WorldWideScience

Sample records for throughfall

  1. Interception loss, throughfall and stemflow in a maritime pine stand. I. Variability of throughfall and stemflow beneath the pine canopy

    Science.gov (United States)

    Loustau, D.; Berbigier, P.; Granier, A.; Moussa, F. El Hadj

    1992-10-01

    Patterns of spatial variability of throughfall and stemflow were determined in a maritime pine ( Pinus pinaster Ait.) stand for two consecutive years. Data were obtained from 52 fixed rain gauges and 12 stemflow measuring devices located in a 50m × 50m plot at the centre of an 18-year-old stand. The pine trees had been sown in rows 4m apart and had reached an average height of 12.6m. The spatial distribution of stems had a negligible effect on the throughfall partitioning beneath the canopy. Variograms of throughfall computed for a sample of storms did not reveal any spatial autocorrelation of throughfall for the sampling design used. Differences in throughfall, in relation to the distance from the rows, were not consistently significant. In addition, the distance from the tree stem did not influence the amount of throughfall. The confidence interval on the amount of throughfall per storm was between 3 and 8%. The stemflow was highly variable between trees. The effect of individual trees on stemflow was significant but the amount of stemflow per tree was not related to tree size (i.e. height, trunk diameter, etc.). The cumulative sampling errors on stemflow and throughfall for a single storm created a confidence interval of between ±7 and ±51% on interception. This resulted mainly from the low interception rate and sampling error on throughfall.

  2. From rainfall to throughfall in a maritime vineyard

    Energy Technology Data Exchange (ETDEWEB)

    Brecciaroli, G.; Cocco, S. [Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Universita Politecnica delle Marche, Ancona (Italy); Agnelli, A., E-mail: alberto.agnelli@unipg.it [Dipartimento di Scienze Agrarie ed Ambientali, Universita degli Studi di Perugia, Perugia (Italy); Courchesne, F. [Departement de Geographie, Universite de Montreal, Montreal, Quebec (Canada); Corti, G. [Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Universita Politecnica delle Marche, Ancona (Italy)

    2012-11-01

    This study deals with the characteristics of throughfall produced by vine (Vitis vinifera L.) in one of the most common pedoclimatic conditions for grape production: a soil derived from marine sediments under a temperate Mediterranean climate, and located rather close to the seacoast. To distinguish the contribution of the plant from that of the atmospheric deposition, the throughfall was collected for more than one year under real and artificial (plastic) vines; for the same period, also the bulk precipitation was collected. The solution collected were analysed for pH, electrical conductivity, and concentration of cations and anions. For each event, the ionic fluxes of bulk precipitation and throughfall were calculated. Results indicated that the chemical composition of the bulk precipitation was strongly influenced by the proximity of the seashore and, to a lesser extent, by local anthropic activities and windblown material coming from distant areas. The chemical composition of the throughfall was affected by the same factors of bulk precipitation, but also by solubilisation of dry deposition trapped by the canopies, agronomic practices, plant, and living-on-the-leaves microorganisms. The comparison of the characteristics of the throughfall of the real with the artificial vines revealed that the vines are a source of Mg and K. During winter season, the reduction of Ca, NH{sub 4} and PO{sub 4} from bulk precipitation to throughfall was ascribed to the formation of biogenic minerals on the plant surface. The presence of these minerals was proved by X-ray diffraction on the powders collected during the winter season on the surface of cordons and fruiting canes. We conclude that an approach to the estimation of the nutritional potentiality of the soil that includes the contribution of the throughfall is functional to the management of the agro-ecosystem. -- Highlights: Black-Right-Pointing-Pointer The characteristics of the throughfall of vines are affected by

  3. Spatiotemporal throughfall patterns beneath an urban tree row

    Science.gov (United States)

    Bogeholz, P.; Van Stan, J. T., II; Hildebrandt, A.; Friesen, J.; Dibble, M.; Norman, Z.

    2016-12-01

    Much recent research has focused on throughfall patterns in natural forests as they can influence the heterogeneity of surface ecohydrological and biogeochemical processes. However, to the knowledge of the authors, no work has assessed how urban forest structures affect the spatiotemporal variability of throughfall water flux. Urbanization greatly alters not only a significant portion of the land surface, but canopy structure, with the most typical urban forest configuration being landscaped tree rows along streets, swales, parking lot medians, etc. This study examines throughfall spatiotemporal patterns for a landscaped tree row of Pinus elliottii (Engelm., slash pine) on Georgia Southern University's campus (southeastern, USA) using 150 individual observations per storm. Throughfall correlation lengths beneath this tree row were similar to, but appeared to be more stable across storm size than, observations in past studies on natural forests. Individual tree overlap and the planting interval also may more strongly drive throughfall patterns in tree rows. Meteorological influences beyond storm magnitude (intensity, intermittency, wind conditions, and atmospheric moisture demand) are also examined.

  4. Throughfall and its spatial variability beneath xerophytic shrub canopies within water-limited arid desert ecosystems

    Science.gov (United States)

    Zhang, Ya-feng; Wang, Xin-ping; Hu, Rui; Pan, Yan-xia

    2016-08-01

    Throughfall is known to be a critical component of the hydrological and biogeochemical cycles of forested ecosystems with inherently temporal and spatial variability. Yet little is understood concerning the throughfall variability of shrubs and the associated controlling factors in arid desert ecosystems. Here we systematically investigated the variability of throughfall of two morphological distinct xerophytic shrubs (Caragana korshinskii and Artemisia ordosica) within a re-vegetated arid desert ecosystem, and evaluated the effects of shrub structure and rainfall characteristics on throughfall based on heavily gauged throughfall measurements at the event scale. We found that morphological differences were not sufficient to generate significant difference (P < 0.05) in throughfall between two studied shrub species under the same rainfall and meteorological conditions in our study area, with a throughfall percentage of 69.7% for C. korshinskii and 64.3% for A. ordosica. We also observed a highly variable patchy pattern of throughfall beneath individual shrub canopies, but the spatial patterns appeared to be stable among rainfall events based on time stability analysis. Throughfall linearly increased with the increasing distance from the shrub base for both shrubs, and radial direction beneath shrub canopies had a pronounced impact on throughfall. Throughfall variability, expressed as the coefficient of variation (CV) of throughfall, tended to decline with the increase in rainfall amount, intensity and duration, and stabilized passing a certain threshold. Our findings highlight the great variability of throughfall beneath the canopies of xerophytic shrubs and the time stability of throughfall pattern among rainfall events. The spatially heterogeneous and temporally stable throughfall is expected to generate a dynamic patchy distribution of soil moisture beneath shrub canopies within arid desert ecosystems.

  5. A Throughfall Collection Method Using Mixed Bed Ion Exchange Resin Columns

    Directory of Open Access Journals (Sweden)

    Mark E. Fenn

    2002-01-01

    Full Text Available Measurement of ionic deposition in throughfall is a widely used method for measuring deposition inputs to the forest floor. Many studies have been published, providing a large database of throughfall deposition inputs to forests. However, throughfall collection and analysis is labor intensive and expensive because of the large number of replicate collectors needed and because sample collection and chemical analyses are required on a stochastic precipitation event-based schedule. Therefore we developed and tested a throughfall collector system using a mixed bed ion exchange resin column. We anticipate that this method will typically require only one to three samplings per year. With this method, bulk deposition and bulk throughfall are collected by a funnel or snow tube and ions are retained as the solution percolates through the resin column. Ions retained by the resin are then extracted in the same column with 2N KCl and analyzed for nitrate and ammonium. Deposition values in throughfall from conventional throughfall solution collectors and colocated ion exchange samplers were not significantly different during consecutive 3- and 4-month exposure periods at a high (Camp Paivika; >35 kg N ha-1 year-1 and a low deposition (Barton Flats; 5–9 kg N ha-1 year-1 site in the San Bernardino Mountains in southern California. N deposition in throughfall under mature pine trees at Camp Paivika after 7 months of exposure was extremely high (87 and 92 kg ha-1 based on the two collector types compared to Barton Flats (11 and 13 kg ha-1. A large proportion of the N deposited in throughfall at Camp Paivika occurred as fog drip, demonstrating the importance of fog deposition as an input source of N at this site. By comparison, bulk deposition rates in open areas were 5.1 and 5.4 kg ha-1 at Camp Paivika based on the two collector types, and 1.9 and 3.0 kg ha-1 at Barton Flats.

  6. Throughfall and stemflow chemistry in a northern hardwood forest

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, J S; Likens, G E; Bormann, F H

    1973-01-01

    The contribution of throughfall and stemflow as pathways of the intrasystem nutrient cycle within the forested Hubbard Brook ecosystem was investigated. Nutrients followed were Ca, Mg, K, Na, NO/sub 3/, SO/sub 4/, NH/sub 4/, Fl, PO/sub 4/, H, organic N, and organic matter. Variation in throughfall and stemflow chemistry were determined under American beech, sugar maple, and yellow birch, the three major species comprising the forest studied. Nutrients generally recognized as being associated with organic molecules (e.g. P, N) moved more slowly from the forest canopy to the forest floor. These nutrients moved out of the canopy primarily via litterfall. Nutrients more commonly found in an ionic form (e.g. K) were found to move very rapidly from the forest canopy to the available nutrient pool in throughfall and stemflow. A comparison is made between the amount of each nutrient present in the forest canopy and the amount of these nutrients found in the throughfall and stemflow. The importance of hydrogen ion exchange in the removal of cations from the forest canopy is shown. Precipitation of low pH probably acts to accelerate the intrasystem cycling of nutrients within forested ecosystems. Total nutrient removal from the forest canopy by throughfall and stemflow is presented along with a comparison with the removal by litterfall.

  7. Capturing heterogeneity: The role of a study area's extent for estimating mean throughfall

    Science.gov (United States)

    Zimmermann, Alexander; Voss, Sebastian; Metzger, Johanna Clara; Hildebrandt, Anke; Zimmermann, Beate

    2016-11-01

    The selection of an appropriate spatial extent of a sampling plot is one among several important decisions involved in planning a throughfall sampling scheme. In fact, the choice of the extent may determine whether or not a study can adequately characterize the hydrological fluxes of the studied ecosystem. Previous attempts to optimize throughfall sampling schemes focused on the selection of an appropriate sample size, support, and sampling design, while comparatively little attention has been given to the role of the extent. In this contribution, we investigated the influence of the extent on the representativeness of mean throughfall estimates for three forest ecosystems of varying stand structure. Our study is based on virtual sampling of simulated throughfall fields. We derived these fields from throughfall data sampled in a simply structured forest (young tropical forest) and two heterogeneous forests (old tropical forest, unmanaged mixed European beech forest). We then sampled the simulated throughfall fields with three common extents and various sample sizes for a range of events and for accumulated data. Our findings suggest that the size of the study area should be carefully adapted to the complexity of the system under study and to the required temporal resolution of the throughfall data (i.e. event-based versus accumulated). Generally, event-based sampling in complex structured forests (conditions that favor comparatively long autocorrelations in throughfall) requires the largest extents. For event-based sampling, the choice of an appropriate extent can be as important as using an adequate sample size.

  8. Spatial patterns of throughfall isotopic composition at the event and seasonal timescales

    Science.gov (United States)

    Allen, Scott T.; Keim, Richard F.; McDonnell, Jeffrey J.

    2015-03-01

    Spatial variability of throughfall isotopic composition in forests is indicative of complex processes occurring in the canopy and remains insufficiently understood to properly characterize precipitation inputs to the catchment water balance. Here we investigate variability of throughfall isotopic composition with the objectives: (1) to quantify the spatial variability in event-scale samples, (2) to determine if there are persistent controls over the variability and how these affect variability of seasonally accumulated throughfall, and (3) to analyze the distribution of measured throughfall isotopic composition associated with varying sampling regimes. We measured throughfall over two, three-month periods in western Oregon, USA under a Douglas-fir canopy. The mean spatial range of δ18O for each event was 1.6‰ and 1.2‰ through Fall 2009 (11 events) and Spring 2010 (7 events), respectively. However, the spatial pattern of isotopic composition was not temporally stable causing season-total throughfall to be less variable than event throughfall (1.0‰; range of cumulative δ18O for Fall 2009). Isotopic composition was not spatially autocorrelated and not explained by location relative to tree stems. Sampling error analysis for both field measurements and Monte-Carlo simulated datasets representing different sampling schemes revealed the standard deviation of differences from the true mean as high as 0.45‰ (δ18O) and 1.29‰ (d-excess). The magnitude of this isotopic variation suggests that small sample sizes are a source of substantial experimental error.

  9. Soil water balance as affected by throughfall in gorse ( Ulex europaeus, L.) shrubland after burning

    Science.gov (United States)

    Soto, Benedicto; Diaz-Fierros, Francisco

    1997-08-01

    The role of fire in the hydrological behaviour of gorse shrub is studied from the point of view of its effects on vegetation cover and throughfall. In the first year after fire, throughfall represents about 88% of gross rainfall, whereas in unburnt areas it is 58%. Four years after fire, the throughfall coefficients are similar in burnt and unburnt plots (about 6096). The throughfall is not linearly related to vegetation cover because an increase in cover does not involve a proportional reduction in throughfall. The throughfall predicted by the two-parameter exponential model of Calder (1986, J. Hydrol., 88: 201-211) provides a good fit with the observed throughfall and the y value of the model reflects the evolution of throughfall rate. The soil moisture distribution is modified by fire owing to the increase of evaporation in the surface soil and the decrease of transpiration from deep soil layers. Nevertheless, the use of the old root system by sprouting vegetation leads to a soil water profile in which 20 months after the fire the soil water is similar in burnt and unburnt areas. Overall, soil moisture is higher in burnt plots than in unburnt plots. Surface runoff increases after a fire but does not entirely account for the increase in throughfall. Therefore the removal of vegetation cover in gorse scrub by fire mainly affects the subsurface water flows.

  10. Rainfall interception and spatial variability of throughfall in spruce stand

    Directory of Open Access Journals (Sweden)

    Dohnal Michal

    2014-12-01

    Full Text Available The interception was recognized as an important part of the catchment water balance in temperate climate. The mountainous forest ecosystem at experimental headwater catchment Liz has been subject of long-term monitoring. Unique dataset in terms of time resolution serves to determine canopy storage capacity and free throughfall. Spatial variability of throughfall was studied using one weighing and five tipping bucket rain gauges. The basic characteristics of forest affecting interception process were determined for the Norway spruce stand at the experimental area - the leaf area index was 5.66 - 6.00 m2 m-2, the basal area was 55.7 m2 ha-1, and the crown closure above individual rain gauges was between 19 and 95%. The total interception loss in both growing seasons analyzed was 34.5%. The mean value of the interception capacity determined was about 2 mm. Throughfall exhibited high variability from place to place and it was strongly affected by character of rainfall. On the other hand, spatial pattern of throughfall in average showed low variability.

  11. Throughfall quality and quantity in polluted and damaged ecosystems in Northern Bohemia

    International Nuclear Information System (INIS)

    Ruzicka, S.

    1995-01-01

    The interaction between high concentrations of polluting gases (SO 2 and NO x ) and damaged forest ecosystems was observed by studying throughfall precipitation in the Erzegebirge Mountains, Northern Bohemia. Qualitative and quantititative data on throughfall for the period November 1989 - October 1990 are presented. Weighted averages of SO 4 2- and NO 3 - concentrations in the throughfall were 23.05 mg L -1 and 13.61 mg L -1 in a beech and 34.41 mg L -1 and 11.03 mg L -1 in a spruce forest respectively. Three variables (the molar ratios of K/Na, N tot /S and N-NO 3 /N-NH 4 ) were used to compare the spruce throughfall quality to that observed in areas with similar however, less damaged spruce stands. Both K/Na and N-NO 3 /N-NH 4 ratios clearly decreased with increasing tree damage, the N tot /S ratio increased. The results suggest that the throughfall in damaged ecosystems of the Erzegebirge region becomes more like a wet precipitation as the tree canopies get sparser and the trees reduce canopy leaching. 24 refs., 4 figs., 4 tabs

  12. Organic halogens in spruce forest throughfall

    DEFF Research Database (Denmark)

    Öberg, G.; Johansen, C.; Grøn, C.

    1998-01-01

    . No relationship between the position of the collectors and the forest edge or dominating wind-direction was found, suggesting that dry deposition was not a major source. The concentration of organic halogens was related to that of organic carbon and decreased from the tree-trunk and outwards. In addition......, the concentrations were higher during the growing season than during the dormant season. This indicates that the major part of the organic carbon and organic halogens in spruce forest throughfall originates from canopy leachates or other internal sources. (C) 1998 Elsevier Science Ltd.......Deposition of dissolved organic halogens by throughfall was determined in a small spruce forest site in Denmark (56 degrees 28'N, 8 degrees 24'E). The mean annual deposition of dissolved organic halogens was 377 g ha(-1)yr(-1), and larger than the general deposition by precipitation...

  13. Use of multiple correspondence analysis (MCA) to identify interactive meteorological conditions affecting relative throughfall

    Science.gov (United States)

    Van Stan, John T.; Gay, Trent E.; Lewis, Elliott S.

    2016-02-01

    Forest canopies alter rainfall reaching the surface by redistributing it as throughfall. Throughfall supplies water and nutrients to a variety of ecohydrological components (soil microbial communities, stream water discharge/chemistry, and stormflow pathways) and is controlled by canopy structural interactions with meteorological conditions across temporal scales. This work introduces and applies multiple correspondence analyses (MCAs) to a range of meteorological thresholds (median intensity, median absolute deviation (MAD) of intensity, median wind-driven droplet inclination angle, and MAD of wind speed) for an example throughfall problem: identification of interacting storm conditions corresponding to temporal concentration in relative throughfall beyond the median observation (⩾73% of rain). MCA results from the example show that equalling or exceeding rain intensity thresholds (median and MAD) corresponded with temporal concentration of relative throughfall across all storms. Under these intensity conditions, two wind mechanisms produced significant correspondences: (1) high, steady wind-driven droplet inclination angles increased surface wetting; and (2) sporadic winds shook entrained droplets from surfaces. A discussion is provided showing that these example MCA findings agree well with previous work relying on more historically common methods (e.g., multiple regression and analytical models). Meteorological threshold correspondences to temporal concentration of relative throughfall at our site may be a function of heavy Tillandsia usneoides coverage. Applications of MCA within other forests may provide useful insights to how temporal throughfall dynamics are affected for drainage pathways dependent on different structures (leaves, twigs, branches, etc.).

  14. Temporal sequencing of throughfall drop generation as revealed by use of a large-scale rainfall simulator

    Science.gov (United States)

    Nanko, K.; Levia, D. F., Jr.; Iida, S.; SUN, X.; Shinohara, Y.; Sakai, N.

    2017-12-01

    Scientists have been interested in throughfall drop size and its distribution because of its importance to soil erosion and the forest water balance. An indoor experiment was employed to deepen our understanding of throughfall drop generation processes to promote better management of forested ecosystems. The indoor experiment provides a unique opportunity to examine an array of constant rainfall intensities that are ideal conditions to pick up the effect of changing intensities and not found in the fields. Throughfall drop generation was examined for three species- Cryptomeria japonica D. Don (Japanese cedar), Chamaecyparis obtusa (Siebold & Zucc.) Endl. (Japanese cypress), and Zelkova serrata Thunb. (Japanese zelkova)- under both leafed and leafless conditions in the large-scale rainfall simulator in the National Research Institute for Earth Science and Disaster Resilience (Tsukuba, Japan) at varying rainfall intensities ranging from15 to 100 mm h-1. Drop size distributions of the applied rainfall and throughfall were measured simultaneously by 20 laser disdrometers. Utilizing the drop size dataset, throughfall was separated into three components: free throughfall, canopy drip, and splash throughfall. The temporal sequencing of the throughfall components were analyzed on a 1-min interval during each experimental run. The throughfall component percentage and drop size of canopy drip differed among tree species and rainfall intensities and by elapsed time from the beginning of the rainfall event. Preliminary analysis revealed that the time differences to produce branch drip as compared to leaf (or needle) drip was partly due to differential canopy wet-up processes and the disappearance of branch drips due to canopy saturation, leading to dissimilar throughfall drop size distributions beneath the various tree species examined. This research was supported by JSPS Invitation Fellowship for Research in Japan (Grant No.: S16088) and JSPS KAKENHI (Grant No.: JP15H05626).

  15. Throughfall in different forest stands of Iperó, São Paulo

    Directory of Open Access Journals (Sweden)

    Esthevan Augusto Goes Gasparoto

    2014-06-01

    Full Text Available In forestry, throughfall (Pi is that fraction of rainfall that runs directly through the tree canopy and reaches the ground. It is characterized as the main source of water supply in a watershed. This study aimed to analyze the dynamics of throughfall in three types of forest stands, namely Eucalyptus cloeziana, Pinus sp. and seasonal semideciduous forest (FES, all located in Ipanema National Forest, in the municipality of Iperó-SP. In each stand, a 300 m² plot was established in which ten rain gauges were installed for monitoring throughfall, and three rain gauges were installed in an open area adjacent to the stand for measuring gross precipitation (P. At the end of 25 observations, it was observed that, relative to P values, Pi values were 76.2% in semideciduous forest (FES, 85.1% in E.cloeziana forest and 84.0% in Pinus sp forest. In addition, comparing these stands, a larger leaf canopy coverage and consequently greater capability for water retention was noted in the semideciduous forest. However, no statistical differences were observed (P<0.05 between the stands of interest regarding throughfall.

  16. Throughfall and stemflow dynamics in a riparian cedar swamp: possible ecohydrological feedbacks

    Science.gov (United States)

    Duval, T. P.

    2012-12-01

    Partitioning of rainfall through forest canopies as throughfall and stemflow have deservedly been the subject of much research in the past; however, very little is known about the fluxes of water and solutes through forested wetland communities. Temperate swamps are characterized by intermittent canopy coverage, with areas that are denser than upland forests of similar species, but also contain canopy gaps of meadow and marsh communities,. Understanding the role of vegetation on the distribution of precipitation in these ecosystems is necessary to effectively constrain water balance estimates and predict possible community responses to shifting climate regimes. This study examines throughfall, stemflow, and interception dynamics in a riparian cedar swamp in Alliston, Ontario, Canada over the 2012 growing season. Throughfall averaged 76 % of above-canopy rainfall; however, there were spatial-magnitude interaction variations within the swamp. For events less than 20 mm, between 17 and 75 % of the measured swamp floor received greater depth of rain than above the canopy, whereas for events greater than 20 mm only between 2 and 23 % of the sampled swamp floor received more water than the actual event. The observed spatial variability in throughfall was not related to leaf area index, suggesting remote sensing modelling efforts may not be an accurate method for quantification of wetland precipitation dynamics. Stemflow along the predominantly cedar trees averaged 5 %; therefore, net precipitation on a seasonal basis in this cedar swamp was 81 % of above canopy rainfall. Throughfall DOC and total nitrogen concentrations averaged 31 and 2.2 mg/L, respectively, with stemflow DOC and TN concentrations averaging 109 and 6.5 mg/L, respectively. These values are much higher than reported for upland forest species. In general, throughfall magnitudes increased and solute concentrations decreased with increasing distance from the existing forest boles. The delivery of high

  17. Multiyear impacts of partial throughfall exclusion on Buxus sempervirens in a Mediterranean forest

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Calcerrada, J.; Letts, M. G.; Rolo, V.; Roset, S.; Rambal, S.

    2013-09-01

    Aim of study:We examined the impact of sustained partial throughfall exclusion on the functional performance of Buxus sempervirens L. in the understory of a Mediterranean evergreen forest. We further considered whether any impacts of throughfall exclusion were affected by light availability. Area of study: The study was conducted in the south of France. Material and methods: Several leaf physiological and branch structural traits were measured along a light gradient after seven years from the onset of a throughfall exclusion experiment (TEE). The results were analysed along with annual growth and survival data. Main results: Plant mortality was nil in both the throughfall exclusion and control treatments. Stem diameter growth was reduced by 39% in plants subjected to throughfall exclusion, but this difference was only significant at the p = 0.10 significance level. Leaf physiology remained unaffected by the TEE, but small changes were evident in branch structural traits in high light microsites following throughfall exclusion; branches had lower wood density in the TEE plot, and more biomass was partitioned to leaves relative to stems. Research highlights: These changes do not seem to reflect an acclimatory response that would enhance drought tolerance. Instead, we suggest that these drought effects might exacerbate vulnerability to xylem cavitation in the more open microsites. Reduced growth and increased vulnerability to drought may indicate an incipient decline in plant vitality following TEE. The extension of observations to the whole-plant level and longer periods will elucidate the consequences of these observations for plant fitness, and permit verification of the positive effect of shade on Buxus sempervirens under increased drought. (Author)

  18. Throughfall patterns of a Subtropical Atlantic Forest in Brazil

    Science.gov (United States)

    Macedo Sá, João Henrique; Borges Chaffe, Pedro Luiz; Yuimi de Oliveira, Debora; Nery Giglio, Joana; Kobiyama, Masato

    2017-04-01

    The interception process is responsible for the spatial and temporal redistribution of the precipitation that reaches the ground. This process is important especially in forested areas since it influences recycling of moisture from the air and also the amount of water that effectively reaches the ground. The contact of the precipitation with the canopy influences on the water quality, increasing the concentration of various nutrients in the throughfall (Tf) and stemflow (Sf). Brazil, only about 8% of the original Atlantic Forest cover remains. That is an important biome and little is known about the characteristics of rainfall interception of this forest. The total interception loss in forested areas is usually formulated as the gross precipitation (P) minus the sum of the throughfall (Tf) and the stemflow (Sf). The stems characteristics influence on Sf, meanwhile, the value of Tf strongly depends on the canopy and leaf structures. Because of the complex structure of the canopy, these characteristics are usually expressed by the simpler Leaf Area Index (LAI) or the Canopy Cover Fraction (CCF). The Araponga river experimental catchment (ARA) with 5.3 ha is on the northern plateau of Santa Catarina State, southern Brazil. It is an area completely covered by secondary subtropical Atlantic Forest, the regional climate is the Köppen Cfb type, i.e., temperate climate without dry season and with warm summer (the mean temperature of the hottest month is always under 22°C). The objectives of the present study were (i) to evaluate the spatial and temporal variation of canopy cover; (ii) to influence of the interception process on the precipitation quality; and (iii) to explore the relation between canopy cover and throughfall. Inside the catchment, 9 Tf gauges were installed 40 cm above the soil surface in order to include the interception by shrub. 28 hand-made gauges were installed on a circular area of 3 m radius to analyze the spatial variability of throughfall. During

  19. Forest canopy structural controls over throughfall affect soil microbial community structure in an epiphyte-laden maritime oak stand

    Science.gov (United States)

    Van Stan, J. T., II; Rosier, C. L.; Schrom, J. O.; Wu, T.; Reichard, J. S.; Kan, J.

    2014-12-01

    Identifying spatiotemporal influences on soil microbial community (SMC) structure is critical to understanding of patterns in nutrient cycling and related ecological services. Since forest canopy structure alters the spatiotemporal patterning of precipitation water and solute supplies to soils (via the "throughfall" mechanism), is it possible changes in SMC structure variability could arise from modifications in canopy elements? Our study investigates this question by monitoring throughfall water and dissolved ion supply to soils beneath a continuum of canopy structure: from a large gap (0% cover) to heavy Tillandsia usneoides L. (Spanish moss) canopy (>90% cover). Throughfall water supply diminished with increasing canopy cover, yet increased washoff/leaching of Na+, Cl-, PO43-, and SO42- from the canopy to the soils (p < 0.01). Presence of T. usneoides diminished throughfall NO3-, but enhanced NH4+, concentrations supplied to subcanopy soils. The mineral soil horizon (0-10 cm) from canopy gaps, bare canopy, and T. usneoides-laden canopy significantly differed (p < 0.05) in soil chemistry parameters (pH, Ca2+, Mg2+, CEC). PCR-DGGE banding patterns beneath similar canopy covers (experiencing similar throughfall dynamics) also produced high similarities per ANalyses Of SIMilarity (ANO-SIM), and clustered together when analyzed by Nonmetric Multidimensional Scaling (NMDS). Correlation analysis of DGGE banding patterns, throughfall dynamics, and soil chemistry yielded significant correlations (p < 0.05) between fungal communities and soil chemical properties significantly differing between canopy cover types (pH: r2 = 0.50; H+ %-base saturation: r2 = 0.48; Ca2+ %-base saturation: r2 = 0.43). Bacterial community structure correlated with throughfall NO3-, NH4+, and Ca2+ concentrations (r2 = 0.37, p = 0.16). These results suggest that modifications of forest canopy structures are capable of affecting mineral-soil horizon SMC structure via the throughfall mechanism when

  20. Microbial nitrification in throughfall of a Japanese cedar associated with archaea from the tree canopy.

    Science.gov (United States)

    Watanabe, Keiji; Kohzu, Ayato; Suda, Wataru; Yamamura, Shigeki; Takamatsu, Takejiro; Takenaka, Akio; Koshikawa, Masami Kanao; Hayashi, Seiji; Watanabe, Mirai

    2016-01-01

    To investigate the nitrification potential of phyllospheric microbes, we incubated throughfall samples collected under the canopies of Japanese cedar (Cryptomeria japonica) and analyzed the transformation of inorganic nitrogen in the samples. Nitrate concentration increased in the unfiltered throughfall after 4 weeks of incubation, but remained nearly constant in the filtered samples (pore size: 0.2 and 0.4 µm). In the unfiltered samples, δ(18)O and δ(15)N values of nitrate decreased during incubation. In addition, archaeal ammonia monooxygenase subunit A (amoA) genes, which participate in the oxidation of ammonia, were found in the throughfall samples, although betaproteobacterial amoA genes were not detected. The amoA genes recovered from the leaf surface of C. japonica were also from archaea. Conversely, nitrate production, decreased isotope ratios of nitrate, and the presence of amoA genes was not observed in rainfall samples collected from an open area. Thus, the microbial nitrification that occurred in the incubated throughfall is likely due to ammonia-oxidizing archaea that were washed off the tree canopy by precipitation.

  1. Characteristics and transport of organochlorine pesticides in urban environment: air, dust, rain, canopy throughfall, and runoff.

    Science.gov (United States)

    Zhang, Wei; Ye, Youbin; Hu, Dan; Ou, Langbo; Wang, Xuejun

    2010-11-01

    Characteristics and transport of organochlorine pesticides (OCPs) in urban multiple environments, including air, dust, rain, canopy throughfall, and runoff water, are explored in this study. Hexachlorocyclohexanes (HCHs) dominated in both air and rain water, and dichlorodiphenyltrichloroethane (DDT) related substances showed a higher affinity to dust. Relatively high concentrations of DDT and dichlorodiphenyldichloroethylene (DDE) in air, rain and dust imply that technical DDT in the environment has been degrading, and there may be unknown local or regional emission sources that contain DDTs in the study area. Source identification showed that DDTs in Beijing urban environments with a fresh signature may originate from the atmospheric transport from remote areas. The ratio of α-/γ-HCH in dust, rain, canopy throughfall and runoff were close to 1, indicating the possible use of lindane. OCPs in runoff were transported from various sources including rain, dust, and canopy throughfall. In runoff, DDTs and hexachlorobenzene (HCB) were mainly transported from dust, and HCHs were mainly from rain and canopy throughfall.

  2. Throughfall chemistry and canopy interactions in a Sitka spruce plantation sprayed with six different simulated polluted mist treatments

    International Nuclear Information System (INIS)

    Chiwa, M.; Crossley, A.; Sheppard, L.J.; Sakugawa, H.; Cape, J.N.

    2004-01-01

    Throughfall chemistry was studied in a mature Sitka spruce plantation in order to investigate canopy interactions, such as nitrogen absorption, cation leaching, and neutralization of rainfall passing through the canopy. The plantation had been exposed to six different simulated mist treatments including N (NH 4 NO 3 ) and S (H 2 SO 4 at pH 2.5) in four replicated blocks since 1996. Throughfall and rainfall were collected from May to September 2000. The results showed that 30-35% of the applied N was retained by the canopy. There were linear relationships between the loss of H + and increased K + , Mg 2+ and Ca 2+ deposition through the canopy. However these increases in K + , Mg 2+ and Ca 2+ deposition accounted for only about 50% of total neutralization of the acidity. The relationship between the anion deficits in throughfall and the loss of H + implied that weak organic acid anions were involved in the neutralization of the acidity in throughfall. - Weak organic acids may be involved in neutralizing acidity of throughfall

  3. Contribution and loading estimation of organochlorine pesticides from rain and canopy throughfall to runoff in an urban environment.

    Science.gov (United States)

    Zhang, Wei; Ye, Youbin; Tong, Yindong; Ou, Langbo; Hu, Dan; Wang, Xuejun

    2011-01-30

    Concentrations of OCPs in rain, canopy throughfall, and runoff water were measured in the Beijing metropolitan area during the rainy seasons from 2006 to 2007. This study was conducted to calculate the fluxes of OCPs in rain and canopy throughfall, as well as their contributions to runoff. At urban sites, the contribution of HCB and ΣHCHs from rainfall accounted for approximately 50% of the mass in runoff. At the site with significant coverage of landscaping trees, the HCB, ΣHCHs, and ΣDDTs from the net canopy throughfall accounted for approximately 10% of the mass in the runoff. Based on the data obtained in this study, loadings of OCPs (in μg) in rain, net canopy throughfall, and runoff water were calculated. The input of OCPs from rain and canopy throughfall water accounted for a significant portion of urban runoff. In cities undergoing rapid urban sprawl, monitoring and control of the transport of OCPs in urban runoff are essential for effective control of environmental hazards in surface water bodies. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Organic carbon fluxes in stemflow, throughfall and rainfall in an olive orchard

    Science.gov (United States)

    Lombardo, L.; Vanwalleghem, T.; Gomez, J. A.

    2012-04-01

    The importance of rainfall distribution under the vegetation canopy for nutrient cycling of forest ecosystems has been widely studied (e.g. Kolkai et al., 1999, Bath et al., 2011). It has been demonstrated how throughfall and stemflow reach the soil as chemically-enriched water, by incorporating soluble organic and inorganic particles deriving from plant exudates and from atmospheric depositions (dryfall and wetfall) present on the surfaces of the plant (leaves, bark, fruits). Dissolved (DOC) and particulate (POC) organic carbon inputs from stem- and canopy-derived hydrologic fluxes are small but important components of the natural carbon cycle. DOC has also the capability to form complexes that control the transport and solubility of heavy metals in surface and ground waters, being composed for the most part (75-90%) of fulvic, humic or tanninic compounds, and for the resting part of molecules like carbohydrates, hydrocarbons, waxes, fatty acids, amino and hydroxy acids. However, very little data is available for agricultural tree crops, especially olive trees. In this sense, the objective of this work is to investigate the concentration and fluxes of organic carbon in rainfall, throughfall, and stemflow in a mature olive orchard located in Cordoba, in Southern Spain and to relate them to rainfall characteristics and tree physiology. The measurements started in October 2011. Four high density polyethylene bottles with 18-cm-diameter polyethylene funnels for throughfall collection were placed beneath the canopy of each of the three selected olive trees; four more collectors were placed in open spaces in the same orchard for rainfall sampling. Stemflow was collected through PVC spiral tubes wrapped around the trunks and leading into collection bins. The throughflow sampling points were chosen randomly. Total and dissolved organic carbon concentrations in unfiltered (TOC) and filtered (0.45 µm membrane filter, DOC) collected waters were measured using a TOC analyzer

  5. Estimates of ion sources in deciduous and coniferous throughfall

    Science.gov (United States)

    Puckett, L.J.

    1990-01-01

    Estimates of external and internal sources of ions in net throughfall deposition were derived for a deciduous and coniferous canopy by use of multiple regression. The externel source component appears to be dominated by dry deposition of Ca2+, SO2 and NO3- during dormant and growing seasons for the two canopy types. Increases in the leaching rates of K+ and Mg2+ during the growing season reflect the presence of leaves in the deciduous canopy and increased physiological activity in both canopies. Internal leaching rates for SO42- doubled during the growing season presumably caused by increased physiological activity and uptake of SO2 through stomates. Net deposition of SO42- in throughfall during the growing season appears highly dependent on stomatal uptake of SO2. Estimates of SO2 deposition velocities were 0.06 cm s-1 and 0.13 cm s-1 for the deciduous and coniferous canopies, respectively, during the dormant season, and 0.30 cm s-1 and 0.43 cm s-1 for the deciduous and coniferous canopies, respectively, during the growing season. For the ions of major interest with respect to ecosystem effects, namely H+, NO3- and SO42-, precipitation inputs generally outweighed estimates of dry deposition input. However, net throughfall deposition of NO3- and SO42- accounted for 20-47 and 34-50 per cent, respectively, of total deposition of those ions. Error estimates of ion sources were at least 50-100 per cent and the method is subject to several assumptions and limitations.

  6. Effects of radiation, litterfall and throughfall on herbaceous biomass production in oak woodlands of Southern Portugal

    International Nuclear Information System (INIS)

    Nunes, J.; Sa, C.; Madeira, M.; Gazarini, L.

    2002-01-01

    Micro climatic characteristics (soil moisture, and air and soil temperature) were monitored both under and outside the influence of Quercus rotundifolia canopy. The influence of tree cover on biomass production of herbaceous vegetation was studied through the simulation of the physical and chemical effects associated to the tree canopy (radiation, litterfall, throughfall). Treatments were: control (T), radiation shortage (RR), application of leaf litter (F), application of leaflitter and radiation shortage (FRR) , application of throughfall (N) and application of throughfall and radiation shortage (NRR). Most of the times, and especially in winter, soil temperature was higher in areas not influenced by the canopies than in those under their influence. Soil moisture tended to decrease faster in the areas outside the canopy influence. Mean annual biomass production of the herbaceous vegetation was 159.5, 145.8, 132.2, 126.66, 134.9 and 173.1 g m2, respectively, in treatments C, RR, F, FRR, N and NRR. The N, P, K, Mg, Mn and Ca concentrations in the herbaceous biomass were generally higher in the shaded treatments. When the amount of nutrients accumulated in the herbaceous vegetation biomass was expressed on an area basis, the highest values were observed for treatment with throughfall application and radiation shortage. Besides the possible effects of the micro climatic characteristics, differences with respect to herbaceous vegetation production may be explained by the presence of litterfall, as well as by the nutrients present in the throughfall solution [pt

  7. Deposition pattern and throughfall fluxes in secondary cool temperate forest, South Korea

    Science.gov (United States)

    Kumar Gautam, Mukesh; Lee, Kwang-Sik; Song, Byeong-Yeol

    2017-07-01

    Chemistry and deposition fluxes in the rainfall and throughfall of red pine (Pinus densiflora), black locust (Robinia pseudoacacia), and chestnut (Castanea crenata) monocultures, and mixed red pine-black locust-chestnut stands were examined in a nutrient-limited cool temperate forest of central South Korea. Throughfall was enriched in both basic and acidic constituents relative to rainfall, suggesting that both dry deposition and canopy leaching are important sources of throughfall constituents. Net throughfall fluxes (NTFs) of cations and anions significantly differed among four different stands as well as seasonally. Red pine exhibited highest fluxes (TF and NTF) for Ca2+, black locust for K+, mixed stands for Mg2+, and chestnut for Na+. In contrast, NTF of SO42-, NO3-, and NH4+was highest in the red pine, intermediate in the chestnut and mixed stands, and lowest in the black locust. In general, canopy uptake of H+ and NH4+ for all stands was higher in summer than in winter. Dry deposition appears to play a major role in atmospheric deposition to this cool temperate forest, especially in summer. Dry deposition for both cations and anions displayed high spatial variability, even though stands were adjacent to one another and experienced identical atmospheric deposition loads. Canopy leaching of K+ (95-78% of NTF), Mg2+ (92-23% of NTF), and Ca2+ (91-12% of NTF) was highest for the black locust, lowest for chestnut, and intermediate for the red pine and mixed stands. The present study documented significant changes in throughfall chemistry and NTF among different forest stands, which presumably be related with the differences in the canopy characteristics and differences in their scavenging capacity for dry deposition and canopy exchange. Difference in the canopy retention of H+ and base cation leaching suggests that canopy exchange was mainly driven by weak acid excretion and lesser by H+ exchange reaction. Our results indicate that despite a high base cation

  8. Throughfall-mediated alterations to soil microbial community structure in a forest plot of homogenous soil texture, litter, and plant species composition

    Science.gov (United States)

    Van Stan, John; Rosier, Carl; Moore, Leslie; Gay, Trent; Reichard, James; Wu, Tiehang; Kan, Jinjun

    2015-04-01

    Identifying spatiotemporal influences on soil microbial community (SMC) structure is critical to our understanding of patterns in biogeochemical cycling and related ecological services (e.g., plant community structure, water quality, response to environmental change). Since forest canopy structure alters the spatiotemporal patterning of precipitation water and solute supplies to soils (via "throughfall"), is it possible that changes in SMC structure could arise from modifications in canopy elements? Our study investigates this question by monitoring throughfall water and dissolved ion supply to soils beneath a continuum of canopy structure: from large gaps (0% cover), to bare Quercus virginiana Mill. (southern live oak) canopy (~50-70%), to heavy Tillandsia usneoides L. (Spanish moss) canopy (>90% cover). Throughfall water supply diminished with increasing canopy cover, yet increased washoff/leaching of Na+, Cl-, PO43-, and SO42- from the canopy to the soils. Presence of T. usneoides diminished throughfall NO3-, but enhanced NH4+, concentrations supplied to subcanopy soils. The mineral soil horizon (0-10 cm) sampled in triplicate from locations receiving throughfall water and solutes from canopy gaps, bare canopy, and T. usneoides-laden canopy significantly differed in soil chemistry parameters (pH, Ca2+, Mg2+, CEC). Polymerase Chain Reaction-Denaturant Gradient Gel Electrophoresis (PCR-DGGE) banding patterns beneath similar canopy covers (experiencing similar throughfall dynamics) also produced high similarities per ANalyses Of SIMilarity (ANO-SIM), and clustered together when analyzed by Nonmetric Multidimensional Scaling (NMDS). These results suggest that modifications of forest canopy structures are capable of affecting mineral-soil horizon SMC structure via throughfall when canopies' biomass distribution is highly heterogeneous. As SMC structure, in many instances, relates to functional diversity, we suggest that future research seek to identify functional

  9. Trace metals in bulk precipitation and throughfall in a suburban area of Japan

    Science.gov (United States)

    Hou, H.; Takamatsu, T.; Koshikawa, M. K.; Hosomi, M.

    Throughfall and bulk precipitation samples were collected monthly for 1.5 years over bare land and under canopies of Japanese cedar ( Cryptomeria japonica), Japanese red pine ( Pinus densiflora), Japanese cypress ( Chamaecyparis obtusa), and bamboo-leafed oak ( Quercus myrsinaefolia) in a suburban area of Japan. Samples were analyzed for dissolved Al, Mn, Fe, Cu, Zn, Ag, In, Sn, Sb and Bi by ICP-AES and ICP-MS. The metal concentrations were higher in throughfall, especially that of C. japonica, than bulk precipitation. Enrichment ratios (ERs: ratios of metal concentrations in throughfall to those in bulk precipitation) ranged from 2.5 (Zn) to 5.3 (Ag) (3.9 on average), and ERs for slightly soluble metals were generally higher than those for easily soluble metals. Concentrations of Mn, Fe, Cu, and Zn accounted for 99% of the total concentration of heavy metals in rainwater, whereas those of rare metals such as Ag, In, Sn, and Bi totaled rare metals were 0.002 and 0.010 μg l -1 for Ag, 0.001 and 0.005 μg l -1 for In, 0.062 and 0.21 μg l -1 for Sn, and 0.006 and 0.023 μg l -1 for Bi in bulk precipitation and throughfall, respectively. The metal concentrations in rainwater were negatively correlated to the volume of rainwater, indicating that washout is the main mechanism that incorporates metals into rainwater. From the enrichment factors, that is, (X/Al) rain/(X/Al) crust, metals other than Fe were shown to be more enriched in rainwater than in the Earth's crust, including those present as a result of leaching from soil dust (Mn) and from anthropogenic sources (Cu, Zn, Ag, In, Sn, Sb, and Bi).

  10. Rainfall interception and spatial variability of throughfall in spruce stand

    Czech Academy of Sciences Publication Activity Database

    Dohnal, M.; Černý, T.; Votrubová, J.; Tesař, Miroslav

    2014-01-01

    Roč. 62, č. 4 (2014), s. 277-284 ISSN 0042-790X R&D Projects: GA TA ČR TA02021451 Institutional support: RVO:67985874 Keywords : Interception loss * Interception capacity * Free throughfall * Evaporation * Hydrological balance of vegetation cover Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.486, year: 2014

  11. The role of forest type on throughfall during extreme precipitation events - A comparison of methods using data from the Pohorje mountains (NE Slovenia)

    Science.gov (United States)

    Vilhar, Urša; Simončič, Primož

    2013-04-01

    Extreme precipitation in the Alpine region is a major environmental factor due to high frequency of such events and consequences such as flooding of populated valley floors, erosion, avalanches, debris flow and landslides endangering exposed settlements. However, the effects of extreme precipitation are buffered by forest cover, therefore forest management practices should aim towards decreased surface runoff and soil erosion in alpine climates. In Central Europe, many pure Norway spruce stands, established on primary beech sites, were converted into mixed stands over the last 60 years. The conversion of forest management from spruce monocultures into mixed deciduous-coniferous forests changed the forest structure dramatically. This changes could influence the hydrological processes on the catchment scale, associated with major river flooding following extreme precipitation events. In this study, the effect of forest management on the partitioning of rainfall into throughfall and stemflow in coniferous and mixed deciduous-coniferous stands on Pohorje mountains in NE Slovenia were investigated. Four spruce Picea abies (L. Karst) stands were compared to four mixed spruce-beech Fagus sylvatica (L.) stands with prevailing forest plant community Cardamine Savensi Fagetum with small areas of Sphagno - Piceetum, Bazzanio - Piceetum and Rhytidiodelpholorei - Piceetum intermixed. The monthly throughfall from rain collectors and half-hourly throughfall from automated rain gauges in growing seasons from 2008 till 2012 were analyzed in order to estimate the throughfall under forest canopies. In the mixed spruce-beech stands the monthly stemflow on beech trees was also measured. For the precipitation in the open an automated weather station and rainfall collectors in an open area located very close to the research plots were used. There were small differences in seasonal throughfall found between the coniferous and mixed deciduous-coniferous stands. The seasonal throughfall was

  12. Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall

    International Nuclear Information System (INIS)

    Zhang Wei; Zhang Shucai; Wan Chao; Yue Dapan; Ye Youbin; Wang Xuejun

    2008-01-01

    Diagnostic ratios and multivariate analysis were utilized to apportion polycyclic aromatic hydrocarbon (PAH) sources for road runoff, road dust, rain and canopy throughfall based on samples collected in an urban area of Beijing, China. Three sampling sites representing vehicle lane, bicycle lane and branch road were selected. For road runoff and road dust, vehicular emission and coal combustion were identified as major sources, and the source contributions varied among the sampling sites. For rain, three principal components were apportioned representing coal/oil combustion (54%), vehicular emission (34%) and coking (12%). For canopy throughfall, vehicular emission (56%), coal combustion (30%) and oil combustion (14%) were identified as major sources. Overall, the PAH's source for road runoff mainly reflected that for road dust. Despite site-specific sources, the findings at the study area provided a general picture of PAHs sources for the road runoff system in urban area of Beijing. - Urban road runoff and road dust, canopy throughfall and rain were considered as a system for diagnostics of PAH sources

  13. Alterations to throughfall water and solute flux by Tillandsias usneoides L. (Spanish moss) cover in a maritime live oak forest

    Science.gov (United States)

    Gay, T. E.; Van Stan, J. T., II; Reichard, J. S.; Moore, L. D.; Lewis, E. S.

    2014-12-01

    Alterations to forest canopy structures can have a direct effect on hydrological and biogeochemical cycles in forest ecosystems. Epiphytes act as additional canopy biomass intercepting water, effecting pathways under different micrometeorological conditions and alternating nutrient uptake/releases. Most studies on epiphyte cover have focused on non-vascular epiphytes (e.g., lichen and bryophyte mosses), leaving vascular epiphytes like Tillandsia usneoides L. (Spanish moss) relatively understudied. To fill this gap, we characterized alterations to throughfall water and dissolved ion enrichment/flux to soils by T. usneoides in a Quercus Virginiana Mill. (southern live oak) stand on St. Catherine's Island. Specifically, we compare throughfall generated from heavy T. usneoides coverage, bare canopy, and a continuum of T. usneoides cover percentages (~400 water & 210 chemistry observations over ~40 storms for each canopy cover category). Findings show T.usneoides acts as a significant water storage agent, significantly reducing throughfall. However, under certain meteorological conditions T. usneoides can become saturated and act as a funneling "hotspot." Tillandsia usneoides coverage enriched throughfall with primarily dry deposited ions (Na+,Cl-, SO42-, Li+), leached greater Mg2+, Ca2+, reduced NO3- and increased NH4+ concentrations. Dry deposited ion enrichment is likely a result of the moss' greater surface roughness. It has been shown that epiphytes prefer to leach Mg2+ and Ca2+. Increased NH4+ suggests that the saturated T. usneoides mat likely hosts microbial decomposition of leaf, branch, and bark biomass ensnared in the plant itself. K-means cluster analysis on the storms revealed 4 storm types of the differing meteorological conditions (windy/calm, dry/wet [high/low VPD], high/low intensity, intermittent/consistent), and these throughfall dynamics varied between these storm types. Discussion of future research questions regarding how these throughfall

  14. Throughfall and temporal trends of rainfall redistribution in an open tropical rainforest, south-western Amazonia (Rondônia, Brazil

    Directory of Open Access Journals (Sweden)

    S. Germer

    2006-01-01

    Full Text Available Throughfall volumes and incident rainfall were measured between 23 August and 2 December 2004 as well as from 6 January to 15 April 2005 for individual rain events of differing intensities and magnitudes in an open tropical rainforest in Rondônia, Brazil. Temporal patterns of throughfall spatial variability were examined. Estimated interception was compared to modeled interception obtained by applying the revised Gash model in order to identify sources of throughfall variability in open tropical rainforests. Gross precipitation of 97 events amounted to 1309 mm, 89±5.6% (S.E. of which reached the forest floor as throughfall. The redistribution of water within the canopy was highly variable in time, which we attribute to the high density of babassu palms (Orbignya phalerata, their seasonal leaf growth, and their conducive morphology. We identified a 10-min rainfall intensity threshold of 30 mmh-1 above which interception was highly variable. This variability is amplified by funneling and shading effects of palms. This interaction between a rainfall variable and vegetation characteristics is relevant for understanding the hydrology of all tropical rainforests with a high palm density.

  15. Molecular and optical properties of tree-derived dissolved organic matter in throughfall and stemflow from live oaks and eastern red cedar

    Science.gov (United States)

    Stubbins, Aron; Silva, Leticia M.; Dittmar, Thorsten; Van Stan, John T.

    2017-03-01

    Studies of dissolved organic matter (DOM) transport through terrestrial aquatic systems usually start at the stream. However, the interception of rainwater by vegetation marks the beginning of the terrestrial hydrological cycle making trees the headwaters of aquatic carbon cycling. Rainwater interacts with trees picking up tree-DOM, which is then exported from the tree in stemflow and throughfall. Stemflow denotes water flowing down the tree trunk, while throughfall is the water that drips through the leaves of the canopy. We report the concentrations, optical properties (light absorbance) and molecular signatures (ultrahigh resolution mass spectrometry) of tree-DOM in throughfall and stemflow from two tree species (live oak and eastern red cedar) with varying epiphyte cover on Skidaway Island, Savannah, Georgia, USA. Both stemflow and throughfall were enriched in DOM compared to rainwater, indicating trees were a significant source of DOM. The optical and molecular properties of tree-DOM were broadly consistent with those of DOM in other aquatic ecosystems. Stemflow was enriched in highly colored DOM compared to throughfall. Elemental formulas identified clustered the samples into three groups: oak stemflow, oak throughfall and cedar. The molecular properties of each cluster are consistent with an autochthonous aromatic-rich source associated with the trees, their epiphytes and the microhabitats they support. Elemental formulas enriched in oak stemflow were more diverse, enriched in aromatic formulas, and of higher molecular mass than for other tree-DOM classes, suggesting greater contributions from fresh and partially modified plant-derived organics. Oak throughfall was enriched in lower molecular weight, aliphatic and sugar formulas, suggesting greater contributions from foliar surfaces. While the optical properties and the majority of the elemental formulas within tree-DOM were consistent with vascular plant-derived organics, condensed aromatic formulas were

  16. Estimation of radioactive 137-cesium transportation by litterfall, stemflow and throughfall in the forests of Fukushima

    International Nuclear Information System (INIS)

    Endo, Izuki; Ohte, Nobuhito; Iseda, Kohei; Tanoi, Keitaro; Hirose, Atsushi; Kobayashi, Natsuko I.; Murakami, Masashi; Tokuchi, Naoko; Ohashi, Mizue

    2015-01-01

    Since the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011, large areas of the forests around Fukushima have become highly contaminated by radioactive nuclides. To predict the future dynamics of radioactive cesium ( 137 Cs) in the forest catchment, it is important to measure each component of its movement within the forest. Two years after the accident, we estimated the annual transportation of 137 Cs from the forest canopy to the floor by litterfall, throughfall and stemflow. Seasonal variations in 137 Cs transportation and differences between forests types were also determined. The total amount of 137 Cs transported from the canopy to the floor in two deciduous and cedar plantation forests ranged between 3.9 and 11.0 kBq m −2  year −1 . We also observed that 137 Cs transportation with litterfall increased in the defoliation period, simply because of the increased amount of litterfall. 137 Cs transportation with throughfall and stemflow increased in the rainy season, and 137 Cs flux by litterfall was higher in cedar plantation compared with that of mixed deciduous forest, while the opposite result was obtained for stemflow. - Highlights: • Annual flux of 137 Cs by litterfall, throughfall and stemflow was estimated in two types of forest in Fukushima, Japan. • Annual amount of 137 Cs transportation was 3.9–11.0 kBq m −2 year −1 in two years after the accident. • 137 Cs flux by litterfall was higher in cedar plantation than that of mixed deciduous forest. • 137 Cs transportation with throughfall and stemflow increased in rainy season.

  17. Kinetic energy of throughfall in a highly diverse forest ecosystem in the humid subtropics

    Science.gov (United States)

    Geißler, Christian; Kühn, Peter; Scholten, Thomas

    2010-05-01

    After decades of research it is generally accepted that vegetation is a key factor in controlling soil erosion. Therefore, in ecosystems where erosion is a serious problem, afforestation is a common measure against erosion. Most of the studies in the last decades focused on agricultural systems and less attention was paid to natural systems. To understand the mechanisms preventing soil erosion in natural systems the processes have to be studied in detail and gradually. The first step and central research question is on how the canopies of the tree layer alter the properties of rainfall and generate throughfall. Kinetic energy is a widely used parameter to estimate the erosion potential of open field rainfall and throughfall. In the past, numerous studies have shown that vegetation of a certain height enhances the kinetic energy under the canopy (Chapman 1948, Mosley 1982, Vis 1986, Hall & Calder 1993, Nanko et al. 2006, Nanko et al. 2008) in relation to open field rainfall. This is mainly due to a shift in the drop size distribution to less but larger drops possessing a higher amount of kinetic energy. In vital forest ecosystems lower vegetation (shrubs, herbs) as well as a continuous litter layer protects the forest soil from the impact of large drops. The influence of biodiversity, specific forest stands or single species in this process system is still in discussion. In the present study calibrated splash cups (after Ellison 1947, Geißler et al. under review) have been used to detect differences in kinetic energy on the scale of specific species and on the scale of forest stands of contrasting age and biodiversity in a natural forest ecosystem. The splash cups have been calibrated experimentally using a laser disdrometer. The results show that the kinetic energy of throughfall produced by the tree layer increases with the age of the specific forest stand. The average throughfall kinetic energy (J m-2) is about 2.6 times higher in forests than under open field

  18. Detecting spatial structures in throughfall data: The effect of extent, sample size, sampling design, and variogram estimation method

    Science.gov (United States)

    Voss, Sebastian; Zimmermann, Beate; Zimmermann, Alexander

    2016-09-01

    In the last decades, an increasing number of studies analyzed spatial patterns in throughfall by means of variograms. The estimation of the variogram from sample data requires an appropriate sampling scheme: most importantly, a large sample and a layout of sampling locations that often has to serve both variogram estimation and geostatistical prediction. While some recommendations on these aspects exist, they focus on Gaussian data and high ratios of the variogram range to the extent of the study area. However, many hydrological data, and throughfall data in particular, do not follow a Gaussian distribution. In this study, we examined the effect of extent, sample size, sampling design, and calculation method on variogram estimation of throughfall data. For our investigation, we first generated non-Gaussian random fields based on throughfall data with large outliers. Subsequently, we sampled the fields with three extents (plots with edge lengths of 25 m, 50 m, and 100 m), four common sampling designs (two grid-based layouts, transect and random sampling) and five sample sizes (50, 100, 150, 200, 400). We then estimated the variogram parameters by method-of-moments (non-robust and robust estimators) and residual maximum likelihood. Our key findings are threefold. First, the choice of the extent has a substantial influence on the estimation of the variogram. A comparatively small ratio of the extent to the correlation length is beneficial for variogram estimation. Second, a combination of a minimum sample size of 150, a design that ensures the sampling of small distances and variogram estimation by residual maximum likelihood offers a good compromise between accuracy and efficiency. Third, studies relying on method-of-moments based variogram estimation may have to employ at least 200 sampling points for reliable variogram estimates. These suggested sample sizes exceed the number recommended by studies dealing with Gaussian data by up to 100 %. Given that most previous

  19. Interception loss, throughfall and stemflow in a maritime pine stand. II. An application of Gash's analytical model of interception

    Science.gov (United States)

    Loustau, D.; Berbigier, P.; Granier, A.

    1992-10-01

    Interception, throughfall and stemflow were determined in an 18-year-old maritime pine stand for a period of 30 months. This involved 71 rainfall events, each corresponding either to a single storm or to several storms. Gash's analytical model of interception was used to estimate the sensitivity of interception to canopy structure and climatic parameters. The seasonal cumulative interception loss corresponded to 12.6-21.0% of the amount of rainfall, whereas throughfall and stemflow accounted for 77-83% and 1-6%, respectively. On a seasonal basis, simulated data fitted the measured data satisfactorily ( r2 = 0.75). The rainfall partitioning between interception, throughfall and stemflow was shown to be sensitive to (1) the rainfall regime, i.e. the relative importance of light storms to total rainfall, (2) the climatic parameters, rainfall rate and average evaporation rate during storms, and (3) the canopy structure parameters of the model. The low interception rate of the canopy was attributed primarily to the low leaf area index of the stand.

  20. A large-scale throughfall manipulation experiment on Walker Branch Watershed

    International Nuclear Information System (INIS)

    Turner, R.S.; Hanson, P.J.; Huston, M.A.; Garten, C.T. Jr.; Mulholland, P.J.

    1992-01-01

    A throughfall displacement experiment is being performed in a mixed-age upland-oak forest on the upper slopes of Walker Branch Watershed in eastern Tennessee to investigate the effects of decreased and increased rainfall on individual species and ecosystem processes at the spatial scale of forest stands. Approximately 25% of the throughfall on the ''dry'' plot will be collected in polyethylene troughs suspended above the forest floor and the water transferred by gravity through pipes across the control plot for distribution onto the ''wet'' plot. Each plot is approximately 0.6 ha in size. The 25% reduction in soil moisture anticipated for the dry plot is equivalent to the driest growing season of the 1980's drought, which was correlated with sapling mortality and reduced growth of yellow poplar on the watershed. The experimental treatments will last at least 5 years. A wide range of biological and chemical characteristics of forest stands win be investigated, including: forest growth and physiological responses of major tree and understory species, leaf area index, herbivory, litter fall, understory competition, litter decomposition, soil organic matter and microbial populations, nutrient availability, soil and soil solution chemistry, and biogeochemical cycling processes. Data on vegetation growth, mortality, and reproduction will be used in existing models of community structure to produce estimates of potential changes in species composition over longer time periods resulting from wet versus dry experimental scenarios

  1. Liquid and chemical fluxes in precipitation, throughfall and stemflow

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.

    2005-01-01

    Wet deposition (WD), throughfall (TF) and stemflow (SF) measurements undertaken in a deciduous forest show 85% of the WD liquid flux is observed as TF and approximately 2% as SF. TF and SF were observed to be enriched in base cations and accordingly had an average pH of 6.1 and 5.9, respectively...... composition below sugar maples. The total atmospheric flux of inorganic nitrogen to the forest is approximately 14-18 kg-N ha(-1) yr(-1) supercript stop with approximately half taken up by the canopy. Associated experiments designed to quantify uncertainties in the nutrient fluxes included laboratory tests...

  2. Throughfall and fog deposition of nitrogen and sulfur at an N-limited and N-saturated site in the San Bernardino Mountains, southern California

    Science.gov (United States)

    Mark E. Fenn; Mark A. Poth; Susan L. Schilling; David B. Grainger

    2000-01-01

    Inorganic nitrogen (N) and sulfur (S) deposition in bulk throughfall and fog were determined at two sites located at opposite ends (42 km apart) of a pollution gradient in the San Bernardino Mountains. Plot-level averages for total annual N and S deposition in throughfall in 1996 were 18.8 and 2.9 kg·ha–1, respectively, at Camp Paivika (CP) and 2...

  3. Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall.

    Science.gov (United States)

    Zhang, Wei; Zhang, Shucai; Wan, Chao; Yue, Dapan; Ye, Youbin; Wang, Xuejun

    2008-06-01

    Diagnostic ratios and multivariate analysis were utilized to apportion polycyclic aromatic hydrocarbon (PAH) sources for road runoff, road dust, rain and canopy throughfall based on samples collected in an urban area of Beijing, China. Three sampling sites representing vehicle lane, bicycle lane and branch road were selected. For road runoff and road dust, vehicular emission and coal combustion were identified as major sources, and the source contributions varied among the sampling sites. For rain, three principal components were apportioned representing coal/oil combustion (54%), vehicular emission (34%) and coking (12%). For canopy throughfall, vehicular emission (56%), coal combustion (30%) and oil combustion (14%) were identified as major sources. Overall, the PAH's source for road runoff mainly reflected that for road dust. Despite site-specific sources, the findings at the study area provided a general picture of PAHs sources for the road runoff system in urban area of Beijing.

  4. Flux-based Enrichment Ratios of Throughfall and Stemflow Found to Vary Significantly within Urban Fragments and Along an Urban-to-Rural Gradient

    Science.gov (United States)

    Dowtin, A. L.; Levia, D. F., Jr.

    2017-12-01

    Throughfall and stemflow are important inputs of water and solutes to forest soils in both rural and urban forests. In metropolitan wooded ecosystems, a number of factors can affect flux-based enrichment ratios, including combustion of fossil fuels and proximity to industry. Use of flux-based enrichment ratios provides a means by which this modification of net precipitation chemistry can be quantified for both throughfall and stemflow, and allows for a characterization of the relative contributions of stemflow and throughfall in the delivery of nutrients and pollutants to forest soils. This study utilizes five mixed deciduous forest stands along an urban-to-rural gradient (3 urban fragments, 1 suburban fragment, and a portion of 1 contiguous rural forest) within a medium-sized metropolitan region of the United States' Northeast megalopolis, to determine how the size, shape, structure, and geographic context of remnant forest fragments determine hydrologic and solute fluxes within them. In situ observations of throughfall and stemflow (the latter of which is limited to Quercus rubra and Quercus alba) within each study plot allow for an identification and characterization of the spatial variability in solute fluxes within and between the respective sites. Preliminary observations indicate significant intra-site variability in solute concentrations as observed in both throughfall and stemflow, with higher concentrations along the respective windward edges of the study plots than at greater depths into their interiors. Higher flux-based stemflow enrichment ratios, for both Q. rubra and Q. alba, were also evident for certain ions (i.e., S2-, NO3-) in the urban forest fragments, with significantly lower ratios observed at the suburban and rural sites. Findings from this research are intended to aid in quantifying the spatial variability of the hydrologic and hydrochemical ecosystem service provisions of remnant metropolitan forest fragments. This research is supported in

  5. Effects of throughfall and literfall manipulation on concentrations of methylmercury and mercury in forest-floor percolates

    Czech Academy of Sciences Publication Activity Database

    Hojdová, Maria; Huang, J-H.; Kalbitz, K.; Matzner, E.

    2007-01-01

    Roč. 170, č. 3 (2007), s. 373-377 ISSN 1436-8730 R&D Projects: GA AV ČR(CZ) KJB300130615 Institutional research plan: CEZ:AV0Z30130516 Keywords : methylmercury * total mercury * throughfall Subject RIV: DD - Geochemistry Impact factor: 1.082, year: 2007

  6. Contribution of foliar leaching and dry deposition to sulfate in net throughfall below deciduous trees

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.; Bondietti, E.A.; Lomax, R.D.

    1988-01-01

    Experiments were conducted at Walker Branch Watershed, Tennessee in 1986 with radioactive 35 S to quantify the contribution of foliar leaching and dry deposition to sulfate (SO 4 2- ) in net throughfall (NTF). Two red maple (Acer rubrum) and two yellow poplar (Liriodendron tulipifera) trees (12-15 m tall) were radiolabeled by stem well injection. Total S and 35 S were measured in leaves; 35 S and SO 4 2- were measured in throughfall (THF). The contribution of foliar leaching to SO 4 2- in NTF, THF minus incident precipitation, was estimated by isotope dilution of 35 S in NTF arising from nonradioactive S in dry deposition. The per cent contribution of foliar leaching to SO 4 2- in NTF was greatest during the week following isotope labeling and during the period of autumn leaf fall. During the growing season, foliar leaching accounted for 80% of the SO 4 2- in NTF beneath the study trees. Dry deposition of S to these tree species can be reasonably approximated during summer from the measurement of SO 4 2- flux in NTF. (author)

  7. Effects of fertilization and three years of throughfall reduction on leaf physiology of loblolly pine

    Science.gov (United States)

    Charles J. Pell; Lisa J. Samuelson

    2016-01-01

    Climate models project decreased soil water availability in the southeastern United States, which may impact loblolly pine (Pinus taeda L.) productivity. In conjunction with an interdisciplinary project known as PINEMAP, the objective of this study was to investigate the interactive effects of fertilization and a 30 percent reduction in throughfall on physiological...

  8. Sensitivity of short rotation poplar coppice biomass productivity to the throughfall reduction Estimating future drought impacts

    Czech Academy of Sciences Publication Activity Database

    Orság, Matěj; Fischer, Milan; Tripathi, Abishek; Žalud, Zdeněk; Trnka, Miroslav

    2018-01-01

    Roč. 109 (2018), s. 182-189 ISSN 0961-9534 Institutional support: RVO:86652079 Keywords : water -use * energy * stand * systems * dominance * density * l. * Dominance * Drought * Mortality * Productivity * Short-rotation coppice * Throughfall manipulation Subject RIV: GC - Agronomy OBOR OECD: Agronomy, plant breeding and plant protection Impact factor: 3.219, year: 2016

  9. A simple tool for estimating throughfall nitrogen deposition in forests of western North America using lichens

    Science.gov (United States)

    Heather T. Root; Linda H. Geiser; Mark E. Fenn; Sarah Jovan; Martin A. Hutten; Suraj Ahuja; Karen Dillman; David Schirokauer; Shanti Berryman; Jill A. McMurray

    2013-01-01

    Anthropogenic nitrogen (N) deposition has had substantial impacts on forests of North America. Managers seek to monitor deposition to identify areas of concern and establish critical loads, which define the amount of deposition that can be tolerated by ecosystems without causing substantial harm. We present a new monitoring approach that estimates throughfall inorganic...

  10. Simulated Impacts of Emerald Ash Borer on Throughfall and Stemflow Inputs of Water and Nitrogen in Black Ash Wetlands in Northern Michigan

    Science.gov (United States)

    Pypker, T. G.; Davis, J.; Van Grinsven, M. J.; Bolton, N. W.; Shannon, J.; Kolka, R. K.; Nelson, J.; Wagenbrenner, J. W.

    2014-12-01

    Emerald ash borer (Agrilus planipennis Fairmaire (EAB)) is an invasive insect that effectively kills ash trees (genus: Fraxinus) greater than 2.5 cm in diameter, resulting in near-complete stand mortality within 3-4 years. Black ash wetlands occupy approximately 270,000 ha in Michigan, and have 40 to 90% of the basal area occupied by black ash (F. nigra Marshall); hence the loss of black ash may result in dramatic changes in the canopy hydrology and nutrient deposition. We assessed the impact of a simulated EAB invasion on throughfall and stemflow quantity and nitrogen (N) content in 9 uninfected black ash wetlands located in the Upper Peninsula of Michigan. Within the 9 stands, 3 stands were left untreated ('Control'), 3 stands had all the black ash trees manually girdled ('Girdled') and 3 had all the black ash trees felled by chainsaw ('Clearcut'). We measured the quantity and inorganic-N content of throughfall using an array of randomly placed collectors (n = 16 per site). Stemflow was monitored at 2 sites (n = 12 trees) on the 3 most common tree species (black ash, yellow birch (Betula alleghaniensis Britt.) and red maple (Acer rubra L.)). Preliminary results indicate that relative to the Control, average monthly throughfall was 25% and 1% greater in the Clearcut and Girdled sites, respectively. While the loss of the ash trees resulted in greater throughfall inputs in the Clearcut sites, water table heights did not significantly change as a result of the treatments. Stemflow from live black ash trees was lower than from the yellow birch and red maple trees. As a result, we predict stemflow will increase over time as species with smoother bark and less upright branching begin replacing the black ash. Hence, the change in tree species may result in a greater concentration of inorganic-N inputs to the base of the trees, thereby altering the distribution of inorganic-N inputs into the wetland. Our preliminary results show no significant change in the total

  11. Sensitivity of short rotation poplar coppice biomass productivity to the throughfall reduction – Estimating future drought impacts

    Czech Academy of Sciences Publication Activity Database

    Orság, Matěj; Fischer, Milan; Tripathi, Abishek; Žalud, Zdeněk; Trnka, Miroslav

    2018-01-01

    Roč. 109 (2018), s. 182-189 ISSN 0961-9534 R&D Projects: GA MŠk(CZ) LO1415; GA MZe(CZ) QJ1610072 Institutional support: RVO:86652079 Keywords : Dominance * Drought * Mortality * Productivity * Short-rotation coppice * Throughfall manipulation Subject RIV: GC - Agronomy Impact factor: 3.219, year: 2016

  12. Description and field performance of the Walker Branch throughfall displacement experiment: 1993--1996

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, P.J.; Todd, D.E.; Huston, M.A. [Oak Ridge National lab., TN (United States). Environmental Sciences Div.; Joslin, J.D. [Tennessee Valley Authority, Norris, TN (United States); Croker, J.L.; Auge, R.M. [Univ. of Tennessee, Knoxville, TN (United States). Inst. of Agriculture

    1998-04-01

    The authors are conducting a large-scale manipulative field experiment in an upland oak forest on the Walker Branch Watershed in eastern Tennessee to identify important ecosystem responses that might result from future precipitation changes. The manipulation of soil water content is being implemented by a gravity-driven transfer of throughfall from one 6400-m{sup 2} treatment plot to another. Throughfall is intercepted in {approx}1850 subcanopy troughs suspended above the forest floor of the dry plot and transferred by gravity flow across an ambient plot for subsequent distribution onto the wet treatment plot. Soil water content is being monitored at two depths with time domain reflectometers at 310 sampling locations across the site. The experimental system is able to produce statistically significant differences in soil water content in years having both dry and wet conditions. Maximum soil water content differentials between wet and dry plots in the 0- to 0.35-m horizon were 8 to 10% during summers with abundant precipitation and 3 to 5% during drought periods. Treatment impacts on soil water potential were restricted to the surface soil layer. Comparisons of pre- and post-installation soil and litter temperature measurements showed the ability of the experimental design to produce changes in soil water content and water potential without creating large artifacts in the forest understory environment.

  13. Investigation of radioactive cesium transportation from forest canopy to floor by litterfall, stemflow and throughfall in northern Fukushima

    Science.gov (United States)

    Endo, I.; Ohte, N.; Iseda, K.; Tanoi, K.; Hirose, A.; Kobayashi, N. I.; Murakami, M.; Tokuchi, N.; Ohashi, M.

    2015-12-01

    After the Fukushima Daiichi nuclear power plant accident due to Great East Japan Earthquake in March 11th 2011, large areas of forest have been highly contaminated by the radioactive nuclides. Most of the deposited radioactive material to the canopy is then washed out with rainfall or leaf fall due to the tree phenology. There have been studies showing that the amount of 137Cs transportation differs among litter components and water pathways, and was affected by seasonal variations. Thus, to evaluate the amount of 137Cs flux from canopy to forest floor, continuous monitoring of each component (litterfall, throughfall and stemflow) is required. We investigated the annual transfer of 137Cs from the forest canopy to the floor by litterfall, throughfall and stemflow at two different forest types in northern Fukushima after two years from the accident. Seasonal variations in 137Cs transportation and differences between forests types were also determined. Forest sites were set in the upstream part of Kami-Oguni River catchment at Date city, which locates approximately 50km northwest from the Fukushima Dai-ichi Nuclear Power Plant. The study sites consisted of two deciduous (Mixed deciduous-1, Mixed deciduous-2) and one cedar (Cedar plantation) stands. The cumulative 137Cs transportation from the forest canopy to the floor was 6.6 kBq m-2 year-1 for the Mixed deciduous-1, 3.9 kBq m-2 year-1 for the Mixed deciduous-2 and 11.0 kBq m-2 year-1 for the Cedar plantation. 137Cs transportation with litterfall increased in the defoliation period which correlated with the increased amount of litterfall. 137Cs transportation with throughfall and stemflow increased in the rainy season. 137Cs flux by litterfall was higher in Cedar plantation compared with that of mixed deciduous forests, while the opposite result was obtained for stemflow. The ratio of annual 137Cs flux and the estimated 137Cs amount deposited in the forests will be discussed.

  14. Distribution of throughfall and stemflow in multi-strata agroforestry, perennial monoculture, fallow and primary forest in central Amazonia, Brazil

    Science.gov (United States)

    Schroth, Götz; Ferreira da Silva, Luciana; Wolf, Marc-Andree; Geraldes Teixeira, Wenceslau; Zech, Wolfgang

    1999-07-01

    The partitioning of rain water into throughfall, stemflow and interception loss when passing through plant canopies depends on properties of the respective plant species, such as leaf area and branch angles. In heterogeneous vegetation, such as tropical forest or polycultural systems, the presence of different plant species may consequently result in a mosaic of situations with respect to quantity and quality of water inputs into the soil. As these processes influence not only the water availability for the plants, but also water infiltration and nutrient leaching, the understanding of plant effects on the repartitioning of rain water may help in the optimization of land use systems and management practices. We measured throughfall and stemflow in a perennial polyculture (multi-strata agroforestry), monocultures of peach palm (Bactris gasipaes) for fruit and for palmito, a monoculture of cupuaçu (Theobroma grandiflorum), spontaneous fallow and primary forest during one year in central Amazonia, Brazil. The effect on rain water partitioning was measured separately for four useful tree species in the polyculture and for two tree species in the primary forest. Throughfall at two stem distances, and stemflow, differed significantly between tree species, resulting in pronounced spatial patterns of water input into the soil in the polyculture system. For two tree species, peach palm for fruit (Bactris gasipaes) and Brazil nut trees (Bertholletia excelsa), the water input into the soil near the stem was significantly higher than the open-area rainfall. This could lead to increased nutrient leaching when fertilizer is applied close to the stem of these trees. In the primary forest, such spatial patterns could also be detected, with significantly higher water input near a palm (Oenocarpus bacaba) than near a dicotyledonous tree species (Eschweilera sp.). Interception losses were 6·4% in the polyculture, 13·9 and 12·3% in the peach palm monocultures for fruit and for

  15. Evaluation of the throughfall and stemflow nutrient contents in mixed and pure plantations of Acacia mangium, Pseudosamenea guachapele and Eucalyptus grandis.

    OpenAIRE

    BALIEIRO, F. de C.; FRANCO, A. A.; FONTES, R. L. F.; DIAS, L. E.; CAMPELLO, E. F. C.; FARIA, S. M. de.

    2008-01-01

    The interception of the rainfall by the forest canopy has great relevance to the nutrient geochemistry cycle in low fertility tropical soils under native or cultivated forests. However, little is known about the modification of the rainfall water quality and hydrological balance after interception by the canopies of eucalyptus under pure and mixed plantations with leguminous species, in Brazil. Samples of rainfall (RF), throughfall (TF) and stemflow (SF) were collected and analyzed in pure pl...

  16. Estimation of Throughfall and Stemflow Bacterial Flux in a Subtropical Oak-Cedar Forest

    Science.gov (United States)

    Bittar, Thais B.; Pound, Preston; Whitetree, Ansley; Moore, L. Dean; Van Stan, John T.

    2018-02-01

    Transport pathways of microbes between ecosystem spheres (atmosphere, phyllosphere, and pedosphere) represent major fluxes in nutrient cycles and have the potential to affect microbially mediated biogeochemical processes. Novel data on bacterial fluxes from the phyllosphere to the pedosphere during rainfall via throughfall (rain dripping from/through the canopy) and stemflow (rain funneled down tree stems) are reported. Bacterial concentrations were quantified using flow cytometry and validated with quantitative polymerase chain reaction assays in rainfall samples from an oak-cedar forest in coastal Georgia (southeastern U.S.). Bacteria concentrations (cells mL-1) and storm-normalized fluxes (cells m-2 h-1, cells m-2 mm-1) were greater for cedar versus oak. Total bacterial flux was 1.5 × 1016 cells ha-1 yr-1. These previously unexamined bacterial fluxes are interpreted in the context of major elemental pools and fluxes in forests and could represent inoculum-level sources of bacteria (if alive), and organic matter and inorganic solute inputs (if lysed) to soils.

  17. Walker Branch Throughfall Displacement Experiment Data Report: Site Characterization, System Performance, Weather, Species Composition, and Growth

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, P.J.

    2001-09-04

    This numeric data package provides data sets, and accompanying documentation, on site characterization, system performance, weather, species composition, and growth for the Throughfall Displacement Experiment, which was established in the Walker Branch Watershed of East Tennessee to provide data on the responses of forests to altered precipitation regimes. The specific data sets include soil water content and potential, coarse fraction of the soil profile, litter layer temperature, soil temperature, monthly weather, daily weather, hourly weather, species composition of trees and saplings, mature tree and sapling annual growth, and relative leaf area index. Fortran and SAS{trademark} access codes are provided to read the ASCII data files. The data files and this documentation are available without charge on a variety of media and via the Internet from the Carbon Dioxide Information Analysis Center (CDIAC).

  18. Storm-scale dynamics of bacterial community composition in throughfall and stemflow

    Science.gov (United States)

    Van Stan, J. T., II; Teachey, M. E.; Pound, P.; Ottesen, E. A.

    2017-12-01

    Transport of bacteria between ecosystem spheres can significantly affect microbially-mediated biogeochemical processes. During rainfall, there is a large, temporally-concentrated exchange of bacteria between the forest phyllosphere and the pedosphere by rain dripping from canopy surfaces, as throughfall (TF), and draining to the stem, as stemflow (SF). Many phyllosphere bacteria possibly transported by TF and SF have been linked to important litter and soil processes (like cyanobacteria and actinobacteria). Despite this, no work has applied high throughput DNA sequencing to assess the community composition of bacteria transported by TF and SF. We characterized bacterial community composition for TF and SF from an epiphyte-laden (Tillandsia usneoides L., Spanish moss) southern live oak (Quercus virginiana) forest in southeastern Georgia (USA) to address two hypotheses: that bacterial community composition will differ between (1) TF and SF, and (2) TF sampled beneath bare and epiphyte-laden canopy. Variability in family-level bacterial abundance, Bray-Curtis dissimilarity, and Shannon diversity index was greater between storms than between net rainfall fluxes. In fact, TF and SF bacterial communities were relatively similar for individual storms and may be driven by pre-storm atmospheric deposition rather than the communities affixed to leaves, bark, and epiphyte surfaces.

  19. Long-term effects of rainforest disturbance on the nutrient composition of throughfall, organic layer percolate and soil solution at Mt. Kilimanjaro.

    Science.gov (United States)

    Schrumpf, Marion; Axmacher, Jan C; Zech, Wolfgang; Lehmann, Johannes; Lyaruu, Herbert V C

    2007-04-15

    At the lower parts of the forest belt at Mt. Kilimanjaro, selective logging has led to a mosaic of mature forest, old secondary forests ( approximately 60 years), and old clearings ( approximately 10 years) covered by shrub vegetation. These variations in the vegetation are reflected by differences in nutrient leaching from the canopy and in both amount and quality of litter reaching the ground, thereby also influencing mineralization rates and the composition of seepage water in litter percolate and soil solution. The aim of this study was to investigate how above- and belowground nutrient dynamics vary between regeneration stages, and if forest regeneration at the clearings is hampered by a deterioration of abiotic site conditions. K, Mg, Ca, Na and N compounds were analysed in rainfall, throughfall, organic layer percolate and the soil solution to a depth of 1.00 m at three clearings, three secondary forest and four mature forest sites. Element fluxes via throughfall showed only small variations among regeneration stages except for K and NO(3)-N. With 57-83 kg ha(-1) a(-1)and 2.6-4.1 kg ha(-1) a(-1) respectively, K and NO(3)-N fluxes via throughfall were significantly higher at the clearings than at the mature forest sites (32-37 and 0.7-1.0 kg ha(-1) a(-1) for K and NO(3)-N). In organic layer percolate and in soil solution at 0.15-m soil depth, concentrations of K, Mg, Ca and N were highest at the clearings. In the organic layer percolate, median K concentrations were e.g. 7.4 mg l(-1) for the clearings but only 1.4 mg l(-1) for the mature forests, and for NO(3)-N, median concentrations were 3.1 mg l(-1) for the clearings but only 0.92 mg l(-1) for the mature forest sites. Still, differences in annual means between clearings and mature forests were not always significant due to a high variability within the clearings. With the exception of NO(3)-N, belowground nutrient concentrations in secondary forests ranged between concentrations in mature forests and

  20. The temporal response to drought in a Mediterranean evergreen tree: comparing a regional precipitation gradient and a throughfall exclusion experiment.

    Science.gov (United States)

    Martin-Stpaul, Nicolas K; Limousin, Jean-Marc; Vogt-Schilb, Hélène; Rodríguez-Calcerrada, Jesus; Rambal, Serge; Longepierre, Damien; Misson, Laurent

    2013-08-01

    Like many midlatitude ecosystems, Mediterranean forests will suffer longer and more intense droughts with the ongoing climate change. The responses to drought in long-lived trees differ depending on the time scale considered, and short-term responses are currently better understood than longer term acclimation. We assessed the temporal changes in trees facing a chronic reduction in water availability by comparing leaf-scale physiological traits, branch-scale hydraulic traits, and stand-scale biomass partitioning in the evergreen Quercus ilex across a regional precipitation gradient (long-term changes) and in a partial throughfall exclusion experiment (TEE, medium term changes). At the leaf scale, gas exchange, mass per unit area and nitrogen concentration showed homeostatic responses to drought as they did not change among the sites of the precipitation gradient or in the experimental treatments of the TEE. A similar homeostatic response was observed for the xylem vulnerability to cavitation at the branch scale. In contrast, the ratio of leaf area over sapwood area (LA/SA) in young branches exhibited a transient response to drought because it decreased in response to the TEE the first 4 years of treatment, but did not change among the sites of the gradient. At the stand scale, leaf area index (LAI) decreased, and the ratios of stem SA to LAI and of fine root area to LAI both increased in trees subjected to throughfall exclusion and from the wettest to the driest site of the gradient. Taken together, these results suggest that acclimation to chronic drought in long-lived Q. ilex is mediated by changes in hydraulic allometry that shift progressively from low (branch) to high (stand) organizational levels, and act to maintain the leaf water potential within the range of xylem hydraulic function and leaf photosynthetic assimilation. © 2013 John Wiley & Sons Ltd.

  1. The effects of canopy cover on throughfall and soil chemistry in two forest sites in the Mexico City air basin; Los efectos de la cobertura de dosel en disminucion y la quimica del suelo en dos lugares de bosque en la cuenca de aire de la Ciudad de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Suarez, M. [Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICYT), San Luis Potosi, S.L.P. (Mexico)]. E-mail: marlin@ipicyt.edu.mx; Fenn, M.E. [United States Department of Agriculture Forest Service Pacific Southwest Research Station, Forest Fire Laboratory, Riverside, California (United States); Cetina-Alcala, V.M.; Aldrete, A. [Instituto de Recursos Naturales, Colegio de Postgraduados, Montecillo, Edo. de Mexico (Mexico)

    2008-01-15

    Throughfall and soil chemistry were compared in two sites with differing atmospheric deposition: Desierto de los Leones National Park (high atmospheric deposition) and Zoquiapan National Park (low atmospheric deposition). Throughfall fluxes of NO{sub 3}-, SO{sub 4}{sup 2}-, Ca, Mg and K were compared under two canopy cover types: Abies religiosa Schl. (fir) and Pinus hartwegii Lindl. (pine), in comparison with sites without cover canopy, e.g. forests clearings. Throughfall fluxes decreased in the following order: fir > pine > forest clearing. Nitrogen balance under canopy of fir and pine resulted in negative values for net throughfall of NH{sub 4}+ at Desierto de los Leones and Zoquiapan, while NO{sub 3}-, only resulted in negative values under canopy cover at the low deposition site. With few exceptions, concentrations of total C, N and S, soluble SO{sub 4}{sup 2}-, and Ca{sub 2}+ were higher in soil under fir canopies than under pine or in forest clearings. In polluted sites, the densely foliated fir canopies generally resulted in higher throughfall fluxes and soil accumulation of N, S and Mg compared to pine canopies or open areas. The elevated atmospheric depositions affect the functional process of forest ecosystem, particularly the throughfall and nutrients intern cycle, and these effects depend of the cover and present tree species. [Spanish] El escurrimiento foliar y la quimica del suelo fueron comparados en dos sitios con diferente deposito atmosferico: el Parque Nacional Desierto de los Leones (alto deposito atmosferico) y el Parque Nacional Zoquiapan (bajo deposito atmosferico). Se compararon los flujos de NO{sub 3}-, SO{sub 4}{sup 2}-, Ca, Mg y K en el escurrimiento foliar bajo el dosel de dos especies de arboles: Abies religiosa Schl. (oyamel) y Pinus hartwegii Lindl. (pino), en comparacion con sitios sin cobertura, es decir en claros del bosque. Los flujos disminuyeron en el siguiente orden: oyamel >pino >claros. El consumo de N del dosel resulto en

  2. Long-term changes in acidity and DOC in throughfall and soil water in Finnish forests.

    Science.gov (United States)

    Ukonmaanaho, Liisa; Starr, Mike; Lindroos, Antti-Jussi; Nieminen, Tiina M

    2014-11-01

    The main objective of this study was to examine if any detectable trends in dissolved organic carbon (DOC), sulphate (SO4-S) concentrations and acid neutralizing capacity (ANC) in throughfall (TF) and soil water (SW) could be found during 1990-2010 and to relate them to recent changes in decreased acid deposition. The study was conducted in seven boreal coniferous forest sites: four of which are managed and three unmanaged forests sites. Generally, temporal trend showed a significant decrease in SO4-S concentrations in bulk precipitation (BP), TF and SW. At some of the sites, there was an increasing tendency in BP and TF in the DOC concentrations. This feature coincides with decreasing SO4-S concentration, indicating that SO4-S may be an important driver of DOC release from the canopy. However, a slightly increased temperature, larger senescing needle mass and consequently increased decaying activity in the canopy may partly explain the increasing trend in DOC. In SW, no consistent DOC trend was seen. At some sites, the decreased base cation concentrations mostly account for the decrease in the ANC values in SW and TF.

  3. Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil

    Science.gov (United States)

    Borken, W.; Davidson, E.A.; Savage, K.; Sundquist, E.T.; Steudler, P.

    2006-01-01

    Soil moisture strongly controls the uptake of atmospheric methane by limiting the diffusion of methane into the soil, resulting in a negative correlation between soil moisture and methane uptake rates under most non-drought conditions. However, little is known about the effect of water stress on methane uptake in temperate forests during severe droughts. We simulated extreme summer droughts by exclusion of 168 mm (2001) and 344 mm (2002) throughfall using three translucent roofs in a mixed deciduous forest at the Harvard Forest, Massachusetts, USA. The treatment significantly increased CH4 uptake during the first weeks of throughfall exclusion in 2001 and during most of the 2002 treatment period. Low summertime CH4 uptake rates were found only briefly in both control and exclusion plots during a natural late summer drought, when water contents below 0.15 g cm-3 may have caused water stress of methanotrophs in the A horizon. Because these soils are well drained, the exclusion treatment had little effect on A horizon water content between wetting events, and the effect of water stress was smaller and more brief than was the overall treatment effect on methane diffusion. Methane consumption rates were highest in the A horizon and showed a parabolic relationship between gravimetric water content and CH4 consumption, with maximum rate at 0.23 g H2O g-1 soil. On average, about 74% of atmospheric CH4 was consumed in the top 4-5 cm of the mineral soil. By contrast, little or no CH4 consumption occurred in the O horizon. Snow cover significantly reduced the uptake rate from December to March. Removal of snow enhanced CH4 uptake by about 700-1000%, resulting in uptake rates similar to those measured during the growing season. Soil temperatures had little effect on CH4 uptake as long as the mineral soil was not frozen, indicating strong substrate limitation of methanotrophs throughout the year. Our results suggest that the extension of snow periods may affect the annual rate

  4. Spatio-Temporal Variability of Gross Rainfall, Throughfall and Stemflow in a Non-native Hawaiian Forest

    Science.gov (United States)

    Fares, A.; Safeeq, M.; Fares, S.

    2011-12-01

    Information on partitioning of gross rainfall in non-native trees in Hawaiian forests is limited. In this study, measurements of gross rainfall (PG), throughfall (TF), and stemflow (SF) were made at three locations in the upper Mākaha valley watershed to perform canopy water balance and parameterize Gash analytical model. The three selected locations are dominated by Strawberry guava (Psidium cattleianum), Christmas berry (Schinus terebinthifolius), Java plum (Syzygium cumini), and Coffee (Coffea Arabica) trees. Mean TF expressed as percentage of PG was the lowest (43.32%) under Strawberry guava and the highest (56.47%) under a mixture of Christmas berry, Strawberry guava, and Java plum. However, measured SF was the highest (33.9%) for Strawberry guava and lowest (3.6%) under the mixture of Christmas berry, Strawberry guava, and Java plum. The highest SF under Strawberry guava can be attributed to its smooth bark and steep branching and could have been the reason behind lowest TF. The mean observed interception losses varied between 23% under Strawberry guava and 45% for the site dominated by Coffee. Estimated mean free TF coefficients varied from 0.34 to 0.44, while the mean canopy storage capacity varied from 0.89 to 1.94 mm. The mean SF partitioning coefficient ranged from 0.05 to 0.37. The estimated canopy storage and trunk storage (P't) varied from 4.6 to 5.7 mm and 1.47 to 3.72 mm, respectively. Trees with nearly vertical branches and smooth bark (i.e. Strawberry Guava) resulted in smaller value of trunk storage. The analytical Gash's model for rainfall interception was successfully applied and its simulated results agreed reasonably well with observed data.

  5. Long term changes in atmospheric N and S throughfall deposition and effects on soil solution chemistry in a Scots pine forest in the Netherlands.

    Science.gov (United States)

    Boxman, Andries W; Peters, Roy C J H; Roelofs, Jan G M

    2008-12-01

    In a Scots pine forest the throughfall deposition and the chemical composition of the soil solution was monitored since 1984. (Inter)national legislation measures led to a reduction of the deposition of nitrogen and sulphur. The deposition of sulphur has decreased by approximately 65%. The total mineral-nitrogen deposition has decreased by ca. 25%, which is mainly due to a reduction in ammonium-N deposition (-40%), since nitrate-N deposition has increased (+50%). The nitrogen concentration in the upper mineral soil solution at 10 cm depth has decreased, leading to an improved nutritional balance, which may result in improved tree vitality. In the drainage water at 90 cm depth the fluxes of NO3(-) and SO4(2-) have decreased, resulting in a reduced leeching of accompanying base cations, thus preserving nutrients in the ecosystem. It may take still several years, however, before this will meet the prerequisite of a sustainable ecosystem.

  6. Canopy interactions of rainfall in an off-shore mangrove ecosystem dominated by Rhizophora mangle (Belize)

    Science.gov (United States)

    Wanek, Wolfgang; Hofmann, Julia; Feller, Ilka C.

    2007-10-01

    SummaryBulk precipitation, throughfall and stemflow were collected to study anthropogenic effects on above-ground nutrient cycling in an off-shore mangrove forest ( Rhizophora mangle L.) on Twin Cays, Belize. Samples were collected in a nitrogen limited fringe and phosphorus limited dwarf zone, and from an adjacent nitrogen fertilized fringe and a phosphorus fertilized dwarf zone. Inorganic cations and anions, dissolved organic carbon (DOC) and nitrogen (DON) were analysed. Throughfall represented 84% of precipitation volume. Sea salt ions (Cl -, Na +, SO42- and Mg 2+) and DOC accounted for the highest proportion of solutes in rainwater, throughfall and stemflow in R. mangle stands. Non-marine sources dominated the flux of DON, DOC, NO3-, NH4+, and inorganic P (P i) in bulk precipitation and throughfall and partially contributed to Ca 2+ and K +. Deposition ratios (throughfall deposition:bulk deposition) showed that inorganic NH4+, and less so P i were retained in the canopy of R. mangle from throughfall while all other solutes increased. Canopy leaching contributed in increasing order to net throughfall of Ca 2+, Cl -, SO42-/K, Mg 2+ and Na + but dry deposition dominated the net throughfall flux during the investigated period. Fertilizer treatment and zone did only slightly affect solute concentrations of hot-water extracts of leaves, of throughfall and stemflow in stands of similar stature. While litterfall and primary production have previously been shown to increase substantially upon nutrient enrichment of mangroves we therefore conclude that fertilization, as a surrogate of anthropogenic eutrophication, may not increase nutrient leaching from mangrove canopies, and thus may only have a minor effect on soluble organic matter cycling and inputs into mangrove food webs.

  7. How appetizing is the dissolved organic matter (DOM) trees lose during rainfall?

    Science.gov (United States)

    Howard, D.; Van Stan, J. T., II; Whitetree, A.; Zhu, L.; Stubbins, A.

    2017-12-01

    Dissolved organic carbon (DOC) is the chemical backbone of dissolved organic matter (DOM), which is important because it drives many processes in soils and waterways. Current DOC work has paid little attention to interactions between rain and plant canopies, where rainfall is partitioned into throughfall and stemflow. Even less DOC research has investigated the effect of arboreal epiphytes on throughfall and stemflow DOC. The purpose of this study is twofold: (1) assess the degree and timing of DOC consumption by microbial communities (biolability) in throughfall and stemflow, and (2) determine whether the presence of arboreal epiphytes in the canopy affect DOC biolability. Biolability of stemflow and throughfall DOC from Juniperus virginiana (cedar) was determined by incubating samples for 14 days. Throughfall and stemflow DOC was highly biolabile with DOC concentrations decreasing by 30-60%. Throughfall DOC was more biolabile than stemflow DOC. DOC in both throughfall and stemflow from epiphyte-covered cedars was less biolabile than DOC from trees without epiphytes. The high biolability of tree-derived DOC indicates that its supply provides carbon substrates to the microbial community at the forest floor, in soils and the rhizosphere. Epiphytes appear to be important in determining the biolability of DOC and therefore the size of this carbon subsidy to the soil ecosystem.

  8. Long-term effects of changing atmospheric pollution on throughfall, bulk deposition and streamwaters in a Mediterranean forest.

    Science.gov (United States)

    Aguillaume, Laura; Rodrigo, Anselm; Avila, Anna

    2016-02-15

    The abatement programs implanted in Europe to reduce SO2, NO2 and NH3 emissions are here evaluated by analyzing the relationships between emissions in Spain and neighboring countries and atmospheric deposition in a Mediterranean forest in the Montseny mountains (NE Spain) for the last 3decades. A canopy budget model was applied to throughfall data measured during a period of high emissions (1995-1996) and a period of lower emissions (2011-2013) to estimate the changes in dry deposition over this time span. Emissions of SO2 in Spain strongly decreased (77%) and that was reflected in reductions for nssSO4(2-) in precipitation (65% for concentrations and 62% for SO4(2)-S deposition). A lower decline was found for dry deposition (29%). Spanish NO2 emissions increased from 1980 to 1991, remained constant until 2005, and decreased thereafter, a pattern that was paralleled by NO3(-) concentrations in bulk precipitation at Montseny. This pattern seems to be related to a higher share of renewable energies in electricity generation in Spain in recent years. However, dry deposition increased markedly between 1995 and 2012, from 1.3 to 6.7 kg ha(-1) year(-)(1). Differences in meteorology between periods may have had a role, since the recent period was drier thus probably favoring dry deposition. Spanish NH3 emissions increased by 13% between 1980 and 2012 in Spain but NH4(+) concentrations in precipitation and NH4(+)-N deposition showed a decreasing trend (15% reduction) at Montseny, probably linked to the reduction ammonium sulfate and nitrate aerosols to be scavenged by rainfall. NH4(+)-N dry deposition was similar between the compared periods. The N load at Montseny (15-17 kg ha(-1)y ear(-1)) was within the critical load range proposed for Mediterranean sclerophyllous forests (15-17.5 kg ha(-1) year(-1)). The onset of N saturation is suggested by the observed increasing N export in streamwaters. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Response of Mid-Rotation Loblolly Pine (Pinus taeda L. Physiology and Productivity to Sustained, Moderate Drought on the Western Edge of the Range

    Directory of Open Access Journals (Sweden)

    Adam Maggard

    2016-09-01

    Full Text Available The productivity of the approximately 11 million ha of loblolly pine plantations in the southeastern USA could be threatened by decreased water availability in a future climate. To determine the effects of sustained drought on leaf gas exchange, whole-tree water use, and individual tree growth, we examined the response of loblolly pine trees to 100% throughfall exclusion cumulatively spanning the sixth and seventh growing seasons of a plantation in southeastern Oklahoma. Throughfall exclusion reduced volumetric soil water content for 0–12 cm soil depth from 10.8% to 4.8% and for 12–45 cm soil depth from 24.2% to 15.6%. Compared to ambient throughfall trees, leaf water potential of the throughfall exclusion trees became more negative, −0.9 MPa vs. −1.3 MPa for predawn measurements and −1.5 MPa vs. −1.9 MPa for midday measurements. Throughfall exclusion did not significantly reduce leaf gas exchange or tree water use. However, throughfall exclusion significantly reduced leaf biomass by 21% and stem volume growth by 23%. These results indicate that sustained drought may cause downward shifts in leaf quantity to conserve water rather than reducing leaf-level water use.

  10. Radiocesium transfer through aerial pathways in a South Carolina flooplain forest

    International Nuclear Information System (INIS)

    Shure, D.J.; Gottschalk, M.R.

    1978-01-01

    Cesium-137 cycling studies were conducted in a floodplain forest surrounding a reactor effluent stream at the Savannah River Plant in South Carolina. Throughfall, stem-flow, and litterfall pathways were studied along transects within a 1.5-ha area of floodplain forest. Annual precipitation totaled 1102 liters/m 2 in the study area. Approximately 88% of this rainfall reached the forest floor as throughfall and 4 to 6% as stemflow. Meteorological inputs (fallout) of 137 Cs totaled 3.2 nCi/m 2 for the year. An additional 11 to 15 nCi m -2 year -1 was leached from the floodplain vegetation as throughfall during precipiation. Radiocesium concentrations in throughfall and stem flow were highest in the fall when 137 Cs is readily leached from leaves before leaffall. Radiocesium concentrations in stemflow were always much higher than in throughfall, particularly during the nongrowing season. The annual 137 Cs transfer as stemflow was 2.5 to 4.1 nCi m -2 year -1 , however, which is considerably less (15 to 22%) than the total 137 Cs reaching the forest floor as throughfall. Radiocesium movement in annual litterfall is approximately equal to the total 137 Cs leached from floodplain vegetation during rainfall

  11. Gross rainfall amount and maximum rainfall intensity in 60-minute influence on interception loss of shrubs: a 10-year observation in the Tengger Desert.

    Science.gov (United States)

    Zhang, Zhi-Shan; Zhao, Yang; Li, Xin-Rong; Huang, Lei; Tan, Hui-Juan

    2016-05-17

    In water-limited regions, rainfall interception is influenced by rainfall properties and crown characteristics. Rainfall properties, aside from gross rainfall amount and duration (GR and RD), maximum rainfall intensity and rainless gap (RG), within rain events may heavily affect throughfall and interception by plants. From 2004 to 2014 (except for 2007), individual shrubs of Caragana korshinskii and Artemisia ordosica were selected to measure throughfall during 210 rain events. Various rainfall properties were auto-measured and crown characteristics, i.e., height, branch and leaf area index, crown area and volume of two shrubs were also measured. The relative interceptions of C. korshinskii and A. ordosica were 29.1% and 17.1%, respectively. Rainfall properties have more contributions than crown characteristics to throughfall and interception of shrubs. Throughfall and interception of shrubs can be explained by GR, RI60 (maximum rainfall intensities during 60 min), RD and RG in deceasing importance. However, relative throughfall and interception of two shrubs have different responses to rainfall properties and crown characteristics, those of C. korshinskii were closely related to rainfall properties, while those of A. ordosica were more dependent on crown characteristics. We highlight long-term monitoring is very necessary to determine the relationships between throughfall and interception with crown characteristics.

  12. Quantifying interception associated with new urban vegetation canopies

    Science.gov (United States)

    Yerk, W.; Montalto, F. A.

    2013-12-01

    Interception of precipitation by vegetation canopies has long been recognized as an important component of the hydrologic cycle, though most research has been in closed or sparse canopy forests. Much less work has been published on interception by urban vegetation, and especially associated with the low growing shrubs commonly installed in green infrastructure program. To inform urban watershed model with vegetation-specific interception data, a field experiment was designed to directly measure canopy throughfall associated with two shrub species commonly included in urban greening programs. Data was collected at a high (e.g. five second) sampling frequency. A non-parametric Kruskal-Wallis test performed on data collected between August and October of 2012 demonstrated statistically significant (p= 0.0011) differences in recorded throughfall between two species (94% for Itea virginica, 86% for Cornus sericea). Additionally, the results suggested that the relationship of throughfall to rainfall intensity varied by species. For Itea, the ratio of throughfall to precipitation intensity was close to 1:1. However, for Cornus, the throughfall rate was on average slower (or 0.85 of the precipitation intensity). An improved and expanded set-up installed in 2013 added two additional species (Prunus laurocerasus and Hydrangea quercifolia). The 2013 results confirm interspecies differences in both throughfall amount, and in the relationship of throughfall rate to precipitation intensity. The results are discussed with respect to droplet splashing and enhanced evaporation within the canopy. Both years' findings suggest that the quantity of water intercepted by vegetation canopies exceeds the canopy storage capacity, as assumed in many conventional hydrologic models.

  13. Hydro-chemical cycle of forest ecosystem in the Norikura Highlands

    Science.gov (United States)

    Muramoto, Michiko; Nara, Maiko; Asari, Tomoko; Suzuki, Keisuke

    Because of precipitation serves as a major vehicle of nutrient input into the forest ecosystem, the accurate measurement of its volume and ion concentration is of prime importance in an evaluation of any bio-geochemical cycle. Therefore, chemistry of the precipitation and throughfall of forest ecosystem was investigated in the Norikura Highlands. The investigation period was from January, 2003 to October, 2006. The throughfall volume in growing season and dormant season were 86 % and 93 % of the precipitation volume. Throughfall pH increased with increasing K+ concentration showed that H+ was held within the canopy by cation exchange reaction. And the concentration level of K+, Mg2+ and Ca2+ in the throughfall was much higher than that in the precipitation. It was the cause of canopy leaching. In growing season, proportions of canopy leaching of K+, Mg2+ and Ca2+ were 95 %, 70 % and 43 % of the throughfall deposition respectively. At Coniferous site, the flux of dry deposition was higher in dormant season than growing season. It is suggested that aerosol of the atmosphere and leaf area might be influenced.

  14. The Roll of Canopy on Interception and Redistribution of Anthropogenic Radionuclides Derived from Fukushima Daiichi Nuclear Power Plant Accident in Coniferous Forest Plantations

    Science.gov (United States)

    Kato, H.; Onda, Y.; Kawaguchi, S.; Gomi, T.

    2011-12-01

    Soil, vegetation and other ecological compartments are expected to be highly contaminated by the deposited radionuclides after the Fukushima Daiichi nuclear power plant (NPP) accident triggered by a magnitude 9.1 earthquake and the resulting tsunami on Marchi 11, 2011. A large proportion of radionuclides which deposited on forest area are trapped by canopies, throughfall and stemflow are the most important pathways for the input of radionuclides into the soil of forest floor. In this study, to investigate the roll of forest canopy on interception and redistribution of the deposited radionuclides, a series of field monitoring experiment of throughfall and stemflow were conducted in coniferous forest plantations in Tochigi prefecture, 170 km southwest from the NPP. A set of 20 throughfall collectors with latticelike distribution and 5 stemflow collectors were located in the 10m × 10m interception plot, and the activities of caesium (137Cs, 134Cs) and radioiodine (131I) in throughfall and stemflow were quantified by using a high purity n-type germanium coaxial gamma ray detectors. Rainfall, throughfall, and stemflow samples were collected from 10 rainfall events, which includes first rainfall event after the NPP accident. The cumulative fallout of radionuclides in the study site was 3400 Bq m-2 for 137Cs, 3300 Bq m-2 for 134Cs, and 26000 Bq m-2 for 131I, respectively. The 137Cs in rainfall decreased exponentially with time since the NPP accident. For the rainfall event of 28 March, which is first rainfall event after the NPP accident, both the amount and concentration of caesium clearly increased with throughfall, whereas the concentration of radioiodine decreased with throughfall. For the subsequent rainfall events, the concentration of caesium decreased with throughfall, whereas radioiodine was not detected as a result of decay due to short half-life. At the end of May, approximately 30% and 60% of total caesium deposited after the NPP accident remained on the

  15. Water-borne hyphomycetes in tree canopies of Kaiga (Western Ghats, India

    Directory of Open Access Journals (Sweden)

    Naga M. Sudheep

    2013-12-01

    Full Text Available The canopy samples such as trapped leaf litter, trapped sediment (during summer, stemflow and throughfall (during monsoon from five common riparian tree species (Artocarpus heterophyllus, Cassia fistula, Ficus recemosa, Syzygium caryophyllatum and Xylia xylocarpa in Kaiga forest stand of the Western Ghats of southwest India were evaluated for the occurrence of water-borne hyphomycetes. Partially decomposed trapped leaf litter was incubated in bubble chambers followed by filtration to assess conidial output. Sediments accumulated in tree holes or junction of branches were shaken with sterile leaf disks in distilled water followed by incubation of leaf disks in bubble chamber and filtration to find out colonized fungi. Stemflow and throughfall samples were filtered directly to collect free conidia. From five canopy niches, a total of 29 water-borne hyphomycetes were recovered. The species richness was higher in stemflow and throughfall than trapped leaf litter and sediments (14-16 vs. 6-10 species. Although sediments of Syzygium caryophyllatum were acidic (5.1, the conidial output was higher than other tree species. Stemflow and throughfall of Xylea xylocarpa even though alkaline (8.5-8.7 showed higher species richness (6-12 species as well as conidial load than rest of the tree species. Flagellospora curvula and Triscelophorus acuminatus were common in trapped leaf litter and sediments respectively, while conidia of Anguillospora crassa and A. longissima were frequent in stemflow and throughfall. Diversity of water-borne hyphomycetes was highest in throughfall of Xylea xylocarpa followed by throughfall of Ficus recemosa. Our study reconfirms the occurrence and survival of diverse water-borne hyphomycetes in different niches of riparian tree canopies of the Western Ghats during wet and dry regimes and predicts their possible role in canopy as saprophytes, endophytes and alternation of life cycle between canopy and aquatic habitats.

  16. Change in hydraulic properties and leaf traits of a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics

    Science.gov (United States)

    Schuldt, B.; Leuschner, C.; Horna, V.; Moser, G.; Köhler, M.; Barus, H.

    2010-11-01

    In a throughfall displacement experiment on Sulawesi, Indonesia, three 0.16 ha stands of a premontane perhumid rainforest were exposed to a two-year soil desiccation period that reduced the soil moisture in the upper soil layers beyond the conventional wilting point. About 25 variables, including leaf morphological and chemical traits, stem diameter growth and hydraulic properties of the xylem in the trunk and terminal twigs, were investigated in trees of the tall-growing tree species Castanopsis acuminatissima (Fagaceae) by comparing desiccated roof plots with nearby control plots. We tested the hypotheses that this tall and productive species is particularly sensitive to drought, and the exposed upper sun canopy is more affected than the shade canopy. Hydraulic conductivity in the xylem of terminal twigs normalised to vessel lumen area was reduced by 25%, leaf area-specific conductivity by 10-33% during the desiccation treatment. Surprisingly, the leaves present at the end of the drought treatment were significantly larger, but not smaller in the roof plots, though reduced in number (about 30% less leaves per unit of twig sapwood area), which points to a drought effect on the leaf bud formation while the remaining leaves may have profited from a surplus of water. Mean vessel diameter and axial conductivity in the outermost xylem of the trunk were significantly reduced and wood density increased, while annual stem diameter increment decreased by 26%. In contradiction to our hypotheses, (i) we found no signs of major damage to the C. acuminatissima trees nor to any other drought sensitivity of tall trees, and (ii) the exposed upper canopy was not more drought susceptible than the shade canopy.

  17. Modeling of leachable 137Cs in throughfall and stemflow for Japanese forest canopies after Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Loffredo, Nicolas; Onda, Yuichi; Kawamori, Ayumi; Kato, Hiroaki

    2014-01-01

    The Fukushima accident dispersed significant amounts of radioactive cesium (Cs) in the landscape. Our research investigated, from June 2011 to November 2013, the mobility of leachable Cs in forests canopies. In particular, 137 Cs and 134 Cs activity concentrations were measured in rainfall, throughfall, and stemflow in broad-leaf and cedar forests in an area located 40 km from the power plant. Leachable 137 Cs loss was modeled by a double exponential (DE) model. This model could not reproduce the variation in activity concentration observed. In order to refine the DE model, the main physical measurable parameters (rainfall intensity, wind velocity, and snowfall occurrence) were assessed, and rainfall was identified as the dominant factor controlling observed variation. A corrective factor was then developed to incorporate rainfall intensity in an improved DE model. With the original DE model, we estimated total 137 Cs loss by leaching from canopies to be 72 ± 4%, 67 ± 4%, and 48 ± 2% of the total plume deposition under mature cedar, young cedar, and broad-leaf forests, respectively. In contrast, with the improved DE model, the total 137 Cs loss by leaching was estimated to be 34 ± 2%, 34 ± 2%, and 16 ± 1% of the total plume deposition under mature cedar, young cedar, and broad-leaf forests, respectively. The improved DE model corresponds better to observed data in literature. Understanding 137 Cs and 134 Cs forest dynamics is important for forecasting future contamination of forest soils around the FDNPP. It also provides a basis for understanding forest transfers in future potential nuclear disasters. - Highlights: • A double exponential model was used to model leachable cesium loss from canopies. • The model could not reproduce variation observed. • Rainfall was identified as the dominant factor controlling the variation. • A rainfall parameter was used to develop an improved double exponential model. • The improved model gives a better estimation

  18. Input-Output Budget of Nitrogen and the Effect of Experimentally Changed Deposition in the Forest Ecosystems in Central Japan

    Directory of Open Access Journals (Sweden)

    Junko Shindo

    2001-01-01

    Full Text Available To evaluate the current nitrogen (N status in Japanese forests, field measurements of rainfall, throughfall, litter layer percolation, and soil solution percolation were conducted in a red pine stand (Kannondai and a deciduous stand (Yasato located in central Japan. N input via throughfall was 31 and 14 kg ha–1 year–1and output below rooting zone was 9.6 and 5.5 kg ha1 year–1 in Kannondai and in Yasato, respectively. Two thirds of input N were retained in plant-soil systems. Manipulation of N input was carried out. Ionic constituents were removed from throughfall with ion exchange resin at removal sites and ammonium nitrate containing twice the N of the throughfall was applied at N addition sites periodically. SO42– output below 20-cm soil layer changed depending on the input, while NO3– output was regulated mainly by the internal cycle and effect of manipulation was undetected. These Japanese stands were generally considered to have a larger capacity to assimilate N than NITREX sites in Europe. However, N output fluxes had large spatial variability and some sites in Kannondai showed high N leaching below rooting zone almost balanced with the input via throughfall.

  19. Modeling of leachable {sup 137}Cs in throughfall and stemflow for Japanese forest canopies after Fukushima Daiichi Nuclear Power Plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Loffredo, Nicolas, E-mail: wataiso@free.fr [Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 (Japan); Onda, Yuichi [Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 (Japan); Kawamori, Ayumi [Graduate School of Life and Environmental Sciences, University of Tsukuba (Japan); Kato, Hiroaki [Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 (Japan)

    2014-09-15

    The Fukushima accident dispersed significant amounts of radioactive cesium (Cs) in the landscape. Our research investigated, from June 2011 to November 2013, the mobility of leachable Cs in forests canopies. In particular, {sup 137}Cs and {sup 134}Cs activity concentrations were measured in rainfall, throughfall, and stemflow in broad-leaf and cedar forests in an area located 40 km from the power plant. Leachable {sup 137}Cs loss was modeled by a double exponential (DE) model. This model could not reproduce the variation in activity concentration observed. In order to refine the DE model, the main physical measurable parameters (rainfall intensity, wind velocity, and snowfall occurrence) were assessed, and rainfall was identified as the dominant factor controlling observed variation. A corrective factor was then developed to incorporate rainfall intensity in an improved DE model. With the original DE model, we estimated total {sup 137}Cs loss by leaching from canopies to be 72 ± 4%, 67 ± 4%, and 48 ± 2% of the total plume deposition under mature cedar, young cedar, and broad-leaf forests, respectively. In contrast, with the improved DE model, the total {sup 137}Cs loss by leaching was estimated to be 34 ± 2%, 34 ± 2%, and 16 ± 1% of the total plume deposition under mature cedar, young cedar, and broad-leaf forests, respectively. The improved DE model corresponds better to observed data in literature. Understanding {sup 137}Cs and {sup 134}Cs forest dynamics is important for forecasting future contamination of forest soils around the FDNPP. It also provides a basis for understanding forest transfers in future potential nuclear disasters. - Highlights: • A double exponential model was used to model leachable cesium loss from canopies. • The model could not reproduce variation observed. • Rainfall was identified as the dominant factor controlling the variation. • A rainfall parameter was used to develop an improved double exponential model. • The

  20. Separation of gaseous and particulate dry deposition of sulfur at a forest edge in Denmark

    International Nuclear Information System (INIS)

    Beier, C.

    1991-01-01

    Throughfall deposition of SO 4 -2 and Na + to a spruce [Picea abies (L.) Karst.] forest edge in Denmark was measured during 1 yr. The deposition of both SO 4 -2 and Na + was highly elevated at the forest edge with Na + showingthe steepest gradient. Using Na + as a model-substance for the deposition of particles and assuming that 6 to 24% of the SO 4 -2 deposition in throughfall inside the stand originated from particles, the relative contribution of particulate and gaseous S to the throughfall deposition at the forest edge could be estimated. The deposition of particulate S showed a strong dependence on the distance to the forest edge. Thus, particulate S contributed 25 to 100% of the net throughfall deposition under the front tree, whereas particulate S only contributed 6 to 24% inside the stand. The gaseous deposition showed a more moderate dependence on the forest edge and did not exceed the change in leaf area index

  1. Chemical analysis of rainfall and throughfall in the Tapajós National Forest, Belterra, Pará, Brazil

    Directory of Open Access Journals (Sweden)

    Raimundo Cosme de Oliveira Junior

    2015-04-01

    Full Text Available The Tapajós National Forest (FLONA Tapajós has 600,000 hectares of protected forest, and is situated 50 km south of the city of Santarém, Pará, Brazil, a port city of 250,000 inhabitants that is located at the confluence of the Tapajós and Amazon Rivers. There is a lot of farmland in the region, which offers many opportunities to study changes in land use. Selective wood harvesting is one type of land use that is particularly important to the economy of Santarém. Wet and dry deposition of organic material can be an important source of nutrients for plants, and this is especially true when the soil is poor, which is the case in Santarém-Belterra plateau region, the study area of this research. In this region, the natural atmospheric deposition of nutrients is often enhanced by the burning of biomass, which releases a large part of the above-ground biomass nutrients into the atmosphere. The objectives of this study were: 1 - estimate the total wet deposition via direct precipitation and through the canopy, including dry deposition; 2 - verify potential sources of nutrients found in the total wet deposition and dry deposition; and 3 - investigate the effects of coverage vegetation on nutrient content in precipitation and throughfall. The study was conducted in FLONA Tapajós at km 67 of Santarém- Cuiabá Highway, south of the city of Santarém. The study area consisted of a portion of 100 x 100 m transects divided into 10 x 10 m plots. The area was located next to a meteorological tower 65 m tall that measures various climate parameters such as rainfall, wind speed and direction, solar radiation, temperature and humidity, among others. Direct precipitation (PD and internal precipitation (IP collectors consisted of 2 L polyethylene bottles with a 115 mm diameter funnel. Samples were collected weekly from April 2003 to March 2006. The volume of the sample was measured individually for each collector (25 traps for internal precipitation and 4

  2. Influence of Spatial and Temporal Factors in Determining Rainfall Interception at Dipterocarp Forest Canopy, Lake Chini, Pahang

    International Nuclear Information System (INIS)

    Nur Munirah Abdullah; Mohd Ekhwan Toriman; Haslinur Mohd Din

    2013-01-01

    The reduction of rainfall by interception process is influenced by two mechanisms namely climate and plant physiographic features. Climate features that affecting the interception loss including total rainfall (mm), wind speed (m/s) and temperature (degree Celsius). Meanwhile plant physiographic features that affect interception loss consists of trees height, skin, diameter, canopy, twigs and branches. Looking the role of climate and plant physiographic features in the interception process, this study was conducted in order to measure the throughfall, stem flow and interception loss and the factors that influence it. The assessment of throughfall and interception loss were carried out on study plot sized 100 x 100 meter in Dipterocarp Forest of Tasik Chini, Pahang. The study was conducted from October 2009 until January of 2010. Thirty tree samples are used and each tree is well-identified based on their species, family, diameter breast height (DBH), canopy size and its density. Four sets of throughfall were used to do throughfall measurements. Results of this study found that the value of throughfall and stem flow collected based on four rainfall events namely in October 2009 where 0.66 % (TF) and 99.34 % (SF), November 2009-0.54 % (TF) and 99.46 % (SF), December 2009-0.72 % (TF) and 99.28 % (SF) and January of 2010-0.49 % (TF) and 99.51 % (SF). Statistical analysis also indicates the existence of the relationship between total rainfall and interception loss with significant levels in 0.571 (r 2 ) in December of 2009. This study provides important information that related to the hydrological cycle and how plants canopy can be acted as a medium of water balance in the environment. (author)

  3. Atmospheric deposition and canopy exchange processes in alpine forest ecosystems (northern Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Balestrini, R. [Water Research Institute, Brugherio (Italy); Tagliaferri, A. [Regional Forestry Board (Italy)

    2001-07-01

    Throughfall and bulk precipitation chemistry were studied for five years (June 1994-May 1999) at two high elevation forest sites (Val Gerola and Val Masino) which were known to differ in terms of tree health, as assessed by live crown condition. The ion concentration of bulk precipitation samples did not differ significantly between sites, except for Mg{sup 2+}, while the throughfall concentrations differed in the measured values of H{sup +}, N-NO{sub 3}{sup -}, Cl{sup -}, Na{sup +}, K{sup +}, DOC and weak organic acids. The results of the application of the canopy exchange model indicated a higher contribution from the dry deposition of N-NO{sub 3}{sup -}, N-NH{sub 4}{sup +} and H{sup +} at Val Gerola, where the damage symptoms were more evident. In addition, the canopy leaching of Ca{sup 2+}, K{sup +} and weak organic acids were 47%, 21% and 27% higher at Val Gerola than at Val Masino. Annual SO{sub 4}{sup 2-} deposition fluxes (21.3kg ha{sup -1}yr{sup -1} at Val Masino and 23.6kgha{sup -1}yr{sup -1} at Val Gerola) were similar to those reported for moderately polluted European and U.S. sites. Annual N loads were 13.6 and 13.1kgha{sup -1}yr{sup -1} in the bulk input, and 15.0 and 18.0kgha{sup -1}yr{sup -1} in throughfall inputs, at Val Masino and Val Gerola, respectively. The contribution of the organic fraction to the total N atmospheric deposition load is significant, constituting 17% of the bulk flux and 40% of the throughfall flux. Measured nitrogen loads exceed the critical nutrient loads by several kgNha{sup -1} at both stations. In particular the nitrogen throughfall load at Val Gerola was about 3 times higher than the critical values. (author)

  4. A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Van Stan, John T., E-mail: jvanstan@georgiasouthern.edu [Dept. of Geology and Geography, Georgia Southern University, Statesboro, GA 30460 (United States); Pypker, Thomas G. [Dept. of Natural Resource Sciences, Thompson Rivers University, Kamloops, BC (Canada)

    2015-12-01

    Interactions between precipitation and forest canopy elements (bark, leaves, and epiphytes) control the quantity, spatiotemporal patterning, and the chemical concentration, character and constituency of precipitation to soils. Canopy epiphytes exert a range of hydrological and biogeochemical effects due to their diversity of morphological traits and nutrient acquisition mechanisms. We reviewed and evaluated the state of knowledge regarding epiphyte interactions with precipitation partitioning (into interception loss, throughfall, and stemflow) and the chemical alteration of net precipitation fluxes (throughfall and stemflow). As epiphyte species are quite diverse, this review categorized findings by common paraphyletic groups: lichens, bryophytes, and vascular epiphytes. Of these groups, vascular epiphytes have received the least attention and lichens the most. In general, epiphytes decrease throughfall and stemflow and increase interception loss. Epiphytes alter the spatiotemporal pattern of throughfall and increase overall latent heat fluxes from the canopy. Epiphytes alter biogeochemical processes by impacting the transfer of solutes through the canopy; however, the change in solute concentration varies with epiphyte type and chemical species. We discuss several important knowledge gaps across all epiphyte groups. We also explore innovative methods that currently exist to confront these knowledge gaps and past techniques applied to gain our current understanding. Future research addressing the listed deficiencies will improve our knowledge of epiphyte roles in water and biogeochemical processes coupled within forest canopies—processes crucial to supporting microbe, plant, vertebrate and invertebrate communities within individual epiphytes, epiphyte assemblages, host trees, and even the forest ecosystem as a whole. - Highlights: • Reviews > 100 studies on epiphyte effects on throughfall, stemflow, & interception • Identifies shared hydro

  5. A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation

    International Nuclear Information System (INIS)

    Van Stan, John T.; Pypker, Thomas G.

    2015-01-01

    Interactions between precipitation and forest canopy elements (bark, leaves, and epiphytes) control the quantity, spatiotemporal patterning, and the chemical concentration, character and constituency of precipitation to soils. Canopy epiphytes exert a range of hydrological and biogeochemical effects due to their diversity of morphological traits and nutrient acquisition mechanisms. We reviewed and evaluated the state of knowledge regarding epiphyte interactions with precipitation partitioning (into interception loss, throughfall, and stemflow) and the chemical alteration of net precipitation fluxes (throughfall and stemflow). As epiphyte species are quite diverse, this review categorized findings by common paraphyletic groups: lichens, bryophytes, and vascular epiphytes. Of these groups, vascular epiphytes have received the least attention and lichens the most. In general, epiphytes decrease throughfall and stemflow and increase interception loss. Epiphytes alter the spatiotemporal pattern of throughfall and increase overall latent heat fluxes from the canopy. Epiphytes alter biogeochemical processes by impacting the transfer of solutes through the canopy; however, the change in solute concentration varies with epiphyte type and chemical species. We discuss several important knowledge gaps across all epiphyte groups. We also explore innovative methods that currently exist to confront these knowledge gaps and past techniques applied to gain our current understanding. Future research addressing the listed deficiencies will improve our knowledge of epiphyte roles in water and biogeochemical processes coupled within forest canopies—processes crucial to supporting microbe, plant, vertebrate and invertebrate communities within individual epiphytes, epiphyte assemblages, host trees, and even the forest ecosystem as a whole. - Highlights: • Reviews > 100 studies on epiphyte effects on throughfall, stemflow, & interception • Identifies shared hydro

  6. Controls on mercury and methylmercury deposition for two watersheds in Acadia National Park, Maine.

    Science.gov (United States)

    Johnson, K B; Haines, T A; Kahl, J S; Norton, S A; Amirbahman, Aria; Sheehan, K D

    2007-03-01

    Throughfall and bulk precipitation samples were collected for two watersheds at Acadia National Park, Maine, from 3 May to 16 November 2000, to determine which landscape factors affected mercury (Hg) deposition. One of these watersheds, Cadillac Brook, burned in 1947, providing a natural experimental design to study the effects of forest type on deposition to forested watersheds. Sites that face southwest received the highest Hg deposition, which may be due to the interception of cross-continental movement of contaminated air masses. Sites covered with softwood vegetation also received higher Hg deposition than other vegetation types because of the higher scavenging efficiency of the canopy structure. Methyl mercury (MeHg) deposition was not affected by these factors. Hg deposition, as bulk precipitation and throughfall was lower in Cadillac Brook watershed (burned) than in Hadlock Brook watershed (unburned) because of vegetation type and watershed aspect. Hg and MeHg inputs were weighted by season and vegetation type because these two factors had the most influence on deposition. Hg volatilization was not determined. The total Hg deposition via throughfall and bulk precipitation was 9.4 microg/m(2)/year in Cadillac Brook watershed and 10.2 microg/m(2)/year in Hadlock Brook watershed. The total MeHg deposition via throughfall and bulk precipitation was 0.05 microg/m(2)/year in Cadillac Brook watershed and 0.10 microg/m(2)/year in Hadlock Brook watershed.

  7. Temporal Dynamics in the Concentration, Flux, and Optical Properties of Tree-Derived Dissolved Organic Matter in an Epiphyte-Laden Oak-Cedar Forest

    Science.gov (United States)

    Van Stan, John T.; Wagner, Sasha; Guillemette, François; Whitetree, Ansley; Lewis, Julius; Silva, Leticia; Stubbins, Aron

    2017-11-01

    Studies on the fate and transport of dissolved organic matter (DOM) along the rainfall-to-discharge flow pathway typically begin in streams or soils, neglecting the initial enrichment of rainfall with DOM during contact with plant canopies. However, rain water can gather significant amounts of tree-derived DOM (tree-DOM) when it drains from the canopy, as throughfall, and down the stem, as stemflow. We examined the temporal variability of event-scale tree-DOM concentrations, yield, and optical (light absorbance and fluorescence) characteristics from an epiphyte-laden Quercus virginiana-Juniperus virginiana forest on Skidaway Island, Savannah, Georgia (USA). All tree-DOM fluxes were highly enriched in dissolved organic carbon (DOC) compared to rainfall, and epiphytes further increased concentrations. Stemflow DOC concentrations were greater than throughfall across study species, yet larger throughfall water yields produced greater DOC yields versus stemflow. Tree-DOM optical characteristics indicate it is aromatic-rich with fluorescent DOM dominated by humic-like fluorescence, containing 10-20% protein-like (tryptophan-like) fluorescence. Storm size was the only storm condition that strongly correlated with tree-DOM concentration and flux; however, throughfall and stemflow optical characteristics varied little across a wide range of storm conditions (from low magnitude events to intense tropical storms). Annual tree-DOM yields from the study forest (0.8-46 g C m-2 yr-1) were similar to other yields from discrete down-gradient fluxes (litter leachates, soil leachates, and stream discharge) along the rainfall-to-discharge flow path.

  8. Temporal Dynamics in the Concentration, Flux, and Optical Properties of Tree-derived Dissolved Organic Matter (Tree-DOM) in an Epiphyte-laden Oak-cedar Forest.

    Science.gov (United States)

    Whitetree, A.; Van Stan, J. T., II; Wagner, S.; Guillemette, F.; Lewis, J.; Silva, L.; Stubbins, A.

    2017-12-01

    Studies on the fate and transport of dissolved organic matter (DOM) along the rainfall-to-discharge flow pathway typically begin in streams or soils, neglecting the initial enrichment of rainfall with DOM during contact with plant canopies. However, rain water can gather significant amounts of tree-derived DOM (tree-DOM) when it drains from the canopy, as throughfall, and down the stem, as stemflow. We examined the temporal variability of event-scale tree-DOM concentrations, yield, and optical (light absorbance and fluorescence) characteristics from an epiphyte-laden Quercus virginiana-Juniperus virginiana forest on Skidaway Island, Savannah, Georgia (USA). All tree-DOM fluxes were highly enriched compared to rainfall and epiphytes further increased concentrations. Stemflow DOC concentrations were greater than throughfall across study species, yet larger throughfall water yields produced greater DOC yields versus stemflow. Tree-DOM optical characteristics indicate it is aromatic-rich with FDOM dominated by humic-like fluorescence, containing 10-20% protein-like (tryptophan-like) fluorescence. Storm size was the only storm condition that strongly correlated with tree-DOM concentration and flux; however, throughfall and stemflow optical characteristics varied little across a wide range of storm conditions (from low magnitude events to intense tropical storms). Annual tree-DOM yields from the study forest (0.8-46 g-C m-2 yr-1) compared well to other yields along the rainfall-to- discharge flow pathway, exceeding DOM yields from some river watersheds.

  9. Change of the temporal and spatial distribution of precipitation by a tree cover of Pinus pinaser

    International Nuclear Information System (INIS)

    Rodriguez Suarez, J. A.; Diaz-Fierros, F.; Soto, B.

    2009-01-01

    Throughfall and stem flow volume generation was measured over 1 year period in a Pinus pinaster stand 9 years old. Throughfall was measured using 8 collectors in a fixed position connected to a tipping bucket rainfall gauge in a representative 10 x 10 m plot of the forest and stem flow was measured in three trees using a rubber ring around the trunk connected to a tipping bucket rainfall gauge. The two tipping bucket rainfall gauges was connected to a data logger programmed to record data every 5 minutes. (Author) 4 refs.

  10. Change of the temporal and spatial distribution of precipitation by a tree cover of Pinus pinaser; Modificacion de la distribucion temporal y espacial de la precipitacion por una cubierta arborea de Pinus pinaster

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Suarez, J. A.; Diaz-Fierros, F.; Soto, B.

    2009-07-01

    Throughfall and stem flow volume generation was measured over 1 year period in a Pinus pinaster stand 9 years old. Throughfall was measured using 8 collectors in a fixed position connected to a tipping bucket rainfall gauge in a representative 10 x 10 m plot of the forest and stem flow was measured in three trees using a rubber ring around the trunk connected to a tipping bucket rainfall gauge. The two tipping bucket rainfall gauges was connected to a data logger programmed to record data every 5 minutes. (Author) 4 refs.

  11. Rainfall partitioning and related hydrochemical fluxes in a diverse and in a mono specific (Phenakospermum guyannense) secondary vegetation stand in eastern Amazonia.

    Science.gov (United States)

    Hölscher, D; Sá, T D A; Möller, R F; Denich, M; Fölster, H

    1998-04-01

    Rainfall partitioning into throughfall and stemflow was studied in a diverse and in a mono specific stand of secondary vegetation in Eastern Amazonia. The nutrient concentrations in the water were analysed in order to quantify the related hydrochemical fluxes. Secondary vegetation forms the fallow in the local shifting cultivation system and is usually dominated by shrubs and trees. Phenakospermum guyannense (Strelitziaceae), a banana-like herb, is one of the predominant non-woody species. The study was conducted during an 18-month period in a 2.5-year-old relatively species-rich stand and a 10-year-old stand dominated by P. guyannense. In a year with 1956 mm of rainfall 65% (1281 mm) of this quantity reached the soil as throughfall in the diverse stand and 38% (743 mm) in the mono specific stand. Stemflow was estimated to be 23% and 41% respectively. P. guyannense and Banara guianensis (Flacourtiaceae), a tree species, were causing these high funnelling effects. In the young diverse stand B. guianensis had a stemflow of more than 200 l year -1 and P. guyannense had a median flux of 77 l year -1 per pseudostem. In the older stand the taller plants of P.␣guyannense collected 644 l year -1 per pseudostem on the median. The reason for these high values could be the banana-like growth form of P. guyannense and the crown morphology of B. guianensis, which has inclined branches. The low proportion of throughfall and the high stemflow values differ from all previous studies in Amazonian primary forests. The proximity to the Atlantic Ocean strongly influenced the nutrient fluxes via rainfall at our study site. This becomes obvious from the high Na and Cl fluxes with rainfall (19.7 kg Na ha -1 year -1 , 37.2 kg Cl ha -1 year -1 ) which were approximately equal to the Na and Cl fluxes with the sum of throughfall and stemflow for both stands. K fluxes in throughfall and stemflow in both stands were higher than in rainfall by a factor of 8. The high K

  12. Sulphur isotopes as tracers of the influence of a coal-fired power plant on a Scots pine forest in Catalonia (NE Spain)

    Science.gov (United States)

    Puig, R.; Àvila, A.; Soler, A.

    Stable sulphur isotopes and major ionic composition were analysed in precipitation and throughfall samples from a Scots pine ( Pinus sylvestris, L.) forest near the Cercs coal-fired power plant (Catalonia, NE Spain). The purpose of the study was to determine the main sources of sulphur deposition on this pine forest. Sulphur isotope measurements from the SO 2 power plant stack emissions were used to identify the isotopic signature of this source. Net throughfall fluxes of sulphur (26.1 kg S ha 1 yr -1) and nitrogen (16.3 kg N ha -1 yr -1) were higher—5-25 times higher for S and 5-15 times for N—at this site than in other forests in Catalonia. Sulphur isotope analysis confirmed that the net throughfall fluxes of sulphur were mostly due to the dry deposition of the SO 2 power plant emissions onto the pine canopies. Two potential atmospheric end-members were distinguished: regional background rainwater (δ 34S=+7.2‰) and power plant emissions (δ 34S=-2.8‰). By applying a two-component sulphur isotope mixing model, we found that during periods of low power plant activity (⩽10 emission h day -1), 62% of the throughfall sulphate could be attributed to the power plant emissions. At higher activity periods (⩾14 emission h day -1), this contribution rose to 73%. Although power plant contribution to bulk deposition was lower in both cases (34% and 45%), the possible influence of sulphate coming with long-range transport events from the polluted areas in the Mediterranean basin (δ 34S≈0‰) was not discarded.

  13. Forest decline in the Southern Appalachian Mountains. Research and observations: 1983-1989

    International Nuclear Information System (INIS)

    Bruck, R.I.; Robarge, W.P.; McDaniel, A.

    1989-01-01

    An insect and desease survey initiated in 1985 on 100 permanent plots has yielded little significant pathology or insect infestation. With the exception the balsam wooly adelgid, few signs or symptoms of disease or insect attack were noted on either Fraser fir or red spruce populations. Cultures from destructively-sampled root systems yielded few significant pathogens that could be attributed to decline symptoms. Measurements of throughfall in 1986 yielded estimates of total wet deposition for NO -3 and SO 4 -2 of 25 and 75 kg ha -1 yr -1 , respectively. Cloud and rain water was dominated by H + , NH +4 , NO -3 , and SO 4 -2 ions. Interaction with the forest canopy resulted in an enrichment of throughfall with base cations (K + , Ca +2 , and MG +2 ) and a loss of H + and NH +4 . Mean-volume-weighted pH for throughfall was 3.9. The effects of simulated acidic cloud water on the epicuticular waxes of red spruce needles were studied during the summer of 1987. The cuticle proper of both 1986 and 1987 needles did not appear to be damaged by the treatments. The wax crystals which consititute the stomatal wax plugs, however, exhibited substantial degradation by simulated treatments at or below pH 3.5. (orig./VT)

  14. PRECIPITAÇÃO E APORTE DE NUTRIENTES EM DIFERENTES ESTÁDIOS SUCESSIONAIS DE FLORESTA ATLÂNTICA, PINHEIRAL - RJ

    Directory of Open Access Journals (Sweden)

    Anderson Ribeiro Diniz

    2013-01-01

    Full Text Available Forest cover has importance within the context of the water balance of a particular site and may alter the mechanism of entry of water and nutrients to the soil surface. The aim of this study was to quantify the net precipitation, interception, addition of nutrients in throughfall and stem flow in a forest in different stages of regeneration of Mata Atlântica: early-stage secondary forest (ESSF, intermediary stage secondary forest (ISSF and advanced stage secondary forest (AESF. The study was conducted in Pinheiral, Rio de Janeiro state. The data collection was performed during the period of April 2009 to March 2010. The values of incident precipitation, effective precipitation and interception were similar among the three stages evaluated. The AESF area showed higher values of Mg and P in the addition of nutrients from throughfall compared with other areas assessed. The pH of the precipitation incident did not differ among areas, but was higher than the pH of rainfall. The three areas evaluated showed no difference in the addition of nutrients to flow through the trunk. The AESF area showed a trend of higher levels of addition of nutrients from throughfall precipitation and runoff from stemflow.

  15. Canopy rainfall partitioning across an urbanization gradient in forest structure as characterized by terrestrial LiDAR

    Science.gov (United States)

    Mesta, D. C.; Van Stan, J. T., II; Yankine, S. A.; Cote, J. F.; Jarvis, M. T.; Hildebrandt, A.; Friesen, J.; Maldonado, G.

    2017-12-01

    As urbanization expands, greater forest area is shifting from natural stand structures to urban stand structures, like forest fragments and landscaped tree rows. Changes in forest canopy structure have been found to drastically alter the amount of rainwater reaching the surface. However, stormwater management models generally treat all forest structures (beyond needle versus broadleaved) similarly. This study examines the rainfall partitioning of Pinus spp. canopies along a natural-to-urban forest gradient and compares these to canopy structural measurements using terrestrial LiDAR. Throughfall and meteorological observations were also used to estimate parameters of the commonly-used Gash interception model. Preliminary findings indicate that as forest structure changed from natural, closed canopy conditions to semi-closed canopy fragments and, ultimately, to exposed urban landscaping tree rows, the interchange between throughfall and rainfall interception also changed. This shift in partitioning between throughfall and rainfall interception may be linked to intuitive parameters, like canopy closure and density, as well as more complex metrics, like the fine-scale patterning of gaps (ie, lacunarity). Thus, results indicate that not all forests of the same species should be treated the same by stormwater models. Rather, their canopy structural characteristics should be used to vary their hydrometeorological interactions.

  16. Observations of Runoff Generation During the Dry/Wet Seasonal Transition in Panama

    National Research Council Canada - National Science Library

    Ogden, Fred L

    2005-01-01

    .... Instrumentation installed include an eddy-correlation flux system on a 36 m tall tower near Cerro Pelado, and throughfall troughs, soil moisture sensors, rain gages, interflow collector, piezometers...

  17. LBA-ECO ND-30 Water Chemistry, Rainfall Exclusion, km 67, Tapajos National Forest

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports the results of chemical analyses of rainfall, throughfall, litter leachate, and soil water samples collected before, during, and...

  18. Carcinogenic ptaquiloside in stream water at base flow and during storm events

    DEFF Research Database (Denmark)

    Strobel, Bjarne W.; Clauson-Kaas, Frederik; Hansen, Hans Chr. Bruun

    2017-01-01

    identified, of which the compound ptaquiloside (PTA) is the most abundant. Ptaquiloside has been shown to be highly water soluble, leachable from bracken fronds and litter, and present in the soil below bracken stands. During storm events throughfall from the bracken canopy was collected as well. Stream...... water samples were taken as grab samples, while throughfall accumulated in glass jars set out below the canopy. Field blanks and fortified lab controls were included to ensure reliability of the analysis. Ptaquiloside concentrations were determined using LC-MS/MS after a clean-up using solid phase...... extraction. Results showed that PTA levels in the stream were highly dependent on precipitation, and was rising considerably during rain events, peaking at 2.28 μg/L, before quickly (conservation...

  19. Modelling rainfall interception by a lowland tropical rain forest in northeastern Puerto Rico

    Science.gov (United States)

    Schellekens, J.; Scatena, F. N.; Bruijnzeel, L. A.; Wickel, A. J.

    1999-12-01

    Recent surveys of tropical forest water use suggest that rainfall interception by the canopy is largest in wet maritime locations. To investigate the underlying processes at one such location—the Luquillo Experimental Forest in eastern Puerto Rico—66 days of detailed throughfall and above-canopy climatic data were collected in 1996 and analysed using the Rutter and Gash models of rainfall interception. Throughfall occurred on 80% of the days distributed over 80 rainfall events. Measured interception loss was 50% of gross precipitation. When Penman-Monteith based estimates for the wet canopy evaporation rate (0.11 mm h -1 on average) and a canopy storage of 1.15 mm were used, both models severely underestimated measured interception loss. A detailed analysis of four storms using the Rutter model showed that optimizing the model for the wet canopy evaporation component yielded much better results than increasing the canopy storage capacity. However, the Rutter model failed to properly estimate throughfall amounts during an exceptionally large event. The analytical model, on the other hand, was capable of representing interception during the extreme event, but once again optimizing wet canopy evaporation rates produced a much better fit than optimizing the canopy storage capacity. As such, the present results support the idea that it is primarily a high rate of evaporation from a wet canopy that is responsible for the observed high interception losses.

  20. Foliar leaching, translocation, and biogenic emission of 35S in radiolabeled loblolly pines

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.

    1990-01-01

    Foliar leaching, basipetal (downward) translocation, and biogenic emission of sulfur (S), as traced by 35 S, were examined in a field study of loblolly pines. Four trees were radiolabeled by injection with amounts of 35 S in the 6-8 MBq range, and concentrations in needle fall, stemflow, throughfall, and aboveground biomass were measured over a period of 15-20 wk after injection. The contribution of dry deposition to sulfate-sulfur (SO 4 2- -S) concentrations in net throughfall (throughfall SO 4 2- -S concentration minus that in incident precipitation) beneath all four trees was > 90%. Calculations indicated that about half of the summertime SO 2 dry deposition flux to the loblolly pines was fixed in the canopy and not subsequently leached by rainfall. Based on mass balance calculations, 35 S losses through biogenic emissions from girdled trees were inferred to be 25-28% of the amount injected. Estimates based on chamber methods and mass balance calculations indicated a range in daily biogenic S emission of 0.1-10 μg/g dry needles. Translocation of 35 S to roots in nongirdled trees was estimated to be between 14 and 25% of the injection. It is hypothesized that biogenic emission and basipetal translocation of S (and not foliar leaching) are important mechanisms by which forest trees physiologically adapt to excess S in the environment

  1. Water balance in afforestation chronosequences of common oak and Norway spruce on former arable land in Denmark and southern Sweden

    NARCIS (Netherlands)

    Rosenqvist, L.; Hansen, K.; Vesterdal, L.; Salm, van der C.

    2010-01-01

    Precipitation, throughfall and soil moisture were measured, and interception, transpiration and water recharge were estimated in four afforestation chronosequences on former arable land at two Danish locations (Vestskoven and Gejlvang) and at one southern Swedish location (Tonnersjoheden).

  2. Atmospheric mercury in Changbai Mountain area, northeastern China II. The distribution of reactive gaseous mercury and particulate mercury and mercury deposition fluxes.

    Science.gov (United States)

    Wan, Qi; Feng, Xinbin; Lu, Julia; Zheng, Wei; Song, Xinjie; Li, Ping; Han, Shijie; Xu, Hao

    2009-08-01

    Reactive gaseous mercury (RGM) and particulate mercury (Hgp) concentrations in ambient air from a remote site at Changbai Mountain area in northeastern China were intermittently monitored from August 2005 to July 2006 totaling 93 days representing fall, winter-spring and summer season, respectively. Rainwater and snow samples were collected during a whole year, and total mercury (THg) in rain samples were used to calculate wet depositional flux. A throughfall method and a model method were used to estimate dry depositional flux. Results showed mean concentrations of RGM and Hgp are 65 and 77 pg m(-3). Compared to background concentrations of atmospheric mercury species in Northern Hemisphere, RGM and Hgp are significantly elevated in Changbai area. Large values for standard deviation indicated fast reactivity and a low residence time for these mercury species. Seasonal variability is also important, with lower mercury levels in summer compared to other seasons, which is attributed to scavenging by rainfall and low local mercury emissions in summer. THg concentrations ranged from 11.5 to 15.9 ng L(-1) in rainwater samples and 14.9-18.6 ng L(-1) in throughfall samples. Wet depositional flux in Changbai area is calculated to be 8.4 microg m(-2) a(-1), and dry deposition flux is estimated to be 16.5 microg m(-2) a(-1) according to a throughfall method and 20.2 microg m(-2) a(-1) using a model method.

  3. Chemical composition of atmospheric deposition in the catchments of Plešné and Čertovo lakes in 1998–2012

    Czech Academy of Sciences Publication Activity Database

    Kopáček, Jiří; Fluksová, H.; Kaňa, Jiří; Porcal, Petr; Turek, Jan; Žaloudík, Jiří

    2013-01-01

    Roč. 19, č. 1 (2013), s. 1-23 ISSN 1211-7420 R&D Projects: GA ČR(CZ) GAP504/12/1218 Institutional support: RVO:60077344 Keywords : throughfall * precipitation * ions * nutrients Subject RIV: DJ - Water Pollution ; Quality

  4. Measurements of aerosol fluxes to Speulder forest using a micrometeorological technique

    DEFF Research Database (Denmark)

    Gallagher, M.W.; Beswick, K.M.; Duyzer, J.

    1997-01-01

    It has often been stated that micrometeorological and throughfall measurements of dry deposition differ by an order of magnitude with the results being highly variable and difficult to interpret or reconcile. We present measurements by the eddy correlation method of sub-micron aerosol deposition...... to a forest and show that they are large, typically 1 cm s(-1) or more. We compare the measurements with literature values obtained by throughfall and related techniques. The results, rather than being irreconcilable, show a clear and consistent behaviour in deposition velocity across the aerosol size...... spectrum, despite the very different techniques involved. There would appear to be a contradiction with previously assumed model predictions of aerosol deposition Velocity to forests and rough vegetated surfaces particularly for particles in the size range 0.1-1.0 mu m where collection efficiencies appear...

  5. Biomass burning in eastern Europe during spring 2006 caused high deposition of ammonium in northern Fennoscandia

    DEFF Research Database (Denmark)

    Karlsson, Per Erik; Ferm, Martin; Pihl Karlsson, Gunilla

    2013-01-01

    High air concentrations of ammonium were detected at low and high altitude sites in Sweden, Finland and Norway during the spring 2006, coinciding with polluted air from biomass burning in eastern Europe passing over central and northern Fennoscandia. Unusually high values for throughfall deposition...... of ammonium were detected at one low altitude site and several high altitude sites in north Sweden. The occurrence of the high ammonium in throughfall differed between the summer months 2006, most likely related to the timing of precipitation events. The ammonia dry deposition may have contributed to unusual...... visible injuries on the tree vegetation in northern Fennoscandia that occurred during 2006, in combination with high ozone concentrations. It is concluded that long-range transport of ammonium from large-scale biomass burning may contribute substantially to the nitrogen load at northern latitudes. © 2013...

  6. Effects of rainfall partitioning by Mediterranean vegetation on soil water content dynamics. Results from field studies along a climatic gradient in Spain.

    Science.gov (United States)

    Llorens, Pilar; Latron, Jérôme; Muzylo, Aleksandra; Schnabel, Susanne; Domingo, Francisco; Cantón, Yolanda; Gallart, Francesc

    2010-05-01

    The role played by rainfall partitioning by vegetation is of paramount importance for the water balance both at local and catchment scales. Rainfall partitioning fluxes (throughfall and stemflow) have a large degree of temporal and spatial variability and may consequently lead to significant changes in the volume and composition of water that reach the understory vegetation and the soil. Throughfall affects the surface soils horizons and stemflow, channelled by branches and stems, can reach deeper soil layers and remain available for the roots. This work investigates the effect of rainfall partitioning on soil water content in three Mediterranean study areas covering a strong climatic gradient and different vegetation species. From Northern to Southern Spain the study areas are: The Vallcebre research catchments (42° 12'N, 1° 49'E) with forest patches of Pinus sylvestris and of Quercus pubescens, The Parapuños research catchment (39° 35'N, 6° 5'W ), a wooded rangeland with Quercus rotundifolia and annual grasses in open areas, and the Tabernas experimental area (37° 0'N, 2° 26'W) with disperse shrubs and a mixture of annual plants and biological soil crusts in open areas. Mean annual rainfall ranges between 862 and 235 mm (in Vallcebre and Tabernas respectively). For the studied tree species throughfall was the dominant flux and have a similar rate, being stemflow only a small part of the bulk rainfall. For the studied shrubs, measured throughfall as well as stemflow were highly variable between species. Superficial soil water content was on average lower under forest (Vallcebre) or individual trees (Parapuños) that in the open areas. Contrarily, in Tabernas soil was wetter under shrubs than in open areas, although with higher variability. Driest soils below continous forest covers, as in Vallcebre, or even in sparse covered areas as in the Parapuños catchment, may be explained by the dominant role of rainfall interception and transpiration. In Tabernas

  7. The role of urban forest to reduce rain acid in urban industrial areas

    Science.gov (United States)

    Slamet, B.; Agustiarni, Y.; Hidayati; Basyuni, M.

    2018-03-01

    Urban forest has many functions mainly on improving the quality of the urban environment. One of the functions is to increase pH and reduce dangerous chemical content. The aim of the research is to find out the role of vegetation density of urban forest around the industrial area in reducing the acid rain. The condition of land cover was classified into four classes which are dense, medium, sparse and open area. The water of the throughfall and stemflow was taken from each type of land cover except in the open area. Parameters measured in this study are water acidity (pH), anion content (SO4 2- and NO3 -), cation content (Ca2+, Mg2+, and NH4 +) and electrical conductivity (EC). The results indicated that urban forest vegetation was able to increase the pH of rain water from 5.42 which is in an open area without vegetation to be 7.13 and 7.32 in dense and moderate vegetation cover by throughfall mechanism, respectively. Rain water acidity also decreased through stemflow mechanism with a pH ranged from 5.92 - 6.43. Urban forest vegetation decreased sulfate content (SO42-) from 528.67 mg/l in open area to 44 - 118 mg/l by throughfall mechanism and ranged from 90 to 366.67 mg/l through stemflow mechanism. Urban forest vegetation significantly decreased the rainwater nitrate content from 27 mg/l to 0.03 - 0.70 mg/l through the mechanism of throughfall and between 1.53 - 8.82 mg/l through the stemflow mechanism. Urban forest vegetation also increased the concentration of cations (NH4+, Ca2+, Mg2+, Na+) compared with open areas. Urban forest vegetation showed increased the electrical conductivity (EC) from 208.12 μmhos/cm to 344.67 - 902.17 μmhos/cm through the through fall mechanism and 937.67 - 1058.70 μmhos/cm through the stemflow mechanism. The study suggested that urban forests play a significant role in reducing rainwater acidity and improving the quality of rainwater that reached the soil surface.

  8. Coastal Fog Sustains Summer Baseflow in Northern Californian Watershed

    Science.gov (United States)

    Chung, M.; Dufour, A.; Leonardson, R.; Thompson, S. E.; Dawson, T. E.

    2015-12-01

    The Mediterranean climate of Northern California imposes significant water stress on ecosystems and water resources during the dry summer months. During summer, frequently the only water inputs occur as occult precipitation, in the form of fog and dew. In this study, we characterized the role of coastal fog, a dominant feature of Northern Californian coastal ecosystems and a widespread phenomenon associated with deep marine upwelling in west coast, arid, and Mediterranean climates worldwide. We monitored fog occurrence and intensity, throughfall following canopy interception of fog, soil moisture, streamflow, and meteorological variables, and made visual observations of the spatial extent of fog using time-lapse imagery in Upper Pilarcitos Creek Watershed (managed by San Francisco Public Utilities Commission as part of the San Francisco area water supply). We adopted a stratified sampling design that captured the watershed's elevation gradient, forest-edge versus interior locations, and different vegetation cover. The point-scale observations of throughfall inputs and transpiration suppression, estimated from the Penman equation, were upscaled using such watershed features and the observed fog "footprint" identified from the time-lapse images. When throughfall input and fog-induced transpiration suppression were incorporated into the operational watershed model, they improved estimates of summer baseflow, which remained persistently higher than could be explained without the fog effects. Fog, although providing relatively small volumetric inputs to the water balance, appears to offer significant relief of water stress throughout the terrestrial and aquatic components of the coastal Californian ecosystem and thus should be accounted for when assessing water stress availability in dry ecosystems.

  9. Herbivory and the cycling of nitrogen and phosphorus in isolated California oak trees

    Science.gov (United States)

    David Y. Hollinger

    1986-01-01

    Nitrogen and phosphorus flow in litterfall and throughfall were studied in two California Quercus species (the evergreen Q.agrifolia and deciduous Q. lobata) before, during, and after an outbreak of the California oak moth, Phryganidia californica. All of the foliage of both oak species was...

  10. Modelling rainfall interception by a lowland tropical rain forest in northeastern Puerto Rico.

    NARCIS (Netherlands)

    Schellekens, J.; Scatena, F.N.; Bruijnzeel, L.A.; Wickel, A.J.

    1999-01-01

    Recent surveys of tropical forest water use suggest that rainfall interception by the canopy is largest in wet maritime locations. To investigate the underlying processes at one such location-the Luquillo Experimental Forest in eastern Puerto Rico-66 days of detailed throughfall and above-canopy

  11. Rainfall interception of three trees in Oakland, California

    Science.gov (United States)

    Qingfu Xiao; E. Gregory McPherson

    2011-01-01

    A rainfall interception study was conducted in Oakland, California to determine the partitioning of rainfall and the chemical composition of precipitation, throughfall, and stemflow. Rainfall interception measurements were conducted on a gingko (Ginkgo biloba) (13.5 m tall deciduous tree), sweet gum (Liquidambar styraciflua) (8...

  12. Effects of air pollution and simulated acid rain on the ground vegetation of coniferous forests

    International Nuclear Information System (INIS)

    Rodenkirchen, H.

    1993-01-01

    Descriptive and experimental studies on the ground vegetation of coniferous forests in Bavaria indicated the following phenomena: a. In N-limited pine forests recent eutrophication effects occur. b. The structure of the moss layer in coniferous forests sensitively reacts to very acid throughfall water (pH [de

  13. Characterization of tannin-metal complexes by UV-visible spectrophotometry

    Science.gov (United States)

    Tannins enter soils by plant decay and rain throughfall, but little is known of their effects on soils. Tannins may influence bioavailability and toxicity of metals by forming complexes and by mediating redox reactions. We evaluated the affinity and stoichiometry of Al(III) for a gallotannin, pent...

  14. Canopy structural alterations to nitrogen functions of the soil microbial community in a Quercus virginiana forest

    Science.gov (United States)

    Moore, L. D.; Van Stan, J. T., II; Rosier, C. L.; Gay, T. E.; Wu, T.

    2014-12-01

    Forest canopy structure controls the timing, amount and chemical character of precipitation supply to soils through interception and drainage along crown surfaces. Yet, few studies have examined forest canopy structural connections to soil microbial communities (SMCs), and none have measured how this affects SMC N functions. The maritime Quercus virginiana Mill. (southern live oak) forests of St Catherine's Island, GA, USA provide an ideal opportunity to examine canopy structural alterations to SMCs and their functioning, as their throughfall varies substantially across space due to dense Tillandsia usneoides L. (spanish moss) mats bestrewn throughout. To examine the impact of throughfall variability on SMC N functions, we examined points along the canopy coverage continuum: large canopy gaps (0%), bare canopy (50-60%), and canopy of heavy T. usneoides coverage (>=85%). Five sites beneath each of the canopy cover types were monitored for throughfall water/ions and soil leachates chemistry for one storm each month over the growing period (7 months, Mar-2014 to Sep-2014) to compare with soil chemistry and SMC communities sampled every two months throughout that same period (Mar, May, Jul, Sep). DGGE and QPCR analysis of the N functioning genes (NFGs) to characterize the ammonia oxidizing bacterial (AOB-amoA), archaea (AOA-amoA), and ammonification (chiA) communities were used to determine the nitrification and decomposition potential of these microbial communities. PRS™-probes (Western Ag Innovations Inc., Saskatoon, Canada) were then used to determine the availability of NO3-N and NH4+N in the soils over a 6-week period to evaluate whether the differing NFG abundance and community structures resulted in altered N cycling.

  15. The role of forest type in the variability of DOC in atmospheric deposition at forest plots in Italy.

    Science.gov (United States)

    Arisci, S; Rogora, M; Marchetto, A; Dichiaro, F

    2012-06-01

    Dissolved organic carbon (DOC) was studied in atmospheric deposition samples collected on a weekly basis in 2005-2009 at 10 forest plots in Italy. The plots covered a wide range of geographical attributes and were representative of the main forest types in Italy. Both spatial and temporal variations in DOC concentrations and fluxes are discussed, with the aim of identifying the main factors affecting DOC variability. DOC concentration increased from bulk to throughfall and stemflow water samples at all sites, as an effect of leaching from leaves and branches, going from 0.7-1.7 mg C L(-1) in bulk samples to 1.8-15.8 mg C L(-1) in throughfall and 4.2-10.7 mg C L(-1) in stemflow, with striking differences among the various plots. Low concentrations were found in runoff (0.5-2.0 mg C L(-1)), showing that the export of DOC via running waters was limited. The seasonality of DOC in throughfall samples was evident, with the highest concentration in summer when biological activity is at a maximum, and minima in winter due to limited DOC production and leaching. Statistical analysis revealed that DOC had a close relationship with organic and total nitrogen, and with nutrient ions, and a negative correlation with precipitation amount. Forest type proved to be a major factor affecting DOC variability: concentration and, to a lesser extent, fluxes were lower in stands dominated by deciduous species. The character of evergreens, and the size and shape of their leaves and needles, which regulate the interception mechanism of dry deposition, are mainly responsible for this.

  16. Element budgets of two contrasting catchments in the Black Forest (Federal Republic of Germany)

    Science.gov (United States)

    Feger, K. H.; Brahmer, G.; Zöttl, H. W.

    1990-08-01

    Rainfall and throughfall inputs of all major cations and anions, via open-field bulk precipitation and canopy throughfall, are compared with streamwater outputs in two forested catchments at higher altitudes of the Black Forest. The sites differ considerably in terms of bedrock geology, soil type, soilwater characteristics, topography, and forest management history. Deposition at both sites is almost equal and, in contrast to other forest areas in Central Europe, of a low-to-moderate level. Dry deposition does not seem to play an important role. Distinct differences in the elemental output emerge owing to the differing site conditions. At Villingen, deposited nitrogen is almost totally retained, whereas at Schluchsee, nitrogen output and input are of the same order of magnitude. This is consistent with the different nitrogen nutrition level of the stands, microbial turnover in the soil, and former management practices (change of tree species, excessive nutrient export). Sulphur is not retained in either of the catchments. At Schluchsee, sulphur export exceeds input from canopy throughfall by a factor of 2.5. The higher output rates, both of nitrogen and sulphur at Schluchsee, are due to the much higher microbial mineralization of organic matter as shown by previous incubation tests. Differences in cation and proton export are mainly caused by a different drainage pattern. In contrast to the Schluchsee catchment, where vertical water pathways prevail, the streamwater solute output at Villingen is dominated by a shallow subsurface runoff. Atmospheric deposition is a contributing, but not the dominant, factor in the biogeochemical cycling at these sites. Hence, a generally applicable quantitative definition of 'critical loads', especially for nitrogen, is illusory and the use of such numbers will be misleading.

  17. Leaching of cell wall components caused by acid deposition on fir needles and trees

    Energy Technology Data Exchange (ETDEWEB)

    Shigihara, Ado [Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686 (Japan)], E-mail: r200670202@kanagawa-u.ac.jp; Matsumoto, Kiyoshi [Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686 (Japan); Sakurai, Naoki [Faculty of Integrated Arts and Science, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, 739-8521 (Japan); Igawa, Manabu [Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686 (Japan)

    2008-07-15

    Virgin fir forests have been declining since the 1960s at Mt. Oyama, which is located at the eastern edge of the Tanzawa Mountains and adjacent to the Kanto plain in Japan. An acid fog frequently occurs in the mountains. We collected throughfall and stemflow under fir trees and rainfall every week during January-December 2004 at Mt. Oyama to clarify the influence of acid fog on the decline of fir (Abies firma) needles. In relation to throughfall and stemflow, D-mannose, D-galactose, and D-glucose are the major neutral sugar components; only D-glucose is a major component of rainfall. The correlation coefficient between the total neutral sugars and uronic acid (as D-galacturonic acid), which is a key component of the cross-linking between pectic polysaccharides, was high except for rainfall. The leached amount of calcium ion, neutral sugars, uronic acid, and boron is related to the nitrate ion concentration in throughfall. Results of a laboratory exposure experiment using artificial fog water simulating the average composition of fog water observed at Mt. Oyama (simulated acid fog: SAF) on the fir seedling needles also shows a large leaching of these components from the cell walls of fir needles. The leaching amount increased concomitantly with decreasing pH of the SAF solution. We also observed that a dimeric rhamnogalacturonan II-borate complex (dRG-II-B) that exists in the cell wall as pectic polysaccharide was converted to monomeric RG-II (mRG-II) by the leaching of calcium ion and boron. Results not only of field observations but also those of laboratory experiments indicate a large effect of acid depositions on fir needles.

  18. Canopy interaction with precipitation and sulphur deposition in two boreal forests of Quebec, Canada

    International Nuclear Information System (INIS)

    Marty, C.; Houle, D.; Duchesne, L.; Gagnon, C.

    2012-01-01

    The interaction of atmospheric sulphur (S) was investigated within the canopies of two boreal forests in Québec, Canada. The net canopy exchange approach, i.e. the difference between S–SO 4 in throughfall and precipitation, suggests high proportion of dry deposition in winter (up to 53%) as compared to summer (1–9%). However, a 3.5‰ decrease in δ 18 O–SO 4 throughfall in summer compared to incident precipitation points towards a much larger proportion of dry deposition during the warm season. We suggest that a significant fraction of dry deposition (about 1.2 kg ha −1 yr −1 , representing 30–40% of annual wet S deposition) which contributed to the decreased δ 18 O–SO 4 in throughfall was taken up by the canopy. Overall, these results showed that, contrary to what is commonly considered, S interchanges in the canopy could be important in boreal forests with low absolute atmospheric S depositions. - Highlights: ► We investigated sulphur interactions with the canopy of two boreal forests, Québec. ► Sulphur interchanges within the canopy were large and vary with seasons. ► About 1.2 kg S–SO 4 ha −1 yr −1 was taken up by the canopy during warm seasons. ► This represents 30–40% of annual wet S–SO 4 deposition. ► Canopy uptake must be considered for sulphur budget estimations in boreal forests. - The equivalent of 30–40% of annual wet S–SO 4 deposition was taken up by the canopy of two boreal forests during warm seasons.

  19. Fogwater Inputs to a Cloud Forest in Puerto Rico

    Science.gov (United States)

    Eugster, W.; Burkard, R.; Holwerda, F.; Bruijnzeel, S.; Scatena, F. N.; Siegwolf, R.

    2002-12-01

    Fog is highly persistent at upper elevations of humid tropical mountains and is an important pathway for water and nutrient inputs to mountain forest ecosystems. Measurements of fogwater fluxes were performed in the Luquillo mountains of Puerto Rico using the eddy covariance approach and a Caltech-type active strand cloudwater collector. Rainfall and throughfall were collected between 25 June--7 August 2002. Samples of fog, rain, stemflow and throughfall were analyzed for inorganic ion and stable isotope concentrations (δ18O and δD). Initial results indicate that fog inputs can occur during periods without rain and last for up to several days. The isotope ratios in rainwater and fogwater are rather similar, indicative of the proximity of the Carribbean Sea and the close interrelation between the origins of fog and rain at our experimental site. Largest differences in isotope ratios for fog were found between daytime convective and nighttime stable conditions. Throughfall was always exceeding rainfall, indicating (a) the relevance of fogwater inputs and (b) the potentially significant undersampling of rainfall due to relatively high wind speeds (5.7 m/s mean) and the exposition of our field site close to a mountain ridge. Our size-resolved measurements of cloud droplets (40 size bins between 2 and 50 μm aerodynamic diameter) indicate that the liquid water content of fog in the Luquillo mountains is 5 times higher than previously assumed, and thus does not differ from the values reported from other mountain ranges in other climate zones. Average deposition rates are 0.88 mm and 6.5 mm per day for fog and rain, respectively.

  20. Threshold responses to soil moisture deficit by trees and soil in tropical rain forests: insights from field experiments

    Science.gov (United States)

    Patrick Meir; Tana Wood; David R. Galbraith; Paulo M. Brando; Antonio C.I. Da Costa; Lucy Rowland; Leandro V. Ferreira

    2015-01-01

    Many tropical rain forest regions are at risk of increased future drought. The net effects of drought on forest ecosystem functioning will be substantial if important ecological thresholds are passed. However, understanding and predicting these effects is challenging using observational studies alone. Field-based rainfall exclusion (canopy throughfall exclusion; TFE)...

  1. Influence of the forest canopy on total and methyl mercury deposition in the boreal forest

    Science.gov (United States)

    E.L. Witt; R.K. Kolka; E.A. Nater; T.R. Wickman

    2009-01-01

    Atmospheric mercury deposition by wet and dry processes contributes mercury to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to boreal forests were identified in this study. Throughfall and open canopy precipitation samples were collected in 2005 and 2006 using passive precipitation collectors from pristine sites located across...

  2. Precipitation Change and Soil Leaching: Field Results and Simulations from Walker Branch Watershed, Tennessee

    Science.gov (United States)

    D.W. Johnson; P.J. Hanson; D.E. Todd; R.B. Susfalk; Carl C. Trettin

    1998-01-01

    Abstract. To investigate the potential effects of changing precipitation on a deciduous forest ecosystem, an experiment was established on Walker Branch Watershed, Tennessee that modified the amount of throughfall at 4 -33 %. ambient (no change), and +33 % using a system of rain gutters and sprinklers. We hypothesized that the drier treatments would...

  3. [Dynamics of total organic carbon (TOC) in hydrological processes in coniferous and broad-leaved mixed forest of Dinghushan].

    Science.gov (United States)

    Yin, Guangcai; Zhou, Guoyi; Zhang, Deqiang; Wang, Xu; Chu, Guowei; Liu, Yan

    2005-09-01

    The total flux and concentration of total organic carbon (TOC) in hydrological processes in coniferous and broad-leaved mixed forest of Dinghushan were measured from July 2002 to July 2003. The results showed that the TOC input by precipitation was 41.80 kg x hm(-2) x yr(-1), while its output by surface runoff and groundwater (soil solution at 50 cm depth) was 17.54 and 1.80 kg x hm(-2) x yr(-1), respectively. The difference between input and output was 22.46 kg x hm(-2) x yr(-1), indicating that the ecosystem TOC was in positive balance. The monthly variation of TOC flux in hydrological processes was very similar to that in precipitation. The mean TOC concentration in precipitation was 3.64 mg x L(-1), while that in throughfall and stemflow increased 6.10 and 7.39 times after rain passed through the tree canopies and barks. The mean TOC concentration in surface runoff and in soil solution at 25 and 50 cm depths was 12.72, 7.905 and 3.06 mg x L(-1), respectively. The monthly TOC concentration in throughfall and stemflow had a similar changing tendency, showing an increase at the beginning of growth season (March), a decrease after September, and a little increase in December. The TOC concentration in runoff was much higher during high precipitation months. No obvious monthly variation was observed in soil solution TOC concentration (25 and 50 cm below the surface). Stemflow TOC concentration differed greatly between different tree species. The TOC concentration in precipitation, throughfall, and soil solution (25 and 50 cm depths) decreased with increasing precipitation, and no significant relationship existed between the TOC concentrations in stemflow, surface runoff and precipitation. The TOC concentrations in the hydrological processes fluctuated with precipitation intensity, except for that in stemflow and soil solutions.

  4. Decreased summer drought affects plant productivity and soil carbon dynamics in Mediterranean woodland

    Science.gov (United States)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-06-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. The throughfall manipulation experiment started in 2004 and we report data up to the 2009 growing season. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 50 % and 220 %, respectively, as compared to control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction of precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodland. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long term soil C stocks.

  5. Neural network modelling of rainfall interception in four different forest stands

    Directory of Open Access Journals (Sweden)

    Ibrahim Yurtseven

    2013-12-01

    Full Text Available The objective of this study is to reveal whether it is possible to predict rainfall, throughfall and stemflow in forest ecosystems with less effort, using several measurements of rainfall interception (hereafter ‘interception’ and an artificial neural network based linear regression model (ANN model. To this end, the Kerpe Research Forest in the province of Kocaeli, which houses stands of mixed deciduous-broadleaf forest (Castanea sativa Mill., Fagus orientalis Lipsky, Quercus spp., black pine (Pinus nigra Arnold, maritime pine (Pinus pinaster Aiton and Monterey pine (Pinus radiata D. Don, was selected study site. Four different forest stands were observed for a period of two years, during which rainfall, throughfall and stemflow measurements were conducted. These measurements were separately calculated for each individual stand, based on interception values and the use of stemflow data in strict accordance with the rainfall data, and the measured throughfall interception values were compared with values estimated by the ANN model. In this comparison, 70% of the total data was used for testing, and 30% was used for estimation and performance evaluation. No significant differences were found between values predicted with the help of the model and the measured values. In other words, interception values predicted by the ANN models were parallel with the measured values. In this study, the most success was achieved with the models of the Monterey pine stand (r2 = 0.9968; Mean Squared Error MSE = 0.16 and the mixed deciduous forest stand (r2 = 0.9964; MSE = 0.08, followed by models of the maritime pine stand (r2 = 0.9405; MSE = 1.27 and the black pine stand (r2 = 0.843, MSE = 17.36.

  6. Organotin compounds in precipitation, fog and soils of a forested ecosystem in Germany

    International Nuclear Information System (INIS)

    Huang, J.-H.; Schwesig, David; Matzner, Egbert

    2004-01-01

    Organotin compounds (OTC) are highly toxic pollutants and have been mostly investigated so far in aquatic systems and sediments. The concentrations and fluxes of different organotin compounds, including methyl-, butyl-, and octyltin species in precipitation and fog were investigated in a forested catchment in NE Bavaria, Germany. Contents, along with the vertical distribution and storages in two upland and two wetland soils were determined. During the 1-year monitoring, the OTC concentrations in bulk deposition, throughfall and fog ranged from 1 ng Sn l -1 to several ten ng Sn l -1 , but never over 200 ng Sn l -1 . The OTC concentrations in fog were generally higher than in throughfall and bulk deposition. Mono-substituted species were the dominant Sn species in precipitation (up to 190 ng Sn l -1 ) equaling a flux of up to 70 mg Sn ha -1 a -1 . In upland soils, OTC contents peaked in the forest floor (up to 30 ng Sn g -1 ) and decreased sharply with the depth. In wetland soils, OTC had slightly higher contents in the upper horizons. The dominance of mono-substituted species in precipitation is well reflected in the contents and storages of OTC in both upland and wetland soils. The ratios of OTC soil storages to the annual throughfall flux ranged from 20 to 600 years. These high ratios are probably due to high stability and low mobility of OTC in soils. No evidence was found for methylation of tin in the wetland soils. In comparison with sediments, concentrations and contents of organotin in forest soils are considerably lower, and the dominant species are less toxic. It is concluded that forested soils may act as sinks for OTC deposited from the atmosphere. - Forested soils may act as sinks for atmospherically deposited organotin compounds

  7. Quantifying Rainfall Interception Loss of a Subtropical Broadleaved Forest in Central Taiwan

    Directory of Open Access Journals (Sweden)

    Yi-Ying Chen

    2016-01-01

    Full Text Available The factors controlling seasonal rainfall interception loss are investigated by using a double-mass curve analysis, based on direct measurements of high-temporal resolution gross rainfall, throughfall and stemflow from 43 rainfall events that occurred in central Taiwan from April 2008 to April 2009. The canopy water storage capacity for the wet season was estimated to be 1.86 mm, about twice that for the dry season (0.91 mm, likely due to the large reduction in the leaf area index (LAI from 4.63 to 2.23 (m2·m−2. Changes in seasonal canopy structure and micro-meteorological conditions resulted in temporal variations in the amount of interception components, and rainfall partitioning into stemflow and throughfall. Wet canopy evaporation after rainfall contributed 41.8% of the wet season interception loss, but only 17.1% of the dry season interception loss. Wet canopy evaporation during rainfall accounted for 82.9% of the dry season interception loss, but only 58.2% of the wet season interception loss. Throughfall accounted for over 79.7% of the dry season precipitation and 76.1% of the wet season precipitation, possibly due to the change in gap fraction from 64.2% in the dry season to 50.0% in the wet season. The reduced canopy cover in the dry season also produced less stemflow than that of the wet season. The rainfall stemflow ratio ( P s f / P g was reduced from 12.6% to 8.9%. Despite relatively large changes in canopy structure, seasonal variation of the ratio of rainfall partitioned to interception was quite small. Rainfall interception loss accounted for nearly 12% of gross precipitation for both dry and wet seasons.

  8. Sensitivity of soil respiration to variability in soil moisture and temperature in a humid tropical forest

    Science.gov (United States)

    Tana Wood; M. Detto; W.L. Silver

    2013-01-01

    Precipitation and temperature are important drivers of soil respiration. The role of moisture and temperature are generally explored at seasonal or inter-annual timescales; however, significant variability also occurs on hourly to daily time-scales. We used small (1.54 m2), throughfall exclusion shelters to evaluate the role soil moisture and temperature as temporal...

  9. Nitrogen deposition and cycling across an elevation and vegetation gradient in southern Appalachian forests

    Science.gov (United States)

    Jennifer D. Knoepp; James M. Vose; Wayne T. Swank

    2008-01-01

    We studied nitrogen (N) cycling pools and processes across vegetation and elevation gradients in. the southern Appalachian Mountains in SE USA. Measurements included bulk deposition input, watershed export, throughfall fluxes, litterfall, soil N pools and processes, and soil solution N. N deposition increased with elevation and ranged from 9.5 to 12.4 kg ha-...

  10. Using epiphytic lichens to monitor nitrogen deposition near natural gas drilling operations in the Wind River Range, WY, USA

    Science.gov (United States)

    Jill A. McMurray; Dave W. Roberts; Mark E. Fenn; Linda H. Geiser; Sarah Jovan

    2013-01-01

    Rapid expansion of natural gas drilling in Sublette County, WY (1999-present), has raised concerns about the potential ecological effects of enhanced atmospheric nitrogen (N) deposition to the Wind River Range (WRR) including the Class I BridgerWilderness. We sampled annual throughfall (TF) N deposition and lichen thalli N concentrations under forest canopies in four...

  11. Atmospheric deposition inputs and effects on lichen chemistry and indicator species in the Columbia River Gorge, USA

    International Nuclear Information System (INIS)

    Fenn, M.E.; Geiser, L.; Bachman, R.; Blubaugh, T.J.; Bytnerowicz, A.

    2007-01-01

    Topographic and meteorological conditions make the Columbia River Gorge (CRG) an 'exhaust pipe' for air pollutants generated by the Portland-Vancouver metropolis and Columbia Basin. We sampled fog, bulk precipitation, throughfall, airborne particulates, lichen thalli, and nitrophytic lichen distribution. Throughfall N and S deposition were high, 11.5-25.4 and 3.4-6.7 kg ha -1 over 4.5 months at all 9 and 4/9 sites, respectively. Deposition and lichen thallus N were highest at eastern- and western-most sites, implicating both agricultural and urban sources. Fog and precipitation pH were frequently as low as 3.7-5.0. Peak NO x , NH 3 , and SO 2 concentrations in the eastern CRG were low, suggesting enhanced N and S inputs were largely from particulate deposition. Lichens indicating nitrogen-enriched environments were abundant and lichen N and S concentrations were 2x higher in the CRG than surrounding national forests. The atmospheric deposition levels detected likely threaten Gorge ecosystems and cultural resources. - Nitrogen, sulfur and acidic deposition threaten natural and cultural resources in the Columbia River Gorge National Scenic Area

  12. Cycling of acid and base cations in deciduous stands of Huntington Forest, New York, and Turkey Lakes, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Foster, N W; Morrison, I K [Forestry Canada, Sault Ste. Marie, ON (Canada); Mitchell, M J [State Univ. of New York, Syracuse, NY (USA); Shepard, J P [National Council of the Paper Industry for Air and Stream Improvement, Gainesville, FL (USA)

    1992-01-01

    Annual nutrient fluxes within two forests exposed to acidic deposition were compared for a 1-year period. Calcium (Ca{sup 2+}) was the dominant cation in throughfall and soil solutions from tolerant hardwood dominated Spodosols (Podzols) at both Huntington Forest (HF), New York, and the Turkey Lakes watershed (TLW), Ontario. There was a net annual export of Ca{sup 2+} and Mg{sup 2+} from the TLW soil, whereas base cation inputs in precipitation equalled outputs at HF. In 1986, leaching losses of base cations were five times greater at TLW than at HF. A higher percentage of the base cation reserves was leached from the soil at TLW (5%) than at HF (1%). Relative to throughfall, aluminum concentrations increased in forest-floor and mineral-soil solutions, especially at HF. The TLW soil appears more sensitive to soil acidification. Deposited atmospheric acidity, however, was small in comparison with native soil acidity (total and exchangeable) and the reserves of base cations in each soil. Soil acidity and base saturation, therefore, are likely only to change slowly. 57 refs., 1 fig., 5 tabs.

  13. Chemical fluxes in time through forest ecosystems in the UK - Soil response to pollution recovery

    International Nuclear Information System (INIS)

    Vanguelova, E.I.; Benham, S.; Pitman, R.; Moffat, A.J.; Broadmeadow, M.; Nisbet, T.; Durrant, D.; Barsoum, N.; Wilkinson, M.; Bochereau, F.; Hutchings, T.; Broadmeadow, S.; Crow, P.; Taylor, P.; Durrant Houston, T.

    2010-01-01

    Long term trend analysis of bulk precipitation, throughfall and soil solution elemental fluxes from 12 years monitoring at 10 ICP Level II forest sites in the UK reveal coherent national chemical trends indicating recovery from sulphur deposition and acidification. Soil solution pH increased and sulphate and aluminium decreased at most sites. Trends in nitrogen were variable and dependant on its form. Dissolved organic nitrogen increased in bulk precipitation, throughfall and soil solution at most sites. Nitrate in soil solution declined at sites receiving high nitrogen deposition. Increase in soil dissolved organic carbon was detected - a response to pollution recovery, changes in soil temperature and/or increased microbial activity. An increase of sodium and chloride was evident - a possible result of more frequent storm events at exposed sites. The intensive and integrated nature of monitoring enables the relationships between climate/pollutant exposure and chemical/biological response in forestry to be explored. - Forest soils are recovering from acid and sulphur pollution in the UK, but soil responses to nitrogen deposition and climatic changes are still uncertain.

  14. Chemical fluxes in time through forest ecosystems in the UK - Soil response to pollution recovery

    Energy Technology Data Exchange (ETDEWEB)

    Vanguelova, E.I., E-mail: elena.vanguelova@forestry.gsi.gov.u [Centre of Forestry and Climate Change, Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); Benham, S.; Pitman, R.; Moffat, A.J. [Centre of Forestry and Climate Change, Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); Broadmeadow, M. [Forestry Commission, England, Alice Holt, Farnham, Surrey GU10 4LH (United Kingdom); Nisbet, T.; Durrant, D.; Barsoum, N.; Wilkinson, M.; Bochereau, F.; Hutchings, T.; Broadmeadow, S.; Crow, P.; Taylor, P. [Centre of Forestry and Climate Change, Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); Durrant Houston, T. [DG Joint Research Centre - European Commission, Institute for Environment and Sustainability, Land Management and Natural Hazards Unit - TP 261, Ispra, I-21027 (Italy)

    2010-05-15

    Long term trend analysis of bulk precipitation, throughfall and soil solution elemental fluxes from 12 years monitoring at 10 ICP Level II forest sites in the UK reveal coherent national chemical trends indicating recovery from sulphur deposition and acidification. Soil solution pH increased and sulphate and aluminium decreased at most sites. Trends in nitrogen were variable and dependant on its form. Dissolved organic nitrogen increased in bulk precipitation, throughfall and soil solution at most sites. Nitrate in soil solution declined at sites receiving high nitrogen deposition. Increase in soil dissolved organic carbon was detected - a response to pollution recovery, changes in soil temperature and/or increased microbial activity. An increase of sodium and chloride was evident - a possible result of more frequent storm events at exposed sites. The intensive and integrated nature of monitoring enables the relationships between climate/pollutant exposure and chemical/biological response in forestry to be explored. - Forest soils are recovering from acid and sulphur pollution in the UK, but soil responses to nitrogen deposition and climatic changes are still uncertain.

  15. [Rainfall and soil moisture redistribution induced by xerophytic shrubs in an arid desert ecosystem].

    Science.gov (United States)

    Wang, Zheng Ning; Wang, Xin Ping; Liu, Bo

    2016-03-01

    Rainfall partitioning by desert shrub canopy modifies the redistribution of incident rainfall under the canopy, and may affect the distribution pattern of soil moisture around the plant. This study examined the distribution of rainfall and the response of soil moisture beneath the canopy of two dominant desert shrubs, Caragana korshinskii and Artemisia ordosica, in the revegetation area at the southeastern edge of the Tengger Desert. The results showed that throughfall and stemflow ave-ragely occupied 74.4%, 11.3% and 61.8%, 5.5% of the gross precipitation for C. korshinskii and A. ordosica, respectively. The mean coefficients of variation (CV) of throughfall were 0.25 and 0.30, respectively. C. korshinski were more efficient than A. ordosica on stemflow generation. The depth of soil wetting front around the stem area was greater than other areas under shrub canopy for C. korshinski, and it was only significantly greater under bigger rain events for A. ordosica. The shrub canopy could cause the unevenness of soil wetting front under the canopy in consequence of rainfall redistribution induced by xerophytic shrub.

  16. Role of six European tree species and land-use legacy for nitrogen and water budgets in forests

    DEFF Research Database (Denmark)

    Riis Christiansen, Jesper; Vesterdal, Lars; Callesen, Ingeborg

    2010-01-01

    -year-old common garden design with stands of common ash (Fraxinus excelsior), European beech (Fagus sylvatica L.), pedunculate oak (Quercus robur), small-leaved lime (Tilia cordata Mill.), sycamore maple (Acer pseudoplatanus) and Norway spruce (Picea abies [L.] Karst.) replicated at two sites...... in Denmark, Mattrup and Vallø during 2 years. Mean annual percolation below the root zone (mm yr−1±SE, n=4) ranked in the following order: maple (351±38)>lime (284±32), oak (271±25), beech (257±30), ash (307±69)≫ spruce (75±24). There were few significant tree species effects on N fluxes. However, the annual...... mean N throughfall flux (kg N ha−1 yr−1±SE, n=4) for spruce (28±2) was significantly larger than for maple (12±1), beech (11±1) and oak (9±1) stands but not different from that of lime (15±3). Ash had a low mean annual inorganic N throughfall deposition of 9.1 kg ha−1, but was only present at Mattrup...

  17. High frequency and large deposition of acid fog on high elevation forest.

    Science.gov (United States)

    Igawa, Manabu; Matsumura, Ko; Okochi, Hiroshi

    2002-01-01

    We have collected and analyzed fogwater on the mountainside of Mt. Oyama (1252 m) in the Tanzawa Mountains of Japan and observed the fog event frequency from the base of the mountain with a video camera. The fog event frequency increased with elevation and was observed to be present 46% of the year at the summit. The water deposition via throughfall increased with elevation because of the increase in fogwater interception and was about twice that via rain at the summit, where the air pollutant deposition via throughfall was several times that via rainwater. The dry deposition and the deposition via fogwater were dominant factors in the total ion deposition at high elevation sites. In a fog event, nitric acid, the major acid component on the mountain, is formed during the transport of the air mass from the base of the mountain along the mountainside, where gases including nitric acid deposit and are scavenged by fogwater. Therefore, high acidity caused by nitric acid and relatively low ion strength are observed in the fogwater at high elevation sites.

  18. Spatial relationships between nitrogen status and pitch canker disease in slash pine planted adjacent to a poultry operation

    International Nuclear Information System (INIS)

    Lopez-Zamora, Isabel; Bliss, Christine; Jokela, Eric J.; Comerford, N.B.; Grunwald, Sabine; Barnard, E.; Vasquez, G.M.

    2007-01-01

    Pitch canker disease (Fusarium circinatum Nirenberg and O'Donnell) causes serious shoot dieback, reduced growth and mortality in pines found in the southern and western USA, and has been linked to nutrient imbalances. Poultry houses with forced-air ventilation systems produce nitrogen (N) emissions. This study analyzed spatial correlations between pitch canker disease and foliar, forest floor, soil, and throughfall N in a slash pine (Pinus elliottii var. elliottii Engelm.) plantation adjacent to a poultry operation in north Florida, USA. Tissue and throughfall N concentrations were highest near the poultry houses and remained elevated for 400 m. Disease incidence ranged from 57-71% near the poultry houses and was spatially correlated with N levels. Similarly, stem mortality ranged from 41-53% in the most heavily impacted area, and declined to 0-9% at distances greater than 400 m. These results suggest that nutritional processes exacerbate changes in disease susceptibility and expression in slash pine. - Local emissions from poultry production appear to significantly contribute to the spatial distribution of N and pitch canker disease in managed slash pine ecosystems

  19. Hydrological Components of a Young Loblolly Pine Plantation on a Sandy Soil with Estimates of Water Use and Loss

    Science.gov (United States)

    Deborah A. Abrahamson; Phillip M. Dougherty; Stanley J. Zarnoch

    1998-01-01

    Fertilizer and irrigation treatments were applied in a 7- to l0-year-old loblolly pine (Pinus taeda L.) plantation on a sandy soil near Laurinburg, North Carolina. Rainfall, throughfall, stemflow, and soil water content were measured throughout the study period. Monthly interception losses ranged from 4 to 15% of rainfall. Stemflow ranged from 0.2...

  20. Air pollution and forest health studies along a south-north transect in Poland

    Science.gov (United States)

    Stefan Godzik; Jerzy Szdzuj; Tomasz Staszewski; Wlodzimierz Lukasik

    1998-01-01

    Air pollution, bulk deposition and throughfall, soil characteristics, needle chemistry, and forest injury were studied on six permanent plots from the south (Brenna and Salmopol in the Beskidy Mountains) to the north (Gac, the Baltic Sea coastal area) in Poland. The concentrations of sulfur dioxide and nitrogen dioxide were the highest at the Katowice location and the...

  1. Status of the Southern Carpathian forests in the long-term ecological research network

    Science.gov (United States)

    Ovidiu Badea; Andrzej Bytnerowicz; Diana Silaghi; Stefan Neagu; Ion Barbu; Carmen Iacoban; Corneliu Iacob; Gheorghe Guiman; Elena Preda; Ioan Seceleanu; Marian Oneata; Ion Dumitru; Viorela Huber; Horia Iuncu; Lucian Dinca; Stefan Leca; Ioan Taut

    2012-01-01

    Air pollution, bulk precipitation, throughfall, soil condition, foliar nutrients, as well as forest health and growth were studied in 2006–2009 in a long-term ecological research (LTER) network in the Bucegi Mountains, Romania. Ozone (O 3 ) was high indicating a potential for phytotoxicity. Ammonia (NH 3 ) concentrations rose to levels that could contribute to...

  2. Forest canopy uptake of atmospheric nitrogen deposition at eastern U.S. conifer sites: Carbon storage implications?

    Science.gov (United States)

    Herman Sievering; Ivan Fernandez; John Lee; John Hom; Lindsey Rustad

    2000-01-01

    Dry deposition determinations, along with wet deposition and throughfall (TF) measurements, at a spruce fir forest in central Maine were used to estimate the effect of atmospherically deposited nitrogen (N) uptake on forest carbon storage. Using nitric acid and particulate N as well as TF ammonium and nitrate data, the growing season (May-October) net canopy uptake of...

  3. The Influence of Epiphytic Lichens on the Nutrient Cycling of a Blue Oak Woodland

    Science.gov (United States)

    Johannes M. Knops; Thomas H. H. Nash III; William H. Schlesinger

    1997-01-01

    We evaluated the importance of epiphytic lichens in the nutrient cycling of a blue oak (Quercus douglasii) woodland in California. Each oak tree contained an average of 3.8 kg lichen biomass, totaling 590 kg per ha. For comparison, oak leaf biomass was 958 kg per ha. We compared tree growth, volume and composition of throughfall (rainfall falling...

  4. Canopy leaching of nutrients and metals in a mountain spruce forest

    Czech Academy of Sciences Publication Activity Database

    Kopáček, Jiří; Turek, Jan; Hejzlar, Josef; Šantrůčková, H.

    2009-01-01

    Roč. 43, č. 34 (2009), s. 5443-5453 ISSN 1352-2310 R&D Projects: GA ČR(CZ) GA206/07/1200; GA ČR(CZ) GA526/09/0567 Grant - others:NFM(CZ) CZ-0051 Institutional research plan: CEZ:AV0Z60170517 Keywords : throughfall * nitrogen * phosphorus Subject RIV: DJ - Water Pollution ; Quality Impact factor: 3.139, year: 2009

  5. POROVNÁNÍ KONCENTRACÍ ZNEČIŠŤUJÍCÍCH LÁTEK V RŮZNÝCH DRUZÍCH KAPALNÝCH SRÁŽEK

    Czech Academy of Sciences Publication Activity Database

    Fišák, Jaroslav; Chaloupecký, Pavel; Skřivan, Petr; Špičková, Jitka

    2008-01-01

    Roč. 61, č. 3 (2008), s. 79-85 ISSN 0026-1173 R&D Projects: GA AV ČR IAA3042301; GA AV ČR 1QS200420562; GA ČR GA205/04/0060 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z30130516 Keywords : fog water * throughfall * bulk precipitation * wet-only precipitation Subject RIV: DG - Athmosphere Sciences, Meteorology

  6. The effects of decreased water availability on loblolly pine (Pinus taeda L.) productivity and the interaction between fertilizer and drought

    Science.gov (United States)

    Adam O. Maggard; Rodney E. Will; Duncan S. Wilson; Cassandra R. Meek

    2016-01-01

    As part of the regional PINEMAP (Pine Integrated Network: Education, Mitigation, and Adaptation project) funded by the NIFA - USDA, we established a factorial study in McCurtain County, OK near Broken Bow. This study examined the effects of fertilization and ~30 percent reduction in throughfall on an seven-yearold loblolly pine (Pinus taeda L.) plantation. The...

  7. Nutrient fluxes in rainfall, throughfall and stemflow in Eucalyptus ...

    African Journals Online (AJOL)

    Southern Forests: a Journal of Forest Science ... The aim of this study was to determine the magnitude and relevance of nutrient addition with ... was used with rainfall and canopy drainage to derive wet, dry and total atmospheric deposition.

  8. Monitoring soil chemical and physical parameters under Douglas fir in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Konsten, C.J.M.; Tiktak, A.; Bouten, W.

    1987-01-01

    In march 1987 a monitoring program started in two Douglas fir stands of different vitality in the Netherlands. Aim of the study is to provide insight in the chemical and physical rooting conditions of the vegetation and to quantify the contributions of atmospheric deposition to soil acidification. The hydrological part of the monitoring progam consists of automated measurements of precipitation, throughfall, soil water pressure head and soil water content; in addition soil water content is determined by neutron sonde measurements and gravimetry. These data are used as input data for simulation models which calculate water fluxes through the vegetation and soil. For the soil chemical part of the program precipitation (bulk and wet-only), throughfall and litter fall are sampled. The soil solution is sampled by suction from porous cups and from porous plates by a new, continous technique. Combination of soil chemical and soil physical data will result in chemical fluxes through the vegetation and through various soil compartments. Element budgets for the ecosystem will also be calculated. The program forms part of an interdisciplinary monitoring project within the Dutch Priority Programme on Acidification. 2 figs., 1 tab., 19 refs.

  9. Atmospheric depositions around a heavily industrialized area in a seasonally dry tropical environment of India

    International Nuclear Information System (INIS)

    Singh, Raj Kumar; Agrawal, Madhoolika

    2005-01-01

    Clear and throughfall bulk depositions were collected in the downwind of a highly industrialized region in Sonbhadra district of India to estimate the influence of anthropogenic activities on chemical composition of depositions. Significant spatial and temporal variations in depositions of cations and anions were observed. Depositions were higher near the thermal power stations and coalmines as compared to distantly situated site. Seasonally summer samples showed maximum cation and anion depositions followed by winter and minimum in rainy season. The mean pH of the depositions indicates that rainfall in the area is alkaline. Among the anions, maximum deposition was recorded for SO 4 2- followed by NO 3 - and minimum for Cl - . Among the cations, Ca 2+ deposition was maximum followed by NH 4 + . Na + , K + and Mg 2+ deposition rates showed more or less similar values. The depositions of cations and anions as well as pH were higher in throughfall than clearfall samples. Results of the present study suggest that atmospheric depositions are strongly modified due to thermal power stations and coal mines in the area. - Atmospheric abundance of cations have neutralized the acidity of depositions around a heavily industrialized area in India

  10. Wet canopy evaporation from a Puerto Rican lower montane rain forest: the importance of realistically estimated aerodynamic conductance

    Science.gov (United States)

    F. Holwerda; L.A. Bruijnzeel; F.N. Scatena; H.F. Vugts; A.G.C.A. Meesters

    2012-01-01

    Rainfall interception (I) was measured in 20 m tall Puerto Rican tropical forest with complex topography for a 1-year period using totalizing throughfall (TF) and stemflow (SF) gauges that were measured every 2–3 days. Measured values were then compared to evaporation under saturated canopy conditions (E) determined with the Penman–Monteith (P–M) equation, using (i)...

  11. Intra-Urban Variability in Elemental Carbon Deposition to Tree Canopies

    Science.gov (United States)

    Barrett, T. E.; Ponette-González, A.; Rindy, J. E.; Sheesley, R. J.

    2017-12-01

    Urban areas cover biomass combustion, EC is a powerful climate-forcing agent and a significant component of fine particulate matter in urban atmospheres. Thus, understanding the factors that govern EC removal in urban areas could help mitigate climate change, while improving air quality for urban residents. EC particles can be removed from the atmosphere in precipitation (wet and fog deposition) or they can settle directly onto receptor surfaces (dry deposition). Only limited measurements indicate that EC deposition is higher in urban than in rural and remote regions. However, EC deposition likely exhibits considerable intra-urban variability, with tree canopies serving as potentially important sinks for EC on the cityscape. The goal of this research is to quantify spatial variability in total (wet + dry) EC deposition to urban tree canopies in the Dallas-Fort Worth Metroplex. Using a stratified non-random sampling design, 41 oak trees (22 post oak (Quercus stellata) and 19 live oak (Quercus virginiana)) were selected near (100 m) for measurements of throughfall (water that falls from the canopy to the forest floor). Additionally, 16 bulk rainfall samplers were deployed in grassy areas with no canopy cover. Results from one rain event indicate a volume weighted mean concentration of 83 µg EC L-1 in post oak throughfall, 36 µg EC L-1 in live oak throughfall, and 4 µg EC L-1 in bulk rainfall. Total EC deposition to oak tree canopies was 2.0 ± 2.1 (SD) mg m-2 for post oak and 0.7 ± 0.3 mg m-2 for live oak. Bulk rainfall deposition was 0.08 ± 0.1 mg m-2. Our preliminary findings show that trees are effective urban air filters, removing 9-25 times more EC from the atmosphere than rainwater alone. Resolving surface controls on atmospheric EC removal is key to developing and assessing near-term climate and air quality mitigation strategies.

  12. Uptake and translocation of radiocesium in cedar leaves following the Fukushima nuclear accident.

    Science.gov (United States)

    Nishikiori, Tatsuhiro; Watanabe, Mirai; Koshikawa, Masami K; Takamatsu, Takejiro; Ishii, Yumiko; Ito, Shoko; Takenaka, Akio; Watanabe, Keiji; Hayashi, Seiji

    2015-01-01

    Cryptomeria japonica trees in the area surrounding Fukushima, Japan, intercepted (137)Cs present in atmospheric deposits soon after the Fukushima nuclear accident in March 2011. To study the uptake and translocation of (137)Cs in C. japonica leaves, we analyzed activity concentrations of (137)Cs and the concentration ratios of (137)Cs to (133)Cs ((137)Cs/(133)Cs) in old and new leaves of C. japonica collected from a forest on Mount Tsukuba between 9 and 15 months after the accident. Both isotopes were also analyzed in throughfall, bulk precipitation and soil extracts. Water of atmospheric and soil origin were used as proxies for deciphering the absorption from leaf surfaces and root systems, respectively. Results indicate that 20-40% of foliar (137)Cs existed inside the leaf, while 60-80% adhered to the leaf surface. The (137)Cs/(133)Cs ratios inside leaves that had sprouted before the accident were considerably higher than that of the soil extract and lower than that of throughfall and bulk precipitation. Additionally, more than 80% of (137)Cs in throughfall and bulk precipitation was present in the dissolved form, which is available for foliar uptake, indicating that a portion of the (137)Cs inside old leaves was presumably absorbed from the leaf surface. New leaves that sprouted after the accident had similar (137)Cs/(133)Cs ratios to that of the old leaves, suggesting that internal (137)Cs was translocated from old to new leaves. For 17 species of woody plants other than C. japonica, new leaves that sprouted after the accident also contained (137)Cs, and their (137)Cs/(133)Cs ratios were equal to or higher than that of the soil extract. These results suggested that foliar uptake and further translocation of (137)Cs is an important vector of contamination in various tree species during or just after radioactive fallout. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The Contribution of On-Road Emissions of Ammonia to Atmospheric Nitrogen Deposition

    Science.gov (United States)

    Fenn, M. E.; Schilling, S.; Bytnerowicz, A.; Bell, M. D.; Sickman, J. O.; Hanks, K.; Geiser, L.

    2017-12-01

    Emissions control technologies for NOx result in increased production of NH3. Emissions inventories and simulated deposition of NHx frequently underestimate reduced forms of N. Herein we provide updated spatial distribution and inventory data for on-road NH3 emissions for the continental U.S. On-road NH3 emissions were determined from on-road CO2 emissions data and published empirical NH3:CO2 vehicle emissions ratios. Emissions of NH3 in urbanized regions are typically 0.1 - 1.3 t/km2/yr. By comparison, NH3 emissions in agricultural regions generally range from 0.4 - 5.5 t/km2/yr, with a few hotspots as high as 5.5 - 11.2 t/km2/yr. We identified 500 counties that receive at least 30% of the NH3 emissions from on-road sources. Counties with higher vehicle NH3 emissions than from agriculture include 41% of the U.S. population. Within CONUS the percent of wet inorganic N deposition from the NADP/NTN as NH4+ ranged from 37 to 83% with a mean of 59.5%. Only 13% of the NADP sites across the U.S. had less than 45% of the N deposition as NH4+ based on data from 2014-2016, illustrating the near-universal occurrence of NH4+ deposition across the U.S., regardless of the primary sources of NH3 emissions. The relative importance of urban and on-road NH3 emissions versus emissions from agriculture varies regionally. In some areas both are important and should be considered when evaluating the principal sources of N deposition to affected ecosystems.Case studies of on-road NH3 emissions in relation to N deposition include four urban sites in Oregon and Washington where the NH4-N:NO3-N ratio in throughfall was 1.0 compared to an average ratio of 2.3 in bulk deposition. At urban sites in the Los Angeles Basin bulk deposition of NH4-N and NO3-N were equivalent, while NH4-N:NO3-N in throughfall under shrubs in the greater LA Basin ranged from 0.7 to 1.5. The NH4-N:NO3-N ratio at ten sites in the Lake Tahoe Basin averaged 1.4 and 1.6 in bulk deposition and throughfall. Throughfall and

  14. A Range-Wide Experiment to Investigate Nutrient and Soil Moisture Interactions in Loblolly Pine Plantations

    Directory of Open Access Journals (Sweden)

    Rodney E. Will

    2015-06-01

    Full Text Available The future climate of the southeastern USA is predicted to be warmer, drier and more variable in rainfall, which may increase drought frequency and intensity. Loblolly pine (Pinus taeda is the most important commercial tree species in the world and is planted on ~11 million ha within its native range in the southeastern USA. A regional study was installed to evaluate effects of decreased rainfall and nutrient additions on loblolly pine plantation productivity and physiology. Four locations were established to capture the range-wide variability of soil and climate. Treatments were initiated in 2012 and consisted of a factorial combination of throughfall reduction (approximate 30% reduction and fertilization (complete suite of nutrients. Tree and stand growth were measured at each site. Results after two growing seasons indicate a positive but variable response of fertilization on stand volume increment at all four sites and a negative effect of throughfall reduction at two sites. Data will be used to produce robust process model parameterizations useful for simulating loblolly pine growth and function under future, novel climate and management scenarios. The resulting improved models will provide support for developing management strategies to increase pine plantation productivity and carbon sequestration under a changing climate.

  15. Recent field studies of dry deposition to surfaces in plant canopies

    International Nuclear Information System (INIS)

    Lindberg, S.E.; Lovett, G.M.; Bondietti, E.A.; Davidson, C.I.

    1984-01-01

    A variety of field techniques were used to assess the dry deposition of sulfur. In a deciduous forest canopy in eastern Tennessee, inert petri plates and adjacent chestnut oak leaves showed similar SO 4 -2 deposition velocities of about 0.1 cm s -1 . In the same forest, statistical analysis of throughfall yielded a deposition velocity of 0.48 cm s -1 for total sulfur (SO 4 -2 plus SO 2 ). The throughfall technique appears useful for scaling individual surface measurements to larger spatial and temporal scales. On a grassy field in Illinois, flat Teflon plates, petri dishes, and dustfall buckets were exposed side by side. Measured sulfate deposition increased with increasing rim height on the collection surface, and deposition velocities ranged from 0.14 to 0.70 cm s -1 . Much of the deposition to these surfaces can be attributed to large-particle SO 4 -2 . Dry season (summer) deposition velocities of 7 Be in California were found to be similar to dry deposition velocities of 212 Pb in Tennessee, ranging from 0.18 to 0.35 cm s -1 . These natural radionuclides attach to submicron aerosols in the atmosphere and may be useful tracers of submicron SO 4 -2 deposition. 9 references, 5 figures, 4 tables

  16. Neural network modelling of rainfall interception in four different forest stands

    OpenAIRE

    Ibrahim Yurtseven; Mustafa Zengin

    2013-01-01

    The objective of this study is to reveal whether it is possible to predict rainfall, throughfall and stemflow in forest ecosystems with less effort, using several measurements of rainfall interception (hereafter interception) and an artificial neural network based linear regression model (ANN model). To this end, the Kerpe Research Forest in the province of Kocaeli, which houses stands of mixed deciduous-broadleaf forest (Castanea sativa Mill., Fagus orientalis Lipsky, Quercus spp.), black pi...

  17. Evaluation of the throughfall and stemflow nutrient contents in mixed and pure plantations of Acacia mangium, Pseudosamenea guachapele and Eucalyptus grandis Avaliação do conteúdo de nutrientes na água de precipitação interna e de escoamento pelo tronco em plantios de Acacia mangium, Pseudosamenea guachapele e Eucalyptus grandis

    Directory of Open Access Journals (Sweden)

    Fabiano de Carvalho Balieiro

    2007-04-01

    Full Text Available The interception of the rainfall by the forest canopy has great relevance to the nutrient geochemistry cycle in low fertility tropical soils under native or cultivated forests. However, little is known about the modification of the rainfall water quality and hydrological balance after interception by the canopies of eucalyptus under pure and mixed plantations with leguminous species, in Brazil. Samples of rainfall (RF, throughfall (TF and stemflow (SF were collected and analyzed in pure plantations of mangium (nitrogen fixing tree -NFT, guachapele (NFT and eucalyptus (non-nitrogen fixing tree -NNFT and in a mixed stand of guachapele and eucalyptus in Seropédica, State of Rio de Janeiro, Brazil. Nine stemflow collectors (in selected trees and nine pluviometers were randomly disposed under each stand and three pluviometers were used to measure the incident rainfall during 5.5 months. Mangium conveyed 33.4% of the total rainfall for its stem. An estimative based on corrections for the average annual precipitation (1213 mm indicated that the rainfall's contribution to the nutrient input (kg ha-1 was about 8.42; 0.95; 19.04; 6.74; 4.72 and 8.71 kg ha-1 of N-NH4+, P, K+, Ca+2, Mg+2 and Na+, respectively. Throughfall provided the largest contributions compared to the stemflow nutrient input. The largest inputs of N-NH4+ (15.03 kg ha-1 and K+ (179.43 kg ha-1 were observed under the guachapele crown. Large amounts of Na+ denote a high influence of the sea. Mangium was the most adapted species to water competitiveness. Comparatively to pure stand of eucalyptus, the mixed plantation intensifies the N, Ca and Mg leaching by the canopy, while the inputs of K and P were lower under these plantations.A interceptação da chuva pela copa das florestas tem grande relevância no ciclo biogeoquímico de nutrientes nos solos de baixa fertilidade sob florestas nativas e plantadas. Entretanto, pouco se sabe sobre as modificações na qualidade dessa água e no balan

  18. Input and output of dissolved organic and inorganic nitrogen in subtropical forests of South China under high air pollution

    Directory of Open Access Journals (Sweden)

    Y. T. Fang

    2008-03-01

    Full Text Available The nitrogen (N emissions to the atmosphere and N deposition to forest ecosystems are increasing rapidly in Southeast Asia, but little is known about the fates and effects of elevated N deposition in forest ecosystems in this warm and humid region. Here we report the concentrations and fluxes of dissolved inorganic (DIN and organic N (DON in precipitation, throughfall, surface runoff and soil solution for three subtropical forests in a region of South China under high air pollution over two years (2004 and 2005, to investigate how deposited N is processed, and to examine the importance of DON in the N budget. The precipitation DIN input was 32–34 kg N ha−1 yr−1. An additional input of 18 kg N ha−1 yr−1 as DON was measured in 2005, which to our knowledge is the highest DON flux ever measured in precipitation. A canopy uptake of DIN was indicated in two young conifer dominated forests (72–85% of DIN input reached the floor in throughfall, whereas no uptake occurred in an old-growth broadleaf forest. The DON fluxes in throughfall were similar to that in precipitation in all forests. In the younger forests, DIN was further retained in the soil, with 41–63% of precipitation DIN leached below the 20-cm soil depth. Additionally, about half of the DON input was retained in these forests. The N retention in two young aggrading forests (21–28 kg N ha−1 yr−1 was in accordance with the estimates of N accumulation in biomass and litter accretion. In the old-growth forest, no N retention occurred, but rather a net loss of 8–16 kg N ha−1 yr−1 from the soil was estimated. In total up to 60 kg N ha−1 yr−1 was leached from the old-growth forest, indicating that this forest was completely N saturated and could not retain additional anthropogenic N inputs. We found that the majority of DIN deposition as well as of DIN leaching

  19. Uptake and translocation of radiocesium in cedar leaves following the Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Nishikiori, Tatsuhiro; Watanabe, Mirai; Koshikawa, Masami K.; Takamatsu, Takejiro; Ishii, Yumiko; Ito, Shoko; Takenaka, Akio; Watanabe, Keiji; Hayashi, Seiji

    2015-01-01

    Cryptomeria japonica trees in the area surrounding Fukushima, Japan, intercepted 137 Cs present in atmospheric deposits soon after the Fukushima nuclear accident in March 2011. To study the uptake and translocation of 137 Cs in C. japonica leaves, we analyzed activity concentrations of 137 Cs and the concentration ratios of 137 Cs to 133 Cs ( 137 Cs/ 133 Cs) in old and new leaves of C. japonica collected from a forest on Mount Tsukuba between 9 and 15 months after the accident. Both isotopes were also analyzed in throughfall, bulk precipitation and soil extracts. Water of atmospheric and soil origin were used as proxies for deciphering the absorption from leaf surfaces and root systems, respectively. Results indicate that 20–40% of foliar 137 Cs existed inside the leaf, while 60–80% adhered to the leaf surface. The 137 Cs/ 133 Cs ratios inside leaves that had sprouted before the accident were considerably higher than that of the soil extract and lower than that of throughfall and bulk precipitation. Additionally, more than 80% of 137 Cs in throughfall and bulk precipitation was present in the dissolved form, which is available for foliar uptake, indicating that a portion of the 137 Cs inside old leaves was presumably absorbed from the leaf surface. New leaves that sprouted after the accident had similar 137 Cs/ 133 Cs ratios to that of the old leaves, suggesting that internal 137 Cs was translocated from old to new leaves. For 17 species of woody plants other than C. japonica, new leaves that sprouted after the accident also contained 137 Cs, and their 137 Cs/ 133 Cs ratios were equal to or higher than that of the soil extract. These results suggested that foliar uptake and further translocation of 137 Cs is an important vector of contamination in various tree species during or just after radioactive fallout. - Highlights: • 137 Cs was absorbed into cedar leaves from the leaf surface. • 137 Cs in new leaves of cedar trees was mainly supplied by

  20. Soil phosphorus fractionation as a tool for monitoring dust phosphorus signature underneath a Blue Pine (Pinus wallichiana canopy in a Temperate Forest

    Directory of Open Access Journals (Sweden)

    Mustafa-Nawaz Shafqat

    2016-12-01

    Full Text Available Aims of the study: This study aims (i to monitor the amount of dust deposition during dry season in the moist temperate forest; (ii to study nature of P fractions in the dust samples falling on the trees in the region; (iii to study soil P fractions as influenced by the processes of throughfall and stemflow of a Blue Pine (Pinus wallichiana canopy and to finger print the contribution of dust towards P input in the temperate forest ecosystem. Area of study: The site used for the collection of soil samples was situated at an elevation of 6900 feet above sea levels (temperate forest in Himalaya region in the Thandani area national forest located in the north west of Pakistan. Material and methods:  For soil sampling and processing, three forest sites with three old tree plants per site were selected at approximately leveled plain for surface soil sampling. Two dust samples were collected and analyzed for different physicochemical properties along with different P fractions. First dust sample was collected from a site situated at an elevation of 4000 feet and second one was collected from an elevation of 6500 feet above sea levels. Modified Hedley procedure for the fractionation of P in the dust and soil samples were used. Main results: The input of dust was 43 and 20 kg ha-1 during drier months of the year (September-June at lower and higher elevation sites respectively, and the dust from lower elevation site had relative more all P fractions than the other dust sample. However, HCl-Pi fraction was dominant in both samples. Both labile (water plus NaHCO3 and non-labile (NaOH plus HCl inorganic P (Pi fractions were significantly increased in the surface soil by both stemflow and throughfall compared to the open field soil. The buildup of NaOH and HCl-Pi pools in soils underneath the canopy might prove useful in fingerprinting the contribution of atmospheric dust towards P cycling in this temperate forest. Research highlights: The role of dust in

  1. Uptake and translocation of radiocesium in cedar leaves following the Fukushima nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Nishikiori, Tatsuhiro [Center for Regional Environment Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Watanabe, Mirai, E-mail: watanabe.mirai@nies.go.jp [Center for Regional Environment Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Koshikawa, Masami K.; Takamatsu, Takejiro; Ishii, Yumiko; Ito, Shoko [Center for Regional Environment Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Takenaka, Akio [Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Watanabe, Keiji [Center for Regional Environment Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama 347-0115 (Japan); Hayashi, Seiji [Center for Regional Environment Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan)

    2015-01-01

    Cryptomeria japonica trees in the area surrounding Fukushima, Japan, intercepted {sup 137}Cs present in atmospheric deposits soon after the Fukushima nuclear accident in March 2011. To study the uptake and translocation of {sup 137}Cs in C. japonica leaves, we analyzed activity concentrations of {sup 137}Cs and the concentration ratios of {sup 137}Cs to {sup 133}Cs ({sup 137}Cs/{sup 133}Cs) in old and new leaves of C. japonica collected from a forest on Mount Tsukuba between 9 and 15 months after the accident. Both isotopes were also analyzed in throughfall, bulk precipitation and soil extracts. Water of atmospheric and soil origin were used as proxies for deciphering the absorption from leaf surfaces and root systems, respectively. Results indicate that 20–40% of foliar {sup 137}Cs existed inside the leaf, while 60–80% adhered to the leaf surface. The {sup 137}Cs/{sup 133}Cs ratios inside leaves that had sprouted before the accident were considerably higher than that of the soil extract and lower than that of throughfall and bulk precipitation. Additionally, more than 80% of {sup 137}Cs in throughfall and bulk precipitation was present in the dissolved form, which is available for foliar uptake, indicating that a portion of the {sup 137}Cs inside old leaves was presumably absorbed from the leaf surface. New leaves that sprouted after the accident had similar {sup 137}Cs/{sup 133}Cs ratios to that of the old leaves, suggesting that internal {sup 137}Cs was translocated from old to new leaves. For 17 species of woody plants other than C. japonica, new leaves that sprouted after the accident also contained {sup 137}Cs, and their {sup 137}Cs/{sup 133}Cs ratios were equal to or higher than that of the soil extract. These results suggested that foliar uptake and further translocation of {sup 137}Cs is an important vector of contamination in various tree species during or just after radioactive fallout. - Highlights: • {sup 137}Cs was absorbed into cedar leaves

  2. Fluxes of trichloroacetic acid through a conifer forest canopy

    International Nuclear Information System (INIS)

    Stidson, R.T.; Heal, K.V.; Dickey, C.A.; Cape, J.N.; Heal, M.R.

    2004-01-01

    Controlled-dosing experiments with conifer seedlings have demonstrated an above-ground route of uptake for trichloroacetic acid (TCA) from aqueous solution into the canopy, in addition to uptake from the soil. The aim of this work was to investigate the loss of TCA to the canopy in a mature conifer forest exposed only to environmental concentrations of TCA by analysing above- and below-canopy fluxes of TCA and within-canopy instantaneous reservoir of TCA. Concentrations and fluxes of TCA were quantified for one year in dry deposition, rainwater, cloudwater, throughfall, stemflow and litterfall in a 37-year-old Sitka spruce and larch plantation in SW Scotland. Above-canopy TCA deposition was dominated by rainfall (86%), compared with cloudwater (13%) and dry deposition (1%). On average only 66% of the TCA deposition passed through the canopy in throughfall and stemflow (95% and 5%, respectively), compared with 47% of the wet precipitation depth. Consequently, throughfall concentration of TCA was, on average, ∼1.4 x rainwater concentration. There was no significant difference in below-canopy fluxes between Sitka spruce and larch, or at a forest-edge site. Annual TCA deposited from the canopy in litterfall was only ∼1-2% of above-canopy deposition. On average, ∼800 μg m -2 of deposited TCA was lost to the canopy per year, compared with estimates of above-ground TCA storage of ∼400 and ∼300 μg m -2 for Sitka spruce and larch, respectively. Taking into account likely uncertainties in these values (∼±50%), these data yield an estimate for the half-life of within-canopy elimination of TCA in the range 50-200 days, assuming steady-state conditions and that all TCA lost to the canopy is transferred into the canopy material, rather than degraded externally. The observations provide strong indication that an above-ground route is important for uptake of TCA specifically of atmospheric origin into mature forest canopies, as has been shown for seedlings (in

  3. Humus layer is the main locus of secondary SO4 production in boreal forests

    Science.gov (United States)

    Houle, Daniel; Marty, Charles; Duchesne, Louis; Gagnon, Christian

    2014-02-01

    Identifying the sources of S exported from catchments and the reactivity of the large soil organic S pool is crucial to understand the mid- or long-term response of forested catchments to decreasing atmospheric S deposition and global warming. Sulfur fluxes as well as S and O isotopes of SO4 were measured in precipitation, throughfall, soil solutions and streams at two boreal forest catchments respectively dominated by black spruce (BS) and balsam fir (BF) in Quebec, Canada. Overall, δ34S-SO4 signature showed relatively small variations among various solution types. However, at both sites, δ18O-SO4 in precipitation (averages of 10.5-11.1‰) was decreased by 3.5-3.6‰ in throughfall because of the production of secondary SO4 through oxidation of SO2 deposited on the canopy. Throughfall δ18O-SO4 was decreased by a further 5.4-6.6‰ in the solution leaving the humus layer which was attributed to the production of secondary SO4 under the action of soil microorganisms through the oxidation of organic S during which the S atom acquired O from water and gaseous O2 present in the soil. A mixing equation based on known isotopic signature of each source suggested that ˜67-81% of the S-SO4 leaving the catchments had interacted with the canopy and the humus layer. The stability of δ18O-SO4 in the mineral soil solution and in the stream of both sites, suggests that SO4 does not undergo reduction-oxidation cycles after its passage through the humus layer. Despite its huge size, the organic S reservoir within the mineral soil would be largely inert. Given the chemical nature of SO4 transformation in the canopy, the humus layer would be responsible for nearly 100% of the biological production of secondary SO4 in the whole watershed at both sites. Taking into account the substantial production of dissolved organic S in the humus layer further emphasizes the crucial importance of the latter in the S cycling of boreal forests.

  4. Long Term Effects of Acid Irrigation at the Hoeglwald on Seepage Water Chemistry and Nutrient Cycling

    International Nuclear Information System (INIS)

    Weis, Wendelin; Baier, Roland; Huber, Christian; Goettlein, Axel

    2007-01-01

    In order to test the hypothesis of aluminium toxicity induced by acid deposition, an experimental acid irrigation was carried out in a mature Norway spruce stand in Southern Germany (Hoeglwald). The experiment comprised three plots: no irrigation, irrigation (170 mm a -1 ), and acid irrigation with diluted sulphuric acid (pH of 2.6-2.8). During the seven years of acid irrigation (1984-1990) water containing 0.43 mol c m -2 a -1 of protons and sulphate was added with a mean pH of 3.2 (throughfall + acid irrigation water) compared to 4.9 (throughfall) on both control plots. Most of the additional proton input was consumed in the organic layer and the upper mineral soil. Acid irrigation resulted in a long lasting elevation of sulphate concentrations in the seepage water. Together with sulphate both aluminium and appreciable amounts of base cations were leached from the main rooting zone. The ratio between base cations (Ca + Mg + K) and aluminium was 0.79 during acid irrigation and 0.92 on the control. Neither tree growth and nutrition nor the pool of exchangeable cations were affected significantly. We conclude that at this site protection mechanisms against aluminium toxicity exist and that additional base cation runoff can still be compensated without further reduction of the supply of exchangeable base cations in the upper mineral soil

  5. Mercury dynamics and mass balance in a subtropical forest, southwestern China

    Directory of Open Access Journals (Sweden)

    M. Ma

    2016-04-01

    Full Text Available The mid-subtropical forest area in southwest China was affected by anthropogenic mercury (Hg emissions over the past 3 decades. We quantified mercury dynamics on the forest field and measured fluxes and pools of Hg in litterfall, throughfall, stream water and forest soil in an evergreen broadleaved forest field in southwestern China. Total Hg (THg input by the throughfall and litterfall was assessed at 32.2 and 42.9 µg m−2 yr−1, respectively, which was remarkably higher than those observed from other forest fields in the background of North America and Europe. Hg fluxes across the soil–air interface (18.6 mg m−2 yr−1 and runoff and/or stream flow (7.2 µg m−2 yr−1 were regarded as the dominant ways for THg export from the forest field. The forest field hosts an enormous amount of atmospheric Hg, and its reserves is estimated to be 25 341 µg m2. The ratio of output to input Hg fluxes (0.34 is higher compared with other study sites. The higher output / input ratio may represent an important ecological risk for the downstream aquatic ecosystems, even if the forest field could be an effective sink of Hg.

  6. Temporal changes in radiocesium deposition in various forest stands following the Fukushima Dai-ichi Nuclear Power Plant accident.

    Science.gov (United States)

    Kato, Hiroaki; Onda, Yuichi; Hisadome, Keigo; Loffredo, Nicolas; Kawamori, Ayumi

    2017-01-01

    In this study, we investigated the transfer of canopy-intercepted radiocesium to the forest floor following the Fukushima Dai-ichi Nuclear Power Plant accident. The 137 Cs content of throughfall, stemflow, and litterfall were monitored in two coniferous stands (plantations of Japanese cedar) and a deciduous mixed broad-leaved forest stand (oak with red pine) from July 2011 to December 2012. The forest floor of cedar stands had received higher levels of additional 137 Cs deposition compared with the mixed broad-leaved stand during the sampling period. The cumulative 137 Cs deposition during the study period was 119 kBq m -2 for the mature cedar stand, 105 kBq m -2 for the young cedar stand, and 41.5 kBq m -2 for the broad-leaved stand. The deposition of 137 Cs to the forest floor occurred mainly in throughfall during the first rainy season, from July to September 2011 (<200 d after the initial fallout); thereafter, the transfer of 137 Cs from the canopy to forest floor occurred mainly through litterfall. A double exponential field-loss model, which was used to simulate the removal of 137 Cs from canopies, was the best fit for the temporal changes in the canopy 137 Cs inventory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Morphological and phenological shoot plasticity in a Mediterranean evergreen oak facing long-term increased drought.

    Science.gov (United States)

    Limousin, Jean-Marc; Rambal, Serge; Ourcival, Jean-Marc; Rodríguez-Calcerrada, Jesus; Pérez-Ramos, Ignacio M; Rodríguez-Cortina, Raquel; Misson, Laurent; Joffre, Richard

    2012-06-01

    Mediterranean trees must adjust their canopy leaf area to the unpredictable timing and severity of summer drought. The impact of increased drought on the canopy dynamics of the evergreen Quercus ilex was studied by measuring shoot growth, leaf production, litterfall, leafing phenology and leaf demography in a mature forest stand submitted to partial throughfall exclusion for 7 years. The leaf area index rapidly declined in the throughfall-exclusion plot and was 19% lower than in the control plot after 7 years of treatment. Consequently, leaf litterfall was significantly lower in the dry treatment. Such a decline in leaf area occurred through a change in branch allometry with a decreased number of ramifications produced and a reduction of the leaf area supported per unit sapwood area of the shoot (LA/SA). The leafing phenology was slightly delayed and the median leaf life span was slightly longer in the dry treatment. The canopy dynamics in both treatments were driven by water availability with a 1-year lag: leaf shedding and production were reduced following dry years; in contrast, leaf turnover was increased following wet years. The drought-induced decrease in leaf area, resulting from both plasticity in shoot development and slower leaf turnover, appeared to be a hydraulic adjustment to limit canopy transpiration and maintain leaf-specific hydraulic conductivity under drier conditions.

  8. Amazonian former gold mined soils as a source of methylmercury: Evidence from a small scale watershed in French Guiana

    OpenAIRE

    Guedron, Stephane; Grimaldi, Michel; Grimaldi, Catherine; Cossa, Daniel; Tisserand, Delphine; Charlet, Laurent

    2011-01-01

    Total mercury (HgT) and monomethylmercury (MMHg) were investigated in a tropical head watershed (1 km(2)) of French Guiana. The watershed includes a pristine area on the hill slopes and a former gold mined flat in the bottomland. Concentrations of dissolved and particulate HgT and MMHg were measured in rain, throughfall, soil water and at three points along the stream. Samples were taken in-between and during 14 storm events at the beginning and middle of the 2005 and 2006 rainy seasons. Diss...

  9. Modelling rainfall interception by forests: a new method for estimating the canopy storage capacity

    Science.gov (United States)

    Pereira, Fernando; Valente, Fernanda; Nóbrega, Cristina

    2015-04-01

    Evaporation of rainfall intercepted by forests is usually an important part of a catchment water balance. Recognizing the importance of interception loss, several models of the process have been developed. A key parameter of these models is the canopy storage capacity (S), commonly estimated by the so-called Leyton method. However, this method is somewhat subjective in the selection of the storms used to derive S, which is particularly critical when throughfall is highly variable in space. To overcome these problems, a new method for estimating S was proposed in 2009 by Pereira et al. (Agricultural and Forest Meteorology, 149: 680-688), which uses information from a larger number of storms, is less sensitive to throughfall spatial variability and is consistent with the formulation of the two most widely used rainfall interception models, Gash analytical model and Rutter model. However, this method has a drawback: it does not account for stemflow (Sf). To allow a wider use of this methodology, we propose now a revised version which makes the estimation of S independent of the importance of stemflow. For the application of this new version we only need to establish a linear regression of throughfall vs. gross rainfall using data from all storms large enough to saturate the canopy. Two of the parameters used by the Gash and the Rutter models, pd (the drainage partitioning coefficient) and S, are then derived from the regression coefficients: pd is firstly estimated allowing then the derivation of S but, if Sf is not considered, S can be estimated making pd= 0. This new method was tested using data from a eucalyptus plantation, a maritime pine forest and a traditional olive grove, all located in Central Portugal. For both the eucalyptus and the pine forests pd and S estimated by this new approach were comparable to the values derived in previous studies using the standard procedures. In the case of the traditional olive grove, the estimates obtained by this methodology

  10. N fluxes in two nitrogen saturated forested catchments in Germany: dynamics and modelling with INCA

    Directory of Open Access Journals (Sweden)

    J.-J. Langusch

    2002-01-01

    Full Text Available The N cycle in forests of the temperate zone in Europe has been changed substantially by the impact of atmospheric N deposition. Here, the fluxes and concentrations of mineral N in throughfall, soil solution and runoff in two German catchments, receiving high N inputs are investigated to test the applicability of an Integrated Nitrogen Model for European Catchments (INCA to small forested catchments. The Lehstenbach catchment (419 ha is located in the German Fichtelgebirge (NO Bavaria, 690-871 m asl. and is stocked with Norway spruce (Picea abies (L. Karst. of different ages. The Steinkreuz catchment (55 ha with European beech (Fagus sylvatica L. as the dominant tree species is located in the Steigerwald (NW Bavaria, 400-460 m asl.. The mean annual N fluxes with throughfall were slightly higher at the Lehstenbach (24.6 kg N ha-1 than at the Steinkreuz (20.4 kg N ha-1. In both catchments the N fluxes in the soil are dominated by NO3. At Lehstenbach, the N output with seepage at 90 cm soil depth was similar to the N flux with throughfall. At Steinkreuz more than 50 % of the N deposited was retained in the upper soil horizons. In both catchments, the NO3 fluxes with runoff were lower than those with seepage. The average annual NO3 concentrations in runoff in both catchments were between 0.7 to 1.4 mg NO3-N L-1 and no temporal trend was observed. The N budgets at the catchment scale indicated similar amounts of N retention (Lehstenbach: 19 kg N ha-1yr-1 ; Steinkreuz: 17 kg N ha-1yr-1. The parameter settings of the INCA model were simplified to reduce the model complexity. In both catchments, the NO3 concentrations and fluxes in runoff were matched well by the model. The seasonal patterns with lower NO3 runoff concentrations in summer at the Lehstenbach catchment were replicated. INCA underestimated the increased N3 concentrations during short periods of rewetting in late autumn at the Steinkreuz catchment. The model will be a helpful tool for the

  11. Water migration of macroelements in coniferous-broad-leaved forests of Sikhote-Alin

    Directory of Open Access Journals (Sweden)

    N. K. Kozhevnikova

    2017-06-01

    Full Text Available In the paper, the natural water chemical composition spatial variability studies results in the mountain forest catchment are presented. It’s shown that the catchment biotic components’ impact upon water chemical composition is detected even at input as atmospheric precipitation. The input fluxes are acid, sulfate ones with high ratio of hydrogen, potassium and dissolved organic matter. Diversity of ecotopic conditions determines the further transformation of natural water chemical composition. The role of tree crowns in the transformation increases while the crown closure and stands’ age increase. According to macrocomponents transformation and rain acidity neutralization, forest associations form the sequence: mixed > coniferous > young deciduous ones. Dissolved organic carbon (DOC, potassium and calcium become the main components of water chemical composition, while sulfates dominate among anions. For vegetation period, 9–11 kg/ha of sulfates come below tree crown. Biogenic elements transport is gradually limited in soil profile at the migration stage. Sulfate-potassium composition throughfall in spruce-fir and secondary forests community transforms into sulfate-sodium-calcium. Hydrocarbonates predominate in soil water in broad-leaved-pine type of forest, and potassium output decreases 10 times. Geochemical type of river water keeps features of chemical composition of soil drained by river section. Negligible output of sulfates, hydrocarbonates and calcium from ecosystem is established for the headwaters. Negative balance of hydrocarbonates and calcium is compensated by significant input of these components with throughfall at catchments with predominantly pine-broad-leaved forest types.

  12. Effect of Incident Rainfall Redistribution by Maize Canopy on Soil Moisture at the Crop Row Scale

    Directory of Open Access Journals (Sweden)

    Marco Martello

    2015-05-01

    Full Text Available The optimization of irrigation use in agriculture is a key challenge to increase farm profitability and reduce its ecological footprint. To this context, an understanding of more efficient irrigation systems includes the assessment of water redistribution at the microscale. This study aimed to investigate rainfall interception by maize canopy and to model the soil water dynamics at row scale as a result of rain and sprinkler irrigation with HYDRUS 2D/3D. On average, 78% of rainfall below the maize canopy was intercepted by the leaves and transferred along the stem (stemflow, while only 22% reached the ground directly (throughfall. In addition, redistribution of the water with respect to the amount (both rain and irrigation showed that the stemflow/throughfall ratio decreased logarithmically at increasing values of incident rainfall, suggesting the plant capacity to confine the water close to the roots and diminish water stress conditions. This was also underlined by higher soil moisture values observed in the row than in the inter-row at decreasing rainfall events. Modelled data highlighted different behavior in terms of soil water dynamics between simulated irrigation water distributions, although they did not show significant changes in terms of crop water use efficiency. These results were most likely affected by the soil type (silty-loam where the experiment was conducted, as it had unfavorable physical conditions for the rapid vertical water movement that would have increased infiltration and drainage.

  13. Radiocesium migration in the litter layer of different forest types in Fukushima, Japan.

    Science.gov (United States)

    Kurihara, Momo; Onda, Yuichi; Kato, Hiroaki; Loffredo, Nicolas; Yasutaka, Tetsuo; Coppin, Frederic

    2018-07-01

    Cesium-137 ( 137 Cs) migration in the litter layer consists of various processes, such as input via throughfall, output via litter decomposition, and input from deeper layers via soil organism activity. We conducted litter bag experiments over 2 years (December 2014-November 2016) to quantify the inputs and outputs of 137 Cs in the litter layer in a Japanese cedar plantation (Cryptomeria japonica) and a mixed broadleaf forest dominated by Quercus serrata located 40 km northwest of the Fukushima Dai-ichi Nuclear Power Plant. The experiments included four conditions, combining contaminated and non-contaminated litter and deeper layer material, and the inputs and outputs were estimated from the combination of 137 Cs increases and decreases in the litter layer under each condition. The 137 Cs dynamics differed between the two forests. In the C. japonica forest, some 137 Cs input via throughfall remained in the litter layer, and downward 137 Cs flux passed through the litter layer was 0.42 (/year).Upward flux of 137 Cs from the deeper layer was very restricted, layers was restricted, downward 137 Cs flux was less than 0.003 (/year).Upward input of 137 Cs from the deeper layer was prominent, 0.037 (/year). 137 Cs output via litter decomposition was observed in both forests. The flux in the C. japonica forest was slower than that in the broadleaf forest, 0.12 and 0.15 (/year), respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Mineral cycling in soil and litter arthropod food chains. Progress report, November 1, 1981-January 31, 1983

    International Nuclear Information System (INIS)

    Crossley, D.A. Jr.

    1982-01-01

    Progress is reported for research projects on nutrient dynamics during terrestrial decomposition, as influenced by soil arthropods. Radioactive tracers are used as analogs of nutrients, to measure material movement along food chains and dynamics of processes during decomposition. Forest floor systems from which arthropods were excluded, or in which microfloral activity was depressed, trapped incoming nutrients from canopy throughfall at different rates. Faunal stimulation of microfloral activities could not be demonstrated, but drought conditions disturbed the experiment. Turnover measurements for radionuclides in collembolans are also reported, and compared with information on mites and other arthropods

  15. Defoliating Insect Mass Outbreak Affects Soil N Fluxes and Tree N Nutrition in Scots Pine Forests.

    Science.gov (United States)

    Grüning, Maren M; Simon, Judy; Rennenberg, Heinz; L-M-Arnold, Anne

    2017-01-01

    Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree performance by reducing its photosynthetic capacity, but also changes N cycling in the soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input and output fluxes via dry matter input, throughfall, and soil leachates. Furthermore, we investigated the effects of mass insect herbivory on tree N acquisition (i.e., organic and inorganic 15 N net uptake capacity of fine roots) as well as N pools in fine roots and needles in a Scots pine ( Pinus sylvestris L.) forest over an entire vegetation period. Plots were either infested by the nun moth ( Lymantria monacha L.) or served as controls. Our results show an increased N input by insect feces, litter, and throughfall at the infested plots compared to controls, as well as increased leaching of nitrate. However, the additional N input into the soil did not increase, but reduce inorganic and organic net N uptake capacity of Scots pine roots. N pools in the fine roots and needles of infested trees showed an accumulation of total N, amino acid-N, protein-N, and structural N in the roots and the remaining needles as a compensatory response triggered by defoliation. Thus, although soil N availability was increased via surplus N input, trees did not respond with an increased N acquisition, but rather invested resources into defense by accumulation of amino acid-N and protein-N as a survival strategy.

  16. Validation of chemical analyses of atmospheric deposition in forested European sites

    Directory of Open Access Journals (Sweden)

    Erwin ULRICH

    2005-08-01

    Full Text Available Within the activities of the Integrated Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests and of the EU Regulation 2152/2003, a Working Group on Quality Assurance/Quality Control of analyses has been created to assist the participating laboratories in the analysis of atmospheric deposition, soil and soil solution, and leaves/needles. As part of the activity of the WG, this study is a statistical analysis in the field of water analysis of chemical concentrations and relationships between ions, and between conductivity and ions for different types of samples (bulk or wet-only samples, throughfall, stemflow considered in forest studies. About 5000 analyses from seven laboratories were used to establish relationships representative of different European geographic and climatic situations, from northern Finland to southern Italy. Statistically significant differences between the relationships obtained from different types of solutions, interacting with different types of vegetation (throughfall and stemflow samples, broad-leaved trees and conifers and with varying influence of marine salt were tested. The ultimate aim is to establish general relationships between ions, and between conductivity and ions, with relative confidence limits, which can be used as a comparison with those established in single laboratories. The use of such techniques is strongly encouraged in the ICPF laboratories to validate single chemical analyses, to be performed when it is still possible to replicate the analysis, and as a general overview of the whole set of analyses, to obtain an indication of the laboratory performance on a long-term basis.

  17. Fluoride pollution of atmospheric precipitation and its relationship with air circulation and weather patterns (Wielkopolski National Park, Poland).

    Science.gov (United States)

    Walna, Barbara; Kurzyca, Iwona; Bednorz, Ewa; Kolendowicz, Leszek

    2013-07-01

    A 2-year study (2010-2011) of fluorides in atmospheric precipitation in the open area and in throughfall in Wielkopolski National Park (west-central Poland) showed their high concentrations, reaching a maximum value of 2 mg/l under the tree crowns. These high values indicate substantial deposition of up to 52 mg/m(2)/year. In 2011, over 51% of open area precipitation was characterized by fluoride concentration higher than 0.10 mg/l, and in throughfall such concentrations were found in more than 86% of events. In 2010, a strong connection was evident between fluoride and acid-forming ions, and in 2011, a correlation between phosphate and nitrite ions was seen. Analysis of available data on F(-) concentrations in the air did not show an unequivocal effect on F(-) concentrations in precipitation. To find reasons for and source areas of high fluoride pollution, the cases of extreme fluoride concentration in rainwater were related to atmospheric circulation and weather patterns. Weather conditions on days of extreme pollution were determined by movement of weather fronts over western Poland, or by small cyclonic centers with meteorological fronts. Macroscale air advection over the sampling site originated in the western quadrant (NW, W, and SW), particularly in the middle layers of the troposphere (2,500-5,000 m a.s.l.). Such directions indicate western Poland and Germany as possible sources of the pollution. At the same time in the lower troposphere, air inflow was frequently from the north, showing short distance transport from local emitters, and from the agglomeration of Poznań.

  18. Atmospheric Inputs of Nitrogen, Carbon, and Phosphorus across an Urban Area: Unaccounted Fluxes and Canopy Influences

    Science.gov (United States)

    Decina, Stephen M.; Templer, Pamela H.; Hutyra, Lucy R.

    2018-02-01

    Rates of atmospheric deposition are declining across the United States, yet urban areas remain hotspots of atmospheric deposition. While past studies show elevated rates of inorganic nitrogen (N) deposition in cities, less is known about atmospheric inputs of organic N, organic carbon (C), and organic and inorganic phosphorus (P), all of which can affect ecosystem processes, water quality, and air quality. Further, the effect of the tree canopy on amounts and forms of nutrients reaching urban ground surfaces is not well-characterized. We measured growing season rates of total N, organic C, and total P in bulk atmospheric inputs, throughfall, and soil solution around the greater Boston area. We found that organic N constitutes a third of total N inputs, organic C inputs are comparable to rural inputs, and inorganic P inputs are 1.2 times higher than those in sewage effluent. Atmospheric inputs are enhanced two-to-eight times in late spring and are elevated beneath tree canopies, suggesting that trees augment atmospheric inputs to ground surfaces. Additionally, throughfall inputs may directly enter runoff when trees extend above impervious surfaces, as is the case with 26.1% of Boston's tree canopy. Our results indicate that the urban atmosphere is a significant source of elemental inputs that may impact urban ecosystems and efforts to improve water quality, particularly in terms of P. Further, as cities create policies encouraging tree planting to provide ecosystem services, locating trees above permeable surfaces to reduce runoff nutrient loads may be essential to managing urban biogeochemical cycling and water quality.

  19. Ptaquiloside from bracken in stream water at base flow and during storm events

    DEFF Research Database (Denmark)

    Clauson-Kaas, Frederik; Ramwell, Carmel; Hansen, Hans Chr. Bruun

    2016-01-01

    not decrease over the course of the event. In the stream, the throughfall contribution to PTA cannot be separated from a possible below-ground input from litter, rhizomes and soil. Catchment-specific factors such as the soil pH, topography, hydrology, and bracken coverage will evidently affect the level of PTA...... rainfall and PTA concentration in the stream, with a reproducible time lag of approx. 1 h from onset of rain to elevated concentrations, and returning rather quickly (about 2 h) to base flow concentration levels. The concentration of PTA behaved similar to an inert tracer (Cl(-)) in the pulse experiment...

  20. Modelling hydrological conditions in the maritime forest region of south-western Nova Scotia

    Science.gov (United States)

    Yanni, Shelagh; Keys, Kevin; Meng, Fan-Rui; Yin, Xiwei; Clair, Tom; Arp, Paul A.

    2000-02-01

    Hydrological processes and conditions were quantified for the Mersey River Basin (two basins: one exiting below Mill Falls, and one exiting below George Lake), the Roger's Brook Basin, Moosepit Brook, and for other selected locations at and near Kejimkujik National Park in Nova Scotia, Canada, from 1967 to 1990. Addressed variables included precipitation (rain, snow, fog), air temperature, stream discharge, snowpack accumulations, throughfall, soil and subsoil moisture, soil temperature and soil frost, at a monthly resolution. It was found that monthly per hectare stream discharge was essentially independent of catchment area from interception and soil percolation.

  1. 137Cs dynamics in the forest of Fukushima after the nuclear power plant accident in March 2011

    Science.gov (United States)

    Endo, I.; Ohte, N.; Iseda, K.; Kobayashi, N.; Hirose, A.; Tanoi, K.

    2013-12-01

    The accident of Fukushima Daiichi nuclear power plant after the earthquake and Tsunami in March 11th 2011, caused large amount of radioactive Cesium (137Cs) emission into the environment. In the region of Fukushima Prefecture, forest dominates more than 70 % of the land area. River water from the forest area is used for food production and also for drinking water. Thus, it is important to understand the dynamics of 137Cs deposited in the forest to predict how the radioactive Cs diffuse and discharge from the forest catchments. We measured 137Cs concentration of the tree body, litter fall, throughfall, and stemflow, in order to clarify how 137Cs deposited on the above ground biomass of the forest are transported to the forest floor. We set forest site at the upstream part of Kami-Oguni River catchment, northern part of Fukushima Prefecture. Three plots (2 deciduous stands and 1 Japanese cedar (Cryptomeria japonica) plantation stand) were set in the forest site. Quercus serrata and C. japonica, which are representative tree species, were chosen at each plot and concentration of 137Cs on the bark, sapwood and heartwood were measured every 2 m from the ground to tree top. From each plot, 137Cs concentration of leaf litter was measured among species. Water samples of throughfall and stemflow were filtered and 137Cs concentration in suspended matter was measured. 137Cs was deposited on the bark of Q. serrata at high concentration (9-18 kBq/kg) but there were no clear relationship between tree height and concentration. 137Cs concentration of the sapwood (41 Bq/kg) was relatively higher than that of the heartwood (5 Bq/kg). It was suggested that 137Cs may be absorbed from bark and/or root. The concentration of 137Cs deposited in leaf litter varied from non-detected level to above 30 kBq/kg. The concentration was higher at evergreen tree than deciduous tree. It is considered that the litter of evergreen tree was derived from leaves on the tree canopy at the time of the

  2. Atmospheric gaseous elemental mercury (GEM concentrations and mercury depositions at a high-altitude mountain peak in south China

    Directory of Open Access Journals (Sweden)

    X. W. Fu

    2010-03-01

    Full Text Available China is regarded as the largest contributor of mercury (Hg to the global atmospheric Hg budget. However, concentration levels and depositions of atmospheric Hg in China are poorly known. Continuous measurements of atmospheric gaseous elemental mercury (GEM were carried out from May 2008 to May 2009 at the summit of Mt. Leigong in south China. Simultaneously, deposition fluxes of THg and MeHg in precipitation, throughfall and litterfall were also studied. Atmospheric GEM concentrations averaged 2.80±1.51 ng m−3, which was highly elevated compared to global background values but much lower than semi-rural and industrial/urban areas in China. Sources identification indicates that both regional industrial emissions and long range transport of Hg from central, south and southwest China were corresponded to the elevated GEM level. Seasonal and diurnal variations of GEM were observed, which reflected variations in source intensity, deposition processes and meteorological factors. Precipitation and throughfall deposition fluxes of THg and MeHg in Mt. Leigong were comparable or lower compared to those reported in Europe and North America, whereas litterfall deposition fluxes of THg and MeHg were higher compared to Europe and North America. This highlights the importance of vegetation to Hg atmospheric cycling. In th remote forest ecosystem of China, deposition of GEM via uptake of foliage followed by litterfall was very important for the depletion of atmospheric Hg. Elevated GEM level in ambient air may accelerate the foliar uptake of Hg through air which may partly explain the elevated litterfall deposition fluxes of Hg observed in Mt. Leigong.

  3. Defoliating Insect Mass Outbreak Affects Soil N Fluxes and Tree N Nutrition in Scots Pine Forests

    Directory of Open Access Journals (Sweden)

    Maren M. Grüning

    2017-06-01

    Full Text Available Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree performance by reducing its photosynthetic capacity, but also changes N cycling in the soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input and output fluxes via dry matter input, throughfall, and soil leachates. Furthermore, we investigated the effects of mass insect herbivory on tree N acquisition (i.e., organic and inorganic 15N net uptake capacity of fine roots as well as N pools in fine roots and needles in a Scots pine (Pinus sylvestris L. forest over an entire vegetation period. Plots were either infested by the nun moth (Lymantria monacha L. or served as controls. Our results show an increased N input by insect feces, litter, and throughfall at the infested plots compared to controls, as well as increased leaching of nitrate. However, the additional N input into the soil did not increase, but reduce inorganic and organic net N uptake capacity of Scots pine roots. N pools in the fine roots and needles of infested trees showed an accumulation of total N, amino acid-N, protein-N, and structural N in the roots and the remaining needles as a compensatory response triggered by defoliation. Thus, although soil N availability was increased via surplus N input, trees did not respond with an increased N acquisition, but rather invested resources into defense by accumulation of amino acid-N and protein-N as a survival strategy.

  4. Atmospheric mercury deposition and its contribution of the regional atmospheric transport to mercury pollution at a national forest nature reserve, southwest China.

    Science.gov (United States)

    Ma, Ming; Wang, Dingyong; Du, Hongxia; Sun, Tao; Zhao, Zheng; Wei, Shiqing

    2015-12-01

    Atmospheric mercury deposition by wet and dry processes contributes to the transformation of mercury from atmosphere to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to subtropical forests were identified in this study. Throughfall and open field precipitation samples were collected in 2012 and 2013 using precipitation collectors from forest sites located across Mt. Jinyun in southwest China. Samples were collected approximately every 2 weeks and analyzed for total (THg) and methyl mercury (MeHg). Forest canopy was the primary factor on THg and MeHg deposition. Simultaneously, continuous measurements of atmospheric gaseous elemental mercury (GEM) were carried out from March 2012 to February 2013 at the summit of Mt. Jinyun. Atmospheric GEM concentrations averaged 3.8 ± 1.5 ng m(-3), which was elevated compared with global background values. Sources identification indicated that both regional industrial emissions and long-range transport of Hg from central, northeast, and southwest China were corresponded to the elevated GEM levels. Precipitation deposition fluxes of THg and MeHg in Mt. Jinyun were slightly higher than those reported in Europe and North America, whereas total fluxes of MeHg and THg under forest canopy on Mt. Jiuyun were 3 and 2.9 times of the fluxes of THg in wet deposition in the open. Highly elevated litterfall deposition fluxes suggest that even in remote forest areas of China, deposition of atmospheric Hg(0) via uptake by vegetation leaf may be a major pathway for the deposition of atmospheric Hg. The result illustrates that areas with greater atmospheric pollution can be expected to have greater fluxes of Hg to soils via throughfall and litterfall.

  5. Neural network modelling of rainfall interception in four different forest stands

    Directory of Open Access Journals (Sweden)

    İbrahim Yurtseven

    2013-11-01

    Full Text Available The objective of this study is to reveal whether it is possible to predict rainfall, through fall and stem flow in forest ecosystems with less effort, using several measurements of rainfall interception (hereafter ‘interception’ and an artificial neural network based linear regression model (ANN model. To this end, the Kerpe Research Forest in the province of Kocaeli, which houses stands of mixed deciduous-broadleaf forest (Castanea sativa Mill., Fagusorientalis Lipsky, Quercus spp., black pine (Pinus nigra Arnold, maritime pine (Pinus pinaster Aiton and Monterey pine (Pinus radiata D. Don, was selected study site. Four different forest stands were observed for a period of two years, during which rainfall, throughfall and stemflow measurements were conducted. These measurements were separately calculated for each individual stand, based on interception values and the use of stemflow data in strict accordance with the rainfall data, and the measured throughfall interceptionvalues were compared with values estimated by the ANN model.In this comparison, 70% of the total data was used for testing, and 30% was used for estimation and performance evaluation. No significant differences were found between values predicted with the help of the model and the measured values. In other words, interception values predicted by the ANN models were parallel with the measured values. In this study, the most success was achieved with the models of the Monterey pine stand (r2 = 0.9968; Mean Squared Error MSE = 0.16 and the mixed deciduous forest stand (r2 = 0.9964; MSE = 0.08, followed by models of the maritime pine stand (r2 = 0.9405; MSE = 1.27 and the black pine stand (r2 = 0.843, MSE = 17.36.

  6. Decreased summer drought affects plant productivity and soil carbon dynamics in a Mediterranean woodland

    Science.gov (United States)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-09-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 58 % and 220 %, respectively, as compared to the control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction in precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodlands. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long-term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long-term soil C stocks.

  7. Major losses of nutrients following a severe drought in a boreal forest.

    Science.gov (United States)

    Houle, Daniel; Lajoie, Geneviève; Duchesne, Louis

    2016-11-28

    Because of global warming, the frequency and severity of droughts are expected to increase, which will have an impact on forest ecosystem health worldwide 1 . Although the impact of drought on tree growth and mortality is being increasingly documented 2-4 , very little is known about the impact on nutrient cycling in forest ecosystems. Here, based on long-term monitoring data, we report nutrient fluxes in a boreal forest before, during and following a severe drought in July 2012. During and shortly after the drought, we observed high throughfall (rain collected below the canopy) concentrations of nutrient base cations (potassium, calcium and magnesium), chlorine, phosphorus and dissolved organic carbon (DOC), differing by one to two orders of magnitude relative to the long-term normal, and resulting in important canopy losses. The high throughfall fluxes had repercussions in the soil solution at a depth of 30 cm, leading to high DOC, chlorine and potassium concentrations. The net potassium losses (atmospheric deposition minus leaching losses) following the drought were especially important, being the equivalent of nearly 20 years of net losses under 'normal' conditions. Our data show that droughts have unexpected impacts on nutrient cycling through impacts on tree canopy and soils and may lead to important episodes of potassium losses from boreal forest ecosystems. The potassium losses associated with drought will add to those originating from tree harvesting and from forest fires and insect outbreaks 5-7 (with the last two being expected to increase in the future as a result of climate change), and may contribute to reduced potassium availability in boreal forests in a warming world.

  8. Controls on Biogeochemical Cycling of Nitrogen in Urban Ecosystems

    Science.gov (United States)

    Templer, P. H.; Hutyra, L.; Decina, S.; Rao, P.; Gately, C.

    2017-12-01

    Rates of atmospheric nitrogen deposition are declining across much of the United States and Europe, yet they remain substantially elevated by almost an order of magnitude over pre-industrial levels and occur as hot spots in urban areas. We measured atmospheric inputs of inorganic and organic nitrogen in multiple urban sites around the Boston Metropolitan area, finding that urban rates are substantially elevated compared to nearby rural areas, and that the range of these atmospheric inputs are as large as observed urban to rural gradients. Within the City of Boston, the variation in deposition fluxes can be explained by traffic intensity, vehicle emissions, and spring fertilizer additions. Throughfall inputs of nitrogen are approximately three times greater than bulk deposition inputs in the city, demonstrating that the urban canopy amplifies rates of nitrogen reaching the ground surface. Similar to many other metropolitan areas of the United States, the City of Boston has 25% canopy cover; however, 25% of this tree canopy is located above impervious pavement. Throughfall inputs that do not have soil below the canopy to retain excess nitrogen may lead to greater inputs of nitrogen into nearby waterways through runoff. Most measurement stations for atmospheric nitrogen deposition are intentionally located away from urban areas and point sources of pollution to capture regional trends. Our data show that a major consequence of this network design is that hotspots of nitrogen deposition and runoff into urban and coastal waterways is likely underestimated to a significant degree. A more complete determination of atmospheric nitrogen deposition and its fate in urban ecosystems is critical for closing regional nitrogen budgets and for improving our understanding of biogeochemical nitrogen cycling across multiple spatial scales.

  9. Cooling tower drift studies at the Paducah, Kentucky Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Taylor, F.G.; Hanna, S.R.; Parr, P.D.

    1979-01-01

    The transfer and fate of chromium from cooling tower drift to terrestrial ecosystems were quantified at the Department of Energy's uranium enrichment facility at Paducah, Kentucky. Chromium concentrations in plant materials (fescue grass) decreased with increasing distance from the cooing tower, ranging from 251 +- 19 ppM at 15 meters to 0.52 +- 0.07 ppM at 1500 meters. The site of drift contamination, size characteristics, and elemental content of drift particles were determined using a scanning electron microscope with energy dispersive x-ray analysis capabilities. Results indicate that elemental content in drift water (mineral residue) may not be equivalent to the content in the recirculating cooling water of the tower. This hypothesis is contrary to basic assumptions in calculating drift emissions. A laboratory study simulating throughfall from 1 to 6 inches of rain suggested that there are more exchange sites associated with litter than live foliage. Leachate from each one inch throughfall simulant removed 3% of the drift mass from litter compared to 7 to 9% from live foliage. Results suggest that differences in retention are related to chemical properties of the drift rather than physical lodging of the particle residue. To determine the potential for movement of drift-derived chromium to surface streams, soil--water samplers (wells) were placed along a distance gradient to Little Bayou Creek. Samples from two depths following rainstorms revealed the absence of vertical or horizontal movement with maximum concentrations of 0.13 ppb at 50 meters from the tower. Preliminary model estimates of drift deposition are compared to depositionmeasurements. Isopleths of the predicted deposition are useful to identify areas of maximum drift transport in the environs of the gaseous diffusion plant

  10. Diversidade funcional em sistemas de montado: fluxo de nutrientes em Quercus rotundifolia Lam. Functional diversity in “montado” systems: nutrients fluxes in Quercus rotundifolia Lam.

    Directory of Open Access Journals (Sweden)

    J. D. Nunes

    2007-01-01

    Full Text Available Os componentes dos ciclos de nutrientes em montados de Quercus rotundifolia Lam., relacionados com a precipitação foram estudados na região de Évora, de Novembro de 1996 a Dezembro de 2000. A precipitação bruta, o gotejo a diferentes distâncias do tronco e o escorrimento ao longo do tronco das árvores foram quantificados de modo contínuo, sendo colhidas amostras semanalmente para se proceder à respectiva caracterização química. A quantidade de nutrientes transferidos para o solo através das diferentes soluções foi também determinada. Verificou-se um acréscimo da concentração das espécies iónicas no gotejo em relação à precipitação bruta, o qual foi ainda mais manifesto no escorrimento ao longo do tronco. Estudaram-se, igualmente, as características físico-químicas do solo sob e fora da influência da copa destas árvores, num montado relativamente esparso. Além disso, também se avaliou a quantidade das camadas orgânicas e a quantidade de nutrientes aí retidos. As características físicas e químicas do solo apresentaram, de um modo geral, uma diferenciação positiva em resultado da presença das árvores. Avaliou-se a taxa de mineralização de N nas áreas sob e fora da acção do coberto das árvores, tendo-se observado uma mais elevada disponibilidade deste nutriente nas áreas do sob coberto.Nutrient cycling in Quercus rotundifolia Lam. systems, regarding precipitation was studied at Évora (Southern Portugal, since November of 1996 until December of 2000. The amounts of gross rainfall, throughfall (at different distances from the tree trunk and stemflow were measured continuously and samples for chemical analysis were collected weekly. The concentration of nutrients was higher in the throughfall than in the gross rainfall, especially in the areas closer to the tree trunk. Nutrients transferred to soil, through bulk rainfall, throughfall and stemflow were quantified. The highest concentration of nutrients

  11. Measurement of rainfall distribution on a small catchment for the evaluation of canopy interception effects

    Science.gov (United States)

    Maurer, Thomas; Schapp, Andrea; Büchner, Steffen; Menzel, Hannes; Hinz, Christoph

    2014-05-01

    Variability of rainfall and throughfall is an essential characteristic of the water balance at spatial scales ranging from meters to hundreds of meters or even kilometers. The amount of throughfall is governed by the characteristics of the vegetation canopy and the involved interception and stemflow effects. In initial, developing ecosystems, distinct patterns of the growing vegetation (e.g. patchiness) supposedly govern the spatial distribution of water in the system, thereby initiating and supporting hydro-ecological feedback processes. Questions are i) is the spatial variability of vegetation relevant for the system as a whole, and ii) how does the distribution of the effective precipitation (i.e. the infiltration) change over time in dependency of vegetation succession? We present the first results of a spatially distributed measurement approach of surface-near precipitation on the constructed catchment "Hühnerwasser" ("Chicken Creek"). The 6-ha site is located in the recultivation area of the lignite open-cast mine "Welzow-Süd" in Lower Lusatia, Brandenburg, Germany. Here, the free development of an initial ecosystem is investigated since September 2005. After eight years of succession, the spatial distribution of plant species is highly heterogeneous, and gains increasing influence on throughfall patterns, thus impacting the distribution of soil humidity and possibly even surface runoff. For spatially distributed precipitation measurement, 47 tipping bucket rain gauges were installed in heights of 0.5 m and 1.0 m along two transects on the catchment. Rain gauge data were collected by a wireless sensor node network provided by the Sens4U joint research project. The transects run NW-SE and NE-SW and cover the range of plant communities presently existing in the ecosystem: locust copses, dense sallow thorn bushes and reeds, base herbaceous and medium-rise small-reed vegetation, and open areas covered by moss and lichens. The raw measurement data were

  12. Impact of tree planting configuration on canopy interception and soil hydrological properties: Implications for flood mitigation in silvopastoral systems

    Science.gov (United States)

    Lunka, Peter; Patil, Sopan

    2015-04-01

    Compaction of upper soil layers by intensive sheep grazing has been connected with increased local flood risk in silvopastoral systems. A 12 week field study was conducted at the Henfaes Research Station near Bangor, Wales to compare two silvopastoral configurations, trees planted in fenced off clumps and trees planted evenly spaced, in terms of canopy throughfall, soil water infiltration and soil bulk density. The study's aim was to characterize the potential of these tree planting configurations to reduce local flood risk. The study site (Henfaes) was established in 1992 on 14 ha of agricultural land and is part of the Silvopastoral National Network Experiment sites that have been set up across the UK to examine the potential of silvopasture and agroforestry on UK farms. Automated throughfall gauges were installed in each silvopastoral treatment along with a similarly designed control gauge located in the grazed control pasture. Soil water infiltration and bulk density were measured 20 times in a stratified random design for each treatment and the control. Soil infiltration capacity in the clumped configuration was significantly higher than in the even spaced configuration and control pasture. The clumped configuration had mean infiltration capacity 504% greater than the control pasture and 454% greater than the even spaced configuration. Canopy interception was higher in the clumped trees than in the evenly spaced trees. Average canopy interception was 34% in the clumped treatment and 28% in the evenly spaced treatment. Soil bulk density was lower in the clumped configuration than in the control pasture and evenly spaced configuration. Results suggest that in silvopastoral systems the clumped tree configuration is more likely to reduce local flood risk than the evenly spaced tree configuration due to enhanced infiltration and increased canopy interception.

  13. Acidification of a white spruce ecosystem in eastern Cape Breton Island

    International Nuclear Information System (INIS)

    Bouman, O.T.

    2005-01-01

    A study was conducted in 2003 at an ecosystem monitoring plot near Sydney, Nova Scotia, in a mature white spruce stand on a Shulie soil. The objective was to examine how spruce forests filter atmospheric sulfur dioxide and become destabilized by the resulting soil acidification. The acid rain problem at the level of input, top soil, sub soil and run off was assessed following results from 4 monitoring stations equipped for bulk sampling of throughfall water and two lysimeters for soil water extraction at a depth of 15 cm and 45 cm, respectively. Rainwater was collected in 2 open areas outside the forest along with samples from a stream draining the forest and surrounding wetland. Water samples were collected 8 times between April 2003 and November 2004. Results show that the problem of acid rain is present in eastern Cape Breton Island. Canopy passage was found to lower the average rainwater pH from 4.7 to 4.2 with a related increase of sulfate from 2.2 ppm to 8.3 ppm. Top soil solution pH was 3.9 increasing to 4.5 in the sub soil. Aluminum was found to increase significantly in the soil solution when pH dropped below 4.2. This demonstrated that soil acidification due to acid rain frees the aluminum in the top soil. However, the concentration of metal was reduced at lower soil depth due to base cation exchange. High sodium concentrations in rainwater and throughfall were closely associated with sulfate values, indicating high inputs of saline oceanic spray with the potential to cause a salt effect in the top soil chemistry. Most water samples had very low nitrate concentrations. The water chemistry in the stream fluctuated with the pH, often dropping below 5 when sulfate contents increased during high run off events

  14. Cooling tower drift studies at the Paducah, Kentucky Gaseous Diffusion Plant. [Transport of drift-derived chromium in terrestrial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, F.G.; Hanna, S.R.; Parr, P.D.

    1979-01-01

    The transfer and fate of chromium from cooling tower drift to terrestrial ecosystems were quantified at the Department of Energy's uranium enrichment facility at Paducah, Kentucky. Chromium concentrations in plant materials (fescue grass) decreased with increasing distance from the cooing tower, ranging from 251 +- 19 ppM at 15 meters to 0.52 +- 0.07 ppM at 1500 meters. The site of drift contamination, size characteristics, and elemental content of drift particles were determined using a scanning electron microscope with energy dispersive x-ray analysis capabilities. Results indicate that elemental content in drift water (mineral residue) may not be equivalent to the content in the recirculating cooling water of the tower. This hypothesis is contrary to basic assumptions in calculating drift emissions. A laboratory study simulating throughfall from 1 to 6 inches of rain suggested that there are more exchange sites associated with litter than live foliage. Leachate from each one inch throughfall simulant removed 3% of the drift mass from litter compared to 7 to 9% from live foliage. Results suggest that differences in retention are related to chemical properties of the drift rather than physical lodging of the particle residue. To determine the potential for movement of drift-derived chromium to surface streams, soil--water samplers (wells) were placed along a distance gradient to Little Bayou Creek. Samples from two depths following rainstorms revealed the absence of vertical or horizontal movement with maximum concentrations of 0.13 ppb at 50 meters from the tower. Preliminary model estimates of drift deposition are compared to depositionmeasurements. Isopleths of the predicted deposition are useful to identify areas of maximum drift transport in the environs of the gaseous diffusion plant.

  15. Evaporation components of a boreal forest: variations during the growing season

    Science.gov (United States)

    Grelle, A.; Lundberg, A.; Lindroth, A.; Morén, A.-S.; Cienciala, E.

    1997-10-01

    To improve the understanding of interactions between the boreal forest and the climate system as a key issue for global climate change, the water budget of a mixed pine and spruce forest in central Sweden was estimated by measurements of the water flux components and the total evaporation flux during the period 16 May-31 October 1995. Total evaporation was measured using eddy correlation and the components were obtained using measurements of precipitation, throughfall, tree transpiration, and forest floor evaporation. On a daily basis, tree transpiration was the dominant evaporation component during the vegetation period. However, it could be efficiently blocked by a wet canopy associated with large interception evaporation. The accumulated total evaporation was 399 mm, transpiration was 243 mm, forest floor evaporation was 56 mm and interception evaporation was 74 mm. The accumulated sum of interception, transpiration, and floor evaporation was 51 mm larger than the actual measured total evaporation. This difference was mainly attributed to the fact that transpiration was measured in a rather dense 50-year-old stand while total evaporation represented the average conditions of older, roughly 100-year-old stands. To compare eddy-correlation measurements with small-scale measurements of evaporation components, a source area analysis was made to select the flux data that give the best representation of the investigated stand. Especially under stable atmospheric conditions the requirements for surface homogeneity were very high and extreme care had to be taken to be aware of the flux source areas. Canopy water storage was determined by two methods: by the water balance of the canopy, which gave a result of 3.3 mm; and by the so-called minimum method based on plots of throughfall versus precipitation, which gave a much lower value of 1.5 mm. Seasonal interception evaporation constituted 30% of the precipitation.

  16. Decreased summer drought affects plant productivity and soil carbon dynamics in a Mediterranean woodland

    Directory of Open Access Journals (Sweden)

    M. F. Cotrufo

    2011-09-01

    Full Text Available Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR. Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 58 % and 220 %, respectively, as compared to the control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction in precipitation did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodlands. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long-term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long-term soil C stocks.

  17. Transfer of fallout radionuclides by Fukushima NPP accident from tree crown to forest ecosystem

    Science.gov (United States)

    Onda, Y.; Kato, H.; Wakahara, T.; Kawamori, A.; Tsujimura, M.

    2011-12-01

    Radioactive contamination has been detected in Fukushima and the neighboring prefectures due to the nuclear accident at Fukushima Daiichi Nuclear Power Plant (NPP) following the earthquake and tsunami on 11 March 2011. The total deposition of radioactive materials in fallout samples for 137Cs ranged from 0.02to >10 M Bq/m2 for Cs-137. Experimental catchments have been established in Yamakiya district, Kawamata Town, Fukushima prefecture, located about 35 km from Fukushima power plant, and designated as the evacuated zone. Approximate Cs-137 fallout in this area is 200-600k Bq/m2. We established 3 forest sites: broad leaf tree forest and two Japanese cedar forest plantation (young and mature). In each site we installed towers of 8-12 meters. Using these towers, we sampled tree leaves, and measure Cs-137 and Cs-134 in the laboratory, and also we have measure Cs-137, Cs-134 content at various height in each forest using a portable High Purity Germanium (HPGe) detector (Ortech; Detective-EX). We also measured the throughfall, stem flow and litter fall inside of the forest. In each site, we establish the 20 m x 20 m plot to monitor the changes of fallout radionuclides through time with the portable HPGe detector. The monitoring is now ongoing but we found significant amount of Cs-134 and Cs-137 has been trapped by cedar forest plantations especially young trees, but not so much in broad leaf trees. The trapped Cs-137 and Cs-134 is then washed by rainfall and found into throughfall. Therefore, in forest ecosystems, the fallout has been still ongoing, and and effective remediation method in forested area (especially cedar plantation) can be removing the trees.

  18. Seasonality of stable isotope composition of atmospheric water input at the southern slopes of Mt. Kilimanjaro, Tanzania

    Science.gov (United States)

    Otte, Insa; Detsch, Florian; Gutlein, Adrian; Scholl, Martha A.; Kiese, Ralf; Appelhans, Tim; Nauss, Thomas

    2017-01-01

    To understand the moisture regime at the southern slopes of Mt. Kilimanjaro, we analysed the isotopic variability of oxygen (δ18O) and hydrogen (δD) of rainfall, throughfall, and fog from a total of 2,140 samples collected weekly over 2 years at 9 study sites along an elevation transect ranging from 950 to 3,880 m above sea level. Precipitation in the Kilimanjaro tropical rainforests consists of a combination of rainfall, throughfall, and fog. We defined local meteoric water lines for all 3 precipitation types individually and the overall precipitation, δDprec = 7.45 (±0.05) × δ18Oprec + 13.61 (±0.20), n = 2,140, R2 = .91, p research site. We found an altitude effect of δ18Orain = −0.11‰ × 100 m−1, which varied according to precipitation type and season. The relatively weak isotope or altitude gradient may reveal 2 different moisture sources in the research area: (a) local moisture recycling and (b) regional moisture sources. Generally, the seasonality of δ18Orain values follows the bimodal rainfall distribution under the influences of south- and north-easterly trade winds. These seasonal patterns of isotopic composition were linked to different regional moisture sources by analysing Hybrid Single Particle Lagrangian Integrated Trajectory backward trajectories. Seasonality of dexcess values revealed evidence of enhanced moisture recycling after the onset of the rainy seasons. This comprehensive dataset is essential for further research using stable isotopes as a hydrological tracer of sources of precipitation that contribute to water resources of the Kilimanjaro region.

  19. Re-Assessing the Measurement of Fogwater Inputs to a Tropical Ecosystem

    Science.gov (United States)

    Burkard, R.; Eugster, W.; Holwerda, F.; Bruijnzeel, S.; Scatena, F.; Siegwolf, R.

    2002-12-01

    For several years the hydrological importance of the fog- and cloudwater deposition to ecosystems in the tropics has been of great interest. In earlier studies carried out in the humid tropics the amount of deposited cloudwater was estimated by indirect methods based on the physical characteristics of the utilized cloudwater collector. In the temperate climatic zone of central Europe most of the studies dealing with cloudwater focus on the additional chemical input due to cloudwater in relation to the amount of deposited rainwater. During our experiment in the Luquillo mountains of Puerto Rico the different aspects of the chemical and hydrological impacts of cloudwater deposition have been investigated. During 43 days, cloudwater fluxes were measured with an eddy covariance setup consisting of a Solent ultrasonic anemometer and a size-resolving cloud droplet spectrometer. Cloudwater samples were taken with a Caltech-type active strand cloudwater collector. Additionally, measurements of rain, throughfall and stemflow were performed. Samples of fog, rain, throughfall and stemflow were analyzed for inorganic ion and stabile isotope concentrations (δ18O and δ2H). First analysis of the hydrological input show that there exist some significant differences in the deposited amount of cloudwater as measured with our instruments in comparison with previous studies carried out at the same location: Mean liquid water content was 78.6 mg m-3 during situations with a visibility below 1000 m (84% of the entire field campaign). The deposition rate of cloudwater was 0.88 mm d-1. A mismatch was found regarding the water balance. We conclude from this that the rainfall amount and therefore also the chemical input by rain is strongly underestimated due to wind-driven rain, which is not measured by standard rain gauges. Depending on the reference value, we have to conclude that the deposition of cloudwater accounts for 6--11% of wet deposition.

  20. Boron isotopes at the catchment scale, a new potential tool to infer critical zone processes.

    Science.gov (United States)

    Gaillardet, J.; Noireaux, J.; Braun, J. J.; Riotte, J.; Louvat, P.; Bouchez, J.; Lemarchand, D.; Muddu, S.; Mohan Kumar, M.; Candaudap, F.

    2017-12-01

    Boron is a mid-mass element that has two isotopes, 10B and 11B. These isotopes are largely fractioned by a number of chemical, biological and physical processes. Boron as a great affinity for clays and is useful for life, making it a double tracer of critical zone processes. This study focuses on the Mule Hole Critical Zone Observatory in South India. This is part of the French Research Infrastructure OZCAR and has benefited from the fruitful Indo-French collaboration (Indo-French Cell for Water Sciences) for more that 15 years. Boron and its isotopes were measured in the different compartment of the CZ in Mule Hole, vegetation, atmosphere, throughfall, soil, soil water, river water and compared to the behavior of other elements. The well constrained hydrology in Mule Hole allowed us to calculate the main fluxes affecting boron in the Critical Zone and came to the first order conclusion that the recycling of boron by vegetation is by far the most important flux within the system, reaching 15-20 times the catchment outlet flux. From an isotopic point of view, the total range of variation is measured between -3 ‰ and 77‰, with a bedrock value at 10‰ in classical delta unit, making boron a well suited tracer for constraining CZ processes. The flux of boron most enriched in heavy boron is the throughfall, showing the importance of biological processes in controlling the boron isotopic composition of the stream. Boron in soils in depleted in the heavy isotope but is enriched in boron compared to the bedrock, a surprising situation that we interpret as the legacy of a previous stage of transient weathering. These results indicate a strong decoupling between the behaviors of boron at the surface of the CZ and at depth.

  1. Differences in overland flow, hydrophobicity and soil moisture dynamics between Mediterranean woodland types in a peri-urban catchment in Portugal

    Science.gov (United States)

    Ferreira, C. S. S.; Walsh, R. P. D.; Shakesby, R. A.; Keizer, J. J.; Soares, D.; González-Pelayo, O.; Coelho, C. O. A.; Ferreira, A. J. D.

    2016-02-01

    Forest hydrology has been widely investigated, but the impacts of different woodland types on hydrological processes within a peri-urban catchment mosaic are poorly understood. This paper investigates overland flow generation processes in three different types of woodland in a small (6.2 km2) catchment in central Portugal that has undergone strong urban development over the past 50 years. A semi-natural oak stand and a sparse eucalyptus stand on partly abandoned peri-urban land and a dense eucalyptus plantation were each instrumented with three 16 m2 runoff plots and 15 throughfall gauges, which were monitored at c. 1- to 2-week intervals over two hydrological years. In addition, surface soil moisture content (0-5 cm) and hydrophobicity (0-2 cm, 2-5 cm and 5-7 cm) were measured at the same time as overland flow and throughfall. Although all three woodland types produced relatively little overland flow (woodland types. This contrast in overland flow can be attributed to infiltration-excess processes operating in storms following dry antecedent weather when severe hydrophobicity was widespread in the dense eucalypt plantation, whereas it was of moderate and low severity and less widespread in the sparse eucalypt and oak woodlands, respectively. In contrast, under wet conditions greater (albeit still small) percentages of overland flow were produced in oak woodland than in the two eucalypt plantations; this was probably linked to saturation-excess overland flow being generated more readily at the oak site as a result of its shallower soil. Differences in water retention in surface depressions affected overland flow generation and downslope flow transport. Implications of the seasonal differentials in overland flow generation between the three distinct woodland types for the hydrological response of peri-urban catchments are addressed.

  2. Use of geochemical signatures, including rare earth elements, in mosses and lichens to assess spatial integration and the influence of forest environment

    Science.gov (United States)

    Gandois, L.; Agnan, Y.; Leblond, S.; Séjalon-Delmas, N.; Le Roux, G.; Probst, A.

    2014-10-01

    In order to assess the influence of local environment and spatial integration of Trace Metals (TM) by biomonitors, Al, As, Cd, Cr, Cs, Cu, Fe, Mn, Ni, Pb, Sb, Sn, V and Zn and some rare earth element (REE) concentrations have been measured in lichens and mosses collected in three French forest sites located in three distinct mountainous areas, as well as in the local soil and bedrock, and in both bulk deposition (BD) and throughfall (TF). Similar enrichment factors (EF) were calculated using lichens and mosses and local bedrock for most elements, except for Cs, Mn, Ni, Pb, and Cu which were significantly (KW, p leaching (Mn), direct uptake (Ni), or dry deposition dissolution (Pb, Cu, Cs).

  3. Loblolly pine heterotrophic and autotrophic soil respiration as influenced by fertilization and reduced throughfall

    Science.gov (United States)

    Brett C. Heim; Brian D. Strahm; John R. Seiler

    2015-01-01

    Carbon (C) in terrestrial ecosystems is one of the main reservoirs in the global C cycle (Schimel 1995). Within these terrestrial ecosystems, soil C in the form of organic matter and plant biomass are the two largest pools of C.

  4. Temporal and spatial variability of Fe and Mn in perched groundwater flowing through weathered argillite underlying a steep forested hillslope

    Science.gov (United States)

    Kim, H.; Bishop, J. K.

    2013-12-01

    Groundwater flowing through weathered bedrock dictates the runoff chemistry to streams in many catchments yet; its chemical evolution has been rarely documented. In particular, observations of Fe and Mn dynamics in groundwater are extremely challenging due to their high reactivity. To preserve the sample integrity for these elements we have developed a new sampling scheme that is applicable to autosamplers; a gravitational filtration system (GFS). GFS is capable of filtering samples by gravity within 30 minutes after the sampling. The GFS samples showed a good agreement with reference samples, which were collected following the standard sampling method for trace metals (i.e. immediate filtration and acidification). Since October 2011, GFS has been employed to monitor Fe and Mn in perched groundwater that moves through weathered argillite in an intensively instrumented hillslope (Rivendell), in the Angelo Coast Range Reserve. The study site is located at the headwaters of the Eel River, northern California, characterized by a typical coastal Californian Mediterranean climate. We collected groundwater samples at 3 wells along the hillslope (upslope (W10), mid-slope (W3) and near the creek (W1)) with 1-3 day intervals. Additionally, rainwater and throughfall samples were collected at a meadow near the hillslope and at the middle of the hillslope, respectively. The results from our observations indicate that Fe and Mn exhibit distinct spatial and temporal behavior under variable hydrologic conditions. The concentrations of Fe in throughfall vs. rainwater were similar (0.45μM vs. 0.49μM), but Mn in throughfall was 10-fold higher than that in rainwater (1.2 μM vs. 0.1 μM). In the early rainy season, W10's water table was deep (-18m) and Fe and Mn in W10 were 30-150 nM and 1-2 μM, respectively. As the rainy season proceeds, W10's water table rose by 4-6m, indicating the arrival of new water. At this time, Mn in W10 decreased to ~0.1 μM, synchronizing with the water

  5. Gas chromatography vs. quantum cascade laser-based N2O flux measurements using a novel chamber design

    DEFF Research Database (Denmark)

    Bruemmer, Christian; Lyshede, Bjarne; Lempio, Dirk

    2017-01-01

    automated chamber system against a conventional gas chromatography (GC) approach using the same chambers plus an automated gas sampling unit with septum capped vials and subsequent laboratory GC analysis. Through its high precision and time resolution, data of the QCL system were used for quantifying...... as natural as possible. Further, applying linear regression to a 3 min data window with rejecting the first 2 min after closure and a sampling time of every 5 s proved to be sufficient for robust flux determination while ensuring that standard errors of N2O fluxes were still on a relatively low level...... spot from unintended shading and minimizes disturbance of throughfall, thereby complying with high quality requirements of long-term observation studies and research infrastructures....

  6. Current state and temporal evolution of the chemical composition of atmospheric depositions in forest areas of the CONECOFOR network

    Directory of Open Access Journals (Sweden)

    Marchetto A

    2014-04-01

    Full Text Available Current state and temporal evolution of the chemical composition of atmospheric depositions in forest areas of the CONECOFOR network. Since 1997, atmospheric deposition was sampled and analyzed in the permanent plots of the Italian network for the evaluation of forest health (CONECOFOR, under the coordination of the Italian Forest Service. This paper presents the results of the activity carried out in 2009, when the EU-funded LIFE+ “FutMon” project allowed to extend the sampling network to 22 sites. Long-term trends will also be evaluated for the sampling sites with the longest time series. The sampling of open field bulk deposition was performed in a clearance close to the CONECOFOR permanent plots, while throughfall deposition and stemflow (in beech stand, only were sampled in the plot. Deposition samples were collected weekly and sent to the laboratories, where they were analyzed for pH, conductivity, major ions, and total carbon and nitrogen. Most measured variables showed a strong geographical gradient. For example, nitrogen deposition was relatively high in the Po plain (where the emissions of nitrogen oxides and ammonia are the highest and surrounding hills, reaching 10-20 kgN ha-1 y-1 in the open field and 13-25 kgN ha-1 y-1 in the throughfall. Sulphate deposition also showed a marked geographical gradient. Deposition of marine aerosol also had an important impact on the chemical composition of atmospheric deposition in Italy, together with the episodic deposition of Saharan dust, which showed a marked gradient, with highest values in the southernmost plots. Trend analysis was carried out on 10 sites running since the beginning of the program. A general negative trend in sulphate concentration was detected, paralleled in most plots by a positive trend in deposition pH, in good agreement with the strong reduction in the emission of sulphur dioxide recorded in the last decades. Nitrogen concentration also showed a significant decrease

  7. Land-Atmosphere Coupling in the Multi-Scale Modelling Framework

    Science.gov (United States)

    Kraus, P. M.; Denning, S.

    2015-12-01

    The Multi-Scale Modeling Framework (MMF), in which cloud-resolving models (CRMs) are embedded within general circulation model (GCM) gridcells to serve as the model's cloud parameterization, has offered a number of benefits to GCM simulations. The coupling of these cloud-resolving models directly to land surface model instances, rather than passing averaged atmospheric variables to a single instance of a land surface model, the logical next step in model development, has recently been accomplished. This new configuration offers conspicuous improvements to estimates of precipitation and canopy through-fall, but overall the model exhibits warm surface temperature biases and low productivity.This work presents modifications to a land-surface model that take advantage of the new multi-scale modeling framework, and accommodate the change in spatial scale from a typical GCM range of ~200 km to the CRM grid-scale of 4 km.A parameterization is introduced to apportion modeled surface radiation into direct-beam and diffuse components. The diffuse component is then distributed among the land-surface model instances within each GCM cell domain. This substantially reduces the number excessively low light values provided to the land-surface model when cloudy conditions are modeled in the CRM, associated with its 1-D radiation scheme. The small spatial scale of the CRM, ~4 km, as compared with the typical ~200 km GCM scale, provides much more realistic estimates of precipitation intensity, this permits the elimination of a model parameterization of canopy through-fall. However, runoff at such scales can no longer be considered as an immediate flow to the ocean. Allowing sub-surface water flow between land-surface instances within the GCM domain affords better realism and also reduces temperature and productivity biases.The MMF affords a number of opportunities to land-surface modelers, providing both the advantages of direct simulation at the 4 km scale and a much reduced

  8. Analytical Modelling of Canopy Interception Loss from a Juvenile Lodgepole Pine (Pinus contorta var. latifolia) Stand

    Science.gov (United States)

    Carlyle-Moses, D. E.; Lishman, C. E.

    2015-12-01

    In the central interior of British Columbia (BC), Canada, the mountain pine beetle (Dendroctonus ponderosae Hopkins) (MPB) has severely affected the majority of pine species in the region, especially lodgepole pine (Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson). The loss of mature lodgepole pine stands, including those lost to salvage logging, has resulted in an increase in the number of juvenile pine stands in the interior of BC through planting and natural regrowth. With this change from mature forests to juvenile forests at such a large spatial scale, the water balance of impacted areas may be altered, although the magnitude of such change is uncertain. Previous studies of rainfall partitioning by lodgepole pine and lodgepole pine dominated canopies have focused on mature stands. Thus, rainfall, throughfall and stemflow were measured and canopy interception loss was derived during the growing season of 2010 in a juvenile lodgepole pine dominated stand located approximately 60 km NNW of Kamloops, BC at 51°12'49" N 120°23'43" W, 1290 m above mean sea level. Scaling up from measurements for nine trees, throughfall, stemflow and canopy interception loss accounted for 87.7, 1.8 and 10.5 percent of the 252.9 mm of rain that fell over 38 events during the study period, respectively. The reformulated versions of the Gash and Liu analytical interception loss models estimated cumulative canopy interception loss at 24.7 and 24.6 mm, respectively, compared with the observed 26.5 mm; an underestimate of 1.8 and 1.9 mm or 6.8 and 7.2% of the observed value, respectively. Our results suggest that canopy interception loss is reduced in juvenile stands compared to their mature counterparts and that this reduction is due to the decreased storage capacity offered by these younger canopies. Evaporation during rainfall from juvenile canopies is still appreciable and may be a consequence of the increased proportion of the canopy exposed to wind during events.

  9. Integrative measurements focusing on carbon, energy and water fluxes at the forest site 'Hohes Holz' and the grassland 'Grosses Bruch'

    Science.gov (United States)

    Rebmann, Corinna; Claudia, Schütze; Sara, Marañón-Jiménez; Sebastian, Gimper; Matthias, Zink; Luis, Samaniego; Matthias, Cuntz

    2017-04-01

    The reduction of greenhouse gas (GHG) emissions and the optimization of Carbon sequestration by ecosystems have become priority objectives for current climate change policies. In this context, the long term research project TERENO and the research infrastructure ICOS have been established. The eddy covariance technique allows obtaining an integrative estimate of the ecosystem carbon, water and energy balances at the ecosystem level. The relative contributions of evaporation and transpiration as well as carbon sources and sinks need, however, to be determined separately for thorough process understanding. Two different ecosystem observatories have recently been established in the Magdeburger Börde: a deciduous forest (Hohes Holz) and a meadow (Grosses Bruch). A comprehensive system of instrumentation provides continuous data for the evaluation of energy, water and carbon fluxes at the 1500 ha large forest site, including a 50 m high eddy covariance (EC) tower for micrometeorological investigations in different heights above and below canopy, throughfall and stem flow sensors, a soil moisture and temperature sensor network, soil respiration chambers, sap flow sensors, and ancillary analysis of trees such a dendrometer and leaf area index measurements. Eddy covariance measurements allow the assessment of the carbon (Net Ecosystem Exchange, NEE) and water balance at the ecosystem scale. To better understand the contributing processes we partition water und carbon fluxes of the forest ecosystem by different methods. Tower-based data of NEE are therefore complemented and validated by continuous automatic and manual campaign measurements of soil effluxes and their drivers. Water fluxes into the ecosystem are partitioned by stem flow and throughfall measurements and a distributed soil moisture network. Gap fraction in the forest has a strong influence on the distribution on the water fluxes and is therefore determined on a regular basis. Since the establishment of the

  10. Precipitação efetiva em fragmento secundário da Mata Atlântica Net precipitation in a forest fragment of Mata Atlantica

    Directory of Open Access Journals (Sweden)

    José Carlos de Oliveira Júnior

    2005-02-01

    Full Text Available O presente trabalho foi conduzido na Estação Experimental de Treinamento e Educação Ambiental Mata do Paraíso, localizada no município de Viçosa, MG, e teve como objetivo avaliar a precipitação efetiva de um trecho mais recente de regeneração da mata natural secundária, no período compreendido entre setembro de 2002 e maio de 2003. Para isso, demarcaram-se três parcelas dentro da Mata do Paraíso, onde foram registradas 30 coletas da precipitação, em aberto e interna, e de escoamento pelo tronco, durante o período de 05/09/2002 a 07/05/2003, constituídas de um ou mais eventos de chuva. O estudo revelou precipitação efetiva de 849,6 mm, precipitação interna de 831,7 mm, escoamento pelo tronco de 17,9 mm e perda por interceptação de 189,9 mm, o que correspondeu, respectivamente, a 81,7%, 80,0%, 1,7% e 18,3% da precipitação em aberto, que foi igual a 1.039,5 mm.This study was carried out in the Mata do Paraiso Experimental Training and Educational Station located in Viçosa, Minas Gerais state with the objective of estimating the net precipitation along a segment of a recently regenerated native semideciduous secondary forest, from September 2002 to May 2003. Throughfall and stemflow measurements were registered in three plots. During the study period of 5/9/02 through 7/5/03, 30 rainfall events have been monitored. Results showed values of net precipitation of 849,6 mm, throughfall of 831,7 mm, stemflow of 17,9 mm and loss interception of 189,9 mm corresponding respectively to 81,7%, 80,0%, 1,7% and 18,3% of gross precipitation value which totaled 1039,5 mm for the study period.

  11. How is rainfall interception in urban area affected by meteorological parameters?

    Science.gov (United States)

    Zabret, Katarina; Rakovec, Jože; Mikoš, Matjaž; Šraj, Mojca

    2017-04-01

    Rainfall interception is part of the hydrological cycle. Precipitation, which hits vegetation, is retained on the leaves and branches, from which it eventually evaporates into the atmosphere (interception) or reaches the ground by dripping from the canopy, falling through the gaps (throughfall) and running down the stems (stemflow). The amount of rainfall reaching the ground depends on various meteorological and vegetation parameters. Rainfall, throughfall and stemflow have been measured in the city of Ljubljana, Slovenia since the beginning of 2014. Manual and automatic measurements are performed regularly under Betula pendula and Pinus nigra trees in urban area. In 2014, there were detected 178 rainfall events with total amount of 1672.1 mm. In average B. pendula intercepted 44% of rainfall and P. nigra intercepted 72% of rainfall. In 2015 we have detected 117 events with 1047.4 mm of rainfall, of which 37% was intercepted by B. pendula and 60% by P. nigra. The effect of various meteorological parameters on the rainfall interception was analysed in the study. The parameters included in the analysis were rainfall rate, rainfall duration, drop size distribution (average drop velocity and diameter), average wind speed, and average temperature. The results demonstrate decreasing rainfall interception with longer rainfall duration and higher rainfall intensity although the impact of the latter one is not statistically significant. In the case of very fast or very slow rainfall drops, the interception is higher than for the mean rain drop velocity values. In the case of P. nigra the impact of the rain drop diameter on interception is similar to the one of rain drop velocity while for B. pendula increasing of drop diameter also increases the interception. As expected, interception is higher for warmer events. This trend is more evident for P. nigra than for B. pendula. Furthermore, the amount of intercepted rainfall also increases with wind although it could be

  12. Isotope studies to determine dry deposition of sulfate to deciduous and coniferous trees: Final draft

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.

    1988-01-01

    Experiments have been conducted at two locations near Oak Ridge, Tennessee, with radioactive 35 S (87 day half-life) to examine the cycling behavior of sulfur in yellow poplar (Liriodendron tulipifera), red maple (Acer rubrum), and loblolly pine (Pinus taeda) trees. Some findings pertain to methods development for estimating dry deposition of sulfur to forest canopies and the magnitude of sulfur emissions from natural sources (Task II). We will determine through field studies, the internal cycling, storage, and biogenic emission of sulfur, as traced by 35 SO 4 2- , in environments impacted by atmospheric sulfate deposition; and will determine through isotope dilution studies, the contribution of foliar leaching and dry deposition to net throughfall (NTF) sulfate concentrations beneath deciduous and coniferous trees in such environments. 3 refs., 2 figs., 1 tab

  13. Fast-freezing with liquid nitrogen preserves bulk dissolved organic matter concentrations, but not its composition

    DEFF Research Database (Denmark)

    Thieme, Lisa; Graeber, Daniel; Kaupenjohann, Martin

    2016-01-01

    -freezing with liquid nitrogen) on DOM concentrations measured as organic carbon (DOC) concentrations and on spectroscopic properties of DOM from different terrestrial ecosystems (forest and grassland). Fresh and differently frozen throughfall, stemflow, litter leachate and soil solution samples were analyzed for DOC...... concentrations, UV-vis absorption and fluorescence excitation–emission matrices combined with parallel factor analysis (PARAFAC). Fast-freezing with liquid nitrogen prevented a significant decrease of DOC concentrations observed after freezing at −18 °C. Nonetheless, the share of PARAFAC components 1 (EXmax...... component 4 (EXmax: 280 nm, EXmax: 328 nm) to total fluorescence was not affected by freezing. We recommend fast-freezing with liquid nitrogen for preservation of bulk DOC concentrations of samples from terrestrial sources, whereas immediate measuring is preferable to preserve spectroscopic properties...

  14. Project ARINUS: 2. establishment of the measuring equipment and testing phase

    Energy Technology Data Exchange (ETDEWEB)

    Feger, K.H.; Zoettl, H.W.; Brahmer, G.; Horsch, F.; Filby, W.G.; Fund, N.; Gross, S.; Hanisch, B.; Kilz, E.; Seidel, A.

    1988-04-01

    In 3 adjacent watersheds water and element fluxes are determined by measuring open land precipitation, canopy throughfall, litterfail, and soil seepage water at 3 depths. Cation-anion-balances of the first half-year of measurement demonstrate a distinct chemical alteration of precipitation passing through the bio-, pedo- and lithosphere. Precipitation shows only a slight to moderate impact of air pollution. Dissolved organic matter highly influences the pH-values and the mobility of potentially toxic aluminum. A simplified Al-fractionation exhibits a high portion of nontoxic organic complexes. The composition of seepage water in the upper soil is mainly controlled by biological processes is plant uptake, mineralization and microbial immobilization. Adsorption and weathering processes in the subsoil and bedrock play the key roles in SO/sub 4//sup 2-/ retention and buffering of acids.

  15. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003

    DEFF Research Database (Denmark)

    Granier, A.; Reichstein, M.; Breda, N.

    2007-01-01

    stand to estimate the water balance terms: trees and understorey transpiration, rainfall interception, throughfall, drainage in the different soil layers and soil water content. This model calculated the onset date, duration and intensity of the soil water shortage (called water stress) using measured...... measured and modelled soil water content. Our analysis showed a wide spatial distribution of drought stress over Europe, with a maximum intensity within a large band extending from Portugal to NE Germany. Vapour fluxes in all the investigated sites were reduced by drought, due to stomatal closure, when...... the relative extractable water in soil (REW) dropped below ca. 0.4. Rainfall events during the drought, however, typically induced rapid restoration of vapour fluxes. Similar to the water vapour fluxes, the net ecosystem production decreased with increasing water stress at all the sites. Both gross primary...

  16. Interceptação das chuvas em um fragmento de floresta da Mata Atlântica na Bacia do Prata, Recife, PE Rainfall interception in an Atlantic Forest fragment in the Prata Basin, Recife, PE

    Directory of Open Access Journals (Sweden)

    Albert Einstein Spindola Saraiva de Moura

    2009-06-01

    Full Text Available A mata de Dois Irmãos é uma das poucas áreas remanescentes da Floresta Atlântica no Estado de Pernambuco. Nela estão inseridos os açudes do Meio, do Prata e Dois Irmãos que compõem a bacia hidrográfica do Prata. Este trabalho teve como objetivo estudar a partição das chuvas em um fragmento de Floresta Atlântica na Bacia do Prata em Recife, PE. Para obtenção dos dados de precipitação sob florestas, foram instalados 24 interceptômetros e selecionadas 20 árvores do estrato superior, e 10 árvores do sub-bosque foram escolhidas para obter os dados de escoamento pelo tronco. Encontraram-se perdas por interceptação de 208,3 mm, precipitação efetiva de 1.431,7 mm, precipitação interna de 1.392,4 mm, escoamento pelo tronco das árvores do estrato superior de 6,6 mm e escoamento pelo sub-bosque de 32,8 mm, correspondendo a 12,7%, 87,3%, 84,9%, 0,4% e 2%, respectivamente, do total precipitado de 1.464 mm.The Dois Irmãos forest is one of the few remaining areas of the Atlantic Forest in the State of Pernambuco. The dams of Meio, Prata and Dois Irmãos, which belong to the Prata Basin, are in it. The objective of this work was to study the rainfall partitioning in a fragment of the Atlantic forest in the Prata basin, in Recife, PE. 24 raingouges were installed in the interior of the forest to measure the throughfall and 20 trees of superior extract and 10 of the sub-forest were selected to determine the stemflow. The results showed values of loss interception of 208,3 mm, net precipitation of 1431,7 mm, throughfall of 1392,4 mm, stemflow by superior stratum of 6,6 mm and stemflow by sub-forest of 32,8 mm, corresponding to 12,7%, 87,3%, 84,9%, 0,4% and 2%, respectively.

  17. Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador

    Science.gov (United States)

    Velescu, Andre; Valarezo, Carlos; Wilcke, Wolfgang

    2016-05-01

    In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM) by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth. In 2007, we established a nutrient manipulation experiment (NUMEX) to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N), 10 kg ha-1 a-1 of phosphorus (P), 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca) in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes. Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC) and dissolved organic nitrogen (DON) concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments. Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N and P

  18. Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador

    Directory of Open Access Journals (Sweden)

    Andre eVelescu

    2016-05-01

    Full Text Available In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth.In 2007, we established a nutrient manipulation experiment (NUMEX to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N, 10 kg ha-1 a-1 of phosphorus (P, 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes.Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC and dissolved organic nitrogen (DON concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments.Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N

  19. Soil phosphorus fractionation as a tool for monitoring dust phosphorus signature underneath a Blue Pine (Pinus wallichiana) canopy in a Temperate Forest

    Energy Technology Data Exchange (ETDEWEB)

    Shafqat, M.N.; Shahid, S.; Eqani, S.A.M.A.S.; Shah, S.H.; Waseem, A.

    2016-07-01

    Aim of the study: This study aims (i) to monitor the amount of dust deposition during dry season in the moist temperate forest; (ii) to study nature of P fractions in the dust samples falling on the trees in the region; (iii) to study soil P fractions as influenced by the processes of throughfall and stemflow of a Blue Pine (Pinus wallichiana) canopy and to finger print the contribution of dust towards P input in the temperate forest ecosystem. Area of study: The site used for the collection of soil samples was situated at an elevation of 6900 feet above sea levels (temperate forest in Himalaya region) in the Thandani area national forest located in the north west of Pakistan. Material and methods: For soil sampling and processing, three forest sites with three old tree plants per site were selected at approximately leveled plain for surface soil sampling. Two dust samples were collected and analyzed for different physicochemical properties along with different P fractions. First dust sample was collected from a site situated at an elevation of 4000 feet and second one was collected from an elevation of 6500 feet above sea levels. Modified Hedley procedure for the fractionation of P in the dust and soil samples were used. Main results: The input of dust was 43 and 20 kg ha-1 during drier months of the year (September-June) at lower and higher elevation sites respectively, and the dust from lower elevation site had relative more all P fractions than the other dust sample. However, HCl-Pi fraction was dominant in both samples. Both labile (water plus NaHCO3) and non-labile (NaOH plus HCl) inorganic P (Pi) fractions were significantly increased in the surface soil by both stemflow and throughfall compared to the open field soil. The buildup of NaOH and HCl-Pi pools in soils underneath the canopy might prove useful in fingerprinting the contribution of atmospheric dust towards P cycling in this temperate forest. Research highlights: The role of dust in the cycling of P

  20. Amazonian former gold mined soils as a source of methylmercury: evidence from a small scale watershed in French Guiana.

    Science.gov (United States)

    Guedron, Stephane; Grimaldi, Michel; Grimaldi, Catherine; Cossa, Daniel; Tisserand, Delphine; Charlet, Laurent

    2011-04-01

    Total mercury (HgT) and monomethylmercury (MMHg) were investigated in a tropical head watershed (1 km(2)) of French Guiana. The watershed includes a pristine area on the hill slopes and a former gold mined flat in the bottomland. Concentrations of dissolved and particulate HgT and MMHg were measured in rain, throughfall, soil water and at three points along the stream. Samples were taken in-between and during 14 storm events at the beginning and middle of the 2005 and 2006 rainy seasons. Dissolved and particulate HgT concentrations in the stream slightly increased downstream, while dissolved and particulate MMHg concentrations were low at the pristine sub-watershed outlet (median = 0.006 ng L(-1) and 1.84 ng g(-1), respectively) and sharply increased at the gold mined flat outlet (median = 0.056 ng L(-1) and 6.80 ng g(-1), respectively). Oxisols, which are dominant in the pristine area act as a sink of HgT and MMHg from rain and throughfall inputs. Hydromorphic soils in the flat are strongly contaminated with Hg (including Hg(0) droplets) and their structure has been disturbed by former gold-mining processes, leading to multiple stagnant water areas where biogeochemical conditions are favorable for methylation. In the former gold mined flat high dissolved MMHg concentrations (up to 0.8 ng L(-1)) were measured in puddles or suboxic soil pore waters, whereas high dissolved HgT concentrations were found in lower Eh conditions. Iron-reducing bacteria were suggested as the main methylators since highest concentrations for dissolved MMHg were associated with high dissolved ferrous iron concentrations. The connection between saturated areas and stagnant waters with the hydrographic network during rain events leads to the export of dissolved MMHg and HgT in stream waters, especially at the beginning of the rainy season. As both legal and illegal gold-mining continues to expand in French Guiana, an increase in dissolved and particulate MMHg emissions in the hydrographic

  1. Combining multiple isotopes and metagenomic to delineate the role of tree canopy nitrification in European forests along nitrogen deposition and climate gradients

    Science.gov (United States)

    Guerrieri, R.; Avila, A.; Barceló, A.; Elustondo, D.; Hellstein, S.; Magnani, F.; Mattana, S.; Matteucci, G.; Merilä, P.; Michalski, G. M.; Nicolas, M.; Vanguelova, E.; Verstraeten, A.; Waldner, P.; Watanabe, M.; Penuelas, J.; Mencuccini, M.

    2017-12-01

    Forest canopies influence our climate through carbon, water and energy exchanges with the atmosphere. However, less investigated is whether and how tree canopies change the chemical composition of precipitation, with important implications on forest nutrient cycling. Recently, we provided for the first time isotopic evidence that biological nitrification in tree canopies was responsible for significant changes in the amount of nitrate from rainfall to throughfall across two UK forests at high nitrogen (N) deposition [1]. This finding strongly suggested that bacteria and/or Archaea species of the phyllosphere are responsible for transforming atmospheric N before it reaches the soil. Despite microbial epiphytes representing an important component of tree canopies, attention has been mostly directed to their role as pathogens, while we still do not know whether and how they affect nutrient cycling. Our study aims to 1) characterize microbial communities harboured in tree canopies for two of the most dominant species in Europe (Fagus sylvatica L. and Pinus sylvestris L.) using metagenomic techniques, 2) quantify the functional genes related to nitrification but also to denitrification and N fixation, and 3) estimate the contribution of NO3 derived from biological canopy nitrification vs. atmospheric NO3 input by using δ15N, δ18O and δ17O of NO3in forest water. We considered i) twelve sites included in the EU ICP long term intensive forest monitoring network, chosen along a climate and nitrogen deposition gradient, spanning from Fennoscandia to the Mediterranean and ii) a manipulation experiment where N mist treatments were carried out either to the soil or over tree canopies. We will present preliminary results regarding microbial diversity in the phyllosphere, water (rainfall and throughfall) and soil samples over the gradient. Furthermore, we will report differences between the two investigated tree species for the phyllosphere core microbiome in terms of relative

  2. Potential alteration of precipitation chemistry by epiphytic lichens

    Energy Technology Data Exchange (ETDEWEB)

    Lang, G E; Reiners, W A; Heier, R K

    1976-01-01

    Epiphytic lichen growth is abundant on the boles and branches of balsam fir trees at high elevations in New Hampshire. These lichens absorb elements needed for growth from solutions flowing over their surfaces and from direct impaction of water droplets. This study describes how epiphytic lichens and fir needles altered the chemistry of simulated rain water solutions under laboratory conditions. Experiments showed: 1) lichens absorbed ammonium and nitrate from solution; the rate of uptake increased with increasing temperature of the solution, 2) lichens lost calcium, magnesium, and hydrogen to the solution, 3) lichen thalli also initially lost potassium, but in time, net movement was reversed back into the thallus, 4) cation movement increased with increasing temperature, and 5) fir needles responded in a manner similar to that of the lichens, but the amount of change was much less. From these results it seems that epiphytic lichens have potential ecological importance in altering the chemistry of throughfall and stemflow.

  3. Rainfall interception from a lowland tropical rainforest in Brunei

    Science.gov (United States)

    Dykes, A. P.

    1997-12-01

    Results from a programme of throughfall measurements in a lowland tropical rainforest in Brunei, northwest Borneo, indicate that interception losses amount to 18% of the gross incident rainfall. The high annual rainfall experienced by the study area results in annual interception losses of around 800 mm, which may result in total annual evapotranspiration losses significantly higher than in other rainforest locations. An improved version of Gash's analytical interception model is tested on the available data using assumed values for the "forest" parameters, and is found to predict interception losses extremely well. The model predictions are based on an estimated evaporation rate during rainfall of 0.71 mm h -1. This is significantly higher than has been reported in other tropical studies. It is concluded that these results are distinctive when compared with previous results from rainforests, and that further, detailed work is required to establish whether the enhanced evaporation rate is due to advective effects associated with the maritime setting of the study area.

  4. Measurement and modeling of diameter distributions of particulate matter in terrestrial solutions

    Science.gov (United States)

    Levia, Delphis F.; Michalzik, Beate; Bischoff, Sebastian; NäThe, Kerstin; Legates, David R.; Gruselle, Marie-Cecile; Richter, Susanne

    2013-04-01

    Particulate matter (PM) plays an important role in biogeosciences, affecting biosphere-atmosphere interactions and ecosystem health. This is the first known study to quantify and model PM diameter distributions of bulk precipitation, throughfall, stemflow, and organic layer (Oa) solution. Solutions were collected from a European beech (Fagus sylvatica L.) forest during leafed and leafless periods. Following scanning electron microscopy and image analysis, PM distributions were quantified and then modeled with the Box-Cox transformation. Based on an analysis of 43,278 individual particulates, median PM diameter of all solutions was around 3.0 µm. All PM diameter frequency distributions were skewed significantly to the right. Optimal power transformations of PM diameter distributions were between -1.00 and -1.56. The utility of this model reconstruction would be that large samples having a similar probability density function can be developed for similar forests. Further work on the shape and chemical composition of particulates is warranted.

  5. Water balances in intensively monitored forest ecosystems in Europe

    International Nuclear Information System (INIS)

    Salm, C. van der; Reinds, G.J.; Vries, W. de

    2007-01-01

    A soil hydrological model based on Darcy's law was used to calculate hydrological fluxes for 245 intensively monitored forest plots in Europe. Local measured input data for the model were rather limited and input was partly based on generic data. To obtain the best results, the model was calibrated on measured throughfall at the plots. Median transpiration fluxes are 350 mm; median leaching fluxes are 150 mm yr -1 with the highest values in areas with high rainfall. Uncertainty analyses indicate that the use of local meteorological data instead of generic data leads to lower leaching fluxes at 70% of the plots due to an overestimation of the wind speed on basis of main meteorological stations. The underestimation of the leaching fluxes is confirmed by the median Cl fluxes which were slightly positive for the considered plots. - Assessment of water fluxes for 245 intensively monitored forest plots in Europe using a soil hydrological model combined with an interception model and a snow module

  6. The effect of reduced atmospheric deposition on soil and soil solution chemistry at a site subjected to long-term acidification, Nacetín, Czech Republic.

    Science.gov (United States)

    Oulehle, Filip; Hofmeister, Jenýk; Cudlín, Pavel; Hruska, Jakub

    2006-11-01

    During the 1990s the emissions of SO(2) fell dramatically by about 90% in the Czech Republic; the measured throughfall deposition of sulphur to a spruce forest at Nacetín in the Ore Mts. decreased from almost 50 kg ha(-1) in 1994 to 15 kg ha(-1) in 2005. The throughfall flux of Ca decreased from 17 kg ha(-1) in 1994 to 9 kg ha(-1) in 2005; no change was observed for Mg. The deposition of nitrogen ranged between 15 and 30 kg ha(-1) with no statistically significant trend in the period 1994-2005. The desorption of previously stored sulphur and the decrease of Ca deposition are the main factors controlling the recovery of soil solution. The pH of the soil solution at a depth of 30 cm remains unchanged, and the Al concentration decreased from 320 micromol l(-1) in 1997 to 140 micromol l(-1) in 2005. The enhanced leaching of base cations relative to no acidified conditions has continued, although the Ca concentration decreased from 110 microeq l(-1) in 1997 to 25 microeq l(-1) in 2005 in the mineral soil solution at 30 cm depth. This dramatic change was not observed for Mg concentration in soil solution, because its deposition remained stable during the observed period. Similar patterns were observed in the deeper soil solution at 90 cm. The reduction in Ca availability resulted in lower uptake by tree assimilatory tissues, measured as concentration in needles. Since 2005, the leaching of nitrate observed in soil solution at 30 cm depth has disappeared. By 2003 a similar situation occurred at 90 cm. Higher incorporation into the trees after 1997 could be an important factor. With respect to the formerly high sulphur deposition and consequently released aluminium, which could have negatively influenced the biotic immobilization driven by microbes and fungi, the recovery may have positively impacted and therefore improved retention in the ecosystem during recent years. The delay in the successful retention of nitrogen in the ecosystem was probably caused by the high

  7. Wet and Occult Ion Deposition To An Elevated Forest Ecosystem In Switzerland

    Science.gov (United States)

    Buetzberger, P.; Burkard, R.; Eugster, W.

    and rain water nutrient deposition on vegetation and soil, we measured throughfall precipitation close to the forest floor. Whereas fog water showed pH values as low as 3, throughfall water was between pH 6 and 7, indicating an important buffering capacity of this ecosystem mainly due to potassium leaching and probably calcium compounds. High ionic concentrations and low pH values seem to act mostly on the leaves.

  8. Seasonal variation in the atmospheric deposition of inorganic constituents and canopy interactions in a Japanese cedar forest

    International Nuclear Information System (INIS)

    Sase, Hiroyuki; Takahashi, Akiomi; Sato, Masahiko; Kobayashi, Hiroyasu; Nakata, Makoto; Totsuka, Tsumugu

    2008-01-01

    The seasonal changes in throughfall (TF) and stemflow (SF) chemistry and the canopy interactions of K + and N compounds were studied in a Japanese cedar forest near the Sea of Japan. The fluxes of most ions, including non-sea-salt SO 4 2- , from TF, SF, and rainfall showed distinct seasonal trends, increasing from autumn to winter, owing to the seasonal west wind, while the fluxes of NH 4 + and K + ions from TF + SF might have a large effect of canopy interactions. The contact angle (CA) of water droplets on leaves decreased with leaf aging, suggesting that surface wettability increases with leaf age. The K + concentration in TF was negatively correlated with the CA of 1-year-old leaves, while the NH 4 + concentration was positively correlated with the CA. The net fluxes of NH 4 + and NO 3 - from TF were positively correlated with the CA. The increase in wettability may accelerate leaching of K + or uptake of NH 4 + . - Leaf surface properties may contribute to the ion transport process of the forest canopy

  9. Environmental fate and distribution of technetium-99 in a deciduous forest ecosystem

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.; Tucker, C.S.; Walton, B.T.

    1986-01-01

    The uptake of 99 Tc by trees intercepting contaminated groundwater from a radioactive waste storage site was measured to identify the major 99 Tc pools within the woodland ecosystem and to assess the relative mobility of 99 Tc in the existing element cycle. The highest average 99 Tc concentrations in vegetation were found in herbaceous plants. Tree wood was the major above-ground pool for 99 Tc because of the high concentrations in wood as well as the large amount of wood relative to other biomass at the site. Technetium was not easily leached from the trees by rainfall and was not readily extractable from forest floor leaf litter by water. The relative importance of return pathways for 99 Tc to the forest floor was leaf fall > stemflow > throughfall, indicating that 99 Tc was conserved by the trees. Snails and millipedes from the leaf litter layer concentrated technetium 20- and 16-fold, respectively, above levels found in the soil. Pertechnetate was rendered less bioavailable after ingestion by a leaf litter macroinvertebrate (Porcellio sp.) common to the study site. (author)

  10. Element fluxes through European forest ecosystems and their relationships with stand and site characteristics

    International Nuclear Information System (INIS)

    Vries, W. de; Salm, C. van der; Reinds, G.J.; Erisman, J.W.

    2007-01-01

    This paper describes a European wide assessment of element budgets, using available data on deposition, meteorology and soil solution chemistry at 121 Intensive Monitoring plots. Input fluxes from the atmosphere were derived from fortnightly or monthly measurements of bulk deposition and throughfall, corrected for canopy uptake. Element outputs from the forest ecosystem were derived by multiplying fortnightly or monthly measurements of the soil solution composition at the bottom of the root zone with simulated unsaturated soil water fluxes. Despite the uncertainties in the calculated budgets, the results indicate that: (i) SO 4 is still the dominant source of actual soil acidification despite the generally lower input of S than N, due to the different behaviour of S (near tracer) and N (strong retention); (ii) base cation removal due to man-induced soil acidification is limited; and (iii) Al release is high in areas with high S inputs and low base status. - An assessment of element budgets, using available data on deposition, meteorology and soil solution chemistry at 121 Intensive Monitoring plots in Europe

  11. Hypothesis testing in the Maimai Catchments, Westland

    International Nuclear Information System (INIS)

    Stewart, M.K.

    1993-01-01

    Seven experiments were carried out on the Maimai Catchments, Westland, to test assumptions about the nature of unsaturated zone waters flows in this humid environment. Hypotheses tested were: 1) that the deuterium (D) content of base flow water sources in small streams are constant at any given time, 2) that different soil moisture sampling methods give the same D contents, 3) that throughfall has the same D content as rainfall, 4) that saturation overland flow is mainly composed of current event rainfall, 5) that macropores are not connected into pipe networks, 6) that the underlying substrate (Old Man Gravel conglomerate) does not deliver water to the stream during rainfall events, and 7) that different near-stream water sources have the same D contents at a given time. Over 570 samples were collected of which 300 were analysed for deuterium in 1992-1993. This report gives the background, rationale, methods and brief results of the experiments. The results will be integrated with other measurements and written up in one or more papers for journal publication. (author). 18 refs.; 4 figs.; 1 tab

  12. Characterization of Wet and Dry Deposition in the Downwind of Industrial Sources in a Dry Tropical Area

    Directory of Open Access Journals (Sweden)

    Raj K. Singh

    2001-01-01

    Full Text Available An atmospheric deposition study was conducted in the downwind of Shaktinagar Thermal Power Plant (STPP, Renusagar Thermal Power Plant (RTPP, and Anpara Thermal Power Plant (ATPP, at Singrauli region, Uttar Pradesh (UP, India to characterize dry and wet deposition in relation to different pollution loading. During the study period, dry and wet depositions and levels of gaseous pollutants (SO2 and NO2 were estimated across the sites. Dry deposition was collected on a monthly basis and wet deposition on an event basis. Depositions were analyzed for pH, nitrate (NO3�, ammonium (NH4+, and sulphate (SO42� contents. Dry deposition rate both collected as clearfall and throughfall varied between 0.15 to 2.28 and 0.33 to 3.48 g m�2 day�1, respectively, at control and maximally polluted sites. The pH of dry deposition varied from 5.81 to 6.89 during winter and 6.09 to 7.02 during summer across the sites. During the rainy season, the mean pH of clear wet deposition varied from 6.56 to 7.04 and throughfall varied from 6.81 to 7.22. The concentrations of NO2 and SO2 pollutants were highest during the winter season. Mean SO2 concentrations varied from 18 to 75 �g m�3 at control and differently polluted sites during the winter season. The variation in NO2 concentrations did not show a pattern similar to that of SO2. The highest NO2 concentration during the winter season was 50 �g m�3, observed near RTPP. NO2 concentration did not show much variation among different sites, suggesting that the sources of NO2 emission are evenly distributed along the sites. The concentrations of NH4+, NO3�, and SO42� ions in dry deposition were found to be higher in summer as compared to the winter season. In dry deposition (clearfall the concentrations of NH4+, NO3�, and SO42� varied from 0.13 to 1.0, 0.81 to 1.95, and 0.82 to 3.27 mg l�1, respectively, during winter. In wet deposition (clearfall, the above varied from 0.14 to 0.74, 0.81 to 1.82, and 0

  13. Development of SVAT model for computing water and energy balance of the forest intensive monitoring plots on Olkiluoto island

    International Nuclear Information System (INIS)

    Karvonen, T.

    2009-06-01

    This Working Report presents the main results of SVAT (Soil-Vegetation-Atmosphere- Transfer) model that was developed to analyze the different water and energy balance components of the Forest Intensive monitoring plots (FIP) on Olkiluoto Island. The Olkiluoto SVAT model divides above ground vegetation in two layers: overstorey (trees) and understorey. Hydrological processes that are quantified in the SVAT model of forest stands include precipitation, interception, evaporation, transpiration, snow accumulation and melt, soil and ground water movement, overland flow, horizontal subsurface flow and flow to forest ditches. In this report outlines for simplifying the existing SVAT model to a computational tool that can be used in biosphere modeling for long-term safety purposes are also given. The functioning of forest ecosystems on Olkiluoto Island is studied in Forest Intensive monitoring Plots (FIP): FIP4 (Scots pine forest), FIP10 (Norway spruce forest) and FIP11 (young Norway spruce/birch forest). Within the forest intensive monitoring plots (FIP4, 10 and 11) stand meteorological measurements are recorded once an hour. The parameters are air temperature, minimum and maximum temperature inside the crown layer and above the canopy, radiation, relative humidity, precipitation, soil moisture content, soil temperature and sap flow measurements (May 2007- June 2008). Measured versus computed cumulative stand throughfall were in good agreement with each other indicating that the SVAT model can be calibrated to reproduce very well the measured throughfall rates. Estimated stem flow was around 10% of precipitation for the Scots pine forest (FIP4), around 4 % for Norway spruce forest (FIP10) and about 3 % for young Norway spruce/birch forest (FIP11). For FIP4 the computed interception values were approximately 3-4 % bigger than the measured values but SVAT model predicted the yearly variation very well. For FIP10 average computed value was around 1 % smaller than the

  14. Characterization of wet and dry deposition in the downwind of industrial sources in a dry tropical area.

    Science.gov (United States)

    Singh, R K; Agrawal, M

    2001-12-19

    An atmospheric deposition study was conducted in the downwind of Shaktinagar Thermal Power Plant (STPP), Renusagar Thermal Power Plant (RTPP), and Anpara Thermal Power Plant (ATPP), at Singrauli region, Uttar Pradesh (UP), India to characterize dry and wet deposition in relation to different pollution loading. During the study period, dry and wet depositions and levels of gaseous pollutants (SO2 and NO2) were estimated across the sites. Dry deposition was collected on a monthly basis and wet deposition on an event basis. Depositions were analyzed for pH, nitrate (NO3-), ammonium (NH4+), and sulphate (SO4(2-)) contents. Dry deposition rate both collected as clearfall and throughfall varied between 0.15 to 2.28 and 0.33 to 3.48 g m(-2) day(-1), respectively, at control and maximally polluted sites. The pH of dry deposition varied from 5.81 to 6.89 during winter and 6.09 to 7.02 during summer across the sites. During the rainy season, the mean pH of clear wet deposition varied from 6.56 to 7.04 and throughfall varied from 6.81 to 7.22. The concentrations of NO2 and SO2 pollutants were highest during the winter season. Mean SO2 concentrations varied from 18 to 75 g m(-3) at control and differently polluted sites during the winter season. The variation in NO2 concentrations did not show a pattern similar to that of SO2. The highest NO2 concentration during the winter season was 50 g m(-3), observed near RTPP. NO2 concentration did not show much variation among different sites, suggesting that the sources of NO2 emission are evenly distributed along the sites. The concentrations of NH4+, NO3-, and SO4(2-) ions in dry deposition were found to be higher in summer as compared to the winter season. In dry deposition (clearfall) the concentrations of NH4+, NO3-, and SO4(2-) varied from 0.13 to 1.0, 0.81 to 1.95, and 0.82 to 3.27 mg l(-1), respectively, during winter. In wet deposition (clearfall), the above varied from 0.14 to 0.74, 0.81 to 1.82, and 0.67 to 2.70 mg l(-1

  15. Redistribuição das chuvas pelas copas de um povoamento de seringueira, José Bonifácio, SP. Rainwater redistribution under a rubber tree stand in the José Bonifacio county, SP.

    Directory of Open Access Journals (Sweden)

    Valdemir Antonio RODRIGUES

    2009-06-01

    Full Text Available A presente pesquisa foi desenvolvida emum povoamento de seringueira, clone RRIM 600,com 15 anos de idade, município de JoséBonifácio, SP. A pesquisa avaliou a redistribuiçãodas chuvas no período de agosto de 1996 a julhode 1997 (ano hídrico 1996/97, por meio dequantificação das precipitações pluvial total,interna e efetiva; do escoamento pelo tronco; eestimativa da interceptação das chuvas pelas copasdo seringal. Foram instalados pluviômetros a céuaberto e sob o dossel das árvores e, nos troncos dasárvores, coletores de água. A precipitação médiaanual foi de 1.514,5 mm, a precipitação interna foide 1.065,7 mm e o escoamento pelo tronco, de107,7 mm. A interceptação das chuvas pelas copase a precipitação efetiva resultaram em 341,1 e1.173,4 mm, respectivamente; correspondendo a22,5% e 77,5% do total da precipitação no seringal.A proporção de água que chega ao solo através doescoamento pelo tronco na seringueira foi superioraos obtidos em estudos similares realizados naregião Sudeste do Brasil. Os menores e maioresvalores percentuais de interceptação ocorreram noperíodo de estiagem, enquanto no período chuvosoos valores foram intermediários. Os valores mínimosocorreram durante os meses do período deestiagem, durante os quais as árvores estãodesfolhadas, enquanto os maiores valores ocorreramlogo a seguir, quando as chuvas que ainda têmcaracterísticas do período de estiagem ocorreramsobre as árvores com a folhagem recomposta.This research was developed in a 15years old rubber-tree plantation (RRIM 600,located in the municipality of José Bonifácio,São Paulo State. The reasearch evaluate the rainredistribution between August 1996 and July 1997(water year 1996/1997. It was estimated the grossand net precipitation, the throughfall, the stemflowand the crown interception loss. Non-recordingrain gauges were installed at an open area andunder the rubber tree canopy. Stemflow collectorswere installed at the

  16. Atmospheric deposition of nitrogen at five subtropical forested sites in South China

    International Nuclear Information System (INIS)

    Chen, Xi Yun; Mulder, Jan

    2007-01-01

    Elevated concentrations of reactive nitrogen (N) in precipitation have been reported for many cities in China. Due to increased use of fossil fuels and expansion in agriculture, further increases in deposition of ammonia (NH x ) and reactive N oxides (NO y ) are predicted. Increased deposition of reactive N is likely to affect N dynamics and N runoff in forest ecosystems. Yet, in China little work has been done to quantify the levels of atmospheric N deposition in such systems. Here, we assess the deposition of inorganic N (ammonium, NH 4 + and nitrate, NO 3 - ) for five subtropical forest ecosystems in remote and urban areas of South China. Annual volume-weighted concentrations in bulk precipitation range from 0.18 to 1.55 mg NH 4 + -N L - 1 and from 0.12 to 0.74 mg NO 3 - -N L - 1 . These values are large and several times greater than those reported for remote sites of the world. The fluxes of total inorganic N (TIN) in wet-only deposition range from 0.8 to 2.3 g N m - 2 yr - 1 , with NH 4 + -N contributing 54% to 77%. Both the tree canopy and the ground vegetation layer are important in determining the net N flux reaching the forest floor, but the net effect varies from site to site. At TieShanPing (TSP), close to Chongqing city, and at CaiJiaTang (CJT), near Shaoshan (Hunan province), the canopy represents a net source of N, probably due to dry deposition. At the other three sites (LiuChongGuan (LCG), LeiGongShan (LGS), both in Guizhou province, and LiuXiHe (LXH) in Guangdong), a net loss of reactive N from precipitation water occurs in the canopy, probably due to uptake processes. The total annual atmospheric TIN load is estimated to range from at least 0.8 g N m - 2 yr - 1 to 4.0 g N m - 2 yr - 1 , with a considerable contribution from dry deposition. Concentrations and fluxes of inorganic N in tree canopy throughfall are greater than those in North America. Also the contribution of NH 4 + -N to TIN fluxes in throughfall (40% to 70%) is greater than in North

  17. Chemical analysis of rainfall and throughfall in primary forest in the Tapajós National Forest, Belterra, Pará, Brazil

    Science.gov (United States)

    R.C. Oliveira Junior; M. Keller; J. F. da F. Ramos; T.P. Beldini; P.M Crill; P.B. de Camargo; J. van Haren

    2015-01-01

    The Tapajós National Forest (FLONA Tapajós) has 600,000 hectares of protected forest, and is situated 50 km south of the city of Santarém, Pará, Brazil, a port city of 250,000 inhabitants that is located at the confluence of the Tapajós and Amazon Rivers. There is a lot of farmland in the region, which offers many opportunities to study changes in land use. Selective...

  18. Chemical composition of precipitation in a forest area of Chongqing, southwest China

    International Nuclear Information System (INIS)

    Zhang, F.; Zhang, J.; Zhang, H.; Ogura, N.; Ushikubo, A.

    1996-01-01

    Experiments were carried out in Chongqing - a city seriously damaged by acid precipitation in southwest China - to explore chemical compositions of open bulk precipitation, throughfall and stemflow in a Masson pine (Pinus massoniana) forest. The results showed that annual mean pH values of and annual ion depositions in the three types of rain water were 4.47 and 50.6 g m -2 , 3.82 and 69.7 g m -2 m and 2.92 and 0.215 g m -2 respectively. pH values demonstrated an obvious seasonal variation; they were lower in winter than in the rest of the year. Ca 2+ and NH 4 + together made up more than 80% of the total cation, while SO 4 2- alone contributed over 90% to the total anion. This high level of SO 4 2- in rain water in Congqing, which outran those found in other cities in China, was closely related to the combustion of locally produced coal that contains 3 to 5% sulphur. Thus, acid precipitation in Chongqing is of a typical sulphuric-acid type. 6 refs., 3 figs., 6 tabs

  19. Use of 15N-labelled nitrogen deposition to quantify the source of nitrogen in runoff at a coniferous-forested catchment at Gardsjoen, Sweden

    International Nuclear Information System (INIS)

    Kjonaas, O. Janne; Wright, Richard F.

    2007-01-01

    To determine the source of dissolved inorganic nitrogen (N) in runoff, approx. 35 kg N enriched with the stable isotope 15 N (2110 per mille δ 15 N) was added to a mature coniferous forested catchment for one whole year. The total N input was approx. 50 kg ha -1 year -1 . The enrichment study was part of a long-term whole-catchment ammonium nitrate addition experiment at Gardsjoen, Sweden. The 15 N concentrations in precipitation, throughfall, runoff and upper forest floor were measured prior to, during, and 3-9 years following the 15 N addition. During the year of the 15 N addition the δ 15 N level in runoff largely reflected the level in incoming N, indicating that the leached NO 3 - came predominantly from precipitation. Only 1.1% of the incoming N was lost during the year of the tracer addition. The cumulative loss of tracer N over a 10-year period was only 3.9% as DIN and 1.1% as DON. - 15 N tracer addition showed that initially the main source of NO 3 - in runoff was N from atmospheric deposition

  20. Fluxes of oxidised and reduced nitrogen above a mixed coniferous forest exposed to various nitrogen emission sources

    International Nuclear Information System (INIS)

    Neirynck, J.; Kowalski, A.S.; Carrara, A.; Genouw, G.; Berghmans, P.; Ceulemans, R.

    2007-01-01

    Concentrations of nitrogen gases (NH 3 , NO 2 , NO, HONO and HNO 3 ) and particles (pNH 4 and pNO 3 ) were measured over a mixed coniferous forest impacted by high nitrogen loads. Nitrogen dioxide (NO 2 ) represented the main nitrogen form, followed by nitric oxide (NO) and ammonia (NH 3 ). A combination of gradient method (NH 3 and NO x ) and resistance modelling techniques (HNO 3 , HONO, pNH 4 and pNO 3 ) was used to calculate dry deposition of nitrogen compounds. Net flux of NH 3 amounted to -64 ng N m -2 s -1 over the measuring period. Net fluxes of NO x were upward (8.5 ng N m -2 s -1 ) with highest emission in the morning. Fluxes of other gases or aerosols substantially contributed to dry deposition. Total nitrogen deposition was estimated at -48 kg N ha -1 yr -1 and consisted for almost 80% of NH x . Comparison of throughfall nitrogen with total deposition suggested substantial uptake of reduced N (±15 kg N ha -1 yr -1 ) within the canopy. - Reduced nitrogen was found to be the main contributor to total deposition which was predominantly governed by dry deposition

  1. Some climatological factors of pine in the lake toba catchment area

    Science.gov (United States)

    Nasution, Z.

    2018-02-01

    The article deals with climatological factors of Pine at the Lake Toba Catchment Area also called drained basin, Pinus merkusii is a plant endemic in Sumatra. A central population of Pine in North Sumatra is located in the Tapanuli region to south of Lake Toba. Junghuhn discovered the species in the mountains range of Sipirok. He provisionally named the species as Pinus sumatrana. The article presents a detail analysis of approaches to climate factors, considers rainfall, air temperature, humidity, stemflow, throughfall and Interception following calculation of regression to determine relationship between precipitation with stemflow and interception. Stemflow, it is highly significant with significance of difference between correlation coefficients and z normal distribution. Temperature and relative humidity are the important components in the climate. These components influence the evaporation process and rainfall in the catchment. Pinus merkusii has the big crown interception. Stemflow and Interception has an opposite relation. Increasing of interception capacity will decrease stemflow. This type of Pine also has rough bark however significant channels so that, it flows water even during the wet season and caused the stemflow in Pinus merkusii relatively bigger.

  2. Behaviour of arsenic in forested catchments following a high-pollution period

    International Nuclear Information System (INIS)

    Novak, Martin; Erbanova, Lucie; Fottova, Daniela; Cudlin, Pavel; Kubena, Ales

    2011-01-01

    Due to high availability of adsorption sites, forested catchments could be net sinks for pollutant arsenic both during the period of increasing and decreasing pollution. We tested this hypothesis along a north-south pollution gradient in spruce die-back affected areas of Central Europe. For two water years (2007-2008), we monitored As fluxes via spruce-canopy throughfall, open-area precipitation, and runoff in four headwater catchments (Czech Republic). Since 1980, atmospheric As inputs decreased 26 times in the north, and 13 times in the south. Arsenic export by runoff was similar to atmospheric inputs at three sites, resulting in a near-zero As mass balance. One site exhibited a net export of As (2.2 g ha -1 yr -1 ). In contrast, the preceding period (1995-2006) showed much higher As fluxes, and higher As export. Czech catchments do not serve as net sinks of atmospheric As. A considerable proportion of old industrial arsenic is flushed out of the soil. - Following a period of high atmospheric As deposition, a considerable proportion of old industrial arsenic is flushed out of soil and exported from forested catchments.

  3. Bacterial Flux by Net Precipitation from the Phyllosphere to the Forest Floor.

    Science.gov (United States)

    Pound, P.; Van Stan, J. T., II; Moore, L. D.; Bittar, T.

    2016-12-01

    Transport pathways of microbes between ecosystem spheres (atmosphere, phyllosphere, and pedosphere) represent major fluxes in nutrient cycles and have the potential to significantly affect microbial ecological processes. We quantified a previously unexamined microbial flux from the phyllosphere to the pedosphere during rainfall and found it to be substantial. Net rainfall bacterial fluxes for throughfall and stemflow were quantified using flow cytometry and a quantitative Polymerase Chain Reaction (qPCR) assay for a Quercus virginiana (Mill., southern live oak) forest with heavy epiphyte cover of Tillandsia usneoides (L., Spanish moss) and Pleopeltis polypodiodes (L., resurrection fern) in coastal Georgia (Southeast USA). Total net precipitation flux of bacteria was 15 quadrillion cells year-1 ha-1, which (assuming a bacterial cell mass of 1 pg) is approximately 15 kg of bacterial biomass supply per year. Stemflow generation was low in this stand (rarely exceeded 10 L storm-1) yet still delivered half the annual net precipitation flux due to high bacterial concentration. The role of this previously unquantified bacterial flux in the forest floor has also been under studied, yet it may be significant by contributing functional community members (if living) or labile lysates (if dead).

  4. Are Mixed Tropical Tree Plantations More Resistant to Drought than Monocultures?

    Directory of Open Access Journals (Sweden)

    Norbert Kunert

    2015-06-01

    Full Text Available Tropical tree plantations usually consist of a single exotic fast growing species, but recent research describes positive effects on ecosystem functions from mixed tropical tree plantations. In this review, we present the current knowledge of drought resistance of tropical mixed species plantations and summarize preliminary evidence from a tree biodiversity experiment in Panama. Converting mono-specific stands into mixed ones may improve stand stability and might reduce increasing abiotic and biotic disturbances due to climate change. However, little is known about the extent to which tropical tree species or tropical tree communities can resist increasing disturbances in the short term, e.g., water limitations due to increasing dry season intensity or length, or about their resilience after such disturbances and their capacity to adapt to changing conditions in the long term. Studies relating drought resistance and resilience to community diversity are missing. Further, we highlight the urgent need for a multifactorial manipulative throughfall reduction experiment in tropical environments. The outcome of such studies would greatly assist the forestry sector in tropical regions to maintain highly productive and ecologically sound forest plantations in a changing climate.

  5. Nitrogen turnover and effects in forests

    International Nuclear Information System (INIS)

    Erisman, J.W.; De Vries, W.

    1999-10-01

    Apart from effects on the crown condition, atmospheric deposition also affects the nutritional status of forests. This refers specifically to the impact of N deposition that has gained in importance since the last decades due to steady decline in S emissions over that period. Preliminary data of bulk deposition and throughfall at some 60 Intensive Monitoring (level II) plots suggest that the average input of N and S is about equal. At low N deposition, an increase may be beneficial for forest growth, whereas the reverse may be true at elevated deposition. The relative contribution of the different fluxes in the nitrogen cycle is reasonably well known, with the exception of denitrification. The quantification of the input and output fluxes and the allocation of deposited nitrogen in the forest ecosystem prove to be difficult. Although knowledge on the response of forest ecosystems to N inputs has increased over the last decade, there is still a lack of information on the dynamics in critical N loads over a large range of environmental conditions. Furthermore, a European wide perspective of N saturation is still lacking. 132 refs

  6. Fogwater deposition modeling for terrestrial ecosystems: A review of developments and measurements

    Science.gov (United States)

    Katata, Genki

    2014-07-01

    Recent progress in modeling fogwater (and low cloud water) deposition over terrestrial ecosystems during fogwater droplet interception by vegetative surfaces is reviewed. Several types of models and parameterizations for fogwater deposition are discussed with comparing assumptions, input parameter requirements, and modeled processes. The relationships among deposition velocity of fogwater (Vd) in model results, wind speed, and plant species structures associated with literature values are gathered for model validation. Quantitative comparisons between model results and observations in forest environments revealed differences as large as 2 orders of magnitude, which are likely caused by uncertainties in measurement techniques over heterogeneous landscapes. Results from the literature review show that Vd values ranged from 2.1 to 8.0 cm s-1 for short vegetation, whereas Vd = 7.7-92 cm s-1 and 0-20 cm s-1 for forests measured by throughfall-based methods and the eddy covariance method, respectively. This review also discusses the current understanding of the impacts of fogwater deposition on atmosphere-land interactions and over complex terrain based on results from numerical studies. Lastly, future research priorities in innovative modeling and observational approaches for model validation are outlined.

  7. The effect of acid rain and altitude on concentration, δ34S, and δ18O of sulfate in the water from Sudety Mountains, Poland

    Science.gov (United States)

    Szynkiewicz, Anna; Modelska, Magdalena; Jedrysek, Mariusz Orion; Mastalerz, Maria

    2008-01-01

    The analyses of sulfate content, δ34S and δ18O of dissolved sulfate, and δ18O of water were carried out in a 14 km2 crystalline massif located in the Sudety Mountains (SW Poland) to 1) assess the amount of the sulfate delivered to the surface and groundwater systems by modern atmospheric precipitation, 2) determine the effect of altitude on these parameters, and 3) investigate their seasonal variations. In April and November of 2002, August 2003, and March and September of 2005, samples of water were collected from springs and streams of the massif. During these seasons, sulfate contents and δ18O(SO42−) values varied from 5.80 to 18.00 mg/l and from 3.96 to 8.23‰, respectively, showing distinctively higher values ofδ18O(SO42−) in wet seasons. The δ34S(SO42−) values had a relatively narrow range from 4.09 to 5.28‰ and were similar to those reported for organic matter in soil and the canopy throughfall in the Sudety Mountains.

  8. Effect of coppicing, thinning and throughfall reduction on soil water content and soil CO2 efflux in a sessile oak forest

    Czech Academy of Sciences Publication Activity Database

    Dařenová, Eva; Crabbe, Richard A.; Knott, R.; Uherková, B.; Kadavý, J.

    2018-01-01

    Roč. 52, č. 2 (2018), č. článku 9927. ISSN 0037-5330 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : coppice * precipitation * Quercus petraea * soil respiration * soil moisture Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Hydrology Impact factor: 1.495, year: 2016

  9. Modelling of Radionuclides Transfer and Ambient Dose Rates in Fukushima Forest Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Calmon, P.; Gonze, M.A.; Mourlon, C.; Simon-Cornu, M. [Institute of Radiation Protection and Nuclear Safety, CE Cadarache-Bat 153, BP3 - 13115 St-Paul-lez- Durance cedex (France)

    2014-07-01

    The Fukushima nuclear accident led to high atmospheric depositions of volatile fission products such as Caesium, Iodine and Tellurium isotopes, in north-eastern Japan. The radioactive content and ambient radiation level are particularly high in forest ecosystems, partly due to the enhancement of airborne radionuclides capture by forest canopies. The contamination is likely to be dominated in the next decades by Cesium-137, due to its long physical half-life (i.e. 30 years) and its ability to be immobilized and/or recycled within the biotic and abiotic forest components. Thus the long-term management of contaminated forested areas is an environmental, economic and social challenge for Japanese authorities. IRSN developed a forest model ten years ago and implemented it in the ASTRAL software. This model has been tested against measurements in various Fukushima forest stands with varying deposition and meteorological conditions, typical forest ecosystems quite different from those in western Europe, and also with a hilly landscape. This is a great opportunity to test, improve and validate our model. We can take advantage of the expertise gained following the Chernobyl accident fallout, of the data derived from Japanese publications and of the possibility to conduct field measurements. At first, a German scenario in a Norway spruce stand, following the Chernobyl accident has been tested. All deposition and rainfall events were documented. The model could reproduce very closely the dynamics of caesium concentration in soil and input fluxes (e.g. direct vs indirect throughfall, litterfall). For this scenario, deposition occurred mostly with rainfall and 90% of the total deposit was recovered in the soil layer 1 year after the accident. On the opposite, another scenario at Tochigi Prefecture in a Japanese cedar stand, for the Fukushima accident is characterized by 40% of deposition on the soil 1 year after the accident. For this scenario, much uncertainty concerns both

  10. Deposition of elements in a beechwood in the Central Apennines (National Park of Abruzzo) and their interaction with the crowns; Deposizione di elementi in una faggeta del parco Nazionale d`Abruzzo ed interazione chimica con le chiome

    Energy Technology Data Exchange (ETDEWEB)

    Talone, F.; Bussotti, F.; Grossoni, P. [Florence, Univ. (Italy). Dip. Biologia Vegetale, lab. Botanica Applicata e Forestale

    1998-03-01

    During a 12 months period (November 1992-October 1993) were collected samples of atmospheric depositions (open field, throughfall and stem flow) in a beechwood located in the central Apennine, far from pollution sources. The nutritional status of leaves and the fertility of the soil were also analysed. Results show only few acidic episodes, due to a long range atmospheric transport. Many cations, mainly potassium, are leached from the leaves, but their uptake by roots is very quick; the leaching occurs during the foliar growth rather than the senescence period. No stress symptoms have been observed in the leaves. During the winter months the branchlets also keep and filter the rain. The throughfall is usually less acidic than the open field depositions; whereas the stem flow carries much more acidity to the soil. Sea salt is one of the main component of the deposition chemistry, and likely it has an impact on the ecosystem. Deposition of anthropogenic elements as nitrogen and sulphur are quite little. [Italiano] Nel periodo Novembre 1992-Ottobre 1993 e` stata effettuata una campagna di campionamento delle deposizioni atmosferiche (acque raccolte in area coperta, sottochioma, e come scorrimento sul fusto) in una faggeta del Parco nazionale d`Abruzzo, localizzata lontano da pressione antropica e da fonti dirette d`inquinamento. Nel contempo sono stati analizzzati i parametri chimici e morfologici delle foglie di faggio e lo stato nutrizionale del suolo. I risultati indicano che, pur in presenza di limitati episodi di acidificazione dovuti al trasporto di inquinanti sulla lunga distanza, lo stato dell`ecosistema e` sostanzialmente buono. Gli elementi liscivati dalle chiome (soprattutto il potassio) vengono prontamente recuperati dalle radici e non sono state rilevate condizioni di stress. La liscivazione degli elementi avviene nel periodo di crescita e sviluppo delle foglie, piuttosto che in quello della loro senescenza. L`azione di trattenuta e filtraggio delle

  11. Atmospheric and surface water pollution interpretation in the Gdansk beltway impact range by the use of multivariate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dubiella-Jackowska, Aleksandra; Polkowska, Zaneta; Kudlak, Blazej; Namiesnik, Jacek [Chemical Faculty, Department of Analytical Chemistry, Gdansk University of Technology, Gdansk (Poland); Astel, Aleksander [Environmental Chemistry Research Unit, Institute of Biology and Environmental Protection, Pomeranian Academy, Slupsk (Poland); Staszek, Wojciech [Faculty of Physical Geography and Environmental Management, University of Gdansk, Gdansk (Poland)

    2010-09-15

    The present study deals with the application of the hierarchical cluster analysis and non-parametric tests in order to interpret the Gdansk Beltway impact range. The data set represents concentration values for major inorganic ions (Na{sup +}, NH{sub 4}{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, F{sup -}, Cl{sup -}, NO{sub 3}{sup -}, and SO{sub 4}{sup 2-}) as well as electrolytic conductivity and pH measured in various water samples [precipitation, throughfall water, road runoff, and surface water (drainage ditches, surface water reservoirs, and spring water)] collected in the vicinity of the beltway. Several similarity groups were discovered both in the objects and in the variables modes according to the water sample. In the majority of cases clear anthropogenic (fertilizers usage and transport, road salting in winter) and semi-natural (sea salt aerosols, erosion of construction materials) impacts were discovered. Spatial variation was discovered for road runoff samples and samples collected from surface water reservoirs and springs. Surprisingly no clear seasonal variability was discovered for precipitation chemistry, while some evidences for existing of summer and winter specific chemical profile was discovered for road runoff samples. In general, limited range of the Gdansk Beltway impact was proven. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  12. Fourth annual Walker Branch Watershed research symposium: Program and abstracts

    International Nuclear Information System (INIS)

    1993-03-01

    The methods and concepts of watershed research, originally applied in an experimental or monitoring mode to relatively small catchments, are increasingly being used at larger scales and for specific applied problems. Research at Oak Ridge National Laboratory, the Tennessee Valley Authority, the US Forest Service, and other agencies and institutions participating in this symposium reflects research over a broad range of spatial scales that is being integrated through large-scale experiments along with computer modeling and graphical interfaces. These research projects address the basic atmospheric, geophysical, biogeochemical, and biological processes that regulate the responses of forested ecosystems to natural environmental variation and anthropogenic stresses. This symposium highlights the use of large-scale ecosystem experiments to address environmental issues of global concern. These experiments provide the only effective way to test models of ecosystem response that are based on the current state of knowledge of hydrology, biogeochemistry, plant physiology, and other ecosystem processes. Major environmental problems that are being addressed include acidic deposition and nitrogen loading (Bear Brook Watershed, Maine; and the Girdsjoen Covered Catchment, Sweden); climate warming (Soil Warming Experiment, Maine); and altered rainfall amounts (Savannah River Loblolly Pine Soil Water Manipulation and the Walker Branch Watershed Throughfall Displacement Experiment)

  13. Influence of canopy drip on the indicative N, S and δ15N content in moss Hypnum cupressiforme

    International Nuclear Information System (INIS)

    Skudnik, Mitja; Jeran, Zvonka; Batič, Franc; Simončič, Primož; Lojen, Sonja; Kastelec, Damijana

    2014-01-01

    Samples of Hypnum cupressiforme were collected at two types of site in forest areas: within the forest stand and within forest openings, and analyzed for N and S concentrations and δ 15 N. Mosses sampled within forest openings reflect the atmospheric N deposition; however, no influence of throughfall N deposition on the N in the moss that was sampled within the forest stand was found, nor was any influence of S deposition on the S in the moss found. For the N and S concentrations in the mosses sampled within forest openings, the within-site variability was comparable to the between-site variability, and for the δ 15 N, the within-site variability was lower than the between-site. The results showed that a short distance ( 15 N content in moss on atmospheric deposition. • Moss sampled within forest openings reflect the atmospheric N but not S deposition. • Higher N and S content was found in mosses sampled in areas within the forest stand. • Metadata describing the boundary condition of moss sampling location is important. - H. cupressiforme reflects the atmospheric deposition of N but not S; a distance less than 1 m between the sampling site and the nearest tree crown increases the N and S concentrations in the moss

  14. Exploring the potential of the cosmic-ray neutron method to measure interception storage dynamics

    Science.gov (United States)

    Jakobi, Jannis; Bogena, Heye; Huisman, Johan Alexander; Diekkrüger, Bernd; Vereecken, Harry

    2017-04-01

    Cosmic-ray neutron soil moisture probes are an emerging technology that relies on the negative correlation between near-surface fast neutron counts and soil moisture content. Hydrogen atoms in the soil, which are mainly present as water, moderate the secondary neutrons on the way back to the surface. Any application of this method needs to consider the sensitivity of the neutron counts to additional sources of hydrogen (e.g. above- and below-ground biomass, humidity of the lower atmosphere, lattice water of the soil minerals, organic matter and water in the litter layer, intercepted water in the canopy, and soil organic matter). In this study, we analyzed the effects of canopy-intercepted water on the cosmic-ray neutron counts. For this, an arable field cropped with sugar beet was instrumented with several cosmic-ray neutron probes and a wireless sensor network with more than 140 in-situ soil moisture sensors. Additionally rainfall interception was estimated using a new approach coupling throughfall measurements and leaf wetness sensors. The derived interception storage was used to correct for interception effects on cosmic ray neutrons to enhance soil water content prediction. Furthermore, the potential for a simultaneous prediction of above- and below-ground biomass, soil moisture and interception was tested.

  15. Rainfall, fog and throughfall dynamics in a sub-tropical ridge-top cloud forest, National Park of Garajonay (La Gomera, Canary Islands, Spain)

    NARCIS (Netherlands)

    García-Santos, G.; Bruijnzeel, L.A.

    2011-01-01

    Mixed tree-heath/beech forest is a type of subtropical montane cloud forest found on wind- and fog-exposed ridges in the Canary Islands. With a dry season of 5 months and an annual precipitation of 600-700 mm, the extra water inputs through fog interception assume particular importance in this

  16. Transporting dynamics of radioactive cesium in a forest ecosystem and its discharge processes

    Energy Technology Data Exchange (ETDEWEB)

    Iseda, Kohei; Ohte, Nobuhito; Tanoi, Keitaro; Endo, Izuki; Oda, Tomoki; Kato, Hiroyu [Graduate School of Agricultural and Life Sciences, University of Tokyo (Japan)

    2014-07-01

    }Cs with open-rainfall, through-fall and stem-flow were monitored in each plot. {sup 137}Cs was not detected in open-rainfall. The through-fall {sup 137}Cs concentration of evergreen conifer stands tended to be higher than that of deciduous stands. There is large individual difference in stem-flow. These observed results suggest followings; 1) new atmospheric depositions of {sup 137}Cs is negligibly small 2) there is large amount of {sup 137}Cs which still attach to leaves or stems. We estimated movement flux of {sup 137}Cs from the canopy to the forest floor of to the forest. It was 6.07 Bq/(m{sup 2} day ) (2012/8/31-2013/4/19). In comparison between discharge flux of {sup 137}Cs from the forest and movement flux of {sup 137}Cs from the canopy to the forest floor, the latter was much higher than the former. This result implies that cesium is being accumulated in the forest floor. (authors)

  17. Canopy uptake of atmospheric N deposition at a conifer forest: part I -canopy N budget, photosynthetic efficiency and net ecosystem exchange

    International Nuclear Information System (INIS)

    Sievering, H.; Tomaszewski, T.; Torizzo, J.

    2007-01-01

    Global carbon cycle assessments of anthropogenic nitrogen (N) deposition influences on carbon sequestration often assume enhanced sequestration results. This assumption was evaluated at a Rocky Mountains spruce-fir forest. Forest canopy N uptake (CNU) of atmospheric N deposition was estimated by combining event wet and throughfall N fluxes with gradient measured HNO 3 and NH 3 as well as inferred (NO x and particulate N) dry fluxes. Approximately 80% of the growing-season 3 kg N/ha total deposition is retained in canopy foliage and branches. This CNU constitutes ∼1/3 of canopy growing season new N supply at this conifer forest site. Daytime net ecosystem exchange (NEE) significantly (P = 0.006) and negatively (CO 2 uptake) correlated with CNU. Multiple regression indicates ∼20% of daytime NEE may be attributed to CNU (P < 0.02); more than soil water content. A wet deposition N-amendment study (Tomaszewski and Sievering), at canopy spruce branches, increased their growing-season CNU by 40-50% above ambient. Fluorometry and gas exchange results show N-amended spruce branches had greater photosynthetic efficiency and higher carboxylation rates than control and untreated branches. N-amended branches had 25% less photoinhibition, with a 5-9% greater proportion of foliar-N-in-Rubisco. The combined results provide, partly, a mechanistic explanation for the NEE dependence on CNU

  18. Plasticity in leaf-level water relations of tropical rainforest trees in response to experimental drought.

    Science.gov (United States)

    Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Christoffersen, Bradley; Nardini, Andrea; Mencuccini, Maurizio

    2016-07-01

    The tropics are predicted to become warmer and drier, and understanding the sensitivity of tree species to drought is important for characterizing the risk to forests of climate change. This study makes use of a long-term drought experiment in the Amazon rainforest to evaluate the role of leaf-level water relations, leaf anatomy and their plasticity in response to drought in six tree genera. The variables (osmotic potential at full turgor, turgor loss point, capacitance, elastic modulus, relative water content and saturated water content) were compared between seasons and between plots (control and through-fall exclusion) enabling a comparison between short- and long-term plasticity in traits. Leaf anatomical traits were correlated with water relation parameters to determine whether water relations differed among tissues. The key findings were: osmotic adjustment occurred in response to the long-term drought treatment; species resistant to drought stress showed less osmotic adjustment than drought-sensitive species; and water relation traits were correlated with tissue properties, especially the thickness of the abaxial epidermis and the spongy mesophyll. These findings demonstrate that cell-level water relation traits can acclimate to long-term water stress, and highlight the limitations of extrapolating the results of short-term studies to temporal scales associated with climate change. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Manganese biogeochemistry in a central Czech Republic catchment

    Science.gov (United States)

    Navratil, T.; Shanley, J.B.; Skrivan, P.; Kram, P.; Mihaljevic, M.; Drahota, P.

    2007-01-01

    Mn biogeochemistry was studied from 1994 to 2003 in a small forested catchment in the central Czech Republic using the watershed mass balance approach together with measurements of internal stores and fluxes. Mn inputs in bulk deposition were relatively constant during a period of sharply decreasing acidic deposition, suggesting that the Mn source was terrestrial, and not from fossil fuel combustion. Mn inputs in bulk deposition and Mn supplied by weathering each averaged 13 mg m-2 year-1 (26 mg m -2 year-1 total input), whereas Mn export in streamwater and groundwater averaged 43 mg m-2 year-1. Thus an additional Mn source is needed to account for 17 mg m-2 year -1. Internal fluxes and pools of Mn were significantly greater than annual inputs and outputs. Throughfall Mn flux was 70 mg m-2 year-1, litterfall Mn flux was 103 mg m-2 year -1, and Mn net uptake by vegetation was 62 mg m-2 year-1. Large pools of labile or potentially labile Mn were present in biomass and surficial soil horizons. Small leakages from these large pools likely supply the additional Mn needed to close the watershed mass balance. This leakage may reflect an adjustment of the ecosystem to recent changes in atmospheric acidity. ?? 2007 Springer Science+Business Media B.V.

  20. Fluxes of oxidised and reduced nitrogen above a mixed coniferous forest exposed to various nitrogen emission sources

    Energy Technology Data Exchange (ETDEWEB)

    Neirynck, J. [Research Institute for Nature and Forest, Gaverstraat 4, B-9500 Geraardsbergen (Belgium)]. E-mail: johan.neirynck@inbo.be; Kowalski, A.S. [Departamento de Fisica Aplicida, Facultad de Ciencias, Universidad de Granada, Calle Fuentenueva, SP-18071 Granada (Spain); Carrara, A. [Fundacion CEAM, Parque Technologico, Calle Charles H. Darwin 14, SP-46980 Paterna (Valencia) (Spain); Genouw, G. [Research Institute for Nature and Forest, Gaverstraat 4, B-9500 Geraardsbergen (Belgium); Berghmans, P. [Flemish Institute for Technological Research, Boeretang 200, B-2400 Mol (Belgium); Ceulemans, R. [Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Antwerp) (Belgium)

    2007-09-15

    Concentrations of nitrogen gases (NH{sub 3}, NO{sub 2}, NO, HONO and HNO{sub 3}) and particles (pNH{sub 4} and pNO{sub 3}) were measured over a mixed coniferous forest impacted by high nitrogen loads. Nitrogen dioxide (NO{sub 2}) represented the main nitrogen form, followed by nitric oxide (NO) and ammonia (NH{sub 3}). A combination of gradient method (NH{sub 3} and NO {sub x} ) and resistance modelling techniques (HNO{sub 3}, HONO, pNH{sub 4} and pNO{sub 3}) was used to calculate dry deposition of nitrogen compounds. Net flux of NH{sub 3} amounted to -64 ng N m{sup -2} s{sup -1} over the measuring period. Net fluxes of NO {sub x} were upward (8.5 ng N m{sup -2} s{sup -1}) with highest emission in the morning. Fluxes of other gases or aerosols substantially contributed to dry deposition. Total nitrogen deposition was estimated at -48 kg N ha{sup -1} yr{sup -1} and consisted for almost 80% of NH {sub x} . Comparison of throughfall nitrogen with total deposition suggested substantial uptake of reduced N ({+-}15 kg N ha{sup -1} yr{sup -1}) within the canopy. - Reduced nitrogen was found to be the main contributor to total deposition which was predominantly governed by dry deposition.

  1. The role of litterfall in transferring Fukushima-derived radiocesium to a coniferous forest floor

    Energy Technology Data Exchange (ETDEWEB)

    Teramage, Mengistu T., E-mail: teramaget@yahoo.com [Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, Tennodai 1-1-1, Tsukuba shi, Ibaraki 305-8572 (Japan); Onda, Yuichi; Kato, Hiroaki [Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, Tennodai 1-1-1, Tsukuba shi, Ibaraki 305-8572 (Japan); Gomi, Takashi [Department of International Environmental and Agricultural Science, Tokyo University of Agriculture and Technology, Fuchuu, Tokyo 183-8509 (Japan)

    2014-08-15

    The deposition of Fukushima-derived radiocesium via falling litter in a coniferous forest 180 km downwind immediately following the nuclear power plant accident was investigated. The litterfall contribution to the transfer of radiocesium from the forest canopy to the forest floor was determined, and this pathway was compared with hydrological pathways. The results demonstrated that during the observation period, a total of approximately 5.5 kBq m{sup −2} of Fukushima-derived radiocesium was deposited on the forest floor through throughfall (53%), stemflow (2.3%) and litterfall (45%) routes. The data revealed that the contributions of hydrological pathways became less important as time passed. However, the litterfall route, which transferred approximately 31% (2.5 ± 0.6 kBq m{sup −2}) of the local fallout within the observation period, continued depositing radiocesium onto the forest floor. - Graphical abstract: Schematic diagram summarizing the depositional routes of radiocesium in the cypress forest during the observation period (March to October, 2011). - Highlights: • Fukushima-derived radiocesium deposition in a coniferous forest was explored. • Approximately 68% of the radiocesium was deposited onto the forest floor. • The ecological half-life of the radiocesium in the forest canopy was 180 days. • The roles of hydrological pathways decreased over time. • The litterfall route continued to deposit radiocesium onto the forest floor.

  2. [Dynamic Characteristics of Base Cations During Wet Deposition in Evergreen Broad-leaf Forest Ecosystem].

    Science.gov (United States)

    An, Si-wei; Sun, Tao; Ma, Ming; Wang, Ding-yong

    2015-12-01

    Based on field tests and laboratory experiments, effects of precipitation, throughfall, litterfall, and groundwater runoff of the ever-green broad-leaf forest on the dynamic characteristics of base cations in Simian Mountain were investigated from September 2012 to August 2013. The results showed that the rainfall of Simian Mountain was apparently acidic, with average pH of 4.90 and maximum pH of 5.14. The soil and canopies could increase pH of precipitation, with soils having the maximum increment, followed by the forest canopy. Forest canopy only had the function of interception on Na⁺. And precipitation could leach out Ca2⁺, Mg2⁺ and K⁺ of the canopies. Moreover, the degradation of litter was probably the main reason for the increase of base cations concentrations in the surface litter water. The litter water leached Ca2⁺, Mg2⁺ and Na⁺ of the forest soil through downward infiltration. The total retention rates of Ca²⁺, Mg²⁺, Na⁺ and K⁺ were 33.82%, -7.06%, 74.36% and 42.87%, respectively. Ca²⁺, Na⁺, K⁺ were found to be reserved in the forest ecosystem, and the highest interception rate was found for Na⁺.

  3. A study of cycling of 90Sr in a natural forest on the Canadian Shield

    International Nuclear Information System (INIS)

    Cooper, E.L.; Rahman, M.M.

    1994-01-01

    A study of the cycling of 90 Sr in a natural forest growing over a shallow zone of low-level 90 Sr-contaminated groundwater was carried out at the Chalk River Laboratories of AECL Research. The contamination is about 1 m below the surface under most of the site and evidence from earlier studies indicates that 90 Sr is being brought to the surface by deeper rooting trees. Once it is on the surface, the 90 Sr becomes available for uptake by other biota in the area. The study was initiated by taking an inventory of 90 Sr in various compartments including: soil, leaf litter, wood and foliage. Samples of leaf fall, stemflow and throughfall were also collected in order to estimate the relative importance of these mechanisms in cycling 90 Sr to the forest floor. Most of the 90 Sr on or near the surface is in the leaf litter and the top 8 cm of soil, as well as in the vegetation. Downward migration of 90 Sr through the unsaturated zone is slow. This may be due to strong retention by the soil; however, it could also be due to recycling of 90 Sr by the vegetation. The accumulated inventory in the leaf litter is about equal to the input from leaf fall over a period of 3 years

  4. Regional monitoring of deposition and effects of air pollution; Regional oevervakning av nedfall och effekter av luftfoeroreningar. Sammanfattande slutrapport fraan ett samarbetsprojekt mellan IVL, laenen och Naturvaardsverket

    Energy Technology Data Exchange (ETDEWEB)

    Akselsson, Cecilia; Ferm, Martin; Hallgren Larsson, Eva; Knulst, Johan; Loevblad, Gun; Malm, Gunnar; Westling, Olle

    2000-05-01

    Regional programmes in Sweden focused on deposition and effects of air pollutants have been evaluated by IVL, Swedish Environmental Research Institute. Various air quality protection associations and regional environmental authorities initiated the monitoring programmes during the period 1985 to 1990. The result of the evaluation is a revised and coordinated programme with improved methods. The new regional programme combines collection of field data with national model calculations of deposition of air pollutants. The new programme involves collection of deposition on open field (bulk) and in forest stands (throughfall), and soil solution, according to national and international standards. Improved methods for monitoring of base cation and nitrogen deposition have been developed. Ambient air concentrations are measured at some locations. The purpose is to describe environmental conditions, regional differences, and temporal changes. Data on forest stands, such as needle loss, growth, and soil chemistry, are available since most locations are permanent forest plots, established for scientific forest observations. Regional dispersion and deposition of air pollutants will be calculated with a model (SMHI-MATCH), developed for simulating the dispersion and deposition of Swedish emissions in relation to the long-range transport on a relatively fine scale (grid square 11 km). The programme also includes developed methods for data handling, interpretation, evaluation, quality assurance and demonstration of results in written reports and via Internet.

  5. Litterfall, precipitation and nutrient fluxes in a secondary lowland rain forest in Ile-Ife, Nigeria Queda de serrapilheira, precipitação e fluxo de nutrientes em uma floresta pluvial secundária de terras baixas em Il-Ife, Nigéria

    Directory of Open Access Journals (Sweden)

    Modupe B. Oziegbe

    2011-09-01

    Full Text Available Litterfall, precipitation and nutrient fluxes were investigated in a 0.25 ha plot of a secondary lowland rain forest in Ile-Ife, Nigeria, for a period of one year. The study determined the magnitude of nutrient fluxes through (litterfall, incident rainfall, throughfall and stemflow and evaluated the relative importance of these components as pathways of nutrient transport to the soil of this forest. There was a significant monthly variation in litterfall and the highest values of the standing crop of litter occurred from November to March. The concentration of elements in both throughfall and stemflow were higher than those of incidence rainfall. Greater quantities of calcium, magnesium, iron, zinc, copper and nitrogen were deposited annually from the forest floor while greater quantities of mercury, potassium, sodium, phosphorus, lead and sulphur were deposited via precipitation. There was net leaching of all elements from the canopy as precipitation pass through it with the exception of copper, hydrogen ions and lead, which were retained in the canopy. The finding of this study shows that litterfall is the major pathway for the cycling of calcium, magnesium, nitrogen and all micronutrients investigated. Net precipitation is the major pathway for the cycling of potassium, phosphorus, sulphur and trace toxic metals (mercury and lead in the forest.Produção de serapilheira, precipitação e o fluxo de nutrientes foram investigados em uma parcela de 0,25 ha de uma floresta pluvial secundária de terras baixas em Ile-Ife, Nigéria, por um período de um ano. O estudo determinou a magnitude dos fluxos de nutrientes através da serrapilheira, da chuva incidente, da interceptada, da escoada pelo tronco, e também avaliou a importância relativa desses componentes como vias de transporte de nutrientes para o solo desta floresta. Houve variação mensal significativa na produção e acúmulo de serapilheira com maiores valores ocorrendo de novembro a

  6. One year monitoring of fire-induced effects on dissolved organic matter and nutrient dynamics under different land-use

    Science.gov (United States)

    Potthast, Karin; Meyer, Stefanie; Crecelius, Anna; Schubert, Ulrich; Michalzik, Beate

    2016-04-01

    It is supposed that the changing climate will promote extreme weather events that in turn will increase drought periods and the abundance of fire events in temperate climate regions such as Central Europe. The impact of fires on the nutrient budgets of ecosystems is highly diverse and seems to depend on the ecosystem type. For example, little is known about fire effects on water-bound organic matter (OM) and nutrient fluxes in temperate managed forest ecosystems. Fires can strongly alter the distribution (forest floor vs. mineral soil), binding forms (organic vs. inorganic) and availability (solubility by water) of OM and associated nutrients. To elucidate the effects and seasonality of low intensity fires on the mobilization of dissolved organic carbon and nutrients, an experimental ground fire was conducted in November 2014 in the Hainich region, Central Germany. In addition, differences in response patterns between two land-use types (pasture and beech forest) were investigated. Lysimeters (n=5 controls/ 5 fire-manipulated) with topsoil monoliths (0-4 cm), rainfall/throughfall samplers, littertraps as well as temperature and moisture sensors were installed on three sites of each land-use type. During the one year of monitoring (Sep14-Dec15) soil solution, rainfall, and throughfall samples were taken biweekly and analyzed for pH, dissolved and particulate organic carbon (DOC, POC) and nitrogen (DN, PN) as well as for nutrients (e.g. K, Ca, Mg, P, S). Compared to the control sites, the ground fire immediately induced a short-run release peak of DOC in both land-use types. Within two weeks these differences were muted in the post-fire period. The effect of fire was land-use specific with annual DOC fluxes of 82 and 45 kg/(ha*a) for forest and pasture sites, respectively. In contrast, nitrogen fluxes responded differently to the fire event. In the forest, a significant increase in DN concentrations was notable five months after the fire, at the beginning of the

  7. Fluxes of inorganic and organic arsenic species in a Norway spruce forest floor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.-H. [Department of Soil Ecology, University of Bayreuth, D-95440 Bayreuth (Germany)], E-mail: jenhow.huang@uni-bayreuth.de; Matzner, Egbert [Department of Soil Ecology, University of Bayreuth, D-95440 Bayreuth (Germany)

    2007-09-15

    To identify the role of the forest floor in arsenic (As) biogeochemistry, concentrations and fluxes of inorganic and organic As in throughfall, litterfall and forest floor percolates at different layers were investigated. Nearly 40% of total As{sub total} input (5.3 g As ha{sup -1} yr{sup -1}) was retained in Oi layer, whereas As{sub total} fluxes from Oe and Oa layers exceeded the input by far (10.8 and 20 g As ha{sup -1} yr{sup -1}, respectively). Except dimethylarsinic acid (DMA), fluxes of organic As decreased with depth of forest floor so that <10% of total deposition (all <0.3 g As ha{sup -1} yr{sup -1}) reached the mineral soil. All forest floor layers are sinks for most organic As. Conversely, Oe and Oa layers are sources of As{sub total}, arsenite, arsenate and DMA. Significant correlations (r {>=} 0.43) between fluxes of As{sub total}, arsenite, arsenate or DMA and water indicate hydrological conditions and adsorption-desorption as factors influencing their release from the forest floor. The higher net release of arsenite from Oe and Oa and of DMA from Oa layer in the growing than dormant season also suggests microbial influences on the release of arsenite and DMA. - The forest floor layers are generally a source for inorganic arsenic species but a sink for most organic arsenic species under the present deposition rate.

  8. Biogeochemical cycle of boron in a forest ecosystem: the case study of Montiers beech-stand

    International Nuclear Information System (INIS)

    Roux, Philippe

    2016-01-01

    This thesis aims at establishing and understanding the biogeochemical cycle of boron and its isotopes within a forest ecosystem. In that context, many questions remain concerning the dynamics of boron within terrestrial ecosystems: - What are the major sources of boron? - What type of transfer occurs between the compartments of the environment? - What mechanisms are controlling those transfers? In order to establish this biogeochemical cycle, we quantified the different stocks (vegetation, humus and soil) and fluxes (atmospheric dust and dissolved deposition, throughfall, stem-flows, litterfall and drainage) of boron in the study site of Montiers. The use of boron isotopes will give us insight concerning the mechanisms controlling the dynamics of boron. This thesis is divided in 4 main parts: 1. The first part aims at establishing a new method of extraction, purification and measurement of boron and its isotopes within vegetation samples. 2. The second part focuses on the sources and mechanisms controlling boron within atmospheric dust and dissolved deposition on the study site of Montiers. 3. The third part aims at establishing the stocks and fluxes of boron on two distinct soils: a rendisoil (basic pH) and an alocrisoil (acid pH). The goal is to determine the influence of different soil properties on boron dynamics within its biogeochemical cycle. 4. The last part aims at establishing a model of boron and boron isotopes dynamics in the soil plant system. This model is mainly based of the measurement made in 2012. (author) [fr

  9. Reduced European emissions of S and N - Effects on air concentrations, deposition and soil water chemistry in Swedish forests

    Energy Technology Data Exchange (ETDEWEB)

    Pihl Karlsson, Gunilla, E-mail: gunilla.pihl.karlsson@ivl.se [IVL Swedish Environmental Research Institute, Box 5302, SE-400 14 Gothenburg (Sweden); Akselsson, Cecilia, E-mail: cecilia.akselsson@nateko.lu.se [Department of Earth and Ecosystem Sciences, Lund University, Soelvegatan 12, SE-223 62 Lund (Sweden); Hellsten, Sofie, E-mail: sofie.hellsten@ivl.se [IVL Swedish Environmental Research Institute, Box 5302, SE-400 14 Gothenburg (Sweden); Karlsson, Per Erik, E-mail: pererik.karlsson@ivl.se [IVL Swedish Environmental Research Institute, Box 5302, SE-400 14 Gothenburg (Sweden)

    2011-12-15

    Changes in sulphur and nitrogen pollution in Swedish forests have been assessed in relation to European emission reductions, based on measurements in the Swedish Throughfall Monitoring Network. Measurements were analysed over 20 years with a focus on the 12-year period 1996 to 2008. Air concentrations of SO{sub 2} and NO{sub 2}, have decreased. The SO{sub 4}-deposition has decreased in parallel with the European emission reductions. Soil water SO{sub 4}-concentrations have decreased at most sites but the pH, ANC and inorganic Al-concentrations indicated acidification recovery only at some of the sites. No changes in the bulk deposition of inorganic nitrogen could be demonstrated. Elevated NO{sub 3}-concentrations in the soil water occurred at irregular occasions at some southern sites. Despite considerable air pollution emission reductions in Europe, acidification recovery in Swedish forests soils is slow. Nitrogen deposition to Swedish forests continues at elevated levels that may lead to leaching of nitrate to surface waters. - Highlights: > S deposition to Swedish forests has decreased in parallel with European emissions. > Soil water pH, ANC and inorganic Al-concentrations indicated a slow recovery. > The bulk deposition of inorganic nitrogen over Sweden has not decreased. > Continued N deposition to Swedish forests may cause leaching of N to surface waters. - Reduced European emissions have led to decreased acidic deposition and a slow recovery of soil water but nitrogen deposition remains the same in Swedish forests.

  10. Evaporation from a tropical rain forest, Luquillo Experimental Forest, eastern Puerto Rico

    Science.gov (United States)

    Schellekens, J.; Bruijnzeel, L. A.; Scatena, F. N.; Bink, N. J.; Holwerda, F.

    2000-08-01

    Evaporation losses from a watertight 6.34 ha rain forest catchment under wet maritime tropical conditions in the Luquillo Experimental Forest, Puerto Rico, were determined using complementary hydrological and micrometeorological techniques during 1996 and 1997. At 6.6 mm d-1 for 1996 and 6.0 mm d-1 for 1997, the average evapotranspiration (ET) of the forest is exceptionally high. Rainfall interception (Ei), as evaluated from weekly throughfall measurements and an average stemflow fraction of 2.3%, accounted for much (62-74%) of the ET at 4.9 mm d-1 in 1996 and 3.7 mm d-1 in 1997. Average transpiration rates (Et) according to a combination of the temperature fluctuation method and the Penman-Monteith equation were modest at 2.2 mm d-1 and 2.4 mm d-1 in 1996 and 1997, respectively. Both estimates compared reasonably well with the water-budget-based estimates (ET - Ei) of 1.7 mm d-1 and 2.2 mm d-1. Inferred rates of wet canopy evaporation were roughly 4 to 5 times those predicted by the Penman-Monteith equation, with nighttime rates very similar to daytime rates, suggesting radiant energy is not the dominant controlling factor. A combination of advected energy from the nearby Atlantic Ocean, low aerodynamic resistance, plus frequent low-intensity rain is thought to be the most likely explanation of the observed discrepancy between measured and estimated Ei.

  11. Incorporating Ecosystem Experiments and Observations into Process Models of Forest Carbon and Water Cycles: Challenges and Solutions

    Science.gov (United States)

    Ward, E. J.; Thomas, R. Q.; Sun, G.; McNulty, S. G.; Domec, J. C.; Noormets, A.; King, J. S.

    2015-12-01

    Numerous studies, both experimental and observational, have been conducted over the past two decades in an attempt to understand how water and carbon cycling in terrestrial ecosystems may respond to changes in climatic conditions. These studies have produced a wealth of detailed data on key processes driving these cycles. In parallel, sophisticated models of these processes have been formulated to answer a variety of questions relevant to natural resource management. Recent advances in data assimilation techniques offer exciting new possibilities to combine this wealth of ecosystem data with process models of ecosystem function to improve prediction and quantify associated uncertainty. Using forests of the southeastern United States as our focus, we will specify how fine-scale physiological (e.g. half-hourly sap flux) can be scaled up with quantified error for use in models of stand growth and hydrology. This approach represents an opportunity to leverage current and past research from experiments including throughfall displacement × fertilization (PINEMAP), irrigation × fertilization (SETRES), elevated CO­2­ (Duke and ORNL FACE) and a variety of observational studies in both conifer and hardwood forests throughout the region, using a common platform for data assimilation and prediction. As part of this discussion, we will address variation in dominant species, stand structure, site age, management practices, soils and climate that represent both challenges to the development of a common analytical approach and opportunities to address questions of interest to policy makers and natural resource managers.

  12. Spatio-temporal variability of the deposited radioactive materials in forest environments after the Fukushima Daiichi NPP accident

    Science.gov (United States)

    Kato, H.; Onda, Y.; Komatsu, Y.; Yoda, H.

    2012-12-01

    Soil, vegetation and other ecological compartments are expected to be highly contaminated by the deposited radionuclides after the Fukushima Daiichi nuclear power plant (NPP) accident triggered by a magnitude 9.1 earthquake and the resulting tsunami on Marchi 11, 2011. Study site have been established in Yamakiya district, Kawamata Town, Fukushima prefecture, located about 35 km from Fukushima power plant, and designated as the evacuated zone. The total deposition of radioactive materials at the study site ranged from 0.02to >10 M Bq/m2 for Cs-137. The mature cedar, young cedar, and broad-leaf stands were selected as experimental site for the monitoring of spatio-temporal variability of the deposited radionuclides after the accidental release of radioactive materials. In order to measure the vertical distribution of radioactivity in forest, a tower with the same height of tree have been established at each experimental site. The measurement of radioactivity by using a portable Ge gamma-ray detector (Detective-DX-100, Ortec) and radionuclide analysis of leaf samples at different height revealed that a large proportion of radionuclides which deposited on forest were trapped by canopies of the cedar forests. In contrast, in the broad-leaf forest highest radioactivity was found at the forest floor. Furthermore, spatio-temporal variability of radioactivity at the forest floor indicated that huge amount of caesium still remains on the canopy of coniferous forest, and subsequently transfers to forest floor in association with throughfall, stemflow, and litter fall.

  13. Monitoring and modelling of biosphere/atmosphere exchange of gases and aerosols in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Erisman, Jan Willem [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands)]. E-mail: erisman@ecn.nl; Vermeulen, Alex [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands); Hensen, Arjan [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands); Flechard, Chris [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands); Daemmgen, Ulrich [Federal Agricultural Research Centre, Institute of Agroecology, D-38116 Braunschweig, (Germany); Fowler, David [CEH, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Sutton, Mark [CEH, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Gruenhage, Ludger [Institute for Plant Ecology, Justus-Liebig-University, D-35392 Giessen (Germany); Tuovinen, Juha-Pekka [Finnish Meteorological Institute, FIN-00810 Helsinki (Finland)

    2005-02-01

    Monitoring and modelling of deposition of air pollutants is essential to develop and evaluate policies to abate the effects related to air pollution and to determine the losses of pollutants from the atmosphere. Techniques for monitoring wet deposition fluxes are widely applied. A recent intercomparison experiment, however, showed that the uncertainty in wet deposition is relatively high, up to 40%, apart from the fact that most samplers are biased because of a dry deposition contribution. Wet deposition amounts to about 80% of the total deposition in Europe with a range of 10-90% and uncertainty should therefore be decreased. During recent years the monitoring of dry deposition has become possible. Three sites have been operational for 5 years. The data are useful for model development, but also for model evaluation and monitoring of progress in policy. Data show a decline in SO{sub 2} dry deposition, whereas nitrogen deposition remained constant. Furthermore, surface affinities for pollutants changed leading to changes in deposition. Deposition models have been further developed and tested with dry deposition measurements and total deposition measurements on forests as derived from throughfall data. The comparison is reasonable given the measurement uncertainties. Progress in ozone surface exchange modelling and monitoring shows that stomatal uptake can be quantified with reasonable accuracy, but external surface uptake yields highest uncertainty. - Monitoring and modelling of the deposition of sulphur and nitrogen components and the exposure of ozone has gained much progress through the research within BIATEX.

  14. Comparison of Tillandsia usneoides (Spanish moss) water and leachate dynamics between urban and pristine barrier island maritime oak forests

    Science.gov (United States)

    Van Stan, J. T.; Stubbins, A.; Reichard, J. S.; Wright, K.; Jenkins, R. B.

    2013-12-01

    Epiphyte coverage on forest canopies can drastically alter the volume and chemical composition of rainwater reaching soils. Along subtropical and tropical coastlines Tillandisa usneoides L. (Spanish moss), in particular, can envelop urban and natural tree crowns. Several cities actively manage their 'moss' covered forest to enhance aesthetics in the most active tourist areas (e.g., Savannah GA, St. Augustine FL, Charleston SC). Since T. usneoides survives through atmospheric water and solute exchange from specialized trichomes (scales), we hypothesized that T. usneoides water storage dynamics and leachate chemistry may be altered by exposure to this active urban atmosphere. 30 samples of T. usneoides from managed forests around the tourist center of Savannah, Georgia, USA were collected to compare with 30 samples from the pristine maritime live oak (Quercus virginiana Mill.) forests of a nearby undeveloped barrier island (St. Catherines Island, Georgia, USA). Maximum water storage capacities were determined via submersion (for all 60 samples) along with dissolved ion (DI) and organic matter (DOM) concentrations (for 15 samples each) after simulated throughfall generation using milliQ ultrapurified water. Further, DOM quality was evaluated (for 15 samples each) using absorbance and fluorescence spectroscopy (EEMS). Results show significant alterations to water storage dynamics, DI, DOM, and DOM quality metrics under urban atmospheric conditions, suggesting modified C and water cycling in urban forest canopies that may, in turn, influence intrasystem nutrient cycles in urban catchment soils or streams via runoff.

  15. Hydrologic exchanges and baldcypress water use on deltaic hummocks, Louisiana, USA

    Science.gov (United States)

    Hsueh, Yu-Hsin; Chambers, Jim L.; Krauss, Ken W.; Allen, Scott T.; Keim, Richard F.

    2016-01-01

    Coastal forested hummocks support clusters of trees in the saltwater–freshwater transition zone. To examine how hummocks support trees in mesohaline sites that are beyond physiological limits of the trees, we used salinity and stable isotopes (2H and 18O) of water as tracers to understand water fluxes in hummocks and uptake by baldcypress (Taxodium distichum (L.) Rich.), which is the most abundant tree species in coastal freshwater forests of the southeastern U.S. Hummocks were always partially submerged and were completely submerged 1 to 8% of the time during the two studied growing seasons, in association with high water in the estuary. Salinity, δ18O, and δ2H varied more in the shallow open water than in groundwater. Surface water and shallow groundwater were similar to throughfall in isotopic composition, which suggested dominance by rainfall. Salinity of groundwater in hummocks increased with depth, was higher than in swales, and fluctuated little over time. Isotopic composition of xylem water in baldcypress was similar to the vadose zone and unlike other measured sources, indicating that trees preferentially use unsaturated hummock tops as refugia from higher salinity and saturated soil in swales and the lower portions of hummocks. Sustained upward gradients of salinity from groundwater to surface water and vadose water, and low variation in groundwater salinity and isotopic composition, suggested long residence time, limited exchange with surface water, and that the shallow subsurface of hummocks is characterized by episodic salinization and slow dilution.

  16. Dynamic chemistry in the perched groundwater flowing through weathered bedrock underling a steep forested hillslope, north California

    Science.gov (United States)

    Kim, H.; Rempe, D. M.; Bishop, J. K.; Dietrich, W.; Fung, I.; Wood, T. J.

    2012-12-01

    The spatial and temporal pattern of groundwater chemistry in the seasonally perched groundwater systems that develop in the weathered bedrock zone under hillslopes have rarely been documented, yet chemical evolution of water here dictates the runoff chemistry to streams in many places. Here we exploit an intensively instrumented hillslope to document water well chemistry at three wells and adjacent stream. We have been sampling groundwater at daily frequency since October 2008 on a forested hillslope, "Rivendell", at the Angelo Coast Range Reserve located at the headwaters of the Eel River, California. The site is typical of California's coastal Mediterranean climate. The groundwater samples have been collected from a depth near the boundary between the weathered and fresh bedrock at three locations along the hillslope: Well 1 (bottom of hillslope), Well 3 (mid-slope), and Well 10 (near the ridge). Bulk rainwater and throughfall samples were collected at a meadow across the hillslope and at the middle of the slope, respectively, as well. Near the ridge (Well 10), during the first significant rainstorms of 2009 (133mm/42.5hours) and 2010 (220mm/42hours), when the water table changed only 0.32m and 0.66m, respectively, the concentration of Ca, Mg, and Na started to increase rapidly compared to the dry season (e.g. 2-6 μM vs 0.02-0.2μM [Mg]/day). However, during these same storms, K concentration sharply increased to 50-60 μM and decreased to 20-30μM, synchronizing with the water table responses. Throughfalls of these storms had at least 10 fold lower Ca, Mg, and Na concentrations than the well water while they had 10 fold higher K compared to the pre-event groundwater values. When the total seasonal cumulative rainfall exceeds 600 mm, the Well 10 solute concentration was diluted nearly 3 fold (e.g. [Mg] 0.3 mM vs. 0.1 mM) and the water table was raised significantly (2-6 meters). Throughout the rainy season, Well10 retained its diluted chemistry signature and on

  17. Contrasting residence times and fluxes of water and sulfate in two small forested watersheds in Virginia, USA.

    Science.gov (United States)

    Böhlke, John Karl; Michel, Robert L

    2009-07-01

    Watershed mass balances for solutes of atmospheric origin may be complicated by the residence times of water and solutes at various time scales. In two small forested headwater catchments in the Appalachian Mountains of Virginia, USA, mean annual export rates of SO(4)(=) differ by a factor of 2, and seasonal variations in SO(4)(=) concentrations in atmospheric deposition and stream water are out of phase. These features were investigated by comparing (3)H, (35)S, delta(34)S, delta(2)H, delta(18)O, delta(3)He, CFC-12, SF(6), and chemical analyses of open deposition, throughfall, stream water, and spring water. The concentrations of SO(4)(=) and radioactive (35)S were about twice as high in throughfall as in open deposition, but the weighted composite values of (35)S/S (11.1 and 12.1x10(-15)) and delta(34)S (+3.8 and +4.1 per thousand) were similar. In both streams (Shelter Run, Mill Run), (3)H concentrations and delta(34)S values during high flow were similar to those of modern deposition, delta(2)H and delta(18)O values exhibited damped seasonal variations, and (35)S/S ratios (0-3x10(-15)) were low throughout the year, indicating inter-seasonal to inter-annual storage and release of atmospheric SO(4)(=) in both watersheds. In the Mill Run watershed, (3)H concentrations in stream base flow (10-13 TU) were consistent with relatively young groundwater discharge, most delta(34)S values were approximately the same as the modern atmospheric deposition values, and the annual export rate of SO(4)(=) was equal to or slightly greater than the modern deposition rate. In the Shelter Run watershed, (3)H concentrations in stream base flow (1-3 TU) indicate that much of the discharging ground water had been deposited prior to the onset of atmospheric nuclear bomb testing in the 1950s, base flow delta(34)S values (+1.6 per thousand) were significantly lower than the modern deposition values, and the annual export rate of SO(4)(=) was less than the modern deposition rate

  18. Is splash erosion potential species specific? Measuring of splash erosion potential under forest in different succession stages along a biodiversity gradient in the humid subtropics

    Science.gov (United States)

    Geißler, C.; Kühn, P.; Scholten, T.

    2009-04-01

    is 2.5 times higher than in open field despite the fact that only 60 percent of open field rainfall reaches the ground. The results also indicate that sand loss is a function of the age of the specific forest stand and the variability of sand loss under different species with respect to space and time. These and future results will help managing afforestation projects in giving implications which of the species (resp. species compositions) may reduce most effectively potential splash erosion. References: Brandt, C. J. (1989): The size distribution of throughfall drops under vegetation canopies. Catena 16, p. 507-524. Calder, I. R. (2001): Canopy processes: implications for transpiration, interception and splash induced erosion, ultimately for forest management and water resources. Plant Ecology 153, p. 203-214. Ellison, W. D. (1947): Soil Erosion Studies - Part II. Soil Detachment Hazard by Raindrop Splash. Agricultural Engineering 28, p. 197-201. Foot, K.; Morgan, R. P. C. (2005): The role of leaf inclination, leaf orientation and plant canopy architecture in soil particle detachment by raindrops. Earth Surface Processes and Landforms 30, p. 1509-1520. Nanko, K.; Hotta, N. & Suzuki, M. (2006): Evaluating the influence of canopy species and meteorological factors on throughfall drop size distribution. Journal of Hydrology 329, p. 422-431. Vis, M. (1986): Interception, drop size distributions and rainfall kinetic energy in four colombian forest ecosystems. Earth Surface Processes and Landforms 11, p. 591-603.

  19. Overland flow generation processes in sub-humid Mediterranean forest stands

    Science.gov (United States)

    Ferreira, A. J. D.; Ferreira, C. S. S.; Coelho, C. O. A.; Walsh, R. P. D.; Shakesby, R. A.

    2012-04-01

    Forest soils in north and central Portugal have suffered and continue to suffer major structural changes as a result of forest management techniques, such as clear-felling and as a result of wildfire and rip-ploughing, which is carried out to prepare the ground for planting tree seedlings. In soils that have undergone these changes, the characteristics tend to be different for coniferous plantations, where the root system tends to die when the trees are cut following fire and subsequently may be consumed by fire to form a macropore network, and other types of tree plantations where the root system remains alive and allows regrowth from the sawn tree stumps. Overland flow thresholds decrease sharply as a result of rip-ploughing and forest fires and increase following clear-felling. The time taken for trees to reach maturity after wildfire differs markedly betwen the two main species (Pinus pinaster Aiton and Eucalyptus globulus Labill.) stands. In this paper, overland flow is considered in relation to rainfall, throughfall and throughflow, both in terms of hydrology and hydrochemistry in an attempt to understand overland flow generation mechanisms for a variety of forest land uses (mature pine and eucalyptus, pine seedling regrowth and eucalyptus regrowth from tree stumps, eucalyptus plantations and burned pine). Overland flow generation processes change sharply, even within a single rainfall event, as reflected in the soil hydrological processes and the hydrochemical fingerprints. These effects result from the different contact times for water and soil, which cause differences in the absorption and exhudation processes for the two species

  20. Leaf area index estimation in a pine plantation with LAI-2000 under direct sunlight conditions: relationship with inventory and hydrologic variables; Estimacion del indice de area foliar en pinares de repolacion con LAI-2000 bajo radiacion solar directa: relacion con variables de inventario e hidrologicas

    Energy Technology Data Exchange (ETDEWEB)

    Molina, A.; Campo, A. D. del

    2011-07-01

    LAI is a key factor in light and rainfall interception processes in forest stands and, for this reason, is called to play an important role in global change adaptive silviculture. Therefore, it is necessary to develop practical and operative methodologies to measure this parameter as well as simple relationships with other silviculture variables. This work has studied 1) the feasibility of LAI-2000 sensor in estimating LAI-stand when readings are taken under direct sunlight conditions; and 2) the ability of LAI in studying rainfall partitioned into throughfall (T) in an Aleppo pine stand after different thinning intensities, as well as its relationships to basal area, (G), cover (FCC), and tree density (D). Results showed that the angular correction scheme applied to LAI-2000 direct-sunlight readings stabilized them for different solar angles, allowing a better operational use of LAI-2000 in Mediterranean areas, where uniform overcast conditions are difficult to meet and predict. Forest cover showed the highest predictive ability of LAI (R{sup 2} = 0.98; S = 0.28), then G (R{sup 2} = 0.96; S = 0.43) and D (R{sup 2} = 0.50; S = 0.28). In the hydrological plane, T increased with thinning intensity, being G the most explanatory variable (R{sup 2} = 0.81; S = 3.07) and LAI the one that showed the poorest relation with it (R{sup 2} = 0.69; S = 3.95). These results open a way for forest hydrologic modeling taking LAI as an input variable either estimated form LAI-2000 or deducted from inventory data. (Author) 36 refs.

  1. Case study: Rainfall partitioning across a natural-to-urban forest gradient during an extreme rain event

    Science.gov (United States)

    Akin, B. H.; Van Stan, J. T., II; Cote, J. F.; Jarvis, M. T.; Underwood, J.; Friesen, J.; Hildebrandt, A.; Maldonado, G.

    2017-12-01

    Trees' partitioning of rainfall is an important first process along the rainfall-to-runoff pathway that has economically significant influences on urban stormwater management. However, important knowledge gaps exist regarding (1) its role during extreme storms and (2) how this role changes as forest structure is altered by urbanization. Little research has been conducted on canopy rainfall partitioning during large, intense storms, likely because canopy water storage is rapidly overwhelmed (i.e., 1-3 mm) by short duration events exceeding, for example, 80 mm of rainfall. However, canopy structure controls more than just storage; it also affects the time for rain to drain to the surface (becoming throughfall) and the micrometeorological conditions that drive wet canopy evaporation. In fact, observations from an example extreme ( 100 mm with maximum 5-minute intensities exceeding 55 mm/h) storm across a urban-to-natural gradient in pine forests in southeast Georgia (USA), show that storm intensities were differentially dampened by 33% (tree row), 28% (forest fragment), and 17% (natural forests). In addition, maximum wet canopy evaporation rates were higher for the exposed tree row (0.18 mm/h) than for the partially-enclosed fragment canopy (0.14 mm/h) and the closed canopy natural forest site (0.11). This resulted in interception percentages decreasing from urban-to-natural stand structures (25% to 16%). A synoptic analysis of the extreme storm in this case study also shows that the mesoscale meteorological conditions that developed the heavy rainfall is expected to occur more often with projected climate changes.

  2. Linkage between canopy water storage and drop size distributions of leaf drips

    Science.gov (United States)

    Nanko, Kazuki; Watanabe, Ai; Hotta, Norifumi; Suzuki, Masakazu

    2013-04-01

    Differences in drop size distribution (DSD) of leaf drips among tree species have been estimated and physically interpreted to clarify the leaf drip generation process. Leaf drip generation experiments for nine species were conducted in an indoor location without foliage vibration using an automatic mist spray. Broad-leaved species produced a similar DSD among species whose leaves had a matte surface and a second similar DSD among species whose leaves had a coated surface. The matte broad leaves produced a larger and wider range of DSDs than the coated broad leaves. Coated coniferous needles had a wider range of DSDs than the coated broad leaves and different DSDs were observed for different species. The species with shorter dense needles generated a larger DSD. The leaf drip diameter was calculated through the estimation of a state of equilibrium of a hanging drop on the leaves based on physical theory. The calculations indicated that the maximum diameter of leaf drips was determined by the contact angle, and the range of DSDs was determined by the variation in contact length and the contact diameter at the hanging points. The results revealed that leaf drip DSD changed due to variations in leaf hydrophobicity, leaf roughness, leaf geometry and leaf inclination among the different tree species. This study allows the modelization of throughfall DSD. Furthermore, it indicates the possibility of interpreting canopy water processes from canopy water storage to drainage through the contact angle and leaf drip DSD. The part of this study is published in Nanko et al. (2013, Agric. Forest. Meteorol. 169, 74-84).

  3. A critical assessment of the JULES land surface model hydrology for humid tropical environments

    Science.gov (United States)

    Zulkafli, Z.; Buytaert, W.; Onof, C.; Lavado, W.; Guyot, J. L.

    2013-03-01

    Global land surface models (LSMs) such as the Joint UK Land Environment Simulator (JULES) are originally developed to provide surface boundary conditions for climate models. They are increasingly used for hydrological simulation, for instance to simulate the impacts of land use changes and other perturbations on the water cycle. This study investigates how well such models represent the major hydrological fluxes at the relevant spatial and temporal scales - an important question for reliable model applications in poorly understood, data-scarce environments. The JULES-LSM is implemented in a 360 000 km2 humid tropical mountain basin of the Peruvian Andes-Amazon at 12-km grid resolution, forced with daily satellite and climate reanalysis data. The simulations are evaluated using conventional discharge-based evaluation methods, and by further comparing the magnitude and internal variability of the basin surface fluxes such as evapotranspiration, throughfall, and surface and subsurface runoff of the model with those observed in similar environments elsewhere. We find reasonably positive model efficiencies and high correlations between the simulated and observed streamflows, but high root-mean-square errors affecting the performance in smaller, upper sub-basins. We attribute this to errors in the water balance and JULES-LSM's inability to model baseflow. We also found a tendency to under-represent the high evapotranspiration rates of the region. We conclude that strategies to improve the representation of tropical systems to be (1) addressing errors in the forcing and (2) incorporating local wetland and regional floodplain in the subsurface representation.

  4. Regional Groundwater and Storms Are Hydrologic Controls on the Quality and Export of Dissolved Organic Matter in Two Tropical Rainforest Streams, Costa Rica

    Science.gov (United States)

    Osburn, Christopher L.; Oviedo-Vargas, Diana; Barnett, Emily; Dierick, Diego; Oberbauer, Steven F.; Genereux, David P.

    2018-03-01

    A paired-watershed approach was used to compare the quality and fluxes of dissolved organic matter (DOM) during stormflow and baseflow in two lowland tropical rainforest streams located in northeastern Costa Rica. The Arboleda stream received regional groundwater (RGW) flow, whereas the Taconazo stream did not. DOM quality was assessed with absorbance and fluorescence and stable carbon isotope (δ13C-DOC) values. RGW DOM lacked detectable fluorescence and had specific ultraviolet absorption (SUVA254) and absorbance slope ratio (SR) values consistent with low aromaticity and low molecular weight material, respectively. We attributed these properties to microbial degradation and sorption of humic DOM to mineral surfaces during transport through bedrock. SUVA254 values were lower and SR values were higher in the Arboleda stream during baseflow compared to the Taconazo stream, presumably due to dilution by RGW. However, no significant difference in SUVA254 or SR occurred between the streams during stormflow. SUVA254 was negatively correlated to δ13C-DOC (r2 = 0.61, P runoff containing soil and throughfall C sources. Mean DOC export from the Taconazo stream during the study period was 2.62 ± 0.39 g C m-2 year-1, consistent with other tropical streams, yet mean DOC export from the Arboleda stream was 13.79 ± 2.07 g C m-2 year-1, one of the highest exports reported and demonstrating a substantial impact of old RGW from outside the watershed boundary can have on surface water carbon cycling.

  5. Relationships between soluble sugar concentrations in roots and ecosystem stress for first-year sugar maple seedlings

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, J.W.; Reed, D.D.; Jurgensen, M.F.; Mroz, G.D.; Bagley, S.T. [Michigan Technological University, Houghton, MI (United States). School of Forestry and Wood Products

    1996-03-01

    Accumulation of reducing sugars (i.e. glucose and fructose) in plant roots has been consistently correlated with forest dieback and decline and, therefore, has potential as a biological indicator of ecosystem stress. In this study, the relationships between acidic deposition and `natural` (temperature, mycorrhizae, and nutrition) factors with first-year sugar maple seedling root sugar concentrations and growth were assessed in two sugar maple dominated forests in Michigan. Seedlings at the southern site (Wellston) had greater root growth, phosphorus, total sugar, and sucrose concentrations in roots, but lower reducing sugar concentration in roots. In addition, percent root length colonized by vesicular-arbuscular mycorrhizal fungi was less than that found for seedlings growing at the northern site (Alberta). Throughfall deposition of nitrate, sulfate, and hydrogen ions was not significantly correlated with seedling total or reducing sugar concentration. Total sugar concentration in seedling roots was positively correlated with air and soil temperatures at the southern site, but not at the northern site. Seedling tissue phosphorus concentration was correlated with total sugars at both sites, with sucrose at the southern site, and reducing sugars at the northern site. Mycorrhizal colonization rates at the Alberta site were positively correlated with reducing sugar concentration in seedling roots and negatively correlated with sucrose concentration. The results suggest that differences in seedling root sugar concentrations in these two forests are related to seedling root growth and are most likely due to ecological variables, such as available soil phosphorus, temperature, and growing season length through some complex interaction with mycorrhizae rather than acidic deposition stress. 56 refs., 3 figs.

  6. Water, energy, and biogeochemical budgets investigation at Panola Mountain research watershed, Stockbridge, Georgia; a research plan

    Science.gov (United States)

    Huntington, T.G.; Hooper, R.P.; Peters, N.E.; Bullen, T.D.; Kendall, Carol

    1993-01-01

    The Panola Mountain Research Watershed (PMRW), located in the Panola Mountain State Conservation Park near Stockbridge, Georgia has been selected as a core research watershed under the Water, Energy and Biogeochemical Budgets (WEBB) research initiative of the U.S. Geological Survey (USGS) Global Climate Change Program. This research plan describes ongoing and planned research activities at PMRW from 1984 to 1994. Since 1984, PMRW has been studied as a geochemical process research site under the U.S. Acid Precipitation Thrust Program. Research conducted under this Thrust Program focused on the estimation of dry atmospheric deposition, short-term temporal variability of streamwater chemistry, sulfate adsorption characteristics of the soils, groundwater chemistry, throughfall chemistry, and streamwater quality. The Acid Precipitation Thrust Program continues (1993) to support data collection and a water-quality laboratory. Proposed research to be supported by the WEBB program is organized in 3 interrelated categories: streamflow generation and water-quality evolution, weathering and geochemical evolution, and regulation of soil-water chemistry. Proposed research on streamflow generation and water-quality evolution will focus on subsurface water movement, its influence in streamflow generation, and the associated chemical changes of the water that take place along its flowpath. Proposed research on weathering and geochemical evolution will identify the sources of cations observed in the streamwater at Panola Mountain and quantify the changes in cation source during storms. Proposed research on regulation of soil-water chemistry will focus on the poorly understood processes that regulate soil-water and groundwater chemistry. (USGS)

  7. Precipitation and air temperature control the variations of dissolved organic matter along an altitudinal forest gradient, Gongga Mountains, China.

    Science.gov (United States)

    Hu, Zhaoyong; Wang, Genxu; Sun, Xiangyang

    2017-04-01

    Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) contribute significantly to C and N cycling in forest ecosystems. Little information is available on the variations in the DOC and DON concentrations and depositions in bulk and stand precipitation within forests along an altitudinal gradient. To determine the temporal variations in the DOC and DON concentrations and depositions in different forests and the spatial variations along the elevation gradient, the DOC and DON concentrations and depositions were measured in bulk precipitation, throughfall, and stemflow within three forest types, i.e., broadleaf forest (BLF), broadleaf-coniferous forest (BCF), and coniferous forest (CF), during the wet season (May to October) on Gongga Mountain, China, in 2015. The concentrations of bulk precipitation in BLF, BCF, and CF were 3.92, 4.04, and 2.65 mg L -1 , respectively, for DOC and were 0.38, 0.26, and 0.29 mg L -1 , respectively, for DON. BCF had the highest DOC deposition both in bulk precipitation (45.12 kg ha -1 ) and stand precipitation (98.52 kg ha -1 ), whereas the highest DON deposition was in BLF (3.62 kg ha -1 bulk precipitation and 4.11 kg ha -1 stand precipitation) during the study period. The meteorological conditions of precipitation and air temperature significantly influenced the dissolved organic matter (DOM) depositions along the elevation gradient. The leaf area index did not show any correlation with DOM depositions during the growing season.

  8. Response of South American Ecosystems to Precipitation Variability

    Science.gov (United States)

    Knox, R. G.; Kim, Y.; Longo, M.; Medvigy, D.; Wang, J.; Moorcroft, P. R.; Bras, R. L.

    2009-12-01

    The Ecosystem Demography Model 2 is a dynamic ecosystem model and land surface energy balance model. ED2 discretizes landscapes of particular terrain and meteorology into fractional areas of unique disturbance history. Each fraction, defined by a shared vertical soil column and canopy air space, contains a stratum of plant groups unique in functional type, size and number density. The result is a vertically distributed representation of energy transfer and plant dynamics (mortality, productivity, recruitment, disturbance, resource competition, etc) that successfully approximates the behaviour of individual-based vegetation models. In previous exercises simulating Amazonian land surface dynamics with ED 2, it was observed that when using grid averaged precipitation as an external forcing the resulting water balance typically over-estimated leaf interception and leaf evaporation while under estimating through-fall and transpiration. To investigate this result, two scenario were conducted in which land surface biophysics and ecosystem demography over the Northern portion of South America are simulated over ~200 years: (1) ED2 is forced with grid averaged values taken from the ERA40 reanalysis meteorological dataset; (2) ED2 is forced with ERA40 reanalysis, but with its precipitation re-sampled to reflect statistical qualities of point precipitation found at rain gauge stations in the region. The findings in this study suggest that the equilibrium moisture states and vegetation demography are co-dependent and show sensitivity to temporal variability in precipitation. These sensitivities will need to be accounted for in future projections of coupled climate-ecosystem changes in South America.

  9. Leaf area index estimation in a pine plantation with LAI-2000 under direct sunlight conditions: relationship with inventory and hydrologic variables

    International Nuclear Information System (INIS)

    Molina, A.; Campo, A. D. del

    2011-01-01

    LAI is a key factor in light and rainfall interception processes in forest stands and, for this reason, is called to play an important role in global change adaptive silviculture. Therefore, it is necessary to develop practical and operative methodologies to measure this parameter as well as simple relationships with other silviculture variables. This work has studied 1) the feasibility of LAI-2000 sensor in estimating LAI-stand when readings are taken under direct sunlight conditions; and 2) the ability of LAI in studying rainfall partitioned into throughfall (T) in an Aleppo pine stand after different thinning intensities, as well as its relationships to basal area, (G), cover (FCC), and tree density (D). Results showed that the angular correction scheme applied to LAI-2000 direct-sunlight readings stabilized them for different solar angles, allowing a better operational use of LAI-2000 in Mediterranean areas, where uniform overcast conditions are difficult to meet and predict. Forest cover showed the highest predictive ability of LAI (R 2 = 0.98; S = 0.28), then G (R 2 = 0.96; S = 0.43) and D (R 2 = 0.50; S = 0.28). In the hydrological plane, T increased with thinning intensity, being G the most explanatory variable (R 2 = 0.81; S = 3.07) and LAI the one that showed the poorest relation with it (R 2 = 0.69; S = 3.95). These results open a way for forest hydrologic modeling taking LAI as an input variable either estimated form LAI-2000 or deducted from inventory data. (Author) 36 refs.

  10. Differential controls by climate and physiology over the emission rates of biogenic volatile organic compounds from mature trees in a semi-arid pine forest.

    Science.gov (United States)

    Eller, Allyson S D; Young, Lindsay L; Trowbridge, Amy M; Monson, Russell K

    2016-02-01

    Drought has the potential to influence the emission of biogenic volatile organic compounds (BVOCs) from forests and thus affect the oxidative capacity of the atmosphere. Our understanding of these influences is limited, in part, by a lack of field observations on mature trees and the small number of BVOCs monitored. We studied 50- to 60-year-old Pinus ponderosa trees in a semi-arid forest that experience early summer drought followed by late-summer monsoon rains, and observed emissions for five BVOCs-monoterpenes, methylbutenol, methanol, acetaldehyde and acetone. We also constructed a throughfall-interception experiment to create "wetter" and "drier" plots. Generally, trees in drier plots exhibited reduced sap flow, photosynthesis, and stomatal conductances, while BVOC emission rates were unaffected by the artificial drought treatments. During the natural, early summer drought, a physiological threshold appeared to be crossed when photosynthesis ≅2 μmol m(-2) s(-1) and conductance ≅0.02 mol m(-2) s(-1). Below this threshold, BVOC emissions are correlated with leaf physiology (photosynthesis and conductance) while BVOC emissions are not correlated with other physicochemical factors (e.g., compound volatility and tissue BVOC concentration) that have been shown in past studies to influence emissions. The proportional loss of C to BVOC emission was highest during the drought primarily due to reduced CO2 assimilation. It appears that seasonal drought changes the relations among BVOC emissions, photosynthesis and conductance. When drought is relaxed, BVOC emission rates are explained mostly by seasonal temperature, but when seasonal drought is maximal, photosynthesis and conductance-the physiological processes which best explain BVOC emission rates-decline, possibly indicating a more direct role of physiology in controlling BVOC emission.

  11. Input and output budgets of radiocesium concerning the forest floor in the mountain forest of Fukushima released from the TEPCO's Fukushima Dai-ichi nuclear power plant accident

    International Nuclear Information System (INIS)

    Niizato, Tadafumi; Abe, Hironobu; Mitachi, Katsuaki; Sasaki, Yoshito; Ishii, Yasuo; Watanabe, Takayoshi

    2016-01-01

    Estimations of radiocesium input and output concerning the forest floor within a mountain forest region have been conducted in the north and central part of the Abukuma Mountains of Fukushima, northeast Japan, after a 2–3 year period following the TEPCO Fukushima Dai-ichi nuclear power plant accident. The radiocesium input and output associated with surface washoff, throughfall, stemflow, and litterfall processes at experimental plots installed on the forest floor of evergreen Japanese cedars and deciduous Konara oaks have been monitored. Despite the high output potential in the mountainous forest of Fukushima, the results at both monitoring locations show the radiocesium input to be 4–50 times higher than the output during the summer monsoon in Fukushima. These results indicate that the radiocesium tends to be preserved in the forest ecosystem due to extremely low output ratios (0.05%–0.19%). Thus, the associated fluxes throughout the circulation process are key issues for the projecting the environmental fate of the radiocesium levels, along with the subsequent reconstruction of life emphasized within the setting. - Highlights: • Input and output budgets of radiocesium in the mountainous forest of Fukushima were investigated in 2013 and 2014. • "1"3"7Cs outputs were 4–50 times higher than the "1"3"7Cs outputs during the monsoons. • The proportion of "1"3"7Cs output to radiocesium inventories was in the range of 0.05%–0.19% during the monsoons. • Radiocesium tends to be preserved in the forest ecosystem due to extremely low output ratios. • The forest floor seems to be a sink of radiocesium contamination than a source for the other ecosystems.

  12. After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration.

    Science.gov (United States)

    Rowland, Lucy; Lobo-do-Vale, Raquel L; Christoffersen, Bradley O; Melém, Eliane A; Kruijt, Bart; Vasconcelos, Steel S; Domingues, Tomas; Binks, Oliver J; Oliveira, Alex A R; Metcalfe, Daniel; da Costa, Antonio C L; Mencuccini, Maurizio; Meir, Patrick

    2015-12-01

    Determining climate change feedbacks from tropical rainforests requires an understanding of how carbon gain through photosynthesis and loss through respiration will be altered. One of the key changes that tropical rainforests may experience under future climate change scenarios is reduced soil moisture availability. In this study we examine if and how both leaf photosynthesis and leaf dark respiration acclimate following more than 12 years of experimental soil moisture deficit, via a through-fall exclusion experiment (TFE) in an eastern Amazonian rainforest. We find that experimentally drought-stressed trees and taxa maintain the same maximum leaf photosynthetic capacity as trees in corresponding control forest, independent of their susceptibility to drought-induced mortality. We hypothesize that photosynthetic capacity is maintained across all treatments and taxa to take advantage of short-lived periods of high moisture availability, when stomatal conductance (gs ) and photosynthesis can increase rapidly, potentially compensating for reduced assimilate supply at other times. Average leaf dark respiration (Rd ) was elevated in the TFE-treated forest trees relative to the control by 28.2 ± 2.8% (mean ± one standard error). This mean Rd value was dominated by a 48.5 ± 3.6% increase in the Rd of drought-sensitive taxa, and likely reflects the need for additional metabolic support required for stress-related repair, and hydraulic or osmotic maintenance processes. Following soil moisture deficit that is maintained for several years, our data suggest that changes in respiration drive greater shifts in the canopy carbon balance, than changes in photosynthetic capacity. © 2015 John Wiley & Sons Ltd.

  13. The effects of rainfall partitioning and evapotranspiration on the temporal and spatial variation of soil water content in a Mediterranean agroforestry system

    Science.gov (United States)

    Biel, C.; Molina, A.; Aranda, X.; Llorens, P.; Savé, R.

    2012-04-01

    Tree plantation for wood production has been proposed to mitigate CO2-related climate change. Although these agroforestry systems can contribute to maintain the agriculture in some areas placed between rainfed crops and secondary forests, water scarcity in Mediterranean climate could restrict its growth, and their presence will affect the water balance. Tree plantations management (species, plant density, irrigation, etc), hence, can be used to affect the water balance, resulting in water availability improvement and buffering of the water cycle. Soil water content and meteorological data are widely used in agroforestry systems as indicators of vegetation water use, and consequently to define water management. However, the available information of ecohydrological processes in this kind of ecosystem is scarce. The present work studies how the temporal and spatial variation of soil water content is affected by transpiration and interception loss fluxes in a Mediterranean rainfed plantation of cherry tree (Prunus avium) located in Caldes de Montbui (Northeast of Spain). From May till December 2011, rainfall partitioning, canopy transpiration, soil water content and meteorological parameters were continuously recorded. Rainfall partitioning was measured in 6 trees, with 6 automatic rain recorders for throughfall and 1 automatic rain recorder for stemflow per tree. Transpiration was monitored in 12 nearby trees by means of heat pulse sap flow sensors. Soil water content was also measured at three different depths under selected trees and at two depths between rows without tree cover influence. This work presents the relationships between rainfall partitioning, transpiration and soil water content evolution under the tree canopy. The effect of tree cover on the soil water content dynamics is also analyzed.

  14. Measurement of snow interception and canopy effects on snow accumulation and melt in a mountainous maritime climate, Oregon, United States

    Science.gov (United States)

    Storck, Pascal; Lettenmaier, Dennis P.; Bolton, Susan M.

    2002-11-01

    The results of a 3 year field study to observe the processes controlling snow interception by forest canopies and under canopy snow accumulation and ablation in mountain maritime climates are reported. The field study was further intended to provide data to develop and test models of forest canopy effects on beneath-canopy snowpack accumulation and melt and the plot and stand scales. Weighing lysimeters, cut-tree experiments, and manual snow surveys were deployed at a site in the Umpqua National Forest, Oregon (elevation 1200 m). A unique design for a weighing lysimeter was employed that allowed continuous measurements of snowpack evolution beneath a forest canopy to be taken at a scale unaffected by variability in canopy throughfall. Continuous observations of snowpack evolution in large clearings were made coincidentally with the canopy measurements. Large differences in snow accumulation and ablation were observed at sites beneath the forest canopy and in large clearings. These differences were not well described by simple relationships between the sites. Over the study period, approximately 60% of snowfall was intercepted by the canopy (up to a maximum of about 40 mm water equivalent). Instantaneous sublimation rates exceeded 0.5 mm per hour for short periods. However, apparent average sublimation from the intercepted snow was less than 1 mm per day and totaled approximately 100 mm per winter season. Approximately 72 and 28% of the remaining intercepted snow was removed as meltwater drip and large snow masses, respectively. Observed differences in snow interception rate and maximum snow interception capacity between Douglas fir (Pseudotsuga menziesii), white fir (Abies concolor), ponderosa pine (Pinus ponderosa), and lodgepole pine (Pinus contorta) were minimal.

  15. Wet season water distribution in a tropical Andean cloud forest of Boyacá (Colombia) during the dry climate of El Niño

    Science.gov (United States)

    Garcia-Santos, G.; Berdugo, M. B.

    2010-07-01

    Fog has been demonstrated as the only source of moisture during the dry climate of El Niño in the tropical Andean cloud forest of Boyacá region in Colombia, yet its importance for the forest is virtually unknown. We assessed fog water distribution during the wet season inside the forest and outside in a practically deforested area. Water intercepted by plant was measured at different vertical stratus. Soil moisture in the first centimetres was also measured. During the anomalous drier wet season there was lack of rainfall and the total recorded cloud water was lower compared with the same period during the previous year. Our results indicated that the upper part of the forest mass intercepts most of the fog water compared with lower stratus when the fog event starts. However upper most stratus became rapidly drier after the event, which is explained because water is released to the atmosphere due to high heat atmosphere-leaves interface fluctuations caused by wind and solar radiation, flows towards a different water potential and drips from the leaves. Low amount of fog dripped from tree foliage into the soil, indicating a large water storage capacity of the epiphyte and bryophyte vegetation. Despite the small amount of throughfall, understory vegetation and litter remained wet, which might be explained by the water flowing through the epiphyte vegetation or the high capacity of the understory to absorb moisture from the air. Soil water did not infiltrate in depth, which underlines the importance of fog as water and cool source for seedling growth and shallow rooted understory species, especially during drier conditions.

  16. A decade of monitoring at Swiss Long-Term Forest Ecosystem Research (LWF) sites: can we observe trends in atmospheric acid deposition and in soil solution acidity?

    Science.gov (United States)

    Pannatier, Elisabeth Graf; Thimonier, Anne; Schmitt, Maria; Walthert, Lorenz; Waldner, Peter

    2011-03-01

    Trends in atmospheric acid deposition and in soil solution acidity from 1995 or later until 2007 were investigated at several forest sites throughout Switzerland to assess the effects of air pollution abatements on deposition and the response of the soil solution chemistry. Deposition of the major elements was estimated from throughfall and bulk deposition measurements at nine sites of the Swiss Long-Term Forest Ecosystem Research network (LWF) since 1995 or later. Soil solution was measured at seven plots at four soil depths since 1998 or later. Trends in the molar ratio of base cations to aluminum (BC/Al) in soil solutions and in concentrations and fluxes of inorganic N (NO(3)-N + NH(4)-N), sulfate (SO(4)-S), and base cations (BC) were used to detect changes in soil solution chemistry. Acid deposition significantly decreased at three out of the nine study sites due to a decrease in total N deposition. Total SO(4)-S deposition decreased at the nine sites, but due to the relatively low amount of SO(4)-S load compared to N deposition, it did not contribute to decrease acid deposition significantly. No trend in total BC deposition was detected. In the soil solution, no trend in concentrations and fluxes of BC, SO(4)-S, and inorganic N were found at most soil depths at five out of the seven sites. This suggests that the soil solution reacted very little to the changes in atmospheric deposition. A stronger reduction in base cations compared to aluminum was detected at two sites, which might indicate that acidification of the soil solution was proceeding faster at these sites.

  17. Three-year monitoring study of radiocesium transfer and ambient dose rate in forest environments affected by the Fukushima Dai-ichi Nuclear Power Plant accident

    Science.gov (United States)

    Kato, Hiroaki; Onda, Yuichi; Loffredo, Nicolas; Kawamori, Ayumi; Hisadome, Keigo

    2015-04-01

    We investigated the transfer of canopy-intercepted radiocesium to the forest floor during 3 years (July 2011~) following the Fukushima Dai-ichi Nuclear Power Plant accident. The cesium-137 (Cs-137) contents of throughfall, stemflow, and litterfall were monitored in two coniferous stands (plantation of Japanese cedar) and a deciduous broad-leaved forest stand (Japanese oak with red pine). We also measured an ambient dose rate at different height in the forest by using a survey meter (TCS-172B, Hitachi-Aloka Medical, LTD.) and a portable Ge gamma-ray detector (Detective-DX-100T, Ortec, Ametek, Inc.). Furthermore, effects of forest decontamination on the reduction of ambient dose rate were assessed quantitatively. Total Cs-137 deposition flux from the canopy to forest floor for the mature cedar, young cedar, and the mixed broad-leaved stands were 157 kBq/m^2, 167 kBq/m^2, and 54 kBq/m^2, respectively. These values correspond to 36%, 39% and 12% of total atmospheric input after the accident. The ambient dose rate showed an exponential decrease with time for all the forest sites, however the decreasing trend differed depending on the forest type. These data suggested that an ambient dose rate in forest environment can be variable in spatially and temporally reflecting the transfer of radiocesium from canopy to forest floor. We presented the analysis results of the relationship between radiocesium deposition flux and ambient dose rate at the forest floor. In addition to that, we reported the effects of forest decontamination (e.g., tree felling, removal of organic materials, woodchip pavement) on the reduction of ambient dose rate in the forest environment.

  18. Natural and drought scenarios in an east central Amazon forest: Fidelity of the Community Land Model 3.5 with three biogeochemical models

    Science.gov (United States)

    Sakaguchi, Koichi; Zeng, Xubin; Christoffersen, Bradley J.; Restrepo-Coupe, Natalia; Saleska, Scott R.; Brando, Paulo M.

    2011-03-01

    Recent development of general circulation models involves biogeochemical cycles: flows of carbon and other chemical species that circulate through the Earth system. Such models are valuable tools for future projections of climate, but still bear large uncertainties in the model simulations. One of the regions with especially high uncertainty is the Amazon forest where large-scale dieback associated with the changing climate is predicted by several models. In order to better understand the capability and weakness of global-scale land-biogeochemical models in simulating a tropical ecosystem under the present day as well as significantly drier climates, we analyzed the off-line simulations for an east central Amazon forest by the Community Land Model version 3.5 of the National Center for Atmospheric Research and its three independent biogeochemical submodels (CASA', CN, and DGVM). Intense field measurements carried out under Large Scale Biosphere-Atmosphere Experiment in Amazonia, including forest response to drought from a throughfall exclusion experiment, are utilized to evaluate the whole spectrum of biogeophysical and biogeochemical aspects of the models. Our analysis shows reasonable correspondence in momentum and energy turbulent fluxes, but it highlights three processes that are not in agreement with observations: (1) inconsistent seasonality in carbon fluxes, (2) biased biomass size and allocation, and (3) overestimation of vegetation stress to short-term drought but underestimation of biomass loss from long-term drought. Without resolving these issues the modeled feedbacks from the biosphere in future climate projections would be questionable. We suggest possible directions for model improvements and also emphasize the necessity of more studies using a variety of in situ data for both driving and evaluating land-biogeochemical models.

  19. Evidence for substantial forestry canopy processing of nitrogen deposition using isotopic tracer experiments in low deposition conditions

    Science.gov (United States)

    Ferraretto, Daniele; Heal, Kate

    2017-04-01

    Temperate forest ecosystems are significant sinks for nitrogen deposition (Ndep) yielding benefits such as protection of waterbodies from eutrophication and enhanced sequestration of atmospheric CO2. Previous studies have shown evidence of biological nitrification and Ndep processing and retention in forest canopies. However, this was reported only at sites with high environmental or experimentally enhanced rates of Ndep (˜18 kg N ha-1 y-1) and has not yet been demonstrated in low Ndep environments. We have used bulk field hydrochemical measurements and labelled isotopic experiments to assess canopy processing in a lower Ndep environment (˜7 kg N ha-1 year-1) at a Sitka spruce plantation in Perthshire, Scotland, representing the dominant tree species (24%) in woodlands in Great Britain. Analysis of 4.5 years of measured N fluxes in rainfall (RF) and fogwater onto the canopy and throughfall (TF) and stemflow (SF) below the canopy suggests strong transformation and uptake of Ndep in the forest canopy. Annual canopy Ndep uptake was ˜4.7 kg N ha-1 year-1, representing 60-76% of annual Ndep. To validate these plot-scale results and track N uptake within the forest canopy in different seasons, double 15N-labelled NH4NO3 (98%) solution was sprayed in summer and winter onto the canopy of three trees at the measurement site. RF, TF and SF samples have been collected and analysed for 15NH4 and 15NO3. Comparing the amount of labelled N recovered under the sample trees with the measured δ15N signal is expected to provide further evidence of the role of forest canopies in actively processing and retaining atmospheric N deposition.

  20. Oceans Apart: Using Stable Isotopes to Assess the Role of Fog in Two Semi-Arid Island Ecosystems

    Science.gov (United States)

    Schmitt, S.; Riveros-Iregui, D.; Hu, J.

    2017-12-01

    Fog is a significant hydrologic input in many tropical island systems, and is a water source particularly susceptible to the effects of global climate change. To better understand the role of fog as a hydrological input in two oceanic islands, we address two principal questions: 1) Do seasonal or extreme precipitation events lead to distinguishable differences in stable isotopic signatures of water inputs within and between sites and islands? 2) Does microclimatic zonation lead to distinguishable differences in isotopic signatures of meteoric inputs between different sites on a given island? To perform this analysis, meteoric water samples (fog, rain and throughfall) were collected over three sites (one windward and two leeward) and three field seasons in San Cristobal, Galapagos to ascertain the isotopic signature of each water balance input during different times of year. An additional field season of data in Ascension Island, UK, was also used to perform a comparative analysis between islands. A stable isotope mixing model was used to determine the relative proportion of surface water and groundwater that is composed of fog, and to demonstrate spatiotemporal patterns of recharge dynamics in each island system. Local meteoric water lines were generated for each site and over each field season to determine the source of hydrologic inputs (trade wind-generated orographic precipitation versus storm precipitation) and the role of locally recycled water in the overall water balance of each site. Our results will approximate potential changes in water inputs to San Cristobal and Ascension, respectively, that could be impacted by an increase in cloud base height or a change in weather patterns brought about by climate change.

  1. A Preliminary Study on Rainfall Interception Loss and Water Yield Analysis on Arabica Coffee Plants in Central Aceh Regency, Indonesia

    Directory of Open Access Journals (Sweden)

    Reza Benara

    2012-12-01

    Full Text Available Rainfall interception loss from plants or trees can reduce a net rainfall as source of water yield. The amount of rainfall interception loss depends on kinds of plants and hydro-meteorological characteristics. Therefore, it is important to study rainfall interception loss such as from Arabica Coffee plantation which is as main agricultural commodity for Central Aceh Regency. In this study, rainfall interception loss from Arabica Coffee plants was studied in Kebet Village of Central Aceh Regency, Indonesia from January 20 to March 9, 2011. Arabica coffee plants used in this study was 15 years old, height of 1.5 m and canopy of 4.567 m2. Rainfall interception loss was determined based on water balance approach of daily rainfall, throughfall, and stemflow data. Empirical regression equation between rainfall interception loss and rainfall were adopted as a model to estimate rainfall interception loss from Arabica Coffee plantation, which the coefficient of correlation, r is 0.98. In water yield analysis, this formula was applied and founded that Arabica Coffee plants intercept 76% of annual rainfall or it leaved over annual net rainfall 24% of annual rainfall. Using this net rainfall, water yield produced from Paya Bener River which is the catchment area covered by Arabica Coffee plantation was analyzed in a planning of water supply project for water needs domestic of 3 sub-districts in Central Aceh Regency. Based on increasing population until year of 2025, the results showed that the water yield will be not enough from year of 2015. However, if the catchment area is covered by forest, the water yield is still enough until year of 2025

  2. Stomatal conductance at Duke FACE: Leveraging the lessons from 11 years of scaled sap flux measurements for region-wide analyses

    Science.gov (United States)

    Ward, E. J.; Bell, D.; Clark, J. S.; McCarthy, H. R.; Kim, H.; domec, J.; Noormets, A.; McNulty, D.; Sun, G.; Oren, R.

    2013-12-01

    A network of thermal dissipation probes (TDPs) monitoring sap flux density was used to estimate leaf-specific transpiration (EL) and canopy-averaged stomatal conductance (GS) in Pinus taeda (L.) exposed to +200 ppm atmospheric CO2 levels (eCO2) and nitrogen fertilization as part of the Duke FACE study. Data from scaling half-hourly measurements from hundreds of sensors over 11 years indicated that P. taeda in eCO2 intermittently (49% of monthly values) decreased stomatal conductance relative to the control, with a mean reduction of 13% in both total EL and mean daytime GS. This intermittent response was related to changes in a hydraulic allometry index (AH), defined as sapwood area per unit leaf area per unit canopy height, which was linearly related to GS at reference conditions (GSR) during the growing season across years (R2=0.67). Overall, AH decreased a mean of 15% with eCO2 over the course of the study, due mostly to a mean 19% increase in leaf area. Throughout the southeastern U.S., other P. taeda stands have been monitored with TDPs, such as the US-NC2 Ameriflux site and four fertilizer × throughfall displacement studies recently begun as part of the PINEMAP research network in VA, GA, FL and OK. We will also discuss the challenges and benefits of using a common modeling platform to combine FACE TDP data with that from a diversity of sites and treatments to draw inferences about EL and GS responses to environmental drivers and climate change, as well as their relation to AH, across the range of P. taeda.

  3. The integrated monitoring area Lheebroekerzand the Netherlands. Data of 1995

    Energy Technology Data Exchange (ETDEWEB)

    Mathijssen-Spiekman, E.A.M.

    1996-09-01

    The results of the title monitoring programme are presented. The main objective of this paper is to compile and present the 1995 monitoring data which are obliged to be forwarded to the international database in Helsinki, Finland, by the end of September 1996. Additional non-obligatory data are also reported. It is explicitly not within the scope of this report to give a detailed analysis of causes and effects as may be concluded from correlation studies comprising longer time-series and spatial gradient. In 1995, the biological part of the integrated monitoring programme consisted of a regular inventory of birds, leafminers and butterflies in the monitoring area, as well as inventories of the aquatic macrofauna present in the moorland pool Kliplo and observations on the performance of pine trees. The chemical-physical part included meteorological variables like temperature, humidity, the amount of precipitation and irradiation, together with chemical analysis of air, precipitation, leaves, needles and pool water. Where possible, the series of data are described and compared with data of previous years. The obligatory monitoring activities described in the ICP/IM-manual which are possible to be performed in the Dutch area, are carried out with exception of the programmes on trunk epiphytes, aerial green algae and soil water chemistry. Also in 1995, the capacity was lacking to develop these programmes. The improvement which has been carried out in 1995 is increasing the number of rainwater-collectors for bulk- and throughfall deposition from 4 to 5. Due to lack of manpower the running programmes were barely continued. 7 figs., 17 tabs., 23 refs., 3 appendices

  4. Measuring splash erosion potential under vegetation using sand-filled splash cups

    Science.gov (United States)

    Geißler, C.; Scholten, T.; Kühn, P.

    2009-04-01

    vent in the PE-flask guarantees the free drainage of excess-water which could arise during high intensity rainfall events. The splash cups were exposed to different tree species and in the open field. A total number of 520 partly simultaneous (max. 135 at once) measurements covering five different rainfall events have been carried out during the initial phase of the project. The first results show that sand loss under forest vegetation is up to 2.5 times higher than under open field conditions. Old forests (>80 years) produce a significantly higher amount of sand loss than younger forests (interception and splash induced erosion, ultimately for forest management and water resources. Plant Ecology 153, p. 203-214. Ellison, W. D. (1947): Soil Erosion Studies - Part II. Soil Detachment Hazard by Raindrop Splash. Agricultural Engineering 28, p. 197-201. Foot, K.; Morgan, R. P. C. (2005): The role of leaf inclination, leaf orientation and plant canopy architecture in soil particle detachment by raindrops. Earth Surface Processes and Landforms 30, p. 1509-1520. Hall, R. L. & Calder, I. R. (1993): Drop size modification by forest canopies: measurements using a disdrometer. Journal of Geophysical Research 98 (D10), p. 18465-18470. Mosley, M. F. (1982): The effect of a New Zealand beech forest canopy on the kinetic energy of water drops and on surface erosion. Earth Surface Processes and Landforms 7, p. 103-107. Nanko, K.; Hotta, N. & Suzuki, M. (2006): Evaluating the influence of canopy species and meteorological factors on throughfall drop size distribution. Journal of Hydrology 329, p. 422-431. Park, A. & Cameron, J. L. (2008): The influence of canopy traits on throughfall and stemflow in five tropical trees growing in a Panamanian plantation. Forest Ecology and Management 255, p. 1915-1925. Vis, M. (1986): Interception, drop size distributions and rainfall kinetic energy in four colombian forest ecosystems. Earth Surface Processes and Landforms 11, p. 591-603.

  5. Atmospheric deposition in coniferous and deciduous tree stands in Poland

    Science.gov (United States)

    Kowalska, Anna; Astel, Aleksander; Boczoń, Andrzej; Polkowska, Żaneta

    2016-05-01

    The objective of this study was to assess the transformation of precipitation in terms of quantity and chemical composition following contact with the crown layer in tree stands with varied species composition, to investigate the effect of four predominant forest-forming species (pine, spruce, beech, and oak) on the amount and composition of precipitation reaching forest soils, and to determine the sources of pollution in atmospheric precipitation in forest areas in Poland. The amount and chemical composition (pH, electric conductivity, alkalinity, and chloride, nitrate, sulfate, phosphate, ammonium, calcium, magnesium, sodium, potassium, iron aluminum, manganese, zinc, copper, total nitrogen, and dissolved organic carbon contents) of atmospheric (bulk, BP) and throughfall (TF) precipitation were studied from January to December 2010 on twelve forest monitoring plots representative of Polish conditions. The study results provided the basis for the determination of the fluxes of pollutants in the forest areas of Poland and allowed the comparison of such fluxes with values provided in the literature for European forest areas. The transformation of precipitation in the canopy was compared for different tree stands. The fluxes of substances in an open field and under canopy were influenced by the location of the plot, including the regional meteorological conditions (precipitation amounts), vicinity of the sea (effect of marine aerosols), and local level of anthropogenic pollution. Differences between the plots were higher in TF than in BP. The impact of the vegetation cover on the chemical composition of precipitation depended on the region of the country and dominant species in a given tree stand. Coniferous species tended to cause acidification of precipitation, whereas deciduous species increased the pH of TF. Pine and oak stands enriched precipitation with components that leached from the canopy (potassium, manganese, magnesium) to a higher degree than spruce and

  6. The response of tropical rainforests to drought-lessons from recent research and future prospects.

    Science.gov (United States)

    Bonal, Damien; Burban, Benoit; Stahl, Clément; Wagner, Fabien; Hérault, Bruno

    We review the recent findings on the influence of drought on tree mortality, growth or ecosystem functioning in tropical rainforests. Drought plays a major role in shaping tropical rainforests and the response mechanisms are highly diverse and complex. The numerous gaps identified here require the international scientific community to combine efforts in order to conduct comprehensive studies in tropical rainforests on the three continents. These results are essential to simulate the future of these ecosystems under diverse climate scenarios and to predict the future of the global earth carbon balance. Tropical rainforest ecosystems are characterized by high annual rainfall. Nevertheless, rainfall regularly fluctuates during the year and seasonal soil droughts do occur. Over the past decades, a number of extreme droughts have hit tropical rainforests, not only in Amazonia but also in Asia and Africa. The influence of drought events on tree mortality and growth or on ecosystem functioning (carbon and water fluxes) in tropical rainforest ecosystems has been studied intensively, but the response mechanisms are complex. Herein, we review the recent findings related to the response of tropical forest ecosystems to seasonal and extreme droughts and the current knowledge about the future of these ecosystems. This review emphasizes the progress made over recent years and the importance of the studies conducted under extreme drought conditions or in through-fall exclusion experiments in understanding the response of these ecosystems. It also points to the great diversity and complexity of the response of tropical rainforest ecosystems to drought. The numerous gaps identified here require the international scientific community to combine efforts in order to conduct comprehensive studies in tropical forest regions. These results are essential to simulate the future of these ecosystems under diverse climate scenarios and to predict the future of the global earth carbon balance.

  7. The Mica Creek Experimental Watershed: An Outdoor Laboratory for the Investigation of Hydrologic Processes in a Continental/Maritime Mountainous Environment

    Science.gov (United States)

    Link, T. E.; Gravelle, J.; Hubbart, J.; Warnsing, A.; Du, E.; Boll, J.; Brooks, E.; Cundy, T.

    2004-12-01

    Experimental catchments have proven to be extremely useful for investigations focused on fundamental hydrologic processes and on the impacts of land cover change on hydrologic regimes and water quality. Recent studies have illustrated how watershed responses to experimental treatments vary greatly between watersheds with differing physical, ecological and hydroclimatic characteristics. Meteorological and hydrological data within catchments are needed to help identify how hydrologic mechanisms may be altered by land cover alterations, and to both constrain and develop spatially-distributed physically based models. Existing instrumentation at the Mica Creek Experimental Watershed (MCEW) in northern Idaho is a fourth-order catchment that is undergoing expansion to produce a comprehensive dataset for model development and testing. The experimental catchments encompass a 28 km2 area spanning elevations from 975 to 1725 m msl. Snow processes dominate the hydrology of the catchment and climate conditions in the winter alternate between cold, dry continental and warm, moist maritime weather systems. Landcover is dominated by 80 year old second growth conifer forests, with partially cut (thinned) and clear-cut sub-catchments. Climate and precipitation data are collected at a SNOTEL site, three primary, and seven supplemental meteorological stations stratified by elevation and canopy cover. Manual snow depth measurements are recorded every 1-2 weeks during snowmelt, stratified by aspect, elevation and canopy cover. An air temperature transect spans three second-order sub-catchments to track air temperature lapse rate dynamics. Precipitation gauge arrays are installed within thinned and closed-canopy stands to track throughfall and interception loss. Nine paired and nested sub-catchments are monitored for flow, temperature, sediment, and nutrients. Hydroclimatic data are augmented by LiDAR and hyperspectral imagery for determination of canopy and topographic structure

  8. Air pollution in northern Sweden. Deposition, levels and effects Oct 1994 - Sep 1995; Luftfoeroreningar i norra Sverige. Nedfall, halter och effekter oktober 1994 - september 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hallgren-Larsson, E; Sjoeberg, K; Westling, O

    1996-06-01

    The purpose of the monitoring programme is to quantify sulphur and nitrogen deposition to forests, and to illustrate possible acidification of the soil. Deposition is investigated by precipitation studies in open field areas and as throughfall. Soil water chemistry in the forest stands is used as indicator of soil conditions. Air concentrations of sulphur dioxide, nitrogen dioxide, and ammonia were measured at two sites in the county of Jaemtland. This report concerns the hydrological year from October 1994 through September 1995 for 17 locations in the four most northern counties of Sweden. The results are compared with previous years and other regions in Sweden. The results shows a gradient with more precipitation, higher concentrations and larger deposition of sulphur and nitrogen at coastal than at inland locations. Mean from all 17 locations were pH 4.8 and sulphur concentration 0.4 mg/l (SO{sub 4}-S{sub ex}). Concentrations of nitrogen as nitrate and as ammonium were about 0.2 mg/l each. About half of the locations received larger amounts than target loads set for northern Sweden. Deposition of sulphur decreased in the county of Norrbotten during the last 4 years. Greater loads of sulphur and nitrogen were deposited in southern than in northern Sweden. The most acidified soil solutions (pH 4.5-4.6) with highest concentrations of aluminium were found at coastal locations outside Luleaa and Umeaa. At many locations in southern Sweden acidified soil solutions, rich in aluminium and poor in base cations, were detected. Similar conditions were found at two coastal locations in northern Sweden. Highest air concentrations of sulphur dioxide were found during January 1995. Nitrogen dioxide concentrations were highest during November 1994 through March 1995. A gradient of air concentrations of sulphur dioxide was found, with decreasing concentrations from southern to northern Sweden. 15 refs, 57 figs, 11 tabs

  9. Dynamics of non-structural carbohydrates in three Mediterranean woody species following long-term experimental drought.

    Science.gov (United States)

    Rosas, Teresa; Galiano, Lucía; Ogaya, Romà; Peñuelas, Josep; Martínez-Vilalta, Jordi

    2013-01-01

    Stored non-structural carbohydrates (NSC) have been proposed as a key determinant of drought resistance in plants. However, the evidence for this role is controversial, as it comes mostly from observational, short-term studies. Here, we take advantage of a long-term experimental throughfall reduction to elucidate the response of NSC to increased drought 14 years after the beginning of the treatment in three Mediterranean resprouter trees (Quercus ilex L., Arbutus unedo L. and Phillyrea latifolia L.). In addition, we selected 20 Q. ilex individuals outside the experimental plots to directly assess the relationship between defoliation and NSC at the individual level. We measured the seasonal course of NSC concentrations in leaves, branches and lignotuber in late winter, late spring, summer, and autumn 2012. Total concentrations of NSC were highest in the lignotuber for all species. In the long-term drought experiment we found significant depletion in concentrations of total NSC in treatment plots only in the lignotuber of A. unedo. At the same time, A. unedo was the only species showing a significant reduction in BAI under the drought treatment during the 14 years of the experiment. By contrast, Q. ilex just reduced stem growth only during the first 4 years of treatment and P. latifolia remained unaffected over the whole study period. However, we found a clear association between the concentrations of NSC and defoliation in Q. ilex individuals sampled outside the experimental plots, with lower total concentrations of NSC and lower proportion of starch in defoliated individuals. Taken together, our results suggest that stabilizing processes, probably at the stand level, may have been operating in the long-term to mitigate any impact of drought on NSC levels, and highlight the necessity to incorporate long-term experimental studies of plant responses to drought.

  10. Dynamics of non-structural carbohydrates in three Mediterranean woody species following long-term experimental drought

    Directory of Open Access Journals (Sweden)

    Teresa eRosas

    2013-10-01

    Full Text Available Stored non-structural carbohydrates (NSC have been proposed as a key determinant of drought resistance in plants. However, the evidence for this role is controversial, as it comes mostly from observational, short-term studies. Here, we take advantage of a long-term experimental throughfall reduction to elucidate the response of NSC to increased drought 14 years after the beginning of the treatment in three Mediterranean woody species (Quercus ilex L., Arbutus unedo L. and Phillyrea latifolia L.. In addition, we selected 20 Q. ilex individuals outside the experimental plots to directly assess the relationship between defoliation and NSC at the individual level. We measured the seasonal course of NSC concentrations in leaves, branches and lignotuber in late winter, late spring, summer and autumn 2012. Total concentrations of NSC were highest in the lignotuber for all species. In the long-term drought experiment we found significant depletion in concentrations of total NSC in treatment plots only in the lignotuber of A. unedo. At the same time, A. unedo was the only species showing a significant reduction in BAI under the drought treatment during the 14 years of the experiment. By contrast, Q. ilex just reduced stem growth only during the first 4 years of treatment and P. latifolia remained unaffected over the whole study period. However, we found a clear association between the concentrations of NSC and defoliation in Q. ilex individuals sampled outside the experimental plots, with lower total concentrations of NSC and lower proportion of starch in defoliated individuals. Taken together, our results suggest that stabilizing processes, probably at the stand level, may have been operating in the long-term to mitigate any impact of drought on NSC levels, and highlight the necessity to incorporate long-term experimental studies of plant responses to drought.

  11. Effects of intensive thinning on rainfall partitioning in a Japanese cedar plantation

    Science.gov (United States)

    Shinohara, Y.; Komatsu, H.; Nogata, M.; Otsuki, K.

    2013-12-01

    In recent years, thinning has been conducted in coniferous plantations in Japan to reduce water shortage, flood, soil erosion, and landslide risks. Incident precipitation (Pr) in forests can be partitioned into throughfall (Tf), stemflow (Sf), and canopy interception loss (Ic). Evapotranspiration is tightly related to runoff regime, and Ic is a major component of evapotranspiration as well as transpiration. Furthermore, the ratio of Tf to Sf would be important for various hydrological aspects. Sf can preferentially divert rainwater in soil layer and cause preferential flow, which produces spatial variations in the soil water content and contributes ground water discharge. However, no studies have examined changes in Tf, Sf, and Ic due to thinning in Cryptomeria japonica forests, the most common type of plantation in Japan. We measured Tf, Sf, and Ic for one year both before and after thinning and investigated changes in Tf, Sf, and Ic due to thinning in a Cryptomeria japonica plantation. Thinning reduced stem density by 54% from 1300 to 600 stems ha-1 the basal area by 50% from 99.7 to 49.6 m2 ha-1. Tf/Pr, Sf /Pr, and Ic/Pr before thinning were 74%, 12%, and 14%, respectively. After thinning, those percentages changed to 86%, 6%, and 8%, respectively. The change in Tf/Pr was comparable to that in canopy cover. The change in Sf/Pr corresponded with change in the number of trees because Sf for each tree was not changed considerably between the periods before and after thinning. The change in Ic/Pr was greater than that predicted using the model commonly used in Japan to predict changes in Ic/Pr. This result suggests that the model might not be applicable after intensive thinning in Cryptomeria japonica forests.

  12. The importance of considering rainfall partitioning in afforestation initiatives in semiarid climates: A comparison of common planted tree species in Tehran, Iran

    International Nuclear Information System (INIS)

    Sadeghi, Seyed Mohammad Moein; Attarod, Pedram; Van Stan, John Toland; Pypker, Thomas Grant

    2016-01-01

    As plantations become increasingly important sources of wood and fiber in arid/semiarid places, they have also become increasingly criticized for their hydrological impacts. An examination and comparison of gross rainfall (GR) partitioning across commonly-planted tree species (Pinus eldarica, Cupressus arizonica, Robinia pseudoacacia, and Fraxinus rotundifolia) in semiarid regions has great value for watershed and forest managers interested in managing canopy hydrological processes for societal benefit. Therefore, we performed a field study examining GR partitioning into throughfall (TF), stemflow (SF), and rainfall interception (I) for these species in the semiarid Chitgar Forest Park, Tehran, Iran. An advantage to our study is that we explore the effects of forest structural differences in plantation forests experiencing similar climatic factors and storm conditions. As such, variability in GR partitioning due to different meteorological conditions is minimized, allowing comparison of structural attributes across plantations. Our results show that commonly-selected afforestation species experiencing the same climate produced differing stand structures that differentially partition GR into TF, SF, and I. P. eldarica might be the best of the four species to plant if the primary goal of afforestation is to limit erosion and stormwater runoff as it intercepted more rainfall than other species. However, the high SF generation from F. rotundifolia, and low GR necessary to initiate SF, could maximize retention of water in the soils since SF has been shown to infiltrate along root pathways and access groundwater. A consideration of GR partitioning should be considered when selecting a species for afforestation/reforestation in water-limited ecosystems. - Highlights: • Measured rain partitioning of four most common species used in semiarid afforestation • Species rain partitioning differences are important in a water management. • Recommendations provided to guide

  13. Exploratory Water Budget Analysis of A Transitional Premontane Cloud Forest in Costa Rica Through Undergraduate Research

    Science.gov (United States)

    Washington-Allen, R. A.; Buckwalter, E. H.; Moore, G. W.; Burns, J. N.; Dennis, A. R.; Dodge, O.; Guffin, E. C.; Morris, E. R.; Oien, R. P.; Orozco, G.; Peterson, A.; Teale, N. G.; Shibley, N. C.; Tourtellotte, N.; Houser, C.; Brooks, S. D.; Brumbelow, J. K.; Cahill, A. T.; Frauenfeld, O. W.; Gonzalez, E.; Hallmark, C. T.; McInnes, K. J.; Miller, G. R.; Morgan, C.; Quiring, S. M.; Rapp, A. D.; Roark, E.; Delgado, A.; Ackerson, J. P.; Arnott, R.

    2012-12-01

    The ecohydrology of transitional premontane cloud forests is not well understood. This problem is being addressed by a NSF Research Experience for Undergraduates (REU) study at the Texas A&M University Soltis Center for Research & Education in Costa Rica. Exploratory analysis of the water budget within a 20-ha watershed was used to connect three faculty-mentored research areas in ecohydrology, climate, and soil sciences and highlight the roles of 12 undergraduate researchers from 12 different universities. The water budget model is Q = Pn - E - T + ΔG + ΔS where Q = runoff, Pn = net precipitation, E = evaporation, T = transpiration, and ΔG and ΔS are change in groundwater soil water storage, respectively. Additionally, Pn = Pg - I = Tf + Sf + D, where Pg = gross precipitation, I/ΔI = canopy interception or storage, Tf = throughfall, Sf = stemflow, and D = canopy drip. The following terms were well understood Pg (satellite = 34-mm and tower = 38.1-mm) and Q from a recently constructed v-notch weir. We moderately understand Tf + D (30.9-mm from an array of forest rain gages), ΔI (7.2-mm) related to Sf, and T (10.4-mm measured with sapflow sensors). We found that soils were clay loam to silty loam textured Andisols on saprolitic tuft with a mean potential ΔS of 398 mm H2O under laboratory conditions, but in the field the following terms are almost completely unknown and require further field studies including E, ΔG, and ΔS. Recent installation of piezometers will address ΔG. Temporal scaling of measurements to a 1-week period was a challenge as well as the construction, deployment and calibration of instruments. However, this exploration allowed us to determine measurement uncertainties in the water budget, e.g., E, and to set future areas of research to address these uncertainties.

  14. Nitrogen distribution and cycling through water flows in a subtropical bamboo forest under high level of atmospheric deposition.

    Science.gov (United States)

    Tu, Li-hua; Hu, Ting-xing; Zhang, Jian; Huang, Li-hua; Xiao, Yin-long; Chen, Gang; Hu, Hong-ling; Liu, Li; Zheng, Jiang-kun; Xu, Zhen-Feng; Chen, Liang-hua

    2013-01-01

    The hydrological cycle is an important way of transportation and reallocation of reactive nitrogen (N) in forest ecosystems. However, under a high level of atmospheric N deposition, the N distribution and cycling through water flows in forest ecosystems especially in bamboo ecosystems are not well understood. In order to investigate N fluxes through water flows in a Pleioblastus amarus bamboo forest, event rainfall/snowfall (precipitation, PP), throughfall (TF), stemflow (SF), surface runoff (SR), forest floor leachate (FFL), soil water at the depth of 40 cm (SW1) and 100 cm (SW2) were collected and measured through the whole year of 2009. Nitrogen distribution in different pools in this ecosystem was also measured. Mean N pools in vegetation and soil (0-1 m) were 351.7 and 7752.8 kg ha(-1). Open field nitrogen deposition at the study site was 113.8 kg N ha(-1) yr(-1), which was one of the highest in the world. N-NH4(+), N-NO3(-) and dissolved organic N (DON) accounted for 54%, 22% and 24% of total wet N deposition. Net canopy accumulated of N occurred with N-NO3(-) and DON but not N-NH4(+). The flux of total dissolved N (TDN) to the forest floor was greater than that in open field precipitation by 17.7 kg N ha(-1) yr(-1), due to capture of dry and cloudwater deposition net of canopy uptake. There were significant negative exponential relationships between monthly water flow depths and monthly mean TDN concentrations in PP, TF, SR, FFL and SW1. The open field nitrogen deposition through precipitation is very high over the world, which is the main way of reactive N input in this bamboo ecosystem. The water exchange and N consume mainly occurred in the litter floor layer and topsoil layer, where most of fine roots of bamboo distributed.

  15. Using transient ERT mapping to monitor infiltration pathways in a semi-arid cloud forest in Oman

    Science.gov (United States)

    Friesen, J.; Werban, U.; Pohle, M.; Bawain, A.; Hildebrandt, A.; Attinger, S.

    2011-12-01

    In forests rainfall partitioning provides highly organized rainfall patterns caused by rainfall funneling through vegetation structure. The patterns of rainfall partitioning have already been studied in great detail at a cloud forest enclosure in Dhofar, Oman. How those organized rainfall patterns on the surface advance into the root zone and deeper is the focus of this work. Trees in the Dhofar Mountains function as excellent natural fog catchers that funnel extracted fog water through stemflow directly into the ground. Stemflow may provide a direct pathway from the stem along the roots to deeper soil water reservoirs. By doing so, trees might also contribute to groundwater recharge, and hence deforestation might have a negative effect on the aquifer. Electric resistivity tomography (ERT) has already proven useful for visualization of root water uptake in a tree orchard, by observing local increases of resistivity from soil drying. In our approach we aim at using ERT data for observing the local decrease of resistivity from soil wetting near stems. For this we will use the advantage of ERT to look into the near surface area (down to 3-4m) and deeper subsurface (10-15m). With a large number of subsequent ERT measurements we will obtain a time series of ERT data. Transient ERT data, starting before the monsoon season and ending after the monsoon season, aim at providing information about recharge patterns during and uptake patterns after monsoon. To determine the effect of vegetation we conducted field observation for two land cover types, forest and grassland. The ERT measurements are support by a network of stemflow, throughfall, and rain gage observations. Results already show a clear distinction between grassland and forested land cover.

  16. Study on hydrological functions of litter layers in North China.

    Directory of Open Access Journals (Sweden)

    Xiang Li

    Full Text Available Canopy interception, throughfall, stemflow, and runoff have received considerable attention during the study of water balance and hydrological processes in forested ecosystems. Past research has either neglected or underestimated the role of hydrological functions of litter layers, although some studies have considered the impact of various characteristics of rainfall and litter on litter interception. Based on both simulated rainfall and litter conditions in North China, the effect of litter mass, rainfall intensity and litter type on the maximum water storage capacity of litter (S and litter interception storage capacity (C were investigated under five simulated rainfall intensities and four litter masses for two litter types. The results indicated: 1 the S values increased linearly with litter mass, and the S values of broadleaf litter were on average 2.65 times larger than the S values of needle leaf litter; 2 rainfall intensity rather than litter mass determined the maximum interception storage capacity (Cmax ; Cmax increased linearly with increasing rainfall intensity; by contrast, the minimum interception storage capacity (Cmin showed a linear relationship with litter mass, but a poor correlation with rainfall intensity; 3 litter type impacted Cmax and Cmin ; the values of Cmax and Cmin for broadleaf litter were larger than those of needle leaf litter, which indicated that broadleaf litter could intercepte and store more water than needle leaf litter; 4 a gap existed between Cmax and Cmin , indicating that litter played a significant role by allowing rainwater to infiltrate or to produce runoff rather than intercepting it and allowing it to evaporate after the rainfall event; 5 Cmin was always less than S at the same litter mass, which should be considered in future interception predictions. Vegetation and precipitation characteristics played important roles in hydrological characteristics.

  17. The variations of aluminium species in mountainous forest soils and its implications to soil acidification.

    Science.gov (United States)

    Bradová, Monika; Tejnecký, Václav; Borůvka, Luboš; Němeček, Karel; Ash, Christopher; Šebek, Ondřej; Svoboda, Miroslav; Zenáhlíková, Jitka; Drábek, Ondřej

    2015-11-01

    Aluminium (Al) speciation is a characteristic that can be used as a tool for describing the soil acidification process. The question that was answered is how tree species (beech vs spruce) and type of soil horizon affect Al speciation. Our hypotesis is that spruce and beech forest vegetation are able to modify the chemical characteristics of organic horizon, hence the content of Al species. Moreover, these characteristics are seasonally dependent. To answer these questions, a detailed chromatographic speciation of Al in forest soils under contrasting tree species was performed. The Jizera Mountains area (Czech Republic) was chosen as a representative mountainous soil ecosystem. A basic forestry survey was performed on the investigated area. Soil and precipitation samples (throughfall, stemflow) were collected under both beech and spruce stands at monthly intervals from April to November during the years 2008-2011. Total aluminium content and Al speciation, pH, and dissolved organic carbon were determined in aqueous soil extracts and in precipitation samples. We found that the most important factors affecting the chemistry of soils, hence content of the Al species, are soil horizons and vegetation cover. pH strongly affects the amount of Al species under both forests. Fermentation (F) and humified (H) organic horizons contain a higher content of water extractable Al and Al(3+) compared to organo-mineral (A) and mineral horizons (B). With increasing soil profile depth, the amount of water extractable Al, Al(3+) and moisture decreases. The prevailing water-extractable species of Al in all studied soils and profiles under both spruce and beech forests were organically bound monovalent Al species. Distinct seasonal variations in organic and mineral soil horizons were found under both spruce and beech forests. Maximum concentrations of water-extractable Al and Al(3+) were determined in the summer, and the lowest in spring.

  18. The importance of considering rainfall partitioning in afforestation initiatives in semiarid climates: A comparison of common planted tree species in Tehran, Iran

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Seyed Mohammad Moein, E-mail: moeinsadeghi@ut.ac.ir [Department of Forestry and Forest Economics, University of Tehran (Iran, Islamic Republic of); Attarod, Pedram [Department of Forestry and Forest Economics, University of Tehran (Iran, Islamic Republic of); Van Stan, John Toland [Department of Geology and Geography, Georgia Southern University, Statesboro, Georgia (United States); Pypker, Thomas Grant [Department of Natural Resource Sciences, Faculty of Science, Thompson Rivers University, Kamloops (Canada)

    2016-10-15

    As plantations become increasingly important sources of wood and fiber in arid/semiarid places, they have also become increasingly criticized for their hydrological impacts. An examination and comparison of gross rainfall (GR) partitioning across commonly-planted tree species (Pinus eldarica, Cupressus arizonica, Robinia pseudoacacia, and Fraxinus rotundifolia) in semiarid regions has great value for watershed and forest managers interested in managing canopy hydrological processes for societal benefit. Therefore, we performed a field study examining GR partitioning into throughfall (TF), stemflow (SF), and rainfall interception (I) for these species in the semiarid Chitgar Forest Park, Tehran, Iran. An advantage to our study is that we explore the effects of forest structural differences in plantation forests experiencing similar climatic factors and storm conditions. As such, variability in GR partitioning due to different meteorological conditions is minimized, allowing comparison of structural attributes across plantations. Our results show that commonly-selected afforestation species experiencing the same climate produced differing stand structures that differentially partition GR into TF, SF, and I. P. eldarica might be the best of the four species to plant if the primary goal of afforestation is to limit erosion and stormwater runoff as it intercepted more rainfall than other species. However, the high SF generation from F. rotundifolia, and low GR necessary to initiate SF, could maximize retention of water in the soils since SF has been shown to infiltrate along root pathways and access groundwater. A consideration of GR partitioning should be considered when selecting a species for afforestation/reforestation in water-limited ecosystems. - Highlights: • Measured rain partitioning of four most common species used in semiarid afforestation • Species rain partitioning differences are important in a water management. • Recommendations provided to guide

  19. Modeling the early-phase redistribution of radiocesium fallouts in an evergreen coniferous forest after Chernobyl and Fukushima accidents

    Energy Technology Data Exchange (ETDEWEB)

    Calmon, P.; Gonze, M.-A.; Mourlon, Ch.

    2015-10-01

    Following the Chernobyl accident, the scientific community gained numerous data on the transfer of radiocesium in European forest ecosystems, including information regarding the short-term redistribution of atmospheric fallout onto forest canopies. In the course of international programs, the French Institute for Radiological Protection and Nuclear Safety (IRSN) developed a forest model, named TREE4 (Transfer of Radionuclides and External Exposure in FORest systems), 15 years ago. Recently published papers on a Japanese evergreen coniferous forest contaminated by Fukushima radiocesium fallout provide interesting and quantitative data on radioactive mass fluxes measured within the forest in the months following the accident. The present study determined whether the approach adopted in the TREE4 model provides satisfactory results for Japanese forests or whether it requires adjustments. This study focused on the interception of airborne radiocesium by forest canopy, and the subsequent transfer to the forest floor through processes such as litterfall, throughfall, and stemflow, in the months following the accident. We demonstrated that TREE4 quite satisfactorily predicted the interception fraction (20%) and the canopy-to-soil transfer (70% of the total deposit in 5 months) in the Tochigi forest. This dynamics was similar to that observed in the Höglwald spruce forest. However, the unexpectedly high contribution of litterfall (31% in 5 months) in the Tochigi forest could not be reproduced in our simulations (2.5%). Possible reasons for this discrepancy are discussed; and sensitivity of the results to uncertainty in deposition conditions was analyzed. - Highlights: • Transfer of radiocesium atmospheric fallout in evergreen forests was modeled. • The model was tested using observations from Chernobyl and Fukushima accidents. • Model predictions of canopy interception and depuration agree with measurements. • Unexpectedly high contribution of litterfall for the

  20. Prediction of Soil Erosion Rates in Japan where Heavily Forested Landscape with Unstable Terrain

    Science.gov (United States)

    Nanko, K.; Oguro, M.; Miura, S.; Masaki, T.

    2016-12-01

    Soil is fundamental for plant growth, water conservation, and sustainable forest management. Multidisciplinary interest in the role of the soil in areas such as biodiversity, ecosystem services, land degradation, and water security has been growing (Miura et al., 2015). Forest is usually protective land use from soil erosion because vegetation buffers rainfall power and erosivity. However, some types of forest in Japan show high susceptibility to soil erosion due to little ground cover and steep slopes exceeding thirty degree, especially young Japanese cypress (Chamaecyparis obtusa) plantations (Miura et al., 2002). This is a critical issue for sustainable forest management because C. obtusaplantations account for 10% of the total forest coverage in Japan (Forestry Agency, 2009). Prediction of soil erosion rates on nationwide scale is necessary to make decision for future forest management plan. To predict and map soil erosion rates across Japan, we applied three soil erosion models, RUSLE (Revised Universal Soil Loss Equation, Wischmeier and Smith, 1978), PESERA (Pan-European Soil Erosion Risk Assessment, Kirkby et al., 2003), and RMMF (Revised Morgan-Morgan-Finney, Morgan, 2001). The grid scale is 1-km. RUSLE and PESERA are most widely used erosion models today. RMMF includes interactions between rainfall and vegetation, such as canopy interception and ratio of canopy drainage in throughfall. Evaporated rainwater by canopy interception, generally accounts for 15-20% in annual rainfall, does not contribute soil erosion. Whereas, larger raindrops generated by canopy drainage produced higher splash erosion rates than gross rainfall (Nanko et al., 2008). Therefore, rainfall redistribution process in canopy should be considered to predict soil erosion rates in forested landscape. We compared the results from three erosion models and analyze the importance of environmental factors for the prediction of soil erosion rates. This research was supported by the Environment

  1. Soil conditions under a Fagus sylvatica CONECOFOR stand in Central Italy: an integrated assessment through combined solid phase and solution studies

    Directory of Open Access Journals (Sweden)

    Guido SANESI

    2002-09-01

    Full Text Available As soil solution represents the major phase of soil chemical reactions, its study is a powerful tool for ecological investigations. Soil solution chemical composition gives a realistic idea about the soil chemical components immediately available in the environment, mainly in relation to the soil ecosystem reaction to the disturbance due to acidifying loads. Within the CONECOFOR Program, the monitoring of forest soil conditions was performed in a level II plot (ABR I, under a Fagus sylvatica (European beech stand, through the study of throughfall and soil solutions collected from depths ranging between the base of the litter layers and 90 cm. To be able to investigate solution contents of nutrients, acidifying agents and DOC throughout the profile, both zero tension and tension lysimeters were used. The first ones were inserted below the organic horizons, while tension lysimeters were placed within the mineral horizons at 15, 25, 55 and 90 cm depth. Sampled solutions were analyzed for Na, K, Ca, Mg, NH4, Cl, F, NO3, SO4, and DOC. The results evidence a clear seasonal pattern, mainly for macronutrients and inorganic N components. Acidic pulses were mostly evident below the organic horizons, in relation to strong nitric N releases from litter; these last were not always immediately neutralized by basic cations. Acid solutions leaving the organic horizons were invariably neutralized in the surface mineral horizons, within 15 cm depth. Temporal patterns of sulphate retention and release suggest that the soil has low retention capability for this anion. Such behaviour can be explained by the composition of the solid phase, where potential anion adsorbants appear strongly linked with organic matter in long residence time complexes. Sulphate and nitrate loading of this soil appear, anyway, to be mostly non-anthropogenic, but rather linked to natural mineralization pulses and, for sulphate, to aeolian solid transport from the south.

  2. Cloud water interception and canopy water balance in the Hawaiian Islands: preliminary results and emerging patterns

    Science.gov (United States)

    Tseng, H.; Giambelluca, T. W.; DeLay, J. K.; Nullet, M.

    2017-12-01

    Steep climate gradients and diverse ecosystems make the Hawaiian Islands an ideal laboratory for ecohydrological experiments. Researchers are able to control physical and ecological variables, which is difficult for most environmental studies, by selecting sites along these gradients. Tropical montane forests, especially those situated in the cloud zone, are known to improve recharge and sustain baseflow. This is probably the result of frequent and persistent fog characteristic to these systems. During fog events, evapotranspiration is suppressed due to high humidity and reduced solar radiation. Moreover, cloud water interception by the forest canopy can produce fog drip and contribute significantly to the local water budget. Because the interception process is a complex interaction between the atmosphere and the vegetation, the effects of the meteorological conditions and canopy characteristics are equally important and sometimes hard to separate. This study aims to examine patterns in cloud water interception and canopy water balance across five tropical montane forest sites on three of the main islands of Hawaii. The sites cover a range of elevations between 1100- 2114 m, annual rainfall between 1155-3375 mm, and different dominant plant species with canopy heights ranging from 1.5 m to 30 m. We investigate the effect of climatic factors by comparing passive fog gauge measurements and other meteorological variables, then examine the differences in canopy water balance by comparing throughfall and stemflow measurements at these sites. While this study is ongoing, we present the first few months of field observations and the results of preliminary analyses. This study will improve understanding of how large-scale climate and vegetation factors interact to control cloud water interception and will inform ongoing watershed management. This is particularly important for oceanic islands such as Hawaii because they rely on precipitation entirely for water supply and

  3. Time changes in radiocesium wash-off from various land uses after the Fukushima Daiichi NPP accident

    Science.gov (United States)

    Onda, Yuichi; Kato, Hiroaki; Yoshimura, Kazuya; Tsujimura, Maki; Wakiyama, Yoshifumi; Taniguchi, Keisuke; Sakaguchi, Aya; Yamamoto, Masayoshi

    2014-05-01

    A number of studies have been conducted to monitor and model the time series change of radiocesium transfer through aquatic systems after significant fallout, especially from the Chernobyl disaster. However, no data is available for the temporal changes of radiocesium concentration in environmental materials such as soil and water after the Fukushima Daiichi nuclear power plant accident. Our research team has been monitoring the environmental consequences of radioactive contamination just after the Fukushima Daiichi NPP accident in Yamakiya-district, Kawamata town, Fukushima prefecture. Research items are listed below. 1. Radiocesium wash-off from the runoff-erosion plot under different land use. 2. Measurement of radiocesium transfer in forest environment, in association with hydrological pathways such as throughfall and overlandflow on hillslope. 3. Monitoring on radiocesium concentration in soil water, ground water, and spring water. 4. Monitoring of dissolved and particulate radiocesium concentration in river water, and stream water from the forested catchment. 5.Measurement of radiocesium content in drain water and suspended sediment from paddy field. Our monitoring result demonstrated that the Cs-137 concentration in eroded sediment from the runoff-erosion plot has been almost constant for the past 3 years, however the Cs-137 concentration of suspended sediment from the forested catchment showed slight decrease through time. On the other hand, the suspended sediment from paddy field and those in river water from large catchments exhibited rapid decrease in Cs-137 concentration with time. The decreasing trend of Cs-137 concentration were fitted by the two-component exponential model, differences in decreasing rate of the model were compared and discussed among various land uses and catchment scales. Such analysis can provide important insights into the future prediction of the radiocesium wash-off from catchments with different land uses.

  4. Cocoa agroforestry is less resilient to sub-optimal and extreme climate than cocoa in full sun.

    Science.gov (United States)

    Abdulai, Issaka; Vaast, Philippe; Hoffmann, Munir P; Asare, Richard; Jassogne, Laurence; Van Asten, Piet; Rötter, Reimund P; Graefe, Sophie

    2018-01-01

    Cocoa agroforestry is perceived as potential adaptation strategy to sub-optimal or adverse environmental conditions such as drought. We tested this strategy over wet, dry and extremely dry periods comparing cocoa in full sun with agroforestry systems: shaded by (i) a leguminous tree species, Albizia ferruginea and (ii) Antiaris toxicaria, the most common shade tree species in the region. We monitored micro-climate, sap flux density, throughfall, and soil water content from November 2014 to March 2016 at the forest-savannah transition zone of Ghana with climate and drought events during the study period serving as proxy for projected future climatic conditions in marginal cocoa cultivation areas of West Africa. Combined transpiration of cocoa and shade trees was significantly higher than cocoa in full sun during wet and dry periods. During wet period, transpiration rate of cocoa plants shaded by A. ferruginea was significantly lower than cocoa under A. toxicaria and full sun. During the extreme drought of 2015/16, all cocoa plants under A. ferruginea died. Cocoa plants under A. toxicaria suffered 77% mortality and massive stress with significantly reduced sap flux density of 115 g cm -2  day -1 , whereas cocoa in full sun maintained higher sap flux density of 170 g cm -2  day -1 . Moreover, cocoa sap flux recovery after the extreme drought was significantly higher in full sun (163 g cm -2  day -1 ) than under A. toxicaria (37 g cm -2  day -1 ). Soil water content in full sun was higher than in shaded systems suggesting that cocoa mortality in the shaded systems was linked to strong competition for soil water. The present results have major implications for cocoa cultivation under climate change. Promoting shade cocoa agroforestry as drought resilient system especially under climate change needs to be carefully reconsidered as shade tree species such as the recommended leguminous A. ferruginea constitute major risk to cocoa functioning under

  5. Drought effects on soil COcacao agroforestry system in Sulawesi, Indonesia

    Science.gov (United States)

    van Straaten, O.; Veldkamp, E.; Köhler, M.; Anas, I.

    2009-12-01

    Climate change induced droughts pose a serious threat to ecosystems across the tropics and sub-tropics, particularly to those areas not adapted to natural dry periods. In order to study the vulnerability of cacao (Theobroma cacao) - Gliricidia sepium agroforestry plantations to droughts a large scale throughfall displacement roof was built in Central Sulawesi, Indonesia. In this 19-month replicated experiment, we measured soil surface CO2 efflux (soil respiration) in three simulated drought plots compared with three adjacent control plots. Soil respiration rates peaked at intermediate soil moisture and decreased under increasingly dry conditions (drought induced), but also decreased when soils became water saturated, as evidenced in control plots. The simulated drought plots exhibited a slight decrease in soil respiration compared to the control plots (average 13% decrease). The strength of the drought effect was spatially variable - while some measurement chamber sites reacted strongly ("responsive") to the decrease in soil water content (up to R2=0.70) (n=11), others did not react at all ("non-responsive") (n=7). The degree of soil CO2 respiration drought response was highest around cacao tree stems and decreased with distance from the stem (R2=0.22). A significant correlation was measured between "responsive" soil respiration chamber sites and sap flux density ratios of cacao (R=0.61) and Gliricidia (R=0.65). Leaf litter CO2 respiration decreased as conditions became drier. During dry periods the litter layer contributed approximately 3-4% of the total CO2 efflux and up to 40% during wet periods. A CO2 flush was recorded during the rewetting phase that lasted for approximately two weeks, during which time accumulated labile carbon stocks mineralized. The net effect on soil CO2 emissions over the duration of the experiment was neutral, control plots respired 11.1±0.5 Mg C ha-1 yr-1, while roof plots respired 10.5±0.5 Mg C ha-1 yr-1.

  6. Spatial and temporal effects of drought on soil CO2 efflux in a cacao agroforestry system in Sulawesi, Indonesia

    Science.gov (United States)

    van Straaten, O.; Veldkamp, E.; Köhler, M.; Anas, I.

    2010-04-01

    Climate change induced droughts pose a serious threat to ecosystems across the tropics and sub-tropics, particularly to those areas not adapted to natural dry periods. In order to study the vulnerability of cacao (Theobroma cacao) - Gliricidia sepium agroforestry plantations to droughts a large scale throughfall displacement roof was built in Central Sulawesi, Indonesia. In this 19-month experiment, we compared soil surface CO2 efflux (soil respiration) from three roof plots with three adjacent control plots. Soil respiration rates peaked at intermediate soil moisture conditions and decreased under increasingly dry conditions (drought induced), or increasingly wet conditions (as evidenced in control plots). The roof plots exhibited a slight decrease in soil respiration compared to the control plots (average 13% decrease). The strength of the drought effect was spatially variable - while some measurement chamber sites reacted strongly (responsive) to the decrease in soil water content (up to R2=0.70) (n=11), others did not react at all (non-responsive) (n=7). A significant correlation was measured between responsive soil respiration chamber sites and sap flux density ratios of cacao (R=0.61) and Gliricidia (R=0.65). Leaf litter CO2 respiration decreased as conditions became drier. The litter layer contributed approximately 3-4% of the total CO2 efflux during dry periods and up to 40% during wet periods. Within days of roof opening soil CO2 efflux rose to control plot levels. Thereafter, CO2 efflux remained comparable between roof and control plots. The cumulative effect on soil CO2 emissions over the duration of the experiment was not significantly different: the control plots respired 11.1±0.5 Mg C ha-1 yr-1, while roof plots respired 10.5±0.5 Mg C ha-1 yr-1. The relatively mild decrease measured in soil CO2 efflux indicates that this agroforestry ecosystem is capable of mitigating droughts with only minor stress symptoms.

  7. Forest condition and chemical characteristics of atmospheric depositions: research and monitoring network in Lombardy

    Directory of Open Access Journals (Sweden)

    Flaminio DI GIROLAMO

    2002-09-01

    Full Text Available Since 1987, the Regional Forestry Board of Lombardy and the Water Research Institute of the National Research Council have been carrying out surveys of forest conditions and the response of the ecosystem to environmental factors. The study approach is based on a large number of permanent plots for extensive monitoring (Level 1. At this level, crown condition is assessed annually, and soil condition and the nutritional status of forests surveyed. Some of the permanent plots were selected for intensive monitoring (Level 2, focussing mainly on the impact of atmospheric pollution on forest ecosystems. Level 2 monitoring also includes increment analyses, ground vegetation assessment, atmospheric deposition, soil solution analyses and climatic observations. This paper summarises the main results of a pluriannual research, which provides a general picture of the state of forest health in the region and focuses on more detailed investigations, described as case studies. Modified wet and dry samplers which use a water surface to collect dry deposition were used in a pluriannual field campaign at five sites in alpine and prealpine areas, to measure the total atmospheric depositions and to evaluate the nitrogen and sulphate exceedances of critical loads. Throughfall and bulk precipitation chemistry were studied for five years (June 1994-May 1999 at two high elevation forest sites (Val Gerola and Val Masino which were known to differ in terms of tree health, as assessed by live crown condition. Results indicated a higher contribution from the dry deposition of N-NO3 -, N-NH4 + and H+ and considerable canopy leaching of Ca2+, K+ and weak organic acids at Val Gerola, where the symptoms of damage were more evident. In the area of Val Masino (SO, included since 1997 in the national CONECOFOR network, investigations focused on the effectiveness of the biological compartment in modifying fluxes of atmospheric elements, and on the role of nitrogen both as an

  8. Land Cover Influence on Wet Season Storm Runoff Generation and Hydrologic Flowpaths in Central Panama

    Science.gov (United States)

    Birch, A. L.; Stallard, R. F.; Barnard, H. R.

    2017-12-01

    While relationships between land use/land cover and hydrology are well studied and understood in temperate parts of the world, little research exists in the humid tropics, where hydrologic research is often decades behind. Specifically, quantitative information on how physical and biological differences across varying land covers influence runoff generation and hydrologic flowpaths in the humid tropics is scarce; frequently leading to poorly informed hydrologic modelling and water policy decision making. This research effort seeks to quantify how tropical land cover change may alter physical hydrologic processes in the economically important Panama Canal Watershed (Republic of Panama) by separating streamflow into its different runoff components using end member mixing analysis. The samples collected for this project come from small headwater catchments of four varying land covers (mature tropical forest, young secondary forest, active pasture, recently clear-cut tropical forest) within the Smithsonian Tropical Research Institute's Agua Salud Project. During the past three years, samples have been collected at the four study catchments from streamflow and from a number of water sources within hillslope transects, and have been analyzed for stable water isotopes, major cations, and major anions. Major ion analysis of these samples has shown distinct geochemical differences for the potential runoff generating end members sampled (soil moisture/ preferential flow, groundwater, overland flow, throughfall, and precipitation). Based on this finding, an effort was made from May-August 2017 to intensively sample streamflow during wet season storm events, yielding a total of 5 events of varying intensity in each land cover/catchment, with sampling intensity ranging from sub-hourly to sub-daily. The focus of this poster presentation will be to present the result of hydrograph separation's done using end member mixing analysis from this May-August 2017 storm dataset. Expected

  9. Exploring the Implications of N Measurement and Model Choice on Using Data for Policy and Land Management Decisions

    Science.gov (United States)

    Bell, M. D.; Walker, J. T.

    2017-12-01

    Atmospheric deposition of nitrogen compounds are determined using a variety of measurement and modeling methods. These values are then used to calculate fluxes to the ecosystem which can then be linked to ecological responses. But, for this data to be used outside of the system in which it is developed, it is necessary to understand how the deposition estimates relate to one another. Therefore, we first identified sources of "bulk" deposition data and compared methods, reliability of data, and consistency of results to one another. Then we looked at the variation within photochemical models that are used by Federal Agencies to evaluate national trends. Finally, we identified some best practices for researchers to consider if their assessment is intended for use at broader scales. Empirical measurements used in this assessment include passive collection of atmospheric molecules, throughfall deposition of precipitation, snowpack measurements, and using biomonitors such as lichen. The three most common photochemical models used to model deposition within the United States are CMAQ, CAMx, and TDep (which uses empirical data to refine modeled values). These models all use meteorological and emission data to estimate deposition at local, regional, or national scales. We identified the range of uncertainty that exists within the types of deposition measurements and how these vary over space and time. Uncertainty is assessed by comparing deposition estimates from differing collection methods and comparing modeled estimates to empirical deposition data. Each collection method has benefits and downfalls that need to be taken into account if the results are to be expanded outside of the research area. Comparing field measured values to modeled values highlight the importance of each in the greater goals of understanding current conditions and trends within deposition patterns in the US. While models work well on a larger scale, they cannot replicate the local heterogeneity

  10. Limited acclimation in leaf anatomy to experimental drought in tropical rainforest trees.

    Science.gov (United States)

    Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Mencuccini, Maurizio

    2016-12-01

    Dry periods are predicted to become more frequent and severe in the future in some parts of the tropics, including Amazonia, potentially causing reduced productivity, higher tree mortality and increased emissions of stored carbon. Using a long-term (12 year) through-fall exclusion (TFE) experiment in the tropics, we test the hypothesis that trees produce leaves adapted to cope with higher levels of water stress, by examining the following leaf characteristics: area, thickness, leaf mass per area, vein density, stomatal density, the thickness of palisade mesophyll, spongy mesophyll and both of the epidermal layers, internal cavity volume and the average cell sizes of the palisade and spongy mesophyll. We also test whether differences in leaf anatomy are consistent with observed differential drought-induced mortality responses among taxa, and look for relationships between leaf anatomy, and leaf water relations and gas exchange parameters. Our data show that trees do not produce leaves that are more xeromorphic in response to 12 years of soil moisture deficit. However, the drought treatment did result in increases in the thickness of the adaxial epidermis (TFE: 20.5 ± 1.5 µm, control: 16.7 ± 1.0 µm) and the internal cavity volume (TFE: 2.43 ± 0.50 mm 3 cm -2 , control: 1.77 ± 0.30 mm 3 cm -2 ). No consistent differences were detected between drought-resistant and drought-sensitive taxa, although interactions occurred between drought-sensitivity status and drought treatment for the palisade mesophyll thickness (P = 0.034) and the cavity volume of the leaves (P = 0.025). The limited response to water deficit probably reflects a tight co-ordination between leaf morphology, water relations and photosynthetic properties. This suggests that there is little plasticity in these aspects of plant anatomy in these taxa, and that phenotypic plasticity in leaf traits may not facilitate the acclimation of Amazonian trees to the predicted future reductions in dry

  11. Spatial and temporal effects of drought on soil CO2 efflux in a cacao agroforestry system in Sulawesi, Indonesia

    Directory of Open Access Journals (Sweden)

    I. Anas

    2010-04-01

    Full Text Available Climate change induced droughts pose a serious threat to ecosystems across the tropics and sub-tropics, particularly to those areas not adapted to natural dry periods. In order to study the vulnerability of cacao (Theobroma cacao – Gliricidia sepium agroforestry plantations to droughts a large scale throughfall displacement roof was built in Central Sulawesi, Indonesia. In this 19-month experiment, we compared soil surface CO2 efflux (soil respiration from three roof plots with three adjacent control plots. Soil respiration rates peaked at intermediate soil moisture conditions and decreased under increasingly dry conditions (drought induced, or increasingly wet conditions (as evidenced in control plots. The roof plots exhibited a slight decrease in soil respiration compared to the control plots (average 13% decrease. The strength of the drought effect was spatially variable – while some measurement chamber sites reacted strongly (responsive to the decrease in soil water content (up to R2=0.70 (n=11, others did not react at all (non-responsive (n=7. A significant correlation was measured between responsive soil respiration chamber sites and sap flux density ratios of cacao (R=0.61 and Gliricidia (R=0.65. Leaf litter CO2 respiration decreased as conditions became drier. The litter layer contributed approximately 3–4% of the total CO2 efflux during dry periods and up to 40% during wet periods. Within days of roof opening soil CO2 efflux rose to control plot levels. Thereafter, CO2 efflux remained comparable between roof and control plots. The cumulative effect on soil CO2 emissions over the duration of the experiment was not significantly different: the control plots respired 11.1±0.5 Mg C ha−1 yr−1, while roof plots respired 10.5±0.5 Mg C ha−1 yr−1. The relatively mild decrease measured in soil CO2 efflux indicates that this agroforestry ecosystem is capable of mitigating droughts with only minor stress symptoms.

  12. Time changes in radiocesium concentration in aquatic systems affected by the Fukushima Daiichi NPP accident

    Science.gov (United States)

    Onda, Yuichi; Taniguchi, Keisuke; Kato, Hiroaki; Yoshimura, Kazuya; Wakiyama, Yoshifumi; Iwagami, Sho; Tsujimura, Maki; Sakaguchi, Aya; Yamamoto, Masatoshi

    2015-04-01

    Due to Fukushima Daiichi Nuclear Power Plant accident, radioactive materials including Cs-134 and Cs-137 were widely distributed in surrounded area. The radiocesiums have been transported in river networks. The monitoring started at 6 sites from June 2011. Subsequently, additional 24 monitoring sites were installed between October 2012 and January 2013. Flow and turbidity (for calculation of suspended sediment concentration) were measured at each site, while suspended sediments and river water were collected every one or half month to measure Cs-134 and Cs-137 activity concentrations by gamma spectrometry. Also detailed field monitoring has been condcuted in Yamakiya-district, Kawamata town, Fukushima prefecture. These monitoring includes, 1) Radiocesium wash-off from the runoff-erosion plot under different land use, 2) 2. Measurement of radiocesium transfer in forest environment, in association with hydrological pathways such as throughfall and overlandflow on hillslope, 3) Monitoring on radiocesium concentration in soil water, ground water, and spring water, 4)Monitoring of dissolved and particulate radiocesium concentration in river water, and stream water from the forested catchment, and 5)Measurement of radiocesium content in drain water and suspended sediment from paddy field. Our monitoring result demonstrated that the Cs-137 concentration in eroded sediment from the runoff-erosion plot has been almost constant for the past 3 years, however the Cs-137 concentration of suspended sediment from the forested catchment showed slight decrease through time. On the other hand, the suspended sediment from paddy field and those in river water from large catchments exhibited rapid decrease in Cs-137 concentration with time. The decreasing trend of Cs-137 concentration were fitted by the two-component exponential model, differences in decreasing rate of the model were compared and discussed among various land uses and catchment scales. Such analysis can provide

  13. Radioactive and stable cesium isotope distributions and dynamics in Japanese cedar forests.

    Science.gov (United States)

    Yoschenko, Vasyl; Takase, Tsugiko; Hinton, Thomas G; Nanba, Kenji; Onda, Yuichi; Konoplev, Alexei; Goto, Azusa; Yokoyama, Aya; Keitoku, Koji

    2018-06-01

    Dynamics of the Fukushima-derived radiocesium and distribution of the natural stable isotope 133 Cs in Japanese cedar (Cryptomeria japonica D. Don) forest ecosystems were studied during 2014-2016. For the experimental site in Yamakiya, Fukushima Prefecture, we present the redistribution of radiocesium among ecosystem compartments during the entire observation period, while the results obtained at another two experimental site were used to demonstrate similarity of the main trends in the Japanese forest ecosystems. Our observations at the Yamakiya site revealed significant redistribution of radiocesium between the ecosystem compartments during 2014-2016. During this same period radionuclide inventories in the aboveground tree biomass were relatively stable, however, radiocesium in forest litter decreased from 20 ± 11% of the total deposition in 2014 to 4.6 ± 2.7% in 2016. Radiocesium in the soil profile accumulated in the 5-cm topsoil layers. In 2016, more than 80% of the total radionuclide deposition in the ecosystem resided in the 5-cm topsoil layer. The radiocesium distribution between the aboveground biomass compartments at Yamakiya during 2014-2016 was gradually approaching a quasi-equilibrium distribution with stable cesium. Strong correlations of radioactive and stable cesium isotope concentrations in all compartments of the ecosystem have not been reached yet. However, in some compartments the correlation is already strong. An increase of radiocesium concentrations in young foliage in 2016, compared to 2015, and an increase in 2015-2016 of the 137 Cs/ 133 Cs concentration ratio in the biomass compartments with strong correlations indicate an increase in root uptake of radiocesium from the soil profile. Mass balance of the radionuclide inventories, and accounting for radiocesium fluxes in litterfall, throughfall and stemflow, enabled a rough estimate of the annual radiocesium root uptake flux as 2 ± 1% of the total inventory in the ecosystem

  14. Understanding the role of fog in forest hydrology: Stable isotopes as tools for determining input and partitioning of cloud water in montane forests

    Science.gov (United States)

    Scholl, M.; Eugster, W.; Burkard, R.

    2011-01-01

    Understanding the hydrology of tropical montane cloud forests (TMCF) has become essential as deforestation of mountain areas proceeds at an increased rate worldwide. Passive and active cloud-water collectors, throughfall and stemflow collectors, visibility or droplet size measurements, and micrometeorological sensors are typically used to measure the fog water inputs to ecosystems. In addition, stable isotopes may be used as a natural tracer for fog and rain. Previous studies have shown that the isotopic signature of fog tends to be more enriched in the heavier isotopes 2H and 18O than that of rain, due to differences in condensation temperature and history. Differences between fog and rain isotopes are largest when rain is from synoptic-scale storms, and fog or orographic cloud water is generated locally. Smaller isotopic differences have been observed between rain and fog on mountains with orographic clouds, but only a few studies have been conducted. Quantifying fog deposition using isotope methods is more difficult in forests receiving mixed precipitation, because of limitations in the ability of sampling equipment to separate fog from rain, and because fog and rain may, under some conditions, have similar isotopic composition. This article describes the various types of fog most relevant to montane cloud forests and the importance of fog water deposition in the hydrologic budget. A brief overview of isotope hydrology provides the background needed to understand isotope applications in cloud forests. A summary of previous work explains isotopic differences between rain and fog in different environments, and how monitoring the isotopic signature of surface water, soil water and tree xylem water can yield estimates of the contribution of fog water to streamflow, groundwater recharge and transpiration. Next, instrumentation to measure fog and rain, and methods to determine isotopic concentrations in plant and soil water are discussed. The article concludes with

  15. Extractability of 137Cs in Response to its Input Forms into Fukushima Forest Soils.

    Science.gov (United States)

    Mengistu, T. T.; Carasco, L.; Orjollet, D.; Coppin, F.

    2017-12-01

    In case of nuclear accidents like Fukushima disaster, the influence of 137Cs depositional forms (soluble and/or solid forms) on mineral soil of forest environment on its availability have not reported yet. Soluble (137Cs tagged ultra-pure water) and solid (137Cs contaminated litter-OL and fragmented litter-OF) input forms were mixed with the mineral soils collected under Fukushima coniferous and broadleaf forests. The mixtures then incubated under controlled laboratory condition to evaluate the extractability of 137Cs in soil over time in the presence of decomposition process through two extracting reagents- water and ammonium acetate. Results show that extracted 137Cs fraction with water was less than 1% for soluble input form and below detection limit for solid input form. On the same way with acetate reagent, the extracted 137Cs fraction ranged from 46 to 56% for soluble input and 2 to 15% for solid input, implying the nature of 137Cs contamination strongly influences the extractability and hence the mobility of 137Cs in soil. Although the degradation rate of the organic materials has been calculated in the range of 0.18 ± 0.1 to 0.24 ± 0.1 y-1, its impact on 137Cs extractability appeared very weak at least within the observation period, probably due to shorter time scale. Concerning the treatments of solid 137Cs input forms through acetate extraction, relatively more 137Cs has been extracted from broadleaf organic materials mixes (BL-OL & BL-OF) than the coniferous counterparts. This probably is due to the fact that the lignified coniferous organic materials (CED-OL & CED-OF) components tend to retain more 137Cs than that of the broadleaf. Generally, by extrapolating these observations in to a field context, one can expect more available 137Cs fraction in forest soil from wet depositional pathways such as throughfall and stemflow than those attached with organic materials like litter (OL) and its eco-processed forms (OF).

  16. CAOS: the nested catchment soil-vegetation-atmosphere observation platform

    Science.gov (United States)

    Weiler, Markus; Blume, Theresa

    2016-04-01

    Most catchment based observations linking hydrometeorology, ecohydrology, soil hydrology and hydrogeology are typically not integrated with each other and lack a consistent and appropriate spatial-temporal resolution. Within the research network CAOS (Catchments As Organized Systems), we have initiated and developed a novel and integrated observation platform in several catchments in Luxembourg. In 20 nested catchments covering three distinct geologies the subscale processes at the bedrock-soil-vegetation-atmosphere interface are being monitored at 46 sensor cluster locations. Each sensor cluster is designed to observe a variety of different fluxes and state variables above and below ground, in the saturated and unsaturated zone. The numbers of sensors are chosen to capture the spatial variability as well the average dynamics. At each of these sensor clusters three soil moisture profiles with sensors at different depths, four soil temperature profiles as well as matric potential, air temperature, relative humidity, global radiation, rainfall/throughfall, sapflow and shallow groundwater and stream water levels are measured continuously. In addition, most sensors also measure temperature (water, soil, atmosphere) and electrical conductivity. This setup allows us to determine the local water and energy balance at each of these sites. The discharge gauging sites in the nested catchments are also equipped with automatic water samplers to monitor water quality and water stable isotopes continuously. Furthermore, water temperature and electrical conductivity observations are extended to over 120 locations distributed across the entire stream network to capture the energy exchange between the groundwater, stream water and atmosphere. The measurements at the sensor clusters are complemented by hydrometeorological observations (rain radar, network of distrometers and dense network of precipitation gauges) and linked with high resolution meteorological models. In this

  17. Nitrogen distribution and cycling through water flows in a subtropical bamboo forest under high level of atmospheric deposition.

    Directory of Open Access Journals (Sweden)

    Li-hua Tu

    Full Text Available BACKGROUND: The hydrological cycle is an important way of transportation and reallocation of reactive nitrogen (N in forest ecosystems. However, under a high level of atmospheric N deposition, the N distribution and cycling through water flows in forest ecosystems especially in bamboo ecosystems are not well understood. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate N fluxes through water flows in a Pleioblastus amarus bamboo forest, event rainfall/snowfall (precipitation, PP, throughfall (TF, stemflow (SF, surface runoff (SR, forest floor leachate (FFL, soil water at the depth of 40 cm (SW1 and 100 cm (SW2 were collected and measured through the whole year of 2009. Nitrogen distribution in different pools in this ecosystem was also measured. Mean N pools in vegetation and soil (0-1 m were 351.7 and 7752.8 kg ha(-1. Open field nitrogen deposition at the study site was 113.8 kg N ha(-1 yr(-1, which was one of the highest in the world. N-NH4(+, N-NO3(- and dissolved organic N (DON accounted for 54%, 22% and 24% of total wet N deposition. Net canopy accumulated of N occurred with N-NO3(- and DON but not N-NH4(+. The flux of total dissolved N (TDN to the forest floor was greater than that in open field precipitation by 17.7 kg N ha(-1 yr(-1, due to capture of dry and cloudwater deposition net of canopy uptake. There were significant negative exponential relationships between monthly water flow depths and monthly mean TDN concentrations in PP, TF, SR, FFL and SW1. CONCLUSIONS/SIGNIFICANCE: The open field nitrogen deposition through precipitation is very high over the world, which is the main way of reactive N input in this bamboo ecosystem. The water exchange and N consume mainly occurred in the litter floor layer and topsoil layer, where most of fine roots of bamboo distributed.

  18. The Importance of Deep Roots and Hydraulic Redistribution to Amazonian Rainforest Resilience and Response to Hydro-Climatic Variability: A Simulation Analysis

    Science.gov (United States)

    Drewry, D.; Kumar, P.; Sivapalan, M.; Long, S.; Liang, X.

    2008-12-01

    Amazonian rain forests are a crucial component of the terrestrial biosphere, acting as a significant sink of anthropogenic carbon emissions, as well as playing a key role in driving tropical climate patterns through surface energy partitioning and significant precipitation recycling. Recent studies using remotely-sensed indices of canopy functioning (ie. canopy greeness, canopy water storage and photosynthetic capacity) have raised questions regarding the response of deep-rooted Amazonian vegetation functioning to short-term hydro-climatic forcing anomalies. Climate model predictions show an increase in ENSO-driven drought for eastern Amazonia in the coming decades. In this context, we utilize a multi-layer process-based model that represents the complex set of interactions and feedbacks between the canopy, soil and root subsystems to examine the impacts of drought on deep-rooted Amazonian rainforests. The model canopy is partitioned into several layers, allowing for resolution of the shortwave and longwave radiation regimes that drive photosynthesis, stomatal conductance and leaf energy balance in each layer, along with the canopy microclimate. The above-ground component of the model is coupled to a multi-layer soil-root model that computes soil moisture and heat transport, root water uptake, and the passive redistribution of moisture across soil potential gradients by the root system (ie. hydraulic redistribution). Carbon and nitrogen transformations in each layer of the soil system are modulated by microbial activity, and act to provide nutrient constraints on the photosynthetic capacity of the canopy. Model skill in capturing the seasonal and inter-annual variability in canopy-atmosphere exchange is evaluated through multi-year records of canopy- top eddy covariance CO2, water vapor and heat fluxes collected at a field site in eastern Amazonia. A nearby throughfall exclusion experiment provides information on the vertical distribution of soil moisture under

  19. Spatial effects of aboveground biomass on soil ecological parameters and trace gas fluxes in a savannah ecosystem of Mount Kilimanjaro

    Science.gov (United States)

    Becker, Joscha; Gütlein, Adrian; Sierra Cornejo, Natalia; Kiese, Ralf; Hertel, Dietrich; Kuzyakov, Yakov

    2015-04-01

    The savannah biome is a hotspot for biodiversity and wildlife conservation in Africa and recently got in the focus of research on carbon sequestration. Savannah ecosystems are under strong pressure from climate and land-use change, especially around populous areas like the Mt. Kilimanjaro region. Savannah vegetation in this area consists of grassland with isolated trees and is therefore characterized by high spatial variation of canopy cover, aboveground biomass and root structure. Canopy structure is known to affect microclimate, throughfall and evapotranspiration and thereby controls soil moisture conditions. Consequently, the canopy structure is a major regulator for soil ecological parameters and soil-atmospheric trace gas exchange (CO2, N2O, CH4) in water limited environments. The spatial distribution of these parameters and the connection between above and belowground processes are important to understand and predict ecosystem changes and estimate its vulnerability. Our objective was to determine trends and changes of soil parameters and relate their spatial variability to the vegetation structure. We chose three trees from each of the two most dominant species (Acacia nilotica and Balanites aegyptiaca) in our research area. For each tree, we selected transects with nine sampling points of the same relative distances to the stem. Distances were calculated in relation to the crown radius. At these each sampling point a soil core was taken and separated in 0-10 cm and 10-30 cm depth. We measured soil carbon (C) and nitrogen (N) storage, microbial biomass carbon C and N, soil respiration as well as root biomass and -density, soil temperature and soil water content. Each tree was characterized by crown spread, leaf area index and basal area. Preliminary results show that C and N stocks decreased about 50% with depth independently of distance to the tree. Soil water content under the tree crown increased with depth while it decreased under grass cover. Microbial

  20. Calibrating a Soil-Vegetation-Atmosphere system with a genetical algorithm

    Science.gov (United States)

    Schneider, S.; Jacques, D.; Mallants, D.

    2009-04-01

    Accuracy of model prediction is well known for being very sensitive to the quality of the calibration of the model. It is also known that quantifying soil hydraulic parameters in a Soil-Vegetation-Atmosphere (SVA) system is a highly non-linear parameter estimation problem, and that robust methods are needed to avoid the optimization process to lead to non-optimal parameters. Evolutionary algorithms and specifically genetic algorithms (GAs) are very well suited for those complex parameter optimization problems. The SVA system in this study concerns a pine stand on a heterogeneous sandy soil (podzol) in the north of Belgium (Campine region). Throughfall and other meteorological data and water contents at different soil depths have been recorded during one year at a daily time step. The water table level, which is varying between 95 and 170 cm, has been recorded with a frequency of 0.5 hours. Based on the profile description, four soil layers have been distinguished in the podzol and used for the numerical simulation with the hydrus1D model (Simunek and al., 2005). For the inversion procedure the MYGA program (Yedder, 2002), which is an elitism GA, was used. Optimization was based on the water content measurements realized at the depths of 10, 20, 40, 50, 60, 70, 90, 110, and 120 cm to estimate parameters describing the unsaturated hydraulic soil properties of the different soil layers. Comparison between the modeled and measured water contents shows a good similarity during the simulated year. Impacts of short and intensive events (rainfall) on the water content of the soil are also well reproduced. Errors on predictions are on average equal to 5%, which is considered as a good result. A. Ben Haj Yedder. Numerical optimization and optimal control : (molecular chemistry applications). PhD thesis, Ecole Nationale des Ponts et Chaussées, 2002. Šimůnek, J., M. Th. van Genuchten, and M. Šejna, The HYDRUS-1D software package for simulating the one-dimensional movement

  1. Using high resolution aridity and drainage position data to better predict rainfall-runoff relationships in complex upland topography

    Science.gov (United States)

    Metzen, D.; Sheridan, G. J.; Benyon, R. G.; Lane, P. N. J.

    2015-12-01

    In topographically complex terrain, the interaction of aspect-dependent solar exposure and drainage-position-dependent flow accumulation results in energy and water partitioning that is highly spatially variable. Catchment scale rainfall-runoff relationships are dependent on these smaller scale spatial patterns. However, there remains considerable uncertainty as to how to represent this smaller scale variability within lumped parameter, catchment scale rainfall-runoff models. In this study we aim to measure and represent the key interactions between aridity and drainage position in complex terrain to inform the development of simple catchment-scale hydrologic model parameters. Six measurement plots were setup on opposing slopes in an east-west facing eucalypt forest headwater catchment. The field sites are spanning three drainage positions with two contrasting aridity indices each, while minimizing variations in other factors, e.g. geology and weather patterns. Sapflow, soil water content (SWC) and throughfall were continuously monitored on two convergent hillslopes with similar size (1.3 and 1.6ha) but contrasting aspects (north and south). Soil depth varied from 0.6m at the topslope to >2m at the bottomslope positions. Maximum tree heights ranged from 16.2m to 36.9m on the equator-facing slope and from 30.1m to 45.5m on the pole-facing slope, with height decreasing upslope on both aspects. Two evapotranspiration (ET) patterns emerged in relation to aridity and drainage position. On the equator-facing slope (AI~ 2.1), seasonal understorey and overstorey ET patterns were in sync, whereas on the pole-facing slope (AI~1.5) understorey ET showed larger seasonal fluctuations than overstorey ET. Seasonal ET patterns and competition between soil evaporation and root water uptake lead to distinct differences in profile SWC across the sites, likely caused by depletion from different depths. Topsoil water content on equator-facing slopes was generally lower and responded

  2. Potassium nutrition and water availability affect phloem transport of photosynthetic carbon in eucalypt trees

    Science.gov (United States)

    Epron, Daniel; Cabral, Osvaldo; Laclau, Jean-Paul; Dannoura, Masako; Packer, Ana Paula; Plain, Caroline; Battie-Laclau, Patricia; Moreira, Marcelo; Trivelin, Paulo; Bouillet, Jean-Pierre; Gérant, Dominique; Nouvellon, Yann

    2015-04-01

    Potassium fertilisation strongly affects growth and carbon partitioning of eucalypt on tropical soil that are strongly weathered. In addition, potassium fertilization could be of great interest in mitigating the adverse consequences of drought in planted forests, as foliar K concentrations influence osmotic adjustment, stomatal regulation and phloem loading. Phloem is the main pathway for transferring photosynthate from source leaves to sink organs, thus controlling growth partitioning among the different tree compartments. But little is known about the effect of potassium nutrition on phloem transport of photosynthetic carbon and on the interaction between K nutrition and water availability. In situ 13C pulse labelling was conducted on tropical eucalypt trees (Eucalyptus grandis L.) grown in a trial plantation with plots in which 37% of throughfall were excluded (about 500 mm/yr) using home-made transparent gutters (-W) or not (+W) and plots that received 0.45 mol K m-2 applied as KCl three months after planting (+K) or not (-K). Three trees were labelled in each of the four treatments (+K+W, +K-W, -K+W and -K-W). Trees were labelled for one hour by injecting pure 13CO2 in a 27 m3 whole crown chamber. We estimated the velocity of carbon transfer in the trunk by comparing time lags between the uptake of 13CO2 and its recovery in trunk CO2 efflux recorded by off axis integrated cavity output spectroscopy (Los Gatos Research) in two chambers per tree, one just under the crown and one at the base of the trunk. We analyzed the dynamics of the label recovered in the foliage and in the phloem sap by analysing carbon isotope composition of bulk leaf organic matter and phloem extracts using an isotope ratio mass spectrometer. The velocity of carbon transfer in the trunk and the initial rate 13C disappearance from the foliage were much higher in +K trees than in -K trees with no significant effect of rainfall. The volumetric flow of phloem, roughly estimated by multiplying

  3. Biogeochemical hotspots following a simulated tree mortality event of southern pine beetle

    Science.gov (United States)

    Siegert, C. M.; Renninger, H. J.; Karunarathna, S.; Hornslein, N.; Riggins, J. J.; Clay, N. A.; Tang, J. D.; Chaney, B.; Drotar, N.

    2017-12-01

    Disturbances in forest ecosystems can alter functions like productivity, respiration, and nutrient cycling through the creation of biogeochemical hotspots. These events occur sporadically across the landscape, leading to uncertainty in terrestrial biosphere carbon models, which have yet to capture the full complexity of biotic and abiotic factors driving ecological processes in the terrestrial environment. Given the widespread impact of southern pine beetle on forest ecosystems throughout the southeastern United States, it is critical to management and planning activities to understand the role of these disturbances. As such, we hypothesize that bark beetle killed trees create biogeochemical hotspots in the soils surrounding their trunk as they undergo mortality due to (1) increased soil moisture from reductions in plant water uptake and increased stemflow production, (2) enhanced canopy-derived inputs of carbon and nitrogen, and (3) increased microbial activity and root mortality. In 2015, a field experiment to mimic a southern pine beetle attack was established by girdling loblolly pine trees. Subsequent measurements of throughfall and stemflow for water quantity and quality, transpiration, stem respiration, soil respiration, and soil chemistry were used to quantify the extent of spatial and temporal impacts of tree mortality on carbon budgets. Compared to control trees, girdled trees exhibited reduced water uptake within the first 6 months of the study and succumbed to mortality within 18 months. Over two years, the girdled trees generated 33% more stemflow than control trees (7836 vs. 5882 L m-2). Preliminary analysis of carbon and nitrogen concentrations and dissolved organic matter quality are still pending. In the surrounding soils, C:N ratios were greater under control trees (12.8) than under girdled trees (12.1), which was driven by an increase in carbon around control trees (+0.13 mg C mg-1 soil) and not a decrease around girdled trees (-0.01 mg C mg-1

  4. Results of forest monitoring on Olkiluoto island in 2009

    Energy Technology Data Exchange (ETDEWEB)

    Aro, L.; Helmisaari, H.S.; Hoekkae, H.; Lindroos, A.-J.; Rautio, P.; Derome, J. (Finnish Forest Research Institute, Vantaa (Finland))

    2010-11-15

    Forest investigations carried out on Olkiluoto aim to monitor the state of the forest ecosystems, quantify Olkiluoto-specific processes taking place in the forests producing input data for the safety assessment of spent nuclear fuel disposal, and follow possible changes in the forest condition resulting from the intensive construction activities currently being carried out in the area. The forest investigations form a part of the monitoring programme being carried out on Olkiluoto Island under the management of Posiva Oy. This report focuses on activities performed on bulk deposition and forest intensive monitoring plots (MRK and FIP plots) in 2009. In general, the deposition levels in 2009 in the open area and in stand throughfall were quite comparable to those in earlier years, although sulphur and calcium depositions were somewhat higher in the open area than in earlier years. The soil solution quality in 2009 was also quite comparable to that in earlier years. The NH{sub 4}-N and NO{sub 3}-N concentrations were low at all depths in the mineral soil of the FIP plots. There appeared to be a gradual decrease in sulphate concentrations in the mineral soil during the monitoring period. In 2009 the monthly level of transipiration in the Scots pine dominated stand was comparable to previous years (2007-2008). Instead, monthly transpiration in the Norway spruce dominated stand was clearly lower in 2009 than in 2007-2008. Annual total litterfall production was smaller in 2008 than in 2007. The most notable differences between the plots were detected in Al and N concentrations. The Al concentration was higher in living pine needles than in spruce needles. High Al and Fe concentrations were found in remaining litter, and are most likely due to soil dust. The average defoliation level of the pines was 4.6 % and of the spruces 24.1 %, indicating a good crown condition: the pines were classified as non-defoliated and the spruces as slightly defoliated. The minirhizotrone

  5. Long-term variations in the distribution of radioactive Cs in plant, soil, stream bottom sand in a small forest in Fukushima prefecture

    International Nuclear Information System (INIS)

    Kinno, Shuntaro; Okochi, Hiroshi; Katsumi, Naoya; Ogata, Hiroko; Kataoka, Jun; Kishimoto, Aya; Iwamoto, Yasuhiro; Sorimachi, Atsuyuki; Tokonami, Shinji

    2017-01-01

    Radio-Cs concentrations in fresh leaves/needles, litter, surface soil, and stream sand were continuously investigated in a deciduous broadleaf forest and cedar forest in Namie-town, Fukushima prefecture from June 2012 to June 2016, except for snow-cover periods. The result of a car-borne survey from Fukushima city to Minamitsushima showed that the air dose rate declined faster than the physical attenuation due to decontamination, outside of forests. Radio-Cs concentrations ("1"3"7Cs + "1"3"4Cs) in litter and surface soil in broadleaf forest were constant at 52.0, 102 kBq kg-dry"-"1, respectively from 2014. In a cedar forest, however, the radio-Cs concentrations in fresh needles and litter declined from 2012 to 2015, probably because of washing and leaching by throughfall, and radio-Cs was accumulated in surface soil. In broadleaf forest, the buffer depth of radio-Cs in soil (1.26 cm) which indicates the extent of infiltration into deeper layers was greater than in the cedar forest (1.14 cm) in April 2013. However, the buffer depth in the cedar forest overtook that in the broadleaf forest in December, 2015 (1.5 cm in broadleaf forest and 2.6 cm in cedar forest). The radio-Cs values in the stream bottom sand were concentrated in smaller sand (over 2 mm, 3.04; 0.21-2.0 mm, 10.2; under 0.21 mm, 54.5 kBq kg-dry"-"1 in downstream near the broadleaf forest and over 2.0 mm, 2.67, 0.21-2.0 mm, 7.95; under 0.21 mm, 41.3 kBq kg-dry"-"1 in the upstream area near the cedar forest). It is concerned that a part of them causes the outflow of radio-Cs as suspended sand. The relative radio-Cs concentration ratio between smaller bottom sand and surface soil, which indicates the outflow of radio-Cs from forest via stream declined (2013: 0.54, 2016: 0.29 in downstream and 2013: 1.4, 2016: 0.31 in the upstream region). However, we found that floating male flowers of cedar containing high radio-Cs (23.8 kBq kg-dry"-"1) could be another transport media in the spring. (author)

  6. N Deposition Effects on Hermes Copper Butterfly (Lycaena hermes) Habitat in Southern California

    Science.gov (United States)

    Malter, L. I.; Vourlitis, G. L.

    2017-12-01

    Atmospheric nitrogen (N) deposition has become a global concern over the past few decades as population sizes have increased. San Diego County, CA, USA, with a high population density, Mediterranean-type climate, and high biodiversity, is an ideal site for an extensive N deposition study. Chronic anthropogenic N deposition is one of the main contributing factors to affect plant species diversity (Vourlitis and Pasquini 2009) and invasive species encroachment (Minnich and Dezzani 1998). It is also the location of the rare endemic Hermes copper butterfly (Lycaena hermes), which has received minimal research and remains a mystery to many ecologists. We hypothesized that N deposition will impact Hermes abundance; however, there is limited research on the effects of N deposition on butterfly habitat. Thus, this study aims to determine the effect of increased N on the alterations to plant-insect interactions. These effects are being measured at five sites throughout San Diego County in current or historical Hermes copper habitat. N deposition collectors have been placed under the canopy of spiny redberry shrubs (Rhamnus crocea) to accumulate N throughfall at each site. Soil and redberry stem fragments are being used to analyze total N and Carbon (C), water potential, and shrub growth throughout the course of this study. Despite the preliminary nature of our results, we show a number of trends between data groups, such as large differences in soil and tissue N and C between the study sites, suggesting differences in atmospheric N inputs. These variations in soil N availability lead to variations in leaf tissue chemistry, which can ultimately impact the performance of the Hermes copper larvae. Our current data demonstrate some clear trends, but whether these trends remain consistent and interpretable remains to be seen. We anticipate this research will increase our understanding of spatial variation patterns of N deposition in southern California and how that N input might

  7. Are tall trees more sensitive to prolonged drought in tropical per-humid forests?

    Science.gov (United States)

    Schuldt, Bernhard; Horna, Viviana; Leuschner, Christoph

    2010-05-01

    Seasonality of water flux was investigated for common tree species of a Central Sulawesi pre-montane perhumid forest located in the Lore Lindu National Park. Trees were exposed to reduced soil water levels under a rainfall exclusion experiment (Sulawesi Throughfall Displacement Experiment, STD), to simulate drought effects and to monitor species-specific short-term responses to extended water stress. Several climate scenarios predict more frequent occurrence of ENSO droughts with increasing severity induced by global warming. Detailed assessments of the ecological consequences of droughts in perhumid forests are scarce and knowledge whether and how these ecosystems are adapted to severe droughts is limited. Key research questions were: (1) how do tall rainforest trees cope with long pathways under low evaporative demand, (2) how sensitive are trees from tropical perhumid forests and how do they acclimate to drought-stress and 3) does wood density determine the drought sensitivity of perhumid forest trees? From June 2007 until October 2009 we monitored 95 trees from 8 common tree species. Half of them were located under the STD Experiment and the other half in control areas. We used the constant heated method to continuously monitor stem xylem flux density and conduct parallel measurements of xylem anatomy and hydraulic conductivity in twigs, stems and roots. After almost 22 months of experimental drought only 25% of xylem flux density reduction was observed in the experimental trees. But the reaction to water stress was species-specific and in some species xylem flux went down to 50 % compared to the individuals located at the control plots. Wood density did not correlate with any hydraulic measurement, but anatomy and hydraulic architecture observations showed a positive correlation between xylem conductivity and vessel size with tree height. These results reveal a well adapted hydraulic system of tall canopy trees allowing for highly efficient water flow under

  8. Does the precipitation redistribution of the canopy sense in the moisture pattern of the forest litter?

    Science.gov (United States)

    Zagyvai-Kiss, Katalin Anita; Kalicz, Péter; Csáfordi, Péter; Kucsara, Mihály; Gribovszki, Zoltán

    2013-04-01

    Precipitation is trapped and temporarily stored by the surfaces of forest crown (canopy interception) and forest litter (litter interception). The stemflow and throughfall reach the litter, thus theoretically the litter moisture content depends on these parts of precipitation. Nowadays the moisture pattern of the forest floor, both spatial and temporal scale, have growing respect for the forestry. The transition to the continuous cover forestry induce much higher variability compared to the even aged, more-less homogeneous, monocultural stands. The gap cutting is one of the key methods in the Hungarian forestry. There is an active discussion among the forest professionals how to determine the optimal gap size to maintain the optimal conditions for the seedlings. Among the open questions is how to modify surrounding trees the moisture pattern of the forest floor in the gap? In the early steps of a multidisciplinary project we processed some available data, to estimate the spatial dependency between the water content of forest litter and the spatial pattern of the canopy represented by the tree trunk. The maximum water content depends on dry weight of litter, thus we also analysed that parameter. Data were measured in three different forest ecosystems: a middle age beech (Fagus sylvatica), a sessile oak (Quercus petraea) and a spruce (Picea abies) stand. The study site (Hidegvíz Valley Research Cathcment) is located in Sopron Hills at the eastern border of the Alps. Litter samples were collected under each stand (occasionally 10-10 pieces from 40?40 cm area) and locations of the samples and neighbouring trees were mapped. We determined dry weight and the water content of litter in laboratory. The relationship between water content and the distance of tree trunks in case of spruce and oak stands were not significant and in case of the beech stand was weakly significant. Climate change effects can influence significantly forest floor moisture content, therefore this

  9. Results of forest monitoring on Olkiluoto island in 2009

    International Nuclear Information System (INIS)

    Aro, L.; Helmisaari, H.S.; Hoekkae, H.; Lindroos, A.-J.; Rautio, P.; Derome, J.

    2010-11-01

    Forest investigations carried out on Olkiluoto aim to monitor the state of the forest ecosystems, quantify Olkiluoto-specific processes taking place in the forests producing input data for the safety assessment of spent nuclear fuel disposal, and follow possible changes in the forest condition resulting from the intensive construction activities currently being carried out in the area. The forest investigations form a part of the monitoring programme being carried out on Olkiluoto Island under the management of Posiva Oy. This report focuses on activities performed on bulk deposition and forest intensive monitoring plots (MRK and FIP plots) in 2009. In general, the deposition levels in 2009 in the open area and in stand throughfall were quite comparable to those in earlier years, although sulphur and calcium depositions were somewhat higher in the open area than in earlier years. The soil solution quality in 2009 was also quite comparable to that in earlier years. The NH 4 -N and NO 3 -N concentrations were low at all depths in the mineral soil of the FIP plots. There appeared to be a gradual decrease in sulphate concentrations in the mineral soil during the monitoring period. In 2009 the monthly level of transipiration in the Scots pine dominated stand was comparable to previous years (2007-2008). Instead, monthly transpiration in the Norway spruce dominated stand was clearly lower in 2009 than in 2007-2008. Annual total litterfall production was smaller in 2008 than in 2007. The most notable differences between the plots were detected in Al and N concentrations. The Al concentration was higher in living pine needles than in spruce needles. High Al and Fe concentrations were found in remaining litter, and are most likely due to soil dust. The average defoliation level of the pines was 4.6 % and of the spruces 24.1 %, indicating a good crown condition: the pines were classified as non-defoliated and the spruces as slightly defoliated. The minirhizotrone images

  10. Plot and field scale soil moisture dynamics and subsurface wetness control on runoff generation in a headwater in the Ore Mountains

    Directory of Open Access Journals (Sweden)

    E. Zehe

    2010-06-01

    Full Text Available This study presents an application of an innovative sampling strategy to assess soil moisture dynamics in a headwater of the Weißeritz in the German eastern Ore Mountains. A grassland site and a forested site were instrumented with two Spatial TDR clusters (STDR that consist of 39 and 32 coated TDR probes of 60 cm length. Distributed time series of vertically averaged soil moisture data from both sites/ensembles were analyzed by statistical and geostatistical methods. Spatial variability and the spatial mean at the forested site were larger than at the grassland site. Furthermore, clustering of TDR probes in combination with long-term monitoring allowed identification of average spatial covariance structures at the small field scale for different wetness states. The correlation length of soil water content as well as the sill to nugget ratio at the grassland site increased with increasing average wetness and but, in contrast, were constant at the forested site. As soil properties at both the forested and grassland sites are extremely variable, this suggests that the correlation structure at the forested site is dominated by the pattern of throughfall and interception. We also found a very strong correlation between antecedent soil moisture at the forested site and runoff coefficients of rainfall-runoff events observed at gauge Rehefeld. Antecedent soil moisture at the forest site explains 92% of the variability in the runoff coefficients. By combining these results with a recession analysis we derived a first conceptual model of the dominant runoff mechanisms operating in this catchment. Finally, we employed a physically based hydrological model to shed light on the controls of soil- and plant morphological parameters on soil average soil moisture at the forested site and the grassland site, respectively. A homogeneous soil setup allowed, after fine tuning of plant morphological parameters, most of the time unbiased predictions of the observed

  11. ESCORRENTÍA SUPERFICIAL EN BOSQUES MONTANOS NATURALES Y PLANTADOS DE PIEDRAS BLANCAS, ANTIOQUIA (COLOMBIA SURFACE RUNOFF IN NATURAL MONTANE FORESTS AND FOREST PLANTATIONS IN ANTIOQUIA, COLOMBIA

    Directory of Open Access Journals (Sweden)

    Oscar Andrés Ruiz Suescún

    2005-06-01

    Full Text Available En bosques montanos naturales de roble (Quercus humboldtii Bonpl. y plantados de pino pátula (Pinus patula Schltdl. & Cham. y ciprés (Cupressus lusitanica Mill. de la región de Piedras Blancas, Antioquia (Colombia, fueron medidos los flujos de escorrentía superficial (ES por un periodo de tiempo de 16 meses. Se implementaron parcelas cerradas de escorrentía superficial de 10 m de largo x 2 m de ancho, tanques colectores y sistemas de registro volumétrico. Los flujos fueron de 23,19 mm año-1 (1,07 % de la precipitación para la cobertura de roble; 35,13 mm año-1 (1,61 % de la precipitación para la cobertura de pino pátula y 230,64 mm año-1 (11,05 % de la precipitación para la cobertura de ciprés. Mediante análisis de componentes principales (ACP se identificaron las relaciones existentes entre las variables hidrológicas y los flujos de ES, y por medio de análisis de regresión lineal múltiple se ajustaron modelos para los flujos de ES por cobertura en función de la precipitación, la precipitación en el bosque y la intensidad de lluvia promedio, variables que mostraron alta relación con la ES según el ACP.In natural montane oak forests (Quercus humboldtii Bonpl., in pine (Pinus patula Schltdl. & Cham. and cypress (Cupressus lusitanica Mill. plantations in Piedras Blancas, Antioquia (Colombia, surface runoff flows (SRF were measured over 16 months. Runoff was measured using 10 m long x 2 m wide runoff bounded plots, collector tanks and a volumetric counter system. SRF were 23,19 mm year -1 (1,07 % of rainfall for oak forest; 35,13 mm year -1 (1,61 % of rainfall for pine and 230,64 mm year-1 (11,05 % of rainfall for cypress plantations. Relationships between hydrological variables and SRF were identified by a principal components analysis (PCA. For each one of the stands, multiple regression analysis was used to fit models of SRF on rainfall, throughfall and mean intensity of rainfall, variables that, according to the PCA

  12. Static sampling of dynamic processes - a paradox?

    Science.gov (United States)

    Mälicke, Mirko; Neuper, Malte; Jackisch, Conrad; Hassler, Sibylle; Zehe, Erwin

    2017-04-01

    . Specifically, we expect the covariance structure of the positive temporal changes of soil moisture to be dominated by the spatial structure of rain- and through-fall and saturated hydraulic conductivity. The covariance in temporarily decreasing soil moisture during radiation driven conditions is expect to be dominated by the spatial structure of retention properties and plant transpiration. An analysis of soil moisture changes has furthermore the advantage that those are free from systematic measurement errors.

  13. Effect of tree thinning and skidding trails on hydrological connectivity in two Japanese forest catchments

    Science.gov (United States)

    López-Vicente, Manuel; Sun, Xinchao; Onda, Yuichi; Kato, Hiroaki; Gomi, Takashi; Hiraoka, Marino

    2017-09-01

    and temporal evolution of HC over the five past scenarios correlated well with the observed changes in runoff yield, as well as with the available values of rainfall interception and throughfall before, during, and after the FMO. The simulation of the proposed scenario recommends the construction of check-dams as effective landscape features to somewhat reduce HC and thus to decrease the sediment and radionuclide delivery rates from the two subcatchments.

  14. Oak Forest Responses to Episodic-Seasonal-Drought, Chronic Multi-year Precipitation Change and Acute Drought Manipulations in a Region With Deep Soils and High Precipitation

    Science.gov (United States)

    Hanson, Paul J.; Wullschleger, Stan D.; Todd, Donald E.; Auge, Robert M.; Froberg, Mats; Johnson, Dale W.

    2010-05-01

    Implications of episodic-seasonal drought (extremely dry late summers), chronic multi-year precipitation manipulations (±33 percent over 12 years) and acute drought (-100 percent over 3 years) were evaluated for the response of vegetation and biogeochemical cycles for an upland-oak forest. The Quercus-Acer forest is located in eastern Tennessee on deep acidic soils with mean annual temperatures of 14.2 °C and abundant precipitation (1352 mm y-1). The multi-year observations and chronic manipulations were conducted from 1993 through 2005 using understory throughfall collection troughs and redistribution gutters and pipes. Acute manipulations of dominant canopy trees (Quercus prinus; Liriodendron tulipifera) were conducted from 2003 through 2005 using full understory tents. Regional and severe late-summer droughts were produced reduced stand water use and photosynthetic carbon gain as expected. Likewise, seedlings and saplings exhibited reduced survival and cumulative growth reductions. Conversely, multi-year chronic increases or decreases in precipitation and associated soil water deficits did not reduce large tree basal area growth for the tree species present. The resilience of canopy trees to chronic-change was the result of a disconnect between carbon allocation to tree growth (an early-season phenomenon) and late-season drought occurrence. Acute precipitation exclusion from the largest canopy trees also produced limited physiological responses and minimal cumulative growth reductions. Lateral root water sources were removed through trenching and could not explain the lack of response to extreme soil drying. Therefore, deep rooting the primary mechanism for large-tree resilience to severe drought. Extensive trench-based assessments of rooting depth suggested that ‘deep' water supplies were being obtained from limited numbers of deep fine roots. Observations of carbon stocks in organic horizons demonstrated accumulation with precipitation reductions and

  15. Small scale variability of soil parameters in different land uses on the southern slopes of Mount Kilimanjaro

    Science.gov (United States)

    Bogner, Christina; Kühnel, Anna; Hepp, Johannes; Huwe, Bernd

    2016-04-01

    indicator of vegetation patterns. First results support our general hypotheses. In the coffee plantation anisotropic variation of soil parameters clearly showed the anthropogenic influence like compaction due to agricultural machinery. However, soil bulk density and penetration resistance in the homegarden were also quite variable at the sites. The larger variability of throughfall in the homegarden is reflected in the patterns of soil moisture. Regarding the larger scale, where we compared different homegardens and coffee plantations along the southern slope of the mountain, soil parameters of the coffee plots were less diverse than those of the homegardens.

  16. Depletion of Stem Water of Sclerocarya birrea Agroforestry Tree Precedes Start of Rainy Season in West African Sudanian Zone

    Science.gov (United States)

    Ceperley, Natalie; Mande, Theophile; Parlange, Marc B.

    2013-04-01

    Understanding water use by agroforestry trees in dry-land ecosystems is essential for improving water management. Agroforestry trees are valued and promoted for many of their ecologic and economic benefits but are often criticized as competing for valuable water resources. In order to understand the seasonal patterns of source water used by agroforestry trees, samples from rain, ground, and surface water were collected weekly in the subcatchment of the Singou watershed that is part of the Volta Basin. Soil and vegetation samples were collected from and under a Sclerocarya birrea agroforstry trees located in this catchment in sealed vials, extracted, and analyzed with a Picarro L2130-i CRDS to obtain both δO18 and δDH fractions. Meteorological measurements were taken with a network of wireless, autonomous stations that communicate through the GSM network (Sensorscope) and two complete eddy-covariance energy balance stations, in addition to intense monitoring of sub-canopy solar radiation, throughfall, stemflow, and soil moisture. Examination of the time series of δO18 concentrations confirm that values in soil and xylem water are coupled, both becoming enriched during the dry season and depleted during the rainy season. Xylem water δO18 levels drops to groundwater δO18 levels in early March when trees access groundwater for leafing out, however soil water does not reach this level until soil moisture increases in mid-June. The relationship between the δDH and δO18 concentrations of water extracted from soil and tree samples do not fall along the global meteoric water line. In order to explore whether this was a seasonally driven, we grouped samples into an "evaporated" group or a "meteoric" group based on the smaller residual to the respective lines. Although more soil samples were found along the m-line during the rainy season than tree samples or dry season soil samples, there was no significant difference in days since rain for any group This suggests that

  17. Inorganic nitrogenous air pollutants, atmospheric nitrogen deposition and their potential ecological impacts in remote areas of western North America (Invited)

    Science.gov (United States)

    Bytnerowicz, A.; Fenn, M. E.; Fraczek, W.; Johnson, R.; Allen, E. B.

    2013-12-01

    , satellite-derived leaf area index and landscape cover. Ion exchange resin throughfall collectors and atmospheric simulation models have provided complementary data critical to better understanding of ecosystem responses to Nr in western North America. Such deposition data and maps have been used to set N deposition critical loads (CL) and to map areas of exceedance for a variety of ecosystem and biological effects. Empirical CL and exceedance areas have been established for many Western ecosystems including forest, desert, shrub, grassland, subalpine and aquatic habitats, thus providing an important management tool for protection of key ecosystems and the services they provide. An important finding is that biodiversity and community responses of sensitive elements of several Western aquatic and terrestrial ecosystems respond to relatively low levels of atmospheric N deposition (e.g., 3-6 kg N/ha/yr).

  18. Interception of rainfall and surface runoff in the Brazilian Cerrado

    Science.gov (United States)

    Tarso Oliveira, Paulo; Wendland, Edson; Nearing, Mark; Perea Martins, João

    2014-05-01

    The Brazilian Cerrado plays a fundamental role in water resources dynamics because it distributes fresh water to the largest basins in Brazil and South America. In recent decades, the native Cerrado vegetation has increasingly been replaced by agricultural crops and pasture. These land cover and land use changes have altered the hydrological processes. Meanwhile, little is known about the components of the water balance in the Brazilian Cerrado, mainly because the experimental field studies in this region are scarce or nonexistent. The objective of this study was to evaluate two hydrological processes under native Cerrado vegetation, the canopy interception (CI) and the surface runoff (R). The Cerrado physiognomy was classified as "cerrado sensu stricto denso" with an absolute density of 15,278 trees ha-1, and a basal area of 11.44 m2 ha-1. We measured the gross rainfall (P) from an automated tipping bucket rain gauge (model TB4) located in a tower with 11 m of height on the Cerrado. Throughfall (TF) was obtained from 15 automated tipping bucket rain gauges (model Davis) spread below the Cerrado vegetation and randomly relocated every month during the wet season. Stemflow (SF) was measured on 12 trees using a plastic hose wrapped around the trees trunks, sealed with neutral silicone sealant, and a bucket to store the water. The canopy interception was computed by the difference between P and the sum of TF and SF. Surface runoff under undisturbed Cerrado was collected in three plots of 100 m2(5 x 20 m) in size and slope steepness of approximately 0.09 m m-1. The experimental study was conducted between January 2012 and November 2013. We found TF of 81.0% of P and SF of 1.6% of P, i.e. the canopy interception was calculated at 17.4% of P. There was a statistically significant correlation (p 0.8. Our results suggest that the rainfall intensity, the characteristics of the trees trunks (crooked and twisted) and stand structure are the main factors that have influenced

  19. Soil CO2, CH4 and N2O effluxes and concentrations in soil profiles down to 15.5m depth in eucalypt plantations under contrasted rainfall regimes

    Science.gov (United States)

    Germon, A.; Nouvellon, Y.; Christophe, J.; Chapuis-Lardy, L.; Robin, A.; Rosolem, C. A.; Gonçalves, J. L. D. M.; Guerrini, I. A.; Laclau, J. P.

    2017-12-01

    Silvicultural practices in planted forests affect the fluxes of greenhouse gases at the soil surface and the major factors driving greenhouse gas production in forest soils (substrate supply, temperature, water content,…) vary with soil depth. Our study aimed to assess the consequences of drought on the temporal variability of CO2, CH4 and N2O fluxes throughout very deep soil profiles in Eucalyptus grandis plantations 3 months before the harvest then in coppice, the first 18 months after clear-cutting. Two treatments were compared: one with 37% of throughfall excluded by plastic sheets (TE), and one without rainfall exclusion (WE). Measurements of soil CO2 efflux were made every two weeks for 30 months using a closed-path Li8100 system in both treatment. Every two weeks for 21 months, CO2, CH4 and N2O surface effluxes were measured using the closed-chamber method and concentrations in the soil were measured at 7 depths down to 15.5 m in both TE and WE. At most measurement dates, soil CO2 efflux were significantly higher in TE than in WE. Across the two treatments and the measurement dates, CO2 concentrations increased from 4446 ± 2188 ppm at 10 cm deep to 15622 ± 3523 ppm at 15.5 m, CH4 concentrations increased from 0.41 ± 0.17 ppm at 10 cm deep to 0.77 ± 0.24 ppm at 15.5 m and N2O concentrations remained roughly constant and were on average 478 ± 55 ppb between soil surface and 15.5 m deep. CO2 and N2O concentrations were on average 20.7 and 7.6% lower in TE than in WE, respectively, across the sampling depths. However, CH4 concentrations in TE were on average 44.4% higher than in WE, throughout the soil profile. Those results suggest that extended drought periods might reduce the production of CO2 and N2O but increase the accumulation of CH4 in eucalypt plantations established in deep tropical soils. Very deep tropical soils cover huge areas worldwide and improving our understanding of the spatiotemporal dynamics of gas concentrations in deep soil layers

  20. Safety case for the disposal of spent nuclear fuel at Olkiluoto. Surface and near-surface hydrological modelling in the biosphere assessment BSA-2012

    International Nuclear Information System (INIS)

    Karvonen, T.

    2013-05-01

    climate scenario A2). The fluxes computed in the Reference Case and in the Terr M axAgri Case show that the biggest difference in the results is related to precipitation throughfall and horizontal fluxes out of the biosphere object whereas interception and transpiration do not differ very much from each other in the Reference Case and Terr M axAgri Case. Influence of shallow wells on water fluxes in biosphere objects were taken into account by assuming that pumping rate is 500 m 3 /a, which is the amount of water needed to sustain a single household. The sensitivity runs carried out indicate that the uncertainty involved in predicting the yearly precipitation rate for the period of next 10 000 years is the input data that has the biggest influence on vertical and horizontal fluxes in the biosphere objects during the safety assessment period. (orig.)

  1. Factors impacting stemflow generation in a European beech forest: Individual tree versus neighborhood properties

    Science.gov (United States)

    Metzger, Johanna Clara; Germer, Sonja; Hildebrandt, Anke

    2017-04-01

    The redistribution of precipitation by canopies changes the water flow dynamics to the forest floor. The spatial pattern of throughfall has been researched in a number of studies in different ecosystems. Yet, also stemflow substantially influences water input patterns, constituting a mean of 12% of gross precipitation for European beech as one of the most abundant tree species in Central Europe. While the initiation of stemflow depends mostly on precipitation event properties, stemflow amounts are strongly shaped by canopy structure. Stemflow research has mainly addressed the impact of single tree morphological variables. In previous studies, the impact of forest structure on area-based stemflow was studied comparing plots with different properties using few exemplary stemflow measurements. In non-homogeneous stands, this approach might not be accurate, as the variation of stand properties like tree density could change tree individual stemflow fluxes. To investigate this, a total measurement of all trees per plot is required. We hypothesize, that in addition to individual tree metrics, tree neighborhood relations have a significant impact on stemflow generation in a heterogeneous beech forest. Our study site is located in the pristine forest of the National Park Hainich, central Germany. It is heterogeneous in respect to tree density, species composition and tree age. We measured stemflow in an areal approach, for all trees on 11 subplots (each 10 m x 10 m) spaced evenly throughout a 1 ha plot. This involved overall 65 trees, which is 11% of the plot's trees. 27 precipitation events were recorded in spring and early summer of 2015 and 2016. Stand properties were surveyed, including diameter at breast height, height, position and species of a tree. From this data, we calculated neighborhood properties for each tree, as number, basal area, and relative height of neighboring trees within a radius of the plot's mean tree distance. Using linear mixed effects models, we

  2. Forest - water dynamics in a Mediterranean mountain environment.

    Science.gov (United States)

    Eliades, Marinos; Bruggeman, Adriana; Lange, Manfred; Camera, Corrado; Christou, Andreas

    2015-04-01

    In semi-arid Mediterranean mountain environments, the soil layer is very shallow or even absent due to the steep slopes. Soil moisture in these environments is limited, but still vegetation thrives. There is limited knowledge about where the vegetation extracts the water from, how much water it uses, and how it interacts with other processes in the hydrological cycle. The main objective of this study is to quantify the water balance components of a Pinus brutia forest at tree level, by measuring the tree transpiration and the redistribution of the water from trees to the soil and the bedrock fractures. The study area is located on a forested hill slope on the outside edge of Peristerona watershed in Cyprus. The site was mapped with the use of a total station and a differentially-corrected GPS, in order to create a high resolution DEM and soil depth map of the area. Soil depth was measured at a 1-m grid around the trees. Biometric measurements were taken from a total of 45 trees. Four trees were selected for monitoring. Six sap flow sensors are installed in the selected trees for measuring transpiration and reverse flows. Two trees have two sensors each to assess the variability. Four volumetric soil moisture sensors are installed around each tree at distances 1 m and 2 m away from the tree trunk. An additional fifth soil moisture sensor is installed in soil depths exceeding 20-cm depth. Four throughfall rain gauges were installed randomly around each tree to compute interception losses. Stemflow is measured by connecting an opened surface plastic tube collar at 1.6 m height around each tree trunk. The trunk surface gaps were filled with silicon glue in order to avoid any stemflow losses. The plastic collar is connected to a sealed surface rain gauge. A weather station monitors all meteorological variables on an hourly basis. Results showed a maximum sap flow volume of 77.9 L/d, from November to January. The sensors also measured a maximum negative flow of 7.9 L

  3. Transpiration and Groundwater Uptake Dynamics of Pinus Brutia on a Fractured Mediterranean Mountain Slope during Two Hydrologically Contrasting Years

    Science.gov (United States)

    Eliades, Marinos; Bruggeman, Adriana; Lubczynski, Maciek; Christou, Andreas; Camera, Corrado; Djuma, Hakan

    2017-04-01

    Semi-arid environments tend to have extreme temporal variability in rainfall, resulting in extended periods with little to no precipitation. The mountainous topography is characterized by steep slopes, often leading to shallow soil layers with limited water storage capacity. Tree species survive in these environments by developing various adaptation mechanisms to access water. The main objective of this study is to examine the differences of two hydrologically contrasting years on the transpiration and groundwater uptake dynamics of Pinus brutia trees. We selected four trees for sap flow monitoring in an 8966-m2 fenced area of Pinus brutia forest. The site is located at 620 m elevation, on the northern foothills of the Troodos mountains in Cyprus. The slope of the site ranges between 0 and 82%. The average daily minimum temperature is 5 0C in January and the average daily maximum temperature is 35 oC in August. The mean annual rainfall is 425 mm. Monitoring started on 1 January 2015 and is ongoing. We measured soil depth in a 1-m grid around each of the selected trees for monitoring. We processed soil depths in ArcGIS software (ESRI) to create a soil depth map. We used a Total Station and a differential GPS for the creation of a high resolution DEM of the area covering the selected trees. We installed seventeen soil moisture sensors at 12-cm depth and two at 30-cm depth, where the soil was deeper than 24 cm. We randomly installed 28 metric manual rain gauges under the trees' canopy to measure throughfall. For stemflow we installed a plastic tube around each tree trunk and connected it to a manual rain gauge. We used sap flow heat ratio method (HRM) instruments to determine sap flow rates of the Pinus brutia. Hourly meteorological conditions were observed by an automatic meteorological station. Here we present the results of the January to October periods, in order to have comparable results for the two contrasting years. During the wet year of 2015, we measured 439

  4. Genetic algorithm applied to a Soil-Vegetation-Atmosphere system: Sensitivity and uncertainty analysis

    Science.gov (United States)

    Schneider, Sébastien; Jacques, Diederik; Mallants, Dirk

    2010-05-01

    Numerical models are of precious help for predicting water fluxes in the vadose zone and more specifically in Soil-Vegetation-Atmosphere (SVA) systems. For such simulations, robust models and representative soil hydraulic parameters are required. Calibration of unsaturated hydraulic properties is known to be a difficult optimization problem due to the high non-linearity of the water flow equations. Therefore, robust methods are needed to avoid the optimization process to lead to non-optimal parameters. Evolutionary algorithms and specifically genetic algorithms (GAs) are very well suited for those complex parameter optimization problems. Additionally, GAs offer the opportunity to assess the confidence in the hydraulic parameter estimations, because of the large number of model realizations. The SVA system in this study concerns a pine stand on a heterogeneous sandy soil (podzol) in the Campine region in the north of Belgium. Throughfall and other meteorological data and water contents at different soil depths have been recorded during one year at a daily time step in two lysimeters. The water table level, which is varying between 95 and 170 cm, has been recorded with intervals of 0.5 hour. The leaf area index was measured as well at some selected time moments during the year in order to evaluate the energy which reaches the soil and to deduce the potential evaporation. Water contents at several depths have been recorded. Based on the profile description, five soil layers have been distinguished in the podzol. Two models have been used for simulating water fluxes: (i) a mechanistic model, the HYDRUS-1D model, which solves the Richards' equation, and (ii) a compartmental model, which treats the soil profile as a bucket into which water flows until its maximum capacity is reached. A global sensitivity analysis (Morris' one-at-a-time sensitivity analysis) was run previously to the calibration, in order to check the sensitivity in the chosen parameter search space. For

  5. Evapotranspiration dynamics along elevational and disturbance gradients at Mt. Kilimanjaro

    Science.gov (United States)

    Detsch, Florian; Otte, Insa; Appelhans, Tim; Nauß, Thomas

    2015-04-01

    Future climate characteristics of the Mt. Kilimanjaro region, Tanzania, will be governed by two superior processes: (i) global climate change and (ii) local land cover transformation. Whilst precipitation amounts remained stable throughout the last climate normals, recent studies revealed distinctly increasing air temperatures in the study region between 1973 and 2013, resulting in a gradual reduction of available moisture. In addition, climate predictions show rising temperatures over East Africa throughout the 21st century. Modifications of the local hydrological cycle resulting from land cover transformation will either favor or counteract the thus induced, increasing dryness. Considering that the local-scale climate is a key parameter for ecosystem processes and biodiversity, quantifying the driving components on the credit (precipitation, through-fall, fog) and debit side of the local-scale water balance is of outstanding (biogeo-)scientific importance. In this context, a multidisciplinary German research unit investigates the interrelationship between climate, land use and biodiversity along the southern slopes of Mt. Kilimanjaro. A total of 65 climate stations have been installed to record rainfall and estimate potential evaporation across different land cover types ranging from savanna (880 m a.s.l.) to the upper mountain Helichrysum sites (4,550 m a.s.l.). The associated data is used for both the area-wide interpolation of meteorological parameters and as input for satellite-based retrievals of rainfall and evapotranspiration (ET). We conducted an extensive field campaign employing a surface-layer scintillometer in order to gain insights into ET dynamics over different land cover types following elevational and disturbance gradients. Scintillometer measurements are available for study sites below (savanna, maize, grassland, coffee plantations) and above the forest belt (natural and disturbed ericaceous forest, Helichrysum), covering a period of 4-7 days

  6. Unravelling spatio-temporal evapotranspiration patterns in topographically complex landscapes

    Science.gov (United States)

    Metzen, Daniel; Sheridan, Gary; Nyman, Petter; Lane, Patrick

    2016-04-01

    Vegetation co-evolves with soils and topography under a given long-term climatic forcing. Previous studies demonstrated a strong eco-hydrologic feedback between topography, vegetation and energy and water fluxes. Slope orientation (aspect and gradient) alter the magnitude of incoming solar radiation resulting in larger evaporative losses and less water availability on equator-facing slopes. Furthermore, non-local water inputs from upslope areas potentially contribute to available water at downslope positions. The combined effect of slope orientation and drainage position creates complex spatial patterns in biological productivity and pedogenesis, which in turn alter the local hydrology. In complex upland landscapes, topographic alteration of incoming radiation can cause substantial aridity index (ratio of potential evapotranspiration to precipitation) variations over small spatial extents. Most of the upland forests in south-east Australia are located in an aridity index (AI) range of 1-2, around the energy limited to water limited boundary, where forested systems are expected to be most sensitive to AI changes. In this research we aim to improve the fundamental understanding of spatio-temporal evolution of evapotranspiration (ET) patterns in complex terrain, accounting for local topographic effects on system properties (e.g. soil depth, sapwood area, leaf area) and variation in energy and water exchange processes due to slope orientation and drainage position. Six measurement plots were set-up in a mixed species eucalypt forest on a polar and equatorial-facing hillslope (AI ˜1.3 vs. 1.8) at varying drainage position (ridge, mid-slope, gully), while minimizing variations in other factors, e.g. geology and weather patterns. Sap flow, soil water content, incoming solar radiation and throughfall were continuously monitored at field sites spanning a wide range of soil depth (0.5 - >3m), maximum tree heights (17 - 51m) and LAI (1.2 - 4.6). Site-specific response curves

  7. Results of forest monitoring on Olkiluoto island in 2010

    International Nuclear Information System (INIS)

    Aro, L.; Huhta, A.-P.; Hoekkae, H.; Lindroos, A.-J.; Rautio, P.; Helmisaari, H.-S.

    2011-11-01

    Forest investigations carried out on Olkiluoto aim to monitor the state of the forest ecosystems, quantify Olkiluoto-specific processes taking place in the forests producing input data for the safety assessment of spent nuclear fuel disposal, and follow possible changes in the forest condition resulting from the intensive construction activities currently being carried out in the area. The forest investigations form a part of the monitoring programme being carried out on Olkiluoto Island under the management of Posiva Oy. This report focuses on activities performed on bulk deposition and forest intensive monitoring plots (MRK and FIP plots) in 2010. In general, the deposition levels in 2010 in the open area and in stand throughfall were quite comparable to those in earlier years, although sulphur and calcium depositions were somewhat higher in the open area than in earlier years (2004-2008). The soil solution quality in 2010 was also quite comparable to that in earlier years. The NH 4 -N and NO 3 -N concentrations were low at all depths in the mineral soil of the FIP plots 4, 10 and 11. Instead, nitrate concentrations were high in the soil solution on FIP14. There appeared to be a clear overall increase in sulphate concentrations with increasing depth on FIP4 and FIP10. Chloride concentrations in the soil solution were extremely high at all depths on all FIP plots throughout the monitoring period; it is clear that there is a considerable input of NaCl in the deposition derived from the sea. The concentrations of heavy metals (Cd, Cr, Ni, Pb) in the soil solution at all depths at Olkiluoto during 2004-2010 continued in many cases to be close to or below the limit of quantification. In 2010 the monthly level of transpiration in the Scots pine dominated stand was smaller in May and bigger in July than during previous years (2007-2009). Monthly transpiration in the Norway spruce dominated stand was clearly lower in 2010 than in 2007-2009, and there is a decreasing

  8. Ecohydrological interactions between soil and trees in Alpine apple orchards

    Science.gov (United States)

    Penna, Daniele; Scandellari, Francesca; Zanotelli, Damiano; Michael, Engel; Tagliavini, Massimo; Comiti, Francesco

    2016-04-01

    Tracer-based investigations of water exchanges between soil and trees in natural forested catchments are receiving relevant attention in modern ecohydrology. However, the interactions between tree water use and the hydrological cycle in agricultural environments are still poorly understood. In this work, we use stable isotopes of water (2H and 18O) and electric conductivity as tracers to improve our understanding of the functional interrelations between water generating surface runoff and recharging groundwater, and water taken up by apple trees (Malus domestica, cv. 'Pinova') in an Alpine valley in South Tyrol, Northern Italy. From April to October 2015 we monitored two orchards approximately of the same size (roughly 400 m2) and soil texture (silt loam) located in a flat area at different distance from the Adige/Etsch River (50 m vs. 450 m). We have addressed the following questions: i) at which soil depth do apple trees take up water? ii) do apple trees take up water from shallow groundwater? iii) are there differences in the isotopic composition of the water fluxes between the two sites? Samples for isotopic analysis were taken approximately fortnightly from the river, two groundwater wells close to each field, mobile soil water (from suction cups at 25 cm and 50 cm), open area precipitation, throughfall, irrigation and sap (through a portable pressure bomb). Tightly-bound soil water was also cryogenically extracted from samples taken every 10 cm from 60 cm-long soil cores taken at three locations for each field on one occasion in mid-summer. Ancillary measurements were electrical conductivity of all water sources except for sap. In addition to meteorological and discharge data, soil moisture was continuously measured at 10 cm and 50 cm in three locations, and sap flow on three trees, for each field. Preliminary results show that two water pools with distinct isotopic signature exist: i) river water, groundwater and irrigation water show values relatively

  9. Results of forest monitoring on Olkiluoto island in 2010

    Energy Technology Data Exchange (ETDEWEB)

    Aro, L.; Huhta, A.-P.; Hoekkae, H.; Lindroos, A.-J.; Rautio, P. [Finnish Forest Research Institute, Vantaa (Finland); Helmisaari, H.-S. [Helsinki Univ. (Finland)

    2011-11-15

    Forest investigations carried out on Olkiluoto aim to monitor the state of the forest ecosystems, quantify Olkiluoto-specific processes taking place in the forests producing input data for the safety assessment of spent nuclear fuel disposal, and follow possible changes in the forest condition resulting from the intensive construction activities currently being carried out in the area. The forest investigations form a part of the monitoring programme being carried out on Olkiluoto Island under the management of Posiva Oy. This report focuses on activities performed on bulk deposition and forest intensive monitoring plots (MRK and FIP plots) in 2010. In general, the deposition levels in 2010 in the open area and in stand throughfall were quite comparable to those in earlier years, although sulphur and calcium depositions were somewhat higher in the open area than in earlier years (2004-2008). The soil solution quality in 2010 was also quite comparable to that in earlier years. The NH{sub 4}-N and NO{sub 3}-N concentrations were low at all depths in the mineral soil of the FIP plots 4, 10 and 11. Instead, nitrate concentrations were high in the soil solution on FIP14. There appeared to be a clear overall increase in sulphate concentrations with increasing depth on FIP4 and FIP10. Chloride concentrations in the soil solution were extremely high at all depths on all FIP plots throughout the monitoring period; it is clear that there is a considerable input of NaCl in the deposition derived from the sea. The concentrations of heavy metals (Cd, Cr, Ni, Pb) in the soil solution at all depths at Olkiluoto during 2004-2010 continued in many cases to be close to or below the limit of quantification. In 2010 the monthly level of transpiration in the Scots pine dominated stand was smaller in May and bigger in July than during previous years (2007-2009). Monthly transpiration in the Norway spruce dominated stand was clearly lower in 2010 than in 2007-2009, and there is a

  10. Impact of vegetation and ecosystems on chlorine(-36) cycling and its modeling: from simplified approaches towards more complex biogeochemical tools

    Science.gov (United States)

    Thiry, Yves; Redon, Paul-Olivier; Gustafsson, Malin; Marang, Laura; Bastviken, David

    2013-04-01

    al., 2012), average Cl residence time in forest soils calculated for Clin and Clorg together was 5-fold higher that the residence time estimated for Clin alone (Redon et al., 2011), locally, Cl amount taken up by certain vegetation types can be larger than annual atmospheric deposits, the Cl in excess being recycled mainly by throughfall (Thiry, 2010), root uptake and chlorine transformation rates in soils are essential to calibrate dynamic compartment models since those processes control the persistence of chlorine in the whole system but data are still deficient for different land uses (Van den Hoof & Thiry, 2012). References: Bastviken, D., Thomsen, F., Svensson, T., Karlsson, S., Sandén, P., Shaw, G., Matucha, M., and Öberg, G. (2007). Chloride retention in forest soil by microbial uptake and by natural chlorination of organic matter. Geochim. Cosmochim. Acta, 71: 3182-3192. Gustavsson, M., Karlsson, S.,Öberg, G.,Sandén, P.,Svensson, T.,Valinia, S.,Thiry, Y. and Bastviken, D. (2012). Organic matter chlorination rates in different boreal soils: the role of soil organic matter content. Environmental Science & Technology, 46 (3): 1504-1510 Thiry, Y., 2010. Contribution à l'étude du cycle biogéochimique du chlore en écosystème forestier: cas d'un peuplement de pin sylvestre. Rapport Andra n° ENV.NT.ASTR.10.0068. IAEA (2010). Handbook of parameter values for the prediction of radionuclide transfer to humans in terrestrial and freshwater environments. Technical Report Series n° 472, Vienna, Austria. Öberg, G. (1998). Chloride and organic chlorine in soil. Acta hydrochimica et hydrobiologica, 26 (3): 137-144. Redon, P-O., Abdelouas, A., Bastviken, D., Cecchini, S. Nicolas, M. and Thiry, Y. (2011). Chloride and organic chlorine in forest soils: storage, residence times, and influence of ecological conditions. Environmental Science & Technology, 45: 7202-7208. Redon, P-O., Jolivet, C., Saby, N., Abdelouas, A.and Thiry, Y. (2012). Occurrence of natural organic

  11. Spatial pattern of nitrogen deposition flux over Czech forests: a novel approach accounting for unmeasured nitrogen species

    Science.gov (United States)

    Hůnová, Iva; Stoklasová, Petra; Kurfürst, Pavel; Vlček, Ondřej; Schovánková, Jana; Stráník, Vojtěch

    2015-04-01

    Nitrogen plays an important role in the biogeochemistry of forests as an essential plant nutrient and indispensable substance for many reactions in living cell. Most temperate forests are N-limited (Townsend, 1999), and increased nitrogen deposition results in many negative environmental effects, such as eutrofication, acidification, and loss of biodiversity (Bobbink et al., 2010). The nitrogen biogeochemical cycle is still poorly understood (Fowler et al., 2014). In studies addressing the association between atmospheric deposition and its impacts on ecosystems, a reliable estimation of N deposition is a key factor of successful approach of this issue. The quantification of real deposition of nitrogen is a complicated task, however, due to several reasons: only some constituents are regularly measured, and throughfall is not a relevant proxy for estimation of the total deposition due to complicated interchange of nitrogen between forest canopy, understory, and atmosphere. There are studies estimating the total nitrogen deposition at one particular site, on the other hand, there are studies estimating the total nitrogen deposition over a larger domain, such as e.g. Europe. The studies for a middle scale, like one country, are practically lacking with few exceptions (Fowler et al., 2005). The advantage of such a country-scale approach is that measured constituents might be mapped in detail, which enhances also spatial accuracy and reliability. The ambient air quality monitoring in the Czech Republic is paid an appreciable attention (Hůnová, 2001) due to the fact, that in the recent past its territory belonged to the most polluted parts of Europe. The time trends and spatial patterns of atmospheric deposition were published (Hůnová et al. 2014). It is obvious, however, that nitrogen deposition is substantially underestimated, particularly due not fully accounted for dry and occult deposition. We present an advanced approach for estimation of spatial pattern of

  12. Water infiltration and hydraulic conductivity in a natural Mediterranean oak forest: impacts of hydrology-oriented silviculture on soil hydraulic properties

    Science.gov (United States)

    Di Prima, Simone; Bagarello, Vincenzo; Bautista, Inmaculada; Cerdà, Artemi; Cullotta, Sebastiano; del Campo, Antonio; González-Sanchis, María; Iovino, Massimo; Maetzke, Federico

    2016-04-01

    microcontroller platform, Arduino. The very limited cost of the system could represent a step towards a cheaper and more widespread application of accurate and automated infiltration rate measurement. However, automatic data collection increases measurement speed, permits measurement at short time intervals, improves measurement precision, allows for more efficient data handling and analysis, and reduces the amount of effort involved and the potential for errors that may occur when manual procedures are applied (Di Prima et al., 2016). The main objective of this study was to determine soil hydraulic properties by using the combination of the automated infiltrometer and the BEST algorithm in a natural Mediterranean oak forest. The forest is located in a typical Mediterranean area, within the public forest La Hunde, Valencia (NE Spain). Two contiguous plots established in previous studies conducted by González-Sanchis et al. (2015) were selected, one of them was thinned reducing the forest density from 861 to 414 tree per ha. Control plot was not thinned. These authors studied the water cycle during the period 2012-2013. In particular, they characterized and compared the plots in term of throughfall, stemflow, soil moisture and transpiration, concluding that the AFM results in an increasing water availability, and at the same time in a substantial maintenance of overland and surface flow, precluding therefore enhancement of erosion rate. In this paper, the focus was put on the impacts of thinning on soil hydraulic properties, such as infiltration capacity, hydraulic conductivity and soil water retention, determined by simplified and low-cost methods in connection with a hydrology-oriented silviculture. Acknowledgements This study is a part of research projects: "Indagini sperimentali per la simulazione dei processi di formazione del deflusso superficiale nei suoli boscati, Progetto FIRB 2012 - MIMOSE", and "CGL2011-28776-C02-02, HYDROSIL" References Alagna, V., Bagarello, V., Di

  13. Pollutant deposition in forest ecosystems and characteristics of chemical properties of soils in the environs of the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Lochman, V.; Bucek, J.; Biba, M.

    1994-01-01

    the boulders of muscovite granite. The results of research on Zdikov plots in the foothills of the Sumava Mts. are also evaluated in this paper. Pollutant deposition and their dynamics in the soil under the crowns of spruce and beech stands are followed here. The soils on these plots are brown forest soils (Cambisols), with slight podzolization in spruce stand and with stones to boulders of moldanubic paragneiss. The humus form can be characterized as moder in beech stand and as moder to mor in spruce stand. To determine the rate of dry deposition in the crowns, wet deposition was investigated in the open area simultaneously with bulk precipitation. Chemical analyses of water performed in a laboratory of the Forestry and Game Management Research Institute at Jiloviste-Strnady. Average concentrations of the pollutants in precipitation water from the open area and from throughfall show that the region of Southern Bohemia in question is not affected by more intensive pollutant deposition. This applies particularly to the compounds of sulfur (S/SO-4-2-), fluorine and nitrogen (NO-3- + NH-4+). Heavy metal contamination of precipitation waters (Zn, Mn) is also relatively low with respect to the fallout of these elements is other regions of the Czech Republic. Contamination of precipitation water in the crowns is higher in spruce stands than in beech stands. Larger exposure to air flow results in the larger fallout of protons (H+) and other elements on Vojirov and Zdikov plots in comparison with the plots in the environs of Temelin. Rainfall deficit on the plots Hnevkovice, Strouha and Vsetec and neutralizing activity of cations leached from solid deposition, emitted by local sources, which is intercepted in the tree crowns, contribute to the relatively low load of forest soils in the years of observation. The values of total fallout of protons (H+), sulfates and nitrogen compounds (NO-3-, NH-4+) are comparable with the data cited in literature on the plots in the

  14. The use of Mediterranean shrub to flight against the land degradation. The rainfall partitioning fluxes

    Science.gov (United States)

    García-Estringana, Pablo; Nieves Alonso-Blazquez, M.; Alegre, Jesús; Cerdà, Artemi

    2014-05-01

    Desertification can be triggered by the lost of vegetation (Izzo et al., 2013). One of the impacts of the lack of vegetation is the increase in the effective rainfall and then higher soil and water losses. Vegetation can reduce the effective rainfall by interception. To recover the land that is affected by Desertification we must select plant species that will intercept the rainfall, but will not avoid the rainfall to reach the soil. This is why, studies on the plant rainfall interception are relevant to flight Land Degradation processes. Soil erosion is highly dependent on the effective rainfall (Cerdà and Lasanta, 2005; Haile and Fetene; 2012; Miao et al., 2012, Prokop and Poręba, 2012). The amount of rainfall that reaches the soil surface and can contribute to detach and transport material is determined by the interception of plants. Interception is also a key factor of the watershed hydrology (Zema et al., 2012). The importance of the rainfall partitioning fluxes is related to the climatic conditions, as climate control the plant cover and the soil properties, and then the soil losses (Cerdà, 1998). Although the shrubs has been seen as a key vegetation cover in semiarid lands to control the soil and water losses (Cerdà and Doerr, 2007) little information is available about rainfall interception in Mediterranean shrub vegetation, due to technical difficulties to measure them in such small-sized vegetation (Belmonte Serrato and Romero Diaz, 1998). The aim of this work was to assess the influence of different Mediterranean shrubs (Retama sphaerocarpa, Colutea arborescens, Dorycnium pentaphyllum, Medicago strasseri, Pistacia Lentiscus and Quercus coccifera) on rainfall partitioning fluxes (interception losses, throughfall and stemflow) in semiarid environments. The experiment was carried out under natural rainfall conditions with live specimens during two years, with automatic measurement of rainfall partitioning fluxes. In order to assess the influence of