WorldWideScience

Sample records for throughput antibody generation

  1. High throughput production of mouse monoclonal antibodies using antigen microarrays

    DEFF Research Database (Denmark)

    De Masi, Federico; Chiarella, P.; Wilhelm, H.

    2005-01-01

    Recent advances in proteomics research underscore the increasing need for high-affinity monoclonal antibodies, which are still generated with lengthy, low-throughput antibody production techniques. Here we present a semi-automated, high-throughput method of hybridoma generation and identification....... Monoclonal antibodies were raised to different targets in single batch runs of 6-10 wk using multiplexed immunisations, automated fusion and cell-culture, and a novel antigen-coated microarray-screening assay. In a large-scale experiment, where eight mice were immunized with ten antigens each, we generated...

  2. A robust robotic high-throughput antibody purification platform.

    Science.gov (United States)

    Schmidt, Peter M; Abdo, Michael; Butcher, Rebecca E; Yap, Min-Yin; Scotney, Pierre D; Ramunno, Melanie L; Martin-Roussety, Genevieve; Owczarek, Catherine; Hardy, Matthew P; Chen, Chao-Guang; Fabri, Louis J

    2016-07-15

    Monoclonal antibodies (mAbs) have become the fastest growing segment in the drug market with annual sales of more than 40 billion US$ in 2013. The selection of lead candidate molecules involves the generation of large repertoires of antibodies from which to choose a final therapeutic candidate. Improvements in the ability to rapidly produce and purify many antibodies in sufficient quantities reduces the lead time for selection which ultimately impacts on the speed with which an antibody may transition through the research stage and into product development. Miniaturization and automation of chromatography using micro columns (RoboColumns(®) from Atoll GmbH) coupled to an automated liquid handling instrument (ALH; Freedom EVO(®) from Tecan) has been a successful approach to establish high throughput process development platforms. Recent advances in transient gene expression (TGE) using the high-titre Expi293F™ system have enabled recombinant mAb titres of greater than 500mg/L. These relatively high protein titres reduce the volume required to generate several milligrams of individual antibodies for initial biochemical and biological downstream assays, making TGE in the Expi293F™ system ideally suited to high throughput chromatography on an ALH. The present publication describes a novel platform for purifying Expi293F™-expressed recombinant mAbs directly from cell-free culture supernatant on a Perkin Elmer JANUS-VariSpan ALH equipped with a plate shuttle device. The purification platform allows automated 2-step purification (Protein A-desalting/size exclusion chromatography) of several hundred mAbs per week. The new robotic method can purify mAbs with high recovery (>90%) at sub-milligram level with yields of up to 2mg from 4mL of cell-free culture supernatant. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Identification of antigen-specific human monoclonal antibodies using high-throughput sequencing of the antibody repertoire.

    Science.gov (United States)

    Liu, Ju; Li, Ruihua; Liu, Kun; Li, Liangliang; Zai, Xiaodong; Chi, Xiangyang; Fu, Ling; Xu, Junjie; Chen, Wei

    2016-04-22

    High-throughput sequencing of the antibody repertoire provides a large number of antibody variable region sequences that can be used to generate human monoclonal antibodies. However, current screening methods for identifying antigen-specific antibodies are inefficient. In the present study, we developed an antibody clone screening strategy based on clone dynamics and relative frequency, and used it to identify antigen-specific human monoclonal antibodies. Enzyme-linked immunosorbent assay showed that at least 52% of putative positive immunoglobulin heavy chains composed antigen-specific antibodies. Combining information on dynamics and relative frequency improved identification of positive clones and elimination of negative clones. and increase the credibility of putative positive clones. Therefore the screening strategy could simplify the subsequent experimental screening and may facilitate the generation of antigen-specific antibodies. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. High-Throughput Tools for Characterization of Antibody Epitopes

    DEFF Research Database (Denmark)

    Christiansen, Anders

    mapping. In Chapter 1, it was examined whether combining phage display, a traditional epitope mapping approach, with HTS would improve the method. The developed approach was successfully used to map Ara h 1 epitopes in sera from patients with peanut allergy. Notably, the sera represented difficult...... proliferation advantages. Finally, in Chapter 4, a different emerging technology, next-generation peptide microarrays, was applied for epitope mapping of major peanut allergens using sera from allergic patients. New developments in the peptide microarray have enabled a greatly increased throughput....... In this study, these improvements were utilized to characterize epitopes at high resolution, i.e. determine the importance of each residue for antibody binding, for all major peanut allergens. Epitope reactivity among patients often converged on known epitope hotspots, however the binding patterns were somewhat...

  5. A High-Throughput Antibody-Based Microarray Typing Platform

    Directory of Open Access Journals (Sweden)

    Ashan Perera

    2013-05-01

    Full Text Available Many rapid methods have been developed for screening foods for the presence of pathogenic microorganisms. Rapid methods that have the additional ability to identify microorganisms via multiplexed immunological recognition have the potential for classification or typing of microbial contaminants thus facilitating epidemiological investigations that aim to identify outbreaks and trace back the contamination to its source. This manuscript introduces a novel, high throughput typing platform that employs microarrayed multiwell plate substrates and laser-induced fluorescence of the nucleic acid intercalating dye/stain SYBR Gold for detection of antibody-captured bacteria. The aim of this study was to use this platform for comparison of different sets of antibodies raised against the same pathogens as well as demonstrate its potential effectiveness for serotyping. To that end, two sets of antibodies raised against each of the “Big Six” non-O157 Shiga toxin-producing E. coli (STEC as well as E. coli O157:H7 were array-printed into microtiter plates, and serial dilutions of the bacteria were added and subsequently detected. Though antibody specificity was not sufficient for the development of an STEC serotyping method, the STEC antibody sets performed reasonably well exhibiting that specificity increased at lower capture antibody concentrations or, conversely, at lower bacterial target concentrations. The favorable results indicated that with sufficiently selective and ideally concentrated sets of biorecognition elements (e.g., antibodies or aptamers, this high-throughput platform can be used to rapidly type microbial isolates derived from food samples within ca. 80 min of total assay time. It can also potentially be used to detect the pathogens from food enrichments and at least serve as a platform for testing antibodies.

  6. Comprehensive evaluation and optimization of amplicon library preparation methods for high-throughput antibody sequencing.

    Science.gov (United States)

    Menzel, Ulrike; Greiff, Victor; Khan, Tarik A; Haessler, Ulrike; Hellmann, Ina; Friedensohn, Simon; Cook, Skylar C; Pogson, Mark; Reddy, Sai T

    2014-01-01

    High-throughput sequencing (HTS) of antibody repertoire libraries has become a powerful tool in the field of systems immunology. However, numerous sources of bias in HTS workflows may affect the obtained antibody repertoire data. A crucial step in antibody library preparation is the addition of short platform-specific nucleotide adapter sequences. As of yet, the impact of the method of adapter addition on experimental library preparation and the resulting antibody repertoire HTS datasets has not been thoroughly investigated. Therefore, we compared three standard library preparation methods by performing Illumina HTS on antibody variable heavy genes from murine antibody-secreting cells. Clonal overlap and rank statistics demonstrated that the investigated methods produced equivalent HTS datasets. PCR-based methods were experimentally superior to ligation with respect to speed, efficiency, and practicality. Finally, using a two-step PCR based method we established a protocol for antibody repertoire library generation, beginning from inputs as low as 1 ng of total RNA. In summary, this study represents a major advance towards a standardized experimental framework for antibody HTS, thus opening up the potential for systems-based, cross-experiment meta-analyses of antibody repertoires.

  7. Next Generation Antibody Therapeutics Using Bispecific Antibody Technology.

    Science.gov (United States)

    Igawa, Tomoyuki

    2017-01-01

    Nearly fifty monoclonal antibodies have been approved to date, and the market for monoclonal antibodies is expected to continue to grow. Since global competition in the field of antibody therapeutics is intense, we need to establish novel antibody engineering technologies to provide true benefit for patients, with differentiated product values. Bispecific antibodies are among the next generation of antibody therapeutics that can bind to two different target antigens by the two arms of immunoglobulin G (IgG) molecule, and are thus believed to be applicable to various therapeutic needs. Until recently, large scale manufacturing of human IgG bispecific antibody was impossible. We have established a technology, named asymmetric re-engineering technology (ART)-Ig, to enable large scale manufacturing of bispecific antibodies. Three examples of next generation antibody therapeutics using ART-Ig technology are described. Recent updates on bispecific antibodies against factor IXa and factor X for the treatment of hemophilia A, bispecific antibodies against a tumor specific antigen and T cell surface marker CD3 for cancer immunotherapy, and bispecific antibodies against two different epitopes of soluble antigen with pH-dependent binding property for the elimination of soluble antigen from plasma are also described.

  8. High-throughput antibody development and retrospective epitope mapping

    DEFF Research Database (Denmark)

    Rydahl, Maja Gro

    the binding profile - in more or less high resolution - of two small molecular probes, 11 carbohydrate binding modules and 24 monoclonal antibodies. This was made possible by combining the HTP multiplexing capacity of carbohydrate microarrays with diverse glycomic tools, to downstream characterize...

  9. Large-scale DNA Barcode Library Generation for Biomolecule Identification in High-throughput Screens.

    Science.gov (United States)

    Lyons, Eli; Sheridan, Paul; Tremmel, Georg; Miyano, Satoru; Sugano, Sumio

    2017-10-24

    High-throughput screens allow for the identification of specific biomolecules with characteristics of interest. In barcoded screens, DNA barcodes are linked to target biomolecules in a manner allowing for the target molecules making up a library to be identified by sequencing the DNA barcodes using Next Generation Sequencing. To be useful in experimental settings, the DNA barcodes in a library must satisfy certain constraints related to GC content, homopolymer length, Hamming distance, and blacklisted subsequences. Here we report a novel framework to quickly generate large-scale libraries of DNA barcodes for use in high-throughput screens. We show that our framework dramatically reduces the computation time required to generate large-scale DNA barcode libraries, compared with a naїve approach to DNA barcode library generation. As a proof of concept, we demonstrate that our framework is able to generate a library consisting of one million DNA barcodes for use in a fragment antibody phage display screening experiment. We also report generating a general purpose one billion DNA barcode library, the largest such library yet reported in literature. Our results demonstrate the value of our novel large-scale DNA barcode library generation framework for use in high-throughput screening applications.

  10. A nanofluidic bioarray chip for fast and high-throughput detection of antibodies in biological fluids

    Science.gov (United States)

    Lee, Jonathan; Gulzar, Naveed; Scott, Jamie K.; Li, Paul C. H.

    2012-10-01

    Immunoassays have become a standard in secretome analysis in clinical and research analysis. In this field there is a need for a high throughput method that uses low sample volumes. Microfluidics and nanofluidics have been developed for this purpose. Our lab has developed a nanofluidic bioarray (NBA) chip with the goal being a high throughput system that assays low sample volumes against multiple probes. A combination of horizontal and vertical channels are produced to create an array antigens on the surface of the NBA chip in one dimension that is probed by flowing in the other dimension antibodies from biological fluids. We have tested the NBA chip by immobilizing streptavidin and then biotinylated peptide to detect the presence of a mouse monoclonal antibody (MAb) that is specific for the peptide. Bound antibody is detected by an AlexaFluor 647 labeled goat (anti-mouse IgG) polyclonal antibody. Using the NBA chip, we have successfully detected peptide binding by small-volume (0.5 μl) samples containing 50 attomoles (100 pM) MAb.

  11. Generation and analyses of human synthetic antibody libraries and their application for protein microarrays.

    Science.gov (United States)

    Säll, Anna; Walle, Maria; Wingren, Christer; Müller, Susanne; Nyman, Tomas; Vala, Andrea; Ohlin, Mats; Borrebaeck, Carl A K; Persson, Helena

    2016-10-01

    Antibody-based proteomics offers distinct advantages in the analysis of complex samples for discovery and validation of biomarkers associated with disease. However, its large-scale implementation requires tools and technologies that allow development of suitable antibody or antibody fragments in a high-throughput manner. To address this we designed and constructed two human synthetic antibody fragment (scFv) libraries denoted HelL-11 and HelL-13. By the use of phage display technology, in total 466 unique scFv antibodies specific for 114 different antigens were generated. The specificities of these antibodies were analyzed in a variety of immunochemical assays and a subset was further evaluated for functionality in protein microarray applications. This high-throughput approach demonstrates the ability to rapidly generate a wealth of reagents not only for proteome research, but potentially also for diagnostics and therapeutics. In addition, this work provides a great example on how a synthetic approach can be used to optimize library designs. By having precise control of the diversity introduced into the antigen-binding sites, synthetic libraries offer increased understanding of how different diversity contributes to antibody binding reactivity and stability, thereby providing the key to future library optimization. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. High-Throughput Next-Generation Sequencing of Polioviruses

    Science.gov (United States)

    Montmayeur, Anna M.; Schmidt, Alexander; Zhao, Kun; Magaña, Laura; Iber, Jane; Castro, Christina J.; Chen, Qi; Henderson, Elizabeth; Ramos, Edward; Shaw, Jing; Tatusov, Roman L.; Dybdahl-Sissoko, Naomi; Endegue-Zanga, Marie Claire; Adeniji, Johnson A.; Oberste, M. Steven; Burns, Cara C.

    2016-01-01

    ABSTRACT The poliovirus (PV) is currently targeted for worldwide eradication and containment. Sanger-based sequencing of the viral protein 1 (VP1) capsid region is currently the standard method for PV surveillance. However, the whole-genome sequence is sometimes needed for higher resolution global surveillance. In this study, we optimized whole-genome sequencing protocols for poliovirus isolates and FTA cards using next-generation sequencing (NGS), aiming for high sequence coverage, efficiency, and throughput. We found that DNase treatment of poliovirus RNA followed by random reverse transcription (RT), amplification, and the use of the Nextera XT DNA library preparation kit produced significantly better results than other preparations. The average viral reads per total reads, a measurement of efficiency, was as high as 84.2% ± 15.6%. PV genomes covering >99 to 100% of the reference length were obtained and validated with Sanger sequencing. A total of 52 PV genomes were generated, multiplexing as many as 64 samples in a single Illumina MiSeq run. This high-throughput, sequence-independent NGS approach facilitated the detection of a diverse range of PVs, especially for those in vaccine-derived polioviruses (VDPV), circulating VDPV, or immunodeficiency-related VDPV. In contrast to results from previous studies on other viruses, our results showed that filtration and nuclease treatment did not discernibly increase the sequencing efficiency of PV isolates. However, DNase treatment after nucleic acid extraction to remove host DNA significantly improved the sequencing results. This NGS method has been successfully implemented to generate PV genomes for molecular epidemiology of the most recent PV isolates. Additionally, the ability to obtain full PV genomes from FTA cards will aid in facilitating global poliovirus surveillance. PMID:27927929

  13. Generation and analyses of human synthetic antibody libraries and their application for protein microarrays

    DEFF Research Database (Denmark)

    Säll, Anna; Walle, Maria; Wingren, Christer

    2016-01-01

    in a high-throughput manner. To address this we designed and constructed two human synthetic antibody fragment (scFv) libraries denoted HelL-11 and HelL-13. By the use of phage display technology, in total 466 unique scFv antibodies specific for 114 different antigens were generated. The specificities......Antibody-based proteomics offers distinct advantages in the analysis of complex samples for discovery and validation of biomarkers associated with disease. However, its large-scale implementation requires tools and technologies that allow development of suitable antibody or antibody fragments...... for diagnostics and therapeutics. In addition, this work provides a great example on how a synthetic approach can be used to optimize library designs. By having precise control of the diversity introduced into the antigen-binding sites, synthetic libraries offer increased understanding of how different diversity...

  14. Next generation platforms for high-throughput bio-dosimetry

    International Nuclear Information System (INIS)

    Repin, Mikhail; Turner, Helen C.; Garty, Guy; Brenner, David J.

    2014-01-01

    Here the general concept of the combined use of plates and tubes in racks compatible with the American National Standards Institute/the Society for Laboratory Automation and Screening microplate formats as the next generation platforms for increasing the throughput of bio-dosimetry assays was described. These platforms can be used at different stages of bio-dosimetry assays starting from blood collection into micro-tubes organised in standardised racks and ending with the cytogenetic analysis of samples in standardised multi-well and multichannel plates. Robotically friendly platforms can be used for different bio-dosimetry assays in minimally equipped laboratories and on cost-effective automated universal biotech systems. (authors)

  15. Ribosome display: next-generation display technologies for production of antibodies in vitro.

    Science.gov (United States)

    He, Mingyue; Khan, Farid

    2005-06-01

    Antibodies represent an important and growing class of biologic research reagents and biopharmaceutical products. They can be used as therapeutics in a variety of diseases. With the rapid expansion of proteomic studies and biomarker discovery, there is a need for the generation of highly specific binding reagents to study the vast number of proteins encoded by the genome. Display technologies provide powerful tools for obtaining antibodies. Aside from the preservation of natural antibody repertoires, they are capable of exploiting diversity by DNA recombination to create very large libraries for selection of novel molecules. In contrast to in vivo immunization processes, display technologies allow selection of antibodies under in vitro-defined selection condition(s), resulting in enrichment of antibodies with desired properties from large populations. In addition, in vitro selection enables the isolation of antibodies against difficult antigens including self-antigens, and this can be applied to the generation of human antibodies against human targets. Display technologies can also be combined with DNA mutagenesis for antibody evolution in vitro. Some methods are amenable to automation, permitting high-throughput generation of antibodies. Ribosome display is considered as representative of the next generation of display technologies since it overcomes the limitations of cell-based display methods by using a cell-free system, offering advantages of screening larger libraries and continuously expanding new diversity during selection. Production of display-derived antibodies can be achieved by choosing one of a variety of prokaryotic and eukaryotic cell-based expression systems. In the near future, cell-free protein synthesis may be developed as an alternative for large-scale generation of antibodies.

  16. Simultaneous measurements of auto-immune and infectious disease specific antibodies using a high throughput multiplexing tool.

    Directory of Open Access Journals (Sweden)

    Atul Asati

    Full Text Available Considering importance of ganglioside antibodies as biomarkers in various immune-mediated neuropathies and neurological disorders, we developed a high throughput multiplexing tool for the assessment of gangliosides-specific antibodies based on Biolpex/Luminex platform. In this report, we demonstrate that the ganglioside high throughput multiplexing tool is robust, highly specific and demonstrating ∼100-fold higher concentration sensitivity for IgG detection than ELISA. In addition to the ganglioside-coated array, the high throughput multiplexing tool contains beads coated with influenza hemagglutinins derived from H1N1 A/Brisbane/59/07 and H1N1 A/California/07/09 strains. Influenza beads provided an added advantage of simultaneous detection of ganglioside- and influenza-specific antibodies, a capacity important for the assay of both infectious antigen-specific and autoimmune antibodies following vaccination or disease. Taken together, these results support the potential adoption of the ganglioside high throughput multiplexing tool for measuring ganglioside antibodies in various neuropathic and neurological disorders.

  17. Origin, diversity and maturation of human antiviral antibodies analyzed by high-throughput sequencing

    Directory of Open Access Journals (Sweden)

    Ponraj ePrabakaran

    2012-08-01

    Full Text Available Our understanding of how antibodies are generated and function could help develop effective vaccines and antibody-based therapeutics against viruses such as HIV-1, SARS Coronavirus (CoV, and Hendra and Nipah viruses (henipaviruses. Although broadly neutralizing antibodies (bnAbs against the HIV-1 were observed in patients, elicitation of such bnAbs remains a major challenge when compared to other viral targets. We previously hypothesized that HIV-1 could have evolved a strategy to evade the immune system due to absent or very weak binding of germline antibodies to the conserved epitopes that may not be sufficient to initiate and/or maintain an effective immune response. To further explore our hypothesis, we used the 454 sequence analysis of a large naïve library of human IgM antibodies which had been used for selecting antibodies against SARS Coronavirus (CoV receptor-binding domain (RBD, and soluble G proteins (sG of Hendra and Nipah viruses (henipaviruses. We found that the human IgM repertoires from the 454 sequencing have diverse germline usages, recombination patterns, junction diversity and a lower extent of somatic mutation. In this study, we identified germline intermediates of antibodies specific to HIV-1 and other viruses as observed in normal individuals, and compared their genetic diversity and somatic mutation level along with available structural and functional data. Further computational analysis will provide framework for understanding the underlying genetic and molecular determinants related to maturation pathways of antiviral bnAbs that could be useful for applying novel approaches to the design of effective vaccine immunogens and antibody-based therapeutics.

  18. Generation and Characterization of Protective Antibodies to Marburg Virus

    Science.gov (United States)

    2017-04-03

    generation of recombinant antibodies for the specific detection of Aspergillus fumigatus. PLoS One, 2009. 4(8): p. e6625. 25. Hust, M., et al., A human...scFv antibody generation pipeline for proteome research. J Biotechnol, 2011. 152(4): p. 159-70. 26. Sambrook J and R. D., Molecular cloning: a

  19. A high-throughput shotgun mutagenesis approach to mapping B-cell antibody epitopes.

    Science.gov (United States)

    Davidson, Edgar; Doranz, Benjamin J

    2014-09-01

    Characterizing the binding sites of monoclonal antibodies (mAbs) on protein targets, their 'epitopes', can aid in the discovery and development of new therapeutics, diagnostics and vaccines. However, the speed of epitope mapping techniques has not kept pace with the increasingly large numbers of mAbs being isolated. Obtaining detailed epitope maps for functionally relevant antibodies can be challenging, particularly for conformational epitopes on structurally complex proteins. To enable rapid epitope mapping, we developed a high-throughput strategy, shotgun mutagenesis, that enables the identification of both linear and conformational epitopes in a fraction of the time required by conventional approaches. Shotgun mutagenesis epitope mapping is based on large-scale mutagenesis and rapid cellular testing of natively folded proteins. Hundreds of mutant plasmids are individually cloned, arrayed in 384-well microplates, expressed within human cells, and tested for mAb reactivity. Residues are identified as a component of a mAb epitope if their mutation (e.g. to alanine) does not support candidate mAb binding but does support that of other conformational mAbs or allows full protein function. Shotgun mutagenesis is particularly suited for studying structurally complex proteins because targets are expressed in their native form directly within human cells. Shotgun mutagenesis has been used to delineate hundreds of epitopes on a variety of proteins, including G protein-coupled receptor and viral envelope proteins. The epitopes mapped on dengue virus prM/E represent one of the largest collections of epitope information for any viral protein, and results are being used to design better vaccines and drugs. © 2014 John Wiley & Sons Ltd.

  20. Generation of HER2 monoclonal antibodies using epitopes of a rabbit polyclonal antibody.

    Science.gov (United States)

    Hu, Francis Jingxin; Uhlen, Mathias; Rockberg, Johan

    2014-01-25

    One of the issues in using polyclonal antibodies is the limited amount of reagent available from an immunisation, leading to batch-to-batch variation and difficulties in obtaining the same antibody performance when the same antigen is re-immunised into several separate animals. This led to the development of hybridoma technology allowing, at least theoretically, for an unlimited production of a specific binder. Nevertheless, polyclonal antibodies are widely used in research and diagnostics and there exists a need for robust methods to convert a polyclonal antibody with good binding performance into a renewable monoclonal with identical or similar binding specificity. Here we have used precise information regarding the functional recognition sequence (epitope) of a rabbit polyclonal antibody with attractive binding characteristics as the basis for generation of a renewable mouse monoclonal antibody. First, the original protein fragment antigen was used for immunisation and generation of mouse hybridoma, without obtaining binders to the same epitope region. Instead a peptide designed using the functional epitope and structural information was synthesised and used for hybridoma production. Several of the monoclonal antibodies generated were found to have similar binding characteristics to those of the original polyclonal antibody. These monoclonal antibodies detected native HER2 on cell lines and were also able to stain HER2 in immunohistochemistry using xenografted mice, as well as human normal and cancer tissues. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. High-throughput sequencing of natively paired antibody chains provides evidence for original antigenic sin shaping the antibody response to influenza vaccination.

    Science.gov (United States)

    Tan, Yann-Chong; Blum, Lisa K; Kongpachith, Sarah; Ju, Chia-Hsin; Cai, Xiaoyong; Lindstrom, Tamsin M; Sokolove, Jeremy; Robinson, William H

    2014-03-01

    We developed a DNA barcoding method to enable high-throughput sequencing of the cognate heavy- and light-chain pairs of the antibodies expressed by individual B cells. We used this approach to elucidate the plasmablast antibody response to influenza vaccination. We show that >75% of the rationally selected plasmablast antibodies bind and neutralize influenza, and that antibodies from clonal families, defined by sharing both heavy-chain VJ and light-chain VJ sequence usage, do so most effectively. Vaccine-induced heavy-chain VJ regions contained on average >20 nucleotide mutations as compared to their predicted germline gene sequences, and some vaccine-induced antibodies exhibited higher binding affinities for hemagglutinins derived from prior years' seasonal influenza as compared to their affinities for the immunization strains. Our results show that influenza vaccination induces the recall of memory B cells that express antibodies that previously underwent affinity maturation against prior years' seasonal influenza, suggesting that 'original antigenic sin' shapes the antibody response to influenza vaccination. Published by Elsevier Inc.

  2. High throughput screening for antibody induced complement-dependent cytotoxicity in early antibody discovery using homogeneous macroconfocal fluorescence imaging

    NARCIS (Netherlands)

    Gerritsen, Arnout F.; Bosch, Martijn; de Weers, Michel; van de Winkel, Jan G. J.; Parren, Paul W. H. I.

    2010-01-01

    Complement-dependent cytotoxicity (CDC) represents an important Fc-mediated effector function of antibodies and is a quality often sought in candidates for therapeutic antibody development in cancer. Antibodies inducing potent CDC are relatively rare as the ability to induce CDC is strongly

  3. Generation of monoclonal antibodies against highly conserved antigens.

    Directory of Open Access Journals (Sweden)

    Hongzhe Zhou

    Full Text Available BACKGROUND: Therapeutic antibody development is one of the fastest growing areas of the pharmaceutical industry. Generating high-quality monoclonal antibodies against a given therapeutic target is very crucial for the success of the drug development. However, due to immune tolerance, some proteins that are highly conserved between mice and humans are not very immunogenic in mice, making it difficult to generate antibodies using a conventional approach. METHODOLOGY/PRINCIPAL FINDINGS: In this report, the impaired immune tolerance of NZB/W mice was exploited to generate monoclonal antibodies against highly conserved or self-antigens. Using two highly conserved human antigens (MIF and HMGB1 and one mouse self-antigen (TNF-alpha as examples, we demonstrate here that multiple clones of high affinity, highly specific antibodies with desired biological activities can be generated, using the NZB/W mouse as the immunization host and a T cell-specific tag fused to a recombinant antigen to stimulate the immune system. CONCLUSIONS/SIGNIFICANCE: We developed an efficient and universal method for generating surrogate or therapeutic antibodies against "difficult antigens" to facilitate the development of therapeutic antibodies.

  4. Next-Generation Sequencing of Antibody Display Repertoires

    Directory of Open Access Journals (Sweden)

    Romain Rouet

    2018-02-01

    Full Text Available In vitro selection technology has transformed the development of therapeutic monoclonal antibodies. Using methods such as phage, ribosome, and yeast display, high affinity binders can be selected from diverse repertoires. Here, we review strategies for the next-generation sequencing (NGS of phage- and other antibody-display libraries, as well as NGS platforms and analysis tools. Moreover, we discuss recent examples relating to the use of NGS to assess library diversity, clonal enrichment, and affinity maturation.

  5. Efficient generation of monoclonal antibodies from single rhesus macaque antibody secreting cells.

    Science.gov (United States)

    Meng, Weixu; Li, Leike; Xiong, Wei; Fan, Xuejun; Deng, Hui; Bett, Andrew J; Chen, Zhifeng; Tang, Aimin; Cox, Kara S; Joyce, Joseph G; Freed, Daniel C; Thoryk, Elizabeth; Fu, Tong-Ming; Casimiro, Danilo R; Zhang, Ningyan; A Vora, Kalpit; An, Zhiqiang

    2015-01-01

    Nonhuman primates (NHPs) are used as a preclinical model for vaccine development, and the antibody profiles to experimental vaccines in NHPs can provide critical information for both vaccine design and translation to clinical efficacy. However, an efficient protocol for generating monoclonal antibodies from single antibody secreting cells of NHPs is currently lacking. In this study we established a robust protocol for cloning immunoglobulin (IG) variable domain genes from single rhesus macaque (Macaca mulatta) antibody secreting cells. A sorting strategy was developed using a panel of molecular markers (CD3, CD19, CD20, surface IgG, intracellular IgG, CD27, Ki67 and CD38) to identify the kinetics of B cell response after vaccination. Specific primers for the rhesus macaque IG genes were designed and validated using cDNA isolated from macaque peripheral blood mononuclear cells. Cloning efficiency was averaged at 90% for variable heavy (VH) and light (VL) domains, and 78.5% of the clones (n = 335) were matched VH and VL pairs. Sequence analysis revealed that diverse IGHV subgroups (for VH) and IGKV and IGLV subgroups (for VL) were represented in the cloned antibodies. The protocol was tested in a study using an experimental dengue vaccine candidate. About 26.6% of the monoclonal antibodies cloned from the vaccinated rhesus macaques react with the dengue vaccine antigens. These results validate the protocol for cloning monoclonal antibodies in response to vaccination from single macaque antibody secreting cells, which have general applicability for determining monoclonal antibody profiles in response to other immunogens or vaccine studies of interest in NHPs.

  6. Generation of a Monoclonal Antibody against Mycoplasma spp. following Accidental Contamination during Production of a Monoclonal Antibody against Lawsonia intracellularis

    OpenAIRE

    Hwang, Jeong-Min; Lee, Ji-Hye; Yeh, Jung-Yong

    2012-01-01

    This report describes Mycoplasma contamination of Lawsonia intracellularis cultures that led to the unintended acquisition of a monoclonal antibody against Mycoplasma spp. during the attempted generation of a monoclonal antibody against L. intracellularis.

  7. High-throughput oxidation screen of antibody-drug conjugates by analytical protein A chromatography following IdeS digest.

    Science.gov (United States)

    Buecheler, Jakob W; Winzer, Matthias; Weber, Christian; Gieseler, Henning

    2018-05-01

    Oxidation of protein therapeutics is a major chemical degradation pathway which may impact bioactivity, serum half-life and stability. Therefore, oxidation is a relevant parameter which has to be monitored throughout formulation development. Methods such as HIC, RPLC and LC/MS achieve a separation of oxidized and non-oxidized species by differences in hydrophobicity. Antibody-drug conjugates (ADC) although are highly more complex due to the heterogeneity in linker, drug, drug-to-antibody ratio (DAR) and conjugation site. The analytical protein A chromatography can provide a simple and fast alternative to these common methods. A miniature analytical protein A chromatography method in combination with an IdeS digest was developed to analyse ADCs. The IdeS digest efficiency of an IgG1 was monitored using SEC-HPLC and non-reducing SDS-PAGE. An antibody-fluorescent dye conjugate was conjugated at different dye-to-antibody ratios as model construct to mimic an ADC. With IdeS, an almost complete digest of a model IgG1 can be achieved (digested protein amount >98%). This enables subsequent analytical protein A chromatography, which consequently eliminates any interference of payload with the stationary phase. A novel high-throughput method for an interchain cysteine-linked ADC oxidation screens during formulation development was developed. © 2018 Royal Pharmaceutical Society.

  8. Molecular mechanism for generation of antibody memory.

    Science.gov (United States)

    Shivarov, Velizar; Shinkura, Reiko; Doi, Tomomitsu; Begum, Nasim A; Nagaoka, Hitoshi; Okazaki, Il-Mi; Ito, Satomi; Nonaka, Taichiro; Kinoshita, Kazuo; Honjo, Tasuku

    2009-03-12

    Activation-induced cytidine deaminase (AID) is the essential enzyme inducing the DNA cleavage required for both somatic hypermutation and class switch recombination (CSR) of the immunoglobulin gene. We originally proposed the RNA-editing model for the mechanism of DNA cleavage by AID. We obtained evidence that fulfils three requirements for CSR by this model, namely (i) AID shuttling between nucleus and cytoplasm, (ii) de novo protein synthesis for CSR, and (iii) AID-RNA complex formation. The alternative hypothesis, designated as the DNA-deamination model, assumes that the in vitro DNA deamination activity of AID is representative of its physiological function in vivo. Furthermore, the resulting dU was removed by uracil DNA glycosylase (UNG) to generate a basic site, followed by phosphodiester bond cleavage by AP endonuclease. We critically examined each of these provisional steps. We identified a cluster of mutants (H48A, L49A, R50A and N51A) that had particularly higher CSR activities than expected from their DNA deamination activities. The most striking was the N51A mutant that had no ability to deaminate DNA in vitro but retained approximately 50 per cent of the wild-type level of CSR activity. We also provide further evidence that UNG plays a non-canonical role in CSR, namely in the repair step of the DNA breaks. Taking these results together, we favour the RNA-editing model for the function of AID in CSR.

  9. Generation and characterization of a monoclonal antibody to ...

    African Journals Online (AJOL)

    Penicillic acid is one of the main mycotoxins in moldy feedstuff and has toxic effect on livestock and poultry and probably humans due to food chain transmission. The objective of this study was to generate and characterize a monoclonal antibody to penicillic acid for the efficient detection of penicillic acid from Penicillium ...

  10. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo

    NARCIS (Netherlands)

    Moreira Teixeira, Liliana; Leijten, Jeroen Christianus Hermanus; Sobral, J.; Jin, R.; van Apeldoorn, Aart A.; Feijen, Jan; van Blitterswijk, Clemens; Dijkstra, Pieter J.; Karperien, Hermanus Bernardus Johannes

    2012-01-01

    Cell-based cartilage repair strategies such as matrix-induced autologous chondrocyte implantation (MACI) could be improved by enhancing cell performance. We hypothesised that micro-aggregates of chondrocytes generated in high-throughput prior to implantation in a defect could stimulate cartilaginous

  11. High-Throughput Testing of Antibody-Dependent Binding Inhibition of Placental Malaria Parasites

    DEFF Research Database (Denmark)

    Nielsen, Morten A; Salanti, Ali

    2015-01-01

    The particular virulence of Plasmodium falciparum manifests in diverse severe malaria syndromes as cerebral malaria, severe anemia and placental malaria. The cause of both the severity and the diversity of infection outcome, is the ability of the infected erythrocyte (IE) to bind a range......-throughput assay used in the preclinical and clinical development of a VAR2CSA based vaccine against placental malaria....

  12. High-throughput pseudovirion-based neutralization assay for analysis of natural and vaccine-induced antibodies against human papillomaviruses.

    Directory of Open Access Journals (Sweden)

    Peter Sehr

    Full Text Available A highly sensitive, automated, purely add-on, high-throughput pseudovirion-based neutralization assay (HT-PBNA with excellent repeatability and run-to-run reproducibility was developed for human papillomavirus types (HPV 16, 18, 31, 45, 52, 58 and bovine papillomavirus type 1. Preparation of 384 well assay plates with serially diluted sera and the actual cell-based assay are separated in time, therefore batches of up to one hundred assay plates can be processed sequentially. A mean coefficient of variation (CV of 13% was obtained for anti-HPV 16 and HPV 18 titers for a standard serum tested in a total of 58 repeats on individual plates in seven independent runs. Natural antibody response was analyzed in 35 sera from patients with HPV 16 DNA positive cervical intraepithelial neoplasia grade 2+ lesions. The new HT-PBNA is based on Gaussia luciferase with increased sensitivity compared to the previously described manual PBNA (manPBNA based on secreted alkaline phosphatase as reporter. Titers obtained with HT-PBNA were generally higher than titers obtained with the manPBNA. A good linear correlation (R(2 = 0.7 was found between HT-PBNA titers and anti-HPV 16 L1 antibody-levels determined by a Luminex bead-based GST-capture assay for these 35 sera and a Kappa-value of 0.72, with only 3 discordant sera in the low titer range. In addition to natural low titer antibody responses the high sensitivity of the HT-PBNA also allows detection of cross-neutralizing antibodies induced by commercial HPV L1-vaccines and experimental L2-vaccines. When analyzing the WHO international standards for HPV 16 and 18 we determined an analytical sensitivity of 0.864 and 1.105 mIU, respectively.

  13. High Throughput Line-of-Sight MIMO Systems for Next Generation Backhaul Applications

    Science.gov (United States)

    Song, Xiaohang; Cvetkovski, Darko; Hälsig, Tim; Rave, Wolfgang; Fettweis, Gerhard; Grass, Eckhard; Lankl, Berthold

    2017-09-01

    The evolution to ultra-dense next generation networks requires a massive increase in throughput and deployment flexibility. Therefore, novel wireless backhaul solutions that can support these demands are needed. In this work we present an approach for a millimeter wave line-of-sight MIMO backhaul design, targeting transmission rates in the order of 100 Gbit/s. We provide theoretical foundations for the concept showcasing its potential, which are confirmed through channel measurements. Furthermore, we provide insights into the system design with respect to antenna array setup, baseband processing, synchronization, and channel equalization. Implementation in a 60 GHz demonstrator setup proves the feasibility of the system concept for high throughput backhauling in next generation networks.

  14. Life in the fast lane: high-throughput chemistry for lead generation and optimisation.

    Science.gov (United States)

    Hunter, D

    2001-01-01

    The pharmaceutical industry has come under increasing pressure due to regulatory restrictions on the marketing and pricing of drugs, competition, and the escalating costs of developing new drugs. These forces can be addressed by the identification of novel targets, reductions in the development time of new drugs, and increased productivity. Emphasis has been placed on identifying and validating new targets and on lead generation: the response from industry has been very evident in genomics and high throughput screening, where new technologies have been applied, usually coupled with a high degree of automation. The combination of numerous new potential biological targets and the ability to screen large numbers of compounds against many of these targets has generated the need for large diverse compound collections. To address this requirement, high-throughput chemistry has become an integral part of the drug discovery process. Copyright 2002 Wiley-Liss, Inc.

  15. Generation and characterization of monoclonal antibodies against Giardia muris trophozoites.

    Science.gov (United States)

    Heyworth, M F; Ho, K E; Pappo, J

    1989-11-01

    Mouse monoclonal antibodies (mAb) were produced against Giardia muris trophozoite surface antigens. To generate B-cell hybridomas, P3/NS1/1-Ag4-1 myeloma cells were fused with splenic lymphocytes from BALB/c mice that had been immunized parenterally with G. muris trophozoites. Hybridoma culture supernatants were screened for mAb by flow cytometry of G. muris trophozoites incubated with culture supernatant followed by fluorescein-conjugated anti-mouse IgG and IgM. Flow cytometry showed three types of trophozoite staining by mAb: (i) bright staining of greater than 90% of trophozoites, with aggregation of the organisms; (ii) bright staining of approximately 90% of trophozoites, with little or no aggregation; (iii) dull staining of approximately 20% of trophozoites, without aggregation. Western blotting of mAb on G. muris trophozoite antigens separated by polyacrylamide gel electrophoresis showed that a mAb exhibiting the third of these flow cytometry staining patterns recognized trophozoite antigens of MW approximately 31,000 and 35,000. Immunoprecipitation studies indicated that the same mAb specifically precipitated two 125I-labelled trophozoite surface antigens of MW approximately 30,000. Monoclonal antibodies generated in this study may facilitate the purification and biochemical characterization of trophozoite antigens that are targets for protective intestinal antibody in G. muris-infected mice.

  16. Isolation and characterization of antigen-specific alpaca (Lama pacos) VHH antibodies by biopanning followed by high-throughput sequencing.

    Science.gov (United States)

    Miyazaki, Nobuo; Kiyose, Norihiko; Akazawa, Yoko; Takashima, Mizuki; Hagihara, Yosihisa; Inoue, Naokazu; Matsuda, Tomonari; Ogawa, Ryu; Inoue, Seiya; Ito, Yuji

    2015-09-01

    The antigen-binding domain of camelid dimeric heavy chain antibodies, known as VHH or Nanobody, has much potential in pharmaceutical and industrial applications. To establish the isolation process of antigen-specific VHH, a VHH phage library was constructed with a diversity of 8.4 × 10(7) from cDNA of peripheral blood mononuclear cells of an alpaca (Lama pacos) immunized with a fragment of IZUMO1 (IZUMO1PFF) as a model antigen. By conventional biopanning, 13 antigen-specific VHHs were isolated. The amino acid sequences of these VHHs, designated as N-group VHHs, were very similar to each other (>93% identity). To find more diverse antibodies, we performed high-throughput sequencing (HTS) of VHH genes. By comparing the frequencies of each sequence between before and after biopanning, we found the sequences whose frequencies were increased by biopanning. The top 100 sequences of them were supplied for phylogenic tree analysis. In total 75% of them belonged to N-group VHHs, but the other were phylogenically apart from N-group VHHs (Non N-group). Two of three VHHs selected from non N-group VHHs showed sufficient antigen binding ability. These results suggested that biopanning followed by HTS provided a useful method for finding minor and diverse antigen-specific clones that could not be identified by conventional biopanning. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  17. SONAR: A high-throughput pipeline for inferring antibody ontogenies from longitudinal sequencing of B cell transcripts

    Directory of Open Access Journals (Sweden)

    Chaim A Schramm

    2016-09-01

    Full Text Available The rapid advance of massively parallel or next-generation sequencing technologies has made possible the characterization of B cell receptor repertoires in ever greater detail, leading to a proliferation of software tools for processing and annotating this data. Of especial interest, however, is the capability to track the development of specific antibody lineages across time, which remains beyond the scope of most current programs. We have previously reported on the use of techniques such as inter- and intra-donor analysis and CDR3 tracing to identify transcripts related to an antibody of interest. Here, we present Software for the Ontogenic aNalysis of Antibody Repertoires (SONAR, capable of automating both general repertoire analysis and specialized techniques for investigating specific lineages. SONAR annotates next-generation sequencing data, identifies transcripts in a lineage of interest, and tracks lineage development across multiple time points. SONAR also generates figures, such as identity-divergence plots and longitudinal phylogenetic birthday trees, and provides interfaces to other programs such as DNAML and BEAST. SONAR can be downloaded as a ready-to-run Docker image or manually installed on a local machine. In the latter case, it can also be configured to take advantage of a high-performance computing cluster for the most computationally intensive steps, if available. In summary, this software provides a useful new tool for the processing of large next-generation sequencing datasets and the ontogenic analysis of neutralizing antibody lineages. SONAR can be found at https://github.com/scharch/SONAR and the Docker image can be obtained from https://hub.docker.com/r/scharch/sonar/.

  18. SONAR: A High-Throughput Pipeline for Inferring Antibody Ontogenies from Longitudinal Sequencing of B Cell Transcripts.

    Science.gov (United States)

    Schramm, Chaim A; Sheng, Zizhang; Zhang, Zhenhai; Mascola, John R; Kwong, Peter D; Shapiro, Lawrence

    2016-01-01

    The rapid advance of massively parallel or next-generation sequencing technologies has made possible the characterization of B cell receptor repertoires in ever greater detail, and these developments have triggered a proliferation of software tools for processing and annotating these data. Of especial interest, however, is the capability to track the development of specific antibody lineages across time, which remains beyond the scope of most current programs. We have previously reported on the use of techniques such as inter- and intradonor analysis and CDR3 tracing to identify transcripts related to an antibody of interest. Here, we present Software for the Ontogenic aNalysis of Antibody Repertoires (SONAR), capable of automating both general repertoire analysis and specialized techniques for investigating specific lineages. SONAR annotates next-generation sequencing data, identifies transcripts in a lineage of interest, and tracks lineage development across multiple time points. SONAR also generates figures, such as identity-divergence plots and longitudinal phylogenetic "birthday" trees, and provides interfaces to other programs such as DNAML and BEAST. SONAR can be downloaded as a ready-to-run Docker image or manually installed on a local machine. In the latter case, it can also be configured to take advantage of a high-performance computing cluster for the most computationally intensive steps, if available. In summary, this software provides a useful new tool for the processing of large next-generation sequencing datasets and the ontogenic analysis of neutralizing antibody lineages. SONAR can be found at https://github.com/scharch/SONAR, and the Docker image can be obtained from https://hub.docker.com/r/scharch/sonar/.

  19. High throughput generation and trapping of individual agarose microgel using microfluidic approach

    KAUST Repository

    Shi, Yang; Gao, Xinghua; Chen, Longqing; Zhang, Min; Ma, Jingyun; Zhang, Xixiang; Qin, Jianhua

    2013-01-01

    Microgel is a kind of biocompatible polymeric material, which has been widely used as micro-carriers in materials synthesis, drug delivery and cell biology applications. However, high-throughput generation of individual microgel for on-site analysis in a microdevice still remains a challenge. Here, we presented a simple and stable droplet microfluidic system to realize high-throughput generation and trapping of individual agarose microgels based on the synergetic effect of surface tension and hydrodynamic forces in microchannels and used it for 3-D cell culture in real-time. The established system was mainly composed of droplet generators with flow focusing T-junction and a series of array individual trap structures. The whole process including the independent agarose microgel formation, immobilization in trapping array and gelation in situ via temperature cooling could be realized on the integrated microdevice completely. The performance of this system was demonstrated by successfully encapsulating and culturing adenoid cystic carcinoma (ACCM) cells in the gelated agarose microgels. This established approach is simple, easy to operate, which can not only generate the micro-carriers with different components in parallel, but also monitor the cell behavior in 3D matrix in real-time. It can also be extended for applications in the area of material synthesis and tissue engineering. © 2013 Springer-Verlag Berlin Heidelberg.

  20. High throughput generation and trapping of individual agarose microgel using microfluidic approach

    KAUST Repository

    Shi, Yang

    2013-02-28

    Microgel is a kind of biocompatible polymeric material, which has been widely used as micro-carriers in materials synthesis, drug delivery and cell biology applications. However, high-throughput generation of individual microgel for on-site analysis in a microdevice still remains a challenge. Here, we presented a simple and stable droplet microfluidic system to realize high-throughput generation and trapping of individual agarose microgels based on the synergetic effect of surface tension and hydrodynamic forces in microchannels and used it for 3-D cell culture in real-time. The established system was mainly composed of droplet generators with flow focusing T-junction and a series of array individual trap structures. The whole process including the independent agarose microgel formation, immobilization in trapping array and gelation in situ via temperature cooling could be realized on the integrated microdevice completely. The performance of this system was demonstrated by successfully encapsulating and culturing adenoid cystic carcinoma (ACCM) cells in the gelated agarose microgels. This established approach is simple, easy to operate, which can not only generate the micro-carriers with different components in parallel, but also monitor the cell behavior in 3D matrix in real-time. It can also be extended for applications in the area of material synthesis and tissue engineering. © 2013 Springer-Verlag Berlin Heidelberg.

  1. Novel Acoustic Loading of a Mass Spectrometer: Toward Next-Generation High-Throughput MS Screening.

    Science.gov (United States)

    Sinclair, Ian; Stearns, Rick; Pringle, Steven; Wingfield, Jonathan; Datwani, Sammy; Hall, Eric; Ghislain, Luke; Majlof, Lars; Bachman, Martin

    2016-02-01

    High-throughput, direct measurement of substrate-to-product conversion by label-free detection, without the need for engineered substrates or secondary assays, could be considered the "holy grail" of drug discovery screening. Mass spectrometry (MS) has the potential to be part of this ultimate screening solution, but is constrained by the limitations of existing MS sample introduction modes that cannot meet the throughput requirements of high-throughput screening (HTS). Here we report data from a prototype system (Echo-MS) that uses acoustic droplet ejection (ADE) to transfer femtoliter-scale droplets in a rapid, precise, and accurate fashion directly into the MS. The acoustic source can load samples into the MS from a microtiter plate at a rate of up to three samples per second. The resulting MS signal displays a very sharp attack profile and ions are detected within 50 ms of activation of the acoustic transducer. Additionally, we show that the system is capable of generating multiply charged ion species from simple peptides and large proteins. The combination of high speed and low sample volume has significant potential within not only drug discovery, but also other areas of the industry. © 2015 Society for Laboratory Automation and Screening.

  2. Optimizing Production of Antigens and Fabs in the Context of Generating Recombinant Antibodies to Human Proteins.

    Directory of Open Access Journals (Sweden)

    Nan Zhong

    Full Text Available We developed and optimized a high-throughput project workflow to generate renewable recombinant antibodies to human proteins involved in epigenetic signalling. Three different strategies to produce phage display compatible protein antigens in bacterial systems were compared, and we found that in vivo biotinylation through the use of an Avi tag was the most productive method. Phage display selections were performed on 265 in vivo biotinylated antigen domains. High-affinity Fabs (<20nM were obtained for 196. We constructed and optimized a new expression vector to produce in vivo biotinylated Fabs in E. coli. This increased average yields up to 10-fold, with an average yield of 4 mg/L. For 118 antigens, we identified Fabs that could immunoprecipitate their full-length endogenous targets from mammalian cell lysates. One Fab for each antigen was converted to a recombinant IgG and produced in mammalian cells, with an average yield of 15 mg/L. In summary, we have optimized each step of the pipeline to produce recombinant antibodies, significantly increasing both efficiency and yield, and also showed that these Fabs and IgGs can be generally useful for chromatin immunoprecipitation (ChIP protocols.

  3. Generation of single domain antibody fragments derived from camelids and generation of manifold constructs.

    Science.gov (United States)

    Vincke, Cécile; Gutiérrez, Carlos; Wernery, Ulrich; Devoogdt, Nick; Hassanzadeh-Ghassabeh, Gholamreza; Muyldermans, Serge

    2012-01-01

    Immunizing a camelid (camels and llamas) with soluble, properly folded proteins raises an affinity-matured immune response in the unique camelid heavy-chain only antibodies (HCAbs). The peripheral blood lymphocytes of the immunized animal are used to clone the antigen-binding antibody fragment from the HCAbs in a phage display vector. A representative aliquot of the library of these antigen-binding fragments is used to retrieve single domain antigen-specific binders by successive rounds of panning. These single domain antibody fragments are cloned in tandem to generate manifold constructs (bivalent, biparatopic or bispecific constructs) to increase their functional affinity, to increase specificity, or to connect two independent antigen molecules.

  4. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    LS Moreira Teixeira

    2012-06-01

    Full Text Available Cell-based cartilage repair strategies such as matrix-induced autologous chondrocyte implantation (MACI could be improved by enhancing cell performance. We hypothesised that micro-aggregates of chondrocytes generated in high-throughput prior to implantation in a defect could stimulate cartilaginous matrix deposition and remodelling. To address this issue, we designed a micro-mould to enable controlled high-throughput formation of micro-aggregates. Morphology, stability, gene expression profiles and chondrogenic potential of micro-aggregates of human and bovine chondrocytes were evaluated and compared to single-cells cultured in micro-wells and in 3D after encapsulation in Dextran-Tyramine (Dex-TA hydrogels in vitro and in vivo. We successfully formed micro-aggregates of human and bovine chondrocytes with highly controlled size, stability and viability within 24 hours. Micro-aggregates of 100 cells presented a superior balance in Collagen type I and Collagen type II gene expression over single cells and micro-aggregates of 50 and 200 cells. Matrix metalloproteinases 1, 9 and 13 mRNA levels were decreased in micro-aggregates compared to single-cells. Histological and biochemical analysis demonstrated enhanced matrix deposition in constructs seeded with micro-aggregates cultured in vitro and in vivo, compared to single-cell seeded constructs. Whole genome microarray analysis and single gene expression profiles using human chondrocytes confirmed increased expression of cartilage-related genes when chondrocytes were cultured in micro-aggregates. In conclusion, we succeeded in controlled high-throughput formation of micro-aggregates of chondrocytes. Compared to single cell-seeded constructs, seeding of constructs with micro-aggregates greatly improved neo-cartilage formation. Therefore, micro-aggregation prior to chondrocyte implantation in current MACI procedures, may effectively accelerate hyaline cartilage formation.

  5. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo.

    Science.gov (United States)

    Moreira Teixeira, L S; Leijten, J C H; Sobral, J; Jin, R; van Apeldoorn, A A; Feijen, J; van Blitterswijk, C; Dijkstra, P J; Karperien, M

    2012-06-05

    Cell-based cartilage repair strategies such as matrix-induced autologous chondrocyte implantation (MACI) could be improved by enhancing cell performance. We hypothesised that micro-aggregates of chondrocytes generated in high-throughput prior to implantation in a defect could stimulate cartilaginous matrix deposition and remodelling. To address this issue, we designed a micro-mould to enable controlled high-throughput formation of micro-aggregates. Morphology, stability, gene expression profiles and chondrogenic potential of micro-aggregates of human and bovine chondrocytes were evaluated and compared to single-cells cultured in micro-wells and in 3D after encapsulation in Dextran-Tyramine (Dex-TA) hydrogels in vitro and in vivo. We successfully formed micro-aggregates of human and bovine chondrocytes with highly controlled size, stability and viability within 24 hours. Micro-aggregates of 100 cells presented a superior balance in Collagen type I and Collagen type II gene expression over single cells and micro-aggregates of 50 and 200 cells. Matrix metalloproteinases 1, 9 and 13 mRNA levels were decreased in micro-aggregates compared to single-cells. Histological and biochemical analysis demonstrated enhanced matrix deposition in constructs seeded with micro-aggregates cultured in vitro and in vivo, compared to single-cell seeded constructs. Whole genome microarray analysis and single gene expression profiles using human chondrocytes confirmed increased expression of cartilage-related genes when chondrocytes were cultured in micro-aggregates. In conclusion, we succeeded in controlled high-throughput formation of micro-aggregates of chondrocytes. Compared to single cell-seeded constructs, seeding of constructs with micro-aggregates greatly improved neo-cartilage formation. Therefore, micro-aggregation prior to chondrocyte implantation in current MACI procedures, may effectively accelerate hyaline cartilage formation.

  6. Passive vaccination with a human monoclonal antibody: generation of antibodies and studies for efficacy in Bacillus anthracis infections.

    Science.gov (United States)

    vor dem Esche, Ulrich; Huber, Maria; Zgaga-Griesz, Andrea; Grunow, Roland; Beyer, Wolfgang; Hahn, Ulrike; Bessler, Wolfgang G

    2011-07-01

    A major difficulty in creating human monoclonal antibodies is the lack of a suitable myeloma cell line to be used for fusion experiments. In order to create fully human monoclonal antibodies for passive immunization, the human mouse heteromyeloma cell line CB-F7 was evaluated. Using this cell line, we generated human monoclonal antibodies against Bacillus anthracis toxin components. Antibodies against protective antigen (PA) and against lethal factor (LF) were obtained using peripheral blood lymphocytes (PBLs) from persons vaccinated with the UK anthrax vaccine. PBL were fused with the cell line CB-F7. We obtained several clones producing PA specific Ig and one clone (hLF1-SAN) producing a monoclonal antibody (hLF1) directed against LF. The LF binding antibody was able to neutralize Anthrax toxin activity in an in vitro neutralization assay, and preliminary in vivo studies in mice also indicated a trend towards protection. We mapped the epitope of the antibody binding to LF by dot blot analysis and ELIFA using 80 synthetic LF peptides of 20 amino acid lengths with an overlapping range of 10 amino acids. Our results suggest the binding of the monoclonal antibody to the peptide regions 121-150 or 451-470 of LF. The Fab-fragment of the antibody hLF1 was cloned in Escherichia coli and could be useful as part of a fully human monoclonal antibody for the treatment of Anthrax infections. In general, our studies show the applicability of the CB-F7 line to create fully human monoclonal antibodies for vaccination. Copyright © 2010 Elsevier GmbH. All rights reserved.

  7. Generation of neutralising antibodies against porcine endogenous retroviruses (PERVs)

    International Nuclear Information System (INIS)

    Kaulitz, Danny; Fiebig, Uwe; Eschricht, Magdalena; Wurzbacher, Christian; Kurth, Reinhard; Denner, Joachim

    2011-01-01

    Antibodies neutralising porcine endogenous retroviruses (PERVs) were induced in different animal species by immunisation with the transmembrane envelope protein p15E. These antibodies recognised epitopes, designated E1, in the fusion peptide proximal region (FPPR) of p15E, and E2 in the membrane proximal external region (MPER). E2 is localised in a position similar to that of an epitope in the transmembrane envelope protein gp41 of the human immunodeficiency virus-1 (HIV-1), recognised by the monoclonal antibody 4E10 that is broadly neutralising. To detect neutralising antibodies specific for PERV, a novel assay was developed, which is based on quantification of provirus integration by real-time PCR. In addition, for the first time, highly effective neutralising antibodies were obtained by immunisation with the surface envelope protein of PERV. These data indicate that neutralising antibodies can be induced by immunisation with both envelope proteins.

  8. [New-generation high-throughput technologies based 'omics' research strategy in human disease].

    Science.gov (United States)

    Yang, Xu; Jiao, Rui; Yang, Lin; Wu, Li-Ping; Li, Ying-Rui; Wang, Jun

    2011-08-01

    In recent years, new-generation high-throughput technologies, including next-generation sequencing technology and mass spectrometry method, have been widely applied in solving biological problems, especially in human diseases field. This data driven, large-scale and industrialized research model enables the omnidirectional and multi-level study of human diseases from the perspectives of genomics, transcriptomics and proteomics levels, etc. In this paper, the latest development of the high-throughput technologies that applied in DNA, RNA, epigenomics, metagenomics including proteomics and some applications in translational medicine are reviewed. At genomics level, exome sequencing has been the hot spot of the recent research. However, the predominance of whole genome resequencing in detecting large structural variants within the whole genome level is coming to stand out as the drop of sequencing cost, which also makes it possible for personalized genome based medicine application. At trancriptomics level, e.g., small RNA sequencing can be used to detect known and predict unknown miRNA. Those small RNA could not only be the biomarkers for disease diagnosis and prognosis, but also show the potential of disease treatment. At proteomics level, e.g., target proteomics can be used to detect the possible disease-related protein or peptides, which can be useful index for clinical staging and typing. Furthermore, the application and development of trans-omics study in disease research are briefly introduced. By applying bioinformatics technologies for integrating multi-omics data, the mechanism, diagnosis and therapy of the disease are likely to be systemically explained and realized, so as to provide powerful tools for disease diagnosis and therapies.

  9. Generation of “LYmph Node Derived Antibody Libraries” (LYNDAL) for selecting fully human antibody fragments with therapeutic potential.

    Science.gov (United States)

    Diebolder, Philipp; Keller, Armin; Haase, Stephanie; Schlegelmilch, Anne; Kiefer, Jonathan D; Karimi, Tamana; Weber, Tobias; Moldenhauer, Gerhard; Kehm, Roland; Eis-Hübinger, Anna M; Jäger, Dirk; Federspil, Philippe A; Herold-Mende, Christel; Dyckhoff, Gerhard; Kontermann, Roland E; Arndt, Michaela A E; Krauss, Jürgen

    2014-01-01

    The development of efficient strategies for generating fully human monoclonal antibodies with unique functional properties that are exploitable for tailored therapeutic interventions remains a major challenge in the antibody technology field. Here, we present a methodology for recovering such antibodies from antigen-encountered human B cell repertoires. As the source for variable antibody genes, we cloned immunoglobulin G (IgG)-derived B cell repertoires from lymph nodes of 20 individuals undergoing surgery for head and neck cancer. Sequence analysis of unselected “LYmph Node Derived Antibody Libraries” (LYNDAL) revealed a naturally occurring distribution pattern of rearranged antibody sequences, representing all known variable gene families and most functional germline sequences. To demonstrate the feasibility for selecting antibodies with therapeutic potential from these repertoires, seven LYNDAL from donors with high serum titers against herpes simplex virus (HSV) were panned on recombinant glycoprotein B of HSV-1. Screening for specific binders delivered 34 single-chain variable fragments (scFvs) with unique sequences. Sequence analysis revealed extensive somatic hypermutation of enriched clones as a result of affinity maturation. Binding of scFvs to common glycoprotein B variants from HSV-1 and HSV-2 strains was highly specific, and the majority of analyzed antibody fragments bound to the target antigen with nanomolar affinity. From eight scFvs with HSV-neutralizing capacity in vitro,the most potent antibody neutralized 50% HSV-2 at 4.5 nM as a dimeric (scFv)2. We anticipate our approach to be useful for recovering fully human antibodies with therapeutic potential.

  10. Generation and Application of Monoclonal Antibody Against Lycopene.

    Science.gov (United States)

    Tsibezov, Valeriy V; Bashmakov, Yuriy K; Pristenskiy, Dmitry V; Zigangirova, Naylia A; Kostina, Ludmila V; Chalyk, Natalya E; Kozlov, Alexey Y; Morgunova, Elena Y; Chernyshova, Marina P; Lozbiakova, Marina V; Kyle, Nigel H; Petyaev, Ivan M

    2017-04-01

    A monoclonal antibody (Mab) against lycopene was developed from hybridoma clones obtained from BALB/c mice immunized with trans-isomer of lycopene (t-lycopene, t-LC) conjugated with colloidal gold particles. An alternating immunization schedule which included injection of both formulations of immunogen (without and with Freund's adjuvant) was most effective in the elucidation of a measurable immune response to the t-Lycopene conjugate. Selected hybridoma clones were able to produce an Mab positive in competition assay. In particular, preincubation of 6B9 Mabs with t-LC abolished the ability of 6B9 Mabs to bind LC in the competition assay. Mabs produced by other clones (4F10, 4A3, and 3B12) worked similarly. Analysis of antigen specificity showed that 6B9 Mab raised against t-LC did not recognize other carotenoids such as lutein and carotene. Mab 6B9 was shown to recognize lycopene on a glass surface and in the settings of indirect immunofluorescence experiments performed in cultured hepatocytes and alveolar macrophages incubated with and without lycopene, as well as in sebum and corneocyte specimens from the skin of volunteers supplemented with nutraceutical formulation of lycopene. Newly generated Mabs against lycopene may provide a valuable tool for different analytical assays of lycopene content in various biological, agricultural, and food products.

  11. A Novel Tool for High-Throughput Screening of Granulocyte-Specific Antibodies Using the Automated Flow Cytometric Granulocyte Immunofluorescence Test (Flow-GIFT

    Directory of Open Access Journals (Sweden)

    Xuan Duc Nguyen

    2011-01-01

    Full Text Available Transfusion-related acute lung injury (TRALI is a severe complication related with blood transfusion. TRALI has usually been associated with antibodies against leukocytes. The flow cytometric granulocyte immunofluorescence test (Flow-GIFT has been introduced for routine use when investigating patients and healthy blood donors. Here we describe a novel tool in the automation of the Flow-GIFT that enables a rapid screening of blood donations. We analyzed 440 sera from healthy female blood donors for the presence of granulocyte antibodies. As positive controls, 12 sera with known antibodies against anti-HNA-1a, -b, -2a; and -3a were additionally investigated. Whole-blood samples from HNA-typed donors were collected and the test cells isolated using cell sedimentation in a Ficoll density gradient. Subsequently, leukocytes were incubated with the respective serum and binding of antibodies was detected using FITC-conjugated antihuman antibody. 7-AAD was used to exclude dead cells. Pipetting steps were automated using the Biomek NXp Multichannel Automation Workstation. All samples were prepared in the 96-deep well plates and analyzed by flow cytometry. The standard granulocyte immunofluorescence test (GIFT and granulocyte agglutination test (GAT were also performed as reference methods. Sixteen sera were positive in the automated Flow-GIFT, while five of these sera were negative in the standard GIFT (anti—HNA 3a, n = 3; anti—HNA-1b, n = 1 and GAT (anti—HNA-2a, n = 1. The automated Flow-GIFT was able to detect all granulocyte antibodies, which could be only detected in GIFT in combination with GAT. In serial dilution tests, the automated Flow-GIFT detected the antibodies at higher dilutions than the reference methods GIFT and GAT. The Flow-GIFT proved to be feasible for automation. This novel high-throughput system allows an effective antigranulocyte antibody detection in a large donor population in order to prevent TRALI due to transfusion of

  12. A novel tool for high-throughput screening of granulocyte-specific antibodies using the automated flow cytometric granulocyte immunofluorescence test (Flow-GIFT).

    Science.gov (United States)

    Nguyen, Xuan Duc; Dengler, Thomas; Schulz-Linkholt, Monika; Klüter, Harald

    2011-02-03

    Transfusion-related acute lung injury (TRALI) is a severe complication related with blood transfusion. TRALI has usually been associated with antibodies against leukocytes. The flow cytometric granulocyte immunofluorescence test (Flow-GIFT) has been introduced for routine use when investigating patients and healthy blood donors. Here we describe a novel tool in the automation of the Flow-GIFT that enables a rapid screening of blood donations. We analyzed 440 sera from healthy female blood donors for the presence of granulocyte antibodies. As positive controls, 12 sera with known antibodies against anti-HNA-1a, -b, -2a; and -3a were additionally investigated. Whole-blood samples from HNA-typed donors were collected and the test cells isolated using cell sedimentation in a Ficoll density gradient. Subsequently, leukocytes were incubated with the respective serum and binding of antibodies was detected using FITC-conjugated antihuman antibody. 7-AAD was used to exclude dead cells. Pipetting steps were automated using the Biomek NXp Multichannel Automation Workstation. All samples were prepared in the 96-deep well plates and analyzed by flow cytometry. The standard granulocyte immunofluorescence test (GIFT) and granulocyte agglutination test (GAT) were also performed as reference methods. Sixteen sera were positive in the automated Flow-GIFT, while five of these sera were negative in the standard GIFT (anti-HNA 3a, n = 3; anti-HNA-1b, n = 1) and GAT (anti-HNA-2a, n = 1). The automated Flow-GIFT was able to detect all granulocyte antibodies, which could be only detected in GIFT in combination with GAT. In serial dilution tests, the automated Flow-GIFT detected the antibodies at higher dilutions than the reference methods GIFT and GAT. The Flow-GIFT proved to be feasible for automation. This novel high-throughput system allows an effective antigranulocyte antibody detection in a large donor population in order to prevent TRALI due to transfusion of blood products.

  13. Development of High-Throughput Method for Measurement of Vascular Nitric Oxide Generation in Microplate Reader.

    Science.gov (United States)

    Abd El-Hay, Soad S; Colyer, Christa L

    2017-01-13

    Despite the importance of nitric oxide (NO) in vascular physiology and pathology, a high-throughput method for the quantification of its vascular generation is lacking. By using the fluorescent probe 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM), we have optimized a simple method for the determination of the generation of endothelial nitric oxide in a microplate format. A nitric oxide donor was used (3-morpholinosydnonimine hydrochloride, SIN-1). Different factors affecting the method were studied, such as the effects of dye concentration, different buffers, time of reaction, gain, and number of flashes. Beer's law was linear over a nanomolar range (1-10 nM) of SIN-1 with wavelengths of maximum excitation and emission at 495 and 525 nm; the limit of detection reached 0.897 nM. Under the optimized conditions, the generation of rat aortic endothelial NO was measured by incubating DAF-FM with serial concentrations (10-1000 µM) of acetylcholine (ACh) for 3 min. To confirm specificity, N ω -Nitro-l-arginine methyl ester (l-NAME)-the standard inhibitor of endothelial NO synthase-was found to inhibit the ACh-stimulated generation of NO. In addition, vessels pre-exposed for 1 h to 400 µM of the endothelial damaging agent methyl glyoxal showed inhibited NO generation when compared to the control stimulated by ACh. The capability of the method to measure micro-volume samples makes it convenient for the simultaneous handling of a very large number of samples. Additionally, it allows samples to be run simultaneously with their replicates to ensure identical experimental conditions, thus minimizing the effect of biological variability.

  14. Development of High-Throughput Method for Measurement of Vascular Nitric Oxide Generation in Microplate Reader

    Directory of Open Access Journals (Sweden)

    Soad S. Abd El-Hay

    2017-01-01

    Full Text Available Background: Despite the importance of nitric oxide (NO in vascular physiology and pathology, a high-throughput method for the quantification of its vascular generation is lacking. Objective: By using the fluorescent probe 4-amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM, we have optimized a simple method for the determination of the generation of endothelial nitric oxide in a microplate format. Methods: A nitric oxide donor was used (3-morpholinosydnonimine hydrochloride, SIN-1. Different factors affecting the method were studied, such as the effects of dye concentration, different buffers, time of reaction, gain, and number of flashes. Results: Beer’s law was linear over a nanomolar range (1–10 nM of SIN-1 with wavelengths of maximum excitation and emission at 495 and 525 nm; the limit of detection reached 0.897 nM. Under the optimized conditions, the generation of rat aortic endothelial NO was measured by incubating DAF-FM with serial concentrations (10–1000 µM of acetylcholine (ACh for 3 min. To confirm specificity, Nω-Nitro-l-arginine methyl ester (l-NAME—the standard inhibitor of endothelial NO synthase—was found to inhibit the ACh-stimulated generation of NO. In addition, vessels pre-exposed for 1 h to 400 µM of the endothelial damaging agent methyl glyoxal showed inhibited NO generation when compared to the control stimulated by ACh. Conclusions: The capability of the method to measure micro-volume samples makes it convenient for the simultaneous handling of a very large number of samples. Additionally, it allows samples to be run simultaneously with their replicates to ensure identical experimental conditions, thus minimizing the effect of biological variability.

  15. High-throughput immunoturbidimetric assays for in-process determination of polyclonal antibody concentration and functionality in crude samples

    DEFF Research Database (Denmark)

    Bak, Hanne; Kyhse-Andersen, J.; Thomas, O.R.T.

    2007-01-01

    We present fast, simple immunoturbidimetric assays suitable for direct determination of antibody 'concentration' and 'functionality' in crude samples, such as in-process samples taken at various stages during antibody purification. Both assays display excellent linearity and analytical recovery. ...... antibodies, require only basic laboratory equipment, are robust, fast, cheap, easy to perform, and readily adapted to automation....

  16. Efficient generation of monoclonal antibodies against peptide in the context of MHCII using magnetic enrichment.

    Science.gov (United States)

    Spanier, Justin A; Frederick, Daniel R; Taylor, Justin J; Heffernan, James R; Kotov, Dmitri I; Martinov, Tijana; Osum, Kevin C; Ruggiero, Jenna L; Rust, Blake J; Landry, Samuel J; Jenkins, Marc K; McLachlan, James B; Fife, Brian T

    2016-06-13

    Monoclonal antibodies specific for foreign antigens, auto-antigens, allogeneic antigens and tumour neo-antigens in the context of major histocompatibility complex II (MHCII) are highly desirable as novel immunotherapeutics. However, there is no standard protocol for the efficient generation of monoclonal antibodies that recognize peptide in the context of MHCII, and only a limited number of such reagents exist. In this report, we describe an approach for the generation and screening of monoclonal antibodies specific for peptide bound to MHCII. This approach exploits the use of recombinant peptide:MHC monomers as immunogens, and subsequently relies on multimers to pre-screen and magnetically enrich the responding antigen-specific B cells before fusion and validation, thus saving significant time and reagents. Using this method, we have generated two antibodies enabling us to interrogate antigen presentation and T-cell activation. This methodology sets the standard to generate monoclonal antibodies against the peptide-MHCII complexes.

  17. PUFKEY: a high-security and high-throughput hardware true random number generator for sensor networks.

    Science.gov (United States)

    Li, Dongfang; Lu, Zhaojun; Zou, Xuecheng; Liu, Zhenglin

    2015-10-16

    Random number generators (RNG) play an important role in many sensor network systems and applications, such as those requiring secure and robust communications. In this paper, we develop a high-security and high-throughput hardware true random number generator, called PUFKEY, which consists of two kinds of physical unclonable function (PUF) elements. Combined with a conditioning algorithm, true random seeds are extracted from the noise on the start-up pattern of SRAM memories. These true random seeds contain full entropy. Then, the true random seeds are used as the input for a non-deterministic hardware RNG to generate a stream of true random bits with a throughput as high as 803 Mbps. The experimental results show that the bitstream generated by the proposed PUFKEY can pass all standard national institute of standards and technology (NIST) randomness tests and is resilient to a wide range of security attacks.

  18. PUFKEY: A High-Security and High-Throughput Hardware True Random Number Generator for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dongfang Li

    2015-10-01

    Full Text Available Random number generators (RNG play an important role in many sensor network systems and applications, such as those requiring secure and robust communications. In this paper, we develop a high-security and high-throughput hardware true random number generator, called PUFKEY, which consists of two kinds of physical unclonable function (PUF elements. Combined with a conditioning algorithm, true random seeds are extracted from the noise on the start-up pattern of SRAM memories. These true random seeds contain full entropy. Then, the true random seeds are used as the input for a non-deterministic hardware RNG to generate a stream of true random bits with a throughput as high as 803 Mbps. The experimental results show that the bitstream generated by the proposed PUFKEY can pass all standard national institute of standards and technology (NIST randomness tests and is resilient to a wide range of security attacks.

  19. High throughput micro-well generation of hepatocyte micro-aggregates for tissue engineering.

    Directory of Open Access Journals (Sweden)

    Elien Gevaert

    Full Text Available The main challenge in hepatic tissue engineering is the fast dedifferentiation of primary hepatocytes in vitro. One successful approach to maintain hepatocyte phenotype on the longer term is the cultivation of cells as aggregates. This paper demonstrates the use of an agarose micro-well chip for the high throughput generation of hepatocyte aggregates, uniform in size. In our study we observed that aggregation of hepatocytes had a beneficial effect on the expression of certain hepatocyte specific markers. Moreover we observed that the beneficial effect was dependent on the aggregate dimensions, indicating that aggregate parameters should be carefully considered. In a second part of the study, the selected aggregates were immobilized by encapsulation in methacrylamide-modified gelatin. Phenotype evaluations revealed that a stable hepatocyte phenotype could be maintained during 21 days when encapsulated in the hydrogel. In conclusion we have demonstrated the beneficial use of micro-well chips for hepatocyte aggregation and the size-dependent effects on hepatocyte phenotype. We also pointed out that methacrylamide-modified gelatin is suitable for the encapsulation of these aggregates.

  20. High throughput micro-well generation of hepatocyte micro-aggregates for tissue engineering.

    Science.gov (United States)

    Gevaert, Elien; Dollé, Laurent; Billiet, Thomas; Dubruel, Peter; van Grunsven, Leo; van Apeldoorn, Aart; Cornelissen, Ria

    2014-01-01

    The main challenge in hepatic tissue engineering is the fast dedifferentiation of primary hepatocytes in vitro. One successful approach to maintain hepatocyte phenotype on the longer term is the cultivation of cells as aggregates. This paper demonstrates the use of an agarose micro-well chip for the high throughput generation of hepatocyte aggregates, uniform in size. In our study we observed that aggregation of hepatocytes had a beneficial effect on the expression of certain hepatocyte specific markers. Moreover we observed that the beneficial effect was dependent on the aggregate dimensions, indicating that aggregate parameters should be carefully considered. In a second part of the study, the selected aggregates were immobilized by encapsulation in methacrylamide-modified gelatin. Phenotype evaluations revealed that a stable hepatocyte phenotype could be maintained during 21 days when encapsulated in the hydrogel. In conclusion we have demonstrated the beneficial use of micro-well chips for hepatocyte aggregation and the size-dependent effects on hepatocyte phenotype. We also pointed out that methacrylamide-modified gelatin is suitable for the encapsulation of these aggregates.

  1. Generation and Characterization of Novel Human IRAS Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2009-01-01

    Full Text Available Imidazoline receptors were first proposed by Bousquet et al., when they studied antihypertensive effect of clonidine. A strong candidate for I1R, known as imidazoline receptor antisera-selected protein (IRAS, has been cloned from human hippocampus. We reported that IRAS mediated agmatine-induced inhibition of opioid dependence in morphine-dependent cells. To elucidate the functional and structure properties of I1R, we developed the newly monoclonal antibody against the N-terminal hIRAS region including the PX domain (10–120aa through immunization of BALB/c mice with the NusA-IRAS fusion protein containing an IRAS N-terminal (10–120aa. Stable hybridoma cell lines were established and monoclonal antibodies specifically recognized full-length IRAS proteins in their native state by immunoblotting and immunoprecipitation. Monoclonal antibodies stained in a predominantly punctate cytoplasmic pattern when applied to IRAS-transfected HEK293 cells by indirect immunofluorescence assays and demonstrated excellent reactivity in flow immunocytometry. These monoclonal antibodies will provide powerful reagents for the further investigation of hIRAS protein functions.

  2. Generation of human antibody fragments against Streptococcus mutans using a phage display chain shuffling approach

    Directory of Open Access Journals (Sweden)

    Barth Stefan

    2005-01-01

    Full Text Available Abstract Background Common oral diseases and dental caries can be prevented effectively by passive immunization. In humans, passive immunotherapy may require the use of humanized or human antibodies to prevent adverse immune responses against murine epitopes. Therefore we generated human single chain and diabody antibody derivatives based on the binding characteristics of the murine monoclonal antibody Guy's 13. The murine form of this antibody has been used successfully to prevent Streptococcus mutans colonization and the development of dental caries in non-human primates, and to prevent bacterial colonization in human clinical trials. Results The antibody derivatives were generated using a chain-shuffling approach based on human antibody variable gene phage-display libraries. Like the parent antibody, these derivatives bound specifically to SAI/II, the surface adhesin of the oral pathogen S. mutans. Conclusions Humanization of murine antibodies can be easily achieved using phage display libraries. The human antibody fragments bind the antigen as well as the causative agent of dental caries. In addition the human diabody derivative is capable of aggregating S. mutans in vitro, making it a useful candidate passive immunotherapeutic agent for oral diseases.

  3. Different Somatic Hypermutation Levels among Antibody Subclasses Disclosed by a New Next-Generation Sequencing-Based Antibody Repertoire Analysis

    Directory of Open Access Journals (Sweden)

    Kazutaka Kitaura

    2017-05-01

    Full Text Available A diverse antibody repertoire is primarily generated by the rearrangement of V, D, and J genes and subsequent somatic hypermutation (SHM. Class-switch recombination (CSR produces various isotypes and subclasses with different functional properties. Although antibody isotypes and subclasses are considered to be produced by both direct and sequential CSR, it is still not fully understood how SHMs accumulate during the process in which antibody subclasses are generated. Here, we developed a new next-generation sequencing (NGS-based antibody repertoire analysis capable of identifying all antibody isotype and subclass genes and used it to examine the peripheral blood mononuclear cells of 12 healthy individuals. Using a total of 5,480,040 sequences, we compared percentage frequency of variable (V, junctional (J sequence, and a combination of V and J, diversity, length, and amino acid compositions of CDR3, SHM, and shared clones in the IgM, IgD, IgG3, IgG1, IgG2, IgG4, IgA1, IgE, and IgA2 genes. The usage and diversity were similar among the immunoglobulin (Ig subclasses. Clonally related sequences sharing identical V, D, J, and CDR3 amino acid sequences were frequently found within multiple Ig subclasses, especially between IgG1 and IgG2 or IgA1 and IgA2. SHM occurred most frequently in IgG4, while IgG3 genes were the least mutated among all IgG subclasses. The shared clones had almost the same SHM levels among Ig subclasses, while subclass-specific clones had different levels of SHM dependent on the genomic location. Given the sequential CSR, these results suggest that CSR occurs sequentially over multiple subclasses in the order corresponding to the genomic location of IGHCs, but CSR is likely to occur more quickly than SHMs accumulate within Ig genes under physiological conditions. NGS-based antibody repertoire analysis should provide critical information on how various antibodies are generated in the immune system.

  4. Theory and implementation of a very high throughput true random number generator in field programmable gate array

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yonggang, E-mail: wangyg@ustc.edu.cn; Hui, Cong; Liu, Chong; Xu, Chao [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2016-04-15

    The contribution of this paper is proposing a new entropy extraction mechanism based on sampling phase jitter in ring oscillators to make a high throughput true random number generator in a field programmable gate array (FPGA) practical. Starting from experimental observation and analysis of the entropy source in FPGA, a multi-phase sampling method is exploited to harvest the clock jitter with a maximum entropy and fast sampling speed. This parametrized design is implemented in a Xilinx Artix-7 FPGA, where the carry chains in the FPGA are explored to realize the precise phase shifting. The generator circuit is simple and resource-saving, so that multiple generation channels can run in parallel to scale the output throughput for specific applications. The prototype integrates 64 circuit units in the FPGA to provide a total output throughput of 7.68 Gbps, which meets the requirement of current high-speed quantum key distribution systems. The randomness evaluation, as well as its robustness to ambient temperature, confirms that the new method in a purely digital fashion can provide high-speed high-quality random bit sequences for a variety of embedded applications.

  5. An improved yeast transformation method for the generation of very large human antibody libraries.

    Science.gov (United States)

    Benatuil, Lorenzo; Perez, Jennifer M; Belk, Jonathan; Hsieh, Chung-Ming

    2010-04-01

    Antibody library selection by yeast display technology is an efficient and highly sensitive method to identify binders to target antigens. This powerful selection tool, however, is often hampered by the typically modest size of yeast libraries (approximately 10(7)) due to the limited yeast transformation efficiency, and the full potential of the yeast display technology for antibody discovery and engineering can only be realized if it can be coupled with a mean to generate very large yeast libraries. We describe here a yeast transformation method by electroporation that allows for the efficient generation of large antibody libraries up to 10(10) in size. Multiple components and conditions including CaCl(2), MgCl(2), sucrose, sorbitol, lithium acetate, dithiothreitol, electroporation voltage, DNA input and cell volume have been tested to identify the best combination. By applying this developed protocol, we have constructed a 1.4 x 10(10) human spleen antibody library essentially in 1 day with a transformation efficiency of 1-1.5 x 10(8) transformants/microg vector DNA. Taken together, we have developed a highly efficient yeast transformation method that enables the generation of very large and productive human antibody libraries for antibody discovery, and we are now routinely making 10(9) libraries in a day for antibody engineering purposes.

  6. Generating information-rich high-throughput experimental materials genomes using functional clustering via multitree genetic programming and information theory.

    Science.gov (United States)

    Suram, Santosh K; Haber, Joel A; Jin, Jian; Gregoire, John M

    2015-04-13

    High-throughput experimental methodologies are capable of synthesizing, screening and characterizing vast arrays of combinatorial material libraries at a very rapid rate. These methodologies strategically employ tiered screening wherein the number of compositions screened decreases as the complexity, and very often the scientific information obtained from a screening experiment, increases. The algorithm used for down-selection of samples from higher throughput screening experiment to a lower throughput screening experiment is vital in achieving information-rich experimental materials genomes. The fundamental science of material discovery lies in the establishment of composition-structure-property relationships, motivating the development of advanced down-selection algorithms which consider the information value of the selected compositions, as opposed to simply selecting the best performing compositions from a high throughput experiment. Identification of property fields (composition regions with distinct composition-property relationships) in high throughput data enables down-selection algorithms to employ advanced selection strategies, such as the selection of representative compositions from each field or selection of compositions that span the composition space of the highest performing field. Such strategies would greatly enhance the generation of data-driven discoveries. We introduce an informatics-based clustering of composition-property functional relationships using a combination of information theory and multitree genetic programming concepts for identification of property fields in a composition library. We demonstrate our approach using a complex synthetic composition-property map for a 5 at. % step ternary library consisting of four distinct property fields and finally explore the application of this methodology for capturing relationships between composition and catalytic activity for the oxygen evolution reaction for 5429 catalyst compositions in a

  7. A novel hanging spherical drop system for the generation of cellular spheroids and high throughput combinatorial drug screening.

    Science.gov (United States)

    Neto, A I; Correia, C R; Oliveira, M B; Rial-Hermida, M I; Alvarez-Lorenzo, C; Reis, R L; Mano, J F

    2015-04-01

    We propose a novel hanging spherical drop system for anchoring arrays of droplets of cell suspension based on the use of biomimetic superhydrophobic flat substrates, with controlled positional adhesion and minimum contact with a solid substrate. By facing down the platform, it was possible to generate independent spheroid bodies in a high throughput manner, in order to mimic in vivo tumour models on the lab-on-chip scale. To validate this system for drug screening purposes, the toxicity of the anti-cancer drug doxorubicin in cell spheroids was tested and compared to cells in 2D culture. The advantages presented by this platform, such as feasibility of the system and the ability to control the size uniformity of the spheroid, emphasize its potential to be used as a new low cost toolbox for high-throughput drug screening and in cell or tissue engineering.

  8. Simple and efficient generation of virus-specific T cells for adoptive therapy using anti-4-1BB antibody.

    Science.gov (United States)

    Imahashi, Nobuhiko; Nishida, Tetsuya; Goto, Tatsunori; Terakura, Seitaro; Watanabe, Keisuke; Hanajiri, Ryo; Sakemura, Reona; Imai, Misa; Kiyoi, Hitoshi; Naoe, Tomoki; Murata, Makoto

    2015-01-01

    Although recent studies of virus-specific T-cell (VST) therapy for viral infections after allogeneic hematopoietic stem cell transplantation have shown promising results, simple and less time-intensive and labor-intensive methods are required to generate VSTs for the wider application of VST therapy. We investigated the efficacy of anti-CD28 and anti-4-1BB antibodies, which can provide T cells with costimulatory signals similar in strength to those of antigen-presenting cells, in generating VSTs. When peripheral blood mononuclear cells were stimulated with viral peptides together with isotype control, anti-CD28, or anti-4-1BB antibodies, anti-4-1BB antibodies yielded the highest numbers of VSTs, which were on an average 7.9 times higher than those generated with isotype control antibody. The combination of anti-CD28 and anti-4-1BB antibodies did not result in increased numbers of VSTs compared with anti-4-1BB antibody alone. Importantly, the positive effect of anti-4-1BB antibody was observed regardless of the epitopes of the VSTs. In contrast, the capacity of dendritic cells (DCs) to generate VSTs differed considerably depending on the epitopes of the VSTs. Furthermore, the numbers of VSTs generated with DCs were at most similar to those generated with the anti-4-1BB antibody. Generation of VSTs with anti-4-1BB antibody did not result in excessive differentiation or deteriorated function of the generated VSTs compared with those generated with control antibody or DCs. In conclusion, VSTs can be generated rapidly and efficiently by simply stimulating peripheral blood mononuclear cells with viral peptide and anti-4-1BB antibody without using antigen-presenting cells. We propose using anti-4-1BB antibody as a novel strategy to generate VSTs for adoptive therapy.

  9. Generation and Characterization of Polyclonal Antibody Against Part of Immunoglobulin Constant Heavy υ Chain of Goose

    Science.gov (United States)

    Zhao, Panpan; Guo, Yongli; Ma, Bo; Wang, Junwei

    2014-01-01

    Immunoglobulin Y (abbreviated as IgY) is a type of immunoglobulin that is the major antibody in bird, reptile, and lungfish blood. IgY consists of two light (λ) and two heavy (υ) chains. In the present study, polyclonal antibody against IgYFc was generated and evaluated. rIgYCυ3/Cυ4 was expressed in Escherichia coli, purified and utilized to raise polyclonal antibody in rabbit. High affinity antisera were obtained, which successfully detected the antigen at a dilution of 1:204,800 for ELISA assay. The antibody can specifically recognize both rIgYCυ3/Cυ4 and native IgY by Western bolt analysis. Furthermore, the serum of Grus japonensis or immunoglobulin of chicken, duck, turkey, and silkie samples and dynamic changes of serum GoIgY after immunogenicity with GPV-VP3-virus-like particles (GPV-VP3-VLPs) can be detected with the anti-GoIgYFc polyclonal antibody. These results suggested that the antibody is valuable for the investigation of biochemical properties and biological functions of GoIgY. PMID:25171010

  10. Generation of anti-idiotype antibodies for application in clinical immunotherapy laboratory analyses.

    Science.gov (United States)

    Liu, Zhanqi; Panousis, Con; Smyth, Fiona E; Murphy, Roger; Wirth, Veronika; Cartwright, Glenn; Johns, Terrance G; Scott, Andrew M

    2003-08-01

    The chimeric monoclonal antibody ch806 specifically targets the tumor-associated mutant epidermal growth factor receptor (de 2-7EGFR or EGFRVIII) and is currently under investigation for its potential use in cancer therapy. The humanised monoclonal antibody hu3S193 specifically targets the Lewis Y epithelial antigen and is currently in Phase I clinical trials in patients with advanced breast, colon, and ovarian carcinomas. To assist the clinical evaluation of ch806 and hu3S193, laboratory assays are required to monitor their serum pharmacokinetics and quantitate any immune responses to the antibodies. Mice immunized with ch806 or hu3S193 were used to generate hybridomas producing antibodies with specific binding to ch806 or hu3S193 and competitive for antigen binding. These anti-idiotype antibodies (designated Ludwig Melbourne Hybridomas, LMH) were investigated as reagents suitable for use as positive controls for HAHA or HACA analyses and for measuring hu3S193 or ch806 in human serum. Anti-idiotypes with the ability to concurrently bind two target antibody molecules were identified, which enabled the development of highly reproducible, sensitive, specific ELISA assays for determining serum concentrations of hu3S193 and ch806 with a 3 ng/mL limit of quantitation using LMH-3 and LMH-12, respectively. BIAcore analyses determined high apparent binding affinity for both idiotypes: LMH-3 binding immobilized hu3S193, Ka = 4.76 x 10(8) M(-1); LMH-12 binding immobilised ch806, Ka = 1.74 x 10(9) M(-1). Establishment of HAHA or HACA analysis of sera samples using BIAcore was possible using LMH-3 and LMH-12 as positive controls for quantitation of immune responses to hu3S193 or ch806 in patient sera. These anti-idiotypes could also be used to study the penetrance and binding of ch806 or hu3S193 to tumor cells through immunohistochemical analysis of tumor biopsies. The generation of anti-idiotype antibodies capable of concurrently binding a target antibody on each variable

  11. Comparison of two high-throughput assays for quantification of adenovirus type 5 neutralizing antibodies in a population of donors in China.

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    Full Text Available BACKGROUND: The presence of various levels of Adenovirus serotype 5 neutralizing antibodies (Ad5NAb is thought to contribute to the inconsistent clinical results obtained from vaccination and gene therapy studies. Currently, two platforms based on high-throughput technology are available for Ad5NAb quantification, chemiluminescence- and fluorescence-based assays. The aim of this study was to compare the results of two assays in the seroepidemiology of Ad5NAb in a local population of donors. METHODOLOGY/PRINCIPAL FINDINGS: The fluorescence-based neutralizing antibody detection test (FRNT using recombinant Ad5-EGFP virus and the chemiluminescence-based neutralizing antibody test (CLNT using Ad5-Fluc were developed and standardized for detecting the presence of Ad5NAb in serum samples from the population of donors in Beijing and Anhui provinces, China. First, the overall percentage of people positive for Ad5NAb performed by CLNT was higher than that obtained by FRNT (85.4 vs 69.9%, p<0.001. There was an 84.5% concordance between the two assays for the 206 samples tested (144 positive in both assays and 30 negative in both assays. All 32 discordant sera were CLNT-positive/FRNT-negative and were confirmed positive by western blot. Secondly, for all 144 sera positive by both assays, the two assays showed high correlation (r = 0.94, p<0.001 and close agreement (mean difference: 0.395 log(10, 95% CI: -0.054 log(10 to 0.845 log(10. Finally, it was found by both assays that there was no significant difference observed for titer or prevalence by gender (p = 0.503 vs 0.818, for two assays; however, age range (p = 0.049 vs 0.010 and geographic origin (p = 0.007 vs 0.011 were correlated with Ad5NAb prevalence in northern regions of China. CONCLUSION: The CLNT assay was relatively more simple and had higher sensitivity than the FRNT assay for determining Ad5NAb titers. It is strongly suggested that the CLNT assay be used for future

  12. Generation and Characterization of Anti-CD34 Monoclonal Antibodies that React with Hematopoietic Stem Cells

    Science.gov (United States)

    Aghebati Maleki, Leili; Majidi, Jafar; Baradaran, Behzad; Movassaghpour, Aliakbar; Abdolalizadeh, Jalal

    2014-01-01

    CD34 is a type I membrane protein with a molecular mass of approximately 110 kDa. This antigen is associated with human hematopoietic progenitor cells and is a differentiation stage-specific leukocyte antigen. In this study we have generated and characterized monoclonal antibodies (mAbs) directed against a CD34 marker. Mice were immunized with two keyhole lympet hemocyanin (KLH)-conjugated CD34 peptides. Fused cells were grown in hypoxanthine, aminopterine and thymidine (HAT) selective medium and cloned by the limiting dilution (L.D) method. Several monoclones were isolated by three rounds of limited dilutions. From these, we chose stable clones that presented sustained antibody production for subsequent characterization. Antibodies were tested for their reactivity and specificity to recognize the CD34 peptides and further screened by enzyme-linked immunosorbent assay (ELISA) and Western blotting analyses. One of the mAbs (3D5) was strongly reactive against the CD34 peptide and with native CD34 from human umbilical cord blood cells (UCB) in ELISA and Western blotting analyses. The results have shown that this antibody is highly specific and functional in biomedical applications such as ELISA and Western blot assays. This monoclonal antibodies (mAb) can be a useful tool for isolation and purification of human hematopoietic stem cells (HSCs). PMID:24611141

  13. Generation and Characterization of Inhibitory Antibodies Specific to Guinea Pig CXCR1 and CXCR2.

    Science.gov (United States)

    Tanaka, Kento; Yoshimura, Chigusa; Shiina, Tetsuo; Terauchi, Tomoko; Yoshitomi, Tomomi; Hirahara, Kazuki

    2017-04-01

    CXCR1 and CXCR2 are chemokine receptors that have different selectivity of chemokine ligands, but the distinct role of each receptor is not clearly understood. This is due to the absence of specific inhibitors in guinea pigs, which are the appropriate species for investigation of CXCR1 and CXCR2 because of their functional similarity to humans. In this study, we generated and evaluated monoclonal antibodies that specifically bound to guinea pig CXCR1 (gpCXCR1) and guinea pig CXCR2 (gpCXCR2) for acquisition of specific inhibitors. To assess the activity of antibodies, we established CHO-K1 cells stably expressing either gpCXCR1 or gpCXCR2 (CHO/gpCXCR1 or CHO/gpCXCR2). CHO/gpCXCR1 showed migration in response to guinea pig interleukin (IL)-8, and CHO/gpCXCR2 showed migration in response to both guinea pig IL-8 and guinea pig growth-regulated oncogene α. The receptor selectivities of the chemokines of guinea pigs were the same as the human orthologs. The inhibitory activities of the anti-gpCXCR1 and anti-gpCXCR2 monoclonal antibodies on cell migration were observed in a concentration-dependent manner. In conclusion, we successfully obtained inhibitory antibodies specific to gpCXCR1 and gpCXCR2. These inhibitory antibodies will be useful to clarify the physiological roles of CXCR1 and CXCR2 in guinea pigs.

  14. Characterization of hapten-protein conjugates: antibody generation and immunoassay development for chlorophenoxyacetic acid pesticides.

    Science.gov (United States)

    Boro, Robin C; Singh, K Vikas; Suri, C Raman

    2009-01-01

    The generation of specific and sensitive antibodies against small molecules is greatly dependent upon the characteristics of the hapten-protein conjugates. In this study, we report a new fluorescence-based method for the characterization of hapten-protein conjugates. The method is based on an effect promoted by hapten-protein conjugation density upon the fluorescence intensity of the intrinsic tryptophan chromophore molecules of the protein. The proposed methodology is applied to quantify the hapten-protein conjugation density for two different chlorophenoxyacetic acid pesticides, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenoxybutyric acid (2,4-DB), coupled to carrier protein. Highly sensitive anti-2,4-D and anti-2,4-DB antibodies were obtained using these well-characterized hapten-protein conjugates. The generated antibodies were used in an immunoassay format demonstrating inhibitory concentration (IC50) values equal to 30 and 7 ng/mL for 2,4-D and 2,4-DB, respectively. Linearity was observed in the concentration range between 0.1-500 nglmL with LODs around 4 and 3 ng/mL for 2,4-D and 2,4-DB, respectively, in standard water samples. The proposed method was successfully applied for the determination of the extent of hapten-protein conjugation to produce specific antibodies for immunoassay development against pesticides.

  15. High Affinity, Developability and Functional Size: The Holy Grail of Combinatorial Antibody Library Generation

    Directory of Open Access Journals (Sweden)

    Kathrin Tissot

    2011-05-01

    Full Text Available Since the initial description of phage display technology for the generation of human antibodies, a variety of selection methods has been developed. The most critical parameter for all in vitro-based approaches is the quality of the antibody library. Concurrent evolution of the libraries has allowed display and selection technologies to reveal their full potential. They come in different flavors, from naïve to fully synthetic and differ in terms of size, quality, method of preparation, framework and CDR composition. Early on, the focus has mainly been on affinities and thus on library size and diversity. Subsequently, the increased awareness of developability and cost of goods as important success factors has spurred efforts to generate libraries with improved biophysical properties and favorable production characteristics. More recently a major focus on reduction of unwanted side effects through reduced immunogenicity and improved overall biophysical behavior has led to a re-evaluation of library design.

  16. Insights into the chicken IgY with emphasis on the generation and applications of chicken recombinant monoclonal antibodies.

    Science.gov (United States)

    Lee, Warren; Syed Atif, Ali; Tan, Soo Choon; Leow, Chiuan Herng

    2017-08-01

    The advantages of chicken (Gallus gallus domesticus) antibodies as immunodiagnostic and immunotherapeutic biomolecules has only been recently recognized. Even so, chicken antibodies remain less-well characterized than their mammalian counterparts. This review aims at providing a current overview of the structure, function, development and generation of chicken antibodies. Additionally, brief but comprehensive insights into current knowledge pertaining to the immunogenetic framework and diversity-generation of the chicken immunoglobulin repertoire which have contributed to the establishment of recombinant chicken mAb-generating methods are discussed. Focus is provided on the current methods used to generate antibodies from chickens with added emphasis on the generation of recombinant chicken mAbs and its derivative formats. The advantages and limitations of established protocols for the generation of chicken mAbs are highlighted. The various applications of recombinant chicken mAbs and its derivative formats in immunodiagnostics and immunotherapy are further detailed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Generation of miniaturized planar ecombinant antibody arrays using a microcantilever-based printer

    International Nuclear Information System (INIS)

    Petersson, Linn; Dexlin-Mellby, Linda; Borrebaeck, Carl AK; Wingren, Christer; Berthet Duroure, Nathalie; Auger, Angèle; Ait Ikhlef, Ali

    2014-01-01

    Miniaturized (Ø 10 μm), multiplexed (>5-plex), and high-density (>100 000 spots cm −2 ) antibody arrays will play a key role in generating protein expression profiles in health and disease. However, producing such antibody arrays is challenging, and it is the type and range of available spotters which set the stage. This pilot study explored the use of a novel microspotting tool, Bioplume TM —consisting of an array of micromachined silicon cantilevers with integrated microfluidic channels—to produce miniaturized, multiplexed, and high-density planar recombinant antibody arrays for protein expression profiling which targets crude, directly labelled serum. The results demonstrated that 16-plex recombinant antibody arrays could be produced—based on miniaturized spot features (78.5 um 2 , Ø 10 μm) at a 7–125-times increased spot density (250 000 spots cm −2 ), interfaced with a fluorescent-based read-out. This prototype platform was found to display adequate reproducibility (spot-to-spot) and an assay sensitivity in the pM range. The feasibility of the array platform for serum protein profiling was outlined. (paper)

  18. Generation of miniaturized planar ecombinant antibody arrays using a microcantilever-based printer

    Science.gov (United States)

    Petersson, Linn; Berthet Duroure, Nathalie; Auger, Angèle; Dexlin-Mellby, Linda; Borrebaeck, Carl AK; Ait Ikhlef, Ali; Wingren, Christer

    2014-07-01

    Miniaturized (Ø 10 μm), multiplexed (>5-plex), and high-density (>100 000 spots cm-2) antibody arrays will play a key role in generating protein expression profiles in health and disease. However, producing such antibody arrays is challenging, and it is the type and range of available spotters which set the stage. This pilot study explored the use of a novel microspotting tool, BioplumeTM—consisting of an array of micromachined silicon cantilevers with integrated microfluidic channels—to produce miniaturized, multiplexed, and high-density planar recombinant antibody arrays for protein expression profiling which targets crude, directly labelled serum. The results demonstrated that 16-plex recombinant antibody arrays could be produced—based on miniaturized spot features (78.5 um2, Ø 10 μm) at a 7-125-times increased spot density (250 000 spots cm-2), interfaced with a fluorescent-based read-out. This prototype platform was found to display adequate reproducibility (spot-to-spot) and an assay sensitivity in the pM range. The feasibility of the array platform for serum protein profiling was outlined.

  19. A computer program for quantification of SH groups generated after reduction of monoclonal antibodies

    International Nuclear Information System (INIS)

    Escobar, Normando Iznaga; Morales, Alejo; Nunez, Gilda

    1996-01-01

    Reduction of disulfide bonds to sulfhydryl (SH) groups for direct radiolabeling of antibodies for immunoscintigraphic studies of colorectal and other cancers continues to be of considerable research interest. We have developed a general strategy and a versatile computer program for the quantification of the number of SH per molecule of antibody (Ab) generated after the treatment of monoclonal antibodies (MAbs) with reducing agents such as 2-mercaptoethanol (2-ME), stannous chloride (SnCl 2 ), dithiothreitol (DTT), dithioerythritol (DTE), ascorbic acid (AA), and the like. The program we describe here performs an unweighted least-squares regression analysis of the cysteine standard curve and interpolates the cysteine concentration of the samples. The number of SH groups per molecule of antibody in the 2-mercaptoethanol and in the other reducing agents was calculated from the cysteine standard curve using Ellman's reagent to develop the yellow color. The linear least-squares method fit the standard data with a high degree of accuracy and with the correlation coefficient r of 0.999. A program has been written for the IBM PC compatible computer utilizing a friendly menu to interact with the users. The package allows the user to change parameters of the assay, to calculate regression coefficients slope, intercept and its standard errors, to perform statistical analysis, together with detailed analysis of variance, and to produce an output of the results in a printed format

  20. A computer program for quantification of SH groups generated after reduction of monoclonal antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, Normando Iznaga; Morales, Alejo; Nunez, Gilda

    1996-07-01

    Reduction of disulfide bonds to sulfhydryl (SH) groups for direct radiolabeling of antibodies for immunoscintigraphic studies of colorectal and other cancers continues to be of considerable research interest. We have developed a general strategy and a versatile computer program for the quantification of the number of SH per molecule of antibody (Ab) generated after the treatment of monoclonal antibodies (MAbs) with reducing agents such as 2-mercaptoethanol (2-ME), stannous chloride (SnCl{sub 2}), dithiothreitol (DTT), dithioerythritol (DTE), ascorbic acid (AA), and the like. The program we describe here performs an unweighted least-squares regression analysis of the cysteine standard curve and interpolates the cysteine concentration of the samples. The number of SH groups per molecule of antibody in the 2-mercaptoethanol and in the other reducing agents was calculated from the cysteine standard curve using Ellman's reagent to develop the yellow color. The linear least-squares method fit the standard data with a high degree of accuracy and with the correlation coefficient r of 0.999. A program has been written for the IBM PC compatible computer utilizing a friendly menu to interact with the users. The package allows the user to change parameters of the assay, to calculate regression coefficients slope, intercept and its standard errors, to perform statistical analysis, together with detailed analysis of variance, and to produce an output of the results in a printed format.

  1. Robust Sub-nanomolar Library Preparation for High Throughput Next Generation Sequencing.

    Science.gov (United States)

    Wu, Wells W; Phue, Je-Nie; Lee, Chun-Ting; Lin, Changyi; Xu, Lai; Wang, Rong; Zhang, Yaqin; Shen, Rong-Fong

    2018-05-04

    Current library preparation protocols for Illumina HiSeq and MiSeq DNA sequencers require ≥2 nM initial library for subsequent loading of denatured cDNA onto flow cells. Such amounts are not always attainable from samples having a relatively low DNA or RNA input; or those for which a limited number of PCR amplification cycles is preferred (less PCR bias and/or more even coverage). A well-tested sub-nanomolar library preparation protocol for Illumina sequencers has however not been reported. The aim of this study is to provide a much needed working protocol for sub-nanomolar libraries to achieve outcomes as informative as those obtained with the higher library input (≥ 2 nM) recommended by Illumina's protocols. Extensive studies were conducted to validate a robust sub-nanomolar (initial library of 100 pM) protocol using PhiX DNA (as a control), genomic DNA (Bordetella bronchiseptica and microbial mock community B for 16S rRNA gene sequencing), messenger RNA, microRNA, and other small noncoding RNA samples. The utility of our protocol was further explored for PhiX library concentrations as low as 25 pM, which generated only slightly fewer than 50% of the reads achieved under the standard Illumina protocol starting with > 2 nM. A sub-nanomolar library preparation protocol (100 pM) could generate next generation sequencing (NGS) results as robust as the standard Illumina protocol. Following the sub-nanomolar protocol, libraries with initial concentrations as low as 25 pM could also be sequenced to yield satisfactory and reproducible sequencing results.

  2. Generation of Monoclonal Antibodies against Immunoglobulin Proteins of the Domestic Ferret (Mustela putorius furo)

    Science.gov (United States)

    2017-01-01

    The domestic ferret (Mustela putorius furo) serves as an animal model for the study of several viruses that cause human disease, most notably influenza. Despite the importance of this animal model, characterization of the immune response by flow cytometry (FCM) is severely hampered due to the limited number of commercially available reagents. To begin to address this unmet need and to facilitate more in-depth study of ferret B cells including the identification of antibody-secreting cells, eight unique murine monoclonal antibodies (mAb) with specificity for ferret immunoglobulin (Ig) were generated using conventional B cell hybridoma technology. These mAb were screened for reactivity against ferret peripheral blood mononuclear cells by FCM and demonstrate specificity for CD79β+ B cells. Several of these mAb are specific for the light chain of surface B cell receptor (BCR) and enable segregation of kappa and lambda B cells. Additionally, a mAb that yielded surface staining of nearly all surface BCR positive cells (i.e., pan ferret Ig) was generated. Collectively, these MαF-Ig mAb offer advancement compared to the existing portfolio of polyclonal anti-ferret Ig detection reagents and should be applicable to a wide array of immunologic assays including the identification of antibody-secreting cells by FCM. PMID:28286781

  3. Acoustic methods for high-throughput protein crystal mounting at next-generation macromolecular crystallographic beamlines.

    Science.gov (United States)

    Roessler, Christian G; Kuczewski, Anthony; Stearns, Richard; Ellson, Richard; Olechno, Joseph; Orville, Allen M; Allaire, Marc; Soares, Alexei S; Héroux, Annie

    2013-09-01

    To take full advantage of advanced data collection techniques and high beam flux at next-generation macromolecular crystallography beamlines, rapid and reliable methods will be needed to mount and align many samples per second. One approach is to use an acoustic ejector to eject crystal-containing droplets onto a solid X-ray transparent surface, which can then be positioned and rotated for data collection. Proof-of-concept experiments were conducted at the National Synchrotron Light Source on thermolysin crystals acoustically ejected onto a polyimide `conveyor belt'. Small wedges of data were collected on each crystal, and a complete dataset was assembled from a well diffracting subset of these crystals. Future developments and implementation will focus on achieving ejection and translation of single droplets at a rate of over one hundred per second.

  4. Construction of human antibody gene libraries and selection of antibodies by phage display.

    Science.gov (United States)

    Frenzel, André; Kügler, Jonas; Wilke, Sonja; Schirrmann, Thomas; Hust, Michael

    2014-01-01

    Antibody phage display is the most commonly used in vitro selection technology and has yielded thousands of useful antibodies for research, diagnostics, and therapy.The prerequisite for successful generation and development of human recombinant antibodies using phage display is the construction of a high-quality antibody gene library. Here, we describe the methods for the construction of human immune and naive scFv gene libraries.The success also depends on the panning strategy for the selection of binders from these libraries. In this article, we describe a panning strategy that is high-throughput compatible and allows parallel selection in microtiter plates.

  5. Coupled high-throughput functional screening and next generation sequencing for identification of plant polymer decomposing enzymes in metagenomic libraries

    Directory of Open Access Journals (Sweden)

    Mari eNyyssönen

    2013-09-01

    Full Text Available Recent advances in sequencing technologies generate new predictions and hypotheses about the functional roles of environmental microorganisms. Yet, until we can test these predictions at a scale that matches our ability to generate them, most of them will remain as hypotheses. Function-based mining of metagenomic libraries can provide direct linkages between genes, metabolic traits and microbial taxa and thus bridge this gap between sequence data generation and functional predictions. Here we developed high-throughput screening assays for function-based characterization of activities involved in plant polymer decomposition from environmental metagenomic libraries. The multiplexed assays use fluorogenic and chromogenic substrates, combine automated liquid handling and use a genetically modified expression host to enable simultaneous screening of 12,160 clones for 14 activities in a total of 170,240 reactions. Using this platform we identified 374 (0.26 % cellulose, hemicellulose, chitin, starch, phosphate and protein hydrolyzing clones from fosmid libraries prepared from decomposing leaf litter. Sequencing on the Illumina MiSeq platform, followed by assembly and gene prediction of a subset of 95 fosmid clones, identified a broad range of bacterial phyla, including Actinobacteria, Bacteroidetes, multiple Proteobacteria sub-phyla in addition to some Fungi. Carbohydrate-active enzyme genes from 20 different glycoside hydrolase families were detected. Using tetranucleotide frequency binning of fosmid sequences, multiple enzyme activities from distinct fosmids were linked, demonstrating how biochemically-confirmed functional traits in environmental metagenomes may be attributed to groups of specific organisms. Overall, our results demonstrate how functional screening of metagenomic libraries can be used to connect microbial functionality to community composition and, as a result, complement large-scale metagenomic sequencing efforts.

  6. A high-throughput method to detect RNA profiling by integration of RT-MLPA with next generation sequencing technology.

    Science.gov (United States)

    Wang, Jing; Yang, Xue; Chen, Haofeng; Wang, Xuewei; Wang, Xiangyu; Fang, Yi; Jia, Zhenyu; Gao, Jidong

    2017-07-11

    RNA in formalin-fixed and paraffin-embedded (FFPE) tissues provides large amount of information indicating disease stages, histological tumor types and grades, as well as clinical outcomes. However, Detection of RNA expression levels in formalin-fixed and paraffin-embedded samples is extremely difficult due to poor RNA quality. Here we developed a high-throughput method, Reverse Transcription-Multiple Ligation-dependent Probe Sequencing (RT-MLPSeq), to determine expression levels of multiple transcripts in FFPE samples. By combining Reverse Transcription-Multiple Ligation-dependent Amplification method and next generation sequencing technology, RT-MLPSeq overcomes the limit of probe length in multiplex ligation-dependent probe amplification assay and thus could detect expression levels of transcripts without quantitative limitations. We proved that different RT-MLPSeq probes targeting on the same transcripts have highly consistent results and the starting RNA/cDNA input could be as little as 1 ng. RT-MLPSeq also presented consistent relative RNA levels of selected 13 genes with reverse transcription quantitative PCR. Finally, we demonstrated the application of the new RT-MLPSeq method by measuring the mRNA expression levels of 21 genes which can be used for accurate calculation of the breast cancer recurrence score - an index that has been widely used for managing breast cancer patients.

  7. The pig gut microbial diversity: Understanding the pig gut microbial ecology through the next generation high throughput sequencing.

    Science.gov (United States)

    Kim, Hyeun Bum; Isaacson, Richard E

    2015-06-12

    The importance of the gut microbiota of animals is widely acknowledged because of its pivotal roles in the health and well being of animals. The genetic diversity of the gut microbiota contributes to the overall development and metabolic needs of the animal, and provides the host with many beneficial functions including production of volatile fatty acids, re-cycling of bile salts, production of vitamin K, cellulose digestion, and development of immune system. Thus the intestinal microbiota of animals has been the subject of study for many decades. Although most of the older studies have used culture dependent methods, the recent advent of high throughput sequencing of 16S rRNA genes has facilitated in depth studies exploring microbial populations and their dynamics in the animal gut. These culture independent DNA based studies generate large amounts of data and as a result contribute to a more detailed understanding of the microbiota dynamics in the gut and the ecology of the microbial populations. Of equal importance, is being able to identify and quantify microbes that are difficult to grow or that have not been grown in the laboratory. Interpreting the data obtained from this type of study requires using basic principles of microbial diversity to understand importance of the composition of microbial populations. In this review, we summarize the literature on culture independent studies of the pig gut microbiota with an emphasis on its succession and alterations caused by diverse factors. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Antibodies directed against monomorphic and evolutionary conserved self epitopes may be generated in 'knock-out' mice. Development of monoclonal antibodies directed against monomorphic MHC class I determinants

    DEFF Research Database (Denmark)

    Claesson, M H; Endel, B; Ulrik, J

    1994-01-01

    Beta-2 microglobulin (beta 2m) gene 'knock-out' mice (C1D) were primed with purified H-2Kb and H-2Db molecules and spleen cells from immunized mice were used to generate monoclonal antibody secreting B-cell hybridomas. Approximately 0.2% of the Ig-secreting primary microcultures contained H-2b...

  9. Synthesis of site-heterologous haptens for high-affinity anti-pyraclostrobin antibody generation.

    Science.gov (United States)

    Mercader, Josep V; Agulló, Consuelo; Abad-Somovilla, Antonio; Abad-Fuentes, Antonio

    2011-03-07

    The design and synthesis of functional chemical derivatives of small organic molecules is usually a key step for the intricate production of a variety of bioconjugates. In this respect, the derivatization site at which the spacer arm is introduced in immunizing conjugates constitutes a highly critical parameter for the generation of high-affinity and selective antibodies. However, due to the usual complexity of the required synthetic procedures, the appropriate comparison of alternative tethering positions has often been neglected. In the present study, meticulous strategies were followed to prepare synthetic derivatives of pyraclostrobin with the same linkers located at diverse rationally-chosen sites. Activity appraisal of antibodies and bioconjugates was carried out by bidimensional competitive direct and indirect immunoassays, and a superior performance of two of the three synthesized haptens was found. Finally, a detailed analysis of the conformations of the target molecule and the synthesized haptens in aqueous solution was done using computer assisted molecular modeling techniques. This study suggested that the lower titers and affinities of one set of antibodies are most probably due to conformational effects of the spacer arm in the immunizing bioconjugate.

  10. Micromethod for quantification of SH groups generated after reduction of monoclonal antibodies

    International Nuclear Information System (INIS)

    Escobar, Normando Iznaga; Morales, Alejo; Nunez, Gilda

    1996-01-01

    A simple, rapid, and reproducible micromethod for quantification of sulfhydryl (SH) groups generated after reduction of monoclonal antibody (MAb) disulfide bonds with 2-mercaptoethanol (2-ME) is described. The number of SH groups per molecule of antibody in the 2-ME and in the other reducing agents was calculated from the cysteine standard curve using Ellman's reagent to develop the yellow color. Results were plotted as absorbance at 405 nm vs. cysteine concentration (μg/mL). After subtraction of the background due to Ellman's reagent, a straight-line relationship passing through the origin was obtained. Absorption spectrum of the yellow products was controlled, and no significative differences were found between optical density at 412 nm and 405 nm. Using a small quantity of antibody in the order of 37 μg, the lowest detection limit for cysteine quantification was 0.03 μg. An excellent linear correlation was found between both cysteine concentration and absorbance (r = 0.999), and the mean value of the relative error in the quantification of cysteine from samples was 2.8%. A statistical Student t-test showed an excellent linearity and parallelism between cysteine standard and samples

  11. Micromethod for quantification of SH groups generated after reduction of monoclonal antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, Normando Iznaga; Morales, Alejo; Nunez, Gilda

    1996-07-01

    A simple, rapid, and reproducible micromethod for quantification of sulfhydryl (SH) groups generated after reduction of monoclonal antibody (MAb) disulfide bonds with 2-mercaptoethanol (2-ME) is described. The number of SH groups per molecule of antibody in the 2-ME and in the other reducing agents was calculated from the cysteine standard curve using Ellman's reagent to develop the yellow color. Results were plotted as absorbance at 405 nm vs. cysteine concentration ({mu}g/mL). After subtraction of the background due to Ellman's reagent, a straight-line relationship passing through the origin was obtained. Absorption spectrum of the yellow products was controlled, and no significative differences were found between optical density at 412 nm and 405 nm. Using a small quantity of antibody in the order of 37 {mu}g, the lowest detection limit for cysteine quantification was 0.03 {mu}g. An excellent linear correlation was found between both cysteine concentration and absorbance (r = 0.999), and the mean value of the relative error in the quantification of cysteine from samples was 2.8%. A statistical Student t-test showed an excellent linearity and parallelism between cysteine standard and samples.

  12. Next-generation phage display: integrating and comparing available molecular tools to enable cost-effective high-throughput analysis.

    Directory of Open Access Journals (Sweden)

    Emmanuel Dias-Neto

    2009-12-01

    Full Text Available Combinatorial phage display has been used in the last 20 years in the identification of protein-ligands and protein-protein interactions, uncovering relevant molecular recognition events. Rate-limiting steps of combinatorial phage display library selection are (i the counting of transducing units and (ii the sequencing of the encoded displayed ligands. Here, we adapted emerging genomic technologies to minimize such challenges.We gained efficiency by applying in tandem real-time PCR for rapid quantification to enable bacteria-free phage display library screening, and added phage DNA next-generation sequencing for large-scale ligand analysis, reporting a fully integrated set of high-throughput quantitative and analytical tools. The approach is far less labor-intensive and allows rigorous quantification; for medical applications, including selections in patients, it also represents an advance for quantitative distribution analysis and ligand identification of hundreds of thousands of targeted particles from patient-derived biopsy or autopsy in a longer timeframe post library administration. Additional advantages over current methods include increased sensitivity, less variability, enhanced linearity, scalability, and accuracy at much lower cost. Sequences obtained by qPhage plus pyrosequencing were similar to a dataset produced from conventional Sanger-sequenced transducing-units (TU, with no biases due to GC content, codon usage, and amino acid or peptide frequency. These tools allow phage display selection and ligand analysis at >1,000-fold faster rate, and reduce costs approximately 250-fold for generating 10(6 ligand sequences.Our analyses demonstrates that whereas this approach correlates with the traditional colony-counting, it is also capable of a much larger sampling, allowing a faster, less expensive, more accurate and consistent analysis of phage enrichment. Overall, qPhage plus pyrosequencing is superior to TU-counting plus Sanger

  13. Diagnostic potential of recombinant scFv antibodies generated against hemagglutinin protein of influenza A virus

    Directory of Open Access Journals (Sweden)

    Roopali eRajput

    2015-09-01

    Full Text Available Human influenza A viruses have been the cause of enormous socio-economic losses worldwide. In order to combat such a notorious pathogen, hemagglutinin protein (HA has been a preferred target for generation of neutralizing-antibodies, as potent therapeutic/ diagnostic agents. In the present study, recombinant anti-HA single chain variable fragment (scFv antibodies were constructed using the phage display technology to aid in diagnosis and treatment of human influenza A virus infections. Spleen cells of mice hyper-immunized with A/New Caledonia/20/99 (H1N1 virus were used as the source for recombinant antibody (rAb production. The antigen-binding phages were quantified after 6 rounds of bio-panning against A/New Caledonia/20/99 (H1N1, A/California/07/2009 (H1N1-like, or A/Udorn/307/72(H3N2 viruses. The phage yield was maximum for the A/New Caledonia/20/99 (H1N1, however, considerable cross-reactivity was observed for the other virus strains as well. The HA-specific polyclonal rAb preparation was subjected to selection of single clones for identification of high reactive relatively conserved epitopes. The high affinity rAbs were tested against certain known conserved HA epitopes by peptide ELISA. Three recombinant mAbs showed reactivity with both the H1N1 strains and one (C5 showed binding with all the three viral strains. The C5 antibody was thus used for development of an ELISA test for diagnosis of influenza virus infection. Based on the sample size in the current analysis, the ELISA test demonstrated 83.9% sensitivity and 100% specificity. Thus, the ELISA, developed in our study, may prove as a cheaper alternative to the presently used real time RT-PCR test for detection of human influenza A viruses in clinical specimens, which will be beneficial, especially in the developing countries. Since, the two antibodies identified in this study are reactive to conserved HA epitopes; these may prove as potential therapeutic agents as well.

  14. A novel anti-GPC3 monoclonal antibody (YP7) | Center for Cancer Research

    Science.gov (United States)

    Glypican-3 (GPC3) is an emerging therapeutic target in hepatoma. A novel anti-GPC3 monoclonal antibody (YP7) has been generated through a combination of peptide immunization and high-throughput flow cytometry screening. YP7 binds cell-surface-associated GPC3 with high affinity and exhibits significant hepatoma xenograft growth inhibition in nude mice. The new antibody may have

  15. Evaluation of a transposase protocol for rapid generation of shotgun high-throughput sequencing libraries from nanogram quantities of DNA.

    Science.gov (United States)

    Marine, Rachel; Polson, Shawn W; Ravel, Jacques; Hatfull, Graham; Russell, Daniel; Sullivan, Matthew; Syed, Fraz; Dumas, Michael; Wommack, K Eric

    2011-11-01

    Construction of DNA fragment libraries for next-generation sequencing can prove challenging, especially for samples with low DNA yield. Protocols devised to circumvent the problems associated with low starting quantities of DNA can result in amplification biases that skew the distribution of genomes in metagenomic data. Moreover, sample throughput can be slow, as current library construction techniques are time-consuming. This study evaluated Nextera, a new transposon-based method that is designed for quick production of DNA fragment libraries from a small quantity of DNA. The sequence read distribution across nine phage genomes in a mock viral assemblage met predictions for six of the least-abundant phages; however, the rank order of the most abundant phages differed slightly from predictions. De novo genome assemblies from Nextera libraries provided long contigs spanning over half of the phage genome; in four cases where full-length genome sequences were available for comparison, consensus sequences were found to match over 99% of the genome with near-perfect identity. Analysis of areas of low and high sequence coverage within phage genomes indicated that GC content may influence coverage of sequences from Nextera libraries. Comparisons of phage genomes prepared using both Nextera and a standard 454 FLX Titanium library preparation protocol suggested that the coverage biases according to GC content observed within the Nextera libraries were largely attributable to bias in the Nextera protocol rather than to the 454 sequencing technology. Nevertheless, given suitable sequence coverage, the Nextera protocol produced high-quality data for genomic studies. For metagenomics analyses, effects of GC amplification bias would need to be considered; however, the library preparation standardization that Nextera provides should benefit comparative metagenomic analyses.

  16. Affinity isolation of antigen-specific circulating B cells for generation of phage display-derived human monoclonal antibodies

    DEFF Research Database (Denmark)

    Ditzel, Henrik

    2009-01-01

    A method is described for affinity isolation of antigen-specific circulating B cells of interest for subsequent generation of immune antibody phage display libraries. This approach should overcome the problem of low yields of monoclonal antibodies of interest in the libraries generated from...... peripheral blood lymphocytes caused by the low abundance of antigen-specific B cells in the circulation. The preselection of B cells is based on the specificity of the surface Ig receptor and is accomplished using the antigen of interest conjugated to magnetic beads. This method should significantly increase...... the frequency of antibody phage particles of interest in the library and allow for efficient isolation monoclonal antibodies with the predefined specificity....

  17. Generation of monoclonal antibodies for the assessment of protein purification by recombinant ribosomal coupling

    DEFF Research Database (Denmark)

    Kristensen, Janni; Sperling-Petersen, Hans Uffe; Mortensen, Kim Kusk

    2005-01-01

    We recently described a conceptually novel method for the purification of recombinant proteins with a propensity to form inclusion bodies in the cytoplasm of Escherichia coli. Recombinant proteins were covalently coupled to the E. coli ribosome by fusing them to ribosomal protein 23 (rpL23...... therefore purified rpL23-GFP-His, rpL23-His and GFP from E. coli recombinants using affinity, ion exchange and hydrophobic interaction chromatography. These proteins could be purified with yields of 150, 150 and 1500 microg per gram cellular wet weight, respectively. However, rpL23-GFP-His could only...... proteolytic cleavage sites. We conclude that the generated antibodies can be used to evaluate ribosomal coupling of recombinant target proteins as well as the efficiency of their separation from the ribosome....

  18. Generation and Partial Characterization of Rabbit Monoclonal Antibody to Amyloid-β Peptide 1-37 (Aβ37).

    Science.gov (United States)

    Mehta, Pankaj D; Blain, Jean-Francois; Freeman, Emily A; Patrick, Bruce A; Barshatzky, Marc; Hrdlicka, Lori A; Mehta, Sangita P; Frackowiak, Janusz; Mazur-Kolecka, Bozena; Wegiel, Jerzy; Patzke, Holger; Miller, David L

    2017-01-01

    Secreted soluble amyloid-β 1-37 (Aβ37) peptide is one of the prominent Aβ forms next to Aβ40, and is found in cerebrospinal fluid (CSF) and blood. Recent studies have shown the importance of quantitation of CSF Aβ37 levels in combination with Aβ38, Aβ40, and Aβ42 to support the diagnosis of patients with probable Alzheimer's disease (AD), and the value of antibody to Aβ37 to facilitate drug discovery studies. However, the availability of reliable and specific monoclonal antibody to Aβ37 is very limited. Our aims were: 1) to generate and partially characterize rabbit monoclonal antibody (RabmAb) to Aβ37, and 2) to determine whether the antibody detects changes in Aβ37 levels produced by a γ-secretase modulator (GSM). Our generated RabmAb to Aβ37 was found to be specific to Aβ37, since it did not react with Aβ36, Aβ38, Aβ39, Aβ40, and Aβ42 in an ELISA or immunoblotting. The epitope of the antibody was contained in the seven C-terminal residues of Aβ37. The antibody was sensitive enough to measure CSF and plasma Aβ37 levels in ELISA. Immunohistological studies showed the presence of Aβ37-positive deposits in the brain of AD, and Down syndrome persons diagnosed with AD. Our studies also showed that the antibody detected Aβ37 increases in CSF and brains of rodents following treatment with a GSM. Thus, our antibody can be widely applied to AD research, and in a panel based approach it may have potential to support the diagnosis of probable AD, and in testing the effect of GSMs to target AD.

  19. Assessment of sensitivity and specificity of first, second, and third generation EIA for the detection of antibodies to HIV-1 in oral fluid.

    Science.gov (United States)

    Louie, Brian; Lei, John; Liska, Sally; Dowling, Teri; Pandori, Mark W

    2009-07-01

    The performances of three blood-based immunoassays test kits were compared with regard to their ability to detect HIV-1 antibody in oral fluid. It was found that these three kits differ in their ability to detect HIV-1 antibody. Notably, a third generation EIA which has been shown to possess superior sensitivity for antibody detection in plasma appears to possess no sensitivity advantage for detecting HIV-1 antibody in oral fluid.

  20. Antithyroglobulin antibody

    Science.gov (United States)

    Thyroglobulin antibody; Thyroiditis - thyroglobulin antibody; Hypothyroidism - thyroglobulin antibody; Thyroiditis - thyroglobulin antibody; Graves disease - thyroglobulin antibody; Underactive thyroid - thyroglobulin antibody

  1. Leveraging the Power of High Performance Computing for Next Generation Sequencing Data Analysis: Tricks and Twists from a High Throughput Exome Workflow

    Science.gov (United States)

    Wonczak, Stephan; Thiele, Holger; Nieroda, Lech; Jabbari, Kamel; Borowski, Stefan; Sinha, Vishal; Gunia, Wilfried; Lang, Ulrich; Achter, Viktor; Nürnberg, Peter

    2015-01-01

    Next generation sequencing (NGS) has been a great success and is now a standard method of research in the life sciences. With this technology, dozens of whole genomes or hundreds of exomes can be sequenced in rather short time, producing huge amounts of data. Complex bioinformatics analyses are required to turn these data into scientific findings. In order to run these analyses fast, automated workflows implemented on high performance computers are state of the art. While providing sufficient compute power and storage to meet the NGS data challenge, high performance computing (HPC) systems require special care when utilized for high throughput processing. This is especially true if the HPC system is shared by different users. Here, stability, robustness and maintainability are as important for automated workflows as speed and throughput. To achieve all of these aims, dedicated solutions have to be developed. In this paper, we present the tricks and twists that we utilized in the implementation of our exome data processing workflow. It may serve as a guideline for other high throughput data analysis projects using a similar infrastructure. The code implementing our solutions is provided in the supporting information files. PMID:25942438

  2. Multi-epitope Models Explain How Pre-existing Antibodies Affect the Generation of Broadly Protective Responses to Influenza.

    Directory of Open Access Journals (Sweden)

    Veronika I Zarnitsyna

    2016-06-01

    Full Text Available The development of next-generation influenza vaccines that elicit strain-transcendent immunity against both seasonal and pandemic viruses is a key public health goal. Targeting the evolutionarily conserved epitopes on the stem of influenza's major surface molecule, hemagglutinin, is an appealing prospect, and novel vaccine formulations show promising results in animal model systems. However, studies in humans indicate that natural infection and vaccination result in limited boosting of antibodies to the stem of HA, and the level of stem-specific antibody elicited is insufficient to provide broad strain-transcendent immunity. Here, we use mathematical models of the humoral immune response to explore how pre-existing immunity affects the ability of vaccines to boost antibodies to the head and stem of HA in humans, and, in particular, how it leads to the apparent lack of boosting of broadly cross-reactive antibodies to the stem epitopes. We consider hypotheses where binding of antibody to an epitope: (i results in more rapid clearance of the antigen; (ii leads to the formation of antigen-antibody complexes which inhibit B cell activation through Fcγ receptor-mediated mechanism; and (iii masks the epitope and prevents the stimulation and proliferation of specific B cells. We find that only epitope masking but not the former two mechanisms to be key in recapitulating patterns in data. We discuss the ramifications of our findings for the development of vaccines against both seasonal and pandemic influenza.

  3. Hybridization-based antibody cDNA recovery for the production of recombinant antibodies identified by repertoire sequencing.

    Science.gov (United States)

    Valdés-Alemán, Javier; Téllez-Sosa, Juan; Ovilla-Muñoz, Marbella; Godoy-Lozano, Elizabeth; Velázquez-Ramírez, Daniel; Valdovinos-Torres, Humberto; Gómez-Barreto, Rosa E; Martinez-Barnetche, Jesús

    2014-01-01

    High-throughput sequencing of the antibody repertoire is enabling a thorough analysis of B cell diversity and clonal selection, which may improve the novel antibody discovery process. Theoretically, an adequate bioinformatic analysis could allow identification of candidate antigen-specific antibodies, requiring their recombinant production for experimental validation of their specificity. Gene synthesis is commonly used for the generation of recombinant antibodies identified in silico. Novel strategies that bypass gene synthesis could offer more accessible antibody identification and validation alternatives. We developed a hybridization-based recovery strategy that targets the complementarity-determining region 3 (CDRH3) for the enrichment of cDNA of candidate antigen-specific antibody sequences. Ten clonal groups of interest were identified through bioinformatic analysis of the heavy chain antibody repertoire of mice immunized with hen egg white lysozyme (HEL). cDNA from eight of the targeted clonal groups was recovered efficiently, leading to the generation of recombinant antibodies. One representative heavy chain sequence from each clonal group recovered was paired with previously reported anti-HEL light chains to generate full antibodies, later tested for HEL-binding capacity. The recovery process proposed represents a simple and scalable molecular strategy that could enhance antibody identification and specificity assessment, enabling a more cost-efficient generation of recombinant antibodies.

  4. High-throughput expression of animal venom toxins in Escherichia coli to generate a large library of oxidized disulphide-reticulated peptides for drug discovery.

    Science.gov (United States)

    Turchetto, Jeremy; Sequeira, Ana Filipa; Ramond, Laurie; Peysson, Fanny; Brás, Joana L A; Saez, Natalie J; Duhoo, Yoan; Blémont, Marilyne; Guerreiro, Catarina I P D; Quinton, Loic; De Pauw, Edwin; Gilles, Nicolas; Darbon, Hervé; Fontes, Carlos M G A; Vincentelli, Renaud

    2017-01-17

    Animal venoms are complex molecular cocktails containing a wide range of biologically active disulphide-reticulated peptides that target, with high selectivity and efficacy, a variety of membrane receptors. Disulphide-reticulated peptides have evolved to display improved specificity, low immunogenicity and to show much higher resistance to degradation than linear peptides. These properties make venom peptides attractive candidates for drug development. However, recombinant expression of reticulated peptides containing disulphide bonds is challenging, especially when associated with the production of large libraries of bioactive molecules for drug screening. To date, as an alternative to artificial synthetic chemical libraries, no comprehensive recombinant libraries of natural venom peptides are accessible for high-throughput screening to identify novel therapeutics. In the accompanying paper an efficient system for the expression and purification of oxidized disulphide-reticulated venom peptides in Escherichia coli is described. Here we report the development of a high-throughput automated platform, that could be adapted to the production of other families, to generate the largest ever library of recombinant venom peptides. The peptides were produced in the periplasm of E. coli using redox-active DsbC as a fusion tag, thus allowing the efficient formation of correctly folded disulphide bridges. TEV protease was used to remove fusion tags and recover the animal venom peptides in the native state. Globally, within nine months, out of a total of 4992 synthetic genes encoding a representative diversity of venom peptides, a library containing 2736 recombinant disulphide-reticulated peptides was generated. The data revealed that the animal venom peptides produced in the bacterial host were natively folded and, thus, are putatively biologically active. Overall this study reveals that high-throughput expression of animal venom peptides in E. coli can generate large

  5. High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles

    DEFF Research Database (Denmark)

    Moller, Isabel Eva; Marcus, Susan E.; Haeger, Ash

    2008-01-01

    Antibody-producing hybridoma cell lines were created following immunisation with a crude extract of cell wall polymers from the plant Arabidopsis thaliana. In order to rapidly screen the specificities of individual monoclonal antibodies (mAbs), their binding to microarrays containing 50 cell wall...... investigated using subsequent immunochemical and biochemical analyses and two novel mAbs are described in detail. mAb LM13 binds to an arabinanase-sensitive pectic epitope and mAb LM14, binds to an epitope occurring on arabinogalactan-proteins. Both mAbs display novel patterns of recognition of cell walls...

  6. Cloning of the immunological repertoire in Escherichia coli for generation of monoclonal catalytic antibodies: construction of a heavy chain variable region-specific cDNA library.

    OpenAIRE

    Sastry, L; Alting-Mees, M; Huse, W D; Short, J M; Sorge, J A; Hay, B N; Janda, K D; Benkovic, S J; Lerner, R A

    1989-01-01

    Efficient generation of catalytic antibodies is uniquely dependent on the exact nature of the binding interactions in the antigen-antibody complex. Current methods for generation of monoclonal antibodies do not efficiently survey the immunological repertoire and, therefore, they limit the number of catalysts that can be obtained. We are exploring methods to clone and express the immunological repertoire in Escherichia coli. As the essential first step, we present here a method for the establi...

  7. High throughput resistance profiling of Plasmodium falciparum infections based on custom dual indexing and Illumina next generation sequencing-technology

    DEFF Research Database (Denmark)

    Nag, Sidsel; Dalgaard, Marlene Danner; Kofoed, Poul-Erik

    2017-01-01

    Genetic polymorphisms in P. falciparum can be used to indicate the parasite's susceptibility to antimalarial drugs as well as its geographical origin. Both of these factors are key to monitoring development and spread of antimalarial drug resistance. In this study, we combine multiplex PCR, custom...... designed dual indexing and Miseq sequencing for high throughput SNP-profiling of 457 malaria infections from Guinea-Bissau, at the cost of 10 USD per sample. By amplifying and sequencing 15 genetic fragments, we cover 20 resistance-conferring SNPs occurring in pfcrt, pfmdr1, pfdhfr, pfdhps, as well...

  8. Generation of anti-idiotype scFv for pharmacokinetic measurement in lymphoma patients treated with chimera anti-CD22 antibody SM03.

    Directory of Open Access Journals (Sweden)

    Qi Zhao

    Full Text Available Pre-clinical and clinical studies of therapeutic antibodies require highly specific reagents to examine their immune responses, bio-distributions, immunogenicity, and pharmacodynamics in patients. Selective antigen-mimicking anti-idiotype antibody facilitates the assessment of therapeutic antibody in the detection, quantitation and characterization of antibody immune responses. Using mouse specific degenerate primer pairs and splenocytic RNA, we generated an idiotype antibody-immunized phage-displayed scFv library in which an anti-idiotype antibody against the therapeutic chimera anti-CD22 antibody SM03 was isolated. The anti-idiotype scFv recognized the idiotype of anti-CD22 antibody and inhibited binding of SM03 to CD22 on Raji cell surface. The anti-idiotype scFv was subsequently classified as Ab2γ type. Moreover, our results also demonstrated firstly that the anti-idiotype scFv could be used for pharmacokinetic measurement of circulating residual antibody in lymphoma patients treated with chimera anti-CD22 monoclonal antibody SM03. Of important, the present approach could be easily adopted to generate anti-idiotype antibodies for therapeutic antibodies targeting membrane proteins, saving the cost and time for producing a soluble antigen.

  9. Generation and characterization of ixekizumab, a humanized monoclonal antibody that neutralizes interleukin-17A

    Directory of Open Access Journals (Sweden)

    Liu L

    2016-04-01

    Full Text Available Ling Liu,1 Jirong Lu,1 Barrett W Allan,2 Ying Tang,2 Jonathan Tetreault,1 Chi-kin Chow,1 Barbra Barmettler,2 James Nelson,2 Holly Bina,1 Lihua Huang,3 Victor J Wroblewski,4 Kristine Kikly1 1Biotechnology Discovery Research, Indianapolis, IN, 2Applied Molecular Evolution, Lilly Biotechnology Center, San Diego, CA, 3Bioproduct Research and Development, 4Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA Abstract: Interleukin (IL-17A exists as a homodimer (A/A or as a heterodimer (A/F with IL-17F. IL-17A is expressed by a subset of T-cells, called Th17 cells, at inflammatory sites. Most cell types can respond to the local production of IL-17A because of the near ubiquitous expression of IL-17A receptors, IL-17RA and IL-17RC. IL-17A stimulates the release of cytokines and chemokines designed to recruit and activate both neutrophils and memory T-cells to the site of injury or inflammation and maintain a proinflammatory state. IL-17A-producing pathogenic T-cells contribute to the pathogenesis of autoimmune diseases, including psoriasis, psoriatic arthritis, rheumatoid arthritis, and ankylosing spondylitis. This study describes the generation and characterization of ixekizumab, a humanized IgG4 variant IL-17A-neutralizing antibody. Ixekizumab binds human and cynomolgus monkey IL-17A with high affinity and binds rabbit IL-17A weakly but does not bind to rodent IL-17A or other IL-17 family members. Ixekizumab effectively inhibits the interaction between IL-17A and its receptor in binding assays and potently blocks IL-17A-induced GRO or KC secretion in cell-based assays. In an in vivo mouse pharmcodynamic model, ixekizumab blocks human IL-17A-induced mouse KC secretion. These data provide a comprehensive preclinical characterization of ixekizumab, for which the efficacy and safety have been demonstrated in human clinical trials in psoriasis and psoriatic arthritis.Keywords: ixekizumab, IL-17A monoclonal antibody

  10. Design and construction of a first-generation high-throughput integrated robotic molecular biology platform for bioenergy applications.

    Science.gov (United States)

    Hughes, Stephen R; Butt, Tauseef R; Bartolett, Scott; Riedmuller, Steven B; Farrelly, Philip

    2011-08-01

    The molecular biological techniques for plasmid-based assembly and cloning of gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. High-throughput integrated robotic molecular biology platforms that have the capacity to rapidly clone and express heterologous gene open reading frames in bacteria and yeast and to screen large numbers of expressed proteins for optimized function are an important technology for improving microbial strains for biofuel production. The process involves the production of full-length complementary DNA libraries as a source of plasmid-based clones to express the desired proteins in active form for determination of their functions. Proteins that were identified by high-throughput screening as having desired characteristics are overexpressed in microbes to enable them to perform functions that will allow more cost-effective and sustainable production of biofuels. Because the plasmid libraries are composed of several thousand unique genes, automation of the process is essential. This review describes the design and implementation of an automated integrated programmable robotic workcell capable of producing complementary DNA libraries, colony picking, isolating plasmid DNA, transforming yeast and bacteria, expressing protein, and performing appropriate functional assays. These operations will allow tailoring microbial strains to use renewable feedstocks for production of biofuels, bioderived chemicals, fertilizers, and other coproducts for profitable and sustainable biorefineries. Published by Elsevier Inc.

  11. Generation and characterization of function-blocking anti-ectodysplasin A (EDA) monoclonal antibodies that induce ectodermal dysplasia.

    Science.gov (United States)

    Kowalczyk-Quintas, Christine; Willen, Laure; Dang, Anh Thu; Sarrasin, Heidi; Tardivel, Aubry; Hermes, Katharina; Schneider, Holm; Gaide, Olivier; Donzé, Olivier; Kirby, Neil; Headon, Denis J; Schneider, Pascal

    2014-02-14

    Development of ectodermal appendages, such as hair, teeth, sweat glands, sebaceous glands, and mammary glands, requires the action of the TNF family ligand ectodysplasin A (EDA). Mutations of the X-linked EDA gene cause reduction or absence of many ectodermal appendages and have been identified as a cause of ectodermal dysplasia in humans, mice, dogs, and cattle. We have generated blocking antibodies, raised in Eda-deficient mice, against the conserved, receptor-binding domain of EDA. These antibodies recognize epitopes overlapping the receptor-binding site and prevent EDA from binding and activating EDAR at close to stoichiometric ratios in in vitro binding and activity assays. The antibodies block EDA1 and EDA2 of both mammalian and avian origin and, in vivo, suppress the ability of recombinant Fc-EDA1 to rescue ectodermal dysplasia in Eda-deficient Tabby mice. Moreover, administration of EDA blocking antibodies to pregnant wild type mice induced in developing wild type fetuses a marked and permanent ectodermal dysplasia. These function-blocking anti-EDA antibodies with wide cross-species reactivity will enable study of the developmental and postdevelopmental roles of EDA in a variety of organisms and open the route to therapeutic intervention in conditions in which EDA may be implicated.

  12. Generation and Characterization of Function-blocking Anti-ectodysplasin A (EDA) Monoclonal Antibodies That Induce Ectodermal Dysplasia*

    Science.gov (United States)

    Kowalczyk-Quintas, Christine; Willen, Laure; Dang, Anh Thu; Sarrasin, Heidi; Tardivel, Aubry; Hermes, Katharina; Schneider, Holm; Gaide, Olivier; Donzé, Olivier; Kirby, Neil; Headon, Denis J.; Schneider, Pascal

    2014-01-01

    Development of ectodermal appendages, such as hair, teeth, sweat glands, sebaceous glands, and mammary glands, requires the action of the TNF family ligand ectodysplasin A (EDA). Mutations of the X-linked EDA gene cause reduction or absence of many ectodermal appendages and have been identified as a cause of ectodermal dysplasia in humans, mice, dogs, and cattle. We have generated blocking antibodies, raised in Eda-deficient mice, against the conserved, receptor-binding domain of EDA. These antibodies recognize epitopes overlapping the receptor-binding site and prevent EDA from binding and activating EDAR at close to stoichiometric ratios in in vitro binding and activity assays. The antibodies block EDA1 and EDA2 of both mammalian and avian origin and, in vivo, suppress the ability of recombinant Fc-EDA1 to rescue ectodermal dysplasia in Eda-deficient Tabby mice. Moreover, administration of EDA blocking antibodies to pregnant wild type mice induced in developing wild type fetuses a marked and permanent ectodermal dysplasia. These function-blocking anti-EDA antibodies with wide cross-species reactivity will enable study of the developmental and postdevelopmental roles of EDA in a variety of organisms and open the route to therapeutic intervention in conditions in which EDA may be implicated. PMID:24391090

  13. In silico peptide prediction for antibody generation to recognize 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in genetically modified organisms.

    Science.gov (United States)

    Marani, Mariela M; Costa, Joana; Mafra, Isabel; Oliveira, Maria Beatriz P P; Camperi, Silvia A; Leite, José Roberto de Souza Almeida

    2015-03-01

    For the prospective immunorecognition of 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSPS) as a biomarker protein expressed by transgenic soybean, an extensive in silico evaluation of the referred protein was performed. The main objective of this study was the selection of a set of peptides that could function as potential immunogens for the production of novel antibodies against CP4-EPSPS protein. For this purpose, the protein was in silico cleaved with trypsin/chymotrypsin and the resultant peptides were extensively analyzed for further selection of the best candidates for antibody production. The analysis enabled the successful proposal of four peptides with potential immunogenicity for their future use as screening biomarkers of genetically modified organisms. To our knowledge, this is the first attempt to select and define potential linear epitopes for the immunization of animals and, subsequently, to generate adequate antibodies for CP4-EPSPS recognition. The present work will be followed by the synthesis of the candidate peptides to be incubated in animals for antibody generation and potential applicability for the development of an immunosensor for CP4-EPSPS detection. © 2015 Wiley Periodicals, Inc.

  14. Fully digital jerk-based chaotic oscillators for high throughput pseudo-random number generators up to 8.77Gbits/s

    KAUST Repository

    Mansingka, Abhinav S.

    2014-06-18

    This paper introduces fully digital implementations of four di erent systems in the 3rd order jerk-equation based chaotic family using the Euler approximation. The digitization approach enables controllable chaotic systems that reliably provide sinusoidal or chaotic output based on a selection input. New systems are introduced, derived using logical and arithmetic operations between two system implementations of different bus widths, with up to 100x higher maximum Lyapunov exponent than the original jerkequation based chaotic systems. The resulting chaotic output is shown to pass the NIST sp. 800-22 statistical test suite for pseudorandom number generators without post-processing by only eliminating the statistically defective bits. The systems are designed in Verilog HDL and experimentally verified on a Xilinx Virtex 4 FPGA for a maximum throughput of 15.59 Gbits/s for the native chaotic output and 8.77 Gbits/s for the resulting pseudo-random number generators.

  15. Generation and characterization of a monoclonal antibody to the cytoplasmic tail of MUC16

    DEFF Research Database (Denmark)

    Gipson, Ilene K; Mandel, Ulla; Menon, Balaraj

    2017-01-01

    of the biological relevance of the C-terminal domain of MUC16 has been limited by lack of availability of monoclonal antibodies that recognize the native CT. Here, we report the development of a novel monoclonal antibody to the CT region of the molecule that recognizes native MUC16 and its enzymatically released CT...... for the disease and it is considered a promising target for immunotherapeutic intervention. Immunodetection of the mucin has to date been through antibodies that recognize its exceptionally large ectodomain. Similar to other membrane anchored mucins, MUC16 has a short cytoplasmic tail (CT), but studies...... region. The antibody is useful for immunoprecipitation of the released CT domain as demonstrated with the OVCAR3 ovarian cancer cell line and can be used for detailed cytolocalization in cells as well as in frozen sections of ocular surface and uterine epithelium....

  16. Codon-Precise, Synthetic, Antibody Fragment Libraries Built Using Automated Hexamer Codon Additions and Validated through Next Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Laura Frigotto

    2015-05-01

    Full Text Available We have previously described ProxiMAX, a technology that enables the fabrication of precise, combinatorial gene libraries via codon-by-codon saturation mutagenesis. ProxiMAX was originally performed using manual, enzymatic transfer of codons via blunt-end ligation. Here we present Colibra™: an automated, proprietary version of ProxiMAX used specifically for antibody library generation, in which double-codon hexamers are transferred during the saturation cycling process. The reduction in process complexity, resulting library quality and an unprecedented saturation of up to 24 contiguous codons are described. Utility of the method is demonstrated via fabrication of complementarity determining regions (CDR in antibody fragment libraries and next generation sequencing (NGS analysis of their quality and diversity.

  17. Generation and characterization of antibodies against Asian elephant (Elephas maximus IgG, IgM, and IgA.

    Directory of Open Access Journals (Sweden)

    Alan F Humphreys

    Full Text Available Asian elephant (Elephas maximus immunity is poorly characterized and understood. This gap in knowledge is particularly concerning as Asian elephants are an endangered species threatened by a newly discovered herpesvirus known as elephant endotheliotropic herpesvirus (EEHV, which is the leading cause of death for captive Asian elephants born after 1980 in North America. While reliable diagnostic assays have been developed to detect EEHV DNA, serological assays to evaluate elephant anti-EEHV antibody responses are lacking and will be needed for surveillance and epidemiological studies and also for evaluating potential treatments or vaccines against lethal EEHV infection. Previous studies have shown that Asian elephants produce IgG in serum, but they failed to detect IgM and IgA, further hampering development of informative serological assays for this species. To begin to address this issue, we determined the constant region genomic sequence of Asian elephant IgM and obtained some limited protein sequence information for putative serum IgA. The information was used to generate or identify specific commercial antisera reactive against IgM and IgA isotypes. In addition, we generated a monoclonal antibody against Asian elephant IgG. These three reagents were used to demonstrate that all three immunoglobulin isotypes are found in Asian elephant serum and milk and to detect antibody responses following tetanus toxoid booster vaccination or antibodies against a putative EEHV structural protein. The results indicate that these new reagents will be useful for developing sensitive and specific assays to detect and characterize elephant antibody responses for any pathogen or vaccine, including EEHV.

  18. Pheno2Geno - High-throughput generation of genetic markers and maps from molecular phenotypes for crosses between inbred strains.

    Science.gov (United States)

    Zych, Konrad; Li, Yang; van der Velde, Joeri K; Joosen, Ronny V L; Ligterink, Wilco; Jansen, Ritsert C; Arends, Danny

    2015-02-19

    Genetic markers and maps are instrumental in quantitative trait locus (QTL) mapping in segregating populations. The resolution of QTL localization depends on the number of informative recombinations in the population and how well they are tagged by markers. Larger populations and denser marker maps are better for detecting and locating QTLs. Marker maps that are initially too sparse can be saturated or derived de novo from high-throughput omics data, (e.g. gene expression, protein or metabolite abundance). If these molecular phenotypes are affected by genetic variation due to a major QTL they will show a clear multimodal distribution. Using this information, phenotypes can be converted into genetic markers. The Pheno2Geno tool uses mixture modeling to select phenotypes and transform them into genetic markers suitable for construction and/or saturation of a genetic map. Pheno2Geno excludes candidate genetic markers that show evidence for multiple possibly epistatically interacting QTL and/or interaction with the environment, in order to provide a set of robust markers for follow-up QTL mapping. We demonstrate the use of Pheno2Geno on gene expression data of 370,000 probes in 148 A. thaliana recombinant inbred lines. Pheno2Geno is able to saturate the existing genetic map, decreasing the average distance between markers from 7.1 cM to 0.89 cM, close to the theoretical limit of 0.68 cM (with 148 individuals we expect a recombination every 100/148=0.68 cM); this pinpointed almost all of the informative recombinations in the population. The Pheno2Geno package makes use of genome-wide molecular profiling and provides a tool for high-throughput de novo map construction and saturation of existing genetic maps. Processing of the showcase dataset takes less than 30 minutes on an average desktop PC. Pheno2Geno improves QTL mapping results at no additional laboratory cost and with minimum computational effort. Its results are formatted for direct use in R/qtl, the leading R

  19. Generation and evaluation of mammalian secreted and membrane protein expression libraries for high-throughput target discovery.

    Science.gov (United States)

    Panavas, Tadas; Lu, Jin; Liu, Xuesong; Winkis, Ann-Marie; Powers, Gordon; Naso, Michael F; Amegadzie, Bernard

    2011-09-01

    Expressed protein libraries are becoming a critical tool for new target discovery in the pharmaceutical industry. In order to get the most meaningful and comprehensive results from protein library screens, it is essential to have library proteins in their native conformation with proper post-translation modifications. This goal is achieved by expressing untagged human proteins in a human cell background. We optimized the transfection and cell culture conditions to maximize protein expression in a 96-well format so that the expression levels were comparable with the levels observed in shake flasks. For detection purposes, we engineered a 'tag after stop codon' system. Depending on the expression conditions, it was possible to express either native or tagged proteins from the same expression vector set. We created a human secretion protein library of 1432 candidates and a small plasma membrane protein set of about 500 candidates. Utilizing the optimized expression conditions, we expressed and analyzed both libraries by SDS-PAGE gel electrophoresis and Western blotting. Two thirds of secreted proteins could be detected by Western-blot analyses; almost half of them were visible on Coomassie stained gels. In this paper, we describe protein expression libraries that can be easily produced in mammalian expression systems in a 96-well format, with one protein expressed per well. The libraries and methods described allow for the development of robust, high-throughput functional screens designed to assay for protein specific functions associated with a relevant disease-specific activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Selective cytotoxicity of an oxygen-radical-generating enzyme conjugated to a monoclonal antibody.

    Science.gov (United States)

    Battelli, M G; Abbondanza, A; Tazzari, P L; Dinota, A; Rizzi, S; Grassi, G; Gobbi, M; Stirpe, F

    1988-07-01

    The monoclonal antibody 8A, which recognizes a human plasma cell-associated antigen, was covalently linked to xanthine oxidase in a conjugate maintaining both immunological and enzymatic properties. A significant degree of target cell lysis was obtained at an enzyme concentration that was ineffective on non-target cells and on myeloid staminal cells (CFU-GM). The cytotoxic activity was abolished by an excess of antibody, by allopurinol and by superoxide dismutase and catalase. A possible use of the conjugate for bone marrow purging in multiple myeloma patients is suggested.

  1. Generation and selection of naïve Fab library for parasitic antigen: Anti-BmSXP antibodies for lymphatic filariasis.

    Science.gov (United States)

    Omar, Noorsharmimi; Hamidon, Nurul Hamizah; Yunus, Muhammad Hafiznur; Noordin, Rahmah; Choong, Yee Siew; Lim, Theam Soon

    2018-05-01

    Phage display has been applied successfully as a tool for the generation of monoclonal antibodies (mAbs). Naive antibody libraries are unique as they are able to overcome several limitations associated with conventional mAb generation methods like the hybridoma technology. Here, we performed an in vitro selection and generation of Fab antibodies against Brugia malayi SXP protein (BmSXP), a recombinant antigen for the detection of lymphatic filariasis. We developed a naïve multi ethnic Fab antibody library with an estimated diversity of 2.99 × 10 9 . The antibody library was used to screen for mAbs against BmSXP recombinant antigen. Soluble monoclonal Fab antibodies against BmSXP were successfully isolated from the naïve library. The Fab antibodies obtained were expressed and analyzed to show its binding capability. The diversity obtained from a pool of donors from various ethnic groups allowed for a diverse antibody library to be generated. The mAbs obtained were also functional in soluble form, which makes it useful for further downstream applications. We believe that the Fab mAbs are valuable for further studies and could also contribute to improvements in the diagnosis of filariasis. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  2. Generation of SNCA Cell Models Using Zinc Finger Nuclease (ZFN) Technology for Efficient High-Throughput Drug Screening.

    Science.gov (United States)

    Dansithong, Warunee; Paul, Sharan; Scoles, Daniel R; Pulst, Stefan M; Huynh, Duong P

    2015-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by loss of dopaminergic neurons of the substantia nigra. The hallmark of PD is the appearance of neuronal protein aggregations known as Lewy bodies and Lewy neurites, of which α-synuclein forms a major component. Familial PD is rare and is associated with missense mutations of the SNCA gene or increases in gene copy number resulting in SNCA overexpression. This suggests that lowering SNCA expression could be therapeutic for PD. Supporting this hypothesis, SNCA reduction was neuroprotective in cell line and rodent PD models. We developed novel cell lines expressing SNCA fused to the reporter genes luciferase (luc) or GFP with the objective to enable high-throughput compound screening (HTS) for small molecules that can lower SNCA expression. Because SNCA expression is likely regulated by far-upstream elements (including the NACP-REP1 located at 8852 bp upstream of the transcription site), we employed zinc finger nuclease (ZFN) genome editing to insert reporter genes in-frame downstream of the SNCA gene in order to retain native SNCA expression control. This ensured full retention of known and unknown up- and downstream genetic elements controlling SNCA expression. Treatment of cells with the histone deacetylase inhibitor valproic acid (VPA) resulted in significantly increased SNCA-luc and SNCA-GFP expression supporting the use of our cell lines for identifying small molecules altering complex modes of expression control. Cells expressing SNCA-luc treated with a luciferase inhibitor or SNCA siRNA resulted in Z'-scores ≥ 0.75, suggesting the suitability of these cell lines for use in HTS. This study presents a novel use of genome editing for the creation of cell lines expressing α-synuclein fusion constructs entirely under native expression control. These cell lines are well suited for HTS for compounds that lower SNCA expression directly or by acting at long-range sites to the SNCA

  3. High throughput screening for small molecule enhancers of the interferon signaling pathway to drive next-generation antiviral drug discovery.

    Directory of Open Access Journals (Sweden)

    Dhara A Patel

    Full Text Available Most of current strategies for antiviral therapeutics target the virus specifically and directly, but an alternative approach to drug discovery might be to enhance the immune response to a broad range of viruses. Based on clinical observation in humans and successful genetic strategies in experimental models, we reasoned that an improved interferon (IFN signaling system might better protect against viral infection. Here we aimed to identify small molecular weight compounds that might mimic this beneficial effect and improve antiviral defense. Accordingly, we developed a cell-based high-throughput screening (HTS assay to identify small molecules that enhance the IFN signaling pathway components. The assay is based on a phenotypic screen for increased IFN-stimulated response element (ISRE activity in a fully automated and robust format (Z'>0.7. Application of this assay system to a library of 2240 compounds (including 2160 already approved or approvable drugs led to the identification of 64 compounds with significant ISRE activity. From these, we chose the anthracycline antibiotic, idarubicin, for further validation and mechanism based on activity in the sub-µM range. We found that idarubicin action to increase ISRE activity was manifest by other members of this drug class and was independent of cytotoxic or topoisomerase inhibitory effects as well as endogenous IFN signaling or production. We also observed that this compound conferred a consequent increase in IFN-stimulated gene (ISG expression and a significant antiviral effect using a similar dose-range in a cell-culture system inoculated with encephalomyocarditis virus (EMCV. The antiviral effect was also found at compound concentrations below the ones observed for cytotoxicity. Taken together, our results provide proof of concept for using activators of components of the IFN signaling pathway to improve IFN efficacy and antiviral immune defense as well as a validated HTS approach to identify

  4. New generation pharmacogenomic tools: a SNP linkage disequilibrium Map, validated SNP assay resource, and high-throughput instrumentation system for large-scale genetic studies.

    Science.gov (United States)

    De La Vega, Francisco M; Dailey, David; Ziegle, Janet; Williams, Julie; Madden, Dawn; Gilbert, Dennis A

    2002-06-01

    Since public and private efforts announced the first draft of the human genome last year, researchers have reported great numbers of single nucleotide polymorphisms (SNPs). We believe that the availability of well-mapped, quality SNP markers constitutes the gateway to a revolution in genetics and personalized medicine that will lead to better diagnosis and treatment of common complex disorders. A new generation of tools and public SNP resources for pharmacogenomic and genetic studies--specifically for candidate-gene, candidate-region, and whole-genome association studies--will form part of the new scientific landscape. This will only be possible through the greater accessibility of SNP resources and superior high-throughput instrumentation-assay systems that enable affordable, highly productive large-scale genetic studies. We are contributing to this effort by developing a high-quality linkage disequilibrium SNP marker map and an accompanying set of ready-to-use, validated SNP assays across every gene in the human genome. This effort incorporates both the public sequence and SNP data sources, and Celera Genomics' human genome assembly and enormous resource ofphysically mapped SNPs (approximately 4,000,000 unique records). This article discusses our approach and methodology for designing the map, choosing quality SNPs, designing and validating these assays, and obtaining population frequency ofthe polymorphisms. We also discuss an advanced, high-performance SNP assay chemisty--a new generation of the TaqMan probe-based, 5' nuclease assay-and high-throughput instrumentation-software system for large-scale genotyping. We provide the new SNP map and validation information, validated SNP assays and reagents, and instrumentation systems as a novel resource for genetic discoveries.

  5. Generating Isoform-Specific Antibodies : Lessons from Nucleocytoplasmic Glycoprotein Skp1

    NARCIS (Netherlands)

    West, Christopher M.; Van Der Wel, Hanke; Chinoy, Zoiesha; Boons, Geert Jan; Gauthier, Ted J.; Taylor, Carol M.; Xu, Yuechi

    2015-01-01

    Antibodies that discriminate protein isoforms differing by modifications at specific amino acids have revolutionized studies of their functions. Skp1 is a novel nucleocytoplasmic glycoprotein that is hydroxylated at proline-143 and then O-glycosylated by a pentasaccharide attached via a GlcNAcα1,

  6. Thrombotic risk assessment in antiphospholipid syndrome the role of new antibody specificities and thrombin generation assay

    DEFF Research Database (Denmark)

    Sciascia, Savino; Baldovino, Simone; Schreiber, Karen

    2016-01-01

    anticoagulant, a functional coagulation assay, and anticardiolipin and anti-β2-glycoprotein-I antibodies, generally detected by solid phase enzyme-linked immunosorbent assay. The real challenge for treating physicians is understanding what is the actual weight of aPL in provoking clinical manifestations in each...

  7. High throughput generation and characterization of replication-competent clade C transmitter-founder simian human immunodeficiency viruses.

    Directory of Open Access Journals (Sweden)

    Debashis Dutta

    Full Text Available Traditional restriction endonuclease-based cloning has been routinely used to generate replication-competent simian-human immunodeficiency viruses (SHIV and simian tropic HIV (stHIV. This approach requires the existence of suitable restriction sites or the introduction of nucleotide changes to create them. Here, using an In-Fusion cloning technique that involves homologous recombination, we generated SHIVs and stHIVs based on epidemiologically linked clade C transmitted/founder HIV molecular clones from Zambia. Replacing vif from these HIV molecular clones with vif of SIVmac239 resulted in chimeric genomes used to generate infectious stHIV viruses. Likewise, exchanging HIV env genes and introducing N375 mutations to enhance macaque CD4 binding site and cloned into a SHIVAD8-EO backbone. The generated SHIVs and stHIV were infectious in TZMbl and ZB5 cells, as well as macaque PBMCs. Therefore, this method can replace traditional methods and be a valuable tool for the rapid generation and testing of molecular clones of stHIV and SHIV based on primary clinical isolates will be valuable to generate rapid novel challenge viruses for HIV vaccine/cure studies.

  8. From High-Throughput Microarray-Based Screening to Clinical Application: The Development of a Second Generation Multigene Test for Breast Cancer Prognosis

    Directory of Open Access Journals (Sweden)

    Carsten Denkert

    2013-08-01

    Full Text Available Several multigene tests have been developed for breast cancer patients to predict the individual risk of recurrence. Most of the first generation tests rely on proliferation-associated genes and are commonly carried out in central reference laboratories. Here, we describe the development of a second generation multigene assay, the EndoPredict test, a prognostic multigene expression test for estrogen receptor (ER positive, human epidermal growth factor receptor (HER2 negative (ER+/HER2− breast cancer patients. The EndoPredict gene signature was initially established in a large high-throughput microarray-based screening study. The key steps for biomarker identification are discussed in detail, in comparison to the establishment of other multigene signatures. After biomarker selection, genes and algorithms were transferred to a diagnostic platform (reverse transcription quantitative PCR (RT-qPCR to allow for assaying formalin-fixed, paraffin-embedded (FFPE samples. A comprehensive analytical validation was performed and a prospective proficiency testing study with seven pathological laboratories finally proved that EndoPredict can be reliably used in the decentralized setting. Three independent large clinical validation studies (n = 2,257 demonstrated that EndoPredict offers independent prognostic information beyond current clinicopathological parameters and clinical guidelines. The review article summarizes several important steps that should be considered for the development process of a second generation multigene test and offers a means for transferring a microarray signature from the research laboratory to clinical practice.

  9. A new generation of versatile chromogenic substrates for high-throughput analysis of biomass-degrading enzymes

    DEFF Research Database (Denmark)

    Kracun, Stjepan Kresimir; Schückel, Julia; Westereng, Bjørge

    2015-01-01

    of carbohydrate-acting enzymes to be putatively identified. However, there is a paucity of methods for rapidly screening the biochemical activities of these enzymes, and this is a serious bottleneck in the development of enzyme-reliant bio-refining processes. Results: We have developed a new generation of multi...

  10. Generation of antibodies against disintegrin and cysteine-rich domains by DNA immunization: An approach to neutralize snake venom-induced haemorrhage

    Directory of Open Access Journals (Sweden)

    Sidgi Syed Anwer Abdo Hasson

    2017-03-01

    Conclusions: Antibodies generated against the E. ocellatus venom prothrombin activator-like metalloprotease and disintegrin-cysteine-rich domains modulated and inhibited the catalytic activity both in vitro and in vivo of venom metalloproteinase disintegrin cysteine rich molecules. Thus, generating of venom specific-toxin antibodies by DNA immunization offer a more rational treatment of snake envenoming than conventional antivenom.

  11. Generation, Characterization and Application of Antibodies Directed against HERV-H Gag Protein in Colorectal Samples.

    Science.gov (United States)

    Mullins, Christina S; Hühns, Maja; Krohn, Mathias; Peters, Sven; Cheynet, Valérie; Oriol, Guy; Guillotte, Michèle; Ducrot, Sandrine; Mallet, François; Linnebacher, Michael

    2016-01-01

    A substantial part of the human genome originates from transposable elements, remnants of ancient retroviral infections. Roughly 8% of the human genome consists of about 400,000 LTR elements including human endogenous retrovirus (HERV) sequences. Mainly, the interplay between epigenetic and post-transcriptional mechanisms is thought to silence HERV expression in most physiological contexts. Interestingly, aberrant reactivation of several HERV-H loci appears specific to colorectal carcinoma (CRC). The expression of HERV-H Gag proteins (Gag-H) was assessed using novel monoclonal mouse anti Gag-H antibodies. In a flow cytometry screen four antibody clones were tested on a panel of primary CRC cell lines and the most well performing ones were subsequently validated in western blot analysis. Finally, Gag-H protein expression was analyzed by immune histology on cell line cytospins and on clinical samples. There, we found a heterogeneous staining pattern with no background staining of endothelial, stromal and infiltrating immune cells but diffuse staining of the cytoplasm for positive tumor and normal crypt cells of the colonic epithelium. Taken together, the Gag-H antibody clone(s) present a valuable tool for staining of cells with colonic origin and thus form the basis for future more detailed investigations. The observed Gag-H protein staining in colonic epithelium crypt cells demands profound analyses of a potential role for Gag-H in the normal physiology of the human gut.

  12. Generation, Characterization and Application of Antibodies Directed against HERV-H Gag Protein in Colorectal Samples.

    Directory of Open Access Journals (Sweden)

    Christina S Mullins

    Full Text Available A substantial part of the human genome originates from transposable elements, remnants of ancient retroviral infections. Roughly 8% of the human genome consists of about 400,000 LTR elements including human endogenous retrovirus (HERV sequences. Mainly, the interplay between epigenetic and post-transcriptional mechanisms is thought to silence HERV expression in most physiological contexts. Interestingly, aberrant reactivation of several HERV-H loci appears specific to colorectal carcinoma (CRC.The expression of HERV-H Gag proteins (Gag-H was assessed using novel monoclonal mouse anti Gag-H antibodies. In a flow cytometry screen four antibody clones were tested on a panel of primary CRC cell lines and the most well performing ones were subsequently validated in western blot analysis. Finally, Gag-H protein expression was analyzed by immune histology on cell line cytospins and on clinical samples. There, we found a heterogeneous staining pattern with no background staining of endothelial, stromal and infiltrating immune cells but diffuse staining of the cytoplasm for positive tumor and normal crypt cells of the colonic epithelium.Taken together, the Gag-H antibody clone(s present a valuable tool for staining of cells with colonic origin and thus form the basis for future more detailed investigations. The observed Gag-H protein staining in colonic epithelium crypt cells demands profound analyses of a potential role for Gag-H in the normal physiology of the human gut.

  13. Generation, Characterization and Application of Antibodies Directed against HERV-H Gag Protein in Colorectal Samples

    Science.gov (United States)

    Mullins, Christina S.; Hühns, Maja; Krohn, Mathias; Peters, Sven; Cheynet, Valérie; Oriol, Guy; Guillotte, Michèle; Ducrot, Sandrine; Mallet, François; Linnebacher, Michael

    2016-01-01

    Introduction A substantial part of the human genome originates from transposable elements, remnants of ancient retroviral infections. Roughly 8% of the human genome consists of about 400,000 LTR elements including human endogenous retrovirus (HERV) sequences. Mainly, the interplay between epigenetic and post-transcriptional mechanisms is thought to silence HERV expression in most physiological contexts. Interestingly, aberrant reactivation of several HERV-H loci appears specific to colorectal carcinoma (CRC). Results The expression of HERV-H Gag proteins (Gag-H) was assessed using novel monoclonal mouse anti Gag-H antibodies. In a flow cytometry screen four antibody clones were tested on a panel of primary CRC cell lines and the most well performing ones were subsequently validated in western blot analysis. Finally, Gag-H protein expression was analyzed by immune histology on cell line cytospins and on clinical samples. There, we found a heterogeneous staining pattern with no background staining of endothelial, stromal and infiltrating immune cells but diffuse staining of the cytoplasm for positive tumor and normal crypt cells of the colonic epithelium. Conclusion Taken together, the Gag-H antibody clone(s) present a valuable tool for staining of cells with colonic origin and thus form the basis for future more detailed investigations. The observed Gag-H protein staining in colonic epithelium crypt cells demands profound analyses of a potential role for Gag-H in the normal physiology of the human gut. PMID:27119520

  14. Generation and Characterization of Monoclonal Antibodies against a Cyclic Variant of Hepatitis C Virus E2 Epitope 412-422

    Science.gov (United States)

    Sandomenico, Annamaria; Leonardi, Antonio; Berisio, Rita; Sanguigno, Luca; Focà, Giuseppina; Focà, Annalia; Ruggiero, Alessia; Doti, Nunzianna; Muscariello, Livio; Barone, Daniela; Farina, Claudio; Owsianka, Ania; Vitagliano, Luigi

    2016-01-01

    ABSTRACT The hepatitis C virus (HCV) E2 envelope glycoprotein is crucial for virus entry into hepatocytes. A conserved region of E2 encompassing amino acids 412 to 423 (epitope I) and containing Trp420, a residue critical for virus entry, is recognized by several broadly neutralizing antibodies. Peptides embodying this epitope I sequence adopt a β-hairpin conformation when bound to neutralizing monoclonal antibodies (MAbs) AP33 and HCV1. We therefore generated new mouse MAbs that were able to bind to a cyclic peptide containing E2 residues 412 to 422 (C-epitope I) but not to the linear counterpart. These MAbs bound to purified E2 with affinities of about 50 nM, but they were unable to neutralize virus infection. Structural analysis of the complex between C-epitope I and one of our MAbs (C2) showed that the Trp420 side chain is largely buried in the combining site and that the Asn417 side chain, which is glycosylated in E2 and solvent exposed in other complexes, is slightly buried upon C2 binding. Also, the orientation of the cyclic peptide in the antibody-combining site is rotated by 180° compared to the orientations of the other complexes. All these structural features, however, do not explain the lack of neutralization activity. This is instead ascribed to the high degree of selectivity of the new MAbs for the cyclic epitope and to their inability to interact with the epitope in more flexible and extended conformations, which recent data suggest play a role in the mechanisms of neutralization escape. IMPORTANCE Hepatitis C virus (HCV) remains a major health care burden, affecting almost 3% of the global population. The conserved epitope comprising residues 412 to 423 of the viral E2 glycoprotein is a valid vaccine candidate because antibodies recognizing this region exhibit potent neutralizing activity. This epitope adopts a β-hairpin conformation when bound to neutralizing MAbs. We explored the potential of cyclic peptides mimicking this structure to elicit

  15. Generation of Recombinant Porcine Parvovirus Virus-Like Particles in Saccharomyces cerevisiae and Development of Virus-Specific Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Paulius Lukas Tamošiūnas

    2014-01-01

    Full Text Available Porcine parvovirus (PPV is a widespread infectious virus that causes serious reproductive diseases of swine and death of piglets. The gene coding for the major capsid protein VP2 of PPV was amplified using viral nucleic acid extract from swine serum and inserted into yeast Saccharomyces cerevisiae expression plasmid. Recombinant PPV VP2 protein was efficiently expressed in yeast and purified using density gradient centrifugation. Electron microscopy analysis of purified PPV VP2 protein revealed the self-assembly of virus-like particles (VLPs. Nine monoclonal antibodies (MAbs against the recombinant PPV VP2 protein were generated. The specificity of the newly generated MAbs was proven by immunofluorescence analysis of PPV-infected cells. Indirect IgG ELISA based on the recombinant VLPs for detection of PPV-specific antibodies in swine sera was developed and evaluated. The sensitivity and specificity of the new assay were found to be 93.4% and 97.4%, respectively. In conclusion, yeast S. cerevisiae represents a promising expression system for generating recombinant PPV VP2 protein VLPs of diagnostic relevance.

  16. Generation of Anti-Boa Immunoglobulin Antibodies for Serodiagnostic Applications, and Their Use to Detect Anti-Reptarenavirus Antibodies in Boa Constrictor.

    Directory of Open Access Journals (Sweden)

    Yegor Korzyukov

    Full Text Available Immunoglobulins (Igs, the key effectors of the adaptive immune system, mediate the specific recognition of foreign structures, i.e. antigens. In mammals, IgM production commonly precedes the production of IgG in the response to an infection. The reptilian counterpart of IgG is IgY, but the exact kinetics of the reptilian immune response are less well known. Boid inclusion body disease (BIBD, an often fatal disease of captive boas and pythons has been linked to reptarenavirus infection, and BIBD is believed to be immunosuppressive. However, so far, the study of the serological response towards reptarenaviruses in BIBD has been hampered by the lack of reagents. Thus we set up a purification protocol for boa constrictor IgY and IgM, which should also be applicable for other snake species. We used centrifugal filter units, poly ethylene glycol precipitation and gel permeation chromatography to purify and separate the IgM and IgY fractions from boa constrictor serum, which we further used to immunise rabbits. We affinity purified IgM and IgY specific reagents from the produced antiserum, and labelled the reagents with horseradish peroxidase. Finally, using the sera of snakes with known exposure to reptarenaviruses we demonstrated that the newly generated reagents can be utilised for serodiagnostic purposes, such as immunoblotting and immunofluorescent staining. To our knowledge, this is the first report to show reptarenavirus-specific antibodies in boa constrictors.

  17. Generation of Recombinant Schmallenberg Virus Nucleocapsid Protein in Yeast and Development of Virus-Specific Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Justas Lazutka

    2014-01-01

    Full Text Available Schmallenberg virus (SBV, discovered in continental Europe in late 2011, causes mild clinical signs in adult ruminants, including diarrhoea and reduced milk yield. However, fetal infection can lead to severe malformation in newborn offspring. To develop improved reagents for SBV serology, a high-level yeast expression system was employed to produce recombinant SBV nucleocapsid (N protein. Recombinant SBV N protein was investigated as an antigen in SBV-specific IgG enzyme immunoassay and used for generation of monoclonal antibodies (MAbs. Yeast-expressed SBV N protein was reactive with anti-SBV IgG-positive cow serum specimens collected from different farms of Lithuania. After immunization of mice with recombinant SBV N protein, four MAbs were generated. The MAbs raised against recombinant SBV N protein reacted with native viral nucleocapsids in SBV-infected BHK cells by immunofluorescence assay. The reactivity of recombinant N protein with SBV-positive cow serum specimens and the ability of the MAbs to recognize virus-infected cells confirm the antigenic similarity between yeast-expressed SBV N protein and native viral nucleocapsids. Our study demonstrates that yeast expression system is suitable for high-level production of recombinant SBV N protein and provides the first evidence on the presence of SBV-specific antibodies in cow serum specimens collected in Lithuania.

  18. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons

    Directory of Open Access Journals (Sweden)

    Carles eBosch

    2015-05-01

    Full Text Available The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs in mice. 3D reconstruction of spines in GCs aged 3–4 and 8–9 weeks revealed two different stages of spine development and unexpected features of synapse formation, including vacant and branched spines and presynaptic terminals establishing synapses with up to 10 spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner.

  19. Generation of Recombinant Monoclonal Antibodies from Immunised Mice and Rabbits via Flow Cytometry and Sorting of Antigen-Specific IgG+ Memory B Cells.

    Directory of Open Access Journals (Sweden)

    Dale O Starkie

    Full Text Available Single B cell screening strategies, which avoid both hybridoma fusion and combinatorial display, have emerged as important technologies for efficiently sampling the natural antibody repertoire of immunized animals and humans. Having access to a range of methods to interrogate different B cell subsets provides an attractive option to ensure large and diverse panels of high quality antibody are produced. The generation of multiple antibodies and having the ability to find rare B cell clones producing IgG with unique and desirable characteristics facilitates the identification of fit-for-purpose molecules that can be developed into therapeutic agents or research reagents. Here, we describe a multi-parameter flow cytometry single-cell sorting technique for the generation of antigen-specific recombinant monoclonal antibodies from single IgG+ memory B cells. Both mouse splenocytes and rabbit PBMC from immunised animals were used as a source of B cells. Reagents staining both B cells and other unwanted cell types enabled efficient identification of class-switched IgG+ memory B cells. Concurrent staining with antigen labelled separately with two spectrally-distinct fluorophores enabled antigen-specific B cells to be identified, i.e. those which bind to both antigen conjugates (double-positive. These cells were then typically sorted at one cell per well using FACS directly into a 96-well plate containing reverse transcriptase reaction mix. Following production of cDNA, PCR was performed to amplify cognate heavy and light chain variable region genes and generate transcriptionally-active PCR (TAP fragments. These linear expression cassettes were then used directly in a mammalian cell transfection to generate recombinant antibody for further testing. We were able to successfully generate antigen-specific recombinant antibodies from both the rabbit and mouse IgG+ memory B cell subset within one week. This included the generation of an anti-TNFR2 blocking

  20. Generation of a novel high-affinity monoclonal antibody with conformational recognition epitope on human IgM.

    Science.gov (United States)

    Sarikhani, Sina; Mirshahi, Manouchehr; Gharaati, Mohammad Reza; Mirshahi, Tooran

    2010-11-01

    As IgM is the first isotype of antibody which appears in blood after initial exposure to a foreign antigen in the pattern of primary response, detection, and quantification of this molecule in blood seems invaluable. To approach these goals, generation, and characterization of a highly specific mAb (monoclonal antibody) against human IgM were investigated. Human IgM immunoglobulins were used to immunize Balb/c mice. Spleen cells taken from the immunized animals were fused with SP2/O myeloma cells using PEG (polyethylene glycol, MW 1450) as fusogen. The hybridomas were cultured in HAT containing medium and supernatants from the growing hybrids were screened by enzyme-linked immunosorbent assay (ELISA) using plates coated with pure human IgM and the positive wells were then cloned at limiting dilutions. The best clone designated as MAN-1, was injected intraperitoneally to some Pristane-injected mice. Anti-IgM mAb was purified from the animals' ascitic fluid by protein-G sepharose followed by DEAE-cellulose ion exchange chromatography. MAN-1 interacted with human IgM with a very high specificity and affinity. The purity of the sample was tested by SDS-PAGE and the affinity constant was measured (K(a) = 3.5 x 10(9)M(-1). Immunoblotting and competitive ELISA were done and the results showed that the harvested antibody recognizes a conformational epitope on the mu chain of human IgM and there was no cross-reactivity with other subclasses of immunoglobulins. Furthermore, isotyping test was done and the results showed the subclass of the obtained mAb which was IgG(1)kappa.

  1. Affinity improvement of a therapeutic antibody by structure-based computational design: generation of electrostatic interactions in the transition state stabilizes the antibody-antigen complex.

    Directory of Open Access Journals (Sweden)

    Masato Kiyoshi

    Full Text Available The optimization of antibodies is a desirable goal towards the development of better therapeutic strategies. The antibody 11K2 was previously developed as a therapeutic tool for inflammatory diseases, and displays very high affinity (4.6 pM for its antigen the chemokine MCP-1 (monocyte chemo-attractant protein-1. We have employed a virtual library of mutations of 11K2 to identify antibody variants of potentially higher affinity, and to establish benchmarks in the engineering of a mature therapeutic antibody. The most promising candidates identified in the virtual screening were examined by surface plasmon resonance to validate the computational predictions, and to characterize their binding affinity and key thermodynamic properties in detail. Only mutations in the light-chain of the antibody are effective at enhancing its affinity for the antigen in vitro, suggesting that the interaction surface of the heavy-chain (dominated by the hot-spot residue Phe101 is not amenable to optimization. The single-mutation with the highest affinity is L-N31R (4.6-fold higher affinity than wild-type antibody. Importantly, all the single-mutations showing increase affinity incorporate a charged residue (Arg, Asp, or Glu. The characterization of the relevant thermodynamic parameters clarifies the energetic mechanism. Essentially, the formation of new electrostatic interactions early in the binding reaction coordinate (transition state or earlier benefits the durability of the antibody-antigen complex. The combination of in silico calculations and thermodynamic analysis is an effective strategy to improve the affinity of a matured therapeutic antibody.

  2. Generation of monoclonal antibodies against prostate specific antigen (PSA) for the detection of PSA and its purification

    International Nuclear Information System (INIS)

    Acevedo Castro, Boris Ernesto

    2012-01-01

    The prostate cancer in Cuba is a problem of health (2672 diagnosed cases and 2769 deaths in 2007). Various diagnostic methods have been implemented for the detection and management of this disease, emphasizing among them (PSA) prostate-specific antigen serological determination. At this work was generated and characterized a panel of 11 antibodies (AcMs) monoclonal IgG1 detected with high affinity described major epitopes of the PSA, both in solution and attached to the test plate. From the panel obtained AcMs was the standardization of an essay type ELISA for the detection of serum total PSA (associated and free) equimolar, based on antibody monoclonal CB-PSA.4 in the coating and the CB-PSA.9 coupled with biotin as liner, with a detection limit of 0.15 ng/mL. Similarly, standardized system for detection in serum free PSA, based on the AcMs CB-PSA.4 (coating) and CB-PSA.2 coupled with biotin (liner), with a detection limit of 0.5 ng/mL. Finally, with the purpose of using PSA as standard in trials type ELISA, developed a simple method of inmunopurificación based on the AcM, CB-PSA.2, which was obtained the PSA with a purity exceeding 90%. Immunoassay Centre on the basis of the AcMs panel and the results of this study, developed and recorded two diagnostic systems for the detection of PSA in human serum. (author)

  3. Generation and characterization of a human-mouse chimeric high-affinity antibody that detects the DYKDDDDK FLAG peptide.

    Science.gov (United States)

    Ikeda, Koki; Koga, Tomoaki; Sasaki, Fumiyuki; Ueno, Ayumi; Saeki, Kazuko; Okuno, Toshiaki; Yokomizo, Takehiko

    2017-05-13

    DYKDDDDK peptide (FLAG) is a useful tool for investigating the function and localization of proteins whose antibodies (Abs) are not available. We recently established a high-affinity monoclonal antibody (mAb) for FLAG (clone 2H8). The 2H8 Ab is highly sensitive for detecting FLAG-tagged proteins by flowcytometry and immunoprecipitation, but it can yield nonspecific signals in immunohistochemistry of mouse tissues because it is of mouse origin. In this study, we reduced nonspecific signals by generating a chimeric 2H8 Ab with Fc fragments derived from human immunoglobulin. We fused a 5' terminal cDNA fragments for the Fab region of 2H8 mAb with 3' terminal cDNA fragments for Fc region of human IgG1. We transfected both chimeric plasmids and purified the resulting human-mouse chimeric 2H8. The chimeric 2H8 Ab successfully detected FLAG-tagged proteins in flowcytometry with anti-human IgG secondary Ab with comparable sensitivity to 2H8 mAb. Importantly, chimeric 2H8 detected specific FLAG peptide signals without nonspecific signals in immunohistochemical analysis with mouse tissues. This human-mouse chimeric high-affinity anti-FLAG Ab will prove useful for future immunohistochemical analysis of mouse tissues. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Recombinant Protein Containing B-Cell Epitopes of Different Loxosceles Spider Toxins Generates Neutralizing Antibodies in Immunized Rabbits.

    Science.gov (United States)

    Lima, Sabrina de Almeida; Guerra-Duarte, Clara; Costal-Oliveira, Fernanda; Mendes, Thais Melo; Figueiredo, Luís F M; Oliveira, Daysiane; Machado de Avila, Ricardo A; Ferrer, Valéria Pereira; Trevisan-Silva, Dilza; Veiga, Silvio S; Minozzo, João C; Kalapothakis, Evanguedes; Chávez-Olórtegui, Carlos

    2018-01-01

    Loxoscelism is the most important form of araneism in South America. The treatment of these accidents uses heterologous antivenoms obtained from immunization of production animals with crude loxoscelic venom. Due to the scarcity of this immunogen, new alternatives for its substitution in antivenom production are of medical interest. In the present work, three linear epitopes for Loxosceles astacin-like protease 1 (LALP-1) (SLGRGCTDFGTILHE, ENNTRTIGPFDYDSIMLYGAY, and KLYKCPPVNPYPGGIRPYVNV) and two for hyaluronidase (LiHYAL) (NGGIPQLGDLKAHLEKSAVDI and ILDKSATGLRIIDWEAWR) from Loxosceles intermedia spider venom were identified by SPOT-synthesis technique. One formerly characterized linear epitope (DFSGPYLPSLPTLDA) of sphingomyelinase D (SMase D) SMase-I from Loxosceles laeta was also chosen to constitute a new recombinant multiepitopic protein. These epitopes were combined with a previously produced chimeric multiepitopic protein (rCpLi) composed by linear and conformational B-cell epitopes from SMase D from L. intermedia venom, generating a new recombinant multiepitopic protein derived from loxoscelic toxins (rMEPLox). We demonstrated that rMEPLox is non-toxic and antibodies elicited in rabbits against this antigen present reactivity in ELISA and immunoblot assays with Brazilian L. intermedia, L. laeta, L. gaucho , and L. similis spider venoms. In vivo and in vitro neutralization assays showed that anti-rMEPLox antibodies can efficiently neutralize the sphingomyelinase, hyaluronidase, and metalloproteinase activity of L. intermedia venom. This study suggests that this multiepitopic protein can be a suitable candidate for experimental vaccination approaches or for antivenom production against Loxosceles spp. venoms.

  5. Recombinant Protein Containing B-Cell Epitopes of Different Loxosceles Spider Toxins Generates Neutralizing Antibodies in Immunized Rabbits

    Science.gov (United States)

    Lima, Sabrina de Almeida; Guerra-Duarte, Clara; Costal-Oliveira, Fernanda; Mendes, Thais Melo; Figueiredo, Luís F. M.; Oliveira, Daysiane; Machado de Avila, Ricardo A.; Ferrer, Valéria Pereira; Trevisan-Silva, Dilza; Veiga, Silvio S.; Minozzo, João C.; Kalapothakis, Evanguedes; Chávez-Olórtegui, Carlos

    2018-01-01

    Loxoscelism is the most important form of araneism in South America. The treatment of these accidents uses heterologous antivenoms obtained from immunization of production animals with crude loxoscelic venom. Due to the scarcity of this immunogen, new alternatives for its substitution in antivenom production are of medical interest. In the present work, three linear epitopes for Loxosceles astacin-like protease 1 (LALP-1) (SLGRGCTDFGTILHE, ENNTRTIGPFDYDSIMLYGAY, and KLYKCPPVNPYPGGIRPYVNV) and two for hyaluronidase (LiHYAL) (NGGIPQLGDLKAHLEKSAVDI and ILDKSATGLRIIDWEAWR) from Loxosceles intermedia spider venom were identified by SPOT-synthesis technique. One formerly characterized linear epitope (DFSGPYLPSLPTLDA) of sphingomyelinase D (SMase D) SMase-I from Loxosceles laeta was also chosen to constitute a new recombinant multiepitopic protein. These epitopes were combined with a previously produced chimeric multiepitopic protein (rCpLi) composed by linear and conformational B-cell epitopes from SMase D from L. intermedia venom, generating a new recombinant multiepitopic protein derived from loxoscelic toxins (rMEPLox). We demonstrated that rMEPLox is non-toxic and antibodies elicited in rabbits against this antigen present reactivity in ELISA and immunoblot assays with Brazilian L. intermedia, L. laeta, L. gaucho, and L. similis spider venoms. In vivo and in vitro neutralization assays showed that anti-rMEPLox antibodies can efficiently neutralize the sphingomyelinase, hyaluronidase, and metalloproteinase activity of L. intermedia venom. This study suggests that this multiepitopic protein can be a suitable candidate for experimental vaccination approaches or for antivenom production against Loxosceles spp. venoms. PMID:29666624

  6. A microculture system for generating haemolytic antibody responses from human tonsillar lymphocytes.

    Science.gov (United States)

    Booth, R J

    1979-01-01

    Small numbers of Ficoll-Hypaque purified human tonsillar lymphocytes were stimulated with PWM to produce SRBC-specific PFC in a microculture system. The magnitude of the response varied among different tonsils but was typically between 200 and 1000 PFC/10(6) cells cultured. Little or no response was observed in the absence of PWM. SRBC failed to stimulate a SRBC-specific response and the presence of this antigen in PWM-stimulated cultures depressed the response. The time of the maximum response was inversely related to the number of cells cultured. In addition, the duration of the response was limited by rapid depletion of critical medium requirements and/or build up of inhibitory factors especially when the cell concentration exceeded 5 x 10(5) cells/culture. This effect could be partially overcome by daily feeding of cultures with fresh medium. Fractionation studies indicated a requirement for both T and B cell populations. Constant efficiency of PFC production with respect to cell number could be achieved by the addition of inactivated autologous 'filler' cells. The significance of these results and applicability of the microculture system to a detailed analysis of human antibody responses will be discussed.

  7. Diagnostic throughput factor analysis for en-route airspace and optimal aircraft trajectory generation based on capacity prediction and controller workload

    Science.gov (United States)

    Shin, Sanghyun

    Today's National Airspace System (NAS) is approaching its limit to efficiently cope with the increasing air traffic demand. Next Generation Air Transportation System (NextGen) with its ambitious goals aims to make the air travel more predictable with fewer delays, less time sitting on the ground and holding in the air to improve the performance of the NAS. However, currently the performance of the NAS is mostly measured using delay-based metrics which do not capture a whole range of important factors that determine the quality and level of utilization of the NAS. The factors affecting the performance of the NAS are themselves not well defined to begin with. To address these issues, motivated by the use of throughput-based metrics in many areas such as ground transportation, wireless communication and manufacturing, this thesis identifies the different factors which majorly affect the performance of the NAS as demand (split into flight cancellation and flight rerouting), safe separation (split into conflict and metering) and weather (studied as convective weather) through careful comparison with other applications and performing empirical sensitivity analysis. Additionally, the effects of different factors on the NAS's performance are quantitatively studied using real traffic data with the Future ATM Concepts Evaluation Tool (FACET) for various sectors and centers of the NAS on different days. In this thesis we propose a diagnostic tool which can analyze the factors that have greater responsibility for regions of poor and better performances of the NAS. Based on the throughput factor analysis for en-route airspace, it was found that weather and controller workload are the major factors that decrease the efficiency of the airspace. Also, since resources such as air traffic controllers, infrastructure and airspace are limited, it is becoming increasingly important to use the available resources efficiently. To alleviate the impact of the weather and controller

  8. Infectious Mononucleosis Triggers Generation of IgG Auto-Antibodies against Native Myelin Oligodendrocyte Glycoprotein.

    Science.gov (United States)

    Kakalacheva, Kristina; Regenass, Stephan; Wiesmayr, Silke; Azzi, Tarik; Berger, Christoph; Dale, Russell C; Brilot, Fabienne; Münz, Christian; Rostasy, Kevin; Nadal, David; Lünemann, Jan D

    2016-02-12

    A history of infectious mononucleosis (IM), symptomatic primary infection with the Epstein Barr virus, is associated with the development of autoimmune diseases and increases the risk to develop multiple sclerosis. Here, we hypothesized that immune activation during IM triggers autoreactive immune responses. Antibody responses towards cellular antigens using a HEp-2 based indirect immunofluorescence assay and native myelin oligodendrocyte glycoprotein (MOG) using a flow cytometry-based assay were determined in 35 patients with IM and in 23 control subjects. We detected frequent immunoglobulin M (IgM) reactivity to vimentin, a major constituent of the intermediate filament family of proteins, in IM patients (27/35; 77%) but rarely in control subjects (2/23; 9%). IgG autoantibodies binding to HEp-2 cells were absent in both groups. In contrast, IgG responses to native MOG, present in up to 40% of children with inflammatory demyelinating diseases of the central nervous system (CNS), were detectable in 7/35 (20%) patients with IM but not in control subjects. Normalization of anti-vimentin IgM levels to increased total IgM concentrations during IM resulted in loss of significant differences for anti-vimentin IgM titers. Anti-MOG specific IgG responses were still detectable in a subset of three out of 35 patients with IM (9%), even after normalization to increased total IgG levels. Vimentin-specific IgM and MOG-specific IgG responses decreased following clinical resolution of acute IM symptoms. We conclude from our data that MOG-specific memory B cells are activated in subset of patients with IM.

  9. Generation of a monoclonal antibody against the glycosylphosphatidylinositol-linked protein Rae-1 using genetically engineered tumor cells.

    Science.gov (United States)

    Hu, Jiemiao; Vien, Long T; Xia, Xueqing; Bover, Laura; Li, Shulin

    2014-02-04

    Although genetically engineered cells have been used to generate monoclonal antibodies (mAbs) against numerous proteins, no study has used them to generate mAbs against glycosylphosphatidylinositol (GPI)-anchored proteins. The GPI-linked protein Rae-1, an NKG2D ligand member, is responsible for interacting with immune surveillance cells. However, very few high-quality mAbs against Rae-1 are available for use in multiple analyses, including Western blotting, immunohistochemistry, and flow cytometry. The lack of high-quality mAbs limits the in-depth analysis of Rae-1 fate, such as shedding and internalization, in murine models. Moreover, currently available screening approaches for identifying high-quality mAbs are excessively time-consuming and costly. We used Rae-1-overexpressing CT26 tumor cells to generate 60 hybridomas that secreted mAbs against Rae-1. We also developed a streamlined screening strategy for selecting the best anti-Rae-1 mAb for use in flow cytometry assay, enzyme-linked immunosorbent assay, Western blotting, and immunostaining. Our cell line-based immunization approach can yield mAbs against GPI-anchored proteins, and our streamlined screening strategy can be used to select the ideal hybridoma for producing such mAbs.

  10. Generation of chimeric bispecific G250/anti-CD3 monoclonal antibody, a tool to combat renal cell carcinoma

    NARCIS (Netherlands)

    Luiten, R. M.; Coney, L. R.; Fleuren, G. J.; Warnaar, S. O.; Litvinov, S. V.

    1996-01-01

    The monoclonal antibody (MAb) G250 binds to a tumour-associated antigen, expressed in renal cell carcinoma (RCC), which has been demonstrated to be a suitable target for antibody-mediated immunotherapy. A bispecific antibody having both G250 and anti-CD3 specificity can cross-link G250

  11. Acute effects of TiO2 nanomaterials on the viability and taxonomic composition of aquatic bacterial communities assessed via high-throughput screening and next generation sequencing.

    Directory of Open Access Journals (Sweden)

    Chu Thi Thanh Binh

    Full Text Available The nanotechnology industry is growing rapidly, leading to concerns about the potential ecological consequences of the release of engineered nanomaterials (ENMs to the environment. One challenge of assessing the ecological risks of ENMs is the incredible diversity of ENMs currently available and the rapid pace at which new ENMs are being developed. High-throughput screening (HTS is a popular approach to assessing ENM cytotoxicity that offers the opportunity to rapidly test in parallel a wide range of ENMs at multiple concentrations. However, current HTS approaches generally test one cell type at a time, which limits their ability to predict responses of complex microbial communities. In this study toxicity screening via a HTS platform was used in combination with next generation sequencing (NGS to assess responses of bacterial communities from two aquatic habitats, Lake Michigan (LM and the Chicago River (CR, to short-term exposure in their native waters to several commercial TiO2 nanomaterials under simulated solar irradiation. Results demonstrate that bacterial communities from LM and CR differed in their sensitivity to nano-TiO2, with the community from CR being more resistant. NGS analysis revealed that the composition of the bacterial communities from LM and CR were significantly altered by exposure to nano-TiO2, including decreases in overall bacterial diversity, decreases in the relative abundance of Actinomycetales, Sphingobacteriales, Limnohabitans, and Flavobacterium, and a significant increase in Limnobacter. These results suggest that the release of nano-TiO2 to the environment has the potential to alter the composition of aquatic bacterial communities, which could have implications for the stability and function of aquatic ecosystems. The novel combination of HTS and NGS described in this study represents a major advance over current methods for assessing ENM ecotoxicity because the relative toxicities of multiple ENMs to thousands

  12. Acute effects of TiO2 nanomaterials on the viability and taxonomic composition of aquatic bacterial communities assessed via high-throughput screening and next generation sequencing.

    Science.gov (United States)

    Binh, Chu Thi Thanh; Tong, Tiezheng; Gaillard, Jean-François; Gray, Kimberly A; Kelly, John J

    2014-01-01

    The nanotechnology industry is growing rapidly, leading to concerns about the potential ecological consequences of the release of engineered nanomaterials (ENMs) to the environment. One challenge of assessing the ecological risks of ENMs is the incredible diversity of ENMs currently available and the rapid pace at which new ENMs are being developed. High-throughput screening (HTS) is a popular approach to assessing ENM cytotoxicity that offers the opportunity to rapidly test in parallel a wide range of ENMs at multiple concentrations. However, current HTS approaches generally test one cell type at a time, which limits their ability to predict responses of complex microbial communities. In this study toxicity screening via a HTS platform was used in combination with next generation sequencing (NGS) to assess responses of bacterial communities from two aquatic habitats, Lake Michigan (LM) and the Chicago River (CR), to short-term exposure in their native waters to several commercial TiO2 nanomaterials under simulated solar irradiation. Results demonstrate that bacterial communities from LM and CR differed in their sensitivity to nano-TiO2, with the community from CR being more resistant. NGS analysis revealed that the composition of the bacterial communities from LM and CR were significantly altered by exposure to nano-TiO2, including decreases in overall bacterial diversity, decreases in the relative abundance of Actinomycetales, Sphingobacteriales, Limnohabitans, and Flavobacterium, and a significant increase in Limnobacter. These results suggest that the release of nano-TiO2 to the environment has the potential to alter the composition of aquatic bacterial communities, which could have implications for the stability and function of aquatic ecosystems. The novel combination of HTS and NGS described in this study represents a major advance over current methods for assessing ENM ecotoxicity because the relative toxicities of multiple ENMs to thousands of naturally

  13. High-resolution mapping of linear antibody epitopes using ultrahigh-density peptide microarrays

    DEFF Research Database (Denmark)

    Buus, Søren; Rockberg, Johan; Forsström, Björn

    2012-01-01

    Antibodies empower numerous important scientific, clinical, diagnostic, and industrial applications. Ideally, the epitope(s) targeted by an antibody should be identified and characterized, thereby establishing antibody reactivity, highlighting possible cross-reactivities, and perhaps even warning...... against unwanted (e.g. autoimmune) reactivities. Antibodies target proteins as either conformational or linear epitopes. The latter are typically probed with peptides, but the cost of peptide screening programs tends to prohibit comprehensive specificity analysis. To perform high-throughput, high......-resolution mapping of linear antibody epitopes, we have used ultrahigh-density peptide microarrays generating several hundred thousand different peptides per array. Using exhaustive length and substitution analysis, we have successfully examined the specificity of a panel of polyclonal antibodies raised against...

  14. Ethylbenzene induces microsomal oxygen free radical generation: antibody-directed characterization of the responsible cytochrome P450 enzymes.

    Science.gov (United States)

    Serron, S C; Dwivedi, N; Backes, W L

    2000-05-01

    Small aromatic hydrocarbons cause changes in oxidative metabolism by modulating the levels of cytochrome P450 enzymes, with the changes in these enzymes being responsible for qualitative changes in aromatic hydrocarbon metabolism. The goal of this study was to determine if exposure to the small alkylbenzene ethylbenzene (EB) leads to an increase in hepatic free radical production. Male F344 rats were treated with ip injections of EB (10 mmol/kg) and compared to corn oil controls. Hepatic free radical production was examined by measuring the conversion of 2',7'-dichlorofluorescin diacetate (DCFH-DA) to its fluorescent product 2',7'-dichlorofluorescein (DCF). A significant elevation of fluorescent DCF production was observed after treatment with EB, despite the lack of effect on overall cytochrome P450 levels. This process was shown to be inhibitable by metyrapone, an inhibitor of P450. DCF production was also inhibited by catalase, suggesting that hydrogen peroxide (H(2)O(2)) is one of the reactive oxygen intermediates involved in EB-mediated reactive oxygen species (ROS) formation. Interestingly, superoxide dismutase (SOD) did not inhibit DCF production in corn oil-treated rats but was an effective inhibitor in the EB-treated groups. In an effort to determine if the increase in ROS production was related to changes in specific P450 enzymes, DCF production was measured in the presence of anti-CYP2B, anti-CYP2C11, anti-CYP2E1, and anti-CYP3A2 inhibitory antibodies. Anti-CYP2B antibodies inhibited DCF production in EB-treated, but not corn oil groups, which is consistent with the low constitutive levels of this enzyme and its induction by EB. The data also demonstrate that CYP2B contributes to ROS production. Anti-CYP2C11 did not influence DCF production in either group. ROS formation in corn oil-treated rats as well as in ethylbenzene-treated rats was also inhibited with antibodies to anti-CYP2E1 and anti-CYP3A2. These results suggest that CYP2C11 does not appear to

  15. A Strategy for Generating a Broad-Spectrum Monoclonal Antibody and Soluble Single-Chain Variable Fragments against Plant Potyviruses

    Science.gov (United States)

    Liu, Han-Lin; Lin, Wei-Fang; Hu, Wen-Chi; Lee, Yung-An

    2015-01-01

    Potyviruses are major pathogens that often cause mixed infection in calla lilies. To reduce the time and cost of virus indexing, a detection method for the simultaneous targeting of multiple potyviruses was developed by generating a broad-spectrum monoclonal antibody (MAb) for detecting the greatest possible number of potyviruses. The conserved 121-amino-acid core regions of the capsid proteins of Dasheen mosaic potyvirus (DsMV), Konjak mosaic potyvirus (KoMV), and Zantedeschia mild mosaic potyvirus (ZaMMV) were sequentially concatenated and expressed as a recombinant protein for immunization. After hybridoma cell fusion and selection, one stable cell line that secreted a group-specific antibody, named C4 MAb, was selected. In the reaction spectrum test, the C4 MAb detected at least 14 potyviruses by indirect enzyme-linked immunosorbent assay (I-ELISA) and Western blot analysis. Furthermore, the variable regions of the heavy (VH) and light (VL) chains of the C4 MAb were separately cloned and constructed as single-chain variable fragments (scFvs) for expression in Escherichia coli. Moreover, the pectate lyase E (PelE) signal peptide of Erwinia chrysanthemi S3-1 was added to promote the secretion of C4 scFvs into the medium. According to Western blot analysis and I-ELISA, the soluble C4 scFv (VL-VH) fragment showed a binding specificity similar to that of the C4 MAb. Our results demonstrate that a recombinant protein derived from fusion of the conserved regions of viral proteins has the potential to produce a broad-spectrum MAb against a large group of viruses and that the PelE signal peptide can improve the secretion of scFvs in E. coli. PMID:26209665

  16. High Epstein-Barr Virus Load and Genomic Diversity Are Associated with Generation of gp350-Specific Neutralizing Antibodies following Acute Infectious Mononucleosis.

    Science.gov (United States)

    Weiss, Eric R; Alter, Galit; Ogembo, Javier Gordon; Henderson, Jennifer L; Tabak, Barbara; Bakiş, Yasin; Somasundaran, Mohan; Garber, Manuel; Selin, Liisa; Luzuriaga, Katherine

    2017-01-01

    major target for antibodies. We report the detection of EBV gp350-specific antibodies capable of neutralizing EBV infection in vitro The majority of gp350-directed vaccines focus on glycoproteins from lab-adapted strains, which may poorly reflect primary viral envelope diversity. We report some of the first primary gp350 sequences, noting that the gp350 host receptor binding site is remarkably stable across patients and time. However, changes in overall gene diversity were detectable during infection. Patients with higher peripheral blood viral loads in primary infection and greater changes in viral diversity generated more efficient antibodies. Our findings provide insight into the generation of functional antibodies, necessary for vaccine development. Copyright © 2016 American Society for Microbiology.

  17. Generation of recombinant antibodies to rat GABAA receptor subunits by affinity selection on synthetic peptides.

    Directory of Open Access Journals (Sweden)

    Sujatha P Koduvayur

    Full Text Available The abundance and physiological importance of GABAA receptors in the central nervous system make this neurotransmitter receptor an attractive target for localizing diagnostic and therapeutic biomolecules. GABAA receptors are expressed within the retina and mediate synaptic signaling at multiple stages of the visual process. To generate monoclonal affinity reagents that can specifically recognize GABAA receptor subunits, we screened two bacteriophage M13 libraries, which displayed human scFvs, by affinity selection with synthetic peptides predicted to correspond to extracellular regions of the rat α1 and β2 GABAA subunits. We isolated three anti-β2 and one anti-α1 subunit specific scFvs. Fluorescence polarization measurements revealed all four scFvs to have low micromolar affinities with their cognate peptide targets. The scFvs were capable of detecting fully folded GABAA receptors heterologously expressed by Xenopus laevis oocytes, while preserving ligand-gated channel activity. Moreover, A10, the anti-α1 subunit-specific scFv, was capable of detecting native GABAA receptors in the mouse retina, as observed by immunofluorescence staining. In order to improve their apparent affinity via avidity, we dimerized the A10 scFv by fusing it to the Fc portion of the IgG. The resulting scFv-Fc construct had a Kd of ∼26 nM, which corresponds to an approximately 135-fold improvement in binding, and a lower detection limit in dot blots, compared to the monomeric scFv. These results strongly support the use of peptides as targets for generating affinity reagents to membrane proteins and encourage investigation of molecular conjugates that use scFvs as anchoring components to localize reagents of interest at GABAA receptors of retina and other neural tissues, for studies of receptor activation and subunit structure.

  18. Generation and characterization of rat and mouse monoclonal antibodies specific for MeCP2 and their use in X-inactivation studies.

    Directory of Open Access Journals (Sweden)

    K Laurence Jost

    Full Text Available Methyl CpG binding protein 2 (MeCP2 binds DNA, and has a preference for methylated CpGs and, hence, in cells, it accumulates in heterochromatin. Even though it is expressed ubiquitously MeCP2 is particularly important during neuronal maturation. This is underscored by the fact that in Rett syndrome, a neurological disease, 80% of patients carry a mutation in the MECP2 gene. Since the MECP2 gene lies on the X chromosome and is subjected to X chromosome inactivation, affected patients are usually chimeric for wild type and mutant MeCP2. Here, we present the generation and characterization of the first rat monoclonal MeCP2 specific antibodies as well as mouse monoclonal antibodies and a rabbit polyclonal antibody. We demonstrate that our antibodies are suitable for immunoblotting, (chromatin immunoprecipitation and immunofluorescence of endogenous and ectopically expressed MeCP2. Epitope mapping revealed that most of the MeCP2 monoclonal antibodies recognize the C-terminal domain and one the N-terminal domain of MeCP2. Using slot blot analysis, we determined a high sensitivity of all antibodies, detecting amounts as low as 1 ng of MeCP2 protein. Moreover, the antibodies recognize MeCP2 from different species, including human, mouse, rat and pig. Lastly, we have validated their use by analyzing and quantifying X chromosome inactivation skewing using brain tissue of MeCP2 heterozygous null female mice. The new MeCP2 specific monoclonal antibodies described here perform well in a large variety of immunological applications making them a very valuable set of tools for studies of MeCP2 pathophysiology in situ and in vitro.

  19. Generation of human Fab antibody libraries: PCR amplification and assembly of light- and heavy-chain coding sequences.

    Science.gov (United States)

    Andris-Widhopf, Jennifer; Steinberger, Peter; Fuller, Roberta; Rader, Christoph; Barbas, Carlos F

    2011-09-01

    The development of therapeutic antibodies for use in the treatment of human diseases has long been a goal for many researchers in the antibody field. One way to obtain these antibodies is through phage-display libraries constructed from human lymphocytes. This protocol describes the construction of human Fab (fragment antigen binding) antibody libraries. In this method, the individual rearranged heavy- and light-chain variable regions are amplified separately and are linked through a series of overlap polymerase chain reaction (PCR) steps to give the final Fab products that are used for cloning.

  20. Generation of human scFv antibody libraries: PCR amplification and assembly of light- and heavy-chain coding sequences.

    Science.gov (United States)

    Andris-Widhopf, Jennifer; Steinberger, Peter; Fuller, Roberta; Rader, Christoph; Barbas, Carlos F

    2011-09-01

    The development of therapeutic antibodies for use in the treatment of human diseases has long been a goal for many researchers in the antibody field. One way to obtain these antibodies is through phage-display libraries constructed from human lymphocytes. This protocol describes the construction of human scFv (single chain antibody fragment) libraries using a short linker (GGSSRSS) or a long linker (GGSSRSSSSGGGGSGGGG). In this method, the individual rearranged heavy- and light-chain variable regions are amplified separately and are linked through a series of overlap polymerase chain reaction (PCR) steps to give the final scFv products that are used for cloning.

  1. Antibodies: From novel repertoires to defining and refining the structure of biologically important targets.

    Science.gov (United States)

    Conroy, Paul J; Law, Ruby H P; Caradoc-Davies, Tom T; Whisstock, James C

    2017-03-01

    Antibodies represent a highly successful class of molecules that bind a wide-range of targets in therapeutic-, diagnostic- and research-based applications. The antibody repertoire is composed of the building blocks required to develop an effective adaptive immune response against foreign insults. A number of species have developed novel genetic and structural mechanisms from which they derive these antibody repertoires, however, traditionally antibodies are isolated from human, and rodent sources. Due to their high-value therapeutic, diagnostic, biotechnological and research applications, much innovation has resulted in techniques and approaches to isolate novel antibodies. These approaches are bolstered by advances in our understanding of species immune repertoires, next generation sequencing capacity, combinatorial antibody discovery and high-throughput screening. Structural determination of antibodies and antibody-antigen complexes has proven to be pivotal to our current understanding of the immune repertoire for a range of species leading to advances in man-made libraries and fine tuning approaches to develop antibodies from immune-repertoires. Furthermore, the isolation of antibodies directed against antigens of importance in health, disease and developmental processes, has yielded a plethora of structural and functional insights. This review highlights the significant contribution of antibody-based crystallography to our understanding of adaptive immunity and its application to providing critical information on a range of human-health related indications. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Antibodies and Selection of Monoclonal Antibodies.

    Science.gov (United States)

    Hanack, Katja; Messerschmidt, Katrin; Listek, Martin

    Monoclonal antibodies are universal binding molecules with a high specificity for their target and are indispensable tools in research, diagnostics and therapy. The biotechnological generation of monoclonal antibodies was enabled by the hybridoma technology published in 1975 by Köhler and Milstein. Today monoclonal antibodies are used in a variety of applications as flow cytometry, magnetic cell sorting, immunoassays or therapeutic approaches. First step of the generation process is the immunization of the organism with appropriate antigen. After a positive immune response the spleen cells are isolated and fused with myeloma cells in order to generate stable, long-living antibody-producing cell lines - hybridoma cells. In the subsequent identification step the culture supernatants of all hybridoma cells are screened weekly for the production of the antibody of interest. Hybridoma cells producing the antibody of interest are cloned by limited dilution till a monoclonal hybridoma is found. This is a very time-consuming and laborious process and therefore different selection strategies were developed since 1975 in order to facilitate the generation of monoclonal antibodies. Apart from common automation of pipetting processes and ELISA testing there are some promising approaches to select the right monoclonal antibody very early in the process to reduce time and effort of the generation. In this chapter different selection strategies for antibody-producing hybridoma cells are presented and analysed regarding to their benefits compared to conventional limited dilution technology.

  3. Generation of human scFvs antibodies recognizing a prion protein epitope expressed on the surface of human lymphoblastoid cells

    Directory of Open Access Journals (Sweden)

    Imperiale Valentina

    2007-07-01

    Full Text Available Abstract Background A hallmark of prion disease is the transformation of normal cellular prion protein (PrPc into an infectious disease-associated isoform, (PrPsc. Anti-prion protein monoclonal antibodies are invaluable for structure-function studies of PrP molecules. Furthermore recent in vitro and in vivo studies indicate that anti-PrP monoclonal antibodies can prevent the incorporation of PrPc into propagating prions. In the present article, we show two new human phage antibodies, isolated on recombinant hamster prion protein (rHaPrP. Results We adopted an antibody phage display strategy to isolate specific human antibodies directed towards rHaPrP which has been used as a bait for panning the synthetic ETH-2 antibody phage library. Two phage antibodies clones named MA3.B4 and MA3.G3 were isolated and characterized under genetic biochemical and immunocytochemical aspects. The clones were found to recognize the prion protein in ELISA studies. In flow-cytometry studies, these human single chain Fragment variable (scFv phage-antibodies show a well defined pattern of reactivity on human lymphoblastoid and myeloid cells. Conclusion Sequence analysis of the gene encoding for the antibody fragments and antigen recognition patterns determined by flow-cytometry analysis indicate that the isolated scFvs recognize novel epitopes in the PrPc molecule. These new anti PrPc human antibodies are unique reagents for prion protein detection and may represent a biologic platform to develop new reagents to treat PrPsc associated disease.

  4. The HIV-1 V3 domain on field isolates: participation in generation of escape virus in vivo and accessibility to neutralizing antibodies

    DEFF Research Database (Denmark)

    Arendrup, M; Akerblom, L; Heegaard, P M

    1995-01-01

    The V3 domain is highly variable and induces HIV neutralizing antibodies (NA). Here we addressed the issues of 1) the participation of mutations in V3 in generation of neutralization resistant escape virus in vivo and 2) the applicability of synthetic V3 peptides corresponding to field isolates...... to induce neutralizing immune sera. Seven peptides corresponding to the V3 region of primary and escape virus from 3 HIV-1 infected patients were synthesized and used for antibody (Abs) studies and immunizations. The anti-V3 Abs titre in patient serum was generally low against peptides corresponding...... to autologous virus isolated later than the serum sample in contrast to the titre against peptides corresponding to virus isolated earlier than the serum sample. Furthermore, neutralizing anti-V3 monoclonal antibodies (MAbs) raised against V3 peptides from laboratory strains of HIV-1 showed distinct binding...

  5. Targeted next-generation sequencing reveals MODY in up to 6.5% of antibody-negative diabetes cases listed in the Norwegian Childhood Diabetes Registry.

    Science.gov (United States)

    Johansson, Bente B; Irgens, Henrik U; Molnes, Janne; Sztromwasser, Paweł; Aukrust, Ingvild; Juliusson, Petur B; Søvik, Oddmund; Levy, Shawn; Skrivarhaug, Torild; Joner, Geir; Molven, Anders; Johansson, Stefan; Njølstad, Pål R

    2017-04-01

    MODY can be wrongly diagnosed as type 1 diabetes in children. We aimed to find the prevalence of MODY in a nationwide population-based registry of childhood diabetes. Using next-generation sequencing, we screened the HNF1A, HNF4A, HNF1B, GCK and INS genes in all 469 children (12.1%) negative for both GAD and IA-2 autoantibodies and 469 antibody-positive matched controls selected from the Norwegian Childhood Diabetes Registry (3882 children). Variants were classified using clinical diagnostic criteria for pathogenicity ranging from class 1 (neutral) to class 5 (pathogenic). We identified 58 rare exonic and splice variants in cases and controls. Among antibody-negative patients, 6.5% had genetic variants of classes 3-5 (vs 2.4% in controls; p = 0.002). For the stricter classification (classes 4 and 5), the corresponding number was 4.1% (vs 0.2% in controls; p = 1.6 × 10 -5 ). HNF1A showed the strongest enrichment of class 3-5 variants, with 3.9% among antibody-negative patients (vs 0.4% in controls; p = 0.0002). Antibody-negative carriers of variants in class 3 had a similar phenotype to those carrying variants in classes 4 and 5. This is the first study screening for MODY in all antibody-negative children in a nationwide population-based registry. Our results suggest that the prevalence of MODY in antibody-negative childhood diabetes may reach 6.5%. One-third of these MODY cases had not been recognised by clinicians. Since a precise diagnosis is important for treatment and genetic counselling, molecular screening of all antibody-negative children should be considered in routine diagnostics.

  6. A new approach for generating bispecific antibodies based on a common light chain format and the stable architecture of human immunoglobulin G1.

    Science.gov (United States)

    De Nardis, Camilla; Hendriks, Linda J A; Poirier, Emilie; Arvinte, Tudor; Gros, Piet; Bakker, Alexander B H; de Kruif, John

    2017-09-01

    Bispecific antibodies combine two different antigen-binding sites in a single molecule, enabling more specific targeting, novel mechanisms of action, and higher clinical efficacies. Although they have the potential to outperform conventional monoclonal antibodies, many bispecific antibodies have issues regarding production, stability, and pharmacokinetic properties. Here, we describe a new approach for generating bispecific antibodies using a common light chain format and exploiting the stable architecture of human immunoglobulin G 1 We used iterative experimental validation and computational modeling to identify multiple Fc variant pairs that drive efficient heterodimerization of the antibody heavy chains. Accelerated stability studies enabled selection of one Fc variant pair dubbed "DEKK" consisting of substitutions L351D and L368E in one heavy chain combined with L351K and T366K in the other. Solving the crystal structure of the DEKK Fc region at a resolution of 2.3 Å enabled detailed analysis of the interactions inducing CH3 interface heterodimerization. Local shifts in the IgG backbone accommodate the introduction of lysine side chains that form stabilizing salt-bridge interactions with substituted and native residues in the opposite chain. Overall, the CH3 domain adapted to these shifts at the interface, yielding a stable Fc conformation very similar to that in wild-type IgG. Using the DEKK format, we generated the bispecific antibody MCLA-128, targeting human EGF receptors 2 and 3. MCLA-128 could be readily produced and purified at industrial scale with a standard mammalian cell culture platform and a routine purification protocol. Long-term accelerated stability assays confirmed that MCLA-128 is highly stable and has excellent biophysical characteristics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Generation and characterization of monoclonal antibodies specific for 18 kDa antigen from Taenia solium cysticerci.

    Science.gov (United States)

    Zhang, Shaohua; Luo, Xuenong; Guo, Aijiang; Zhu, Xueliang; Cai, Xuepeng

    2016-07-01

    The gene encoding a mature 18 kDa glycoprotein of Taenia solium cysticerci (Ts18) was cloned and bacterially expressed with a His-tagged fusion protein. Monoclonal antibodies (MAbs) against the recombinant Ts18 antigen were generated in vitro by routine murine hybridoma technique of fusing splenocytes, from BALB/c mice immunized with the vesicular fluid of T. solium cysticerci (TsVF), with mouse myeloma cells (SP2/0). The reactivity and specificity of these MAbs were evaluated by indirect ELISA and immunoblotting techniques. Three stable hybridoma clones, namely 3B11, 6C5, and 6G4, were screened using His-Ts18-based ELISA, and these showed two IgG1 isotypes and one IgM isotype. All MAbs reacted with His-Ts18 at molecular weight (MW) 12.8 kDa and the native antigen at MW 18 kDa in TsVF and whole larval extracts (WLE). In a dot blotting test, MAbs 6C5 and 6G4 showed no obvious cross-reactivity with heterologous vesicular fluids from other taeniid species, including Taenia saginata (TsaVF), Taenia pisiformis (TpVF), Taenia hydatigena (ThVF), Taenia multiceps (TmVF), and Echinococcus granulosus (EgVF). Immunofluorescent assays showed that MAb 6C5 specifically reacted with the Ts18 expressed from pEGFP-N1-Ts18-transfected HeLa cells. Immunolocalization analysis, using MAb 6C5 as a probe, indicated that Ts18 was present at high concentrations in the region of the larval sucker and spiral canal. The results indicate that the Ts18 protein is an abundantly secreted parasite protein and MAbs against it might provide a step forward for improving the diagnosis of porcine cysticercosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Generation and characterization of recombinant human antibodies specific for native laminin epitopes. Potential application in cancer therapy. Cancer Immunol. Immunother

    DEFF Research Database (Denmark)

    Sanz, Laura; Kristensen, Peter; Russell, Stephen J.

    2001-01-01

    of human-derived antibody fragments able to modulate laminin-regulated biological functions would allow the development of new strategies to improve treatment of cancer patients. In this report, we explore the use of phage display technology to isolate human anti-laminin antibody fragments. A library...... to mouse, rat and human laminin. and show strong immunohistochemical reactivity with basement membranes in human and murine tissue sections. Their properties make them ideal candidates for in vivo applications....

  9. Generation, characterization and epitope mapping of two neutralizing and protective human recombinant antibodies against influenza A H5N1 viruses.

    Directory of Open Access Journals (Sweden)

    Lina Sun

    Full Text Available BACKGROUND: The development of new therapeutic targets and strategies to control highly pathogenic avian influenza (HPAI H5N1 virus infection in humans is urgently needed. Broadly cross-neutralizing recombinant human antibodies obtained from the survivors of H5N1 avian influenza provide an important role in immunotherapy for human H5N1 virus infection and definition of the critical epitopes for vaccine development. METHODOLOGY/PRINCIPAL FINDINGS: We have characterized two recombinant baculovirus-expressed human antibodies (rhAbs, AVFluIgG01 and AVFluIgG03, generated by screening a Fab antibody phage library derived from a patient recovered from infection with a highly pathogenic avian influenza A H5N1 clade 2.3 virus. AVFluIgG01 cross-neutralized the most of clade 0, clade 1, and clade 2 viruses tested, in contrast, AVFluIgG03 only neutralized clade 2 viruses. Passive immunization of mice with either AVFluIgG01 or AVFluIgG03 antibody resulted in protection from a lethal H5N1 clade 2.3 virus infection. Furthermore, through epitope mapping, we identify two distinct epitopes on H5 HA molecule recognized by these rhAbs and demonstrate their potential to protect against a lethal H5N1 virus infection in a mouse model. CONCLUSIONS/SIGNIFICANCE: Importantly, localization of the epitopes recognized by these two neutralizing and protective antibodies has provided, for the first time, insight into the human antibody responses to H5N1 viruses which contribute to the H5 immunity in the recovered patient. These results highlight the potential of a rhAbs treatment strategy for human H5N1 virus infection and provide new insight for the development of effective H5N1 pandemic vaccines.

  10. Next-Generation DNA Sequencing of VH/VL Repertoires: A Primer and Guide to Applications in Single-Domain Antibody Discovery.

    Science.gov (United States)

    Henry, Kevin A

    2018-01-01

    Immunogenetic analyses of expressed antibody repertoires are becoming increasingly common experimental investigations and are critical to furthering our understanding of autoimmunity, infectious disease, and cancer. Next-generation DNA sequencing (NGS) technologies have now made it possible to interrogate antibody repertoires to unprecedented depths, typically by sequencing of cDNAs encoding immunoglobulin variable domains. In this chapter, we describe simple, fast, and reliable methods for producing and sequencing multiplex PCR amplicons derived from the variable regions (V H , V H H or V L ) of rearranged immunoglobulin heavy and light chain genes using the Illumina MiSeq platform. We include complete protocols and primer sets for amplicon sequencing of V H /V H H/V L repertoires directly from human, mouse, and llama lymphocytes as well as from phage-displayed V H /V H H/V L libraries; these can be easily be adapted to other types of amplicons with little modification. The resulting amplicons are diverse and representative, even using as few as 10 3 input B cells, and their generation is relatively inexpensive, requiring no special equipment and only a limited set of primers. In the absence of heavy-light chain pairing, single-domain antibodies are uniquely amenable to NGS analyses. We present a number of applications of NGS technology useful in discovery of single-domain antibodies from phage display libraries, including: (i) assessment of library functionality; (ii) confirmation of desired library randomization; (iii) estimation of library diversity; and (iv) monitoring the progress of panning experiments. While the case studies presented here are of phage-displayed single-domain antibody libraries, the principles extend to other types of in vitro display libraries.

  11. Generation and characterization of chicken egg yolk antibodies against propionibacterium acnes for the prevention of acne vulgaris

    Directory of Open Access Journals (Sweden)

    Karthika Selvan

    2012-01-01

    Full Text Available Introduction: Antigen-specific antibody has been widely used for immunological analysis in the field of diagnosis as well as in pure scientific research, where the IgY antibodies can be raised against P acnes antigen. Material and Methods: To produce IgY against Propionibacterium acnes, laying hens were immunized with P acnes (MTCC No: 1951 and subsequent booster injections were given. The antibodies produced were purified from the egg yolk of immunized chicken using the polyethylene glycol and ammonium sulfate precipitation method and, further, by Diethylaminoethyl (DEAE cellulose ion-exchange column chromatography. The protein fraction of IgY was isolated from the egg yolk. The separation was rapid, and the success of each step was viewed on Sodium Dodecyl Sulphate-polyacrylamide gel electrophoresis (SDS-PAGE. The reactivity of anti-P acnes was evaluated by the Enzyme-linked immunosorbent assay (ELISA test and the dot-immunoassay. Results: With ELISA, the highest titter of 1:10000 was observed on the 150 th day after vaccination. The results of dot-immunoassay suggested that anti-P acnes IgY developed a brown color as positive reaction, which showed the antigen-antibody binding even after a maximum dilution of 1/500. These results suggest that anti-acne IgY was produced and had strong specific antibody reactivity. Conclusion: The findings indicate that anti-acne IgY is worth utilizing as a preventive agent for acne vulgaris.

  12. Generation of efficient mutants of endoglycosidase from Streptococcus pyogenes and their application in a novel one-pot transglycosylation reaction for antibody modification.

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Iwamoto

    Full Text Available The fine structures of Fc N-glycan modulate the biological functions and physicochemical properties of antibodies. By remodeling N-glycan to obtain a homogeneous glycoform or chemically modified glycan, antibody characteristics can be controlled or modified. Such remodeling can be achieved by transglycosylation reactions using a mutant of endoglycosidase from Streptococcus pyogenes (Endo-S and glycan oxazoline. In this study, we generated improved mutants of Endo-S by introducing additional mutations to the D233Q mutant. Notably, Endo-S D233Q/Q303L, D233Q/E350Q, and several other mutations resulted in transglycosylation efficiencies exceeding 90%, with a single-digit donor-to-substrate ratio of five, and D233Q/Y402F/D405A and several other mutations resulted in slightly reduced transglycosylation efficiencies accompanied by no detectable hydrolysis activity for 48 h. We further demonstrated that the combined use of mutants of Endo-S with Endo-M or Endo-CC, endoglycosidases from Mucor hiemalis and Coprinopsis cinerea, enables one-pot transglycosylation from sialoglycopeptide to antibodies. This novel reaction enables glycosylation remodeling of antibodies, without the chemical synthesis of oxazoline in advance or in situ.

  13. Generation of a haptoglobin-hemoglobin complex-specific Fab antibody blocking the binding of the complex to CD163

    DEFF Research Database (Denmark)

    Horn, Ivo R; Nielsen, Marianne Jensby; Madsen, Mette

    2003-01-01

    During intravascular hemolysis hemoglobin (Hb) binds to haptoglobin (Hp) leading to endocytosis of the complex by the macrophage receptor, CD163. In the present study, we used a phage-display Fab antibody strategy to explore if the complex formation between Hp and Hb leads to exposure of antigenic...... epitopes specific for the complex. By Hp-Hb-affinity screening of a phage-Fab library, we isolated a phage clone against the ligand complex. Surface plasmon resonance analyses of the Fab part expressed as a recombinant protein revealed a high affinity binding (KD = 3.9 nm) to Hp-Hb, whereas no binding...... was measured for non-complexed Hp or Hb. The Fab antibody completely inhibited the binding of 125I-labeled Hp-Hb complexes to CD163 and blocked their uptake in CD163-transfected cells. In conclusion, we have raised a receptor-blocking antibody specifically recognizing the Hp-Hb complex. In addition to provide...

  14. Referencing cross-reactivity of detection antibodies for protein array experiments [version 1; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Darragh Lemass

    2016-01-01

    Full Text Available Protein arrays are frequently used to profile antibody repertoires in humans and animals. High-throughput protein array characterisation of complex antibody repertoires requires a platform-dependent, lot-to-lot validation of secondary detection antibodies. This article details the validation of an affinity-isolated anti-chicken IgY antibody produced in rabbit and a goat anti-rabbit IgG antibody conjugated with alkaline phosphatase using protein arrays consisting of 7,390 distinct human proteins. Probing protein arrays with secondary antibodies in absence of chicken serum revealed non-specific binding to 61 distinct human proteins. The cross-reactivity of the tested secondary detection antibodies points towards the necessity of platform-specific antibody characterisation studies for all secondary immunoreagents. Secondary antibody characterisation using protein arrays enables generation of reference lists of cross-reactive proteins, which can be then excluded from analysis in follow-up experiments. Furthermore, making such cross-reactivity lists accessible to the wider research community may help to interpret data generated by the same antibodies in applications not related to protein arrays such as immunoprecipitation, Western blots or other immunoassays.

  15. High Throughput Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s high throughput facility provides highly automated and parallel approaches to material and materials chemistry development. The facility allows scientists...

  16. Generation of a C3c specific monoclonal antibody and assessment of C3c as a putative inflammatory marker derived from complement factor C3

    DEFF Research Database (Denmark)

    Palarasah, Yaseelan; Skjodt, Karsten; Brandt, Jette

    2010-01-01

    complex (C5b-C9) and quantification of complement split products by precipitation-in-gel techniques (e.g. C3d). We have developed a mouse monoclonal antibody (mAb) that is able to detect fluid phase C3c without interference from other products generated from the complement component C3. The C3c specific m....... The C3c mAb was confirmed to be C3c specific, as it showed no cross-reactivity with native (un-cleaved) C3, with C3b, iC3b, or with C3d. Also, no significant reaction was observed with C3 fragments in factor I deficient sera or plasma. This antibody forms the basis for the generation of a robust ELISA...... that allows for a quick and reliable evaluation of complement activation and consumption as a marker for inflammatory processes. We established the C3c plasma range in 100 healthy Danish blood donors with a mean of 3.47 μg/ml and a range of 2.12-4.92 μg/ml. We believe that such an antibody might...

  17. Comparison of three techniques for generation of tolerogenic dendritic cells: siRNA, oligonucleotide antisense, and antibody blocking.

    Science.gov (United States)

    Karimi, Mohammad Hossein; Ebadi, Padideh; Pourfathollah, Ali Akbar; Moazzeni, Mohammad; Soheili, Zahra Soheila; Samiee, Shahram

    2010-12-01

    In recent years, a new view of dendritic cells (DCs) as a main regulator of immunity to induce and maintain tolerance has been established. In vitro manipulation of their development and maturation is a topic of DC therapeutic application, which utilizes their inherent tolerogenicity. In this field, the therapeutic potential of antisense, siRNA, and blocking antibody are an interesting goal. In the present study, the efficiency of these three methods--siRNA, antisense, and blocking antibody--against CD40 molecule and its function in DCs and BCL1 cell line are compared. DCs were separated from mouse spleen and then cultured in vitro using Lipofectamine 2000 to deliver both silencers; the efficacy of transfection was estimated by flow cytometry. mRNA expression and protein synthesis were assessed by real time-PCR and flow cytometry, respectively. By Annexin V and propidium iodine staining, we could evaluate the viability of transfected cells. Knocking down the CD40 gene into separate groups of DCs by siRNA, antisense, and blocking antibody treated DCs can cause an increase in IL-4, decrease in IL-12, IFN-γ production, and allostimulation activity. Our results indicated that, in comparison to antisense and blocking antibody, siRNAs appear to be quantitatively more efficient in CD40 downregulation and their differences are significant.

  18. The HIV-1 V3 domain on field isolates: participation in generation of escape virus in vivo and accessibility to neutralizing antibodies

    DEFF Research Database (Denmark)

    Arendrup, M; Akerblom, L; Heegaard, P M

    1995-01-01

    The V3 domain is highly variable and induces HIV neutralizing antibodies (NA). Here we addressed the issues of 1) the participation of mutations in V3 in generation of neutralization resistant escape virus in vivo and 2) the applicability of synthetic V3 peptides corresponding to field isolates...... patterns against V3 peptides corresponding to sequential primary and escape field isolates, with the strongest reactivity against late isolated escape virus. These observations suggest that the neutralization epitope was influenced by the appearance of mutations. When used as immunogen in rabbits, V3...... to induce neutralizing immune sera. Seven peptides corresponding to the V3 region of primary and escape virus from 3 HIV-1 infected patients were synthesized and used for antibody (Abs) studies and immunizations. The anti-V3 Abs titre in patient serum was generally low against peptides corresponding...

  19. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    Zegers, N.D.

    1995-01-01

    Synthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps that lead to the

  20. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    N.D. Zegers (Netty)

    1995-01-01

    textabstractSynthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps

  1. Prediction of antibody persistency from antibody titres to natalizumab

    DEFF Research Database (Denmark)

    Jensen, Poul Erik H; Koch-Henriksen, Nils; Sellebjerg, Finn

    2012-01-01

    In a subgroup of patients with multiple sclerosis natalizumab therapy causes generation of anti-natalizumab antibodies that may be transient or persistent. It is recommended to discontinue natalizumab therapy in persistently antibody-positive patients.......In a subgroup of patients with multiple sclerosis natalizumab therapy causes generation of anti-natalizumab antibodies that may be transient or persistent. It is recommended to discontinue natalizumab therapy in persistently antibody-positive patients....

  2. Generation of neutralizing monoclonal antibodies against a conformational epitope of human adenovirus type 7 (HAdv-7 incorporated in capsid encoded in a HAdv-3-based vector.

    Directory of Open Access Journals (Sweden)

    Minglong Liu

    Full Text Available The generation of monoclonal antibodies (MAbs by epitope-based immunization is difficult because the immunogenicity of simple peptides is poor and T cells must be potently stimulated and immunological memory elicited. A strategy in which antigen is incorporated into the adenoviral capsid protein has been used previously to develop antibody responses against several vaccine targets and may offer a solution to this problem. In this study, we used a similar strategy to develop HAdv-7-neutralizing MAbs using rAdMHE3 virions into which hexon hypervariable region 5 (HVR5 of adenovirus type 7 (HAdv-7 was incorporated. The epitope mutant rAdMHE3 was generated by replacing HVR5 of Ad3EGFP, a recombinant HAdv-3-based vector expressing enhanced green fluorescence protein, with HVR5 of HAdv-7. We immunized BALB/c mice with rAdMHE3 virions and produced 22 different MAbs against them, four of which showed neutralizing activity against HAdv-7 in vitro. Using an indirect enzyme-linked immunosorbent assay (ELISA analysis and an antibody-binding-competition ELISA with Ad3EGFP, HAdv-7, and a series of chimeric adenoviral particles containing epitope mutants, we demonstrated that the four MAbs recognize the neutralization site within HVR5 of the HAdv-7 virion. Using an immunoblotting analysis and ELISA with HAdv-7, recombinant peptides, and a synthetic peptide, we also showed that the neutralizing epitope within HVR5 of the HAdv-7 virion is a conformational epitope. These findings suggest that it is feasible to use a strategy in which antigen is incorporated into the adenoviral capsid protein to generate neutralizing MAbs. This strategy may also be useful for developing therapeutic neutralizing MAbs and designing recombinant vector vaccines against HAdv-7, and in structural analysis of adenoviruses.

  3. Antimitochondrial antibody

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003529.htm Antimitochondrial antibody To use the sharing features on this page, please enable JavaScript. Antimitochondrial antibodies (AMA) are substances ( antibodies ) that form against mitochondria. ...

  4. Choices of capture chromatography technology in antibody manufacturing processes.

    Science.gov (United States)

    DiLeo, Michael; Ley, Arthur; Nixon, Andrew E; Chen, Jie

    2017-11-15

    The capture process employed in monoclonal antibody downstream purification is not only the most critically impacted process by increased antibody titer resulting from optimized mammalian cell culture expression systems, but also the most important purification step in determining overall process throughput, product quality, and economics. Advances in separation technology for capturing antibodies from complex feedstocks have been one focus of downstream purification process innovation for past 10 years. In this study, we evaluated new generation chromatography resins used in the antibody capture process including Protein A, cation exchange, and mixed mode chromatography to address the benefits and unique challenges posed by each chromatography approach. Our results demonstrate the benefit of improved binding capacity of new generation Protein A resins, address the concern of high concentration surge caused aggregation when using new generation cation exchange resins with over 100mg/mL binding capacity, and highlight the potential of multimodal cation exchange resins for capture process design. The new landscape of capture chromatography technologies provides options to achieve overall downstream purification outcome with high product quality and process efficiency. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Thrombin generation assay as a possible tool for assessment of reduced activity of clotting factors induced by antiphospholipid antibodies and in-vitro evaluation of treatment options.

    Science.gov (United States)

    Livnat, Tami; Zivelin, Ariella; Tamarin, Ilia; Guetta, Victor; Salomon, Ophira

    2009-12-01

    Bleeding is a rare manifestation of antiphospholipid syndrome, unless associated with reduced clotting factors or severe thrombocytopenia. Accurate assessment of the autoantibodies in plasma is very important since the autoantibodies can lead to bleeding or thrombosis. The objective of the present study was to define the inhibitors causing reduced clotting activity in a patient with antiphospholipids antibodies and to assess the potential of thrombin generation assay to assist in establishment of optimal treatment in case of major bleeding. Levels of clotting factors as well as inhibitors to factors II, V, VII, VIII, IX, X and XI were defined. For detection of inhibitors to prothrombin crossed immunoelectrophoresis was used. IgG was purified by commercial protein A column. Thrombin generation was measured using a fluorometric assay in platelet-poor and platelet-rich plasma. Inhibitors toward the activity of factors V, VII, VIII, IX, X and XI were defined and also an inhibitor to prothrombin antigen. No thrombin generation was induced in the patient's plasma by recalcification even in the presence of recombinant factor VIIa or factor VIII inhibitor bypassing activity. In contrast, addition of platelets from either donor or patient or synthetic phospholipids normalized the thrombin generation. The thrombin generation model showed that the addition of platelets and no recombinant factor VIIa or factor VIII inhibitor bypassing activity would correct thrombin generation in vitro. On this basis, platelet concentrates were administered to a patient with bleeding caused by lupus anticoagulant and low clotting factors activity.

  6. DNA vaccine-generated duck polyclonal antibodies as a postexposure prophylactic to prevent hantavirus pulmonary syndrome (HPS.

    Directory of Open Access Journals (Sweden)

    Rebecca Brocato

    Full Text Available Andes virus (ANDV is the predominant cause of hantavirus pulmonary syndrome (HPS in South America and the only hantavirus known to be transmitted person-to-person. There are no vaccines, prophylactics, or therapeutics to prevent or treat this highly pathogenic disease (case-fatality 35-40%. Infection of Syrian hamsters with ANDV results in a disease that closely mimics human HPS in incubation time, symptoms of respiratory distress, and disease pathology. Here, we evaluated the feasibility of two postexposure prophylaxis strategies in the ANDV/hamster lethal disease model. First, we evaluated a natural product, human polyclonal antibody, obtained as fresh frozen plasma (FFP from a HPS survivor. Second, we used DNA vaccine technology to manufacture a polyclonal immunoglobulin-based product that could be purified from the eggs of vaccinated ducks (Anas platyrhynchos. The natural "despeciation" of the duck IgY (i.e., Fc removed results in an immunoglobulin predicted to be minimally reactogenic in humans. Administration of ≥ 5,000 neutralizing antibody units (NAU/kg of FFP-protected hamsters from lethal disease when given up to 8 days after intranasal ANDV challenge. IgY/IgYΔFc antibodies purified from the eggs of DNA-vaccinated ducks effectively neutralized ANDV in vitro as measured by plaque reduction neutralization tests (PRNT. Administration of 12,000 NAU/kg of duck egg-derived IgY/IgYΔFc protected hamsters when administered up to 8 days after intranasal challenge and 5 days after intramuscular challenge. These experiments demonstrate that convalescent FFP shows promise as a postexposure HPS prophylactic. Moreover, these data demonstrate the feasibility of using DNA vaccine technology coupled with the duck/egg system to manufacture a product that could supplement or replace FFP. The DNA vaccine-duck/egg system can be scaled as needed and obviates the necessity of using limited blood products obtained from a small number of HPS survivors. This

  7. Evaluation of the 2. generation radio-receptional assay for anti-TSH receptor antibodies (TRAb) in autoimmune thyroid diseases. Comparison with 1. generation and anti-thyroperoxidae antibodies (AbTPO)

    International Nuclear Information System (INIS)

    Giovanella, L.; Ceriani, L.; Garacini, S.

    2001-01-01

    The detection of autoantibodies to the TSH-receptor (TRAb) by radio-receptor assays (RRA) is widely requested in clinical practice for the diagnostic work-up of Graves' disease and its differentiation from diffuse thyroid autonomy. Additionally, TRAb measurement can be useful during antithyroid drug treatment of Graves' disease to evaluate the risk of relapse after therapy discontinuation. Nevertheless, some patients affected by Graves' disease are TRAb-negative when 1. generation assay is used. In this study the diagnostic performance of a newly developed 2. generation TRAb assay (TRAK human DYNOtest(R), BRAHMS Diagnostica GmbH, Berlin, Germany) was evaluated in 74 untreated patients affected by Graves' disease, in 53 untreated patients affected by Hashimoto's thyroiditis and in 88 patients affected by euthyroid nodular goiter. It was also compared the new TRAb assay with the 1. generation test (TRAK(R) Assay, BRAHMS Diagnostica GmbH, Berlin, Germany) and anti-thyroperoxidase assay (AbTPO DYNOtest(R), BRAHMS GmbH, Berlin). The 2. generation TRAb assay showed the better diagnostic sensitivity in Graves' disease (97%) with respect to the 1. generation assay (85%) and AbTPO assay (64%). The AbTPO assay was positive in 50 of 53 (94%) patients affected by autoimmune thyroiditis. The 1. and 2. generation TRAb assays were positive in 4 (7%) and 7 (13%) of 53 patients affected by autoimmune thyroiditis, respectively. No patients affected by nodular goiter showed positive 1. and 2. generation TRAb assay while AbTPO levels were positive in 8 of 88 patients (specificity 91%). In conclusion, the 2. generation TRAb assay is clearly more sensitive than the 1. generation test and should be used in clinical practice to minimize the incidence of TRAb-negative Graves' disease. Long term prospective studies are needed to evaluate the prognostic role of 2. generation TRAb assay in Graves' disease. The assay of AbTPO is the best marker for autoimmune thyroiditis but is clearly less

  8. Evaluation of the 2. generation radio-receptional assay for anti-TSH receptor antibodies (TRAb) in autoimmune thyroid diseases. Comparison with 1. generation and anti-thyroperoxidae antibodies (AbTPO)

    Energy Technology Data Exchange (ETDEWEB)

    Giovanella, L.; Ceriani, L.; Garacini, S. [University Hospital Ospedale di Circolo e Fondazione Macchi, Dept. of Nuclear Medicine, Lab. of Endocrinology and Thyroid Unit, Varese (Italy)

    2001-03-01

    The detection of autoantibodies to the TSH-receptor (TRAb) by radio-receptor assays (RRA) is widely requested in clinical practice for the diagnostic work-up of Graves' disease and its differentiation from diffuse thyroid autonomy. Additionally, TRAb measurement can be useful during antithyroid drug treatment of Graves' disease to evaluate the risk of relapse after therapy discontinuation. Nevertheless, some patients affected by Graves' disease are TRAb-negative when 1. generation assay is used. In this study the diagnostic performance of a newly developed 2. generation TRAb assay (TRAK human DYNOtest(R), BRAHMS Diagnostica GmbH, Berlin, Germany) was evaluated in 74 untreated patients affected by Graves' disease, in 53 untreated patients affected by Hashimoto's thyroiditis and in 88 patients affected by euthyroid nodular goiter. It was also compared the new TRAb assay with the 1. generation test (TRAK(R) Assay, BRAHMS Diagnostica GmbH, Berlin, Germany) and anti-thyroperoxidase assay (AbTPO DYNOtest(R), BRAHMS GmbH, Berlin). The 2. generation TRAb assay showed the better diagnostic sensitivity in Graves' disease (97%) with respect to the 1. generation assay (85%) and AbTPO assay (64%). The AbTPO assay was positive in 50 of 53 (94%) patients affected by autoimmune thyroiditis. The 1. and 2. generation TRAb assays were positive in 4 (7%) and 7 (13%) of 53 patients affected by autoimmune thyroiditis, respectively. No patients affected by nodular goiter showed positive 1. and 2. generation TRAb assay while AbTPO levels were positive in 8 of 88 patients (specificity 91%). In conclusion, the 2. generation TRAb assay is clearly more sensitive than the 1. generation test and should be used in clinical practice to minimize the incidence of TRAb-negative Graves' disease. Long term prospective studies are needed to evaluate the prognostic role of 2. generation TRAb assay in Graves' disease. The assay of AbTPO is the best marker for

  9. Towards High-throughput Immunomics for Infectious Diseases: Use of Next-generation Peptide Microarrays for Rapid Discovery and Mapping of Antigenic Determinants

    DEFF Research Database (Denmark)

    J. Carmona, Santiago; Nielsen, Morten; Schafer-Nielsen, Claus

    2015-01-01

    , we developed a highly-multiplexed platform based on next-generation high-density peptide microarrays to map these specificities in Chagas Disease, an exemplar of a human infectious disease caused by the protozoan Trypanosoma cruzi. We designed a high-density peptide microarray containing more than...

  10. The Gut Microbiotassay: a high-throughput qPCR approach combinable with next generation sequencing to study gut microbial diversity

    DEFF Research Database (Denmark)

    Hermann-Bank, Marie Louise; Skovgaard, Kerstin; Stockmarr, Anders

    2013-01-01

    ®) followed by next generation sequencing. Primers were designed if necessary and all primer sets were screened against DNA extracted from pure cultures of 15 representative bacterial species. Subsequently the setup was tested on DNA extracted from small and large intestinal content from piglets...

  11. Large Scale Generation and Characterization of Anti-Human CD34 Monoclonal Antibody in Ascetic Fluid of Balb/c Mice

    OpenAIRE

    Aghebati Maleki, Leili; Majidi, Jafar; Baradaran, Behzad; Abdolalizadeh, Jalal; Kazemi, Tohid; Aghebati Maleki, Ali; Sineh sepehr, Koushan

    2013-01-01

    Purpose: Monoclonal antibodies or specific antibodies are now an essential tool of biomedical research and are of great commercial and medical value. The purpose of this study was to produce large scale of monoclonal antibody against CD34 in order to diagnostic application in leukemia and purification of human hematopoietic stem/progenitor cells. Methods: For large scale production of monoclonal antibody, hybridoma cells that produce monoclonal antibody against human CD34 were injected into t...

  12. Generation and characterisation of murine monoclonal antibodies specific for cervine immunoglobulin light chain, IgM and IgG

    International Nuclear Information System (INIS)

    Hibma, M.; Griffin, J.F.T.

    1992-01-01

    Monoclonal antibodies (mAb) which react with cervine immunoglobulin (Ig) light chain, IgM and IgG were produced using conventional cell fusion technology. Hybridoma supernatants were initially screened for specificity against cervine Ig using an enzyme-linked immunosorbent assay (ELISA). The specificity of supernatants against size-fractionated cervine Ig was further determined. Supernatants were characterised using western blotting and autoradiographic techniques. The mAb OU1G, OU2G and OU3G were specific for cervine gamma-chain of IgG, whereas OU1L was specific for light chain of Ig. A further mAb (OU1M) bound IgM and not IgG. These mAb were found to have varying cross-reactivity against Ig from other species

  13. A semi-automated multiplex high-throughput assay for measuring IgG antibodies against Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) domains in small volumes of plasma

    DEFF Research Database (Denmark)

    Cham, Gerald K K; Kurtis, Jonathan; Lusingu, John

    2008-01-01

    -based assay was sensitive, accurate and reproducible. Four recombinant PfEMP1 proteins C17, D5, D9 and D12, selected on the basis that they showed a spread of median fluorescent intensity (MFI) values from low to high when analysed by the bead-based assay were analysed by ELISA and the results from both...... reactivity levels to twenty eight different recombinant PfEMP1 proteins were simultaneously measured using a single microliter of plasma. Thus, the assay reported here provides a useful tool for rapid and efficient quantification of antibody reactivity against PfEMP1 variants in human plasma....... of twenty nine PfEMP1 domains were PCR amplified from 3D7 genomic DNA, expressed in the Baculovirus system and purified by metal-affinity chromatography. The antibody reactivity level to the recombinant PfEMP1 proteins in human hyper-immune plasma was measured by ELISA. In parallel, these recombinant PfEMP1...

  14. Antibody informatics for drug discovery

    DEFF Research Database (Denmark)

    Shirai, Hiroki; Prades, Catherine; Vita, Randi

    2014-01-01

    to the antibody science in every project in antibody drug discovery. Recent experimental technologies allow for the rapid generation of large-scale data on antibody sequences, affinity, potency, structures, and biological functions; this should accelerate drug discovery research. Therefore, a robust bioinformatic...... infrastructure for these large data sets has become necessary. In this article, we first identify and discuss the typical obstacles faced during the antibody drug discovery process. We then summarize the current status of three sub-fields of antibody informatics as follows: (i) recent progress in technologies...... for antibody rational design using computational approaches to affinity and stability improvement, as well as ab-initio and homology-based antibody modeling; (ii) resources for antibody sequences, structures, and immune epitopes and open drug discovery resources for development of antibody drugs; and (iii...

  15. The NS1 glycoprotein can generate dramatic antibody-enhanced dengue viral replication in normal out-bred mice resulting in lethal multi-organ disease.

    Directory of Open Access Journals (Sweden)

    Andrew K I Falconar

    Full Text Available Antibody-enhanced replication (AER of dengue type-2 virus (DENV-2 strains and production of antibody-enhanced disease (AED was tested in out-bred mice. Polyclonal antibodies (PAbs generated against the nonstructural-1 (NS1 glycoprotein candidate vaccine of the New Guinea-C (NG-C or NSx strains reacted strongly and weakly with these antigens, respectively. These PAbs contained the IgG2a subclass, which cross-reacted with the virion-associated envelope (E glycoprotein of the DENV-2 NSx strain, suggesting that they could generate its AER via all mouse Fcγ-receptor classes. Indeed, when these mice were challenged with a low dose (<0.5 LD₅₀ of the DENV-2 NSx strain, but not the NG-C strain, they all generated dramatic and lethal DENV-2 AER/AED. These AER/AED mice developed life-threatening acute respiratory distress syndrome (ARDS, displayed by diffuse alveolar damage (DAD resulting from i dramatic interstitial alveolar septa-thickening with mononuclear cells, ii some hyperplasia of alveolar type-II pneumocytes, iii copious intra-alveolar protein secretion, iv some hyaline membrane-covered alveolar walls, and v DENV-2 antigen-positive alveolar macrophages. These mice also developed meningo-encephalitis, with greater than 90,000-fold DENV-2 AER titers in microglial cells located throughout their brain parenchyma, some of which formed nodules around dead neurons. Their spleens contained infiltrated megakaryocytes with DENV-2 antigen-positive red-pulp macrophages, while their livers displayed extensive necrosis, apoptosis and macro- and micro-steatosis, with DENV-2 antigen-positive Kuppfer cells and hepatocytes. Their infections were confirmed by DENV-2 isolations from their lungs, spleens and livers. These findings accord with those reported in fatal human "severe dengue" cases. This DENV-2 AER/AED was blocked by high concentrations of only the NG-C NS1 glycoprotein. These results imply a potential hazard of DENV NS1 glycoprotein-based vaccines

  16. TriFabs—Trivalent IgG-Shaped Bispecific Antibody Derivatives: Design, Generation, Characterization and Application for Targeted Payload Delivery

    Directory of Open Access Journals (Sweden)

    Klaus Mayer

    2015-11-01

    Full Text Available TriFabs are IgG-shaped bispecific antibodies (bsAbs composed of two regular Fab arms fused via flexible linker peptides to one asymmetric third Fab-sized binding module. This third module replaces the IgG Fc region and is composed of the variable region of the heavy chain (VH fused to CH3 with “knob”-mutations, and the variable region of the light chain (VL fused to CH3 with matching “holes”. The hinge region does not contain disulfides to facilitate antigen access to the third binding site. To compensate for the loss of hinge-disulfides between heavy chains, CH3 knob-hole heterodimers are linked by S354C-Y349C disulphides, and VH and VL of the stem region may be linked via VH44C-VL100C disulphides. TriFabs which bind one antigen bivalent in the same manner as IgGs and the second antigen monovalent “in between” these Fabs can be applied to simultaneously engage two antigens, or for targeted delivery of small and large (fluorescent or cytotoxic payloads.

  17. Evaluating High Throughput Toxicokinetics and Toxicodynamics for IVIVE (WC10)

    Science.gov (United States)

    High-throughput screening (HTS) generates in vitro data for characterizing potential chemical hazard. TK models are needed to allow in vitro to in vivo extrapolation (IVIVE) to real world situations. The U.S. EPA has created a public tool (R package “httk” for high throughput tox...

  18. Green throughput taxation

    International Nuclear Information System (INIS)

    Bruvoll, A.; Ibenholt, K.

    1998-01-01

    According to optimal taxation theory, raw materials should be taxed to capture the embedded scarcity rent in their value. To reduce both natural resource use and the corresponding emissions, or the throughput in the economic system, the best policy may be a tax on material inputs. As a first approach to throughput taxation, this paper considers a tax on intermediates in the framework of a dynamic computable general equilibrium model with environmental feedbacks. To balance the budget, payroll taxes are reduced. As a result, welfare indicators as material consumption and leisure time consumption are reduced, while on the other hand all the environmental indicators improve. 27 refs

  19. Throughput rate study

    International Nuclear Information System (INIS)

    Ford, L.; Bailey, W.; Gottlieb, P.; Emami, F.; Fleming, M.; Robertson, D.

    1993-01-01

    The Civilian Radioactive Waste Management System (CRWMS) Management and Operating (M ampersand O) Contractor, has completed a study to analyze system wide impacts of operating the CRWMS at varying throughput rates, including the 3000 MTU/year rate which has been assumed in the past. Impacts of throughput rate on all phases of the CRWMS operations (acceptance, transportation, storage and disposal) were evaluated. The results of the study indicate that a range from 3000 to 5000 MTU/year is preferred, based on system cost per MTU of SNF emplaced and logistics constraints

  20. Generation of monoclonal antibodies and development of an immunofluorometric assay for the detection of CUZD1 in tissues and biological fluids.

    Science.gov (United States)

    Farkona, Sofia; Soosaipillai, Antoninus; Filippou, Panagiota; Korbakis, Dimitrios; Serra, Stefano; Rückert, Felix; Diamandis, Eleftherios P; Blasutig, Ivan M

    2017-12-01

    CUB and zona pellucida-like domain-containing protein 1 (CUZD1) was identified as a pancreas-specific protein and was proposed as a candidate biomarker for pancreatic related disorders. CUZD1 protein levels in tissues and biological fluids have not been extensively examined. The purpose of the present study was to generate specific antibodies targeting CUZD1 to assess CUZD1 expression within tissues and biological fluids. Mouse monoclonal antibodies against CUZD1 were generated and used to perform immunohistochemical analyses and to develop a sensitive and specific enzyme-linked immunosorbent assay (ELISA). CUZD1 protein expression was assessed in various human tissue extracts and biological fluids and in gel filtration chromatography-derived fractions of pancreatic tissue extract, pancreatic juice and recombinant protein. Immunohistochemical staining of CUZD1 in pancreatic tissue showed that the protein is localized to the acinar cells and the lumen of the acini. Western blot analysis detected the protein in pancreatic tissue extract and pancreatic juice. The newly developed ELISA measured CUZD1 in high levels in pancreas and in much lower but detectable levels in several other tissues. In the biological fluids tested, CUZD1 expression was detected exclusively in pancreatic juice. The analysis of gel filtration chromatography-derived fractions of pancreatic tissue extract, pancreatic juice and recombinant CUZD1 suggested that the protein exists in high molecular weight protein complexes. This study describes the development of tools targeting CUZD1 protein, its tissue expression pattern and levels in several biological fluids. These new tools will facilitate future investigations aiming to delineate the role of CUZD1 in physiology and pathobiology. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  1. Large Scale Generation and Characterization of Anti-Human IgA Monoclonal Antibody in Ascitic Fluid of Balb/c Mice

    OpenAIRE

    Fatemeh Ezzatifar; Jafar Majidi; Behzad Baradaran; Leili Aghebati Maleki; Jalal Abdolalizadeh; Mehdi Yousefi

    2015-01-01

    Purpose: Monoclonal antibodies are potentially powerful tools used in biomedical research, diagnosis, and treatment of infectious diseases and cancers. The monoclonal antibody against Human IgA can be used as a diagnostic application to detect infectious diseases. The aim of this study was to improve an appropriate protocol for large-scale production of mAbs against IgA. Methods: For large-scale production of the monoclonal antibody, hybridoma cells that produce monoclonal antibodies again...

  2. Antibody biotechnology

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-06

    Jul 6, 2009 ... Another milestone in the history of antibodies was the work of Porter and Edelman ... transgenic animals (Lonberg et al., 1994; Green et al.,. 1994) or .... create and to screen human recombinant antibodies libraries, that is ...

  3. Antithyroid microsomal antibody

    Science.gov (United States)

    Thyroid antimicrosomal antibody; Antimicrosomal antibody; Microsomal antibody; Thyroid peroxidase antibody; TPOAb ... Granulomatous thyroiditis Hashimoto thyroiditis High levels of these antibodies have also been linked with an increased risk ...

  4. Genome-wide generation and use of informative intron-spanning and intron-length polymorphism markers for high-throughput genetic analysis in rice

    Science.gov (United States)

    Badoni, Saurabh; Das, Sweta; Sayal, Yogesh K.; Gopalakrishnan, S.; Singh, Ashok K.; Rao, Atmakuri R.; Agarwal, Pinky; Parida, Swarup K.; Tyagi, Akhilesh K.

    2016-01-01

    We developed genome-wide 84634 ISM (intron-spanning marker) and 16510 InDel-fragment length polymorphism-based ILP (intron-length polymorphism) markers from genes physically mapped on 12 rice chromosomes. These genic markers revealed much higher amplification-efficiency (80%) and polymorphic-potential (66%) among rice accessions even by a cost-effective agarose gel-based assay. A wider level of functional molecular diversity (17–79%) and well-defined precise admixed genetic structure was assayed by 3052 genome-wide markers in a structured population of indica, japonica, aromatic and wild rice. Six major grain weight QTLs (11.9–21.6% phenotypic variation explained) were mapped on five rice chromosomes of a high-density (inter-marker distance: 0.98 cM) genetic linkage map (IR 64 x Sonasal) anchored with 2785 known/candidate gene-derived ISM and ILP markers. The designing of multiple ISM and ILP markers (2 to 4 markers/gene) in an individual gene will broaden the user-preference to select suitable primer combination for efficient assaying of functional allelic variation/diversity and realistic estimation of differential gene expression profiles among rice accessions. The genomic information generated in our study is made publicly accessible through a user-friendly web-resource, “Oryza ISM-ILP marker” database. The known/candidate gene-derived ISM and ILP markers can be enormously deployed to identify functionally relevant trait-associated molecular tags by optimal-resource expenses, leading towards genomics-assisted crop improvement in rice. PMID:27032371

  5. Recombinant HA1 produced in E. coli forms functional oligomers and generates strain-specific SRID potency antibodies for pandemic influenza vaccines.

    Science.gov (United States)

    Khurana, Surender; Larkin, Christopher; Verma, Swati; Joshi, Manju B; Fontana, Juan; Steven, Alasdair C; King, Lisa R; Manischewitz, Jody; McCormick, William; Gupta, Rajesh K; Golding, Hana

    2011-08-05

    Vaccine production and initiation of mass vaccination is a key factor in rapid response to new influenza pandemic. During the 2009-2010 H1N1 pandemic, several bottlenecks were identified, including the delayed availability of vaccine potency reagents. Currently, antisera for the single-radial immunodiffusion (SRID) potency assay are generated in sheep immunized repeatedly with HA released and purified after bromelain-treatment of influenza virus grown in eggs. This approach was a major bottleneck for pandemic H1N1 (H1N1pdm09) potency reagent development in 2009. Alternative approaches are needed to make HA immunogens for generation of SRID reagents in the shortest possible time. In this study, we found that properly folded recombinant HA1 globular domain (rHA1) from several type A viruses including H1N1pdm09 and two H5N1 viruses could be produced efficiently using a bacterial expression system and subsequent purification. The rHA1 proteins were shown to form functional oligomers of trimers, similar to virus derived HA, and elicited high titer of neutralizing antibodies in rabbits and sheep. Importantly, the immune sera formed precipitation rings with reference antigens in the SRID assay in a dose-dependent manner. The HA contents in multiple H1N1 vaccine products from different manufacturers (and in several lots) as determined with the rHA1-generated sheep sera were similar to the values obtained with a traditionally generated sheep serum from NIBSC. We conclude that bacterially expressed recombinant HA1 proteins can be produced rapidly and used to generate SRID potency reagents shortly after new influenza strains with pandemic potential are identified. Published by Elsevier Ltd.

  6. Thyroid Antibodies

    Science.gov (United States)

    ... PF4 Antibody Hepatitis A Testing Hepatitis B Testing Hepatitis C Testing HER2/neu Herpes Testing High-sensitivity C-reactive Protein (hs-CRP) Histamine Histone Antibody HIV Antibody and HIV Antigen (p24) HIV Antiretroviral Drug Resistance Testing, Genotypic HIV Viral Load HLA Testing HLA- ...

  7. Application of High-Throughput Next-Generation Sequencing for HLA Typing on Buccal Extracted DNA: Results from over 10,000 Donor Recruitment Samples.

    Directory of Open Access Journals (Sweden)

    Yuxin Yin

    Full Text Available Unambiguous HLA typing is important in hematopoietic stem cell transplantation (HSCT, HLA disease association studies, and solid organ transplantation. However, current molecular typing methods only interrogate the antigen recognition site (ARS of HLA genes, resulting in many cis-trans ambiguities that require additional typing methods to resolve. Here we report high-resolution HLA typing of 10,063 National Marrow Donor Program (NMDP registry donors using long-range PCR by next generation sequencing (NGS approach on buccal swab DNA.Multiplex long-range PCR primers amplified the full-length of HLA class I genes (A, B, C from promotor to 3' UTR. Class II genes (DRB1, DQB1 were amplified from exon 2 through part of exon 4. PCR amplicons were pooled and sheared using Covaris fragmentation. Library preparation was performed using the Illumina TruSeq Nano kit on the Beckman FX automated platform. Each sample was tagged with a unique barcode, followed by 2×250 bp paired-end sequencing on the Illumina MiSeq. HLA typing was assigned using Omixon Twin software that combines two independent computational algorithms to ensure high confidence in allele calling. Consensus sequence and typing results were reported in Histoimmunogenetics Markup Language (HML format. All homozygous alleles were confirmed by Luminex SSO typing and exon novelties were confirmed by Sanger sequencing.Using this automated workflow, over 10,063 NMDP registry donors were successfully typed under high-resolution by NGS. Despite known challenges of nucleic acid degradation and low DNA concentration commonly associated with buccal-based specimens, 97.8% of samples were successfully amplified using long-range PCR. Among these, 98.2% were successfully reported by NGS, with an accuracy rate of 99.84% in an independent blind Quality Control audit performed by the NDMP. In this study, NGS-HLA typing identified 23 null alleles (0.023%, 92 rare alleles (0.091% and 42 exon novelties (0.042%.Long

  8. Application of High-Throughput Next-Generation Sequencing for HLA Typing on Buccal Extracted DNA: Results from over 10,000 Donor Recruitment Samples.

    Science.gov (United States)

    Yin, Yuxin; Lan, James H; Nguyen, David; Valenzuela, Nicole; Takemura, Ping; Bolon, Yung-Tsi; Springer, Brianna; Saito, Katsuyuki; Zheng, Ying; Hague, Tim; Pasztor, Agnes; Horvath, Gyorgy; Rigo, Krisztina; Reed, Elaine F; Zhang, Qiuheng

    2016-01-01

    Unambiguous HLA typing is important in hematopoietic stem cell transplantation (HSCT), HLA disease association studies, and solid organ transplantation. However, current molecular typing methods only interrogate the antigen recognition site (ARS) of HLA genes, resulting in many cis-trans ambiguities that require additional typing methods to resolve. Here we report high-resolution HLA typing of 10,063 National Marrow Donor Program (NMDP) registry donors using long-range PCR by next generation sequencing (NGS) approach on buccal swab DNA. Multiplex long-range PCR primers amplified the full-length of HLA class I genes (A, B, C) from promotor to 3' UTR. Class II genes (DRB1, DQB1) were amplified from exon 2 through part of exon 4. PCR amplicons were pooled and sheared using Covaris fragmentation. Library preparation was performed using the Illumina TruSeq Nano kit on the Beckman FX automated platform. Each sample was tagged with a unique barcode, followed by 2×250 bp paired-end sequencing on the Illumina MiSeq. HLA typing was assigned using Omixon Twin software that combines two independent computational algorithms to ensure high confidence in allele calling. Consensus sequence and typing results were reported in Histoimmunogenetics Markup Language (HML) format. All homozygous alleles were confirmed by Luminex SSO typing and exon novelties were confirmed by Sanger sequencing. Using this automated workflow, over 10,063 NMDP registry donors were successfully typed under high-resolution by NGS. Despite known challenges of nucleic acid degradation and low DNA concentration commonly associated with buccal-based specimens, 97.8% of samples were successfully amplified using long-range PCR. Among these, 98.2% were successfully reported by NGS, with an accuracy rate of 99.84% in an independent blind Quality Control audit performed by the NDMP. In this study, NGS-HLA typing identified 23 null alleles (0.023%), 92 rare alleles (0.091%) and 42 exon novelties (0.042%). Long

  9. Final Report for Project "A high-throughput pipeline for mapping inter-species interactions and metabolic synergy relevant to next-generation biofuel production"

    Energy Technology Data Exchange (ETDEWEB)

    Segre, Daniel [Boston Univ., MA (United States); Marx, Christopher J. [Univ. of Idaho, Moscow, ID (United States); Northen, Trent [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2018-01-03

    The goal of our project was to implement a pipeline for the systematic, computationally-driven study and optimization of microbial interactions and their effect on lignocellulose degradation and biofuel production. We specifically sought to design and construct artificial microbial consortia that could collectively degrade lignocellulose from plant biomass, and produce precursors of energy-rich biofuels. This project fits into the bigger picture goal of helping identify a sustainable strategy for the production of energy-rich biofuels that would satisfy the existing energy constraints and demand of our society. Based on the observation that complex natural microbial communities tend to be metabolically efficient and ecologically robust, we pursued the study of a microbial system in which the desired engineering function is achieved through division of labor across multiple microbial species. Our approach was aimed at bypassing the complexity of natural communities by establishing a rational approach to design small synthetic microbial consortia. Towards this goal, we combined multiple approaches, including computer modeling of ecosystem-level microbial metabolism, mass spectrometry of metabolites, genetic engineering, and experimental evolution. The microbial production of biofuels from lignocellulose is a complex, multi-step process. Microbial consortia are an ideal approach to consolidated bioprocessing: a community of microorganisms performs a wide variety of functions more efficiently and is more resilient to environmental perturbations than a microbial monoculture. Each organism we chose for this project addresses a specific challenge: lignin degradation (Pseudomonas putida); (hemi)cellulose degradation (Cellulomonas fimi); lignin degradation product demethoxylation (Methylobacterium spp); generation of biofuel lipid precursors (Yarrowia lipolytica). These organisms are genetically tractable, aerobic, and have been used in biotechnological applications

  10. Generation of a rabbit single-chain fragment variable (scFv) antibody for specific detection of Bradyrhizobium sp. DOA9 in both free-living and bacteroid forms.

    Science.gov (United States)

    Vu, Nguyen Xuan; Pruksametanan, Natcha; Srila, Witsanu; Yuttavanichakul, Watcharin; Teamtisong, Kamonluck; Teaumroong, Neung; Boonkerd, Nantakorn; Tittabutr, Panlada; Yamabhai, Montarop

    2017-01-01

    A simple and reliable method for the detection of specific nitrogen-fixing bacteria in both free-living and bacteroid forms is essential for the development and application of biofertilizer. Traditionally, a polyclonal antibody generated from an immunized rabbit was used for detection. However, the disadvantages of using a polyclonal antibody include limited supply and cross-reactivity to related bacterial strains. This is the first report on the application of phage display technology for the generation of a rabbit recombinant monoclonal antibody for specific detection and monitoring of nitrogen-fixing bacteria in both free-living form and in plant nodules. Bradyrhizobium sp. DOA9, a broad host range soil bacteria, originally isolated from the root nodules of Aeschynomene americana in Thailand was used as a model in this study. A recombinant single-chain fragment variable (scFv) antibody library was constructed from the spleen of a rabbit immunized with DOA9. After three rounds of biopanning, one specific phage-displayed scFv antibody, designated bDOA9rb8, was identified. Specific binding of this antibody was confirmed by phage enzyme-linked immunosorbent assay (phage ELISA). The phage antibody could bind specifically to DOA9 in both free-living cells (pure culture) and bacteroids inside plant nodules. In addition to phage ELISA, specific and robust immunofluorescence staining of both free-living and bacteroid forms could also be observed by confocal-immunofluorescence imaging, without cross-reactivity with other tested bradyrhizobial strains. Moreover, specific binding of free scFv to DOA9 was also demonstrated by ELISA. This recombinant antibody can also be used for the study of the molecular mechanism of plant-microbe interactions in the future.

  11. Expression of recombinant Antibodies

    Directory of Open Access Journals (Sweden)

    André eFrenzel

    2013-07-01

    Full Text Available Recombinant antibodies are highly specific detection probes in research, diagnostics and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines and transgenic plants are promising to obtain antibodies with human-like post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications.

  12. Intramuscular Immunisation with Chlamydial Proteins Induces Chlamydia trachomatis Specific Ocular Antibodies.

    Directory of Open Access Journals (Sweden)

    Alexander Badamchi-Zadeh

    Full Text Available Ocular infection with Chlamydia trachomatis can cause trachoma, which is the leading cause of blindness due to infection worldwide. Despite the large-scale implementation of trachoma control programmes in the majority of countries where trachoma is endemic, there remains a need for a vaccine. Since C. trachomatis infects the conjunctival epithelium and stimulates an immune response in the associated lymphoid tissue, vaccine regimens that enhance local antibody responses could be advantageous. In experimental infections of non-human primates (NHPs, antibody specificity to C. trachomatis antigens was found to change over the course of ocular infection. The appearance of major outer membrane protein (MOMP specific antibodies correlated with a reduction in ocular chlamydial burden, while subsequent generation of antibodies specific for PmpD and Pgp3 correlated with C. trachomatis eradication.We used a range of heterologous prime-boost vaccinations with DNA, Adenovirus, modified vaccinia Ankara (MVA and protein vaccines based on the major outer membrane protein (MOMP as an antigen, and investigated the effect of vaccine route, antigen and regimen on the induction of anti-chlamydial antibodies detectable in the ocular lavage fluid of mice.Three intramuscular vaccinations with recombinant protein adjuvanted with MF59 induced significantly greater levels of anti-MOMP ocular antibodies than the other regimens tested. Intranasal delivery of vaccines induced less IgG antibody in the eye than intramuscular delivery. The inclusion of the antigens PmpD and Pgp3, singly or in combination, induced ocular antigen-specific IgG antibodies, although the anti-PmpD antibody response was consistently lower and attenuated by combination with other antigens.If translatable to NHPs and/or humans, this investigation of the murine C. trachomatis specific ocular antibody response following vaccination provides a potential mouse model for the rapid and high throughput

  13. Development and characterization of anti-glycopeptide monoclonal antibodies against human podoplanin, using glycan-deficient cell lines generated by CRISPR/Cas9 and TALEN.

    Science.gov (United States)

    Kaneko, Mika K; Nakamura, Takuro; Honma, Ryusuke; Ogasawara, Satoshi; Fujii, Yuki; Abe, Shinji; Takagi, Michiaki; Harada, Hiroyuki; Suzuki, Hiroyoshi; Nishioka, Yasuhiko; Kato, Yukinari

    2017-02-01

    Human podoplanin (hPDPN), which binds to C-type lectin-like receptor-2 (CLEC-2), is involved in platelet aggregation and cancer metastasis. The expression of hPDPN in cancer cells or cancer-associated fibroblasts indicates poor prognosis. Human lymphatic endothelial cells, lung-type I alveolar cells, and renal glomerular epithelial cells express hPDPN. Although numerous monoclonal antibodies (mAbs) against hPDPN are available, they recognize peptide epitopes of hPDPN. Here, we generated a novel anti-hPDPN mAb, LpMab-21. To characterize the hPDPN epitope recognized by the LpMab-21, we established glycan-deficient CHO-S and HEK-293T cell lines, using the CRISPR/Cas9 or TALEN. Flow cytometric analysis revealed that the minimum hPDPN epitope, in which sialic acid is linked to Thr76, recognized by LpMab-21 is Thr76-Arg79. LpMab-21 detected hPDPN expression in glioblastoma, oral squamous carcinoma, and seminoma cells as well as in normal lymphatic endothelial cells. However, LpMab-21 did not react with renal glomerular epithelial cells or lung type I alveolar cells, indicating that sialylation of hPDPN Thr76 is cell-type-specific. LpMab-21 combined with other anti-hPDPN antibodies that recognize different epitopes may therefore be useful for determining the physiological function of sialylated hPDPN. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  14. Generation and characterization of tabalumab, a human monoclonal antibody that neutralizes both soluble and membrane-bound B-cell activating factor

    Directory of Open Access Journals (Sweden)

    Manetta J

    2014-08-01

    Full Text Available Joseph Manetta, Holly Bina, Paul Ryan, Niles Fox, Derrick R Witcher, Kristine Kikly Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA Abstract: B-cell activating factor (BAFF is a B-cell survival factor with a key role in B-cell homeostasis and tolerance. Dysregulated BAFF expression may contribute to autoimmune diseases or B-cell malignancies via effects on abnormal B-lymphocyte activation, proliferation, survival, and immunoglobulin secretion. Monoclonal antibodies were generated against human BAFF, characterized for species specificity and affinity, and screened for the ability to neutralize both membrane-bound and soluble BAFF. In addition, studies were undertaken to determine the relative potency of membrane-bound and soluble BAFF. Tabalumab has a high affinity for human, cynomolgus monkey, and rabbit BAFF. No binding to mouse BAFF was detected. Tabalumab was able to neutralize soluble human, cynomolgus monkey, or rabbit BAFF with equal potency. Our data demonstrate that membrane-bound BAFF can be a more potent stimulus for B-cells than soluble BAFF, and tabalumab also neutralized membrane-bound BAFF. Tabalumab prevented BAFF from binding to BAFF receptors and demonstrated pharmacodynamic effects in human BAFF transgenic mice. Tabalumab is a high-affinity human antibody with neutralizing activity against membrane-bound and soluble BAFF. Given our findings that membrane-bound BAFF can have greater in vitro potency than soluble BAFF, neutralization of both forms of BAFF is likely to be important for optimal therapeutic effect. Keywords: autoimmunity, B-cell malignancies, B-cell survival factor, BAFF

  15. Applying Unique Molecular Identifiers in Next Generation Sequencing Reveals a Constrained Viral Quasispecies Evolution under Cross-Reactive Antibody Pressure Targeting Long Alpha Helix of Hemagglutinin

    Science.gov (United States)

    Hauck, Nastasja C.; Kirpach, Josiane; Kiefer, Christina; Farinelle, Sophie; Morris, Stephen A.; Muller, Claude P.; Lu, I-Na

    2018-01-01

    To overcome yearly efforts and costs for the production of seasonal influenza vaccines, new approaches for the induction of broadly protective and long-lasting immune responses have been developed in the past decade. To warrant safety and efficacy of the emerging crossreactive vaccine candidates, it is critical to understand the evolution of influenza viruses in response to these new immune pressures. Here we applied unique molecular identifiers in next generation sequencing to analyze the evolution of influenza quasispecies under in vivo antibody pressure targeting the hemagglutinin (HA) long alpha helix (LAH). Our vaccine targeting LAH of hemagglutinin elicited significant seroconversion and protection against homologous and heterologous influenza virus strains in mice. The vaccine not only significantly reduced lung viral titers, but also induced a well-known bottleneck effect by decreasing virus diversity. In contrast to the classical bottleneck effect, here we showed a significant increase in the frequency of viruses with amino acid sequences identical to that of vaccine targeting LAH domain. No escape mutant emerged after vaccination. These results not only support the potential of a universal influenza vaccine targeting the conserved LAH domains, but also clearly demonstrate that the well-established bottleneck effect on viral quasispecies evolution does not necessarily generate escape mutants. PMID:29587397

  16. Applying Unique Molecular Identifiers in Next Generation Sequencing Reveals a Constrained Viral Quasispecies Evolution under Cross-Reactive Antibody Pressure Targeting Long Alpha Helix of Hemagglutinin

    Directory of Open Access Journals (Sweden)

    Nastasja C. Hauck

    2018-03-01

    Full Text Available To overcome yearly efforts and costs for the production of seasonal influenza vaccines, new approaches for the induction of broadly protective and long-lasting immune responses have been developed in the past decade. To warrant safety and efficacy of the emerging crossreactive vaccine candidates, it is critical to understand the evolution of influenza viruses in response to these new immune pressures. Here we applied unique molecular identifiers in next generation sequencing to analyze the evolution of influenza quasispecies under in vivo antibody pressure targeting the hemagglutinin (HA long alpha helix (LAH. Our vaccine targeting LAH of hemagglutinin elicited significant seroconversion and protection against homologous and heterologous influenza virus strains in mice. The vaccine not only significantly reduced lung viral titers, but also induced a well-known bottleneck effect by decreasing virus diversity. In contrast to the classical bottleneck effect, here we showed a significant increase in the frequency of viruses with amino acid sequences identical to that of vaccine targeting LAH domain. No escape mutant emerged after vaccination. These results not only support the potential of a universal influenza vaccine targeting the conserved LAH domains, but also clearly demonstrate that the well-established bottleneck effect on viral quasispecies evolution does not necessarily generate escape mutants.

  17. An automated robotic platform for rapid profiling oligosaccharide analysis of monoclonal antibodies directly from cell culture.

    Science.gov (United States)

    Doherty, Margaret; Bones, Jonathan; McLoughlin, Niaobh; Telford, Jayne E; Harmon, Bryan; DeFelippis, Michael R; Rudd, Pauline M

    2013-11-01

    Oligosaccharides attached to Asn297 in each of the CH2 domains of monoclonal antibodies play an important role in antibody effector functions by modulating the affinity of interaction with Fc receptors displayed on cells of the innate immune system. Rapid, detailed, and quantitative N-glycan analysis is required at all stages of bioprocess development to ensure the safety and efficacy of the therapeutic. The high sample numbers generated during quality by design (QbD) and process analytical technology (PAT) create a demand for high-performance, high-throughput analytical technologies for comprehensive oligosaccharide analysis. We have developed an automated 96-well plate-based sample preparation platform for high-throughput N-glycan analysis using a liquid handling robotic system. Complete process automation includes monoclonal antibody (mAb) purification directly from bioreactor media, glycan release, fluorescent labeling, purification, and subsequent ultra-performance liquid chromatography (UPLC) analysis. The entire sample preparation and commencement of analysis is achieved within a 5-h timeframe. The automated sample preparation platform can easily be interfaced with other downstream analytical technologies, including mass spectrometry (MS) and capillary electrophoresis (CE), for rapid characterization of oligosaccharides present on therapeutic antibodies. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Generation and characterization of polyclonal antibodies specific to N-terminal extension of p85 isoform of ribosomal protein S6 kinase 1 (p85 S6K1

    Directory of Open Access Journals (Sweden)

    Savinska L. O.

    2015-08-01

    Full Text Available Aim. Generation of polyclonal antibodies specific to the ribosomal protein S6 kinase isoform – p85S6K1 and directed to the N-terminal (1–23 aa extension of p85S6K1. Methods. Animal immunization with synthetic (1–23 aa peptide, ELISA, Western blot, Immunoprecipitation, immunofluorescent analysis. Results. Polyclonal antibodies have been generated, which specifically recognize only p85 but not p70 isoform of S6K1 in western blot, immunoprecipitation and immunofluorescence analysis. Conclusions. The obtained antibodies can be recommended for studies on the p85S6K1 and other S6K1 isoforms possessing the N-terminal extension – the identification of binding protein partners, analysis of subcellular localization under different physiological conditions, elucidation of the signal transduction pathways involving different S6K1 isoforms.

  19. Large Scale Generation and Characterization of Anti-Human CD34 Monoclonal Antibody in Ascetic Fluid of Balb/c Mice

    Science.gov (United States)

    Aghebati Maleki, Leili; Majidi, Jafar; Baradaran, Behzad; Abdolalizadeh, Jalal; Kazemi, Tohid; Aghebati Maleki, Ali; Sineh sepehr, Koushan

    2013-01-01

    Purpose: Monoclonal antibodies or specific antibodies are now an essential tool of biomedical research and are of great commercial and medical value. The purpose of this study was to produce large scale of monoclonal antibody against CD34 in order to diagnostic application in leukemia and purification of human hematopoietic stem/progenitor cells. Methods: For large scale production of monoclonal antibody, hybridoma cells that produce monoclonal antibody against human CD34 were injected into the peritoneum of the Balb/c mice which have previously been primed with 0.5 ml Pristane. 5 ml ascitic fluid was harvested from each mouse in two times. Evaluation of mAb titration was assessed by ELISA method. The ascitic fluid was examined for class and subclasses by ELISA mouse mAb isotyping Kit. mAb was purified from ascitic fluid by affinity chromatography on Protein A-Sepharose. Purity of monoclonal antibody was monitored by SDS -PAGE and the purified monoclonal antibody was conjugated with FITC. Results: Monoclonal antibodies with high specificity and sensitivity against human CD34 by hybridoma technology were prepared. The subclass of antibody was IgG1 and its light chain was kappa. Conclusion: The conjugated monoclonal antibody could be a useful tool for isolation, purification and characterization of human hematopoietic stem cells. PMID:24312838

  20. Large Scale Generation and Characterization of Anti-Human CD34 Monoclonal Antibody in Ascetic Fluid of Balb/c Mice

    Directory of Open Access Journals (Sweden)

    Koushan Sineh sepehr

    2013-02-01

    Full Text Available Purpose: Monoclonal antibodies or specific antibodies are now an essential tool of biomedical research and are of great commercial and medical value. The purpose of this study was to produce large scale of monoclonal antibody against CD34 in order to diagnostic application in leukemia and purification of human hematopoietic stem/progenitor cells. Methods: For large scale production of monoclonal antibody, hybridoma cells that produce monoclonal antibody against human CD34 were injected into the peritoneum of the Balb/c mice which have previously been primed with 0.5 ml Pristane. 5 ml ascitic fluid was harvested from each mouse in two times. Evaluation of mAb titration was assessed by ELISA method. The ascitic fluid was examined for class and subclasses by ELISA mouse mAb isotyping Kit. mAb was purified from ascitic fluid by affinity chromatography on Protein A-Sepharose. Purity of monoclonal antibody was monitored by SDS -PAGE and the purified monoclonal antibody was conjugated with FITC. Results: Monoclonal antibodies with high specificity and sensitivity against human CD34 by hybridoma technology were prepared. The subclass of antibody was IgG1 and its light chain was kappa. Conclusion: The conjugated monoclonal antibody could be a useful tool for isolation, purification and characterization of human hematopoietic stem cells.

  1. Manual evaluation of tissue microarrays in a high-throughput research project: The contribution of Indian surgical pathology to the Human Protein Atlas (HPA) project.

    Science.gov (United States)

    Navani, Sanjay

    2016-04-01

    The Human Protein Atlas (HPA) program (www.proteinatlas.org) is an international program that has been set up to allow for a systematic exploration of the human proteome using antibody-based proteomics. This is accomplished by combining high-throughput generation of affinity-purified (mono-specific) antibodies with protein profiling in a multitude of tissues/cell types assembled in tissue microarrays. Twenty-six surgical pathologists over a seven-and-half year period have annotated and curated approximately sixteen million tissue images derived from immunostaining of normal and cancer tissues by approximately 23 000 antibodies. Web-based annotation software that allows for a basic and rapid evaluation of immunoreactivity in tissues has been utilized. Intensity, fraction of immunoreactive cells and subcellular localization were recorded for each given cell population. A text comment summarizing the characteristics for each antibody was added. The methods used and the challenges encountered for this exercise, the largest effort ever by a single group of surgical pathologists, are discussed. Manual annotation of digital images is an important tool that may be successfully utilized in high-throughput research projects. This is the first time an Indian private pathology laboratory has been associated with cutting-edge research internationally providing a classic example of developed and emerging nation collaboration. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Large Scale Generation and Characterization of Anti-Human IgA Monoclonal Antibody in Ascitic Fluid of Balb/c Mice

    Science.gov (United States)

    Ezzatifar, Fatemeh; Majidi, Jafar; Baradaran, Behzad; Aghebati Maleki, Leili; Abdolalizadeh, Jalal; Yousefi, Mehdi

    2015-01-01

    Purpose: Monoclonal antibodies are potentially powerful tools used in biomedical research, diagnosis, and treatment of infectious diseases and cancers. The monoclonal antibody against Human IgA can be used as a diagnostic application to detect infectious diseases. The aim of this study was to improve an appropriate protocol for large-scale production of mAbs against IgA. Methods: For large-scale production of the monoclonal antibody, hybridoma cells that produce monoclonal antibodies against Human IgA were injected intraperitoneally into Balb/c mice that were previously primed with 0.5 ml Pristane. After ten days, ascitic fluid was harvested from the peritoneum of each mouse. The ELISA method was carried out for evaluation of the titration of produced mAbs. The ascitic fluid was investigated in terms of class and subclass by a mouse mAb isotyping kit. MAb was purified from the ascitic fluid by ion exchange chromatography. The purity of the monoclonal antibody was confirmed by SDS-PAGE, and the purified monoclonal antibody was conjugated with HRP. Results: Monoclonal antibodies with high specificity and sensitivity against Human IgA were prepared by hybridoma technology. The subclass of antibody was IgG1 and its light chain was the kappa type. Conclusion: This conjugated monoclonal antibody could have applications in designing ELISA kits in order to diagnose different infectious diseases such as toxoplasmosis and H. Pylori. PMID:25789225

  3. Large Scale Generation and Characterization of Anti-Human IgA Monoclonal Antibody in Ascitic Fluid of Balb/c Mice

    Directory of Open Access Journals (Sweden)

    Fatemeh Ezzatifar

    2015-03-01

    Full Text Available Purpose: Monoclonal antibodies are potentially powerful tools used in biomedical research, diagnosis, and treatment of infectious diseases and cancers. The monoclonal antibody against Human IgA can be used as a diagnostic application to detect infectious diseases. The aim of this study was to improve an appropriate protocol for large-scale production of mAbs against IgA. Methods: For large-scale production of the monoclonal antibody, hybridoma cells that produce monoclonal antibodies against Human IgA were injected intraperitoneally into Balb/c mice that were previously primed with 0.5 ml Pristane. After ten days, ascitic fluid was harvested from the peritoneum of each mouse. The ELISA method was carried out for evaluation of the titration of produced mAbs. The ascitic fluid was investigated in terms of class and subclass by a mouse mAb isotyping kit. MAb was purified from the ascitic fluid by ion exchange chromatography. The purity of the monoclonal antibody was confirmed by SDS-PAGE, and the purified monoclonal antibody was conjugated with HRP. Results: Monoclonal antibodies with high specificity and sensitivity against Human IgA were prepared by hybridoma technology. The subclass of antibody was IgG1 and its light chain was the kappa type. Conclusion: This conjugated monoclonal antibody could have applications in designing ELISA kits in order to diagnose different infectious diseases such as toxoplasmosis and H. Pylori.

  4. Antibody mimetics: promising complementary agents to animal-sourced antibodies.

    Science.gov (United States)

    Baloch, Abdul Rasheed; Baloch, Abdul Wahid; Sutton, Brian J; Zhang, Xiaoying

    2016-01-01

    Despite their wide use as therapeutic, diagnostic and detection agents, the limitations of polyclonal and monoclonal antibodies have inspired scientists to design the next generation biomedical agents, so-called antibody mimetics that offer many advantages over conventional antibodies. Antibody mimetics can be constructed by protein-directed evolution or fusion of complementarity-determining regions through intervening framework regions. Substantial progress in exploiting human, butterfly (Pieris brassicae) and bacterial systems to design and select mimetics using display technologies has been made in the past 10 years, and one of these mimetics [Kalbitor® (Dyax)] has made its way to market. Many challenges lie ahead to develop mimetics for various biomedical applications, especially those for which conventional antibodies are ineffective, and this review describes the current characteristics, construction and applications of antibody mimetics compared to animal-sourced antibodies. The possible limitations of mimetics and future perspectives are also discussed.

  5. [Efficacy of absorbance ratio of ELISA antibodies [corrected] for hepatitis C virus of 3th generation in the prediction of viremia evaluated by PCR].

    Science.gov (United States)

    Vázquez-Avila, Isidro; Vera-Peralta, Jorge Manuel; Alvarez-Nemegyei, José; Rodríguez-Carvajal, Otilia

    2007-01-01

    In order to decrease the burden of suffering and the costs derived from confirmatory molecular assays, a better strategy is badly needed to decrease the rate of false positive results of the enzyme-linked immunoassay (ELISA) for detection of hepatitis C virus (HCV) antibodies (Anti). To establish the best cutoff of the S/CO rate in subjects with a positive result of a microparticule, third generation ELISA assay for Anti-HCV, for predicting viremia as detected by polymerase chain reaction (PCR) assay. Using the result of the PCR assay as "gold standard", a ROC curve was build with the results of the S/CO rate values in subjects with a positive result for ELISA HCV assay. Fifty two subjects (30 male, 22 female, 40 +/- 12.5 years old) were included. Thirty four (65.3%) had a positive RNA HCV PCR assay. The area under the curve was 0.99 (95% CI: 0.98-1.0). The optimal cutoff for the S/CO rate was established in 29: sensitivity: 97%; specificity: 100%: PPV: 100%; NPV: 94%. Setting the cutoff of the S/CO in 29 results in a high predictive value for viremia as detected by PCR in subjects with a positive ELISA HVC assay. This knowledge may result in a better decision taking for the clinical follow up of those subjects with a positive result in the ELISA screening assay for HCV infection.

  6. Generation and epitope analysis of human monoclonal antibody isotypes with specificity for the timothy grass major allergen Phl p 5a

    DEFF Research Database (Denmark)

    Hecker, J.; Diethers, A.; Seismann, H.

    2011-01-01

    The scarcity of monoclonal human IgE antibodies with specificity for defined allergens is a bottleneck for the molecular characterisation of allergens and their epitopes. Insights into the characteristics of such antibodies may allow for analyses of the molecular basis underlying allergenicity an...

  7. Antiprothrombin Antibodies

    Directory of Open Access Journals (Sweden)

    Polona Žigon

    2015-05-01

    Full Text Available In patients with the antiphospholipid syndrome (APS, the presence of a group of pathogenic autoantibodies called antiphospholipid antibodies causes thrombosis and pregnancy complications. The most frequent antigenic target of antiphospholipid antibodies are phospholipid bound β2-glycoprotein 1 (β2GPI and prothrombin. The international classification criteria for APS connect the occurrence of thrombosis and/or obstetric complications together with the persistence of lupus anticoagulant, anti-cardiolipin antibodies (aCL and antibodies against β2GPI (anti-β2GPI into APS. Current trends for the diagnostic evaluation of APS patients propose determination of multiple antiphospholipid antibodies, among them also anti-prothrombin antibodies, to gain a common score which estimates the risk for thrombosis in APS patients. Antiprothrombin antibodies are common in APS patients and are sometimes the only antiphospholipid antibodies being elevated. Methods for their determination differ and have not yet been standardized. Many novel studies confirmed method using phosphatidylserine/prothrombin (aPS/PT ELISA as an antigen on solid phase encompass higher diagnostic accuracy compared to method using prothrombin alone (aPT ELISA. Our research group developed an in-house aPS/PT ELISA with increased analytical sensitivity which enables the determination of all clinically relevant antiprothrombin antibodies. aPS/PT exhibited the highest percentage of lupus anticoagulant activity compared to aCL and anti-β2GPI. aPS/PT antibodies measured with the in-house method associated with venous thrombosis and presented the strongest independent risk factor for the presence of obstetric complications among all tested antiphospholipid antibodies

  8. Generation of Novel Single-Chain Antibodies by Phage-Display Technology to Direct Imaging Agents Highly Selective to Pancreatic β- or α-Cells In Vivo

    Science.gov (United States)

    Ueberberg, Sandra; Meier, Juris J.; Waengler, Carmen; Schechinger, Wolfgang; Dietrich, Johannes W.; Tannapfel, Andrea; Schmitz, Inge; Schirrmacher, Ralf; Köller, Manfred; Klein, Harald H.; Schneider, Stephan

    2009-01-01

    OBJECTIVE Noninvasive determination of pancreatic β-cell mass in vivo has been hampered by the lack of suitable β-cell–specific imaging agents. This report outlines an approach for the development of novel ligands homing selectively to islet cells in vivo. RESEARCH DESIGN AND METHODS To generate agents specifically binding to pancreatic islets, a phage library was screened for single-chain antibodies (SCAs) on rat islets using two different approaches. 1) The library was injected into rats in vivo, and islets were isolated after a circulation time of 5 min. 2) Pancreatic islets were directly isolated, and the library was panned in the islets in vitro. Subsequently, the identified SCAs were extensively characterized in vitro and in vivo. RESULTS We report the generation of SCAs that bind highly selective to either β- or α-cells. These SCAs are internalized by target cells, disappear rapidly from the vasculature, and exert no toxicity in vivo. Specific binding to β- or α-cells was detected in cell lines in vitro, in rats in vivo, and in human tissue in situ. Electron microscopy demonstrated binding of SCAs to the endoplasmatic reticulum and the secretory granules. Finally, in a biodistribution study the labeling intensity derived from [125I]-labeled SCAs after intravenous administration in rats strongly predicted the β-cell mass and was inversely related to the glucose excursions during an intraperitoneal glucose tolerance test. CONCLUSIONS Our data provide strong evidence that the presented SCAs are highly specific for pancreatic β-cells and enable imaging and quantification in vivo. PMID:19592622

  9. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure.

    Science.gov (United States)

    Strasser, Richard; Stadlmann, Johannes; Schähs, Matthias; Stiegler, Gabriela; Quendler, Heribert; Mach, Lukas; Glössl, Josef; Weterings, Koen; Pabst, Martin; Steinkellner, Herta

    2008-05-01

    A common argument against using plants as a production system for therapeutic proteins is their inability to perform authentic human N-glycosylation (i.e. the presence of beta1,2-xylosylation and core alpha1,3-fucosylation). In this study, RNA interference (RNAi) technology was used to obtain a targeted down-regulation of the endogenous beta1,2-xylosyltransferase (XylT) and alpha1,3-fucosyltransferase (FucT) genes in Nicotiana benthamiana, a tobacco-related plant species widely used for recombinant protein expression. Three glyco-engineered lines with significantly reduced xylosylated and/or core alpha1,3-fucosylated glycan structures were generated. The human anti HIV monoclonal antibody 2G12 was transiently expressed in these glycosylation mutants as well as in wild-type plants. Four glycoforms of 2G12 differing in the presence/absence of xylose and core alpha1,3-fucose residues in their N-glycans were produced. Notably, 2G12 produced in XylT/FucT-RNAi plants was found to contain an almost homogeneous N-glycan species without detectable xylose and alpha1,3-fucose residues. Plant-derived glycoforms were indistinguishable from Chinese hamster ovary (CHO)-derived 2G12 with respect to electrophoretic properties, and exhibited functional properties (i.e. antigen binding and HIV neutralization activity) at least equivalent to those of the CHO counterpart. The generated RNAi lines were stable, viable and did not show any obvious phenotype, thus providing a robust tool for the production of therapeutically relevant glycoproteins in plants with a humanized N-glycan structure.

  10. Generation of polyclonal antibody with high avidity to rosuvastatin and its use in development of highly sensitive ELISA for determination of rosuvastatin in plasma

    Directory of Open Access Journals (Sweden)

    Al-Malaq Hamoud A

    2011-07-01

    Full Text Available Abstract In this study, a polyclonal antibody with high avidity and specificity to the potent hypocholesterolaemic agent rosuvastatin (ROS has been prepared and used in the development of highly sensitive enzyme-linked immunosorbent assay (ELISA for determination of ROS in plasma. ROS was coupled to keyhole limpt hemocyanin (KLH and bovine serum albumin (BSA using carbodiimide reagent. ROS-KLH conjugate was used for immunization of female 8-weeks old New Zealand white rabbits. The immune response of the rabbits was monitored by direct ELISA using ROS-BSA immobilized onto microwell plates as a solid phase. The rabbit that showed the highest antibody titer and avidity to ROS was scarified and its sera were collected. The IgG fraction was isolated and purified by avidity chromatography on protein A column. The purified antibody showed high avidity to ROS; IC50 = 0.4 ng/ml. The specificity of the antibody for ROS was evaluated by indirect ELISA using various competitors from the ROS-structural analogues and the therapeutic agents used with ROS in a combination therapy. The proposed ELISA involved a competitive binding reaction between ROS, in plasma sample, and the immobilized ROS-BSA for the binding sites on a limited amount of the anti-ROS antibody. The bound anti-ROS antibody was quantified with horseradish peroxidase-labeled second anti-rabbit IgG antibody (HRP-IgG and 3,3',5,5'-tetramethylbenzidine (TMB as a substrate for the peroxidase enzyme. The concentration of ROS in the sample was quantified by its ability to inhibit the binding of the anti-ROS antibody to the immobilized ROS-BSA and subsequently the color intensity in the assay wells. The assay enabled the determination of ROS in plasma at concentrations as low as 40 pg/ml.

  11. Monoclonal antibody

    International Nuclear Information System (INIS)

    Oyamada, Hiyoshimaru

    1987-01-01

    Some aspects of monoclonal antibodies are described, centering on studies made by the author and those presented at the Second International Conference on Monoclonal Antibody Immunoconjugates for Cancer held in March this year (1987). The history of immuno-nuclear medicine and procedures for producing monoclonal antibodies are briefly outlined. Monoclonal antibodies are immunoglobulins. Here, the structure of IgG, which is used most frequently, is described. An IgG is composed of two antigen binding fragments (Fab) and one crystallizable fragment (Fc). The end portion of a Fab reacts with an antigen. One of the major applications of immuno-nuclear medicine is the diagnosis of cancer. As label nucleides, 131 I and 111 I were selected in most cases in the past while 123 I and 99m Tc are currently used more often. Advantages and disadvantages of this diagnosis method is discussed citing studies presented at the First (1986) and Second (1987) International Conference on Monoclonal Antibody Immunoconjugates for Cancer. The present status of the application of monoclonal antibodies to treatment of cancer is also described. (Nogami, K.)

  12. [Study of anti-idiotype antibodies to human monoclonal antibody].

    Science.gov (United States)

    Harada, R; Takahashi, N; Owaki, I; Kannagi, R; Endo, N; Morita, N; Inoue, M

    1992-02-01

    A human monoclonal antibody, ll-50 (IgM, lambda), was generated, which reacted specifically with a major of glycolipid present in LS174T colon cancer cells. The glycolipid antigen which reacted with the ll-50 antibody was expected to four sugar residues from its TLC mobility, and it was ascertained that the glycolipid antigen which reacted with ll-50 antibody might be Lc4 antigen [Gal beta 1----3 GLcNAc beta 1----3 Gal beta 1----4 Glc beta 1----1 Cer] judging from TLC immunostaining and ELISA when the reactivity of ll-50 antibody was tested using various pure glycolipids in 3-5 sugar residues as an antigen. Sera in patients with malignant disorders and healthy individuals were analyzed by Sandwich assay of immobilized and biotinylated ll-50 antibody. The serum of the Lc4 antigen recognized by ll-50 antibody was significantly higher in patients with malignant disorders than that in healthy individuals (p less than 0.05). Three mouse monoclonal anti-idiotype antibodies, G3, B3 and C5 (all IgG1), were generated by the immunization of BALB/c mice with ll-50 antibody. These anti-idiotype antibodies specifically bound to to human monoclonal antibody, ll-50 and had a significant inhibitory activity towards the binding of ll-50 antibody to the Lc4 antigen. This indicated that these anti-idiotype antibodies, G3, B3, and C5, were paratope-related anti-idiotype antibodies. G3, B3, and C5 were expected to define the nearest idiotope because they could mutually inhibit ll-50 antibody. Sera in patients with malignant disorders and healthy individuals were analyzed by Sandwich assay of immobilized and biotinylated anti-idiotype antibodies, G3, B3, and C5. As to the ll-50 like antibodies defined by C5 (Id-C5+), the mean serum level in patients with malignant disorders was significantly higher than that in healthy individuals (p less than 0.05). As to the ll-50 like antibodies defined by B3 (Id-B3+), the mean serum level in patients with malignant disorders was significantly higher

  13. Agonistic Human Antibodies Binding to Lecithin-Cholesterol Acyltransferase Modulate High Density Lipoprotein Metabolism*

    Science.gov (United States)

    Gunawardane, Ruwanthi N.; Fordstrom, Preston; Piper, Derek E.; Masterman, Stephanie; Siu, Sophia; Liu, Dongming; Brown, Mike; Lu, Mei; Tang, Jie; Zhang, Richard; Cheng, Janet; Gates, Andrew; Meininger, David; Chan, Joyce; Carlson, Tim; Walker, Nigel; Schwarz, Margrit; Delaney, John; Zhou, Mingyue

    2016-01-01

    Drug discovery opportunities where loss-of-function alleles of a target gene link to a disease-relevant phenotype often require an agonism approach to up-regulate or re-establish the activity of the target gene. Antibody therapy is increasingly recognized as a favored drug modality due to multiple desirable pharmacological properties. However, agonistic antibodies that enhance the activities of the target enzymes are rarely developed because the discovery of agonistic antibodies remains elusive. Here we report an innovative scheme of discovery and characterization of human antibodies capable of binding to and agonizing a circulating enzyme lecithin cholesterol acyltransferase (LCAT). Utilizing a modified human LCAT protein with enhanced enzymatic activity as an immunogen, we generated fully human monoclonal antibodies using the XenoMouseTM platform. One of the resultant agonistic antibodies, 27C3, binds to and substantially enhances the activity of LCAT from humans and cynomolgus macaques. X-ray crystallographic analysis of the 2.45 Å LCAT-27C3 complex shows that 27C3 binding does not induce notable structural changes in LCAT. A single administration of 27C3 to cynomolgus monkeys led to a rapid increase of plasma LCAT enzymatic activity and a 35% increase of the high density lipoprotein cholesterol that was observed up to 32 days after 27C3 administration. Thus, this novel scheme of immunization in conjunction with high throughput screening may represent an effective strategy for discovering agonistic antibodies against other enzyme targets. 27C3 and other agonistic human anti-human LCAT monoclonal antibodies described herein hold potential for therapeutic development for the treatment of dyslipidemia and cardiovascular disease. PMID:26644477

  14. Fully human broadly neutralizing monoclonal antibodies against influenza A viruses generated from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Weibin [Molecular Virus Unit, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Chen, Aizhong [Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Miao, Yi [Shanghai Xuhui Central Hospital, Shanghai 200031 (China); Xia, Shengli [Center for Disease Control and Prevention of Henan Province, Zhengzhou 450016 (China); Ling, Zhiyang; Xu, Ke; Wang, Tongyan [Molecular Virus Unit, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Xu, Ying; Cui, Jun; Wu, Hongqiang; Hu, Guiyu; Tian, Lin; Wang, Lingling [Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Shu, Yuelong [Chinese Center for Disease Control and Prevention, Beijing 102206 (China); Ma, Xiaowei [Hualan Biological Bacterin Company, Xinxiang 453003 (China); Xu, Bianli; Zhang, Jin [Center for Disease Control and Prevention of Henan Province, Zhengzhou 450016 (China); Lin, Xiaojun, E-mail: linxiaojun@hualan.com [Hualan Biological Bacterin Company, Xinxiang 453003 (China); Bian, Chao, E-mail: cbian@sibs.ac.cn [Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Sun, Bing, E-mail: bsun@sibs.ac.cn [Molecular Virus Unit, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China)

    2013-01-20

    Whether the 2009 pandemic H1N1 influenza vaccine can induce heterosubtypic cross-protective anti-hemagglutinin (HA) neutralizing antibodies is an important issue. We obtained a panel of fully human monoclonal antibodies from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient. Most of the monoclonal antibodies targeted the HA protein but not the HA1 fragment. Among the analyzed antibodies, seven mAbs exhibited neutralizing activity against several influenza A viruses of different subtypes. The conserved linear epitope targeted by the neutralizing mAbs (FIEGGWTGMVDGWYGYHH) is part of the fusion peptide on HA2. Our work suggests that a heterosubtypic neutralizing antibody response primarily targeting the HA stem region exists in recipients of the 2009 pandemic H1N1 influenza vaccine. The HA stem region contains various conserved neutralizing epitopes with the fusion peptide as an important one. This work may aid in the design of a universal influenza A virus vaccine.

  15. Fully human broadly neutralizing monoclonal antibodies against influenza A viruses generated from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient

    International Nuclear Information System (INIS)

    Hu, Weibin; Chen, Aizhong; Miao, Yi; Xia, Shengli; Ling, Zhiyang; Xu, Ke; Wang, Tongyan; Xu, Ying; Cui, Jun; Wu, Hongqiang; Hu, Guiyu; Tian, Lin; Wang, Lingling; Shu, Yuelong; Ma, Xiaowei; Xu, Bianli; Zhang, Jin; Lin, Xiaojun; Bian, Chao; Sun, Bing

    2013-01-01

    Whether the 2009 pandemic H1N1 influenza vaccine can induce heterosubtypic cross-protective anti-hemagglutinin (HA) neutralizing antibodies is an important issue. We obtained a panel of fully human monoclonal antibodies from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient. Most of the monoclonal antibodies targeted the HA protein but not the HA1 fragment. Among the analyzed antibodies, seven mAbs exhibited neutralizing activity against several influenza A viruses of different subtypes. The conserved linear epitope targeted by the neutralizing mAbs (FIEGGWTGMVDGWYGYHH) is part of the fusion peptide on HA2. Our work suggests that a heterosubtypic neutralizing antibody response primarily targeting the HA stem region exists in recipients of the 2009 pandemic H1N1 influenza vaccine. The HA stem region contains various conserved neutralizing epitopes with the fusion peptide as an important one. This work may aid in the design of a universal influenza A virus vaccine.

  16. Comparison of Two Assays to Determine Anti-Citrullinated Peptide Antibodies in Rheumatoid Arthritis in relation to Other Chronic Inflammatory Rheumatic Diseases: Assaying Anti-Modified Citrullinated Vimentin Antibodies Adds Value to Second-Generation Anti-Citrullinated Cyclic Peptides Testing

    Directory of Open Access Journals (Sweden)

    Miriam Lizette Díaz-Toscano

    2014-01-01

    Full Text Available Determination of anti-citrullinated peptide antibodies (ACPA plays a relevant role in the diagnosis of rheumatoid arthritis (RA. To date, it is still unclear if the use of several tests for these autoantibodies in the same patient offers additional value as compared to performing only one test. Therefore, we evaluated the performance of using two assays for ACPA: second-generation anti-citrullinated cyclic peptides antibodies (anti-CCP2 and anti-mutated citrullinated vimentin (anti-MCV antibodies for the diagnosis of RA. We compared three groups: RA (n=142, chronic inflammatory disease (CIRD, n=86, and clinically healthy subjects (CHS, n=56 to evaluate sensitivity, specificity, predictive values, and likelihood ratios (LR of these two assays for the presence of RA. A lower frequency of positivity for anti-CCP2 was found in RA (66.2% as compared with anti-MCV (81.0%. When comparing RA versus other CIRD, sensitivity increased when both assays were performed. This strategy of testing both assays had high specificity and LR+. We conclude that adding the assay of anti-MCV antibodies to the determination of anti-CCP2 increases the sensitivity for detecting seropositive RA. Therefore, we propose the use of both assays in the initial screening of RA in longitudinal studies, including early onset of undifferentiated arthritis.

  17. Third Generation (3G) Site Characterization: Cryogenic Core Collection and High Throughput Core Analysis - An Addendum to Basic Research Addressing Contaminants in Low Permeability Zones - A State of the Science Review

    Science.gov (United States)

    2016-07-29

    Styrofoam insulation for keeping the core frozen during MRI .................................. 78 Figure 5-2. Schematic of reference and core setting in... Hollow -Stem Auger HTCA High-Throughput Core Analysis IC Ion Chromatograph ID Inner Diameter k Permeability LN Liquid Nitrogen LNAPL Light...vibration, or “over drilling” using a hollow -stem auger. The ratio of the length of the collected core to the depth over which the sample tube is

  18. Generation and testing anti-influenza human monoclonal antibodies in a new humanized mouse model (DRAGA: HLA-A2. HLA-DR4. Rag1 KO. IL-2Rγc KO. NOD).

    Science.gov (United States)

    Mendoza, Mirian; Ballesteros, Angela; Qiu, Qi; Pow Sang, Luis; Shashikumar, Soumya; Casares, Sofia; Brumeanu, Teodor-D

    2018-02-01

    Pandemic outbreaks of influenza type A viruses have resulted in numerous fatalities around the globe. Since the conventional influenza vaccines (CIV) provide less than 20% protection for individuals with weak immune system, it has been considered that broadly cross-neutralizing antibodies may provide a better protection. Herein, we showed that a recently generated humanized mouse (DRAGA mouse; HLA-A2. HLA-DR4. Rag1KO. IL-2Rgc KO. NOD) that lacks the murine immune system and expresses a functional human immune system can be used to generate cross-reactive, human anti-influenza monoclonal antibodies (hu-mAb). DRAGA mouse was also found to be suitable for influenza virus infection, as it can clear a sub-lethal infection and sustain a lethal infection with PR8/A/34 influenza virus. The hu-mAbs were designed for targeting a human B-cell epitope ( 180 WGIHHPPNSKEQ QNLY 195 ) of hemagglutinin (HA) envelope protein of PR8/A/34 (H1N1) virus with high homology among seven influenza type A viruses. A single administration of HA 180-195 specific hu-mAb in PR8-infected DRAGA mice significantly delayed the lethality by reducing the lung damage. The results demonstrated that DRAGA mouse is a suitable tool to (i) generate heterotype cross-reactive, anti-influenza human monoclonal antibodies, (ii) serve as a humanized mouse model for influenza infection, and (iii) assess the efficacy of anti-influenza antibody-based therapeutics for human use.

  19. MXIbus data throughput tests

    International Nuclear Information System (INIS)

    Botlo, M.; Dunning, J.; Jagieski, M.; Miller, L.; Romero, A.

    1992-11-01

    A series of tests were conducted to evaluate data transfer rates using the MXIbus architecture. The tests were conducted by the DAQ group in the Physics Research Division. The MXIbus from National Instruments provides a multisystem extension interface bus. It allows multiple VME chassis to be networked. Other bus architectures that can participate in the network include VXIbus, IBM PC-AT bus, Sun Sbus, Mac NuBus and stand-alone instruments with the appropriate MXIbus adapter cards. From a functional standpoint the MXIbus provides the capability to enlarge the address space in a fashion that is transparent to the software application. The tests were designed to measure data throughput when using the MSIbus with other industry off-the-shelf hardware. This report contains discussions on: MXIbus architecture and general guidelines; the commercial hardware and software used in each set of tests; and a brief description of each set of tests, observations and guidelines; the commercial hardware and software used in each set of tests; and a brief description of each set of tests, observations and conclusions

  20. A New Take on an Old Remedy: Generating Antibodies against Multidrug-Resistant Gram-Negative Bacteria in a Postantibiotic World.

    Science.gov (United States)

    Motley, Michael P; Fries, Bettina C

    2017-01-01

    With the problem of multidrug-resistant Gram-negative pathogens becoming increasingly dire, new strategies are needed to protect and treat infected patients. Though abandoned in the past, monoclonal antibody therapy against Gram-negative bacteria remains a potential solution and has potential advantages over the broad-spectrum antibiotics they were once replaced by. This Perspective reviews the prospect of utilizing monoclonal antibody therapy against these pathogens, as well as the challenges of doing so and the current therapy targets under investigation.

  1. Generation of human antibody fragments recognizing distinct epitopes of the nucleocapsid (N SARS-CoV protein using a phage display approach

    Directory of Open Access Journals (Sweden)

    Grasso Felicia

    2005-09-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS-CoV is a newly emerging virus that causes SARS with high mortality rate in infected people. Successful control of the global SARS epidemic will require rapid and sensitive diagnostic tests to monitor its spread, as well as, the development of vaccines and new antiviral compounds including neutralizing antibodies that effectively prevent or treat this disease. Methods The human synthetic single-chain fragment variable (scFv ETH-2 phage antibody library was used for the isolation of scFvs against the nucleocapsid (N protein of SARS-CoV using a bio panning-based strategy. The selected scFvs were characterized under genetics-molecular aspects and for SARS-CoV N protein detection in ELISA, western blotting and immunocytochemistry. Results Human scFv antibodies to N protein of SARS-CoV can be easily isolated by selecting the ETH-2 phage library on immunotubes coated with antigen. These in vitro selected human scFvs specifically recognize in ELISA and western blotting studies distinct epitopes in N protein domains and detect in immunohistochemistry investigations SARS-CoV particles in infected Vero cells. Conclusion The human scFv antibodies isolated and described in this study represent useful reagents for rapid detection of N SARS-CoV protein and SARS virus particles in infected target cells.

  2. Generation of recombinant monoclonal antibodies to study structure-function of envelope protein VP28 of white spot syndrome virus from shrimp

    International Nuclear Information System (INIS)

    Wang Yuzhen; Zhang Xiaohua; Yuan Li; Xu Tao; Rao Yu; Li Jia; Dai Heping

    2008-01-01

    White spot syndrome virus (WSSV) is a major pathogen in shrimp aquaculture. VP28 is one of the most important envelope proteins of WSSV. In this study, a recombinant antibody library, as single-chain fragment variable (scFv) format, displayed on phage was constructed using mRNA from spleen cells of mice immunized with full-length VP28 expressed in Escherichia coli. After several rounds of panning, six scFv antibodies specifically binding to the epitopes in the N-terminal, middle, and C-terminal regions of VP28, respectively, were isolated from the library. Using these scFv antibodies as tools, the epitopes in VP28 were located on the envelope of the virion by immuno-electron microscopy. Neutralization assay with these antibodies in vitro suggested that these epitopes may not be the attachment site of WSSV to host cell receptor. This study provides a new way to investigate the structure and function of the envelope proteins of WSSV

  3. Novel high-throughput cell-based hybridoma screening methodology using the Celigo Image Cytometer.

    Science.gov (United States)

    Zhang, Haohai; Chan, Leo Li-Ying; Rice, William; Kassam, Nasim; Longhi, Maria Serena; Zhao, Haitao; Robson, Simon C; Gao, Wenda; Wu, Yan

    2017-08-01

    Hybridoma screening is a critical step for antibody discovery, which necessitates prompt identification of potential clones from hundreds to thousands of hybridoma cultures against the desired immunogen. Technical issues associated with ELISA- and flow cytometry-based screening limit accuracy and diminish high-throughput capability, increasing time and cost. Conventional ELISA screening with coated antigen is also impractical for difficult-to-express hydrophobic membrane antigens or multi-chain protein complexes. Here, we demonstrate novel high-throughput screening methodology employing the Celigo Image Cytometer, which avoids nonspecific signals by contrasting antibody binding signals directly on living cells, with and without recombinant antigen expression. The image cytometry-based high-throughput screening method was optimized by detecting the binding of hybridoma supernatants to the recombinant antigen CD39 expressed on Chinese hamster ovary (CHO) cells. Next, the sensitivity of the image cytometer was demonstrated by serial dilution of purified CD39 antibody. Celigo was used to measure antibody affinities of commercial and in-house antibodies to membrane-bound CD39. This cell-based screening procedure can be completely accomplished within one day, significantly improving throughput and efficiency of hybridoma screening. Furthermore, measuring direct antibody binding to living cells eliminated both false positive and false negative hits. The image cytometry method was highly sensitive and versatile, and could detect positive antibody in supernatants at concentrations as low as ~5ng/mL, with concurrent K d binding affinity coefficient determination. We propose that this screening method will greatly facilitate antibody discovery and screening technologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Differences in Allelic Frequency and CDRH3 Region Limit the Engagement of HIV Env Immunogens by Putative VRC01 Neutralizing Antibody Precursors

    Directory of Open Access Journals (Sweden)

    Christina Yacoob

    2016-11-01

    Full Text Available Elicitation of broadly neutralizing antibodies remains a long-standing goal of HIV vaccine research. Although such antibodies can arise during HIV-1 infection, gaps in our knowledge of their germline, pre-immune precursor forms, as well as on their interaction with viral Env, limit our ability to elicit them through vaccination. Studies of broadly neutralizing antibodies from the VRC01-class provide insight into progenitor B cell receptors (BCRs that could develop into this class of antibodies. Here, we employed high-throughput heavy chain variable region (VH/light chain variable region (VL deep sequencing, combined with biophysical, structural, and modeling antibody analyses, to interrogate circulating potential VRC01-progenitor BCRs in healthy individuals. Our study reveals that not all humans are equally predisposed to generate VRC01-class antibodies, not all predicted progenitor VRC01-expressing B cells can bind to Env, and the CDRH3 region of germline VRC01 antibodies influence their ability to recognize HIV-1. These findings will be critical to the design of optimized immunogens that should consider CDRH3 interactions.

  5. Catalytic Antibodies

    Indian Academy of Sciences (India)

    biological processes and is intended to catalyze a reaction for which no real enzyme is ... the reaction. In order to enhance the rates of chemical reactions, enzymes, ..... of such antibodies has already been exploited in the production of a biosensor. ..... tant to the pharmaceutical and fine chemical industries for the synthesis ...

  6. Applications of recombinant antibodies in plant pathology.

    Science.gov (United States)

    Ziegler, Angelika; Torrance, Lesley

    2002-09-01

    Summary Advances in molecular biology have made it possible to produce antibody fragments comprising the binding domains of antibody molecules in diverse heterologous systems, such as Escherichia coli, insect cells, or plants. Antibody fragments specific for a wide range of antigens, including plant pathogens, have been obtained by cloning V-genes from lymphoid tissue, or by selection from large naive phage display libraries, thus avoiding the need for immunization. The antibody fragments have been expressed as fusion proteins to create different functional molecules, and fully recombinant assays have been devised to detect plant viruses. The defined binding properties and unlimited cheap supply of antibody fusion proteins make them useful components of standardized immunoassays. The expression of antibody fragments in plants was shown to confer resistance to several plant pathogens. However, the antibodies usually only slowed the progress of infection and durable 'plantibody' resistance has yet to be demonstrated. In future, it is anticipated that antibody fragments from large libraries will be essential tools in high-throughput approaches to post-genomics research, such as the assignment of gene function, characterization of spatio-temporal patterns of protein expression, and elucidation of protein-protein interactions.

  7. Structural Characterization of Peptide Antibodies

    DEFF Research Database (Denmark)

    Chailyan, Anna; Marcatili, Paolo

    2015-01-01

    The role of proteins as very effective immunogens for the generation of antibodies is indisputable. Nevertheless, cases in which protein usage for antibody production is not feasible or convenient compelled the creation of a powerful alternative consisting of synthetic peptides. Synthetic peptides...... can be modified to obtain desired properties or conformation, tagged for purification, isotopically labeled for protein quantitation or conjugated to immunogens for antibody production. The antibodies that bind to these peptides represent an invaluable tool for biological research and discovery....... To better understand the underlying mechanisms of antibody-antigen interaction here we present a pipeline developed by us to structurally classify immunoglobulin antigen binding sites and to infer key sequence residues and other variables that have a prominent role in each structural class....

  8. Antiparietal cell antibody test

    Science.gov (United States)

    APCA; Anti-gastric parietal cell antibody; Atrophic gastritis - anti-gastric parietal cell antibody; Gastric ulcer - anti-gastric parietal cell antibody; Pernicious anemia - anti-gastric parietal cell antibody; ...

  9. High-throughput kinase assays with protein substrates using fluorescent polymer superquenching

    Directory of Open Access Journals (Sweden)

    Weatherford Wendy

    2005-05-01

    Full Text Available Abstract Background High-throughput screening is used by the pharmaceutical industry for identifying lead compounds that interact with targets of pharmacological interest. Because of the key role that aberrant regulation of protein phosphorylation plays in diseases such as cancer, diabetes and hypertension, kinases have become one of the main drug targets. With the exception of antibody-based assays, methods to screen for specific kinase activity are generally restricted to the use of small synthetic peptides as substrates. However, the use of natural protein substrates has the advantage that potential inhibitors can be detected that affect enzyme activity by binding to a site other than the catalytic site. We have previously reported a non-radioactive and non-antibody-based fluorescence quench assay for detection of phosphorylation or dephosphorylation using synthetic peptide substrates. The aim of this work is to develop an assay for detection of phosphorylation of chemically unmodified proteins based on this polymer superquenching platform. Results Using a modified QTL Lightspeed™ assay, phosphorylation of native protein was quantified by the interaction of the phosphorylated proteins with metal-ion coordinating groups co-located with fluorescent polymer deposited onto microspheres. The binding of phospho-protein inhibits a dye-labeled "tracer" peptide from associating to the phosphate-binding sites present on the fluorescent microspheres. The resulting inhibition of quench generates a "turn on" assay, in which the signal correlates with the phosphorylation of the substrate. The assay was tested on three different proteins: Myelin Basic Protein (MBP, Histone H1 and Phosphorylated heat- and acid-stable protein (PHAS-1. Phosphorylation of the proteins was detected by Protein Kinase Cα (PKCα and by the Interleukin -1 Receptor-associated Kinase 4 (IRAK4. Enzyme inhibition yielded IC50 values that were comparable to those obtained using

  10. High-throughput kinase assays with protein substrates using fluorescent polymer superquenching.

    Science.gov (United States)

    Rininsland, Frauke; Stankewicz, Casey; Weatherford, Wendy; McBranch, Duncan

    2005-05-31

    High-throughput screening is used by the pharmaceutical industry for identifying lead compounds that interact with targets of pharmacological interest. Because of the key role that aberrant regulation of protein phosphorylation plays in diseases such as cancer, diabetes and hypertension, kinases have become one of the main drug targets. With the exception of antibody-based assays, methods to screen for specific kinase activity are generally restricted to the use of small synthetic peptides as substrates. However, the use of natural protein substrates has the advantage that potential inhibitors can be detected that affect enzyme activity by binding to a site other than the catalytic site. We have previously reported a non-radioactive and non-antibody-based fluorescence quench assay for detection of phosphorylation or dephosphorylation using synthetic peptide substrates. The aim of this work is to develop an assay for detection of phosphorylation of chemically unmodified proteins based on this polymer superquenching platform. Using a modified QTL Lightspeed assay, phosphorylation of native protein was quantified by the interaction of the phosphorylated proteins with metal-ion coordinating groups co-located with fluorescent polymer deposited onto microspheres. The binding of phospho-protein inhibits a dye-labeled "tracer" peptide from associating to the phosphate-binding sites present on the fluorescent microspheres. The resulting inhibition of quench generates a "turn on" assay, in which the signal correlates with the phosphorylation of the substrate. The assay was tested on three different proteins: Myelin Basic Protein (MBP), Histone H1 and Phosphorylated heat- and acid-stable protein (PHAS-1). Phosphorylation of the proteins was detected by Protein Kinase Calpha (PKCalpha) and by the Interleukin -1 Receptor-associated Kinase 4 (IRAK4). Enzyme inhibition yielded IC50 values that were comparable to those obtained using peptide substrates. Statistical parameters that

  11. High-throughput continuous cryopump

    International Nuclear Information System (INIS)

    Foster, C.A.

    1986-01-01

    A cryopump with a unique method of regeneration which allows continuous operation at high throughput has been constructed and tested. Deuterium was pumped continuously at a throughput of 30 Torr.L/s at a speed of 2000 L/s and a compression ratio of 200. Argon was pumped at a throughput of 60 Torr.L/s at a speed of 1275 L/s. To produce continuous operation of the pump, a method of regeneration that does not thermally cycle the pump is employed. A small chamber (the ''snail'') passes over the pumping surface and removes the frost from it either by mechanical action with a scraper or by local heating. The material removed is topologically in a secondary vacuum system with low conductance into the primary vacuum; thus, the exhaust can be pumped at pressures up to an effective compression ratio determined by the ratio of the pumping speed to the leakage conductance of the snail. The pump, which is all-metal-sealed and dry and which regenerates every 60 s, would be an ideal system for pumping tritium. Potential fusion applications are for mpmp limiters, for repeating pneumatic pellet injection lines, and for the centrifuge pellet injector spin tank, all of which will require pumping tritium at high throughput. Industrial applications requiring ultraclean pumping of corrosive gases at high throughput, such as the reactive ion etch semiconductor process, may also be feasible

  12. Immune Antibody Libraries: Manipulating The Diverse Immune Repertoire for Antibody Discovery.

    Science.gov (United States)

    Lim, Theam Soon; Chan, Soo Khim

    2016-01-01

    Antibody phage display is highly dependent on the availability of antibody libraries. There are several forms of libraries depending mainly on the origin of the source materials. There are three major classes of libraries, mainly the naïve, immune and synthetic libraries. Immune antibody libraries are designed to isolate specific and high affinity antibodies against disease antigens. The pre-exposure of the host to an infection results in the production of a skewed population of antibodies against the particular infection. This characteristic takes advantage of the in vivo editing machinery to generate bias and specific immune repertoire. The skewed but diverse repertoire of immune libraries has been adapted successfully in the generation of antibodies against a wide range of diseases. We envisage immune antibody libraries to play a greater role in the discovery of antibodies for diseases in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. An efficient method for isolating antibody fragments against small peptides by antibody phage display

    DEFF Research Database (Denmark)

    Duan, Zhi; Siegumfeldt, Henrik

    2010-01-01

    We generated monoclonal scFv (single chain variable fragment) antibodies from an antibody phage display library towards three small synthetic peptides derived from the sequence of s1-casein. Key difficulties for selection of scFv-phages against small peptides were addressed. Small peptides do....... The scFvs were sequenced and characterized, and specificity was characterized by ELISA. The methods developed in this study are universally applicable for antibody phage display to efficiently produce antibody fragments against small peptides....

  14. Generation of high-affinity, internalizing anti-FGFR2 single-chain variable antibody fragment fused with Fc for targeting gastrointestinal cancers.

    Science.gov (United States)

    Borek, Aleksandra; Sokolowska-Wedzina, Aleksandra; Chodaczek, Grzegorz; Otlewski, Jacek

    2018-01-01

    Fibroblast growth factor receptors (FGFRs) are promising targets for antibody-based cancer therapies, as their substantial overexpression has been found in various tumor cells. Aberrant activation of FGF receptor 2 (FGFR2) signaling through overexpression of FGFR2 and/or its ligands, mutations, or receptor amplification has been reported in multiple cancer types, including gastric, colorectal, endometrial, ovarian, breast and lung cancer. In this paper, we describe application of the phage display technology to produce a panel of high affinity single chain variable antibody fragments (scFvs) against the extracellular ligand-binding domain of FGFR2 (ECD_FGFR2). The binders were selected from the human single chain variable fragment scFv phage display libraries Tomlinson I + J and showed high specificity and binding affinity towards human FGFR2 with nanomolar KD values. To improve the affinity of the best binder selected, scFvF7, we reformatted it to a bivalent diabody format, or fused it with the Fc region (scFvF7-Fc). The scFvF7-Fc antibody construct presented the highest affinity for FGFR2, with a KD of 0.76 nM, and was selectively internalized into cancer cells overexpressing FGFR2, Snu-16 and NCI-H716. Finally, we prepared a conjugate of scFvF7-Fc with the cytotoxic drug monomethyl-auristatin E (MMAE) and evaluated its cytotoxicity. The conjugate delivered MMAE selectively to FGFR2-positive tumor cells. These results indicate that scFvF7-Fc-vcMMAE is a highly potent molecule for the treatment of cancers with FGFR2 overexpression.

  15. Generation of monoclonal antibodies against peptidylarginine deiminase 2 (PAD2) and development of a PAD2-specific enzyme-linked immunosorbent assay

    DEFF Research Database (Denmark)

    Damgaard, Dres; Palarasah, Yaseelan; Skjødt, Karsten

    2014-01-01

    The enzyme peptidylarginine deiminase 2 (PAD2) has been associated with inflammatory diseases, such as rheumatoid arthritis and neurodegenerative diseases including multiple sclerosis. To investigate the association of various diseases with extracellular PAD2, we raised monoclonal antibodies (m......Abs) against rabbit PAD2 and evaluated their cross-reactivity with human PAD2 by indirect enzyme-linked immunosorbent assay (ELISA), western blotting and immunohistological staining of inflamed synovial tissue. Moreover, we established a sandwich ELISA detecting human PAD2, based on two different monoclonal...... diseases....

  16. High Throughput Transcriptomics @ USEPA (Toxicology ...

    Science.gov (United States)

    The ideal chemical testing approach will provide complete coverage of all relevant toxicological responses. It should be sensitive and specific It should identify the mechanism/mode-of-action (with dose-dependence). It should identify responses relevant to the species of interest. Responses should ideally be translated into tissue-, organ-, and organism-level effects. It must be economical and scalable. Using a High Throughput Transcriptomics platform within US EPA provides broader coverage of biological activity space and toxicological MOAs and helps fill the toxicological data gap. Slide presentation at the 2016 ToxForum on using High Throughput Transcriptomics at US EPA for broader coverage biological activity space and toxicological MOAs.

  17. High-throughput bioinformatics with the Cyrille2 pipeline system.

    NARCIS (Netherlands)

    Fiers, M.W.E.J.; Burgt, van der A.; Datema, E.; Groot, de J.C.W.; Ham, van R.C.H.J.

    2008-01-01

    Background - Modern omics research involves the application of high-throughput technologies that generate vast volumes of data. These data need to be pre-processed, analyzed and integrated with existing knowledge through the use of diverse sets of software tools, models and databases. The analyses

  18. MER5101, a novel Aβ1-15:DT conjugate vaccine, generates a robust anti-Aβ antibody response and attenuates Aβ pathology and cognitive deficits in APPswe/PS1ΔE9 transgenic mice.

    Science.gov (United States)

    Liu, Bin; Frost, Jeffrey L; Sun, Jing; Fu, Hongjun; Grimes, Stephen; Blackburn, Peter; Lemere, Cynthia A

    2013-04-17

    Active amyloid-β (Aβ) immunotherapy is under investigation to prevent or treat early Alzheimer's disease (AD). In 2002, a Phase II clinical trial (AN1792) was halted due to meningoencephalitis in ∼6% of the AD patients, possibly caused by a T-cell-mediated immunological response. Thus, generating a vaccine that safely generates high anti-Aβ antibody levels in the elderly is required. In this study, MER5101, a novel conjugate of Aβ1-15 peptide (a B-cell epitope fragment) conjugated to an immunogenic carrier protein, diphtheria toxoid (DT), and formulated in a nanoparticular emulsion-based adjuvant, was administered to 10-month-old APPswe/PS1ΔE9 transgenic (Tg) and wild-type (Wt) mice. High anti-Aβ antibody levels were observed in both vaccinated APPswe/PS1ΔE9 Tg and Wt mice. Antibody isotypes were mainly IgG1 and IgG2b, suggesting a Th2-biased response. Restimulation of splenocytes with the Aβ1-15:DT conjugate resulted in a strong proliferative response, whereas proliferation was absent after restimulation with Aβ1-15 or Aβ1-40/42 peptides, indicating a cellular immune response against DT while avoiding an Aβ-specific T-cell response. Moreover, significant reductions in cerebral Aβ plaque burden, accompanied by attenuated microglial activation and increased synaptic density, were observed in MER5101-vaccinated APPswe/PS1ΔE9 Tg mice compared with Tg adjuvant controls. Last, MER5101-immunized APPswe/PS1ΔE9 Tg mice showed improvement of cognitive deficits in both contextual fear conditioning and the Morris water maze. Our novel, highly immunogenic Aβ conjugate vaccine, MER5101, shows promise for improving Aβ vaccine safety and efficacy and therefore, may be useful for preventing and/or treating early AD.

  19. Spectrophotometric Enzyme Assays for High-Throughput Screening

    Directory of Open Access Journals (Sweden)

    Jean-Louis Reymond

    2004-01-01

    Full Text Available This paper reviews high-throughput screening enzyme assays developed in our laboratory over the last ten years. These enzyme assays were initially developed for the purpose of discovering catalytic antibodies by screening cell culture supernatants, but have proved generally useful for testing enzyme activities. Examples include TLC-based screening using acridone-labeled substrates, fluorogenic assays based on the β-elimination of umbelliferone or nitrophenol, and indirect assays such as the back-titration method with adrenaline and the copper-calcein fluorescence assay for aminoacids.

  20. Antibody Engineering and Therapeutics

    Science.gov (United States)

    Almagro, Juan Carlos; Gilliland, Gary L; Breden, Felix; Scott, Jamie K; Sok, Devin; Pauthner, Matthias; Reichert, Janice M; Helguera, Gustavo; Andrabi, Raiees; Mabry, Robert; Bléry, Mathieu; Voss, James E; Laurén, Juha; Abuqayyas, Lubna; Barghorn, Stefan; Ben-Jacob, Eshel; Crowe, James E; Huston, James S; Johnston, Stephen Albert; Krauland, Eric; Lund-Johansen, Fridtjof; Marasco, Wayne A; Parren, Paul WHI; Xu, Kai Y

    2014-01-01

    The 24th Antibody Engineering & Therapeutics meeting brought together a broad range of participants who were updated on the latest advances in antibody research and development. Organized by IBC Life Sciences, the gathering is the annual meeting of The Antibody Society, which serves as the scientific sponsor. Preconference workshops on 3D modeling and delineation of clonal lineages were featured, and the conference included sessions on a wide variety of topics relevant to researchers, including systems biology; antibody deep sequencing and repertoires; the effects of antibody gene variation and usage on antibody response; directed evolution; knowledge-based design; antibodies in a complex environment; polyreactive antibodies and polyspecificity; the interface between antibody therapy and cellular immunity in cancer; antibodies in cardiometabolic medicine; antibody pharmacokinetics, distribution and off-target toxicity; optimizing antibody formats for immunotherapy; polyclonals, oligoclonals and bispecifics; antibody discovery platforms; and antibody-drug conjugates. PMID:24589717

  1. Measurement of thyrotropin receptor antibodies (TRAK) with a second generation assay in patients with Graves' disease; Die Bestimmung von Thyreotropin-Rezeptor-Antikoerpern (TRAK) mit einem Assay der zweiten Generation bei Patienten mit Morbus Basedow

    Energy Technology Data Exchange (ETDEWEB)

    Zoephel, K.; Wunderlich, G.; Franke, W.G. [Klinik und Poliklinik fuer Nuklearmedizin, Technische Univ. Dresden (Germany); Koch, R. [Inst. fuer Medizinische Informatik und Biometrie, Technische Univ. Dresden (Germany)

    2000-06-01

    Aim: The detection of TSH-receptor-antibodies (TRAb) in patients (pts) with Graves' disease (GD) is routinely used in nuclear medicine laboratories. It is performed by commercial, porcine radioreceptorassays (RRA) measuring TSH binding inhibitory activity. A second generation assay using the human, recombinant TSH-receptor was developed during the last years. The manufacturer composed this new assay as a coated tube RRA (CT RRA) and claimed a higher sensitivity for GD. Methods: TRAb was measured in 207 pts with various thyroid disorders and 205 healthy controls using the new coated tube RRA (Fa. B.R.A.H.M.S. Diagnostica GmbH, Berlin, Germany) as well as a conventional RRA (Fa. Medipan Diagnostica GmbH, Selchow, Germany): 60 pts suffering from GD showing a relapse after anti-thyroid drug treatment and before radioiodine therapy, 109 pts with disseminated autonomia (DA) and 38 pts suffering from Hashimoto's thyroiditis. A ROC-analysis was performed to find the optimal decision threshold level for positivity. Results: We found 42/60 TRAb-positive pts with GD in the established RRA (threshold 6 U/L) and 52/60 in the CT RRA, respectively. The sensitivity increased from 70% (RRA) to 86,7% (CT RRA). The CT RRA found 2 false positives (one Hashimoto's and one healthy control) and the RRA detected 3 Hashimoto's and 2 healthy controls as false positive. Conclusion: The increased sensitivity of CT RRA for GD provides an advantage compared to conventional RRA, especially in GD-patients relapsing afte antithyroid drug treatment. Functional sensitivity and Interassayvariation of CT RRA are very precisely compared to conventional RRA. Handling of the new assay is also improved. (orig.) [German] Ziel: Die Bestimmung der TSH-Rezeptorantikoerper (TRAK) bei Patienten mit Morbus Basedow ist fester Bestandteil der nuklearmedizinischen In-vitro-Diagnostik. Seit kurzem ist die Bestimmung mit einem TRAK-Assay moeglich, bei dem im Gegensatz zu den herkoemmlichen

  2. High throughput materials research and development for lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Parker Liu

    2017-09-01

    Full Text Available Development of next generation batteries requires a breakthrough in materials. Traditional one-by-one method, which is suitable for synthesizing large number of sing-composition material, is time-consuming and costly. High throughput and combinatorial experimentation, is an effective method to synthesize and characterize huge amount of materials over a broader compositional region in a short time, which enables to greatly speed up the discovery and optimization of materials with lower cost. In this work, high throughput and combinatorial materials synthesis technologies for lithium ion battery research are discussed, and our efforts on developing such instrumentations are introduced.

  3. Clinical evaluation of the 2nd generation radio-receptor assay for anti-thyrotropin receptor antibodies (TRAb) in Graves' disease

    International Nuclear Information System (INIS)

    Giovanella, L.; Ceriani, L.; Garancini, S.

    2002-01-01

    Full text: Detection of autoantibodies to the TSH receptor by radioreceptorial assays (RRA) is largely requested in clinical practice for the diagnosis of Graves' disease and its differentiation from diffuse thyroid autonomy. Additionally, TRAb measurement during antithyroid drug treatment can be useful to evaluate the risk of disease's relapse alter therapy discontinuation. Nevertheless, some patients affected by Graves' disease are TRAb negative when 1st generation assay is used. Recently a new RRA method for TRAb assay was developed by using human recombinant TSH-receptor and solid-phase technique. Aim of our work was the comparison between 1st and 2nd generation TRAb assays in Graves' disease patients and, particularly, the evaluation of 2nd generation test in a sub-group of patients affected by Graves' disease but with negative 1st generation TRAb assay. We evaluated the diagnostic performance of a newly developed 2nd generation TRAb assay (DYNOtest(r) TRAK human, BRAHMS Diagnostica GmbH, Germany) in 46 patients affected by Graves' disease with negative 1st generation TRAb assay (TRAK Assay(r), BRAHMS Diagnostica GmbH, Germany) . A control groups of 50 Graves' disease patients with positive 1st generation TRAb assay, 50 patients affected by Hashimoto's thyroiditis and 50 patients affected by nodular goiter were also examined. 41 out of 46 patients affected by Graves' disease with negative 1st generation TRAb assay showed a positive 2nd generation test. The overall sensitivity of the 2nd generation test was significantly improved respect the 1st generation assay in Graves' disease patients (χ 2 = 22.5, p<0.0001). 1 and 3 out of 50 patients affected by Hashimoto's thyroiditis were positive by 1st and 2nd generation TRAB assay, respectively. All these patients showed primary hypothyroidism. No differences resulted in euthyroid Hashimoto's thyroiditis sub-group and in nodular goiter control group. The 2nd generation TRAB assay is clearly more sensitive than the 1

  4. Conference scene: progress with promising human antibodies.

    Science.gov (United States)

    Larrick, James W

    2012-03-01

    Antibodies and antibody-based therapeutics have become big business, with annual sales over US$50 billion, accounting for >6% of worldwide pharmaceutical revenues. Ten molecules have blockbuster status (>US$1 billion), with six generating more than US$6 billion in sales. In excess of 300 products based on this rapidly maturing technology are in clinical trials. The generation and manufacture of human antibodies is now routine, although the cost of goods remains an issue. Optimizing combinations of antibodies with other therapeutics (e.g., chemotherapy) is a major short-term goal, while target validation and product differentiation remain significant hurdles if growth is to continue. Some of the notable highlights of the recent 16th International Conference on Human Antibodies and Hybridomas meeting in Cannes, France are described below. The conference was sponsored by the international journal Human Antibodies, in association with the Integrative Medical Sciences Association (IMSA). The Program Chairman was Professor Mark Glassy, IMSA, San Diego, CA, USA.

  5. A Programmable, Scalable-Throughput Interleaver

    Directory of Open Access Journals (Sweden)

    E. J. C. Rijshouwer

    2010-01-01

    Full Text Available The interleaver stages of digital communication standards show a surprisingly large variation in throughput, state sizes, and permutation functions. Furthermore, data rates for 4G standards such as LTE-Advanced will exceed typical baseband clock frequencies of handheld devices. Multistream operation for Software Defined Radio and iterative decoding algorithms will call for ever higher interleave data rates. Our interleave machine is built around 8 single-port SRAM banks and can be programmed to generate up to 8 addresses every clock cycle. The scalable architecture combines SIMD and VLIW concepts with an efficient resolution of bank conflicts. A wide range of cellular, connectivity, and broadcast interleavers have been mapped on this machine, with throughputs up to more than 0.5 Gsymbol/second. Although it was designed for channel interleaving, the application domain of the interleaver extends also to Turbo interleaving. The presented configuration of the architecture is designed as a part of a programmable outer receiver on a prototype board. It offers (near universal programmability to enable the implementation of new interleavers. The interleaver measures 2.09 mm2 in 65 nm CMOS (including memories and proves functional on silicon.

  6. A Programmable, Scalable-Throughput Interleaver

    Directory of Open Access Journals (Sweden)

    Rijshouwer EJC

    2010-01-01

    Full Text Available The interleaver stages of digital communication standards show a surprisingly large variation in throughput, state sizes, and permutation functions. Furthermore, data rates for 4G standards such as LTE-Advanced will exceed typical baseband clock frequencies of handheld devices. Multistream operation for Software Defined Radio and iterative decoding algorithms will call for ever higher interleave data rates. Our interleave machine is built around 8 single-port SRAM banks and can be programmed to generate up to 8 addresses every clock cycle. The scalable architecture combines SIMD and VLIW concepts with an efficient resolution of bank conflicts. A wide range of cellular, connectivity, and broadcast interleavers have been mapped on this machine, with throughputs up to more than 0.5 Gsymbol/second. Although it was designed for channel interleaving, the application domain of the interleaver extends also to Turbo interleaving. The presented configuration of the architecture is designed as a part of a programmable outer receiver on a prototype board. It offers (near universal programmability to enable the implementation of new interleavers. The interleaver measures 2.09 m in 65 nm CMOS (including memories and proves functional on silicon.

  7. Development of an Indirect Competitive Enzyme-Linked Immunosorbent Assay for Glycocholic Acid Based on Chicken Single-Chain Variable Fragment Antibodies.

    Science.gov (United States)

    Cui, Xiping; Vasylieva, Natalia; Wu, Panpan; Barnych, Bogdan; Yang, Jun; Shen, Ding; He, Qiyi; Gee, Shirley J; Zhao, Suqing; Hammock, Bruce D

    2017-10-17

    Glycocholic acid (GCA) is an important metabolite of bile acids, whose urine levels are expected to be a specific diagnostic biomarker for hepatocellular carcinoma (HCC). A high-throughput immunoassay for determination of GCA would be of significant advantage and useful for primary diagnosis, surveillance, and early detection of HCC. Single-chain variable fragment (scFv) antibodies have several desirable characteristics and are an attractive alternative to traditional antibodies for the immunoassay. Because chicken antibodies possess single heavy and light variable functional domains, they are an ideal framework for simplified generation of recombinant antibodies for GCA detection. However, chicken scFvs have rarely been used to detect GCA. In this study, a scFv library was generated from chickens immunized with a GCA hapten coupled to bovine serum albumin (BSA), and anti-GCA scFvs were isolated by a phage-displayed method. Compared to the homologous coating antigen, use of a heterologous coating antigen resulted in about an 85-fold improvement in sensitivity of the immunoassay. This assay, under optimized conditions, had a linear range of 0.02-0.18 μg/mL, with an IC 50 of 0.06 μg/mL. The assay showed negligible cross-reactivity with various related bile acids, except for taurocholic acid. The detection of GCA from spiked human urine samples ranged from 86.7% to 123.3%. These results, combined with the advantages of scFv antibodies, indicated that a chicken scFv-based enzyme-linked immunosorbent assay is a suitable method for high-throughput screening of GCA in human urine.

  8. Generation of an antibody that recognizes Plasmodium chabaudi cysteine protease (chabaupain-1) in both sexual and asexual parasite life cycle and evaluation of chabaupain-1 vaccine potential.

    Science.gov (United States)

    Armada, Ana; Gazarini, Marcos L; Gonçalves, Lídia M; Antunes, Sandra; Custódio, Ana; Rodrigues, Armanda; Almeida, António J; Silveira, Henrique; Rosário, Virgílio do; Santos-Gomes, Gabriela; Domingos, Ana

    2013-09-01

    Malaria cysteine proteases have been shown to be immunogenic and are being exploited as serodiagnostic markers, drug and vaccine targets. Several Plasmodium spp. cysteine proteases have been described and the best characterized of these are the falcipains, a family of papain-family enzymes. Falcipain-2 and falcipain-3 act in concert with other proteases to hydrolyze host erythrocyte hemoglobin in the parasite food vacuole. Falcipain-1 has less similarity to the other falcipains and its physiological role in parasite asexual blood stage still remains uncertain. Immunolocalization studies using an antibody developed against the Plasmodium chabaudi recombinant chabaupain-1, the falcipain-1 ortholog, were performed confirming its cellular localization in both erythrocyte and mosquito ookinete stage. Immunostaining of chabaupain-1 preferentially in apical portion of parasite ookinete suggests that this protease may be related with parasite egression from mosquito midgut. Immune responses to chabaupain-1 were evaluated using two different adjuvants, chitosan nanoparticles and hydroxide aluminum. Mice immunized with the recombinant protein alone or in association with nanoparticles were challenged with P. chabaudi showing that immunization with the recombinant protein confers partial protection to blood stage infection in BALB/c animal model. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Machine learning in computational biology to accelerate high-throughput protein expression

    DEFF Research Database (Denmark)

    Sastry, Anand; Monk, Jonathan M.; Tegel, Hanna

    2017-01-01

    and machine learning identifies protein properties that hinder the HPA high-throughput antibody production pipeline. We predict protein expression and solubility with accuracies of 70% and 80%, respectively, based on a subset of key properties (aromaticity, hydropathy and isoelectric point). We guide...... the selection of protein fragments based on these characteristics to optimize high-throughput experimentation. Availability and implementation: We present the machine learning workflow as a series of IPython notebooks hosted on GitHub (https://github.com/SBRG/Protein_ML). The workflow can be used as a template...

  10. Radiolabeled monoclonal antibodies: a review

    International Nuclear Information System (INIS)

    Toledo e Souza, I.T. de; Okada, H.

    1990-05-01

    Since the description by Kohler and Milstein 1975 of their technique for producing monoclonal antibodies of predefined specificity, it has become a mainstay in most laboratories that utilize immunochemical techniques to study problems in basic, applied or clinical research. Paradoxically, the very success of monoclonal antibodies has generated a literature which is now so vast and scattered that it has become difficult to obtain a perspective. This brief review represents the distillation of many publications relating to the production and use of monoclonaal antibodies as radiopharmaceuticals. Significant advances were made possible in the last few years by combined developments in the fields of tumor-associated antigens and of monoclonal antibodies. In fact monoclonal antibodies against some well defined tumor-associated antigens, has led to significantly greater practical possibilities for producing highly specific radiolabeled antibodies as radiopharmaceuticals for diagnosis and therapy of human tumors. One of the main requirements of this methodology is the availability of stable radiopharmaceutical reagents which after labeling in vivo injection retain the capacity of specific interaction with the defined antigen and their molecular integrity. Since injection into human is the objetive of this kind of study all the specifications of radiopharmaceutical have to be fulfilled e.g. sterility, apirogenicity and absence of toxicity. (author) [pt

  11. Generation of Monoclonal Antibodies against Ag85A Antigen of Mycobacterium tuberculosis and Application in a Competitive ELISA for Serodiagnosis of Bovine Tuberculosis

    Directory of Open Access Journals (Sweden)

    Zhengzhong Xu

    2017-06-01

    Full Text Available The Ag85 complex functions as the main secretory protein of Mycobacterium tuberculosis (M. tuberculosis and BCG. This complex is composed of the proteins, Ag85A, Ag85B, and Ag85C, with Ag85A thought to play the largest role within the complex. However, the lack of commercially available monoclonal antibodies (mAbs against Ag85A still hinders the biological and applicative research on this protein. In this study, we developed and identified anti-Ag85A mAbs, and five hybridoma cells were established. Using the indirect immunofluorescence test, we found that two anti-Ag85A mAbs did not cross-react with Ag85B and/or Ag85C. In addition, we showed that all of the mAbs tested in this study are able to react with endogenous Ag85A protein in BCG and rBCG:Ag85A using indirect ELISA and Western blot analyses. A competitive ELISA (cELISA based on mAb 3B8 was developed, the analyses of clinic serum samples from cattle with bovine tuberculosis (TB and healthy cattle demonstrated that the sensitivity of the cELISA was 54.2% (26/48 and the specificity was 83.5% (167/200. This study demonstrated that the mAbs against Ag85A will provide useful reagents for further investigation into the function of the Ag85 complex and can be used for serodiagnosis of bovine TB.

  12. Frequency and genetic characterization of V(DD)J recombinants in the human peripheral blood antibody repertoire.

    Science.gov (United States)

    Briney, Bryan S; Willis, Jordan R; Hicar, Mark D; Thomas, James W; Crowe, James E

    2012-09-01

    Antibody heavy-chain recombination that results in the incorporation of multiple diversity (D) genes, although uncommon, contributes substantially to the diversity of the human antibody repertoire. Such recombination allows the generation of heavy chain complementarity determining region 3 (HCDR3) regions of extreme length and enables junctional regions that, because of the nucleotide bias of N-addition regions, are difficult to produce through normal V(D)J recombination. Although this non-classical recombination process has been observed infrequently, comprehensive analysis of the frequency and genetic characteristics of such events in the human peripheral blood antibody repertoire has not been possible because of the rarity of such recombinants and the limitations of traditional sequencing technologies. Here, through the use of high-throughput sequencing of the normal human peripheral blood antibody repertoire, we analysed the frequency and genetic characteristics of V(DD)J recombinants. We found that these recombinations were present in approximately 1 in 800 circulating B cells, and that the frequency was severely reduced in memory cell subsets. We also found that V(DD)J recombination can occur across the spectrum of diversity genes, indicating that virtually all recombination signal sequences that flank diversity genes are amenable to V(DD)J recombination. Finally, we observed a repertoire bias in the diversity gene repertoire at the upstream (5') position, and discovered that this bias was primarily attributable to the order of diversity genes in the genomic locus. © 2012 The Authors. Immunology © 2012 Blackwell Publishing Ltd.

  13. Production and characterization of peptide antibodies

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Hansen, Paul Robert; Houen, Gunnar

    2012-01-01

    Proteins are effective immunogens for generation of antibodies. However, occasionally the native protein is known but not available for antibody production. In such cases synthetic peptides derived from the native protein are good alternatives for antibody production. These peptide antibodies...... are powerful tools in experimental biology and are easily produced to any peptide of choice. A widely used approach for production of peptide antibodies is to immunize animals with a synthetic peptide coupled to a carrier protein. Very important is the selection of the synthetic peptide, where factors......, including solid-phase peptide-carrier conjugation and peptide-carrier conjugation in solution. Upon immunization, adjuvants such as Al(OH)(3) are added together with the immunogenic peptide-carrier conjugate, which usually leads to high-titred antisera. Following immunization and peptide antibody...

  14. High throughput protein production screening

    Science.gov (United States)

    Beernink, Peter T [Walnut Creek, CA; Coleman, Matthew A [Oakland, CA; Segelke, Brent W [San Ramon, CA

    2009-09-08

    Methods, compositions, and kits for the cell-free production and analysis of proteins are provided. The invention allows for the production of proteins from prokaryotic sequences or eukaryotic sequences, including human cDNAs using PCR and IVT methods and detecting the proteins through fluorescence or immunoblot techniques. This invention can be used to identify optimized PCR and WT conditions, codon usages and mutations. The methods are readily automated and can be used for high throughput analysis of protein expression levels, interactions, and functional states.

  15. High-Throughput Analysis of Enzyme Activities

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Guoxin [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    High-throughput screening (HTS) techniques have been applied to many research fields nowadays. Robot microarray printing technique and automation microtiter handling technique allows HTS performing in both heterogeneous and homogeneous formats, with minimal sample required for each assay element. In this dissertation, new HTS techniques for enzyme activity analysis were developed. First, patterns of immobilized enzyme on nylon screen were detected by multiplexed capillary system. The imaging resolution is limited by the outer diameter of the capillaries. In order to get finer images, capillaries with smaller outer diameters can be used to form the imaging probe. Application of capillary electrophoresis allows separation of the product from the substrate in the reaction mixture, so that the product doesn't have to have different optical properties with the substrate. UV absorption detection allows almost universal detection for organic molecules. Thus, no modifications of either the substrate or the product molecules are necessary. This technique has the potential to be used in screening of local distribution variations of specific bio-molecules in a tissue or in screening of multiple immobilized catalysts. Another high-throughput screening technique is developed by directly monitoring the light intensity of the immobilized-catalyst surface using a scientific charge-coupled device (CCD). Briefly, the surface of enzyme microarray is focused onto a scientific CCD using an objective lens. By carefully choosing the detection wavelength, generation of product on an enzyme spot can be seen by the CCD. Analyzing the light intensity change over time on an enzyme spot can give information of reaction rate. The same microarray can be used for many times. Thus, high-throughput kinetic studies of hundreds of catalytic reactions are made possible. At last, we studied the fluorescence emission spectra of ADP and obtained the detection limits for ADP under three different

  16. Production and characterization of monoclonal antibodies against mink leukocytes

    DEFF Research Database (Denmark)

    Chen, W.S.; Pedersen, Mikael; Gram-Nielsen, S.

    1997-01-01

    Three monoclonal antibodies (mAbs) were generated against mink leukocytes. One antibody reacted with all T lymphocytes, one with all monocytes and one had platelet reactivity. Under reducing conditions, the T lymphocyte reactive antibody immunoprecipitated 18 kDa, 23 kDa, 25 kDa and 32-40 kDa pol...

  17. Optimization and high-throughput screening of antimicrobial peptides.

    Science.gov (United States)

    Blondelle, Sylvie E; Lohner, Karl

    2010-01-01

    While a well-established process for lead compound discovery in for-profit companies, high-throughput screening is becoming more popular in basic and applied research settings in academia. The development of combinatorial libraries combined with easy and less expensive access to new technologies have greatly contributed to the implementation of high-throughput screening in academic laboratories. While such techniques were earlier applied to simple assays involving single targets or based on binding affinity, they have now been extended to more complex systems such as whole cell-based assays. In particular, the urgent need for new antimicrobial compounds that would overcome the rapid rise of drug-resistant microorganisms, where multiple target assays or cell-based assays are often required, has forced scientists to focus onto high-throughput technologies. Based on their existence in natural host defense systems and their different mode of action relative to commercial antibiotics, antimicrobial peptides represent a new hope in discovering novel antibiotics against multi-resistant bacteria. The ease of generating peptide libraries in different formats has allowed a rapid adaptation of high-throughput assays to the search for novel antimicrobial peptides. Similarly, the availability nowadays of high-quantity and high-quality antimicrobial peptide data has permitted the development of predictive algorithms to facilitate the optimization process. This review summarizes the various library formats that lead to de novo antimicrobial peptide sequences as well as the latest structural knowledge and optimization processes aimed at improving the peptides selectivity.

  18. Computational tools for high-throughput discovery in biology

    OpenAIRE

    Jones, Neil Christopher

    2007-01-01

    High throughput data acquisition technology has inarguably transformed the landscape of the life sciences, in part by making possible---and necessary---the computational disciplines of bioinformatics and biomedical informatics. These fields focus primarily on developing tools for analyzing data and generating hypotheses about objects in nature, and it is in this context that we address three pressing problems in the fields of the computational life sciences which each require computing capaci...

  19. Generalized Platform for Antibody Detection using the Antibody Catalyzed Water Oxidation Pathway

    OpenAIRE

    Welch, M. Elizabeth; Ritzert, Nicole L.; Chen, Hongjun; Smith, Norah L.; Tague, Michele E.; Xu, Youyong; Baird, Barbara A.; Abru?a, H?ctor D.; Ober, Christopher K.

    2014-01-01

    Infectious diseases, such as influenza, present a prominent global problem including the constant threat of pandemics that initiate in avian or other species and then pass to humans. We report a new sensor that can be specifically functionalized to detect antibodies associated with a wide range of infectious diseases in multiple species. This biosensor is based on electrochemical detection of hydrogen peroxide generated through the intrinsic catalytic activity of all antibodies: the antibody ...

  20. Optimization of a micro-scale, high throughput process development tool and the demonstration of comparable process performance and product quality with biopharmaceutical manufacturing processes.

    Science.gov (United States)

    Evans, Steven T; Stewart, Kevin D; Afdahl, Chris; Patel, Rohan; Newell, Kelcy J

    2017-07-14

    In this paper, we discuss the optimization and implementation of a high throughput process development (HTPD) tool that utilizes commercially available micro-liter sized column technology for the purification of multiple clinically significant monoclonal antibodies. Chromatographic profiles generated using this optimized tool are shown to overlay with comparable profiles from the conventional bench-scale and clinical manufacturing scale. Further, all product quality attributes measured are comparable across scales for the mAb purifications. In addition to supporting chromatography process development efforts (e.g., optimization screening), comparable product quality results at all scales makes this tool is an appropriate scale model to enable purification and product quality comparisons of HTPD bioreactors conditions. The ability to perform up to 8 chromatography purifications in parallel with reduced material requirements per run creates opportunities for gathering more process knowledge in less time. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Throughput capacity of the Asbestos Conversion Unit

    International Nuclear Information System (INIS)

    Hyman, M.H.

    1996-10-01

    An engineering assessment is presented for factors that could significantly limit the throughput capacity of the Asbestos Conversion Unit. The assessment focuses mainly on volumetric throughput capacity (and related mass rate and feed density), and energy input. Important conclusions that were reached during this assessment are that the throughput is limited by feed densification capability and that the design energy input rating appears to be adequate

  2. High-throughput screening of small molecule libraries using SAMDI mass spectrometry.

    Science.gov (United States)

    Gurard-Levin, Zachary A; Scholle, Michael D; Eisenberg, Adam H; Mrksich, Milan

    2011-07-11

    High-throughput screening is a common strategy used to identify compounds that modulate biochemical activities, but many approaches depend on cumbersome fluorescent reporters or antibodies and often produce false-positive hits. The development of "label-free" assays addresses many of these limitations, but current approaches still lack the throughput needed for applications in drug discovery. This paper describes a high-throughput, label-free assay that combines self-assembled monolayers with mass spectrometry, in a technique called SAMDI, as a tool for screening libraries of 100,000 compounds in one day. This method is fast, has high discrimination, and is amenable to a broad range of chemical and biological applications.

  3. Induction and characterization of monoclonal anti-idiotypic antibodies reactive with idiotopes of canine parvovirus neutralizing monoclonal antibodies.

    NARCIS (Netherlands)

    G.F. Rimmelzwaan (Guus); J. van Es (Johan); G.A. Drost; F.G.C.M. Uytdehaag (Fons); A.D.M.E. Osterhaus (Albert)

    1991-01-01

    textabstractMonoclonal anti-idiotypic (anti-Id) antibodies (Ab2) were generated against idiotypes (Id) of canine parvovirus (CPV) specific monoclonal antibodies (MoAbs). The binding of most of these anti-Id antibodies to their corresponding Id could be inhibited by antigen, thus classifying these

  4. Antibodies from plants for bionanomaterials.

    Science.gov (United States)

    Edgue, Gueven; Twyman, Richard M; Beiss, Veronique; Fischer, Rainer; Sack, Markus

    2017-11-01

    Antibodies are produced as part of the vertebrate adaptive immune response and are not naturally made by plants. However, antibody DNA sequences can be introduced into plants, and together with laboratory technologies that allow the design of antibodies recognizing any conceivable molecular structure, plants can be used as 'green factories' to produce any antibody at all. The advent of plant-based transient expression systems in particular allows the rapid, convenient, and safe production of antibodies, ranging from laboratory-scale expression to industrial-scale manufacturing. The key features of plant-based production include safety, speed, low cost, and convenience, allowing newcomers to rapidly master the technology and use it to its full advantage. Manufacturing in plants has recently achieved significant milestones and offers more than just an alternative to established microbial and mammalian cell platforms. The use of plants for product development in particular offers the power and flexibility to easily coexpress many different genes, allowing the plug-and-play construction of novel bionanomaterials, perfectly complementing existing approaches based on plant virus-like particles. As well as producing single antibodies for applications in medicine, agriculture, and industry, plants can be used to produce antibody-based supramolecular structures and scaffolds as a new generation of green bionanomaterials that promise a bright future based on clean and renewable nanotechnology applications. WIREs Nanomed Nanobiotechnol 2017, 9:e1462. doi: 10.1002/wnan.1462 For further resources related to this article, please visit the WIREs website. © 2017 The Authors. WIREs Nanomedicine and Nanobiotechnology published by Wiley Periodicals, Inc.

  5. A compact phage display human scFv library for selection of antibodies to a wide variety of antigens

    Directory of Open Access Journals (Sweden)

    Kristensen Peter

    2009-01-01

    Full Text Available Abstract Background Phage display technology is a powerful new tool for making antibodies outside the immune system, thus avoiding the use of experimental animals. In the early days, it was postulated that this technique would eventually replace hybridoma technology and animal immunisations. However, since this technology emerged more than 20 years ago, there have only been a handful reports on the construction and application of phage display antibody libraries world-wide. Results Here we report the simplest and highly efficient method for the construction of a highly useful human single chain variable fragment (scFv library. The least number of oligonucleotide primers, electroporations and ligation reactions were used to generate a library of 1.5 × 108 individual clones, without generation of sub-libraries. All possible combinations of heavy and light chains, among all immunoglobulin isotypes, were included by using a mixture of primers and overlapping extension PCR. The key difference from other similar libraries was the highest diversity of variable gene repertoires, which was derived from 140 non-immunized human donors. A wide variety of antigens were successfully used to affinity select specific binders. These included pure recombinant proteins, a hapten and complex antigens such as viral coat proteins, crude snake venom and cancer cell surface antigens. In particular, we were able to use standard bio-panning method to isolate antibody that can bind to soluble Aflatoxin B1, when using BSA-conjugated toxin as a target, as demonstrated by inhibition ELISA. Conclusion These results suggested that by using an optimized protocol and very high repertoire diversity, a compact and efficient phage antibody library can be generated. This advanced method could be adopted by any molecular biology laboratory to generate both naïve or immunized libraries for particular targets as well as for high-throughput applications.

  6. Lyme disease antibody

    Science.gov (United States)

    ... JavaScript. The Lyme disease blood test looks for antibodies in the blood to the bacteria that causes ... needed. A laboratory specialist looks for Lyme disease antibodies in the blood sample using the ELISA test . ...

  7. Antinuclear antibody panel

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003535.htm Antinuclear antibody panel To use the sharing features on this page, please enable JavaScript. The antinuclear antibody panel is a blood test that looks at ...

  8. Acetylcholine receptor antibody

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003576.htm Acetylcholine receptor antibody To use the sharing features on this page, please enable JavaScript. Acetylcholine receptor antibody is a protein found in the blood of ...

  9. Nuclear medicine: Monoclonal antibodies

    International Nuclear Information System (INIS)

    Endo, K.; Sakahara, H.; Koizumi, M.; Kawamura, Y.; Torizuka, K.; Yokoyama, A.

    1986-01-01

    Antitumor monoclonal antibody was successfully labeled with Tc-99m by using dithiosemicarbazone (DTS) as a bifunctional chelating agent. In the first step, DTS was coupled to antibody without loss of immunoreactivity; the compound then efficiently formed a neutral 1:1 chelate with pentavalent or tetravalent Tc-99m. Imaging with Tc-99m-labeled monoclonal antibody to human osteosarcoma (OST-7) clearly displayed a small tumor in nude mice at 6 and 24 hours after intravenous administration. The tumor-to-blood ratio of the Tc-99m-labeled monoclonal antibody was higher than that of a radioiodinated antibody and similar to that of an In-111-labeled antibody. Thus, conjugation of DTS to monoclonal antibody followed by radiometalation is a simple and efficient method of preparing Tc-99m-labeled monoclonal antibody

  10. Platelet antibodies blood test

    Science.gov (United States)

    This blood test shows if you have antibodies against platelets in your blood. Platelets are a part of the blood ... Chernecky CC, Berger BJ. Platelet antibody - blood. In: Chernecky ... caused by platelet destruction, hypersplenism, or hemodilution. ...

  11. Quack: A quality assurance tool for high throughput sequence data.

    Science.gov (United States)

    Thrash, Adam; Arick, Mark; Peterson, Daniel G

    2018-05-01

    The quality of data generated by high-throughput DNA sequencing tools must be rapidly assessed in order to determine how useful the data may be in making biological discoveries; higher quality data leads to more confident results and conclusions. Due to the ever-increasing size of data sets and the importance of rapid quality assessment, tools that analyze sequencing data should quickly produce easily interpretable graphics. Quack addresses these issues by generating information-dense visualizations from FASTQ files at a speed far surpassing other publicly available quality assurance tools in a manner independent of sequencing technology. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. High throughput single-cell and multiple-cell micro-encapsulation.

    Science.gov (United States)

    Lagus, Todd P; Edd, Jon F

    2012-06-15

    signals from bioreactor products. Drops also provide the ability to re-merge drops into larger aqueous samples or with other drops for intercellular signaling studies. The reduction in dilution implies stronger detection signals for higher accuracy measurements as well as the ability to reduce potentially costly sample and reagent volumes. Encapsulation of cells in drops has been utilized to improve detection of protein expression, antibodies, enzymes, and metabolic activity for high throughput screening, and could be used to improve high throughput cytometry. Additional studies present applications in bio-electrospraying of cell containing drops for mass spectrometry and targeted surface cell coatings. Some applications, however, have been limited by the lack of ability to control the number of cells encapsulated in drops. Here we present a method of ordered encapsulation which increases the demonstrated encapsulation efficiencies for one and two cells and may be extrapolated for encapsulation of a larger number of cells. To achieve monodisperse drop generation, microfluidic "flow focusing" enables the creation of controllable-size drops of one fluid (an aqueous cell mixture) within another (a continuous oil phase) by using a nozzle at which the streams converge. For a given nozzle geometry, the drop generation frequency f and drop size can be altered by adjusting oil and aqueous flow rates Q(oil) and Q(aq). As the flow rates increase, the flows may transition from drop generation to unstable jetting of aqueous fluid from the nozzle. When the aqueous solution contains suspended particles, particles become encapsulated and isolated from one another at the nozzle. For drop generation using a randomly distributed aqueous cell suspension, the average fraction of drops D(k) containing k cells is dictated by Poisson statistics, where D(k) = λ(k) exp(-λ)/(k!) and λ is the average number of cells per drop. The fraction of cells which end up in the "correctly" encapsulated

  13. Heavy chain only antibodies

    DEFF Research Database (Denmark)

    Moghimi, Seyed Moein; Rahbarizadeh, Fatemeh; Ahmadvand, Davoud

    2013-01-01

    Unlike conventional antibodies, heavy chain only antibodies derived from camel contain a single variable domain (VHH) and two constant domains (CH2 and CH3). Cloned and isolated VHHs possess unique properties that enable them to excel conventional therapeutic antibodies and their smaller antigen...

  14. Hepatitis A virus antibody

    International Nuclear Information System (INIS)

    Novak, J.; Kselikova, M.; Urbankova, J.

    1980-01-01

    A description is presented of a radioimmunoassay designed to prove the presence of the antibody against the hepatitis A virus (HA Ab, anti-Ha) using an Abbott HAVAB set. This proof as well as the proof of the antibody against the nucleus of the hepatitis B virus is based on competition between a normal antibody against hepatitis A virus and a 125 I-labelled antibody for the binding sites of a specific antigen spread all over the surface of a tiny ball; this is then indirect proof of the antibody under investigation. The method is described of reading the results from the number of impulses per 60 seconds: the higher the titre of the antibody against the hepatitis A virus in the serum examined, the lower the activity of the specimen concerned. The rate is reported of incidence of the antibody against the hepatitis A virus in a total of 68 convalescents after hepatitis A; the antibody was found in 94.1%. The immunoglobulin made from the convalescents' plasma showed the presence of antibodies in dilutions as high as 1:250 000 while the comparable ratio for normal immunoglobulin Norga was only 1:2500. Differences are discussed in the time incidence of the antibodies against the hepatitis A virus, the antibodies against the surface antigen of hepatitis B, and the antibody against the nucleus of the hepatitis V virus. (author)

  15. High-throughput theoretical design of lithium battery materials

    International Nuclear Information System (INIS)

    Ling Shi-Gang; Gao Jian; Xiao Rui-Juan; Chen Li-Quan

    2016-01-01

    The rapid evolution of high-throughput theoretical design schemes to discover new lithium battery materials is reviewed, including high-capacity cathodes, low-strain cathodes, anodes, solid state electrolytes, and electrolyte additives. With the development of efficient theoretical methods and inexpensive computers, high-throughput theoretical calculations have played an increasingly important role in the discovery of new materials. With the help of automatic simulation flow, many types of materials can be screened, optimized and designed from a structural database according to specific search criteria. In advanced cell technology, new materials for next generation lithium batteries are of great significance to achieve performance, and some representative criteria are: higher energy density, better safety, and faster charge/discharge speed. (topical review)

  16. Anti-insulin antibody test

    Science.gov (United States)

    Insulin antibodies - serum; Insulin Ab test; Insulin resistance - insulin antibodies; Diabetes - insulin antibodies ... Normally, there are no antibodies against insulin in your blood. ... different laboratories. Some labs use different measurements or ...

  17. LC-MS/MS strategies for therapeutic antibodies and investigation into the quantitative impact of antidrug-antibodies.

    Science.gov (United States)

    Ewles, Matthew; Mannu, Ranbir; Fox, Chris; Stanta, Johannes; Evans, Graeme; Goodwin, Lee; Duffy, James; Bell, Len; Estdale, Sian; Firth, David

    2016-12-01

    We aimed to establish novel, high-throughput LC-MS/MS strategies for quantification of monoclonal antibodies in human serum and examine the potential impact of antidrug antibodies. We present two strategies using a thermally stable immobilized trypsin. The first strategy uses whole serum digestion and the second introduces Protein G enrichment to improve the selectivity. The impact of anti-trastuzumab antibodies on the methods was tested. Whole serum digestion has been validated for trastuzumab (LLOQ 0.25 µg/ml). Protein G enrichment has been validated for trastuzumab (LLOQ 0.1 µg/ml), bevacizumab (LLOQ 0.1 µg/ml) and adalimumab (LLOQ 0.25 µg/ml). We have shown the potential for anti-drug antibodies to impact on the quantification and we have subsequently established a strategy to overcome this impact where total quantification is desired.

  18. Monoclonal antibodies and cancer

    International Nuclear Information System (INIS)

    Haisma, H.J.

    1987-01-01

    The usefulness of radiolabeled monoclonal antibodies for imaging and treatment of human (ovarian) cancer was investigated. A review of tumor imaging with monoclonal antibodies is presented. Special attention is given to factors that influence the localization of the antibodies in tumors, isotope choice and methods of radiolabeling of the monoclonal antibodies. Two monoclonal antibodies, OC125 and OV-TL3, with high specificity for human epithelial ovarian cancer are characterized. A simple radio-iodination technique was developed for clinical application of the monoclonal antibodies. The behavior of monoclonal antibodies in human tumor xenograft systems and in man are described. Imaging of tumors is complicated because of high background levels of radioactivity in other sites than the tumor, especially in the bloodpool. A technique was developed to improve imaging of human tumor xenographs in nude mice, using subtraction of a specific and a non-specific antibody, radiolabeled with 111 In, 67 Ga and 131 I. To investigate the capability of the two monoclonal antibodies, to specifically localize in human ovarian carcinomas, distribution studies in mice bearing human ovarian carcinoma xenografts were performed. One of the antibodies, OC125, was used for distribution studies in ovarian cancer patients. OC125 was used because of availability and approval to use this antibody in patients. The same antibody was used to investigate the usefulness of radioimmunoimaging in ovarian cancer patients. The interaction of injected radiolabeled antibody OC125 with circulating antigen and an assay to measure the antibody response in ovarian cancer patients after injection of the antibody is described. 265 refs.; 30 figs.; 19 tabs

  19. Uplink SDMA with Limited Feedback: Throughput Scaling

    Directory of Open Access Journals (Sweden)

    Jeffrey G. Andrews

    2008-01-01

    Full Text Available Combined space division multiple access (SDMA and scheduling exploit both spatial multiplexing and multiuser diversity, increasing throughput significantly. Both SDMA and scheduling require feedback of multiuser channel sate information (CSI. This paper focuses on uplink SDMA with limited feedback, which refers to efficient techniques for CSI quantization and feedback. To quantify the throughput of uplink SDMA and derive design guidelines, the throughput scaling with system parameters is analyzed. The specific parameters considered include the numbers of users, antennas, and feedback bits. Furthermore, different SNR regimes and beamforming methods are considered. The derived throughput scaling laws are observed to change for different SNR regimes. For instance, the throughput scales logarithmically with the number of users in the high SNR regime but double logarithmically in the low SNR regime. The analysis of throughput scaling suggests guidelines for scheduling in uplink SDMA. For example, to maximize throughput scaling, scheduling should use the criterion of minimum quantization errors for the high SNR regime and maximum channel power for the low SNR regime.

  20. [VGKC-complex antibodies].

    Science.gov (United States)

    Watanabe, Osamu

    2013-04-01

    Various antibodies are associated with voltage-gated potassium channels (VGKCs). Representative antibodies to VGKCs were first identified by radioimmunoassays using radioisotope-labeled alpha-dendrotoxin-VGKCs solubilized from rabbit brain. These antibodies were detected only in a proportion of patients with acquired neuromyotonia (Isaacs' syndrome). VGKC antibodies were also detected in patients with Morvan's syndrome and in those with a form of autoimmune limbic encephalitis. Recent studies indicated that the "VGKC" antibodies are mainly directed toward associated proteins (for example LGI-1 and CASPR-2) that complex with the VGKCs themselves. The "VGKC" antibodies are now commonly known as VGKC-complex antibodies. In general, LGI-1 antibodies are most commonly detected in patients with limbic encephalitis with syndrome of inappropriate secretion of antidiuretic hormone. CASPR-2 antibodies are present in the majority of patients with Morvan's syndrome. These patients develop combinations of CNS symptoms, autonomic dysfunction, and peripheral nerve hyperexcitability. Furthermore, VGKC-complex antibodies are tightly associated with chronic idiopathic pain. Hyperexcitability of nociceptive pathways has also been implicated. These antibodies may be detected in sera of some patients with neurodegenerative diseases (for example, amyotrophic lateral sclerosis and Creutzfeldt-Jakob disease).

  1. Radiolabeled antibody imaging

    International Nuclear Information System (INIS)

    Wahl, R.L.

    1987-01-01

    Radiolabeled antibodies, in particular monoclonal antibodies, offer the potential for the specific nuclear imaging of malignant and benign diseases in man. If this imaging potential is realized, they may also have a large role in cancer treatment. This paper reviews: (1) what monoclonal antibodies are and how they differ from polyclonal antibodies, (2) how they are produced and radiolabeled, (3) the results of preclinical and clinical trials in cancer imaging, including the utility of SPECT and antibody fragments, (4) the role of antibodies in the diagnosis of benign diseases, (5) alternate routes of antibody delivery, (6) the role of these agents in therapy, and (7) whether this technology ''revolutionizes'' the practice of nuclear radiology, or has a more limited complementary role in the imaging department

  2. High Throughput Plasma Water Treatment

    Science.gov (United States)

    Mujovic, Selman; Foster, John

    2016-10-01

    The troublesome emergence of new classes of micro-pollutants, such as pharmaceuticals and endocrine disruptors, poses challenges for conventional water treatment systems. In an effort to address these contaminants and to support water reuse in drought stricken regions, new technologies must be introduced. The interaction of water with plasma rapidly mineralizes organics by inducing advanced oxidation in addition to other chemical, physical and radiative processes. The primary barrier to the implementation of plasma-based water treatment is process volume scale up. In this work, we investigate a potentially scalable, high throughput plasma water reactor that utilizes a packed bed dielectric barrier-like geometry to maximize the plasma-water interface. Here, the water serves as the dielectric medium. High-speed imaging and emission spectroscopy are used to characterize the reactor discharges. Changes in methylene blue concentration and basic water parameters are mapped as a function of plasma treatment time. Experimental results are compared to electrostatic and plasma chemistry computations, which will provide insight into the reactor's operation so that efficiency can be assessed. Supported by NSF (CBET 1336375).

  3. Antibody repertoire profiling with mimotope arrays

    OpenAIRE

    Pashova, Shina; Schneider, Christoph; von Gunten, Stephan; Pashov, Anastas

    2016-01-01

    Large-scale profiling and monitoring of antibody repertoires is possible through next generation sequencing (NGS), phage display libraries and microarrays. These methods can be combined in a pipeline, which ultimately maps the antibody reactivities onto defined arrays of structures - peptides or carbohydrates. The arrays can help analyze the individual specificities or can be used as complex patterns. In any case, the targets recognized should formally be considered mimotopes unless they are ...

  4. Design and Performance Analysis of Multi-tier Heterogeneous Network through Coverage, Throughput and Energy Efficiency

    Directory of Open Access Journals (Sweden)

    A. Shabbir,

    2017-12-01

    Full Text Available The unprecedented acceleration in wireless industry strongly compels wireless operators to increase their data network throughput, capacity and coverage on emergent basis. In upcoming 5G heterogeneous networks inclusion of low power nodes (LPNs like pico cells and femto cells for increasing network’s throughput, capacity and coverage are getting momentum. Addition of LPNs in such a massive level will eventually make a network populated in terms of base stations (BSs.The dense deployments of BSs will leads towards high operating expenditures (Op-Ex, capital expenditure (Cap-Ex and most importantly high energy consumption in future generation networks. Recognizing theses networks issues this research work investigates data throughput and energy efficiency of 5G multi-tier heterogeneous network. The network is modeled using tools from stochastic geometry. Monte Carlo results confirmed that rational deployment of LPNs can contribute towards increased throughput along with better energy efficiency of overall network.

  5. Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding

    Science.gov (United States)

    Shahi, Payam; Kim, Samuel C.; Haliburton, John R.; Gartner, Zev J.; Abate, Adam R.

    2017-03-01

    Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing.

  6. High-throughput bioinformatics with the Cyrille2 pipeline system

    Directory of Open Access Journals (Sweden)

    de Groot Joost CW

    2008-02-01

    Full Text Available Abstract Background Modern omics research involves the application of high-throughput technologies that generate vast volumes of data. These data need to be pre-processed, analyzed and integrated with existing knowledge through the use of diverse sets of software tools, models and databases. The analyses are often interdependent and chained together to form complex workflows or pipelines. Given the volume of the data used and the multitude of computational resources available, specialized pipeline software is required to make high-throughput analysis of large-scale omics datasets feasible. Results We have developed a generic pipeline system called Cyrille2. The system is modular in design and consists of three functionally distinct parts: 1 a web based, graphical user interface (GUI that enables a pipeline operator to manage the system; 2 the Scheduler, which forms the functional core of the system and which tracks what data enters the system and determines what jobs must be scheduled for execution, and; 3 the Executor, which searches for scheduled jobs and executes these on a compute cluster. Conclusion The Cyrille2 system is an extensible, modular system, implementing the stated requirements. Cyrille2 enables easy creation and execution of high throughput, flexible bioinformatics pipelines.

  7. Container Throughput Forecasting Using Dynamic Factor Analysis and ARIMAX Model

    Directory of Open Access Journals (Sweden)

    Marko Intihar

    2017-11-01

    Full Text Available The paper examines the impact of integration of macroeconomic indicators on the accuracy of container throughput time series forecasting model. For this purpose, a Dynamic factor analysis and AutoRegressive Integrated Moving-Average model with eXogenous inputs (ARIMAX are used. Both methodologies are integrated into a novel four-stage heuristic procedure. Firstly, dynamic factors are extracted from external macroeconomic indicators influencing the observed throughput. Secondly, the family of ARIMAX models of different orders is generated based on the derived factors. In the third stage, the diagnostic and goodness-of-fit testing is applied, which includes statistical criteria such as fit performance, information criteria, and parsimony. Finally, the best model is heuristically selected and tested on the real data of the Port of Koper. The results show that by applying macroeconomic indicators into the forecasting model, more accurate future throughput forecasts can be achieved. The model is also used to produce future forecasts for the next four years indicating a more oscillatory behaviour in (2018-2020. Hence, care must be taken concerning any bigger investment decisions initiated from the management side. It is believed that the proposed model might be a useful reinforcement of the existing forecasting module in the observed port.

  8. [Construction of human phage antibody library and screening for human monoclonal antibodies of amylin].

    Science.gov (United States)

    Gong, Qian; Li, Chang-ying; Chang, Ji-wu; Zhu, Tie-hong

    2012-06-01

    To screen monoclonal antibodies to amylin from a constructed human phage antibody library and identify their antigenic specificity and combining activities. The heavy chain Fd fragment and light chain of human immunoglobulin genes were amplified from peripheral blood lymphocytes of healthy donors using RT-PCR, and then inserted into phagemid pComb3XSS to generate a human phage antibody library. The insertion of light chain or heavy chain Fd genes were identified by PCR after the digestion of Sac I, Xba I, Xho Iand Spe I. One of positive clones was analyzed by DNA sequencing. The specific anti-amylin clones were screened from antibody library against human amylin antigens and then the positive clones were determined by Phage-ELISA analysis. A Fab phage antibody library with 0.8×10(8); members was constructed with the efficacy of about 70%. DNA sequence analysis indicated V(H); gene belonged to V(H);3 gene family and V(λ); gene belonged to the V(λ); gene family. Using human amylin as panning antigen, specific anti-amylin Fab antibodies were enriched by screening the library for three times. Phage-ELISA assay showed the positive clones had very good specificity to amylin antigen. The successful construction of a phage antibody library and the identification of anti-amylin Fab antibodies provide a basis for further study and preparation of human anti-amylin antibodies.

  9. Integration of Antibody Array Technology into Drug Discovery and Development.

    Science.gov (United States)

    Huang, Wei; Whittaker, Kelly; Zhang, Huihua; Wu, Jian; Zhu, Si-Wei; Huang, Ruo-Pan

    Antibody arrays represent a high-throughput technique that enables the parallel detection of multiple proteins with minimal sample volume requirements. In recent years, antibody arrays have been widely used to identify new biomarkers for disease diagnosis or prognosis. Moreover, many academic research laboratories and commercial biotechnology companies are starting to apply antibody arrays in the field of drug discovery. In this review, some technical aspects of antibody array development and the various platforms currently available will be addressed; however, the main focus will be on the discussion of antibody array technologies and their applications in drug discovery. Aspects of the drug discovery process, including target identification, mechanisms of drug resistance, molecular mechanisms of drug action, drug side effects, and the application in clinical trials and in managing patient care, which have been investigated using antibody arrays in recent literature will be examined and the relevance of this technology in progressing this process will be discussed. Protein profiling with antibody array technology, in addition to other applications, has emerged as a successful, novel approach for drug discovery because of the well-known importance of proteins in cell events and disease development.

  10. Antibody Engineering & Therapeutics 2016: The Antibody Society's annual meeting, December 11-15, 2016, San Diego, CA.

    Science.gov (United States)

    Larrick, James W; Alfenito, Mark R; Scott, Jamie K; Parren, Paul W H I; Burton, Dennis R; Bradbury, Andrew R M; Lemere, Cynthia A; Messer, Anne; Huston, James S; Carter, Paul J; Veldman, Trudi; Chester, Kerry A; Schuurman, Janine; Adams, Gregory P; Reichert, Janice M

    Antibody Engineering & Therapeutics, the largest meeting devoted to antibody science and technology and the annual meeting of The Antibody Society, will be held in San Diego, CA on December 11-15, 2016. Each of 14 sessions will include six presentations by leading industry and academic experts. In this meeting preview, the session chairs discuss the relevance of their topics to current and future antibody therapeutics development. Session topics include bispecifics and designer polyclonal antibodies; antibodies for neurodegenerative diseases; the interface between passive and active immunotherapy; antibodies for non-cancer indications; novel antibody display, selection and screening technologies; novel checkpoint modulators / immuno-oncology; engineering antibodies for T-cell therapy; novel engineering strategies to enhance antibody functions; and the biological Impact of Fc receptor engagement. The meeting will open with keynote speakers Dennis R. Burton (The Scripps Research Institute), who will review progress toward a neutralizing antibody-based HIV vaccine; Olivera J. Finn, (University of Pittsburgh School of Medicine), who will discuss prophylactic cancer vaccines as a source of therapeutic antibodies; and Paul Richardson (Dana-Farber Cancer Institute), who will provide a clinical update on daratumumab for multiple myeloma. In a featured presentation, a representative of the World Health Organization's INN expert group will provide a perspective on antibody naming. "Antibodies to watch in 2017" and progress on The Antibody Society's 2016 initiatives will be presented during the Society's special session. In addition, two pre-conference workshops covering ways to accelerate antibody drugs to the clinic and the applications of next-generation sequencing in antibody discovery and engineering will be held on Sunday December 11, 2016.

  11. High-throughput sequence alignment using Graphics Processing Units

    Directory of Open Access Journals (Sweden)

    Trapnell Cole

    2007-12-01

    Full Text Available Abstract Background The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and de novo genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies. Results This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies. Conclusion MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU.

  12. Two-Phase Microfluidic Systems for High Throughput Quantification of Agglutination Assays

    KAUST Repository

    Castro, David

    2018-04-01

    Lab-on-Chip, the miniaturization of the chemical and analytical lab, is an endeavor that seems to come out of science fiction yet is slowly becoming a reality. It is a multidisciplinary field that combines different areas of science and engineering. Within these areas, microfluidics is a specialized field that deals with the behavior, control and manipulation of small volumes of fluids. Agglutination assays are rapid, single-step, low-cost immunoassays that use microspheres to detect a wide variety molecules and pathogens by using a specific antigen-antibody interaction. Agglutination assays are particularly suitable for the miniaturization and automation that two-phase microfluidics can offer, a combination that can help tackle the ever pressing need of high-throughput screening for blood banks, epidemiology, food banks diagnosis of infectious diseases. In this thesis, we present a two-phase microfluidic system capable of incubating and quantifying agglutination assays. The microfluidic channel is a simple fabrication solution, using laboratory tubing. These assays are incubated by highly efficient passive mixing with a sample-to-answer time of 2.5 min, a 5-10 fold improvement over traditional agglutination assays. It has a user-friendly interface that that does not require droplet generators, in which a pipette is used to continuously insert assays on-demand, with no down-time in between experiments at 360 assays/h. System parameters are explored, using the streptavidin-biotin interaction as a model assay, with a minimum detection limit of 50 ng/mL using optical image analysis. We compare optical image analysis and light scattering as quantification methods, and demonstrate the first light scattering quantification of agglutination assays in a two-phase ow format. The application can be potentially applied to other biomarkers, which we demonstrate using C-reactive protein (CRP) assays. Using our system, we can take a commercially available CRP qualitative slide

  13. High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator

    Energy Technology Data Exchange (ETDEWEB)

    Kuang Zheng [Laser Group, Department of Engineering, University of Liverpool Brownlow Street, Liverpool L69 3GQ (United Kingdom)], E-mail: z.kuang@liv.ac.uk; Perrie, Walter [Laser Group, Department of Engineering, University of Liverpool Brownlow Street, Liverpool L69 3GQ (United Kingdom); Leach, Jonathan [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Sharp, Martin; Edwardson, Stuart P. [Laser Group, Department of Engineering, University of Liverpool Brownlow Street, Liverpool L69 3GQ (United Kingdom); Padgett, Miles [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Dearden, Geoff; Watkins, Ken G. [Laser Group, Department of Engineering, University of Liverpool Brownlow Street, Liverpool L69 3GQ (United Kingdom)

    2008-12-30

    High throughput femtosecond laser processing is demonstrated by creating multiple beams using a spatial light modulator (SLM). The diffractive multi-beam patterns are modulated in real time by computer generated holograms (CGHs), which can be calculated by appropriate algorithms. An interactive LabVIEW program is adopted to generate the relevant CGHs. Optical efficiency at this stage is shown to be {approx}50% into first order beams and real time processing has been carried out at 50 Hz refresh rate. Results obtained demonstrate high precision surface micro-structuring on silicon and Ti6Al4V with throughput gain >1 order of magnitude.

  14. Application of high-throughput DNA sequencing in phytopathology.

    Science.gov (United States)

    Studholme, David J; Glover, Rachel H; Boonham, Neil

    2011-01-01

    The new sequencing technologies are already making a big impact in academic research on medically important microbes and may soon revolutionize diagnostics, epidemiology, and infection control. Plant pathology also stands to gain from exploiting these opportunities. This manuscript reviews some applications of these high-throughput sequencing methods that are relevant to phytopathology, with emphasis on the associated computational and bioinformatics challenges and their solutions. Second-generation sequencing technologies have recently been exploited in genomics of both prokaryotic and eukaryotic plant pathogens. They are also proving to be useful in diagnostics, especially with respect to viruses. Copyright © 2011 by Annual Reviews. All rights reserved.

  15. REDItools: high-throughput RNA editing detection made easy.

    Science.gov (United States)

    Picardi, Ernesto; Pesole, Graziano

    2013-07-15

    The reliable detection of RNA editing sites from massive sequencing data remains challenging and, although several methodologies have been proposed, no computational tools have been released to date. Here, we introduce REDItools a suite of python scripts to perform high-throughput investigation of RNA editing using next-generation sequencing data. REDItools are in python programming language and freely available at http://code.google.com/p/reditools/. ernesto.picardi@uniba.it or graziano.pesole@uniba.it Supplementary data are available at Bioinformatics online.

  16. Antibodies to the α-subunit of insulin receptor from eggs of immunized hens

    International Nuclear Information System (INIS)

    Song, C.; Yu, J.; Bai, D.H.; Hester, P.Y.; Kim, K.

    1985-01-01

    Simple methods for the generation, purification, and assay of antibodies to the α-subunit of insulin receptor from eggs of immunized hen have been described. Chicken antibodies against the α-subunit inhibit insulin binding to the receptor and stimulate glucose oxidation as well as autophosphorylation of the β-subunit. Thus the properties of chicken antibodies are very similar to those of antibodies found in human autoimmune diseases and different from rabbit antibodies obtained against the same antigen

  17. Baculovirus display of functional antibody Fab fragments.

    Science.gov (United States)

    Takada, Shinya; Ogawa, Takafumi; Matsui, Kazusa; Suzuki, Tasuku; Katsuda, Tomohisa; Yamaji, Hideki

    2015-08-01

    The generation of a recombinant baculovirus that displays antibody Fab fragments on the surface was investigated. A recombinant baculovirus was engineered so that the heavy chain (Hc; Fd fragment) of a mouse Fab fragment was expressed as a fusion to the N-terminus of baculovirus gp64, while the light chain of the Fab fragment was simultaneously expressed as a secretory protein. Following infection of Sf9 insect cells with the recombinant baculovirus, the culture supernatant was analyzed by enzyme-linked immunosorbent assay using antigen-coated microplates and either an anti-mouse IgG or an anti-gp64 antibody. A relatively strong signal was obtained in each case, showing antigen-binding activity in the culture supernatant. In western blot analysis of the culture supernatant using the anti-gp64 antibody, specific protein bands were detected at an electrophoretic mobility that coincided with the molecular weight of the Hc-gp64 fusion protein as well as that of gp64. Flow cytometry using a fluorescein isothiocyanate-conjugated antibody specific to mouse IgG successfully detected the Fab fragments on the surface of the Sf9 cells. These results suggest that immunologically functional antibody Fab fragments can be displayed on the surface of baculovirus particles, and that a fluorescence-activated cell sorter with a fluorescence-labeled antigen can isolate baculoviruses displaying specific Fab fragments. This successful baculovirus display of antibody Fab fragments may offer a novel approach for the efficient selection of specific antibodies.

  18. Kotai Antibody Builder: automated high-resolution structural modeling of antibodies.

    Science.gov (United States)

    Yamashita, Kazuo; Ikeda, Kazuyoshi; Amada, Karlou; Liang, Shide; Tsuchiya, Yuko; Nakamura, Haruki; Shirai, Hiroki; Standley, Daron M

    2014-11-15

    Kotai Antibody Builder is a Web service for tertiary structural modeling of antibody variable regions. It consists of three main steps: hybrid template selection by sequence alignment and canonical rules, 3D rendering of alignments and CDR-H3 loop modeling. For the last step, in addition to rule-based heuristics used to build the initial model, a refinement option is available that uses fragment assembly followed by knowledge-based scoring. Using targets from the Second Antibody Modeling Assessment, we demonstrate that Kotai Antibody Builder generates models with an overall accuracy equal to that of the best-performing semi-automated predictors using expert knowledge. Kotai Antibody Builder is available at http://kotaiab.org standley@ifrec.osaka-u.ac.jp. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Technological Innovations for High-Throughput Approaches to In Vitro Allergy Diagnosis.

    Science.gov (United States)

    Chapman, Martin D; Wuenschmann, Sabina; King, Eva; Pomés, Anna

    2015-07-01

    Allergy diagnostics is being transformed by the advent of in vitro IgE testing using purified allergen molecules, combined with multiplex technology and biosensors, to deliver discriminating, sensitive, and high-throughput molecular diagnostics at the point of care. Essential elements of IgE molecular diagnostics are purified natural or recombinant allergens with defined purity and IgE reactivity, planar or bead-based multiplex systems to enable IgE to multiple allergens to be measured simultaneously, and, most recently, nanotechnology-based biosensors that facilitate rapid reaction rates and delivery of test results via mobile devices. Molecular diagnostics relies on measurement of IgE to purified allergens, the "active ingredients" of allergenic extracts. Typically, this involves measuring IgE to multiple allergens which is facilitated by multiplex technology and biosensors. The technology differentiates between clinically significant cross-reactive allergens (which could not be deduced by conventional IgE assays using allergenic extracts) and provides better diagnostic outcomes. Purified allergens are manufactured under good laboratory practice and validated using protein chemistry, mass spectrometry, and IgE antibody binding. Recently, multiple allergens (from dog) were expressed as a single molecule with high diagnostic efficacy. Challenges faced by molecular allergy diagnostic companies include generation of large panels of purified allergens with known diagnostic efficacy, access to flexible and robust array or sensor technology, and, importantly, access to well-defined serum panels form allergic patients for product development and validation. Innovations in IgE molecular diagnostics are rapidly being brought to market and will strengthen allergy testing at the point of care.

  20. Therapeutic Recombinant Monoclonal Antibodies

    Science.gov (United States)

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  1. Rat Monoclonal Antibodies Specific for LST1 Proteins

    OpenAIRE

    Schiller, Christian; Nitschké, Maximilian J. E.; Seidl, Alexander; Kremmer, Elisabeth; Weiss, Elisabeth H.

    2009-01-01

    The LST1 gene is located in the human MHC class III region and encodes transmembrane and soluble isoforms that have been suggested to play a role in the regulation of the immune response and are associated with inflammatory diseases such as rheumatoid arthritis. Here we describe the generation and characterization of the first monoclonal antibodies against LST1. Two hybridoma lines secreting monoclonal antibodies designated 7E2 and 8D12 were established. The 7E2 antibody detects recombinant a...

  2. High throughput sample processing and automated scoring

    Directory of Open Access Journals (Sweden)

    Gunnar eBrunborg

    2014-10-01

    Full Text Available The comet assay is a sensitive and versatile method for assessing DNA damage in cells. In the traditional version of the assay, there are many manual steps involved and few samples can be treated in one experiment. High throughput modifications have been developed during recent years, and they are reviewed and discussed. These modifications include accelerated scoring of comets; other important elements that have been studied and adapted to high throughput are cultivation and manipulation of cells or tissues before and after exposure, and freezing of treated samples until comet analysis and scoring. High throughput methods save time and money but they are useful also for other reasons: large-scale experiments may be performed which are otherwise not practicable (e.g., analysis of many organs from exposed animals, and human biomonitoring studies, and automation gives more uniform sample treatment and less dependence on operator performance. The high throughput modifications now available vary largely in their versatility, capacity, complexity and costs. The bottleneck for further increase of throughput appears to be the scoring.

  3. High-throughput tri-colour flow cytometry technique to assess Plasmodium falciparum parasitaemia in bioassays

    DEFF Research Database (Denmark)

    Tiendrebeogo, Regis W; Adu, Bright; Singh, Susheel K

    2014-01-01

    BACKGROUND: Unbiased flow cytometry-based methods have become the technique of choice in many laboratories for high-throughput, accurate assessments of malaria parasites in bioassays. A method to quantify live parasites based on mitotracker red CMXRos was recently described but consistent...... distinction of early ring stages of Plasmodium falciparum from uninfected red blood cells (uRBC) remains a challenge. METHODS: Here, a high-throughput, three-parameter (tri-colour) flow cytometry technique based on mitotracker red dye, the nucleic acid dye coriphosphine O (CPO) and the leucocyte marker CD45...... for enumerating live parasites in bioassays was developed. The technique was applied to estimate the specific growth inhibition index (SGI) in the antibody-dependent cellular inhibition (ADCI) assay and compared to parasite quantification by microscopy and mitotracker red staining. The Bland-Altman analysis...

  4. High-throughput screening of hybridoma supernatants using multiplexed fluorescent cell barcoding on live cells.

    Science.gov (United States)

    Lu, Mei; Chan, Brian M; Schow, Peter W; Chang, Wesley S; King, Chadwick T

    2017-12-01

    With current available assay formats using either immobilized protein (ELISA, enzyme-linked immunosorbent assay) or immunostaining of fixed cells for primary monoclonal antibody (mAb) screening, researchers often fail to identify and characterize antibodies that recognize the native conformation of cell-surface antigens. Therefore, screening using live cells has become an integral and important step contributing to the successful identification of therapeutic antibody candidates. Thus the need for developing high-throughput screening (HTS) technologies using live cells has become a major priority for therapeutic mAb discovery and development. We have developed a novel technique called Multiplexed Fluorescent Cell Barcoding (MFCB), a flow cytometry-based method based upon the Fluorescent Cell Barcoding (FCB) technique and the Luminex fluorescent bead array system, but is applicable to high-through mAb screens on live cells. Using this technique in our system, we can simultaneously identify or characterize the antibody-antigen binding of up to nine unique fluorescent labeled cell populations in the time that it would normally take to process a single population. This has significantly reduced the amount of time needed for the identification of potential lead candidates. This new technology enables investigators to conduct large-scale primary hybridoma screens using flow cytometry. This in turn has allowed us to screen antibodies more efficiently than before and streamline identification and characterization of lead molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Antibody engineering: methods and protocols

    National Research Council Canada - National Science Library

    Chames, Patrick

    2012-01-01

    "Antibody Engineering: Methods and Protocols, Second Edition was compiled to give complete and easy access to a variety of antibody engineering techniques, starting from the creation of antibody repertoires and efficient...

  6. What Is Antiphospholipid Antibody Syndrome?

    Science.gov (United States)

    ... Back To Health Topics / Antiphospholipid Antibody Syndrome Antiphospholipid Antibody Syndrome Also known as What Is Antiphospholipid (AN-te-fos-fo-LIP-id) antibody syndrome (APS) is an autoimmune disorder. Autoimmune disorders ...

  7. In silico design and performance of peptide microarrays for breast cancer tumour-auto-antibody testing

    Directory of Open Access Journals (Sweden)

    Andreas Weinhäusel

    2012-06-01

    Full Text Available The simplicity and potential of minimally invasive testing using sera from patients makes auto-antibody based biomarkers a very promising tool for use in cancer diagnostics. Protein microarrays have been used for the identification of such auto-antibody signatures. Because high throughput protein expression and purification is laborious, synthetic peptides might be a good alternative for microarray generation and multiplexed analyses. In this study, we designed 1185 antigenic peptides, deduced from proteins expressed by 642 cDNA expression clones found to be sero-reactive in both breast tumour patients and controls. The sero-reactive proteins and the corresponding peptides were used for the production of protein and peptide microarrays. Serum samples from females with benign and malignant breast tumours and healthy control sera (n=16 per group were then analysed. Correct classification of the serum samples on peptide microarrays were 78% for discrimination of ‘malignant versus healthy controls’, 72% for ‘benign versus malignant’ and 94% for ‘benign versus controls’. On protein arrays, correct classification for these contrasts was 69%, 59% and 59%, respectively. The over-representation analysis of the classifiers derived from class prediction showed enrichment of genes associated with ribosomes, spliceosomes, endocytosis and the pentose phosphate pathway. Sequence analyses of the peptides with the highest sero-reactivity demonstrated enrichment of the zinc-finger domain. Peptides’ sero-reactivities were found negatively correlated with hydrophobicity and positively correlated with positive charge, high inter-residue protein contact energies and a secondary structure propensity bias. This study hints at the possibility of using in silico designed antigenic peptide microarrays as an alternative to protein microarrays for the improvement of tumour auto-antibody based diagnostics.

  8. Expression of deleted, atoxic atypical recombinant beta2 toxin in a baculovirus system and production of polyclonal and monoclonal antibodies.

    Science.gov (United States)

    Serroni, Anna; Magistrali, Chiara Francesca; Pezzotti, Giovanni; Bano, Luca; Pellegrini, Martina; Severi, Giulio; Di Pancrazio, Chiara; Luciani, Mirella; Tittarelli, Manuela; Tofani, Silvia; De Giuseppe, Antonio

    2017-05-25

    Clostridium perfringens is an important animal and human pathogen that can produce more than 16 different major and minor toxins. The beta-2 minor toxin (CPB2), comprising atypical and consensus variants, appears to be involved in both human and animal enterotoxaemia syndrome. The exact role of CPB2 in pathogenesis is poorly investigated, and its mechanism of action at the molecular level is still unknown because of the lack of specific reagents such as monoclonal antibodies against the CPB2 protein and/or the availability of a highly purified antigen. Previous studies have reported that purified wild-type or recombinant CPB2 toxin, expressed in a heterologous system, presented cytotoxic effects on human intestinal cell lines. Undoubtedly, for this reason, to date, these purified proteins have not yet been used for the production of monoclonal antibodies (MAbs). Recently, monoclonal antibodies against CPB2 were generated using peptides designed on predicted antigenic epitopes of this toxin. In this paper we report, for the first time, the expression in a baculovirus system of a deleted recombinant C-terminal 6xHis-tagged atypical CPB2 toxin (rCPB2 Δ1-25 -His 6 ) lacking the 25 amino acids (aa) of the N-terminal putative signal sequence. A high level of purified recombinant rCPB2 Δ1-25 -His 6 was obtained after purification by Ni 2+ affinity chromatography. The purified product showed no in vitro and in vivo toxicity. Polyclonal antibodies and twenty hybridoma-secreting Mabs were generated using purified rCPB2 Δ1-25 -His 6 . Finally, the reactivity and specificity of the new antibodies were tested against both recombinant and wild-type CPB2 toxins. The high-throughput of purified atoxic recombinant CPB2 produced in insect cells, allowed to obtain monoclonal and polyclonal antibodies. The availability of these molecules could contribute to develop immunoenzymatic methods and/or to perform studies about the biological activity of CPB2 toxin.

  9. A high-throughput method for GMO multi-detection using a microfluidic dynamic array

    NARCIS (Netherlands)

    Brod, F.C.A.; Dijk, van J.P.; Voorhuijzen, M.M.; Dinon, A.Z.; Guimarães, L.H.S.; Scholtens, I.M.J.; Arisi, A.C.M.; Kok, E.J.

    2014-01-01

    The ever-increasing production of genetically modified crops generates a demand for high-throughput DNAbased methods for the enforcement of genetically modified organisms (GMO) labelling requirements. The application of standard real-time PCR will become increasingly costly with the growth of the

  10. ToxCast Workflow: High-throughput screening assay data processing, analysis and management (SOT)

    Science.gov (United States)

    US EPA’s ToxCast program is generating data in high-throughput screening (HTS) and high-content screening (HCS) assays for thousands of environmental chemicals, for use in developing predictive toxicity models. Currently the ToxCast screening program includes over 1800 unique c...

  11. Radiolabelled antibodies in imaging

    International Nuclear Information System (INIS)

    Khaw, B.A.; Haber, E.

    1982-01-01

    Recent technological advances make it possible to produce pure (monoclonal) antibodies in unlimited quantities without the need for continuous immunization of animals and to label these antibodies with a variety of radionuclides which can be traced by single-photon computed tomography. An outline review of the state of the art is presented, with particular reference to the imaging of myocardial infarcts and to tumour imaging studies using labelled monoclonal antibodies (sup(99m)Tc and 125 I). Lengthy bibliography. (U.K.)

  12. A versatile, high through-put, bead-based phagocytosis assay for Plasmodium falciparum

    DEFF Research Database (Denmark)

    Lloyd, Yukie M.; Ngati, Elise P.; Salanti, Ali

    2017-01-01

    Antibody-mediated phagocytosis is an important immune effector mechanism against Plasmodium falciparum-infected erythrocytes (IE); however, current phagocytosis assays use IE collected from infected individuals or from in vitro cultures of P. falciparum, making them prone to high variation....... A simple, high-throughput flow cytometric assay was developed that uses THP-1 cells and fluorescent beads covalently-coupled with the malarial antigen VAR2CSA. The assay is highly repeatable, provides both the overall percent phagocytosis and semi-quantitates the number of antigen-coupled beads...

  13. Antibody-Conjugated Nanoparticles for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Manuel Arruebo

    2009-01-01

    Full Text Available Nanoscience and Nanotechnology have found their way into the fields of Biotechnology and Medicine. Nanoparticles by themselves offer specific physicochemical properties that they do not exhibit in bulk form, where materials show constant physical properties regardless of size. Antibodies are nanosize biological products that are part of the specific immune system. In addition to their own properties as pathogens or toxin neutralizers, as well as in the recruitment of immune elements (complement, improving phagocytosis, cytotoxicity antibody dependent by natural killer cells, etc., they could carry several elements (toxins, drugs, fluorochroms, or even nanoparticles, etc. and be used in several diagnostic procedures, or even in therapy to destroy a specific target. The conjugation of antibodies to nanoparticles can generate a product that combines the properties of both. For example, they can combine the small size of nanoparticles and their special thermal, imaging, drug carrier, or magnetic characteristics with the abilities of antibodies, such as specific and selective recognition. The hybrid product will show versatility and specificity. In this review, we analyse both antibodies and nanoparticles, focusing especially on the recent developments for antibody-conjugated nanoparticles, offering the researcher an overview of the different applications and possibilities of these hybrid carriers.

  14. In-Depth Analysis of Human Neonatal and Adult IgM Antibody Repertoires

    Directory of Open Access Journals (Sweden)

    Binbin Hong

    2018-02-01

    Full Text Available Although high-throughput sequencing and associated bioinformatics technologies have enabled the in-depth, sequence-based characterization of human immune repertoires, only a few studies on a relatively small number of sequences explored the characteristics of antibody repertoires in neonates, with contradictory conclusions. To gain a more comprehensive understanding of the human IgM antibody repertoire, we performed Illumina sequencing and IMGT/HighV-QUEST analysis of IgM heavy chain repertoire of the B lymphocytes from the cord blood (CB of neonates, as well as the repertoire from peripheral blood of healthy human adults (HH. The comparative study revealed unexpectedly high levels of similarity between the neonatal and adult repertoires. In both repertoires, the VDJ gene usage showed no significant difference, and the most frequently used VDJ gene was IGHV4-59, IGHD3-10, and IGHJ3. The average amino acid (aa length of CDR1 (CB: 8.5, HH: 8.4 and CDR2 (CB: 7.6, HH: 7.5, as well as the aa composition and the average hydrophobicity of the CDR3 demonstrated no significant difference between the two repertories. However, the average aa length of CDR3 was longer in the HH repertoire than the CB repertoire (CB: 14.5, HH: 15.5. Besides, the frequencies of aa mutations in CDR1 (CB: 19.33%, HH: 25.84% and CDR2 (CB: 9.26%, HH: 17.82% were higher in the HH repertoire compared to the CB repertoire. Interestingly, the most prominent difference between the two repertoires was the occurrence of N2 addition (CB: 64.87%, HH: 85.69%, a process that occurs during V-D-J recombination for introducing random nucleotide additions between D- and J-gene segments. The antibody repertoire of healthy adults was more diverse than that of neonates largely due to the higher occurrence of N2 addition. These findings may lead to a better understanding of antibody development and evolution pathways and may have potential practical value for facilitating the generation of more

  15. A generalized quantitative antibody homeostasis model: maintenance of global antibody equilibrium by effector functions.

    Science.gov (United States)

    Prechl, József

    2017-11-01

    The homeostasis of antibodies can be characterized as a balanced production, target-binding and receptor-mediated elimination regulated by an interaction network, which controls B-cell development and selection. Recently, we proposed a quantitative model to describe how the concentration and affinity of interacting partners generates a network. Here we argue that this physical, quantitative approach can be extended for the interpretation of effector functions of antibodies. We define global antibody equilibrium as the zone of molar equivalence of free antibody, free antigen and immune complex concentrations and of dissociation constant of apparent affinity: [Ab]=[Ag]=[AbAg]= K D . This zone corresponds to the biologically relevant K D range of reversible interactions. We show that thermodynamic and kinetic properties of antibody-antigen interactions correlate with immunological functions. The formation of stable, long-lived immune complexes correspond to a decrease of entropy and is a prerequisite for the generation of higher-order complexes. As the energy of formation of complexes increases, we observe a gradual shift from silent clearance to inflammatory reactions. These rules can also be applied to complement activation-related immune effector processes, linking the physicochemical principles of innate and adaptive humoral responses. Affinity of the receptors mediating effector functions shows a wide range of affinities, allowing the continuous sampling of antibody-bound antigen over the complete range of concentrations. The generation of multivalent, multicomponent complexes triggers effector functions by crosslinking these receptors on effector cells with increasing enzymatic degradation potential. Thus, antibody homeostasis is a thermodynamic system with complex network properties, nested into the host organism by proper immunoregulatory and effector pathways. Maintenance of global antibody equilibrium is achieved by innate qualitative signals modulating a

  16. Development of novel monoclonal antibodies against starch and ulvan - Implications for antibody production against polysaccharides with limited immunogenicity

    DEFF Research Database (Denmark)

    Rydahl, Maja Gro; Kračun, Stjepan K.; Fangel, Jonatan U.

    2017-01-01

    Monoclonal antibodies (mAbs) are widely used and powerful research tools, but the generation of mAbs against glycan epitopes is generally more problematic than against proteins. This is especially significant for research on polysaccharide-rich land plants and algae (Viridiplantae). Most antibody...

  17. Stability of rhenium-188 labeled antibody

    International Nuclear Information System (INIS)

    Lim, B. K.; Jung, J. M.; Jung, J. K.; Lee, D. S.; Lee, M. C.

    1999-01-01

    For clinical application of beta-emitter labeled antibody, high specific activity is important. Carrier-free Re-188 from W-188/Re-188 generator is an ideal radionuclide for this purpose. However, low stability of Re-188 labeled antibody, especially in high specific activity, due to radiolytic decomposition by high energy (2.1 MeV) beta ray was problem. We studied the stability of Re-188 labeled antibody, and stabilizing effect of several nontoxic radical-quenching agents. Pre-reduced monoclonal antibody (CEA79.4) was labeled with Re-188 by incubating with generator-eluted Re-188-perrhenate in the presence of stannous tartrate for 2 hr at room temperature. Radiochemical purity of each preparation was determined by chromatography (ITLC-SG/acetone, ITLC-SG/Umezawa, Whatman No.1/saline). Human serum albumin was added to the labeled antibodies(2%). Stability of Re-188-CEA79.4 was investigated in the presence of vitamin C, ethanol, or Tween 80 as radical-quenching agents. Specific activities of 4.29∼5.11 MBq/μg were obtained. Labeling efficiencies were 88±4%(n=12). Very low stability after removal of stannous tartrate from the preparation was observed. If stored after purging with N 2 , all the preparations were stable for 10 hr. However, if contacted with air, stability decreased. Perrhenate and Re-188-tartrate was major impurity in declined preparation (12∼47 and 9∼38% each, after 10 hr). Colloid-formation was not a significant problem in all cases. Addition of vitamin C stabilized the labeled antibodies either under N 2 or under air by reducing the formation of perrhenate. High specific activity Re-188 labeled antibody is unstable, especially, in the presence of oxygen. Addition of vitamin C increased the stability

  18. Monoclonal antibodies in oncology

    International Nuclear Information System (INIS)

    Chan, S.Y.T.; Sikora, K.

    1986-01-01

    Monoclonal antibodies (MCAs) can be used to differentiate between normal and neoplastic cells and thus exploited for diagnostic and, ultimately, therapeutic gain. The evidence for the existence of human tumour antigens is reviewed. Several areas of diagnosis are already benefiting from the application of the monoclonal technology. Immunohistology can help the pathologist with difficult diagnostic problems. New classifications of lymphoma and leukaemia can be based on specific surface molecules. Similarly, the detection of shed tumour antigens is already established as part of the routine assessment of many patients with common solid tumours. Isotopically labeled monoclonal antibodies have been used to localise primary and metastatic tumours. The use of antibodies in this way is not only a promising diagnostic tool but also the first step in studying the possibility of arming antibodies to provide therapeutic agents. Such trials are currently in progress. (Auth.)

  19. Future of antibody purification.

    Science.gov (United States)

    Low, Duncan; O'Leary, Rhona; Pujar, Narahari S

    2007-03-15

    Antibody purification seems to be safely ensconced in a platform, now well-established by way of multiple commercialized antibody processes. However, natural evolution compels us to peer into the future. This is driven not only by a large, projected increase in the number of antibody therapies, but also by dramatic improvements in upstream productivity, and process economics. Although disruptive technologies have yet escaped downstream processes, evolution of the so-called platform is already evident in antibody processes in late-stage development. Here we perform a wide survey of technologies that are competing to be part of that platform, and provide our [inherently dangerous] assessment of those that have the most promise.

  20. Serum herpes simplex antibodies

    Science.gov (United States)

    ... causes cold sores (oral herpes). HSV-2 causes genital herpes. How the Test is Performed A blood sample ... person has ever been infected with oral or genital herpes . It looks for antibodies to herpes simplex virus ...

  1. Integrated Automation of High-Throughput Screening and Reverse Phase Protein Array Sample Preparation

    DEFF Research Database (Denmark)

    Pedersen, Marlene Lemvig; Block, Ines; List, Markus

    into automated robotic high-throughput screens, which allows subsequent protein quantification. In this integrated solution, samples are directly forwarded to automated cell lysate preparation and preparation of dilution series, including reformatting to a protein spotter-compatible format after the high......-throughput screening. Tracking of huge sample numbers and data analysis from a high-content screen to RPPAs is accomplished via MIRACLE, a custom made software suite developed by us. To this end, we demonstrate that the RPPAs generated in this manner deliver reliable protein readouts and that GAPDH and TFR levels can...

  2. High Throughput Analysis of Photocatalytic Water Purification

    NARCIS (Netherlands)

    Sobral Romao, J.I.; Baiao Barata, David; Habibovic, Pamela; Mul, Guido; Baltrusaitis, Jonas

    2014-01-01

    We present a novel high throughput photocatalyst efficiency assessment method based on 96-well microplates and UV-Vis spectroscopy. We demonstrate the reproducibility of the method using methyl orange (MO) decomposition, and compare kinetic data obtained with those provided in the literature for

  3. High throughput imaging cytometer with acoustic focussing.

    Science.gov (United States)

    Zmijan, Robert; Jonnalagadda, Umesh S; Carugo, Dario; Kochi, Yu; Lemm, Elizabeth; Packham, Graham; Hill, Martyn; Glynne-Jones, Peter

    2015-10-31

    We demonstrate an imaging flow cytometer that uses acoustic levitation to assemble cells and other particles into a sheet structure. This technique enables a high resolution, low noise CMOS camera to capture images of thousands of cells with each frame. While ultrasonic focussing has previously been demonstrated for 1D cytometry systems, extending the technology to a planar, much higher throughput format and integrating imaging is non-trivial, and represents a significant jump forward in capability, leading to diagnostic possibilities not achievable with current systems. A galvo mirror is used to track the images of the moving cells permitting exposure times of 10 ms at frame rates of 50 fps with motion blur of only a few pixels. At 80 fps, we demonstrate a throughput of 208 000 beads per second. We investigate the factors affecting motion blur and throughput, and demonstrate the system with fluorescent beads, leukaemia cells and a chondrocyte cell line. Cells require more time to reach the acoustic focus than beads, resulting in lower throughputs; however a longer device would remove this constraint.

  4. High-throughput scoring of seed germination

    NARCIS (Netherlands)

    Ligterink, Wilco; Hilhorst, Henk W.M.

    2017-01-01

    High-throughput analysis of seed germination for phenotyping large genetic populations or mutant collections is very labor intensive and would highly benefit from an automated setup. Although very often used, the total germination percentage after a nominated period of time is not very

  5. A programmable, scalable-throughput interleaver

    NARCIS (Netherlands)

    Rijshouwer, E.J.C.; Berkel, van C.H.

    2010-01-01

    The interleaver stages of digital communication standards show a surprisingly large variation in throughput, state sizes, and permutation functions. Furthermore, data rates for 4G standards such as LTE-Advanced will exceed typical baseband clock frequencies of handheld devices. Multistream operation

  6. A Primer on High-Throughput Computing for Genomic Selection

    Directory of Open Access Journals (Sweden)

    Xiao-Lin eWu

    2011-02-01

    Full Text Available High-throughput computing (HTC uses computer clusters to solve advanced computational problems, with the goal of accomplishing high throughput over relatively long periods of time. In genomic selection, for example, a set of markers covering the entire genome is used to train a model based on known data, and the resulting model is used to predict the genetic merit of selection candidates. Sophisticated models are very computationally demanding and, with several traits to be evaluated sequentially, computing time is long and output is low. In this paper, we present scenarios and basic principles of how HTC can be used in genomic selection, implemented using various techniques from simple batch processing to pipelining in distributed computer clusters. Various scripting languages, such as shell scripting, Perl and R, are also very useful to devise pipelines. By pipelining, we can reduce total computing time and consequently increase throughput. In comparison to the traditional data processing pipeline residing on the central processors, performing general purpose computation on a graphics processing unit (GPU provide a new-generation approach to massive parallel computing in genomic selection. While the concept of HTC may still be new to many researchers in animal breeding, plant breeding, and genetics, HTC infrastructures have already been built in many institutions, such as the University of Wisconsin – Madison, which can be leveraged for genomic selection, in terms of central processing unit (CPU capacity, network connectivity, storage availability, and middleware connectivity. Exploring existing HTC infrastructures as well as general purpose computing environments will further expand our capability to meet increasing computing demands posed by unprecedented genomic data that we have today. We anticipate that HTC will impact genomic selection via better statistical models, faster solutions, and more competitive products (e.g., from design of

  7. Antibody tumor penetration

    Science.gov (United States)

    Thurber, Greg M.; Schmidt, Michael M.; Wittrup, K. Dane

    2009-01-01

    Antibodies have proven to be effective agents in cancer imaging and therapy. One of the major challenges still facing the field is the heterogeneous distribution of these agents in tumors when administered systemically. Large regions of untargeted cells can therefore escape therapy and potentially select for more resistant cells. We present here a summary of theoretical and experimental approaches to analyze and improve antibody penetration in tumor tissue. PMID:18541331

  8. Beyond Antibodies as Binding Partners: The Role of Antibody Mimetics in Bioanalysis.

    Science.gov (United States)

    Yu, Xiaowen; Yang, Yu-Ping; Dikici, Emre; Deo, Sapna K; Daunert, Sylvia

    2017-06-12

    The emergence of novel binding proteins or antibody mimetics capable of binding to ligand analytes in a manner analogous to that of the antigen-antibody interaction has spurred increased interest in the biotechnology and bioanalytical communities. The goal is to produce antibody mimetics designed to outperform antibodies with regard to binding affinities, cellular and tumor penetration, large-scale production, and temperature and pH stability. The generation of antibody mimetics with tailored characteristics involves the identification of a naturally occurring protein scaffold as a template that binds to a desired ligand. This scaffold is then engineered to create a superior binder by first creating a library that is then subjected to a series of selection steps. Antibody mimetics have been successfully used in the development of binding assays for the detection of analytes in biological samples, as well as in separation methods, cancer therapy, targeted drug delivery, and in vivo imaging. This review describes recent advances in the field of antibody mimetics and their applications in bioanalytical chemistry, specifically in diagnostics and other analytical methods.

  9. High throughput second harmonic imaging for label-free biological applications

    KAUST Repository

    Macias Romero, Carlos; Didier, Marie E P; Jourdain, Pascal; Marquet, Pierre; Magistretti, Pierre J.; Tarun, Orly B.; Zubkovs, Vitalijs; Radenovic, Aleksandra; Roke, Sylvie

    2014-01-01

    Second harmonic generation (SHG) is inherently sensitive to the absence of spatial centrosymmetry, which can render it intrinsically sensitive to interfacial processes, chemical changes and electrochemical responses. Here, we seek to improve the imaging throughput of SHG microscopy by using a wide-field imaging scheme in combination with a medium-range repetition rate amplified near infrared femtosecond laser source and gated detection. The imaging throughput of this configuration is tested by measuring the optical image contrast for different image acquisition times of BaTiO3 nanoparticles in two different wide-field setups and one commercial point-scanning configuration. We find that the second harmonic imaging throughput is improved by 2-3 orders of magnitude compared to point-scan imaging. Capitalizing on this result, we perform low fluence imaging of (parts of) living mammalian neurons in culture.

  10. High throughput screening method for assessing heterogeneity of microorganisms

    NARCIS (Netherlands)

    Ingham, C.J.; Sprenkels, A.J.; van Hylckama Vlieg, J.E.T.; Bomer, Johan G.; de Vos, W.M.; van den Berg, Albert

    2006-01-01

    The invention relates to the field of microbiology. Provided is a method which is particularly powerful for High Throughput Screening (HTS) purposes. More specific a high throughput method for determining heterogeneity or interactions of microorganisms is provided.

  11. Application of ToxCast High-Throughput Screening and ...

    Science.gov (United States)

    Slide presentation at the SETAC annual meeting on High-Throughput Screening and Modeling Approaches to Identify Steroidogenesis Distruptors Slide presentation at the SETAC annual meeting on High-Throughput Screening and Modeling Approaches to Identify Steroidogenssis Distruptors

  12. High Throughput PBTK: Open-Source Data and Tools for ...

    Science.gov (United States)

    Presentation on High Throughput PBTK at the PBK Modelling in Risk Assessment meeting in Ispra, Italy Presentation on High Throughput PBTK at the PBK Modelling in Risk Assessment meeting in Ispra, Italy

  13. The Clinical Proteomic Technologies for Cancer | Antibody Portal

    Science.gov (United States)

    An objective of the Reagents and Resources component of NCI's Clinical Proteomic Technologies for Cancer Initiative is to generate highly characterized monoclonal antibodies to human proteins associated with cancer.

  14. CrossCheck: an open-source web tool for high-throughput screen data analysis.

    Science.gov (United States)

    Najafov, Jamil; Najafov, Ayaz

    2017-07-19

    Modern high-throughput screening methods allow researchers to generate large datasets that potentially contain important biological information. However, oftentimes, picking relevant hits from such screens and generating testable hypotheses requires training in bioinformatics and the skills to efficiently perform database mining. There are currently no tools available to general public that allow users to cross-reference their screen datasets with published screen datasets. To this end, we developed CrossCheck, an online platform for high-throughput screen data analysis. CrossCheck is a centralized database that allows effortless comparison of the user-entered list of gene symbols with 16,231 published datasets. These datasets include published data from genome-wide RNAi and CRISPR screens, interactome proteomics and phosphoproteomics screens, cancer mutation databases, low-throughput studies of major cell signaling mediators, such as kinases, E3 ubiquitin ligases and phosphatases, and gene ontological information. Moreover, CrossCheck includes a novel database of predicted protein kinase substrates, which was developed using proteome-wide consensus motif searches. CrossCheck dramatically simplifies high-throughput screen data analysis and enables researchers to dig deep into the published literature and streamline data-driven hypothesis generation. CrossCheck is freely accessible as a web-based application at http://proteinguru.com/crosscheck.

  15. A high throughput DNA extraction method with high yield and quality

    Directory of Open Access Journals (Sweden)

    Xin Zhanguo

    2012-07-01

    Full Text Available Abstract Background Preparation of large quantity and high quality genomic DNA from a large number of plant samples is a major bottleneck for most genetic and genomic analyses, such as, genetic mapping, TILLING (Targeting Induced Local Lesion IN Genome, and next-generation sequencing directly from sheared genomic DNA. A variety of DNA preparation methods and commercial kits are available. However, they are either low throughput, low yield, or costly. Here, we describe a method for high throughput genomic DNA isolation from sorghum [Sorghum bicolor (L. Moench] leaves and dry seeds with high yield, high quality, and affordable cost. Results We developed a high throughput DNA isolation method by combining a high yield CTAB extraction method with an improved cleanup procedure based on MagAttract kit. The method yielded large quantity and high quality DNA from both lyophilized sorghum leaves and dry seeds. The DNA yield was improved by nearly 30 fold with 4 times less consumption of MagAttract beads. The method can also be used in other plant species, including cotton leaves and pine needles. Conclusion A high throughput system for DNA extraction from sorghum leaves and seeds was developed and validated. The main advantages of the method are low cost, high yield, high quality, and high throughput. One person can process two 96-well plates in a working day at a cost of $0.10 per sample of magnetic beads plus other consumables that other methods will also need.

  16. High-throughput technology for novel SO2 oxidation catalysts

    International Nuclear Information System (INIS)

    Loskyll, Jonas; Stoewe, Klaus; Maier, Wilhelm F

    2011-01-01

    We review the state of the art and explain the need for better SO 2 oxidation catalysts for the production of sulfuric acid. A high-throughput technology has been developed for the study of potential catalysts in the oxidation of SO 2 to SO 3 . High-throughput methods are reviewed and the problems encountered with their adaptation to the corrosive conditions of SO 2 oxidation are described. We show that while emissivity-corrected infrared thermography (ecIRT) can be used for primary screening, it is prone to errors because of the large variations in the emissivity of the catalyst surface. UV-visible (UV-Vis) spectrometry was selected instead as a reliable analysis method of monitoring the SO 2 conversion. Installing plain sugar absorbents at reactor outlets proved valuable for the detection and quantitative removal of SO 3 from the product gas before the UV-Vis analysis. We also overview some elements used for prescreening and those remaining after the screening of the first catalyst generations. (topical review)

  17. A gas trapping method for high-throughput metabolic experiments.

    Science.gov (United States)

    Krycer, James R; Diskin, Ciana; Nelson, Marin E; Zeng, Xiao-Yi; Fazakerley, Daniel J; James, David E

    2018-01-01

    Research into cellular metabolism has become more high-throughput, with typical cell-culture experiments being performed in multiwell plates (microplates). This format presents a challenge when trying to collect gaseous products, such as carbon dioxide (CO2), which requires a sealed environment and a vessel separate from the biological sample. To address this limitation, we developed a gas trapping protocol using perforated plastic lids in sealed cell-culture multiwell plates. We used this trap design to measure CO2 production from glucose and fatty acid metabolism, as well as hydrogen sulfide production from cysteine-treated cells. Our data clearly show that this gas trap can be applied to liquid and solid gas-collection media and can be used to study gaseous product generation by both adherent cells and cells in suspension. Since our gas traps can be adapted to multiwell plates of various sizes, they present a convenient, cost-effective solution that can accommodate the trend toward high-throughput measurements in metabolic research.

  18. High-throughput characterization for solar fuels materials discovery

    Science.gov (United States)

    Mitrovic, Slobodan; Becerra, Natalie; Cornell, Earl; Guevarra, Dan; Haber, Joel; Jin, Jian; Jones, Ryan; Kan, Kevin; Marcin, Martin; Newhouse, Paul; Soedarmadji, Edwin; Suram, Santosh; Xiang, Chengxiang; Gregoire, John; High-Throughput Experimentation Team

    2014-03-01

    In this talk I will present the status of the High-Throughput Experimentation (HTE) project of the Joint Center for Artificial Photosynthesis (JCAP). JCAP is an Energy Innovation Hub of the U.S. Department of Energy with a mandate to deliver a solar fuel generator based on an integrated photoelectrochemical cell (PEC). However, efficient and commercially viable catalysts or light absorbers for the PEC do not exist. The mission of HTE is to provide the accelerated discovery through combinatorial synthesis and rapid screening of material properties. The HTE pipeline also features high-throughput material characterization using x-ray diffraction and x-ray photoemission spectroscopy (XPS). In this talk I present the currently operating pipeline and focus on our combinatorial XPS efforts to build the largest free database of spectra from mixed-metal oxides, nitrides, sulfides and alloys. This work was performed at Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award No. DE-SC0004993.

  19. Plasmon enhanced fluoro-immunoassay using egg yolk antibodies for ultra-sensitive detection of herbicide diuron.

    Science.gov (United States)

    Sharma, Priyanka; Kukkar, Manil; Ganguli, Ashok K; Bhasin, Aman; Suri, C Raman

    2013-08-07

    Plasmon enhanced fluorescence immunoassay (PEFI) format has been reported in developing a sensitive heterogeneous fluoroimmunoassay for monitoring the phenylurea herbicide diuron. Computer-assisted molecular modeling was carried out to study the conformational and electrostatic effects of synthesized hapten for producing highly specific egg yolk antibody against a phenyl urea herbicide diuron. The generated antibodies were labeled with fluorescein isothiocyanate at different molar ratios and used as tracer in the developed fluorescence based immunoassay. The sensitivity of the assay format was enhanced by using silver nanoparticles tagged with bovine serum albumin as a new blocking reagent in the developed PEFI format. Enhancer treatment on the developed immunoassay showed a significant improvement of fluorescence signal intensity with approximately 10 fold increase in assay sensitivity. The immunoassay has a detection limit of 0.01 ng mL(-1) with good signal precision (~2%) in the optimum working concentration range between 1 pg mL(-1) to 10 μg mL(-1) of diuron. These findings facilitate high throughput fluorescence-based processes that could be useful in biology, drug discovery and compound screening applications.

  20. Combining Phage and Yeast Cell Surface Antibody Display to Identify Novel Cell Type-Selective Internalizing Human Monoclonal Antibodies.

    Science.gov (United States)

    Bidlingmaier, Scott; Su, Yang; Liu, Bin

    2015-01-01

    Using phage antibody display, large libraries can be generated and screened to identify monoclonal antibodies with affinity for target antigens. However, while library size and diversity is an advantage of the phage display method, there is limited ability to quantitatively enrich for specific binding properties such as affinity. One way of overcoming this limitation is to combine the scale of phage display selections with the flexibility and quantitativeness of FACS-based yeast surface display selections. In this chapter we describe protocols for generating yeast surface antibody display libraries using phage antibody display selection outputs as starting material and FACS-based enrichment of target antigen-binding clones from these libraries. These methods should be widely applicable for the identification of monoclonal antibodies with specific binding properties.

  1. 20180311 - Differential Gene Expression and Concentration-Response Modeling Workflow for High-Throughput Transcriptomic (HTTr) Data: Results From MCF7 Cells (SOT)

    Science.gov (United States)

    Increasing efficiency and declining cost of generating whole transcriptome profiles has made high-throughput transcriptomics a practical option for chemical bioactivity screening. The resulting data output provides information on the expression of thousands of genes and is amenab...

  2. Differential Gene Expression and Concentration-Response Modeling Workflow for High-Throughput Transcriptomic (HTTr) Data: Results From MCF7 Cells

    Science.gov (United States)

    Increasing efficiency and declining cost of generating whole transcriptome profiles has made high-throughput transcriptomics a practical option for chemical bioactivity screening. The resulting data output provides information on the expression of thousands of genes and is amenab...

  3. Machine learning in computational biology to accelerate high-throughput protein expression.

    Science.gov (United States)

    Sastry, Anand; Monk, Jonathan; Tegel, Hanna; Uhlen, Mathias; Palsson, Bernhard O; Rockberg, Johan; Brunk, Elizabeth

    2017-08-15

    The Human Protein Atlas (HPA) enables the simultaneous characterization of thousands of proteins across various tissues to pinpoint their spatial location in the human body. This has been achieved through transcriptomics and high-throughput immunohistochemistry-based approaches, where over 40 000 unique human protein fragments have been expressed in E. coli. These datasets enable quantitative tracking of entire cellular proteomes and present new avenues for understanding molecular-level properties influencing expression and solubility. Combining computational biology and machine learning identifies protein properties that hinder the HPA high-throughput antibody production pipeline. We predict protein expression and solubility with accuracies of 70% and 80%, respectively, based on a subset of key properties (aromaticity, hydropathy and isoelectric point). We guide the selection of protein fragments based on these characteristics to optimize high-throughput experimentation. We present the machine learning workflow as a series of IPython notebooks hosted on GitHub (https://github.com/SBRG/Protein_ML). The workflow can be used as a template for analysis of further expression and solubility datasets. ebrunk@ucsd.edu or johanr@biotech.kth.se. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  4. Achieving high data throughput in research networks

    International Nuclear Information System (INIS)

    Matthews, W.; Cottrell, L.

    2001-01-01

    After less than a year of operation, the BaBar experiment at SLAC has collected almost 100 million particle collision events in a database approaching 165TB. Around 20 TB of data has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, and around 40TB of simulated data has been imported from the Lawrence Livermore National Laboratory (LLNL). BaBar collaborators plan to double data collection each year and export a third of the data to IN2P3. So within a few years the SLAC OC3 (155 Mbps) connection will be fully utilized by file transfer to France alone. Upgrades to infrastructure is essential and detailed understanding of performance issues and the requirements for reliable high throughput transfers is critical. In this talk results from active and passive monitoring and direct measurements of throughput will be reviewed. Methods for achieving the ambitious requirements will be discussed

  5. Achieving High Data Throughput in Research Networks

    International Nuclear Information System (INIS)

    Matthews, W

    2004-01-01

    After less than a year of operation, the BaBar experiment at SLAC has collected almost 100 million particle collision events in a database approaching 165TB. Around 20 TB of data has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, and around 40TB of simulated data has been imported from the Lawrence Livermore National Laboratory (LLNL). BaBar collaborators plan to double data collection each year and export a third of the data to IN2P3. So within a few years the SLAC OC3 (155Mbps) connection will be fully utilized by file transfer to France alone. Upgrades to infrastructure is essential and detailed understanding of performance issues and the requirements for reliable high throughput transfers is critical. In this talk results from active and passive monitoring and direct measurements of throughput will be reviewed. Methods for achieving the ambitious requirements will be discussed

  6. High throughput salt separation from uranium deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S.W.; Park, K.M.; Kim, J.G.; Kim, I.T.; Park, S.B., E-mail: swkwon@kaeri.re.kr [Korea Atomic Energy Research Inst. (Korea, Republic of)

    2014-07-01

    It is very important to increase the throughput of the salt separation system owing to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites in pyroprocessing. Multilayer porous crucible system was proposed to increase a throughput of the salt distiller in this study. An integrated sieve-crucible assembly was also investigated for the practical use of the porous crucible system. The salt evaporation behaviors were compared between the conventional nonporous crucible and the porous crucible. Two step weight reductions took place in the porous crucible, whereas the salt weight reduced only at high temperature by distillation in a nonporous crucible. The first weight reduction in the porous crucible was caused by the liquid salt penetrated out through the perforated crucible during the temperature elevation until the distillation temperature. Multilayer porous crucibles have a benefit to expand the evaporation surface area. (author)

  7. Radiolabelled antibody imaging

    International Nuclear Information System (INIS)

    Perkins, A.C.

    1986-01-01

    A steadily growing number of tumor-associated antigens are used to raise antibodies used for the detection of human tumors by external imaging, a technique termed immunoscintigraphy. The majority of these clinical antibody studies are performed using Iodine-131, which is cheap, readily available and easily attached to protein. It has the disadvantage of having a high energy gamma emission (365 keV) which is poorly detected by modern cameras, so that increasing use is now being made of more appropriate labels with lower energies for imaging, such as Iodine-123, Indium-111 and Technetium-99m. A number of research centres in the United Kingdom are currently involved in the production of tumor-associated monoclonal antibodies, only a small number of which are finally selected for diagnostic use. These developments represent a major area of advancement in Nuclear Medicine and when used for imaging are capable of providing diagnostic information complimentary to other diagnostic techniques

  8. Implicit Consensus: Blockchain with Unbounded Throughput

    OpenAIRE

    Ren, Zhijie; Cong, Kelong; Pouwelse, Johan; Erkin, Zekeriya

    2017-01-01

    Recently, the blockchain technique was put in the spotlight as it introduced a systematic approach for multiple parties to reach consensus without needing trust. However, the application of this technique in practice is severely restricted due to its limitations in throughput. In this paper, we propose a novel consensus model, namely the implicit consensus, with a distinctive blockchain-based distributed ledger in which each node holds its individual blockchain. In our system, the consensus i...

  9. High Throughput Neuro-Imaging Informatics

    Directory of Open Access Journals (Sweden)

    Michael I Miller

    2013-12-01

    Full Text Available This paper describes neuroinformatics technologies at 1 mm anatomical scale based on high throughput 3D functional and structural imaging technologies of the human brain. The core is an abstract pipeline for converting functional and structural imagery into their high dimensional neuroinformatic representations index containing O(E3-E4 discriminating dimensions. The pipeline is based on advanced image analysis coupled to digital knowledge representations in the form of dense atlases of the human brain at gross anatomical scale. We demonstrate the integration of these high-dimensional representations with machine learning methods, which have become the mainstay of other fields of science including genomics as well as social networks. Such high throughput facilities have the potential to alter the way medical images are stored and utilized in radiological workflows. The neuroinformatics pipeline is used to examine cross-sectional and personalized analyses of neuropsychiatric illnesses in clinical applications as well as longitudinal studies. We demonstrate the use of high throughput machine learning methods for supporting (i cross-sectional image analysis to evaluate the health status of individual subjects with respect to the population data, (ii integration of image and non-image information for diagnosis and prognosis.

  10. Antithyroglobulin Antibodies and Antimicrosomal Antibodies in Various Thyroid Diseases

    International Nuclear Information System (INIS)

    Lee, Gwon Jun; Hong, Key Sak; Choi, Kang Won; Lee, Kyu; Koh, Chang Soon; Lee, Mun Ho; Park, Sung Hoe; Chi, Je Geun; Lee, Sang Kook

    1979-01-01

    The authors investigated the incidence of antithyroglobulin antibodies and antibodies and antimicrosomal antibodies measured by tanned red cell hemagglutination method in subjects suffering from various thyroid disorders. 1) In 15 normal patients, neither suffering from any thyroid diseases nor from any other autoimmune disorders, the antithyroglobulin antibodies were all negative, but the antimicrosomal antibody was positive only in one patient (6.7%). 2) The antithyroglobulin antibodies were positive in 31.5% (34 patients) of 108 patients with various thyroid diseases, and the antimicrosomal antibodies were positive in 37.0% (40 patients). 3) of the 25 patients with Graves' diseases, 7 patients (28.0%) showed positive for the antithyroglobulin antibodies, and 9 (36.0%) for the antimicrosomal antibodies. There was no definite differences in clinical and thyroid functions between the groups with positive and negative results. 4) Both antibodies were positive in 16 (88.9%) and 17 (94.4%) patients respectively among 18 patients with Hashimoto's thyroiditis, all of them were diagnosed histologically. 5) Three out of 33 patients with thyroid adenoma showed positive antibodies, and 3 of 16 patients with thyroid carcinoma revealed positive antibodies. 6) TRCH antibodies demonstrated negative results in 2 patients with subacute thyroiditis, but positive in one patient with idiopathic primary myxedema. 7) The number of patients with high titers(>l:802) was 16 for antithyroglobulin antibody, and 62.5% (10 patients) of which was Hashimoto's thyroiditis. Thirteen (65.0) of 20 patients with high titers (>l:802) for antimicrosomal antibody was Hashimoto's thyroiditis. TRCH test is a simple, sensitive method, and has high reliability and reproducibility. The incidences and titers of antithyroglobulin antibody and antimicrosomal antibody are especially high in Hashimoto's thyroiditis.

  11. Antithyroglobulin Antibodies and Antimicrosomal Antibodies in Various Thyroid Diseases

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gwon Jun; Hong, Key Sak; Choi, Kang Won; Lee, Kyu; Koh, Chang Soon; Lee, Mun Ho; Park, Sung Hoe; Chi, Je Geun; Lee, Sang Kook [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1979-03-15

    The authors investigated the incidence of antithyroglobulin antibodies and antibodies and antimicrosomal antibodies measured by tanned red cell hemagglutination method in subjects suffering from various thyroid disorders. 1) In 15 normal patients, neither suffering from any thyroid diseases nor from any other autoimmune disorders, the antithyroglobulin antibodies were all negative, but the antimicrosomal antibody was positive only in one patient (6.7%). 2) The antithyroglobulin antibodies were positive in 31.5% (34 patients) of 108 patients with various thyroid diseases, and the antimicrosomal antibodies were positive in 37.0% (40 patients). 3) of the 25 patients with Graves' diseases, 7 patients (28.0%) showed positive for the antithyroglobulin antibodies, and 9 (36.0%) for the antimicrosomal antibodies. There was no definite differences in clinical and thyroid functions between the groups with positive and negative results. 4) Both antibodies were positive in 16 (88.9%) and 17 (94.4%) patients respectively among 18 patients with Hashimoto's thyroiditis, all of them were diagnosed histologically. 5) Three out of 33 patients with thyroid adenoma showed positive antibodies, and 3 of 16 patients with thyroid carcinoma revealed positive antibodies. 6) TRCH antibodies demonstrated negative results in 2 patients with subacute thyroiditis, but positive in one patient with idiopathic primary myxedema. 7) The number of patients with high titers(>l:802) was 16 for antithyroglobulin antibody, and 62.5% (10 patients) of which was Hashimoto's thyroiditis. Thirteen (65.0) of 20 patients with high titers (>l:802) for antimicrosomal antibody was Hashimoto's thyroiditis. TRCH test is a simple, sensitive method, and has high reliability and reproducibility. The incidences and titers of antithyroglobulin antibody and antimicrosomal antibody are especially high in Hashimoto's thyroiditis.

  12. Monoclonal antibodies technology. Protocols

    International Nuclear Information System (INIS)

    Acevado Castro, B.E.

    1997-01-01

    Full text: Immunization. The first step in preparing useful monoclonal antibodies (MAbs) is to immunize an animal (Balb/c for example) with an appropriate antigen. Methods (only for soluble antigen): Solubilize selected antigen in Phosphate buffer solution (PBS) at pH 7.2-7.4, ideally at a final concentration per animal between 10 to 50 μg/ml. It is recommended that the antigen under consideration be incorporated into the emulsion adjuvants in 1:1 volumetric relation. We commonly use Frend's adjuvant (FA) to prepared immunized solution. The first immunization should be prepared with complete FA, and the another could be prepared with incomplete FA. It is recommended to inject mice with 0.2 ml intraperitoneal (ip) or subcutaneous (sc). Our experience suggests the sc route is the preferred route. A minimum protocol for immunizing mice to generate cells for preparing hybridomas is s follows: immunize sc on day 0, boost sc on day 21, take a trial bleeding on day 26; if antibody titters are satisfactory, boost ip on day 35 with antigen only, and remove the spleen to obtain cells for fusion on day 38. Fusion protocol. The myeloma cell line we are using is X63 Ag8.653. At the moment of fusion myeloma cells need a good viability (at least a 95%). 1. Remove the spleen cells from immunized mice using sterile conditions. An immune spleen should yield between 7 a 10x10 7 nucleated cells. 2. Place the spleen in 20 ml of serum-free RPMI 1640 in a Petri dish. Using a needle and syringe, inject the spleen with medium to distend and disrupt the spleen stroma and free the nucleated cells. 3. Flush the cell suspension with a Pasteur pipet to disperse clumps of cells. 4. Centrifuge the spleen cell suspension at 250g for 10 min. Resuspend the pellet in serum-free RPMI 1640. Determine cell concentration using Neuhabuer chamber. 5. Mix the myeloma cells and spleen cells in a conical 50-ml tube in serum-free RPMI 1640, 1 x10 7 spleen cells to 1x10 6 myeloma cells (ratio 10:1). Centrifuge

  13. Prediction of Antibody Epitopes

    DEFF Research Database (Denmark)

    Nielsen, Morten; Marcatili, Paolo

    2015-01-01

    Antibodies recognize their cognate antigens in a precise and effective way. In order to do so, they target regions of the antigenic molecules that have specific features such as large exposed areas, presence of charged or polar atoms, specific secondary structure elements, and lack of similarity...... to self-proteins. Given the sequence or the structure of a protein of interest, several methods exploit such features to predict the residues that are more likely to be recognized by an immunoglobulin.Here, we present two methods (BepiPred and DiscoTope) to predict linear and discontinuous antibody...

  14. Antibody affinity maturation

    DEFF Research Database (Denmark)

    Skjødt, Mette Louise

    Yeast surface display is an effective tool for antibody affinity maturation because yeast can be used as an all-in-one workhorse to assemble, display and screen diversified antibody libraries. By employing the natural ability of yeast Saccharomyces cerevisiae to efficiently recombine multiple DNA...... laboratory conditions. A particular emphasis was put on using molecular techniques in conjunction with microenvironmental measurements (O2, pH, irradiance), a combination that is rarely found but provides a much more detailed understanding of “cause and effect” in complex natural systems...

  15. HER2 monoclonal antibodies that do not interfere with receptor heterodimerization-mediated signaling induce effective internalization and represent valuable components for rational antibody-drug conjugate design.

    Science.gov (United States)

    de Goeij, Bart E C G; Peipp, Matthias; de Haij, Simone; van den Brink, Edward N; Kellner, Christian; Riedl, Thilo; de Jong, Rob; Vink, Tom; Strumane, Kristin; Bleeker, Wim K; Parren, Paul W H I

    2014-01-01

    The human epidermal growth factor receptor (HER)2 provides an excellent target for selective delivery of cytotoxic drugs to tumor cells by antibody-drug conjugates (ADC) as has been clinically validated by ado-trastuzumab emtansine (Kadcyla(TM)). While selecting a suitable antibody for an ADC approach often takes specificity and efficient antibody-target complex internalization into account, the characteristics of the optimal antibody candidate remain poorly understood. We studied a large panel of human HER2 antibodies to identify the characteristics that make them most suitable for an ADC approach. As a model toxin, amenable to in vitro high-throughput screening, we employed Pseudomonas exotoxin A (ETA') fused to an anti-kappa light chain domain antibody. Cytotoxicity induced by HER2 antibodies, which were thus non-covalently linked to ETA', was assessed for high and low HER2 expressing tumor cell lines and correlated with internalization and downmodulation of HER2 antibody-target complexes. Our results demonstrate that HER2 antibodies that do not inhibit heterodimerization of HER2 with related ErbB receptors internalize more efficiently and show greater ETA'-mediated cytotoxicity than antibodies that do inhibit such heterodimerization. Moreover, stimulation with ErbB ligand significantly enhanced ADC-mediated tumor kill by antibodies that do not inhibit HER2 heterodimerization. This suggests that the formation of HER2/ErbB-heterodimers enhances ADC internalization and subsequent killing of tumor cells. Our study indicates that selecting HER2 ADCs that allow piggybacking of HER2 onto other ErbB receptors provides an attractive strategy for increasing ADC delivery and tumor cell killing capacity to both high and low HER2 expressing tumor cells.

  16. High-throughput determination of RNA structure by proximity ligation.

    Science.gov (United States)

    Ramani, Vijay; Qiu, Ruolan; Shendure, Jay

    2015-09-01

    We present an unbiased method to globally resolve RNA structures through pairwise contact measurements between interacting regions. RNA proximity ligation (RPL) uses proximity ligation of native RNA followed by deep sequencing to yield chimeric reads with ligation junctions in the vicinity of structurally proximate bases. We apply RPL in both baker's yeast (Saccharomyces cerevisiae) and human cells and generate contact probability maps for ribosomal and other abundant RNAs, including yeast snoRNAs, the RNA subunit of the signal recognition particle and the yeast U2 spliceosomal RNA homolog. RPL measurements correlate with established secondary structures for these RNA molecules, including stem-loop structures and long-range pseudoknots. We anticipate that RPL will complement the current repertoire of computational and experimental approaches in enabling the high-throughput determination of secondary and tertiary RNA structures.

  17. High-throughput ab-initio dilute solute diffusion database.

    Science.gov (United States)

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-07-19

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.

  18. High Throughput In Situ XAFS Screening of Catalysts

    International Nuclear Information System (INIS)

    Tsapatsaris, Nikolaos; Beesley, Angela M.; Weiher, Norbert; Tatton, Helen; Schroeder, Sven L. M.; Dent, Andy J.; Mosselmans, Frederick J. W.; Tromp, Moniek; Russu, Sergio; Evans, John; Harvey, Ian; Hayama, Shu

    2007-01-01

    We outline and demonstrate the feasibility of high-throughput (HT) in situ XAFS for synchrotron radiation studies. An XAS data acquisition and control system for the analysis of dynamic materials libraries under control of temperature and gaseous environments has been developed. The system is compatible with the 96-well industry standard and coupled to multi-stream quadrupole mass spectrometry (QMS) analysis of reactor effluents. An automated analytical workflow generates data quickly compared to traditional individual spectrum acquisition and analyses them in quasi-real time using an HT data analysis tool based on IFFEFIT. The system was used for the automated characterization of a library of 91 catalyst precursors containing ternary combinations of Cu, Pt, and Au on γ-Al2O3, and for the in situ characterization of Au catalysts supported on Al2O3 and TiO2

  19. High-throughput mouse genotyping using robotics automation.

    Science.gov (United States)

    Linask, Kaari L; Lo, Cecilia W

    2005-02-01

    The use of mouse models is rapidly expanding in biomedical research. This has dictated the need for the rapid genotyping of mutant mouse colonies for more efficient utilization of animal holding space. We have established a high-throughput protocol for mouse genotyping using two robotics workstations: a liquid-handling robot to assemble PCR and a microfluidics electrophoresis robot for PCR product analysis. This dual-robotics setup incurs lower start-up costs than a fully automated system while still minimizing human intervention. Essential to this automation scheme is the construction of a database containing customized scripts for programming the robotics workstations. Using these scripts and the robotics systems, multiple combinations of genotyping reactions can be assembled simultaneously, allowing even complex genotyping data to be generated rapidly with consistency and accuracy. A detailed protocol, database, scripts, and additional background information are available at http://dir.nhlbi.nih.gov/labs/ldb-chd/autogene/.

  20. [High-throughput genotyping multiplex ligation-dependent probe amplification for assisting diagnosis in a case of anti-Di(a)-induced severe hemolytic disease of the newborn].

    Science.gov (United States)

    Ji, Yanli; Mo, Chunyan; Wei, Ling; Zhou, Xiuzhen; Zhang, Runqing; Zhao, Yang; Luo, Hong; Wang, Zhen; Luo, Guangping

    2012-02-01

    To report a rare case of hemolytic disease of the newborn (HDN) with kernicterus caused by anti-Di(a) diagnosed using high-throughput genotyping multiplex ligation-dependent probe amplification (MLPA). Conventional serological methods were used to detect the antibodies related with HDN. The genotypes of more than 40 red blood cell antigens for the newborn and her parents were obtained using the high-throughput MLPA assay. The antibody titers were tested using a standard serological method. The unknown antibody against the low-frequency antigens was predicted based on the primary serological tests. The genotyping results for more than 40 red blood cell antigens of the newborn and her parents showed incompatible antigens of MNS and Diego blood group system, indicating the existence of anti-N or anti-Di(a). Further serological tests confirmed anti-Di(a) existence in the plasma of the newborn and her mother. The titer of anti-Di(a) in the mother's plasma was 1:32. Severe HDN including kernicterus can result from anti-Di(a). High-throughput genotyping MLPA assay can help type some rare antigens in complicated cases. The reagent red cell panels including Di(a)-positive cells are necessary in routine antibody screening test in Chinese population.

  1. Compositions, antibodies, asthma diagnosis methods, and methods for preparing antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hongjun; Zangar, Richard C.

    2017-01-17

    Methods for preparing an antibody are provided with the method including incorporating 3-bromo-4-hydroxy-benzoic acid into a protein to form an antigen, immunizing a mammalian host with the antigen, and recovering an antibody having an affinity for the antigen from the host. Antibodies having a binding affinity for a monohalotyrosine are provided as well as composition comprising an antibody bound with monohalotyrosine. Compositions comprising a protein having a 3-bromo-4-hydroxy-benzoic acid moiety are also provided. Methods for evaluating the severity of asthma are provide with the methods including analyzing sputum of a patient using an antibody having a binding affinity for monohalotyrosine, and measuring the amount of antibody bound to protein. Methods for determining eosinophil activity in bodily fluid are also provided with the methods including exposing bodily fluid to an antibody having a binding affinity for monohalotyrosine, and measuring the amount of bound antibody to determine the eosinophil activity.

  2. Seroprevalence of hepatitis C antibody in Peru.

    Science.gov (United States)

    Hyams, K C; Phillips, I A; Moran, A Y; Tejada, A; Wignall, F S; Escamilla, J

    1992-06-01

    The prevalence in Peru of antibody to hepatitis C virus (anti-HCV) was determined in a survey of populations living in the northern jungle region and in groups at high risk of parenterally and sexually transmitted diseases. All sera were initially screened for anti-HCV using commercial first and second generation ELISAs; repeatedly reactive sera were further verified with a second generation immunoblot assay. Serum samples were also tested by ELISA for HBsAg, anti-HBs, and anti-HBc. None of 2,111 sera obtained in the survey of jungle residents was positive for anti-HCV by immunoblot assay. Twelve of 16 HIV-1 antibody positive hemophiliacs, one of 103 HIV-1 antibody positive homosexuals, and three of 602 HIV-1 negative registered female prostitutes were positive for anti-HCV. A high prevalence of total markers of hepatitis B infection was found in all subjects, especially in older subjects and groups at high risk of parenterally and sexually transmitted diseases. The findings of this study indicate that seropositivity for hepatitis C virus antibody is uncommon in Peru except in high risk groups and suggest that the epidemiology of hepatitis C differs substantially from hepatitis B.

  3. Human monoclonal antibodies: the residual challenge of antibody immunogenicity.

    Science.gov (United States)

    Waldmann, Herman

    2014-01-01

    One of the major reasons for seeking human monoclonal antibodies has been to eliminate immunogenicity seen with rodent antibodies. Thus far, there has yet been no approach which absolutely abolishes that risk for cell-binding antibodies. In this short article, I draw attention to classical work which shows that monomeric immunoglobulins are intrinsically tolerogenic if they can be prevented from creating aggregates or immune complexes. Based on these classical studies two approaches for active tolerization to therapeutic antibodies are described.

  4. ANA (Antinuclear Antibody Test)

    Science.gov (United States)

    ... as ratios. For example, the result 1:320 means that one part blood sample was mixed with 320 parts of a diluting ... name "antinuclear". My doctor told me my ANA test is ... normal concentration of these antibodies. This is one of the tools in diagnosing lupus as well ...

  5. Monoclonal antibodies in myeloma

    DEFF Research Database (Denmark)

    Sondergeld, P.; van de Donk, N. W. C. J.; Richardson, P. G.

    2015-01-01

    The development of monoclonal antibodies (mAbs) for the treatment of disease goes back to the vision of Paul Ehrlich in the late 19th century; however, the first successful treatment with a mAb was not until 1982, in a lymphoma patient. In multiple myeloma, mAbs are a very recent and exciting add...

  6. Antibodies Targeting EMT

    Science.gov (United States)

    2017-10-01

    these unusual antibodies can effectively be displayed on the cell surface. 5 Additionally, we successfully prepared cDNA from lymphocytes derived...from cow peripheral blood, spleen, and lymph nodes, amplified this cDNA by PCR with VH gene specific primers, and this “library” has been cloned into

  7. Antibody Blood Tests

    Science.gov (United States)

    ... out for sure? If antibody tests and/or symptoms suggest celiac disease, the physician needs to establish the diagnosis by ... who is still experiencing symptoms, to establish the diagnosis or to rule out celiac disease as a part of establishing another diagnosis. Find ...

  8. Antinuclear Antibodies (ANA)

    Science.gov (United States)

    ... MACRA MACRAlerts MACRA FAQs MACRA Glossary MACRA Resources Position Statements Insurance Advocacy Current Issues Tools & Resources Practice Resources ... a medical or health condition. Resources Antinuclear Antibodies (ANA) in Spanish (Español) Download Print-Friendly PDF ... Join Donate © 2018 American College ...

  9. A novel antibody engineering strategy for making monovalent bispecific heterodimeric IgG antibodies by electrostatic steering mechanism.

    Science.gov (United States)

    Liu, Zhi; Leng, Esther C; Gunasekaran, Kannan; Pentony, Martin; Shen, Min; Howard, Monique; Stoops, Janelle; Manchulenko, Kathy; Razinkov, Vladimir; Liu, Hua; Fanslow, William; Hu, Zhonghua; Sun, Nancy; Hasegawa, Haruki; Clark, Rutilio; Foltz, Ian N; Yan, Wei

    2015-03-20

    Producing pure and well behaved bispecific antibodies (bsAbs) on a large scale for preclinical and clinical testing is a challenging task. Here, we describe a new strategy for making monovalent bispecific heterodimeric IgG antibodies in mammalian cells. We applied an electrostatic steering mechanism to engineer antibody light chain-heavy chain (LC-HC) interface residues in such a way that each LC strongly favors its cognate HC when two different HCs and two different LCs are co-expressed in the same cell to assemble a functional bispecific antibody. We produced heterodimeric IgGs from transiently and stably transfected mammalian cells. The engineered heterodimeric IgG molecules maintain the overall IgG structure with correct LC-HC pairings, bind to two different antigens with comparable affinity when compared with their parental antibodies, and retain the functionality of parental antibodies in biological assays. In addition, the bispecific heterodimeric IgG derived from anti-HER2 and anti-EGF receptor (EGFR) antibody was shown to induce a higher level of receptor internalization than the combination of two parental antibodies. Mouse xenograft BxPC-3, Panc-1, and Calu-3 human tumor models showed that the heterodimeric IgGs strongly inhibited tumor growth. The described approach can be used to generate tools from two pre-existent antibodies and explore the potential of bispecific antibodies. The asymmetrically engineered Fc variants for antibody-dependent cellular cytotoxicity enhancement could be embedded in monovalent bispecific heterodimeric IgG to make best-in-class therapeutic antibodies. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Anti-smooth muscle antibody

    Science.gov (United States)

    ... gov/ency/article/003531.htm Anti-smooth muscle antibody To use the sharing features on this page, please enable JavaScript. Anti-smooth muscle antibody is a blood test that detects the presence ...

  11. Tabhu: tools for antibody humanization.

    KAUST Repository

    Olimpieri, Pier Paolo; Marcatili, Paolo; Tramontano, Anna

    2014-01-01

    for antibody humanization. Tabhu includes tools for human template selection, grafting, back-mutation evaluation, antibody modelling and structural analysis, helping the user in all the critical steps of the humanization experiment protocol. AVAILABILITY: http

  12. Performance evaluation of the Bio-Rad Laboratories GS HIV Combo Ag/Ab EIA, a 4th generation HIV assay for the simultaneous detection of HIV p24 antigen and antibodies to HIV-1 (groups M and O) and HIV-2 in human serum or plasma.

    Science.gov (United States)

    Bentsen, Christopher; McLaughlin, Lisa; Mitchell, Elizabeth; Ferrera, Carol; Liska, Sally; Myers, Robert; Peel, Sheila; Swenson, Paul; Gadelle, Stephane; Shriver, M Kathleen

    2011-12-01

    A multi-center study was conducted to evaluate the Bio-Rad GS HIV Combo Ag/Ab EIA, a 4th generation HIV-1/HIV-2 assay for the simultaneous detection of HIV p24 antigen and antibodies to HIV-1 (groups M and O) and HIV-2 in human serum or plasma in adult and pediatric populations. The objectives of the study were to assess assay performance for the detection of acute HIV infections; sensitivity in known HIV positive samples; percent agreement with HIV status; specificity in low and high risk individuals of unknown HIV status; and to compare assay performance to a 3rd generation HIV assay. The evaluation included testing 9150 samples at four U.S. clinical trial sites, using three kit lots. Unlinked samples were from routine testing, repositories or purchased from vendors. GS HIV Combo Ag/Ab EIA detection in samples from individuals in two separate populations with acute HIV infection was 95.2% (20/21) and 86.4% (38/44). Sensitivity was 100% (1603/1603) in known antibody positive [HIV-1 Groups M and O, and HIV-2] samples. HIV p24 antigen detection was 100% (53/53) in HIV-1 culture supernatants. HIV-1 seroconversion panel detection improved by a range of 0-20 days compared to a 3rd generation HIV test. Specificity was 99.9% (5989/5996) in low risk, 99.9% (959/960) in high risk and 100% (100/100) in pediatric populations. The GS HIV Combo Ag/Ab EIA significantly reduced the diagnostic window when compared to the 3rd generation screening assay, enabling earlier diagnosis of HIV infection. The performance parameters of the Bio-Rad GS HIV Combo Ag/Ab EIA are well suited for use in HIV diagnostic settings. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Antibodies from plants for bionanomaterials

    OpenAIRE

    Edgue, G.; Twyman, R.M.; Beiss, V.; Fischer, R.; Sack, M.

    2017-01-01

    Antibodies are produced as part of the vertebrate adaptive immune response and are not naturally made by plants. However, antibody DNA sequences can be introduced into plants, and together with laboratory technologies that allow the design of antibodies recognizing any conceivable molecular structure, plants can be used as green factories' to produce any antibody at all. The advent of plant-based transient expression systems in particular allows the rapid, convenient, and safe production of a...

  14. Rationalization and Design of the Complementarity Determining Region Sequences in an Antibody-Antigen Recognition Interface

    Science.gov (United States)

    Chen, Ing-Chien; Lee, Yu-Ching; Chen, Jun-Bo; Tsai, Keng-Chang; Chen, Ching-Tai; Chang, Jeng-Yih; Yang, Ei-Wen; Hsu, Po-Chiang; Jian, Jhih-Wei; Hsu, Hung-Ju; Chang, Hung-Ju; Hsu, Wen-Lian; Huang, Kai-Fa; Ma, Alex Che; Yang, An-Suei

    2012-01-01

    Protein-protein interactions are critical determinants in biological systems. Engineered proteins binding to specific areas on protein surfaces could lead to therapeutics or diagnostics for treating diseases in humans. But designing epitope-specific protein-protein interactions with computational atomistic interaction free energy remains a difficult challenge. Here we show that, with the antibody-VEGF (vascular endothelial growth factor) interaction as a model system, the experimentally observed amino acid preferences in the antibody-antigen interface can be rationalized with 3-dimensional distributions of interacting atoms derived from the database of protein structures. Machine learning models established on the rationalization can be generalized to design amino acid preferences in antibody-antigen interfaces, for which the experimental validations are tractable with current high throughput synthetic antibody display technologies. Leave-one-out cross validation on the benchmark system yielded the accuracy, precision, recall (sensitivity) and specificity of the overall binary predictions to be 0.69, 0.45, 0.63, and 0.71 respectively, and the overall Matthews correlation coefficient of the 20 amino acid types in the 24 interface CDR positions was 0.312. The structure-based computational antibody design methodology was further tested with other antibodies binding to VEGF. The results indicate that the methodology could provide alternatives to the current antibody technologies based on animal immune systems in engineering therapeutic and diagnostic antibodies against predetermined antigen epitopes. PMID:22457753

  15. B Cells and B Cell Blasts Withstand Cryopreservation While Retaining Their Functionality for Producing Antibody

    Directory of Open Access Journals (Sweden)

    Philipp Fecher

    2018-05-01

    Full Text Available In individuals who have once developed humoral immunity to an infectious/foreign antigen, the antibodies present in their body can mediate instant protection when the antigen re-enters. Such antigen-specific antibodies can be readily detected in the serum. Long term humoral immunity is, however, also critically dependent on the ability of memory B cells to engage in a secondary antibody response upon re-exposure to the antigen. Antibody molecules in the body are short lived, having a half-life of weeks, while memory B cells have a life span of decades. Therefore, the presence of serum antibodies is not always a reliable indicator of B cell memory and comprehensive monitoring of humoral immunity requires that both serum antibodies and memory B cells be assessed. The prevailing view is that resting memory B cells and B cell blasts in peripheral blood mononuclear cells (PBMC cannot be cryopreserved without losing their antibody secreting function, and regulated high throughput immune monitoring of B cell immunity is therefore confined to—and largely limited by—the need to test freshly isolated PBMC. Using optimized protocols for freezing and thawing of PBMC, and four color ImmunoSpot® analysis for the simultaneous detection of all immunoglobulin classes/subclasses we show here that both resting memory B cells and B cell blasts retain their ability to secrete antibody after thawing, and thus demonstrate the feasibility of B cell immune monitoring using cryopreserved PBMC.

  16. B Cells and B Cell Blasts Withstand Cryopreservation While Retaining Their Functionality for Producing Antibody.

    Science.gov (United States)

    Fecher, Philipp; Caspell, Richard; Naeem, Villian; Karulin, Alexey Y; Kuerten, Stefanie; Lehmann, Paul V

    2018-05-31

    In individuals who have once developed humoral immunity to an infectious/foreign antigen, the antibodies present in their body can mediate instant protection when the antigen re-enters. Such antigen-specific antibodies can be readily detected in the serum. Long term humoral immunity is, however, also critically dependent on the ability of memory B cells to engage in a secondary antibody response upon re-exposure to the antigen. Antibody molecules in the body are short lived, having a half-life of weeks, while memory B cells have a life span of decades. Therefore, the presence of serum antibodies is not always a reliable indicator of B cell memory and comprehensive monitoring of humoral immunity requires that both serum antibodies and memory B cells be assessed. The prevailing view is that resting memory B cells and B cell blasts in peripheral blood mononuclear cells (PBMC) cannot be cryopreserved without losing their antibody secreting function, and regulated high throughput immune monitoring of B cell immunity is therefore confined to-and largely limited by-the need to test freshly isolated PBMC. Using optimized protocols for freezing and thawing of PBMC, and four color ImmunoSpot ® analysis for the simultaneous detection of all immunoglobulin classes/subclasses we show here that both resting memory B cells and B cell blasts retain their ability to secrete antibody after thawing, and thus demonstrate the feasibility of B cell immune monitoring using cryopreserved PBMC.

  17. A novel reporter system for neutralizing and enhancing antibody assay against dengue virus.

    Science.gov (United States)

    Song, Ke-Yu; Zhao, Hui; Jiang, Zhen-You; Li, Xiao-Feng; Deng, Yong-Qiang; Jiang, Tao; Zhu, Shun-Ya; Shi, Pei-Yong; Zhang, Bo; Zhang, Fu-Chun; Qin, E-De; Qin, Cheng-Feng

    2014-02-18

    Dengue virus (DENV) still poses a global public health threat, and no vaccine or antiviral therapy is currently available. Antibody plays distinct roles in controlling DENV infections. Neutralizing antibody is protective against DENV infection, whereas sub-neutralizing concentration of antibody can increase DENV infection, termed antibody-dependent enhancement (ADE). Plaque-based assay represents the most widely accepted method measuring neutralizing or enhancing antibodies. In this study, a novel reporter virus-based system was developed for measuring neutralization and ADE activity. A stable Renilla luciferase reporter DENV (Luc-DENV) that can produce robust luciferase signals in BHK-21 and K562 cells were used to establish the assay and validated against traditional plaque-based assay. Luciferase value analysis using various known DENV-specific monoclonal antibodies showed good repeatability and a well linear correlation with conventional plaque-based assays. The newly developed assay was finally validated with clinical samples from infected animals and individuals. This reporter virus-based assay for neutralizing and enhancing antibody evaluation is rapid, lower cost, and high throughput, and will be helpful for laboratory detection and epidemiological investigation for DENV antibodies.

  18. Single-Domain Antibodies As Versatile Affinity Reagents for Analytical and Diagnostic Applications

    Directory of Open Access Journals (Sweden)

    Gualberto Gonzalez-Sapienza

    2017-08-01

    Full Text Available With just three CDRs in their variable domains, the antigen-binding site of camelid heavy-chain-only antibodies (HcAbs has a more limited structural diversity than that of conventional antibodies. Even so, this does not seem to limit their specificity and high affinity as HcAbs against a broad range of structurally diverse antigens have been reported. The recombinant form of their variable domain [nanobody (Nb] has outstanding properties that make Nbs, not just an alternative option to conventional antibodies, but in many cases, these properties allow them to reach analytical or diagnostic performances that cannot be accomplished with conventional antibodies. These attributes include comprehensive representation of the immune specificity in display libraries, easy adaptation to high-throughput screening, exceptional stability, minimal size, and versatility as affinity building block. Here, we critically reviewed each of these properties and highlight their relevance with regard to recent developments in different fields of immunosensing applications.

  19. Monoclonal antibodies to Pneumocystis carinii

    DEFF Research Database (Denmark)

    Kovacs, J A; Halpern, J L; Lundgren, B

    1989-01-01

    To increase understanding of the antigenic structure of Pneumocystis carinii, we developed monoclonal antibodies to rat and human P. carinii. The specificity of the antibodies was demonstrated by immunofluorescence and immunoblot studies. Only one of five monoclonal antibodies to rat P. carinii r...

  20. Quantitative cumulative biodistribution of antibodies in mice

    Science.gov (United States)

    Yip, Victor; Palma, Enzo; Tesar, Devin B; Mundo, Eduardo E; Bumbaca, Daniela; Torres, Elizabeth K; Reyes, Noe A; Shen, Ben Q; Fielder, Paul J; Prabhu, Saileta; Khawli, Leslie A; Boswell, C Andrew

    2014-01-01

    The neonatal Fc receptor (FcRn) plays an important and well-known role in antibody recycling in endothelial and hematopoietic cells and thus it influences the systemic pharmacokinetics (PK) of immunoglobulin G (IgG). However, considerably less is known about FcRn’s role in the metabolism of IgG within individual tissues after intravenous administration. To elucidate the organ distribution and gain insight into the metabolism of humanized IgG1 antibodies with different binding affinities FcRn, comparative biodistribution studies in normal CD-1 mice were conducted. Here, we generated variants of herpes simplex virus glycoprotein D-specific antibody (humanized anti-gD) with increased and decreased FcRn binding affinity by genetic engineering without affecting antigen specificity. These antibodies were expressed in Chinese hamster ovary cell lines, purified and paired radiolabeled with iodine-125 and indium-111. Equal amounts of I-125-labeled and In-111-labeled antibodies were mixed and intravenously administered into mice at 5 mg/kg. This approach allowed us to measure both the real-time IgG uptake (I-125) and cumulative uptake of IgG and catabolites (In-111) in individual tissues up to 1 week post-injection. The PK and distribution of the wild-type IgG and the variant with enhanced binding for FcRn were largely similar to each other, but vastly different for the rapidly cleared low-FcRn-binding variant. Uptake in individual tissues varied across time, FcRn binding affinity, and radiolabeling method. The liver and spleen emerged as the most concentrated sites of IgG catabolism in the absence of FcRn protection. These data provide an increased understanding of FcRn’s role in antibody PK and catabolism at the tissue level. PMID:24572100

  1. High-Throughput Tabular Data Processor - Platform independent graphical tool for processing large data sets.

    Science.gov (United States)

    Madanecki, Piotr; Bałut, Magdalena; Buckley, Patrick G; Ochocka, J Renata; Bartoszewski, Rafał; Crossman, David K; Messiaen, Ludwine M; Piotrowski, Arkadiusz

    2018-01-01

    High-throughput technologies generate considerable amount of data which often requires bioinformatic expertise to analyze. Here we present High-Throughput Tabular Data Processor (HTDP), a platform independent Java program. HTDP works on any character-delimited column data (e.g. BED, GFF, GTF, PSL, WIG, VCF) from multiple text files and supports merging, filtering and converting of data that is produced in the course of high-throughput experiments. HTDP can also utilize itemized sets of conditions from external files for complex or repetitive filtering/merging tasks. The program is intended to aid global, real-time processing of large data sets using a graphical user interface (GUI). Therefore, no prior expertise in programming, regular expression, or command line usage is required of the user. Additionally, no a priori assumptions are imposed on the internal file composition. We demonstrate the flexibility and potential of HTDP in real-life research tasks including microarray and massively parallel sequencing, i.e. identification of disease predisposing variants in the next generation sequencing data as well as comprehensive concurrent analysis of microarray and sequencing results. We also show the utility of HTDP in technical tasks including data merge, reduction and filtering with external criteria files. HTDP was developed to address functionality that is missing or rudimentary in other GUI software for processing character-delimited column data from high-throughput technologies. Flexibility, in terms of input file handling, provides long term potential functionality in high-throughput analysis pipelines, as the program is not limited by the currently existing applications and data formats. HTDP is available as the Open Source software (https://github.com/pmadanecki/htdp).

  2. A novel monoclonal antibody targeting carboxymethyllysine, an advanced glycation end product in atherosclerosis and pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Ulrika Wendel

    Full Text Available Advanced glycation end products are formed by non-enzymatic reactions between proteins and carbohydrates, causing irreversible lysine and arginine alterations that severely affect protein structure and function. The resulting modifications induce inflammation by binding to scavenger receptors. An increase in advanced glycation end products is observed in a number of diseases e.g. atherosclerosis and cancer. Since advanced glycation end products also are present in healthy individuals, their detection and quantification are of great importance for usage as potential biomarkers. Current methods for advanced glycation end product detection are though limited and solely measure total glycation. This study describes a new epitope-mapped single chain variable fragment, D1-B2, against carboxymethyllysine, produced from a phage library that was constructed from mouse immunizations. The phage library was selected against advanced glycation end product targets using a phage display platform. Characterization of its binding pattern was performed using large synthetic glycated peptide and protein libraries displayed on microarray slides. D1-B2 showed a preference for an aspartic acid, three positions N-terminally from a carboxymethyllysine residue and also bound to a broad collection of glycated proteins. Positive immunohistochemical staining of mouse atherosclerotic plaques and of a tissue microarray of human pancreatic tumors confirmed the usability of the new scFv for advanced glycation end product detection in tissues. This study demonstrates a promising methodology for high-throughput generation of epitope-mapped monoclonal antibodies against AGE.

  3. High-throughput immuno-profiling of mamba (Dendroaspis) venom toxin epitopes using high-density peptide microarrays

    DEFF Research Database (Denmark)

    Engmark, Mikael; Andersen, Mikael Rørdam; Laustsen, Andreas Hougaard

    2016-01-01

    Snakebite envenoming is a serious condition requiring medical attention and administration of antivenom. Current antivenoms are antibody preparations obtained from the plasma of animals immunised with whole venom(s) and contain antibodies against snake venom toxins, but also against other antigens....... In order to better understand the molecular interactions between antivenom antibodies and epitopes on snake venom toxins, a high-throughput immuno-profiling study on all manually curated toxins from Dendroaspis species and selected African Naja species was performed based on custom-made high......-density peptide microarrays displaying linear toxin fragments. By detection of binding for three different antivenoms and performing an alanine scan, linear elements of epitopes and the positions important for binding were identified. A strong tendency of antivenom antibodies recognizing and binding to epitopes...

  4. Toward high throughput optical metamaterial assemblies.

    Science.gov (United States)

    Fontana, Jake; Ratna, Banahalli R

    2015-11-01

    Optical metamaterials have unique engineered optical properties. These properties arise from the careful organization of plasmonic elements. Transitioning these properties from laboratory experiments to functional materials may lead to disruptive technologies for controlling light. A significant issue impeding the realization of optical metamaterial devices is the need for robust and efficient assembly strategies to govern the order of the nanometer-sized elements while enabling macroscopic throughput. This mini-review critically highlights recent approaches and challenges in creating these artificial materials. As the ability to assemble optical metamaterials improves, new unforeseen opportunities may arise for revolutionary optical devices.

  5. (Super Variable Costing-Throughput Costing)

    OpenAIRE

    Çakıcı, Cemal

    2006-01-01

    (Super Variable Costing-Throughput Costing) The aim of this study is to explain the super-variable costing method which is a new subject in cost and management accounting and to show it’s working practicly.Shortly, super-variable costing can be defined as a costing method which is use only direct material costs in calculate of product costs and treats all costs except these (direct labor and overhead) as periad costs or operating costs.By using super-variable costing method, product costs ar...

  6. Towards Chip Scale Liquid Chromatography and High Throughput Immunosensing

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Jing [Iowa State Univ., Ames, IA (United States)

    2000-09-21

    This work describes several research projects aimed towards developing new instruments and novel methods for high throughput chemical and biological analysis. Approaches are taken in two directions. The first direction takes advantage of well-established semiconductor fabrication techniques and applies them to miniaturize instruments that are workhorses in analytical laboratories. Specifically, the first part of this work focused on the development of micropumps and microvalves for controlled fluid delivery. The mechanism of these micropumps and microvalves relies on the electrochemically-induced surface tension change at a mercury/electrolyte interface. A miniaturized flow injection analysis device was integrated and flow injection analyses were demonstrated. In the second part of this work, microfluidic chips were also designed, fabricated, and tested. Separations of two fluorescent dyes were demonstrated in microfabricated channels, based on an open-tubular liquid chromatography (OT LC) or an electrochemically-modulated liquid chromatography (EMLC) format. A reduction in instrument size can potentially increase analysis speed, and allow exceedingly small amounts of sample to be analyzed under diverse separation conditions. The second direction explores the surface enhanced Raman spectroscopy (SERS) as a signal transduction method for immunoassay analysis. It takes advantage of the improved detection sensitivity as a result of surface enhancement on colloidal gold, the narrow width of Raman band, and the stability of Raman scattering signals to distinguish several different species simultaneously without exploiting spatially-separated addresses on a biochip. By labeling gold nanoparticles with different Raman reporters in conjunction with different detection antibodies, a simultaneous detection of a dual-analyte immunoassay was demonstrated. Using this scheme for quantitative analysis was also studied and preliminary dose-response curves from an immunoassay of a

  7. A primer on high-throughput computing for genomic selection.

    Science.gov (United States)

    Wu, Xiao-Lin; Beissinger, Timothy M; Bauck, Stewart; Woodward, Brent; Rosa, Guilherme J M; Weigel, Kent A; Gatti, Natalia de Leon; Gianola, Daniel

    2011-01-01

    High-throughput computing (HTC) uses computer clusters to solve advanced computational problems, with the goal of accomplishing high-throughput over relatively long periods of time. In genomic selection, for example, a set of markers covering the entire genome is used to train a model based on known data, and the resulting model is used to predict the genetic merit of selection candidates. Sophisticated models are very computationally demanding and, with several traits to be evaluated sequentially, computing time is long, and output is low. In this paper, we present scenarios and basic principles of how HTC can be used in genomic selection, implemented using various techniques from simple batch processing to pipelining in distributed computer clusters. Various scripting languages, such as shell scripting, Perl, and R, are also very useful to devise pipelines. By pipelining, we can reduce total computing time and consequently increase throughput. In comparison to the traditional data processing pipeline residing on the central processors, performing general-purpose computation on a graphics processing unit provide a new-generation approach to massive parallel computing in genomic selection. While the concept of HTC may still be new to many researchers in animal breeding, plant breeding, and genetics, HTC infrastructures have already been built in many institutions, such as the University of Wisconsin-Madison, which can be leveraged for genomic selection, in terms of central processing unit capacity, network connectivity, storage availability, and middleware connectivity. Exploring existing HTC infrastructures as well as general-purpose computing environments will further expand our capability to meet increasing computing demands posed by unprecedented genomic data that we have today. We anticipate that HTC will impact genomic selection via better statistical models, faster solutions, and more competitive products (e.g., from design of marker panels to realized

  8. A high throughput capillary electrophoresis method to obtain pharmacokinetics and quality attributes of a therapeutic molecule in circulation

    Science.gov (United States)

    Piparia, Reema; Ouellette, David; Stine, W. Blaine; Grinnell, Christine; Tarcsa, Edit; Radziejewski, Czeslaw; Correia, Ivan

    2012-01-01

    Therapeutic proteins circulating in blood are in a highly crowded, redox environment at high temperatures of ~37°C. These molecules circulate in the presence of enzymes and other serum proteins making it difficult to predict from in vitro studies the stability, aggregation or pharmacokinetics of a therapeutic protein in vivo. Here, we describe use of a high throughput capillary electrophoresis based microfluidic device (LabChip GXII) to obtain pharmacokinetics (PK) of a fluorescently labeled human mAb directly from serum. The non-labeled and labeled mAbs were evaluated in single dose rat PK studies using a traditional ELISA method or LabChip GXII, respectively. The fluorescent dye did not significantly alter clearance of this particular mAb, and PK parameters were comparable for labeled and unlabeled molecules. Further, from the CE profile we concluded that the mAb was resistant to fragmentation or aggregation during circulation. In a follow-up experiment, dimers were generated from the mAb using photo-induced cross-linking of unmodified proteins (PICUP) and labeled with the same fluorophore. The extent of dimerization was incomplete and some monomer and higher molecular weight species were found in the preparation. In rat PK studies, the serum concentration-time profile of the three entities present in the dimer preparation could be followed simultaneously with the GXII technology. While further studies are warranted, we believe this method could be adapted to obtain PK of different forms of antibodies (oxidized, deamidated or various glycosylated species) and other proteins. PMID:22647389

  9. Selection of phage-displayed accessible recombinant targeted antibodies (SPARTA): methodology and applications.

    Science.gov (United States)

    D'Angelo, Sara; Staquicini, Fernanda I; Ferrara, Fortunato; Staquicini, Daniela I; Sharma, Geetanjali; Tarleton, Christy A; Nguyen, Huynh; Naranjo, Leslie A; Sidman, Richard L; Arap, Wadih; Bradbury, Andrew Rm; Pasqualini, Renata

    2018-05-03

    We developed a potentially novel and robust antibody discovery methodology, termed selection of phage-displayed accessible recombinant targeted antibodies (SPARTA). This combines an in vitro screening step of a naive human antibody library against known tumor targets, with in vivo selections based on tumor-homing capabilities of a preenriched antibody pool. This unique approach overcomes several rate-limiting challenges to generate human antibodies amenable to rapid translation into medical applications. As a proof of concept, we evaluated SPARTA on 2 well-established tumor cell surface targets, EphA5 and GRP78. We evaluated antibodies that showed tumor-targeting selectivity as a representative panel of antibody-drug conjugates (ADCs) and were highly efficacious. Our results validate a discovery platform to identify and validate monoclonal antibodies with favorable tumor-targeting attributes. This approach may also extend to other diseases with known cell surface targets and affected tissues easily isolated for in vivo selection.

  10. Clinical use of antibodies

    International Nuclear Information System (INIS)

    Baum, R.P.; Hoer, Gustav; Cox, P.H.; Buraggi, G.L.

    1991-01-01

    Use of monoclonal antibodies as tumour specific carrier molecules for therapeutic agents or as in vivo diagnostic reagents when labelled with radionuclides or NMR signal enhancers is attracting more and more attention. The potential is enormous but the technical problems are also considerable requiring the concerted action of many different scientific disciplines. This volume is based upon a symposium organised in Frankfurt in 1990 under the auspices of the European Association of Nuclear Medicines' Specialist Task Groups on Cardiology and the Utility of Labelled Antibodies. It gives a multidisciplinary review of the state of the art and of problems to be solved as well as recording the not inconsiderable successes which have been booked to date. The book will be of value as a reference to both clinicians and research scientists. refs.; figs.; tabs

  11. Delta antibody radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Kselikova, M; Urbankova, J

    1985-11-15

    The principle and procedure are described of the radioimmunoassay of delta antibody (delta-Ab) using the ABBOTT ANTI-DELTA kit by Abbott Co. A description is given of the kit, the working procedure and the method of evaluation. The results are reported of the incidence of delta-Ab in sera of patients with viral hepatitis B, in haemophiliacs, carriers of the hepatitis B virus surface antigen (HBsAg) and blood donors. The presence was detected of delta-Ab in one HBsAg carrier. The necessity is emphasized of delta-Ab determinations in the blood of donors in view of the antibody transfer with blood and blood preparations.

  12. [Antibody therapy for Alzheimer's disease].

    Science.gov (United States)

    Tabira, Takeshi; Matsumoto, Shin-Ei; Jin, Haifeng

    2011-11-01

    In order to avoid Abeta-induced autoimmune encephalitis, several monoclonal and polyclonal antibodies are in clinical trials. These are bapineuzumab, solanezumab, ponezumab, gantenerumab, BAN2401, gammaguard and octagam. Since each antibody has a different antigen epitope of Abeta, anti-amyloid activities are different. It is unknown which antibody is effective for Alzheimer disease, and we must wait for the result of clinical trials. Some patients who developed tissue amyloid plaque immuno-reactive (TAPIR) antibody showed slower decline after AN-1792 vaccination. We developed TAPIR-like monoclonal antibody, which was found to react with Abeta oligomers preferentially.

  13. Antigenic specificity of serum antibodies in mice fed soy protein

    DEFF Research Database (Denmark)

    Christensen, Hanne Risager; Bruun, S.W.; Frøkiær, Hanne

    2003-01-01

    Background: Soybean protein is used in a number of food products but unfortunately is also a common cause of food allergy. Upon ingestion of soy protein, healthy mice like other animals and humans generate a soy-specific antibody response in the absence of signs of illness. Not much is known about...... the relationship between the immunogenic proteins involved in this nondeleterious antibody response and the pathological response associated with food allergy. The objective of the present study was to characterize the antigenic specificity of the soy protein-specific antibody response generated in healthy mice...... ingesting soy protein. Methods: Blood from mice fed a soy-containing diet was analyzed using ELISA and immunoblot for antibody reactivity towards various soy protein fractions and pure soy proteins/subunits. Mice bred on a soy-free diet were used as controls. Results: The detectable antigenic specificity...

  14. High-throughput transformation of Saccharomyces cerevisiae using liquid handling robots.

    Directory of Open Access Journals (Sweden)

    Guangbo Liu

    Full Text Available Saccharomyces cerevisiae (budding yeast is a powerful eukaryotic model organism ideally suited to high-throughput genetic analyses, which time and again has yielded insights that further our understanding of cell biology processes conserved in humans. Lithium Acetate (LiAc transformation of yeast with DNA for the purposes of exogenous protein expression (e.g., plasmids or genome mutation (e.g., gene mutation, deletion, epitope tagging is a useful and long established method. However, a reliable and optimized high throughput transformation protocol that runs almost no risk of human error has not been described in the literature. Here, we describe such a method that is broadly transferable to most liquid handling high-throughput robotic platforms, which are now commonplace in academic and industry settings. Using our optimized method, we are able to comfortably transform approximately 1200 individual strains per day, allowing complete transformation of typical genomic yeast libraries within 6 days. In addition, use of our protocol for gene knockout purposes also provides a potentially quicker, easier and more cost-effective approach to generating collections of double mutants than the popular and elegant synthetic genetic array methodology. In summary, our methodology will be of significant use to anyone interested in high throughput molecular and/or genetic analysis of yeast.

  15. A High-Throughput, Precipitating Colorimetric Sandwich ELISA Microarray for Shiga Toxins

    Directory of Open Access Journals (Sweden)

    Andrew Gehring

    2014-06-01

    Full Text Available Shiga toxins 1 and 2 (Stx1 and Stx2 from Shiga toxin-producing E. coli (STEC bacteria were simultaneously detected with a newly developed, high-throughput antibody microarray platform. The proteinaceous toxins were immobilized and sandwiched between biorecognition elements (monoclonal antibodies and pooled horseradish peroxidase (HRP-conjugated monoclonal antibodies. Following the reaction of HRP with the precipitating chromogenic substrate (metal enhanced 3,3-diaminobenzidine tetrahydrochloride or DAB, the formation of a colored product was quantitatively measured with an inexpensive flatbed page scanner. The colorimetric ELISA microarray was demonstrated to detect Stx1 and Stx2 at levels as low as ~4.5 ng/mL within ~2 h of total assay time with a narrow linear dynamic range of ~1–2 orders of magnitude and saturation levels well above background. Stx1 and/or Stx2 produced by various strains of STEC were also detected following the treatment of cultured cells with mitomycin C (a toxin-inducing antibiotic and/or B-PER (a cell-disrupting, protein extraction reagent. Semi-quantitative detection of Shiga toxins was demonstrated to be sporadic among various STEC strains following incubation with mitomycin C; however, further reaction with B-PER generally resulted in the detection of or increased detection of Stx1, relative to Stx2, produced by STECs inoculated into either axenic broth culture or culture broth containing ground beef.

  16. Targeted DNA Methylation Analysis by High Throughput Sequencing in Porcine Peri-attachment Embryos

    OpenAIRE

    MORRILL, Benson H.; COX, Lindsay; WARD, Anika; HEYWOOD, Sierra; PRATHER, Randall S.; ISOM, S. Clay

    2013-01-01

    Abstract The purpose of this experiment was to implement and evaluate the effectiveness of a next-generation sequencing-based method for DNA methylation analysis in porcine embryonic samples. Fourteen discrete genomic regions were amplified by PCR using bisulfite-converted genomic DNA derived from day 14 in vivo-derived (IVV) and parthenogenetic (PA) porcine embryos as template DNA. Resulting PCR products were subjected to high-throughput sequencing using the Illumina Genome Analyzer IIx plat...

  17. High-Throughput Scoring of Seed Germination.

    Science.gov (United States)

    Ligterink, Wilco; Hilhorst, Henk W M

    2017-01-01

    High-throughput analysis of seed germination for phenotyping large genetic populations or mutant collections is very labor intensive and would highly benefit from an automated setup. Although very often used, the total germination percentage after a nominated period of time is not very informative as it lacks information about start, rate, and uniformity of germination, which are highly indicative of such traits as dormancy, stress tolerance, and seed longevity. The calculation of cumulative germination curves requires information about germination percentage at various time points. We developed the GERMINATOR package: a simple, highly cost-efficient, and flexible procedure for high-throughput automatic scoring and evaluation of germination that can be implemented without the use of complex robotics. The GERMINATOR package contains three modules: (I) design of experimental setup with various options to replicate and randomize samples; (II) automatic scoring of germination based on the color contrast between the protruding radicle and seed coat on a single image; and (III) curve fitting of cumulative germination data and the extraction, recap, and visualization of the various germination parameters. GERMINATOR is a freely available package that allows the monitoring and analysis of several thousands of germination tests, several times a day by a single person.

  18. High throughput nonparametric probability density estimation.

    Science.gov (United States)

    Farmer, Jenny; Jacobs, Donald

    2018-01-01

    In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference.

  19. Modeling Steroidogenesis Disruption Using High-Throughput ...

    Science.gov (United States)

    Environmental chemicals can elicit endocrine disruption by altering steroid hormone biosynthesis and metabolism (steroidogenesis) causing adverse reproductive and developmental effects. Historically, a lack of assays resulted in few chemicals having been evaluated for effects on steroidogenesis. The steroidogenic pathway is a series of hydroxylation and dehydrogenation steps carried out by CYP450 and hydroxysteroid dehydrogenase enzymes, yet the only enzyme in the pathway for which a high-throughput screening (HTS) assay has been developed is aromatase (CYP19A1), responsible for the aromatization of androgens to estrogens. Recently, the ToxCast HTS program adapted the OECD validated H295R steroidogenesis assay using human adrenocortical carcinoma cells into a high-throughput model to quantitatively assess the concentration-dependent (0.003-100 µM) effects of chemicals on 10 steroid hormones including progestagens, androgens, estrogens and glucocorticoids. These results, in combination with two CYP19A1 inhibition assays, comprise a large dataset amenable to clustering approaches supporting the identification and characterization of putative mechanisms of action (pMOA) for steroidogenesis disruption. In total, 514 chemicals were tested in all CYP19A1 and steroidogenesis assays. 216 chemicals were identified as CYP19A1 inhibitors in at least one CYP19A1 assay. 208 of these chemicals also altered hormone levels in the H295R assay, suggesting 96% sensitivity in the

  20. Preliminary High-Throughput Metagenome Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Dusheyko, Serge; Furman, Craig; Pangilinan, Jasmyn; Shapiro, Harris; Tu, Hank

    2007-03-26

    Metagenome data sets present a qualitatively different assembly problem than traditional single-organism whole-genome shotgun (WGS) assembly. The unique aspects of such projects include the presence of a potentially large number of distinct organisms and their representation in the data set at widely different fractions. In addition, multiple closely related strains could be present, which would be difficult to assemble separately. Failure to take these issues into account can result in poor assemblies that either jumble together different strains or which fail to yield useful results. The DOE Joint Genome Institute has sequenced a number of metagenomic projects and plans to considerably increase this number in the coming year. As a result, the JGI has a need for high-throughput tools and techniques for handling metagenome projects. We present the techniques developed to handle metagenome assemblies in a high-throughput environment. This includes a streamlined assembly wrapper, based on the JGI?s in-house WGS assembler, Jazz. It also includes the selection of sensible defaults targeted for metagenome data sets, as well as quality control automation for cleaning up the raw results. While analysis is ongoing, we will discuss preliminary assessments of the quality of the assembly results (http://fames.jgi-psf.org).

  1. Student throughput variables and properties: Varying cohort sizes

    Directory of Open Access Journals (Sweden)

    Lucas C.A. Stoop

    2017-11-01

    Full Text Available A recent research paper described how student throughput variables and properties combine to explain the behaviour of stationary or simplified throughput systems. Such behaviour can be understood in terms of the locus of a point in the triangular admissible region of the H-S plane, where H represents headcounts and S successful credits, each depending on the system properties at that point. The efficiency of the student throughput process is given by the ratio S/H. Simplified throughput systems are characterised by stationary graduation and dropout patterns of students as well as by annual intakes of student cohorts of equal size. The effect of varying the size of the annual intakes of student cohorts is reported on here. The observations made lead to the establishment of a more generalised student throughput theory which includes the simplified theory as a special case. The generalised theory still retains the notion of a triangular admissible region in the H-S plane but with the size and shape of the triangle depending on the size of the student cohorts. The ratio S/H again emerges as the process efficiency measure for throughput systems in general with unchanged roles assigned to important system properties. This theory provides for a more fundamental understanding of student throughput systems encountered in real life. Significance: A generalised stationary student throughput theory through varying cohort sizes allows for a far better understanding of real student throughput systems.

  2. Robust Throughput Boosting for Low Latency Dynamic Partial Reconfiguration

    DEFF Research Database (Denmark)

    Nannarelli, Alberto; Re, M.; Cardarilli, Gian Carlo

    2017-01-01

    Reducing the configuration time of portions of an FPGA at run time is crucial in contemporary FPGA-based accelerators. In this work, we propose a method to increase the throughput for FPGA dynamic partial reconfiguration by using standard IP blocks. The throughput is increased by over-clocking th......Reducing the configuration time of portions of an FPGA at run time is crucial in contemporary FPGA-based accelerators. In this work, we propose a method to increase the throughput for FPGA dynamic partial reconfiguration by using standard IP blocks. The throughput is increased by over...

  3. PFP total process throughput calculation and basis of estimate

    International Nuclear Information System (INIS)

    SINCLAIR, J.C.

    1999-01-01

    The PFP Process Throughput Calculation and Basis of Estimate document provides the calculated value and basis of estimate for process throughput associated with material stabilization operations conducted in 234-52 Building. The process throughput data provided reflects the best estimates of material processing rates consistent with experience at the Plutonium Finishing Plant (PFP) and other U.S. Department of Energy (DOE) sites. The rates shown reflect demonstrated capacity during ''full'' operation. They do not reflect impacts of building down time. Therefore, these throughput rates need to have a Total Operating Efficiency (TOE) factor applied

  4. Quantitative relationship between antibody affinity and antibody avidity

    International Nuclear Information System (INIS)

    Griswold, W.R.

    1987-01-01

    The relationship between antibody avidity, measured by the dissociation of the antigen-antibody bond in antigen excess, and antibody affinity was studied. Complexes of radiolabelled antigen and antibody of known affinity were prepared in vitro and allowed to stand for seven days to reach equilibrium. Then nonlabelled antigen in one hundred fold excess was added to dissociate the complexes. After an appropriate incubation the fraction of antigen bound to antibody was measured by the ammonium sulfate precipitation method. The dissociation index was the fraction bound in the experimental sample divided by the fraction bound in the control. The correlation coefficient between the dissociation index and the antibody binding constant was 0.92 for early dissociation and 0.98 for late dissociation. The regression equation relating the binding constant to the dissociation index was K = 6.4(DI) + 6.25, where DI is the late dissociation index and K is the logarithm to the base 10 of the binding constant. There is a high correlation between avidity and affinity of antibody. Antibody affinity can be estimated from avidity data. The stability of antigen-antibody complexes can be predicted from antibody affinity

  5. Evaluation of a pooled strategy for high-throughput sequencing of cosmid clones from metagenomic libraries.

    Science.gov (United States)

    Lam, Kathy N; Hall, Michael W; Engel, Katja; Vey, Gregory; Cheng, Jiujun; Neufeld, Josh D; Charles, Trevor C

    2014-01-01

    High-throughput sequencing methods have been instrumental in the growing field of metagenomics, with technological improvements enabling greater throughput at decreased costs. Nonetheless, the economy of high-throughput sequencing cannot be fully leveraged in the subdiscipline of functional metagenomics. In this area of research, environmental DNA is typically cloned to generate large-insert libraries from which individual clones are isolated, based on specific activities of interest. Sequence data are required for complete characterization of such clones, but the sequencing of a large set of clones requires individual barcode-based sample preparation; this can become costly, as the cost of clone barcoding scales linearly with the number of clones processed, and thus sequencing a large number of metagenomic clones often remains cost-prohibitive. We investigated a hybrid Sanger/Illumina pooled sequencing strategy that omits barcoding altogether, and we evaluated this strategy by comparing the pooled sequencing results to reference sequence data obtained from traditional barcode-based sequencing of the same set of clones. Using identity and coverage metrics in our evaluation, we show that pooled sequencing can generate high-quality sequence data, without producing problematic chimeras. Though caveats of a pooled strategy exist and further optimization of the method is required to improve recovery of complete clone sequences and to avoid circumstances that generate unrecoverable clone sequences, our results demonstrate that pooled sequencing represents an effective and low-cost alternative for sequencing large sets of metagenomic clones.

  6. DESIGN OF LOW EPI AND HIGH THROUGHPUT CORDIC CELL TO IMPROVE THE PERFORMANCE OF MOBILE ROBOT

    Directory of Open Access Journals (Sweden)

    P. VELRAJKUMAR

    2014-04-01

    Full Text Available This paper mainly focuses on pass logic based design, which gives an low Energy Per Instruction (EPI and high throughput COrdinate Rotation Digital Computer (CORDIC cell for application of robotic exploration. The basic components of CORDIC cell namely register, multiplexer and proposed adder is designed using pass transistor logic (PTL design. The proposed adder is implemented in bit-parallel iterative CORDIC circuit whereas designed using DSCH2 VLSI CAD tool and their layouts are generated by Microwind 3 VLSI CAD tool. The propagation delay, area and power dissipation are calculated from the simulated results for proposed adder based CORDIC cell. The EPI, throughput and effect of temperature are calculated from generated layout. The output parameter of generated layout is analysed using BSIM4 advanced analyzer. The simulated result of the proposed adder based CORDIC circuit is compared with other adder based CORDIC circuits. From the analysis of these simulated results, it was found that the proposed adder based CORDIC circuit dissipates low power, gives faster response, low EPI and high throughput.

  7. Mining Naïve Rabbit Antibody Repertoires by Phage Display for Monoclonal Antibodies of Therapeutic Utility.

    Science.gov (United States)

    Peng, Haiyong; Nerreter, Thomas; Chang, Jing; Qi, Junpeng; Li, Xiuling; Karunadharma, Pabalu; Martinez, Gustavo J; Fallahi, Mohammad; Soden, Jo; Freeth, Jim; Beerli, Roger R; Grawunder, Ulf; Hudecek, Michael; Rader, Christoph

    2017-09-15

    Owing to their high affinities and specificities, rabbit monoclonal antibodies (mAbs) have demonstrated value and potential primarily as basic research and diagnostic reagents, but, in some cases, also as therapeutics. To accelerate access to rabbit mAbs bypassing immunization, we generated a large naïve rabbit antibody repertoire represented by a phage display library encompassing >10 billion independent antibodies in chimeric rabbit/human Fab format and validated it by next-generation sequencing. Panels of rabbit mAbs selected from this library against two emerging cancer targets, ROR1 and ROR2, revealed high diversity, affinity, and specificity. Moreover, ROR1- and ROR2-targeting rabbit mAbs demonstrated therapeutic utility as components of chimeric antigen receptor-engineered T cells, further corroborating the value of the naïve rabbit antibody library as a rich and virtually unlimited source of rabbit mAbs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Addressing the Immunogenicity of the Cargo and of the Targeting Antibodies with a Focus on Deimmunized Bacterial Toxins and on Antibody-Targeted Human Effector Proteins

    Science.gov (United States)

    Grinberg, Yehudit; Benhar, Itai

    2017-01-01

    Third-generation immunotoxins are composed of a human, or humanized, targeting moiety, usually a monoclonal antibody or an antibody fragment, and a non-human effector molecule. Due to the non-human origin of the cytotoxic domain, these molecules stimulate potent anti-drug immune responses, which limit treatment options. Efforts are made to deimmunize such immunotoxins or to combine treatment with immunosuppression. An alternative approach is using the so-called “human cytotoxic fusion proteins”, in which antibodies are used to target human effector proteins. Here, we present three relevant approaches for reducing the immunogenicity of antibody-targeted protein therapeutics: (1) reducing the immunogenicity of the bacterial toxin, (2) fusing human cytokines to antibodies to generate immunocytokines and (3) addressing the immunogenicity of the targeting antibodies. PMID:28574434

  9. SNP-PHAGE – High throughput SNP discovery pipeline

    Directory of Open Access Journals (Sweden)

    Cregan Perry B

    2006-10-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs as defined here are single base sequence changes or short insertion/deletions between or within individuals of a given species. As a result of their abundance and the availability of high throughput analysis technologies SNP markers have begun to replace other traditional markers such as restriction fragment length polymorphisms (RFLPs, amplified fragment length polymorphisms (AFLPs and simple sequence repeats (SSRs or microsatellite markers for fine mapping and association studies in several species. For SNP discovery from chromatogram data, several bioinformatics programs have to be combined to generate an analysis pipeline. Results have to be stored in a relational database to facilitate interrogation through queries or to generate data for further analyses such as determination of linkage disequilibrium and identification of common haplotypes. Although these tasks are routinely performed by several groups, an integrated open source SNP discovery pipeline that can be easily adapted by new groups interested in SNP marker development is currently unavailable. Results We developed SNP-PHAGE (SNP discovery Pipeline with additional features for identification of common haplotypes within a sequence tagged site (Haplotype Analysis and GenBank (-dbSNP submissions. This tool was applied for analyzing sequence traces from diverse soybean genotypes to discover over 10,000 SNPs. This package was developed on UNIX/Linux platform, written in Perl and uses a MySQL database. Scripts to generate a user-friendly web interface are also provided with common queries for preliminary data analysis. A machine learning tool developed by this group for increasing the efficiency of SNP discovery is integrated as a part of this package as an optional feature. The SNP-PHAGE package is being made available open source at http://bfgl.anri.barc.usda.gov/ML/snp-phage/. Conclusion SNP-PHAGE provides a bioinformatics

  10. Generation of monoclonal antibodies against prostate specific antigen (PSA) for the detection of PSA and its purification; Generación de anticuerpos monoclonales contra el antígeno específico de próstata (PSA) para la detección del PSA y su purificación

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo Castro, Boris Ernesto [Centro de Ingeniería Genética y Biotecnología, CIGB, La Habana (Cuba)

    2012-07-01

    The prostate cancer in Cuba is a problem of health (2672 diagnosed cases and 2769 deaths in 2007). Various diagnostic methods have been implemented for the detection and management of this disease, emphasizing among them (PSA) prostate-specific antigen serological determination. At this work was generated and characterized a panel of 11 antibodies (AcMs) monoclonal IgG1 detected with high affinity described major epitopes of the PSA, both in solution and attached to the test plate. From the panel obtained AcMs was the standardization of an essay type ELISA for the detection of serum total PSA (associated and free) equimolar, based on antibody monoclonal CB-PSA.4 in the coating and the CB-PSA.9 coupled with biotin as liner, with a detection limit of 0.15 ng/mL. Similarly, standardized system for detection in serum free PSA, based on the AcMs CB-PSA.4 (coating) and CB-PSA.2 coupled with biotin (liner), with a detection limit of 0.5 ng/mL. Finally, with the purpose of using PSA as standard in trials type ELISA, developed a simple method of inmunopurificación based on the AcM, CB-PSA.2, which was obtained the PSA with a purity exceeding 90%. Immunoassay Centre on the basis of the AcMs panel and the results of this study, developed and recorded two diagnostic systems for the detection of PSA in human serum. (author)

  11. Cell surface profiling using high-throughput flow cytometry: a platform for biomarker discovery and analysis of cellular heterogeneity.

    Directory of Open Access Journals (Sweden)

    Craig A Gedye

    Full Text Available Cell surface proteins have a wide range of biological functions, and are often used as lineage-specific markers. Antibodies that recognize cell surface antigens are widely used as research tools, diagnostic markers, and even therapeutic agents. The ability to obtain broad cell surface protein profiles would thus be of great value in a wide range of fields. There are however currently few available methods for high-throughput analysis of large numbers of cell surface proteins. We describe here a high-throughput flow cytometry (HT-FC platform for rapid analysis of 363 cell surface antigens. Here we demonstrate that HT-FC provides reproducible results, and use the platform to identify cell surface antigens that are influenced by common cell preparation methods. We show that multiple populations within complex samples such as primary tumors can be simultaneously analyzed by co-staining of cells with lineage-specific antibodies, allowing unprecedented depth of analysis of heterogeneous cell populations. Furthermore, standard informatics methods can be used to visualize, cluster and downsample HT-FC data to reveal novel signatures and biomarkers. We show that the cell surface profile provides sufficient molecular information to classify samples from different cancers and tissue types into biologically relevant clusters using unsupervised hierarchical clustering. Finally, we describe the identification of a candidate lineage marker and its subsequent validation. In summary, HT-FC combines the advantages of a high-throughput screen with a detection method that is sensitive, quantitative, highly reproducible, and allows in-depth analysis of heterogeneous samples. The use of commercially available antibodies means that high quality reagents are immediately available for follow-up studies. HT-FC has a wide range of applications, including biomarker discovery, molecular classification of cancers, or identification of novel lineage specific or stem cell

  12. Cell surface profiling using high-throughput flow cytometry: a platform for biomarker discovery and analysis of cellular heterogeneity.

    Science.gov (United States)

    Gedye, Craig A; Hussain, Ali; Paterson, Joshua; Smrke, Alannah; Saini, Harleen; Sirskyj, Danylo; Pereira, Keira; Lobo, Nazleen; Stewart, Jocelyn; Go, Christopher; Ho, Jenny; Medrano, Mauricio; Hyatt, Elzbieta; Yuan, Julie; Lauriault, Stevan; Meyer, Mona; Kondratyev, Maria; van den Beucken, Twan; Jewett, Michael; Dirks, Peter; Guidos, Cynthia J; Danska, Jayne; Wang, Jean; Wouters, Bradly; Neel, Benjamin; Rottapel, Robert; Ailles, Laurie E

    2014-01-01

    Cell surface proteins have a wide range of biological functions, and are often used as lineage-specific markers. Antibodies that recognize cell surface antigens are widely used as research tools, diagnostic markers, and even therapeutic agents. The ability to obtain broad cell surface protein profiles would thus be of great value in a wide range of fields. There are however currently few available methods for high-throughput analysis of large numbers of cell surface proteins. We describe here a high-throughput flow cytometry (HT-FC) platform for rapid analysis of 363 cell surface antigens. Here we demonstrate that HT-FC provides reproducible results, and use the platform to identify cell surface antigens that are influenced by common cell preparation methods. We show that multiple populations within complex samples such as primary tumors can be simultaneously analyzed by co-staining of cells with lineage-specific antibodies, allowing unprecedented depth of analysis of heterogeneous cell populations. Furthermore, standard informatics methods can be used to visualize, cluster and downsample HT-FC data to reveal novel signatures and biomarkers. We show that the cell surface profile provides sufficient molecular information to classify samples from different cancers and tissue types into biologically relevant clusters using unsupervised hierarchical clustering. Finally, we describe the identification of a candidate lineage marker and its subsequent validation. In summary, HT-FC combines the advantages of a high-throughput screen with a detection method that is sensitive, quantitative, highly reproducible, and allows in-depth analysis of heterogeneous samples. The use of commercially available antibodies means that high quality reagents are immediately available for follow-up studies. HT-FC has a wide range of applications, including biomarker discovery, molecular classification of cancers, or identification of novel lineage specific or stem cell markers.

  13. Quantitative assessment of antibody internalization with novel monoclonal antibodies against Alexa fluorophores.

    Directory of Open Access Journals (Sweden)

    Sindy Liao-Chan

    Full Text Available Antibodies against cell surface antigens may be internalized through their specific interactions with these proteins and in some cases may induce or perturb antigen internalization. The anti-cancer efficacy of antibody-drug conjugates is thought to rely on their uptake by cancer cells expressing the surface antigen. Numerous techniques, including microscopy and flow cytometry, have been used to identify antibodies with desired cellular uptake rates. To enable quantitative measurements of internalization of labeled antibodies, an assay based on internalized and quenched fluorescence was developed. For this approach, we generated novel anti-Alexa Fluor monoclonal antibodies (mAbs that effectively and specifically quench cell surface-bound Alexa Fluor 488 or Alexa Fluor 594 fluorescence. Utilizing Alexa Fluor-labeled mAbs against the EphA2 receptor tyrosine kinase, we showed that the anti-Alexa Fluor reagents could be used to monitor internalization quantitatively over time. The anti-Alexa Fluor mAbs were also validated in a proof of concept dual-label internalization assay with simultaneous exposure of cells to two different mAbs. Importantly, the unique anti-Alexa Fluor mAbs described here may also enable other single- and dual-label experiments, including label detection and signal enhancement in macromolecules, trafficking of proteins and microorganisms, and cell migration and morphology.

  14. Quantitative assessment of antibody internalization with novel monoclonal antibodies against Alexa fluorophores.

    Science.gov (United States)

    Liao-Chan, Sindy; Daine-Matsuoka, Barbara; Heald, Nathan; Wong, Tiffany; Lin, Tracey; Cai, Allen G; Lai, Michelle; D'Alessio, Joseph A; Theunissen, Jan-Willem

    2015-01-01

    Antibodies against cell surface antigens may be internalized through their specific interactions with these proteins and in some cases may induce or perturb antigen internalization. The anti-cancer efficacy of antibody-drug conjugates is thought to rely on their uptake by cancer cells expressing the surface antigen. Numerous techniques, including microscopy and flow cytometry, have been used to identify antibodies with desired cellular uptake rates. To enable quantitative measurements of internalization of labeled antibodies, an assay based on internalized and quenched fluorescence was developed. For this approach, we generated novel anti-Alexa Fluor monoclonal antibodies (mAbs) that effectively and specifically quench cell surface-bound Alexa Fluor 488 or Alexa Fluor 594 fluorescence. Utilizing Alexa Fluor-labeled mAbs against the EphA2 receptor tyrosine kinase, we showed that the anti-Alexa Fluor reagents could be used to monitor internalization quantitatively over time. The anti-Alexa Fluor mAbs were also validated in a proof of concept dual-label internalization assay with simultaneous exposure of cells to two different mAbs. Importantly, the unique anti-Alexa Fluor mAbs described here may also enable other single- and dual-label experiments, including label detection and signal enhancement in macromolecules, trafficking of proteins and microorganisms, and cell migration and morphology.

  15. Microbials for the production of monoclonal antibodies and antibody fragments.

    Science.gov (United States)

    Spadiut, Oliver; Capone, Simona; Krainer, Florian; Glieder, Anton; Herwig, Christoph

    2014-01-01

    Monoclonal antibodies (mAbs) and antibody fragments represent the most important biopharmaceutical products today. Because full length antibodies are glycosylated, mammalian cells, which allow human-like N-glycosylation, are currently used for their production. However, mammalian cells have several drawbacks when it comes to bioprocessing and scale-up, resulting in long processing times and elevated costs. By contrast, antibody fragments, that are not glycosylated but still exhibit antigen binding properties, can be produced in microbial organisms, which are easy to manipulate and cultivate. In this review, we summarize recent advances in the expression systems, strain engineering, and production processes for the three main microbials used in antibody and antibody fragment production, namely Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. High Throughput PBTK: Evaluating EPA’s Open-Source Data and Tools for Dosimetry and Exposure Reconstruction

    Science.gov (United States)

    Thousands of chemicals have been profiled by high-throughput screening (HTS) programs such as ToxCast and Tox21; these chemicals are tested in part because most of them have limited or no data on hazard, exposure, or toxicokinetics (TK). While HTS generates in vitro bioactivity d...

  17. Automation in Cytomics: A Modern RDBMS Based Platform for Image Analysis and Management in High-Throughput Screening Experiments

    NARCIS (Netherlands)

    E. Larios (Enrique); Y. Zhang (Ying); K. Yan (Kuan); Z. Di; S. LeDévédec (Sylvia); F.E. Groffen (Fabian); F.J. Verbeek

    2012-01-01

    textabstractIn cytomics bookkeeping of the data generated during lab experiments is crucial. The current approach in cytomics is to conduct High-Throughput Screening (HTS) experiments so that cells can be tested under many different experimental conditions. Given the large amount of different

  18. Radioimmunoassay with heterologous antibody (hetero-antibody RIA)

    International Nuclear Information System (INIS)

    Iwasawa, Atsushi; Hayashi, Hiroaki; Itoh, Zen; Wakabayashi, Katsumi

    1991-01-01

    To develop a homologous radioimmunoassay (RIA) for a hormone of a small or rare animal often meets difficulty in collecting a large amount of purified antigen required for antibody production. On the other hand, to employ a heterologous RIA to estimate the hormone often gives poor sensitivity. To overcome this difficulty, a 'hetero-antibody' RIA was studied. In a hetero-antibody RIA system, a purified preparation of a hormone is used for radioiodination and standardization and a heterologous antibody to the hormone is used for the first antibody. Canine motilin and rat LH were selected as examples, and anti-porcine motilin and anti-hCG, anti-hCGβ or anti-ovine LHβ was used as the heterologous antibody. The sensitivities of the hetero-antibody RIAs were much higher than those of heterologous RIAs in any case, showing that these hetero-antibody RIA systems were suitable for practical use. To clarify the principle of hetero-antibody RIA, antiserum to porcine motilin was fractionated on an affinity column where canine motilin was immobilized. The fraction bound had greater constants of affinity with both porcine and canine motilins than the rest of the antibody fractions. This fraction also reacted with a synthetic peptide corresponding to the C-terminal sequence common to porcine and canine motilins in a competitive binding test with labeled canine motilin. These results suggest that an antibody population having high affinity and cross-reactivity is present in polyclonal antiserum and indicate that the population can be used in hetero-antibody RIA at an appropriate concentration. (author)

  19. Investigating interactions between phospholipase B-Like 2 and antibodies during Protein A chromatography.

    Science.gov (United States)

    Tran, Benjamin; Grosskopf, Vanessa; Wang, Xiangdan; Yang, Jihong; Walker, Don; Yu, Christopher; McDonald, Paul

    2016-03-18

    Purification processes for therapeutic antibodies typically exploit multiple and orthogonal chromatography steps in order to remove impurities, such as host-cell proteins. While the majority of host-cell proteins are cleared through purification processes, individual host-cell proteins such as Phospholipase B-like 2 (PLBL2) are more challenging to remove and can persist into the final purification pool even after multiple chromatography steps. With packed-bed chromatography runs using host-cell protein ELISAs and mass spectrometry analysis, we demonstrated that different therapeutic antibodies interact to varying degrees with host-cell proteins in general, and PLBL2 specifically. We then used a high-throughput Protein A chromatography method to further examine the interaction between our antibodies and PLBL2. Our results showed that the co-elution of PLBL2 during Protein A chromatography is highly dependent on the individual antibody and PLBL2 concentration in the chromatographic load. Process parameters such as antibody resin load density and pre-elution wash conditions also influence the levels of PLBL2 in the Protein A eluate. Furthermore, using surface plasmon resonance, we demonstrated that there is a preference for PLBL2 to interact with IgG4 subclass antibodies compared to IgG1 antibodies. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A fully automated primary screening system for the discovery of therapeutic antibodies directly from B cells.

    Science.gov (United States)

    Tickle, Simon; Howells, Louise; O'Dowd, Victoria; Starkie, Dale; Whale, Kevin; Saunders, Mark; Lee, David; Lightwood, Daniel

    2015-04-01

    For a therapeutic antibody to succeed, it must meet a range of potency, stability, and specificity criteria. Many of these characteristics are conferred by the amino acid sequence of the heavy and light chain variable regions and, for this reason, can be screened for during antibody selection. However, it is important to consider that antibodies satisfying all these criteria may be of low frequency in an immunized animal; for this reason, it is essential to have a mechanism that allows for efficient sampling of the immune repertoire. UCB's core antibody discovery platform combines high-throughput B cell culture screening and the identification and isolation of single, antigen-specific IgG-secreting B cells through a proprietary technique called the "fluorescent foci" method. Using state-of-the-art automation to facilitate primary screening, extremely efficient interrogation of the natural antibody repertoire is made possible; more than 1 billion immune B cells can now be screened to provide a useful starting point from which to identify the rare therapeutic antibody. This article will describe the design, construction, and commissioning of a bespoke automated screening platform and two examples of how it was used to screen for antibodies against two targets. © 2014 Society for Laboratory Automation and Screening.

  1. Acquisition and analysis of throughput rates for an operational department-wide PACS

    Science.gov (United States)

    Stewart, Brent K.; Taira, Ricky K.; Dwyer, Samuel J., III; Huang, H. K.

    1992-07-01

    The accurate prediction of image throughput is a critical issue in planning for and acquisition of any successful Picture Archiving and Communication System (PACS). Bottlenecks or design flaws can render an expensive PACS implementation useless. This manuscript presents a method for accurately predicting and measuring image throughput of a PACS design. To create the simulation model of the planned or implemented PACS, it must first be decomposed into principal tasks. We have decomposed the entire PACS image management chain into eight subsystems. These subsystems include network transfers over three different networks (Ethernet, FDDI and UltraNet) and five software programs and/or queues: (1) transfer of image data from the imaging modality computer to the image acquisition/reformatting computer; (2) reformatting the image data into a standard image format; (3) transferring the image data from the acquisition/reformatting computer to the image archive computer; (4) updating a relational database management system over the network; (5) image processing-- rotation and optimal gray-scale lookup table calculation; (6) request that the image be archived; (7) image transfer from the image archive computer to a designated image display workstation; and (8) update the local database on the image display station, separate the image header from the image data and store the image data on a parallel disk array. Through development of an event logging facility and implementation of a network management package we have acquired throughput data for each subsystem in the PACS chain. In addition, from our PACS relational database management system, we have distilled the traffic generation patterns (temporal, file size and destination) of our imaging modality devices. This data has been input into a simulation modeling package (Block Oriented Network Simulator-- BONeS) to estimate the characteristics of the modeled PACS, e.g., the throughput rates and delay time. This simulation

  2. High-throughput single nucleotide polymorphism genotyping using nanofluidic Dynamic Arrays

    Directory of Open Access Journals (Sweden)

    Crenshaw Andrew

    2009-01-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs have emerged as the genetic marker of choice for mapping disease loci and candidate gene association studies, because of their high density and relatively even distribution in the human genomes. There is a need for systems allowing medium multiplexing (ten to hundreds of SNPs with high throughput, which can efficiently and cost-effectively generate genotypes for a very large sample set (thousands of individuals. Methods that are flexible, fast, accurate and cost-effective are urgently needed. This is also important for those who work on high throughput genotyping in non-model systems where off-the-shelf assays are not available and a flexible platform is needed. Results We demonstrate the use of a nanofluidic Integrated Fluidic Circuit (IFC - based genotyping system for medium-throughput multiplexing known as the Dynamic Array, by genotyping 994 individual human DNA samples on 47 different SNP assays, using nanoliter volumes of reagents. Call rates of greater than 99.5% and call accuracies of greater than 99.8% were achieved from our study, which demonstrates that this is a formidable genotyping platform. The experimental set up is very simple, with a time-to-result for each sample of about 3 hours. Conclusion Our results demonstrate that the Dynamic Array is an excellent genotyping system for medium-throughput multiplexing (30-300 SNPs, which is simple to use and combines rapid throughput with excellent call rates, high concordance and low cost. The exceptional call rates and call accuracy obtained may be of particular interest to those working on validation and replication of genome- wide- association (GWA studies.

  3. Human antibody technology and the development of antibodies against cytomegalovirus.

    Science.gov (United States)

    Ohlin, Mats; Söderberg-Nauclér, Cecilia

    2015-10-01

    Cytomegalovirus (CMV) is a virus that causes chronic infections in a large set of the population. It may cause severe disease in immunocompromised individuals, is linked to immunosenescence and implied to play an important role in the pathogenesis of cardiovascular diseases and cancer. Modulation of the immune system's abilities to manage the virus represent a highly viable therapeutic option and passive immunotherapy with polyclonal antibody preparations is already in clinical use. Defined monoclonal antibodies offer many advantages over polyclonal antibodies purified from serum. Human CMV-specific monoclonal antibodies have consequently been thoroughly investigated with respect to their potential in the treatment of diseases caused by CMV. Recent advances in human antibody technology have substantially expanded the breadth of antibodies for such applications. This review summarizes the fundamental basis for treating CMV disease by use of antibodies, the basic technologies to be used to develop such antibodies, and relevant human antibody specificities available to target this virus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Development and application of triple antibody sandwich enzyme-linked immunosorbent assays for begomovirus detection using monoclonal antibodies against Tomato yellow leaf curl Thailand virus.

    Science.gov (United States)

    Seepiban, Channarong; Charoenvilaisiri, Saengsoon; Warin, Nuchnard; Bhunchoth, Anjana; Phironrit, Namthip; Phuangrat, Bencharong; Chatchawankanphanich, Orawan; Attathom, Supat; Gajanandana, Oraprapai

    2017-05-30

    Tomato yellow leaf curl Thailand virus, TYLCTHV, is a begomovirus that causes severe losses of tomato crops in Thailand as well as several countries in Southeast and East Asia. The development of monoclonal antibodies (MAbs) and serological methods for detecting TYLCTHV is essential for epidemiological studies and screening for virus-resistant cultivars. The recombinant coat protein (CP) of TYLCTHV was expressed in Escherichia coli and used to generate MAbs against TYLCTHV through hybridoma technology. The MAbs were characterized and optimized to develop triple antibody sandwich enzyme-linked immunosorbent assays (TAS-ELISAs) for begomovirus detection. The efficiency of TAS-ELISAs for begomovirus detection was evaluated with tomato, pepper, eggplant, okra and cucurbit plants collected from several provinces in Thailand. Molecular identification of begomoviruses in these samples was also performed through PCR and DNA sequence analysis of the CP gene. Two MAbs (M1 and D2) were generated and used to develop TAS-ELISAs for begomovirus detection. The results of begomovirus detection in 147 field samples indicated that MAb M1 reacted with 2 begomovirus species, TYLCTHV and Tobacco leaf curl Yunnan virus (TbLCYnV), whereas MAb D2 reacted with 4 begomovirus species, TYLCTHV, TbLCYnV, Tomato leaf curl New Delhi virus (ToLCNDV) and Squash leaf curl China virus (SLCCNV). Phylogenetic analyses of CP amino acid sequences from these begomoviruses revealed that the CP sequences of begomoviruses recognized by the narrow-spectrum MAb M1 were highly conserved, sharing 93% identity with each other but only 72-81% identity with MAb M1-negative begomoviruses. The CP sequences of begomoviruses recognized by the broad-spectrum MAb D2 demonstrated a wider range of amino acid sequence identity, sharing 78-96% identity with each other and 72-91% identity with those that were not detected by MAb D2. TAS-ELISAs using the narrow-specificity MAb M1 proved highly efficient for the detection of

  5. High-Throughput Process Development for Biopharmaceuticals.

    Science.gov (United States)

    Shukla, Abhinav A; Rameez, Shahid; Wolfe, Leslie S; Oien, Nathan

    2017-11-14

    The ability to conduct multiple experiments in parallel significantly reduces the time that it takes to develop a manufacturing process for a biopharmaceutical. This is particularly significant before clinical entry, because process development and manufacturing are on the "critical path" for a drug candidate to enter clinical development. High-throughput process development (HTPD) methodologies can be similarly impactful during late-stage development, both for developing the final commercial process as well as for process characterization and scale-down validation activities that form a key component of the licensure filing package. This review examines the current state of the art for HTPD methodologies as they apply to cell culture, downstream purification, and analytical techniques. In addition, we provide a vision of how HTPD activities across all of these spaces can integrate to create a rapid process development engine that can accelerate biopharmaceutical drug development. Graphical Abstract.

  6. Throughput/inventory dollar-days

    DEFF Research Database (Denmark)

    Gupta, Mahesh; Andersen, Soeren

    2018-01-01

    As the semiconductor industry moves away from vertical integration, performance measures play an increasingly important role to ensure effective collaboration. This paper demonstrates that the theory of constraints (TOC)-based measures, Throughput and Inventory Dollar-Days (T/IDD), induce...... autonomous supply chain (SC) links to function as a synergistic whole and thereby, improve the performance of the whole SC network significantly. We model an SC network of a well-known TOC case study using discrete event simulation and discuss managerial implications of these measures via a set of scenarios....... The scenarios explain how these measures – without sharing sensitive financial data – allow members of an SC network to monitor both the effectiveness (TDD) and efficiency (IDD) of SC members and lead them to create win-win solutions following well-known TOC-based planning and control concepts. We conclude...

  7. Monoclonal antibodies based on hybridoma technology.

    Science.gov (United States)

    Yagami, Hisanori; Kato, Hiroshi; Tsumoto, Kanta; Tomita, Masahiro

    2013-03-01

    Based on the size and scope of the present global market for medicine, monoclonal antibodies (mAbs) have a very promising future, with applications for cancers through autoimmune ailments to infectious disease. Since mAbs recognize only their target antigens and not other unrelated proteins, pinpoint medical treatment is possible. Global demand is dramatically expanding. Hybridoma technology, which allows production of mAbs directed against antigens of interest is therefore privileged. However, there are some pivotal points for further development to generate therapeutic antibodies. One is selective generation of human mAbs. Employment of transgenic mice producing human antibodies would overcome this problem. Another focus is recognition sites and conformational epitopes in antigens may be just as important as linear epitopes, especially when membrane proteins such as receptors are targeted. Recognition of intact structures is of critical importance for medical purposes. In this review, we describe patent related information for therapeutic mAbs based on hybridoma technology and also discuss new advances in hybridoma technology that facilitate selective production of stereospecific mAbs.

  8. Enzyme-linked immunosorbent assay (ELISA) using a specific monoclonal antibody as a new tool to detect Sudan dyes and Para red

    International Nuclear Information System (INIS)

    Ju Chunmei; Tang Yong; Fan Huiying; Chen Jinding

    2008-01-01

    To set up an immunoassay-based method to detect Sudan dyes and Para red, we generated a monoclonal antibody (Mab) using a specially designed carboxyl derivative of Sudan I (CSD I) as the immunogen. CSD I was synthesized by azocoupling reaction using 2-naphthol and diazotised 4-aminobenzoic acid. The antibody was obtained from a hybridoma, which was derived from the fusion of the mouse myeloma SP2/0 cells and the splenocytes from the mice immunized with the CSD I-bovine serum albumin (BSA) conjugate. In addition, we showed that the Mab was highly specific for Sudan I, III and Para red. The limit of detection was approximately 0.01 ng mL -1 in phosphate-buffered saline (PBS) buffer and 0.5 ng g -1 in chilli tomato sauce. The recoveries of Sudan I, III and Para red for the chilli tomato sauce were from 84% to 99% and coefficients of variation were from 14.9% to 33.3%. Thus, the enzyme-linked immunosorbent assay (ELISA) method is a rapid and high throughput screening tool to detect Sudan dyes and Para red in food products

  9. Enzyme-linked immunosorbent assay (ELISA) using a specific monoclonal antibody as a new tool to detect Sudan dyes and Para red

    Energy Technology Data Exchange (ETDEWEB)

    Ju Chunmei [College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642 (China); Tang Yong [Center of Antibody Engineering, Department of Bioengineering, Jinan University, Guangzhou 510632 (China); Fan Huiying [College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642 (China); Chen Jinding [College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642 (China)], E-mail: jdchen@scau.edu.cn

    2008-07-28

    To set up an immunoassay-based method to detect Sudan dyes and Para red, we generated a monoclonal antibody (Mab) using a specially designed carboxyl derivative of Sudan I (CSD I) as the immunogen. CSD I was synthesized by azocoupling reaction using 2-naphthol and diazotised 4-aminobenzoic acid. The antibody was obtained from a hybridoma, which was derived from the fusion of the mouse myeloma SP2/0 cells and the splenocytes from the mice immunized with the CSD I-bovine serum albumin (BSA) conjugate. In addition, we showed that the Mab was highly specific for Sudan I, III and Para red. The limit of detection was approximately 0.01 ng mL{sup -1} in phosphate-buffered saline (PBS) buffer and 0.5 ng g{sup -1} in chilli tomato sauce. The recoveries of Sudan I, III and Para red for the chilli tomato sauce were from 84% to 99% and coefficients of variation were from 14.9% to 33.3%. Thus, the enzyme-linked immunosorbent assay (ELISA) method is a rapid and high throughput screening tool to detect Sudan dyes and Para red in food products.

  10. Tabhu: tools for antibody humanization

    DEFF Research Database (Denmark)

    Olimpieri, Pier Paolo; Marcatili, Paolo; Tramontano, Anna

    2015-01-01

    Antibodies are rapidly becoming essential tools in the clinical practice, given their ability to recognize their cognate antigens with high specificity and affinity, and a high yield at reasonable costs in model animals. Unfortunately, when administered to human patients, xenogeneic antibodies can...... elicit unwanted and dangerous immunogenic responses. Antibody humanization methods are designed to produce molecules with a better safety profile still maintaining their ability to bind the antigen. This can be accomplished by grafting the non-human regions determining the antigen specificity...... and time-consuming experiments. Here we present tools for antibody humanization (Tabhu) a web server for antibody humanization. Tabhu includes tools for human template selection, grafting, back-mutation evaluation, antibody modelling and structural analysis, helping the user in all the critical steps...

  11. Cancer imaging with radiolabeled antibodies

    International Nuclear Information System (INIS)

    Goldenberg, D.M.

    1990-01-01

    This book presents a perspective of the use of antibodies to target diagnostic isotopes to tumors. Antibodies with reasonable specificity can be developed against almost any substance. If selective targeting to cancer cells can be achieved, the prospects for a selective therapy are equally intriguing. But the development of cancer detection, or imaging, with radiolabeled antibodies has depended upon advances in a number of different areas, including cancer immunology and immunochemistry for identifying suitable antigen targets and antibodies to these targets, tumor biology for model systems, radiochemistry for he attachment of radionuclides to antibodies, molecular biology for reengineering the antibodies for safer and more effective use in humans, and nuclear medicine for providing the best imaging protocols and instrumentation to detect minute amounts of elevated radioactivity against a background of considerable noise. Accordingly, this book has been organized to address the advances that are being made in many of these areas

  12. 20180311 - High Throughput Transcriptomics: From screening to pathways (SOT 2018)

    Science.gov (United States)

    The EPA ToxCast effort has screened thousands of chemicals across hundreds of high-throughput in vitro screening assays. The project is now leveraging high-throughput transcriptomic (HTTr) technologies to substantially expand its coverage of biological pathways. The first HTTr sc...

  13. High-throughput screening (HTS) and modeling of the retinoid ...

    Science.gov (United States)

    Presentation at the Retinoids Review 2nd workshop in Brussels, Belgium on the application of high throughput screening and model to the retinoid system Presentation at the Retinoids Review 2nd workshop in Brussels, Belgium on the application of high throughput screening and model to the retinoid system

  14. High Throughput Determinations of Critical Dosing Parameters (IVIVE workshop)

    Science.gov (United States)

    High throughput toxicokinetics (HTTK) is an approach that allows for rapid estimations of TK for hundreds of environmental chemicals. HTTK-based reverse dosimetry (i.e, reverse toxicokinetics or RTK) is used in order to convert high throughput in vitro toxicity screening (HTS) da...

  15. TCP Throughput Profiles Using Measurements over Dedicated Connections

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Nageswara S. [ORNL; Liu, Qiang [ORNL; Sen, Satyabrata [ORNL; Towsley, Don [University of Massachusetts, Amherst; Vardoyan, Gayane [University of Massachusetts, Amherst; Kettimuthu, R. [Argonne National Laboratory (ANL); Foster, Ian [University of Chicago

    2017-06-01

    Wide-area data transfers in high-performance computing infrastructures are increasingly being carried over dynamically provisioned dedicated network connections that provide high capacities with no competing traffic. We present extensive TCP throughput measurements and time traces over a suite of physical and emulated 10 Gbps connections with 0-366 ms round-trip times (RTTs). Contrary to the general expectation, they show significant statistical and temporal variations, in addition to the overall dependencies on the congestion control mechanism, buffer size, and the number of parallel streams. We analyze several throughput profiles that have highly desirable concave regions wherein the throughput decreases slowly with RTTs, in stark contrast to the convex profiles predicted by various TCP analytical models. We present a generic throughput model that abstracts the ramp-up and sustainment phases of TCP flows, which provides insights into qualitative trends observed in measurements across TCP variants: (i) slow-start followed by well-sustained throughput leads to concave regions; (ii) large buffers and multiple parallel streams expand the concave regions in addition to improving the throughput; and (iii) stable throughput dynamics, indicated by a smoother Poincare map and smaller Lyapunov exponents, lead to wider concave regions. These measurements and analytical results together enable us to select a TCP variant and its parameters for a given connection to achieve high throughput with statistical guarantees.

  16. Continued expression of anti-soy protein antibodies in rats bred on a soy protein-free diet for one generation : the importance of dietary control in oral sensitization research

    NARCIS (Netherlands)

    Knippels, L.M.J.; Penninks, A.H.; Houben, G.F.

    1998-01-01

    Background: One of the major factors that may have negatively affected the results of many oral sensitization studies in animals has been unscheduled dietary preexposure of the test animals or their parental generations to the antigen under investigation. Objective: The influence of dietary

  17. Monoclonal antibodies for treating cancer

    International Nuclear Information System (INIS)

    Dillman, R.O.

    1989-01-01

    The purpose of this study is to assess the current status of in-vivo use of monoclonal antibodies for treating cancer. Publications appearing between 1980 and 1988 were identified by computer searches using MEDLINE and CANCERLIT, by reviewing the table of contents of recently published journals, and by searching bibliographies of identified books and articles. More than 700 articles, including peer-reviewed articles and book chapters, were identified and selected for analysis. The literature was reviewed and 235 articles were selected as relevant and representative of the current issues and future applications for in-vivo monoclonal antibodies for cancer therapy and of the toxicity and efficacy which has been associated with clinical trials. Approaches include using antibody alone (interacting with complement or effector cells or binding directly with certain cell receptors) and immunoconjugates (antibody coupled to radioisotopes, drugs, toxins, or other biologicals). Most experience has been with murine antibodies. Trials of antibody alone and radiolabeled antibodies have confirmed the feasibility of this approach and the in-vivo trafficking of antibodies to tumor cells. However, tumor cell heterogeneity, lack of cytotoxicity, and the development of human antimouse antibodies have limited clinical efficacy. Although the immunoconjugates are very promising, heterogeneity and the antimouse immune response have hampered this approach as has the additional challenge of chemically or genetically coupling antibody to cytotoxic agents. As a therapeutic modality, monoclonal antibodies are still promising but their general use will be delayed for several years. New approaches using human antibodies and reducing the human antiglobulin response should facilitate treatment. 235 references

  18. High-throughput profiling of anti-glycan humoral responses to SIV vaccination and challenge.

    Directory of Open Access Journals (Sweden)

    Christopher T Campbell

    Full Text Available Recent progress toward an HIV vaccine highlights both the potential of vaccines to end the AIDS pandemic and the need to boost efficacy by incorporating additional vaccine strategies. Although many aspects of the immune response can contribute to vaccine efficacy, the key factors have not been defined fully yet. A particular area that may yield new insights is anti-glycan immune responses, such as those against the glycan shield that HIV uses to evade the immune system. In this study, we used glycan microarray technology to evaluate anti-glycan antibody responses induced by SIV vaccination and infection in a non-human primate model of HIV infection. This comprehensive profiling of circulating anti-glycan antibodies found changes in anti-glycan antibody levels after both vaccination with the Ad5hr-SIV vaccine and SIV infection. Notably, SIV infection produced generalized declines in anti-glycan IgM antibodies in a number of animals. Additionally, some infected animals generated antibodies to the Tn antigen, which is a cryptic tumor-associated antigen exposed by premature termination of O-linked glycans; however, the Ad5hr-SIV vaccine did not induce anti-Tn IgG antibodies. Overall, this study demonstrates the potential contributions that glycan microarrays can make for HIV vaccine development.

  19. Discovery and characterization of antibody variants using mass spectrometry-based comparative analysis for biosimilar candidates of monoclonal antibody drugs.

    Science.gov (United States)

    Li, Wenhua; Yang, Bin; Zhou, Dongmei; Xu, Jun; Ke, Zhi; Suen, Wen-Chen

    2016-07-01

    Liquid chromatography mass spectrometry (LC-MS) is the most commonly used technique for the characterization of antibody variants. MAb-X and mAb-Y are two approved IgG1 subtype monoclonal antibody drugs recombinantly produced in Chinese hamster ovary (CHO) cells. We report here that two unexpected and rare antibody variants have been discovered during cell culture process development of biosimilars for these two approved drugs through intact mass analysis. We then used comprehensive mass spectrometry-based comparative analysis including reduced light, heavy chains, and domain-specific mass as well as peptide mapping analysis to fully characterize the observed antibody variants. The "middle-up" mass comparative analysis demonstrated that the antibody variant from mAb-X biosimilar candidate was caused by mass variation of antibody crystalline fragment (Fc), whereas a different variant with mass variation in antibody antigen-binding fragment (Fab) from mAb-Y biosimilar candidate was identified. Endoproteinase Lys-C digested peptide mapping and tandem mass spectrometry analysis further revealed that a leucine to glutamine change in N-terminal 402 site of heavy chain was responsible for the generation of mAb-X antibody variant. Lys-C and trypsin coupled non-reduced and reduced peptide mapping comparative analysis showed that the formation of the light-heavy interchain trisulfide bond resulted in the mAb-Y antibody variant. These two cases confirmed that mass spectrometry-based comparative analysis plays a critical role for the characterization of monoclonal antibody variants, and biosimilar developers should start with a comprehensive structural assessment and comparative analysis to decrease the risk of the process development for biosimilars. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Optimal Synthetic Glycosylation of a Therapeutic Antibody.

    Science.gov (United States)

    Parsons, Thomas B; Struwe, Weston B; Gault, Joseph; Yamamoto, Keisuke; Taylor, Thomas A; Raj, Ritu; Wals, Kim; Mohammed, Shabaz; Robinson, Carol V; Benesch, Justin L P; Davis, Benjamin G

    2016-02-12

    Glycosylation patterns in antibodies critically determine biological and physical properties but their precise control is a significant challenge in biology and biotechnology. We describe herein the optimization of an endoglycosidase-catalyzed glycosylation of the best-selling biotherapeutic Herceptin, an anti-HER2 antibody. Precise MS analysis of the intact four-chain Ab heteromultimer reveals nonspecific, non-enzymatic reactions (glycation), which are not detected under standard denaturing conditions. This competing reaction, which has hitherto been underestimated as a source of side products, can now be minimized. Optimization allowed access to the purest natural form of Herceptin to date (≥90 %). Moreover, through the use of a small library of sugars containing non-natural functional groups, Ab variants containing defined numbers of selectively addressable chemical tags (reaction handles at Sia C1) in specific positions (for attachment of cargo molecules or "glycorandomization") were readily generated.

  1. High-throughput characterization methods for lithium batteries

    Directory of Open Access Journals (Sweden)

    Yingchun Lyu

    2017-09-01

    Full Text Available The development of high-performance lithium ion batteries requires the discovery of new materials and the optimization of key components. By contrast with traditional one-by-one method, high-throughput method can synthesize and characterize a large number of compositionally varying samples, which is able to accelerate the pace of discovery, development and optimization process of materials. Because of rapid progress in thin film and automatic control technologies, thousands of compounds with different compositions could be synthesized rapidly right now, even in a single experiment. However, the lack of rapid or combinatorial characterization technologies to match with high-throughput synthesis methods, limit the application of high-throughput technology. Here, we review a series of representative high-throughput characterization methods used in lithium batteries, including high-throughput structural and electrochemical characterization methods and rapid measuring technologies based on synchrotron light sources.

  2. Throughput Analysis of Large Wireless Networks with Regular Topologies

    Directory of Open Access Journals (Sweden)

    Hong Kezhu

    2007-01-01

    Full Text Available The throughput of large wireless networks with regular topologies is analyzed under two medium-access control schemes: synchronous array method (SAM and slotted ALOHA. The regular topologies considered are square, hexagon, and triangle. Both nonfading channels and Rayleigh fading channels are examined. Furthermore, both omnidirectional antennas and directional antennas are considered. Our analysis shows that the SAM leads to a much higher network throughput than the slotted ALOHA. The network throughput in this paper is measured in either bits-hops per second per Hertz per node or bits-meters per second per Hertz per node. The exact connection between the two measures is shown for each topology. With these two fundamental units, the network throughput shown in this paper can serve as a reliable benchmark for future works on network throughput of large networks.

  3. Throughput Analysis of Large Wireless Networks with Regular Topologies

    Directory of Open Access Journals (Sweden)

    Kezhu Hong

    2007-04-01

    Full Text Available The throughput of large wireless networks with regular topologies is analyzed under two medium-access control schemes: synchronous array method (SAM and slotted ALOHA. The regular topologies considered are square, hexagon, and triangle. Both nonfading channels and Rayleigh fading channels are examined. Furthermore, both omnidirectional antennas and directional antennas are considered. Our analysis shows that the SAM leads to a much higher network throughput than the slotted ALOHA. The network throughput in this paper is measured in either bits-hops per second per Hertz per node or bits-meters per second per Hertz per node. The exact connection between the two measures is shown for each topology. With these two fundamental units, the network throughput shown in this paper can serve as a reliable benchmark for future works on network throughput of large networks.

  4. Tumor imaging with monoclonal antibodies

    International Nuclear Information System (INIS)

    Haisma, H.; Hilgers, J.

    1987-01-01

    Many monoclonal antibodies directed against tumor-associated antigens have been identified, but so far none of these are tumor specific. Polyclonal and monoclonal antibodies have been used for imaging of a wide variety of tumors with success. Radiolabeling of antibody is usually done with iodine isotopes of which 123 I is the best candidate for radioimmunodetection purposes. The labeling of antibodies through chelates makes it possible to use metal radioisotopes like 111 In, which is the best radioisotope for imaging with monoclonal antibodies due to its favorable half-life of 2.5 days. Usually imaging cannot be performed within 24 h after injection, but clearance of antibody can be increased by using F(ab) 2 of Fab. Another approach is to clear non-bound antibody by a second antibody, directed against the first. The detection limit of immunoimaging is about 2 cm, but will be improved by tomography or SPECT. There is still a high false positive and false negative rate, which makes it impossible to use radioimmunodetection as the only technique for diagnosis of tumors. In combination with other detection techniques, tumor imaging with monoclonal antibodies can improve diagnosis. 44 refs.; 3 tabs

  5. Meta-Analysis of High-Throughput Datasets Reveals Cellular Responses Following Hemorrhagic Fever Virus Infection

    Directory of Open Access Journals (Sweden)

    Gavin C. Bowick

    2011-05-01

    Full Text Available The continuing use of high-throughput assays to investigate cellular responses to infection is providing a large repository of information. Due to the large number of differentially expressed transcripts, often running into the thousands, the majority of these data have not been thoroughly investigated. Advances in techniques for the downstream analysis of high-throughput datasets are providing additional methods for the generation of additional hypotheses for further investigation. The large number of experimental observations, combined with databases that correlate particular genes and proteins with canonical pathways, functions and diseases, allows for the bioinformatic exploration of functional networks that may be implicated in replication or pathogenesis. Herein, we provide an example of how analysis of published high-throughput datasets of cellular responses to hemorrhagic fever virus infection can generate additional functional data. We describe enrichment of genes involved in metabolism, post-translational modification and cardiac damage; potential roles for specific transcription factors and a conserved involvement of a pathway based around cyclooxygenase-2. We believe that these types of analyses can provide virologists with additional hypotheses for continued investigation.

  6. A high-throughput and quantitative method to assess the mutagenic potential of translesion DNA synthesis

    Science.gov (United States)

    Taggart, David J.; Camerlengo, Terry L.; Harrison, Jason K.; Sherrer, Shanen M.; Kshetry, Ajay K.; Taylor, John-Stephen; Huang, Kun; Suo, Zucai

    2013-01-01

    Cellular genomes are constantly damaged by endogenous and exogenous agents that covalently and structurally modify DNA to produce DNA lesions. Although most lesions are mended by various DNA repair pathways in vivo, a significant number of damage sites persist during genomic replication. Our understanding of the mutagenic outcomes derived from these unrepaired DNA lesions has been hindered by the low throughput of existing sequencing methods. Therefore, we have developed a cost-effective high-throughput short oligonucleotide sequencing assay that uses next-generation DNA sequencing technology for the assessment of the mutagenic profiles of translesion DNA synthesis catalyzed by any error-prone DNA polymerase. The vast amount of sequencing data produced were aligned and quantified by using our novel software. As an example, the high-throughput short oligonucleotide sequencing assay was used to analyze the types and frequencies of mutations upstream, downstream and at a site-specifically placed cis–syn thymidine–thymidine dimer generated individually by three lesion-bypass human Y-family DNA polymerases. PMID:23470999

  7. Blood group genotyping: from patient to high-throughput donor screening.

    Science.gov (United States)

    Veldhuisen, B; van der Schoot, C E; de Haas, M

    2009-10-01

    Blood group antigens, present on the cell membrane of red blood cells and platelets, can be defined either serologically or predicted based on the genotypes of genes encoding for blood group antigens. At present, the molecular basis of many antigens of the 30 blood group systems and 17 human platelet antigens is known. In many laboratories, blood group genotyping assays are routinely used for diagnostics in cases where patient red cells cannot be used for serological typing due to the presence of auto-antibodies or after recent transfusions. In addition, DNA genotyping is used to support (un)-expected serological findings. Fetal genotyping is routinely performed when there is a risk of alloimmune-mediated red cell or platelet destruction. In case of patient blood group antigen typing, it is important that a genotyping result is quickly available to support the selection of donor blood, and high-throughput of the genotyping method is not a prerequisite. In addition, genotyping of blood donors will be extremely useful to obtain donor blood with rare phenotypes, for example lacking a high-frequency antigen, and to obtain a fully typed donor database to be used for a better matching between recipient and donor to prevent adverse transfusion reactions. Serological typing of large cohorts of donors is a labour-intensive and expensive exercise and hampered by the lack of sufficient amounts of approved typing reagents for all blood group systems of interest. Currently, high-throughput genotyping based on DNA micro-arrays is a very feasible method to obtain a large pool of well-typed blood donors. Several systems for high-throughput blood group genotyping are developed and will be discussed in this review.

  8. The Protein Maker: an automated system for high-throughput parallel purification

    International Nuclear Information System (INIS)

    Smith, Eric R.; Begley, Darren W.; Anderson, Vanessa; Raymond, Amy C.; Haffner, Taryn E.; Robinson, John I.; Edwards, Thomas E.; Duncan, Natalie; Gerdts, Cory J.; Mixon, Mark B.; Nollert, Peter; Staker, Bart L.; Stewart, Lance J.

    2011-01-01

    The Protein Maker instrument addresses a critical bottleneck in structural genomics by allowing automated purification and buffer testing of multiple protein targets in parallel with a single instrument. Here, the use of this instrument to (i) purify multiple influenza-virus proteins in parallel for crystallization trials and (ii) identify optimal lysis-buffer conditions prior to large-scale protein purification is described. The Protein Maker is an automated purification system developed by Emerald BioSystems for high-throughput parallel purification of proteins and antibodies. This instrument allows multiple load, wash and elution buffers to be used in parallel along independent lines for up to 24 individual samples. To demonstrate its utility, its use in the purification of five recombinant PB2 C-terminal domains from various subtypes of the influenza A virus is described. Three of these constructs crystallized and one diffracted X-rays to sufficient resolution for structure determination and deposition in the Protein Data Bank. Methods for screening lysis buffers for a cytochrome P450 from a pathogenic fungus prior to upscaling expression and purification are also described. The Protein Maker has become a valuable asset within the Seattle Structural Genomics Center for Infectious Disease (SSGCID) and hence is a potentially valuable tool for a variety of high-throughput protein-purification applications

  9. The French press: a repeatable and high-throughput approach to exercising zebrafish (Danio rerio).

    Science.gov (United States)

    Usui, Takuji; Noble, Daniel W A; O'Dea, Rose E; Fangmeier, Melissa L; Lagisz, Malgorzata; Hesselson, Daniel; Nakagawa, Shinichi

    2018-01-01

    Zebrafish are increasingly used as a vertebrate model organism for various traits including swimming performance, obesity and metabolism, necessitating high-throughput protocols to generate standardized phenotypic information. Here, we propose a novel and cost-effective method for exercising zebrafish, using a coffee plunger and magnetic stirrer. To demonstrate the use of this method, we conducted a pilot experiment to show that this simple system provides repeatable estimates of maximal swim performance (intra-class correlation [ICC] = 0.34-0.41) and observe that exercise training of zebrafish on this system significantly increases their maximum swimming speed. We propose this high-throughput and reproducible system as an alternative to traditional linear chamber systems for exercising zebrafish and similarly sized fishes.

  10. Selection and optimization of hits from a high-throughput phenotypic screen against Trypanosoma cruzi.

    Science.gov (United States)

    Keenan, Martine; Alexander, Paul W; Chaplin, Jason H; Abbott, Michael J; Diao, Hugo; Wang, Zhisen; Best, Wayne M; Perez, Catherine J; Cornwall, Scott M J; Keatley, Sarah K; Thompson, R C Andrew; Charman, Susan A; White, Karen L; Ryan, Eileen; Chen, Gong; Ioset, Jean-Robert; von Geldern, Thomas W; Chatelain, Eric

    2013-10-01

    Inhibitors of Trypanosoma cruzi with novel mechanisms of action are urgently required to diversify the current clinical and preclinical pipelines. Increasing the number and diversity of hits available for assessment at the beginning of the discovery process will help to achieve this aim. We report the evaluation of multiple hits generated from a high-throughput screen to identify inhibitors of T. cruzi and from these studies the discovery of two novel series currently in lead optimization. Lead compounds from these series potently and selectively inhibit growth of T. cruzi in vitro and the most advanced compound is orally active in a subchronic mouse model of T. cruzi infection. High-throughput screening of novel compound collections has an important role to play in diversifying the trypanosomatid drug discovery portfolio. A new T. cruzi inhibitor series with good drug-like properties and promising in vivo efficacy has been identified through this process.

  11. Accurate Classification of Protein Subcellular Localization from High-Throughput Microscopy Images Using Deep Learning

    Directory of Open Access Journals (Sweden)

    Tanel Pärnamaa

    2017-05-01

    Full Text Available High-throughput microscopy of many single cells generates high-dimensional data that are far from straightforward to analyze. One important problem is automatically detecting the cellular compartment where a fluorescently-tagged protein resides, a task relatively simple for an experienced human, but difficult to automate on a computer. Here, we train an 11-layer neural network on data from mapping thousands of yeast proteins, achieving per cell localization classification accuracy of 91%, and per protein accuracy of 99% on held-out images. We confirm that low-level network features correspond to basic image characteristics, while deeper layers separate localization classes. Using this network as a feature calculator, we train standard classifiers that assign proteins to previously unseen compartments after observing only a small number of training examples. Our results are the most accurate subcellular localization classifications to date, and demonstrate the usefulness of deep learning for high-throughput microscopy.

  12. Accurate Classification of Protein Subcellular Localization from High-Throughput Microscopy Images Using Deep Learning.

    Science.gov (United States)

    Pärnamaa, Tanel; Parts, Leopold

    2017-05-05

    High-throughput microscopy of many single cells generates high-dimensional data that are far from straightforward to analyze. One important problem is automatically detecting the cellular compartment where a fluorescently-tagged protein resides, a task relatively simple for an experienced human, but difficult to automate on a computer. Here, we train an 11-layer neural network on data from mapping thousands of yeast proteins, achieving per cell localization classification accuracy of 91%, and per protein accuracy of 99% on held-out images. We confirm that low-level network features correspond to basic image characteristics, while deeper layers separate localization classes. Using this network as a feature calculator, we train standard classifiers that assign proteins to previously unseen compartments after observing only a small number of training examples. Our results are the most accurate subcellular localization classifications to date, and demonstrate the usefulness of deep learning for high-throughput microscopy. Copyright © 2017 Parnamaa and Parts.

  13. High-throughput microfluidics automated cytogenetic processing for effectively lowering biological process time and aid triage during radiation accidents

    International Nuclear Information System (INIS)

    Ramakumar, Adarsh

    2016-01-01

    Nuclear or radiation mass casualties require individual, rapid, and accurate dose-based triage of exposed subjects for cytokine therapy and supportive care, to save life. Radiation mass casualties will demand high-throughput individual diagnostic dose assessment for medical management of exposed subjects. Cytogenetic techniques are widely used for triage and definitive radiation biodosimetry. Prototype platform to demonstrate high-throughput microfluidic micro incubation to support the logistics of sample in miniaturized incubators from the site of accident to analytical labs has been developed. Efforts have been made, both at the level of developing concepts and advanced system for higher throughput in processing the samples and also implementing better and efficient methods of logistics leading to performance of lab-on-chip analyses. Automated high-throughput platform with automated feature extraction, storage, cross platform data linkage, cross platform validation and inclusion of multi-parametric biomarker approaches will provide the first generation high-throughput platform systems for effective medical management, particularly during radiation mass casualty events

  14. Neutralisation and binding of VHS virus by monovalent antibody fragments

    DEFF Research Database (Denmark)

    Cupit, P.M.; Lorenzen, Niels; Strachan, G.

    2001-01-01

    We have previously reported the cloning and characterisation of the heavy and light chain variable domain genes encoding three monoclonal antibodies (Mabs) that bind viral haemorrhagic septicaemia virus (VHSV). Two of these antibodies, 3F1H10 and 3F1A2 both neutralised the virus though 3F1A2...... appeared to recognise a broader range of virus isolates. The variable domains of these two antibodies differ by only four residues (Lorenzen et al., 2000a. Fish Shellfish Immunol. 10, 129-142). To further study the mechanism of neutralisation, Fab fragments as well as a series of recombinant bacterial...... single chain antibody (scAb) fragments were generated from the three anti-VHSV Mabs and their variable domain genes, respectively. Fabs and scAbs derived from the neutralising Mabs were both able to neutralise the VHSV type 1 isolate DK-F1. In addition, a series of scAb fragments were produced using...

  15. Immunoradiometric assay for cytomegalovirus-specific IgG antibodies

    International Nuclear Information System (INIS)

    Klapper, P.E.; Cleator, G.M.; Prinja-Wolks, D.; Morris, D.J.

    1990-01-01

    An immunoradiometric assay (radio-immunosorbent test; RIST) for the detection of IgG antibodies to human herpesvirus 4 [human cytomegalovirus (CMV)] has been developed. The technique utilizes CMV antigen passively adsorbed to a polyvinyl microtitration plate and a radiolabelled murine monoclonal anti-human IgG antibody to detect binding of human antibody to the 'solid phase' reagent. The assay was optimized, and its specifity confirmed by testing paired acute and convalescent sera from patients with acute CMV or other human herpesvirus infections. To determine the assay's sensitivity 1433 blood donor sera were examined. The RIST was more sensitive than a standard complement fixation (CFT). Use of a monoclonal anti-human IgG antibody in the RIST reduced non-specific binding to the control uninfected cell antigen such that blood donor sera could be tested in the assay using only a CMV antigen without generating an unacceptable false positive rate. (author). 23 refs.; 1 tab

  16. Dual antibody therapy to harness the innate anti-tumor immune response to enhance antibody targeting of tumors.

    Science.gov (United States)

    Chester, Cariad; Marabelle, Aurelien; Houot, Roch; Kohrt, Holbrook E

    2015-04-01

    Cancer immunotherapy is a rapidly evolving field that offers a novel paradigm for cancer treatment: therapies focus on enhancing the immune system's innate and adaptive anti-tumor response. Early immunotherapeutics have achieved impressive clinical outcomes and monoclonal antibodies are now integral to therapeutic strategies in a variety of cancers. However, only recently have antibodies targeting innate immune cells entered clinical development. Innate immune effector cells play important roles in generating and maintaining antitumor immunity. Antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) are important innate immune mechanisms for tumor eradication. These cytolytic processes are initiated by the detection of a tumor-targeting antibody and can be augmented by activating co-stimulatory pathways or blocking inhibitory signals on innate immune cells. The combination of FDA-approved monoclonal antibodies with innate effector-targeting antibodies has demonstrated potent preclinical therapeutic synergy and early-phase combinatorial clinical trials are ongoing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A novel lentiviral scFv display library for rapid optimization and selection of high affinity antibodies.

    Science.gov (United States)

    Qudsia, Sehar; Merugu, Siva B; Mangukiya, Hitesh B; Hema, Negi; Wu, Zhenghua; Li, Dawei

    2018-04-30

    Antibody display libraries have become a popular technique to screen monoclonal antibodies for therapeutic purposes. An important aspect of display technology is to generate an optimization library by changing antibody affinity to antigen through mutagenesis and screening the high affinity antibody. In this study, we report a novel lentivirus display based optimization library antibody in which Agtuzumab scFv is displayed on cell membrane of HEK-293T cells. To generate an optimization library, hotspot mutagenesis was performed to achieve diverse antibody library. Based on sequence analysis of randomly selected clones, library size was estimated approximately to be 1.6 × 10 6 . Lentivirus display vector was used to display scFv antibody on cell surface and flow cytometery was performed to check the antibody affinity to antigen. Membrane bound scFv antibodies were then converted to secreted antibody through cre/loxP recombination. One of the mutant clones, M8 showed higher affinity to antigen in flow cytometery analysis. Further characterization of cellular and secreted scFv through western blot showed that antibody affinity was increased by three fold after mutagenesis. This study shows successful construction of a novel antibody library and suggests that hotspot mutagenesis could prove a useful and rapid optimization tool to generate similar libraries with various degree of antigen affinity. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. High Throughput Sequencing for Detection of Foodborne Pathogens

    Directory of Open Access Journals (Sweden)

    Camilla Sekse

    2017-10-01

    Full Text Available High-throughput sequencing (HTS is becoming the state-of-the-art technology for typing of microbial isolates, especially in clinical samples. Yet, its application is still in its infancy for monitoring and outbreak investigations of foods. Here we review the published literature, covering not only bacterial but also viral and Eukaryote food pathogens, to assess the status and potential of HTS implementation to inform stakeholders, improve food safety and reduce outbreak impacts. The developments in sequencing technology and bioinformatics have outpaced the capacity to analyze and interpret the sequence data. The influence of sample processing, nucleic acid extraction and purification, harmonized protocols for generation and interpretation of data, and properly annotated and curated reference databases including non-pathogenic “natural” strains are other major obstacles to the realization of the full potential of HTS in analytical food surveillance, epidemiological and outbreak investigations, and in complementing preventive approaches for the control and management of foodborne pathogens. Despite significant obstacles, the achieved progress in capacity and broadening of the application range over the last decade is impressive and unprecedented, as illustrated with the chosen examples from the literature. Large consortia, often with broad international participation, are making coordinated efforts to cope with many of the mentioned obstacles. Further rapid progress can therefore be prospected for the next decade.

  19. Red Blood Cell Antibody Identification

    Science.gov (United States)

    ... antibodies may or may not be associated with adverse reactions, and identification of the specific type of RBC ... the only things that can cause a transfusion reaction. The recipient's immune ... or to drugs that the donor may have taken. Rarely, antibodies in the plasma ...

  20. [A double antibody sandwich ELISA based assay for titration of severe fever with thrombocytopenia syndrome virus].

    Science.gov (United States)

    Liu, Lin; Zhang, Quan-Fu; Li, Chuan; Li, Jian-Dong; Jiang, Xiao-Lin; Zhang, Fu-Shun; Wu, Wei; Liang, Mi-Fang; Li, De-Xin

    2013-06-01

    To develop an assay for titration of severe fever with thrombocytopenia syndrome virus (SFTSV) based on double antibody sandwich ELISA. A double antibody sandwich ELISA was developed for detection of SFTSV based on SFTSV nucleocapsid (N) protein specific poly- and monoclonal antibodies, procedures were optimized and evaluated. This ELISA based titration assay was compared with fluorescence assasy and plaque assay based titration method. The results suggested that the titers obtained by ELISA based method are consistent with those obtained by IFA based method (R = 0.999) and the plaque assay titration method (R = 0.949). The novel ELISA based titration method with high sensitivity and specificity is easy to manage and perform, and can overcome the subjectivity associated with result determination of the fluorescence assay and plaque assay based methods. The novel ELISA based titration method can also be applied to high throughput detection.

  1. Homogeneous plate based antibody internalization assay using pH sensor fluorescent dye.

    Science.gov (United States)

    Nath, Nidhi; Godat, Becky; Zimprich, Chad; Dwight, Stephen J; Corona, Cesear; McDougall, Mark; Urh, Marjeta

    2016-04-01

    Receptor-mediated antibody internalization is a key mechanism underlying several anti-cancer antibody therapeutics. Delivering highly toxic drugs to cancer cells, as in the case of antibody drug conjugates (ADCs), efficient removal of surface receptors from cancer cells and changing the pharmacokinetics profile of the antibody drugs are some of key ways that internalization impacts the therapeutic efficacy of the antibodies. Over the years, several techniques have been used to study antibody internalization including radiolabels, fluorescent microscopy, flow cytometry and cellular toxicity assays. While these methods allow analysis of internalization, they have limitations including a multistep process and limited throughput and are generally endpoint assays. Here, we present a new homogeneous method that enables time and concentration dependent measurements of antibody internalization. The method uses a new hydrophilic and bright pH sensor dye (pHAb dye), which is not fluorescent at neutral pH but becomes highly fluorescent at acidic pH. For receptor mediated antibody internalization studies, antibodies against receptors are conjugated with the pHAb dye and incubated with the cells expressing the receptors. Upon binding to the receptor, the dyes conjugated to the antibody are not fluorescent because of the neutral pH of the media, but upon internalization and trafficking into endosomal and lysosomal vesicles the pH drops and dyes become fluorescent. The enabling attributes of the pHAb dyes are the hydrophilic nature to minimize antibody aggregation and bright fluorescence at acidic pH which allows development of simple plate based assays using a fluorescent reader. Using two different therapeutic antibodies--Trastuzumab (anti-HER2) and Cetuximab (anti-EGFR)--we show labeling with pHAb dye using amine and thiol chemistries and impact of chemistry and dye to antibody ration on internalization. We finally present two new approaches using the pHAb dye, which will be

  2. Binding-site analysis of opioid receptors using monoclonal anti-idiotypic antibodies

    International Nuclear Information System (INIS)

    Conroy, W.G.

    1988-01-01

    Structural relatedness between the variable region of anti-ligand antibodies and opioid binding sites allowed the generation of anti-idiotypic antibodies which recognized opioid receptors. The IgG 3 k antibodies which bound to opioid receptors were obtained when an anti-morphine antiserum was the idiotype. Both antibodies bound to opioid receptors, but only one of these blocked the binding of [ 3 H]naloxone. The antibody which did not inhibit the binding of [ 3 H]naloxone was itself displaced from the receptor by opioid ligands. The unique binding properties displayed by this antibody indicated that anti-idiotypic antibodies are not always a perfect image of the original ligand, and therefore may be more useful than typical ligands as probes for the receptor. An auto-anti-idiotypic technique was successfully used to obtain anti-opioid receptor antibodies. Another IgG 3 k antibody that blocked the binding of [ 3 H]naloxone to rat brain opioid receptors was obtained when a mouse was immunized with naloxone conjugated to bovine serum albumin. These data confirmed that an idiotype-anti-idiotype network which can generate an anti-receptor antibody normally functions when an opioid ligand is introduced into an animal in an immunogenic form

  3. Progress and Challenges in the Design and Clinical Development of Antibodies for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Juan C. Almagro

    2018-01-01

    Full Text Available The remarkable progress in engineering and clinical development of therapeutic antibodies in the last 40 years, after the seminal work by Köhler and Milstein, has led to the approval by the United States Food and Drug Administration (FDA of 21 antibodies for cancer immunotherapy. We review here these approved antibodies, with emphasis on the methods used for their discovery, engineering, and optimization for therapeutic settings. These methods include antibody engineering via chimerization and humanization of non-human antibodies, as well as selection and further optimization of fully human antibodies isolated from human antibody phage-displayed libraries and immunization of transgenic mice capable of generating human antibodies. These technology platforms have progressively led to the development of therapeutic antibodies with higher human content and, thus, less immunogenicity. We also discuss the genetic engineering approaches that have allowed isotype switching and Fc modifications to modulate effector functions and bioavailability (half-life, which together with the technologies for engineering the Fv fragment, have been pivotal in generating more efficacious and better tolerated therapeutic antibodies to treat cancer.

  4. AOPs and Biomarkers: Bridging High Throughput Screening ...

    Science.gov (United States)

    As high throughput screening (HTS) plays a larger role in toxicity testing, camputational toxicology has emerged as a critical component in interpreting the large volume of data produced. Computational models designed to quantify potential adverse effects based on HTS data will benefit from additional data sources that connect the magnitude of perturbation from the in vitro system to a level of concern at the organism or population level. The adverse outcome pathway (AOP) concept provides an ideal framework for combining these complementary data. Recent international efforts under the auspices of the Organization for Economic Co-operation and Development (OECD) have resulted in an AOP wiki designed to house formal descriptions of AOPs suitable for use in regulatory decision making. Recent efforts have built upon this to include an ontology describing the AOP with linkages to biological pathways, physiological terminology, and taxonomic applicability domains. Incorporation of an AOP network tool developed by the U.S. Army Corps of Engineers also allows consideration of cumulative risk from chemical and non-chemical stressors. Biomarkers are an important complement to formal AOP descriptions, particularly when dealing with susceptible subpopulations or lifestages in human health risk assessment. To address the issue of nonchemical stressors than may modify effects of criteria air pollutants, a novel method was used to integrate blood gene expression data with hema

  5. Uncertainty Quantification in High Throughput Screening ...

    Science.gov (United States)

    Using uncertainty quantification, we aim to improve the quality of modeling data from high throughput screening assays for use in risk assessment. ToxCast is a large-scale screening program that analyzes thousands of chemicals using over 800 assays representing hundreds of biochemical and cellular processes, including endocrine disruption, cytotoxicity, and zebrafish development. Over 2.6 million concentration response curves are fit to models to extract parameters related to potency and efficacy. Models built on ToxCast results are being used to rank and prioritize the toxicological risk of tested chemicals and to predict the toxicity of tens of thousands of chemicals not yet tested in vivo. However, the data size also presents challenges. When fitting the data, the choice of models, model selection strategy, and hit call criteria must reflect the need for computational efficiency and robustness, requiring hard and somewhat arbitrary cutoffs. When coupled with unavoidable noise in the experimental concentration response data, these hard cutoffs cause uncertainty in model parameters and the hit call itself. The uncertainty will then propagate through all of the models built on the data. Left unquantified, this uncertainty makes it difficult to fully interpret the data for risk assessment. We used bootstrap resampling methods to quantify the uncertainty in fitting models to the concentration response data. Bootstrap resampling determines confidence intervals for

  6. Enhanced throughput for infrared automated DNA sequencing

    Science.gov (United States)

    Middendorf, Lyle R.; Gartside, Bill O.; Humphrey, Pat G.; Roemer, Stephen C.; Sorensen, David R.; Steffens, David L.; Sutter, Scott L.

    1995-04-01

    Several enhancements have been developed and applied to infrared automated DNA sequencing resulting in significantly higher throughput. A 41 cm sequencing gel (31 cm well- to-read distance) combines high resolution of DNA sequencing fragments with optimized run times yielding two runs per day of 500 bases per sample. A 66 cm sequencing gel (56 cm well-to-read distance) produces sequence read lengths of up to 1000 bases for ds and ss templates using either T7 polymerase or cycle-sequencing protocols. Using a multichannel syringe to load 64 lanes allows 16 samples (compatible with 96-well format) to be visualized for each run. The 41 cm gel configuration allows 16,000 bases per day (16 samples X 500 bases/sample X 2 ten hour runs/day) to be sequenced with the advantages of infrared technology. Enhancements to internal labeling techniques using an infrared-labeled dATP molecule (Boehringer Mannheim GmbH, Penzberg, Germany; Sequenase (U.S. Biochemical) have also been made. The inclusion of glycerol in the sequencing reactions yields greatly improved results for some primer and template combinations. The inclusion of (alpha) -Thio-dNTP's in the labeling reaction increases signal intensity two- to three-fold.

  7. Automation of a Nile red staining assay enables high throughput quantification of microalgal lipid production.

    Science.gov (United States)

    Morschett, Holger; Wiechert, Wolfgang; Oldiges, Marco

    2016-02-09

    Within the context of microalgal lipid production for biofuels and bulk chemical applications, specialized higher throughput devices for small scale parallelized cultivation are expected to boost the time efficiency of phototrophic bioprocess development. However, the increasing number of possible experiments is directly coupled to the demand for lipid quantification protocols that enable reliably measuring large sets of samples within short time and that can deal with the reduced sample volume typically generated at screening scale. To meet these demands, a dye based assay was established using a liquid handling robot to provide reproducible high throughput quantification of lipids with minimized hands-on-time. Lipid production was monitored using the fluorescent dye Nile red with dimethyl sulfoxide as solvent facilitating dye permeation. The staining kinetics of cells at different concentrations and physiological states were investigated to successfully down-scale the assay to 96 well microtiter plates. Gravimetric calibration against a well-established extractive protocol enabled absolute quantification of intracellular lipids improving precision from ±8 to ±2 % on average. Implementation into an automated liquid handling platform allows for measuring up to 48 samples within 6.5 h, reducing hands-on-time to a third compared to manual operation. Moreover, it was shown that automation enhances accuracy and precision compared to manual preparation. It was revealed that established protocols relying on optical density or cell number for biomass adjustion prior to staining may suffer from errors due to significant changes of the cells' optical and physiological properties during cultivation. Alternatively, the biovolume was used as a measure for biomass concentration so that errors from morphological changes can be excluded. The newly established assay proved to be applicable for absolute quantification of algal lipids avoiding limitations of currently established

  8. Applications of ambient mass spectrometry in high-throughput screening.

    Science.gov (United States)

    Li, Li-Ping; Feng, Bao-Sheng; Yang, Jian-Wang; Chang, Cui-Lan; Bai, Yu; Liu, Hu-Wei

    2013-06-07

    The development of rapid screening and identification techniques is of great importance for drug discovery, doping control, forensic identification, food safety and quality control. Ambient mass spectrometry (AMS) allows rapid and direct analysis of various samples in open air with little sample preparation. Recently, its applications in high-throughput screening have been in rapid progress. During the past decade, various ambient ionization techniques have been developed and applied in high-throughput screening. This review discusses typical applications of AMS, including DESI (desorption electrospray ionization), DART (direct analysis in real time), EESI (extractive electrospray ionization), etc., in high-throughput screening (HTS).

  9. Throughput Capacity of Ad Hoc Networks with Route Discovery

    Directory of Open Access Journals (Sweden)

    Blum Rick S

    2007-01-01

    Full Text Available Throughput capacity of large ad hoc networks has been shown to scale adversely with the size of network . However the need for the nodes to find or repair routes has not been analyzed in this context. In this paper, we explicitly take route discovery into account and obtain the scaling law for the throughput capacity under general assumptions on the network environment, node behavior, and the quality of route discovery algorithms. We also discuss a number of possible scenarios and show that the need for route discovery may change the scaling for the throughput capacity.

  10. Radiolabeled antibodies in cancer. Oncology Overview

    International Nuclear Information System (INIS)

    1984-11-01

    Oncology Overviews are a service of the International Cancer Research Data Bank (ICRDB) Program of the National Cancer Institute, intended to facilitate and promote the exchange of information between cancer scientists by keeping them aware of literature related to their research being published by other laboratories through the world. Each Oncology Overview represents a survey of the literature associated with a selected area of cancer research. It contains abstracts of articles which have been selected and organized by researchers associated with the field. Contents: Radiolabeled antibodies--labeling and imaging techniques; Radiolabeled antibodies--carcinoembryonic antigen; Radiolabeled antibodies--alpha-fetoprotein; Radiolabeled antibodies--human chorionic gonadotropin; Radiolabeled antibodies--ferritin; Radiolabeled antibodies--imaging of colorectal tumors; Radiolabeled antibodies--imaging of malignant melanoma; Radiolabeled antibodies--imaging of urogenital tumors; Radiolabeled antibodies--imaging of thyroid tumors; Radiolabeled antibodies--other clinical studies; Radiolabeled antibodies--selected preclinical studies; Radiolabeled antibodies--reviews

  11. New perspectives on recombinant human antibodies

    NARCIS (Netherlands)

    J. de Kruif (John); A.-R. van der Vuurst de Vries (Anne); L. Cilenti (L.); E. Boel (E.); W. van Ewijk (Willem); T. Logtenberg (Ton)

    1996-01-01

    textabstractThe limited potential of murine monoclonal antibodies for human immunotherapy has driven recent progress in recombinant antibody technology. Here, de Kruif and colleagues report on advances in the development and use of phage-antibody-display libraries.

  12. Measurement of antibodies to tubulin by radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Mead, G M; Cowin, P; Whitehouse, J M.A. [CRC Medical Oncology Unit, Southampton General Hospital, Southampton, U.K.

    1979-07-24

    A solid-phase double antibody radioimmunoassay capable of measuring antibody to tubulin, the principal component of microtubules, is described. This assay is simple, combining sensitivity with specificity and also allowing determination of antibody subclasses.

  13. Antibody Heavy Chain Variable Domains of Different Germline Gene Origins Diversify through Different Paths

    Directory of Open Access Journals (Sweden)

    Ufuk Kirik

    2017-11-01

    Full Text Available B cells produce antibodies, key effector molecules in health and disease. They mature their properties, including their affinity for antigen, through hypermutation events; processes that involve, e.g., base substitution, codon insertion and deletion, often in association with an isotype switch. Investigations of antibody evolution define modes whereby particular antibody responses are able to form, and such studies provide insight important for instance for development of efficient vaccines. Antibody evolution is also used in vitro for the design of antibodies with improved properties. To better understand the basic concepts of antibody evolution, we analyzed the mutational paths, both in terms of amino acid substitution and insertions and deletions, taken by antibodies of the IgG isotype. The analysis focused on the evolution of the heavy chain variable domain of sets of antibodies, each with an origin in 1 of 11 different germline genes representing six human heavy chain germline gene subgroups. Investigated genes were isolated from cells of human bone marrow, a major site of antibody production, and characterized by next-generation sequencing and an in-house bioinformatics pipeline. Apart from substitutions within the complementarity determining regions, multiple framework residues including those in protein cores were targets of extensive diversification. Diversity, both in terms of substitutions, and insertions and deletions, in antibodies is focused to different positions in the sequence in a germline gene-unique manner. Altogether, our findings create a framework for understanding patterns of evolution of antibodies from defined germline genes.

  14. Enzymatic Inactivation of Endogenous IgG by IdeS Enhances Therapeutic Antibody Efficacy.

    Science.gov (United States)

    Järnum, Sofia; Runström, Anna; Bockermann, Robert; Winstedt, Lena; Crispin, Max; Kjellman, Christian

    2017-09-01

    Endogenous plasma IgG sets an immunologic threshold that dictates the activity of tumor-directed therapeutic antibodies. Saturation of cellular antibody receptors by endogenous antibody limits antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Here, we show how enzymatic cleavage of IgG using the bacterial enzyme IdeS can be utilized to empty both high and low affinity Fcγ-receptors and clear the entire endogenous antibody pool. Using in vitro models, tumor animal models as well as ex vivo analysis of sera collected during a previous clinical trial with IdeS, we show how clearing of competing plasma antibody levels with IdeS unblocks cellular antibody receptors. We show that therapeutic antibodies against breast cancer (trastuzumab), colon cancer (cetuximab), and lymphomas (rituximab and alemtuzumab) can be potentiated when endogenous IgG is removed. Overall, IdeS is shown to be a potent tool to reboot the human antibody repertoire and to generate a window to preferentially load therapeutic antibodies onto effector cells and thereby create an armada of dedicated tumor-seeking immune cells. Mol Cancer Ther; 16(9); 1887-97. ©2017 AACR . ©2017 American Association for Cancer Research.