biodegradable in the...

  14. Characterization of cry1Cb3 and cry1Fb7 from Bacillus thuringiensis subsp. galleriae

    Czech Academy of Sciences Publication Activity Database

    Huang, T.; Xiao, Y.; Pan, J.; Zhang, L.; Gelbič, Ivan; Guan, X.

    2015-01-01

    Roč. 10, č. 1 (2015), s. 521-528 ISSN 2391-5412 Institutional support: RVO:60077344 Keywords : Bacillus thuringiensis subsp. galleriae * PCR-RFLP * cloning Subject RIV: EB - Genetics ; Molecular Biology http://www.degruyter.com/view/j/biol.2015.10.issue-1/biol-2015-0054/biol-2015-0054.xml

  15. 40 CFR 180.1011 - Viable spores of the microorganism Bacillus thuringiensis Berliner; exemption from the...

    Science.gov (United States)

    2010-07-01

    ... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1011 Viable spores of the... characteristics of the parent strain or contamination by other microorganisms. (3) Each lot of spore preparation... production is a Bacillus thuringiensis strain which does not produce β-exotoxin under standard manufacturing...

  16. [Susceptibility of Aedes aegypti (L.) strains from Havana to a Bacillus thuringiensis var. israelensis].

    Science.gov (United States)

    Menéndez Díaz, Zulema; Rodríguez Rodríguez, Jinnay; Gato Armas, René; Companioni Ibañez, Ariamys; Díaz Pérez, Manuel; Bruzón Aguila, Rosa Yirian

    2012-01-01

    the integration of chemical and biological methods is one of the strategies for the vector control, due to the existing environmental problems and the concerns of the community as a result of the synthetic organic insecticide actions. The bacterium called Bacillus thuringiensis var. israelensis in liquid formulation has been widely used in the vector control programs in several countries and has shown high efficacy at lab in Cuba. to determine the susceptibility of Aedes aegypti collected in the municipalities of La Habana province to Bacillus thuringiensis var. israelensis. fifteen Aedes aegypti strains, one from each municipality, were used including larvae and pupas collected in 2010 and one reference strain known as Rockefeller. The aqueous formulation of Bacillus thuringiensis var. israelensis (Bactivec, Labiofam, Cuba) was used. The bioassays complied with the World Health Organization guidelines for use of bacterial larvicides in the public health sector. The larval mortality was read after 24 hours and the results were processed by the statistical system SPSS (11.0) through Probit analysis. the evaluated mosquito strains showed high susceptibility to biolarvicide, there were no significant differences in LC50 values of Ae. aegypti strains, neither in the comparison of these values with those of the reference strain. the presented results indicate that the use of Bacillus thuringiensis var. israelensis continues to be a choice for the control of Aedes aegypti larval populations in La Habana province.

  17. Persistence of Bacillus thuringiensis bioinsecticides in the gut of human-flora-associated rats

    DEFF Research Database (Denmark)

    Wilcks, Andrea; Hansen, Bjarne Munk; Hendriksen, Niels Bohse

    2006-01-01

    The capability of two bioinsecticide strains of Bacillus thuringiensis (ssp. israelensis and ssp. kurstaki) to germinate and persist in vivo in the gastrointestinal tract of human-flora-associated rats was studied. Rats were dosed either with vegetative cells or spores of the bacteria for 4 conse...

  18. Effect of chemical additives on Bacillus thuringiensis (Bacillales: Bacillaceae) against Plutella xylostella (Lepidoptera: Pyralidae)

    Czech Academy of Sciences Publication Activity Database

    Zhang, L.; Qiu, S.; Huang, T.; Huang, Z.; Xu, L.; Wu, C.; Gelbič, Ivan; Guan, X.

    2013-01-01

    Roč. 106, č. 3 (2013), s. 1075-1080 ISSN 0022-0493 Institutional research plan: CEZ:AV0Z50070508 Keywords : additives * Bacillus thuringiensis * biocontrol Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 1.605, year: 2013 http://www.bioone.org/doi/pdf/10.1603/EC12288

  19. Biological activity of Bacillus thuringiensis (Bacillales: Bacillaceae) chitinase against Caenorhabditis elegans (Rhabditida: Rhabditidae)

    Czech Academy of Sciences Publication Activity Database

    Zhang, L.; Yu, J.; Xie, Y.; Lin, H.; Huang, Z.; Xu, L.; Gelbič, Ivan; Guan, X.

    2014-01-01

    Roč. 107, č. 2 (2014), s. 551-558 ISSN 0022-0493 Institutional support: RVO:60077344 Keywords : Bacillus thuringiensis * Caenorhabditis elegans * chitinase Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 1.506, year: 2014 http://www.bioone.org/doi/pdf/10.1603/EC13201

  20. Effects of Bacillus thuringiensis CRY1A(c) d-endotoxin on growth ...

    African Journals Online (AJOL)

    The recent introduction of Bt maize and Bt cotton transgenic crops into Africa has raised concerns on their potential short and long-term ecological effects on the environment. The effects of Bacillus thuringiensis (Bt) Cry1A(c) d-endotoxin on the growth, nodulation and productivity of two leguminous plants grown in clay soil ...

  1. Effects of ensiling of Bacillus thuringiensis (Bt) maize (MON810) on ...

    African Journals Online (AJOL)

    The study investigated the degradation of the Bt protein (Cry1Ab) in Bt maize during ensiling and chemical composition of the silage. Two laboratory studies were conducted at the University of Fort Hare. One Bacillus thuringiensis (Bt) maize cultivar (DKC80-12B) and its isoline (DKC80-10) in the 2008/2009 study and two Bt ...

  2. Use of spent mushroom substrate for production of Bacillus thuringiensis by solid-state fermentation

    Czech Academy of Sciences Publication Activity Database

    Wu, S.; Lan, Y.; Huang, D.; Peng, Y.; Huang, Z.; Xu, L.; Gelbič, Ivan; Carballar-Lejarazu, R.; Guan, X.; Zhang, L.; Zou, S.

    2014-01-01

    Roč. 107, č. 1 (2014), s. 137-143 ISSN 0022-0493 Institutional support: RVO:60077344 Keywords : Bacillus thuringiensis * spent mushroom substrate * solid-state fermentation Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 1.506, year: 2014 http://www.bioone.org/doi/pdf/10.1603/EC13276

  3. IMPACT OF BT ( BACILLUS THURINGIENSIS ) CROPS ON BAT ACTIVITY IN SOUTH TEXAS AGROECOSYSTEMS

    Science.gov (United States)

    The widespread adoption of transgenic insecticidal crops raises concerns that nontarget species may be harmed and food webs disrupted. The goal of this research is to determine how transgenic Bt (Bacillus thuringiensis) crops impact the activity of Brazilian freetailed bats (Tada...

  4. Response of the Cottonwood Leaf Beetle (Coleoptera: Chrysomelidae) to Bacillus thuringiensis var. san diego

    Science.gov (United States)

    Leah S. Bauer

    1990-01-01

    A standardized laboratory bioassay was used to quantify the lethal and sub-lethal responses of larval and adult cottonwood leaf beetles, Chrysomela scripta F., to Bacillus thuringiensis var. san diego, formulated as M-One standard powder (Mycogen Corporation, San Diego). The median lethal concentration (LC

  5. Characterization of Baculovirus Insecticides Expressing Tailored Bacillus thuringiensis CryIA(b) Crystal Proteins

    NARCIS (Netherlands)

    Martens, John W M; Knoester, Marga; Weijts, Franci; Groffen, Sander J A; Hu, Zhihong; Bosch, Dirk; Vlak, Just M.

    1995-01-01

    Full-length, truncated, and mature forms of the CryIA(b) insecticidal crystal protein gene of Bacillus thuringiensis were engineered into the p10 locus of Autographa californica nuclear polyhedrosis virus (AcNPV). A signal sequence of Heliothis virescens juvenile hormone esterase was introduced at

  6. Botulinum toxin in pain treatment.

    Science.gov (United States)

    Colhado, Orlando Carlos Gomes; Boeing, Marcelo; Ortega, Luciano Bornia

    2009-01-01

    Botulinum toxin (BTX) is one of the most potent bacterial toxins known and its effectiveness in the treatment of some pain syndromes is well known. However, the efficacy of some of its indications is still in the process of being confirmed. The objective of this study was to review the history, pharmacological properties, and clinical applications of BTX in the treatment of pain of different origins. Botulinum toxin is produced by fermentation of Clostridium botulinum, a Gram-positive, anaerobic bacterium. Commercially, BTX comes in two presentations, types A and B. Botulinum toxin, a neurotoxin with high affinity for cholinergic synapses, blocks the release of acetylcholine by nerve endings without interfering with neuronal conduction of electrical signals or synthesis and storage of acetylcholine. It has been proven that BTX can selectively weaken painful muscles, interrupting the spasm-pain cycle. Several studies have demonstrated the efficacy and safety of BTX-A in the treatment of tension headaches, migraines, chronic lumbar pain, and myofascial pain. Botulinum toxin type A is well tolerated in the treatment of chronic pain disorders in which pharmacotherapy regimens can cause side effects. The reduction in the consumption of analgesics and length of action of 3 to 4 months per dose represent other advantages of its use. However, further studies are necessary to establish the efficacy of BTX-A in chronic pain disorders and its exact mechanism of action, as well as its potential in multifactorial treatments.

  7. New insights into the binding and catalytic mechanisms of Bacillus thuringiensis lactonase: insights into B. thuringiensis AiiA mechanism.

    Directory of Open Access Journals (Sweden)

    Marc N Charendoff

    Full Text Available The lactonase enzyme (AiiA produced by Bacillus thuringiensis serves to degrade autoinducer-1 (AI-1 signaling molecules in what is an evolved mechanism by which to compete with other bacteria. Bioassays have been previously performed to determine whether the AI-1 aliphatic tail lengths have any effect on AiiA's bioactivity, however, data to date are conflicting. Additionally, specific residue contributions to the catalytic activity of AiiA provide for some interesting questions. For example, it has been proposed that Y194 serves to provide an oxyanion hole to AI-1 which is curious given the fact the substrate spans two Zn(2+ ions. These ions might conceivably provide enough charge to promote both ligand stability and the carbonyl activation necessary to drive a nucleophilic attack. To investigate these questions, multiple molecular dynamics simulations were performed across a family of seven acylated homoserine lactones (AHL along with their associated intermediate and product states. Distance analyses and interaction energy analyses were performed to investigate current bioassay data. Our simulations are consistent with experimental studies showing that AiiA degrades AHLs in a tail length independent manner. However, the presence of the tail is required for activity. Also, the putative oxyanion hole function of Y194 toward the substrate is not observed in any of the reactant or product state simulation trajectories, but does seem to show efficacy in stabilizing the intermediate state. Last, we argue through ionization state analyses, that the proton shuttling necessary for catalytic activity might be mediated by both water and substrate-based intra-molecular proton transfer. Based on this argument, an alternate catalytic mechanism is proposed.

  8. Systematic characterization of Bacillus Genetic Stock Center Bacillus thuringiensis strains using Multi-Locus Sequence Typing.

    Science.gov (United States)

    Wang, Kui; Shu, Changlong; Soberón, Mario; Bravo, Alejandra; Zhang, Jie

    2018-04-30

    The goal of this work was to perform a systematic characterization of Bacillus thuringiensis (Bt) strains from the Bacillus Genetic Stock Center (BGSC) collection using Multi-Locus Sequence Typing (MLST). Different genetic markers of 158 Bacillus thuringiensis (Bt) strains from 73 different serovars stored in the BGSC, that represented 92% of the different Bt serovars of the BGSC were analyzed, the 8% that were not analyzed were not available. In addition, we analyzed 72 Bt strains from 18 serovars available at the pubMLST bcereus database, and Bt strains G03, HBF18 and Bt185, with no H serovars provided by our laboratory. We performed a systematic MLST analysis using seven housekeeping genes (glpF, gmK, ilvD, pta, pur, pycA and tpi) and analyzed correlation of the results of this analysis with strain serovars. The 233 Bt strains analyzed were assigned to 119 STs from which 19 STs were new. Genetic relationships were established by phylogenetic analysis and showed that STs could be grouped in two major Clusters containing 21 sub-groups. We found that a significant number of STs (101 in total) correlated with specific serovars, such as ST13 that corresponded to nine Bt isolates from B. thuringiensis serovar kenyae. However, other serovars showed high genetic variability and correlated with multiple STs; for example, B. thuringiensis serovar morrisoni correlated with 11 different STs. In addition, we found that 16 different STs correlated with multiple serovars (2-4 different serovars); for example, ST12 correlated with B. thuringiensis serovar alesti, dakota, palmanyolensis and sotto/dendrolimus. These data indicated that only partial correspondence between MLST and serotyping can be established. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Histopathological and ultrastructural effects of delta-endotoxins of Bacillus thuringiensis serovar israelensis in the midgut of Simulium pertinax larvae (Diptera, Simuliidae

    Directory of Open Access Journals (Sweden)

    CFG Cavados

    2004-08-01

    Full Text Available The bacterium Bacillus thuringiensis (Bt produces parasporal crystals containing delta-endotoxins responsible for selective insecticidal activity on larvae. Upon ingestion, these crystals are solubilized in the midgut lumen and converted into active toxins that bind to receptors present on the microvilli causing serious damage to the epithelial columnar cells. We investigated the effect of these endotoxins on larvae of the Simulium pertinax, a common black fly in Brazil, using several concentrations during 4 h of the serovar israelensis strain IPS-82 (LFB-FIOCRUZ 584, serotype H-14 type strain of the Institute Pasteur, Paris. Light and electron microscope observations revealed, by time and endotoxin concentration, increasing damages of the larvae midgut epithelium. The most characteristic effects were midgut columnar cell vacuolization, microvilli damages, epithelium cell contents passing into the midgut lumen and finally the cell death. This article is the first report of the histopathological effects of the Bti endotoxins in the midgut of S. pertinax larvae and the data obtained may contribute to a better understanding of the mode of action of this bacterial strain used as bioinsecticide against black fly larvae.

  10. Entry of Shiga toxin into cells

    DEFF Research Database (Denmark)

    Sandvig, Kirsten; van Deurs, Bo

    1994-01-01

    Cellebiologi, Shiga toxin, receptors, glycolipids, endocytosis, trans-Golgi network, endoplasmic reticulum, retrograde transport......Cellebiologi, Shiga toxin, receptors, glycolipids, endocytosis, trans-Golgi network, endoplasmic reticulum, retrograde transport...

  11. Inhibition of cholera toxin and other AB toxins by polyphenolic compounds

    Science.gov (United States)

    All AB-type protein toxins have intracellular targets despite an initial extracellular location. These toxins use different methods to reach the cytosol and have different effects on the target cell. Broad-spectrum inhibitors against AB toxins are therefore hard to develop because the toxins use dif...

  12. RAP-PCR fingerprinting reveals time-dependent expression of development-related genes following differentiation process of Bacillus thuringiensis

    Czech Academy of Sciences Publication Activity Database

    Huang, T.; Yu, X.; Gelbič, Ivan; Guan, X.

    2015-01-01

    Roč. 61, č. 9 (2015), s. 683-690 ISSN 0008-4166 Institutional support: RVO:60077344 Keywords : Bacillus thuringiensis * development * RNA arbitrarily primed PCR Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.335, year: 2015

  13. [Genes of insecticidal crystal proteins with dual specificity in Bacillus thuringiensis strains, isolated in the Crimea territory].

    Science.gov (United States)

    Rymar, S Iu; Isakova, I A; Kuznietsova, L M; Kordium, V A

    2006-01-01

    The insecticidal crystal proteins of 15 B. thuringiensis strains, isolated in the Crimea territory that are toxical for some Lepidoptera and Colorado potato beetle larvae were identified by PAGE electrophoresis. Ten strains produced the crystal proteins with high molecular weight (> 120 kD). PCR with use of broad specificity primers and DNA of these B. thuringiensis strains as template demonstrated the specific PCR products (1000 bp). Amplified DNA fragments were cloned and sequenced. The nucleotide sequence analysis revealed that the genomes of ten strains of B. thuringiensis carried Cry1B genes, which are responsible for production of the insecticidal crystal proteins with dual specificity. The influence of the solubilization conditions on the structure and toxicity of Cry1B protein for Colorado potato beetle larvae was shown. The dual toxicity of studied B. thuringiensis strains is explained by the Cry1B genes presence in their genomes. These strains may be used to develop the broad specificity bioinsecticides.

  14. Interactions between Bacillus thuringiensis and parasitoids of late-instar larvae of the spruce budworm (Lepidoptera: Tortricidae)

    NARCIS (Netherlands)

    Schoenmaker, A.; Cusson, M.; Frankenhuyzen, van K.

    2001-01-01

    We investigated interactions between Bacillus thuringiensis Berliner var. kurstaki and parasitoids that attack late instars of the eastern spruce budworm, Choristoneura fumiferana (Clemens). In a petri-dish arena, females of Tranosema rostrale rostrale (Brishke) (Hymenoptera: Ichneumonidae) were

  15. Toxin synergism in snake venoms

    DEFF Research Database (Denmark)

    Laustsen, Andreas Hougaard

    2016-01-01

    Synergism between venom toxins exists for a range of snake species. Synergism can be derived from both intermolecular interactions and supramolecular interactions between venom components, and can be the result of toxins targeting the same protein, biochemical pathway or physiological process. Few...... simple systematic tools and methods for determining the presence of synergism exist, but include co-administration of venom components and assessment of Accumulated Toxicity Scores. A better understanding of how to investigate synergism in snake venoms may help unravel strategies for developing novel...

  16. Cyt toxin expression reveals an inverse regulation of insect and plant virulence factors of Dickeya dadantii.

    Science.gov (United States)

    Costechareyre, Denis; Dridi, Bedis; Rahbé, Yvan; Condemine, Guy

    2010-12-01

    The plant pathogenic bacteria Dickeya dadantii is also a pathogen of the pea aphid Acyrthosiphon pisum. The genome of the bacteria contains four cyt genes, encoding homologues of Bacillus thuringiensis Cyt toxins, which are involved in its pathogenicity to insects. We show here that these genes are transcribed as an operon, and we determined the conditions necessary for their expression. Their expression is induced at high temperature and at an osmolarity equivalent to that found in the plant phloem sap. The regulators of cyt genes have also been identified: their expression is repressed by H-NS and VfmE and activated by PecS. These genes are already known to regulate plant virulence factors, but in an opposite way. When tested in a virulence assay by ingestion, the pecS mutant was almost non-pathogenic while hns and vfmE mutants behaved in the same way as the wild-type strain. Mutants of other regulators of plant virulence, GacA, OmpR and PhoP, that do not control Cyt toxin production, also showed reduced pathogenicity. In an assay by injection of bacteria, the gacA strain was less pathogenic but, surprisingly, the pecS mutant was slightly more virulent. These results show that Cyt toxins are not the only virulence factors required to kill aphids, and that these factors act at different stages of the infection. Moreover, their production is controlled by general virulence regulators known for their role in plant virulence. This integration could indicate that virulence towards insects is a normal mode of life for D. dadantii. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  17. Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac in China.

    Directory of Open Access Journals (Sweden)

    Peng Wan

    Full Text Available Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The main approach for delaying pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to transgenic cotton producing Bt toxin Cry1Ac, the United States and some other countries have required refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. The "natural" refuge strategy focuses on cotton bollworm (Helicoverpa armigera, the primary target of Bt cotton in China that attacks many crops, but it does not apply to another major pest, pink bollworm (Pectinophora gossypiella, which feeds almost entirely on cotton in China. Here we report data showing field-evolved resistance to Cry1Ac by pink bollworm in the Yangtze River Valley of China. Laboratory bioassay data from 51 field-derived strains show that the susceptibility to Cry1Ac was significantly lower during 2008 to 2010 than 2005 to 2007. The percentage of field populations yielding one or more survivors at a diagnostic concentration of Cry1Ac increased from 0% in 2005-2007 to 56% in 2008-2010. However, the median survival at the diagnostic concentration was only 1.6% from 2008 to 2010 and failure of Bt cotton to control pink bollworm has not been reported in China. The early detection of resistance reported here may promote proactive countermeasures, such as a switch to transgenic cotton producing toxins distinct from Cry1A toxins, increased planting of non-Bt cotton, and integration of other management tactics together with Bt cotton.

  18. [Environmental toxins in breast milk].

    Science.gov (United States)

    Bratlid, Dag

    2009-12-17

    Breast milk is very important to ensure infants a well-composed and safe diet during the first year of life. However, the quality of breast milk seems to be affected by an increasing amount of environmental toxins (particularly so-called Persistent, Bioaccumulative Toxins [PBTs]). Many concerns have been raised about the negative effects this may have on infant health. The article is a review of literature (mainly review articles) identified through a non-systematic search in PubMed. The concentration of PBTs in breast milk is mainly caused by man's position as the terminal link in the nutritional chain. Many breast-fed infants have a daily intake of such toxins that exceed limits defined for the population in general. Animal studies demonstrate effects on endocrine function and neurotoxicity in the offspring, and a number of human studies seem to point in the same direction. However the "original" optimal composition of breast milk still seems to protect against long-term effects of such toxicity. There is international consensus about the need to monitor breast milk for the presence of PBTs. Such surveillance will be a good indicator of the population's general exposure to these toxins and may also contribute to identifying groups as risk who should not breast-feed their children for a long time.

  19. Risk Assessment of Shellfish Toxins

    Directory of Open Access Journals (Sweden)

    Rex Munday

    2013-11-01

    Full Text Available Complex secondary metabolites, some of which are highly toxic to mammals, are produced by many marine organisms. Some of these organisms are important food sources for marine animals and, when ingested, the toxins that they produce may be absorbed and stored in the tissues of the predators, which then become toxic to animals higher up the food chain. This is a particular problem with shellfish, and many cases of poisoning are reported in shellfish consumers each year. At present, there is no practicable means of preventing uptake of the toxins by shellfish or of removing them after harvesting. Assessment of the risk posed by such toxins is therefore required in order to determine levels that are unlikely to cause adverse effects in humans and to permit the establishment of regulatory limits in shellfish for human consumption. In the present review, the basic principles of risk assessment are described, and the progress made toward robust risk assessment of seafood toxins is discussed. While good progress has been made, it is clear that further toxicological studies are required before this goal is fully achieved.

  20. Food irradiation and bacterial toxins

    International Nuclear Information System (INIS)

    Tranter, H.S.; Modi, N.K.; Hambleton, P.; Melling, J.; Rose, S.; Stringer, M.F.

    1987-01-01

    The authors' findings indicate that irradiation confers no advantage over heat processing in respect of bacterial toxins (clostridium botulinum, neurotoxin A and staphylococcal enterotoxin A). It follows that irradiation at doses less than the ACINF recommended upper limit of 10 kGy could not be used to improve the ambient temperature shelf life on non-acid foods. (author)

  1. Botulinum toxin for vaginismus treatment.

    Science.gov (United States)

    Ferreira, Juliana Rocha; Souza, Renan Pedra

    2012-01-01

    Vaginismus is characterized by recurrent or persistent involuntary contraction of the perineal muscles surrounding the outer third of the vagina when penile, finger, tampon, or speculum penetration is attempted. Recent results have suggested the use of botulinum toxin for the treatment of vaginismus. Here, we assessed previously published data to evaluate the therapeutic effectiveness of botulinum toxin for vaginismus. We have carried out a systematic review followed by a meta-analysis. Our results indicate that botulinum toxin is an effective therapeutic option for patients with vaginismus (pooled odds ratio of 8.723 with 95% confidence interval limits of 1.942 and 39.162, p = 0.005). This may hold particularly true in treatment-refractory patients because most of the studies included in this meta-analysis have enrolled these subjects in their primary analysis. Botulinum toxin appears to bea reasonable intervention for vaginismus. However, this conclusion should be read carefully because of the deficiency of placebo-controlled randomized clinical trials and the quality issues presented in the existing ones.

  2. Shigella Sonnei and Shiga Toxin

    Centers for Disease Control (CDC) Podcasts

    2016-07-28

    Katherine Lamba, an infectious disease epidemiologist with the California Department of Public Health, discusses Shiga Toxin producing Shigella sonnei.  Created: 7/28/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 7/28/2016.

  3. Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent

    International Nuclear Information System (INIS)

    Himanen, Sari J.; Nerg, Anne-Marja; Nissinen, Anne; Stewart, C. Neal; Poppy, Guy M.; Holopainen, Jarmo K.

    2009-01-01

    Sustained cultivation of Bacillus thuringiensis (Bt) transgenic crops requires stable transgene expression under variable abiotic conditions. We studied the interactions of Bt toxin production and chronic ozone exposure in Bt cry1Ac-transgenic oilseed rape and found that the insect resistance trait is robust under ozone elevations. Bt Cry1Ac concentrations were higher in the leaves of Bt oilseed rape grown under elevated ozone compared to control treatment, measured either per leaf fresh weight or per total soluble protein of leaves. The mean relative growth rate of a Bt target herbivore, Plutella xylostella L. larvae was negative on Bt plants in all ozone treatments. On the non-transgenic plants, larval feeding damage was reduced under elevated ozone. Our results indicate the need for monitoring fluctuations in Bt toxin concentrations to reveal the potential of ozone exposure for altering dosing of Bt proteins to target and non-target herbivores in field environments experiencing increasing ozone pollution. - Elevated atmospheric ozone can induce fluctuations in insecticidal protein concentrations in transgenic plants

  4. Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent

    Energy Technology Data Exchange (ETDEWEB)

    Himanen, Sari J. [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland)], E-mail: sari.himanen@uku.fi; Nerg, Anne-Marja [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland); Nissinen, Anne [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland); MTT Agrifood Research Finland, Plant Protection, FIN-31600 Jokioinen (Finland); Stewart, C. Neal [University of Tennessee, Department of Plant Sciences, Knoxville, TN 37996-4561 (United States); Poppy, Guy M. [University of Southampton, School of Biological Sciences, Southampton SO16 7PX (United Kingdom); Holopainen, Jarmo K. [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland)

    2009-01-15

    Sustained cultivation of Bacillus thuringiensis (Bt) transgenic crops requires stable transgene expression under variable abiotic conditions. We studied the interactions of Bt toxin production and chronic ozone exposure in Bt cry1Ac-transgenic oilseed rape and found that the insect resistance trait is robust under ozone elevations. Bt Cry1Ac concentrations were higher in the leaves of Bt oilseed rape grown under elevated ozone compared to control treatment, measured either per leaf fresh weight or per total soluble protein of leaves. The mean relative growth rate of a Bt target herbivore, Plutella xylostella L. larvae was negative on Bt plants in all ozone treatments. On the non-transgenic plants, larval feeding damage was reduced under elevated ozone. Our results indicate the need for monitoring fluctuations in Bt toxin concentrations to reveal the potential of ozone exposure for altering dosing of Bt proteins to target and non-target herbivores in field environments experiencing increasing ozone pollution. - Elevated atmospheric ozone can induce fluctuations in insecticidal protein concentrations in transgenic plants.

  5. Expression of Cry1Ac toxin-binding region in Plutella xyllostella cadherin-like receptor and studying their interaction mode by molecular docking and site-directed mutagenesis.

    Science.gov (United States)

    Hu, Xiaodan; Zhang, Xiao; Zhong, Jianfeng; Liu, Yuan; Zhang, Cunzheng; Xie, Yajing; Lin, Manman; Xu, Chongxin; Lu, Lina; Zhu, Qing; Liu, Xianjin

    2018-05-01

    Cadherin-like protein has been identified as the primary Bacillus thuringiensis (Bt) Cry toxin receptor in Lepidoptera pests and plays a key role in Cry toxin insecticidal. In this study, we successfully expressed the putative Cry1Ac toxin-binding region (CR7-CR11) of Plutella xylostella cadherin-like in Escherichia coli BL21 (DE3). The expressed CR7-CR11 fragment showed binding ability to Cry1Ac toxin under denaturing (Ligand blot) and non-denaturing (ELISA) conditions. The three-dimensional structure of CR7-CR11 was constructed by homology modeling. Molecular docking results of CR7-CR11 and Cry1Ac showed that domain II and domain III of Cry1Ac were taking part in binding to CR7-CR11, while CR7-CR8 was the region of CR7-CR11 in interacting with Cry1Ac. The interaction of toxin-receptor complex was found to arise from hydrogen bond and hydrophobic interaction. Through the computer-aided alanine mutation scanning, amino acid residues of Cry1Ac (Met341, Asn442 and Ser486) and CR7-CR11 (Asp32, Arg101 and Arg127) were predicted as the hot spot residues involved in the interaction of the toxin-receptor complex. At last, we verified the importance role of these key amino acid residues by binding assay. These results will lay a foundation for further elucidating the insecticidal mechanism of Cry toxin and enhancing Cry toxin insecticidal activity by molecular modification. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Binding site alteration is responsible for field-isolated resistance to Bacillus thuringiensis Cry2A insecticidal proteins in two Helicoverpa species.

    Directory of Open Access Journals (Sweden)

    Silvia Caccia

    Full Text Available BACKGROUND: Evolution of resistance by target pests is the main threat to the long-term efficacy of crops expressing Bacillus thuringiensis (Bt insecticidal proteins. Cry2 proteins play a pivotal role in current Bt spray formulations and transgenic crops and they complement Cry1A proteins because of their different mode of action. Their presence is critical in the control of those lepidopteran species, such as Helicoverpa spp., which are not highly susceptible to Cry1A proteins. In Australia, a transgenic variety of cotton expressing Cry1Ac and Cry2Ab (Bollgard II comprises at least 80% of the total cotton area. Prior to the widespread adoption of Bollgard II, the frequency of alleles conferring resistance to Cry2Ab in field populations of Helicoverpa armigera and Helicoverpa punctigera was significantly higher than anticipated. Colonies established from survivors of F(2 screens against Cry2Ab are highly resistant to this toxin, but susceptible to Cry1Ac. METHODOLOGY/PRINCIPAL FINDINGS: Bioassays performed with surface-treated artificial diet on neonates of H. armigera and H. punctigera showed that Cry2Ab resistant insects were cross-resistant to Cry2Ae while susceptible to Cry1Ab. Binding analyses with (125I-labeled Cry2Ab were performed with brush border membrane vesicles from midguts of Cry2Ab susceptible and resistant insects. The results of the binding analyses correlated with bioassay data and demonstrated that resistant insects exhibited greatly reduced binding of Cry2Ab toxin to midgut receptors, whereas no change in (125I-labeled-Cry1Ac binding was detected. As previously demonstrated for H. armigera, Cry2Ab binding sites in H. punctigera were shown to be shared by Cry2Ae, which explains why an alteration of the shared binding site would lead to cross-resistance between the two Cry2A toxins. CONCLUSION/SIGNIFICANCE: This is the first time that a mechanism of resistance to the Cry2 class of insecticidal proteins has been reported

  7. U.v.-induced and N-methyl-N'-nitrosoguanidine-induced mutagenesis in Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Auffray, Y.; Boutibonnes, P.

    1987-01-01

    The lethal and mutagenic effects of u.v. light and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) on Bacillus thuringiensis were investigated. Lethality studies demonstrated that B. thuringiensis was relatively sensitive to these agents. This bacterium was mutated at the rifampicin resistance marker by u.v. light and to a lesser extent by the direct acting alkylating agent MNNG. One mutant selected for its greater sensitivity to u.v. light expressed a higher frequency of mutagenesis after u.v. light treatment and appeared to be defective in an excision repair pathway. However, this mutant was only slightly mutable by MNNG in comparison with the wild-type strain. This unusual phenotype does not yet have a parallel among the radiation sensitive mutants described in other bacterial species. (author)

  8. Enhancement of virulence of bacillus thuringiensis and serratia marcescens by chemicals

    International Nuclear Information System (INIS)

    Khan, K. A.

    2006-01-01

    Studies were conducted on the enhancement of pathogenicity of Bacillus thuringiensis by 1% boric acid against various species of termites. The increase in virulence of Serratia marcescens by 1% potassium chloride or 1% Sodium citrate against the workers of M. championi has also been established. The increase in virulence is confirmed by the enhancement ratio, which are ranging from about 1.5 to 1.8 for Bacillus thuringiensis and 1.3 to 1.6 for Serratia marcescens. It was also noted that 1% boric acid alone was found toxic to various species of termites. However, Potassium chloride and Sodium citrate in a concentration of 1% were non-toxic to the workers of M. championi. (author)

  9. Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food

    DEFF Research Database (Denmark)

    Rosenquist, Hanne; Ørum-Smidt, Lasse; Andersen, Sigrid R

    2005-01-01

    Among 48,901 samples of ready-to-eat food products at the Danish retail market, 0.5% had counts of Bacillus cereus-like bacteria above 10(4) cfu g(-1). The high counts were most frequently found in starchy, cooked products, but also in fresh cucumbers and tomatoes. Forty randomly selected strains....../or content of cry genes. Thus, a large proportion of the B. cereus-like organisms present in food may belong to B. thuringiensis....

  10. Activity of Bacillus thuringiensis D(delta)-endotoxins against codling moth (Cydia pomonella L.) larvae

    NARCIS (Netherlands)

    Boncheva, R.; Dukiandjiev, S.; Minkov, I.; Maagd, de R.A.; Naimov, S.

    2006-01-01

    Solubilized protoxins of nine Cry1 and one hybrid Cry1 ¿-endotoxin from Bacillus thuringiensis were tested for their activity against larvae of the codling moth (Cydia pomonella L). Cry1Da was the most toxic, followed by Cry1Ab, Cry1Ba, and Cry1Ac, while Cry1Aa, Cry1Fa, Cry1Ia, and SN19 were still

  11. On-line Biomass Estimation in a Batch Biotechnological Process: Bacillus thuringiensis δ - endotoxins production.

    OpenAIRE

    Amicarelli, Adriana

    2010-01-01

    In this Chapter it has been addressed the problem of the biomass estimation in a batch biotechnological process: the Bacillus thuringiensis (Bt) δ-endotoxins production process. Different alternatives that can be successfully used in this sense were presented. It has been exposed the design of various biomass estimators, namely: a phenomenological biomass estimator, a standard EKF biomass estimator, a biomass estimator based on ANN, a decentralized Kalman Filter, and a biomass concentration ...

  12. Histopathology and the lethal effect of Cry proteins and strains of Bacillus thuringiensis Berliner in Spodoptera frugiperda J.E. Smith Caterpillars (Lepidoptera, Noctuidae

    Directory of Open Access Journals (Sweden)

    N. Knaak

    Full Text Available Among the phytophagous insects which attack crops, the fall armyworm, Spodoptera frugiperda (J.E. Smith, 1797 (Lepidoptera, Noctuidae is particularly harmful in the initial growth phase of rice plants. As a potential means of controlling this pest, and considering that the entomopathogen Bacillus thuringiensis Berliner demonstrates toxicity due to synthesis of the Cry protein, the present study was undertaken to evaluate this toxic effect of B. thuringiensis thuringiensis 407 (pH 408 and B. thuringiensis kurstaki HD-73 on S. frugiperda. The following method was used. Both bacterial strains were evaluated in vitro in 1st instar S. frugiperda caterpillars, by means of histopathological assays. The Cry1Ab and Cry1Ac proteins, codified by the respective strains of B. thuringiensis, were evaluated in vivo by bioassays of 1st instar S. frugiperda caterpillars in order to determine the Mean Lethal Concentration (LC50. The results of the histopathological analysis of the midget of S. frugiperda caterpillars demonstrate that treatment with the B. thuringiensis thuringiensis strain was more efficient, because the degradations of the microvilosities started 9 hours after treatment application (HAT, while in the B. thuringiensis kurstaki the same effect was noticed only after 12 HAT. Toxicity data of the Cry1Ab and Cry1Ac proteins presented for the target-species LC50 levels of 9.29 and 1.79 μg.cm-2 respectively. The strains and proteins synthesised by B. thuringiensis thuringiensis and B. thuringiensis kurstaki are effective in controlling S. frugiperda, and may be used to produce new biopesticides or the genes may be utilised in the genetic transformation of Oryza sativa L.

  13. Experimental design and Bayesian networks for enhancement of delta-endotoxin production by Bacillus thuringiensis.

    Science.gov (United States)

    Ennouri, Karim; Ayed, Rayda Ben; Hassen, Hanen Ben; Mazzarello, Maura; Ottaviani, Ennio

    2015-12-01

    Bacillus thuringiensis (Bt) is a Gram-positive bacterium. The entomopathogenic activity of Bt is related to the existence of the crystal consisting of protoxins, also called delta-endotoxins. In order to optimize and explain the production of delta-endotoxins of Bacillus thuringiensis kurstaki, we studied seven medium components: soybean meal, starch, KH₂PO₄, K₂HPO₄, FeSO₄, MnSO₄, and MgSO₄and their relationships with the concentration of delta-endotoxins using an experimental design (Plackett-Burman design) and Bayesian networks modelling. The effects of the ingredients of the culture medium on delta-endotoxins production were estimated. The developed model showed that different medium components are important for the Bacillus thuringiensis fermentation. The most important factors influenced the production of delta-endotoxins are FeSO₄, K2HPO₄, starch and soybean meal. Indeed, it was found that soybean meal, K₂HPO₄, KH₂PO₄and starch also showed positive effect on the delta-endotoxins production. However, FeSO4 and MnSO4 expressed opposite effect. The developed model, based on Bayesian techniques, can automatically learn emerging models in data to serve in the prediction of delta-endotoxins concentrations. The constructed model in the present study implies that experimental design (Plackett-Burman design) joined with Bayesian networks method could be used for identification of effect variables on delta-endotoxins variation.

  14. Synergistic effect of certain insecticides combined with Bacillus thuringiensis on mosquito larvae

    Directory of Open Access Journals (Sweden)

    C.P. Narkhede

    2017-04-01

    Full Text Available For effective vector control it is essential to formulate new preparations having multiple action against the vector pest. Developing combined formulation of biopesticide and chemical pesticide is one of the novel concept to fight against the vectors with new weapons; however, compatibility of biopesticide i.e. Bacillus thuringiensis (Bt and chemical pesticide is a real hurdle. In this investigation, local isolate Bacillus thuringiensis SV2 (BtSV2 was tested for its compatibility with various available mosquito larvicides. Temephos was most compatible with BtSV2 than with other tested pesticides. These two compatible agents were tested for larvicidal potential. Our study revealed that the synergistic effect of both agents reduces LC50 value by 30.68 and 22.36% against the Ae. aegypti and An. stephensi, respectively. The larvicidal potential increased when compared to individual pesticides. It was also observed a biochemical change in larvae after the TBT (Temephos + Bacillus thuringiensis combination treatment; it involves decreased level of alpha esterase, acetylcholine esterase and protein while level of beta esterase and acid phosphatase was unchanged and alkaline phosphatase activity was increased. Increased potential of combined formulation may be due to altered physiological condition.

  15. Why do we study animal toxins?

    Science.gov (United States)

    ZHANG, Yun

    2015-01-01

    Venom (toxins) is an important trait evolved along the evolutionary tree of animals. Our knowledges on venoms, such as their origins and loss, the biological relevance and the coevolutionary patterns with other organisms are greatly helpful in understanding many fundamental biological questions, i.e., the environmental adaptation and survival competition, the evolution shaped development and balance of venoms, and the sophisticated correlations among venom, immunity, body power, intelligence, their genetic basis, inherent association, as well as the cost-benefit and trade-offs of biological economy. Lethal animal envenomation can be found worldwide. However, from foe to friend, toxin studies have led lots of important discoveries and exciting avenues in deciphering and fighting human diseases, including the works awarded the Nobel Prize and lots of key clinic therapeutics. According to our survey, so far, only less than 0.1% of the toxins of the venomous animals in China have been explored. We emphasize on the similarities shared by venom and immune systems, as well as the studies of toxin knowledge-based physiological toxin-like proteins/peptides (TLPs). We propose the natural pairing hypothesis. Evolution links toxins with humans. Our mission is to find out the right natural pairings and interactions of our body elements with toxins, and with endogenous toxin-like molecules. Although, in nature, toxins may endanger human lives, but from a philosophical point of view, knowing them well is an effective way to better understand ourselves. So, this is why we study toxins. PMID:26228472

  16. Avaliação da eficiência de formulações de Bacillus thuringiensis para o controle de traça-das-crucíferas em repolho no Distrito Federal Efficiency of Bacillus thuringiensis formulations in controlling Diamondback Moth in cabbage in the Federal District

    Directory of Open Access Journals (Sweden)

    Marina Castelo Branco

    1999-11-01

    Full Text Available A traça-das-crucíferas (Plutella xylostella é a praga mais importante do repolho no Distrito Federal. Seu controle é feito basicamente com inseticidas. Novos produtos são constantemente avaliados para o controle da praga e neste trabalho duas novas formulações de Bacillus thuringiensis [Bacillus thuringiensis var. aizawai (350 e 500 g/hae B. thuringiensis var. kurstaki x B. thuringiensis var. aizawai (350 e 500 ml/ha] foram avaliadas no período de maio a outubro de 1995. Os tratamentos B. thuringiensis var. kurstaki (500 ml/ha, deltametrina (240 ml/ha e uma testemunha sem pulverização foram também incluídos no experimento. O delineamento foi blocos ao acaso, com sete tratamentos e quatro repetições. Os resultados mostraram que B. thuringiensis var. aizawai nas duas dosagens avaliadas e B. thuringiensis var. kurstaki x B. thuringiensis var. aizawai (500 ml/ha foram os produtos mais eficientes. Ao final do experimento larvas e pupas de traça-das-crucíferas foram coletadas no campo e a primeira geração foi submetida a um teste de laboratório onde discos de folhas de repolho foram tratados com as dosagens dos inseticidas a base de B. thuringiensis utilizadas no campo. Larvas de segundo estádio foram colocadas sobre os discos tratados e a mortalidade de larvas avaliada após 72 h. Todos os tratamentos causaram mais de 97% de mortalidade de larvas. O resultado do teste de laboratório sugere que a menor eficiência de B. thuringiensis var. kurstaki x B. thuringiensis var. aizawai (350 ml/ha e B. thuringiensis var. kurstaki (500 ml/ha no teste de campo quando comparada aos demais Bacillus, pode ser devido à mais rápida degradação destes produtos no ambiente.The Diamondback Moth (Plutella xylostella is the most important cabbage pest in the Federal District. New insecticides are frequently tested for its control and in this study two new Bacillus thuringiensis formulations [B. thuringiensis var. aizawai (350 and 500 g/ha and B

  17. The Synergist Effect of The Henna Plant, Lawsonia alba on Bacillus thuringiensis var. kurstaki Against Third Larval Instar of Pistachio Leaf Borer, Ocneria terebinthina Strg. (Lep.: Lymanteriidae

    Directory of Open Access Journals (Sweden)

    Zahra Sheibani

    2017-12-01

    Full Text Available Ocneria terebinthina Strg. (Lep.: Lymanteriidae is a leaf borer pest in pistachio orchard. The toxicity of Bacillus thuringiensis var. kurstaki alone and in combination with henna powder was investigated on third larval instar of O. terebinthina under laboratory conditions. Bioassay was carried out using spray technique on pistachio offshoot. Probit analysis of concentration-mortality data was conducted to estimate the LC50 value. The LC50 value of B. thuringiensis on third instar of larvae was estimated as 2817.30 ppm. The synergist effect of henna powder on efficacy of B. thuringiensis was also evaluated. Three concentrations of henna powder were combined with minimum lethal dose of B. thuringiensis against third larval instar. The results revealed that the henna powder had synergist effect on B. thuringiensis. The combination of B. thuringiensis and henna powder (6000 ppm caused 80.68% mortality, whereas B. thuringiensis alone caused 15.91% mortality. Our results suggested that henna powder can increase the efficacy of B. thuringiensis in controlling O. terebinthina in pest integrated management.

  18. Decolorization of textile dye RB19 using volcanic rock matrix immobilized Bacillus thuringiensis cells with surface displayed laccase.

    Science.gov (United States)

    Wan, Juan; Sun, Xiaowen; Liu, Cheng; Tang, Mengjun; Li, Lin; Ni, Hong

    2017-06-01

    A triplicate volcanic rock matrix-Bacillus thuringiensis-laccase WlacD (VRMs-Bt-WlacD) dye decolorization system was developed. WlacD was displayed on the B. thuringiensis MB174 cell surface to prepare a whole-cell laccase biocatalyst by using two repeat N-terminal domains of autolysin Mbg (Mbgn) 2 as the anchoring motif. Immunofluorescence microscopic assays confirmed that the fusion protein (Mbgn) 2 -WlacD was anchored on the surface of the recombinant B. thuringiensis MB174. After optimization by a single factor test, L 9 (3 4 )-orthogonal test, Plackett-Burman test, steepest ascent method, and Box-Behnken response surface methodology, the whole-cell specific laccase activity of B. thuringiensis MB174 was improved to 555.2 U L -1 , which was 2.25 times than that of the primary culture condition. Optimized B. thuringiensis MB174 cells were further adsorbed by VRMs to prepare VRMs-Bt-WlacD, an immobilized whole-cell laccase biocatalyst. Decolorization capacity of as-prepared VRMs-Bt-WlacD toward an initial concentration of 500 mg L -1 of an textile dye reactive blue 19 (RB19) aqueous solution reached 72.36% at a solid-to-liquid ratio of 10 g-100 mL. Repeated decolorization-activation operations showed the high decolorization capacity of VRMs-Bt-WlacD and have the potential for large-scale or continuous operations.

  19. Computational Studies of Snake Venom Toxins

    OpenAIRE

    Paola G. Ojeda; David Ramírez; Jans Alzate-Morales; Julio Caballero; Quentin Kaas; Wendy González

    2017-01-01

    Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics t...

  20. Collaborative Research Program on Seafood Toxins

    Science.gov (United States)

    1988-08-14

    Crystallographic Structures of Saxitoxins Cl and C2 Appendix C: Collaborative Research Program an Seafcod Toxins Progress Report on Ciguatera and Related...radioimmunoassay for PSP were also evalumted. The Hokama stick test for ciguatera toxin was also evaluated. 4. initiate Studies on the Accumulation...tco•d which caie a form of b-mnn poisoning referred to as ciguatera . The respcnsible toxins originate from ll1ular rine algae of the division

  1. Failure of botulinum toxin injection for neurogenic detrusor overactivity: Switch of toxin versus second injection of the same toxin.

    Science.gov (United States)

    Peyronnet, Benoit; Castel-Lacanal, Evelyne; Manunta, Andréa; Roumiguié, Mathieu; Marque, Philippe; Rischmann, Pascal; Gamé, Xavier

    2015-12-01

    To evaluate the efficacy of a second injection of the same toxin versus switching to a different botulinum toxin A after failure of a first detrusor injection in patients with neurogenic detrusor overactivity. The charts of all patients who underwent detrusor injections of botulinum toxin A (either abobotulinumtoxinA or onabotulinumtoxinA) for the management of neurogenic detrusor overactivity at a single institution were retrospectively reviewed. Patients in whom a first detrusor injection had failed were included in the present study. They were managed by a second injection of the same toxin at the same dosage or by a new detrusor injection using a different botulinum toxin A. Success was defined as a resolution of urgency, urinary incontinence and detrusor overactivity in a patient self-catheterizing seven times or less per 24 h. A total of 58 patients were included for analysis. A toxin switch was carried out in 29 patients, whereas the other 29 patients received a reinjection of the same toxin at the same dose. The success rate was higher in patients who received a toxin switch (51.7% vs. 24.1%, P = 0.03). Patients treated with a switch from abobotulinumtoxinA to onabotulinumtoxinA and those treated with a switch from onabotulinumtoxinA to abobotulinumtoxinA had similar success rates (52.9% vs. 50%, P = 0.88). After failure of a first detrusor injection of botulinum toxin for neurogenic detrusor overactivity, a switch to a different toxin seems to be more effective than a second injection of the same toxin. The replacement of onabotulinumtoxin by abobotulinumtoxin or the reverse provides similar results. © 2015 The Japanese Urological Association.

  2. Selection of optimum conditions of medium acidity and aeration for submerget cultivation of Bacillus thuringiensis and Beauveria bassiana

    Directory of Open Access Journals (Sweden)

    O. A. Dregval

    2010-06-01

    Full Text Available The paper deals with the influence of medium pH and aeration rate on growth and sporulation of Bacillus thuringiensis and Вeauveria bassiana, which are main constituents of the complex microbial insecticide. It was established optimal medium pH for B. thuringiensis – 6.0 and for В. bassiana – 6.0–7.0. The maximum productivity of the studied microorganisms was observed in the same range of aeration – 7– 14 mmol O2/l/h. The selected conditions of cultivation are necessary for the production of complex biological insecticide based on the association of B. thuringiensis and B. bassiana.

  3. Diagnostic properties of three conventional selective plating media for selection of Bacillus cereus, B. thuringiensis and B. weihenstephanensis

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Hansen, Bjarne Munk

    2011-01-01

    The aim of this study was to assess the diagnostic properties of the two selective plating media and a chromogenic medium for identification of Bacillus cereus. The 324 isolates were B. cereus (37%), Bacillus weihenstephanensis (45%) or Bacillus thuringiensis (18%), as identified by a new...... combination of techniques. All isolates were growing on mannitol–egg yolk–polymyxin agar (MYP), and they did not form acid from mannitol. However, a significant lower number of B. thuringiensis isolates did not show lecithinase activity. All isolates were also growing on polymyxin–egg yolk...... recommended selective plating media MYP and PEMBA for detection of B. cereus group bacteria both have their limitations for identification of some B. cereus, B. weihenstephanensis or B. thuringiensis. However, MYP is preferable compared to PEMBA. The chromogenic medium has its own advantages and limitations...

  4. Botulinum toxin in bruxism treatment

    Directory of Open Access Journals (Sweden)

    Piotr Piech

    2017-07-01

    Full Text Available Introduction: Bruxism is defined as abnormal, fixed, unconscious chewing organ function, deviating qualitatively and quantitatively from normal function. Another definition speaks of motor dysfunction in the mouth, characterized by grinding and clenching of the teeth, occurring during sleep. The etiology of this disorder has not been explained until now, but it is believed to be related to localized, mental, nervous and neurotransmitter disorders. Purpose: The aim of the study is to review literature and knowledge about the use of botulinum toxin in the treatment of bruxism. Methods of treatment: The patient reports to the physician usually after a distressing, difficult to locate pain. The basis for proper treatment is to detect parafunctions and to make the patient aware of their existence. Diagnostic symptoms include dentinal lesions, recesses, enamel cracks and abfractive cavities, as well as changes in the mucosal area of the cheeks. Treatment begins with the use of an occlusive therapy to relax muscles, reduce parafunction and relieve pain. In the form of severe pain, NSAIDs are introduced and, if necessary, anxiolytics, sedatives and antidepressants. In the absence of response to the treatment used, botulinum toxin type A injections are used. The dose of the agent depends on the initial muscle tone and the effect of decrease in its activity is maintained for 4 to 6 months. Conclusions: The use of botulinum toxin makes it possible to selectively exclude overactive muscles, which is a great advantage over other techniques. An additional benefit of this therapy is achieved good cosmetic effect, reversible effect and minimal amount of side effects.

  5. Botulinum toxin: The Midas touch.

    Science.gov (United States)

    Shilpa, P S; Kaul, Rachna; Sultana, Nishat; Bhat, Suraksha

    2014-01-01

    Botulinum Toxin (BT) is a natural molecule produced during growth and autolysis of bacterium called Clostridium botulinum. Use of BT for cosmetic purposes has gained popularity over past two decades, and recently, other therapeutic uses of BT has been extensively studied. BT is considered as a minimally invasive agent that can be used in the treatment of various orofacial disorders and improving the quality of life in such patients. The objective of this article is to review the nature, mechanism of action of BT, and its application in various head and neck diseases.

  6. Synthesis and biology of cyclic imine toxins, an emerging class of potent, globally distributed marine toxins.

    Science.gov (United States)

    Stivala, Craig E; Benoit, Evelyne; Aráoz, Rómulo; Servent, Denis; Novikov, Alexei; Molgó, Jordi; Zakarian, Armen

    2015-03-01

    From a small group of exotic compounds isolated only two decades ago, Cyclic Imine (CI) toxins have become a major class of marine toxins with global distribution. Their distinct chemical structure, biological mechanism of action, and intricate chemistry ensures that CI toxins will continue to be the subject of fascinating fundamental studies in the broad fields of chemistry, chemical biology, and toxicology. The worldwide occurrence of potent CI toxins in marine environments, their accumulation in shellfish, and chemical stability are important considerations in assessing risk factors for human health. This review article aims to provide an account of chemistry, biology, and toxicology of CI toxins from their discovery to the present day.

  7. Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil.

    Science.gov (United States)

    Ribeiro, Thuanne Pires; Arraes, Fabricio Barbosa Monteiro; Lourenço-Tessutti, Isabela Tristan; Silva, Marilia Santos; Lisei-de-Sá, Maria Eugênia; Lucena, Wagner Alexandre; Macedo, Leonardo Lima Pepino; Lima, Janaina Nascimento; Santos Amorim, Regina Maria; Artico, Sinara; Alves-Ferreira, Márcio; Mattar Silva, Maria Cristina; Grossi-de-Sa, Maria Fatima

    2017-08-01

    Genetically modified (GM) cotton plants that effectively control cotton boll weevil (CBW), which is the most destructive cotton insect pest in South America, are reported here for the first time. This work presents the successful development of a new GM cotton with high resistance to CBW conferred by Cry10Aa toxin, a protein encoded by entomopathogenic Bacillus thuringiensis (Bt) gene. The plant transformation vector harbouring cry10Aa gene driven by the cotton ubiquitination-related promoter uceA1.7 was introduced into a Brazilian cotton cultivar by biolistic transformation. Quantitative PCR (qPCR) assays revealed high transcription levels of cry10Aa in both T 0 GM cotton leaf and flower bud tissues. Southern blot and qPCR-based 2 -ΔΔCt analyses revealed that T 0 GM plants had either one or two transgene copies. Quantitative and qualitative analyses of Cry10Aa protein expression showed variable protein expression levels in both flower buds and leaves tissues of T 0 GM cotton plants, ranging from approximately 3.0 to 14.0 μg g -1 fresh tissue. CBW susceptibility bioassays, performed by feeding adults and larvae with T 0 GM cotton leaves and flower buds, respectively, demonstrated a significant entomotoxic effect and a high level of CBW mortality (up to 100%). Molecular analysis revealed that transgene stability and entomotoxic effect to CBW were maintained in T 1 generation as the Cry10Aa toxin expression levels remained high in both tissues, ranging from 4.05 to 19.57 μg g -1 fresh tissue, and the CBW mortality rate remained around 100%. In conclusion, these Cry10Aa GM cotton plants represent a great advance in the control of the devastating CBW insect pest and can substantially impact cotton agribusiness. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Synergism and Antagonism between Bacillus thuringiensis Vip3A and Cry1 Proteins in Heliothis virescens, Diatraea saccharalis and Spodoptera frugiperda

    Science.gov (United States)

    Lemes, Ana Rita Nunes; Davolos, Camila Chiaradia; Legori, Paula Cristina Brunini Crialesi; Fernandes, Odair Aparecido; Ferré, Juan; Lemos, Manoel Victor Franco; Desiderio, Janete Apparecida

    2014-01-01

    Second generation Bt crops (insect resistant crops carrying Bacillus thuringiensis genes) combine more than one gene that codes for insecticidal proteins in the same plant to provide better control of agricultural pests. Some of the new combinations involve co-expression of cry and vip genes. Because Cry and Vip proteins have different midgut targets and possibly different mechanisms of toxicity, it is important to evaluate possible synergistic or antagonistic interactions between these two classes of toxins. Three members of the Cry1 class of proteins and three from the Vip3A class were tested against Heliothis virescens for possible interactions. At the level of LC50, Cry1Ac was the most active protein, whereas the rest of proteins tested were similarly active. However, at the level of LC90, Cry1Aa and Cry1Ca were the least active proteins, and Cry1Ac and Vip3A proteins were not significantly different. Under the experimental conditions used in this study, we found an antagonistic effect of Cry1Ca with the three Vip3A proteins. The interaction between Cry1Ca and Vip3Aa was also tested on two other species of Lepidoptera. Whereas antagonism was observed in Spodoptera frugiperda, synergism was found in Diatraea saccharalis. In all cases, the interaction between Vip3A and Cry1 proteins was more evident at the LC90 level than at the LC50 level. The fact that the same combination of proteins may result in a synergistic or an antagonistic interaction may be an indication that there are different types of interactions within the host, depending on the insect species tested. PMID:25275646

  9. A Quantitative Electrochemiluminescence Assay for Clostridium perfringens alpha toxin

    National Research Council Canada - National Science Library

    Merrill, Gerald A; Rivera, Victor R; Neal, Dwayne D; Young, Charles; Poli, Mark A

    2006-01-01

    .... Biotinylated antibodies to C. perfringens alpha toxin bound to streptavidin paramagnetic beads specifically immunoadsorbed soluble sample alpha toxin which subsequently selectively immunoadsorbed ruthenium (Ru...

  10. Toxin-Antitoxin Battle in Bacteria

    DEFF Research Database (Denmark)

    Cataudella, Ilaria

    This PhD thesis consists of three research projects revolving around the common thread of investigation of the properties and biological functions of Toxin-Antitoxin loci. Toxin-Antitoxin (TA) loci are transcriptionally regulated via an auto-inhibition mechanism called conditional cooperativity, ...

  11. Plant insecticidal toxins in ecological networks.

    Science.gov (United States)

    Ibanez, Sébastien; Gallet, Christiane; Després, Laurence

    2012-04-01

    Plant secondary metabolites play a key role in plant-insect interactions, whether constitutive or induced, C- or N-based. Anti-herbivore defences against insects can act as repellents, deterrents, growth inhibitors or cause direct mortality. In turn, insects have evolved a variety of strategies to act against plant toxins, e.g., avoidance, excretion, sequestration and degradation of the toxin, eventually leading to a co-evolutionary arms race between insects and plants and to co-diversification. Anti-herbivore defences also negatively impact mutualistic partners, possibly leading to an ecological cost of toxin production. However, in other cases toxins can also be used by plants involved in mutualistic interactions to exclude inadequate partners and to modify the cost/benefit ratio of mutualism to their advantage. When considering the whole community, toxins have an effect at many trophic levels. Aposematic insects sequester toxins to defend themselves against predators. Depending on the ecological context, toxins can either increase insects' vulnerability to parasitoids and entomopathogens or protect them, eventually leading to self-medication. We conclude that studying the community-level impacts of plant toxins can provide new insights into the synthesis between community and evolutionary ecology.

  12. Plant Insecticidal Toxins in Ecological Networks

    Directory of Open Access Journals (Sweden)

    Sébastien Ibanez

    2012-04-01

    Full Text Available Plant secondary metabolites play a key role in plant-insect interactions, whether constitutive or induced, C- or N-based. Anti-herbivore defences against insects can act as repellents, deterrents, growth inhibitors or cause direct mortality. In turn, insects have evolved a variety of strategies to act against plant toxins, e.g., avoidance, excretion, sequestration and degradation of the toxin, eventually leading to a co-evolutionary arms race between insects and plants and to co-diversification. Anti-herbivore defences also negatively impact mutualistic partners, possibly leading to an ecological cost of toxin production. However, in other cases toxins can also be used by plants involved in mutualistic interactions to exclude inadequate partners and to modify the cost/benefit ratio of mutualism to their advantage. When considering the whole community, toxins have an effect at many trophic levels. Aposematic insects sequester toxins to defend themselves against predators. Depending on the ecological context, toxins can either increase insects’ vulnerability to parasitoids and entomopathogens or protect them, eventually leading to self-medication. We conclude that studying the community-level impacts of plant toxins can provide new insights into the synthesis between community and evolutionary ecology.

  13. Stealth and mimicry by deadly bacterial toxins

    DEFF Research Database (Denmark)

    Yates, S.P.; Jørgensen, Rene; Andersen, Gregers Rom

    2006-01-01

    Diphtheria toxin and exotoxin A are well-characterized members of the ADP-ribosyltransferase toxin family that serve as virulence factors in the pathogenic bacteria, Corynebacterium diphtheriae and Pseudomonas aeruginosa.  New high-resolution structural data of the Michaelis complex...

  14. Brown spider dermonecrotic toxin directly induces nephrotoxicity

    International Nuclear Information System (INIS)

    Chaim, Olga Meiri; Sade, Youssef Bacila; Bertoni da Silveira, Rafael; Toma, Leny; Kalapothakis, Evanguedes; Chavez-Olortegui, Carlos; Mangili, Oldemir Carlos; Gremski, Waldemiro; Dietrich, Carl Peter von; Nader, Helena B.; Sanches Veiga, Silvio

    2006-01-01

    Brown spider (Loxosceles genus) venom can induce dermonecrotic lesions at the bite site and systemic manifestations including fever, vomiting, convulsions, disseminated intravascular coagulation, hemolytic anemia and acute renal failure. The venom is composed of a mixture of proteins with several molecules biochemically and biologically well characterized. The mechanism by which the venom induces renal damage is unknown. By using mice exposed to Loxosceles intermedia recombinant dermonecrotic toxin (LiRecDT), we showed direct induction of renal injuries. Microscopic analysis of renal biopsies from dermonecrotic toxin-treated mice showed histological alterations including glomerular edema and tubular necrosis. Hyalinization of tubules with deposition of proteinaceous material in the tubule lumen, tubule epithelial cell vacuoles, tubular edema and epithelial cell lysis was also observed. Leukocytic infiltration was neither observed in the glomerulus nor the tubules. Renal vessels showed no sign of inflammatory response. Additionally, biochemical analyses showed such toxin-induced changes in renal function as urine alkalinization, hematuria and azotemia with elevation of blood urea nitrogen levels. Immunofluorescence with dermonecrotic toxin antibodies and confocal microscopy analysis showed deposition and direct binding of this toxin to renal intrinsic structures. By immunoblotting with a hyperimmune dermonecrotic toxin antiserum on renal lysates from toxin-treated mice, we detected a positive signal at the region of 33-35 kDa, which strengthens the idea that renal failure is directly induced by dermonecrotic toxin. Immunofluorescence reaction with dermonecrotic toxin antibodies revealed deposition and binding of this toxin directly in MDCK epithelial cells in culture. Similarly, dermonecrotic toxin treatment caused morphological alterations of MDCK cells including cytoplasmic vacuoles, blebs, evoked impaired spreading and detached cells from each other and from

  15. Interplay between toxin transport and flotillin localization

    DEFF Research Database (Denmark)

    Pust, Sascha; Dyve, Anne Berit; Torgersen, Maria L

    2010-01-01

    The flotillin proteins are localized in lipid domains at the plasma membrane as well as in intracellular compartments. In the present study, we examined the importance of flotillin-1 and flotillin-2 for the uptake and transport of the bacterial Shiga toxin (Stx) and the plant toxin ricin and we...... for flotillin-1 or -2. However, the Golgi-dependent sulfation of both toxins was significantly reduced in flotillin knockdown cells. Interestingly, when the transport of ricin to the ER was investigated, we obtained an increased mannosylation of ricin in flotillin-1 and flotillin-2 knockdown cells. The toxicity...... of both toxins was twofold increased in flotillin-depleted cells. Since BFA (Brefeldin A) inhibits the toxicity even in flotillin knockdown cells, the retrograde toxin transport is apparently still Golgi-dependent. Thus, flotillin proteins regulate and facilitate the retrograde transport of Stx and ricin....

  16. Crystallization of isoelectrically homogeneous cholera toxin

    International Nuclear Information System (INIS)

    Spangler, B.D.; Westbrook, E.M.

    1989-01-01

    Past difficulty in growing good crystals of cholera toxin has prevented the study of the crystal structure of this important protein. The authors have determined that failure of cholera toxin to crystallize well has been due to its heterogeneity. They have now succeeded in overcoming the problem by isolating a single isoelectric variant of this oligomeric protein (one A subunit and five B subunits). Cholera toxin purified by their procedure readily forms large single crystals. The crystal form has been described previously. They have recorded data from native crystals of cholera toxin to 3.0-angstrom resolution with our electronic area detectors. With these data, they have found the orientation of a 5-fold symmetry axis within these crystals, perpendicular to the screw dyad of the crystal. They are now determining the crystal structure of cholera toxin by a combination of multiple heavy-atom isomorphous replacement and density modification techniques, making use of rotational 5-fold averaging of the B subunits

  17. Immunotoxins: The Role of the Toxin

    Directory of Open Access Journals (Sweden)

    David FitzGerald

    2013-08-01

    Full Text Available Immunotoxins are antibody-toxin bifunctional molecules that rely on intracellular toxin action to kill target cells. Target specificity is determined via the binding attributes of the chosen antibody. Mostly, but not exclusively, immunotoxins are purpose-built to kill cancer cells as part of novel treatment approaches. Other applications for immunotoxins include immune regulation and the treatment of viral or parasitic diseases. Here we discuss the utility of protein toxins, of both bacterial and plant origin, joined to antibodies for targeting cancer cells. Finally, while clinical goals are focused on the development of novel cancer treatments, much has been learned about toxin action and intracellular pathways. Thus toxins are considered both medicines for treating human disease and probes of cellular function.

  18. Bacillus thuringiensis monogenic strains: screening and interactions with insecticides used against rice pests

    Science.gov (United States)

    Pinto, Laura M.N.; Dörr, Natália C.; Ribeiro, Ana Paula A.; de Salles, Silvia M.; de Oliveira, Jaime V.; Menezes, Valmir G.; Fiuza, Lidia M.

    2012-01-01

    The screening of Bacillus thuringiensis (Bt) Cry proteins with high potential to control insect pests has been the goal of numerous research groups. In this study, we evaluated six monogenic Bt strains (Bt dendrolimus HD-37, Bt kurstaki HD-1, Bt kurstaki HD-73, Bt thuringiensis 4412, Bt kurstaki NRD-12 and Bt entomocidus 60.5, which codify the cry1Aa, cry1Ab, cry1Ac, cry1Ba, cry1C, cry2A genes respectively) as potential insecticides for the most important insect pests of irrigated rice: Spodoptera frugiperda, Diatraea saccharalis, Oryzophagus oryzae, Oebalus poecilus and Tibraca limbativentris. We also analyzed their compatibility with chemical insecticides (thiamethoxam, labdacyhalothrin, malathion and fipronil), which are extensively used in rice crops. The bioassay results showed that Bt thuringiensis 4412 and Bt entomocidus 60.5 were the most toxic for the lepidopterans, with a 93% and 82% mortality rate for S. frugiperda and D. saccharalis, respectively. For O. oryzae, the Bt kurstaki NRD-12 (64%) and Bt dendrolimus HD-37 (62%) strains were the most toxic. The Bt dendrolimus HD-37 strain also caused high mortality (82%) to O. poecilus, however the strains assessed to T. limbativentris caused a maximum rate of 5%. The assays for the Bt strains interaction with insecticides revealed the compatibility of the six strains with the four insecticides tested. The results from this study showed the high potential of cry1Aa and cry1Ba genes for genetic engineering of rice plants or the strains to biopesticide formulations. PMID:24031872

  19. c-di-GMP Regulates Various Phenotypes and Insecticidal Activity of Gram-Positive Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Yang Fu

    2018-02-01

    Full Text Available C-di-GMP has been well investigated to play significant roles in the physiology of many Gram-negative bacteria. However, its effect on Gram-positive bacteria is less known. In order to more understand the c-di-GMP functions in Gram-positive bacteria, we have carried out a detailed study on the c-di-GMP-metabolizing enzymes and their physiological functions in Bacillus thuringiensis, a Gram-positive entomopathogenic bacterium that has been applied as an insecticide successfully. We performed a systematic study on the ten putative c-di-GMP-synthesizing enzyme diguanylate cyclases (DGCs and c-di-GMP-degrading enzyme phosphodiesterases (PDEs in B. thuringiensis BMB171, and artificially elevated the intracellular c-di-GMP level in BMB171 by deleting one or more pde genes. We found increasing level of intracellular c-di-GMP exhibits similar activities as those in Gram-negative bacteria, including altered activities in cell motility, biofilm formation, and cell-cell aggregation. Unexpectedly, we additionally found a novel function exhibited by the increasing level of c-di-GMP to promote the insecticidal activity of this bacterium against Helicoverpa armigera. Through whole-genome transcriptome profile analyses, we found that 4.3% of the B. thuringiensis genes were differentially transcribed when c-di-GMP level was increased, and 77.3% of such gene products are involved in some regulatory pathways not reported in other bacteria to date. In summary, our study represents the first comprehensive report on the c-di-GMP-metabolizing enzymes, their effects on phenotypes, and the transcriptome mediated by c-di-GMP in an important Gram-positive bacterium.

  20. Toxicity of parasporal crystals of Bacillus thuringiensis to the Indian meal moth, Plodia interpunctella.

    Science.gov (United States)

    Schesser, J H; Bulla, L A

    1979-05-01

    Toxicity of Bacillus thuringiensis parasporal crystals to the Indian meal moth, Plodia interpunctella, is described. The numbers of insects killed were in relation to crystal dry weight. Mortality was determined by comparing adult emergence in diets treated with crystals to emergence in untreated diets. There was only a 30% survival at an application of 0.414 microgram/cm2, and the mean 50% lethal concentration value was found to be 0.299 microgram/cm2. The use of emergence data has provided a reliable and reproducible bioassay for comparing relative toxicities of crystals, spores, and other cellular components to this economically important insect.

  1. Commercial formulations of Bacillus thuringiensis for control of Indian meal moth.

    Science.gov (United States)

    Schesser, J H

    1976-10-01

    Doses of four commercial formulations and one experimental formulation of Bacillus thuringiensis Berliner were mixed with the diet used to rear colonies of the Indian meal moth Plodia interpunctella (Hübner). Indian meal moth eggs were introduced to the treated diet, and the resultant adult emergence was tabulated. The experimental formulations ranked as follows in efficacy in controlling the Indian meal moth: Dipel (50% lethal concentration [LC50], 25 mg/kg) greater than Bactospeine WP (LC50, 100 mg/kg) greater than Thuricide (LC50, 150 mg/kg) greater than IMC 90007 (LC30, 180 mg/kg) greater than Bactospeine Flowable (LC50, 440 mg/kg).

  2. The potential of the novel mosquitocidal Bacillus thuringiensis strain LLP29 for use in practice

    Czech Academy of Sciences Publication Activity Database

    Zhang, L.; Wu, S.; Peng, Y.; Li, M.; Sun, L.; Huang, E.; Guan, X.; Gelbič, Ivan

    2011-01-01

    Roč. 36, č. 2 (2011), s. 458-460 ISSN 1081-1710 R&D Projects: GA MŠk 2B08003 Grant - others:National Natural Science Foundation of China(CN) 31071745; Science Foundation of the Ministry of Education of China(CN) 20093515110010; Science Foundation of the Ministry of Education of China(CN) 20093515120010 Institutional research plan: CEZ:AV0Z50070508 Keywords : Bacillus thuringiensis Subject RIV: ED - Physiology Impact factor: 0.885, year: 2011

  3. A novel mosquitocidal Bacillus thuringiensis strain LLP29 isolated from the phylloplane of Magnolia denudata

    Czech Academy of Sciences Publication Activity Database

    Zhang, L.; Huang, E.; Lin, J.; Gelbič, Ivan; Zhang, Q.; Guan, Y.; Huang, T.; Guan, X.

    2010-01-01

    Roč. 165, č. 2 (2010), s. 133-141 ISSN 0944-5013 R&D Projects: GA MŠk 2B08003 Grant - others:United Fujian Provincial Health and Education Project for Tackling Key Research(CN) WKJ2008-2-44; Talented Youth Project of Fujian Province(CN) 2008F3012; Educational Department of Fujian Province(CN) JA08080; Fujian Agriculture and Forestry University(CN) 08A01 Institutional research plan: CEZ:AV0Z50070508 Keywords : Bacillus thuringiensis * cyt1 * mosquito Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 1.958, year: 2010

  4. The cultivation of Bt corn producing Cry1Ac toxins does not adversely affect non-target arthropods.

    Directory of Open Access Journals (Sweden)

    Yanyan Guo

    Full Text Available Transgenic corn producing Cry1Ac toxins from Bacillus thuringiensis (Bt provides effective control of Asian corn borer, Ostrinia furnacalis (Guenée, and thus reduces insecticide applications. However, whether Bt corn exerts undesirable effects on non-target arthropods (NTAs is still controversial. We conducted a 2-yr study in Shangzhuang Agricultural Experiment Station to assess the potential impact of Bt corn on field population density, biodiversity, community composition and structure of NTAs. On each sampling date, the total abundance, Shannon's diversity index, Pielou's evenness index and Simpson's diversity index were not significantly affected by Bt corn as compared to non-Bt corn. The "sampling dates" had a significant effect on these indices, but no clear tendencies related to "Bt corn" or "sampling dates X corn variety" interaction were recorded. Principal response curve analysis of variance indicated that Bt corn did not alter the distribution of NTAs communities. Bray-Curtis dissimilarity and distance analysis showed that Cry1Ac toxin exposure did not increase community dissimilarities between Bt and non-Bt corn plots and that the evolution of non-target arthropod community was similar on the two corn varieties. The cultivation of Bt corn failed to show any detrimental evidence on the density of non-target herbivores, predators and parasitoids. The composition of herbivores, predators and parasitoids was identical in Bt and non-Bt corn plots. Taken together, results from the present work support that Bt corn producing Cry1Ac toxins does not adversely affect NTAs.

  5. Construction and characterisation of near-isogenic Plutella xylostella (Lepidoptera: Plutellidae) strains resistant to Cry1Ac toxin.

    Science.gov (United States)

    Zhu, Xun; Lei, Yanyuan; Yang, Yanjv; Baxter, Simon W; Li, Jianhong; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Guo, Zhaojiang; Fu, Wei; Zhang, Youjun

    2015-02-01

    Resistance to insecticidal Bacillus thuringiensis (Bt) toxins has arisen in multiple populations of the worldwide Brassica pest Plutella xylostella (L.). To help elucidate the mechanism of resistance to Bt Cry1Ac toxin in a population from Florida, two pairs of near-isogenic lines (NILs) were developed. NILs were generated using either backcross or recombinant inbred line methodologies and evaluated for near-isogenicity with inter-simple-sequence-repeat (ISSR) markers. Backcross line BC6F4 maintained a similar level of Cry1Ac resistance to parental strain DBM1Ac-R (>5000-fold) yet showed 98.24% genetic similarity to the susceptible parental strain DBM1Ac-S. Single-pair backcrosses between DBM1Ac-S and BC6F4 revealed that Cry1Ac resistance was controlled by one recessive autosomal locus. BC6F4 exhibited high levels of cross-resistance to Cry1Ab and Cry1Ah but not to Cry1Ca or Cry1Ie. Near-isogenic strains were constructed to provide a reliable biological system to investigate the mechanism of Cry1Ac resistance in P. xylostella. These data suggest that resistance to Cry1Ac, Cry1Ab and Cry1Ah is probably caused by the alteration of a common receptor not recognised by Cry1Ca or Cry1Ie. Understanding Bt toxin cross-resistance provides valuable information to consider when developing pest control strategies to delay resistance evolution. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  6. Expressed sequence tags from larval gut of the European corn borer (Ostrinia nubilalis: Exploring candidate genes potentially involved in Bacillus thuringiensis toxicity and resistance

    Directory of Open Access Journals (Sweden)

    Crespo Andre LB

    2009-06-01

    Full Text Available Abstract Background Lepidoptera represents more than 160,000 insect species which include some of the most devastating pests of crops, forests, and stored products. However, the genomic information on lepidopteran insects is very limited. Only a few studies have focused on developing expressed sequence tag (EST libraries from the guts of lepidopteran larvae. Knowledge of the genes that are expressed in the insect gut are crucial for understanding basic physiology of food digestion, their interactions with Bacillus thuringiensis (Bt toxins, and for discovering new targets for novel toxins for use in pest management. This study analyzed the ESTs generated from the larval gut of the European corn borer (ECB, Ostrinia nubilalis, one of the most destructive pests of corn in North America and the western world. Our goals were to establish an ECB larval gut-specific EST database as a genomic resource for future research and to explore candidate genes potentially involved in insect-Bt interactions and Bt resistance in ECB. Results We constructed two cDNA libraries from the guts of the fifth-instar larvae of ECB and sequenced a total of 15,000 ESTs from these libraries. A total of 12,519 ESTs (83.4% appeared to be high quality with an average length of 656 bp. These ESTs represented 2,895 unique sequences, including 1,738 singletons and 1,157 contigs. Among the unique sequences, 62.7% encoded putative proteins that shared significant sequence similarities (E-value ≤ 10-3with the sequences available in GenBank. Our EST analysis revealed 52 candidate genes that potentially have roles in Bt toxicity and resistance. These genes encode 18 trypsin-like proteases, 18 chymotrypsin-like proteases, 13 aminopeptidases, 2 alkaline phosphatases and 1 cadherin-like protein. Comparisons of expression profiles of 41 selected candidate genes between Cry1Ab-susceptible and resistant strains of ECB by RT-PCR showed apparently decreased expressions in 2 trypsin-like and 2

  7. Potency of Bacillus thuringiensis isolates from bareng Tenes-Malang City as a biological control agent for suppressing third instar of Aedes aegypti larvae

    Science.gov (United States)

    Lutfiana, Nihayatul; Gama, Zulfaidah Penata

    2017-11-01

    Dengue is a mosquito-borne viral disease that is transmitted by the female Aedes species. The number of dengue fever cases has increased in many geographic regions including Indonesia and one of them occurred in Bareng Tenes, Malang City, East Java Province. The objective of this research was to identify the potency of B. thuringeinsis isolates from Bareng Tenes, Malang, as the biological agent to control third instar Ae. aegypti larvae and to identify the potential B. thuringiensis isolates based on 16S rDNA sequence. B. thuringiensis was isolated from water and soil from 12 sites in the Bareng Tenes area. Bacterial isolation was performed using B. thuringiensis selective media. Several isolates had similar phenotypic characters with B. thuringiensis used to toxicity test against third instar Ae. aegypti larvae. The LC50-96h value was determined using probit regression. The most effective isolate was identified based on the 16S rDNA sequence, then aligned to the reference isolate using the BLAST program. A phylogeny tree was constructed using the Maximum Likelihood method. This study showed that among 22 isolates of B. thuringiensis, only BA02b, BS04a, and BA03a isolates have similar phenotypic characters with B. thuringiensis. Based on the toxicity test of B. thuringiensis against the third instar of Ae. aegypti larvae, it was indicated that BA02b and BA03a isolates were the potential agents to control Ae. aegypti larvae. BA02b isolate was the most effective B. thuringiensis (LC50-96h = 2,75 x 107 cell/mL). Based on 16S rDNA sequence, BA02b was identified as Bacillus thuringiensis var. Israelensis BGSC4Q2 (99 % similarities).

  8. Survival and conjugal transfer between Bacillus thuringiensis strains in aquatic environment Sobrevivência e conjugação de Bacillus thuringiensis em ambiente aquático

    Directory of Open Access Journals (Sweden)

    Luciana Furlaneto

    2000-10-01

    Full Text Available Field and laboratory studies were conducted to assess the survival of cells and spores and plasmid transfer between Bacillus thuringienis strains in aquatic environment. Results indicated that cells and spores of B. thuringiensis can survive for 10 days in water, without altering their number. The sporulation process began after 12-15 hours of inoculation of water. B. thuringiensis was able to transfer conjugative plasmids in the aquatic environment.O presente trabalho é um estudo sobre a sobrevivência e a conjugação de linhagens de Bacillus thuringiensis em água. Os experimentos conduzidos no laboratório mostram que as células e os esporos de B. thuringiensis podem persistir pelo menos 10 dias na água. A esporulação inicia-se 12-15 horas após a inoculação. O processo de conjugação foi demonstrado em diferentes ambientes aquáticos, tanto em condições de laboratório quanto no meio ambiente.

  9. Cyanobacterial toxins: risk management for health protection

    International Nuclear Information System (INIS)

    Codd, Geoffrey A.; Morrison, Louise F.; Metcalf, James S.

    2005-01-01

    This paper reviews the occurrence and properties of cyanobacterial toxins, with reference to the recognition and management of the human health risks which they may present. Mass populations of toxin-producing cyanobacteria in natural and controlled waterbodies include blooms and scums of planktonic species, and mats and biofilms of benthic species. Toxic cyanobacterial populations have been reported in freshwaters in over 45 countries, and in numerous brackish, coastal, and marine environments. The principal toxigenic genera are listed. Known sources of the families of cyanobacterial toxins (hepato-, neuro-, and cytotoxins, irritants, and gastrointestinal toxins) are briefly discussed. Key procedures in the risk management of cyanobacterial toxins and cells are reviewed, including derivations (where sufficient data are available) of tolerable daily intakes (TDIs) and guideline values (GVs) with reference to the toxins in drinking water, and guideline levels for toxigenic cyanobacteria in bathing waters. Uncertainties and some gaps in knowledge are also discussed, including the importance of exposure media (animal and plant foods), in addition to potable and recreational waters. Finally, we present an outline of steps to develop and implement risk management strategies for cyanobacterial cells and toxins in waterbodies, with recent applications and the integration of Hazard Assessment Critical Control Point (HACCP) principles

  10. Computational Studies of Snake Venom Toxins.

    Science.gov (United States)

    Ojeda, Paola G; Ramírez, David; Alzate-Morales, Jans; Caballero, Julio; Kaas, Quentin; González, Wendy

    2017-12-22

    Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin.

  11. Computational Studies of Snake Venom Toxins

    Directory of Open Access Journals (Sweden)

    Paola G. Ojeda

    2017-12-01

    Full Text Available Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin.

  12. Botulinum toxin for the treatment of bruxism.

    Science.gov (United States)

    Tinastepe, Neslihan; Küçük, Burcu Bal; Oral, Koray

    2015-10-01

    Botulinum toxin, the most potent biological toxin, has been shown to be effective for a variety of disorders in several medical conditions, when used both therapeutically and cosmetically. In recent years, there has been a rising trend in the use of this pharmacological agent to control bruxing activity, despite its reported adverse effects. The aim of this review was to provide a brief overview to clarify the underlying essential ideas for the use of botulinum toxin in bruxism based on available scientific papers. An electronic literature search was performed to identify publications related to botulinum toxin and its use for bruxism in PubMed. Hand searching of relevant articles was also made to identify additional studies. Of the eleven identified studies, only two were randomized controlled trials, compared with the effectiveness of botulinum toxins on the reduction in the frequency of bruxism events and myofascial pain after injection. The authors of these studies concluded that botulinum toxin could be used as an effective treatment for reducing nocturnal bruxism and myofascial pain in patients with bruxism. Evidence-based research was limited on this topic. More randomized controlled studies are needed to confirm that botulinum toxin is safe and reliable for routine clinical use in bruxism.

  13. Engineering toxins for 21st century therapies.

    Science.gov (United States)

    Chaddock, John A; Acharya, K Ravi

    2011-04-01

    'Engineering Toxins for 21st Century Therapies' (9-10 September 2010) was part of the Royal Society International Seminar series held at the Kavli International Centre, UK. Participants were assembled from a range of disciplines (academic, industry, regulatory, public health) to discuss the future potential of toxin-based therapies. The meeting explored how the current structural and mechanistic knowledge of toxins could be used to engineer future toxin-based therapies. To date, significant progress has been made in the design of novel recombinant biologics based on domains of natural toxins, engineered to exhibit advantageous properties. The meeting concluded, firstly that future product development vitally required the appropriate combination of creativity and innovation that can come from the academic, biotechnology and pharma sectors. Second, that continued investigation into understanding the basic science of the toxins and their targets was essential in order to develop new opportunities for the existing products and to create new products with enhanced properties. Finally, it was concluded that the clinical potential for development of novel biologics based on toxin domains was evident. © 2011 The Authors Journal compilation © 2011 FEBS.

  14. EFEKTIVITAS Bacillus thuringiensis H-14 STRAIN LOKAL DALAM BUAH KELAPA TERHADAP LARVA Anopheles sp dan Culex sp di KAMPUNG LAUT KABUPATEN CILACAP

    Directory of Open Access Journals (Sweden)

    Blondine Ch. P

    2013-07-01

    Full Text Available Abstrak Bacillus thuringiensis serotipe H-14 strain lokal adalah bakteri patogen bersifat target spesifiknya larva nyamuk, aman bagi mamalia dan lingkungan. Penelitian bertujuan menentukan efektivitas B. thuringiensis H-14 strain lokal yang dikembangbiakkan dalam buah kelapa untuk pengendalian larva Anopheles sp dan Culex sp. Rancangan eksperimental semu, terdiri dari kelompok perlakuan dan kontrol. Bacillus thuringiensis H-14 strain lokal dikembangbiakan dalam10 buah kelapa umur 6–8 bulan, dengan berat kira-kira 1 kg, telah berisi air kelapa sekitar 400-500 ml/buah kelapa yang diperoleh dari Desa Klaces, Kampung Laut, Kabupaten Cilacap. Diinkubasi selama 14 hari pada temperatur kamar dan ditebarkan di 6 kolam yang menjadi habitat perkembangbiakan larva nyamuk dengan luas berkisar 3–100 m2.Hasil yang diperoleh menunjukkan efektivitas B. thuringiensis H-14 strain lokal terhadap larva Anopheles sp dan Culex sp selama 1 hari sesudah penebaran kematian larva berturut-turut sebesar 80–100% dan 79,31–100%. Sedangkan pada hari ke-14 sebesar 69,30–76,71% dan 67,69–86,04%. Buah kelapa dapat digunakan sebagai media lokal alternatif untuk pengembangbiakan B. thuringiensis H-14 strain lokal Kata kunci: B. thuringiensis H-14,  strain  lokal, buah kelapa, pengendalian larva Abstract Bacillus thuringiensis serotype H-14 local strain is pathogenic bacteria which specific  target to mosquito larvae. It is safe for mammals and enviroment. The aims of this study was to determine the effectivity of B. thuringiensis H-14 local strain which culturing in thecoconut wates against Anopheles sp and Culex sp mosquito larvae. This research is quasi experiment which consist of treated  and control groups. Bacillus thuringiensis H-14 local strain was cultured in 10 coconuts with 6–8 months age with weight around 1 kg that contained were approximately 400-500 ml/coconut were taken from Klaces village, Kampung Laut. After that the coconuts incubated for 14

  15. Role of Botulinum Toxin in Depression.

    Science.gov (United States)

    Parsaik, Ajay K; Mascarenhas, Sonia S; Hashmi, Aqeel; Prokop, Larry J; John, Vineeth; Okusaga, Olaoluwa; Singh, Balwinder

    2016-03-01

    The goal of this review was to consolidate the evidence concerning the efficacy of botulinum toxin type A (onabotulinumtoxinA) in depression. We searched MEDLINE, EMBASE, Cochrane, and Scopus through May 5, 2014, for studies evaluating the efficacy of botulinum toxin A in depression. Only randomized controlled trials were included in the meta-analysis. A pooled mean difference in primary depression score, and pooled odds ratio for response and remission rate with 95% confidence interval (CI) were estimated using the random-effects model. Heterogeneity was assessed using Cochran Q test and χ statistic. Of the 639 articles that were initially retrieved, 5 studies enrolling 194 subjects (age 49±9.6 y) were included in the systematic review, and 3 randomized controlled trials enrolling 134 subjects were included in the meta-analysis. The meta-analysis showed a significant decrease in mean primary depression scores among patients who received botulinum toxin A compared with placebo (-9.80; 95% CI, -12.90 to -6.69) with modest heterogeneity between the studies (Cochran Q test, χ=70). Response and remission rates were 8.3 and 4.6 times higher, respectively, among patients receiving botulinum toxin A compared with placebo, with no heterogeneity between the studies. The 2 studies excluded from the meta-analysis also found a significant decrease in primary depression scores in patients after receiving botulinum toxin A. A few subjects had minor side effects, which were similar between the groups receiving botulinum toxin and those receiving placebo. This study suggests that botulinum toxin A can produce significant improvement in depressive symptoms and is a safe adjunctive treatment for patients receiving pharmacotherapy for depression. Future trials are needed to evaluate the antidepressant effect per se of botulinum toxin A and to further elucidate the underlying antidepressant mechanism of botulinum toxin A.

  16. Botulinum toxin: yesterday, today, tomorrow

    Directory of Open Access Journals (Sweden)

    A. R. Artemenko

    2013-01-01

    Full Text Available Botulinum toxin (BoNT is a bacterial neurotoxin presented with seven serotypes that inhibit neurotransmitter release from nerve endings. The serotypes of BoNT are antigenically dissimilar, act via different, but interconnected mechanisms, and are not interchangeable. The activity of BoNT is associated with impaired neuroexocytosis occurring in several steps: from the binding of BoNT to its specific receptor on the axon terminal membrane to the proteolytic enzymatic cleavage of SNARE substrate. The effect of BoNT is considered to be restricted to the peripheral nervous system, but when given in particularly high doses, it has been recently shown to affect individual brain structures. In addition, by modulating peripheral afferentation, BoNT may influence the excitability of central neuronal structures at both spinal and cortical levels. Only BoNT serotypes A and B are used in clinical practice and aesthetic medicine. The type A has gained the widest acceptance as a therapeutic agent for more than 100 abnormalities manifesting themselves as muscular hyperactivity, hyperfunction of endocrine gland, and chronic pain. The effect of BoNT preparations shows itself 2-5 days after injection, lasts 3 months or more, and gradually decreases with as a result of pharmacokinetic and intracellular reparative processes. Biotechnology advances and potentialities allow purposefully modification of the protein molecular structure of BoNT, which expands the use and efficiency of performed therapy with neurotoxins. Recombinant technologies provide a combination of major therapeutic properties of each used BoNT serotype and expand indications for recombinant chimeric toxins.

  17. Isolation and characterization of a novel native Bacillus thuringiensis strain BRC-HZM2 capable of degrading chlorpyrifos

    Czech Academy of Sciences Publication Activity Database

    Wu, S.; Peng, Y.; Huang, Z.; Huang, Z.; Xu, L.; Gelbič, Ivan; Guan, X.; Zhang, L.; Zou, S.

    2015-01-01

    Roč. 55, č. 3 (2015), s. 389-397 ISSN 0233-111X Institutional support: RVO:60077344 Keywords : Bacillus thuringiensis * biopesticide * biodegradation Subject RIV: EE - Microbiology, Virology Impact factor: 1.585, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/jobm.201300501/epdf

  18. Recovery of Bacillus thuringiensis and related spore-forming bacteria from soil after application for gypsy moth control

    Science.gov (United States)

    Phyllis A.W. Martin; Elizabeth A. Mongeon; Michael B. Blackburn; Dawn E. Gundersen-Rindal

    2011-01-01

    Bacillus thuringiensis Berliner (Bt) has been applied for gypsy moth (Lymantria dispar L.) control in forests in the northeastern U.S. for many years. The subspecies of Bt that is used (urstaki) is not common in U.S. soil. We attempted to recover Bt from...

  19. Survival of Bacillus thuringiensis strains in gypsy moth (Lymantria dispar) larvae is correlated with production of urease

    Science.gov (United States)

    Phyllis A.W. Martin; Robert R. Jr. Farrar; Michael B. Blackburn

    2011-01-01

    We tested 50 lepidopteran-toxic Bacillus thuringiensis Berliner (Bt) strains with diverse phenotypes for the ability to survive repeated passages through larvae of the gypsy moth, Lymantria dispar (L.), without intervening growth on artificial media. These experiments have revealed a remarkable correlation...

  20. Effect of proteolytic and detoxification enzyme inhibitors on Bacillus thuringiensis var. israelensis tolerance in the mosquito Aedes aegypti

    Czech Academy of Sciences Publication Activity Database

    Hu, X.; Guo, Y.; Wu, S.; Liu, Z.; Fu, T.; Shao, E.; Carballar-Lejarazú, R.; Zhao, G.; Huang, Z.; Gelbič, Ivan; Guan, X.; Zou, S.; Xu, L.; Zhang, L.

    2017-01-01

    Roč. 27, č. 2 (2017), s. 169-179 ISSN 0958-3157 Institutional support: RVO:60077344 Keywords : Bacillus thuringiensis * Bti * Aedes aegypti Subject RIV: ED - Physiology OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 0.919, year: 2016

  1. Characterization of eight Bacillus thuringiensis isolates originated from fecal samples of Fuzhou Zoo and Fuzhou Panda Center

    Czech Academy of Sciences Publication Activity Database

    Wu, Ch.; Wu, L.; Zhang, L.; Gelbič, Ivan; Xu, L.; Guan, X.

    2014-01-01

    Roč. 17, č. 3 (2014), s. 395-397 ISSN 1226-8615 Institutional support: RVO:60077344 Keywords : Bacillus thuringiensis * faeces * microscophy Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 0.946, year: 2014 http://www.sciencedirect.com/science/article/pii/S122686151400034X

  2. The introduction of integrated pest management in the Ethiopian horticultural sector : Bacillus thuringiensis strains and its toxicity

    NARCIS (Netherlands)

    Belder, den E.; Elderson, J.

    2012-01-01

    1 Introduction As hazards of conventional broad acting pesticides are documented, researchers, poli cymakers and growers look for pesticides that are toxic only to the target pest, have no impact on other such as beneficial species, and have fewer environmental effects. Bacillus thuringiensis (Bt)

  3. 40 CFR 174.530 - Bacillus thuringiensis Cry2Ae protein in cotton; temporary exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry2Ae protein in cotton; temporary exemption from the requirement of a tolerance. 174.530 Section 174.530 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS...

  4. 40 CFR 174.502 - Bacillus thuringiensis Cry1A.105 protein; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry1A.105 protein; exemption from the requirement of a tolerance. 174.502 Section 174.502 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and...

  5. 40 CFR 174.504 - Bacillus thuringiensis Cry1F protein in cotton; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry1F protein in cotton; exemption from the requirement of a tolerance. 174.504 Section 174.504 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and...

  6. 40 CFR 174.509 - Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance. 174.509 Section 174.509 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance...

  7. 40 CFR 174.517 - Bacillus thuringiensis Cry9C protein in corn; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry9C protein in corn; exemption from the requirement of a tolerance. 174.517 Section 174.517 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and...

  8. 40 CFR 174.520 - Bacillus thuringiensis Cry1F protein in corn; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry1F protein in corn; exemption from the requirement of a tolerance. 174.520 Section 174.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and...

  9. Field-Evolved Mode 1 Resistance of the Fall Armyworm to Transgenic Cry1Fa-Expressing Corn Associated with Reduced Cry1Fa Toxin Binding and Midgut Alkaline Phosphatase Expression

    Science.gov (United States)

    Jakka, Siva R. K.; Gong, Liang; Hasler, James; Banerjee, Rahul; Sheets, Joel J.; Narva, Kenneth; Blanco, Carlos A.

    2015-01-01

    Insecticidal protein genes from the bacterium Bacillus thuringiensis (Bt) are expressed by transgenic Bt crops (Bt crops) for effective and environmentally safe pest control. The development of resistance to these insecticidal proteins is considered the most serious threat to the sustainability of Bt crops. Resistance in fall armyworm (Spodoptera frugiperda) populations from Puerto Rico to transgenic corn producing the Cry1Fa insecticidal protein resulted, for the first time in the United States, in practical resistance, and Bt corn was withdrawn from the local market. In this study, we used a field-collected Cry1Fa corn-resistant strain (456) of S. frugiperda to identify the mechanism responsible for field-evolved resistance. Binding assays detected reduced Cry1Fa, Cry1Ab, and Cry1Ac but not Cry1Ca toxin binding to midgut brush border membrane vesicles (BBMV) from the larvae of strain 456 compared to that from the larvae of a susceptible (Ben) strain. This binding phenotype is descriptive of the mode 1 type of resistance to Bt toxins. A comparison of the transcript levels for putative Cry1 toxin receptor genes identified a significant downregulation (>90%) of a membrane-bound alkaline phosphatase (ALP), which translated to reduced ALP protein levels and a 75% reduction in ALP activity in BBMV from 456 compared to that of Ben larvae. We cloned and heterologously expressed this ALP from susceptible S. frugiperda larvae and demonstrated that it specifically binds with Cry1Fa toxin. This study provides a thorough mechanistic description of field-evolved resistance to a transgenic Bt crop and supports an association between resistance and reduced Cry1Fa toxin binding and levels of a putative Cry1Fa toxin receptor, ALP, in the midguts of S. frugiperda larvae. PMID:26637593

  10. Effects of Bacillus thuringiensis strains virulent to Varroa destructor on larvae and adults of Apis mellifera.

    Science.gov (United States)

    Alquisira-Ramírez, Eva Vianey; Peña-Chora, Guadalupe; Hernández-Velázquez, Víctor Manuel; Alvear-García, Andrés; Arenas-Sosa, Iván; Suarez-Rodríguez, Ramón

    2017-08-01

    The sublethal effects of two strains of Bacillus thuringiensis, which were virulent in vitro to Varroa destructor, were measured on Apis mellifera. The effects of five concentrations of total protein (1, 5, 25, 50 and 100μg/mL) from the EA3 and EA26.1 strains on larval and adult honey bees were evaluated for two and seven days under laboratory conditions. Based on the concentrations evaluated, total protein from the two strains did not affect the development of larvae, the syrup consumption, locomotor activity or proboscis extension response of adults. These same parameters were also tested for the effects of three concentrations (1, 10 and 15μg/kg) of cypermethrin as a positive control. Although no significant differences were observed after two days of treatment with cypermethrin, a dose-response relationship in syrup consumption and locomotor activity was observed. A significant reduction in the proboscis extension response of the bees treated with cypermethrin was also observed. Therefore, in contrast to cypermethrin, our results indicate that the EA3 and EA26.1 strains of B. thuringiensis can be used in beehives to control V. destructor and reduce the negative effects of this mite on colonies without adverse effects on the larvae and adults of A. mellifera. Additionally, the overuse of synthetic miticides, which produce both lethal and sublethal effects on bees, can be reduced. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Use of spent mushroom substrate for production of Bacillus thuringiensis by solid-state fermentation.

    Science.gov (United States)

    Wu, Songqing; Lan, Yanjiao; Huang, Dongmei; Peng, Yan; Huang, Zhipeng; Xu, Lei; Gelbic, Ivan; Carballar-Lejarazu, Rebeca; Guan, Xiong; Zhang, Lingling; Zou, Shuangquan

    2014-02-01

    The aim of this study was to explore a cost-effective method for the mass production of Bacillus thuringiensis (Bt) by solid-state fermentation. As a locally available agroindustrial byproduct, spent mushroom substrate (SMS) was used as raw material for Bt cultivation, and four combinations of SMS-based media were designed. Fermentation conditions were optimized on the best medium and the optimal conditions were determined as follows: temperature 32 degrees C, initial pH value 6, moisture content 50%, the ratio of sieved material to initial material 1:3, and inoculum volume 0.5 ml. Large scale production of B. thuringiensis subsp. israelensis (Bti) LLP29 was conducted on the optimal medium at optimal conditions. High toxicity (1,487 international toxic units/milligram) and long larvicidal persistence of the product were observed in the study, which illustrated that SMS-based solid-state fermentation medium was efficient and economical for large scale industrial production of Bt-based biopesticides. The cost of production of 1 kg of Bt was approximately US$0.075.

  12. Isolation and characterization of radioresistant mutants in Bacillus subtilis and Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Kalinin, V.L.; Petrov, V.N.; Petrova, T.M.

    1981-01-01

    Vegetative cells of Bac. thuringiensis var. galleriae (the wild-type strain 351) are much more sensitive to lethal effects of UV light and 60 Co-γ-rays than those of Bac. subtilis (the wild-type strain 168). This difference is less pronounced for spores of these strains. By means of repeated γ-irradiation-regrowth cycles radioresistant mutants Bac. thuringiensis Gamsup(r) 14 and Bac. subtilis Gamsup(r) 9 were selected. The vegetative cells of these mutants are correspondingly 19 times and 3.9 times more resistant to lethal effects of γ-radiation than the cells of the parental strains. The resistance of the Gamsup(r) mutant cells to lethal effects of UV light and H 2 O 2 is also increased. The spores of the Gamsup(r) 14 mutant are 1.5-1.7 times more resistant to γ-radiation and UV light than the wild-type spores. The radioresistant mutants and the parental strains do not vary in their capacity for host-cell reactivation of UV- or γ-irradiated phages Tg13 and 105

  13. Characterization of a Chitin-Binding Protein from Bacillus thuringiensis HD-1.

    Directory of Open Access Journals (Sweden)

    Naresh Arora

    Full Text Available Strains of Bacillus thuringiensis produce insecticidal proteins. These strains have been isolated from diverse ecological niches, such as soil, phylloplane, insect cadavers and grain dust. To effectively propagate, these strains produce a range of molecules that facilitate its multiplication in a competing environment. In this report, we have examined synthesis of a chitin-binding protein and evaluated its effect on fungi encountered in environment and its interaction with insecticidal proteins synthesized by B. thuringiensis. The gene encoding chitin-binding protein has been cloned and expressed. The purified protein has been demonstrated to interact with Cry insecticidal protein, Cry1Ac by Circular Dichrosim spectroscopy (CD and in vitro pull down assays. The chitin-binding protein potentiates insecticidal activity of bacillar insecticidal protein, Cry1Ac. Further, chitin-binding protein was fungistatic against several soil fungi. The chitin binding protein is expressed in spore mother cell and deposited along with insecticidal protein, Cry1Ac. It interacts with Cry1Ac to potentiate its insecticidal activity and facilitate propagation of Bacillus strain in environment by inhibiting growth of certain fungi.

  14. Isolation, characterization and toxicity of native Bacillus thuringiensis isolates from different hosts and habitats in Iran

    Directory of Open Access Journals (Sweden)

    Ghassemi-Kahrizeh Akbar

    2017-09-01

    Full Text Available Bacillus thuringiensis is a Gram-positive, aerobic, facultative anaerobic and endospore-forming bacterium. Different strains of this species have the ability to produce parasporal crystalline inclusions which are toxic to larvae of different insect orders and other invertebrates and cause rapid death of the host. To determine the importance of this species in microbial control, we collected native strains and studied their virulence on the diamondback moth, Plutella xylostella. More than 148 samples were collected from Alborz, Guilan and Mazandaran Provinces. Experimental samples, including soil samples from forests, fruit gardens, agricultural fields, diseased and dead larvae, were transferred to a laboratory in sterile plastic containers. For evaluating B. thuringiensis isolates virulence, a cabbage leaf dip method with 106 cell · ml−1 concentration of various Bt isolates was applied to diamondback moths. Larval mortality was recorded 72 h after treatment. Based on bioassay results, all isolates were classified into three high, medium and low virulence groups. Protein level characterization based on the SDS-PAGE gel analysis showed that two isolates from a high virulence group have proteins of high molecular masses of 121 and 109 kDa. Results revealed that there is a positive correlation between protein masses and virulence of isolates. In addition, this research introduced nine strains that are highly toxic to P. xylostella and would be valuable as insecticidal agents for controlling lepidopteran pests.

  15. Extended genetic analysis of Brazilian isolates of Bacillus cereus and Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Viviane Zahner

    2013-02-01

    Full Text Available Multiple locus sequence typing (MLST was undertaken to extend the genetic characterization of 29 isolates of Bacillus cereus and Bacillus thuringiensis previously characterized in terms of presence/absence of sequences encoding virulence factors and via variable number tandem repeat (VNTR. Additional analysis involved polymerase chain reaction for the presence of sequences (be, cytK, inA, pag, lef, cya and cap, encoding putative virulence factors, not investigated in the earlier study. MLST analysis ascribed novel and unique sequence types to each of the isolates. A phylogenetic tree was constructed from a single sequence of 2,838 bp of concatenated loci sequences. The strains were not monophyletic by analysis of any specific housekeeping gene or virulence characteristic. No clear association in relation to source of isolation or to genotypic profile based on the presence or absence of putative virulence genes could be identified. Comparison of VNTR profiling with MLST data suggested a correlation between these two methods of genetic analysis. In common with the majority of previous studies, MLST was unable to provide clarification of the basis for pathogenicity among members of the B. cereus complex. Nevertheless, our application of MLST served to reinforce the notion that B. cereus and B. thuringiensis should be considered as the same species.

  16. Cloning of the Bacillus thuringiensis serovar sotto chitinase (Schi gene and characterization of its protein

    Directory of Open Access Journals (Sweden)

    Wan-Fang Zhong

    2005-12-01

    Full Text Available Chitinase plays a positive role in the pathogenicity of Bacillus thuringiensis to insect pests. We used touchdown PCR to clone the chitinase (Schi gene from Bacillus thuringiensis serovar sotto (Bt sotto chromosomal DNA. Our DNA sequencing analysis revealed that the Bt sotto Schi gene consists of an open reading frame (ORF of 2067 nucleotides with codes for the chitinase precursor. We also found that the putative promoter consensus sequences (the -35 and -10 regions of the Bt soto Schi gene are identical to those of the chiA71 gene from Bt Pakistani, the chiA74 gene from Bt kenyae and the ichi gene from Bt israelensis. The Schi chitinase precursor is 688 amino acids long with an estimated molecular mass of 75.75 kDa and a theoretical isoelectric point of 5.74, and contains four domains, which are, in sequence, a signal peptide, an N-terminal catalytic domain, a fibronectin type III like domain and a C-terminal chitin-binding domain. Sequence comparison and the evolutionary relationship of the Bt sotto Schi chitinase to other chitinase and chitinase-like proteins are also discussed.

  17. Isolation and toxicity test of Bacillus thuringiensis from Sekayu region soil, South Sumatra on Spodopteralitura

    Science.gov (United States)

    Afriani, S. R.; Pujiastuti, Y.; Irsan, C.; Damiri, N.; Nugraha, S.; Sembiring, E. R.

    2018-01-01

    This study aimed to obtain bacterial isolates B. thuringiensis potential as a biological control against pests Spodoptera litura. The research was conducted at the Laboratory of Pest and Disease Department, Agricultural Faculty of Sriwijaya University, Campus Inderalaya Ogan Ilir, South Sumatera, from March to June 2017. The study was conducted with survey method and laboratory trial. The results showed that of the 50 soil samples from three villages selected through morphological observation, reaction staining, KOH test, catalase test, producing 13 bacterial isolates. Screening of the 13th toxicity of the isolates suspected B. thuringiensis against S. litura larvae was investigated. Based on the toxicity screening test the following facts were obtained: five isolates ie KJ2M2, KJ3E1, KJ3JB1, KJ3D3 and KJ3D5 were lower toxicity than Dipel, two isolates ie KJ3K4 and KJ3D3 which had the same toxicity to Dipel. Five isolates the KJ3E3, KJ3BW5, KJ3JB5, KJ3D1 and LC2, LC3 known to have effectiveness until the seventh day reached 40%. There was one isolate that is KJ3BW5 which was more effective compared to Dipel as comparison.

  18. Toxin production in Dinophysis and the fate of these toxins in marine mussels

    DEFF Research Database (Denmark)

    Nielsen, Lasse Tor

    Diarrhetic shellfish poisoning (DSP) poses a considerable threat to food safety and to the economy of shellfish fishers and farmers in many parts of the world. Thousands of DSP intoxications have been reported, and bivalve harvesting can sometimes be closed down several months in a row. The toxins....... acuta. I grew the two species in laboratory cultures at different irradiances (7-130 μmol photons m-2 s-1) and with different food availability. The results showed that irradiance had no effects on toxin profiles, and only limited effects of the cellular toxin contents. Rather, toxin production rates...... are primarily produced by the marine mixotrophic dinoflagellates Dinophysis spp., known to occur in most parts of the world. Dinophysis can, along with other planktonic organisms, be consumed by filter-feeding bivalves, and thus the toxins can accumulate. Dinophysis can produce the three toxin groups, okadaic...

  19. Uso de productos derivados de Bacillus thuringiensis como alternativa de control en nematodos de importancia veterinaria. Revisión

    Directory of Open Access Journals (Sweden)

    Alejandro Vázquez-Pineda

    2012-01-01

    Full Text Available La bacteria entomopatógena Bacillus thuringiensis produce cristales proteicos con actividad citotóxica en contra de insectos y nematodos. La toxicidad de B. thuringiensis en plagas agrícolas es ampliamente conocida, pero poco se conoce acerca de su actividad en contra de nematodos parásitos. Recientemente, la actividad nematicida de las proteínas derivadas de B. thuringiensis se demostró en parásitos de mamíferos como Haemonchus, Teladorsagia, Nippostrongylus, y Ancylostoma, y en nematodos de plantas, Globodera y Meloidogyne. Entre el grupo de B. thuringiensis con efecto nematicida, las proteínas de la cepa IB-16 han mostrado actividad letal de 50 a 100 % en contra de diferentes estadios del principal género de rumiantes, Haemonchus contortus. Asimismo, los géneros de nematodos de vida libre, Panagrellus redivivus y Caenorhabditis elegans han sido blanco de estudios de la acción nematicida de B. thuringiensis. Por ejemplo, el efecto tóxico de la proteína Cry5B de B. thuringiensis se observó en las células intestinales de C. elegans, además esta acción parece involucrar receptores celulares específicos, similares a los que se han notificado en contra de plagas agrícolas. Asimismo, la unión de la proteína Cry5B ocurre en receptores específicos, como moléculas de carbohidratos, las cuales están presentes en la membrana de las células de intestino de los nematodos, ocasionando daño y muerte. A través de este tipo de estudios, los derivados de B. thuringiensis podrían considerarse una alternativa de control en nematodos que afectan a los animales domésticos, como rumiantes, así como en contra de otros nematodos patógenos de mamíferos e incluso de plantas agrícolas.

  20. Conditional Toxin Splicing Using a Split Intein System.

    Science.gov (United States)

    Alford, Spencer C; O'Sullivan, Connor; Howard, Perry L

    2017-01-01

    Protein toxin splicing mediated by split inteins can be used as a strategy for conditional cell ablation. The approach requires artificial fragmentation of a potent protein toxin and tethering each toxin fragment to a split intein fragment. The toxin-intein fragments are, in turn, fused to dimerization domains, such that addition of a dimerizing agent reconstitutes the split intein. These chimeric toxin-intein fusions remain nontoxic until the dimerizer is added, resulting in activation of intein splicing and ligation of toxin fragments to form an active toxin. Considerations for the engineering and implementation of conditional toxin splicing (CTS) systems include: choice of toxin split site, split site (extein) chemistry, and temperature sensitivity. The following method outlines design criteria and implementation notes for CTS using a previously engineered system for splicing a toxin called sarcin, as well as for developing alternative CTS systems.

  1. Evaluation of two different culture media for the development of biopesticides based on Bacillus thuringiensis and their application in larvae of Aedes aegypti - doi: 10.4025/actascitechnol.v35i1.13831

    Directory of Open Access Journals (Sweden)

    Samara Ernandes

    2013-01-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 The bacteria Bacillus thuringiensis var. israelensis (Bti generates certain toxins with pesticide action, which can be used on the control of transmissible diseases by culicides, specially Aedes aegypti, the dengue vector. This biopesticide has been produced by submerged fermentation and, in Brazil, this production has been made by very little research centers and, more recently, by a unique small enterprise. For the implementation of a viable vectors control program through biopesticides, some studies about culture media are essential in order to join efficiency and low costs. In this way, agroindustrial wastes or by-products have been used as a nutrient source for the culture media production. In this study, corn steep liquor, a corn industrial processing by-product and tryptose, both with / without sugar addition, were compared as culture media. Cellular growth was evaluated by optical density at 620 nm, spore production by total viable cell count and LC50 by bioassays against 4th instar larvae. Among the four examined substrates, the medium composed by glucose plus corn steep liquor presented the best spore production and bioassay results.

  2. NNDSS - Table II. Shiga toxin to Shigellosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Shiga toxin to Shigellosis - 2015. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding...

  3. Toxins and antimicrobial peptides: interactions with membranes

    Science.gov (United States)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of resistant pathogens.

  4. Bacterial toxins as pathogen weapons against phagocytes

    Directory of Open Access Journals (Sweden)

    Ana edo Vale

    2016-02-01

    Full Text Available Bacterial toxins are virulence factors that manipulate host cell functions and take over the control of vital processes of living organisms to favour microbial infection. Some toxins directly target innate immune cells, thereby annihilating a major branch of the host immune response. In this review we will focus on bacterial toxins that act from the extracellular milieu and hinder the function of macrophages and neutrophils. In particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria that manipulate cell signalling or induce cell death by either imposing direct damage to the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets. Outcomes regarding pathogen dissemination, host damage and disease progression will be discussed.

  5. How Parkinsonian Toxins Dysregulate the Autophagy Machinery

    Directory of Open Access Journals (Sweden)

    Ruben K. Dagda

    2013-11-01

    Full Text Available Since their discovery, Parkinsonian toxins (6-hydroxydopamine, MPP+, paraquat, and rotenone have been widely employed as in vivo and in vitro chemical models of Parkinson’s disease (PD. Alterations in mitochondrial homeostasis, protein quality control pathways, and more recently, autophagy/mitophagy have been implicated in neurotoxin models of PD. Here, we highlight the molecular mechanisms by which different PD toxins dysregulate autophagy/mitophagy and how alterations of these pathways play beneficial or detrimental roles in dopamine neurons. The convergent and divergent effects of PD toxins on mitochondrial function and autophagy/mitophagy are also discussed in this review. Furthermore, we propose new diagnostic tools and discuss how pharmacological modulators of autophagy/mitophagy can be developed as disease-modifying treatments for PD. Finally, we discuss the critical need to identify endogenous and synthetic forms of PD toxins and develop efficient health preventive programs to mitigate the risk of developing PD.

  6. Botulinum toxin type a for chronic migraine.

    Science.gov (United States)

    Ashkenazi, Avi

    2010-03-01

    Chronic migraine (CM) is the leading cause of chronic daily headache, a common and debilitating headache syndrome. The management of CM patients is challenging, with only limited benefit from available oral preventive medications. Botulinum neurotoxin (BoNT) has been used extensively to treat disorders associated with increased muscle tone. More recent scientific data support an analgesic effect of the toxin. The pharmacokinetic and pharmacodynamic profiles of BoNT make it an appealing candidate for migraine prevention. Results from older clinical trials on the efficacy of the toxin in CM were inconclusive. However, recent trials using more stringent inclusion criteria have shown positive results, supporting the use of the toxin in some patients with this disorder. This review summarizes the scientific data on the analgesic properties of BoNT, as well as the clinical data on the efficacy of the toxin in treating CM.

  7. NNDSS - Table II. Shiga toxin to Shigellosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Shiga toxin to Shigellosis - 2016. In this Table, provisional* cases of selected† notifiable diseases (≥1,000 cases reported during the preceding...

  8. Updates on tetanus toxin: a fundamental approach

    Directory of Open Access Journals (Sweden)

    Md. Ahaduzzaman

    2015-03-01

    Full Text Available Clostridium tetani is an anaerobic bacterium that produces second most poisonous protein toxins than any other bacteria. Tetanus in animals is sporadic in nature but difficult to combat even by using antibiotics and antiserum. It is crucial to understand the fundamental mechanisms and signals that control toxin production for advance research and medicinal uses. This review was intended for better understanding the basic patho-physiology of tetanus and neurotoxins (TeNT among the audience of related field.

  9. Expression of the sigma35 and cry2AB genes involved in Bacillus thuringiensis virulence Expressão dos genes sigma35 e cry2AB envolvidos na virulência de Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Ana Maria Guidelli-Thuler

    2009-06-01

    Full Text Available There are several genes involved in Bacillus thuringiensis sporulation. The regulation and expression of these genes results in an upregulation in Cry protein production, and this is responsible for the death of insect larvae infected by Bacillus thuringiensis. Gene expression was monitored in Bacillus thuringiensis during three developmental phases. DNA macroarrays were constructed for selected genes whose sequences are available in the GenBank database. These genes were hybridized to cDNA sequences from B. thuringiensis var. kurstaki HD-1. cDNA probes were synthesized by reverse transcription from B. thuringiensis RNA templates extracted during the exponential (log growth, stationary and sporulation phases, and labeled with 33PadCTP. Two genes were differentially expressed levels during the different developmental phases. One of these genes is related to sigma factor (sigma35, and the other is a cry gene (cry2Ab. There were differences between the differential levels of expression of various genes and among the expression detected for different combinations of the sigma factor and cry2Ab genes. The maximum difference in expression was observed for the gene encoding sigma35 factor in the log phase, which was also expressed at a high level during the sporulation phase. The cry2Ab gene was only expressed at a high level in the log phase, but at very low levels in the other phases when compared to the sigma35.Muitos genes estão envolvidos nos mecanismos de esporulação da bactéria Bacillus thuringiensis. A regulação e expressão desses genes resultam em uma produção massiva da proteína Cry, responsável pela morte das larvas de muitos insetos. Neste trabalho monitorou-se a expressão de genes de Bacillus thuringiensis, ao longo de três fases de seu desenvolvimento. Foram construídos macroarrays de DNA dos genes selecionados, cujas seqüências estão disponibilizadas no GenBank. Estes genes foram hibridizados com cDNAs obtidos de B

  10. Botulinum toxin therapy for limb dystonias.

    Science.gov (United States)

    Yoshimura, D M; Aminoff, M J; Olney, R K

    1992-03-01

    We investigated the effectiveness of botulinum toxin in 17 patients with limb dystonias (10 with occupational cramps, three with idiopathic dystonia unrelated to activity, and two each with post-stroke and parkinsonian dystonia) in a placebo-controlled, blinded study. We identified affected muscles clinically and by recording the EMG from implanted wire electrodes at rest and during performance of tasks that precipitated abnormal postures. There were three injections given with graded doses of toxin (average doses, 5 to 10, 10 to 20, and 20 to 40 units per muscle) and one with placebo, in random order. Subjective improvement occurred after 53% of injections of botulinum toxin, and this was substantial in 24%. Only one patient (7%) improved after placebo injection. Subjective improvement occurred in 82% of patients with at least one dose of toxin, lasting for 1 to 4 months. Response rates were similar between clinical groups. Objective evaluation failed to demonstrate significant improvement following treatment with toxin compared with placebo. The major side effect was transient focal weakness after 53% of injections of toxin.

  11. Botulinum toxin for the treatment of strabismus.

    Science.gov (United States)

    Rowe, Fiona J; Noonan, Carmel P

    2017-03-02

    The use of botulinum toxin as an investigative and treatment modality for strabismus is well reported in the medical literature. However, it is unclear how effective it is in comparison to other treatment options for strabismus. The primary objective was to examine the efficacy of botulinum toxin therapy in the treatment of strabismus compared with alternative conservative or surgical treatment options. This review sought to ascertain those types of strabismus that particularly benefit from the use of botulinum toxin as a treatment option (such as small angle strabismus or strabismus with binocular potential, i.e. the potential to use both eyes together as a pair). The secondary objectives were to investigate the dose effect and complication rates associated with botulinum toxin. We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register) (2016, Issue 6), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to July 2016), Embase (January 1980 to July 2016), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to July 2016), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov), and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 11 July 2016. We handsearched the British and Irish Orthoptic Journal, Australian Orthoptic Journal, proceedings of the European Strabismological Association (ESA), International Strabismological Association (ISA) and International Orthoptic Association (IOA) (www.liv.ac.uk/orthoptics/research/search.htm) and American Academy of Paediatric Ophthalmology and Strabismus meetings (AAPOS). We contacted researchers who are active in this field for information about further

  12. Affinity chromatography of tetanus toxin, tetanus toxoid, and botulinum A toxin on synaptosomes, and differentiation of their acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Habermann, E [Giessen Univ. (Germany, F.R.). Pharmakologisches Inst.

    1976-01-01

    /sup 125/I-labelled tetanus toxin and /sup 125/I-labelled botulinum A neurotoxin are known to be specifically bound to brain synaptosomes. In order to discriminate between active toxin and inactive admixtures present in the starting material or arising during iodination, synaptosome columns were prepared using bromacetylcellulose and/or kieselgur (Celite) as carriers. Both types of columns adsorb the toxins from low ionic strength medium and release them if the pH and ionic strength are raised. Botulinum toxin was eluted with lower ionic strength than tetanus toxin, and could be freed from nontoxic admixtures. Analysis by affinity chromatography disclosed partially toxoided tetanus toxin in both labelled and unlabelled toxin samples. High concentrations of formaldehyde (0.5%) destroyed both toxicity and affinity to the synaptosomes of tetanus toxin. Low concentrations of formaldehyde (0.05%) yielded a derivative of low toxicity which was still, however less firmly, bound to synaptosomes. Tetanus and botulinum toxin differ by their acceptors. Whereas unlabelled botulinum toxin is unable to compete with labelled tetanus toxin, unlabelled tetanus toxin slightly competes with botulinum toxin. Both labelled toxins display anomalous binding behaviour in that they cannot be displaced completely even with a large excess of unlabelled toxin.

  13. Affinity chromatography of tetanus toxin, tetanus toxoid, and botulinum A toxin on synaptosomes, and differentiation of their acceptors

    International Nuclear Information System (INIS)

    Habermann, E.

    1976-01-01

    125 I-labelled tetanus toxin and 125 I-labelled botulinum A neurotoxin are known to be specifically bound to brain synaptosomes. In order to discriminate between active toxin and inactive admixtures present in the starting material or arising during iodination, synaptosome columns were prepared using bromacetylcellulose and/or kieselgur (Celite) as carriers. Both types of columns adsorb the toxins from low ionic strength medium and release them if the pH and ionic strength are raised. Botulinum toxin was eluted with lower ionic strength than tetanus toxin, and could be freed from nontoxic admixtures. Analysis by affinity chromatography disclosed partially toxoided tetanus toxin in both labelled and unlabelled toxin samples. High concentrations of formaldehyde (0.5%) destroyed both toxicity and affinity to the synaptosomes of tetanus toxin. Low concentrations of formaldehyde (0.05%) yielded a derivative of low toxicity which was still, however less firmly, bound to synaptosomes. Tetanus and botulinum toxin differ by their acceptors. Whereas unlabelled botulinum toxin is unable to compete with labelled tetanus toxin, unlabelled tetanus toxin slightly competes with botulinum toxin. Both labelled toxins display anomalous binding behaviour in that they cannot be displaced completely even with a large excess of unlabelled toxin. (orig.) [de

  14. Produccion por tecnologia de fermentacion de bacillus thuringiensis utilizando medios alternativos

    Directory of Open Access Journals (Sweden)

    Yaneth Amparo Muñoz-Peñalosa

    2000-01-01

    Full Text Available In the production by fermentation technology Bacillus thuringiensis of five alternative methods they were studied. The results of cell growth, working-level 100ml in static culture and temperature of 28 ° C, mostraronque the optimal substrate corresponded to the environment in which molasses and rice powder was added (alternative Medium No. 1] The cell development using 100 ml of substrate was studied with reciprocating shaking 110 rpm. in this test was determined filter curve creciemiento medio.The inoculum, allowed tiempode set the process in 6 hours. For the development of fermentations, are counted with the experimental equipment, glass bioreactor in two liters of capacity and aeration devices, mechanical stirring, sampling and output gases.The fermentation in the production of Bacillus thuringiensis is the type discontinuous submerged aerobic process and growth into account .Teniendo bibliographic information and preliminary results of the study, fixed working parameters were determined for production by fermentation of Bacillus thuringiensis, being alternative means No. 1, volume 1 liter temperature 28 ° C and cell concentration of the inoculum. To determine the optimum parameters of fermantacion was used a factorial design of experiments of the type 22, (two variables at two levels, with aeration (3.2-0.5 VVM and agitation (110-210 rpm .The fermentations performed 7, 4 design and 3 the average level of the variables. For monitoring fermentation sample was taken every 12 hours and cell concentration (Chamber of Neuvauer and pH was analyzed. The results of cell concentration measurement for fermentations at 60 hours shows that optimum working conditions and limitations correspond to the values ​​of the variable, 3.2 VVM aeration and agitation 210 Variable rpm.Significant was the aeration of pH in the fermentation media change neutral to acid and ended as a staple. A fermentations I were efectuo controlde microbiological quality, Gram

  15. Impact of UV radiation on activity of linear furanocoumarins and Bacillus thuringiensis var. kurstaki against Spodoptera exigua: Implications for tritrophic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Trumble, J.T.; Moar, W.J.; Brewer, M.J.; Carson, W.G. (Univ. of California, Riverside (United States))

    1991-05-01

    Acidic fogs with a pH of 2.0 and duration of 2 hr did not reduce the efficacy of Bacillus thuringiensis var. kurstaki. Therefore, the impact of UV radiation was investigated on the interactions between (1) levels of the antibacterial linear furanocoumarins psoralen, bergapten, and xanthotoxin in Apium graveolens (L.) occurring following a 2.0 pH acidic fog episode, (2) the noctuid Spodoptera exigua, and (3) a sublethal dosage of the microbial pathogen B. thuringiensis var. kurstaki. Mean time to pupation in the absence of UV radiation was significantly extended by the addition of either psoralens or B. thuringiensis. Larvae developing on diets containing B. thuringiensis plus psoralens required nearly 40% longer to pupate than controls, but their effects were additive as the interaction was not significant. Mean time to mortality, a weighted average time of death, was not significantly affected by any of the treatments. In a 2 {times} 2 {times} 2 factorial analysis, all main effects reduced survival significantly, as did the three-way interaction. Thus, antagonistic interactions with psoralens that would reduce the effectiveness of B. thuringiensis in the field were not observed. When pairs of main effects were nested within the two levels of the third factor, several two-way interactions were found. Interestingly, the activity of B. thuringiensis and the psoralens, individually or in combination, was enhanced by exposure to UV radiation. Implications of this research are discussed for both natural and agricultural ecosystems.

  16. Impact of UV radiation on activity of linear furanocoumarins and Bacillus thuringiensis var. kurstaki against Spodoptera exigua: Implications for tritrophic interactions

    International Nuclear Information System (INIS)

    Trumble, J.T.; Moar, W.J.; Brewer, M.J.; Carson, W.G.

    1991-01-01

    Acidic fogs with a pH of 2.0 and duration of 2 hr did not reduce the efficacy of Bacillus thuringiensis var. kurstaki. Therefore, the impact of UV radiation was investigated on the interactions between (1) levels of the antibacterial linear furanocoumarins psoralen, bergapten, and xanthotoxin in Apium graveolens (L.) occurring following a 2.0 pH acidic fog episode, (2) the noctuid Spodoptera exigua, and (3) a sublethal dosage of the microbial pathogen B. thuringiensis var. kurstaki. Mean time to pupation in the absence of UV radiation was significantly extended by the addition of either psoralens or B. thuringiensis. Larvae developing on diets containing B. thuringiensis plus psoralens required nearly 40% longer to pupate than controls, but their effects were additive as the interaction was not significant. Mean time to mortality, a weighted average time of death, was not significantly affected by any of the treatments. In a 2 x 2 x 2 factorial analysis, all main effects reduced survival significantly, as did the three-way interaction. Thus, antagonistic interactions with psoralens that would reduce the effectiveness of B. thuringiensis in the field were not observed. When pairs of main effects were nested within the two levels of the third factor, several two-way interactions were found. Interestingly, the activity of B. thuringiensis and the psoralens, individually or in combination, was enhanced by exposure to UV radiation. Implications of this research are discussed for both natural and agricultural ecosystems

  17. Botulinum toxin in parkinsonism: The when, how, and which for botulinum toxin injections.

    Science.gov (United States)

    Cardoso, Francisco

    2018-06-01

    The aim of this article is to provide a review of the use of injections of botulinum toxin in the management of selected symptoms and signs of Parkinson's disease and other forms of parkinsonism. Sialorrhea is defined as inability to control oral secretions, resulting in excessive saliva in the oropharynx. There is a high level of evidence for the treatment of sialorrhea in parkinsonism with injections of different forms of botulinum toxin type A as well as botulinum toxin type B. Tremor can be improved by the use of botulinum toxin injections but improved tremor control often leads to concomitant motor weakness, limiting its use. Levodopa induced dyskinesias are difficult to treat with botulinum toxin injections because of their variable frequency and direction. Apraxia of eyelid opening, a sign more commonly seen in progressive supranuclear palsy and other tauopathies, often improves after botulinum toxin injections. Recent data suggest that regardless of the underlying mechanism, pain in parkinsonism can be alleviated by botulinum toxin injections. Finally, freezing of gait, camptocormia and Pisa syndrome in parkinsonism almost invariably fail to respond to botulinum toxin injections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Single toxin dose-response models revisited

    Energy Technology Data Exchange (ETDEWEB)

    Demidenko, Eugene, E-mail: eugened@dartmouth.edu [Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH03756 (United States); Glaholt, SP, E-mail: sglaholt@indiana.edu [Indiana University, School of Public & Environmental Affairs, Bloomington, IN47405 (United States); Department of Biological Sciences, Dartmouth College, Hanover, NH03755 (United States); Kyker-Snowman, E, E-mail: ek2002@wildcats.unh.edu [Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH03824 (United States); Shaw, JR, E-mail: joeshaw@indiana.edu [Indiana University, School of Public & Environmental Affairs, Bloomington, IN47405 (United States); Chen, CY, E-mail: Celia.Y.Chen@dartmouth.edu [Department of Biological Sciences, Dartmouth College, Hanover, NH03755 (United States)

    2017-01-01

    The goal of this paper is to offer a rigorous analysis of the sigmoid shape single toxin dose-response relationship. The toxin efficacy function is introduced and four special points, including maximum toxin efficacy and inflection points, on the dose-response curve are defined. The special points define three phases of the toxin effect on mortality: (1) toxin concentrations smaller than the first inflection point or (2) larger then the second inflection point imply low mortality rate, and (3) concentrations between the first and the second inflection points imply high mortality rate. Probabilistic interpretation and mathematical analysis for each of the four models, Hill, logit, probit, and Weibull is provided. Two general model extensions are introduced: (1) the multi-target hit model that accounts for the existence of several vital receptors affected by the toxin, and (2) model with a nonzero mortality at zero concentration to account for natural mortality. Special attention is given to statistical estimation in the framework of the generalized linear model with the binomial dependent variable as the mortality count in each experiment, contrary to the widespread nonlinear regression treating the mortality rate as continuous variable. The models are illustrated using standard EPA Daphnia acute (48 h) toxicity tests with mortality as a function of NiCl or CuSO{sub 4} toxin. - Highlights: • The paper offers a rigorous study of a sigmoid dose-response relationship. • The concentration with highest mortality rate is rigorously defined. • A table with four special points for five morality curves is presented. • Two new sigmoid dose-response models have been introduced. • The generalized linear model is advocated for estimation of sigmoid dose-response relationship.

  19. Bacillus thuringiensis in caterpillars and associated materials collected from protected tropical forests in northwestern Costa Rica.

    Science.gov (United States)

    Rodríguez-Sánchez, César; Sittenfeld, Ana; Janzen, Daniel H; Espinoza, Ana M

    2006-06-01

    Bacillus thuringiensis (Bt) synthesizes crystalline inclusions that are toxic to caterpillars (Lepidoptera) and other orders of invertebrates. Materials associated with 37 caterpillars from 16 species, collected while feeding on 15 different species of host plants in dry, cloud and rain forests located in the Area de Conservación Guanacaste in northwestern Costa Rica, were examined for the presence of Bt. From a total of 101 derived samples, 25 Bt isolates were cultured: 56% from host plant leaves, 8% from caterpillar guts and 36% from caterpillar fecal pellets. Bt was isolated from at least one sample in 38% of the systems constituted by the food plant, gut and fecal pellets corresponding to a single caterpillar. Four different morphologies of crystalline inclusions were observed, with bipyramidal and irregular crystal morphologies being the most prevalent.

  20. Microbiological ecology and association of Bacillus thuringiensis in chicken feces originating from feed

    Czech Academy of Sciences Publication Activity Database

    Zhang, L.; Peng, Y.; Wu, S.; Sun, L.; Huang, E.; Huang, T.; Xu, L.; Wu, Ch.; Gelbič, Ivan; Guan, X.

    2012-01-01

    Roč. 65, č. 6 (2012), s. 784-791 ISSN 0343-8651 R&D Projects: GA MŠk 2B08003 Grant - others:National Natural Science Foundation of China(CN) 31071745; Ministry of Education of China(CN) 20093515110010; Ministry of Education of China(CN) 20093515120010; Transformation Fund for Agricultural Science and Technology Achievements(CN) 2010GB2C400212; Education Department Foundation(CN) JA12092 Institutional research plan: CEZ:AV0Z50070508 Keywords : Bacillus thuringiensis Subject RIV: EH - Ecology, Behaviour Impact factor: 1.520, year: 2012 http://link.springer.com/content/pdf/10.1007%2Fs00284-012-0231-3

  1. ISOLASI BACILLUS THURINGIENSIS DARI LARVA DAN PENGUJIAN PATOGENISITASNYA TERHADAP LARVA NYAMUK VEKTOR

    Directory of Open Access Journals (Sweden)

    Blondine Ch. P.

    2012-09-01

    Full Text Available A study to evaluate pathogenic organisms as cause of mosquito larvae death was conducted at Wonokerto and Pabelan villages, Salatiga Luar Kota subdistrict, Semarang regency in Central Java from May 1991 through December 1991. Bacterial isolation from dead larvae showed that 31 B. thuringicnsis isolates were obtained from 31 larvae samples collected from 2 location e.g Wonokerto village (3 samples, Pabelan village (28 samples. Nineteen isolates (61,3% showed a pathogenicity of more than 50% to third toward instar larvae of Aedes aegypti and Culex quinquefasciatus respectively 24 hours after exposure. This study shows the possible use of B. thuringiensis for biologic control of mosquitoes which can act as vectors for human diseases.

  2. Monalysin, a novel ß-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality.

    Directory of Open Access Journals (Sweden)

    Onya Opota

    2011-09-01

    Full Text Available Pseudomonas entomophila is an entomopathogenic bacterium that infects and kills Drosophila. P. entomophila pathogenicity is linked to its ability to cause irreversible damages to the Drosophila gut, preventing epithelium renewal and repair. Here we report the identification of a novel pore-forming toxin (PFT, Monalysin, which contributes to the virulence of P. entomophila against Drosophila. Our data show that Monalysin requires N-terminal cleavage to become fully active, forms oligomers in vitro, and induces pore-formation in artificial lipid membranes. The prediction of the secondary structure of the membrane-spanning domain indicates that Monalysin is a PFT of the ß-type. The expression of Monalysin is regulated by both the GacS/GacA two-component system and the Pvf regulator, two signaling systems that control P. entomophila pathogenicity. In addition, AprA, a metallo-protease secreted by P. entomophila, can induce the rapid cleavage of pro-Monalysin into its active form. Reduced cell death is observed upon infection with a mutant deficient in Monalysin production showing that Monalysin plays a role in P. entomophila ability to induce intestinal cell damages, which is consistent with its activity as a PFT. Our study together with the well-established action of Bacillus thuringiensis Cry toxins suggests that production of PFTs is a common strategy of entomopathogens to disrupt insect gut homeostasis.

  3. Gamma Radiation to Increase Efficiency of Bacillus thuringiensis Thai Strain for Insect Pets Control

    International Nuclear Information System (INIS)

    Chanpaisaeng, Jariya; Keawsompong, Suttipun; Piadang, Nattaya; Tephan, Prakai; Keawchingduang, Wannapa

    2006-09-01

    Bacillus thuringiensis (Bt) isolates JCPT16 and JCPT68 were gamma-irradiated at 2, 4, 6 and 8 kGy. The efficiency of these Bt isolates on S. litura control was also undertaken. It was found that the 4 kGy irradiated JCPT16 isolate had lowest LC 50 of 6.6x10 3 spore/ml while the non-irradiated JCPT 16 isolate had LC 50 of 6.2x10 3 spore/ml. Whereas the irradiated JCPT68 isolate at 8 kGy was noticed to have the lowest LC 50 of 2.7 x 10 3 spores/ml, the non-irradiated JCPT68 had LC 50 of 1.8x10 3 spores/ml. The efficiency test of B. thuringiensis isolate on S. exigua showed that the 2 kGy irradiated JCPT16 isolate had the lowest LC 50 of 2.52x10 4 spores/ml while the non-irradiated JCPT16 isolate had LC 50 of 6.04x10 3 spores/ml. The irradiated JCPT68 isolate at 4 kGy had the lowest LC 50 of 5.41x10 4 spores/ml, the non irradiated JCPT68 had LC 50 of 1.51x10 4 spores/ml. According to LC 50 values, there were no significant differences of efficiency on S. litura and S. exigua control among Bt isolates irradiated at various concentrations. The isolate JCPT16, JCPT35, JCPT50 and JCPT68 irradiated at dose of 10 kGy showed higher UV tolerance. After expose by UV ray, most of irradiated isolates still displayed high efficiency of controlling S. litura, S. exigua and Plutella xylostell.

  4. Characteristics of a broad lytic spectrum endolysin from phage BtCS33 of Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Yuan Yihui

    2012-12-01

    Full Text Available Abstract Background Endolysins produced by bacteriophages lyse bacteria, and are thus considered a novel type of antimicrobial agent. Several endolysins from Bacillus phages or prophages have previously been characterized and used to target Bacillus strains that cause disease in animals and humans. B. thuringiensis phage BtCS33 is a Siphoviridae family phage and its genome has been sequenced and analyzed. In the BtCS33 genome, orf18 was found to encode an endolysin protein (PlyBt33. Results Bioinformatic analyses showed that endolysin PlyBt33 was composed of two functional domains, the N-terminal catalytic domain and the C-terminal cell wall binding domain. In this study, the entire endolysin PlyBt33, and both the N- and C-termini,were expressed in Escherichia coli and then purified. The lytic activities of PlyBt33 and its N-terminus were tested on bacteria. Both regions exhibited lytic activity, although PlyBt33 showed a higher lytic activity than the N-terminus. PlyBt33 exhibited activity against all Bacillus strains tested from five different species, but was not active against Gram-negative bacteria. Optimal conditions for PlyBt33 reactivity were pH 9.0 and 50°C. PlyBt33 showed high thermostability, with 40% of initial activity remaining following 1 h of treatment at 60°C. The C-terminus of PlyBt33 bound to B. thuringiensis strain HD-73 and Bacillus subtilis strain 168. This cell wall binding domain might be novel, as its amino acid sequence showed little similarity to previously reported endolysins. Conclusions PlyBt33 showed potential as a novel antimicrobial agent at a relatively high temperature and had a broad lytic spectrum within the Bacillus genus. The C-terminus of PlyBt33 might be a novel kind of cell wall binding domain.

  5. Avaliação de produtos à base de Bacillus thuringiensis no controle da traça-das-crucíferas Evaluation of insecticides based on Bacillus thuringiensis in the control of the diamondback moth

    Directory of Open Access Journals (Sweden)

    Patrícia T Medeiros

    2006-06-01

    Full Text Available Avaliou-se em dois experimentos a suscetibilidade da traça-das-crucíferas a inseticidas à base de Bacillus thuringiensis em repolho cv. Itiban. O delineamento do primeiro experimento (de julho a setembro/03, em área de plantio comercial em Brazlândia (DF, foi de blocos casualizados, com seis tratamentos e dez repetições; os bioinseticidas utilizados foram B. thuringiensis kurstaki (S1450CO, B. thuringiensis aizawai comercial (Bta e três produtos formulados com as estirpes S1450BB, S811BB, S845BB de B. thuringiensis pertencentes ao Banco de Bacillus spp. da Embrapa Recursos Genéticos e Biotecnologia. No segundo experimento, realizado no campo experimental da Embrapa (DF, de outubro/03 a janeiro/04, o delineamento foi de blocos casualizados, com seis tratamentos e quatro repetições; os inseticidas utilizados foram os mesmos do primeiro experimento, com a adição de Spinosad, e retirado o tratamento S811BB. Os produtos foram aplicados quando foi atingido o nível de dano de seis furos nas quatro folhas centrais do repolho. O Bta comercial foi o produto mais eficaz no primeiro experimento, tendo sido aplicado cinco vezes e diferiu estaticamente dos demais produtos. Os formulados S845BB e S1450BB não apresentaram diferenças quando comparados ao produto comercial S1450 e foram aplicados seis vezes. O produto S811BB também foi aplicado seis vezes, mas sua eficácia foi inferior aos demais produtos e não diferiu da testemunha. Já no segundo experimento, o S1450 comercial foi aplicado cinco vezes e os demais produtos à base de Bt, seis vezes. Todos os produtos utilizados não diferiram entre si, diferindo apenas no número de aplicações.Two experiments were performed to evaluate the susceptibility of the diamondback moth to insecticides based on Bacillus thuringiensis in cabbage cv. Itiban. The first experiment was carried out from July to September 2003, in a production area in Brazlândia (DF, Brazil. Randomized blocks with six

  6. Botulinum Toxin in Management of Limb Tremor

    Directory of Open Access Journals (Sweden)

    Elina Zakin

    2017-11-01

    Full Text Available Essential tremor is characterized by persistent, usually bilateral and symmetric, postural or kinetic activation of agonist and antagonist muscles involving either the distal or proximal upper extremity. Quality of life is often affected and one’s ability to perform daily tasks becomes impaired. Oral therapies, including propranolol and primidone, can be effective in the management of essential tremor, although adverse effects can limit their use and about 50% of individuals lack response to oral pharmacotherapy. Locally administered botulinum toxin injection has become increasingly useful in the management of essential tremor. Targeting of select muscles with botulinum toxin is an area of active research, and muscle selection has important implications for toxin dosing and functional outcomes. The use of anatomical landmarks with palpation, EMG guidance, electrical stimulation, and ultrasound has been studied as a technique for muscle localization in toxin injection. Earlier studies implemented a standard protocol for the injection of (predominantly wrist flexors and extensors using palpation and EMG guidance. Targeting of muscles by selection of specific activators of tremor (tailored to each patient using kinematic analysis might allow for improvement in efficacy, including functional outcomes. It is this individualized muscle selection and toxin dosing (requiring injection within various sites of a single muscle that has allowed for success in the management of tremors.

  7. Crystal structure of Clostridium difficile toxin A

    Energy Technology Data Exchange (ETDEWEB)

    Chumbler, Nicole M.; Rutherford, Stacey A.; Zhang, Zhifen; Farrow, Melissa A.; Lisher, John P.; Farquhar, Erik; Giedroc, David P.; Spiller, Benjamin W.; Melnyk, Roman A.; Lacy, D. Borden

    2016-01-11

    Clostridium difficile infection is the leading cause of hospital-acquired diarrhoea and pseudomembranous colitis. Disease is mediated by the actions of two toxins, TcdA and TcdB, which cause the diarrhoea, as well as inflammation and necrosis within the colon. The toxins are large (308 and 270 kDa, respectively), homologous (47% amino acid identity) glucosyltransferases that target small GTPases within the host. The multidomain toxins enter cells by receptor-mediated endocytosis and, upon exposure to the low pH of the endosome, insert into and deliver two enzymatic domains across the membrane. Eukaryotic inositol-hexakisphosphate (InsP6) binds an autoprocessing domain to activate a proteolysis event that releases the N-terminal glucosyltransferase domain into the cytosol. Here, we report the crystal structure of a 1,832-amino-acid fragment of TcdA (TcdA1832), which reveals a requirement for zinc in the mechanism of toxin autoprocessing and an extended delivery domain that serves as a scaffold for the hydrophobic α-helices involved in pH-dependent pore formation. A surface loop of the delivery domain whose sequence is strictly conserved among all large clostridial toxins is shown to be functionally important, and is highlighted for future efforts in the development of vaccines and novel therapeutics.

  8. Array biosensor for detection of toxins

    Science.gov (United States)

    Ligler, Frances S.; Taitt, Chris Rowe; Shriver-Lake, Lisa C.; Sapsford, Kim E.; Shubin, Yura; Golden, Joel P.

    2003-01-01

    The array biosensor is capable of detecting multiple targets rapidly and simultaneously on the surface of a single waveguide. Sandwich and competitive fluoroimmunoassays have been developed to detect high and low molecular weight toxins, respectively, in complex samples. Recognition molecules (usually antibodies) were first immobilized in specific locations on the waveguide and the resultant patterned array was used to interrogate up to 12 different samples for the presence of multiple different analytes. Upon binding of a fluorescent analyte or fluorescent immunocomplex, the pattern of fluorescent spots was detected using a CCD camera. Automated image analysis was used to determine a mean fluorescence value for each assay spot and to subtract the local background signal. The location of the spot and its mean fluorescence value were used to determine the toxin identity and concentration. Toxins were measured in clinical fluids, environmental samples and foods, with minimal sample preparation. Results are shown for rapid analyses of staphylococcal enterotoxin B, ricin, cholera toxin, botulinum toxoids, trinitrotoluene, and the mycotoxin fumonisin. Toxins were detected at levels as low as 0.5 ng mL(-1).

  9. EFEKTIVITAS VECTOBAC 12 AS (Bt H-14 DAN Bacillus thuringiensis H-14 TERHADAP VEKTOR MALARIA An. maculatus DI KOBAKAN DESA HARGOTIRTO, KECAMATAN KOKAP, KABUPATEN KULON PROGO

    Directory of Open Access Journals (Sweden)

    Blondine Ch. P.

    2012-09-01

    Full Text Available A study using Vectobac 12 AS ( Bt H-14 and Bacillus thuringiensis H-14 local strain was conducted at laboratory Vector and Reservoir Control Research Unit and breeding ponds of Anopheles maculatus in Kokap regency and Kulon Progo district. The objectives of this study are : (1. to detect the efficacy of B. thuringiensis H-14 local strain toward An. maculatus larvae at the laboratory. (2. to measure the effectiveness of B. thuringiensis H-14 local strain dosages 1 x LC95. 5 x LC95 and 10 x LC95 toward An. maculatus at the field. The efficacy test of B. thuringiensis H-14 local strain toward An. maculatus based on to the method proposed by WHO in order to determine the LC50 and LC90 which is computed using the probit analysis at the laboratory. The methods used R thuringiensis H-14 local strain dosages of 2.145 ppm (1 x LC95, 10.724 ppm (5 x LC95 and 21.448 ppm (10 x LC95 respectively were applied 8 ponds with the width of ponds ranging from 0.08 to 0.45 m2, 0.29 to 0.64 m2 and from 0.08-0.79 m2.The results showed, the dosages after 24 hours were 10.22 ppm (LC50, 27.11 ppm (LC90 and 35.75 ppm (LC95. After 48 hours the dosages were needed 7.74 ppm (LC50, 17.06 ppm (LC90 and 21.34 ppm (LC95, The effectiveness o/R thuringiensis H-14 local strain dosages of 2.145ppm (1 x LC95 toward An. maculatus larvae until 50 % survive the same time (7.35 days as B. thuringiensis H-14 (8.14 days dosages of 10.724 ppm (5 x LC95. B. thuringiensis H-14 local strain dosages of 21.448 ppm (10 x LC95 toward An. maculatus larvae until 50 % survive longer time (16.21 days than B. thuringiensis H-14 local strain 1 x LC95 and 5 x LC95 The B. thuringiensis H-14 local strain is effective for controlling mosquitoes larvae

  10. Mosquitocidal toxins of spore forming bacteria: recent advancement ...

    African Journals Online (AJOL)

    Mosquito borne diseases form a major component of vector borne diseases from all over the world. Several control strategies have been adopted to control diseases transmitted by mosquitoes. The discovery of highly potential bacteriocides like Bacillus sphaericus (Bs) and Bacillus thuringiensis subsp. israelensis (Bti) have ...

  11. Persistence of Toxic Activity of Fermentation Extracts from Bacillus thuringiensis var. israelensis after More Than Three Decades of Storage

    Directory of Open Access Journals (Sweden)

    Luis Jesús Galán-Wong

    2017-01-01

    Full Text Available This study was carried out to determine the persistence of toxicity of fermentation extracts of Bacillus thuringiensis var. israelensis after more than three decades of storage. For this purpose, a population of Aedes aegypti was established. The mortality rate of 20 spore-crystal extracts purified using the acetone-lactose coprecipitation method was measured and evaluated by bioassays according to a modified WHO protocol. The extracts with the highest mortality rate were determined in triplicate by their LD50 and LD98. All extracts showed toxicity at the highest tested dose (1000 ppm and some, such as strains 3260 and 3501, still killed larvae at doses as low as 0.01 ppm. These data are surprising because no study on the activity of B. thuringiensis toxic proteins after such a long storage time has been reported.

  12. Identification of new isolates of Bacillus thuringiensis using rep-PCR products and delta-endotoxin electron microscopy

    Directory of Open Access Journals (Sweden)

    A.S.G. Lima

    2002-01-01

    Full Text Available PCR has been used to analyze the distribution of REP (Repetitive Extragenic Palindromic and ERIC (Enterobacterial Repetitive Intergenic Consensus sequences (rep-PCR found within the genome of the bacterium Bacillus thuringiensis, with the purpose to analyze the genetic similarities among 56 subspecies samples and 95 field isolates. The PCR products were analyzed by EB-AGE (ethidium bromide-agarose electrophoresis and then submitted to banding comparisons, based on the Phyllip software algorithm. When the banding similarities were considered for comparison purposes among all the strains, the phylogenic tree patterns varied according to the rep-PCR primers considered, but, from a broader point of view, the ERIC sequences produced better results, which, together with electron microscopy analysis of the released parasporal bodies and colony morphology characteristics, allowed to detect two possible new subspecies of B. thuringiensis.

  13. Correspondence of High Levels of Beta-Exotoxin I and the Presence of cry1B in Bacillus thuringiensis

    Science.gov (United States)

    Espinasse, Sylvain; Gohar, Michel; Chaufaux, Josette; Buisson, Christophe; Perchat, Stéphane; Sanchis, Vincent

    2002-01-01

    Examination of 640 natural isolates of Bacillus thuringiensis showed that the 58 strains (9%) whose supernatants were toxic to Anthonomus grandis (Coleoptera: Curculionidae) produced between 10 and 175 μg of β-exotoxin I per ml. We also found that 55 (46%) of a sample of 118 strains whose culture supernatants were not toxic to A. grandis nevertheless produced between 2 and 5 μg/ml. However, these amounts of β-exotoxin I were below the threshold for detectable toxicity against this insect species. Secretion of large amounts of β-exotoxin I was strongly associated with the presence of cry1B and vip2 genes in the 640 natural B. thuringiensis isolates studied. We concluded that strains carrying cry1B and vip2 genes also possess, on the same plasmid, genetic determinants necessary to promote high levels of production of β-exotoxin I. PMID:12200263

  14. The Pathogenomic Sequence Analysis of B. cereus and B.thuringiensis Isolates Closely Related to Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Cliff S.; Xie, Gary; Challacombe, Jean F.; Altherr, MichaelR.; Smriti, B.; Bruce, David; Campbell, Connie S.; Campbell, Mary L.; Chen, Jin; Chertkov, Olga; Cleland, Cathy; Dimitrijevic-Bussod, M.; Doggett, Norman A.; Fawcett, John J.; Glavina, Tijana; Goodwin, Lynne A.; Hill, Karen K.; Hitchcock, Penny; Jackson, Paul J.; Keim, Paul; Kewalramani, Avinash Ramesh; Longmire, Jon; Lucas, Susan; Malfatti,Stephanie; McMurry, Kim; Meincke, Linda J.; Misra, Monica; Moseman,Bernice L.; Mundt, Mark; Munk, A. Christine; Okinaka, Richard T.; Parson-Quintana, B.; Reilly, Lee P.; Richardson, Paul; Robinson, DonnaL.; Rubin, Eddy; Saunders, Elizabeth; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Ticknor, Lawrence O.; Wills, Patti L.; Gilna, Payl; Brettin, Thomas S.

    2005-08-18

    The sequencing and analysis of two close relatives of Bacillus anthracis are reported. AFLP analysis of over 300 isolates of B.cereus, B. thuringiensis and B. anthracis identified two isolates as being very closely related to B. anthracis. One, a B. cereus, BcE33L, was isolated from a zebra carcass in Nambia; the second, a B. thuringiensis, 97-27, was isolated from a necrotic human wound. The B. cereus appears to be the closest anthracis relative sequenced to date. A core genome of over 3,900 genes was compiled for the Bacillus cereus group, including Banthracis. Comparative analysis of these two genomes with other members of the B. cereus group provides insight into the evolutionary relationships among these organisms. Evidence is presented that differential regulation modulates virulence, rather than simple acquisition of virulence factors. These genome sequences provide insight into the molecular mechanisms contributing to the host range and virulence of this group of organisms.

  15. Mechanism of Shiga Toxin Clustering on Membranes

    DEFF Research Database (Denmark)

    Pezeshkian, Weria; Gao, Haifei; Arumugam, Senthil

    2017-01-01

    between them. The precise mechanism by which this clustering occurs remains poorly defined. Here, we used vesicle and cell systems and computer simulations to show that line tension due to curvature, height, or compositional mismatch, and lipid or solvent depletion cannot drive the clustering of Shiga...... toxin molecules. By contrast, in coarse-grained computer simulations, a correlation was found between clustering and toxin nanoparticle-driven suppression of membrane fluctuations, and experimentally we observed that clustering required the toxin molecules to be tightly bound to the membrane surface...... molecules (several nanometers), and persist even beyond. This force is predicted to operate between manufactured nanoparticles providing they are sufficiently rigid and tightly bound to the plasma membrane, thereby suggesting a route for the targeting of nanoparticles to cells for biomedical applications....

  16. Update on botulinum toxin and dermal fillers.

    Science.gov (United States)

    Berbos, Zachary J; Lipham, William J

    2010-09-01

    The art and science of facial rejuvenation is an ever-evolving field of medicine, as evidenced by the continual development of new surgical and nonsurgical treatment modalities. Over the past 10 years, the use of botulinum toxin and dermal fillers for aesthetic purposes has risen sharply. Herein, we discuss properties of several commonly used injectable products and provide basic instruction for their use toward the goal of achieving facial rejuvenation. The demand for nonsurgical injection-based facial rejuvenation products has risen enormously in recent years. Used independently or concurrently, botulinum toxin and dermal filler agents offer an affordable, minimally invasive approach to facial rejuvenation. Botulinum toxin and dermal fillers can be used to diminish facial rhytides, restore facial volume, and sculpt facial contours, thereby achieving an aesthetically pleasing, youthful facial appearance.

  17. Effect of ultraviolet and gamma rays on the activity of delta-endotoxin protein crystals of Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Burges, H.D.; Hillyer, S.; Chanter, D.O.

    1975-01-01

    Sensitive bioassays with larvae of Pieris brassicae revealed no reduction of insecticidal activity as a result of severe gamma or ultraviolet irradiation of crystals of Bacillus thuringiensis (serotype V). The measured response was the inhibition of larval feeding by the crystals over exposure periods short enough for the presence of live spores not to influence feeding. The results were analyzed using a logistic model. (U.S.)

  18. Poly-β-hydroxybutyrate Metabolism Is Unrelated to the Sporulation and Parasporal Crystal Protein Formation in Bacillus thuringiensis.

    Science.gov (United States)

    Wang, Xun; Li, Zhou; Li, Xin; Qian, Hongliang; Cai, Xia; Li, Xinfeng; He, Jin

    2016-01-01

    Poly-3-hydroxybutyrate (PHB) is a natural polymer synthesized by many bacteria as a carbon-energy storage material. It was accumulated maximally prior to the spore formation but was degraded during the process of sporulation in Bacillus thuringiensis. Intriguingly, B. thuringiensis also accumulates large amounts of insecticidal crystal proteins (ICPs) during sporulation, which requires considerable input of carbon and energy sources. How PHB accumulation affects sporulation and ICP formation remains unclear to date. Intuitively, one would imagine that accumulated PHB provides the energy required for ICP formation. Yet our current data indicate that this is not the case. First, growth curves of the deletion mutants of phaC (encoding the PHB synthase) and phaZ (encoding the PHB depolymerase) were found to be similar to the parent strain BMB171; no difference in growth rate could be observed. In addition we further constructed the cry1Ac10 ICP gene overexpression strains of BMB171 (BMB171-cry), as well as its phaC and phaZ deletion mutants ΔphaC-cry and ΔphaZ-cry to compare their spore and ICP production rates. Again, not much change of ICP production was observed among these strains either. In fact, PHB was still degraded in most ΔphaZ-cry cells as observed by transmission electron microscopy. Together these results indicated that there is no direct association between the PHB accumulation and the sporulation and ICP formation in B. thuringiensis. Some other enzymes for PHB degradation or other energy source may be responsible for the sporulation and/or ICP formation in B. thuringiensis.

  19. The mechanism of uranium transformation from U(VI) into nano-uramphite by two indigenous Bacillus thuringiensis strains

    International Nuclear Information System (INIS)

    Pan, Xiaohong; Chen, Zhi; Chen, Fanbing; Cheng, Yangjian; Lin, Zhang; Guan, Xiong

    2015-01-01

    Highlights: • Indigenous B. thuringiensis exhibited highly accumulation ability to U(VI) in the absence of additional nutrients. • The amorphous uranium compound would transformed into crystalline nano-uramphite by B. thuringiensis. • The chemical nature of formed U-species were monitored. • The cell-free extracts of B. thuringiensis had better uranium-immobilization ability than its cell debris. • Provided the understanding of the uranium transformation mechanism. - Abstract: The mechanism of uranium transformation from U(VI) into nano-uramphite by two indigenous Bacillus thuringiensis strains was investigated in the present work. Our data showed that the bacteria isolated from uranium mine possessed highly accumulation ability to U(VI), and the maximum accumulation capacity was around 400 mg U/g biomass (dry weight). X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR) analyzes indicated that the U(VI) was adsorbed on the bacterial surface firstly through coordinating with phosphate, −CH 2 and amide groups, and then needle-like amorphous uranium compounds were formed. With the extension of time, the extracellular crystalline substances were disappeared, but some particles were appeared in the intracellular region, and these particles were characterized as tetragonal-uramphite. Moreover, the disrupted experiment indicated that the cell-free extracts had better uranium-immobilization ability than cell debris. Our findings provided the understanding of the uranium transformation process from amorphous uranium to crystalline uramphite, which would be useful in the regulation of uranium immobilization process

  20. The mechanism of uranium transformation from U(VI) into nano-uramphite by two indigenous Bacillus thuringiensis strains

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Xiaohong; Chen, Zhi [Key Lab of Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education & Fujian–Taiwan Joint Center for Ecological Control of Crop Pests, Fuzhou, Fujian 350002 (China); Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Chen, Fanbing [Key Lab of Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education & Fujian–Taiwan Joint Center for Ecological Control of Crop Pests, Fuzhou, Fujian 350002 (China); Cheng, Yangjian [Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Lin, Zhang, E-mail: zlin@fjirsm.ac.cn [Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Guan, Xiong, E-mail: guanxfafu@126.com [Key Lab of Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education & Fujian–Taiwan Joint Center for Ecological Control of Crop Pests, Fuzhou, Fujian 350002 (China)

    2015-10-30

    Highlights: • Indigenous B. thuringiensis exhibited highly accumulation ability to U(VI) in the absence of additional nutrients. • The amorphous uranium compound would transformed into crystalline nano-uramphite by B. thuringiensis. • The chemical nature of formed U-species were monitored. • The cell-free extracts of B. thuringiensis had better uranium-immobilization ability than its cell debris. • Provided the understanding of the uranium transformation mechanism. - Abstract: The mechanism of uranium transformation from U(VI) into nano-uramphite by two indigenous Bacillus thuringiensis strains was investigated in the present work. Our data showed that the bacteria isolated from uranium mine possessed highly accumulation ability to U(VI), and the maximum accumulation capacity was around 400 mg U/g biomass (dry weight). X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR) analyzes indicated that the U(VI) was adsorbed on the bacterial surface firstly through coordinating with phosphate, −CH{sub 2} and amide groups, and then needle-like amorphous uranium compounds were formed. With the extension of time, the extracellular crystalline substances were disappeared, but some particles were appeared in the intracellular region, and these particles were characterized as tetragonal-uramphite. Moreover, the disrupted experiment indicated that the cell-free extracts had better uranium-immobilization ability than cell debris. Our findings provided the understanding of the uranium transformation process from amorphous uranium to crystalline uramphite, which would be useful in the regulation of uranium immobilization process.

  1. Spatial and temporal distribution of airborne Bacillus thuringiensis var. kurstaki during an aerial spray program for gypsy moth eradication.

    OpenAIRE

    Teschke, K; Chow, Y; Bartlett, K; Ross, A; van Netten, C

    2001-01-01

    We measured airborne exposures to the biological insecticide Bacillus thuringiensis var. kurstaki (Btk) during an aerial spray program to eradicate gypsy moths on the west coast of Canada. We aimed to determine whether staying indoors during spraying reduced exposures, to determine the rate of temporal decay of airborne concentrations, and to determine whether drift occurred outside the spray zone. During spraying, the average culturable airborne Btk concentration measured outdoors within the...

  2. CARACTERIZACIÓN MOLECULAR MEDIANTE rep-PCR DE AISLADOS NATIVOS DE Bacillus thuringiensis, OBTENIDOS DE MUESTRAS DE SUELO

    Directory of Open Access Journals (Sweden)

    Fabián Galvis

    2014-01-01

    Full Text Available Bacillus thuringiensis es una bacteria Gram-positiva formadora de esporas, que produ - ce cristales parasporales de naturaleza proteica, tóxicos contra diferentes órdenes de insectos y biodegradables e inocuos para otras especies. Esta investigación empleó el modelo experimen - tal, que mediante técnicas de observación permi - tió, la identificación microbiológica y bioquímica de B. thuringiensis a partir de muestras de suelo de los municipios de Cúcuta, El Zulia, Los Patios, San Cayetano y Villa del Rosario, Norte de Santander, Colombia, y su posterior caracteri - zación con los marcadores moleculares Bc-Rep y MB1. Se identificaron microbiológica y bioquí - micamente 10 aislados como B. thuringiensis ; los resultados del análisis filogenético mostraron diferencias significativas en los agrupamientos obtenidos con los marcadores Bc-Rep y MB1. Con Bc-Rep se registró un índice de similaridad bajo (18%, mientras que con el marcador MB1 se obtuvo un índice mayor de similitud, 58%. En este trabajo se evidenció una gran variabilidad genética entre los aislados, que mostraron a los marcadores Bc-Rep y MB1 como altamente efectivos para diferenciar cepas estrechamente relacionadas, convirtiéndose en una herramienta genética de gran valor para estudios de identifi-cación y diversidad en B. thuringiensis.

  3. Exploration of Bacillus thuringiensis Berl. from soil and screening test its toxicity on insects of Lepidoptera order

    Science.gov (United States)

    Astuti, DT; Pujiastuti, Y.; Suparman, SHK; Damiri, N.; Nugraha, S.; Sembiring, ER; Mulawarman

    2018-01-01

    Bacillus thuringiensis is a gram-positive bacterium that produces crystal proteins toxic (ᴕ-endotoxin) specific to the target insect, but is not toxic to humans and non-target organisms. This study aims to explore the origin of the soil bacterium B. thuringiensis sub-district Sekayu, Banyuasin, South Sumatra and toxicity to larvae of lepidoptera. Fifty soil samples were taken from Musi Banyuasin District, namely 15 from Kayuare strip 2, 20 from Kayuare and 15 from Lumpatan. Isolation, characterization, identification and screening test were conducted in the laboratorium of Pest and Disease, Agricultural Faculty, Sriwijaya University. Isolat codes were given based on the area origin of the samples. Results of the study showed that from 50 isolates of bacteria that had been isolated, there were 15 bacterial isolates, characterized by morphology and physiology the same as B. thuringiensis, which has round colonies, white, wrinkled edges, slippery, elevation arise, aerobic and gram-positive. Of the 15 codes that contain positive isolates of B. thuringiensis, we have obtained several isolates of the following codes: KJ2D5, KJ2N1, KJ2N4, KJ2B3, KJ3R1, KJ3R2, KJ3R3, KJ3R5, KJ3J3, KJ3J4, KJ3P1, DLM5, DLKK12, and DLKK23. Results of screening tests on insects of the Lepidoptera Order showed that there were six isolates that had toxic to Plutella xylostella and Spodoptera litura insects, ie bacterial isolate codes DLM5, KJ3R3, KJ3R5, KJ3J4, KJ3P1, and DLKK23.

  4. Extraction and separation of water soluble proteins from Bacillus thuringiensis-transgenic and non-transgenic maize species by CZE

    Czech Academy of Sciences Publication Activity Database

    Sázelová, Petra; Kašička, Václav; Ibanez, E.; Cifuentes, A.

    2009-01-01

    Roč. 32, č. 21 (2009), s. 3801-3808 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA203/08/1428 Grant - others:GA ČR(CZ) GA203/09/0675 Program:GA Institutional research plan: CEZ:AV0Z40550506 Keywords : Bacillus thuringiensis -transgenic maize * CZE-UV profiling * Maize proteins Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.551, year: 2009

  5. Sub-lethal effects of Vip3A toxin on survival, development and fecundity of Heliothis virescens and Plutella xylostella.

    Science.gov (United States)

    Gulzar, Asim; Wright, Denis J

    2015-11-01

    The assessment of sub-lethal effects is important to interpret the overall insecticide efficacy in controlling insect pest populations. In addition to the lethal effect, sub-lethal effects may also occur in exposed insects. Vegetative insecticidal proteins (Vips) have shown a broad spectrum of insecticidal activity against many insect pest species. In this study the sub-lethal effects of the Bacillus thuringiensis vegetative insecticidal toxin Vip3A on the development and reproduction of Heliothis virescens F. and Plutella xylostella L. were evaluated in the laboratory. The results indicated that the sub-lethal concentration of Vip3A increased the duration of the larval and pupal stages as compared with the control treatment for both species. The percent pupation and percent adult emergence were significantly lower for Vip3A-treated insects. The proportion of pairs that produced eggs and the longevity of adults were not significantly different between treatments. H. virescens and P. xylostella treated with Vip3A showed an 11 and 17 % decrease in their intrinsic rate of increase (rm) respectively compared with untreated insects. The results from this study will be helpful to develop the strategy to incorporate Vip 3A containing crops in an integrated pest management programme.

  6. Marine toxins and their toxicological significance: An overview

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    , Hemolysins-1 and hemolysin-2, saxitoxin, neosaxitoxin, gonyautoxin, tetrodotoxin, ptychodiscus brevis toxin and theonellamide F. According to their mode of action, these toxins are classified into different categories such as cytotoxin, enterotoxin...

  7. Vth Pan American Symposium on Animal, Plant and Microbial Toxins

    National Research Council Canada - National Science Library

    Ownby, Charlotte

    1996-01-01

    .... Presentations on arthropod toxins included work on scorpion neurotoxins, K+ channel-blocking peptides, lice and wasp proteins, stinging insect venom allergens and Australian funnel-web spider toxins...

  8. Mob/oriT, a mobilizable site-specific recombination system for unmarked genetic manipulation in Bacillus thuringiensis and Bacillus cereus.

    Science.gov (United States)

    Wang, Pengxia; Zhu, Yiguang; Zhang, Yuyang; Zhang, Chunyi; Xu, Jianyi; Deng, Yun; Peng, Donghai; Ruan, Lifang; Sun, Ming

    2016-06-10

    Bacillus thuringiensis and Bacillus cereus are two important species in B. cereus group. The intensive study of these strains at the molecular level and construction of genetically modified bacteria requires the development of efficient genetic tools. To insert genes into or delete genes from bacterial chromosomes, marker-less manipulation methods were employed. We present a novel genetic manipulation method for B. thuringiensis and B. cereus strains that does not leave selection markers. Our approach takes advantage of the relaxase Mob02281 encoded by plasmid pBMB0228 from Bacillus thuringiensis. In addition to its mobilization function, this Mob protein can mediate recombination between oriT sites. The Mob02281 mobilization module was associated with a spectinomycin-resistance gene to form a Mob-Spc cassette, which was flanked by the core 24-bp oriT sequences from pBMB0228. A strain in which the wild-type chromosome was replaced with the modified copy containing the Mob-Spc cassette at the target locus was obtained via homologous recombination. Thus, the spectinomycin-resistance gene can be used to screen for Mob-Spc cassette integration mutants. Recombination between the two oriT sequences mediated by Mob02281, encoded by the Mob-Spc cassette, resulted in the excision of the Mob-Spc cassette, producing the desired chromosomal alteration without introducing unwanted selection markers. We used this system to generate an in-frame deletion of a target gene in B. thuringiensis as well as a gene located in an operon of B. cereus. Moreover, we demonstrated that this system can be used to introduce a single gene or an expression cassette of interest in B. thuringiensis. The Mob/oriT recombination system provides an efficient method for unmarked genetic manipulation and for constructing genetically modified bacteria of B. thuringiensis and B. cereus. Our method extends the available genetic tools for B. thuringiensis and B. cereus strains.

  9. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin

    Directory of Open Access Journals (Sweden)

    Masaya Takehara

    2017-08-01

    Full Text Available Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin are composed of two non-linked proteins, one being the enzymatic component and the other being the binding/translocation component. These latter components recognize specific receptors and oligomerize in plasma membrane lipid-rafts, mediating the uptake of the enzymatic component into the cytosol. Enzymatic components induce actin cytoskeleton disorganization through the ADP-ribosylation of actin and are responsible for cell rounding and death. This review focuses upon the recent advances in cellular internalization of clostridial binary toxins.

  10. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin.

    Science.gov (United States)

    Takehara, Masaya; Takagishi, Teruhisa; Seike, Soshi; Oda, Masataka; Sakaguchi, Yoshihiko; Hisatsune, Junzo; Ochi, Sadayuki; Kobayashi, Keiko; Nagahama, Masahiro

    2017-08-11

    Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin are composed of two non-linked proteins, one being the enzymatic component and the other being the binding/translocation component. These latter components recognize specific receptors and oligomerize in plasma membrane lipid-rafts, mediating the uptake of the enzymatic component into the cytosol. Enzymatic components induce actin cytoskeleton disorganization through the ADP-ribosylation of actin and are responsible for cell rounding and death. This review focuses upon the recent advances in cellular internalization of clostridial binary toxins.

  11. Elucidation of the mechanisms of CryIIIA overproduction in a mutagenized strain of Bacillus thuringiensis var. tenebrionis

    International Nuclear Information System (INIS)

    Adams, L.F.; Mathewes, S.; O'Hara, P.; Peterson, A.; Gürtler, H.

    1994-01-01

    NB176 is a Bacillus thuringiensis mutant derived by λ-irradiation of NB125 Bacillus thuringiensis var. tenebrionis (Krieg). It exhibits two interesting phenotypes: (i) oligosporogeny and (ii) twofold to threefold overproduction of the CryIIIA protein. Southern profiles of the NB176 strain showed an additional copy(s) of the cryIIIA gene located on a 4 kb HindIII fragment, in addition to the expected cryIIIA gene on a 3 kb HindIII fragment. Each cryIIIA gene-bearing HindIII fragment was cloned from NB176. The restriction map of the 3 kb HindIII fragment was identical to that published by Donovan and coworkers. Sequencing of the 4 kb HindIII fragment showed no alterations in the promoter region of the cryIIIA gene but did show replacement of the region immediately following the cryIIIA open reading frame with a sequence encoding a transposase with 50% amino acid homology to that of Tn 1000. These findings suggest that the overproduction phenotype of NB176 results from extra copies of the cryIIIA gene produced from a transposition event(s) induced or stabilized by γ-irradiation. Integration of additional copies of the cryIIIA gene into the native 90MDa plasmid of the wild-type B. thuringiensis var. tenebrionis strain resulted in strains that made enormous crystals, many possessing greatly enhanced insecticidal activity

  12. Growth of hydroxyapatite on the cellular membrane of the bacterium Bacillus thuringiensis for the preparation of hybrid biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, Eric Reyes, E-mail: onomaeric@hotmail.com [Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Prolongación de la 24 Sur y Ave San Claudio, Ciudad Universitaria, Col San Manuel, C.P. 72570 Puebla, Pue (Mexico); Torres, Maykel González, E-mail: mikegcu@fata.unam.mx [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro C.P. 76230 (Mexico); Muñoz, Susana Vargas, E-mail: vmsu@unam.mx [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro C.P. 76230 (Mexico); Rosas, Efraín Rubio, E-mail: efrainrubio@yahoo.com [Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Prolongación de la 24 Sur y Ave San Claudio, Ciudad Universitaria, Col San Manuel, C.P. 72570 Puebla, Pue (Mexico); and others

    2016-01-01

    This study aimed to grow hydroxyapatite (HAp) crystals on the cellular wall of the Gram-positive bacterium Bacillus thuringiensis using a bio-mimetic method. Several strains were phenotypically and genotypically characterized using multilocus sequence typing (MLST) gene markers to differentiate the strains and confirm the identity of the isolated species to guarantee that the selected species was not harmful to human health or the environment. Three of the analyzed strains were selected because they exhibited the best nucleation and growth of HAp on the bacterial surface. This innovative method to grow HAp crystals on a cellular membrane helps to elucidate the mechanisms by which osseous tissue is formed in nature. The optimum concentration for the simulated physiological fluid (SPF) was 1.5 ×. The hybrid materials were characterized by optical microscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). - Highlights: • HAp crystals are grown on the cellular wall of a GP bacteria Bacillus thuringiensis. • The growing was carried out by using a bio-mimetic method. • Hybrid materials were characterized with morphological and spectroscopic techniques. • The reported method allows understanding the mechanisms to produce osseous tissue. • The membrane of Bacillus thuringiensis can grow more HAp than Bacillus halodurans.

  13. Therapeutic Approaches of Botulinum Toxin in Gynecology

    OpenAIRE

    Marius Alexandru Moga; Oana Gabriela Dimienescu; Andreea Bălan; Ioan Scârneciu; Barna Barabaș; Liana Pleș

    2018-01-01

    Botulinum toxins (BoNTs) are produced by several anaerobic species of the genus Clostridium and, although they were originally considered lethal toxins, today they find their usefulness in the treatment of a wide range of pathologies in various medical specialties. Botulinum neurotoxin has been identified in seven different isoforms (BoNT-A, BoNT-B, BoNT-C, BoNT-D, BoNT-E, BoNT-F, and BoNT-G). Neurotoxigenic Clostridia can produce more than 40 different BoNT subtypes and, recently, a new BoNT...

  14. EFFECTS OF THE INSECTICIDAL TOXINS FROM BACILLUS THURINGIENSIS SUBSPP. KURSTAKI AND TENEBRIONIS, FREE OR ENCAPSULATED (MVP, M-TRAK), ON METABOLIC ACTIVITIES IN SOIL. (R826107)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. BACILLUS THURINGIENSIS (BT) TOXIN RELEASED FROM ROOT EXUDATES AND BIOMASS OF BT CORN HAS NO APPARENT EFFECT ON EARTHWORMS, NEMATODES, PROTOZOA, BACTERIA, AND FUNGI IN SOIL. (R826107)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. A reliable bioassay procedure to evaluate per os toxicity of Bacillus thuringiensis strains against the rice delphacid, Tagosodes orizicolus (Homoptera: Delphacidae

    Directory of Open Access Journals (Sweden)

    Rebeca Mora

    2007-06-01

    Full Text Available A reliable bioassay procedure was developed to test ingested Bacillus thuringiensis (Bt toxins on the rice delphacid Tagosodes orizicolus. Initially, several colonies were established under greenhouse conditions, using rice plants to nurture the insect. For the bioassay, an in vitro feeding system was developed for third to fourth instar nymphs. Insects were fed through Parafilm membranes on sugar (10 % sucrose and honey bee (1:48 vol/vol solutions, observing a natural mortality of 10-15 % and 0-5 %, respectively. Results were reproducible under controlled conditions during the assay (18±0.1 °C at night and 28±0.1 °C during the day, 80 % RH and a 12:12 day:light photoperiod. In addition, natural mortality was quantified on insect colonies, collected from three different geographic areas of Costa Rica, with no significant differences between colonies under controlled conditions. Finally, bioassays were performed to evaluate the toxicity of a Bt collection on T. orizicolus. A preliminary sample of twenty-seven Bt strains was evaluated on coarse bioassays using three loops of sporulated colonies in 9 ml of liquid diet, the strains that exhibited higher percentages of T. orizicolus mortality were further analyzed in bioassays using lyophilized spores and crystals (1 mg/ml. As a result, strains 26-O-to, 40-X-m, 43S-d and 23-O-to isolated from homopteran insects showed mortalities of 74, 96, 44 and 82 % respectively while HD-137, HD-1 and Bti showed 19, 83 and 95 % mortalities. Controls showed mortalities between 0 and 10 % in all bioassays. This is the first report of a reliable bioassay procedure to evaluate per os toxicity for a homopteran species using Bacillus thuringiensis strains. Rev. Biol. Trop. 55 (2: 373-383. Epub 2007 June, 29.Se desarrolló una metodología de bioensayo para evaluar toxinas de Bacillus thuringiensis (Bt ingeridas por Tagosodes orizicolus, plaga del arroz y vector del virus de la hoja blanca. Se establecieron colonias

  17. 77 FR 9888 - Shiga Toxin-Producing Escherichia coli

    Science.gov (United States)

    2012-02-21

    ... Toxin-Producing Escherichia coli in Certain Raw Beef Products AGENCY: Food Safety and Inspection Service... toxin-producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145). This new date..., that are contaminated with Shiga toxin-producing Escherichia coli (STEC) O26, O45, O103, O111, O121...

  18. Military Importance of Natural Toxins and Their Analogs.

    Science.gov (United States)

    Pitschmann, Vladimír; Hon, Zdeněk

    2016-04-28

    Toxin weapon research, development, production and the ban on its uses is an integral part of international law, with particular attention paid to the protection against these weapons. In spite of this, hazards associated with toxins cannot be completely excluded. Some of these hazards are also pointed out in the present review. The article deals with the characteristics and properties of natural toxins and synthetic analogs potentially constituting the basis of toxin weapons. It briefly describes the history of military research and the use of toxins from distant history up to the present age. With respect to effective disarmament conventions, it mentions certain contemporary concepts of possible toxin applications for military purposes and the protection of public order (suppression of riots); it also briefly refers to the question of terrorism. In addition, it deals with certain traditional as well as modern technologies of the research, synthesis, and use of toxins, which can affect the continuing development of toxin weapons. These are, for example, cases of new toxins from natural sources, their chemical synthesis, production of synthetic analogs, the possibility of using methods of genetic engineering and modern biotechnologies or the possible applications of nanotechnology and certain pharmaceutical methods for the effective transfer of toxins into the organism. The authors evaluate the military importance of toxins based on their comparison with traditional chemical warfare agents. They appeal to the ethics of the scientific work as a principal condition for the prevention of toxin abuse in wars, military conflicts, as well as in non-military attacks.

  19. In vitro effect of Bacillus thuringiensis strains and Cry proteins in phytopathogenic fungi of paddy rice-field Efeito in vitro de cepas e proteínas Cry de Bacillus thuringiensis em fungos fitopatogênicos da cultura do arroz irrigado

    Directory of Open Access Journals (Sweden)

    Neiva Knaak

    2007-09-01

    Full Text Available Cry1Ab and Cry1Ac strains and proteins synthesized by Bacillus thuringiensis thuringiensis and B. thuringiensis kurstaki were assessed in the following phytopathogens: Rhizoctonia solani,Pyricularia grisea,Fusarium oxysporum and F. solani, which had their micelial growth decreased after incubation in the presence of the bacterial strains. As to Cry proteins, there were no inhibition halo development in the assessed concentrations.As cepas e proteínas Cry1Ab e Cry1Ac sintetizadas por Bacillus thuringiensis thuringiensis e B. thuringiensis kurstaki, foram avaliadas nos fitopatógenos: Rhizoctonia solani,Pyricularia grisea,Fusarium oxysporum e F. solani, os quais tiveram seu crescimento micelial reduzido após a incubação na presença das cepas bacterianas. Em relação às proteínas Cry, não houve formação de halo de inibição nas concentrações avaliadas.

  20. Fate of Fusarium Toxins during Brewing.

    Science.gov (United States)

    Habler, Katharina; Geissinger, Cajetan; Hofer, Katharina; Schüler, Jan; Moghari, Sarah; Hess, Michael; Gastl, Martina; Rychlik, Michael

    2017-01-11

    Some information is available about the fate of Fusarium toxins during the brewing process, but only little is known about the single processing steps in detail. In our study we produced beer from two different barley cultivars inoculated with three different Fusarium species, namely, Fusarium culmorum, Fusarium sporotrichioides, and Fusarium avenaceum, producing a wide range of mycotoxins such as type B trichothecenes, type A trichothecenes, and enniatins. By the use of multi-mycotoxin LC-MS/MS stable isotope dilution methods we were able to follow the fate of Fusarium toxins during the entire brewing process. In particular, the type B trichothecenes deoxynivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol showed similar behaviors. Between 35 and 52% of those toxins remained in the beer after filtration. The contents of the potentially hazardous deoxynivalenol-3-glucoside and the type A trichothecenes increased during mashing, but a rapid decrease of deoxynivalenol-3-glucoside content was found during the following steps of lautering and wort boiling. The concentration of enniatins greatly decreased with the discarding of spent grains or finally with the hot break. The results of our study show the retention of diverse Fusarium toxins during the brewing process and allow for assessing the food safety of beer regarding the monitored Fusarium mycotoxins.

  1. Botulinum Toxin in Neurogenic Detrusor Overactivity

    Directory of Open Access Journals (Sweden)

    Carlos Arturo Levi D'Ancona

    2012-09-01

    Full Text Available Purpose To evaluate the effects of botulinum toxin on urodynamic parameters and quality of life in patients with neurogenic detrusor overactivity. Methods Thirty four adult patients with spinal cord injury and detrusor overactivity were selected. The patients received 300 units of botulinum toxin type A. The endpoints evaluated with the episodes of urinary incontinence and measured the maximum cystometric capacity, maximum amplitude of detrusor pressure and bladder compliance at the beginning and end of the study (24 weeks and evaluated the quality of life by applying the Qualiveen questionnaire. Results A significant decrease in the episodes of urinary incontinence was observed. All urodynamic parameters presented a significant improvement. The same was observed in the quality of life index and the specific impact of urinary problems scores from the Qualiveen questionnaire. Six patients did not complete the study, two due to incomplete follow-up, and four violated protocol and were excluded from the analyses. No systemic adverse events of botulinum toxin type A were reported. Conclusions A botulinum toxin type A showed a significantly improved response in urodynamics parameters and specific and general quality of life.

  2. Bioengineered kidney tubules efficiently excrete uremic toxins

    NARCIS (Netherlands)

    Jansen, Jitske; Fedecostante, M.; Wilmer, M.; Peters, J.G.; Kreuser, U.M.; Broek, P.H.; Mensink, R.A.; Boltje, T.J.; Stamatialis, Dimitrios; Wetzels, J.F.; van der Heuvel, L.P.; Hoenderop, J.G.; Masereeuw, R.

    2016-01-01

    The development of a biotechnological platform for the removal of waste products (e.g. uremic toxins), often bound to proteins in plasma, is a prerequisite to improve current treatment modalities for patients suffering from end stage renal disease (ESRD). Here, we present a newly designed

  3. Treatment diary for botulinum toxin spasticity treatment

    DEFF Research Database (Denmark)

    Biering-Sørensen, Bo; Iversen, Helle K; Frederiksen, Inge M S

    2017-01-01

    The aim of this study is to develop a treatment diary for patients receiving spasticity treatment including botulinum toxin injection and physiotherapy and/or occupational therapy. The diary focuses on problems triggered by skeletal muscle overactivity; agreed goals for treatment and the patient...

  4. Diffusion, spread, and migration of botulinum toxin.

    Science.gov (United States)

    Ramirez-Castaneda, Juan; Jankovic, Joseph; Comella, Cynthia; Dashtipour, Khashayar; Fernandez, Hubert H; Mari, Zoltan

    2013-11-01

    Botulinum toxin (BoNT) is an acetylcholine release inhibitor and a neuromuscular blocking agent used for the treatment of a variety of neurologic and medical conditions. The efficacy and safety of BoNT depends on accurate selection and identification of intended targets but also may be determined by other factors, including physical spread of the molecule from the injection site, passive diffusion, and migration to distal sites via axonal or hematogenous transport. The passive kinetic dispersion of the toxin away from the injection site in a gradient-dependent manner may also play a role in toxin spread. In addition to unique properties of the various BoNT products, volume and dilution may also influence local and systemic distribution of BoNT. Most of the local and remote complications of BoNT injections are thought to be due to unwanted spread or diffusion of the toxin's biologic activity into adjacent and distal muscles. Despite widespread therapeutic and cosmetic use of BoNT over more than three decades, there is a remarkable paucity of published data on the mechanisms of distribution and its effects on clinical outcomes. The primary aim of this article is to critically review the available experimental and clinical literature and place it in the practical context. © 2013 International Parkinson and Movement Disorder Society.

  5. Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants.

    Science.gov (United States)

    Armada, E; Probanza, A; Roldán, A; Azcón, R

    2016-03-15

    This study evaluates the responses of Lavandula dentata under drought conditions to the inoculation with single autochthonous arbuscular mycorrhizal (AM) fungus (five fungal strains) or with their mixture and the effects of these inocula with a native Bacillus thuringiensis (endophytic bacteria). These microorganisms were drought tolerant and in general, increased plant growth and nutrition. Particularly, the AM fungal mixture and B. thuringiensis maximized plant biomass and compensated drought stress as values of antioxidant activities [superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase APX)] shown. The AMF-bacteria interactions highly reduced the plant oxidative damage of lipids [malondialdehyde (MDA)] and increased the mycorrhizal development (mainly arbuscular formation representative of symbiotic functionality). These microbial interactions explain the highest potential of dually inoculated plants to tolerate drought stress. B. thuringiensis "in vitro" under osmotic stress does not reduce its PGPB (plant growth promoting bacteria) abilities as indole acetic acid (IAA) and ACC deaminase production and phosphate solubilization indicating its capacity to improve plant growth under stress conditions. Each one of the autochthonous fungal strains maintained their particular interaction with B. thuringiensis reflecting the diversity, intrinsic abilities and inherent compatibility of these microorganisms. In general, autochthonous AM fungal species and particularly their mixture with B. thuringiensis demonstrated their potential for protecting plants against drought and helping plants to thrive in semiarid ecosystems. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Fatores de virulência de Bacillus thuringiensis: o que existe além das proteínas Cry

    Directory of Open Access Journals (Sweden)

    Gislayne Vilas-Bôas

    2012-03-01

    Virulence Factors of Bacillus thuringiensis Berliner: Something Beyond of Cry Proteins? Abstract. The Cry proteins produced by the entomopathogenic bacterium Bacillus thuringiensis Berliner are widely known due to its high toxicity against a variety of insects. The mode of action of these proteins is specific and becomes B. thuringiensis-based products the most used in biological control programs of insect pests in agriculture and of important human disease vectors. However, while the Cry proteins are the best-known insect-specific virulence factor, strains of B. thuringiensis show also a wide range of other virulence factors, which allow the bacteria to achieve the hemolymph and colonize efficiently the insect host. Among these factors, we highlight the Vip proteins, Cyt, enterotoxins, hemolysins, phospholipases, proteases and enzymes of degradation, in addition to the recently described parasporin. This review explores the action of these virulence factors, as well as, the characterization and control of expression of their genes. Additionally, we discuss aspects related to the ecological niche of the bacteria with emphasis on the characteristics involved in the biosafety of the use of B. thuringiensis-based products for biological control of target insects.

  7. Mutant with diphtheria toxin receptor and acidification function but defective in entry of toxin

    International Nuclear Information System (INIS)

    Kohno, Kenji; Hayes, H.; Mekada, Eisuke; Uchida, Tsuyoshi

    1987-01-01

    A mutant of Chinese hamster ovary cells, GE1, that is highly resistant to diphtheria toxin was isolated. The mutant contains 50% ADP-ribosylatable elongation factor 2, but its protein synthesis was not inhibited by the toxin even at concentrations above 100 μg/ml. 125 I-labeled diphtheria toxin was associated with GE1 cells as well as with the parent cells but did not block protein synthesis of GE1 cells even when the cells were exposed to low pH in the presence or absence of NH 4 Cl. The infections of GE1 cells and the parent cells by vesicular stomatitis virus were similar. GE1 cells were cross-resistant to Pseudomonas aeruginosa exotoxin A and so were about 1,000 times more resistant to this toxin than the parent cells. Hybrids of GE1 cells and the parent cells or mutant cells lacking a functional receptor were more sensitive to diphtheria toxin than GE1 cells. These results suggest that entry of diphtheria toxin into cells requires a cellular factor(s) in addition to those involved in receptor function and acidification of endosomes and that GE1 cells do not express this cellular factor. This character is recessive in GE1 cells

  8. Higher cytotoxicity of divalent antibody-toxins than monovalent antibody-toxins

    International Nuclear Information System (INIS)

    Won, JaeSeon; Nam, PilWon; Lee, YongChan; Choe, MuHyeon

    2009-01-01

    Recombinant antibody-toxins are constructed via the fusion of a 'carcinoma-specific' antibody fragment to a toxin. Due to the high affinity and high selectivity of the antibody fragments, antibody-toxins can bind to surface antigens on cancer cells and kill them without harming normal cells [L.H. Pai, J.K. Batra, D.J. FitzGerald, M.C. Willingham, I. Pastan, Anti-tumor activities of immunotoxins made of monoclonal antibody B3 and various forms of Pseudomonas exotoxin, Proc. Natl. Acad. Sci. USA 88 (1991) 3358-3362]. In this study, we constructed the antibody-toxin, Fab-SWn-PE38, with SWn (n = 3, 6, 9) sequences containing n-time repeated (G 4 S) between the Fab fragment and PE38 (38 kDa truncated form of Pseudomonas exotoxin A). The SWn sequence also harbored one cysteine residue that could form a disulfide bridge between two Fab-SWn-PE38 monomers. We assessed the cytotoxicity of the monovalent (Fab-SWn-PE38), and divalent ([Fab-SWn-PE38] 2 ) antibody-toxins. The cytotoxicity of the dimer against the CRL1739 cell line was approximately 18.8-fold higher than that of the monomer on the ng/ml scale, which was approximately 37.6-fold higher on the pM scale. These results strongly indicate that divalency provides higher cytotoxicity for an antibody-toxin.

  9. Characterization of Hemagglutinin Negative Botulinum Progenitor Toxins

    Directory of Open Access Journals (Sweden)

    Suzanne R. Kalb

    2017-06-01

    Full Text Available Botulism is a disease involving intoxication with botulinum neurotoxins (BoNTs, toxic proteins produced by Clostridium botulinum and other clostridia. The 150 kDa neurotoxin is produced in conjunction with other proteins to form the botulinum progenitor toxin complex (PTC, alternating in size from 300 kDa to 500 kDa. These progenitor complexes can be classified into hemagglutinin positive or hemagglutinin negative, depending on the ability of some of the neurotoxin-associated proteins (NAPs to cause hemagglutination. The hemagglutinin positive progenitor toxin complex consists of BoNT, nontoxic non-hemagglutinin (NTNH, and three hemagglutinin proteins; HA-70, HA-33, and HA-17. Hemagglutinin negative progenitor toxin complexes contain BoNT and NTNH as the minimally functional PTC (M-PTC, but not the three hemagglutinin proteins. Interestingly, the genome of hemagglutinin negative progenitor toxin complexes comprises open reading frames (orfs which encode for three proteins, but the existence of these proteins has not yet been extensively demonstrated. In this work, we demonstrate that these three proteins exist and form part of the PTC for hemagglutinin negative complexes. Several hemagglutinin negative strains producing BoNT/A, /E, and /F were found to contain the three open reading frame proteins. Additionally, several BoNT/A-containing bivalent strains were examined, and NAPs from both genes, including the open reading frame proteins, were associated with BoNT/A. The open reading frame encoded proteins are more easily removed from the botulinum complex than the hemagglutinin proteins, but are present in several BoNT/A and /F toxin preparations. These are not easily removed from the BoNT/E complex, however, and are present even in commercially-available purified BoNT/E complex.

  10. Bacillus thuringiensis in caterpillars and associated materials collected from protected tropical forests in northwestern Costa Rica

    Directory of Open Access Journals (Sweden)

    César Rodríguez-Sánchez

    2006-06-01

    Full Text Available Bacillus thuringiensis (Bt synthesizes crystalline inclusions that are toxic to caterpillars (Lepidoptera and other orders of invertebrates. Materials associated with 37 caterpillars from 16 species, collected while feeding on 15 different species of host plants in dry, cloud and rain forests located in the Área de Conservación Guanacaste in northwestern Costa Rica, were examined for the presence of Bt. From a total of 101 derived samples, 25 Bt isolates were cultured: 56% from host plant leaves, 8% from caterpillar guts and 36% from caterpillar fecal pellets. Bt was isolated from at least one sample in 38% of the systems constituted by the food plant, gut and fecal pellets corresponding to a single caterpillar. Four different morphologies of crystalline inclusions were observed, with bipyramidal and irregular crystal morphologies being the most prevalent. Rev. Biol. Trop. 54(2: 265-271. Epub 2006 Jun 01.Bacillus thuringiensis (Bt sintetiza inclusiones cristalinas que resultan tóxicas para algunas larvas de lepidópteros y otros órdenes de invertebrados. Su presencia fue examinada en materiales asociados a 37 orugas de mariposas de 16 especies, las cuales fueron colectadas mientras se alimentaban en 15 especies diferentes de plantas hospederas en bosques secos, nubosos y húmedos localizados dentro del Área de Conservación Guanacaste (ACG en el noroeste de Costa Rica. A partir de un total de 101 muestras se obtuvo 25 aislamientos de Bt: 56% a partir de material foliar de las plantas hospederas, 8% a partir del contenido intestinal de las larvas y 36% a partir de sus excrementos. Esta bacteria fue cultivada a partir de al menos uno de los 3 diferentes tipos de muestra asociados a una oruga particular (planta hospedera, intestino, excremento en 38% de los casos posibles. En la colección de aislamientos obtenida se observaron cuatro morfologías de inclusiones cristalinas, siendo aquellas bipiramidales e irregulares las más prevalentes.

  11. Discovery of novel bacterial toxins by genomics and computational biology.

    Science.gov (United States)

    Doxey, Andrew C; Mansfield, Michael J; Montecucco, Cesare

    2018-06-01

    Hundreds and hundreds of bacterial protein toxins are presently known. Traditionally, toxin identification begins with pathological studies of bacterial infectious disease. Following identification and cultivation of a bacterial pathogen, the protein toxin is purified from the culture medium and its pathogenic activity is studied using the methods of biochemistry and structural biology, cell biology, tissue and organ biology, and appropriate animal models, supplemented by bioimaging techniques. The ongoing and explosive development of high-throughput DNA sequencing and bioinformatic approaches have set in motion a revolution in many fields of biology, including microbiology. One consequence is that genes encoding novel bacterial toxins can be identified by bioinformatic and computational methods based on previous knowledge accumulated from studies of the biology and pathology of thousands of known bacterial protein toxins. Starting from the paradigmatic cases of diphtheria toxin, tetanus and botulinum neurotoxins, this review discusses traditional experimental approaches as well as bioinformatics and genomics-driven approaches that facilitate the discovery of novel bacterial toxins. We discuss recent work on the identification of novel botulinum-like toxins from genera such as Weissella, Chryseobacterium, and Enteroccocus, and the implications of these computationally identified toxins in the field. Finally, we discuss the promise of metagenomics in the discovery of novel toxins and their ecological niches, and present data suggesting the existence of uncharacterized, botulinum-like toxin genes in insect gut metagenomes. Copyright © 2018. Published by Elsevier Ltd.

  12. Radioimmunoassay for yeast killer toxin from Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Siddiqui, F.A.; Bussey, H.

    1981-01-01

    A radioimmunoassay was developed for the K1 killer toxin from strain T158C/S14a of Saccharomyces cerevisiae. Iodine 125-labelled toxin was made to a specific activity of 100 μCi/mg of protein. Antibody to purified toxin was prepared in rabbits using toxin cross-linked to itself. These antibodies, partially purified by 50 percent ammonium sulfate precipitation and Sepharose CL-6B column chromatography, produced one precipitation band with killer toxin and bound 125 I-labelled toxin in a radioimmunoassay. The antibody preparation also bound with the toxins from another K1 killer, A364A, and three chromosomal superkiller mutants derived from it. (auth)

  13. General synthesis of β-alanine-containing spider polyamine toxins and discovery of nephila polyamine toxins 1 and 8 as highly potent inhibitors of ionotropic glutamate receptors

    DEFF Research Database (Denmark)

    Lucas, Simon; Poulsen, Mette H; Nørager, Niels G

    2012-01-01

    Certain spiders contain large pools of polyamine toxins, which are putative pharmacological tools awaiting further discovery. Here we present a general synthesis strategy for this class of toxins and prepare five structurally varied polyamine toxins. Electrophysiological testing at three ionotrop...

  14. Botulinum Toxin: Pharmacology and Therapeutic Roles in Pain States.

    Science.gov (United States)

    Patil, Shilpadevi; Willett, Olga; Thompkins, Terin; Hermann, Robert; Ramanathan, Sathish; Cornett, Elyse M; Fox, Charles J; Kaye, Alan David

    2016-03-01

    Botulinum toxin, also known as Botox, is produced by Clostridium botulinum, a gram-positive anaerobic bacterium, and botulinum toxin injections are among the most commonly practiced cosmetic procedures in the USA. Although botulinum toxin is typically associated with cosmetic procedures, it can be used to treat a variety of other conditions, including pain. Botulinum toxin blocks the release of acetylcholine from nerve endings to paralyze muscles and to decrease the pain response. Botulinum toxin has a long duration of action, lasting up to 5 months after initial treatment which makes it an excellent treatment for chronic pain patients. This manuscript will outline in detail why botulinum toxin is used as a successful treatment for pain in multiple conditions as well as outline the risks associated with using botulinum toxin in certain individuals. As of today, the only FDA-approved chronic condition that botulinum toxin can be used to treat is migraines and this is related to its ability to decrease muscle tension and increase muscle relaxation. Contraindications to botulinum toxin treatments are limited to a hypersensitivity to the toxin or an infection at the site of injection, and there are no known drug interactions with botulinum toxin. Botulinum toxin is an advantageous and effective alternative pain treatment and a therapy to consider for those that do not respond to opioid treatment. In summary, botulinum toxin is a relatively safe and effective treatment for individuals with certain pain conditions, including migraines. More research is warranted to elucidate chronic and long-term implications of botulinum toxin treatment as well as effects in pregnant, elderly, and adolescent patients.

  15. Susceptibility of Spodoptera frugiperda and S. exigua to Bacillus thuringiensis Vip3Aa insecticidal protein.

    Science.gov (United States)

    Chakroun, Maissa; Bel, Yolanda; Caccia, Silvia; Abdelkefi-Mesrati, Lobna; Escriche, Baltasar; Ferré, Juan

    2012-07-01

    The Vip3Aa protein is an insecticidal protein secreted by Bacillus thuringiensis during the vegetative stage of growth. The activity of this protein has been tested after different steps/protocols of purification using Spodoptera frugiperda as a control insect. The results showed that the Vip3Aa protoxin was stable and retained full toxicity after being subjected to common biochemical steps used in protein purification. Bioassays with the protoxin in S. frugiperda and S. exigua showed pronounced differences in LC(50) values when mortality was measured at 7 vs. 10d. At 7d most live larvae were arrested in their development. LC(50) values of "functional mortality" (dead larvae plus larvae remaining in the first instar), measured at 7d, were similar or even lower than the LC(50) values of mortality at 10d. This strong growth inhibition was not observed when testing the trypsin-activated protein (62 kDa) in either species. S. exigua was less susceptible than S. frugiperda to the protoxin form, with LC(50) values around 10-fold higher. However, both species were equally susceptible to the trypsin-activated form. Processing of Vip3Aa protoxin to the activated form was faster with S. frugiperda midgut juice than with S. exigua midgut juice. The results strongly suggest that the differences in the rate of activation of the Vip3Aa protoxin between both species are the basis for the differences in susceptibility towards the protoxin form. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Isolation and characterization of Bacillus thuringiensis strains active against Elasmopalpus lignosellus (Zeller, 1848 (Lepidoptera, Pyralidae

    Directory of Open Access Journals (Sweden)

    Janaina Zorzetti

    2017-08-01

    Full Text Available Elasmopalpus lignosellus (Zeller, 1848 (Lepidoptera, Pyralidae is an insect pest of 60 economically important crops, including sugarcane, wheat, soybean, rice, beans, sorghum, peanuts, and cotton. The aim of this work was to select and characterize Bacillus thuringiensis isolates with insecticidal activity against E. Lignosellus that could be used as an alternative method of control. Selective bioassays were done to evaluate the toxicity of 47 isolates against first instar larvae of E. lignosellus. For the most toxic bacterial strains, the lethal concentration (LC50 was estimated and morphological, biochemical and molecular methods were used to characterize the isolates. Among the 47 isolates tested, 12 caused mortality above 85% and showed LC50 values from 0.038E+8 to 0.855E+8 spores mL-1. Isolates BR83, BR145, BR09, BR78, S1534, and S1302 had the lowest LC50 values and did not differ from the standard HD-1 strain; the exception was BR83.The protein profiles produced bands with molecular masses of 60-130 kDa. The genes cry1, cry2, cry3, and cry11 were identified in the molecular characterization. The morphological analysis identified three different crystal inclusions: bipyramidal, spherical and cuboidal. Among the tested isolates, 12 isolates have potential for biotechnological control of E. Lignosellus by development of new biopesticides or genetically modified plants.

  17. Proteomic Analysis of Bacillus thuringiensis Strain 4.0718 at Different Growth Phases

    Directory of Open Access Journals (Sweden)

    Xiaohui Li

    2012-01-01

    Full Text Available The growth process of Bacillus thuringiensis Bt4.0718 strain was studied using proteomic technologies. The proteins of Bt whole cells at three phases—middle vegetative, early sporulation, and late sporulation—were extracted with lysis buffer, followed with separation by 2-DE and identified by MALDI-TOF/TOF MS. Bioactive factors such as insecticidal crystal proteins (ICPs including Cry1Ac(3, Cry2Aa, and BTRX28, immune inhibitor (InhA, and InhA precursor were identified. InhA started to express at the middle vegetative phase, suggesting its contribution to the survival of Bt in the host body. At the early sporulation phase, ICPs started their expression. CotJC, OppA, ORF1, and SpoIVA related to the formation of crystals and spores were identified, the expression characteristics of which ensured the stable formation of crystals and spores. This study provides an important foundation for further exploration of the stable expression of ICPs, the smooth formation of crystals, and the construction of recombinant strains.

  18. Toxicity of radiation-resistant strains of Bacillus thuringiensis (Berl.) to larval Plutella xylostella (L.)

    International Nuclear Information System (INIS)

    Jangi, M.S.; Ibrahim, Hasan

    1983-01-01

    A total of 24 isolates of Bacillus thuringiensis (Berliner), resistant to a γ-radiation dose of 100 krad, were screened for their toxicity to larval silkworms, Bombyxmori(L.), and 15 of them were subsequently tested for their toxicity to larval diamond-back moth, Plutella xylostella(L.). The LC 50 's of these isolates to B. mori ranged from 1.6 X 10 5 to 6.0 X 10 3 spores/mL or from 5.9 to 0.3 μg cellular protein/mL. The irradiation treatment produced isolates which were significantly more toxic to P. xylostella (LC 50 4 spores/mL or 3.7 μg cellular protein/mL) and/ or less toxic to B. mori (LC 50 > 2.3 X 10 4 spores/mL or 1.0 μg cellular protein/mL) than the parent commercial strain

  19. Extraction of flocculants from a strain of Bacillus thuringiensis and analysis of their properties

    Directory of Open Access Journals (Sweden)

    Jingrong Wu

    2017-07-01

    Full Text Available In a preliminary screening study, our laboratory isolated from the biofloc in aquaculture waters a strain of Bacillus thuringiensis, which produced highly efficient bio-flocculants. In the present study, we extracted the crude flocculants from this strain and analyzed their properties. Distribution analysis indicated that the flocculants were mainly distributed in the supernatant of the fermentation liquid. The flocculants were extracted using an ethanol extraction method, and the chemical compositions and morphology of the crude flocculants were analyzed using the Molish reaction, Fehling reaction, ninhydrin reaction, biuret reaction, phenol-sulfuric acid assay, Coomassie brilliant blue staining, ultraviolet scanning, infrared scanning and scanning electron microscopy. The carbohydrate composition of the polysaccharides in the flocculants was analyzed with thin layer chromatography. The results indicated that flocculants were solid substances with an ivory white color and their texture was loose and soft. Visualization under scanning electron microscopy revealed that their ultra-morphology consisted of small, long and fiber-like shapes. Chemical and physical analyses indicated that polysaccharides accounted for 34.5% of the components in the crude flocculants. The monosaccharides present in crude flocculants included mainly glucose, galactose and mannitose.

  20. Acute, sublethal, and combination effects of azadirachtin and Bacillus thuringiensis on the cotton bollworm, Helicoverpa armigera.

    Science.gov (United States)

    Abedi, Zahra; Saber, Moosa; Vojoudi, Samad; Mahdavi, Vahid; Parsaeyan, Ehsan

    2014-02-26

    The cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a polyphagous and cosmopolitan insect pest that causes damage to various plants. In this study, the lethal and sublethal effects of azadirachtin and Bacillus thuringiensis Berliner sub sp . kurstaki (Bacillales: Bacillaceae) were evaluated on third instar H. armigera under laboratory conditions. The LC50 values of azadirachtin and Bt were 12.95 and 96.8 µg a.i./mL, respectively. A total mortality of 56.7% was caused on third instar larvae when LC20 values of the insecticides were applied in combination with each other. The LT50 values of azadirachtin and Bt were 4.8 and 3.6 days, respectively. The results of the sublethal study showed that the application of LC30 value of azadirachtin and Bt reduced the larval and pupal weight and increased larval and pupal duration of H. armigera. The longevity and fecundity of female adults were affected significantly by the insecticides. Female fecundity was reduced by the treatments, respectively. The lowest adult emergence ratio and pupation ratio were observed in the azadirachtin treatment. The results indicated that both insecticides have high potential for controlling of the pest. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.

  1. Toxicity of radiation-resistant strains of Bacillus thuringiensis (Berl. ) to larval Plutella xylostella (L. )

    Energy Technology Data Exchange (ETDEWEB)

    Jangi, M.S.; Ibrahim, H. (Faculty of Health Sciences, Universiti Kebangsaan, Malysia, Bangi, Selangor)

    1983-05-01

    A total of 24 isolates of Bacillus thuringiensis (Berliner), resistant to a ..gamma..-radiation dose of 100 krad, were screened for their toxicity to larval silkworms, Bombyxmori(L.), and 15 of them were subsequently tested for their toxicity to larval diamond-back moth, Plutella xylostella(L.). The LC/sub 50/'s of these isolates to B. mori ranged from 1.6 X 10/sup 5/ to 6.0 X 10/sup 3/ spores/mL or from 5.9 to 0.3 ..mu..g cellular protein/mL. The irradiation treatment produced isolates which were significantly more toxic to P. xylostella (LC/sub 50/ < 8.1 X 10/sup 4/ spores/mL or 3.7 ..mu..g cellular protein/mL) and/ or less toxic to B. mori (LC/sub 50/ > 2.3 X 10/sup 4/ spores/mL or 1.0 ..mu..g cellular protein/mL) than the parent commercial strain.

  2. No adjuvant effect of Bacillus thuringiensis-maize on allergic responses in mice.

    Directory of Open Access Journals (Sweden)

    Daniela Reiner

    Full Text Available Genetically modified (GM foods are evaluated carefully for their ability to induce allergic disease. However, few studies have tested the capacity of a GM food to act as an adjuvant, i.e. influencing allergic responses to other unrelated allergens at acute onset and in individuals with pre-existing allergy. We sought to evaluate the effect of short-term feeding of GM Bacillus thuringiensis (Bt-maize (MON810 on the initiation and relapse of allergic asthma in mice. BALB/c mice were provided a diet containing 33% GM or non-GM maize for up to 34 days either before ovalbumin (OVA-induced experimental allergic asthma or disease relapse in mice with pre-existing allergy. We observed that GM-maize feeding did not affect OVA-induced eosinophilic airway and lung inflammation, mucus hypersecretion or OVA-specific antibody production at initiation or relapse of allergic asthma. There was no adjuvant effect upon GM-maize consumption on the onset or severity of allergic responses in a mouse model of allergic asthma.

  3. SUSCETIBILIDADE DE Helicoverpa armigera Hübner A FORMULADOS À BASE DE Bacillus thuringiensis BERLINER

    Directory of Open Access Journals (Sweden)

    Victor Luiz de Souza Lima

    2017-01-01

    Full Text Available O inseto Helicoverpa armigera recentemente registrado no Brasil é uma das maiores pragas da agricultura mundial. Pode atacar mais de 200 espécies de plantas e possui populações resistentes a diversos inseticidas. A utilização de microrganismos com potencial patogênico contra insetos é uma alternativa aos inseticidas. Essa pesquisa foi realizada com o objetivo de determinar a suscetibilidade de lagartas de H. armigera à produtos formulados à base de Bacillus thuringiensis (Bt Para os experimentos, foram utilizados os produtos comerciais Dipel® e Agree®, os quais tiveram sua concentração ajustada para 108 conídios viáveis ml-1. Essa concentração foi aplicada sobre dieta artificial, a qual foi colocada em uma placa de Petri que continha 10 lagartas de primeiro instar. Foram realizadas cinco repetições para cada produto. As avaliações foram feitas a cada 24h durante sete dias. Os produtos comerciais Dipel® e Agree® causaram, respectivamente, 100% e 94% de mortalidade das lagartas de H. armigera. Esse resultado mostra o potencial de produtos à base de Bt sobre H. armigera.

  4. Crystallization and preliminary crystallographic analysis of poly(3-hydroxybutyrate) depolymerase from Bacillus thuringiensis.

    Science.gov (United States)

    Wang, Yung Lin; Lin, Yi Ting; Chen, Chia Lin; Shaw, Gwo Chyuan; Liaw, Shwu Huey

    2014-10-01

    Poly[(R)-3-hydroxybutyrate] (PHB) is a microbial biopolymer that has been commercialized as biodegradable plastics. The key enzyme for the degradation is PHB depolymerase (PhaZ). A new intracellular PhaZ from Bacillus thuringiensis (BtPhaZ) has been screened for potential applications in polymer biodegradation. Recombinant BtPhaZ was crystallized using 25% polyethylene glycol 3350, 0.2 M ammonium acetate, 0.1 M bis-tris pH 6.5 at 288 K. The crystals belonged to space group P1, with unit-cell parameters a = 42.97, b = 83.23, c = 85.50 Å, α = 73.45, β = 82.83, γ = 83.49°. An X-ray diffraction data set was collected to 1.42 Å resolution with an Rmerge of 6.4%. Unexpectedly, a molecular-replacement solution was obtained using the crystal structure of Streptomyces lividans chloroperoxidase as a template, which shares 24% sequence identity to BtPhaZ. This is the first crystal structure of an intracellular poly(3-hydroxybutyrate) depolymerase.

  5. Resistance and behavioural response of Plutella xylostella (Lepidoptera: Plutellidae) populations to Bacillus thuringiensis formulations.

    Science.gov (United States)

    Zago, Hugo B; Siqueira, Herbert Á A; Pereira, Eliseu J G; Picanço, Marcelo C; Barros, Reginaldo

    2014-03-01

    Insecticide resistance is probably the major cause of control failure of Plutella xylostella (L.) in Brazil. In most production regions, the use of chemicals has been the prevalent method of control, with reduced efficacy through cropping seasons, even for the most recent use of products based on Bacillus thuringiensis (Bt). The current status of the resistance to these products was assessed, as well as the behavioural response of P. xylostella populations to Bt sprays. Most populations of P. xylostella were resistant to Bt products, particularly to Xentari®WDG (2-54-fold). Differences in walking characteristics of larvae were variable for most populations, for both Dipel®WP and Xentari®WDG, but not associated with resistance. Most females preferred to lay eggs on untreated surfaces and showed a reduced proportion of oviposition on treated surfaces that only correlated with resistance to Dipel®WP (r = -0.74, P = 0.02). Broad and indiscriminate use of Bt-based products has selected Brazilian P. xylostella populations to resistance. Larval movement appears to be a resistance-independent mechanism. Most populations of P. xylostella preferred to lay eggs on Bt-free surfaces, which might be a result of growers' practice of spraying the cabbage head. Reduced oviposition on treated surfaces correlated with physiological resistance, suggesting a behavioural response among the Bt-resistant colonies to Dipel®WP. © 2013 Society of Chemical Industry.

  6. Characterization and selection of Bacillus thuringiensis isolates effective against Sitophilus oryzae Caracterização e seleção de isolados de Bacillus thuringiensis efetivos contra Sitophilus oryzae

    Directory of Open Access Journals (Sweden)

    Najara da Silva

    2010-08-01

    Full Text Available The entomopathogenic bacterium Bacillus thuringiensis is a control agent with toxic and environmental characteristics that allows the control of pest insects according to the Integrate Pest Management (IPM precepts. In order to find new strains, potentially toxic to Sitophilus oryzae L. 1763 (Coleoptera: Curculinidae, 1.073 strains of B. thuringiensis from parts of Brazil were used. Genetic material was extracted with InstaGene Matrix kit, used for the amplification of sequences in Polymerase chain reaction (PCR, and viewed in 1.5% agarose gel. The gene cry35Ba class was represented by 60 B. thuringiensis isolates (5.6%, which were then subjected to bioassays with S. oryzae larvae. Among the isolates studied, four caused more than 50% mortality in pathogenicity tests, and the isolates 544 and 622 were the most virulent, as determined by CL50 estimates. The four toxic isolates had spherical, bi-pyramidal and cuboid crystals, and a 44-kDa protein was found in sodium dodecyl sulphate - polyacrylamide gel electrophoresis (SDS-PAGE, which coded for the product of cry35Ba genes. These data demonstrate the potential of B. thuringiensis for the management of S. oryzae larvae.A bactéria entomopatogênica Bacillus thuringiensis (Bt é um agente de controle com características tóxicas e ambientais que permitem o controle de insetos-praga de acordo com as premissas do Manejo integrado de pragas (MIP. Com o objetivo de buscar novas linhagens potencialmente tóxicas para Sitophilus oryzae L. 1763 (Coleoptera: Curculinidae, caracterizaram-se molecularmente 1,073 isolados de B. thuringiensis de regiões do Brasil. O material genético foi extraído através do kit InstaGene Matrix, utilizado para a amplificação das seqüências através da técnica de Polymerase chain reaction PCR, sendo os resultados visualizados em gel de agarose 1,5%. A classe do gene cry35Ba foi representada por 60 isolados (5,6% de Bt, os quais foram submetidos a bioensaio com larvas

  7. PENGEMBANGBIAKAN Bacillus thuringiensis H-14 GALUR LOKAL PADA BERBAGAI MACAM PH MEDIA AIR KELAPA DAN TOKSISITASNYA TERHADAP JENTIK NYAMUK VEKTOR Aedes aegypti DAN Anopheles aconitus

    Directory of Open Access Journals (Sweden)

    Blodine Cb. P

    2012-12-01

    Full Text Available The culture of bioinsecticide containing active Bacillus thuringiensis H-14 local strain on various kinds on coconut water pH and its toxicity against Aedes aegypti and Anopheles aconitus were carried out in the laboratory on Institute of Vector and Reservoir Control Research and Development Salatiga. The objectives of this study were : To determine the optimum pH from various kinds of coconut water pH forculturing of B. thuringiensis H-14 local strain. This study was using 20 coconuts with 6-8 months age coconut on average weight around 1 kg that contained water approximately 400-500 ml/coconut were taken from Kunir Rejo village, Butuh regency, Purworejo district. Fifteen out of 20 coconuts were used to culture cells and spores of B. thuringiensis H-14 local strain and 5 coconuts were used to analyze the contain of coconut water in the Institute of Health Laboratory Semarang. The results showed, that B. thuringiensis H-14 local strain can culture at ranges from pH 7 to pH 8.5 with the pH7 as the optimum pH. Total Viable Cell (TVC and a Total Viable Spore Count (TVSC were 3,5 x 10 degree 10 cells /ml and 3, 3 x 10 degree 10 spores/ml respectively. The Lethal Concentration (LC50 = 10.56 ppm and LC95 = 22. 13 ppm against Ae. agypti larvae and LC50 = 5 ppm and LC95 = 11 ppm against An.aconitus larvae. The result showed the analyze test contain of coconut water were 1.92 % carbohydrate, 0.01 % fat, 0.06 % protein and reduced glucose 1.87 %. Coconut water can be used asan alternative local media to culture B. thuringiensis H-14 local strain. Key words : B. thuringiensis H-14, pH, coconut water media.

  8. MORTALITY OF Spodoptera eridania (Cramer CATERPILLARS BY Bacillus thuringiensis (Berliner MORTALIDADE DE LAGARTAS DE Spodoptera eridania (Cramer PELA UTILIZAÇÃO DE Bacillus thuringiensis (Berliner

    Directory of Open Access Journals (Sweden)

    Carlos Brustolin

    2009-03-01

    Full Text Available

    This research evaluated the effects of two products based on Bacillus thuringiensis in the mortality rate of first and third instar caterpillars of Spodoptera eridania, in laboratory conditions, at 25±2°C, relative humidity 70±5%, and photoperiod of 12 hours. The treatments were B. thuringiensis kurstaki (Dipel SC, at 500 mL.ha-1

  9. Biocontrol of the Sugarcane Borer Eldana saccharina by Expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA Genes in Sugarcane-Associated Bacteria

    Science.gov (United States)

    Downing, Katrina J.; Leslie, Graeme; Thomson, Jennifer A.

    2000-01-01

    The cry1Ac7 gene of Bacillus thuringiensis strain 234, showing activity against the sugarcane borer Eldana saccharina, was cloned under the control of the tac promoter. The fusion was introduced into the broad-host-range plasmid pKT240 and the integration vector pJFF350 and without the tac promoter into the broad-host-range plasmids pML122 and pKmM0. These plasmids were introduced into a Pseudomonas fluorescens strain isolated from the phylloplane of sugarcane and the endophytic bacterium Herbaspirillum seropedicae found in sugarcane. The ptac-cry1Ac7 construct was introduced into the chromosome of P. fluorescens using the integration vector pJFF350 carrying the artificial interposon Omegon-Km. Western blot analysis showed that the expression levels of the integrated cry1Ac7 gene were much higher under the control of the tac promoter than under the control of its endogenous promoter. It was also determined that multicopy expression in P. fluorescens and H. seropedicae of ptac-cry1Ac7 carried on pKT240 caused plasmid instability with no detectable protein expression. In H. seropedicae, more Cry1Ac7 toxin was produced when the gene was cloned under the control of the Nmr promoter on pML122 than in the opposite orientation and bioassays showed that the former resulted in higher mortality of E. saccharina larvae than the latter. P. fluorescens 14::ptac-tox resulted in higher mortality of larvae than did P. fluorescens 14::tox. An increased toxic effect was observed when P. fluorescens 14::ptac-tox was combined with P. fluorescens carrying the Serratia marcescens chitinase gene chiA, under the control of the tac promoter, integrated into the chromosome. PMID:10877771

  10. Diphtheria toxin translocation across cellular membranes is regulated by sphingolipids

    International Nuclear Information System (INIS)

    Spilsberg, Bjorn; Hanada, Kentaro; Sandvig, Kirsten

    2005-01-01

    Diphtheria toxin is translocated across cellular membranes when receptor-bound toxin is exposed to low pH. To study the role of sphingolipids for toxin translocation, both a mutant cell line lacking the first enzyme in de novo sphingolipid synthesis, serine palmitoyltransferase, and a specific inhibitor of the same enzyme, myriocin, were used. The serine palmitoyltransferase-deficient cell line (LY-B) was found to be 10-15 times more sensitive to diphtheria toxin than the genetically complemented cell line (LY-B/cLCB1) and the wild-type cell line (CHO-K1), both when toxin translocation directly across the plasma membrane was induced by exposing cells with surface-bound toxin to low pH, and when the toxin followed its normal route via acidified endosomes into the cytosol. Toxin binding was similar in these three cell lines. Furthermore, inhibition of serine palmitoyltransferase activity by addition of myriocin sensitized the two control cell lines (LY-B/cLCB1 and CHO-K1) to diphtheria toxin, whereas, as expected, no effect was observed in cells lacking serine palmitoyltransferase (LY-B). In conclusion, diphtheria toxin translocation is facilitated by depletion of membrane sphingolipids

  11. Therapeutic Approaches of Botulinum Toxin in Gynecology.

    Science.gov (United States)

    Moga, Marius Alexandru; Dimienescu, Oana Gabriela; Bălan, Andreea; Scârneciu, Ioan; Barabaș, Barna; Pleș, Liana

    2018-04-21

    Botulinum toxins (BoNTs) are produced by several anaerobic species of the genus Clostridium and, although they were originally considered lethal toxins, today they find their usefulness in the treatment of a wide range of pathologies in various medical specialties. Botulinum neurotoxin has been identified in seven different isoforms (BoNT-A, BoNT-B, BoNT-C, BoNT-D, BoNT-E, BoNT-F, and BoNT-G). Neurotoxigenic Clostridia can produce more than 40 different BoNT subtypes and, recently, a new BoNT serotype (BoNT-X) has been reported in some studies. BoNT-X has not been shown to actually be an active neurotoxin despite its catalytically active LC, so it should be described as a putative eighth serotype. The mechanism of action of the serotypes is similar: they inhibit the release of acetylcholine from the nerve endings but their therapeutically potency varies. Botulinum toxin type A (BoNT-A) is the most studied serotype for therapeutic purposes. Regarding the gynecological pathology, a series of studies based on the efficiency of its use in the treatment of refractory myofascial pelvic pain, vaginism, dyspareunia, vulvodynia and overactive bladder or urinary incontinence have been reported. The current study is a review of the literature regarding the efficiency of BoNT-A in the gynecological pathology and on the long and short-term effects of its administration.

  12. Therapeutic Approaches of Botulinum Toxin in Gynecology

    Directory of Open Access Journals (Sweden)

    Marius Alexandru Moga

    2018-04-01

    Full Text Available Botulinum toxins (BoNTs are produced by several anaerobic species of the genus Clostridium and, although they were originally considered lethal toxins, today they find their usefulness in the treatment of a wide range of pathologies in various medical specialties. Botulinum neurotoxin has been identified in seven different isoforms (BoNT-A, BoNT-B, BoNT-C, BoNT-D, BoNT-E, BoNT-F, and BoNT-G. Neurotoxigenic Clostridia can produce more than 40 different BoNT subtypes and, recently, a new BoNT serotype (BoNT-X has been reported in some studies. BoNT-X has not been shown to actually be an active neurotoxin despite its catalytically active LC, so it should be described as a putative eighth serotype. The mechanism of action of the serotypes is similar: they inhibit the release of acetylcholine from the nerve endings but their therapeutically potency varies. Botulinum toxin type A (BoNT-A is the most studied serotype for therapeutic purposes. Regarding the gynecological pathology, a series of studies based on the efficiency of its use in the treatment of refractory myofascial pelvic pain, vaginism, dyspareunia, vulvodynia and overactive bladder or urinary incontinence have been reported. The current study is a review of the literature regarding the efficiency of BoNT-A in the gynecological pathology and on the long and short-term effects of its administration.

  13. The Biology of the Cytolethal Distending Toxins

    Directory of Open Access Journals (Sweden)

    Teresa Frisan

    2011-03-01

    Full Text Available The cytolethal distending toxins (CDTs, produced by a variety of Gram-negative pathogenic bacteria, are the first bacterial genotoxins described, since they cause DNA damage in the target cells. CDT is an A-B2 toxin, where the CdtA and CdtC subunits are required to mediate the binding on the surface of the target cells, allowing internalization of the active CdtB subunit, which is functionally homologous to the mammalian deoxyribonuclease I. The nature of the surface receptor is still poorly characterized, however binding of CDT requires intact lipid rafts, and its internalization occurs via dynamin-dependent endocytosis. The toxin is retrograde transported through the Golgi complex and the endoplasmic reticulum, and subsequently translocated into the nuclear compartment, where it exerts the toxic activity. Cellular intoxication induces DNA damage and activation of the DNA damage responses, which results in arrest of the target cells in the G1 and/or G2 phases of the cell cycle and activation of DNA repair mechanisms. Cells that fail to repair the damage will senesce or undergo apoptosis. This review will focus on the well-characterized aspects of the CDT biology and discuss the questions that still remain unanswered.

  14. Perfringolysin O: The Underrated Clostridium perfringens Toxin?

    Science.gov (United States)

    Verherstraeten, Stefanie; Goossens, Evy; Valgaeren, Bonnie; Pardon, Bart; Timbermont, Leen; Haesebrouck, Freddy; Ducatelle, Richard; Deprez, Piet; Wade, Kristin R; Tweten, Rodney; Van Immerseel, Filip

    2015-05-14

    The anaerobic bacterium Clostridium perfringens expresses multiple toxins that promote disease development in both humans and animals. One such toxin is perfringolysin O (PFO, classically referred to as θ toxin), a pore-forming cholesterol-dependent cytolysin (CDC). PFO is secreted as a water-soluble monomer that recognizes and binds membranes via cholesterol. Membrane-bound monomers undergo structural changes that culminate in the formation of an oligomerized prepore complex on the membrane surface. The prepore then undergoes conversion into the bilayer-spanning pore measuring approximately 250-300 Å in diameter. PFO is expressed in nearly all identified C. perfringens strains and harbors interesting traits that suggest a potential undefined role for PFO in disease development. Research has demonstrated a role for PFO in gas gangrene progression and bovine necrohemorrhagic enteritis, but there is limited data available to determine if PFO also functions in additional disease presentations caused by C. perfringens. This review summarizes the known structural and functional characteristics of PFO, while highlighting recent insights into the potential contributions of PFO to disease pathogenesis.

  15. Perfringolysin O: The Underrated Clostridium perfringens Toxin?

    Directory of Open Access Journals (Sweden)

    Stefanie Verherstraeten

    2015-05-01

    Full Text Available The anaerobic bacterium Clostridium perfringens expresses multiple toxins that promote disease development in both humans and animals. One such toxin is perfringolysin O (PFO, classically referred to as θ toxin, a pore-forming cholesterol-dependent cytolysin (CDC. PFO is secreted as a water-soluble monomer that recognizes and binds membranes via cholesterol. Membrane-bound monomers undergo structural changes that culminate in the formation of an oligomerized prepore complex on the membrane surface. The prepore then undergoes conversion into the bilayer-spanning pore measuring approximately 250–300 Å in diameter. PFO is expressed in nearly all identified C. perfringens strains and harbors interesting traits that suggest a potential undefined role for PFO in disease development. Research has demonstrated a role for PFO in gas gangrene progression and bovine necrohemorrhagic enteritis, but there is limited data available to determine if PFO also functions in additional disease presentations caused by C. perfringens. This review summarizes the known structural and functional characteristics of PFO, while highlighting recent insights into the potential contributions of PFO to disease pathogenesis.

  16. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin.

    Science.gov (United States)

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Azarnia Tehran, Domenico; Montecucco, Cesare; Barth, Holger

    2016-04-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins.

  17. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin

    Science.gov (United States)

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R.; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Tehran, Domenico Azarnia; Montecucco, Cesare; Barth, Holger

    2016-01-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins. PMID:27043629

  18. Enhancement of intrinsic antitumor activity in spore-endotoxin mixtures of Bacillus thuringiensis by exposure to ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zamola, B; Karminski-Zamola, G; Fuks, Z; Kubovic, M [Zagreb Univ. (Yugoslavia); Wrishcer, M [Institut Rudjer Boskovic, Zagreb (Yugoslavia)

    1985-03-01

    Irradiation of spore-endotoxin mixtures from Bacillus thuringiensis cultures at 254 nm (60 ..mu..W cm/sup -2/) enhances their intrinsic antitumor potency as well as that of either component. The extent of enhancement depends on the length of exposure (optimum: 35 min) and may thus be due to photochemical changes of the endotoxin protein or/and to photoproduction of additional compounds with antitumor activity. Antitumor effects, expressed as survival rates of C57BL/6 mice inoculated with Lewis' mouse lung carcinoma and subjected to treatments 24 h later, depended on the number of doses of preparations administered (mixture, separated components).

  19. Low translocation of Bacillus thuringiensis israelensis to inner organs in mice after pulmonary exposure to commercial biopesticide

    DEFF Research Database (Denmark)

    Barfod, Kenneth Klingenberg; Ørum-Smidt, Lasse; Krogfelt, Karen A.

    2010-01-01

    Translocation of viable cells from a Bacillus thuringiensis israelensis-based biopesticide to inner organs in a mouse model was studied. Mice were exposed to the originally formulated product through the lungs and gastrointestinal tract by intratracheal instillation. Colony forming units (CFU) were...... grown from lungs, caecum, spleen and liver on Bacillus cereus-specific agar (BCSA) after 24 h and finally determined to be biopesticide strain B. t. israelensis by large plasmid profile. No CFU were found in spleen or liver of the control mice or in any aerosol background or material. We have shown...

  20. [Botulinum toxin: An important complement for facial rejuvenation surgery].

    Science.gov (United States)

    Le Louarn, C

    2017-10-01

    The improved understanding of the functional anatomy of the face and of the action of the botulinum toxin A leads us to determine a new injection procedure which consequently decreases the risk of eyebrow and eyelid ptosis and increases the toxin's injection possibilities and efficiencies. With less units of toxin, the technique herein described proposes to be more efficient on more muscles: variable toxin injections concentration adapted to each injected muscle are used. Thanks to a new procedure in the upper face, toxin A injection can be quite close to an endoscopic surgical action. In addition, interesting results are achievable to rejuvenate the lateral canthus with injection on the upper lateral tarsus, to rejuvenate the nose with injection at the alar base, the jawline and the neck region. Lastly, a smoothing effect on the skin (meso botox) is obtained by the anticholinergic action of the toxin A on the dermal receptors. Copyright © 2017. Published by Elsevier Masson SAS.

  1. AB toxins: a paradigm switch from deadly to desirable.

    Science.gov (United States)

    Odumosu, Oludare; Nicholas, Dequina; Yano, Hiroshi; Langridge, William

    2010-07-01

    To ensure their survival, a number of bacterial and plant species have evolved a common strategy to capture energy from other biological systems. Being imperfect pathogens, organisms synthesizing multi-subunit AB toxins are responsible for the mortality of millions of people and animals annually. Vaccination against these organisms and their toxins has proved rather ineffective in providing long-term protection from disease. In response to the debilitating effects of AB toxins on epithelial cells of the digestive mucosa, mechanisms underlying toxin immunomodulation of immune responses have become the focus of increasing experimentation. The results of these studies reveal that AB toxins may have a beneficial application as adjuvants for the enhancement of immune protection against infection and autoimmunity. Here, we examine similarities and differences in the structure and function of bacterial and plant AB toxins that underlie their toxicity and their exceptional properties as immunomodulators for stimulating immune responses against infectious disease and for immune suppression of organ-specific autoimmunity.

  2. Recent Insights into Clostridium perfringens Beta-Toxin

    Directory of Open Access Journals (Sweden)

    Masahiro Nagahama

    2015-02-01

    Full Text Available Clostridium perfringens beta-toxin is a key mediator of necrotizing enterocolitis and enterotoxemia. It is a pore-forming toxin (PFT that exerts cytotoxic effect. Experimental investigation using piglet and rabbit intestinal loop models and a mouse infection model apparently showed that beta-toxin is the important pathogenic factor of the organisms. The toxin caused the swelling and disruption of HL-60 cells and formed a functional pore in the lipid raft microdomains of sensitive cells. These findings represent significant progress in the characterization of the toxin with knowledge on its biological features, mechanism of action and structure-function having been accumulated. Our aims here are to review the current progresses in our comprehension of the virulence of C. perfringens type C and the character, biological feature and structure-function of beta-toxin.

  3. Cnidarian Toxins Acting on Voltage-Gated Ion Channels

    Directory of Open Access Journals (Sweden)

    Robert M. Greenberg

    2006-04-01

    Full Text Available Abstract: Voltage-gated ion channels generate electrical activity in excitable cells. As such, they are essential components of neuromuscular and neuronal systems, and are targeted by toxins from a wide variety of phyla, including the cnidarians. Here, we review cnidarian toxins known to target voltage-gated ion channels, the specific channel types targeted, and, where known, the sites of action of cnidarian toxins on different channels.

  4. Bacterial toxin-antitoxin systems: more than selfish entities?

    OpenAIRE

    Laurence Van Melderen; Manuel Saavedra De Bast

    2009-01-01

    Bacterial toxin?antitoxin (TA) systems are diverse and widespread in the prokaryotic kingdom. They are composed of closely linked genes encoding a stable toxin that can harm the host cell and its cognate labile antitoxin, which protects the host from the toxin's deleterious effect. TA systems are thought to invade bacterial genomes through horizontal gene transfer. Some TA systems might behave as selfish elements and favour their own maintenance at the expense of their host. As a consequence,...

  5. Military Importance of Natural Toxins and Their Analogs

    Directory of Open Access Journals (Sweden)

    Vladimír Pitschmann

    2016-04-01

    Full Text Available Toxin weapon research, development, production and the ban on its uses is an integral part of international law, with particular attention paid to the protection against these weapons. In spite of this, hazards associated with toxins cannot be completely excluded. Some of these hazards are also pointed out in the present review. The article deals with the characteristics and properties of natural toxins and synthetic analogs potentially constituting the basis of toxin weapons. It briefly describes the history of military research and the use of toxins from distant history up to the present age. With respect to effective disarmament conventions, it mentions certain contemporary concepts of possible toxin applications for military purposes and the protection of public order (suppression of riots; it also briefly refers to the question of terrorism. In addition, it deals with certain traditional as well as modern technologies of the research, synthesis, and use of toxins, which can affect the continuing development of toxin weapons. These are, for example, cases of new toxins from natural sources, their chemical synthesis, production of synthetic analogs, the possibility of using methods of genetic engineering and modern biotechnologies or the possible applications of nanotechnology and certain pharmaceutical methods for the effective transfer of toxins into the organism. The authors evaluate the military importance of toxins based on their comparison with traditional chemical warfare agents. They appeal to the ethics of the scientific work as a principal condition for the prevention of toxin abuse in wars, military conflicts, as well as in non-military attacks.

  6. Staphylococcus aureus α-Toxin: Nearly a Century of Intrigue

    Directory of Open Access Journals (Sweden)

    Bryan J. Berube

    2013-06-01

    Full Text Available Staphylococcus aureus secretes a number of host-injurious toxins, among the most prominent of which is the small β-barrel pore-forming toxin α-hemolysin. Initially named based on its properties as a red blood cell lytic toxin, early studies suggested a far greater complexity of α-hemolysin action as nucleated cells also exhibited distinct responses to intoxication. The hemolysin, most aptly referred to as α-toxin based on its broad range of cellular specificity, has long been recognized as an important cause of injury in the context of both skin necrosis and lethal infection. The recent identification of ADAM10 as a cellular receptor for α-toxin has provided keen insight on the biology of toxin action during disease pathogenesis, demonstrating the molecular mechanisms by which the toxin causes tissue barrier disruption at host interfaces lined by epithelial or endothelial cells. This review highlights both the historical studies that laid the groundwork for nearly a century of research on α-toxin and key findings on the structural and functional biology of the toxin, in addition to discussing emerging observations that have significantly expanded our understanding of this toxin in S. aureus disease. The identification of ADAM10 as a proteinaceous receptor for the toxin not only provides a greater appreciation of truths uncovered by many historic studies, but now affords the opportunity to more extensively probe and understand the role of α-toxin in modulation of the complex interaction of S. aureus with its human host.

  7. Characterization of Bacillus thuringiensis soil isolates from Cuba, with insecticidal activity against mosquitoes

    Directory of Open Access Journals (Sweden)

    Aileen González

    2011-09-01

    Full Text Available Chemical insecticides may be toxic and cause environmental degradation. Consequently, biological control for insects represents an alternative with low ecological impact. In this work, three soil isolates (A21, A51 and C17 from different regions of the Cuban archipelago were identified, characterized and evaluated against Aedes aegypti and Culex quinquefasciatus. The new isolates were compared with reference IPS82 strain and two strains isolated from biolarvicides Bactivec and Bactoculicida, respectively. The differentiation was done by morphological, biochemical, bioassays activity and molecular methods (SDS-PAGE, plasmid profile and random amplified polymorphic analysis. All isolates were identified as Bacillus thuringiensis. The A21, A51 and C17 isolates showed higher larvicide activity than Bactivec’s isolated reference strain, against both A. aegypti and C. quinquefasciatus. A21 isolate had a protein profile similar to IPS82 and Bactivec strain. A51 and C17 isolates produced a characteristic proteins pattern. A21 and A51 isolates had plasmid patterns similar to IPS82 standard strain, while C17 isolate had different both plasmid profile and protein bands. All the studied isolates showed a diverse RAPD patterns and were different from the strains previously used in biological control in Cuba. Rev. Biol. Trop. 59 (3: 1007-1016. Epub 2011 September 01.El uso prolongado de insecticidas ha conducido al desarrollo de resistencia en diferentes especies de mosquitos y al incremento de la degradación del ambiente. El control biológico de insectos ha devenido como una alternativa útil y de bajo impacto ambiental. En nuestro estudio fueron identificados, caracterizados tres aislamientos de suelos procedentes de diferentes regiones del archipiélago cubano y comparados con cepas de referencia: aisladas de los biolarvicidas Bactivec y Bactoculicida, además de IPS82. La diferenciación de los mismos se llevó a cabo mediante métodos morfol

  8. Selection of Bacillus thuringiensis strains toxic to cotton boll weevil (Anthonomus grandis, Coleoptera: Curculionidae) larvae.

    Science.gov (United States)

    Pérez, Melisa P; Sauka, Diego H; Onco, María I; Berretta, Marcelo F; Benintende, Graciela B

    Preliminary bioassays with whole cultures (WC) of 124 Bacillus thuringiensis strains were performed with neonate larvae of Anthonomus grandis, a major cotton pest in Argentina and other regions of the Americas. Three exotic and four native strains were selected for causing more than 50% mortality. All of them were β-exotoxin producers. The native strains shared similar morphology of parasporal crystals, similar protein pattern and identical insecticidal gene profiles. These features resembled Lepidoptera-toxic strains. Furthermore, these strains showed a Rep-PCR pattern identical to lepidoptericidal strain HD-1, suggesting that these strains may belong to serovar kurstaki. However, some differences were observed in the plasmid profiles and in the production of β-exotoxin. To determine the culture fractions where the insecticidal metabolites were present, bioassays including resuspended spore-crystal pellets, filtered supernatants (FS) were compared with those of WC. Both fractions tested showed some level of insecticidal activity. The results may suggest that the main toxic factors can be found in FS and could be directly correlated with the presence of β-exotoxin. Based on the bioassays with FS and autoclaved FS, the participation of thermolabile virulence factors such as Cry1I in toxicity is neither discarded. In the selected strains, β-exotoxin would be the major associated virulence factor; therefore, their use in biological control of A. grandis should be restricted. Nevertheless, these strains could be the source of genes (e.g., cry1Ia) to produce transgenic cotton plants resistant to this pest. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. pH-controlled Bacillus thuringiensis Cry1Ac protoxin loading and release from polyelectrolyte microcapsules.

    Directory of Open Access Journals (Sweden)

    Wenhui Yang

    Full Text Available Crystal proteins synthesized by Bacillus thuringiensis (Bt have been used as biopesticides because of their toxicity to the insect larval hosts. To protect the proteins from environmental stress to extend their activity, we have developed a new microcapsule formulation. Poly (acrylic acid (PAH and poly (styrene sulfonate (PSS were fabricated through layer-by-layer self-assembly based on a CaCO(3 core. Cry1Ac protoxins were loaded into microcapsules through layer-by-layer self-assembly at low pH, and the encapsulated product was stored in water at 4°C. Scanning electron microscopy (SEM was used to observe the morphology of the capsules. To confirm the successful encapsulation, the loading results were observed with a confocal laser scattering microscope (CLSM, using fluorescein-labeled Cry1Ac protoxin (FITC-Cry1Ac. The protoxins were released from the capsule under the alkaline condition corresponding to the midgut of certain insects, a condition which seldom exists elsewhere in the environment. The following bioassay experiment demonstrated that the microcapsules with Cry1Ac protoxins displayed approximately equivalent insecticidal activity to the Asian corn borer compared with free Cry1Ac protoxins, and empty capsules proved to have no effect on insects. Further result also indicated that the formulation could keep stable under the condition of heat and desiccation. These results suggest that this formulation provides a promising methodology that protects protoxins from the environment and releases them specifically in the target insects' midgut, which has shown potential as biopesticide in the field.

  10. Lipopeptide biosurfactant from Bacillus thuringiensis pak2310: A potential antagonist against Fusarium oxysporum.

    Science.gov (United States)

    Deepak, R; Jayapradha, R

    2015-03-01

    The aims of the study were to evaluate the effects of a biosurfactant obtained from a novel Bacillus thuringiensis on Fusarium oxysporum to determine the morphological changes in the structure of the fungi and its biofilm in the presence of the biosurfactant and to evaluate the toxicity of the biosurfactant on HEp-2 human epithelial cell lines. The strain was screened and isolated from petroleum contaminated soil based on the E24 emulsification index. The biosurfactant was produced on glycerol, extracted using chloroform:methanol system and purified using HPLC. The purified fraction showing both surface activity (emulsification and oil-spread activity) and anti-fusarial activity (agar well diffusion method) was studied using FT-IR and MALDI-TOF MS, respectively. The minimum inhibitory concentration (MIC) and the biofilm inhibitory concentration (BIC) were determined using dilution method. The effect of biosurfactant on the morphology of Fusarium oxysporum was monitored using light microscopy and confocal laser scanning microscopy (for biofilm). The purified surfactant showed the presence of functional groups like that of surfactin in the FT-IR spectra and MALDI-TOF MS estimated the molecular weight as 700Da. The MIC and BIC were estimated to be 0.05 and 0.5mg/mL, respectively. The molecule was also non-toxic to HEp-2 cell lines at 10× MIC. A non-toxic and effective anti-Fusarium biosurfactant, that is both safe for human use and to the environment, has been characterized. The growth and metabolite production using glycerol (major byproduct of biodiesel and soap industries) also adds up to the efficiency and ecofriendly nature of this biosurfactant. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Pathogenicity of Bacillus thuringiensis isolated from two species of Acromyrmex (Hymenoptera, Formicidae

    Directory of Open Access Journals (Sweden)

    L. M. N. Pinto

    Full Text Available The control of Acromyrmex leaf-cutting ants is necessary due to the severe damage they cause to diverse crops. A possibility was to control them using the bacterium Bacillus thuringiensis (Bt that characteristically produces insecticidal crystal proteins (ICPs. The ICPs have been effective in controlling lepidopterans, dipterans, and coleopterans, but their action against hymenopterans is unknown. This paper describes an attempt to isolate Bt from ants of two Acromyrmex species, to evaluate its pathogenicity towards these ants, and to test isolates by PCR. Bacterial isolates of Bt obtained from A. crassispinus and A. lundi have been assayed against A. lundi in the laboratory. The bioassays were carried out in BOD at 25°C, with a 12-hour photoperiod, until the seventh day after treatment. The Bt isolates obtained were submitted to total DNA extraction and tested by PCR with primers specific to cry genes. The results showed Bt presence in 40% of the assessed samples. The data from the in vivo assays showed a mortality rate higher than 50% in the target population, with the Bt HA48 isolate causing 100% of corrected mortality. The PCR results of Bt isolates showed a magnification of DNA fragments relative to cry1 genes in 22% of the isolates, and cry9 in 67%. Cry2, cry3, cry7, and cry8 genes were not detected in the tested samples, and 22% had no magnified DNA fragments corresponding to the assessed cry genes. The results are promising not only regarding allele identification in new isolates, but also fort the assays aimed at determining the Bt HA48 LC50's, which can eventually be applied in controlling of Acromyrmex leaf-cutting ants.

  12. Purification and Characterization of a Novel Cold Shock Protein-Like Bacteriocin Synthesized by Bacillus thuringiensis.

    Science.gov (United States)

    Huang, Tianpei; Zhang, Xiaojuan; Pan, Jieru; Su, Xiaoyu; Jin, Xin; Guan, Xiong

    2016-10-20

    Bacillus thuringiensis (Bt), one of the most successful biopesticides, may expand its potential by producing bacteriocins (thuricins). The aim of this study was to investigate the antimicrobial potential of a novel Bt bacteriocin, thuricin BtCspB, produced by Bt BRC-ZYR2. The results showed that this bacteriocin has a high similarity with cold-shock protein B (CspB). BtCspB lost its activity after proteinase K treatment; however it was active at 60 °C for 30 min and was stable in the pH range 5-7. The partial loss of activity after the treatments of lipase II and catalase were likely due to the change in BtCspB structure and the partial degradation of BtCspB, respectively. The loss of activity at high temperatures and the activity variation at different pHs were not due to degradation or large conformational change. BtCspB did not inhibit four probiotics. It was only active against B. cereus strains 0938 and ATCC 10987 with MIC values of 3.125 μg/mL and 0.781 μg/mL, and MBC values of 12.5 μg/mL and 6.25 μg/mL, respectively. Taken together, these results provide new insights into a novel cold shock protein-like bacteriocin, BtCspB, which displayed promise for its use in food preservation and treatment of B. cereus-associated diseases.

  13. Toxins That Affect Voltage-Gated Sodium Channels.

    Science.gov (United States)

    Ji, Yonghua

    2017-10-26

    Voltage-gated sodium channels (VGSCs) are critical in generation and conduction of electrical signals in multiple excitable tissues. Natural toxins, produced by animal, plant, and microorganisms, target VGSCs through diverse strategies developed over millions of years of evolutions. Studying of the diverse interaction between VGSC and VGSC-targeting toxins has been contributing to the increasing understanding of molecular structure and function, pharmacology, and drug development potential of VGSCs. This chapter aims to summarize some of the current views on the VGSC-toxin interaction based on the established receptor sites of VGSC for natural toxins.

  14. Tumor Targeting and Drug Delivery by Anthrax Toxin

    Directory of Open Access Journals (Sweden)

    Christopher Bachran

    2016-07-01

    Full Text Available Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associated proteases. This initial idea of re-targeting anthrax toxin to tumor cells was further elaborated in recent years and resulted in the design of many modifications of anthrax toxin, which resulted in successful tumor therapy in animal models. These modifications include the combination of different toxin variants that require activation by two different tumor-associated proteases for increased specificity of toxin activation. The anthrax toxin system has proved to be a versatile system for drug delivery of several enzymatic moieties into cells. This highly efficient delivery system has recently been further modified by introducing ubiquitin as a cytosolic cleavage site into lethal factor fusion proteins. This review article describes the latest developments in this field of tumor targeting and drug delivery.

  15. Tumor Targeting and Drug Delivery by Anthrax Toxin.

    Science.gov (United States)

    Bachran, Christopher; Leppla, Stephen H

    2016-07-01

    Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associated proteases. This initial idea of re-targeting anthrax toxin to tumor cells was further elaborated in recent years and resulted in the design of many modifications of anthrax toxin, which resulted in successful tumor therapy in animal models. These modifications include the combination of different toxin variants that require activation by two different tumor-associated proteases for increased specificity of toxin activation. The anthrax toxin system has proved to be a versatile system for drug delivery of several enzymatic moieties into cells. This highly efficient delivery system has recently been further modified by introducing ubiquitin as a cytosolic cleavage site into lethal factor fusion proteins. This review article describes the latest developments in this field of tumor targeting and drug delivery.

  16. Tumor Targeting and Drug Delivery by Anthrax Toxin

    OpenAIRE

    Bachran, Christopher; Leppla, Stephen H.

    2016-01-01

    Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associ...

  17. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins.

    Science.gov (United States)

    Mantzouki, Evanthia; Lürling, Miquel; Fastner, Jutta; de Senerpont Domis, Lisette; Wilk-Woźniak, Elżbieta; Koreivienė, Judita; Seelen, Laura; Teurlincx, Sven; Verstijnen, Yvon; Krztoń, Wojciech; Walusiak, Edward; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma; Cillero-Castro, Carmen; Budzyńska, Agnieszka; Goldyn, Ryszard; Kozak, Anna; Rosińska, Joanna; Szeląg-Wasielewska, Elżbieta; Domek, Piotr; Jakubowska-Krepska, Natalia; Kwasizur, Kinga; Messyasz, Beata; Pełechaty, Aleksandra; Pełechaty, Mariusz; Kokocinski, Mikolaj; García-Murcia, Ana; Real, Monserrat; Romans, Elvira; Noguero-Ribes, Jordi; Duque, David Parreño; Fernández-Morán, Elísabeth; Karakaya, Nusret; Häggqvist, Kerstin; Demir, Nilsun; Beklioğlu, Meryem; Filiz, Nur; Levi, Eti E.; Iskin, Uğur; Bezirci, Gizem; Tavşanoğlu, Ülkü Nihan; Özhan, Koray; Gkelis, Spyros; Panou, Manthos; Fakioglu, Özden; Avagianos, Christos; Kaloudis, Triantafyllos; Çelik, Kemal; Yilmaz, Mete; Marcé, Rafael; Catalán, Nuria; Bravo, Andrea G.; Buck, Moritz; Colom-Montero, William; Mustonen, Kristiina; Pierson, Don; Yang, Yang; Raposeiro, Pedro M.; Gonçalves, Vítor; Antoniou, Maria G.; Tsiarta, Nikoletta; McCarthy, Valerie; Perello, Victor C.; Feldmann, Tõnu; Laas, Alo; Panksep, Kristel; Tuvikene, Lea; Gagala, Ilona; Mankiewicz-Boczek, Joana; Yağcı, Meral Apaydın; Çınar, Şakir; Çapkın, Kadir; Yağcı, Abdulkadir; Cesur, Mehmet; Bilgin, Fuat; Bulut, Cafer; Uysal, Rahmi; Obertegger, Ulrike; Boscaini, Adriano; Flaim, Giovanna; Salmaso, Nico; Cerasino, Leonardo; Richardson, Jessica; Visser, Petra M.; Verspagen, Jolanda M. H.; Karan, Tünay; Soylu, Elif Neyran; Maraşlıoğlu, Faruk; Napiórkowska-Krzebietke, Agnieszka; Ochocka, Agnieszka; Pasztaleniec, Agnieszka; Antão-Geraldes, Ana M.; Vasconcelos, Vitor; Morais, João; Vale, Micaela; Köker, Latife; Akçaalan, Reyhan; Albay, Meriç; Špoljarić Maronić, Dubravka; Stević, Filip; Žuna Pfeiffer, Tanja; Fonvielle, Jeremy; Straile, Dietmar; Rothhaupt, Karl-Otto; Hansson, Lars-Anders; Urrutia-Cordero, Pablo; Bláha, Luděk; Geriš, Rodan; Fránková, Markéta; Koçer, Mehmet Ali Turan; Alp, Mehmet Tahir; Remec-Rekar, Spela; Elersek, Tina; Triantis, Theodoros; Zervou, Sevasti-Kiriaki; Hiskia, Anastasia; Haande, Sigrid; Skjelbred, Birger; Madrecka, Beata; Nemova, Hana; Drastichova, Iveta; Chomova, Lucia; Edwards, Christine; Sevindik, Tuğba Ongun; Tunca, Hatice; Önem, Burçin; Aleksovski, Boris; Krstić, Svetislav; Vucelić, Itana Bokan; Nawrocka, Lidia; Salmi, Pauliina; Machado-Vieira, Danielle; de Oliveira, Alinne Gurjão; Delgado-Martín, Jordi; García, David; Cereijo, Jose Luís; Gomà, Joan; Trapote, Mari Carmen; Vegas-Vilarrúbia, Teresa; Obrador, Biel; Grabowska, Magdalena; Karpowicz, Maciej; Chmura, Damian; Úbeda, Bárbara; Gálvez, José Ángel; Özen, Arda; Christoffersen, Kirsten Seestern; Warming, Trine Perlt; Kobos, Justyna; Mazur-Marzec, Hanna; Pérez-Martínez, Carmen; Ramos-Rodríguez, Eloísa; Arvola, Lauri; Alcaraz-Párraga, Pablo; Toporowska, Magdalena; Pawlik-Skowronska, Barbara; Niedźwiecki, Michał; Pęczuła, Wojciech; Leira, Manel; Hernández, Armand; Moreno-Ostos, Enrique; Blanco, José María; Rodríguez, Valeriano; Montes-Pérez, Jorge Juan; Palomino, Roberto L.; Rodríguez-Pérez, Estela; Carballeira, Rafael; Camacho, Antonio; Picazo, Antonio; Rochera, Carlos; Santamans, Anna C.; Ferriol, Carmen; Romo, Susana; Soria, Juan Miguel; Dunalska, Julita; Sieńska, Justyna; Szymański, Daniel; Kruk, Marek; Kostrzewska-Szlakowska, Iwona; Jasser, Iwona; Žutinić, Petar; Gligora Udovič, Marija; Plenković-Moraj, Anđelka; Frąk, Magdalena; Bańkowska-Sobczak, Agnieszka; Wasilewicz, Michał; Özkan, Korhan; Maliaka, Valentini; Kangro, Kersti; Grossart, Hans-Peter; Paerl, Hans W.; Carey, Cayelan C.; Ibelings, Bas W.

    2018-04-13

    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.

  18. Botulinum toxin for treatment of glandular hypersecretory disorders.

    LENUS (Irish Health Repository)

    Laing, T A

    2012-02-03

    SUMMARY: The use of botulinum toxin to treat disorders of the salivary glands is increasing in popularity in recent years. Recent reports of the use of botulinum toxin in glandular hypersecretion suggest overall favourable results with minimal side-effects. However, few randomised clinical trials means that data are limited with respect to candidate suitability, treatment dosages, frequency and duration of treatment. We report a selection of such cases from our own department managed with botulinum toxin and review the current data on use of the toxin to treat salivary gland disorders such as Frey\\'s syndrome, excessive salivation (sialorrhoea), focal and general hyperhidrosis, excessive lacrimation and chronic rhinitis.

  19. Gene therapy for carcinoma of the breast: Genetic toxins

    International Nuclear Information System (INIS)

    Vassaux, Georges; Lemoine, Nick R

    2000-01-01

    Gene therapy was initially envisaged as a potential treatment for genetically inherited, monogenic disorders. The applications of gene therapy have now become wider, however, and include cardiovascular diseases, vaccination and cancers in which conventional therapies have failed. With regard to oncology, various gene therapy approaches have been developed. Among them, the use of genetic toxins to kill cancer cells selectively is emerging. Two different types of genetic toxins have been developed so far: the metabolic toxins and the dominant-negative class of toxins. This review describes these two different approaches, and discusses their potential applications in cancer gene therapy

  20. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    Directory of Open Access Journals (Sweden)

    Evanthia Mantzouki

    2018-04-01

    Full Text Available Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins. Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a and cytotoxins (e.g., cylindrospermopsin due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.

  1. Dysport: pharmacological properties and factors that influence toxin action.

    Science.gov (United States)

    Pickett, Andy

    2009-10-01

    The pharmacological properties of Dysport that influence toxin action are reviewed and compared with other botulinum toxin products. In particular, the subject of diffusion is examined and discussed based upon the evidence that currently exists, both from laboratory studies and from clinical data. Diffusion of botulinum toxin products is not related to the size of the toxin complex in the product since the complex dissociates under physiological conditions, releasing the naked neurotoxin to act. The active neurotoxin in Type A products is the same and therefore diffusion is equal when equal doses are administered.

  2. A differentially displayed mRNA related to restistance to Bacillus thuringiensis israelensis of Aedes albopictus selected in vitro-activated CYT1AA6

    Czech Academy of Sciences Publication Activity Database

    Zhang, L.; Zhang, Q.; Huang, E.; Li, M.; Huang, T.; Xu, L.; Wu, Ch.; Guan, X.; Gelbič, Ivan

    2012-01-01

    Roč. 28, č. 4 (2012), s. 327-329 ISSN 8756-971X Institutional support: RVO:60077344 Keywords : Bacillus thuringiensis israelensis * resistence * Aedes albopictus Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.755, year: 2012 http://www.bioone.org/doi/pdf/10.2987/12-6263R.1

  3. Draft Genome Sequence of Bacillus thuringiensis Strain BrMgv02-JM63, a Chitinolytic Bacterium Isolated from Oil-Contaminated Mangrove Soil in Brazil.

    Science.gov (United States)

    Marcon, Joelma; Taketani, Rodrigo Gouvêa; Dini-Andreote, Francisco; Mazzero, Giulia Inocêncio; Soares, Fabio Lino; Melo, Itamar Soares; Azevedo, João Lúcio; Andreote, Fernando Dini

    2014-01-30

    Here, we report the draft genome sequence and the automatic annotation of Bacillus thuringiensis strain BrMgv02-JM63. This genome comprises a set of genes involved in the metabolism of chitin and N-acetylglucosamine utilization, thus suggesting the possible role of this strain in the cycling of organic matter in mangrove soils.

  4. Draft genome sequence of Bacillus thuringiensis strain BrMgv02-JM63, a chitinolytic bacterium isolated from oil-contaminated mangrove soil in Brazil

    NARCIS (Netherlands)

    Marcon, Joelma; Taketani, Rodrigo Gouvêa; Dini-Andreote, Francisco; Mazzero, Giulia Inocêncio; Soares Junior, Fabio Lino; Melo, Itamar Soares; Azevedo, João Lúcio; Andreote, Fernando Dini

    2014-01-01

    Here, we report the draft genome sequence and the automatic annotation of Bacillus thuringiensis strain BrMgv02-JM63. This genome comprises a set of genes involved in the metabolism of chitin and N-acetylglucosamine utilization, thus suggesting the possible role of this strain in the cycling of

  5. Combined effect of seaweed (Sargassum wightii) and Bacillus thuringiensis var. israelensis on the coastal mosquito,Anopheles sundaicus, in Tamil Nadu, India

    Science.gov (United States)

    Studies were made of the extract of Sargassum wightii combined with Bacillus thuringiensis var. israelensis (Bti) for control of the malaria vector Anopheles sundaicus. Treatment of mosquito larvae with 0.001% S. wightii extract indicated median lethal concentrations (LC50) of 88, 73, 134, 156, and...

  6. Evaluation of alternative Plutella xylostella control by two Isaria fumosorosea conidial formulations - oil-based formulation and wettable powder - combined with Bacillus thuringiensis.

    Science.gov (United States)

    Nian, Xiao-Ge; He, Yu-Rong; Lu, Li-Hua; Zhao, Rui

    2015-12-01

    Entomopathogenic fungi are potential candidates for controlling the diamondback moth Plutella xylostella (L.) (Lepidoptera: Plutellidae). The control efficacy of two Isaria fumosorosea conidial formulations - wettable powder and oil-based formulation - combined with Bacillus thuringiensis against P. xylostella was tested. In the laboratory, the combined application of two pathogens increased larval mortality either in an additive or a synergistic way. P. xylostella larvae treated with oil-based formulation died sooner than larvae infected with wettable powder. For pot and field experiments, each formulation was applied alone or combined with B. thuringiensis 668 µg mL(-1) , and then larval mortality, pupation rate, adult emergence rate, female longevity and fecundity were recorded. In pot experiments there was no evidence of any antagonistic effects between the two pathogens. Combined application of B. thuringiensis and a high concentration of the two I. fumosorosea formulations resulted in higher mortality (84.4 and 86.2%) with minimum pupation (15.6 and 11.9%) and adult emergence rates (8.7 and 7.0%). Female longevity and fecundity were significantly reduced by the two formulations at high concentration compared with the control. Similar results were also observed in field experiments. The combined application of I. fumosorosea and B. thuringiensis is a promising alternative strategy for P. xylostella control. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  7. Slow release formulations of Bacillus thuringiensis israelensis (AM 65-52 and spinosyns: effectiveness against the West Nile vector Culex pipiens in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Alaa Sulaiman Alsobhi

    2016-07-01

    Full Text Available Objective: To investigate the effectiveness of slow release formulations of Bacillus thuringiensis israelensis (AM 65-52 (B. thuringiensis israelensis and spinosyns against the West Nile vector Culex pipiens (Cx. pipiens in Saudi Arabia. Methods: We tested slow release insecticide formulations of Natular DT, Tap 60 and VectoBac granule against II instars of Cx. pipiens larvae in 50 L laboratory arenas. Results: Slow release formulations of B. thuringiensis israelensis and spinosyns gave continuous control against Cx. pipiens for several weeks. Natular DT was more effective over Tap 60 and VectoBac granule of about 1.3 and 5.8 times, respectively. Variations in the durations of effective control among the tested slow release formulations may reflect differences in their active ingredients and the mode of action. Conclusions: Our results highlighted the effectiveness of B. thuringiensis israelensis and spinosyns against an important West Nile vector, providing baseline data to develop ecofriendly mosquito control programs in Saudi Arabia.

  8. A synthetic cryIC gene, encoding a Bacillus thuringiensis δ-endotoxin, confers Spodoptera resistance in alfalfa and tobacco

    NARCIS (Netherlands)

    Strizhov, N.; Keller, M.; Mathur, J.; Koncz-Kaiman, Z.; Bosch, D.; Prudovksy, E.; Schell, J.; Sneh, B.; Koncz, C.; Zilberstein, A.

    1996-01-01

    Spodoptera species, representing widespread polyphagous insect pests, are resistant to Bacillus thuringiensis δ-endotoxins used thus far as insecticides in transgenic plants. Here we describe the chemical synthesis of a cryIC gene by a novel template directed ligation–PCR method. This simple and

  9. Field evaluation of the synergistic effects of neem oil with Beauveria bassiana (Hypocreales: Clavicipitaceae) and Bacillus thuringiensis var. kurstaki (Bacillales: Bacillaceae)

    NARCIS (Netherlands)

    Togbe, C.E.; Zannou, E.; Gbehounou, G.; Kossou, D.; Huis, van A.

    2014-01-01

    In the present study, the synergistic effects of Beauveria bassiana (Bals.-Criv. Vuill.) (isolate Bb11) and Bacillus thuringiensis var. kurstaki (Berliner) with neem oil were evaluated in three agroecological zones in Be´nin. Four bioinsecticide treatments (neem oil, neem oil and B. bassiana used

  10. 40 CFR 174.505 - Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of a tolerance. 174.505 Section 174.505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS...

  11. 40 CFR 174.501 - Bacillus thuringiensis Vip3Aa protein in corn and cotton; exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Vip3Aa protein in corn and cotton; exemption from the requirement of a tolerance. 174.501 Section 174.501 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS...

  12. 40 CFR 174.506 - Bacillus thuringiensis Cry34Ab1 and Cry35Ab1 proteins in corn; exemption from the requirement of...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry34Ab1 and Cry35Ab1 proteins in corn; exemption from the requirement of a tolerance. 174.506 Section 174.506 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS...

  13. 40 CFR 174.519 - Bacillus thuringiensis Cry2Ab2 protein in corn and cotton; exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry2Ab2 protein in corn and cotton; exemption from the requirement of a tolerance. 174.519 Section 174.519 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS...

  14. 40 CFR 174.518 - Bacillus thuringiensis Cry3Bb1 protein in corn; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry3Bb1 protein in corn; exemption from the requirement of a tolerance. 174.518 Section 174.518 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and...

  15. 40 CFR 174.510 - Bacillus thuringiensis Cry1Ac protein in all plants; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry1Ac protein in all plants; exemption from the requirement of a tolerance. 174.510 Section 174.510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances...

  16. 40 CFR 174.532 - Bacillus thuringiensis eCry3.1Ab protein in corn; temporary exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis eCry3.1Ab protein in corn; temporary exemption from the requirement of a tolerance. 174.532 Section 174.532 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS...

  17. 40 CFR 174.511 - Bacillus thuringiensis Cry1Ab protein in all plants; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry1Ab protein in all plants; exemption from the requirement of a tolerance. 174.511 Section 174.511 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances...

  18. Emergence of Escherichia coli encoding Shiga toxin 2f in human Shiga toxin-producing E-coli (STEC) infections in the Netherlands, January 2008 to December 2011

    NARCIS (Netherlands)

    Friesema, I.; van der Zwaluw, K.; Schuurman, T.; Kooistra-Smid, M.; Franz, E.; van Duynhoven, Y.; van Pelt, W.

    2014-01-01

    The Shiga toxins of Shiga toxin-producing Escherichia coli (STEC) can be divided into Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2) with several sub-variants. Variant Stx(2f) is one of the latest described, but has been rarely associated with symptomatic human infections. In the enhanced STEC

  19. Quorum Sensing in Bacillus thuringiensis Is Required for Completion of a Full Infectious Cycle in the Insect

    Directory of Open Access Journals (Sweden)

    Leyla Slamti

    2014-07-01

    Full Text Available Bacterial cell-cell communication or quorum sensing (QS is a biological process commonly described as allowing bacteria belonging to a same pherotype to coordinate gene expression to cell density. In Gram-positive bacteria, cell-cell communication mainly relies on cytoplasmic sensors regulated by secreted and re-imported signaling peptides. The Bacillus quorum sensors Rap, NprR, and PlcR were previously identified as the first members of a new protein family called RNPP. Except for the Rap proteins, these RNPP regulators are transcription factors that directly regulate gene expression. QS regulates important biological functions in bacteria of the Bacillus cereus group. PlcR was first characterized as the main regulator of virulence in B. thuringiensis and B. cereus. More recently, the PlcR-like regulator PlcRa was characterized for its role in cysteine metabolism and in resistance to oxidative stress. The NprR regulator controls the necrotrophic properties allowing the bacteria to survive in the infected host. The Rap proteins negatively affect sporulation via their interaction with a phosphorelay protein involved in the activation of Spo0A, the master regulator of this differentiation pathway. In this review we aim at providing a complete picture of the QS systems that are sequentially activated during the lifecycle of B. cereus and B. thuringiensis in an insect model of infection.

  20. Characterization of Bacillus thuringiensis Berl. indigenous from soil and its potency as biological agents of Spodoptera litura (Lepidoptera: Noctuidae)

    Science.gov (United States)

    Pujiastuti, Y.; Astuti, D. T.; Afriyani, S. R.; Suparman, S.; Irsan, C.; Sembiring, E. R.; Nugraha, S.; Mulawarman; Damiri, N.

    2018-01-01

    The objective of the study was to characterize the molecular weight of protein in order to be utilized as biological agent of S. litura and their cell or spores production. To investigate the molecular weight of protein was done by SDS-Page electrophoresis. Growth media used for producing B. thuringiensis were T3, LB broth and agricultural waste. The results showed that the molecular weight of protein ranged from 37 to 140 kDa. In DLM and DLKK23 isolates were found ranging from 37 to 40 kDa and from 110 to 130 kDa, respectively. KJ3R5 and KJ3P1 isolates were obtained having three protein bands ranging from 43 to 45, 73 to 80 and 110 to 130 kDa and 45-50, 75-80 and 130-140 kDa, respectively. It was predicted that isolates B. thuringiensis were belonging to Cry IA, Cry IIA, Cry IVC and Cry15c. These crystal proteins were toxic to S. litura. There was no protein bands found in the two last isolates (KJ3R3 and KJ3J4). Production of spore after sporulation in agricultural waste media ranged from 0.5 to 106 - 2.67 x 107 spores/ml showing medium level of toxicity to S. litura.