WorldWideScience

Sample records for three-point bend test

  1. Comparison of ring compression testing to three point bend testing for unirradiated ZIRLO cladding

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-04-01

    Safe shipment and storage of nuclear reactor discharged fuel requires an understanding of how the fuel may perform under the various conditions that can be encountered. One specific focus of concern is performance during a shipment drop accident. Tests at Savannah River National Laboratory (SRNL) are being performed to characterize the properties of fuel clad relative to a mechanical accident condition such as a container drop. Unirradiated ZIRLO tubing samples have been charged with a range of hydride levels to simulate actual fuel rod levels. Samples of the hydrogen charged tubes were exposed to a radial hydride growth treatment (RHGT) consisting of heating to 400°C, applying initial hoop stresses of 90 to 170 MPa with controlled cooling and producing hydride precipitates. Initial samples have been tested using both a) ring compression test (RCT) which is shown to be sensitive to radial hydride and b) three-point bend tests which are less sensitive to radial hydride effects. Hydrides are generated in Zirconium based fuel cladding as a result of coolant (water) oxidation of the clad, hydrogen release, and a portion of the released (nascent) hydrogen absorbed into the clad and eventually exceeding the hydrogen solubility limit. The orientation of the hydrides relative to the subsequent normal and accident strains has a significant impact on the failure susceptability. In this study the impacts of stress, temperature and hydrogen levels are evaluated in reference to the propensity for hydride reorientation from the circumferential to the radial orientation. In addition the effects of radial hydrides on the Quasi Ductile Brittle Transition Temperature (DBTT) were measured. The results suggest that a) the severity of the radial hydride impact is related to the hydrogen level-peak temperature combination (for example at a peak drying temperature of 400°C; 800 PPM hydrogen has less of an impact/ less radial hydride fraction than 200 PPM hydrogen for the same thermal

  2. Three-Point Bending Tests of Zirconia Core/Veneer Ceramics for Dental Restorations

    Directory of Open Access Journals (Sweden)

    Massimo Marrelli

    2013-01-01

    Full Text Available Introduction. The mechanical strength and the surface hardness of commercially available yttrium-doped zirconia were investigated. Furthermore, a comparative study of eight different ceramic veneers, to be used for the production of two-layered all-ceramic restorative systems, was carried out. Materials and Methods. Four types of zirconia specimens were analyzed, according to a standard ISO procedure (ISO 6872. Besides, two-layered zirconia-veneer specimens were prepared for three-point bending tests. Results. A strong effect of the surface roughness on the mechanical strength of zirconia specimens was observed. Finally, a comparative study of eight commercially available veneering ceramics shows different modes of failure between the selected veneers. Conclusion. The results indicate that close attention should be paid to the preparation of zirconia-based crowns and bridges by CAD/CAM process, because surface roughness has an important effect on the mechanical strength of the material. Finally, the results of the mechanical tests on two-layered specimens represent an important support to the choice of the veneering ceramic.

  3. Adhesion strength of Ni film on Ti substrate characterized by three-point bend test, peel test and theoretic calculation

    International Nuclear Information System (INIS)

    Ren, F.Z.; Liu, P.; Jia, S.G.; Tian, B.H.; Su, J.H.

    2006-01-01

    Electroplating was employed to fabricate the Ni film on the Ti substrate. Adhesion strength of Ni film on Ti substrate was determined using the three-point bend technique that was proposed in standard mechanics test. The experimental results demonstrate that the interface fracture energies obviously increase with the roughness of Ti substrates, and are independence with the thickness of Ni films. Moreover, the adhesion strength of Ni film on Ti substrate was also measured by peel test, and was evaluated by Miedema model of experiential electron theory. The intrinsic interface fracture energy measured by three-point bend test is reasonable agreement with that obtained by theoretical calculation of Miedema model, and is roughly comparable to that by peel test

  4. [Properties of NiTi wires with direct electric resistance heat treatment method in three-point bending tests].

    Science.gov (United States)

    Wang, Hong-mei; Wang, Bang-kang; Ren, Chao-chao; Bai, Yu-xing

    2011-03-01

    To investigate the mechanical properties of Ni-Ti wires with direct electric resistance heat treatment (DERHT) method in three-point bending tests. Two superelastic Ni-Ti wires (wire A: Smart SE, wire B: SENTALLOY SE, 0.406 mm × 0.559 mm) and 2 heat-actived Ni-Ti wires (wire C: Smart SM, wire D: L&H TITAN, 0.406 mm × 0.559 mm) were selected. They were heat-treated using the DERHT method by a controlled electric current (6.36 A) applied for different period of time [0 (control), 1.0, 1.5, 2.0, 2.5 seconds). Then, a three-point bending test was performed under controlled temperature (37°C) to examine the relationships between the deflection and the load in the bending of wires. After DERHT treatment, the plateau in the force-deflection curve of superelastic Ni-Ti wires and heat-activated Ni-Ti wires were increased. When the wires were heated for 2.0 seconds and deflected to 1.5 mm, the loading force of A, B, C and D Ni-Ti wires increased from (3.85 ± 0.11), (3.62 ± 0.07), (3.28 ± 0.09), (2.91 ± 0.23) N to (4.33 ± 0.07), (4.07 ± 0.05), (4.52 ± 0.08), (3.27 ± 0.15) N respectively. DERHT method is very convenient for clinical use. It is possible to change the arch form and superelastic force of NiTi wires. The longer the heating time is, the more the superelastic characteristics of the wires are altered.

  5. SEM in situ laboratory investigations on damage growth in GFRP composite under three-point bending tests

    DEFF Research Database (Denmark)

    Zhou, Hong Wei; Mishnaevsky, Leon; Brøndsted, Povl

    2010-01-01

    Glass fiber-reinforced polymer (GFRP) composites are widely used in low-weight constructions. SEM (scanning electron microscopy) in situ experiments of damage growth in GFRP composite under three-point bending loads are carried out. By summarizing the experimental results of three groups of samples...

  6. Fatigue crack behaviour: comparing three-point bend test and wedge splitting test data on vibrated concrete using Paris' law

    Czech Academy of Sciences Publication Activity Database

    Seitl, Stanislav; Thienpont, T.; De Corte, W.

    2017-01-01

    Roč. 11, č. 39 (2017), s. 110-117 ISSN 1971-8993 R&D Projects: GA MŠk LM2015069 Institutional support: RVO:68081723 Keywords : Fatigue crack behaviour * Tree-point bending test * Wedge splitting test * Self-compacting concrete Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis

  7. Conversion of fracture toughness testing values from small scale three point bending test specimens to small scale yielding state (SSY) by elastic-plastic stress analysis

    International Nuclear Information System (INIS)

    Ikonen, K.

    1993-07-01

    The report describes the work performed for achieving readiness to calculate fracture toughness dependence on dimension effects and loading conditions in fracture test specimens and real structures. In the report two- and three-dimensional computer codes developed and calculational methods applied are described. One of the main goals is to converse fracture toughness from small scale three point bending test specimens to case of a depth crack in plane strain i.e. to small scale yielding state (SSY) by numerical elastic-plastic stress analysis. Thickness effect of a test specimens and effect of a crack depth are separately investigated. Tests of three point bending specimens with and without sidegrooves and curved crack front are numerically simulated and experimental and computed results are compared. J-integral is calculated along crack front and also from force-deflection dependence of the beam. For the analyses the computing system was thoroughly automatized. Measuring capacity of three point bending test specimens was tried to evaluate. (orig.) (7 refs., 54 figs.)

  8. Temperature dependence of the mechanical properties of melt-processed Dy-Ba-Cu-O bulk superconductors evaluated by three point bending tests

    International Nuclear Information System (INIS)

    Katagiri, K; Nyilas, A; Sato, T; Hatakeyama, Y; Hokari, T; Teshima, H; Iwamoto, A; Mito, T

    2006-01-01

    Dy-Ba-Cu-O bulk superconductor has an excellent capability of trapping magnetic flux and lower heat conductivity at cryogenic temperatures as compared with Y-Ba-Cu-O bulk superconductor. The Young's modulus and the bending strength in the range from room temperature to 7 K were measured by the three-point bending tests using specimens cut from a melt-processed Dy-Ba-Cu-O bulk superconductor. They were tested in a helium gas flow type cryostat at Forschungszentrum Karlsruhe and in a liquid nitrogen bath at Iwate University. The Young's modulus was calculated by either the slope of stress-strain curve or that of the load-deflection curve of the specimen. Although the bending strength measured in the two institutes coincided well, there was a significant discrepancy in the Young's modulus. The Young's modulus and bending strength increased with decrease of temperature down to 7 K. The amount of increase in the Young's modulus and the bending strength were about 32% and 36% of those at room temperature, respectively. The scatter of data for each run was significant and did not depend on temperature. The temperature dependence of the Young's modulus coincided with that in Y-Ba-Cu-O obtained by ultrasonic velocity. The temperature dependence of the Young's modulus and the bending strength was discussed from the view point of interatomic distance of the bulk crystal

  9. Limited Associations between Keel Bone Damage and Bone Properties Measured with Computer Tomography, Three-Point Bending Test, and Analysis of Minerals in Swiss Laying Hens

    Directory of Open Access Journals (Sweden)

    Sabine G. Gebhardt-Henrich

    2017-08-01

    Full Text Available Keel bone damage is a wide-spread welfare problem in laying hens. It is unclear so far whether bone quality relates to keel bone damage. The goal of the present study was to detect possible associations between keel bone damage and bone properties of intact and damaged keel bones and of tibias in end-of-lay hens raised in loose housing systems. Bones were palpated and examined by peripheral quantitative computer tomography (PQCT, a three-point bending test, and analyses of bone ash. Contrary to our expectations, PQCT revealed higher cortical and trabecular contents in fractured than in intact keel bones. This might be due to structural bone repair after fractures. Density measurements of cortical and trabecular tissues of keel bones did not differ between individuals with and without fractures. In the three-point bending test of the tibias, ultimate shear strength was significantly higher in birds with intact vs. fractured keel bones. Likewise, birds with intact or slightly deviated keel bones had higher mineral and calcium contents of the keel bone than birds with fractured keel bones. Calcium content in keel bones was correlated with calcium content in tibias. Although there were some associations between bone traits related to bone strength and keel bone damage, other factors such as stochastic events related to housing such as falls and collisions seem to be at least as important for the prevalence of keel bone damage.

  10. Evaluation of a Ductility after High Temperature Oxidation with the Three-Point Bend Test in Zirconium Alloys

    International Nuclear Information System (INIS)

    Jung, Yang Il; Park, Sang Yoon; Park, Jeong Yong; Jeong, Yong Hwan

    2010-01-01

    In a light water reactor, the fuel cladding play an important role of preventing leakage of radioactive materials into the coolant, and thus the mechanical integrity of the cladding should be guaranteed under the conditions of normal and transient operation. In the case of a loss of coolant accident (LOCA), the cladding is subjected to a high temperature oxidation which is finally quenched because of an emergency coolant reflooding into the core. In this situation, the current LOCA criteria consist of five separate requirements: i) peak cladding temperature, ii) maximum cladding oxidation, iii) maximum hydrogen generation, iv) coolable geometry, and v) long-term cooling. The claddings lose their ductility due to the microstructural phase transformation from beta to martensite alpha-prime. and hydrogen up-take after LOCA. Since the reduction in ductility can induce embrittlement of claddings, post-quench ductility is one of the major concerns in transient operation circumstances. For the analysis, usually ring compression test are performed on ring samples cut from the tube to examine the oxidized cladding ductility. However, the test would not be applicable to the platelet samples which are general form of a specimen for developing alloys. As a high burn-up fuel cladding materials, Zircaloys are being replaced by modern zirconium alloys such as ZIRLO, and M5. Korea has also developed a new fuel cladding material HANA (high performance alloy for nuclear application) by the Korea Atomic Energy Research Institute. Because of the different composition of the newer claddings in comparison with the conventional Zircaloy-4, the high temperature oxidation behavior and the ductility after the oxidation would be different, and the properties should be evaluated how much the newer claddings were improved

  11. Moisture Absorption/Desorption Effects on Flexural Property of Glass-Fiber-Reinforced Polyester Laminates: Three-Point Bending Test and Coupled Hygro-Mechanical Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2016-08-01

    Full Text Available Influence of moisture absorption/desorption on the flexural properties of Glass-fibre-reinforced polymer (GFRP laminates was experimentally investigated under hot/wet aging environments. To characterize mechanical degradation, three-point bending tests were performed following the ASTM test standard (ASTM D790-10A. The flexural properties of dry (0% Mt/M∞, moisture unsaturated (30% Mt/M∞ and 50% Mt/M∞ and moisture saturated (100% Mt/M∞ specimens at both 20 and 40 °C test temperatures were compared. One cycle of moisture absorption-desorption process was considered in this study to investigate the mechanical degradation scale and the permanent damage of GFRP laminates induced by moisture diffusion. Experimental results confirm that the combination of moisture and temperature effects sincerely deteriorates the flexural properties of GFRP laminates, on both strength and stiffness. Furthermore, the reducing percentage of flexural strength is found much larger than that of E-modulus. Unrecoverable losses of E-modulus (15.0% and flexural strength (16.4% for the GFRP laminates experiencing one cycle of moisture absorption/desorption process are evident at the test temperature of 40 °C, but not for the case of 20 °C test temperature. Moreover, a coupled hygro-mechanical Finite Element (FE model was developed to characterize the mechanical behaviors of GFRP laminates at different moisture absorption/desorption stages, and the modeling method was subsequently validated with flexural test results.

  12. Numerical analysis of sandwich beam with corrugated core under three-point bending

    Energy Technology Data Exchange (ETDEWEB)

    Wittenbeck, Leszek [Poznan University of Technology, Institute of Mathematics Piotrowo Street No. 5, 60-965 Poznan (Poland); Grygorowicz, Magdalena; Paczos, Piotr [Poznan University of Technology, Institute of Applied Mechanics Jana Pawla IIStreet No. 24, 60-965 Poznan (Poland)

    2015-03-10

    The strength problem of sandwich beam with corrugated core under three-point bending is presented.The beam are made of steel and formed by three mutually orthogonal corrugated layers. The finite element analysis (FEA) of the sandwich beam is performed with the use of the FEM system - ABAQUS. The relationship between the applied load and deflection in three-point bending is considered.

  13. Impact of specific fracture energy investigated in front of the crack tip of three-point bending specimen

    Czech Academy of Sciences Publication Activity Database

    Klon, J.; Sobek, J.; Malíková, L.; Seitl, Stanislav

    2017-01-01

    Roč. 11, č. 41 (2017), s. 183-190 ISSN 1971-8993 Institutional support: RVO:68081723 Keywords : Finite element method * Loading curve * Specific fracture energy * Three-point bending test * Work of fracture Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis

  14. Three-point bending fatigue behavior of WC–Co cemented carbides

    International Nuclear Information System (INIS)

    Li, Anhai; Zhao, Jun; Wang, Dong; Gao, Xinliang; Tang, Hongwei

    2013-01-01

    Highlights: ► Mechanical fatigue tests were conducted on a specific designed jig. ► Three-point bending fatigue behavior of WC–Co cemented carbides was studied. ► Fatigue mechanisms of WC–Co cemented carbides with different WC grain sizes and Co binder contents were revealed. -- Abstract: WC–Co cemented carbides with different WC grain sizes and Co binder contents were sintered and fabricated. The three-point bending specimens with a single edge notch were prepared for tests. In the experiments, the mechanical properties of materials were investigated under static and cyclic loads (20 Hz) in air at room temperature. The fatigue behaviors of the materials under the same applied loading conditions are presented and discussed. Optical microscope and scanning electron microscopy were used to investigate the micro-mechanisms of damage during fatigue, and the results were used to correlate with the mechanical fatigue behavior of WC–Co cemented carbides. Experimental results indicated that the fatigue fracture surfaces exhibited more fracture origins and diversification of crack propagation paths than the static strength fracture surfaces. The fatigue fracture typically originates from inhomogeneities or defects such as micropores or aggregates of WC grains near the notch tip. Moreover, due to the diversity and complexity of the fatigue mechanisms, together with the evolution of the crack tip and the ductile deformation zone, the fatigue properties of WC–Co cemented carbides were largely relevant with the combination of transverse rupture strength and fracture toughness, rather than only one of them. Transverse rupture strength dominated the fatigue behavior of carbides with low Co content, whilst the fatigue behavior of carbides with high Co content was determined by fracture toughness.

  15. X-Ray Radiography of Three-Point Bending of Single Human Trabecula

    Czech Academy of Sciences Publication Activity Database

    Jiroušek, Ondřej; Doktor, Tomáš; Kytýř, Daniel; Zlámal, Petr

    2012-01-01

    Roč. 45, S1 (2012), s. 261-261 ISSN 0021-9290 R&D Projects: GA ČR(CZ) GAP105/10/2305 Institutional support: RVO:68378297 Keywords : microspheres * strain measurement * three-point bending * trabecular bone * X-ray radiography Subject RIV: FI - Traumatology, Orthopedics Impact factor: 2.716, year: 2012

  16. Experimental and theoretical analyses of package-on-package structure under three-point bending loading

    International Nuclear Information System (INIS)

    Jia Su; Wang Xi-Shu; Ren Huai-Hui

    2012-01-01

    High density packaging is developing toward miniaturization and integration, which causes many difficulties in designing, manufacturing, and reliability testing. Package-on-Package (PoP) is a promising three-dimensional high-density packaging method that integrates a chip scale package (CSP) in the top package and a fine-pitch ball grid array (FBGA) in the bottom package. In this paper, in-situ scanning electron microscopy (SEM) observation is carried out to detect the deformation and damage of the PoP structure under three-point bending loading. The results indicate that the cracks occur in the die of the top package, then cause the crack deflection and bridging in the die attaching layer. Furthermore, the mechanical principles are used to analyse the cracking process of the PoP structure based on the multi-layer laminating hypothesis and the theoretical analysis results are found to be in good agreement with the experimental results. (condensed matter: structural, mechanical, and thermal properties)

  17. Corrosion fatigue studies on a bulk glassy Zr-based alloy under three-point bending

    Science.gov (United States)

    Grell, Daniel; Wilkin, Yannic; Gostin, Petre F.; Gebert, Annett; Kerscher, Eberhard

    2016-12-01

    Corrosion fatigue (CF) tests were carried out on bulk glassy Zr52.5Cu17.9Al10Ni14.6Ti5 (Vitreloy 105) samples under load-controlled three-point bending conditions with a load ratio of R = 0.1 in 0.01 M Na2SO4 + 0.01 M NaCl electrolyte. During cyclic testing, the bar-shaped specimens were polarized in situ at constant potentials and the current was monitored. Three different anodic potentials within the interval between the pitting potential EP and the repassivation potential ER, and three different load amplitudes were applied. In some cases, in situ microscopic observations revealed the formation of black corrosion products in the vicinity of the crack tip during anodic polarization. Fractographic analysis revealed a clear distinction between two modes of crack growth characterized by smooth dissolution induced regions on the one hand and slim fast fracture areas on the other hand. Both alternating features contributed to a broad striated corrosion fatigue fracture surface. Moreover, further fatigue tests were carried out under free corrosion conditions yielding additional information on crack initiation and crack propagation period by means of the open circuit potential (OCP) changes. Thereby, a slight increase in OCP was detected after rupture of the passive layer due to bare metal exposed to the electrolyte. The electrochemical response increased continuously according to stable crack propagation until fracture occurred. Finally, the fracture surfaces of the corrosion fatigue samples were investigated by energy dispersive X-ray with the objective of analyzing the elemental distribution after anodic dissolution. Interestingly, anodic polarization at a near repassivation potential of -50 mV vs. SCE (Saturated Calomel Electrode, E = 0.241 V vs. SHE, Standard Hydrogen Electrode) led to favorable effects on the fatigue lifetime. In conclusion, all results are conflated to a corrosion fatigue model for bulk glassy Vitreloy 105 under anodic polarization in chloride

  18. The effect of transverse shear on the face sheets failure modes of sandwich beams loaded in three points bending

    OpenAIRE

    BOUROUIS FAIROUZ; MILI FAYCAL

    2012-01-01

    Sandwich beams loaded in three points bending may fail in several ways including tension or compression failure of facings. In this paper , The effect of the transverse shear on the face yielding and face wrinkling failure modes of sandwich beams loaded in three points bending have been studied, the beams were made of various composites materials carbon/epoxy, kevlar/epoxy, glass/epoxy at sequence [+θ/-θ]3s, [0°/90°]3s. . The stresses in the face were calculated using maximum stress criterion...

  19. Predicting fracture of mortar beams under three-point bending using non-extensive statistical modeling of electric emissions

    Science.gov (United States)

    Stergiopoulos, Ch.; Stavrakas, I.; Triantis, D.; Vallianatos, F.; Stonham, J.

    2015-02-01

    Weak electric signals termed as 'Pressure Stimulated Currents, PSC' are generated and detected while cement based materials are found under mechanical load, related to the creation of cracks and the consequent evolution of cracks' network in the bulk of the specimen. During the experiment a set of cement mortar beams of rectangular cross-section were subjected to Three-Point Bending (3PB). For each one of the specimens an abrupt mechanical load step was applied, increased from the low load level (Lo) to a high final value (Lh) , where Lh was different for each specimen and it was maintained constant for long time. The temporal behavior of the recorded PSC show that during the load increase a spike-like PSC emission was recorded and consequently a relaxation of the PSC, after reaching its final value, follows. The relaxation process of the PSC was studied using non-extensive statistical physics (NESP) based on Tsallis entropy equation. The behavior of the Tsallis q parameter was studied in relaxation PSCs in order to investigate its potential use as an index for monitoring the crack evolution process with a potential use in non-destructive laboratory testing of cement-based specimens of unknown internal damage level. The dependence of the q-parameter on the Lh (when Lh <0.8Lf), where Lf represents the 3PB strength of the specimen, shows an increase on the q value when the specimens are subjected to gradually higher bending loadings and reaches a maximum value close to 1.4 when the applied Lh becomes higher than 0.8Lf. While the applied Lh becomes higher than 0.9Lf the value of the q-parameter gradually decreases. This analysis of the experimental data manifests that the value of the entropic index q obtains a characteristic decrease while reaching the ultimate strength of the specimen, and thus could be used as a forerunner of the expected failure.

  20. Size effect studies on geometrically scaled three point bend type specimens with U-notches

    Energy Technology Data Exchange (ETDEWEB)

    Krompholz, K.; Kalkhof, D.; Groth, E

    2001-02-01

    One of the objectives of the REVISA project (REactor Vessel Integrity in Severe Accidents) is to assess size and scale effects in plastic flow and failure. This includes an experimental programme devoted to characterising the influence of specimen size, strain rate, and strain gradients at various temperatures. One of the materials selected was the forged reactor pressure vessel material 20 MnMoNi 55, material number 1.6310 (heat number 69906). Among others, a size effect study of the creep response of this material was performed, using geometrically similar smooth specimens with 5 mm and 20 mm diameter. The tests were done under constant load in an inert atmosphere at 700 {sup o}C, 800 {sup o}C, and 900 {sup o}C, close to and within the phase transformation regime. The mechanical stresses varied from 10 MPa to 30 MPa, depending on temperature. Prior to creep testing the temperature and time dependence of scale oxidation as well as the temperature regime of the phase transformation was determined. The creep tests were supplemented by metallographical investigations.The test results are presented in form of creep curves strain versus time from which characteristic creep data were determined as a function of the stress level at given temperatures. The characteristic data are the times to 5% and 15% strain and to rupture, the secondary (minimum) creep rate, the elongation at fracture within the gauge length, the type of fracture and the area reduction after fracture. From metallographical investigations the accent's phase contents at different temperatures could be estimated. From these data also the parameters of the regression calculation (e.g. Norton's creep law) were obtained. The evaluation revealed that the creep curves and characteristic data are size dependent of varying degree, depending on the stress and temperature level, but the size influence cannot be related to corrosion or orientation effects or to macroscopic heterogeneity (position effect

  1. Three Point Bending of Top-Hat Stiffened Chopped Short Fibre Ramie/HDPE Thermoplastic Composite Beam

    Science.gov (United States)

    Hadi, Bambang K.; Nuril, Yogie S.

    2018-04-01

    The use of natural fibre and thermoplastic matrices in composite materials increased significantly during the last decade especially in the automotive industries. Ramie is one of these potential natural fibres. In this paper, a three point bending of top-hat beam made of ramie/HDPE (High-Density-Polyethylene) composites was performed. Top-hat stiffened structures were common structures found in the aerospace industries. Nevertheless, these structures are beginning to be applied in automotive structures in the forms of chassis and bumpers. The ramie/HDPE composite was manufactured using hot-press technique. The temperature was set to be 135°C and the pressure was 6 bars. Chopped short ramie fibre was used, due to good drape ability characteristics. The experiments showed that the beams produced a large non-linearity. Linear Finite Element Analysis was carried out to be compared with the experimental data. The differences are reasonable.

  2. Displacement potential solution of a guided deep beam of composite materials under symmetric three-point bending

    Science.gov (United States)

    Rahman, M. Muzibur; Ahmad, S. Reaz

    2017-12-01

    An analytical investigation of elastic fields for a guided deep beam of orthotropic composite material having three point symmetric bending is carried out using displacement potential boundary modeling approach. Here, the formulation is developed as a single function of space variables defined in terms of displacement components, which has to satisfy the mixed type of boundary conditions. The relevant displacement and stress components are derived into infinite series using Fourier integral along with suitable polynomials coincided with boundary conditions. The results are presented mainly in the form of graphs and verified with finite element solutions using ANSYS. This study shows that the analytical and numerical solutions are in good agreement and thus enhances reliability of the displacement potential approach.

  3. Bend testing for miniature disks

    International Nuclear Information System (INIS)

    Huang, F.H.; Hamilton, M.L.; Wire, G.L.

    1982-01-01

    A bend test was developed to obtain ductility measurements on a large number of alloy variants being irradiated in the form of miniature disks. Experimental results were shown to be in agreement with a theoretical analysis of the bend configuration. Disk specimens fabricated from the unstrained grip ends of previously tested tensile specimens were used for calibration purposes; bend ductilities and tensile ductilities were in good agreement. The criterion for estimating ductility was judged acceptable for screening purposes

  4. Acoustic emissions and electric signal recordings, when cement mortar beams are subjected to three-point bending under various loading protocols

    Directory of Open Access Journals (Sweden)

    A. Kyriazopoulos

    2017-04-01

    Full Text Available Two experimental techniques are used study the response of cement mortar beams subjected to three-point bending under various load¬ing protocols. The techniques used are the detection of weak electric current emissions known as Pressure Stimulated Currents and the Acoustic Emissions (in particular, the cumulative AE energy and the b-value analysis. Patterns are detected that can be used to predict upcoming fracture, regard¬less of the adopted loading protocol in each experiment. The expe¬rimental results of the AE and PSC techniques lead to the conclusion that when the calculated Ib values decrease, the PSC starts increasing strongly.

  5. The fractography analysis of IN718 alloy after three-point flexure fatigue test

    Directory of Open Access Journals (Sweden)

    Belan Juraj

    2018-01-01

    Full Text Available In this study, the high cycle fatigue (HCF properties of IN718 superalloy with given chemical composition were investigated at three-point flexure fatigue test at room temperature. INCONEL alloy 718 is nickel-chromium-iron hardenable alloy and due to its unique combination of mechanical properties (high-strength; corrosion-resistant and so on used for production of heat resistant parts of aero jet engine mostly. Mechanical properties of this alloy are strongly dependent on microstructure and on presence of structural features such are principal strengthening phase gamma double prime, gamma prime and due to its morphology less desired delta phases. The mentioned phases precipitate at various temperature ranges and Nb content as well. The three-point flexure fatigue test was performed on ZWICK/ROELL Amsler 150 HFP 5100 test equipment with approximate loading frequency f=150 Hz. The S – N (Stress – Number of cycles curve was obtained after testing. With the help of scanning electron microscope (SEM, fractography analyses were performed to disclose the fracture features of specimens in different life ranges. The brief comparison of three-point flexure and push-pull fatigue loading modes and its influence on fatigue life is discussed as well.

  6. Standard test method for determination of breaking strength of ceramic tiles by three-point loading

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This test method covers the determination of breaking strength of ceramic tiles by three-point loading. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  7. Post analysis of AE data of seal plug leakage of NAPS-2 and fatigue crack initiation of three point bend sample using cluster and artificial neural network

    International Nuclear Information System (INIS)

    Singh, A.K.; Mehta, H.R.; Bhattacharya, S.

    2003-01-01

    Acoustic Emission data is very weak and passive in nature that leads to a challenging task to separate AE data from noise. This paper illuminates the work done of post analysis of acoustic emission data of seal plug leakage of operating PHWR, NAPS-2, Narora and Fatigue Crack initiation of three-point bend sample using cluster analysis and artificial neural network (ANN). First the known AE data generated in lab by PCB debonding and pencil leak break were analyzed using ANN to get the confidence. After that the AE data acquired by scanning all 306-coolant channels at NAPS-2 was sorted out in five separate clusters for different leakage rate and background noise. Fatigue crack initiation, AE data generated in MSD lab on three-point bend sample was clustered in ten separate clusters in which one cluster was having 98% AE data of crack initiation period noted with the help of travelling microscope but remaining clusters indicating AE data of different sources and noise. The above data was further analysed with self organizing map of Artificial Neural Network. (author)

  8. Identification and application of Gurson–Tvergaard–Needleman model for sub-sized three-point- bend geometry

    Czech Academy of Sciences Publication Activity Database

    Stratil, Luděk; Hadraba, Hynek; Kozák, Vladislav; Dlouhý, Ivo

    2013-01-01

    Roč. 58, č. 2 (2013), s. 141-155 ISSN 0001-7043 Institutional support: RVO:68081723 Keywords : GTN model, Eurofer97 * smooth tensile test * J–R curve * KLST specimen Subject RIV: JL - Materials Fatigue, Friction Mechanics

  9. [Three-point bending moment of two types of resin for temporary bridges after reinforcement with glass fibers].

    Science.gov (United States)

    Didia, E E; Akon, A B; Thiam, A; Djeredou, K B

    2010-03-01

    One of the concerns of the dental surgeon in the realization of any operational act is the durability of this one. The mechanical resistance of the provisional prostheses contributes in a large part to the durability of those. The resins in general, have weak mechanical properties. The purpose of this study is to evaluate the resistance in inflection of temporary bridges reinforced with glass fibre. To remedy the weak mechanical properties of resins, we thought in this study, to reinforce them with glass fibres. For this purpose, we realized with two different resins, four groups of temporary bridges of 3 elements, including two groups reinforced fibreglass and the others not. Tests of inflection 3 points have been made on these bridges and resistance to fracture was analysed. The statistical tests showed a significant difference in four groups with better resistance for the reinforced bridges.

  10. The influence of applied heat-treatment on in 718 fatigue life at three point flexural bending

    Directory of Open Access Journals (Sweden)

    J. Belan

    2017-01-01

    Full Text Available The Inconel alloy 718 is an iron-nickel based superalloy with a working temperature up to 650 °C. Presented phases such as γ'' (Ni3Nb, γ' (Ni3Al, and δ (delta – Ni3Nb are responsible for the alloy's unique properties. The δ – delta phase is profitable when situated at grain boundaries in small quantities due to increasing fatigue life. However, at temperatures close to 650 °C the γ'' transforms to δ – delta and causes a decrease in fatigue life. Heat-treatment (800°C/ for 72 hours and its influence on fatigue life are discussed in this paper. Fatigue tests were carried out at room temperature. After the tests we plotted the S-N curves for both stages. SEM (Scanning Electron Microscopy fractography was carried out as well.

  11. MIT miniaturized disk bend test

    International Nuclear Information System (INIS)

    Harling, O.K.; Lee, M.; Sohn, D.S.; Kohse, G.; Lau, C.W.

    1983-01-01

    A miniaturized disk bend test (MDBT) using transmission electron microscopy specimens for the determination of various mechanical properties is being developed at MIT. Recent progress in obtaining strengths and ductilities of highly irradiated metal alloys is reviewed. Other mechanical properties can also be obtained using the MDBT approach. Progress in fatigue testing and in determination of the ductile-to-brittle transition temperature is reviewed briefly. 11 figures

  12. New method for evaluation of bendability based on three-point-bending and the evolution of the cross-section moment

    Science.gov (United States)

    Troive, L.

    2017-09-01

    Friction-free 3-point bending has become a common test-method since the VDA 238-100 plate-bending test [1] was introduced. According to this test the criterion for failure is when the force suddenly drops. It was found by the author that the evolution of the cross-section moment is a more preferable measure regarding the real material response instead of the force. Beneficially, the cross-section moment gets more or less a constant maximum steady-state level when the cross-section becomes fully plastified. An expression for the moment M is presented that fulfils the criteria for energy of conservation at bending. Also an expression calculating the unit-free moment, M/Me, i.e. current moment to elastic-moment ratio, is demonstrated specifically proposed for detection of failures. The mathematical expressions are simple making it easy to transpose measured force F and stroke position S to the corresponding cross-section moment M. From that point of view it’s even possible to implement, e.g. into a conventional measurement system software, studying the cross-section moment in real-time during a test. It’s even possible to calculate other parameters such as flow-stress and shape of curvature at every stage. It has been tested on different thicknesses and grades within the range from 1.0 to 10 mm with very good results. In this paper the present model is applied on a 6.1 mm hot-rolled high strength steel from the same batch at three different conditions, i.e. directly quenched, quenched and tempered, and a third variant quench and tempered with levelling. It will be shown that very small differences in material-response can be predicted by this method.

  13. Testing the consistency of three-point halo clustering in Fourier and configuration space

    Science.gov (United States)

    Hoffmann, K.; Gaztañaga, E.; Scoccimarro, R.; Crocce, M.

    2018-05-01

    We compare reduced three-point correlations Q of matter, haloes (as proxies for galaxies) and their cross-correlations, measured in a total simulated volume of ˜100 (h-1 Gpc)3, to predictions from leading order perturbation theory on a large range of scales in configuration space. Predictions for haloes are based on the non-local bias model, employing linear (b1) and non-linear (c2, g2) bias parameters, which have been constrained previously from the bispectrum in Fourier space. We also study predictions from two other bias models, one local (g2 = 0) and one in which c2 and g2 are determined by b1 via approximately universal relations. Overall, measurements and predictions agree when Q is derived for triangles with (r1r2r3)1/3 ≳60 h-1 Mpc, where r1 - 3 are the sizes of the triangle legs. Predictions for Qmatter, based on the linear power spectrum, show significant deviations from the measurements at the BAO scale (given our small measurement errors), which strongly decrease when adding a damping term or using the non-linear power spectrum, as expected. Predictions for Qhalo agree best with measurements at large scales when considering non-local contributions. The universal bias model works well for haloes and might therefore be also useful for tightening constraints on b1 from Q in galaxy surveys. Such constraints are independent of the amplitude of matter density fluctuation (σ8) and hence break the degeneracy between b1 and σ8, present in galaxy two-point correlations.

  14. Yield strengths of tungsten-base composites determined from bend tests

    International Nuclear Information System (INIS)

    Zukas, E.G.; Eash, D.T.

    1976-08-01

    The variation in yield strength with either strain rate or temperature was determined for a number of tungsten-base composites by use of the simple three-point bend test. The yield strengths were comparable with those obtained in standard tensile tests. Additional studies on 1019 steel, either in the as-rolled or annealed condition, gave results in agreement with handbook values, as did two aluminum alloys. These results demonstrate that the bend test deserves wider acceptance in materials testing programs

  15. Planetary Load Sharing in Three-Point Mounted Wind Turbine Gearboxes: A Design and Test Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, Zhiwei [Romax InSight, Nottingham, (United Kingdom); Lucas, Doug [The Timken Company, Jackson Township, OH (United States)

    2017-04-06

    This work compares the planetary load-sharing characteristics of wind turbine gearboxes supported by cylindrical roller bearings (CRBs) and preloaded tapered roller bearings (TRBs) when subjected to rotor moments. Planetary bearing loads were measured in field-representative dynamometer tests and compared to loads predicted by finite-element models. Preloaded TRBs significantly improved load sharing. In pure torque conditions, the upwind planet bearing load in the gearbox with preloaded TRBs was only 14% more than the assumed load compared to 47% more for the gearbox with CRBs. Consequently, the predicted fatigue life of the complete set of planetary bearings for the gearbox with preloaded TRBs is 3.5 times greater than that of the gearbox with CRBs.

  16. Standard test methods for bend testing of material for ductility

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 These test methods cover bend testing for ductility of materials. Included in the procedures are four conditions of constraint on the bent portion of the specimen; a guided-bend test using a mandrel or plunger of defined dimensions to force the mid-length of the specimen between two supports separated by a defined space; a semi-guided bend test in which the specimen is bent, while in contact with a mandrel, through a specified angle or to a specified inside radius (r) of curvature, measured while under the bending force; a free-bend test in which the ends of the specimen are brought toward each other, but in which no transverse force is applied to the bend itself and there is no contact of the concave inside surface of the bend with other material; a bend and flatten test, in which a transverse force is applied to the bend such that the legs make contact with each other over the length of the specimen. 1.2 After bending, the convex surface of the bend is examined for evidence of a crack or surface irregu...

  17. Thermal Analysis of Bending Under Tension Test

    DEFF Research Database (Denmark)

    Ceron, Ermanno; Martins, Paulo A.F.; Bay, Niels

    2014-01-01

    during testing is similar to the one in the production tool. A universal sheet tribo-tester has been developed, which can run multiple tests automatically from coil. This allows emulating the temperature increase as in production. The present work performs finite element analysis of the evolution......The tribological conditions in deep drawing can be simulated in the Bending Under Tension test to evaluate the performance of new lubricants, tool materials, etc. Deep drawing production with automatic handling runs normally at high rate. This implies considerable heating of the tools, which...... sometimes can cause lubricant film breakdown and galling. In order to replicate the production conditions in bending under tension testing it is thus important to control the tool/workpiece interface temperature. This can be done by pre-heating the tool, but it is essential that the interface temperature...

  18. The MIT miniaturized disk bend test

    International Nuclear Information System (INIS)

    Harling, O.K.; Lee, M.; Sohn, D.S.; Kohse, G.; Lau, C.W.

    1983-01-01

    A miniaturized disk bend test (MDBT) using transmission electron microscopy specimens for the determination of various mechanical properties is being developed at MIT. Recent progress in obtaining strengths and ductilities of highly irradiated metal alloys is reviewed. Possibilities exist for applying the MDBT approach to the determination of other mechanical properties. Progress in fatigue testing and in determination of the ductile-to-brittle transition temperature is reviewed briefly

  19. Comparison of fracture toughness values of normal and high strength concrete determined by three point bend and modified disk-shaped compact tension specimens

    Czech Academy of Sciences Publication Activity Database

    Seitl, Stanislav; Ríjos, J. D.; Cifuentes, H.

    2017-01-01

    Roč. 11, č. 42 (2017), s. 56-65 ISSN 1971-8993 R&D Projects: GA ČR(CZ) GA16-18702S; GA MŠk LM2015069 Institutional support: RVO:68081723 Keywords : Concrete * Stress intensity factors * T-stress * Compact tension test * Fracture behavior * Fracture toughness Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis

  20. In-plane and out-of-plane bending tests on carbon steel pipe bends

    International Nuclear Information System (INIS)

    Brouard, D.; Tremblais, A.; Vrillon, B.

    1979-01-01

    The objectives of these tests were to obtain experimental results on bends behaviour in elastic and plastic regime by in plane and out of plane bending. Results were used to improve the computer model, for large distorsion of bends, to be used in a simplified beam type computer code for piping calculations. Tests were made on type ANSI B 169 DN 5 bends in ASTM A 106 Grade B carbon steel. These tests made it possible to measure, for identical bends, in elastic regime, the flexibility factors and, in plastic regime, the total evolution in opening, in closing and out of plane. Flexibility factors of 180 0 bend without flanges are approximately the same in opening and in closing. The end effect due to flanges is not very significant, but it is important for 90 0 bends. In plastic regime, collapse loads or collapse moments of bends depends also of both the end effects and the angle bend. The end effects and the angle bend are more sensitive in opening than in closing. The interest of these tests is to procure some precise evolution curves of identical bends well characterized in geometry and metal strength, deflected in large distorsions. (orig./HP)

  1. Indirect determination of material model parameters for single trabecula based on nanoindentation and three point bending test

    Czech Academy of Sciences Publication Activity Database

    Zlámal, P.; Jiroušek, Ondřej; Kytýř, Daniel; Doktor, Tomáš

    2013-01-01

    Roč. 58, č. 2 (2013), s. 157-171 ISSN 0001-7043 R&D Projects: GA ČR(CZ) GAP105/10/2305 Institutional support: RVO:68378297 Keywords : elasto-visco-plastic-damage model * FEM * nanoindentation * trabecular bone Subject RIV: FI - Traumatology, Orthopedics http://journal.it.cas.cz/index.php?stranka= contents

  2. Comparison of the Load Deflection Characteristics of Esthetic and Metal Orthodontic Wires on Ceramic Brackets using Three Point Bending Test

    Directory of Open Access Journals (Sweden)

    Umal Hiralal Doshi

    2013-01-01

    Conclusion: Steel wires showed highest strength values, requiring the incorporation of loops and folds to reduce the load/deflection. NiTi and GFRPC wires produced more deflection at low levels of force, however the esthetic wire was shown to fracture and break.

  3. Disk-bend ductility tests for irradiated materials

    International Nuclear Information System (INIS)

    Klueh, R.L.; Braski, D.N.

    1984-01-01

    We modified the HEDL disk-bend test machine and are using it to qualitatively screen alloys that are susceptible to embrittlement caused by irradiation. Tests designed to understand the disk-bend test in relation to a uniaxial test are discussed. Selected results of tests of neutron-irradiated material are also presented

  4. Bending test in epoxy composites reinforced with continuous and aligned PALF fibers

    Directory of Open Access Journals (Sweden)

    Gabriel Oliveira Glória

    2017-10-01

    Full Text Available Sustainable actions aiming to prevent increasing worldwide pollution are motivating the substitution of environmentally friendly materials for conventional synthetic ones. A typical example is the use of natural lignocellulosic fiber (LCF as reinforcement of polymer composites that have traditionally been reinforced with glass fiber. Both scientific research and engineering applications support the use of numerous LCFs composites. The pineapple fiber (PALF, extracted from the leaves of Ananas comosus, is considered a LCF with potential for composite reinforcement. However, specific mechanical properties and microstructural characterization are still necessary for this purpose. Therefore, the objective of this short work is to evaluate the flexural properties, by means of three points, bend tests, of epoxy composites incorporated with up to 30 vol% of PALF. Results reveal that continuous and aligned fibers significantly increase the flexural strength. Scanning electron microscopy disclosed the fracture mechanism responsible for this reinforcement. Keywords: Pineapple fibers, PALF, Flexural properties, Bending test, Epoxy composites, Fracture mechanism

  5. Yield stress determination from miniaturized disk bend test data

    International Nuclear Information System (INIS)

    Sohn, D.S.; Kohse, G.; Harling, O.K.

    1985-04-01

    Methodology for testing 3.0 mm diameter by 0.25 mm thick disks by bending in a punch and die has been described previously. This paper describes the analysis of load/deflection data from such miniaturized disk bend tests (MDBT) using a finite element simulation. Good simulation has been achieved up to a point just beyond the predominantly elastic response, linear initial region. The load at which deviation from linearity begins has been found to correlate with yield stress, and yield stress has been successfully extracted from disk bend tests of a number of known materials. Although finite element codes capable of dealing with large strains and large rotations have been used, simulation of the entire load/deflection curve up to fracture of the specimen has not yet been achieved

  6. Strength tests of thin-walled elliptic duralumin cylinders in pure bending and in combined pure bending and torsion

    Science.gov (United States)

    Lundquist, Eugene E; Stowell, Elbridge Z

    1942-01-01

    An analysis is presented of the results of tests made by the Massachusetts Institute of Technology and by the National Advisory Committee for Aeronautics on an investigation of the strength of thin-walled circular and elliptic cylinders in pure bending and in combined torsion and bending. In each of the loading conditions, the bending moments were applied in the plane of the major axis of the ellipse.

  7. Assessment of platelet function in healthy cats in response to commonly prescribed antiplatelet drugs using three point-of-care platelet function tests.

    Science.gov (United States)

    Ho, Kimberly K; Abrams-Ogg, Anthony Cg; Wood, R Darren; O'Sullivan, M Lynne; Kirby, Gordon M; Blois, Shauna L

    2017-06-01

    Objectives The objective was to determine if decreased platelet function could be detected after treatment with aspirin and/or clopidogrel in healthy cats using three point-of-care platelet function tests that evaluate platelet function by different methods: Multiplate (by impedance), Platelet Function Analyzer 100 (by mechanical aperture closure) and Plateletworks (by platelet counting). Methods Thirty-six healthy cats were randomly assigned to receive one of three oral treatments over an 8 day period: (1) aspirin 5 mg q72h; (2) aspirin 20.25 mg q72h; or (3) clopidogrel 18.75 mg q24h. Cats treated with 5 and 20.25 mg aspirin also received clopidogrel on days 4-8. Platelet aggregation in response to adenosine diphosphate and collagen ± arachidonic acid was assessed on days 1 (baseline), 4 and 8. Aspirin and clopidogrel metabolites were measured by high-performance liquid chromatography. Platelet function in response to treatment was analyzed by ANCOVA, linear regression and Spearman correlation. Results The only solitary aspirin effect was detected using Plateletworks with collagen in cats treated with 20.25 mg. The only effect detected by Multiplate was using arachidonic acid in cats treated with both aspirin 20.25 mg and clopidogrel. All clopidogrel treatment effects were detected by Platelet Function Analyzer 100, Plateletworks (adenosine diphosphate) and Plateletworks (collagen). Drug metabolites were present in all cats, but concentrations were minimally correlated to platelet function test results. Conclusions and relevance Platelet Function Analyzer 100 and Plateletworks using adenosine diphosphate ± collagen agonists may be used to detect decreased platelet function in response to clopidogrel treatment. Either aspirin is not as effective an antiplatelet drug as clopidogrel, or the tests used were not optimal to measure aspirin effect. Cats with heart disease are commonly prescribed antiplatelet drugs to decrease the risk of aortic thromboembolism

  8. Acoustic emission monitoring of the bending under tension test

    DEFF Research Database (Denmark)

    Moghadam, Marcel; Sulaiman, Mohd Hafis Bin; Christiansen, Peter

    2017-01-01

    Preliminary investigations have shown that acoustic emission has promising aspects as an online monitoring technique for assessment of tribological conditions during metal forming as regards to determination of the onset of galling. In the present study the acoustic emission measuring technique h...... in BUT testing has been found to describe the frictional conditions during forming well and to allow for accurate assessment of the limits of lubrication....... been applied for online monitoring of the frictional conditions experienced during Bending Under Tension (BUT) testing. The BUT test emulates the forming conditions experienced when drawing sheet material over a die curvature as in deep drawing processes. Monitoring of the developed acoustic emission...

  9. Modelling Elasto-Plastic Behaviour of Human Single Trabecula-Comparison with Bending Test

    Czech Academy of Sciences Publication Activity Database

    Zlamal, P.; Jiroušek, Ondřej; Doktor, Tomáš; Kytýř, Daniel

    2012-01-01

    Roč. 45, S1 (2012), s. 479-479 ISSN 0021-9290 R&D Projects: GA ČR(CZ) GAP105/10/2305 Institutional support: RVO:68378297 Keywords : digital image correlation * elasto-plastic material model * FEM * three-point bending * trabecular bone Subject RIV: FI - Traumatology, Orthopedics Impact factor: 2.716, year: 2012

  10. Combined tension and bending testing of tapered composite laminates

    Science.gov (United States)

    O'Brien, T. Kevin; Murri, Gretchen B.; Hagemeier, Rick; Rogers, Charles

    1994-11-01

    A simple beam element used at Bell Helicopter was incorporated in the Computational Mechanics Testbed (COMET) finite element code at the Langley Research Center (LaRC) to analyze the responce of tappered laminates typical of flexbeams in composite rotor hubs. This beam element incorporated the influence of membrane loads on the flexural response of the tapered laminate configurations modeled and tested in a combined axial tension and bending (ATB) hydraulic load frame designed and built at LaRC. The moments generated from the finite element model were used in a tapered laminated plate theory analysis to estimate axial stresses on the surface of the tapered laminates due to combined bending and tension loads. Surfaces strains were calculated and compared to surface strains measured using strain gages mounted along the laminate length. The strain distributions correlated reasonably well with the analysis. The analysis was then used to examine the surface strain distribution in a non-linear tapered laminate where a similarly good correlation was obtained. Results indicate that simple finite element beam models may be used to identify tapered laminate configurations best suited for simulating the response of a composite flexbeam in a full scale rotor hub.

  11. ESCAR, tests of superconducting bending magnets at the accelerator site

    International Nuclear Information System (INIS)

    Gilbert, W.S.; Lambertson, G.R.; Meuser, R.B.; Rechen, J.B.

    1979-03-01

    ESCAR (Experimental Superconducting Accelerator Ring) was conceived as a project in accelerator technology development which would provide data and experience to insure that planning for larger superconducting synchrotrons would proceed in a knowledgeable and responsible manner. It was to consist of the fabrication and operation of a relatively small proton synchrotron and storage ring with superconducting magnet elements for all of the main ring. The project was funded and design work began in July 1974. During the next two years it became increasingly apparent that the funding rate was directly limiting the rate of completion of ESCAR and that an intermediate goal, a test of the unconventional aspects of the project, was desirable. To that end, twelve dipole bending magnets, one-half of those required for the total ring, were installed at the site along with the 1500 watt helium refrigerator, cryogenic distribution system, electrical power supplies, vacuum systems, and necessary instrumentation. This truncated system was put through an extended series of tests which were completed in June 1978 at which time the ESCAR Project was terminated. ESCAR, and the dipole magnets have been described previously. The results of the systems tests have also been reported. The tests involving the dipole magnets are described

  12. MEMS device for bending test: measurements of fatigue and creep of electroplated nickel

    DEFF Research Database (Denmark)

    Larsen, Kristian Pontoppidan; Rasmussen, Anette Alsted; Ravnkilde, Jan Tue

    2003-01-01

    In situ bending test devices with integrated electrostatic actuator were fabricated in electroplated nanocrystalline nickel. The device features approximately pure in-plane bending of the test beam. The excitation of the test beam has fixed displacement amplitude as the actuation electrodes...

  13. A study on the evaluation of dynamic stress intensity factor in repeated impact bending test

    International Nuclear Information System (INIS)

    Sim, Jae Ki; Cho, Gyu Jae; Han, Gill Young

    1988-01-01

    The purpose of the present paper was to establish the evaluation of the dynamic stress intensity factor in repeated impact three point bending test. Contact force between the impact bar and the cracked beam (simple supported beam) was analyzed by the using Hertz's contact law. In order to clarify the validity of theoretical analysis, experiments of dynamic stress intensity factir k I (t) are made on the cracked beam. The results obtained from this study are as follow: 1. In case of impact force analysis the theoretical result was obtained by the use of the Hertz's contact law. It's result was agreemant with the experimental result. Particularly, it was good agreement in the low impact velocity range. 2. The time variation of the dynamic stress intensity was determined by using the simple formula developed in this pqper. And the validity of it's result can be confirmed by experiment. Particlarly, this theoretical analysis was a good agreement to actual phenomena on from 0.3 msec to 0.65 msec. (Author)

  14. Predicting bending strength of fire-retardant-treated plywood from screw-withdrawal tests

    Science.gov (United States)

    J. E. Winandy; P. K. Lebow; W. Nelson

    This report describes the development of a test method and predictive model to estimate the residual bending strength of fire-retardant-treated plywood roof sheathing from measurement of screw-withdrawal force. The preferred test methodology is described in detail. Models were developed to predict loss in mean and lower prediction bounds for plywood bending strength as...

  15. Effects of die quench forming on sheet thinning and 3-point bend testing of AA7075-T6

    Science.gov (United States)

    Kim, Samuel; Omer, Kaab; Rahmaan, Taamjeed; Butcher, Clifford; Worswick, Michael

    2017-10-01

    Lab-scaled AA7075 aluminum side impact beams were manufactured using the die quenching technique in which the sheet was solutionized and then quenched in-die during forming to a super saturated solid state. Sheet thinning measurements were taken at various locations throughout the length of the part and the effect of lubricant on surface scoring and material pick-up on the die was evaluated. The as-formed beams were subjected to a T6 aging treatment and then tested in three-point bending. Simulations were performed of the forming and mechanical testing experiments using the LS-DYNA finite element code. The thinning and mechanical response was predicted well.

  16. Research on Design and Simulation of Biaxial Tensile-Bending Complex Mechanical Performance Test Apparatus

    Directory of Open Access Journals (Sweden)

    Hailian Li

    2017-09-01

    Full Text Available In order to realize a micro-mechanic performance test of biaxial tensile-bending-combined loading and solve the problem of incompatibility of test apparatus and observation apparatus, novel biaxial-combined tensile-bending micro-mechanical performance test apparatus was designed. The working principle and major functions of key constituent parts of test apparatus, including the servo drive unit, clamping unit and test system, were introduced. Based on the finite element method, biaxial tensile and tension-bending-combined mechanical performances of the test-piece were studied as guidance to learn the distribution of elastic deformation and plastic deformation of all sites of the test-piece and to better plan test regions. Finally, this test apparatus was used to conduct a biaxial tensile test under different pre-bending loading and a tensile test at different rates; the image of the fracture of the test-piece was acquired by a scanning electron microscope and analyzed. It was indicated that as the pre-bending force rises, the elastic deformation phase would gradually shorten and the slope of the elastic deformation phase curve would slightly rise so that a yield limit would appear ahead of time. Bending speed could exert a positive and beneficial influence on tensile strength but weaken fracture elongation. If bending speed is appropriately raised, more ideal anti-tensile strength could be obtained, but fracture elongation would decline.

  17. Test Equal Bending by Gravity for Space and Time

    Science.gov (United States)

    Sweetser, Douglas

    2009-05-01

    For the simplest problem of gravity - a static, non-rotating, spherically symmetric source - the solution for spacetime bending around the Sun should be evenly split between time and space. That is true to first order in M/R, and confirmed by experiment. At second order, general relativity predicts different amounts of contribution from time and space without a physical justification. I show an exponential metric is consistent with light bending to first order, measurably different at second order. All terms to all orders show equal contributions from space and time. Beautiful minimalism is Nature's way.

  18. Standard test method for guided bend test for ductility of welds

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method covers a guided bend test for the determination of soundness and ductility of welds in ferrous and nonferrous products. Defects, not shown by X rays, may appear in the surface of a specimen when it is subjected to progressive localized overstressing. This guided bend test has been developed primarily for plates and is not intended to be substituted for other methods of bend testing. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. Note 1—For additional information see Terminology E 6, and American Welding Society Standard D 1.1. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  19. Bending Under Tension Test with Direct Friction Measurement

    DEFF Research Database (Denmark)

    Andreasen, Jan Lasson; Olsson, David Dam; Chodnikiewicz, K.

    2006-01-01

    A special Bending-Under-Tension (BUT) transducer has been developed in which friction around the tool radius can be directly measured when drawing a plane sheet strip around a cylindrical tool-pin under constant back tension. The front tension, back tension and torque on the tool-pin are all...... measured directly, thus enabling accurate measurement of friction and direct determination of lubricant film breakdown for varying normal pressure, sliding speed, tool radius and tool preheat temperature. The transducer is applied in an experimental investigation focusing on limits of lubrication...

  20. Accuracy of data processing in ceramics bend tests

    International Nuclear Information System (INIS)

    Grushevskij, Ya.L.

    1979-01-01

    Described is the approximation and differentiation technique for loading-deformation charts being used to determine the bending strength of ceramics with provision for the nonlinearity of the deformation charts and differences in mechanical behaviuor of material during tension and compression. A relation between the strength calculation accuracy and experimental data reading errors has been established for such ceramic mateirals as Al 2 O 3 +15 % ZrSiO 4 , Y 2 O 3 +2.8% Al, etc. The negligence of the found aspects of mechanical material behaviuor was shown to result in errors two or three times higher than those introduced by the experiment results processing method

  1. Prototype test of Energy Doubler/Saver bending magnet

    International Nuclear Information System (INIS)

    Yamada, R.; Ishimoto, H.; Price, M.E.

    1977-01-01

    An improved full scale bending magnet for the Energy Doubler was cooled down with a prototype satellite refrigerator and its characteristics were measured. Quenches were intentionally induced on this magnet below 40 kG using a heater, and the quench behavior was investigated from the viewpoint of system safety. The first self-induced quench of this horizontal magnet system occurred at about 41.7 kG. Due to high single phase pressure, the magnet was not trained to any higher field. The measurement of ac loss was done, and the data showed some wire movement at about 20 kG. Transfer function was measured to be 9.81 (G/A). The magnetic field was measured using a harmonic coil. The field quality was found to be improved over the first full scale magnet

  2. Load tests with a pipe bend DN 425, applying slowly changing bending loads up to occurrence of leak

    International Nuclear Information System (INIS)

    Uhlmann, D.; Hunger, H.

    1990-01-01

    The experimental program deals with the formation of incipient cracks and subsequent crack growth of axially oriented cracks at a pipe bend with a nominal width of DN 425. The pipe bend consists of the ferritic material 20MnMoNi55. The numerical experiments by means of 3 D-FE analyses concentrate on determining the influence of the asymmetric crack depths at the two bend halves, and of the multiple crack fields, on the effective crack strain. (DG) [de

  3. Mechanical failure of anodized aluminum under three and four-point bending tests

    International Nuclear Information System (INIS)

    Bargui, M.; Bensalah, W.; Elleuch, K.; Ayedi, H.F.

    2013-01-01

    Highlights: • We study the flexural behavior of anodic oxide layers formed on aluminum. • Three and four-point bending tests were used as techniques. • Changing the beam configuration will change the flexural response. - Abstract: In this work, three and four-point bending tests were adopted as methods for characterizing anodized aluminum beams in a sulfuric acid bath. The failure behavior of sandwich beams having aluminum oxide face sheets and aluminum core were tested. In so doing, many configurations were adopted by anodizing aluminum beams on one and both sides to investigate faces in place of tension and compression. Bending tests showed different behaviors. When the oxide was only on the top side of the beam (working in compression) a slight sudden decrease of the load was observed. This fact was absent on beams with oxide layers working in tensile. The bending behavior of sandwich beams was similar to those with oxide on top sides but with much higher loads. The mechanical failure of the oxide was mainly caused by its failure when it is placed in compression beneath the loading rollers. Finally, a morphological study of the aluminum oxide layers after bending tests was conducted by optical microscopy

  4. Testing machine for fatigue crack kinetic investigation in specimens under bending

    International Nuclear Information System (INIS)

    Panasyuk, V.V.; Ratych, L.V.; Dmytrakh, I.N.

    1978-01-01

    A kinematic diagram of testing mashine for the investigation of fatigue crack kinetics in prismatic specimens, subjected to pure bending is described. Suggested is a technique of choosing an optimum ratio of the parameters of ''the testing machine-specimen'' system, which provide the stabilization of the stress intensity coefficient for a certain region of crack development under hard loading. On the example of the 40KhS and 15Kh2MFA steel specimens the pliability of the machine constructed according to the described diagram and designed for the 30ONxm maximum bending moment. The results obtained can be used in designing of the testing machines for studying pure bending under hard loading and in choosing the sizes of specimens with rectangular cross sections for investigations into the kinetics of the fatigue crack

  5. Lap belts and three-point belts.

    NARCIS (Netherlands)

    Kampen, L.T.B. van & Edelman, A.

    1975-01-01

    Results of the swov-accident investigation prove that if there are any differences in the effectiveness of lap belts and three-point belts, these are so small that they cannot form a basis for giving preference to one type over the other. Furthermore, in spite of the results of this investigation

  6. Indigenous unit for bending and twisting tests of ultra-thin films on a flexible substrate

    Science.gov (United States)

    D'souza, Slavia Deeksha; Hazarika, Pratim; Prakasarao, Ch Surya; Kovendhan, M.; Kumar, R. Arockia; Joseph, D. Paul

    2018-04-01

    An indigenous unit is designed to test the stability of thin films deposited on to a flexible substrate by inducing a required number of bending and twisting under specific conditions. The unit is designed using aluminum and automated by sending pulse width modulated signals to servo motors using ATmega328 microcontroller. We have tested the unit by imparting stress on to a commercial ITO film deposited on a PET substrate. After a definite number of bending and twisting cycles, the electrical and surface properties are studied and the results are discussed.

  7. Bending Test of Conductor for ALICE and LHCb Dipole Magnets

    CERN Document Server

    Giudici, P A; CERN. Geneva; Flegel, W

    2000-01-01

    Abstract It is foreseen that the coils for the two magnets will be manufactured by winding flat pancakes, which are subsequently shaped to a semi-cylindrical form (ALICE) or bent by 45 degrees (LHCb). We propose here several methods and describe tests that were performed to estimate tolerances and forces which will have to be expected during the manufacturing process. To this end, short Aluminium conductor lengths of adequate cross-section were bent around a shaper piece to an angle of 90 degrees. The tests were repeated for conductors both wrapped with prepreg insulation tape and without this tape. The different test set-ups and the obtained results are described in this note.

  8. Influence of bending test configuration on cracking behavior of FRC

    DEFF Research Database (Denmark)

    Finazzi, Silvia; Paegle, Ieva; Fischer, Gregor

    2014-01-01

    the flexural load-deformation response of FRC. This research focuses particularly on the influence of the appearance and depth of the notch on the cracking behavior of FRC. For this purpose, several specimens, both un-notched and notched with different depths of the notch (25 mm and 45 mm), were tested....... The results obtained in the various tests are compared to determine to what extent the notch can affect cracking behavior and the resulting evaluation of the material according to the method described in the standard. Formation of cracking and the crack development has been documented by means of a digital...

  9. Development of a REBCO HTS magnet for Maglev - repeated bending tests of HTS pancake coils -

    Science.gov (United States)

    Sugino, Motohikoa; Mizuno, Katsutoshi; Tanaka, Minoru; Ogata, Masafumi

    2018-01-01

    In the past study, two manufacturing methods were developed that can manufacture pancake coils by using REBCO coated conductors. It was confirmed that the conductors have no electric degradation that caused by the manufacturing method. The durability evaluation tests of the pancake coils were conducted as the final evaluation of the coil manufacturing method in this study. The repeated bending deformation was applied to manufactured pancake coils in the tests. As the results of these tests, it was confirmed that the pancake coils that were manufactured by two methods had the durability for the repeated bending deformation and the coils maintained the appropriate mechanical performance and electric performance. We adopted the fusion bonding method as the coil manufacturing method of the HTS magnet Furthermore, using the prototype pancake coil that was manufactured by the fusion bonding method as a test sample, the repeated bending test under the exited condition was conducted. Thus it was confirmed that the coil manufactured by the fusion bonding method has no degradation of the electricity performance and the mechanical properties even if the repeated bending deformation was applied under the exited condition.

  10. Deducing material quality in cast and hot-forged steels by new bending test

    Science.gov (United States)

    Valberg, Henry; Langøy, Morten; Nedreberg, Mette; Helvig, Torgeir

    2017-10-01

    A special bend test has been developed and applied for the purpose of characterization and comparison of the material ductility in crankpin steel discs manufactured by casting, or casting subsequently followed by hot open-die forging (ODF) or closed-die forging (CDF). The bending test specimen consists of a small rectangular plate of material with a round hole cut out in the middle. The "eye-shape" specimens were cut out from various positions either near to the surface of, or from the interior of the discs. The test method revealed differences in ductility for the investigated materials, and for different depth positions inside the discs. The roughening of the specimen surface on the top-side of the specimen bend also varied dependent on the processing method for the material. Current results show that this test method is useful for evaluation of material quality in differently processed material. Experimental bend test results are presented for differently processed variants of the same material, i.e., crankpin discs either made by solely casting or casting subsequently followed by hot working either by ODF or CDF.

  11. A comparison of two reciprocating instruments using bending stress and cyclic fatigue tests

    Directory of Open Access Journals (Sweden)

    Pantaleo SCELZA

    2015-01-01

    Full Text Available The aim of this study was to comparatively evaluate the bending resistance at 45º, the static and dynamic cyclic fatigue life, and the fracture type of the WaveOne (Dentsply Maillefer, Ballaigues, Switzerland 25-08 and Reciproc (VDW, Munich, Germany 25-08 instruments. A total of 60 nickel-titanium (NiTi instruments (30 Reciproc and 30 WaveOne from three different lots, each of which was 25 mm in length, were tested. The bending resistance was evaluated through the results of a cantilever-bending test conducted using a universal testing machine. Static and dynamic cyclic fatigue testing was conducted using a custom-made device. For the static and dynamic tests, a cast Ni-Cr-Mo-Ti alloy metal block with an artificial canal measuring 1.77 mm in diameter and 20.00 mm in total length was used. A scanning electron microscope was used to determine the type of fracture. Statistical analyses were performed on the results. The WaveOne instrument was less flexible than the Reciproc (p < 0.05. The Reciproc instrument showed better resistance in the static and dynamic cyclic fatigue tests (p < 0.05. The transverse cross-section and geometry of the instruments were important factors in their resistance to bending and cyclic fracture. Both of the instruments showed ductile-type fracture characteristics. It can be concluded that the Reciproc 25-08 instrument was more resistant to static and dynamic cyclic fatigue than the WaveOne 25-08 instrument, while the WaveOne 25-08 instrument was less flexible. Bending and resistance to cyclic fracture were influenced by the instruments’ geometries and transverse cross-sections. Both of the instruments showed ductile-type fracture characteristics.

  12. Evaluation of Asphalt Mixture Low-Temperature Performance in Bending Beam Creep Test.

    Science.gov (United States)

    Pszczola, Marek; Jaczewski, Mariusz; Rys, Dawid; Jaskula, Piotr; Szydlowski, Cezary

    2018-01-10

    Low-temperature cracking is one of the most common road pavement distress types in Poland. While bitumen performance can be evaluated in detail using bending beam rheometer (BBR) or dynamic shear rheometer (DSR) tests, none of the normalized test methods gives a comprehensive representation of low-temperature performance of the asphalt mixtures. This article presents the Bending Beam Creep test performed at temperatures from -20 °C to +10 °C in order to evaluate the low-temperature performance of asphalt mixtures. Both validation of the method and its utilization for the assessment of eight types of wearing courses commonly used in Poland were described. The performed test indicated that the source of bitumen and its production process (and not necessarily only bitumen penetration) had a significant impact on the low-temperature performance of the asphalt mixtures, comparable to the impact of binder modification (neat, polymer-modified, highly modified) and the aggregate skeleton used in the mixture (Stone Mastic Asphalt (SMA) vs. Asphalt Concrete (AC)). Obtained Bending Beam Creep test results were compared with the BBR bitumen test. Regression analysis confirmed that performing solely bitumen tests is insufficient for comprehensive low-temperature performance analysis.

  13. Three points of view in transport theory

    Energy Technology Data Exchange (ETDEWEB)

    Ruben, Panta Pazos [Faculdade de Matematica, PUCRS, Porto Alegre, RS (Brazil); Tilio de Vilhena, M. [Instituto de Matematica, UFRGS, Porto Alegre, RS (Brazil)

    2001-07-01

    A lot of efforts in Transport Theory is used to develop numerical methods or hybrid numerical-analytical techniques. We present in this work three points of view about transport problems. First the C0 semigroup approach, in which the free transport operator {psi} {yields} {mu} {nabla} generates an strongly continuous semigroup. The operators operator {psi} {yields} {sigma}t and operator {psi} {yields} {integral} {nabla} k(x,{mu},{mu}') {psi}(x,{mu}') d{mu}' are bounded operators, and by perturbation the transport operator {psi} {yields} {mu} {nabla} {psi} + {sigma}t {psi} - K {psi} also generates an strongly continuous semigroup. To prove the convergence of the approximations of a numerical methods to the exact solution we use the approximation theorem of C0 semi-groups in canonical form. In other way, the discrete schemes theory is employed in searching the rate of convergence of numerical techniques in transport theory. For 1D dependent of time transport problem and two-dimensional steady state problem we summarize some estimates, incorporating different boundary conditions. Finally we give a survey about the dynamical behavior of the SN approximations. In order to give a unified approach, some results illustrates the equivalence of the three points of views for the case of the steady-state transport problem for slab geometry. (author)

  14. Three points of view in transport theory

    International Nuclear Information System (INIS)

    Ruben, Panta Pazos; Tilio de Vilhena, M.

    2001-01-01

    A lot of efforts in Transport Theory is used to develop numerical methods or hybrid numerical-analytical techniques. We present in this work three points of view about transport problems. First the C0 semigroup approach, in which the free transport operator ψ → μ ∇ generates an strongly continuous semigroup. The operators operator ψ → σt and operator ψ → ∫ ∇ k(x,μ,μ' ψ(x,μ') dμ' are bounded operators, and by perturbation the transport operator ψ → μ ∇ ψ + σt ψ - K ψ also generates an strongly continuous semigroup. To prove the convergence of the approximations of a numerical methods to the exact solution we use the approximation theorem of C0 semi-groups in canonical form. In other way, the discrete schemes theory is employed in searching the rate of convergence of numerical techniques in transport theory. For 1D dependent of time transport problem and two-dimensional steady state problem we summarize some estimates, incorporating different boundary conditions. Finally we give a survey about the dynamical behavior of the SN approximations. In order to give a unified approach, some results illustrates the equivalence of the three points of views for the case of the steady-state transport problem for slab geometry. (author)

  15. A comparison of two reciprocating instruments using bending stress and cyclic fatigue tests.

    Science.gov (United States)

    Scelza, Pantaleo; Harry, Davidowicz; Silva, Licinio Esmeraldo da; Barbosa, Igor Bastos; Scelza, Miriam Zaccaro

    2015-01-01

    The aim of this study was to comparatively evaluate the bending resistance at 45º, the static and dynamic cyclic fatigue life, and the fracture type of the WaveOne (Dentsply Maillefer, Ballaigues, Switzerland) 25-08 and Reciproc (VDW, Munich, Germany) 25-08 instruments. A total of 60 nickel-titanium (NiTi) instruments (30 Reciproc and 30 WaveOne) from three different lots, each of which was 25 mm in length, were tested. The bending resistance was evaluated through the results of a cantilever-bending test conducted using a universal testing machine. Static and dynamic cyclic fatigue testing was conducted using a custom-made device. For the static and dynamic tests, a cast Ni-Cr-Mo-Ti alloy metal block with an artificial canal measuring 1.77 mm in diameter and 20.00 mm in total length was used. A scanning electron microscope was used to determine the type of fracture. Statistical analyses were performed on the results. The WaveOne instrument was less flexible than the Reciproc (p fatigue tests (p ductile-type fracture characteristics. It can be concluded that the Reciproc 25-08 instrument was more resistant to static and dynamic cyclic fatigue than the WaveOne 25-08 instrument, while the WaveOne 25-08 instrument was less flexible. Bending and resistance to cyclic fracture were influenced by the instruments' geometries and transverse cross-sections. Both of the instruments showed ductile-type fracture characteristics.

  16. Computer-aided, single-specimen controlled bending test for fracture-kinetics measurement in ceramics

    International Nuclear Information System (INIS)

    Borovik, V.G.; Chushko, V.M.; Kovalev, S.P.

    1995-01-01

    Fracture testing of ceramics by using controlled crack growth is proposed to allow study of crack-kinetics behavior under a given loading history. A computer-aided, real-time data acquisition system improves the quality of crack-growth parameters obtained in a simple, single-specimen bend test. Several ceramic materials were tested in the present study: aluminum nitride as a linear-elastic material; and alumina and yttria-stabilized zirconia, both representative of ceramics with microstructure-dependent nonlinear fracture properties. Ambiguities in the crack-growth diagrams are discussed to show the importance of accounting for crack-growth history in correctly describing nonequilibrium fracture behavior

  17. A three-point Taylor algorithm for three-point boundary value problems

    NARCIS (Netherlands)

    J.L. López; E. Pérez Sinusía; N.M. Temme (Nico)

    2011-01-01

    textabstractWe consider second-order linear differential equations $\\varphi(x)y''+f(x)y'+g(x)y=h(x)$ in the interval $(-1,1)$ with Dirichlet, Neumann or mixed Dirichlet-Neumann boundary conditions given at three points of the interval: the two extreme points $x=\\pm 1$ and an interior point

  18. Modelling the double cantilever beam test with bending moments by using bilinear discontinuous cohesive laws

    DEFF Research Database (Denmark)

    Valvo, Paolo S.; Sørensen, Bent F.; Toftegaard, Helmuth Langmaack

    2015-01-01

    A theoretical model of the double cantilever beam tests with bending moments (DCB-UBM) is presented. The specimen is modelled as the assemblage of two laminated beams connected by a cohesive interface. It is assumed that the traction-separation laws – i.e. the relationships between the interfacial...... the cohesive law parameters from experiments. Experimental tests have been conducted on glass fibre reinforced specimens under pure mode I and II loading conditions. The predictions of the theoretical model turn out to be in very good agreement with the experimental results....

  19. A New High-Speed, High-Cycle, Gear-Tooth Bending Fatigue Test Capability

    Science.gov (United States)

    Stringer, David B.; Dykas, Brian D.; LaBerge, Kelsen E.; Zakrajsek, Andrew J.; Handschuh, Robert F.

    2011-01-01

    A new high-speed test capability for determining the high cycle bending-fatigue characteristics of gear teeth has been developed. Experiments were performed in the test facility using a standard spur gear test specimens designed for use in NASA Glenn s drive system test facilities. These tests varied in load condition and cycle-rate. The cycle-rate varied from 50 to 1000 Hz. The loads varied from high-stress, low-cycle loads to near infinite life conditions. Over 100 tests were conducted using AISI 9310 steel spur gear specimen. These results were then compared to previous data in the literature for correlation. Additionally, a cycle-rate sensitivity analysis was conducted by grouping the results according to cycle-rate and comparing the data sets. Methods used to study and verify load-path and facility dynamics are also discussed.

  20. Four-Point Bending Strength Testing of Pultruded Fiberglass Composite Wind Turbine Blade Sections

    International Nuclear Information System (INIS)

    Musial, W.; Bourne, B; Hughes, S; Zuteck, M. D.

    2001-01-01

    The ultimate strength of the PS Enterprises pultruded blade section was experimentally determined under four-point bending at the National Renewable Energy Laboratory. Thirteen 8-foot long full-scale blade segments were individually tested to determine their maximum moment carrying capability. Three airfoil-bending configurations were tested: high- and low-pressure skin buckling, and low pressure skin buckling with foam interior reinforcement. Maximum strain was recorded for each sample on the compressive and tensile surfaces of each test blade. Test data are compared to the results of three analytical buckling prediction methods. Based on deviations from the linear strain versus load curve, data indicate a post-buckling region. High-pressure side buckling occurred sooner than low-pressure side buckling. The buckling analyses were conservative for both configurations, but high-pressure side buckling in particular was substantially under-predicted. Both high- and low-pressure buckling configurations had very similar failure loads. These results suggests that a redundant load path may be providing strength to the section in the post-buckling region, making the onset of panel buckling a poor predictor of ultimate strength for the PS Enterprises pultrusion

  1. PROJECT, MANUFACTURING AND QUALIFICATION OF MACHINE TO ROTARY BENDING OF NITI SUPERELASTIC WIRES IN FATIGUE TESTS

    Directory of Open Access Journals (Sweden)

    William Marcos Muniz Menezes

    2014-03-01

    Full Text Available In this work it was developed a rotating bending apparatus for fatigue tests of superelastic NiTi wires, and other materials with high elasticity. It was evaluated the performance, robustness, operability, and reliability through testing of 1 mm thick stainless steel wires. This device is mounted on a steel frame and features semiautomatic rotation speed control, time and testing bath temperature for sample immersion. The equipment qualification tests were performed controlling the following parameters: deformation of the wire, power level and ambient temperature. The results indicated lower discrepancies for the following parameters evaluated: number of cycles in fatigue life, rotation speed, the bath temperature and arc angle of rupture. Besides the reliability, the robustness and operability of the equipment also meet the purpose of the research as evidenced by the small number of failures in the qualification tests and calibration.

  2. Operation corrosion test of austenitic steel bends for supercritical coal boilers

    Directory of Open Access Journals (Sweden)

    Cizner J.

    2016-03-01

    Full Text Available Corrosion tests of both annealed and not annealed bends of HR3C and S304H steels in operation conditions of black and brown coal combustion boilers in EPRU and EDE. After a long-term exposure, the samples were assessed gravimetrically and metallographically. The comparison of annealed and unannealed states showed higher corrosion rates in the annealed state; corrosion of the sample surface did not essentially differ for compression and tensile parts of the beams. Detailed assessment of both steels is described in detail in this study.

  3. Evaluation gamma radiation in composite sisal fiber- polyurethane derived of castor oil by bending test

    International Nuclear Information System (INIS)

    Souza, Felipe H. de; Geraldo, Ricardo R.; Vasco, Marina C.; Azevedo, Elaine; Claro Neto, Salvador

    2015-01-01

    Materials used for making furniture and accessories or positioning in X -ray examination rooms should not exhale volatile organic compounds and are resistant to ionizing radiation. One solution is the use of vegetable fiber and polyurethane composites of vegetable origin, since they are biodegradable, derived from renewable raw materials and have no volatile organic compounds. The main difficulty in developing this material is fiber adhesion with the polymer. The objective of this study is to evaluate the mechanical properties of composite sisal fiber composite, without further treatment, and polyurethane derived from castor oil, with a dose of 25 kGy gamma radiation, subjected to 3 points bending tests. (author)

  4. SiC-CMC-Zircaloy-4 Nuclear Fuel Cladding Performance during 4-Point Tubular Bend Testing

    Energy Technology Data Exchange (ETDEWEB)

    IJ van Rooyen; WR Lloyd; TL Trowbridge; SR Novascone; KM Wendt; SM Bragg-Sitton

    2013-09-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE NE) established the Light Water Reactor Sustainability (LWRS) program to develop technologies and other solutions to improve the reliability, sustain the safety, and extend the life of current reactors. The Advanced LWR Nuclear Fuel Development Pathway in the LWRS program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. Recent investigations of potential options for “accident tolerant” nuclear fuel systems point to the potential benefits of silicon carbide (SiC) cladding. One of the proposed SiC-based fuel cladding designs being investigated incorporates a SiC ceramic matrix composite (CMC) as a structural material supplementing an internal Zircaloy-4 (Zr-4) liner tube, referred to as the hybrid clad design. Characterization of the advanced cladding designs will include a number of out-of-pile (nonnuclear) tests, followed by in-pile irradiation testing of the most promising designs. One of the out-of-pile characterization tests provides measurement of the mechanical properties of the cladding tube using four point bend testing. Although the material properties of the different subsystems (materials) will be determined separately, in this paper we present results of 4-point bending tests performed on fully assembled hybrid cladding tube mock-ups, an assembled Zr-4 cladding tube mock-up as a standard and initial testing results on bare SiC-CMC sleeves to assist in defining design parameters. The hybrid mock-up samples incorporated SiC-CMC sleeves fabricated with 7 polymer impregnation and pyrolysis (PIP) cycles. To provide comparative information; both 1- and 2-ply braided SiC-CMC sleeves were used in this development study. Preliminary stress simulations were performed using the BISON nuclear fuel performance code to show the stress distribution differences for varying lengths between loading points

  5. Evaluation of mechanical properties of Dy123 bulk superconductors by 3-point bending tests

    International Nuclear Information System (INIS)

    Katagiri, K.; Hatakeyama, Y.; Sato, T.; Kasaba, K.; Shoji, Y.; Murakami, A.; Teshima, H.; Hirano, H.

    2006-01-01

    In order to evaluate the mechanical properties, such as Young's modulus and strength, of Dy123 bulk superconductors and those with 10 wt.% Ag 2 O, we performed 3-point bending tests at room (RT) and liquid nitrogen temperatures (LNT) using specimens cut from the bulks. The Young's modulus and the bending strength increased with decrease in temperature. In the tests loading in the direction of c-axis and ones perpendicular to it, Young's moduli were almost comparable at both RT and LNT. Although the strengths for both orientations were also comparable at LNT, those at RT were different. Young's moduli loaded in the direction of c-axis for Ag 2 O added bulk specimens, 127 GPa in average at RT, were almost comparable to those without Ag 2 O, and 134 GPa at LNT, were slightly lower than those without Ag 2 O. On the other hand, the strengths at both RT and LNT were enhanced by 20% by the Ag addition. The mechanical properties of Dy123 bulks without Ag 2 O were compared with those of Y123 bulks obtained previously. The Young's modulus for loading in the direction of c-axis was slightly lower, and the strength was comparable to those in Y123 bulks, respectively

  6. Minaturized disk bend tests of neutron-irradiated path A type alloys

    International Nuclear Information System (INIS)

    Lee, M.; Sohn, D.S.; Grant, N.J.; Harling, O.K.

    1983-01-01

    Path A Prime Candidate Alloy (PCA) has been rapidly solidified and consoliated by extrusion. Twenty percent CW samples, precision TEM disks, 3 phi x 0.254 mm, were irradiated in the mixed flux of the Oak Ridge HFIR reactor up to approx. 8.5 dpa (360 appm He) and approx. 34 dpa (3100 appm He) at 300, 400, 500 and 600 0 C. Similar samples of conventionally processed PCA were also irradiated for comparison. Mechanical properties were characterized using a minaturized disk bend test (MDBT) developed at MIT. These tests indicate major decreases in strength and ductility especially for the 500 and 600 0 C irradiations. No major differences were found between this first version of a rapidly solidified and extruded PCA type alloy and conventionally processed PCA

  7. Identification of non-linear kinematic hardening with bending and unbending tests in anisotropic sheet-metals

    International Nuclear Information System (INIS)

    Brunet, M.; Morestin, F.; Godereaux, S.

    2000-01-01

    An inverse identification technique is proposed based on bending-unbending experiments on anisotropic sheet-metal strips. The initial anisotropy theory of plasticity is extended to include the concept of combined isotropic and non-linear kinematic hardening. This theory is adopted to characterise the anisotropic hardening due to loading-unloading which occurs in sheet-metal forming processes. To this end, a specific bending-unbending apparatus has been built to provide experimental moment-curvature curves. The constant bending moment applied over the length of the specimen to determine numerically the strain-stress behaviour but without Finite Element Analysis. Four constitutive parameters have to be identified by an inverse approach. Our identification results show that bending-unbending tests are suitable to model quite accurately the constitutive behaviour of sheet metals under complex loading paths. (author)

  8. FLEXURAL TESTING MACHINE AS AN OFF-LINE CONTROL SYSTEM FOR QUALITY MONITORING IN THE PRODUCTION OF BENDED CERAMIC TILES

    Directory of Open Access Journals (Sweden)

    Cristiano Fragassa

    2016-06-01

    Full Text Available The capability to bend in a controlled manner Gres Porcelain stoneware tiles passing by a very exclusive process of pyroplastic deformation opens up entirely new opportunities in utilisation of this important family of ceramics. A bended tile can be exploited in innovative applications, such as stairs, shelves, benches and even radiators, turning this element from a simple piece of furnishing in a modern functional component. But this change in functionality also requires a different approach in the quality control, both at the product and process levels, that can no longer be limited to the use of tests specified in the regulations for traditional ceramics (e.g. colour, porosity, hygroscopic .... This article describes the first device so far devised for the verification of resistance to bending of curved tiles, discussing the correct way of use. The adoption of this particular equipment as an off-line control device can represent a valid strategy for monitoring the product and process quality.

  9. Analysis of the discontinuous Petrov-Galerkin method with optimal test functions for the Reissner-Mindlin plate bending model

    KAUST Repository

    Calo, Victor M.; Collier, Nathan; Niemi, Antti H.

    2014-01-01

    We analyze the discontinuous Petrov-Galerkin (DPG) method with optimal test functions when applied to solve the Reissner-Mindlin model of plate bending. We prove that the hybrid variational formulation underlying the DPG method is well-posed (stable

  10. Measurements of emittance growth through the achromatic bend at the BNL Accelerator Test Facility

    International Nuclear Information System (INIS)

    Wang, X.J.; Kehne, D.

    1997-07-01

    Measurements of emittance growth in a high peak current beam as it passes through an achromatic double bend are summarized. Experiments were performed using the ATF at Brookhaven National Laboratory by X.J. Wang and D. Kehne as a collaboration resulting from the proposal attached at the end of the document. The ATF consists off an RF gun (1 MeV), two sections of linac (40-75 MeV), a diagnostic section immediately following the linac, a 20 degree bend magnet, a variable aperture slit at a high dispersion point, 5 quadrupoles, then another 20 degree bend followed by another diagnostic section. The TRANSPORT deck describing the region from the end of the linac to the end of the diagnostic line following the achromatic bends is attached to the end of this document. Printouts of the control screens are also attached

  11. Numerical simulation of impact bend tests on araldite B and steel specimens

    International Nuclear Information System (INIS)

    Stoeckl, H.; Boehme, W.

    1983-09-01

    As a preliminary stage in the numerical simulation of impact bend tests on elastic-plastic sample materials some simpler experiments were calculated for this report, some of which occured without crack propagation, others with linear elastic crack propagation. These calculations were performed with an own program based on the method of finite differences and also with the finite element program ADINA. In the numerical models plane stress was assumed. Crack propagation was governed by a relation between crack velocity and stress intensity factor. As load input the measured hammer load was used in some cases, mass and initial velocity of the hammer in others. The sample looses contact to the anvils and to the hammer for some time, which had to be considered in model building. The stiffening of the model in the contact region caused by the discretization had to be compensated by springs inserted between the sample and the anvils. The simulation reproduces the experimentally observed behaviour of the sample quite well. Furthermore, additional information can be extracted from the experiment, e.g. concerning the partition of the impact energy. (orig.) [de

  12. Adhesion study of low-k/Si system using 4-point bending and nanoscratch test

    International Nuclear Information System (INIS)

    Damayanti, M.; Widodo, J.; Sritharan, T.; Mhaisalkar, S.G.; Lu, W.; Gan, Z.H.; Zeng, K.Y.; Hsia, L.C.

    2005-01-01

    Chemical vapour deposited (CVD) low-k films using tri-methyl-silane (3MS) and tetra-methyl cyclo-tetra-siloxanes (TMCTS) precursors were studied. A 4-point bend test (4PBT) was performed to assess the adhesion property of the low-k films to Si substrates and the results were compared with that of simpler method, nanoscratch test (NST), as a quality control tool despite its drawbacks. Adhesion energy, G c , of the low-k/Si interface as measured by 4PBT and critical scratch load, P c , as obtained by NST display a linear relationship with hardness and modulus of the low-k film. The lowering of G c as the hardness of the film decreases can be explained by the effects of the C introduction into the Si-O networks found in these films. Lower carbon content for higher hardness films is thought to cause them to be more 'silica-like', and thus, exhibit better adhesion with the Si substrate. Two failure modes were observed for specimens under 4PBT. On one hand, films with low hardness ( c ( 2 ) with an adhesive separation of low-k from the Si substrate. On the other hand, films of high hardness (>5 GPa) display interfacial energies in excess of 10 J/m 2 with delamination of epoxy from the Si substrate, thus, indicating excellent adhesion between the low-k films and Si substrate. For the low hardness films, good correlation exists between P c and G c . However, the two data points of the high hardness films that gave the two highest P c and G c values do not lie on the correlation line drawn for the low hardness film data points due to different factors governing the failure in both tests and a change in the 4PBT failure mechanism

  13. Numerical Analysis of AHSS Fracture in a Stretch-bending Test

    Science.gov (United States)

    Luo, Meng; Chen, Xiaoming; Shi, Ming F.; Shih, Hua-Chu

    2010-06-01

    Advanced High Strength Steels (AHSS) are increasingly used in the automotive industry due to their superior strength and substantial weight reduction advantage. However, their limited ductility gives rise to numerous manufacturing issues. One of them is the so-called `shear fracture' often observed on tight radii during stamping processes. Since traditional approaches, such as the Forming Limit Diagram (FLD), are unable to predict this type of fracture, efforts have been made to develop failure criteria that can predict shear fractures. In this paper, a recently developed Modified Mohr-Coulomb (MMC) ductile fracture criterion[1] is adopted to analyze the failure behavior of a Dual Phase (DP) steel sheet during stretch bending operations. The plasticity and ductile fracture of the present sheet are fully characterized by the Hill'48 orthotropic model and the MMC fracture model respectively. Finite Element models with three different element types (3D, shell and plane strain) were built for a Stretch Forming Simulator (SFS) test and numerical simulations with four different R/t ratios (die radius normalized by sheet thickness) were performed. It has been shown that the 3D and shell element models can accurately predict the failure location/mode, the upper die load-displacement responses as well as the wall stress and wrap angle at the onset of fracture for all R/t ratios. Furthermore, a series of parametric studies were conducted on the 3D element model, and the effects of tension level (clamping distance) and tooling friction on the failure modes/locations were investigated.

  14. Creep of uranium dioxide: bending test and mechanical behaviour; Etude du fluage du dioxyde d'uranium: caracterisation par essais de flexion et modelisation mecanique

    Energy Technology Data Exchange (ETDEWEB)

    Colin, Ch

    2003-09-01

    These PhD work in the frame of Pellet-Cladding Interactions studies, in the fuel assemblies of nuclear plants. Electricite de France (EDF) must well demonstrate and insure the integrity of the cladding. For that purpose, the viscoplastic behaviour of the nuclear fuel has to be known and, if possible, controlled. This PhD work aimed to characterize the creep of uranium dioxide, in conditions of transient power regime. First, a literature survey on mechanical behaviour of UO{sub 2} revealed that the ceramic was essentially studied with compressive tests, and that its creep behaviour is characterized by two domains, depending on the stress level. To estimate the loadings in a fuel pellet, EDF and CEA developed specific global codes. A simulation during a power ramp allowed the order of magnitude of the loadings in the pellet to be determined (temperature, thermal gradients, strains, strain rate...). The stress calculation using a finite element simulation requires the identification of behaviour laws, able to describe the behaviour under small strains, low strain rates, and under tensile stresses. Starting from this observation, three point bending method has been chosen to test the uranium dioxide. As, for representativeness reasons, testing specimens cut in actual fuel pads was required in our study; a ten millimeters span has been used. For this study, a specific three-point testing device has been developed, that can tests specimens up to 2 000 C in a controlled atmosphere (Ar + 5% H{sub 2}). A special care has been taken for the measurement of the deflexion of the sample, which is measured using a laser beam, that allow an accuracy of {+-}2{mu}m to be reached at high temperature. Specimens with 0,5 to 1 mm thickness have been tested using this jig. A Norton's law describe, with respective stress exponent and activation energy values of 1.73 and 540 kJ.mole-1, provided a good description of the stationary creep rate. Then, the mechanical behaviour of the fuel

  15. Analytical model of asymmetrical Mixed-Mode Bending test of adhesively bonded GFRP joint

    Czech Academy of Sciences Publication Activity Database

    Ševčík, Martin; Hutař, Pavel; Vassilopoulos, Anastasios P.; Shahverdi, M.

    2015-01-01

    Roč. 9, č. 34 (2015), s. 237-246 ISSN 1971-8993 R&D Projects: GA MŠk(CZ) EE2.3.30.0063; GA ČR GA15-09347S Institutional support: RVO:68081723 Keywords : GFRP materials * Mixed-Mode bending * Fiber bridging * Analytical model Subject RIV: JL - Materials Fatigue, Friction Mechanics

  16. Analysis of the discontinuous Petrov-Galerkin method with optimal test functions for the Reissner-Mindlin plate bending model

    KAUST Repository

    Calo, Victor M.

    2014-01-01

    We analyze the discontinuous Petrov-Galerkin (DPG) method with optimal test functions when applied to solve the Reissner-Mindlin model of plate bending. We prove that the hybrid variational formulation underlying the DPG method is well-posed (stable) with a thickness-dependent constant in a norm encompassing the L2-norms of the bending moment, the shear force, the transverse deflection and the rotation vector. We then construct a numerical solution scheme based on quadrilateral scalar and vector finite elements of degree p. We show that for affine meshes the discretization inherits the stability of the continuous formulation provided that the optimal test functions are approximated by polynomials of degree p+3. We prove a theoretical error estimate in terms of the mesh size h and polynomial degree p and demonstrate numerical convergence on affine as well as non-affine mesh sequences. © 2013 Elsevier Ltd. All rights reserved.

  17. Development of U-frame bending system for studying the vibration integrity of spent nuclear fuel

    Science.gov (United States)

    Wang, Hong; Wang, Jy-An John; Tan, Ting; Jiang, Hao; Cox, Thomas S.; Howard, Rob L.; Bevard, Bruce B.; Flanagan, Michelle

    2013-09-01

    A bending fatigue system developed to evaluate the response of spent nuclear fuel rods to vibration loads is presented. A U-frame testing setup is used for imposing bending loads on the fuel rod specimen. The U-frame setup consists of two rigid arms, side connecting plates to the rigid arms, and linkages to a universal testing machine. The test specimen's curvature is obtained through a three-point deflection measurement method. The tests using surrogate specimens with stainless steel cladding revealed increased flexural rigidity under unidirectional cyclic bending, significant effect of cladding-pellets bonding on the response of surrogate rods, and substantial cyclic softening in reverse bending mode. These phenomena may cast light on the expected response of a spent nuclear fuel rod. The developed U-frame system is thus verified and demonstrated to be ready for further pursuit in hot-cell tests.

  18. Development of U-frame bending system for studying the vibration integrity of spent nuclear fuel

    International Nuclear Information System (INIS)

    Wang, Hong; Wang, Jy-An John; Tan, Ting; Jiang, Hao; Cox, Thomas S.; Howard, Rob L.; Bevard, Bruce B.; Flanagan, Michelle

    2013-01-01

    A bending fatigue system developed to evaluate the response of spent nuclear fuel rods to vibration loads is presented. A U-frame testing setup is used for imposing bending loads on the fuel rod specimen. The U-frame setup consists of two rigid arms, side connecting plates to the rigid arms, and linkages to a universal testing machine. The test specimen’s curvature is obtained through a three-point deflection measurement method. The tests using surrogate specimens with stainless steel cladding revealed increased flexural rigidity under unidirectional cyclic bending, significant effect of cladding-pellets bonding on the response of surrogate rods, and substantial cyclic softening in reverse bending mode. These phenomena may cast light on the expected response of a spent nuclear fuel rod. The developed U-frame system is thus verified and demonstrated to be ready for further pursuit in hot-cell tests

  19. Three-point statistics of cosmological stochastic gravitational waves

    International Nuclear Information System (INIS)

    Adshead, Peter; Lim, Eugene A.

    2010-01-01

    We consider the three-point function (i.e. the bispectrum or non-Gaussianity) for stochastic backgrounds of gravitational waves. We estimate the amplitude of this signal for the primordial inflationary background, gravitational waves generated during preheating, and for gravitational waves produced by self-ordering scalar fields following a global phase transition. To assess detectability, we describe how to extract the three-point signal from an idealized interferometric experiment and compute the signal to noise ratio as a function of integration time. The three-point signal for the stochastic gravitational wave background generated by inflation is unsurprisingly tiny. For gravitational radiation generated by purely causal, classical mechanisms we find that, no matter how nonlinear the process is, the three-point correlations produced vanish in direct detection experiments. On the other hand, we show that in scenarios where the B-mode of the cosmic microwave background is sourced by gravitational waves generated by a global phase transition, a strong three-point signal among the polarization modes is also produced. This may provide another method of distinguishing inflationary B-modes. To carry out this computation, we have developed a diagrammatic approach to the calculation of stochastic gravitational waves sourced by scalar fluids, which has applications beyond the present scenario.

  20. Computing three-point functions for short operators

    International Nuclear Information System (INIS)

    Bargheer, Till; Institute for Advanced Study, Princeton, NJ; Minahan, Joseph A.; Pereira, Raul

    2013-11-01

    We compute the three-point structure constants for short primary operators of N=4 super Yang.Mills theory to leading order in 1/√(λ) by mapping the problem to a flat-space string theory calculation. We check the validity of our procedure by comparing to known results for three chiral primaries. We then compute the three-point functions for any combination of chiral and non-chiral primaries, with the non-chiral primaries all dual to string states at the first massive level. Along the way we find many cancellations that leave us with simple expressions, suggesting that integrability is playing an important role.

  1. Computing three-point functions for short operators

    Energy Technology Data Exchange (ETDEWEB)

    Bargheer, Till [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Minahan, Joseph A.; Pereira, Raul [Uppsala Univ. (Sweden). Dept. of Physics and Astronomy

    2013-11-15

    We compute the three-point structure constants for short primary operators of N=4 super Yang.Mills theory to leading order in 1/√(λ) by mapping the problem to a flat-space string theory calculation. We check the validity of our procedure by comparing to known results for three chiral primaries. We then compute the three-point functions for any combination of chiral and non-chiral primaries, with the non-chiral primaries all dual to string states at the first massive level. Along the way we find many cancellations that leave us with simple expressions, suggesting that integrability is playing an important role.

  2. Two- and three-point functions in Liouville theory

    International Nuclear Information System (INIS)

    Dorn, H.; Otto, H.J.

    1994-04-01

    Based on our generalization of the Goulian-Li continuation in the power of the 2D cosmological term we construct the two and three-point correlation functions for Liouville exponentials with generic real coefficients. As a strong argument in favour of the procedure we prove the Liouville equation of motion on the level of three-point functions. The analytical structure of the correlation functions as well as some of its consequences for string theory are discussed. This includes a conjecture on the mass shell condition for excitations of noncritical strings. We also make a comment concerning the correlation functions of the Liouville field itself. (orig.)

  3. Development of vehicle model test-bending of a simple structural surfaces model for automotive vehicle sedan

    Science.gov (United States)

    Nor, M. K. Mohd; Noordin, A.; Ruzali, M. F. S.; Hussen, M. H.; Mustapa@Othman, N.

    2017-04-01

    Simple Structural Surfaces (SSS) method is offered as a means of organizing the process for rationalizing the basic vehicle body structure load paths. The application of this simplified approach is highly beneficial in the development of modern passenger car structure design. In Malaysia, the SSS topic has been widely adopted and seems compulsory in various automotive programs related to automotive vehicle structures in many higher education institutions. However, there is no real physical model of SSS available to gain considerable insight and understanding into the function of each major subassembly in the whole vehicle structures. Based on this motivation, a real physical SSS of sedan model and the corresponding model vehicle tests of bending is proposed in this work. The proposed approach is relatively easy to understand as compared to Finite Element Method (FEM). The results prove that the proposed vehicle model test is useful to physically demonstrate the importance of providing continuous load path using the necessary structural components within the vehicle structures. It is clearly observed that the global bending stiffness reduce significantly when more panels are removed from the complete SSS model. The analysis shows the front parcel shelf is an important subassembly to sustain bending load.

  4. Interlamellar cracking of thermal barrier coatings with TGOs by non-standard four-point bending tests

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P.F. [State Key Laboratory for Strength and Vibration, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an (China); Li, X.D. [State Key Laboratory for Strength and Vibration, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an (China); Aircraft Strength Research Institute of China, Xi' an, 710065 (China); Shang, F.L., E-mail: shangfl@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an (China); Li, C.J. [State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an (China)

    2011-09-25

    Highlights: {yields} A non-standard modified four-point bending specimen is adopted for delamination test. {yields} Typical failure mode of the TBC system with TGO layer is demonstrated. {yields} Fracture toughness of 8YSZ on a cold-sprayed MCrAlY coating is evaluated theoretically. - Abstract: This work concerns the failure mode and fracture toughness of plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) deposited on a cold-sprayed MCrAlY bond coat (BC) after thermal oxidation. Upon high-temperature exposure, a thermally grown oxide (TGO) layer was formed along the interface between the BC layer and YSZ ceramic coating layer through oxidation of the bond coat. By utilizing a non-standard modified four-point bending specimen, in conjunction with fractured surface examinations by scanning electron microscope and energy disperse spectroscope, the failure mode of this thermal barrier coating (TBC) system has been checked experimentally. It is shown that delamination cracks firstly initiate at the YSZ/BC interface edge, and then propagate along a wavy path near the interface, not only through the TBC but also within the TGO and along the interlamellar interfaces. Through a theoretical analysis of the bending specimen, the fracture toughness of this TBC system, in terms of strain energy release rate, has been determined from the load-displacement curves which were recorded during the tests.

  5. Parameters Determination of Yoshida Uemori Model Through Optimization Process of Cyclic Tension-Compression Test and V-Bending Springback

    Directory of Open Access Journals (Sweden)

    Serkan Toros

    Full Text Available Abstract In recent years, the studies on the enhancement of the prediction capability of the sheet metal forming simulations have increased remarkably. Among the used models in the finite element simulations, the yield criteria and hardening models have a great importance for the prediction of the formability and springback. The required model parameters are determined by using the several test results, i.e. tensile, compression, biaxial stretching tests (bulge test and cyclic tests (tension-compression. In this study, the Yoshida-Uemori (combined isotropic and kinematic hardening model is used to determine the performance of the springback prediction. The model parameters are determined by the optimization processes of the cyclic test by finite element simulations. However, in the study besides the cyclic tests, the model parameters are also evaluated by the optimization process of both cyclic and V-die bending simulations. The springback angle predictions with the model parameters obtained by the optimization of both cyclic and V-die bending simulations are found to mimic the experimental results in a better way than those obtained from only cyclic tests. However, the cyclic simulation results are found to be close enough to the experimental results.

  6. Impact compressive and bending behaviour of rocks accompanied by electromagnetic phenomena.

    Science.gov (United States)

    Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Watanabe, Keiko

    2014-08-28

    It is well known that electromagnetic phenomena are often observed preceding earthquakes. However, the mechanism by which these electromagnetic waves are generated during the fracture and deformation of rocks has not been fully identified. Therefore, in order to examine the relationship between the electromagnetic phenomena and the mechanical properties of rocks, uniaxial compression and three-point bending tests for two kinds of rocks with different quartz content, granite and gabbro, have been carried out at quasi-static and dynamic rates. Especially, in the bending tests, pre-cracked specimens of granite were also tested. Using a split Hopkinson pressure bar and a ferrite-core antenna in close proximity to the specimens, both the stress-strain (load-displacement) curve and simultaneous electromagnetic wave magnitude were measured. It was found that the dynamic compressive and bending strengths and the stress increase slope of both rocks were higher than those observed in static tests; therefore, there is a strain-rate dependence in their strength and stress increase rate. It was found from the tests using the pre-cracked bending specimens that the intensity of electromagnetic waves measured during crack extension increased almost proportionally to the increase of the maximum stress intensity factor of specimens. This tendency was observed in both the dynamic and quasi-static three-point bending tests for granite. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. Modelling of pavement materials on steel decks using the five-point bending test: Thermo mechanical evolution and fatigue damage

    International Nuclear Information System (INIS)

    Arnaud, L; Houel, A

    2010-01-01

    This paper deals with the modelling of wearing courses on steel orthotropic decks such as the Millau viaduct in France. This is of great importance when dealing with durability: due to the softness of such a support, the pavement is subjected to considerable strains that may generate top-down cracks in the layer at right angles of the orthotropic plate stiffeners and shear cracks at the interface between pavement and steel. Therefore, a five-point bending fatigue test was developed and improved since 2003 at the ENTPE laboratory, to test different asphalt concrete mixes. This study aims at modelling the mechanical behavior of the wearing course throughout the fatigue test by a finite element method (Comsol Multiphysics software). Each material - steel, sealing sheet, asphalt concrete layer - is considered and modelled. The modelling of asphalt concrete is complex since it is a heterogeneous material, a viscoelastic medium and it thermosensitive. The actual characteristics of the asphalt concrete (thermo physical parameter and viscoelastic complex modulus) are determined experimentally on cylindrical cores. Moreover, a damage law based on Miner's damage is included in the model. The modelling of the fatigue test leads to encouraging results. Finally, results from the model are compared to the experimental data obtained from the five-point bending fatigue test device. The experimental data are very consistent with the numerical simulation.

  8. New results on holographic three-point functions

    International Nuclear Information System (INIS)

    Bianchi, Massimo; Prisco, Maurizio; Mueck, Wolfgang

    2003-01-01

    We exploit a gauge invariant approach for the analysis of the equations governing the dynamics of active scalar fluctuations coupled to the fluctuations of the metric along holographic RG flows. In the present approach, a second order ODE for the active scalar emerges rather simply and makes it possible to use the Green's function method to deal with (quadratic) interaction terms. We thus fill a gap for active scalar operators, whose three-point functions have been inaccessible so far, and derive a general, explicitly Bose symmetric formula thereof. As an application we compute the relevant three-point function along the GPPZ flow and extract the irreducible trilinear couplings of the corresponding super glueballs by amputating the external legs on-shell. (author)

  9. Three point functions in the large N=4 holography

    International Nuclear Information System (INIS)

    Ahn, Changhyun; Kim, Hyunsu

    2015-01-01

    Sixteen higher spin currents with spins (1,(3/2),(3/2),2), ((3/2),2,2,(5/2)), ((3/2),2,2,(5/2)), and (2,(5/2),(5/2),3) were previously obtained in an extension of the large N=4 ‘nonlinear’ superconformal algebra in two dimensions. By carefully analyzing the zero-mode eigenvalue equations, three-point functions of bosonic (higher spin) currents are obtained with two scalars for any finite N (where SU(N+2) is the group of coset) and k (the level of spin-1 Kac Moody current). Furthermore, these 16 higher spin currents are implicitly obtained in an extension of large N=4 ‘linear’ superconformal algebra for generic N and k. The corresponding three-point functions are also determined. Under the large N ’t Hooft limit, the two corresponding three-point functions in the nonlinear and linear versions coincide even though they are completely different for finite N and k.

  10. Diagnostic Role of Head-Bending and Lying-Down Tests in Lateral Canal Benign Paroxysmal Positional Vertigo.

    Science.gov (United States)

    Yetiser, Sertac; Ince, Dilay

    2015-08-01

    To compare the diagnostic value of the head-bending test (HBT), lying-down positioning test (LDPT) and patient's report to identify the affected canal in video-nystagmographically (VNG) confirmed patients with lateral canal benign paroxysmal positional vertigo (LC-BPPV). Case series with chart review. Head-bending, lying-down positioning and the head-roll maneuver (HRM) under VNG guidance. The data were collected in a referral community hospital. Seventy-eight patients (32 apogeotropic and 46 geotropic nystagmus) with LC-BPPV who had been recruited between 2009 and 2013 were enrolled in the study. Patients were tested with the HRM and then were asked about subjectively worse side. Later, they were subjected to HBT when sitting and the LDPT. The results were compared and studied with the 1-way ANOVA and chi-square tests. Statistical significance was set at p < 0.05. Affected side was identified by HRM in 75% of patients with apogeotropic nystagmus and 95.6% of patients with geotropic nystagmus. Approximately 65.6% of patients with apogeotropic and 52% of patients with geotropic nystagmus had nystagmus during LDPT. However, its comparability with HRM was low. However, treatment plan based on LDPT results alone provided relief of symptoms in additional 12.5% of patients with apogeotropic and in 2.2% of patients with geotropic nystagmus. Approximately 63% of patients with apogeotropic and 56% of patients with geotropic nystagmus were able to tell the worse side. Nystagmus comparable with HRM during HBT was low and not diagnostic. HRM has the greatest diagnostic value of positioning tests in LC-BPPV in this study. LDPT provides some contribution in the diagnosis of LC-BPPV but much less than HRM. Patients' subjective feeling of vertigo was also a useful test. However, HBT was not as sensitive as other measures in uncertain cases.

  11. Application of miniaturized disk bend test technique for selection of optimum composition of candidate materials for fusion reactors

    International Nuclear Information System (INIS)

    Tsepelev, A.B.; Poymenov, I.L.

    1992-01-01

    An analysis of the potential of a miniaturized disk bend test (MDBT) technique for estimation of irradiated steel mechanical properties behaviour indicates promise in selecting candidate materials for nuclear applications. The advantages of the method are most clearly demonstrated when a large series of tests is needed. The tiny specimen size gives an additional advantage from the point of view of radiation material science. As an example of the MDBT potential, preliminary results of electron irradiation effects on Cr-Mn-W austenitic and Cr-W ferrite carbon and nitrogen steels are presented. It is shown that electron irradiation causes changes of the loading MDBT-curve form of the steels that most probably are connected with radiation-induced structure-phase transformations in the steels. (orig.)

  12. Correct Use of Three-Point Seatbelt by Pregnant Occupants

    Directory of Open Access Journals (Sweden)

    B. Serpil Acar

    2017-12-01

    Full Text Available The largest cause of accidental death and placental abruption in pregnancy is automobile collisions. Lives can be saved by correct use of the three-point seatbelt during pregnancy. Human interaction is essential for correct use of seatbelts. The objective of this study is to investigate pregnant women’s use of correct shoulder section together with correct lap section as advised by obstetricians and highway experts and to identify the most common seatbelt misuse during pregnancy. An international web survey was conducted in five languages for this study. 1931 pregnant women reported their use of seatbelts and how they position the shoulder and lap sections of their seatbelts. Special attention was paid to distinguish between ‘partly correct’ and ‘correct’ seatbelt positioning. The questionnaire responses are used to determine the magnitude of every combination of the correct and incorrect shoulder and lap section of the seatbelt positioning during pregnancy. Results show that seatbelt usage in pregnancy is generally high in the world. However, the correct use of the entire seatbelt is very low, at only 4.3% of all respondents. 40.8% of the respondents use the shoulder portion of the belt correctly, whilst a 13.2% use the lap section correctly. The most common misuse is ‘across abdomen’ or ‘not using the seatbelt at all’, and both pose danger to pregnant women and their fetuses. Correct use of three point seatbelts is a challenge during pregnancy. We recommend that the media, medical community, and automotive industry provide targeted information about correct seatbelt use during pregnancy and accident databases include ‘correct seatbelt use’ information in crash statistics.

  13. Analysis of a bending test on a full-scale PWR hot leg elbow containing a surface crack

    Energy Technology Data Exchange (ETDEWEB)

    Delliou, P. le [Electricite de France, EDF, 77 - Moret-sur-Loing (France). Dept. MTC; Julisch, P.; Hippelein, K. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt; Bezdikian, G. [Electricite de France, EDF, 92 - Paris la Defense (France). Direction Production Transport

    1998-11-01

    EDF, in co-operation with Framatome, has conducted a large research programme on the mechanical behaviour of thermally aged cast duplex stainless steel elbows, which are part of the main primary circuit of French PWR. One important task of this programme consisted of testing a full-scale PWR hot leg elbow. The elbow contained a semi-elliptical circumferential notch machined on the outer surface of the intrados as well as casting defects located on the flanks. To simulate the end-of-life condition of the component regarding material toughness, it had undergone a 2400 hours ageing heat treatment at 400 C. The test preparation and execution, as well as the material characterization programme, were committed to MPA. The test was conducted under constant internal pressure and in-plane bending (opening mode) at 200 C. For safety reasons, it took place on an open air-site: the Meppen military test ground. At the maximum applied moment (6000 kN.m), the notch did not initiate. This paper presents the experimental results and the fracture mechanics analysis of the test, based on finite element calculations. (orig.)

  14. Technical report on the fatigue crack Growth Benchmark based on CEA pipe bending tests

    International Nuclear Information System (INIS)

    2001-07-01

    In order to improve the estimation methods of surface crack propagation through the thickness of components, CEA has proposed a benchmark to members of the IAGE WG, sub-group on Integrity of metal components and structures. The subject is a simple configuration of a pipe containing an axisymmetric notch and submitted to a cyclic bending load. An experimental data-set form CEA was used to validate three issues in the topic of Leak Before Break. - Crack initiation, - Crack propagation through the thickness, - Crack penetration. All material and geometrical data which are necessary for the simulation were given in the proposal, including experimental results. Due to the peculiar complexity of the problem, it was decided to focus the work on methodologies comparison so as to allow participants to tune up parameters and adjust their models and tools. This report presents all estimations performed by the participants and collected by CEA. They are compared to the experimental results. An analysis of the used procedures is also proposed. This, associated with the study of the accuracy of different methodologies, leads to comments and recommendations on the analysis of fatigue crack growth. The participation in the first step was important: nine participants have proposed analyses, sometimes parametric analysis to estimate crack growth. Results sorted out three estimation methods groups that give results in accordance with experimental ones (these three groups are based on a strain range evaluation and the fatigue curve of the material): - The use of an elastic stress at the notch tip and a fatigue notch concentration factor to determine the strain range. - The use of a KI (or elastic F.E. calculation) and a Neuber rule for the estimation of the strain range at a characteristic distance from the crack tip. - The direct calculation of the strain range at the characteristic distance by an elastic plastic F.E. calculation. Only 4 participants have proposed an estimate of the

  15. Examination of optimum test conditions for a 3-point bending and cutting test to evaluate sound emission of wafer during deformation

    Directory of Open Access Journals (Sweden)

    Erdem Carsanba

    2018-04-01

    Full Text Available The purpose of this study was to investigate optimum test conditions of acoustical-mechanical measurement of wafer analysed by Acoustic Envelope Detector attached to the Texture Analyser. Force-displacement and acoustic signals were simultaneously recorded applying two different methods (3-point bending and cutting test. In order to study acoustical-mechanical behaviour of wafers, the parameters “maximum sound pressure”, “total count peaks” and “mean sound value” were used and optimal test conditions of microphone position and test speed were examined. With a microphone position of 45° angle and 1 cm distance and at a low test speed of 0.5 mm/s wafers of different quality could be distinguished best. The angle of microphone did not have significant effect on acoustic results and the number of peaks of the force and acoustic signal decreased with increasing distance and test speed.

  16. Bending fatigue tests on SiC-Al tapes under alternating stress at room temperature

    Science.gov (United States)

    Herzog, J. A.

    1981-01-01

    The development of a testing method for fatigue tests on SiC-Al tapes containing a small amount of SiC filaments under alternating stress is reported. The fatigue strength curves resulting for this composite are discussed. They permit an estimate of its behavior under continuous stress and in combination with various other matrices, especially metal matrices.

  17. Relationships between Loblolly Pine small clear specimens and Dimension Lumber Tested in Static Bending

    Science.gov (United States)

    Mark Alexander Butler; Joseph Dahlen; Finto Antony; Michael Kane; Thomas L. Eberhardt; Huizhe Jin; Kim Love-Myers; John Paul McTague

    2016-01-01

    Prior to the 1980s, the allowable stresses for lumber in North America were derived from testing of small clear specimens. However, the procedures were changed because these models were found to be inaccurate. Nevertheless, small clear testing continues to be used around the world for allowable stress determinations and in studies that examine forest management impacts...

  18. Performance of composite I-beams under axial compression and bending load modes

    International Nuclear Information System (INIS)

    Khalid, Y.A.; Ali, F.A.; Sahari, B.B.; Saad, E.M.A.

    2005-01-01

    An experimental and finite-element analyses for glass/epoxy composite I-beams have been carried out. Four, six, eight and 10 layers of woven fabric glass/epoxy composite I-beams were fabricated by a hand lay-up (molding) process. Quasi-static axial crushing and bending loading modes were used for this investigation. The load-displacement response was obtained and the energy absorption values were calculated for all the composite I-beams. Three tests were done for each composite I-beams type and each loading case for the results conformation. The second part of this study includes the elastic behavior of composite I-beams of the same dimensions and materials using finite-element analysis. The woven fabric glass/epoxy composite I-beams mechanical properties have been obtained from tensile tests. Results from this investigation show that the load required and the specific energy absorption for composite I-beams under axial compression load were higher than those for three and four point bending. On the other hand, the loads required for composite I-beams under four point bending were higher than those for three point bending, while the specific energy absorption for composite I-beams under three point bending were higher than those for four point bending. The first crushing loads difference between the experimental and finite-element results fell in the 3.6-10.92% range for axial compression tests, while fell in the 1.44-12.99% and 4.94-22.0% range for three and four point bending, respectively

  19. Fracture toughness of partially welded joints of SUS316 stainless steel at 4 K by large bend tests

    International Nuclear Information System (INIS)

    Nishimura, A.; Tobler, R.L.; Tamura, H.; Imagawa, S.; Mito, T.; Yamamoto, J.; Motojima, O.; Takahashi, H.; Suzuki, S.

    1996-01-01

    Austenitic stainless steels in relatively thick sections are specified in support structure designs for huge superconducting magnets in fusion energy machines such as the Large Helical Device (LHD). In the LHD under construction at the National Institute for Fusion Science (NIFS) in Japan, partial welding of SUS 316 stainless steel is employed to fabricate the 100-mm thick coil can and coil support structures. Partial welding lowers the heat input and reduces residual deformation after welding. The main disadvantage is that a sizable crack-like defect remains embedded in the unwelded portion of the primary structural component. Here, SUS 316 stainless steel bars were partially welded and tested in 3-point bending to evaluate the effect of natural cracks on fusion zone toughness at 4 K. The specimens had a cross-section 87.5 mm x 175 mm and were fractured in liquid helium using a 10 MN cryogenic mechanical testing machine. In two tests, unstable fracture occurred at maximum load and at critical stress intensity factors K max = 227 and 228 MPa√m. Results indicate a high resistance to fracture initiation but no stable tearing. Therefore, no resistance to crack propagation may exist in a fusion zone at a weld root under cryogenic temperature

  20. Static bending test after proximal femoral nail (PFN removal - in vitro analysis

    Directory of Open Access Journals (Sweden)

    Leonardo Morais Paiva

    Full Text Available Abstract Objective To evaluate, through biomechanical testing, the resistance to and energy required for the occurrence of proximal femoral fracture in synthetic bone after removal of a proximal femoral nail model (PFN, comparing the results obtained with a reinforcement technique using polymethylmethacrylate (PMMA. Methods Fifteen synthetic bones were used: five units for the control group (CG, five for the test group without reinforcement (TGNR, and five for the test group with reinforcement (TGR. The biomechanical analysis was performed simulating a fall on the trochanter using a servo-hydraulic machine. In the GC, the assay was performed with the PFN intact. In the TGNR and TGR groups, a model of PFN was introduced and the tests were performed in the TGNR, after simple removal of the synthesis material, and in the TGR, after removal of the same PFN model and filling of the cavity in the femoral neck with PMMA. Results All groups presented a basicervical fracture. The CG presented a mean of 1427.39 Newtons (N of maximum load and 10.14 Joules (J of energy for the occurrence of the fracture. The TGNR and TGR presented 892.14 N and 1477.80 N of maximum load, and 6.71 J and 11.99 J of energy, respectively. According to the Kruskal-Wallis ANOVA, there was a significant difference in the maximum load (p = 0.009 and energy (p = 0.007 between these groups. Conclusion The simple removal of a PFN in synthetic bone showed a significant reduction of the maximum load and energy for the occurrence of fracture, which were re-established with a reinforcement technique using PMMA.

  1. Resonance bending fatigue testing with simultaneous damping measurement and its application on layered coatings

    Czech Academy of Sciences Publication Activity Database

    Kovářík, O.; Haušild, P.; Čapek, J.; Medřický, Jan; Siegl, J.; Mušálek, Radek; Pala, Zdeněk; Curry, N.; Bjorklund, S.

    2016-01-01

    Roč. 82, January (2016), s. 300-309 ISSN 0142-1123. [International Conference on Fatigue Damage of Structural Materials Conference/10./. Massachusetts, 21.09.2014-26.09.2014] R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Crack detection * Damping * Fatigue * Hastelloy-X * Nondestructive test ing Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.899, year: 2016 http://www.sciencedirect.com/science/article/pii/S0142112315002443

  2. On the impact bending test technique for high-strength pipe steels

    Science.gov (United States)

    Arsenkin, A. M.; Odesskii, P. D.; Shabalov, I. P.; Likhachev, M. V.

    2015-10-01

    It is shown that the impact toughness (KCV-40 = 250 J/cm2) accepted for pipe steels of strength class K65 (σy ≥ 550 MPa) intended for large-diameter gas line pipes is ineffective to classify steels in fracture strength. The results obtained upon testing of specimens with a fatigue crack and additional sharp lateral grooves seem to be more effective. In energy consumption, a macrorelief with splits is found to be intermediate between ductile fracture and crystalline brittle fracture. A split formation mechanism is considered and a scheme is proposed for split formation.

  3. Resonance bending fatigue testing with simultaneous damping measurement and its application on layered coatings

    Czech Academy of Sciences Publication Activity Database

    Kovářík, O.; Haušild, P.; Čapek, J.; Medřický, Jan; Siegl, J.; Mušálek, Radek; Pala, Zdeněk; Curry, N.; Bjorklund, S.

    2016-01-01

    Roč. 82, January (2016), s. 300-309 ISSN 0142-1123. [International Conference on Fatigue Damage of Structural Materials Conference/10./. Massachusetts, 21.09.2014-26.09.2014] R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Crack detection * Damping * Fatigue * Hastelloy-X * Nondestructive testing Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.899, year: 2016 http://www.sciencedirect.com/science/article/pii/S0142112315002443

  4. Non-uniform Pressure Distribution in Draw-Bend Friction Test and its Influence on Friction Measurement

    International Nuclear Information System (INIS)

    Kim, Young Suk; Jain, Mukesh K.; Metzger, Don R.

    2005-01-01

    From various draw-bend friction tests with sheet metals at lubricated conditions, it has been unanimously reported that the friction coefficient increases as the pin diameter decreases. However, a proper explanation for this phenomenon has not been given yet. In those experiments, tests were performed for different pin diameters while keeping the same average contact pressure by adjusting applied tension forces. In this paper, pressure profiles at pin/strip contacts and the changes in the pressure profiles depending on pin diameters are investigated using finite element simulations. To study the effect of the pressure profile changes on friction measurements, a non-constant friction model (Stribeck friction model), which is more realistic for the lubricated sheet metal contacts, is implemented into the finite element code and applied to the simulations. The study shows that the non-uniformity of the pressure profile increases and the pin/strip contact angle decreases as the pin diameter decreases, and these phenomena increase the friction coefficient, which is calculated from the strip tension forces using a conventional rope-pulley equation

  5. Elastic properties of nanolaminar Cr_2AlC films and beams determined by in-situ scanning electron microscope bending tests

    International Nuclear Information System (INIS)

    Grieseler, Rolf; Theska, Felix; Stürzel, Thomas; Hähnlein, Bernd; Stubenrauch, Mike; Hopfeld, Marcus; Kups, Thomas; Pezoldt, Jörg; Schaaf, Peter

    2016-01-01

    The mechanical properties of Cr_2AlC MAX phase structures were investigated by in-situ bending tests. Freestanding structures such as cantilevers and doubly clamped beams of Cr_2AlC were produced. The structures exhibit a Young's modulus of 184 GPa which is close to the value obtained by vibrational measurements. The in-situ bending test allows the determination of the mechanical properties with a lower variance of the measurement results compared to the vibrational measurement. The results are a good starting point for the development of microelectromechanical structures based on MAX phases. - Highlights: • Cr_2AlC were produced by deposition multilayers and subsequent rapid annealing. • Freestanding doubly clamped beams and cantilevers of Cr_2AlC were prepared. • A finite elements model was implemented showing the displacement of the structure. • In-situ bending test at doubly clamped beams and cantilevers were performed. • An in-situ bending test is a valid approach to determine mechanical properties.

  6. Evolution of dislocation structure and fatigue crack behavior in Fe-Si alloys during cyclic bending test

    International Nuclear Information System (INIS)

    Ushioda, Kohsaku; Takebayashi, Shigeto; Goto, Shoji; Komatsu, Yoshinari; Hoshino, Akinori

    2010-01-01

    The evolution of dislocation structures was investigated by means of TEM in Fe-Si alloys with 0, 0.5 and 1.0 mass% Si during a cyclic bending test in conjunction with fatigue crack behavior. The addition of Si increased the fatigue strength. In steel without Si the cell structure develops, whereas in steel with 1%Si the vein structure evolves, which is considered to lead to the increased fatigue strength. The cell structure in 0%Si steel is postulated to be caused by the easy cross slip of dislocations, whereas the vein structure in the steels with Si is inferred to be caused by the difficulty in cross slip presumably due to the decrease in stacking fault energy. Furthermore, the steel containing Si shows a dislocation free zone (DFZ) along grain boundaries. A transgranular fracture takes place in 0%Si steel, while in 1%Si steel many intergranular cracks were observed just beneath the top surface, which was thought to be caused by the fact that a) strains are dispersed within grains owing to the vein structure and b) micro cracks are initiated and propagated along a DFZ.

  7. Bending of marble with intrinsic length scales: a gradient theory with surface energy and size effects

    International Nuclear Information System (INIS)

    Vardoulakis, I.; Kourkoulis, S.K.; Exadaktylos, G.

    1998-01-01

    A gradient bending theory is developed based on a strain energy function that includes the classical Bernoulli-Euler term, the shape correction term (microstructural length scale) introduced by Timoshenko, and a term associated with surface energy (micromaterial length scale) accounting for the bending moment gradient effect. It is shown that the last term is capable to interpret the size effect in three-point bending (3PB), namely the decrease of the failure load with decreasing beam length for the same aspect ratio. This theory is used to describe the mechanical behaviour of Dionysos-Pentelikon marble in 3PB. Series of tests with prismatic marble beams of the same aperture but with different lengths were conducted and it was concluded that the present theory predicts well the size effect. (orig.)

  8. Studi Eksperimen perbandingan Laju Korosi pada Plat ASTM (American Society For Testing and Material A36 dengan Menggunakan Variasi Sudut Bending

    Directory of Open Access Journals (Sweden)

    Amri Royan Hidayat

    2013-03-01

    Full Text Available Proses pembentukan plat baja dalam industri kelautan diketahui bervariasi proses pengerjaannya, tidak hanya pengelasan saja, namun dapat pula konstruksi bending (bengkok. Bending, mempunyai dua variasi metode yaitu hot bending dan cold bending. Untuk mengetahui metode mana yang lebih tepat digunakan pada industri kelautan, dilakukan penelitian dengan menggunakan perbandingan kedua metode bending tersebut menggunakan variasi sudut yakni 90° dan 135°. Masing-masing sudut yang digunakan dibagi menjadi tiga spesimen yang akan mempengaruhi laju korosi pada plat tersebut. Uji laboratorium dengan menggunakan NaCl 2% dilakukan untuk mengetahui berapa laju korosi dari metode hot bending dan metode cold bending. Perhitungan kemudian dilakukan setelah hasil laju korosi didapat, untuk menentukan grafik laju  korosi dari variasi bending tersebut. Hasil uji laju korosi pada metode cold bending dengan sudut bending 90° adalah 0,54 mm/year, dan untuk sudut bending 135° adalah 0,32 mm/year. Sedangkan hasil uji laju korosi pada metode hot bending dengan sudut bending 90° adalah 0,53 mm/year, dan untuk sudut bending 135° adalah 0,24 mm/year. Metode cold bending diketahui mempunyai nilai laju korosi lebih besar dibandingkan metode hot bending. Morfologi permukaan spesimen dianalisa dengan menggunakan Scanning Electron Microscopy (SEM. Permukaan spesimen dengan metode cold bending diketahui mengalami perubahan yang cukup besar dibanding spesimen dengan metode hot bending.

  9. Design and Development of A Three-Point Auto Hitch Dynamometer for An Agricultural Tractor

    Directory of Open Access Journals (Sweden)

    A. F. Kheiralla

    2017-12-01

    Full Text Available This paper describes the design, development and calibration of a three-point auto hitch dynamometer for measuring the horizontal and vertical forces that existed at the three-point hitch of an agricultural tractor.  The design concept of the dynamometer was based on an instrumented inverted U frame assembly that was mounted between tractor links and implement. The design incorporates for both lower point hitch spread and mast height adjustments, and quick hitch capability in accordance with category 1 and II three-point hitch system.  The force sensing elements were comprised of three steel extended octagonal ring transducers that were located between the inverted U frame and hook brackets.  Electrical resistance strain gauges were mounted on the extended octagonal ring transducer at strain angle nodes to independently monitor strains that were proportional to the horizontal and vertical forces at the ring center. Each transducer was designed for maximum horizontal and vertical forces of 25 kN and 10 kN at measurement mean sensitivities of 25.19 µStrain/kN and 25.60 µStrain/kN, respectively. However, the complete dynamometer has been designed to measure the maximum resultant horizontal and vertical forces of 50 kN and 20 kN, respectively.  Field demonstration tests on the dynamometer and data acquisition system showed that they were able to function effectively as intended.  The data acquisition system was able to successfully scan and record the dynamometer signals as programmed.  This dynamometer was part of the complete instrumentation system to be developed onboard a Massey Ferguson 3060 tractor for the generation of a comprehensive database on the power and energy requirements of the tractor and its working implement in the field.

  10. Enhanced bending failure strain in biological glass fibers due to internal lamellar architecture.

    Science.gov (United States)

    Monn, Michael A; Kesari, Haneesh

    2017-12-01

    The remarkable mechanical properties of biological structures, like tooth and bone, are often a consequence of their architecture. The tree ring-like layers that comprise the skeletal elements of the marine sponge Euplectella aspergillum are a quintessential example of the intricate architectures prevalent in biological structures. These skeletal elements, known as spicules, are hair-like fibers that consist of a concentric array of silica cylinders separated by thin, organic layers. Thousands of spicules act like roots to anchor the sponge to the sea floor. While spicules have been the subject of several structure-property investigations, those studies have mostly focused on the relationship between the spicule's layered architecture and toughness properties. In contrast, we hypothesize that the spicule's layered architecture enhances its bending failure strain, thereby allowing it to provide a better anchorage to the sea floor. We test our hypothesis by performing three-point bending tests on E. aspergillum spicules, measuring their bending failure strains, and comparing them to those of spicules from a related sponge, Tethya aurantia. The T. aurantia spicules have a similar chemical composition to E. aspergillum spicules but have no architecture. Thus, any difference between the bending failure strains of the two types of spicules can be attributed to the E. aspergillum spicules' layered architecture. We found that the bending failure strains of the E. aspergillum spicules were roughly 2.4 times larger than those of the T. aurantia spicules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Diagonal form factors and heavy-heavy-light three-point functions at weak coupling

    International Nuclear Information System (INIS)

    Hollo, Laszlo; Jiang, Yunfeng; Petrovskii, Andrei

    2015-01-01

    In this paper we consider a special kind of three-point functions of HHL type at weak coupling in N=4 SYM theory and analyze its volume dependence. At strong coupling this kind of three-point functions were studied recently by Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050. The authors considered some cases of HHL correlator in the su(2) sector and, relying on their explicit results, formulated a conjecture about the form of the volume dependence of the symmetric HHL structure constant to be valid at any coupling up to wrapping corrections. In order to test this hypothesis we considered the HHL correlator in su(2) sector at weak coupling and directly showed that, up to one loop, the finite volume dependence has exactly the form proposed in http://dx.doi.org/10.1007/JHEP09(2014)050. Another side of the conjecture suggests that computation of the symmetric structure constant is equivalent to computing the corresponding set of infinite volume form factors, which can be extracted as the coefficients of finite volume expansion. In this sense, extracting appropriate coefficients from our result gives a prediction for the corresponding infinite volume form factors.

  12. Diagonal form factors and heavy-heavy-light three-point functions at weak coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hollo, Laszlo [MTA Lendület Holographic QFT Group, Wigner Research Centre for Physics,H-1525 Budapest 114, P.O.B. 49 (Hungary); Jiang, Yunfeng; Petrovskii, Andrei [Institut de Physique Théorique, DSM, CEA, URA2306 CNRS,Saclay, F-91191 Gif-sur-Yvette (France)

    2015-09-18

    In this paper we consider a special kind of three-point functions of HHL type at weak coupling in N=4 SYM theory and analyze its volume dependence. At strong coupling this kind of three-point functions were studied recently by Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050. The authors considered some cases of HHL correlator in the su(2) sector and, relying on their explicit results, formulated a conjecture about the form of the volume dependence of the symmetric HHL structure constant to be valid at any coupling up to wrapping corrections. In order to test this hypothesis we considered the HHL correlator in su(2) sector at weak coupling and directly showed that, up to one loop, the finite volume dependence has exactly the form proposed in http://dx.doi.org/10.1007/JHEP09(2014)050. Another side of the conjecture suggests that computation of the symmetric structure constant is equivalent to computing the corresponding set of infinite volume form factors, which can be extracted as the coefficients of finite volume expansion. In this sense, extracting appropriate coefficients from our result gives a prediction for the corresponding infinite volume form factors.

  13. 排水管弯曲振动试验台%The Test Machine Using for Vibration and Bend of Drainpipes

    Institute of Scientific and Technical Information of China (English)

    陶晓杰

    2001-01-01

    a type of test machine using mechanic and electron and pressing air is introduced. It simulates the washing machine vibration and realizes the bend experiment of drainpipes. Press air is adopted for testing automatically pipes.%介绍一种机电气一体的试验台,模拟洗衣机振动,对排水管进行弯曲试验。采用气动技术,对其进行自动检测,实现水管破损自动报警。

  14. Friction and bending forces evaluation of AISI 304 DDQ steel sheet forming by bending tests under deep-drawing multiaxial stresses; Evaluacion de la fuerza de doblado y de friccion en el conformado de chapa de acero inoxidable AISI 304 DDQ mediante ensayos de doblado en condiciones multiaxiales de embuticion

    Energy Technology Data Exchange (ETDEWEB)

    Coello, J.; Miguel, V.; Ferrer, C.; Calatayud, A.; Martinez, A.

    2012-11-01

    Die radius is a critical area from the viewpoint of friction in forming processes. Moreover the sheet, that has been previously deformed in flange area, suffers bending and unbending stresses. Then, die-sheet contact in die radius must be especially considered in order to guarantee the suitable lubrication conditions. In the present work, a test method is carried out for evaluating an AISI 304 DDQ steel under similar conditions to those existing in the die radius area and that, usually, are not really reproduced in traditional bending under tensions tests. Deformation under pure shear condition, the bending and the radius angle have been established as variables of the tests. Results allow to obtain the apparent pressure sheet-bending tool, that increases with bending angle and decreases with tool radius. This last variable is the most significant while the bending angle has lesser influence. Although experimental results present some concordances with values obtained by analytical methods, some corrections must be considered in them in order to improve the theoretical values. (Author) 18 refs.

  15. A general mixed mode fracture mechanics test specimen: The DCB-specimen loaded with uneven bending moments

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Jørgensen, K.; Jacobsen, T.K.

    2004-01-01

    A mixed mode specimen is proposed for fracture mechanics characterisation of adhesive joints, laminates and multilayers. The specimen is a double cantilever beam specimen loaded with uneven bending moments at the two free beams. By varying the ratiobetween the two applied moments, the full mode...... glass-fibre laminates was studied. The mixed mode fracture resistance increased with increasing crack length due to fibre bridging, eventually reaching asteady-state level (R-curve behaviour). The steady-state fracture toughness level increased with increasing tangential crack opening displacement....

  16. Numerical study and pilot evaluation of experimental data measured on specimen loaded by bending and wedge splitting forces

    Directory of Open Access Journals (Sweden)

    S. Seitl

    2017-01-01

    Full Text Available The fracture mechanical properties of silicate based materials are determined from various fracture mechanicals tests, e.g. three- or four- point bending test, wedge splitting test, modified compact tension test etc. For evaluation of the parameters, knowledge about the calibration and compliance functions is required. Therefore, in this paper, the compliance and calibration curves for a novel test geometry based on combination of the wedge splitting test and three-point bending test are introduced. These selected variants exhibit significantly various stress state conditions at the crack tip, or, more generally, in the whole specimen ligament. The calibration and compliance curves are compared and used for evaluation of the data from pilot experimental measurement.

  17. Creep-fatigue evaluation method for weld joint of Mod.9Cr-1Mo steel Part II: Plate bending test and proposal of a simplified evaluation method

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Masanori, E-mail: ando.masanori@jaea.go.jp; Takaya, Shigeru, E-mail: takaya.shigeru@jaea.go.jp

    2016-12-15

    Highlights: • Creep-fatigue evaluation method for weld joint of Mod.9Cr-1Mo steel is proposed. • A simplified evaluation method is also proposed for the codification. • Both proposed evaluation method was validated by the plate bending test. • For codification, the local stress and strain behavior was analyzed. - Abstract: In the present study, to develop an evaluation procedure and design rules for Mod.9Cr-1Mo steel weld joints, a method for evaluating the creep-fatigue life of Mod.9Cr-1Mo steel weld joints was proposed based on finite element analysis (FEA) and a series of cyclic plate bending tests of longitudinal and horizontal seamed plates. The strain concentration and redistribution behaviors were evaluated and the failure cycles were estimated using FEA by considering the test conditions and metallurgical discontinuities in the weld joints. Inelastic FEA models consisting of the base metal, heat-affected zone and weld metal were employed to estimate the elastic follow-up behavior caused by the metallurgical discontinuities. The elastic follow-up factors determined by comparing the elastic and inelastic FEA results were determined to be less than 1.5. Based on the estimated elastic follow-up factors obtained via inelastic FEA, a simplified technique using elastic FEA was proposed for evaluating the creep-fatigue life in Mod.9Cr-1Mo steel weld joints. The creep-fatigue life obtained using the plate bending test was compared to those estimated from the results of inelastic FEA and by a simplified evaluation method.

  18. Creep-fatigue evaluation method for weld joint of Mod.9Cr-1Mo steel Part II: Plate bending test and proposal of a simplified evaluation method

    International Nuclear Information System (INIS)

    Ando, Masanori; Takaya, Shigeru

    2016-01-01

    Highlights: • Creep-fatigue evaluation method for weld joint of Mod.9Cr-1Mo steel is proposed. • A simplified evaluation method is also proposed for the codification. • Both proposed evaluation method was validated by the plate bending test. • For codification, the local stress and strain behavior was analyzed. - Abstract: In the present study, to develop an evaluation procedure and design rules for Mod.9Cr-1Mo steel weld joints, a method for evaluating the creep-fatigue life of Mod.9Cr-1Mo steel weld joints was proposed based on finite element analysis (FEA) and a series of cyclic plate bending tests of longitudinal and horizontal seamed plates. The strain concentration and redistribution behaviors were evaluated and the failure cycles were estimated using FEA by considering the test conditions and metallurgical discontinuities in the weld joints. Inelastic FEA models consisting of the base metal, heat-affected zone and weld metal were employed to estimate the elastic follow-up behavior caused by the metallurgical discontinuities. The elastic follow-up factors determined by comparing the elastic and inelastic FEA results were determined to be less than 1.5. Based on the estimated elastic follow-up factors obtained via inelastic FEA, a simplified technique using elastic FEA was proposed for evaluating the creep-fatigue life in Mod.9Cr-1Mo steel weld joints. The creep-fatigue life obtained using the plate bending test was compared to those estimated from the results of inelastic FEA and by a simplified evaluation method.

  19. Biomechanical evaluation of bending strength of spinal pedicle screws, including cylindrical, conical, dual core and double dual core designs using numerical simulations and mechanical tests.

    Science.gov (United States)

    Amaritsakul, Yongyut; Chao, Ching-Kong; Lin, Jinn

    2014-09-01

    Pedicle screws are used for treating several types of spinal injuries. Although several commercial versions are presently available, they are mostly either fully cylindrical or fully conical. In this study, the bending strengths of seven types of commercial pedicle screws and a newly designed double dual core screw were evaluated by finite element analyses and biomechanical tests. All the screws had an outer diameter of 7 mm, and the biomechanical test consisted of a cantilever bending test in which a vertical point load was applied using a level arm of 45 mm. The boundary and loading conditions of the biomechanical tests were applied to the model used for the finite element analyses. The results showed that only the conical screws with fixed outer diameter and the new double dual core screw could withstand 1,000,000 cycles of a 50-500 N cyclic load. The new screw, however, exhibited lower stiffness than the conical screw, indicating that it could afford patients more flexible movements. Moreover, the new screw produced a level of stability comparable to that of the conical screw, and it was also significantly stronger than the other screws. The finite element analysis further revealed that the point of maximum tensile stress in the screw model was comparable to the point at which fracture occurred during the fatigue test. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Planetary Load Sharing in Three-Point- Mounted Wind Turbine Gearboxes: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yi [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keller, Jonathan A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-15

    Wind turbine gearboxes do not achieve their expected design life. The cost of gearbox replacements and rebuilds and the downtime associated with these failures increase the cost of wind energy. In 2007, the U.S. Department of Energy established the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC). Its goals are to understand the root causes of premature gearbox failures and improve their reliability. To date, the GRC has focused on a 750-kW drivetrain with a three-stage, three-point-mounted gearbox. A nonproprietary version of the gearbox containing CRBs with C3 clearances in the planetary stage was customized. Two of these gearboxes, GB1 and GB2, were manufactured and then tested in the National Wind Technology Center's 2.5-MW dynamometer and in the field. Major GRC findings include the detrimental effect of rotor moments on planetary load sharing and predicted fatigue, and the risk of bearing sliding in low-torque conditions for three-point configuration drivetrains. Based on the knowledge gained from testing and analysis of the original design, the GRC gearbox was redesigned to improve its load-sharing characteristics and predicted fatigue. This new gearbox is named GB3. As shown in Figure 1, its key improvement is the incorporation of preloaded TRBs that support the planet carrier and planets. Roller loads can be optimized and bearing life maximized with a small preload [4]. These preloaded bearings, along with interference-fitted planet pins, improve alignments and load-sharing characteristics. A semi-integrated planet bearing design also increases capacity and eliminates outer race fretting. Romax Technology, with Powertrain Engineers and the Timken Company (Timken), completed the redesign. Timken manufactured and instrumented the planet gears and bearings. Brad Foote Gearing manufactured the other gearing and assembled the gearbox.

  1. The Effect Of Processing Temperature On Bending Strength Of Coated Steels

    International Nuclear Information System (INIS)

    Hishamuddin Husain; Abdul Razak Daud; Muhamad Daud; Zaifol Samsu; Julie Andrianny Murshidi

    2014-01-01

    Steel is the most common materials used as structural materials in industries. It is due its strength and low cost. There are several methods used in protecting steels against corrosion. One of them is through hot dipped coating. In this study, mechanical properties of stainless steel type 304, 316L and mild steel before and after hot dipped aluminising was investigated. The bending strength was determined by using three-point bend test and the hardness of the samples was determined by hardness test. Finally, the microstructure of the samples was investigated by using optical microscope. From the result obtained, we can conclude that strength of heated samples was decreased by heating but showed increment after application of coating. Although the strength for coated layer would decrease as compared to bare steel, it has great potential to increase the corrosion protection. (author)

  2. Effect of two different forms of three-point line on game actions in ...

    African Journals Online (AJOL)

    The aim of this study was to compare two different designs of the three-point line to analyze which one allows for a higher frequency of motor actions that, according to the literature, should be strengthened when including a three-point line in youth basketball. In the first of two championships, female mini-basketball players ...

  3. Three-Point Flexural Properties of Bonded Reinforcement Elements for Pleasure Craft Decks

    Science.gov (United States)

    Di Bella, G.; Galtieri, G.; Borsellino, C.

    2018-02-01

    The aim of this work was both to study the performances of pleasure craft reinforced components, bonded using a structural adhesive, and to compare them with those obtained using over-lamination as joining system, typically employed in the shipbuilding. With such aim, two different lots of components were prepared: in the first lot, the reinforcement structures were laminated directly on the investigated composite components and, in the second one; they were made separately in a mould and, then, bonded to the composite components. This last method allowed to evaluate the introduction of a product/process innovation in a field typically unwilling to innovation, still tied to craft, and non-standardized procedures. The results of bending tests, performed in order to evaluate the mechanical behaviour of the reinforced components, evidenced the goodness of this innovative design choice. Finally, a finite element analysis was performed. [Figure not available: see fulltext.

  4. Modular correction method of bending elastic modulus based on sliding behavior of contact point

    International Nuclear Information System (INIS)

    Ma, Zhichao; Zhao, Hongwei; Zhang, Qixun; Liu, Changyi

    2015-01-01

    During the three-point bending test, the sliding behavior of the contact point between the specimen and supports was observed, the sliding behavior was verified to affect the measurements of both deflection and span length, which directly affect the calculation of the bending elastic modulus. Based on the Hertz formula to calculate the elastic contact deformation and the theoretical calculation of the sliding behavior of the contact point, a theoretical model to precisely describe the deflection and span length as a function of bending load was established. Moreover, a modular correction method of bending elastic modulus was proposed, via the comparison between the corrected elastic modulus of three materials (H63 copper–zinc alloy, AZ31B magnesium alloy and 2026 aluminum alloy) and the standard modulus obtained from standard uniaxial tensile tests, the universal feasibility of the proposed correction method was verified. Also, the ratio of corrected to raw elastic modulus presented a monotonically decreasing tendency as the raw elastic modulus of materials increased. (technical note)

  5. A general mixed mode fracture mechanics test specimen: The DCB-specimen loaded with uneven bending moments

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, B.F.; Joergensen, K.; Oestergaard, R.C. [Risoe National Lab., Materials Dept., Roskilde (Denmark); Jacobsen, T.K. [LM Glasfiber A/S, Lunderskov (Denmark)

    2004-03-01

    A mixed mode specimen is proposed for fracture mechanics characterisation of adhesive joints, laminates and multilayers. The specimen is a double cantilever beam specimen loaded with uneven bending moments at the two free beams. By varying the ratio between the two applied moments, the full mode mixity range from pure mode I to pure mode II can be generated for the same specimen geometry. The specimen allows stable crack growth. In case of large scale crack bridging, mixed mode cohesive laws can be obtained by a J integral based approach. As a preliminary example, fracture of adhesive joints between two glass-fibre laminates was studied. The mixed mode fracture resistance increased with increasing crack length due to fibre cross over bridging, eventually reaching a steady-state level (R-curve behaviour). The steady-state fracture toughness level increased with increasing tangential crack opening displacement. Cohesive stresses were determined by a J integral approach. The deducted shear stress was found to be relative high ({approx} = 20 MPa) in comparison with the normal stress ({approx} = 1 MPa). (au)

  6. Experimental Test of Data Analysis Methods from Staggered Pair X-ray Beam Position Monitors at Bending Magnet Beamlines

    Science.gov (United States)

    Buth, G.; Huttel, E.; Mangold, S.; Steininger, R.; Batchelor, D.; Doyle, S.; Simon, R.

    2013-03-01

    Different methods have been proposed to calculate the vertical position of the photon beam centroid from the four blade currents of staggered pair X-ray beam position monitors (XBPMs) at bending magnet beamlines since they emerged about 15 years ago. The original difference-over-sum method introduced by Peatman and Holldack is still widely used, even though it has been proven to be rather inaccurate at large beam displacements. By systematically generating bumps in the electron orbit of the ANKA storage ring and comparing synchronized data from electron BPMs and XBPM blade currents, we have been able to show that the log-ratio method by S. F. Lin, B.G. Sun et al. is superior (meaning the characteristic being closer to linear) to the ratio method, which in turn is superior to the difference over sum method. These findings are supported by simulations of the XBPM response to changes of the beam centroid. The heuristic basis for each of the methods is investigated. The implications on using XBPM readings for orbit correction are discussed

  7. Bending characteristics of resin concretes

    Directory of Open Access Journals (Sweden)

    Ribeiro Maria Cristina Santos

    2003-01-01

    Full Text Available In this research work the influence of composition and curing conditions in bending strength of polyester and epoxy concrete is analyzed. Various mixtures of resin and aggregates were considered in view of an optimal combination. The Taguchi methodology was applied in order to reduce the number of tests, and in order to evaluate the influence of various parameters in concrete properties. This methodology is very useful for the planning of experiments. Test results, analyzed by this methodology, shown that the most significant factors affecting bending strength properties of resin concretes are the type of resin, resin content and charge content. An optimal formulation leading to a maximum bending strength was achieved in terms of material parameters.

  8. On Existence of Solutions to the Caputo Type Fractional Order Three-Point Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    B.M.B. Krushna

    2016-10-01

    Full Text Available In this paper, we establish the existence of solutions to the fractional order three-point boundary value problems by utilizing Banach contraction principle and Schaefer's fixed point theorem.

  9. Motor adaptation in complex sports - the influence of visual context information on the adaptation of the three-point shot to altered task demands in expert basketball players.

    Science.gov (United States)

    Stöckel, Tino; Fries, Udo

    2013-01-01

    We examined the influence of visual context information on skilled motor behaviour and motor adaptation in basketball. The rules of basketball in Europe have recently changed, such that that the distance for three-point shots increased from 6.25 m to 6.75 m. As such, we tested the extent to which basketball experts can adapt to the longer distance when a) only the unfamiliar, new three-point line was provided as floor markings (NL group), or b) the familiar, old three-point line was provided in addition to the new floor markings (OL group). In the present study 20 expert basketball players performed 40 three-point shots from 6.25 m and 40 shots from 6.75 m. We assessed the percentage of hits and analysed the landing position of the ball. Results showed better adaptation of throwing performance to the longer distance when the old three-point line was provided as a visual landmark, compared to when only the new three-point line was provided. We hypothesise that the three-point line delivered relevant information needed to successfully adapt to the greater distance in the OL group, whereas it disturbed performance and ability to adapt in the NL group. The importance of visual landmarks on motor adaptation in basketball throwing is discussed relative to the influence of other information sources (i.e. angle of elevation relative to the basket) and sport practice.

  10. The Euclidean three-point function in loop and perturbative gravity

    International Nuclear Information System (INIS)

    Rovelli, Carlo; Zhang Mingyi

    2011-01-01

    We compute the leading order of the three-point function in loop quantum gravity, using the vertex expansion of the Euclidean version of the new spin foam dynamics, in the region of γ < 1. We find results consistent with Regge calculus in the limit γ → 0, j → ∞. We also compute the tree-level three-point function of perturbative quantum general relativity in position space and discuss the possibility of directly comparing the two results.

  11. Three-point Green's function of massless QED in position space to lowest order

    International Nuclear Information System (INIS)

    Mitra, Indrajit

    2009-01-01

    The transverse part of the three-point Green's function of massless QED is determined to the lowest order in position space. Taken together with the evaluation of the longitudinal part in Mitra (2008) (J. Phys. A: Math. Theor. 41 315401), this gives a relation for QED which is analogous to the star-triangle relation. We relate our result to conformal-invariant three-point functions

  12. The three-point function as a probe of models for large-scale structure

    International Nuclear Information System (INIS)

    Frieman, J.A.; Gaztanaga, E.

    1993-01-01

    The authors analyze the consequences of models of structure formation for higher-order (n-point) galaxy correlation functions in the mildly non-linear regime. Several variations of the standard Ω = 1 cold dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain more power on large scales, R p ∼20 h -1 Mpc, e.g., low-matter-density (non-zero cosmological constant) models, open-quote tilted close-quote primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower, et al. The authors show that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale-dependence leads to a dramatic decrease of the hierarchical amplitudes Q J at large scales, r approx-gt R p . Current observational constraints on the three-point amplitudes Q 3 and S 3 can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales

  13. Comparison Between Stress Obtained by Numerical Analysis and In-Situ Measurements on a Flexible Pipe Subjected to In-Plane Bending Test

    DEFF Research Database (Denmark)

    Vestergaard Lukassen, Troels; Glejbøl, Kristian; Lyckegaard, Anders

    2016-01-01

    to stress patterns obtained during in-situ OMS measurements carried out during an actual experimental inplane bending test. The study showed a good correlation between the stress variation predicted with the finite element model and the measured stress variation.......To predict the lifetime and long-term properties of tensile armour wires in a dynamically loaded pipe, it is essential to have a tool which allows detailed prediction of the stress variations in the tensile armour wires during global pipe loading. Furthermore, detailed understanding of the stress...... variations will allow for performance optimization of the armour layers. To study the detailed stress variations in flexible pipes during dynamic loading, a comprehensive three-dimensional implicit nonlinear finite element model has been developed. The predicted numerical stress variations will be compared...

  14. On the regularization of extremal three-point functions involving giant gravitons

    Directory of Open Access Journals (Sweden)

    Charlotte Kristjansen

    2015-11-01

    Full Text Available In the AdS5/CFT4 set-up, extremal three-point functions involving two giant 1/2 BPS gravitons and one point-like 1/2 BPS graviton, when calculated using semi-classical string theory methods, match the corresponding three-point functions obtained in the tree-level gauge theory. The string theory computation relies on a certain regularization procedure whose justification is based on the match between gauge and string theory. We revisit the regularization procedure and reformulate it in a way which allows a generalization to the ABJM set-up where three-point functions of 1/2 BPS operators are not protected and where a match between tree-level gauge theory and semi-classical string theory is hence not expected.

  15. Constraints from conformal symmetry on the three point scalar correlator in inflation

    International Nuclear Information System (INIS)

    Kundu, Nilay; Shukla, Ashish; Trivedi, Sandip P.

    2015-01-01

    Using symmetry considerations, we derive Ward identities which relate the three point function of scalar perturbations produced during inflation to the scalar four point function, in a particular limit. The derivation assumes approximate conformal invariance, and the conditions for the slow roll approximation, but is otherwise model independent. The Ward identities allow us to deduce that the three point function must be suppressed in general, being of the same order of magnitude as in the slow roll model. They also fix the three point function in terms of the four point function, upto one constant which we argue is generically suppressed. Our approach is based on analyzing the wave function of the universe, and the Ward identities arise by imposing the requirements of spatial and time reparametrization invariance on it.

  16. Three Point Functions in Higher Spin AdS3 Holography with 1/N Corrections

    Directory of Open Access Journals (Sweden)

    Yasuaki Hikida

    2017-10-01

    Full Text Available We examine three point functions with two scalar operators and a higher spin current in 2d W N minimal model to the next non-trivial order in 1 / N expansion. The minimal model was proposed to be dual to a 3d higher spin gauge theory, and 1 / N corrections should be interpreted as quantum effects in the dual gravity theory. We develop a simple and systematic method to obtain three point functions by decomposing four point functions of scalar operators with Virasoro conformal blocks. Applying the method, we reproduce known results at the leading order in 1 / N and obtain new ones at the next leading order. As confirmation, we check that our results satisfy relations among three point functions conjectured before.

  17. Experimental Analysis of Mast Lifting and Bending Forces on Vibration Patterns Before and After Pinion Reinstallation in an OH-58 Transmission Test Rig

    Science.gov (United States)

    Huff, Edward M.; Lewicki, David G.; Tumer, Irem Y.; Decker, Harry; Barszez, Eric; Zakrajsek, James J.; Norvig, Peter (Technical Monitor)

    2000-01-01

    As part of a collaborative research program between NASA Ames Research Center (ARC), NASA Glenn Research Center (GRC), and the US Army Laboratory, a series of experiments is being performed in GRC's 500 HP OH-58 Transmission Test Rig facility and ARC's AH-I Cobra and OH-58c helicopters. The findings reported in this paper were drawn from Phase-I of a two-phase test-rig experiment, and are focused on the vibration response of an undamaged pinion gear operating in the transmission test rig. To simulate actual flight conditions, the transmission system was run at three torque levels, as well as two mast lifting and two mast bending levels. The test rig was also subjected to disassembly and reassembly of the main pinion housing to simulate the effect of maintenance operations. An analysis of variance based on the total power of the spectral distribution indicates the relative effect of each experimental factor, including Wong interactions with torque. Reinstallation of the main pinion assembly is shown to introduce changes in the vibration signature, suggesting the possibility of a strong effect of maintenance on HUMS design and use. Based on these results, further research will be conducted to compare these vibration responses with actual OH58c helicopter transmission vibration patterns.

  18. Three-point correlation functions of giant magnons with finite size

    International Nuclear Information System (INIS)

    Ahn, Changrim; Bozhilov, Plamen

    2011-01-01

    We compute holographic three-point correlation functions or structure constants of a zero-momentum dilaton operator and two (dyonic) giant magnon string states with a finite-size length in the semiclassical approximation. We show that the semiclassical structure constants match exactly with the three-point functions between two su(2) magnon single trace operators with finite size and the Lagrangian in the large 't Hooft coupling constant limit. A special limit J>>√(λ) of our result is compared with the relevant result based on the Luescher corrections.

  19. A cardy formula for three-point coefficients or how the black hole got its spots

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Per [Department of Physics and Astronomy, University of California,Los Angeles, CA 90095 (United States); Maloney, Alexander [Physics Department, McGill University,Montréal, QC H3A 2T8 (Canada)

    2017-05-31

    Modular covariance of torus one-point functions constrains the three point function coefficients of a two dimensional CFT. This leads to an asymptotic formula for the average value of light-heavy-heavy three point coefficients, generalizing Cardy’s formula for the high energy density of states. The derivation uses certain asymptotic properties of one-point conformal blocks on the torus. Our asymptotic formula matches a dual AdS{sub 3} computation of one point functions in a black hole background. This is evidence that the BTZ black hole geometry emerges upon course-graining over a suitable family of heavy microstates.

  20. Bend me, shape me

    CERN Multimedia

    2002-01-01

    A Japanese team has found a way to bend and shape silicon substrates by growing a thin layer of diamond on top. The technique has been proposed as an alternative to mechanical bending, which is currently used to make reflective lenses for X-ray systems and particle physics systems (2 paragraphs).

  1. The evaluation of dynamic cracking resistance of chosen casting alloys in the aspect of the impact bending test

    Directory of Open Access Journals (Sweden)

    J.Sadowski

    2008-10-01

    Full Text Available The increase of quality and durability of produced casting alloys can be evaluated on the base of material tests performed on a high level. One of such modern test methods are tests of the dynamic damage process of materials and the evaluation on the base of obtained courses F(f, F(t of parameters of dynamic cracking resistance KId, JId, performed with the usage of instrumented Charpy pendulums. In the paper there was presented the evaluation of dynamic cracking resistance parameters of casting alloys such as: AK12 aluminum alloy, L20G cast steel and spheroid cast iron. The methodology of the evaluation of that parameters was described and their change as well, for the AK12 alloy with the cold work different level, L20G cast steel cooled from different temperatures in the range +20oC -60oC, and for the spheroid cast iron in different stages of treatment i.e. raw state, after normalization, spheroid annealing and graphitizing annealing.Obtained parameters of dynamic cracking resistance KId, JId of tested casting alloys enabled to define the critical value of the ad defect that can be tolerated by tested castings in different work conditions with impact loadings.

  2. Occipital bending in schizophrenia.

    Science.gov (United States)

    Maller, Jerome J; Anderson, Rodney J; Thomson, Richard H; Daskalakis, Zafiris J; Rosenfeld, Jeffrey V; Fitzgerald, Paul B

    2017-01-01

    To investigate the prevalence of occipital bending (an occipital lobe crossing or twisting across the midline) in subjects with schizophrenia and matched healthy controls. Occipital bending prevalence was investigated in 37 patients with schizophrenia and 44 healthy controls. Ratings showed that prevalence was nearly three times higher among schizophrenia patients (13/37 [35.1%]) than in control subjects (6/44 [13.6%]). Furthermore, those with schizophrenia had greater normalized gray matter volume but less white matter volume and had larger brain-to-cranial ratio. The results suggest that occipital bending is more prevalent among schizophrenia patients than healthy subjects and that schizophrenia patients have different gray matter-white matter proportions. Although the cause and clinical ramifications of occipital bending are unclear, the results infer that occipital bending may be a marker of psychiatric illness.

  3. Comparative study of fracture mechanical test methods for concrete

    DEFF Research Database (Denmark)

    Østergaard, Lennart; Olesen, John Forbes

    2004-01-01

    and the interpretation, i.e. the analysis needed to extract the stress-crack opening relationship, the fracture energy etc. Experiments are carried out with each test configuration using mature, high performance concrete. The results show that the UTT is a highly complicated test, which only under very well controlled...... circumstances will yield the true fracture mechanical properties. It is also shown that both the three point bending test and the WST are well-suited substitutes for the uniaxial tension test.......This paper describes and compares three different fracture mechanical test methods; the uniaxial tension test (UTT), the three point bending test (TPBT) and the wedge splitting test (WST). Potentials and problems with the test methods will be described with regard to the experiment...

  4. Evaluation of constraint methodologies applied to a shallow-flaw cruciform bend specimen tested under biaxial loading conditions

    International Nuclear Information System (INIS)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1998-01-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a prototypic, far-field. out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for RPV materials. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies. namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness, the conventional maximum principal stress criterion indicated no effect

  5. Numerical solutions of a three-point boundary value problem with an ...

    African Journals Online (AJOL)

    Numerical solutions of a three-point boundary value problem with an integral condition for a third-order partial differential equation by using Laplace transform method Solutions numeriques d'un probleme pour une classe d'equations differentielles d'ordr.

  6. On nonseparated three-point boundary value problems for linear functional differential equations

    Czech Academy of Sciences Publication Activity Database

    Rontó, András; Rontó, M.

    2011-01-01

    Roč. 2011, - (2011), s. 326052 ISSN 1085-3375 Institutional research plan: CEZ:AV0Z10190503 Keywords : functional-differential equation * three-point boundary value problem * nonseparated boundary condition Subject RIV: BA - General Mathematics Impact factor: 1.318, year: 2011 http://www.hindawi.com/journals/ aaa /2011/326052/

  7. Appell functions and the scalar one-loop three-point integrals in Feynman diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Cabral-Rosetti, L G [Departamento de Posgrado, Centro Interdisciplinario de Investigacion y Docencia en Educacion Tecnica (CIIDET), Av. Universidad 282 Pte., Col. Centro, A. Postal 752, C.P. 76000, Santiago de Queretaro, Qro. (Mexico); Sanchis-Lozano, M A [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, 46100 Burjassot, Valencia (Spain)

    2006-05-15

    The scalar three-point function appearing in one-loop Feynman diagrams is compactly expressed in terms of a generalized hypergeometric function of two variables. Use is made of the connection between such Appell function and dilogarithms coming from a previous investigation. Special cases are obtained for particular values of internal masses and external momenta.

  8. Fracture assessment of HSST Plate 14 shallow-flaw cruciform bend specimens tested under biaxial loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1998-06-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states.

  9. In-situ micro bend testing of SiC and the effects of Ga+ ion damage

    Science.gov (United States)

    Robertson, S.; Doak, SS; Zhou, Z.; Wu, H.

    2017-09-01

    The Young’s modulus of 6H single crystal silicon carbide (SiC) was tested with micro cantilevers that had a range of cross-sectional dimensions with surfaces cleaned under different accelerating voltages of Ga+ beam. A clear size effect is seen with Young’s modulus decreasing as the cross-sectional area reduces. One of the possible reasons for such size effect is the Ga+ induced damage on all surfaces of the cantilever. Transmission electron microscopy (TEM) was used to analyse the degree of damage, and the measurements of damage is compared to predictions by SRIM irradiation simulation.

  10. Experimental Tests on Bending Behavior of Profiled Steel Sheeting Dry Board Composite Floor with Geopolymer Concrete Infill

    Directory of Open Access Journals (Sweden)

    Mohd Isa Jaffar

    Full Text Available Abstract Profiled Steel Sheet Dry Board (PSSDB system is a lightweight composite structure comprises Profiled Steel Sheeting and Dry Board connected by self-drilling and self-tapping screws. This study introduced geopolymer concrete, an eco-friendly material without cement content as an infill material in the PSSDB floor system to highlight its effect onto the PSSDB (with full and half-size dry boards floor system's stiffness and strength. Experimental tests on various full scale PSSDB floor specimens were conducted under uniformly distributed transverse loads. Results illustrate that the rigidity of the panel with geopolymer concrete infill with half-size dry board (HBGPC increases by 43% relative to that of the panel with normal concrete infill with full-size dry board (FBNC. The developed finite-element modeling (FEM successfully predicts the behavior of FBGPC model with 94.8% accuracy. Geopolymer concrete infill and dry board size influence the strength panel, infill contact stiffness, and mid-span deflection of the profiled steel sheeting/dry board (PSSDB flooring system.

  11. The three-point correlation function of the cosmic microwave background in inflationary models

    CERN Document Server

    Gangui, Alejandro; Matarrese, Sabino; Mollerach, Silvia

    1994-01-01

    We analyze the temperature three-point correlation function and the skewness of the Cosmic Microwave Background (CMB), providing general relations in terms of multipole coefficients. We then focus on applications to large angular scale anisotropies, such as those measured by the {\\em COBE} DMR, calculating the contribution to these quantities from primordial, inflation generated, scalar perturbations, via the Sachs--Wolfe effect. Using the techniques of stochastic inflation we are able to provide a {\\it universal} expression for the ensemble averaged three-point function and for the corresponding skewness, which accounts for all primordial second-order effects. These general expressions would moreover apply to any situation where the bispectrum of the primordial gravitational potential has a {\\em hierarchical} form. Our results are then specialized to a number of relevant models: power-law inflation driven by an exponential potential, chaotic inflation with a quartic and quadratic potential and a particular c...

  12. Three-point functions in N=4 SYM: the hexagon proposal at three loops

    Energy Technology Data Exchange (ETDEWEB)

    Eden, Burkhard [Institut für Mathematik & Institut für Physik, Humboldt-Universität zu Berlin,Zum großen Windkanal 6, D-12489 Berlin (Germany); Sfondrini, Alessandro [Institut für Theoretische Physik, ETH Zürich,Wolfgang-Pauli-Str. 27, CH-8093 Zürich (Switzerland)

    2016-02-24

    Basso, Komatsu and Vieira recently proposed an all-loop framework for the computation of three-point functions of single-trace operators of N=4 super-Yang-Mills, the “hexagon program”. This proposal results in several remarkable predictions, including the three-point function of two protected operators with an unprotected one in the SU(2) and SL(2) sectors. Such predictions consist of an “asymptotic” part — similar in spirit to the asymptotic Bethe Ansatz of Beisert and Staudacher for two-point functions — as well as additional finite-size “wrapping” Lüscher-like corrections. The focus of this paper is on such wrapping corrections, which we compute at three-loops in the SL(2) sector. The resulting structure constants perfectly match the ones obtained in the literature from four-point correlators of protected operators.

  13. Two- and three-point functions in the D=1 matrix model

    International Nuclear Information System (INIS)

    Ben-Menahem, S.

    1991-01-01

    The critical behavior of the genus-zero two-point function in the D=1 matrix model is carefully analyzed for arbitrary embedding-space momentum. Kostov's result is recovered for momenta below a certain value P 0 (which is 1/√α' in the continuum language), with a non-universal form factor which is expressed simply in terms of the critical fermion trajectory. For momenta above P 0 , the Kostov scaling term is found to be subdominant. We then extend the large-N WKB treatment to calculate the genus-zero three-point function, and elucidate its critical behavior when all momenta are below P 0 . The resulting universal scaling behavior, as well as the non-universal form factor for the three-point function, are related to the two-point functions of the individual external momenta, through the factorization familiar from continuum conformal field theories. (orig.)

  14. Classical integrability for three-point functions: cognate structure at weak and strong couplings

    Energy Technology Data Exchange (ETDEWEB)

    Kazama, Yoichi [Research Center for Mathematical Physics, Rikkyo University,Toshima-ku, Tokyo 171-8501 (Japan); Quantum Hadron Physics Laboratory, RIKEN Nishina Center, Wako 351-0198 (Japan); Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Komatsu, Shota [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario, N2L 2Y5 (Canada); Nishimura, Takuya [Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2016-10-10

    In this paper, we develop a new method of computing three-point functions in the SU(2) sector of the N=4 super Yang-Mills theory in the semi-classical regime at weak coupling, which closely parallels the strong coupling analysis. The structure threading two disparate regimes is the so-called monodromy relation, an identity connecting the three-point functions with and without the insertion of the monodromy matrix. We shall show that this relation can be put to use directly for the semi-classical regime, where the dynamics is governed by the classical Landau-Lifshitz sigma model. Specifically, it reduces the problem to a set of functional equations, which can be solved once the analyticity in the spectral parameter space is specified. To determine the analyticity, we develop a new universal logic applicable at both weak and strong couplings. As a result, compact semi-classical formulas are obtained for a general class of three-point functions at weak coupling including the ones whose semi-classical behaviors were not known before. In addition, the new analyticity argument applied to the strong coupling analysis leads to a modification of the integration contour, producing the results consistent with the recent hexagon bootstrap approach. This modification also makes the Frolov-Tseytlin limit perfectly agree with the weak coupling form.

  15. Adjustable Tooling for Bending Brake

    Science.gov (United States)

    Ellis, J. M.

    1986-01-01

    Deep metal boxes and other parts easily fabricated. Adjustable tooling jig for bending brake accommodates spacing blocks and either standard male press-brake die or bar die. Holds spacer blocks, press-brake die, bar window die, or combination of three. Typical bending operations include bending of cut metal sheet into box and bending of metal strip into bracket with multiple inward 90 degree bends. By increasing free space available for bending sheet-metal parts jig makes it easier to fabricate such items as deep metal boxes or brackets with right-angle bends.

  16. A preliminary bending fatigue spectrum for steel monostrand cables

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2011-01-01

    This paper presents the results of the experimental study on the bending fatigue resistance of high-strength steel monostrand cables. From the conducted fatigue tests in the high-stress, low-cycle region, a preliminary bending fatigue spectrum is derived for the estimation of monostrand cable...... service life expectancy. The presented preliminary bending fatigue spectrum of high-strength monostrands is currently unavailable in the published literature. The presented results provide relevant information on the bending mechanism and fatigue characteristics of monostrand steel cables in tension...... and flexure and show that localized cable bending has a pronounced influence on the fatigue resistance of cables under dynamic excitations....

  17. Effects of accelerated artificial daylight aging on bending strength and bonding of glass fibers in fiber-embedded maxillofacial silicone prostheses.

    Science.gov (United States)

    Hatamleh, Muhanad M; Watts, David C

    2010-07-01

    The purpose of this study was to test the effect of different periods of accelerated artificial daylight aging on bond strength of glass fiber bundles embedded into maxillofacial silicone elastomer and on bending strength of the glass fiber bundles. Forty specimens were fabricated by embedding resin-impregnated fiber bundles (1.5-mm diameter, 20-mm long) into maxillofacial silicone elastomer. Specimens were randomly allocated into four groups, and each group was subjected to different periods of accelerated daylight aging as follows (in hours); 0, 200, 400, and 600. The aging cycle included continuous exposure to quartz-filtered visible daylight (irradiance 760 W/m(2)) under an alternating weathering cycle (wet for 18 minutes, dry for 102 minutes). Pull-out tests were performed to evaluate bond strength between fiber bundles and silicone using a universal testing machine at 1 mm/min crosshead speed. Also a three-point bending test was performed to evaluate bending strength of the fiber bundles. One-way ANOVA and Bonferroni post hoc tests were carried out to detect statistical significance (p aging only. After 200 hours of exposure to artificial daylight and moisture conditions, bond strength between glass fibers and heat-cured silicones is optimal, and the bending strength of the glass fiber bundles is enhanced.

  18. Effect of Heart rate on Basketball Three-Point Shot Accuracy

    OpenAIRE

    Luca P. Ardigò; Goran Kuvacic; Antonio D. Iacono; Giacomo Dascanio; Johnny Padulo; Johnny Padulo

    2018-01-01

    The three-point shot (3S) is a fundamental basketball skill used frequently during a game, and is often a main determinant of the final result. The aim of the study was to investigate the effect of different metabolic conditions, in terms of heart rates, on 3S accuracy (3S%) in 24 male (Under 17) basketball players (age 16.3 ± 0.6 yrs). 3S performance was specifically investigated at different heart rates. All sessions consisted of 10 consecutive 3Ss from five different significant field spot...

  19. An Investigation of Three-point Shooting through an Analysis of NBA Player Tracking Data

    OpenAIRE

    Sliz, Bradley A.

    2017-01-01

    I address the difficult challenge of measuring the relative influence of competing basketball game strategies, and I apply my analysis to plays resulting in three-point shots. I use a glut of SportVU player tracking data from over 600 NBA games to derive custom position-based features that capture tangible game strategies from game-play data, such as teamwork, player matchups, and on-ball defender distances. Then, I demonstrate statistical methods for measuring the relative importance of any ...

  20. POSITIVE SOLUTIONS OF A NONLINEAR THREE-POINT EIGENVALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS

    Directory of Open Access Journals (Sweden)

    FAOUZI HADDOUCHI

    2015-11-01

    Full Text Available In this paper, we study the existence of positive solutions of a three-point integral boundary value problem (BVP for the following second-order differential equation u''(t + \\lambda a(tf(u(t = 0; 0 0 is a parameter, 0 <\\eta < 1, 0 <\\alpha < 1/{\\eta}. . By using the properties of the Green's function and Krasnoselskii's fixed point theorem on cones, the eigenvalue intervals of the nonlinear boundary value problem are considered, some sufficient conditions for the existence of at least one positive solutions are established.

  1. Effects of Notch Introduction on 3-Point Bending Cutting Characteristics of Frozen Fish

    OpenAIRE

    Hagura, Yoshio; Suzuki, Kanichi

    2002-01-01

    We have proposed a freeze cutting method in which a three point bending load is applied on a frozen fish body to cut in round slices. Lowering the three-point bending load can facilitate the freeze cutting processing. Based on the idea that a notch in the fish body may lower the cutting load, the effect of introducing a notch was examined with respect to cutting stress and smoothness of cut surface in model fish meat and in saury. It was found that the introduced notch effectively lowered the...

  2. The Application of Miniaturized Three-Point-Bend Specimens for Determination of the Reference Temperature of A533 Cl.1 Steel

    Czech Academy of Sciences Publication Activity Database

    Stratil, Luděk; Šiška, Filip; Dlouhý, Ivo; Serrano, M.

    2017-01-01

    Roč. 139, č. 4 (2017), č. článku 041410. ISSN 0094-9930 R&D Projects: GA ČR GJ15-21292Y; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : fracture toughness * Master Curve * the reference temperature * JRQ steel * miniaturized specimens Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 0.729, year: 2016

  3. The scalar-scalar-tensor inflationary three-point function in the axion monodromy model

    Science.gov (United States)

    Chowdhury, Debika; Sreenath, V.; Sriramkumar, L.

    2016-11-01

    The axion monodromy model involves a canonical scalar field that is governed by a linear potential with superimposed modulations. The modulations in the potential are responsible for a resonant behavior which gives rise to persisting oscillations in the scalar and, to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been shown to lead to an improved fit to the cosmological data than the more conventional, nearly scale invariant, primordial power spectra. The scalar bi-spectrum in the model too exhibits continued modulations and the resonance is known to boost the amplitude of the scalar non-Gaussianity parameter to rather large values. An analytical expression for the scalar bi-spectrum had been arrived at earlier which, in fact, has been used to compare the model with the cosmic microwave background anisotropies at the level of three-point functions involving scalars. In this work, with future applications in mind, we arrive at a similar analytical template for the scalar-scalar-tensor cross-correlation. We also analytically establish the consistency relation (in the squeezed limit) for this three-point function. We conclude with a summary of the main results obtained.

  4. The scalar-scalar-tensor inflationary three-point function in the axion monodromy model

    International Nuclear Information System (INIS)

    Chowdhury, Debika; Sriramkumar, L.; Sreenath, V.

    2016-01-01

    The axion monodromy model involves a canonical scalar field that is governed by a linear potential with superimposed modulations. The modulations in the potential are responsible for a resonant behavior which gives rise to persisting oscillations in the scalar and, to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been shown to lead to an improved fit to the cosmological data than the more conventional, nearly scale invariant, primordial power spectra. The scalar bi-spectrum in the model too exhibits continued modulations and the resonance is known to boost the amplitude of the scalar non-Gaussianity parameter to rather large values. An analytical expression for the scalar bi-spectrum had been arrived at earlier which, in fact, has been used to compare the model with the cosmic microwave background anisotropies at the level of three-point functions involving scalars. In this work, with future applications in mind, we arrive at a similar analytical template for the scalar-scalar-tensor cross-correlation. We also analytically establish the consistency relation (in the squeezed limit) for this three-point function. We conclude with a summary of the main results obtained.

  5. Temperature dependence of three-point correlation functions of viscous liquids: the case of glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Dalle-Ferrier, Cecile; Eibl, Stefan; Alba-Simionesco, Christiane [Laboratoire de Chimie Physique, UMR 8000, Batiment 349, Universite Paris-Sud, 91405 Orsay (France); Pappas, Catherine [BENSC, Hahn-Meitner-Institute, HMI Berlin, Glienicker Strasse 100, D-14109 Berlin (Germany)], E-mail: cecile.dalle-ferrier@lcp.u-psud.fr

    2008-12-10

    What causes the dramatic slowing down of flow and relaxation that leads to glass formation in liquids as temperature decreases is hardly understood so far and is the subject of intensive research work. It is tempting to ascribe the strong temperature dependence of the dynamics, irrespective of molecular details, to a collective or cooperative behavior characterized by a length scale that grows as one approaches the glass transition. To access this length experimentally, we use the recently introduced three-point dynamic susceptibility, from which the number of molecules dynamically correlated during the structural relaxation, N{sub corr}, can be extracted. The three-point functions are related to the sensitivity of the averaged two-time dynamics to external control parameters, such as temperature and density. We studied N{sub corr} values in an important temperature range for a large number of liquids, and found that it systematically grows when approaching the glass transition. Here we specially emphasize the case of glycerol for which we combined dielectric and neutron spin echo spectroscopy to cover more than 16 decades in relaxation time.

  6. Effect of Heart rate on Basketball Three-Point Shot Accuracy

    Directory of Open Access Journals (Sweden)

    Luca P. Ardigò

    2018-02-01

    Full Text Available The three-point shot (3S is a fundamental basketball skill used frequently during a game, and is often a main determinant of the final result. The aim of the study was to investigate the effect of different metabolic conditions, in terms of heart rates, on 3S accuracy (3S% in 24 male (Under 17 basketball players (age 16.3 ± 0.6 yrs. 3S performance was specifically investigated at different heart rates. All sessions consisted of 10 consecutive 3Ss from five different significant field spots just beyond the FIBA three-point line, i.e., about 7 m from the basket (two counter-clockwise “laps” at different heart rates: rest (0HR, after warm-up (50%HRMAX [50HR], and heart rate corresponding to 80% of its maximum value (80%HRMAX [80HR]. We found that 50HR does not significantly decrease 3S% (−15%, P = 0.255, while 80HR significantly does when compared to 0HR (−28%, P = 0.007. Given that 50HR does not decrease 3S% compared to 0HR, we believe that no preliminary warm-up is needed before entering a game in order to specifically achieve a high 3S%. Furthermore, 3S training should be performed in conditions of moderate-to-high fatigued state so that a high 3S% can be maintained during game-play.

  7. Testing and evaluation of a slot and tab construction technique for light-weight wood-fiber-based structural panels under bending

    Science.gov (United States)

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2015-01-01

    This paper presented construction and strain distributions for light-weight wood-fiber-based structural panels with tri-grid core made from phenolic impregnated laminated paper composites under bending. A new fastening configuration of slots in the faces and tabs on the core was applied to the face/core interfaces of the sandwich panel in addition to epoxy resin. Both...

  8. Occipital bending in depression.

    Science.gov (United States)

    Maller, Jerome J; Thomson, Richard H S; Rosenfeld, Jeffrey V; Anderson, Rodney; Daskalakis, Zafiris J; Fitzgerald, Paul B

    2014-06-01

    There are reports of differences in occipital lobe asymmetry within psychiatric populations when compared with healthy control subjects. Anecdotal evidence and enlarged lateral ventricles suggests that there may also be a different pattern of curvature whereby one occipital lobe wraps around the other, termed 'occipital bending'. We investigated the prevalence of occipital bending in 51 patients with major depressive disorder (males mean age = 41.96 ± 14.00 years, females mean age = 40.71 ± 12.41 years) and 48 age- and sex-matched healthy control subjects (males mean age = 40.29 ± 10.23 years, females mean age = 42.47 ± 14.25 years) and found the prevalence to be three times higher among patients with major depressive disorder (18/51, 35.3%) when compared with control subjects (6/48, 12.5%). The results suggest that occipital bending is more common among patients with major depressive disorder than healthy subjects, and that occipital asymmetry and occipital bending are separate phenomena. Incomplete neural pruning may lead to the cranial space available for brain growth being restricted, or ventricular enlargement may exacerbate the natural occipital curvature patterns, subsequently causing the brain to become squashed and forced to 'wrap' around the other occipital lobe. Although the clinical implications of these results are unclear, they provide an impetus for further research into the relevance of occipital bending in major depression disorder. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Solution matching for a three-point boundary-value problem on atime scale

    Directory of Open Access Journals (Sweden)

    Martin Eggensperger

    2004-07-01

    Full Text Available Let $mathbb{T}$ be a time scale such that $t_1, t_2, t_3 in mathbb{T}$. We show the existence of a unique solution for the three-point boundary value problem $$displaylines{ y^{DeltaDeltaDelta}(t = f(t, y(t, y^Delta(t, y^{DeltaDelta}(t, quad t in [t_1, t_3] cap mathbb{T},cr y(t_1 = y_1, quad y(t_2 = y_2, quad y(t_3 = y_3,. }$$ We do this by matching a solution to the first equation satisfying a two-point boundary conditions on $[t_1, t_2] cap mathbb{T}$ with a solution satisfying a two-point boundary conditions on $[t_2, t_3] cap mathbb{T}$.

  10. Application of Pettis integration to differential inclusions with three-point boundary conditions in Banach spaces

    Directory of Open Access Journals (Sweden)

    Imen Boutana

    2007-12-01

    Full Text Available This paper provide some applications of Pettis integration to differential inclusions in Banach spaces with three point boundary conditions of the form $$ ddot{u}(t in F(t,u(t,dot u(t+H(t,u(t,dot u(t,quad hbox{a.e. } t in [0,1], $$ where $F$ is a convex valued multifunction upper semicontinuous on $Eimes E$ and $H$ is a lower semicontinuous multifunction. The existence of solutions is obtained under the non convexity condition for the multifunction $H$, and the assumption that $F(t,x,ysubset Gamma_{1}(t$, $H(t,x,ysubset Gamma_{2}(t$, where the multifunctions $Gamma_{1},Gamma_{2}:[0,1] ightrightarrows E$ are uniformly Pettis integrable.

  11. Mass effects in three-point chronological current correlators in n-dimensional multifermion models

    International Nuclear Information System (INIS)

    Kucheryavyj, V.I.

    1991-01-01

    Three-types of quantities associated with three-point chronological fermion-current correlators having arbitrary Lorentz and internal structure are calculated in the n-dimensional multifermion models with different masses. The analysis of vector and axial-vector Ward identities for regular (finite) and dimensionally regularized values of these quantities is carried out. Quantum corrections to the canonical Ward identities are obtained. These corrections are generally homogenious functions of zeroth order in masses and under some definite conditions they are reduced to known axial-vector anomalies. The structure and properties of quantum corrections to AVV and AAA correlators in the four-dimension space-time are investigated in detail

  12. A transparent bending-insensitive pressure sensor

    Science.gov (United States)

    Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao

    2016-05-01

    Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions.

  13. Determination of elastic-plastic properties of Alporas foam at the cell-wall level using microscale-cantilever bending tests

    Czech Academy of Sciences Publication Activity Database

    Doktor, Tomáš; Kytýř, Daniel; Koudelka_ml., Petr; Zlámal, Petr; Fíla, Tomáš; Jiroušek, Ondřej

    2015-01-01

    Roč. 49, č. 2 (2015), s. 203-206 ISSN 1580-2949 R&D Projects: GA ČR(CZ) GAP105/12/0824 Institutional support: RVO:68378297 Keywords : aluminium foam * cantilever bending * micromechanics * optical strain measurement Subject RIV: JI - Composite Materials Impact factor: 0.439, year: 2015 http://mit.imt.si/Revija/izvodi/mit152/doktor.pdf

  14. Multi-parameter crack tip stress state description for evaluation of nonlinear zone width in silicate composite specimens in component splitting/bending test geometry

    Czech Academy of Sciences Publication Activity Database

    Veselý, V.; Frantík, P.; Sopek, J.; Malíková, L.; Seitl, Stanislav

    2015-01-01

    Roč. 38, č. 2 (2015), s. 200-214 ISSN 8756-758X R&D Projects: GA ČR(CZ) GAP104/11/0833 Institutional support: RVO:68081723 Keywords : near-crack tip fields * Williams series * higher-order terms * stress field * failure criterion * nonlinear zone * quasi-brittle fracture * splitting-bending geometry Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.838, year: 2015

  15. AA, bending magnet, BLG

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The very particular lattice of the AA required 2 types of dipole (bending magnets; BLG, long and narrow; BST, short and wide). The BLG had a steel length of 4.70 m, a good field width of 0.24 m, and a weight of about 70 t. Jean-Claude Brunet inspects the lower half of a BLG. For the BST magnets see 7811105 and 8006036.

  16. Anomalies in Ward identities revisited. Explicit calculation of the three point functions

    International Nuclear Information System (INIS)

    Dalmolin, Fabricio Tronco

    2007-01-01

    others already performed within the same issue. In particular, in one of such investigation a pioneer and traditional reference has been revisited by using the alternative strategy mentioned above. In such study, a systematic treatment of purely fermionic one, two and three point functions, associated to scalar, pseudo-scalar, vector and axial-vector densities, has done. There, however, only the explicit expressions for one and two point functions were developed. The conclusions pointed out, in a very clear way, that the association between intrinsic ambiguities of the perturbative calculation and violations in symmetry properties is not consistent. At the same time, it was concluded that only in an investigation where the explicit forms for the three point functions involved are considered clean and sound conclusions can be extracted. This is due to the fact that, in the relevant symmetry properties, it is involved three ward identities and a low energy limit. This is precisely the main purpose of the present work: to promote a detailed investigation of the relations among green functions and ward identities, within the context of a model having only one specie of 1/2 spin fermionic field, that consider all the amplitudes having superficial degree of divergence higher than the logarithmic one, in a similar way as that made in the work of Gerstein and Jackiw, taking however the explicit form for the three point functions. This is one to get in the analysis, simultaneously, the ward identities and the low energy limits involved in the anomalous amplitudes as required by the Sutherland-Veltman theorem, in order to get an adequate understanding of the anomaly phenomena. We will show that our final results can be mapped in those found with the use of the Dimensional Regularization, in situation where this technique can be applied, or in those of Gerstein and Jackiw, however with conflicting interpretations. Finally, we will show that in the context of the adopted technique

  17. Examining the consistency relations describing the three-point functions involving tensors

    International Nuclear Information System (INIS)

    Sreenath, V.; Sriramkumar, L.

    2014-01-01

    It is well known that the non-Gaussianity parameter f NL characterizing the scalar bi-spectrum can be expressed in terms of the scalar spectral index in the squeezed limit, a property that is referred to as the consistency relation. In contrast to the scalar bi-spectrum, the three-point cross-correlations involving scalars and tensors and the tensor bi-spectrum have not received adequate attention, which can be largely attributed to the fact that the tensors had remained undetected at the level of the power spectrum until very recently. The detection of the imprints of the primordial tensor perturbations by BICEP2 and its indication of a rather high tensor-to-scalar ratio, if confirmed, can open up a new window for understanding the tensor perturbations, not only at the level of the power spectrum, but also in the realm of non-Gaussianities. In this work, we consider the consistency relations associated with the three-point cross-correlations involving scalars and tensors as well as the tensor bi-spectrum in inflationary models driven by a single, canonical, scalar field. Characterizing the cross-correlations in terms of the dimensionless non-Gaussianity parameters C NL R and C NL γ that we had introduced earlier, we express the consistency relations governing the cross-correlations as relations between these non-Gaussianity parameters and the scalar or tensor spectral indices, in a fashion similar to that of the purely scalar case. We also discuss the corresponding relation for the non-Gaussianity parameter h NL used to describe the tensor bi-spectrum. We analytically establish these consistency relations explicitly in the following two situations: a simple example involving a specific case of power law inflation and a non-trivial scenario in the so-called Starobinsky model that is governed by a linear potential with a sharp change in its slope. We also numerically verify the consistency relations in three types of inflationary models that permit deviations from

  18. Effective bending strain estimated from I c test results of a D-shaped Nb3Al CICC coil fabricated with a react-and-wind process for the National Centralized Tokamak

    International Nuclear Information System (INIS)

    Ando, T.; Kizu, K.; Miura, Y.M.; Tsuchiya, K.; Matsukawa, M.; Tamai, H.; Ishida, S.; Koizumi, N.; Okuno, K.

    2005-01-01

    Japan National Centralized Tokamak (NCT) is a superconducting tokamak proposed as a modification to JT-60U. As part of the R and D for the National Centralized Tokamak, a two-turn, approximately 2 m tall, D-shaped Nb 3 Al coil was wound and tested using a full-size cable-in-conduit conductor (CICC). The Nb 3 Al cable-in-conductor was bent following the heat treatment reaction with a maximum bending strain of 0.4% to simulate the react-and-wind fabrication. The comparison of the coil performance to the measured strand data shows that the effective axial strain of the conductor strands is essentially zero despite the 0.4% bending strain of the conductor. This suggests that the strands in the cable slipped relatively to each other during bending of the conduit, thus reducing the effective strain transmitted to the strands. This result is very encouraging for the low-cost fabrication of high-current-density fusion coils using the react-and-wind method

  19. Strength measurement of optical fibers by bending

    Science.gov (United States)

    Srubshchik, Leonid S.

    1999-01-01

    A two-point bending technique has been used not only to measure the breaking stress of optical fiber but also to predict its static and dynamic fatigue. The present theory of this test is based on elastica theory of rod. However, within the limits of elastica theory the tensile and shear stresses cannot be determined. In this paper we study dynamic and static problems for optical fiber in the two- point bending test on the base of geometrically exact theory in which rod can suffer flexure, extension, and shear. We obtain the governing partial differential equations taking into account the fact that the lateral motion of the fiber is restrained by the presence of flat parallel plates. We develop the computational methods for solving the initial and equilibrium free-boundary nonlinear planar problems. We derive the formulas for predicting of the tensile strength from strength in the bending and calculate one example.

  20. Three-point phase correlations: A new measure of non-linear large-scale structure

    CERN Document Server

    Wolstenhulme, Richard; Obreschkow, Danail

    2015-01-01

    We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the non-linear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F_2, which governs the non-linear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a very good agreement for separations r>20 Mpc/h. Fitting formulae for the power spectrum and the non-linear coupling kernel at small scales allow us to extend our prediction into the strongly non-linear regime. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the linear bias. Furtherm...

  1. Disentangling interacting dark energy cosmologies with the three-point correlation function

    Science.gov (United States)

    Moresco, Michele; Marulli, Federico; Baldi, Marco; Moscardini, Lauro; Cimatti, Andrea

    2014-10-01

    We investigate the possibility of constraining coupled dark energy (cDE) cosmologies using the three-point correlation function (3PCF). Making use of the CODECS N-body simulations, we study the statistical properties of cold dark matter (CDM) haloes for a variety of models, including a fiducial ΛCDM scenario and five models in which dark energy (DE) and CDM mutually interact. We measure both the halo 3PCF, ζ(θ), and the reduced 3PCF, Q(θ), at different scales (2 values of the halo 3PCF for perpendicular (elongated) configurations. The effect is also scale-dependent, with differences between ΛCDM and cDE models that increase at large scales. We made use of these measurements to estimate the halo bias, that results in fair agreement with the one computed from the two-point correlation function (2PCF). The main advantage of using both the 2PCF and 3PCF is to break the bias-σ8 degeneracy. Moreover, we find that our bias estimates are approximately independent of the assumed strength of DE coupling. This study demonstrates the power of a higher order clustering analysis in discriminating between alternative cosmological scenarios, for both present and forthcoming galaxy surveys, such as e.g. Baryon Oscillation Spectroscopic Survey and Euclid.

  2. Analytical three-point Dixon method: With applications for spiral water-fat imaging.

    Science.gov (United States)

    Wang, Dinghui; Zwart, Nicholas R; Li, Zhiqiang; Schär, Michael; Pipe, James G

    2016-02-01

    The goal of this work is to present a new three-point analytical approach with flexible even or uneven echo increments for water-fat separation and to evaluate its feasibility with spiral imaging. Two sets of possible solutions of water and fat are first found analytically. Then, two field maps of the B0 inhomogeneity are obtained by linear regression. The initial identification of the true solution is facilitated by the root-mean-square error of the linear regression and the incorporation of a fat spectrum model. The resolved field map after a region-growing algorithm is refined iteratively for spiral imaging. The final water and fat images are recalculated using a joint water-fat separation and deblurring algorithm. Successful implementations were demonstrated with three-dimensional gradient-echo head imaging and single breathhold abdominal imaging. Spiral, high-resolution T1 -weighted brain images were shown with comparable sharpness to the reference Cartesian images. With appropriate choices of uneven echo increments, it is feasible to resolve the aliasing of the field map voxel-wise. High-quality water-fat spiral imaging can be achieved with the proposed approach. © 2015 Wiley Periodicals, Inc.

  3. THREE-POINT PHASE CORRELATIONS: A NEW MEASURE OF NONLINEAR LARGE-SCALE STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Wolstenhulme, Richard; Bonvin, Camille [Kavli Institute for Cosmology Cambridge and Institute of Astronomy, Madingley Road, Cambridge CB3 OHA (United Kingdom); Obreschkow, Danail [International Centre for Radio Astronomy Research (ICRAR), M468, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia)

    2015-05-10

    We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the nonlinear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F{sub 2}, which governs the nonlinear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a 1σ agreement for separations r ≳ 30 h{sup −1} Mpc. Fitting formulae for the power spectrum and the nonlinear coupling kernel at small scales allow us to extend our prediction into the strongly nonlinear regime, where we find a 1σ agreement with the simulations for r ≳ 2 h{sup −1} Mpc. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the bias, in the regime where the bias is local and linear. Furthermore, the variance of the line correlation is independent of the Gaussian variance on the modulus of the density field. This suggests that the line correlation can probe more precisely the nonlinear regime of gravity, with less contamination from the power spectrum variance.

  4. Spring back evaluation by bending under tension tests in conditions of multiaxial stresses corresponding to deep drawing processes. Application to AISI 304 DDQ stainless steel sheet; Evaluacion del springback mediante ensayos de doblado bajo tension en condiciones de multiaxialidad tipicas de los procesos de embuticion profunda. Aplicacion a chapa de acero inoxidable AISI 304 DDQ

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, V.; Coello, J.; Martinez, A.; Calatayud, A.

    2013-09-01

    In this paper, a methodology has been developed for evaluating the spring back of AISI 304 DDQ stainless steel sheet based on a bending under tension test. The main difference of the methodology herein carried out is that tests are made under the multiaxial stresses state that take place in deep drawing processes. This affects to the level of stress value in the test and to the hardening state of the sheet. Springback evaluation has been done in two different areas. Bending area has been evaluated from elastic recovery ratio defined as the ratio between the bending radius after and before bending. Bending and unbending extreme has been studied from the measured curvature radius in this area and taking into account the geometric equivalence of the test with the drawing cups process. Results found allow to state that drawing ratio or deformation ratio have a negligible influence on the springback into the range of values experimented here. Bending radius has hardly influence as well while bending angle is the most significant variable. The results obtained are compared to those measured in deep-drawn cups, finding a great agreement. (Author)

  5. Pengujian Bending Biomaterial Hidroksiapatit Dari Tulang Sapi Sebagai Prosthesis Sendi Rahang (TMJ Pada Manusia

    Directory of Open Access Journals (Sweden)

    Hikmah Annur

    2015-03-01

    Full Text Available Dalam dunia kedokteran jika terapi fisik dan obat-obatan tidak dapat mengatasi kelainan atau kerusakan pada sendi rahang pasien maka jalan satu-satunya adalah dengan dilakukan perawatan bedah dengan mengganti sendi yang mengalami gangguan dengan prosthesis sebagai pengganti anggota gerak yang hilang. Dalam penelitian ini digunakan material hidroksiapatit dalam pengujian bending karena memiliki komposisi kimia yang sama dengan jaringan keras pada manusia seperti gigi dan tulang. Penelitian ini bertujuan mencari nilai tegangan bending maksimum yang bisa diterima oleh komposit hidroksiapatit. Penelitian ini dilakukan dengan mengambil variasi fraksi volume hidroksiapatit 40% HA, 50% HA, 60% HA, dan 70% HA. Setelah itu material di uji bending dengan menggunakan standar ASTM D790 dengan menggunakan metode pengujian three point bending. Dari penelitian ini didapatkan bahwa tegangan bending maksimum sebesar 31.2 Mpa pada spesimen dengan persentase hidroksiapatit 50% fraksi volume. Fraksi ini adalah fraksi yang paling optimal di antara variabel-variabel uji lain.

  6. AGS superconducting bending magnets

    International Nuclear Information System (INIS)

    Robins, K.E.; Sampson, W.B.; McInturff, A.D.; Dahl, P.F.; Abbatiello, F.; Aggus, J.; Bamberger, J.; Brown, D.; Damm, R.; Kassner, D.; Lasky, C.; Schlafke, A.

    1976-01-01

    Four large aperture superconducting bending magnets are being built for use in the experimental beams at the AGS. Each of these magnets is 2.5 m long and has a room temperature aperture of 20 cm. The magnets are similar in design to the dipoles being developed for ISABELLE and employ a low temperature iron core. Results are presented on the ''training'' behavior of the magnets and a comparison will be made with the smaller aperture versions of this design. The magnet field measurements include end fields and leakage fields as well as the harmonic components of the straight section of the magnet

  7. Using galaxy pairs to investigate the three-point correlation function in the squeezed limit

    Science.gov (United States)

    Yuan, Sihan; Eisenstein, Daniel J.; Garrison, Lehman H.

    2017-11-01

    We investigate the three-point correlation function (3PCF) in the squeezed limit by considering galaxy pairs as discrete objects and cross-correlating them with the galaxy field. We develop an efficient algorithm using fast Fourier transforms to compute such cross-correlations and their associated pair-galaxy bias bp, g and the squeezed 3PCF coefficient Qeff. We implement our method using N-body cosmological simulations and a fiducial halo occupation distribution (HOD) and present the results in both the real space and redshift space. In real space, we observe a peak in bp, g and Qeff at pair separation of ∼2 Mpc, attributed to the fact that galaxy pairs at 2 Mpc separation trace the most massive dark matter haloes. We also see strong anisotropy in the bp, g and Qeff signals that track the large-scale filamentary structure. In redshift space, both the 2 Mpc peak and the anisotropy are significantly smeared out along the line of sight due to finger-of-God effect. In both the real space and redshift space, the squeezed 3PCF shows a factor of 2 variation, contradicting the hierarchical ansatz, but offering rich information on the galaxy-halo connection. Thus, we explore the possibility of using the squeezed 3PCF to constrain the HOD. When we compare two simple HOD models that are closely matched in their projected two-point correlation function (2PCF), we do not yet see a strong variation in the 3PCF that is clearly disentangled from variations in the projected 2PCF. Nevertheless, we propose that more complicated HOD models, e.g. those incorporating assembly bias, can break degeneracies in the 2PCF and show a distinguishable squeezed 3PCF signal.

  8. Evaluation gamma radiation in composite sisal fiber- polyurethane derived of castor oil by bending test; Avaliacao da influencia da radiacao gama em compositos de fibra de sisal - poliuretano derivado de oleo de mamona atraves de ensaios de flexao

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Felipe H. de; Geraldo, Ricardo R.; Vasco, Marina C.; Azevedo, Elaine, E-mail: helunica@yahoo.com.br [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Claro Neto, Salvador [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Quimica

    2015-07-01

    Materials used for making furniture and accessories or positioning in X -ray examination rooms should not exhale volatile organic compounds and are resistant to ionizing radiation. One solution is the use of vegetable fiber and polyurethane composites of vegetable origin, since they are biodegradable, derived from renewable raw materials and have no volatile organic compounds. The main difficulty in developing this material is fiber adhesion with the polymer. The objective of this study is to evaluate the mechanical properties of composite sisal fiber composite, without further treatment, and polyurethane derived from castor oil, with a dose of 25 kGy gamma radiation, subjected to 3 points bending tests. (author)

  9. Mechanical bending strength of (Bi0.5Na0.5 TiO3-based lead-Free piezoelectric ceramics

    Directory of Open Access Journals (Sweden)

    Hiroaki Takahashi

    2017-09-01

    Full Text Available (Bi0.5Na0.5TiO3 [BNT] is expected as one of candidate lead-free materials because these ceramics show relatively good high-power piezoelectric properties. In this study, we tried to understand the bending strength and fracture behavior of the BNT-based ceramics. To measure the bending strength, a three-point bending test on the basis of JIS was conducted using 12.0 × 4.0 × 1.0 mm3 specimens. An average bending strength, σA, of pure BNT ceramics sintered at 1100 °C for 2, 12 and 24 h were 217, 195 and 187 MPa, respectively. It is cleared that the σA increased with decreasing the sintering time, (grain size and pore size. We also investigated the bending strength of Nb2O5 doped BNT ceramics [BNT-Nb x, x = 0.05 ∼ 1.5 wt%] and MnCO3 doped BNT ceramics [BNT-Mn x, x = 0.5 and 1.0 wt%]. Values of the σA of BNT-Nb 0.5 and BNT-Mn 0.5 were 222, and 188 MPa, respectively. It is clarified that soft dopants (Nb can improve the bending strength of BNT-based ceramics. Additionally, hot-pressed BNT [HP-BNT] were sintered at 1050 °C for 5 h, and the σA of HP-BNT was 245 MPa.

  10. Plastic deformation behavior and bonding strength of an EBW joint between 9Cr-ODS and JLF-1 estimated by symmetric four-point bend tests combined with FEM analysis

    International Nuclear Information System (INIS)

    Fu, Haiying; Nagasaka, Takuya; Muroga, Takeo; Guan, Wenhai; Nogami, Shuhei; Serizawa, Hisashi; Geng, Shaofei; Yabuuchi, Kiyohiro; Kimura, Akihiko

    2016-01-01

    The joint between 9Cr-ODS and JLF-1 made by electron beam welding (EBW) fractured at the JLF-1 base metal (BM) during uniaxial tensile tests. Thus, the bonding strength of the joint was not determined and was estimated as more than the ultimate tensile strength of the BM in this case. Symmetric four-point bend tests which concentrate the stress inside the inner span including the weld metal (WM) were carried out at room temperature (RT) and 550 °C to investigate how the bonding strength is more than the ultimate tensile strength of the BM. The normal stress at the center of the weld bead can be calculated with elastic theory up to only 0.25% in strain, though the joint showed more than 10% in strain due to plastic deformation. Thus, finite element method (FEM) was utilized to simulate the plastic deformation behavior of the joint during bend tests. According to the fitting of the FEM output, such as load and displacement of the upper jig contacting the specimens, to the experimental results, the bonding strength of the joint at RT and 550 °C were estimated as 854 MPa and 505 MPa, respectively.

  11. Plastic deformation behavior and bonding strength of an EBW joint between 9Cr-ODS and JLF-1 estimated by symmetric four-point bend tests combined with FEM analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Haiying [SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi-cho, Toki 509-5292 (Japan); Nagasaka, Takuya; Muroga, Takeo [SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi-cho, Toki 509-5292 (Japan); National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Guan, Wenhai; Nogami, Shuhei [Tohoku University, 6-6-01-2 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8578 (Japan); Serizawa, Hisashi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki 567-0047 (Japan); Geng, Shaofei [SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi-cho, Toki 509-5292 (Japan); Yabuuchi, Kiyohiro; Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Uji 611-0011 (Japan)

    2016-01-15

    The joint between 9Cr-ODS and JLF-1 made by electron beam welding (EBW) fractured at the JLF-1 base metal (BM) during uniaxial tensile tests. Thus, the bonding strength of the joint was not determined and was estimated as more than the ultimate tensile strength of the BM in this case. Symmetric four-point bend tests which concentrate the stress inside the inner span including the weld metal (WM) were carried out at room temperature (RT) and 550 °C to investigate how the bonding strength is more than the ultimate tensile strength of the BM. The normal stress at the center of the weld bead can be calculated with elastic theory up to only 0.25% in strain, though the joint showed more than 10% in strain due to plastic deformation. Thus, finite element method (FEM) was utilized to simulate the plastic deformation behavior of the joint during bend tests. According to the fitting of the FEM output, such as load and displacement of the upper jig contacting the specimens, to the experimental results, the bonding strength of the joint at RT and 550 °C were estimated as 854 MPa and 505 MPa, respectively.

  12. Finite Element Analysis for Bending Process of U-Bending Specimens

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Dong; Bahn, Chi Bum [Pusan National University, Busan (Korea, Republic of)

    2015-10-15

    ASTM G30 suggests that the applied strain can be calculated by dividing thickness by a bend radius. It should be noted, however, that the formula is reliable under an assumption that the ratio of thickness to bend radius is less than 0.2. Typically, to increase the applied stress/strain, the ratio of thickness to bend radius becomes larger than 0.2. This suggests that the estimated strain values by ASTM G30 are not reliable to predict the actual residual strain state of the highly deformed U-bend specimen. For this reason, finite element analysis (FEA) for the bending process of Ubend specimens was conducted by using a commercial finite element analysis software ABAQUS. ver.6.14- 2;2014. From the results of FEA, PWSCC initiation time and U-bend specimen size can be determined exactly. Since local stress and strain have a significant effect on the initiation of PWSCC, it was inappropriate to apply results of ASTM G30 to the PWSCC test directly. According to results of finite element analysis (FEA), elastic relaxation can cause inaccuracy in intended final residual stress. To modify this inaccuracy, additional process reducing the spring back is required. However this additional process also may cause uncertainty of stress/strain state. Therefore, the U-bending specimen size which is not creating uncertainty should be optimized and selected. With the bending radius of 8.3 mm, the thickness of 3 mm and the roller distance of 32.6 mm, calculated maximum stress and strain were 670 MPa and 0.21, respectively.

  13. Comparison of infrared and 3D digital image correlation techniques applied for mechanical testing of materials

    Science.gov (United States)

    Krstulović-Opara, Lovre; Surjak, Martin; Vesenjak, Matej; Tonković, Zdenko; Kodvanj, Janoš; Domazet, Željko

    2015-11-01

    To investigate the applicability of infrared thermography as a tool for acquiring dynamic yielding in metals, a comparison of infrared thermography with three dimensional digital image correlation has been made. Dynamical tension tests and three point bending tests of aluminum alloys have been performed to evaluate results obtained by IR thermography in order to detect capabilities and limits for these two methods. Both approaches detect pastification zone migrations during the yielding process. The results of the tension test and three point bending test proved the validity of the IR approach as a method for evaluating the dynamic yielding process when used on complex structures such as cellular porous materials. The stability of the yielding process in the three point bending test, as contrary to the fluctuation of the plastification front in the tension test, is of great importance for the validation of numerical constitutive models. The research proved strong performance, robustness and reliability of the IR approach when used to evaluate yielding during dynamic loading processes, while the 3D DIC method proved to be superior in the low velocity loading regimes. This research based on two basic tests, proved the conclusions and suggestions presented in our previous research on porous materials where middle wave infrared thermography was applied.

  14. Ligament rupture and unstable burst behaviors of axial flaws in steam generator U-bends

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, Chi Bum, E-mail: bahn@pusan.ac.kr [Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Oh, Young-Jin [KEPCO Engineering & Construction Co. Inc., Seongnam 463-870 (Korea, Republic of); Majumdar, Saurin [Argonne National Laboratory, Lemont, IL 60439 (United States)

    2015-11-15

    Highlights: • Ligament rupture and unstable burst pressure tests were conducted with U-bends. • In general, U-bends showed higher ligament rupture and burst pressures than straight tubes. • U-bend test data was bounded by 90% lower limit of the probabilistic models for straight tubes. • Prediction models for straight tubes could be conservatively applied to U-bends. - Abstract: Incidents of U-bend cracking in steam generator (SG) tubes have been reported, some of which have led to tube rupture. Experimental and analytical modeling efforts to determine the failure criteria of flawed SG U-bends are limited. To evaluate structural integrity of flawed U-bends, ligament rupture and unstable burst pressure tests were conducted on 57 and 152 mm bend radius U-bends with axial electrical discharge machining notches. In general, the ligament rupture and burst pressures of the U-bends were higher than those of straight tubes with similar notches. To quantitatively address the test data scatter issue, probabilistic models were introduced. All ligament rupture and burst pressures of U-bends were bounded by 90% lower limits of the probabilistic models for straight tubes. It was concluded that the prediction models for straight tubes could be applied to U-bends to conservatively evaluate the ligament rupture and burst pressures of U-bends with axial flaws.

  15. Ligament rupture and unstable burst behaviors of axial flaws in steam generator U-bends

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Oh, Young-Jin; Majumdar, Saurin

    2015-01-01

    Highlights: • Ligament rupture and unstable burst pressure tests were conducted with U-bends. • In general, U-bends showed higher ligament rupture and burst pressures than straight tubes. • U-bend test data was bounded by 90% lower limit of the probabilistic models for straight tubes. • Prediction models for straight tubes could be conservatively applied to U-bends. - Abstract: Incidents of U-bend cracking in steam generator (SG) tubes have been reported, some of which have led to tube rupture. Experimental and analytical modeling efforts to determine the failure criteria of flawed SG U-bends are limited. To evaluate structural integrity of flawed U-bends, ligament rupture and unstable burst pressure tests were conducted on 57 and 152 mm bend radius U-bends with axial electrical discharge machining notches. In general, the ligament rupture and burst pressures of the U-bends were higher than those of straight tubes with similar notches. To quantitatively address the test data scatter issue, probabilistic models were introduced. All ligament rupture and burst pressures of U-bends were bounded by 90% lower limits of the probabilistic models for straight tubes. It was concluded that the prediction models for straight tubes could be applied to U-bends to conservatively evaluate the ligament rupture and burst pressures of U-bends with axial flaws.

  16. Effect of Anisotropy on Shape Measurement Accuracy of Silicon Wafer Using Three-Point-Support Inverting Method

    Science.gov (United States)

    Ito, Yukihiro; Natsu, Wataru; Kunieda, Masanori

    This paper describes the influences of anisotropy found in the elastic modulus of monocrystalline silicon wafers on the measurement accuracy of the three-point-support inverting method which can measure the warp and thickness of thin large panels simultaneously. Deflection due to gravity depends on the crystal orientation relative to the positions of the three-point-supports. Thus the deviation of actual crystal orientation from the direction indicated by the notch fabricated on the wafer causes measurement errors. Numerical analysis of the deflection confirmed that the uncertainty of thickness measurement increases from 0.168µm to 0.524µm due to this measurement error. In addition, experimental results showed that the rotation of crystal orientation relative to the three-point-supports is effective for preventing wafer vibration excited by disturbance vibration because the resonance frequency of wafers can be changed. Thus, surface shape measurement accuracy was improved by preventing resonant vibration during measurement.

  17. Characterization of the bending strength of craniofacial sutures.

    Science.gov (United States)

    Maloul, Asmaa; Fialkov, Jeffrey; Whyne, Cari M

    2013-03-15

    The complex, thin and irregular bones of the human craniofacial skeleton (CFS) are connected together through bony articulations and connective tissues. These articulations are known as sutures and are commonly divided into two groups, facial and cranial sutures, based on their location in the CFS. CFS sutures can exhibit highly variable degrees of interdigitation and complexity and are believed to play a role in accommodating the mechanical demands of the skull. This study aimed to evaluate the mechanical behavior of CFS bone samples with and without sutures and to determine the effect of sutural interdigitations on mechanical strength. Sagittal, coronal, frontozygomatic and zygomaticotemporal sutures along with adjacent bone samples not containing sutures were excised from six fresh-frozen cadaveric heads. The interdigitation of the sutures was quantified through μCT based analysis. Three-point bending to failure was performed on a total of 29 samples. The bending strength of bone samples without sutures demonstrated a non-significant increase of 14% as compared to samples containing sutures (P=0.2). The bending strength of bones containing sutures was positively correlated to the sutural interdigitation index (R=0.701, P=0.002). The higher interdigitation indices found in human cranial vs. facial sutures may be present to resist bending loads as a functional requirement in protecting the brain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Aerosol deposition in bends with turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    McFarland, A.R.; Gong, H.; Wente, W.B. [Texas A& M Univ., College Station, TX (United States)] [and others

    1997-08-01

    The losses of aerosol particles in bends were determined numerically for a broad range of design and operational conditions. Experimental data were used to check the validity of the numerical model, where the latter employs a commercially available computational fluid dynamics code for characterizing the fluid flow field and Lagrangian particle tracking technique for characterizing aerosol losses. Physical experiments have been conducted to examine the effect of curvature ratio and distortion of the cross section of bends. If it curvature ratio ({delta} = R/a) is greater than about 4, it has little effect on deposition, which is in contrast with the recommendation given in ANSI N13.1-1969 for a minimum curvature ratio of 10. Also, experimental results show that if the tube cross section is flattened by 25% or less, the flattening also has little effect on deposition. Results of numerical tests have been used to develop a correlation of aerosol penetration through a bend as a function of Stokes number (Stk), curvature ratio ({delta}) and the bend angle ({theta}). 17 refs., 10 figs., 2 tabs.

  19. Efficiency of stormwater control measures for combined sewer retrofitting under varying rain conditions: Quantifying the Three Points Approach (3PA)

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Lerer, Sara Maria; Arnbjerg-Nielsen, Karsten

    2016-01-01

    We present a method to assess and communicate the efficiency of stormwater control measures for retrofitting existing urban areas. The tool extends the Three Points Approach to quantitatively distinguish three rainfall domains: (A) rainwater resource utilisation, (B) urban stormwater drainage pip...

  20. Efficiency of stormwater control measures for combined sewer retrofitting under varying rain conditions: Quantifying the Three Points Approach (3PA)

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Lerer, Sara Maria; Arnbjerg-Nielsen, Karsten

    2016-01-01

    We present a method to assess and communicate the efficiency of stormwater control measures for retrofitting existing urban areas. The tool extends the Three Points Approach to quantitatively distinguish three rainfall domains: (A) rainwater resource utilisation, (B) urban stormwater drainage pipe......, stormwater drainage and flood risks....

  1. Simulating Stresses Associated with the Bending of Wood Using a Finite Element Method

    Directory of Open Access Journals (Sweden)

    Milan Gaff

    2015-02-01

    Full Text Available This article examines the stress-strain curves of various thicknesses of soft and hard wood when bent during three-point loading. The finite element method was used to simulate the course of stresses that occurred during the bending of these materials. Reference curves obtained by bending real specimens offered a basis for simulation. The results showed that with increasing material thickness, deflection values decreased and the proportionality limit increased; eventually, the bendability coefficient value decreased and the loading force necessary for bending increased. Moreover, it was apparent when bending hard materials that higher loading forces were necessary for different materials of the same thickness. It is possible to determine the stress-strain curves without having to perform experiments (except for indispensable reference ones under real conditions.

  2. Effect of bend separation distance on the mass transfer in back-to-back pipe bends arranged in a 180° configuration

    Science.gov (United States)

    Chen, X.; Le, T.; Ewing, D.; Ching, C. Y.

    2016-12-01

    The mass transfer to turbulent flow through back-to-back pipe bends arranged in a 180° configuration with different lengths of pipe between the bends was measured using a dissolving gypsum test section in water. The measurements were performed for bends with a radius of curvature of 1.5 times the pipe diameter ( D) at a Reynolds numbers of 70,000 and Schmidt number of 1280. The maximum mass transfer in the bends decreased from approximately 1.8 times the mass transfer in the upstream pipe when there was no separation distance between the bends to 1.7 times when there was a 1 D or 5 D length of pipe between the bends. The location of the maximum mass transfer was on the inner sidewall downstream of the second bend when there was no separation distance between the bends. This location changed to the inner wall at the beginning of the second bend when there was a 1 D long pipe between the bends, and to the inner sidewall at the end of the first bend when there was a 5 D long pipe between the bends.

  3. Low Cycle Fatigue of Steel in Strain Controled Cyclic Bending

    Directory of Open Access Journals (Sweden)

    Kulesa Anna

    2016-03-01

    Full Text Available The paper presents a comparison of the fatigue life curves based on test of 15Mo3 steel under cyclic, pendulum bending and tension-compression. These studies were analyzed in terms of a large and small number of cycles where strain amplitude is dependent on the fatigue life. It has been shown that commonly used Manson-Coffin-Basquin model cannot be used for tests under cyclic bending due to the impossibility of separating elastic and plastic strains. For this purpose, some well-known models of Langer and Kandil and one new model of authors, where strain amplitude is dependent on the number of cycles, were proposed. Comparing the results of bending with tension-compression it was shown that for smaller strain amplitudes the fatigue life for both test methods were similar, for higher strain amplitudes fatigue life for bending tests was greater than for tension-compression.

  4. Effects of tanalith-e impregnation substance on bending strengths and modulus of elasticity in bending of some wood types

    Directory of Open Access Journals (Sweden)

    Hakan Keskin

    2016-04-01

    Full Text Available The aim of this study was to investigate the effects of impregnation with Tanalith-E on the bending strengths and modulus of elasticity in bending of some wood types. The test samples prepared from beech, oak, walnut, poplar, ash and pine wood materials - that are of common use in the forest products industry of TURKEY - according to TS 345, were treated with according to ASTM D 1413-76 substantially. Un-impregnated samples according to impregnated wood materials, the bending strengths in beech to 6.83%, 5.12% in ash, 5.93% in pine, the elasticity module values to 7.15% in oak and ash, at a rate of 6.58% in the higher were found. The highest values of bending strengths and modulus of elasticity in bending were obtained in beech and ash woods impregnated with Tanalith-E, whereas the lowest values were obtained in the poplar wood.

  5. Advanced device for testing the electrical behavior of conductive coatings on flexible polymer substrates under oscillatory bending: comparison of coatings of sputtered indium-tin oxide and poly3,4ethylenedioxythiophene

    International Nuclear Information System (INIS)

    Königer, Tobias; Münstedt, Helmut

    2008-01-01

    A special device was designed and set up to investigate the electrical behavior of conductive layers on flexible substrates under oscillatory bending. The resistance of conductive coatings can be measured during various oscillatory bending conditions. The bending radius, the amplitude and the frequency can be set to well-defined values. Furthermore, the setup allows us to apply tensile or compressive stress to the coating as well as both stresses alternately. Thus, various bending loads occurring in printable electronics applications can be simulated to investigate the electrical reliability of conductive coatings. In addition, it is possible to simulate different environmental conditions during oscillatory bending by running the device in an environmental chamber. Characterizations of the electrical behavior under oscillatory bending were carried out on commercially available polyethyleneterephthalate (PET) films sputtered with indium-tin oxide (ITO) and coated with poly3,4ethylenedioxythiophene (PEDOT). For coatings of sputtered ITO, a dramatic increase of the resistance is observed for bending radii smaller than 14 mm due to cracks spanning the whole sample width. The higher the amplitude, the more pronounced is the increase of the resistance. Coatings of PEDOT show high stability under oscillatory bending. There is no change in resistance observed for all bending radii and amplitudes applied over a large number of cycles

  6. Prestress Loss and Bending Capacity of Pre-cracked 40 Year-Old PC Beams Exposed to Marine Environment

    Directory of Open Access Journals (Sweden)

    Dasar Amry

    2016-01-01

    Full Text Available Six prestressed concrete beams (PC beam were used for evaluation, consist of four post-tension beams (PC-O and two pre-tension beams (PC-R. In order to investigate the effect of crack on prestress loss and bending capacity after long-term exposed, prestressed concrete beams were pre-crack and then exposed to marine environment. Experimental work was carried out to evaluate PC beams performance after long-term exposed. In addition, visual observations and load bearing capacity test was carried out. Furthermore, evaluation of prestress loss conducted using three-point loading bending test and the remaining tendon forces in the beam were determined using Crack Re-opening Method. The experimental results revealed that prestress loss was increased due to corrosion of strand/wire which affected by the pre-crack on the prestressed beams. Approximately a prestress loss around 26% and 30% was recorded for post-tension and pre-tension beams respectively.

  7. OPE-RχT matching at order αs: hard gluonic corrections to three-point Green functions

    International Nuclear Information System (INIS)

    Jamin, Matthias; Mateu, Vicent

    2008-01-01

    In this work we push the matching between the QCD operator product expansion (OPE) and resonance chiral theory (RχT) to order α s . To this end we compute two- and three-point QCD Green functions (GFs) in both theories and compare the results. GFs which are order parameters of chiral symmetry breaking make this matching more transparent and thus we concentrate on those. On the OPE side one needs to calculate the hard-gluon virtual corrections to the quark condensate, and in particular for three-point GFs this computation was hitherto missing. We also discuss the need for including the infinite tower of hadronic states in the hadronic representation of the GF when non-analytic terms such as logarithms are present in the OPE Wilson coefficients

  8. The next 16 higher spin currents and three-point functions in the large N = 4 holography

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Changhyun; Kim, Dong-gyu; Kim, Man Hea [Kyungpook National University, Department of Physics, Taegu (Korea, Republic of)

    2017-08-15

    By using the known operator product expansions (OPEs) between the lowest 16 higher spin currents of spins (1, (3)/(2), (3)/(2), (3)/(2), (3)/(2), 2,2,2,2,2,2, (5)/(2), (5)/(2), (5)/(2), (5)/(2), 3) in an extension of the large N = 4 linear superconformal algebra, one determines the OPEs between the lowest 16 higher spin currents in an extension of the large N = 4 nonlinear superconformal algebra for generic N and k. The Wolf space coset contains the group G = SU(N + 2) and the affine Kac-Moody spin 1 current has the level k. The next 16 higher spin currents of spins (2, (5)/(2), (5)/(2), (5)/(2), (5)/(2), 3,3,3,3,3,3, (7)/(2), (7)/(2), (7)/(2), (7)/(2), 4) arise in the above OPEs. The most general lowest higher spin 2 current in this multiplet can be determined in terms of affine Kac-Moody spin (1)/(2), 1 currents. By careful analysis of the zero mode (higher spin) eigenvalue equations, the three-point functions of bosonic higher spin 2, 3, 4 currents with two scalars are obtained for finite N and k. Furthermore, we also analyze the three-point functions of bosonic higher spin 2, 3, 4 currents in the extension of the large N = 4 linear superconformal algebra. It turns out that the three-point functions of higher spin 2, 3 currents in the two cases are equal to each other at finite N and k. Under the large (N, k) 't Hooft limit, the two descriptions for the three-point functions of higher spin 4 current coincide with each other. The higher spin extension of SO(4) Knizhnik Bershadsky algebra is described. (orig.)

  9. R-current three-point functions in 4d $\\mathcal{N}=1$ superconformal theories arXiv

    CERN Document Server

    Manenti, Andrea; Vichi, Alessandro

    In 4d $\\mathcal{N}=1$ superconformal field theories (SCFTs) the R-symmetry current, the stress-energy tensor, and the supersymmetry currents are grouped into a single object, the Ferrara--Zumino multiplet. In this work we study the most general form of three-point functions involving two Ferrara--Zumino multiplets and a third generic multiplet. We solve the constraints imposed by conservation in superspace and show that non-trivial solutions can only be found if the third multiplet is R-neutral and transforms in suitable Lorentz representations. In the process we give a prescription for counting independent tensor structures in superconformal three-point functions. Finally, we set the Grassmann coordinates of the Ferrara--Zumino multiplets to zero and extract all three-point functions involving two R-currents and a third conformal primary. Our results pave the way for bootstrapping the correlation function of four R-currents in 4d $\\mathcal{N}=1$ SCFTs.

  10. Effects of control parameters of three-point initiation on the formation of an explosively formed projectile with fins

    Science.gov (United States)

    Li, R.; Li, W. B.; Wang, X. M.; Li, W. B.

    2018-03-01

    The effects of the initiation diameter and synchronicity error on the formation of fins and stable-flight velocity of an explosively formed projectile (EFP) with three-point initiation are investigated. The pressure and area of the Mach wave acting on the metal liner at different initiation diameters are calculated employing the Whitham method. LS-DYNA software is used to investigate the asymmetric collision of detonation waves resulting from three-point initiation synchronicity error, the distortion characteristics of the liner resulting from the composite detonation waves, and the performance parameters of the EFP with fins. Results indicate that deviations of the Y-shaped high-pressure zone and central ultrahigh-pressure zone from the liner center can be attributed to the error of three-point initiation, which leads to the irregular formation of EFP fins. It is noted that the area of the Mach wave decreases, but the pressure of the Mach wave and the final speed and length-to-diameter ( L/ D) ratio of the EFP increase, benefiting the formation of the EFP fins, as the initiation diameter increases.

  11. Parallel monostrand stay cable bending fatigue

    DEFF Research Database (Denmark)

    Winkler, Jan Pawel

    This dissertation investigates the bending fatigue response of high-strength steel monostrands and multistrand stay cables to cyclic transverse deformations. Increasing bridge stock numbers and a push for longer cable-supported span lengths have led to an increased number of reported incidents...... of damage and replacement of bridge stay cables due to wind and traffic-induced fatigue. The understanding of fatigue mechanisms in most steel structures is well established. However, in the case of cables composed of steel strands, many important aspects related with bending fatigue remain to be clarified...... associated with variable loading, and different testing procedures. As most of the contemporary stay cables are comprised of a number of individual highstrength steel monostrands, the research study started with an extensive experimental work on the fatigue response of a single monostrand to cyclic flexural...

  12. BENDING BEHAVIOUR OF MAGNETIC COTTON YARNS

    Directory of Open Access Journals (Sweden)

    LUPU Iuliana G.

    2017-05-01

    Full Text Available Magnetic yarns are composite yarns, i.e. they combine elements of various natures and properties, with proven potential for electromagnetic interference (EMI shielding. In this paper, different mixtures of hard and soft magnetic powder were chosen to cover materials made of cotton yarn. The physical properties and bending behavior of the produced composite yarns were investigated in order to evaluate the yarns for further textile processing.The cotton yarn used as base material was covered with hard (barium hexaferrite BaFe12O19 and soft (Black Toner magnetic particles. An in-house developed laboratory equipment has been used to cover the twist cotton yarns with seven mixtures having different amounts of magnetic powder (30% – 50%. The bending behavior of the coated yarns was evaluated based on the average width of cracks which appeared on the yarn surface after repeated flexural tests. The obtained results revealed that usage of a polyurethane adhesive in the coating solution prevents crack formation on the surface of hard magnetic yarns after flexural tests. At the same time, the higher the mass percentage of hard magnetic powder in the mixture, the higher was the cracks’ width. The soft magnetic yarns are more flexible and a smaller crack width is observed on their surface. Both the coating solution composition and the powder diameter are expected to influence the bending behavior of coated yarns.

  13. Rupture prediction for induction bends under opening mode bending with emphasis on strain localization

    International Nuclear Information System (INIS)

    Mitsuya, Masaki; Sakanoue, Takashi

    2015-01-01

    This study focuses on the opening mode of induction bends; this mode represents the deformation outside a bend. Bending experiments on induction bends are shown and the manner of failure of these bends was investigated. Ruptures occur at the intrados of the bends, which undergo tensile stress, and accompany the local reduction of wall thickness, i.e., necking that indicates strain localization. By implementing finite element analysis (FEA), it was shown that the rupture is dominated not by the fracture criterion of material but by the initiation of strain localization that is a deformation characteristic of the material. These ruptures are due to the rapid increase of local strain after the initiation of strain localization and suddenly reach the fracture criterion. For the evaluation of the deformability of the bends, a method based on FEA that can predict the displacement at the rupture is proposed. We show that the yield surface shape and the true stress–strain relationship after uniform elongation have to be defined on the basis of the actual properties of the bend material. The von Mises yield criterion, which is commonly used in cases of elastic–plastic FEA, could not predict the rupture and overestimated the deformability. In contrast, a yield surface obtained by performing tensile tests on a biaxial specimen could predict the rupture. The prediction of the rupture was accomplished by an inverse calibration method that determined the true stress-strain relationship after uniform elongation. As an alternative to the inverse calibration, a simple extrapolation method of the true stress-strain relationship after uniform elongation which can predict the rupture is proposed. - Highlights: • A method based on FEA that can predict the displacement at the rupture is proposed. • The yield surface shape and the true stress–strain have to be defined precisely. • The von Mises yield criterion overestimated the deformability. • The ruptures are due to the

  14. Experimental verification of a weak zone model for timber in bending

    DEFF Research Database (Denmark)

    Källsner, B.; Ditlevsen, Ove Dalager; Salmela, K.

    1997-01-01

    In order to verify a stochastic model for the variation of bending strength within and between structural timber members, tests with long members subjected to constant bending moment have been performed. The span with constant moment contained between five and nine weak zones, i.e. zones...... with a cluster of knots. In a previous investigation test specimens, each containing one weak zone, have been tested in bending separately. Based on these tests a hierarchical model with two levels was formulated. The test results show that the bending strength of the long timber members on the average is 5...

  15. A New Kind of Bend Sensor

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new kind of bend sensor is introduced.It can be used to detect the bend angle of an object or inclination between two objects.It has characteristics of small size, lightweight, high reliability, fine flexibility and plasticity.When this bend sensor is used with a proper converting circuit, it can implement dynamic measuring the bend angle of an object conveniently.The application of the bend sensor in dataglove is also described.

  16. FY 2013 Summary Report: Post-Irradiation Examination of Zircaloy-4 Samples in Target Capsules and Initiation of Bending Fatigue Testing for Used Nuclear Fuel Vibration Integrity Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Richard H [ORNL; Yan, Yong [ORNL; Wang, Jy-An John [ORNL; Ott, Larry J [ORNL; Howard, Rob L [ORNL

    2013-10-01

    This report documents ongoing work performed at Oak Ridge National Laboratory (ORNL) for the Department of Energy, Office of Fuel Cycle Technology Used Fuel Disposition Campaign (UFDC), and satisfies the deliverable for milestone M2FT-13OR0805041, “Data Report on Hydrogen Doping and Irradiation in HFIR.” This work is conducted under WBS 1.02.08.05, Work Package FT-13OR080504 ST “Storage and Transportation-Experiments – ORNL.” The objectives of work packages that make up the S&T Experiments Control Account are to conduct the separate effects tests (SET) and small-scale tests that have been identified in the Used Nuclear Fuel Storage and Transportation Data Gap Prioritization (FCRD-USED-2012-000109). In FY 2013, the R&D focused on cladding and container issues and small-scale tests as identified in Sections A-2.9 and A-2.12 of the prioritization report.

  17. The creep bending of short radius pipe bends

    International Nuclear Information System (INIS)

    Spence, John

    1975-01-01

    In existing and proposed liquid metal fast breeder reactor design the pipework has considerable importance. Parts of the LMFBR include thin walled short radius bends which are expected to operate in the creep regime. In linear elasticity it is known that the assumption of long radius bends is not too severe as far as the flexibility characteristics are concerned although some modifications are necessary for accurate determination of the stresses. No data exists for nonlinear creep. Current work is aimed at elucidating the effect of the various assumptions common to linear elastic theory in so far as they affect the creep characteristics of bends on systems. Herein an energy based analysis using a simple n power constitutive law for stationary creep is employed to derive basic design data for flexibilities and stresses which will be necessary before complete systems can be assessed for creep. The analysis shows on comparison with the long radius work that the assumption of R>r is not much more restrictive in creep than for linear elasticity. Flexibilities for short radius bends appear to be well approximated by the long radius values. Thus the attractive reference stress information already derived may be used directly to find deformations without a complete knowledge of the constitutive relationship. However, stresses are somewhat different. Fortunately the maximum deviation occurs at relatively low levels of stress, the peak stresses being in fair agreement. When n=1 the present results reduce essentially to those obtained from existing linear elastic theory

  18. Turbulent flow computation in a circular U-Bend

    Directory of Open Access Journals (Sweden)

    Miloud Abdelkrim

    2014-03-01

    Full Text Available Turbulent flows through a circular 180° curved bend with a curvature ratio of 3.375, defined as the the bend mean radius to pipe diameter is investigated numerically for a Reynolds number of 4.45×104. The computation is performed for a U-Bend with full long pipes at the entrance and at the exit. The commercial ANSYS FLUENT is used to solve the steady Reynolds–Averaged Navier–Stokes (RANS equations. The performances of standard k-ε and the second moment closure RSM models are evaluated by comparing their numerical results against experimental data and testing their capabilities to capture the formation and extend this turbulence driven vortex. It is found that the secondary flows occur in the cross-stream half-plane of such configurations and primarily induced by high anisotropy of the cross-stream turbulent normal stresses near the outer bend.

  19. Turbulent flow computation in a circular U-Bend

    Science.gov (United States)

    Miloud, Abdelkrim; Aounallah, Mohammed; Belkadi, Mustapha; Adjlout, Lahouari; Imine, Omar; Imine, Bachir

    2014-03-01

    Turbulent flows through a circular 180° curved bend with a curvature ratio of 3.375, defined as the the bend mean radius to pipe diameter is investigated numerically for a Reynolds number of 4.45×104. The computation is performed for a U-Bend with full long pipes at the entrance and at the exit. The commercial ANSYS FLUENT is used to solve the steady Reynolds-Averaged Navier-Stokes (RANS) equations. The performances of standard k-ɛ and the second moment closure RSM models are evaluated by comparing their numerical results against experimental data and testing their capabilities to capture the formation and extend this turbulence driven vortex. It is found that the secondary flows occur in the cross-stream half-plane of such configurations and primarily induced by high anisotropy of the cross-stream turbulent normal stresses near the outer bend.

  20. LHC bending magnet coil

    CERN Multimedia

    A short test version of coil of wire used for the LHC dipole magnets. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair.

  1. Bending spring rate investigation of nanopipette for cell injection

    Science.gov (United States)

    Shen, Yajing; Zhang, Zhenhai; Fukuda, Toshio

    2015-04-01

    Bending of nanopipette tips during cell penetration is a major cause of cell injection failure. However, the flexural rigidity of nanopipettes is little known due to their irregular structure. In this paper, we report a quantitative method to estimate the flexural rigidity of a nanopipette by investigating its bending spring rate. First nanopipettes with a tip size of 300 nm are fabricated from various glass tubes by laser pulling followed by focused ion beam (FIB) milling. Then the bending spring rate of the nanopipettes is investigated inside a scanning electron microscope (SEM). Finally, a yeast cell penetration test is performed on these nanopipettes, which have different bending spring rates. The results show that nanopipettes with a higher bending spring rate have better cell penetration capability, which confirms that the bending spring rate may well reflect the flexural rigidity of a nanopipette. This method provides a quantitative parameter for characterizing the mechanical property of a nanopipette that can be potentially taken as a standard specification in the future. This general method can also be used to estimate other one-dimensional structures for cell injection, which will greatly benefit basic cell biology research and clinical applications.

  2. Bending spring rate investigation of nanopipette for cell injection

    International Nuclear Information System (INIS)

    Shen, Yajing; Zhang, Zhenhai; Fukuda, Toshio

    2015-01-01

    Bending of nanopipette tips during cell penetration is a major cause of cell injection failure. However, the flexural rigidity of nanopipettes is little known due to their irregular structure. In this paper, we report a quantitative method to estimate the flexural rigidity of a nanopipette by investigating its bending spring rate. First nanopipettes with a tip size of 300 nm are fabricated from various glass tubes by laser pulling followed by focused ion beam (FIB) milling. Then the bending spring rate of the nanopipettes is investigated inside a scanning electron microscope (SEM). Finally, a yeast cell penetration test is performed on these nanopipettes, which have different bending spring rates. The results show that nanopipettes with a higher bending spring rate have better cell penetration capability, which confirms that the bending spring rate may well reflect the flexural rigidity of a nanopipette. This method provides a quantitative parameter for characterizing the mechanical property of a nanopipette that can be potentially taken as a standard specification in the future. This general method can also be used to estimate other one-dimensional structures for cell injection, which will greatly benefit basic cell biology research and clinical applications. (paper)

  3. THREE-POINT BACKWARD FINITE DIFFERENCE METHOD FOR SOLVING A SYSTEM OF MIXED HYPERBOLIC-PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS. (R825549C019)

    Science.gov (United States)

    A three-point backward finite-difference method has been derived for a system of mixed hyperbolic¯¯parabolic (convection¯¯diffusion) partial differential equations (mixed PDEs). The method resorts to the three-point backward differenci...

  4. Evaluation of bending rigidity behaviour of ultrasonic seaming on woven fabrics

    Science.gov (United States)

    Şevkan Macit, Ayşe; Tiber, Bahar

    2017-10-01

    In recent years ultrasonic seaming that is shown as an alternative method to conventional seaming has been investigated by many researchers. In our study, bending behaviour of this alternative method is examined by changing various parameters such as fabric type, seam type, roller type and seaming velocity. For this purpose fifteen types of sewn fabrics were tested according to bending rigidity test standard before and after washing processes and results were evaluated through SPSS statistical analyze programme. Consequently, bending length values of the ultrasonically sewn fabrics are found to be higher than the bending length values of conventionally sewn fabrics and the effects of seam type on bending length are seen statistically significant. Also it is observed that bending length values are in relationship with the rest of the parameters excluding roller type.

  5. Rotating bending fatigue strength evaluation of ceramic materials

    International Nuclear Information System (INIS)

    Govila, R.K.; Swank, L.R.

    1995-01-01

    Cyclic fatigue under rotary bending tests were conducted on partially stabilized zirconia (PSZ) from NGK and Nilsen, and silicon nitride from NGK and Norton. Fractography was performed on the failed specimens to determine the fracture structure and morphology. The results showed that the cyclic fatigue fracture was the same as the fracture structure previously observed in bending tests. The cyclic fatigue data indicated that structural ceramic could function in fatigue stress levels at a higher percentage of their average fast fracture strength than the fifty percent of ultimate strength used for wrought steels

  6. Advantages of customer/supplier involvement in the upgrade of River Bend`s IST program

    Energy Technology Data Exchange (ETDEWEB)

    Womack, R.L.; Addison, J.A.

    1996-12-01

    At River Bend Station, IST testing had problems. Operations could not perform the test with the required repeatability; engineering could not reliably trend test data to detect degradation; licensing was heavily burdened with regulatory concerns; and maintenance could not do preventative maintenance because of poor prediction of system health status. Using Energy`s Total Quality principles, it was determined that the causes were: lack of ownership, inadequate test equipment usage, lack of adequate procedures, and lack of program maintenance. After identifying the customers and suppliers of the IST program data, Energy management put together an upgrade team to address these concerns. These customers and suppliers made up the IST upgrade team. The team`s mission was to supply River Bend with a reliable, functional, industry correct and user friendly IST program. The IST program in place went through a verification process that identified and corrected over 400 individual program discrepancies. Over 200 components were identified for improved testing methods. An IST basis document was developed. The operations department was trained on ASME Section XI testing. All IST tests have been simplified and shortened, due to heavy involvement by operations in the procedure development process. This significantly reduced testing time, resulting in lower cost, less dose and greater system availability.

  7. Out-of-Plane Bending Properties of Out-of-Autoclave Thermosetting Prepregs during Forming Processes

    OpenAIRE

    Hassan A. Alshahrani; Mehdi H. Hojjati

    2016-01-01

    In order to predict and model wrinkling which is caused by out of plane deformation due to compressive loading in the plane of the material during composite prepregs forming, it is necessary to quantitatively understand the relative magnitude of the bending stiffness. This study aims to examine the bending properties of out-of-autoclave (OOA) thermosetting prepreg under vertical cantilever test condition. A direct method for characterizing the bending behavior of composite prepregs was develo...

  8. In-situ measurement of bending strength of TiC whiskers in the scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Seino, Yutaka; Shin, Shoichiro; Nagai, Satoshi [National Research Lab. of Metrology, Tsukuba, Ibaraki (Japan)

    1995-10-01

    The three-point bending strength of TiC whiskers was measured in a scanning electron microscope. The whisker samples have {approximately} 50 {micro}m length and 2 {approximately} 4 {micro}m diameter and are commercially available as reinforcements. For composite materials. The distribution of the bending strengths of the whiskers showed a double peak around 5.2GPa and 30.4GPa, respectively. The difference in these values is attributed to differences in the cleavage strength of two crystal planes depending on whisker growth direction.

  9. Positive solutions of three-point boundary-value problems for p-Laplacian singular differential equations

    Directory of Open Access Journals (Sweden)

    George N. Galanis

    2005-10-01

    Full Text Available In this paper we prove the existence of positive solutions for the three-point singular boundary-value problem$$ -[phi _{p}(u']'=q(tf(t,u(t,quad 0

  10. Three-point method for measuring the geometric error components of linear and rotary axes based on sequential multilateration

    International Nuclear Information System (INIS)

    Zhang, Zhenjiu; Hu, Hong

    2013-01-01

    The linear and rotary axes are fundamental parts of multi-axis machine tools. The geometric error components of the axes must be measured for motion error compensation to improve the accuracy of the machine tools. In this paper, a simple method named the three point method is proposed to measure the geometric error of the linear and rotary axes of the machine tools using a laser tracker. A sequential multilateration method, where uncertainty is verified through simulation, is applied to measure the 3D coordinates. Three noncollinear points fixed on the stage of each axis are selected. The coordinates of these points are simultaneously measured using a laser tracker to obtain their volumetric errors by comparing these coordinates with ideal values. Numerous equations can be established using the geometric error models of each axis. The geometric error components can be obtained by solving these equations. The validity of the proposed method is verified through a series of experiments. The results indicate that the proposed method can measure the geometric error of the axes to compensate for the errors in multi-axis machine tools.

  11. Mechanical test of the model coil wound with large conductor

    International Nuclear Information System (INIS)

    Hiue, Hisaaki; Sugimoto, Makoto; Nakajima, Hideo; Yasukawa, Yukio; Yoshida, Kiyoshi; Hasegawa, Mitsuru; Ito, Ikuo; Konno, Masayuki.

    1992-09-01

    The high rigidity and strength of the winding pack are required to realize the large superconducting magnet for the fusion reactor. This paper describes mechanical tests concerning the rigidity of the winding pack. Samples were prepared to evaluate the adhesive strength between conductors and insulators. Epoxy and Bismaleimide-Triazine resin (BT resin) were used as the conductor insulator. The stainless steel (SS) 304 bars, whose surface was treated mechanically and chemically, was applied to the modeled conductor. The model coil was would with the model conductors covered with the insulator by grand insulator. A winding model combining 3 x 3 conductors was produced for measuring shearing rigidity. The sample was loaded with pure shearing force at the LN 2 temperature. The bar winding sample, by 8 x 6 conductors, was measured the bending rigidity. These three point bending tests were carried out at room temperature. The pancake winding sample was loaded with compressive forces to measure compressive rigidity of winding. (author)

  12. Peripheral Protein Unfolding Drives Membrane Bending.

    Science.gov (United States)

    Siaw, Hew Ming Helen; Raghunath, Gokul; Dyer, R Brian

    2018-06-20

    Dynamic modulation of lipid membrane curvature can be achieved by a number of peripheral protein binding mechanisms such as hy-drophobic insertion of amphipathic helices and membrane scaffolding. Recently, an alternative mechanism was proposed in which crowding of peripherally bound proteins induces membrane curvature through steric pressure generated by lateral collisions. This effect was enhanced using intrinsically disordered proteins that possess high hydrodynamic radii, prompting us to explore whether membrane bending can be triggered by the folding-unfolding transition of surface-bound proteins. We utilized histidine-tagged human serum albumin bound to Ni-NTA-DGS containing liposomes as our model system to test this hypothesis. We found that reduction of the disulfide bonds in the protein resulted in unfolding of HSA, which subsequently led to membrane tubule formation. The frequency of tubule formation was found to be significantly higher when the proteins were unfolded while being localized to a phase-separated domain as opposed to randomly distributed in fluid phase liposomes, indicating that the steric pressure generated from protein unfolding is directly responsible for membrane deformation. Our results are critical for the design of peripheral membrane protein-immobilization strategies and open new avenues for exploring mechanisms of membrane bending driven by conformational changes of peripheral membrane proteins.

  13. Coupling creep and damage in concrete under high sustained loading: Experimental investigation on bending beams and application of Acoustic Emission technique

    Directory of Open Access Journals (Sweden)

    Grondin F.

    2010-06-01

    Full Text Available Creep and damage in concrete govern the long-term deformability of concrete. Thus, it is important to understand the interaction between creep and damage in order to design reliable civil engineering structures subjected to high level loading during a long time. Many investigations have been performed on the influence of concrete mixture, the effect of the bond between the matrix and the aggregates, temperature, aging and the size effect on the cracking mechanism and fracture parameters of concrete. But there is a lack of results on the influence of the creep loading history. In the present paper, an experimental investigation on the fracture properties of concrete beams submitted to three point bending tests with high levels of sustained load that deals with creep is reported. The results aim first to investigate the ranges of variation of the time response due to creep damage coupled effects under constant load and secondly to evaluate the residual capacity after creep. For this purpose a series of tests were carried out on geometrically similar specimens of size 100x200x800mm with notch to depth ratio of 0.2 in all the test specimens. The exchange of moisture was prevented and beams were subjected to a constant load of 70% and 90% of the maximum capacity. Three point bending test were realized on specimen at the age of 28 days to determine the characteristics of concrete and the maximum load so we could load the specimens in creep. Threepoint bend creep tests were performed on frames placed in a climate controlled chamber [1]. Then after four months of loading, the beams subjected to creep were removed from the creep frames and then immediately subjected to three-point bending test loading up to failure with a constant loading rate as per RILEM-FMC 50 recommendations. The residual capacity on the notched beams and the evolution of the characteristics of concrete due to the basic creep was considered. The results show that sustained loading

  14. Coupling creep and damage in concrete under high sustained loading: Experimental investigation on bending beams and application of Acoustic Emission technique

    Science.gov (United States)

    Saliba, J.; Loukili, A.; Grondin, F.

    2010-06-01

    Creep and damage in concrete govern the long-term deformability of concrete. Thus, it is important to understand the interaction between creep and damage in order to design reliable civil engineering structures subjected to high level loading during a long time. Many investigations have been performed on the influence of concrete mixture, the effect of the bond between the matrix and the aggregates, temperature, aging and the size effect on the cracking mechanism and fracture parameters of concrete. But there is a lack of results on the influence of the creep loading history. In the present paper, an experimental investigation on the fracture properties of concrete beams submitted to three point bending tests with high levels of sustained load that deals with creep is reported. The results aim first to investigate the ranges of variation of the time response due to creep damage coupled effects under constant load and secondly to evaluate the residual capacity after creep. For this purpose a series of tests were carried out on geometrically similar specimens of size 100x200x800mm with notch to depth ratio of 0.2 in all the test specimens. The exchange of moisture was prevented and beams were subjected to a constant load of 70% and 90% of the maximum capacity. Three point bending test were realized on specimen at the age of 28 days to determine the characteristics of concrete and the maximum load so we could load the specimens in creep. Threepoint bend creep tests were performed on frames placed in a climate controlled chamber [1]. Then after four months of loading, the beams subjected to creep were removed from the creep frames and then immediately subjected to three-point bending test loading up to failure with a constant loading rate as per RILEM-FMC 50 recommendations. The residual capacity on the notched beams and the evolution of the characteristics of concrete due to the basic creep was considered. The results show that sustained loading had a strengthening

  15. Analysis of critical current-bend strain relationships in composite Nb3Sn superconducting wires

    International Nuclear Information System (INIS)

    Luhman, T.; Welch, D.O.

    1979-01-01

    In order to be used successfully in fusion magnets, Nb 3 Sn conductors must meet several mechanical strain criteria, including tolerance to bending strains encountered during magnet construction. Since Nb 3 Sn is extremely brittle much information has been generated regarding the sensitivity of these conductros to tensile strain. A recent comparison of critical current-bend and tensile test data indicates that the strain required to initiate compound cracking during bending is significantly less than the strain required to do so by tensile of critical current on bending strains in monofilamentary Nb 3 Sn wires is calculated and compared with experimental data. The calculation takes into account a shift in the composite's neutral axis which occurs during bending. The analysis correctly predicts the observed depdndence of the critical current on bending strains

  16. Numerical method for the prediction of bending properties of glass-epoxy composites

    Directory of Open Access Journals (Sweden)

    Stamenović Marina R.

    2007-01-01

    Full Text Available Mechanical properties of composite materials are conditioned by their structure and depend on the characteristics of structural components. In this paper is presented a numerical model by which the bending properties can be predicted on the basis of known mechanical properties of tension and pressure. Determining the relationship between these properties is justified having in mind the mechanics of fracture during bending, where the fracture takes place on the outer layer which is subjected to bending while the break ends on the layer subjected to pressure. The paper gives the values of tension, pressure and bending properties obtained by the corresponding mechanical test. A comparison of the numerical results of bending properties obtained on the basis of the model with the experimental ones, shows their satisfactory agreement. Therefore, this model can be used for some future research to predict bending properties without experiments.

  17. Bending behaviors of fully covered biodegradable polydioxanone biliary stent for human body by finite element method.

    Science.gov (United States)

    Liu, Yanhui; Zhu, Guoqing; Yang, Huazhe; Wang, Conger; Zhang, Peihua; Han, Guangting

    2018-01-01

    This paper presents a study of the bending flexibility of fully covered biodegradable polydioxanone biliary stents (FCBPBs) developed for human body. To investigate the relationship between the bending load and structure parameter (monofilament diameter and braid-pin number), biodegradable polydioxanone biliary stents derived from braiding method were covered with membrane prepared via electrospinning method, and nine FCBPBSs were then obtained for bending test to evaluate the bending flexibility. In addition, by the finite element method, nine numerical models based on actual biliary stent were established and the bending load was calculated through the finite element method. Results demonstrate that the simulation and experimental results are in good agreement with each other, indicating that the simulation results can be provided a useful reference to the investigation of biliary stents. Furthermore, the stress distribution on FCBPBSs was studied, and the plastic dissipation analysis and plastic strain of FCBPBSs were obtained via the bending simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Numerical and experimental study on multi-pass laser bending of AH36 steel strips

    Science.gov (United States)

    Fetene, Besufekad N.; Kumar, Vikash; Dixit, Uday S.; Echempati, Raghu

    2018-02-01

    Laser bending is a process of bending of plates, small sized sheets, strips and tubes, in which a moving or stationary laser beam heats the workpiece to achieve the desired curvature due to thermal stresses. Researchers studied the effects of different process parameters related to the laser source, material and workpiece geometry on laser bending of metal sheets. The studies are focused on large sized sheets. The workpiece geometry parameters like sheet thickness, length and width also affect the bend angle considerably. In this work, the effects of width and thickness on multi-pass laser bending of AH36 steel strips were studied experimentally and numerically. Finite element model using ABAQUS® was developed to investigate the size effect on the prediction of the bend angle. Microhardness and flexure tests showed an increase in the flexural strength as well as microhardness in the scanned zone. The microstructures of the bent strips also supported the physical observations.

  19. Bending and stretching of plates

    CERN Document Server

    Mansfield, E H; Hemp, W S

    1964-01-01

    The Bending and Stretching of Plates deals with elastic plate theory, particularly on small- and large-deflexion theory. Small-deflexion theory concerns derivation of basic equations, rectangular plates, plates of various shapes, plates whose boundaries are amenable to conformal transformation, plates with variable rigidity, and approximate methods. Large-deflexion theory includes general equations and some exact solutions, approximate methods in large-deflexion theory, asymptotic large-deflexion theories for very thin plates. Asymptotic theories covers membrane theory, tension field theory, a

  20. The travail of River Bend

    International Nuclear Information System (INIS)

    Studness, C.M.

    1990-01-01

    This article looks at the attempts by Gulf States Utilities to get the River Bend Nuclear Plant into its rate base. The review begins with the initial filing of rate cases in Texas and Louisiana in 1986 and continues through many court cases and appeals all the way to the Texas Supreme Court. The preferred and preference shareholders now nominally control the company through election of 10 of 15 members of the company's board of directors. This case is used as an argument for deregulation in favor of competition

  1. Comprehensive Interpretation of a Three-Point Gauss Quadrature with Variable Sampling Points and Its Application to Integration for Discrete Data

    Directory of Open Access Journals (Sweden)

    Young-Doo Kwon

    2013-01-01

    Full Text Available This study examined the characteristics of a variable three-point Gauss quadrature using a variable set of weighting factors and corresponding optimal sampling points. The major findings were as follows. The one-point, two-point, and three-point Gauss quadratures that adopt the Legendre sampling points and the well-known Simpson’s 1/3 rule were found to be special cases of the variable three-point Gauss quadrature. In addition, the three-point Gauss quadrature may have out-of-domain sampling points beyond the domain end points. By applying the quadratically extrapolated integrals and nonlinearity index, the accuracy of the integration could be increased significantly for evenly acquired data, which is popular with modern sophisticated digital data acquisition systems, without using higher-order extrapolation polynomials.

  2. Directly Printable Flexible Strain Sensors for Bending and Contact Feedback of Soft Actuators

    Directory of Open Access Journals (Sweden)

    Khaled Elgeneidy

    2018-02-01

    Full Text Available This paper presents a fully printable sensorized bending actuator that can be calibrated to provide reliable bending feedback and simple contact detection. A soft bending actuator following a pleated morphology, as well as a flexible resistive strain sensor, were directly 3D printed using easily accessible FDM printer hardware with a dual-extrusion tool head. The flexible sensor was directly welded to the bending actuator’s body and systematically tested to characterize and evaluate its response under variable input pressure. A signal conditioning circuit was developed to enhance the quality of the sensory feedback, and flexible conductive threads were used for wiring. The sensorized actuator’s response was then calibrated using a vision system to convert the sensory readings to real bending angle values. The empirical relationship was derived using linear regression and validated at untrained input conditions to evaluate its accuracy. Furthermore, the sensorized actuator was tested in a constrained setup that prevents bending, to evaluate the potential of using the same sensor for simple contact detection by comparing the constrained and free-bending responses at the same input pressures. The results of this work demonstrated how a dual-extrusion FDM printing process can be tuned to directly print highly customizable flexible strain sensors that were able to provide reliable bending feedback and basic contact detection. The addition of such sensing capability to bending actuators enhances their functionality and reliability for applications such as controlled soft grasping, flexible wearables, and haptic devices.

  3. Validity of fracture toughness determined with small bend specimens

    International Nuclear Information System (INIS)

    Wallin, K.; Rintamaa, R.; Valo, M.

    1994-02-01

    This report considers the validity of fracture toughness estimates obtained with small bend specimens in relation to fracture toughness estimates obtained with large specimens. The study is based upon the analysis and comparison of actual test results. The results prove the validity of the fracture toughness determined based upon small bend specimens, especially when the results are only used to determine the fracture toughness transition temperature T o . In this case the possible error is typically less than 5 deg C and at most 10 deg C. It can be concluded that small bend specimens are very suitable for the estimation of fracture toughness in the case of brittle fracture, provided the results are corrected for statistical size effects. (orig.). (20 refs., 17 figs.)

  4. Dynamic shear-bending buckling experiments of cylindrical shells

    International Nuclear Information System (INIS)

    Hagiwara, Y.; Akiyama, H.

    1995-01-01

    Dynamic experimental studies of the plastic shear/bending buckling of cylindrical shells were performed. They clarified the inelastic response reduction and the seismic margin of FBR reactor vessels. The test results were incorporated into the draft of the seismic buckling design guidelines of FBR. (author). 15 refs., 3 figs

  5. Ketahanan Bending Komposit Hybrid Serat Batang Kelapa/Serat Gelas Dengan Matrik Urea Formaldehyde

    Directory of Open Access Journals (Sweden)

    Nasmi Herlina Sari

    2012-11-01

    Full Text Available The composite has its own advantages compared to other alternative techniques such material is strong, lightweight,corrosion-resistant, economical and so on. The purpose of this study was to investigate the characteristics of bending strengthfiber composite hybrid coconut trunk / fiber glass using urea formaldehyde resin.Hybrid palm trunk fiber /glass fiber composite have been made by hand lay up which volume fraction fiber hybridvariation namely 10:20, 15:15 and 20:10 (% with length fiber 2 cm. Every Tests conducted were bending testing with eachvariation performed three times repetition. Bending test specimens in accordance with standard ASTMD 790.The results of bending strength of palm trunk fiber hybrid composite / fiber-glass with random fiber direction that thehighest bending strength in the palm trunk fiber volume fraction 10% and 20% glass fiber that is 22.7 N/mm2.

  6. Investigation of structural behaviour due to bend-twist couplings in wind turbine blades

    DEFF Research Database (Denmark)

    Fedorov, Vladimir; Dimitrov, Nikolay Krasimiroy; Berggreen, Christian

    2009-01-01

    The structural behaviour of a composite wind turbine blade with implemented bend-twist coupling is examined in this paper. Several shell finite element models of the blade have been developed and validated against full-scale tests. All shell models performed well for flap-wise bending......, but performed poorly in torsion, when employing material off-sets....

  7. Bending of pipes with inconel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Nachpitz, Leonardo; Menezes, Carlos Eduardo B; Vieira, Carlos R. Tavares [Primus Processamento de Tubos S.A. (PROTUBO), Macae, RJ (Brazil)

    2009-07-01

    The high-frequency induction bending process, using API pipes coated with Inconel 625 reconciled to a mechanical transformation for a higher degree of resistance, was developed through a careful specification and control of the manufacturing parameters and inherent heat treatments. The effects of this technology were investigated by a qualification process consisting of a sequence of tests and acceptance criteria typically required by the offshore industry, and through the obtained results was proved the effectiveness of this entire manufacturing process, without causing interference in the properties and the quality of the inconel cladding, adding a gain of resistance to the base material, guaranteed by the requirements of the API 5L Standard. (author)

  8. Fracture evaluation tests

    International Nuclear Information System (INIS)

    Robinson, G.C.

    1991-01-01

    In this report period, efforts have concentrated on defining the requirements for shallow-flaw beam testing. Analyses have been made to envelope the significant parameters for both deep- and shallow-flaw beams for three-point loading; that is, load to initiation of a frangible flaw, load to plastic collapse, LLD, and CMOD. An assessment was made of facilities capable of performing the tests identified by the parametric analyses discussed above. Two testing machines were identified for performing the scoped test series, the first a 550-kip Instron machine assigned to the Pressure Vessel Technology Section located in Building 9204-1 at the Y-12 Plant and the second a 220-kip MTS machine assigned to a mechanical testing group located at the K-25 Site. An existing bend test fixture previously used in the HSST clad plate test series is being modified for use in testing beams under other sponsorship but will be available for shared usage with the HSST shallow-flaw beam testing activities. To prevent the shared usage from having an adverse impact on the logistics of the HSST Program, the decision was made to procure a bend test fixture tailored specifically to serve the shallow flaw beam test series. A specification was prepared and procurement initiated. A survey is in progress for determining sources and costs of displacement-measuring instrumentation from both foreign and domestic sources. It appears that existing direct current displacement transducers available to the HSST Program may be adequate for the LLD measurements. These devices will be employed in the shakedown tests that are planned. A safety and environmental survey assessment for the beam testing conforming to the revised DOE rules has been prepared and approved

  9. Experimental and Theoretical Deflections of Hybrid Composite Sandwich Panel under Four-point Bending Load

    Directory of Open Access Journals (Sweden)

    Jauhar Fajrin

    2017-03-01

    Full Text Available This paper presents a comparison of theoretical and experimental deflection of a hybrid sandwich panel under four-point bending load. The paper initially presents few basic equations developed under three-point load, followed by development of model under four-point bending load and a comparative analysis between theoretical and experimental results. It was found that the proposed model for predicting the deflection of hybrid sandwich panels provided fair agreement with the experimental values. Most of the sandwich panels showed theoretical deflection values higher than the experimental values, which is desirable in the design. It was also noticed that the introduction of intermediate layer does not contribute much to reduce the deflection of sandwich panel as the main contributor for the total deflection was the shear deformation of the core that mostly determined by the geometric of the samples and the thickness of the core.

  10. A Numerical Study of the Spring-Back Phenomenon in Bending with a Rebar Bending Machine

    Directory of Open Access Journals (Sweden)

    Chang Hwan Choi

    2014-10-01

    Full Text Available Recently, the rebar bending methodology started to change from field processing to utilizing rebar bending machines at plant sites prior to transport to the construction locations. Computerized control of rebar plant bending machines provides more accurate and faster bending of rebars than the low quality inefficient field processing alternative. The bending process involves plastic deformation of rebars, where bending stress beyond the yield point of the material is applied. When the bending stress is removed, spring back is caused by the elastic restoring stress. Therefore, an accurate numerical analysis of the spring-back process is required to reduce the bending process errors. The most sensitive factors affecting the spring-back process are the bending radius, the bending angle, the diameter of the rebar, the friction coefficient, and the yielding strength of material. In this paper, we suggest a numerical modeling method using these factors. The finite element modeling of the dynamic mechanical behavior of the material during bending is performed using a commercial dynamic analysis program “DAFUL.” We use the least squares approach to derive the spring-back deflection as a function of the rebar bending parameters.

  11. Bends and splitters in graphene nanoribbon waveguides

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Mortensen, N. Asger

    2013-01-01

    We investigate the performance of bends and splitters in graphene nanoribbon waveguides. Although the graphene waveguides are lossy themselves, we show that bends and splitters do not induce any additional loss provided that the nanoribbon width is sub-wavelength. We use transmission line theory...

  12. A comparison of plastic collapse and limit loads for single mitred pipe bends under in-plane bending

    International Nuclear Information System (INIS)

    Neilson, R.; Wood, J.; Hamilton, R.; Li, H.

    2010-01-01

    This paper presents a comparison of the plastic collapse loads from experimental in-plane bending tests on three 90 o single un-reinforced mitred pipe bends, with the results from various 3D solid finite element models. The bending load applied reduced the bend angle and in turn, the resulting cross-sectional ovalisation led to a recognised weakening mechanism. In addition, at maximum load there was a reversal in stiffness, characteristic of buckling. This reversal in stiffness was accompanied by significant ovalisation and plasticity at the mitre intersection. Both the weakening mechanism and the post-buckling behaviour are only observable by testing or by including large displacement effects in the plastic finite element solution. A small displacement limit solution with an elastic-perfectly plastic material model overestimated the collapse load by more than 40% and could not reproduce the buckling behaviour. The plastic collapse finite element solution, with large displacements, produced excellent agreement with the experiment. Sufficient experimental detail is presented for these results to be used as a benchmark for analysts in this area. Given the robustness of non-linear solutions in commercial finite element codes and the ready availability of computing resources, it is argued that pressure vessel code developers should now be recommending large displacement analysis as the default position for limit and plastic collapse analyses, rather than expecting engineers to anticipate weakening mechanisms and related non-linear phenomena.

  13. Plastic loads of pipe bends under combined pressure and out-of-plane bending

    International Nuclear Information System (INIS)

    Lee, Kuk Hee; Kim, Yun Jae; Park, Chi Yong; Lee, Sung Ho; Kim, Tae Ryong

    2007-01-01

    Based on three-Dimensional (3-D) FE limit analyses, this paper provides plastic limit and TES(Twice- Elastic-Slope) loads for pipe bends under combined pressure and out-of-plane bending. The plastic limit loads are determined from FE limit analyses based on elastic.perfectly-plastic materials using the small geometry change option, and the FE limit analyses using the large geometry change option provide TES plastic loads. A wide range of parameters related to the bend geometry is considered. Based on the FE results, closed-form approximations of plastic limit and TES plastic load solutions for pipe bends under out-of-plane bending are proposed

  14. Benchmark Testing of the Largest Titanium Aluminide Sheet Subelement Conducted

    Science.gov (United States)

    Bartolotta, Paul A.; Krause, David L.

    2000-01-01

    To evaluate wrought titanium aluminide (gamma TiAl) as a viable candidate material for the High-Speed Civil Transport (HSCT) exhaust nozzle, an international team led by the NASA Glenn Research Center at Lewis Field successfully fabricated and tested the largest gamma TiAl sheet structure ever manufactured. The gamma TiAl sheet structure, a 56-percent subscale divergent flap subelement, was fabricated for benchmark testing in three-point bending. Overall, the subelement was 84-cm (33-in.) long by 13-cm (5-in.) wide by 8-cm (3-in.) deep. Incorporated into the subelement were features that might be used in the fabrication of a full-scale divergent flap. These features include the use of: (1) gamma TiAl shear clips to join together sections of corrugations, (2) multiple gamma TiAl face sheets, (3) double hot-formed gamma TiAl corrugations, and (4) brazed joints. The structural integrity of the gamma TiAl sheet subelement was evaluated by conducting a room-temperature three-point static bend test.

  15. A Novel Rotary Piezoelectric Motor Using First Bending Hybrid Transducers

    Directory of Open Access Journals (Sweden)

    Yingxiang Liu

    2015-08-01

    Full Text Available We report a novel rotary piezoelectric motor using bending transducers in this work. Three transducers are used to drive a disk-shaped rotor together by the elliptical movements of their driving tips; these motions are produced by the hybrid of two first bending vibration modes. The proposed piezoelectric transducer has a simple structure as it only contains an aluminum alloy beam and four pieces of PZT plates. Symmetrical structure is the only necessary condition in the design process as it will ensure the resonance frequencies of the two orthogonal first bending modes are equal. Transducers with first bending resonance frequency of about 53 kHz were fabricated and assembled into a rotary motor. The proposed motor exhibits good performance on speed and torque control. Under a working frequency of 53.2 kHz, the maximum no-load speed and the maximum torque of the prototype are tested to be 53.3 rpm and of 27 mN·m.

  16. Bending behavior of thermoplastic composite sheets viscoelasticity and temperature dependency in the draping process

    CERN Document Server

    Ropers, Steffen

    2017-01-01

    Within the scope of this work, Steffen Ropers evaluates the viscoelastic and temperature-dependent nature of the bending behavior of thermoplastic composite sheets in order to further enhance the predictability of the draping simulation. This simulation is a useful tool for the development of robust large scale processes for continuously fiber-reinforced polymers (CFRP). The bending behavior thereby largely influences the size and position of wrinkles, which are one of the most common processing defects for continuously fiber-reinforced parts. Thus, a better understanding of the bending behavior of thermoplastic composite sheets as well as an appropriate testing method along with corresponding material models contribute to a wide-spread application of CFRPs in large scale production. Contents Thermoplastic Prepregs Draping Simulation of Thermoplastic Prepregs Bending Characterization of Textile Composites Modeling of Bending Behavior Target Groups Researchers and students in the field of polymer, lightweight,...

  17. The effect of load-controlled bending load on the failure pressure of wall-thinned pipe elbows

    International Nuclear Information System (INIS)

    Kim, Jin Weon; Yoon, Min Soo; Park, Chi Yong

    2013-01-01

    Highlights: • We evaluated bending load effect on the failure pressure of wall-thinned pipe elbows. • Burst tests were conducted on real-scale elbow specimens with local wall thinning. • The tests were performed under combined pressure and load-controlled bending. • Load-controlled bending reduced the failure pressure of wall-thinned elbows. • Bending load effect was significant for opening-mode and intrados wall-thinning case. - Abstract: In this research, burst tests were conducted on real-scale elbow specimens, each with an artificial local wall-thinning defect, under combined internal pressure and constant in-plane bending load, as well as under simple internal pressure, to evaluate the effect of load-controlled bending load on the failure pressure of locally wall-thinned pipe elbows. Ninety-degree, 65A Schedule 80 elbows, with wall-thinning defects in the intrados and extrados, were used as specimens. The bending loads were in-plane opening- and closing-mode bending, applied in load-control mode. The results clearly indicated that a load-controlled in-plane bending load reduced the failure pressure of wall-thinned pipe elbows, in contrast to observations previously made under displacement-controlled bending conditions. The effect of the bending load was more significant for opening-mode than for closing-mode bending, regardless of the wall-thinning location in the elbow. Also, the effect was greater when the wall-thinning defect was located in the intrados region of the elbow, rather than the extrados region. Existing models that have been proposed to evaluate the failure of wall-thinned elbows under simple internal pressure conservatively predicted the failure pressure of elbows subjected to a combined internal pressure and load-controlled bending load

  18. Flexibility analysis in adolescent idiopathic scoliosis on side-bending images using the EOS imaging system.

    Science.gov (United States)

    Hirsch, C; Ilharreborde, B; Mazda, K

    2016-06-01

    Analysis of preoperative flexibility in adolescent idiopathic scoliosis (AIS) is essential to classify the curves, determine their structurality, and select the fusion levels during preoperative planning. Side-bending x-rays are the gold standard for the analysis of preoperative flexibility. The objective of this study was to examine the feasibility and performance of side-bending images taken in the standing position using the EOS imaging system. All patients who underwent preoperative assessment between April 2012 and January 2013 for AIS were prospectively included in the study. The work-up included standing AP and lateral EOS x-rays of the spine, standard side-bending x-rays in the supine position, and standing bending x-rays in the EOS booth. The irradiation dose was measured for each of the tests. Two-dimensional reducibility of the Cobb angle was measured on both types of bending x-rays. The results were based on the 50 patients in the study. No significant difference was demonstrated for reducibility of the Cobb angle between the standing side-bending images with the EOS imaging system and those in the supine position for all types of Lenke deformation. The irradiation dose was five times lower during the EOS bending imaging. The standing side-bending images in the EOS device contributed the same results as the supine images, with five times less irradiation. They should therefore be used in clinical routine. 2. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Electrostatic bending response of a charged helix

    Science.gov (United States)

    Zampetaki, A. V.; Stockhofe, J.; Schmelcher, P.

    2018-04-01

    We explore the electrostatic bending response of a chain of charged particles confined on a finite helical filament. We analyze how the energy difference Δ E between the bent and the unbent helical chain scales with the length of the helical segment and the radius of curvature and identify features that are not captured by the standard notion of the bending rigidity, normally used as a measure of bending tendency in the linear response regime. Using Δ E to characterize the bending response of the helical chain we identify two regimes with qualitatively different bending behaviors for the ground state configuration: the regime of small and the regime of large radius-to-pitch ratio, respectively. Within the former regime, Δ E changes smoothly with the variation of the system parameters. Of particular interest are its oscillations with the number of charged particles encountered for commensurate fillings which yield length-dependent oscillations in the preferred bending direction of the helical chain. We show that the origin of these oscillations is the nonuniformity of the charge distribution caused by the long-range character of the Coulomb interactions and the finite length of the helix. In the second regime of large values of the radius-to-pitch ratio, sudden changes in the ground state structure of the charges occur as the system parameters vary, leading to complex and discontinuous variations in the ground state bending response Δ E .

  20. Hybrid Testing of Composite Structures with Single-Axis Control

    DEFF Research Database (Denmark)

    Waldbjørn, Jacob Paamand; Høgh, Jacob Herold; Stang, Henrik

    2013-01-01

    Correlation (DIC) is therefore implemented for displacement control of the experimental setup. The hybrid testing setup was verified on a multicomponent structure consisting of a beam loaded in three point bending and a numerical structure of a frame. Furthermore, the stability of the hybrid testing loop......Hybrid testing is a substructuring technique where a structure is emulated by modelling a part of it in a numerical model while testing the remainder experimentally. Previous research in hybrid testing has been performed on multi-component structures e.g. damping fixtures, however in this paper...... a hybrid testing platform is introduced for single-component hybrid testing. In this case, the boundary between the numerical model and experimental setup is defined by multiple Degrees-Of-Freedoms (DOFs) which highly complicate the transferring of response between the two substructures. Digital Image...

  1. Determination of the bonding strength in solid oxide fuel cells’interfaces by Schwickerath crack initiation test

    Czech Academy of Sciences Publication Activity Database

    Boccaccini, D. N.; Ševeček, O.; Frandsen, L. H.; Dlouhý, Ivo; Molin, S.; Charlas, B.; Hjelm, J.; Cannio, M.; Hendriksen, P. V.

    2017-01-01

    Roč. 37, č. 11 (2017), s. 3565-3578 ISSN 0955-2219 Institutional support: RVO:68081723 Keywords : Schwickerath crack-initiation test * Three-point bending test * SOFC interfaces * Metal-ceramic bond strength Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 3.411, year: 2016 https://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=3&SID=S1ftxS2ACYn8QwRNK3P&page=1&doc=1

  2. Numerical and analytical investigation of steel beam subjected to four-point bending

    Science.gov (United States)

    Farida, F. M.; Surahman, A.; Sofwan, A.

    2018-03-01

    A One type of bending tests is four-point bending test. The aim of this test is to investigate the properties and behavior of materials with structural applications. This study uses numerical and analytical studies. Results from both of these studies help to improve in experimental works. The purpose of this study is to predict steel beam behavior subjected to four-point bending test. This study intension is to analyze flexural beam subjected to four-point bending prior to experimental work. Main results of this research are location of strain gauge and LVDT on steel beam based on numerical study, manual calculation, and analytical study. Analytical study uses linear elasticity theory of solid objects. This study results is position of strain gauge and LVDT. Strain gauge is located between two concentrated loads at the top beam and bottom beam. LVDT is located between two concentrated loads.

  3. Bending stresses in Facetted Glass Shells

    DEFF Research Database (Denmark)

    Bagger, Anne; Jönsson, Jeppe; Almegaard, Henrik

    2008-01-01

    A shell structure of glass combines a highly effective structural principle with a material of optimal permeability to light. A facetted shell structure has a piecewise plane geometry, and together the facets form an approximation to a curved surface. A distributed load on a plane-based facetted...... structure will locally cause bending moments in the loaded facets. The bending stresses are dependent on the stiffness of the joints. Approximate solutions are developed to estimate the magnitude of the bending stresses. A FE-model of a facetted glass shell structure is used to validate the expressions...

  4. Bending Characteristics of Foldable Touch Display Panel with a Protection Structure Design

    Directory of Open Access Journals (Sweden)

    Hsien-Chie Cheng

    2015-01-01

    Full Text Available The study proposes and demonstrates an enhancement of a touch display panel (TDP through a polymer-based protection structure to achieve higher bendability and reliability. The bending performance of the TDP without or with the protection structure designs is addressed using three-dimensional geometry-nonlinear finite element analysis and mechanical testing. The elastic properties of the components in the TDP structure are derived from nanoindentation and uniaxial tensile/compressive testing. The calculated results are compared with each other and also against the experimental bending fatigue test data. At last, a design guideline and optimal factor setting for enhanced bending performance are sought through parametric FE analysis and Taguchi experimental design, respectively. The optimal design is compared with the original in terms of bending stress. The simulation results show that bending would create significant tensile and compressive bending stresses on the indium tin oxide/dielectric layers, which are the main cause of several commonly observed failures, such as thin film cracking and delamination, in a thin rigid film coating on a thick compliant substrate. It also turns out that a substrate with a lower stiffness has a better mechanical stability against bending stress.

  5. Large Deformation Dynamic Bending of Composite Beams

    Science.gov (United States)

    Derian, E. J.; Hyer, M. W.

    1986-01-01

    Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams were loaded dynamically with a gravity driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 30 deg or 15 deg off-axis plies occured in several events. All laminates exhibited bimodular elastic properties. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.

  6. Analytic description of the frictionally engaged in-plane bending process incremental swivel bending (ISB)

    Science.gov (United States)

    Frohn, Peter; Engel, Bernd; Groth, Sebastian

    2018-05-01

    Kinematic forming processes shape geometries by the process parameters to achieve a more universal process utilizations regarding geometric configurations. The kinematic forming process Incremental Swivel Bending (ISB) bends sheet metal strips or profiles in plane. The sequence for bending an arc increment is composed of the steps clamping, bending, force release and feed. The bending moment is frictionally engaged by two clamping units in a laterally adjustable bending pivot. A minimum clamping force hindering the material from slipping through the clamping units is a crucial criterion to achieve a well-defined incremental arc. Therefore, an analytic description of a singular bent increment is developed in this paper. The bending moment is calculated by the uniaxial stress distribution over the profiles' width depending on the bending pivot's position. By a Coulomb' based friction model, necessary clamping force is described in dependence of friction, offset, dimensions of the clamping tools and strip thickness as well as material parameters. Boundaries for the uniaxial stress calculation are given in dependence of friction, tools' dimensions and strip thickness. The results indicate that changing the bending pivot to an eccentric position significantly affects the process' bending moment and, hence, clamping force, which is given in dependence of yield stress and hardening exponent. FE simulations validate the model with satisfactory accordance.

  7. High-temperature reverse-bend fatigue strength of Inconel Alloy 625

    International Nuclear Information System (INIS)

    Purohit, A.; Greenfield, I.G.; Park, K.B.

    1983-06-01

    Inconel 625 has been selected as the clad material for Upgraded Transient Reactor Test Facility (TREAT Upgrade or TU) fuel assemblies. The range of temperatures investigated is 900 to 1100 0 C. A reverse-bend fatigue test program was selected as the most-effective method of determining the fatigue characteristics of Inconel alloy 625 sheet metal. The paper describes the reverse bend fatigue experiments, the results obtained, and the analysis of data

  8. Big Bend National Park: Acoustical Monitoring 2010

    Science.gov (United States)

    2013-06-01

    During the summer of 2010 (September October 2010), the Volpe Center collected baseline acoustical data at Big Bend National Park (BIBE) at four sites deployed for approximately 30 days each. The baseline data collected during this period will he...

  9. Slice of a LEP bending magnet

    CERN Multimedia

    This is a slice of a LEP dipole bending magnet, made as a concrete and iron sandwich. The bending field needed in LEP is small (about 1000 Gauss), equivalent to two of the magnets people stick on fridge doors. Because it is very difficult to keep a low field steady, a high field was used in iron plates embedded in concrete. A CERN breakthrough in magnet design, LEP dipoles can be tuned easily and are cheaper than conventional magnets.

  10. Bending sound in graphene: Origin and manifestation

    Energy Technology Data Exchange (ETDEWEB)

    Adamyan, V.M., E-mail: vadamyan@onu.edu.ua [Department of Theoretical Physics, Odessa I.I. Mechnikov National University, 2 Dvoryanska St., Odessa 65026 (Ukraine); Bondarev, V.N., E-mail: bondvic@onu.edu.ua [Department of Theoretical Physics, Odessa I.I. Mechnikov National University, 2 Dvoryanska St., Odessa 65026 (Ukraine); Zavalniuk, V.V., E-mail: vzavalnyuk@onu.edu.ua [Department of Theoretical Physics, Odessa I.I. Mechnikov National University, 2 Dvoryanska St., Odessa 65026 (Ukraine); Department of Fundamental Sciences, Odessa Military Academy, 10 Fontanska Road, Odessa 65009 (Ukraine)

    2016-11-11

    Highlights: • The origin of sound-like dispersion of graphene bending mode is disclosed. • The speed of graphene bending sound is determined. • The renormalized graphene bending rigidity is derived. • The intrinsic corrugations of graphene are estimated. - Abstract: It is proved that the acoustic-type dispersion of bending mode in graphene is generated by the fluctuation interaction between in-plane and out-of-plane terms in the free energy arising with account of non-linear components in the graphene strain tensor. In doing so we use an original adiabatic approximation based on the alleged (confirmed a posteriori) significant difference of sound speeds for in-plane and bending modes. The explicit expression for the bending sound speed depending only on the graphene mass density, in-plane elastic constants and temperature is deduced as well as the characteristics of the microscopic corrugations of graphene. The obtained results are in good quantitative agreement with the data of real experiments and computer simulations.

  11. Bending sound in graphene: Origin and manifestation

    International Nuclear Information System (INIS)

    Adamyan, V.M.; Bondarev, V.N.; Zavalniuk, V.V.

    2016-01-01

    Highlights: • The origin of sound-like dispersion of graphene bending mode is disclosed. • The speed of graphene bending sound is determined. • The renormalized graphene bending rigidity is derived. • The intrinsic corrugations of graphene are estimated. - Abstract: It is proved that the acoustic-type dispersion of bending mode in graphene is generated by the fluctuation interaction between in-plane and out-of-plane terms in the free energy arising with account of non-linear components in the graphene strain tensor. In doing so we use an original adiabatic approximation based on the alleged (confirmed a posteriori) significant difference of sound speeds for in-plane and bending modes. The explicit expression for the bending sound speed depending only on the graphene mass density, in-plane elastic constants and temperature is deduced as well as the characteristics of the microscopic corrugations of graphene. The obtained results are in good quantitative agreement with the data of real experiments and computer simulations.

  12. In-situ bending under tension shear fracture analysis and microstructure “earthquake” of DP780 dual phase steels

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yixi, E-mail: yxzhao@sjtu.edu.cn [State Key Laboratory of Mechanical System and Vibration, Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240 (China); Huang, Sheng [State Key Laboratory of Mechanical System and Vibration, Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240 (China); Dan, Wenjiao; Zhang, Weigang [Innovation Center for Advanced Ship and Deep-Sea Exploration, Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Shuhui [State Key Laboratory of Mechanical System and Vibration, Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2017-05-17

    Dual phase (DP) steels consist of hard brittle martensite phase and soft ductile ferrite phase. With a novel bending under tension test system, in-situ symmetrical bending under tension experiments were carried out and photomicrographs of bending surface were recorded. The microstructure “earthquake” of DP780 dual phase steels was observed in the bending under tension process. By analyzing the in-situ images serious, the initiation, coalescence of cavities and propagation of micro-cracks until final fracture were analyzed. The micro-cracks form only in the outside surface of bending radius, and mainly appear near the phase boundary of ferrite and martensite. Micro-cracks coalesce and propagate in the direction perpendicular to the stretching direction approximately, and at the phase boundary of martensite and ferrite. Furthermore, digital image correlation technology was used in this study to analysis the strain distribution between ferrite and martensite during the bending under tension deformation and fracture.

  13. Estimates of plastic loads for pipe bends under combined in-plane and out-of-plane bending moment

    International Nuclear Information System (INIS)

    Kim, Nak Hyun; Oh, Chang Sik; Kim, Yun Jae

    2008-01-01

    This paper provides a method to estimate plastic loads (defined by twice-elastic-slope) for pipe bends under combined in-plane and out-of-plane bending moment, based on detailed 3-D FE limit analyses using elastic-perfectly plastic materials. Because closing bending moment is always lower than opening bending moment, the combination of in-plane closing bending and out-of-plane bending moment becomes the most significant case. Due to conservatism of each bending moments, the resultant moment provided by ASME B and PV code is unduly conservative. However, the concept of the resultant moment is still valid. In this paper, FE results show that the accurate solutions of bending moments provide better estimates of plastic loads of pipe bend under combined in-plane bending and out-of-plane bending moment

  14. A Low Frequency FBG Accelerometer with Symmetrical Bended Spring Plates

    Directory of Open Access Journals (Sweden)

    Fufei Liu

    2017-01-01

    Full Text Available To meet the requirements for low-frequency vibration monitoring, a new type of FBG (fiber Bragg grating accelerometer with a bended spring plate is proposed. Two symmetrical bended spring plates are used as elastic elements, which drive the FBG to produce axial strains equal in magnitude but opposite in direction when exciting vibrations exist, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, with which the influence of the structural parameters on the sensitivity and the eigenfrequency are discussed. The test results show that the sensitivity of the accelerometer is more than 1000 pm/g when the frequency is within the 0.7–20 Hz range.

  15. Curvature reduces bending strains in the quokka femur

    Directory of Open Access Journals (Sweden)

    Kyle McCabe

    2017-03-01

    Full Text Available This study explores how curvature in the quokka femur may help to reduce bending strain during locomotion. The quokka is a small wallaby, but the curvature of the femur and the muscles active during stance phase are similar to most quadrupedal mammals. Our hypothesis is that the action of hip extensor and ankle plantarflexor muscles during stance phase place cranial bending strains that act to reduce the caudal curvature of the femur. Knee extensors and biarticular muscles that span the femur longitudinally create caudal bending strains in the caudally curved (concave caudal side bone. These opposing strains can balance each other and result in less strain on the bone. We test this idea by comparing the performance of a normally curved finite element model of the quokka femur to a digitally straightened version of the same bone. The normally curved model is indeed less strained than the straightened version. To further examine the relationship between curvature and the strains in the femoral models, we also tested an extra-curved and a reverse-curved version with the same loads. There appears to be a linear relationship between the curvature and the strains experienced by the models. These results demonstrate that longitudinal curvature in bones may be a manipulable mechanism whereby bone can induce a strain gradient to oppose strains induced by habitual loading.

  16. Effect of contouring on bending structural stiffness and bending strength of the 3.5 titanium SOP implant.

    Science.gov (United States)

    Rutherford, Scott; Ness, Malcolm G

    2012-11-01

    To compare the bending structural stiffness (BSS) and bending strength (BS) of the 3.5 titanium (Ti) string of pearls (SOP) plate and the 3.5 316LVM stainless steel SOP plate; and the effect of contouring on the BSS and BS of the 3.5 Ti SOP plate. In vitro experimental static 4-point bending materials testing. Twenty-five 3.5 mm Ti and five 3.5 mm 316LVM stainless steel SOP locking bone plates. Each plate was tested in 4-point bending until 10 mm of displacement was achieved. BSS and BS were then calculated for each plate. A 2-sample t-test was used to compare the mean BSS and BS of the different groups. The 3.5 Ti SOP plate had lower mean BSS (0.00263 Nm(2) ) but similar mean BS (12.8 Nm) when compared to the 3.5 316LVM SOP (0.00402 Nm(2) , 13.0 Nm). Prebending the 3.5 Ti SOP diminished its mean BSS (0.00224 Nm(2) ) and mean BS (9.4 Nm) when compared to the Ti control. Pretwisting the 3.5 Ti SOP increased its mean BSS (0.00273 Nm(2) ) but decreased its mean BS (12.4 Nm) when compared to the Ti control. The 3.5 Ti SOP is less stiff but of similar strength to the 3.5 316LVM stainless steel SOP. Prebending the Ti SOP significantly lowers its stiffness and strength. Pretwisting the SOP actually increases its stiffness but slightly lowers its strength. © Copyright 2012 by The American College of Veterinary Surgeons.

  17. Analysis and research on Maximum Power Point Tracking of Photovoltaic Array with Fuzzy Logic Control and Three-point Weight Comparison Method

    Institute of Scientific and Technical Information of China (English)

    LIN; Kuang-Jang; LIN; Chii-Ruey

    2010-01-01

    The Photovoltaic Array has a best optimal operating point where the array operating can obtain the maximum power.However, the optimal operating point can be compromised by the strength of solar radiation,angle,and by the change of environment and load.Due to the constant changes in these conditions,it has become very difficult to locate the optimal operating point by following a mathematical model.Therefore,this study will focus mostly on the application of Fuzzy Logic Control theory and Three-point Weight Comparison Method in effort to locate the optimal operating point of solar panel and achieve maximum efficiency in power generation. The Three-point Weight Comparison Method is the comparison between the characteristic curves of the voltage of photovoltaic array and output power;it is a rather simple way to track the maximum power.The Fuzzy Logic Control,on the other hand,can be used to solve problems that cannot be effectively dealt with by calculation rules,such as concepts,contemplation, deductive reasoning,and identification.Therefore,this paper uses these two kinds of methods to make simulation successively. The simulation results show that,the Three-point Comparison Method is more effective under the environment with more frequent change of solar radiation;however,the Fuzzy Logic Control has better tacking efficiency under the environment with violent change of solar radiation.

  18. The correlation function for density perturbations in an expanding universe. III The three-point and predictions of the four-point and higher order correlation functions

    Science.gov (United States)

    Mcclelland, J.; Silk, J.

    1978-01-01

    Higher-order correlation functions for the large-scale distribution of galaxies in space are investigated. It is demonstrated that the three-point correlation function observed by Peebles and Groth (1975) is not consistent with a distribution of perturbations that at present are randomly distributed in space. The two-point correlation function is shown to be independent of how the perturbations are distributed spatially, and a model of clustered perturbations is developed which incorporates a nonuniform perturbation distribution and which explains the three-point correlation function. A model with hierarchical perturbations incorporating the same nonuniform distribution is also constructed; it is found that this model also explains the three-point correlation function, but predicts different results for the four-point and higher-order correlation functions than does the model with clustered perturbations. It is suggested that the model of hierarchical perturbations might be explained by the single assumption of having density fluctuations or discrete objects all of the same mass randomly placed at some initial epoch.

  19. Ductile failure of pipes with defects under combined pressure and bending

    International Nuclear Information System (INIS)

    Darlaston, B.J.L.; Harrison, R.P.

    1977-01-01

    The main part of the experimental programme was carried out on 3.5'' diam. pipes with a wall thickness of 0.064''. Various lengths of defect were assessed but only two depths, 0.044'' and 0.060''. Some full penetration defect tests were carried out under bending loading. The defects were 0.012'' wide and nominally flat bottomed. The tensile properties of the pipes were determined by taking specimens from each of the tubes. The pipes were exposed to pressure only test, bending only test and combined bending and pressure test. The results are given in tables. The observations led to the postulation of a design rule relating to the effect of defect in pipes under combined internal pressure and bending. It applies only to ductile situations in which the mode of failure is by a collapse mechanism: If the failure of a pipe containing an axial defect occurs by plastic collapse then provided the bending moment does not exceed half that for collapse due to bending alone, it will have a negligible effect on the failure pressure. (J.B.)

  20. Reliability of non-heated tube bends of boilers

    International Nuclear Information System (INIS)

    Bugaj, N.V.; Akhremenko, V.L.; Zamotaev, V.S.

    1984-01-01

    Bend failures are described for non-heated boiler tubes of 12Kh1MF and 20 steels. Methods of reliability evaluations are presented which permit revealing and replacing the bends with inadequate resources. Influences of operation conditions on bend durability is shown as well as the factors which are dominating at bend failures

  1. Pipeline Bending Strain Measurement and Compensation Technology Based on Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-01-01

    Full Text Available The bending strain of long distance oil and gas pipelines may lead to instability of the pipeline and failure of materials, which seriously deteriorates the transportation security of oil and gas. To locate the position of the bending strain for maintenance, an Inertial Measurement Unit (IMU is usually adopted in a Pipeline Inspection Gauge (PIG. The attitude data of the IMU is usually acquired to calculate the bending strain in the pipe. However, because of the vibrations in the pipeline and other system noises, the resulting bending strain calculations may be incorrect. To improve the measurement precision, a method, based on wavelet neural network, was proposed. To test the proposed method experimentally, a PIG with the proposed method is used to detect a straight pipeline. It can be obtained that the proposed method has a better repeatability and convergence than the original method. Furthermore, the new method is more accurate than the original method and the accuracy of bending strain is raised by about 23% compared to original method. This paper provides a novel method for precisely inspecting bending strain of long distance oil and gas pipelines and lays a foundation for improving the precision of inspection of bending strain of long distance oil and gas pipelines.

  2. Stress Relaxation Of Superelastic Shape Memory Alloy Under Bending And Torsional Load

    Directory of Open Access Journals (Sweden)

    Sakib Tanvir

    2017-04-01

    Full Text Available Stress Relaxation of Superelastic Shape memory NiTi Alloy under bending and torsion is uncommon in literature. Therefore experimental set up has been devised and test results are obtained for superelastic SMA.Unlike the other common engineering materials superelastic SMA it gives dramatic reduction in stress. In this paper therefore results of stress relaxation of superelastic shape memory alloy under bending and torsion are presented graphically and interpreted in terms of stress induced martensitic transformation.

  3. Bending and tensile deformation of metallic nanowires

    International Nuclear Information System (INIS)

    McDowell, Matthew T; Leach, Austin M; Gall, Ken

    2008-01-01

    Using molecular statics simulations and the embedded atom method, a technique for bending silver nanowires and calculating Young's modulus via continuum mechanics has been developed. The measured Young's modulus values extracted from bending simulations were compared with modulus values calculated from uniaxial tension simulations for a range of nanowire sizes, orientations and geometries. Depending on axial orientation, the nanowires exhibit stiffening or softening under tension and bending as size decreases. Bending simulations typically result in a greater variation of Young's modulus values with nanowire size compared with tensile deformation, which indicates a loading-method-dependent size effect on elastic properties at sub-5 nm wire diameters. Since the axial stress is maximized at the lateral surfaces in bending, the loading-method-dependent size effect is postulated to be primarily a result of differences in nanowire surface and core elastic modulus. The divergence of Young's modulus from the bulk modulus in these simulations occurs at sizes below the range in which experiments have demonstrated a size scale effect on elastic properties of metallic nanowires. This difference indicates that other factors beyond native metallic surface properties play a role in experimentally observed nanowire elastic modulus size effects

  4. Bending the law: tidal bending and its effects on ice viscosity and flow

    Science.gov (United States)

    Rosier, S.; Gudmundsson, G. H.

    2017-12-01

    Many ice shelves are subject to strong ocean tides and, in order to accommodate this vertical motion, the ice must bend within the grounding zone. This tidal bending generates large stresses within the ice, changing its effective viscosity. For a confined ice shelf, this is particularly relevant because the tidal bending stresses occur along the sidewalls, which play an important role in the overall flow regime of the ice shelf. Hence, tidal bending stresses will affect both the mean and time-varying components of ice shelf flow. GPS measurements reveal strong variations in horizontal ice shelf velocities at a variety of tidal frequencies. We show, using full-Stokes viscoelastic modelling, that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of horizontal ice shelf flow. Furthermore, our model shows that in the absence of a vertical tidal forcing, the mean flow of the ice shelf is reduced considerably.

  5. Development of Flexible Pneumatic Cylinder with Built-in Flexible Linear Encoder and Flexible Bending Sensor

    Science.gov (United States)

    Akagi, Tetsuya; Dohta, Shujiro; Matsushita, Hisashi; Fukuhara, Akimasa

    The purpose of this study is to develop a lightweight and intelligent soft actuator which can be safely attached to the human body. A novel flexible pneumatic cylinder that can be used even if it is deformed by external force had been proposed. The cylinder can realize both pushing and pulling motions even if the cylinder bends. In this paper, a flexible pneumatic cylinder with a built-in flexible linear encoder is proposed and tested. The encoder can detect the cylinder displacement even if the cylinder bends. In the next step, to realize an intelligent flexible cylinder, it is essential to recognize the angle of deflection of the cylinder to estimate the direction of the external force. Therefore, a flexible bending sensor that can measure the directional angle by attaching it to the end of the cylinder is also proposed and tested. The tested bending sensor also consists of four inexpensive photo-reflectors set on the circumferential surface to the cylinder tube every 90 degrees from the center of the tube. By measuring the distance between the photo reflector and the surface of the tube at each point, the bending directional angle of the cylinder can be obtained. A low cost measuring system using a micro-computer incorporating a programmed Up/Down counter to measure the displacement of the cylinder is also developed. As a result, it was confirmed that the measuring accuracy of the bending directional angle was good, less than 0.7 degrees as a standard deviation.

  6. A rotary piezoelectric actuator using longitudinal and bending hybrid transducer

    Directory of Open Access Journals (Sweden)

    Yingxiang Liu

    2012-12-01

    Full Text Available A rotary piezoelectric actuator using bolt-clamped type transducer with double driving feet is proposed in this study. The first-order longitudinal and fourth-order bending vibration modes are superimposed in the actuator to produce elliptical movements on the driving tips. Longitudinal PZT and bending PZT are clamped between the exponential shape horns and the flange by bolts. The vibration shape changes of the actuator are presented to give a clear explanation of its working principle. Several structural parameters of the exponential shape horn are selected and adjusted to accomplish the tuning process of the longitudinal and bending resonance frequencies. The input impedance and vibration characteristics are calculated by using FEM method; the gained results verify the feasibility of the proposed actuator. After the fabrication of a prototype, its vibration characteristics are measured by using a scanning laser Doppler vibrometer; the tested results are in good agreement with the FEM calculated results. The mechanical output performance experiments state that the prototype achieves a maximum speed of 129 r/min and a maximum torque of 1.5 Nm.

  7. Magnetic field of longitudinal gradient bend

    Science.gov (United States)

    Aiba, Masamitsu; Böge, Michael; Ehrlichman, Michael; Streun, Andreas

    2018-06-01

    The longitudinal gradient bend is an effective method for reducing the natural emittance in light sources. It is, however, not a common element. We have analyzed its magnetic field and derived a set of formulae. Based on the derivation, we discuss how to model the longitudinal gradient bend in accelerator codes that are used for designing electron storage rings. Strengths of multipole components can also be evaluated from the formulae, and we investigate the impact of higher order multipole components in a very low emittance lattice.

  8. Slice through an LHC bending magnet

    CERN Multimedia

    Slice through an LHC superconducting dipole (bending) magnet. The slice includes a cut through the magnet wiring (niobium titanium), the beampipe and the steel magnet yokes. Particle beams in the Large Hadron Collider (LHC) have the same energy as a high-speed train, squeezed ready for collision into a space narrower than a human hair. Huge forces are needed to control them. Dipole magnets (2 poles) are used to bend the paths of the protons around the 27 km ring. Quadrupole magnets (4 poles) focus the proton beams and squeeze them so that more particles collide when the beams’ paths cross. There are 1232 15m long dipole magnets in the LHC.

  9. Bending energy of buckled edge dislocations

    Science.gov (United States)

    Kupferman, Raz

    2017-12-01

    The study of elastic membranes carrying topological defects has a longstanding history, going back at least to the 1950s. When allowed to buckle in three-dimensional space, membranes with defects can totally relieve their in-plane strain, remaining with a bending energy, whose rigidity modulus is small compared to the stretching modulus. In this paper we study membranes with a single edge dislocation. We prove that the minimum bending energy associated with strain-free configurations diverges logarithmically with the size of the system.

  10. "Bending the cost curve" in gastroenterology.

    Science.gov (United States)

    Slattery, E; Harewood, G C; Murray, F; Patchett, S

    2013-12-01

    Increasing attention is being focused on reigning in escalating costs of healthcare, i.e. trying to 'bend the cost curve'. In gastroenterology (GI), inpatient hospital care represents a major component of overall costs. This study aimed to characterize the trend in cost of care for GI-related hospitalizations in recent years and to identify the most costly diagnostic groups. All hospital inpatients admitted between January 2008 and December 2009 with a primary diagnosis of one of the six most common GI-related Diagnosis Related Groups (DRGs) in this hospital system were identified; all DRGs contained at least 40 patients during the study period. Patient Level Costing (PLC) was used to express the total cost of hospital care for each patient; PLC comprised a weighted daily bed cost plus cost of all medical services provided (e.g., radiology, pathology tests) calculated according to an activity-based costing approach; cost of medications were excluded. All costs were discounted to 2009 values. Mean length of stay (LOS) was also calculated for each DRG. Over 2 years, 470 patients were admitted with one of the six most common GI DRGs. Mean cost of care increased from 2008 to 2009 for all six DRGs with the steepest increases seen in 'GI hemorrhage (non-complex)' (31 % increase) and 'Cirrhosis/Alcoholic hepatitis (non-complex)' (45 % increase). No differences in readmission rates were observed over time. There was a strong correlation between year-to-year change in costs and change in mean LOS, r = 0.93. The cost of GI-related inpatient care appears to be increasing in recent years with the steepest increases observed in non-complex GI hemorrhage and non-complex Cirrhosis/Alcoholic hepatitis. Efforts to control the increasing costs should focus on these diagnostic categories.

  11. Assessing Impact Direction in 3-point Bending of Human Femora: Incomplete Butterfly Fractures and Fracture Surfaces,.

    Science.gov (United States)

    Isa, Mariyam I; Fenton, Todd W; Deland, Trevor; Haut, Roger C

    2018-01-01

    Current literature associates bending failure with butterfly fracture, in which fracture initiates transversely at the tensile surface of a bent bone and branches as it propagates toward the impact surface. The orientation of the resulting wedge fragment is often considered diagnostic of impact direction. However, experimental studies indicate bending does not always produce complete butterfly fractures or produces wedge fragments variably in tension or compression, precluding their use in interpreting directionality. This study reports results of experimental 3-point bending tests on thirteen unembalmed human femora. Complete fracture patterns varied following bending failure, but incomplete fractures and fracture surface characteristics were observed in all impacted specimens. A flat, billowy fracture surface was observed in tension, while jagged, angular peaks were observed in compression. Impact direction was accurately reconstructed using incomplete tension wedge butterfly fractures and tension and compression fracture surface criteria in all thirteen specimens. © 2017 American Academy of Forensic Sciences.

  12. Application of an eddy current technique to steam generator U-bend characterization. Final report

    International Nuclear Information System (INIS)

    Cramer, W.E.; de la Pintiere, L.; Narita, S.; Bergander, M.J.

    1982-04-01

    Eddy current nondestructive testing techniques are used widely throughout the utility industry for the early detection of tube damage in critical power plant components such as steam generators. In this project, the application of an eddy current technique for the characterization of U-bend transitions in the first row tubing in Westinghouse 51 Series Steam Generators has been investigated. A method has been developed for detection of the opposite transition in the U-bend and for defining its severity. Investigation included two different types of U-bend transitions. Using the developed eddy current method for U-bend characterization, on-site inspection was performed on all tubes in the first row in four 51 Series steam generators in Power Plant Unit No. 2 and in one 51 Series steam generator in Power Plant Unit No. 1. The advantages and limitations of the developed method as well as the recommendations for further investigations are included

  13. Effect of nonlinear stress-strain relationship on bending strength of isotropic graphite

    International Nuclear Information System (INIS)

    Arai, Taketoshi; Oku, Tatsuo

    1978-05-01

    Four-point bending tests were made on rectangular isotropic 7477PT graphite specimens of different sizes to observe the relation between load and outermost fiber strain. Analytical methods, allowing for nonlinear stress-strain relationships different between tension and compression, were developed for calculating the fiber stress distribution in a beam and the failure probability based on the Weibull statistical theory for bending fracture. With increase of the stress, the stress-strain curves for tension deviate from the linearity and also from those for compression. The true bending strengths of the rectangular bars are 10 -- 20 percent lower than elastic bending strengths. Revised Weibull theory gives failure probability distributions agreeing with measured ones, compared with the theory based on elastic behavior. (auth.)

  14. Stress Corrosion Cracking of Basalt/Epoxy Composites under Bending Loading

    Science.gov (United States)

    Shokrieh, Mahmood M.; Memar, Mahdi

    2010-04-01

    The purpose of this research is to study the stress corrosion behavior of basalt/epoxy composites under bending loading and submerged in 5% sulfuric acid corrosive medium. There are limited numbers of research in durability of fiber reinforced polymer composites. Moreover, studies on basalt fibers and its composites are very limited. In this research, mechanical property degradation of basalt/epoxy composites under bending loading and submerged in acidic corrosive medium is investigated. Three states of stress, equal to 30%, 50% and 70% of the ultimate strength of composites, are applied on samples. High stress states are applied to the samples to accelerate the testing procedure. Mechanical properties degradation consists of bending strength, bending modulus of elasticity and fracture energy of samples are examined. Also, a normalized strength degradation model for stress corrosion condition is presented. Finally, microscopic images of broken cross sections of samples are examined.

  15. La inclusión de la línea de tres puntos en minibasket. (Three-point line’s inclusion in mini-basketball.

    Directory of Open Access Journals (Sweden)

    José Ignacio Alonso Roque

    2008-10-01

    Full Text Available Resumen El reglamento de Minibasket no ha sufrido modificaciones significativas desde sus inicios. Para la temporada 2005/2006 la Federación Española de Baloncesto propuso unas modificaciones al reglamento, de las cuales destaca una línea de tres puntos con forma rectangular. El objetivo de este trabajo fue analizar la bibliografía con respecto a las modificaciones reglamentarias y a la línea de tres puntos en Minibasket, desde un enfoque formativo para el jugador. Las reglas de los deportes de iniciación y en concreto de Minibasket deben responder a las demandas de los sujetos, sus necesidades y motivaciones con el fin de lograr un aprendizaje óptimo. En este sentido, tras revisar la bibliografía, no se encuentran estudios científicos que se centren en analizar la inclusión de la línea de tres puntos, ni que analicen la posición y distancia a la que se debe situar dicha línea para mejorar el juego en Minibasket. Sin embargo, la inclusión de la línea de tres puntos, en las competiciones de las cuales se ha encontrado referencias, fue todo un éxito. Por lo que son necesarias investigaciones que ayuden a esclarecer las limitaciones que existen a la hora de proponer una línea de tres puntos, adaptada a las necesidades formativas y a las características de los jugadores de Minibasket, para favorecer el lanzamiento y obtener éxito desde posiciones alejadas. Abstract Mini-basketball rules do not have been changed in a significant way regarding the original idea. For the season 2005-2006, the Spanish Federation of Basketball proposed some changes in its rules, from which a rectangular three-point line stands out. The aim of this study was to examine the bibliography with respect to the rule modifications and to the three-point line in Mini-basketball from a formative point of view. In sport initiation and in Mini-basketball, rules must improve the skill efficiency, performance, enjoyment and satisfaction to the learners. After review

  16. Tensile and bending fatigue of the adhesive interface to dentin.

    Science.gov (United States)

    Belli, Renan; Baratieri, Luiz Narciso; Braem, Marc; Petschelt, Anselm; Lohbauer, Ulrich

    2010-12-01

    The aim of this study was to evaluate the fatigue limits of the dentin-composite interfaces established either with an etch-and-rinse or an one-step self-etch adhesive systems under tensile and bending configurations. Flat specimens (1.2 mm×5 mm×35 mm) were prepared using a plexiglass mold where dentin sections from human third molars were bonded to a resin composite, exhibiting the interface centrally located. Syntac Classic and G-Bond were used as adhesives and applied according to the manufacturer's instructions. The fluorochrome Rhodamine B was added to the adhesives to allow for fractographic evaluation. Tensile strength was measured in an universal testing machine and the bending strength (n=15) in a Flex machine (Flex, University of Antwerp, Belgium), respectively. Tensile (TFL) and bending fatigue limits (BFL) (n=25) were determined under wet conditions for 10(4) cycles following a staircase approach. Interface morphology and fracture mechanisms were observed using light, confocal laser scanning and scanning electron microscopy. Statistical analysis was performed using three-way ANOVA (mod LSD test, pTensile and bending characteristic strengths at 63.2% failure probability for Syntac were 23.8 MPa and 71.5 MPa, and 24.7 MPa and 72.3 MPa for G-Bond, respectively. Regarding the applied methods, no significant differences were detected between adhesives. However, fatigue limits for G-Bond (TFL=5.9 MPa; BFL=36.2 MPa) were significantly reduced when compared to Syntac (TFL=12.6 MPa; BFL=49.7 MPa). Fracture modes of Syntac were generally of adhesive nature, between the adhesive resin and dentin, while G-Bond showed fracture planes involving the adhesive-dentin interface and the adhesive resin. Cyclic loading under tensile and bending configurations led to a significant strength degradation, with a more pronounced fatigue limit decrease for G-Bond. The greater decrease in fracture strength was observed in the tensile configuration. Copyright © 2010 Academy of

  17. Positive solutions of a three-point boundary-value problem for differential equations with damping and actively bounded delayed forcing term

    Directory of Open Access Journals (Sweden)

    George L. Karakostas

    2006-08-01

    Full Text Available We provide sufficient conditions for the existence of positive solutions of a three-point boundary value problem concerning a second order delay differential equation with damping and forcing term whose the delayed part is an actively bounded function, a meaning introduced in [19]. By writing the damping term as a difference of two factors one can extract more information on the solutions. (For instance, in an application, given in the last section, we can give the exact value of the norm of the solution.

  18. Effects of Al(OH)O nanoparticle agglomerate size in epoxy resin on tension, bending, and fracture properties

    Energy Technology Data Exchange (ETDEWEB)

    Jux, Maximilian, E-mail: maximilian.jux@dlr.de [TU Braunschweig, Institute of Adaptronic and Functional Integration (IAF) (Germany); Finke, Benedikt [TU Braunschweig, Institute for Particle Technology (IPAT) (Germany); Mahrholz, Thorsten [DLR Braunschweig, Institute of Composite Structures and Adaptive Systems (FA) (Germany); Sinapius, Michael [TU Braunschweig, Institute of Adaptronic and Functional Integration (IAF) (Germany); Kwade, Arno; Schilde, Carsten [TU Braunschweig, Institute for Particle Technology (IPAT) (Germany)

    2017-04-15

    Several epoxy Al(OH)O (boehmite) dispersions in an epoxy resin are produced in a kneader to study the mechanistic correlation between the nanoparticle size and mechanical properties of the prepared nanocomposites. The agglomerate size is set by a targeted variation in solid content and temperature during dispersion, resulting in a different level of stress intensity and thus a different final agglomerate size during the process. The suspension viscosity was used for the estimation of stress energy in laminar shear flow. Agglomerate size measurements are executed via dynamic light scattering to ensure the quality of the produced dispersions. Furthermore, various nanocomposite samples are prepared for three-point bending, tension, and fracture toughness tests. The screening of the size effect is executed with at least seven samples per agglomerate size and test method. The variation of solid content is found to be a reliable method to adjust the agglomerate size between 138–354 nm during dispersion. The size effect on the Young’s modulus and the critical stress intensity is only marginal. Nevertheless, there is a statistically relevant trend showing a linear increase with a decrease in agglomerate size. In contrast, the size effect is more dominant to the sample’s strain and stress at failure. Unlike microscaled agglomerates or particles, which lead to embrittlement of the composite material, nanoscaled agglomerates or particles cause the composite elongation to be nearly of the same level as the base material. The observed effect is valid for agglomerate sizes between 138–354 nm and a particle mass fraction of 10 wt%.

  19. Effects of Al(OH)O nanoparticle agglomerate size in epoxy resin on tension, bending, and fracture properties

    International Nuclear Information System (INIS)

    Jux, Maximilian; Finke, Benedikt; Mahrholz, Thorsten; Sinapius, Michael; Kwade, Arno; Schilde, Carsten

    2017-01-01

    Several epoxy Al(OH)O (boehmite) dispersions in an epoxy resin are produced in a kneader to study the mechanistic correlation between the nanoparticle size and mechanical properties of the prepared nanocomposites. The agglomerate size is set by a targeted variation in solid content and temperature during dispersion, resulting in a different level of stress intensity and thus a different final agglomerate size during the process. The suspension viscosity was used for the estimation of stress energy in laminar shear flow. Agglomerate size measurements are executed via dynamic light scattering to ensure the quality of the produced dispersions. Furthermore, various nanocomposite samples are prepared for three-point bending, tension, and fracture toughness tests. The screening of the size effect is executed with at least seven samples per agglomerate size and test method. The variation of solid content is found to be a reliable method to adjust the agglomerate size between 138–354 nm during dispersion. The size effect on the Young’s modulus and the critical stress intensity is only marginal. Nevertheless, there is a statistically relevant trend showing a linear increase with a decrease in agglomerate size. In contrast, the size effect is more dominant to the sample’s strain and stress at failure. Unlike microscaled agglomerates or particles, which lead to embrittlement of the composite material, nanoscaled agglomerates or particles cause the composite elongation to be nearly of the same level as the base material. The observed effect is valid for agglomerate sizes between 138–354 nm and a particle mass fraction of 10 wt%.

  20. Comparison of different nail bending apparatus

    NARCIS (Netherlands)

    Vianen, H.P.C.A.; Schot, F.; Vermeltfoort, A.Th.

    1992-01-01

    A research to develope a registrated testmethod to define the allowable bending moment of a nail was started in spring of this year. A request for a registrated testmethod is caused by the final project of ir. H.P.C.A. Vianen ‘s study. The consequence of developing new codes in The Netherlands and

  1. Amplification caused by gravitational bending of light

    International Nuclear Information System (INIS)

    Schneider, P.

    1985-01-01

    Gravitational bending of light may not only lead to multiple imaging (gravitational lens effect), but also affects the apparent luminosity of a source. It is shown here that a mass distribution near the line-of-sight to any source always increases the observable flux relative to the case in which the deflector is absent

  2. Interdisciplinary Invitations: Exploring Gee's Bend Quilts

    Science.gov (United States)

    Mitchell, Rebecca; Whitin, Phyllis; Whitin, David

    2012-01-01

    Engaging with the quilts of Gee's Bend offers a rich opportunity for students in grades four through eight to develop appreciation for pattern, rhythm, and innovation while learning about history, entrepreneurship, and political activism. By easily accessing print, film, and Internet resources teachers can include these vibrant quilts and…

  3. Demonstration model of LEP bending magnet

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    To save iron and raise the flux density, the LEP bending magnet laminations were separated by spacers and the space between the laminations was filled with concrete. This is a demonstration model, part of it with the spaced laminations only, the other part filled with concrete.

  4. Tubular lining material for pipelines having bends

    Energy Technology Data Exchange (ETDEWEB)

    Moringa, A.; Sakaguchi, Y.; Hyodo, M.; Yagi, I.

    1987-03-24

    A tubular lining material for pipelines having bends or curved portions comprises a tubular textile jacket made of warps and wefts woven in a tubular form overlaid with a coating of a flexible synthetic resin. It is applicable onto the inner surface of a pipeline having bends or curved portions in such manner that the tubular lining material with a binder onto the inner surface thereof is inserted into the pipeline and allowed to advance within the pipeline, with or without the aid of a leading rope-like elongated element, while turning the tubular lining material inside out under fluid pressure. In this manner the tubular lining material is applied onto the inner surface of the pipeline with the binder being interposed between the pipeline and the tubular lining material. The lining material is characterized in that a part of all of the warps are comprised of an elastic yarn around which, over the full length thereof, a synthetic fiber yarn or yarns have been left-and/or right-handedly coiled. This tubular lining material is particularly suitable for lining a pipeline having an inner diameter of 25-200 mm and a plurality of bends, such as gas service pipelines or house pipelines, without occurrence of wrinkles in the lining material in a bend.

  5. Systematisk løbende refleksion

    DEFF Research Database (Denmark)

    Kristiansson, Michael

    2010-01-01

    Artiklen omhandler en model kaldet systematisk løbende refleksion, der repræsenterer en procedure til overvejelse og genovervejelse af de vurderingskriterier, man lægger til grund for evaluering af et udviklingsprojekt. Pointen er at justere udviklingsprojektet ind i en ønsket retning. Formålet m...

  6. Fuzzy model for Laser Assisted Bending Process

    Directory of Open Access Journals (Sweden)

    Giannini Oliviero

    2016-01-01

    Full Text Available In the present study, a fuzzy model was developed to predict the residual bending in a conventional metal bending process assisted by a high power diode laser. The study was focused on AA6082T6 aluminium thin sheets. In most dynamic sheet metal forming operations, the highly nonlinear deformation processes cause large amounts of elastic strain energy stored in the formed material. The novel hybrid forming process was thus aimed at inducing the local heating of the mechanically bent workpiece in order to decrease or eliminate the related springback phenomena. In particular, the influence on the extent of springback phenomena of laser process parameters such as source power, scan speed and starting elastic deformation of mechanically bent sheets, was experimentally assessed. Consistent trends in experimental response according to operational parameters were found. Accordingly, 3D process maps of the extent of the springback phenomena according to operational parameters were constructed. The effect of the inherent uncertainties on the predicted residual bending caused by the approximation in the model parameters was evaluated. In particular, a fuzzy-logic based approach was used to describe the model uncertainties and the transformation method was applied to propagate their effect on the residual bending.

  7. Symmetric bends how to join two lengths of cord

    CERN Document Server

    Miles, Roger E

    1995-01-01

    A bend is a knot securely joining together two lengths of cord (or string or rope), thereby yielding a single longer length. There are many possible different bends, and a natural question that has probably occurred to many is: "Is there a 'best' bend and, if so, what is it?"Most of the well-known bends happen to be symmetric - that is, the two constituent cords within the bend have the same geometric shape and size, and interrelationship with the other. Such 'symmetric bends' have great beauty, especially when the two cords bear different colours. Moreover, they have the practical advantage o

  8. A modified split Hopkinson pressure bar for toughness tests

    Science.gov (United States)

    Granier, N.; Grunenwald, T.

    2006-08-01

    In order to characterize material toughness or to study crack arrest under dynamic loading conditions, a new testing device has been developed at CEA/Valduc. A new Split Hopkinson Pressure Bar (SHPB) has been modified: it is now composed of a single incident bar and a double transmitter bar. With this facility, a notched specimen can be loaded under three points bending conditions. Qualification tests with titanium and steel notched samples are presented. Data treatment software has been adapted to estimate the sample deflection as a function of time and treat the energy balance. These results are compared with classical Charpy experiments. Effect of various contact areas between specimen and bars are studied to point out their influence on obtained measurements. The advantage of a “knife” contact compared to a plane one is then clearly demonstrated. All results obtained with this new testing device are in good agreement and show a reduced scattering.

  9. Mechano sorptive behaviour of notched beams in bending

    DEFF Research Database (Denmark)

    Jensen, Signe Kamp; Hoffmeyer, Preben

    1996-01-01

    Short term bending tests with end-notched beams at constant or varying moisture content have shown an apparent contradictory dependency between moisture content and strength. The higher the moisture content the higher the strength. Varying moisture results in particularly significant differences...... and by neglecting deformation due to shear. Compression stresses perpendicular to grain in excess of 6 MPa were found in the vicinity of the notch following a period of adsorption. Similarly, small tension stresses of the order 1 MPa were registered in this area when the specimens were at their most dry condition...

  10. Inherent safety that the reactivity effect of core bending in fast reactors brings about

    International Nuclear Information System (INIS)

    Nakagawa, Masatoshi; Yagawa, Genki.

    1994-01-01

    FBRs have the merit on safety by low operation pressure and the large heat capacity of coolant, in addition, due to the core temperature rise at the time of accidents and the thermal expansion of core structures, the negative feedback of reactivity can be expected. Recently, attention has been paid to the negative feedback of reactivity due to core bending. It can be expected also in the core of limited free bow type. Bending is caused by the difference of thermal expansion on six surfaces of hexagonal wrapper tubes. The bending changes core reactivity and exerts effects to fuel exchange force and operation, insertion of control rods and the structural soundness of fuel assemblies. for the purpose of limiting the effect that core bending exerts to core characteristics to allowable range, core constraint mechanism is installed. The behavior of core bending at the time of anticipated transient without scram is explained. The example of the analysis of PRISM reactor is shown. The experiment that confirmed the negative feedback of reactivity due to core bending under the condition of ULOF was that at the fast flux test facility. (K.I.)

  11. Springback Mechanism Analysis and Experiments on Robotic Bending of Rectangular Orthodontic Archwire

    Science.gov (United States)

    Jiang, Jin-Gang; Han, Ying-Shuai; Zhang, Yong-De; Liu, Yan-Jv; Wang, Zhao; Liu, Yi

    2017-11-01

    Fixed-appliance technology is the most common and effective malocclusion orthodontic treatment method, and its key step is the bending of orthodontic archwire. The springback of archwire did not consider the movement of the stress-strain-neutral layer. To solve this problem, a springback calculation model for rectangular orthodontic archwire is proposed. A bending springback experiment is conducted using an orthodontic archwire bending springback measurement device. The springback experimental results show that the theoretical calculation results using the proposed model coincide better with the experimental testing results than when movement of the stress-strain-neutral layer was not considered. A bending experiment with rectangular orthodontic archwire is conducted using a robotic orthodontic archwire bending system. The patient expriment result show that the maximum and minimum error ratios of formed orthodontic archwire parameters are 22.46% and 10.23% without considering springback and are decreased to 11.35% and 6.13% using the proposed model. The proposed springback calculation model, which considers the movement of the stress-strain-neutral layer, greatly improves the orthodontic archwire bending precision.

  12. Study of Transport and Micro-structural properties of Magnesium Di-Boride Strand under react and bend mode and bend and react mode

    International Nuclear Information System (INIS)

    Kundu, Ananya; Kumar Das, Subrat; Bano, Anees; Pradhan, Subrata

    2017-01-01

    I-V characterization of commercial multi-filamentary Magnesium Di-Boride (MgB 2 ) wire of diameter 0.83 mm were studied in Cryocooler at self-field I-V characterization system under both react and bend mode and bend and react mode for a range of temperature 6 K - 25 K. This study is of practical technical relevance where the heat treatment of the superconducting wire makes the wire less flexible for winding in magnet and in other applications. In the present work the bending diameter was varied from 40 mm to 20 mm and for each case critical current (I c ) of the strand is measured for above range of temperature. A customized sample holder is fabricated and thermally anchored with the 2 nd cold stage of Cryocooler. It is observed from the measurement that the strand is more susceptible to degradation for react and bend cases. The transport measurement of the strand was accompanied by SEM analyses of bend samples. Also the tensile strength of the raw strands and the heat treated strands were carried out at room temperature in Universal Testing Machine (UTM) to have an estimate about the limiting winding tension value during magnet fabrication. (paper)

  13. Comparison of bending strain effect on the critical current degradation of Bi-2223 tapes through different measurement techniques

    International Nuclear Information System (INIS)

    Shin, Hyung-Seop; Dizon, John R.C.; Katagiri, Kazumune; Kuroda, Tsuneo

    2006-01-01

    Unlike in the tests under tension, transverse compression and torsion, the bending test of HTS tapes requires lots of time and effort since the sample should be bent or mounted successively onto sample holders having different bending radius at room temperature, and then cooled down to measure the critical current, I c , up to 77 K at each step. In this process, the effect of repeated thermal cycle on the I c degradation can not be ignored. The establishment of a practical and effective measurement method of the critical current as a function of bending strain for HTS tapes should be considered. A ρ-shaped sample holder which provides a series of bending strains to HTS tapes was newly devised. In this case, the connection of Bi-2223 tapes to current terminal blocks was done mechanically. Using this sample holder, the bending strain effect on the I c degradation behavior in Bi-2223 tapes in the easy bending mode was investigated, and discussed them comparing with other data obtained by different testing methods, namely, the conventional bending method using FRP sample holders and the Goldacker-type continuous bending test rig. Commercially available Bi-2223 tapes which have different reinforcing structures were supplied for this study. By using the newly devised ρ-shaped sample holder, it was possible to obtain a bending strain characteristic of I c in Bi-2223 tapes at one time cooling which lessened the testing time significantly when compared with other testing methods and supply good reproducible data. The I c degradation behavior in Bi-2223 tapes was similar to the cases using FRP sample holders although it showed slightly higher I c values

  14. PERFORMANCE OF STEEL FIBER REINFORCED CONCRETE – COMPARABILITY OF TESTS ACCORDING TO DAFSTB-GUIDELINE "STAHLFASERBETON" AND EN 14651

    Directory of Open Access Journals (Sweden)

    Steffen Anders

    2016-12-01

    Full Text Available For the determination of the performance of steel-fiber reinforced concrete (SFRC, the post-peak flexural strengths are used. In different national and European standards, different test-setups are defined, resulting in double efforts for testing for the manufacturers. In addition, the German national guideline "Stahlfaserbeton (DAfStb" on SFRC is well established European-wide, but the test standard is specifically national, demanding a four-point-bending tests using unnotched beams. Contrarily, the European standard EN 14651 as well as the Model Code 2010 demand three-point bending tests using notched specimens. Applying the national guideline is obligatory in Germany for structural use of SFRC. Therefore, it is essential to standardize the performance evaluation of SFRC based on commonly applied international guidelines. In the following, an approach is presented especially dealing with the problem of random occurrence of cracks in the four-point-bending tests. It is shown, that neglecting the point of crack can systematically under-estimate the performance of SFRC especially at deformations.

  15. The reliability of the newly developed bending tester for the measurement of flexural rigidity of textile materials

    Science.gov (United States)

    Haji Musa, A. Binti; Malengier, B.; Van Langenhove, L.; Stevens, C.

    2017-10-01

    A new automated bending tester was developed in Ghent University, Belgium to reduce the human interference in the bending measurement. This paper reports the investigations made on the tester in order to confirm the reliability of its measurement. For that, 11 types of fabrics with different construction parameters were tested for their bending length and flexural rigidity using the new bending tester and the results were compared with that of the standard or manual bending tester, which were conducted in accordance with BS 3356:1990 standard method. Statistical analysis confirms that both measurements are strongly correlated with Pearson’s R≥ 0.90 for all the measurements made. It means that the results from the new automated tester show good correlations with the standard measurement. Nevertheless, this prototype version of the new tester still needs to be adjusted to optimise the functionality of it and further investigations should be done to justify the robustness of the results.

  16. Stratigraphy and Age of Paleoproterozoic Birimian Volcaniclastic Sequence in the Cape Three Points area, Axim-Konongo (Ashanti) Belt, Southwest Ghana

    Science.gov (United States)

    Yoshimaru, S.; Kiyokawa, S.; Ito, T.; Ikehara, M.; Horie, K.; Takehara, M.; Sano, T.; Nyame, F. K.; Tetteh, G. M.

    2016-12-01

    This study investigated the depositional environments and bioactivities of well preserved volcaniclastic sequences in the Cape Three Points area in the Paleoproterozoic Axim-Konongo (Ashanti) belt in the Birimian of Ghana. Our current research outlines the stratigraphy, structure, approximate age and depositional setting of the volcaniclastic sequence in the Cape Three Points area in Ghana, West Africa.Axim-Konongo (Ashanti) belt is composed of mainly andesitic basalts, volcaniclastic rocks and belt type granitoids, which are unconformably overlain by Tarkwaian conglomerates and metasedimentary rocks. The rocks show NE-SW strike with maximum depositional age of overlying metasedimentary rocks of 2154±2 Ma (U-Pb zircon; Oberthür et al., 1998). The oldest age of an intrusive into Birimian volcanic rock near Sekondi is 2174±2 Ma (U-Pb zircon; Oberthür et al., 1998). Thick volcaniclastic succession over 4000 m thickness was reconstructed for 1000 m thickness after detailed field investigations. The succession shows approximately N-S strike mainly 60-80° dip to the east and generally upward sequence. The rocks were affected by greenschist facies metamorphism. TiO2/Al2O3 ratios of chromites and whole- rock trace elements compositions with low Nb concentration and high LREE concentration support deposition on mid-deep sea floor in a volcanic arc. New age data were obtained from foliated porphyritic dyke which occurs in the Cape Three Points area. Zircon grains, measured by SHRIMP at National Institute of Polar Research (NIPR), yielded a weighted mean 204Pb-corrected 207Pb/206Pb age of 2265.6±4.6 Ma (95% confidence). Thus, the volcaniclastic sequence was deposited before 2265.6±4.6 Ma and was deformed after 2265 Ma. 2260 Ma is the oldest age at which early volcanic activity in the Birimian terrane occurred (Loh and Hirdes, 1999). References Oberthür T et al. (1998) Precambrian Research 89: 129-143 Loh G and Hirdes W (1999) Exlplanatory Notes for the Geological Map

  17. Incomplete (bending) fractures of the mandibular condyle in children

    International Nuclear Information System (INIS)

    Ahrendt, D.; Swischuk, L.E.; Hayden, C.K. Jr.; Texas Univ., Galveston

    1984-01-01

    Incomplete, bending or bowing fractures of the mandibular condyle in children frequently go undetected. The reason is that the bending deformity often is subtle and passes for normal. This is especially true if the fractures are bilateral. (orig.)

  18. Investigation of Structural Behavior due to Bend-Twist Couplings in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Fedorov, Vladimir; Dimitrov, Nikolay Krasimirov; Berggreen, Christian

    2010-01-01

    for predicting the torsional response of the wind turbine blades with built-in bend-twist couplings. Additionally, a number of improved full-scale tests using an advanced bi-axial servo-hydraulic load control have been performed on a wind turbine blade section provided by Vestas Wind Systems A/S. In the present......One of the problematic issues concerning the design of future large composite wind turbine blades is the prediction of bend-twist couplings and torsion behaviour. The current work is a continuation of a previous work [1,2], and it examines different finite element modelling approaches...... of the blade cross section as the defining surface, off-setting the location of the shell elements according to the specified thickness. The experimental full-scale tests were carried out on an 8 m section of a 23 m wind turbine blade with specially implemented bend-twist coupling. The blade was tested under...

  19. A Study on U-bending Technology using Rotary Draw Bending

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Ok-gyu; Kim, Won-seok [BHI Co., Gyunsang-Namdo (Korea, Republic of); Ku, Tae-wan [Pusan National Univ., Busan (Korea, Republic of)

    2014-10-15

    In the steam generator, heat transfer phenomenon for producing the steam between the primary system of the nuclear reactor and the secondary one occurs around the heat transfer tube. That is, the primary coolant with high temperature(320 .deg.. C) and high pressure(157Kgf/cm2) derived from the reactor flows in the heat transfer tube, and the secondary one runs out that tube. Therefore, it is able to mention that the heat transfer tube itself is a boundary of the heat transfer phenomenon. The heat transfer tube bundle of each steam generator used for the PWR and the PHWR(Pressurized Heavy Water Reactor) is generally composed of about 8,000-13,000 U-tubes. And these tubes are the core component as the structural and heat transfer material in the steam generator, which is in charge of cooling about 70% of the cooling surface of the primary system. For achieving the U-bending process with the thin walled tube, generally, a mandrel could be inserted in the tube according to the bending radius. But when the bending radius is small, the tube U-bending process could be also performed without the mandrel. In this study, numerical and experimental investigations on the U-bending process for producing the heat transfer tubes by using the straight and long tubes were carried out with the consideration of the elastic recovery after the U-bending. In the numerical approach, finite element analysis scheme was adopted with a commercial code, ABAQUS Implicit/Explicit. As the precedent study, the related experiment was also performed to verify the predicted results on the ovality and the minimum wall thickness of the U-bending heat transfer tube. Furthermore, its bending process was also conducted to analyze the deformation behavior for the Alloy 690 tube. In this study, the U-bending process was considered to simulate and manufactured the heat transfer tube used for the steam generator. To investigate the deformation behavior of the U-bending process, and a series of the

  20. Three Points Approach (3PA) for urban flood risk management: A tool to support climate change adaptation through transdisciplinarity and multifunctionality

    DEFF Research Database (Denmark)

    Fratini, Chiara; Geldof, Govert Daan; Kluck, J.

    2012-01-01

    Urban flood risk is increasing as a consequence of climate change and growing impervious surfaces. Increasing complexity of the urban context, gradual loss of tacit knowledge and decreasing social awareness are at the same time leading to inadequate choices with respect to urban flood risk...... management (UFRM). The European Flood Risk Directive emphasises the need for non-structural measures aimed at urban resilience and social preparedness. The Three Points Approach (3PA) provides a structure facilitating the decision making processes dealing with UFRM. It helps to accept the complexity...... water managers and operators an efficient communication tool and thinking system, which helps to reduce complexity to a level suitable when organising strategy plans for UFRM and urban adaptation to climate change....

  1. Higher-order superclustering in the Ostriker explosion scenario I. Three-point correlation functions of clusters in the constant and power-law models

    International Nuclear Information System (INIS)

    Jing Yipeng.

    1989-08-01

    We study the three-point correlation functions ρ(r, u, v) of clusters in the two types of explosion models by numerical simulations. The clusters are identified as the ''knots'' where three shells intersect. The shells are assumed to have the constant radii (the constant models) or have the power law radius distributions (the power law models). In both kinds of models, we find that ρ can be approximately expressed by the scaling form: ρ = Q(ξ 1 ξ 2 + ξ 2 ξ 3 + ξ 3 ξ 1 ), and Q is about 1, which are consistent with the observations. More detailed studies of r-, u- and v-dependences of Q show that Q remains constant in the constant models. In the power-law models, Q is independent of the shape parameters u and v, while it has some moderate r-dependences (variations with r about a factor of 1 or 2). (author). 27 refs, 9 figs

  2. Why the Three-Point Rule Failed to Sufficiently Reduce the Number of Draws in Soccer: An Application of Prospect Theory.

    Science.gov (United States)

    Riedl, Dennis; Heuer, Andreas; Strauss, Bernd

    2015-06-01

    Incentives guide human behavior by altering the level of external motivation. We apply the idea of loss aversion from prospect theory (Kahneman & Tversky, 1979) to the point reward systems in soccer and investigate the controversial impact of the three-point rule on reducing the fraction of draws in this sport. Making use of the Poisson nature of goal scoring, we compared empirical results with theoretically deduced draw ratios from 24 countries encompassing 20 seasons each (N = 118.148 matches). The rule change yielded a slight reduction in the ratio of draws, but despite adverse incentives, still 18% more matches ended drawn than expected, t(23) = 11.04, p prospect theory assertions. Alternative point systems that manipulated incentives for losses yielded reductions at or below statistical expectation. This provides support for the deduced concept of how arbitrary aims, such as the reduction of draws in the world's soccer leagues, could be more effectively accomplished than currently attempted.

  3. Vortex breakdown in simple pipe bends

    Science.gov (United States)

    Ault, Jesse; Shin, Sangwoo; Stone, Howard

    2016-11-01

    Pipe bends and elbows are one of the most common fluid mechanics elements that exists. However, despite their ubiquity and the extensive amount of research related to these common, simple geometries, unexpected complexities still remain. We show that for a range of geometries and flow conditions, these simple flows experience unexpected fluid dynamical bifurcations resembling the bubble-type vortex breakdown phenomenon. Specifically, we show with simulations and experiments that recirculation zones develop within the bends under certain conditions. As a consequence, fluid and particles can remain trapped within these structures for unexpectedly-long time scales. We also present simple techniques to mitigate this recirculation effect which can potentially have impact across industries ranging from biomedical and chemical processing to food and health sciences.

  4. Nuclear fuels accounting interface: River Bend experience

    International Nuclear Information System (INIS)

    Barry, J.E.

    1986-01-01

    This presentation describes nuclear fuel accounting activities from the perspective of nuclear fuels management and its interfaces. Generally, Nuclear Fuels-River Bend Nuclear Group (RBNG) is involved on a day-by-day basis with nuclear fuel materials accounting in carrying out is procurement, contract administration, processing, and inventory management duties, including those associated with its special nuclear materials (SNM)-isotopics accountability oversight responsibilities as the Central Accountability Office for the River Bend Station. As much as possible, these duties are carried out in an integrated, interdependent manner. From these primary functions devolve Nuclear Fuels interfacing activities with fuel cost and tax accounting. Noting that nuclear fuel tax accounting support is of both an esoteric and intermittent nature, Nuclear Fuels-RBNG support of developments and applications associated with nuclear fuel cost accounting is stressed in this presentation

  5. Effect of confinements: Bending in Paramecium

    Science.gov (United States)

    Eddins, Aja; Yang, Sung; Spoon, Corrie; Jung, Sunghwan

    2012-02-01

    Paramecium is a unicellular eukaryote which by coordinated beating of cilia, generates metachronal waves which causes it to execute a helical trajectory. We investigate the swimming parameters of the organism in rectangular PDMS channels and try to quantify its behavior. Surprisingly a swimming Paramecium in certain width of channels executes a bend of its flexible body (and changes its direction of swimming) by generating forces using the cilia. Considering a simple model of beam constrained between two walls, we predict the bent shapes of the organism and the forces it exerts on the walls. Finally we try to explain how bending (by sensing) can occur in channels by conducting experiments in thin film of fluid and drawing analogy to swimming behavior observed in different cases.

  6. Measuring device for bending of beryllium reflector

    International Nuclear Information System (INIS)

    Nishida, Seiri; Sakamoto, Naoki.

    1994-01-01

    The device of the present invention can measure bending of a beryllium reflector formed in a reactor core of a nuclear reactor by a relatively easy operation. Namely, a sensor portion comprises a long-support that can be inserted to a fuel element-insertion hole disposed in the reactor and a plurality of distance sensors disposed in a longitudinal direction of the support. A supersonic wave sensor which is advantageous in the heat resistance, the size and the accuracy and can conduct measurement in water relatively easily is used as the distance sensors. However, other sensors, instead of the sensor described above, may also be used. The plurality of distance sensors detect the bending amount of the beryllium reflector in the longitudinal direction by such an easy operation of inserting such a sensor portion to the fuel element-insertion hole upon exchange of fuel elements. (I.S.)

  7. Molecular Origin of Model Membrane Bending Rigidity

    International Nuclear Information System (INIS)

    Kurtisovski, Erol; Taulier, Nicolas; Waks, Marcel; Ober, Raymond; Urbach, Wladimir

    2007-01-01

    The behavior of the bending modulus κ of bilayers in lamellar phases was studied by Small Angle X-ray Scattering technique for various nonionic C i E j surfactants. The bilayers are either unswollen and dispersed in water or swollen by water and dispersed in dodecane. For unswollen bilayers, the values of κ decrease with both an increase in the area per surfactant molecule and in the polar head length. They increase when the aliphatic chain length increases at constant area per surfactant molecule. Whereas for water-swollen membranes, the values of κ decrease as the content of water increases converging to the value of the single monolayer bending modulus. Such a behavior results from the decoupling of the fluctuations of the two surfactant membrane monolayers. Our results emphasize the determinant contribution of the surfactant conformation to κ

  8. Holey fibers for low bend loss

    Science.gov (United States)

    Nakajima, Kazuhide; Saito, Kotaro; Yamada, Yusuke; Kurokawa, Kenji; Shimizu, Tomoya; Fukai, Chisato; Matsui, Takashi

    2013-12-01

    Bending-loss insensitive fiber (BIF) has proved an essential medium for constructing the current fiber to the home (FTTH) network. By contrast, the progress that has been made on holey fiber (HF) technologies provides us with novel possibilities including non-telecom applications. In this paper, we review recent progress on hole-assisted type BIF. A simple design consideration is overviewed. We then describe some of the properties of HAF including its mechanical reliability. Finally, we introduce some applications of HAF including to high power transmission. We show that HAF with a low bending loss has the potential for use in various future optical technologies as well as in the optical communication network.

  9. Foam topology. Bending versus stretching dominated architectures

    International Nuclear Information System (INIS)

    Deshpande, V.; Ashby, M.; Fleck, N.

    2000-01-01

    Cellular solids can deform by either the bending or stretching of the cell walls. While most cellular solids are bending-dominated, those that are stretching-dominated are much more weight-efficient for structural applications. In this study we have investigated the topological criteria that dictate the deformation mechanism of a cellular solid by analysing the rigidity (or otherwise) of pin-jointed frameworks comprising inextensional struts. We show that the minimum node connectivity for a special class of lattice structured materials to be stretching-dominated is 6 for 2D foams and 12 for 3D foams. Similarly, sandwich plates comprising of truss cores faced with planar trusses require a minimum node connectivity of 9 to undergo stretching-dominated deformation for all loading states. (author)

  10. Instrumented impact testing machine with reduced specimen oscillation effects

    International Nuclear Information System (INIS)

    Rintamaa, R.; Rahka, K.; Wallin, K.

    1984-07-01

    Owing to small and inexpensive specimens the Charpy impact test is widely used in quality control and alloy development. Limitations in power reactor survellance capsules it is also widely used for safety analysis purposes. Instrumenting the tup and computerizing data acquisition, makes dynamic fracture mechanics data measurement possible and convenient. However, the dynamic effects (inertia forces, specimen oscillations) in the impact test cause inaccuracies in the recorded load-time diagram and hence diminish the reliability of the calculated dynamic fracture mechanics parameters. To decrease inaccuracies a new pendulum type of instrumented impact test apparatus has been developed and constructed in the Metals Laboratory of the Technical Research Centre of Finland. This tester is based on a new principle involving inverted test geometry. The purpose of the geometry inversion is to reduce inertia load and specimen oscillation effects. Further, the new impact tester has some other novel features: e.g. the available initia impact energy is about double compared to the conventional standard (300 J) impact tester allowing the use of larger (10 x 20 x 110 mm) bend specimens than normal Charpy specimens. Also, the rotation asix in the three point bending is nearly stationary making COD-measurements possible. An experimental test series is described in which the inertia effects and specimen oscillations are compared in the conventional and new impact tester utilizing Charpy V-notch specimens. Comparison of the two test geometries is also made with the aid of an analytical model using finite element method (FEM) analysis. (author)

  11. Hydrodynamic processes in sharp meander bends and their morphological implications

    NARCIS (Netherlands)

    Blanckaert, K.

    2011-01-01

    The migration rate of sharp meander bends exhibits large variance and indicates that some sharply curved bends tend to stabilize. These observations remain unexplained. This paper examines three hydrodynamic processes in sharp bends with fixed banks and discusses their morphological implications:

  12. Effects of laser bending on the microstructural constituents

    CSIR Research Space (South Africa)

    Tshabalala, L

    2012-01-01

    Full Text Available This article will illustrate the correlation between microstructural and microhardness changes in high-strength-low-alloy steel that occur as a result of laser-bending. Laser bending is a process of bending metal shapes using the laser beam...

  13. Metal-bending brake facilitates lightweight, close-tolerance fabrication

    Science.gov (United States)

    Ercoline, A. L.; Wilton, K. B.

    1964-01-01

    A lightweight, metal bending brake ensures very accurate bends. Features of the brake that adapt it for making complex reverse bends to close tolerances are a pronounced relief or cutaway of the underside of the bodyplate combined with modification in the leaf design and its suspension.

  14. Characterization and study of photonic crystal fibres with bends

    International Nuclear Information System (INIS)

    Belhadj, W.; AbdelMalek, F.; Bouchriha, H.

    2006-01-01

    Analysis of a photonic crystal fibre (PRCF) with bends is presented. Using the versatile finite difference time domain method, the modal characteristics of the PCFs are found. Possibilities of employing PCFs with bends in sensing are discussed. It is found that a large evanescent field is present when the bend angle exceeds 45 o

  15. Smoothed particle hydrodynamics simulations of flow separation at bends

    NARCIS (Netherlands)

    Hou, Q.; Kruisbrink, A.C.H.; Pearce, F.R.; Tijsseling, A.S.; Yue, T.

    2014-01-01

    The separated flow in two-dimensional bends is numerically simulated for a right-angled bend with different ratios of the channel widths and for a symmetric bend with different turning angles. Unlike the potential flow solutions that have several restrictive assumptions, the Euler equations are

  16. Smoothed particle hydrodynamics simulations of flow separation at bends

    NARCIS (Netherlands)

    Hou, Q.; Kruisbrink, A.C.H.; Pearce, F.R.; Tijsseling, A.S.; Yue, T.

    2013-01-01

    The separated flow in two-dimensional bends is numerically simulated for a right-angled bend with different ratios of the channel widths and for a symmetric bend with different turning angles. Unlike the potential flow solutions that have several restrictive assumptions, the Euler equations are

  17. AA, assembly of wide bending magnet

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The very particular lattice of the AA required 2 types of dipoles (bending magnets; BST, short and wide; BLG, long and narrow). The wide ones had a steel length of 2.71 m, a "good field" width of 0.564 m, and a weight of about 75 t. Here we see the copper coils being hoisted onto the lower half of a BST. See also 7811105, 8006050. For a BLG, see 8001044.

  18. The dryout phenomenon in the bend of a vertical U-tube evaporator

    International Nuclear Information System (INIS)

    Bailey, N.A.

    1977-02-01

    Tests have been carried out on an electrically heated vertical U-tube evaporator test section to investigate the phenomenon of 'premature' bend dryout and its subsequent disappearance. The dryout results are compared satisfactorily with an analytically based model while the associated wall temperatures are investigated with the aid of a simple one-dimensional conduction model. (author)

  19. Closed-form plastic collapse loads of pipe bends under combined pressure and in-plane bending

    International Nuclear Information System (INIS)

    Oh, Chang Sik; Kim, Yun Jae

    2006-01-01

    Based on three-dimensional (3-D) FE limit analyses, this paper provides plastic limit, collapse and instability load solutions for pipe bends under combined pressure and in-plane bending. The plastic limit loads are determined from FE limit analyses based on elastic-perfectly plastic materials using the small geometry change option, and the FE limit analyses using the large geometry change option provide plastic collapse loads (using the twice-elastic-slope method) and instability loads. For the bending mode, both closing bending and opening bending are considered, and a wide range of parameters related to the bend geometry is considered. Based on the FE results, closed-form approximations of plastic limit and collapse load solutions for pipe bends under combined pressure and bending are proposed

  20. First multi-bend achromat lattice consideration

    Energy Technology Data Exchange (ETDEWEB)

    Einfeld, Dieter, E-mail: dieter.einfeld@maxlab.lu.se [Lund University, PO Box 118, Lund SE-221 00 (Sweden); Plesko, Mark [COSYLAB, Teslova ulica 30, Ljubljana SI-1000 (Slovakia); Schaper, Joachim [HAWK University of Applied Sciences and Arts, Hohnsen 4, D-31134 Hildesheim (Germany)

    2014-08-27

    The first proposed lattice for a ‘diffraction-limited light source’ is reported. This approach has now more or less been used for the MAX IV project. By the beginning of 1990, three third-generation synchrotron light sources had been successfully commissioned in Grenoble, Berkeley and Trieste (ESRF, ALS and ELETTRA). Each of these new machines reached their target specifications without any significant problems. In parallel, already at that time discussions were underway regarding the next generation, the ‘diffraction-limited light source (DLSR)’, which featured sub-nm rad electron beam emittance, photon beam brilliance exceeding 10{sup 22} and the potential to emit coherent radiation. Also, at about that time, a first design for a 3 GeV DLSR was developed, based on a modified multiple-bend achromat (MBA) design leading to a lattice with normalized emittance of ∊{sub x} = 0.5 nm rad. The novel feature of the MBA lattice was the use of seven vertically focusing bend magnets with different bending angles throughout the achromat cell to keep the radiation integrals and resulting beam emittance low. The baseline design called for a 400 m ring circumference with 12 straight sections of 6 m length. The dynamic aperture behaviour of the DLSR lattice was estimated to produce > 5 h beam lifetime at 100 mA stored beam current.

  1. The multi-bend achromat storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Mikael [MAX IV Laboratory Ole Römers v. 1 22100 Lund Sweden (Sweden)

    2016-07-27

    Not very long ago, the 3{sup rd} generation storage ring technology was judged as mature. Most of the 3{sup rd} generation storage rings used the Double-Bend Achromat (DBA) or Triple-Bend Achromat (TBA) concepts. It was however a well-known fact that increasing the number of magnet cells in the rings is a powerful way of decreasing the electron beam emittance and thus the source brilliance, but at the penalty of increasing the size and cost of the rings. Preserving the Dynamic Aperture (DA) in the rings became also an issue when increasing the number of magnet cells. The Multi-Bend Achromat (MBA) concept, including a miniaturization of the ring elements, has now drastically changed the picture. The MBA rings, now in construction or being planned, offer orders of magnitudes higher brilliance than rings of conventional designs. Several light sources around the world are now implementing or planning to implement this MBA concept. This article touches on the science drivers for higher brilliance. We will then describe the MBA concept with its advantages as well as its challenges. A short survey of the MBA activity around the world will also be presented. The author apologies for focusing on the MAX IV project regarding technical solutions. This is motivated by that MAX IV is the facility he knows best and it might be regarded as a fore-runner for the MBA concept.

  2. The multi-bend achromat storage rings

    International Nuclear Information System (INIS)

    Eriksson, Mikael

    2016-01-01

    Not very long ago, the 3"r"d generation storage ring technology was judged as mature. Most of the 3"r"d generation storage rings used the Double-Bend Achromat (DBA) or Triple-Bend Achromat (TBA) concepts. It was however a well-known fact that increasing the number of magnet cells in the rings is a powerful way of decreasing the electron beam emittance and thus the source brilliance, but at the penalty of increasing the size and cost of the rings. Preserving the Dynamic Aperture (DA) in the rings became also an issue when increasing the number of magnet cells. The Multi-Bend Achromat (MBA) concept, including a miniaturization of the ring elements, has now drastically changed the picture. The MBA rings, now in construction or being planned, offer orders of magnitudes higher brilliance than rings of conventional designs. Several light sources around the world are now implementing or planning to implement this MBA concept. This article touches on the science drivers for higher brilliance. We will then describe the MBA concept with its advantages as well as its challenges. A short survey of the MBA activity around the world will also be presented. The author apologies for focusing on the MAX IV project regarding technical solutions. This is motivated by that MAX IV is the facility he knows best and it might be regarded as a fore-runner for the MBA concept.

  3. Forming and bending of metal foams

    International Nuclear Information System (INIS)

    Nebosky, Paul; Tyszka, Daniel; Niebur, Glen; Schmid, Steven

    2004-01-01

    This study examines the formability of a porous tantalum foam, known as trabecular metal (TM). Used as a bone ingrowth surface on orthopedic implants, TM is desirable due to its combination of high strength, low relative density, and excellent osteoconductive properties. This research aims to develop bend and stretch forming as a cost-effective alternative to net machining and EDM for manufacturing thin parts made of TM. Experimentally, bending about a single axis using a wiping die was studied by observing cracking and measuring springback. It was found that die radius and clearance strongly affect the springback properties of TM, while punch speed, embossings, die radius and clearance all influence cracking. Depending on the various combinations of die radius and clearance, springback factor ranged from .70-.91. To examine the affect of the foam microstructure, bending also was examined numerically using a horizontal hexagonal mesh. As the hexagonal cells were elongated along the sheet length, elastic springback decreased. This can be explained by the earlier onset of plastic hinging occurring at the vertices of the cells. While the numerical results matched the experimental results for the case of zero clearance, differences at higher clearances arose due to an imprecise characterization of the post-yield properties of tantalum. By changing the material properties of the struts, the models can be modified for use with other open-cell metallic foams

  4. Emittance growth of bunched beams in bends

    International Nuclear Information System (INIS)

    Carlsten, B.E.; Raubenheimer, T.O.

    1995-01-01

    Talman [Phys. Rev. Lett. 56, 1429 (1986)] has proposed a novel relativistic effect that occurs when a charged particle beam is bent in the magnetic field from an external dipole. The consequence of this effect is that the space-charge forces from the particles do not exhibit the usual inverse-square energy dependence and some part of them are, in fact, independent of energy. This led to speculation that this effect could introduce significant emittance growth for a bending electron beam. Subsequently, it was shown that this effect's influence on the beam's transverse motion is canceled for a dc beam by a potential depression within the beam (to first order in the beam radius divided by the bend radius). In this paper, we extend the analysis to include short bunch lengths (as compared to the beam pipe dimensions) and find that there is no longer the cancellation for forces both transverse to and in the direction of motion. We provide an estimate for the emittance growth as a function of bend angle, beam radius, and current, and for magnetic compression of an electron bunch

  5. Comparison of three and four point bending evaluation of two adhesive bonding systems for glass-ceramic zirconia bi-layered ceramics.

    Science.gov (United States)

    Gee, C; Weddell, J N; Swain, M V

    2017-09-01

    To quantify the adhesion of two bonding approaches of zirconia to more aesthetic glass-ceramic materials using the Schwickerath (ISO 9693-2:2016) three point bend (3PB) [1] test to determine the fracture initiation strength and strain energy release rate associated with stable crack extension with this test and the Charalamabides et al. (1989) [2] four point bend (4PB) test. Two glass-ceramic materials (VITABLOCS Triluxe forte, Vita Zahnfabrik, Germany and IPS.emax CAD, Ivoclar Vivadent, Liechtenstein) were bonded to sintered zirconia (VITA InCeram YZ). The former was resin bonded using a dual-cure composite resin (Panavia F 2.0, Kuraray Medical Inc., Osaka, Japan) following etching and silane conditioning, while the IPS.emax CAD was glass bonded (IPS e.max CAD Crystall/Connect) during crystallization of the IPS.emax CAD. Specimens (30) of the appropriate dimensions were fabricated for the Schwickerath 3PB and 4PB tests. Strength values were determined from crack initiation while strain energy release rate values were determined from the minima in the force-displacement curves with the 3PB test (Schneider and Swain, 2015) [3] and for 4PB test from the plateau region of stable crack extension. Strength values for the resin and glass bonded glass ceramics to zirconia were 22.20±6.72MPa and 27.02±3.49MPa respectively. The strain energy release rates for the two methods used were very similar and for the glass bonding, (4PB) 15.14±5.06N/m (or J/m 2 ) and (3PB) 16.83±3.91N/m and resin bonding (4PB) 8.34±1.93N/m and (3PB) 8.44±2.81N/m respectively. The differences in strength and strain energy release rate for the two bonding approaches were statistically significant (pceramics to zirconia. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Mechanical behavior of iron aluminides: A comparison of nanoindentation, compression and bending of micropillars

    Energy Technology Data Exchange (ETDEWEB)

    Zamanzade, Mohammad, E-mail: m.zamanzade@matsci.uni-sb.de [Saarland University, Institute of Material Science and Methods, Saarbrücken (Germany); Velayarce, Jorge Rafael [Saarland University, Institute of Material Science and Methods, Saarbrücken (Germany); Abad, Oscar Torrents [INM-Leibniz Institute for New Materials and Saarland University, Saarbrücken (Germany); Motz, Christian [Saarland University, Institute of Material Science and Methods, Saarbrücken (Germany); Barnoush, Afrooz [Norwegian University of Science and Technology (NTNU), Trondheim (Norway)

    2016-01-15

    Various local testing methods, namely, nanoindentation, compression and bending tests of micropillars were used to better understand the influence of ternary Cr atoms on the extrinsic and intrinsic mechanical properties of Fe{sub 3}Al intermetallics with the D0{sub 3} super lattice. Using such local techniques enables us to quantify the influence of Cr on the enhancement of the Young´s modulus. Furthermore, the effect of Cr on the yield stress, strain hardening and appearance of slip traces was studied based on the stress–strain curves and secondary electron micrographs of the bended and compressed pillars.

  7. Acoustic emission behavior under bending deformation of YBCO bulk superconductor

    International Nuclear Information System (INIS)

    Yoneda, K.; Ye, J.; Tomita, M.

    2005-01-01

    Bending tests were conducted on U-notched specimens cut from a YBCO bulk superconductor. Acoustic emission (AE) signals obtained under loading parallel or perpendicular to the c-axis were analyzed to investigate the correlation between crack growth behavior and the AE signals. As a result of analyzing log-log plots of strength (σ B ) versus total AE energy (ΣE AE ), a linear relationship was found between ΣE AE and σ B n . Cracks could be broadly divided into two types based on the value of n as an index of crack growth behavior. One type consisted of microcracks originating from cleavage planes and gas holes; these crack propagated parallel to the c-axis and had an n index value of approximately 0.7. The other type was a main crack that originated from the U-notch and had an n index value of approximately 6.5. A sample (A) loaded parallel to the c-axis showed mean bending strength of 74.8MPa. Cracks displaying two different growth patterns of n=0.7 and 6.5 were presented in this sample. Microcracks parallel to the c-axis occurred in the vicinity of 5-10MPa. This sample was characterized by mixed crack growth of a main crack and microcracks. A sample (B) loaded perpendicular to the c-axis displayed mean bending strength of 43MPa. A main crack occurred in the vicinity of 20MPa and displayed a single growth pattern of n=6.5. By analyzing AE signals in this way in the process of conducting a strength evaluation, it was possible to evaluate the failure process of the bulk superconductor in relation to the strength level induced by the applied load

  8. Evaluation of femur of orchiectomized Guinea pigs by bone densitometry using dual-energy X-ray absorptiometry (DXA) and mechanical testing

    Energy Technology Data Exchange (ETDEWEB)

    Estanislau, Cristiane de Abreu; Rahal, Sheila Canavese; Araujo, Fabio Andre Pinheiro de, E-mail: crisestanislau@hotmail.co, E-mail: sheilacr@fmvz.unesp.b, E-mail: fabioandre@fmvz.unesp.b [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil). Faculdade de Medicina, Veterinaria e Zootecnia. Dept. de Cirurgia e Anestesiologia Veterinaria; Sergio Swain Muller, E-mail: diretoria@fmb.unesp.b [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil). Faculdade de Medicina, Veterinaria e Zootecnia. Dept. de Cirurgia e Ortopedia; Louzada, Mario Jefferson Quirino, E-mail: louzada@fmva.unesp.b [Universidade Estadual Paulista (UNESP), Aracatuba, SP (Brazil). Faculdade de Medicina Veterinaria; Estanislau, Caroline de Abreu, E-mail: caestanis@hotmail.co

    2010-03-15

    The aim of this study was to evaluate the effects of castration on bones in the male guinea pigs and to observe whether mechanical testing correlates with dual-energy X-ray absorptiometry (DXA). Twelve male guinea pigs (Cavia porcellus), aged 21-27 days, and with average initial weight of 279 grams were used. The animals were equally allocated to two groups: GI - orchiectomized animals and GII - intact control animals. They underwent euthanasia at seven months following surgery. DXA measurement was performed at the mid third of the right femoral diaphysis in the cortical region and at the left femoral neck in order to verify its correlation with results of mechanical testing. Three-point bending test of right femur and axial compression test of left femur were performed. Bone mineral density of GI was significantly lower only at femoral neck. No differences were observed in the maximum load values between GI and GII for both bending and axial compression tests. The bending test revealed lower bone stiffness in GI compared to GII, but in the axial compression test no differences between groups were observed. Only left femur showed positive correlation coefficient between maximum load and bone mineral density according to Pearson's correlation coefficient. The results suggest that hormonal deprivation in guinea pigs induces reduction of bone mineral density, especially in the femoral neck area and reduction of bone stiffness in the mid-femoral diaphysis. (author)

  9. Evaluation of femur of orchiectomized Guinea pigs by bone densitometry using dual-energy X-ray absorptiometry (DXA) and mechanical testing

    International Nuclear Information System (INIS)

    Estanislau, Cristiane de Abreu; Rahal, Sheila Canavese; Araujo, Fabio Andre Pinheiro de; Sergio Swain Muller; Louzada, Mario Jefferson Quirino; Estanislau, Caroline de Abreu

    2010-01-01

    The aim of this study was to evaluate the effects of castration on bones in the male guinea pigs and to observe whether mechanical testing correlates with dual-energy X-ray absorptiometry (DXA). Twelve male guinea pigs (Cavia porcellus), aged 21-27 days, and with average initial weight of 279 grams were used. The animals were equally allocated to two groups: GI - orchiectomized animals and GII - intact control animals. They underwent euthanasia at seven months following surgery. DXA measurement was performed at the mid third of the right femoral diaphysis in the cortical region and at the left femoral neck in order to verify its correlation with results of mechanical testing. Three-point bending test of right femur and axial compression test of left femur were performed. Bone mineral density of GI was significantly lower only at femoral neck. No differences were observed in the maximum load values between GI and GII for both bending and axial compression tests. The bending test revealed lower bone stiffness in GI compared to GII, but in the axial compression test no differences between groups were observed. Only left femur showed positive correlation coefficient between maximum load and bone mineral density according to Pearson's correlation coefficient. The results suggest that hormonal deprivation in guinea pigs induces reduction of bone mineral density, especially in the femoral neck area and reduction of bone stiffness in the mid-femoral diaphysis. (author)

  10. Fabrication of topology optimized photonic crystal waveguide Z-bend displaying large bandwidth with very low bend loss

    DEFF Research Database (Denmark)

    Harpøth, Anders; Frandsen, Lars Hagedorn; Kristensen, Martin

    2004-01-01

    We have designed, simulated and fabricated a photonic crystal waveguide Z-bend, which displays a total bend loss of ~1dB per bend in a wavelength range of more than 200nm. The fabricated component performs in excellent agreement with 3D finite-difference time-domain calculations....

  11. 76 FR 81992 - PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption

    Science.gov (United States)

    2011-12-29

    ... License Application for Bell Bend Nuclear Power Plant; Exemption 1.0 Background PPL Bell Bend, LLC... for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant (BBNPP... based upon the U.S. EPR reference COL (RCOL) application for UniStar's Calvert Cliffs Nuclear Power...

  12. Effects of Induction Heat Bending Process on Microstructure and Corrosion Properties of ASME SA312 Gr.TP304 Stainless Steel Pipes

    International Nuclear Information System (INIS)

    Kim, Nam In; Kim, Young Sik; Kim, Kyung Soo; Chang, Hyun Young; Park, Heung Bae; Sung, Gi Ho; Sung, Gi Ho

    2015-01-01

    The usage of bending products recently have increased since many industries such as automobile, aerospace, shipbuilding, and chemical plants need the application of pipings. Bending process is one of the inevitable steps to fabricate the facilities. Induction heat bending is composed of compressive bending process by local heating and cooling. This work focused on the effect of induction heat bending process on the properties of ASME SA312 Gr. TP304 stainless steel pipes. Tests were performed for base metal and bended area including extrados, intrados, crown up, and down parts. Microstructure was analyzed using an optical microscope and SEM. In order to determine intergranular corrosion resistance, Double Loop Electrochemical Potentiokinetic Reactivation (DL-EPR) test and ASTM A262 practice A and C tests were done. Every specimen revealed non-metallic inclusion free under the criteria of 1.5i of the standard and the induction heat bending process did not affect the non-metallic inclusion in the alloys. Also, all the bended specimens had finer grain size than ASTM grain size number 5 corresponding to the grain sizes of the base metal and thus the grain size of the pipe bended by induction heat bending process is acceptable. Hardness of transition start, bend, and transition end areas of ASME SA312 TP304 stainless steel was a little higher than that of base metal. Intergranular corrosion behavior was determined by ASTM A262 practice A and C and DL-EPR test, and respectively step structure, corrosion rate under 0.3 mm/y, and Degree of Sensitization (DOS) of 0.001 - 0.075 % were obtained. That is, the induction heat bending process didn't affect the intergranular corrosion behavior of ASME SA312 TP304 stainless steel

  13. Fatigue Performance of SFPSC under Hot-Wet Environments and Cyclic Bending Loads

    Directory of Open Access Journals (Sweden)

    Shanshan Luo

    2018-01-01

    Full Text Available A new structural material named “steel fiber polymer structural concrete (SFPSC” with features of both high strength and high toughness was developed by this research group and applied to the bridge superstructures in the hot-wet environments. In order to investigate the fatigue performance and durability of SFPSC under hot-wet environments, the environment and fatigue load uncoupling method and the coupling action of environment and fatigue load were used or developed. Three-point bending fatigue experiments with uncoupling action of environments and cyclic loads were carried out for SFPSC specimens which were pretreated under hot-wet environments, and the experiments with the coupling action of environments and cyclic loads for SFPSC specimens were carried out under hot-wet environments. Then, the effects of hot-wet environments and the experimental methods on the fatigue mechanism of SFPSC material were discussed, and the environmental fatigue equations of SFPSC material under coupling and uncoupling action of hot-wet environments and cyclic bending loads were established. The research results show that the fatigue limits of SFPSC under the coupling action of the environments and cyclic loads were lower about 15%. The proposed fatigue equations could be used to estimate the fatigue lives and fatigue limits of SFPSC material.

  14. Recent developments in bend-insensitive and ultra-bend-insensitive fibers

    Science.gov (United States)

    Boivin, David; de Montmorillon, Louis-Anne; Provost, Lionel; Montaigne, Nelly; Gooijer, Frans; Aldea, Eugen; Jensma, Jaap; Sillard, Pierre

    2010-02-01

    Designed to overcome the limitations in case of extreme bending conditions, Bend- and Ultra-Bend-Insensitive Fibers (BIFs and UBIFs) appear as ideal solutions for use in FTTH networks and in components, pigtails or patch-cords for ever demanding applications such as military or sensing. Recently, however, questions have been raised concerning the Multi-Path-Interference (MPI) levels in these fibers. Indeed, they are potentially subject to interferences between the fundamental mode and the higher-order mode that is also bend resistant. This MPI is generated because of discrete discontinuities such as staples, bends and splices/connections that occur on distance scales that become comparable to the laser coherent length. In this paper, we will demonstrate the high MPI tolerance of all-solid single-trench-assisted BIFs and UBIFs. We will present the first comprehensive study combining theoretical and experimental points of view to quantify the impact of fusion splices on coherent MPI. To be complete, results for mechanical splices will also be reported. Finally, we will show how the single-trench- assisted concept combined with the versatile PCVD process allows to tightly control the distributions of fibers characteristics. Such controls are needed to massively produce BIFs and to meet the more stringent specifications of the UBIFs.

  15. Influence of flock coating on bending rigidity of woven fabrics

    Science.gov (United States)

    Ozdemir, O.; Kesimci, M. O.

    2017-10-01

    This work presents the preliminary results of our efforts that focused on the effect of the flock coating on the bending rigidity of woven fabrics. For this objective, a laboratory scale flocking unit is designed and flocked samples of controlled flock density are produced. Bending rigidity of the samples with different flock densities are measured on both flocked and unflocked sides. It is shown that the bending rigidity depends on both flock density and whether the side to be measured is flocked or not. Adhesive layer thickness on the bending rigidity is shown to be dramatic. And at higher basis weights, flock density gets less effective on bending rigidity.

  16. Permanent bending and alignment of ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Borschel, Christian; Spindler, Susann; Oertel, Michael; Ronning, Carsten [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Lerose, Damiana [MPI fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle/Saale (Germany); Institut fuer Photonische Technologien, Albert-Einstein-Strasse 9, 07745 Jena (Germany); Bochmann, Arne [Institut fuer Photonische Technologien, Albert-Einstein-Strasse 9, 07745 Jena (Germany); Christiansen, Silke H. [Institut fuer Photonische Technologien, Albert-Einstein-Strasse 9, 07745 Jena (Germany); MPI fuer die Physik des Lichts, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Nietzsche, Sandor [Zentrum fuer Elektronenmikroskopie, Friedrich-Schiller-Universitaet Jena, Ziegelmuehlenweg 1, 07743 Jena (Germany)

    2011-07-01

    Ion beams can be used to bend or re-align nanowires permanently, after they have been grown. We have irradiated ZnO nanowires with ions of different species and energy, achieving bending and alignment in various directions. We study the bending of single nanowires as well as the simultaneous alignment of large ensembles of ZnO nanowires in detail. Computer simulations show that the bending is initiated by ion beam induced damage. Dislocations are identified to relax stresses and make the bending and alignment permanent and resistant against annealing procedures.

  17. Tunable waveguide bends with graphene-based anisotropic metamaterials

    KAUST Repository

    Chen, Zhao-xian; Chen, Ze-guo; Ming, Yang; Wu, Ying; Lu, Yan-qing

    2016-01-01

    We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.

  18. Tunable waveguide bends with graphene-based anisotropic metamaterials

    KAUST Repository

    Chen, Zhao-xian

    2016-01-15

    We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.

  19. Evaluation on Bending Properties of Biomaterial GUM Metal Meshed Plates for Bone Graft Applications

    Science.gov (United States)

    Suzuki, Hiromichi; He, Jianmei

    2017-11-01

    There are three bone graft methods for bone defects caused by diseases such as cancer and accident injuries: Autogenous bone grafts, Allografts and Artificial bone grafts. In this study, meshed GUM Metal plates with lower elasticity, high strength and high biocompatibility are introduced to solve the over stiffness & weight problems of ready-used metal implants. Basic mesh shapes are designed and applied to GUM Metal plates using 3D CAD modeling tools. Bending properties of prototype meshed GUM Metal plates are evaluated experimentally and analytically. Meshed plate specimens with 180°, 120° and 60° axis-symmetrical types were fabricated for 3-point bending tests. The pseudo bending elastic moduli of meshed plate specimens obtained from 3-point bending test are ranged from 4.22 GPa to 16.07 GPa, within the elasticity range of natural cortical bones from 2.0 GPa to 30.0 GPa. Analytical approach method is validated by comparison with experimental and analytical results for evaluation on bending property of meshed plates.

  20. Anomalies in Ward identities revisited. Explicit calculation of the three point functions; Anomalias em identidades de Ward revisitadas. Calculo explicito das funcoes de tres pontos

    Energy Technology Data Exchange (ETDEWEB)

    Dalmolin, Fabricio Tronco

    2007-07-01

    others already performed within the same issue. In particular, in one of such investigation a pioneer and traditional reference has been revisited by using the alternative strategy mentioned above. In such study, a systematic treatment of purely fermionic one, two and three point functions, associated to scalar, pseudo-scalar, vector and axial-vector densities, has done. There, however, only the explicit expressions for one and two point functions were developed. The conclusions pointed out, in a very clear way, that the association between intrinsic ambiguities of the perturbative calculation and violations in symmetry properties is not consistent. At the same time, it was concluded that only in an investigation where the explicit forms for the three point functions involved are considered clean and sound conclusions can be extracted. This is due to the fact that, in the relevant symmetry properties, it is involved three ward identities and a low energy limit. This is precisely the main purpose of the present work: to promote a detailed investigation of the relations among green functions and ward identities, within the context of a model having only one specie of 1/2 spin fermionic field, that consider all the amplitudes having superficial degree of divergence higher than the logarithmic one, in a similar way as that made in the work of Gerstein and Jackiw, taking however the explicit form for the three point functions. This is one to get in the analysis, simultaneously, the ward identities and the low energy limits involved in the anomalous amplitudes as required by the Sutherland-Veltman theorem, in order to get an adequate understanding of the anomaly phenomena. We will show that our final results can be mapped in those found with the use of the Dimensional Regularization, in situation where this technique can be applied, or in those of Gerstein and Jackiw, however with conflicting interpretations. Finally, we will show that in the context of the adopted technique

  1. Reproducibility of pop-ins in laboratory testing of welded joints

    Directory of Open Access Journals (Sweden)

    Berejnoi C.

    2000-01-01

    Full Text Available The pop-in phenomenon, quite common in fracture mechanics tests of welded joints, corresponds to a brittle crack initiation grown from a local brittle zone (LBZ that is arrested in reaching the higher toughness material that surrounds this LBZ. A methodology to obtain a high percentage of pop-in occurrence in laboratory testing is necessary to study the pop-in significance. Such a method is introduced in this work and includes the consumable combination and welding procedures for the SMAW welding process to generate artificial LBZ. In order to find out the influence of the loading state upon the pop-in phenomenon, laboratory CTOD tests were performed using two specimen configurations: some single edge-notched specimens were loaded on a three-point bending (SE(B fixture while others were tested in tensile load (SE(T. A higher frequency of pop-in occurrence was observed in the SE(B geometry.

  2. Study of transport and micro-structural properties of magnesium di-boride strand under react and bend mode and bend and react mode

    International Nuclear Information System (INIS)

    Kundu, Ananya; Das, Subrat Kumar; Bano, Anees; Pradhan, Subrata

    2015-01-01

    I-V characterization of commercial multi-filamentary Magnesium Di-Boride (MgB 2 ) wire of diameter 0.83 mm were studied in cryocooler based self-field characterization system under both react and bent mode and bent and react mode for a range of temperature 6 K - 25 K. This study is of practical technical relevance where the heat treatment of the superconducting wire makes the sample less flexible for winding in magnet and in other applications. There are limited reported data, available on degradation of MgB 2 wire with bending induced strain in react and wind and wind and react method. In the present work the bending diameter were varied from 80 mm to 20 mm in the interval of 10 mm change of bending diameter and for each case critical current (Ic) of the strand is measured for the above range of temperature. An ETP copper made customized sample holder for mounting the MgB 2 strand was fabricated and is thermally anchored to the cooling stage of the cryocooler. It is seen from the experimental data that in react and bent mode the critical current degrades from 105 A to 87 A corresponding to bending diameter of 80 mm and 20 mm respectively. The corresponding bending strain was analytically estimated and compared with the simulation result. It is also observed that in react and bent mode, the degradation of the transport property of the strand is less as compared to react and bent mode. For bent and react mode in the same sample, the critical current (Ic) was measured to be ∼145 A at 15 K for bending diameter of 20 mm. Apart from studying the bending induced strain on MgB 2 strand, the tensile test of the strand at RT was carried out. The electrical characterizations of the samples were accompanied by the microstructure analyses of the bent strand to examine the bending induced degradation in the grain structure of the strand. All these experimental findings are expected to be used as input to fabricate prototype MgB 2 based magnet. (author)

  3. Applicability of ANSYS ELBOW290 element for flexibility calculation of tight radius bends on feeder pipes in CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X., E-mail: Xuan.Zhang@candu.com [Candu Energy Inc, Mississauga, ON (Canada)

    2015-07-01

    A curved pipe element, ELBOW290, became available in ANSYS 12. This element was developed based on a simplified shell theory, and maintains the ability to capture cross-sectional deformations of elbows. Numerical testing on the applicability of this element for the flexibility calculation of the tight radius bends in CANDU reactors is carried out to determine the usability of this element in completing stress analyses for feeder pipes. Comparisons are made between the ELBOW290 and the shell element for various feeder bend types found in domestic and overseas CANDU reactors. The comparisons show that the ELBOW290 element is suitable for calculating the flexibility of the tight radius bends. (author)

  4. Large Eddy Simulation of Supercritical CO2 Through Bend Pipes

    Science.gov (United States)

    He, Xiaoliang; Apte, Sourabh; Dogan, Omer

    2017-11-01

    Supercritical Carbon Dioxide (sCO2) is investigated as working fluid for power generation in thermal solar, fossil energy and nuclear power plants at high pressures. Severe erosion has been observed in the sCO2 test loops, particularly in nozzles, turbine blades and pipe bends. It is hypothesized that complex flow features such as flow separation and property variations may lead to large oscillations in the wall shear stresses and result in material erosion. In this work, large eddy simulations are conducted at different Reynolds numbers (5000, 27,000 and 50,000) to investigate the effect of heat transfer in a 90 degree bend pipe with unit radius of curvature in order to identify the potential causes of the erosion. The simulation is first performed without heat transfer to validate the flow solver against available experimental and computational studies. Mean flow statistics, turbulent kinetic energy, shear stresses and wall force spectra are computed and compared with available experimental data. Formation of counter-rotating vortices, named Dean vortices, are observed. Secondary flow pattern and swirling-switching flow motions are identified and visualized. Effects of heat transfer on these flow phenomena are then investigated by applying a constant heat flux at the wall. DOE Fossil Energy Crosscutting Technology Research Program.

  5. Limit loads for pipe bends under combined pressure and in-plane bending based on finite element limit analysis

    International Nuclear Information System (INIS)

    Oh, Chang Sik; Kim, Yun Jae

    2006-01-01

    In the present paper, approximate plastic limit load solutions for pipe bends under combined internal pressure and bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. The present FE results show that existing limit load solutions for pipe bends are lower bounds but can be very different from the present FE results in some cases, particularly for bending. Accordingly closed-form approximations are proposed for pipe bends under combined pressure and in-plane bending based on the present FE results. The proposed limit load solutions would be a basis of defective pipe bends and be useful to estimate non-linear fracture mechanics parameters based on the reference stress approach

  6. Bending of light in quantum gravity.

    Science.gov (United States)

    Bjerrum-Bohr, N E J; Donoghue, John F; Holstein, Barry R; Planté, Ludovic; Vanhove, Pierre

    2015-02-13

    We consider the scattering of lightlike matter in the presence of a heavy scalar object (such as the Sun or a Schwarzschild black hole). By treating general relativity as an effective field theory we directly compute the nonanalytic components of the one-loop gravitational amplitude for the scattering of massless scalars or photons from an external massive scalar field. These results allow a semiclassical computation of the bending angle for light rays grazing the Sun, including long-range ℏ contributions. We discuss implications of this computation, in particular, the violation of some classical formulations of the equivalence principle.

  7. Structural analysis of suerconducting bending magnets

    International Nuclear Information System (INIS)

    Meuser, R.B.

    1980-05-01

    Mechanical stresses, displacements, and the effects of displacements upon aberrations of the magnetic field in the aperture have been calculated for a class of superconducting bending-magnet configurations. The analytical model employed for the coil is one in which elements are free to slide without restraint upon each other, and upon the surrounding structure. Coil configurations considered range from an idealized one in which the current density varies as cosine theta to more realistic ones consisting of regions of uniform current density. With few exceptions, the results for the more realistic coils closely match those of the cos theta coil

  8. Extension versus Bending for Continuum Robots

    Directory of Open Access Journals (Sweden)

    George Grimes

    2008-11-01

    Full Text Available In this paper, we analyze the capabilities of a novel class of continuous-backbone ("continuum" robots. These robots are inspired by biological "trunks, and tentacles". However, the capabilities of established continuum robot designs, which feature controlled bending but not extension, fall short of those of their biological counterparts. In this paper, we argue that the addition of controlled extension provides dual and complementary functionality, and correspondingly enhanced performance, in continuum robots. We present an interval-based analysis to show how the inclusion of controllable extension significantly enhances the workspace and capabilities of continuum robots.

  9. Minimum emittance of three-bend achromats

    International Nuclear Information System (INIS)

    Li Xiaoyu; Xu Gang

    2012-01-01

    The calculation of the minimum emittance of three-bend achromats (TBAs) made by Mathematical software can ignore the actual magnets lattice in the matching condition of dispersion function in phase space. The minimum scaling factors of two kinds of widely used TBA lattices are obtained. Then the relationship between the lengths and the radii of the three dipoles in TBA is obtained and so is the minimum scaling factor, when the TBA lattice achieves its minimum emittance. The procedure of analysis and the results can be widely used in achromats lattices, because the calculation is not restricted by the actual lattice. (authors)

  10. Clinical bending of nickel titanium wires

    Directory of Open Access Journals (Sweden)

    Stephen Chain

    2015-01-01

    Full Text Available Since the evolution and the involvement of Nickel Titanium wires in the field of Orthodontics. The treatment plan has evolved with the use of low force Nickel Titanium wires. Because of their high springback, low stiffness, they are the key initial wires in leveling and alignment but have poor formability. Since poor formability limits its ability to create variable arch forms thus; limits the form of treatment. We have devised a method to bend the Nickel Titanium wires to help in our inventory but also customized the wire according to the treatment.

  11. Integrated Hydrological Model-Based Assessment of Stormwater Management Scenarios in Copenhagen’s First Climate Resilient Neighbourhood Using the Three Point Approach

    Directory of Open Access Journals (Sweden)

    Sara Maria Lerer

    2017-11-01

    Full Text Available The city of Copenhagen currently pursues a very ambitious plan to make the city ‘cloudburst proof’ within the next 30 years. The cloudburst management plan has the potential to support the city’s aim to become more green, liveable, and sustainable. In this study, we assessed stormwater system designs using the Three Point Approach (3PA as a framework, where an indicator value for each domain was calculated using state-of-the-art modelling techniques. We demonstrated the methodology on scenarios representing sequential enhancements of the cloudburst management plan for a district that has been appointed to become the first climate resilient neighbourhood in Copenhagen. The results show that if the cloudburst system is exploited to discharge runoff from selected areas that are disconnected from the combined sewer system, then the plan leads to multiple benefits. These include improved flood protection under a 100-years storm (i.e., compliance with the new demands in domain C of the 3PA, reduced surcharge to terrain under a 10-years storm (i.e., compliance with the service goal in domain B of the 3PA and an improved yearly water balance (i.e., better performance in domain A of the 3PA.

  12. Detection of baryon acoustic oscillation features in the large-scale three-point correlation function of SDSS BOSS DR12 CMASS galaxies

    Science.gov (United States)

    Slepian, Zachary; Eisenstein, Daniel J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Gil-Marín, Héctor; Ho, Shirley; Kitaura, Francisco-Shu; Percival, Will J.; Ross, Ashley J.; Rossi, Graziano; Seo, Hee-Jong; Slosar, Anže; Vargas-Magaña, Mariana

    2017-08-01

    We present the large-scale three-point correlation function (3PCF) of the Sloan Digital Sky Survey DR12 Constant stellar Mass (CMASS) sample of 777 202 Luminous Red Galaxies, the largest-ever sample used for a 3PCF or bispectrum measurement. We make the first high-significance (4.5σ) detection of baryon acoustic oscillations (BAO) in the 3PCF. Using these acoustic features in the 3PCF as a standard ruler, we measure the distance to z = 0.57 to 1.7 per cent precision (statistical plus systematic). We find DV = 2024 ± 29 Mpc (stat) ± 20 Mpc (sys) for our fiducial cosmology (consistent with Planck 2015) and bias model. This measurement extends the use of the BAO technique from the two-point correlation function (2PCF) and power spectrum to the 3PCF and opens an avenue for deriving additional cosmological distance information from future large-scale structure redshift surveys such as DESI. Our measured distance scale from the 3PCF is fairly independent from that derived from the pre-reconstruction 2PCF and is equivalent to increasing the length of BOSS by roughly 10 per cent; reconstruction appears to lower the independence of the distance measurements. Fitting a model including tidal tensor bias yields a moderate-significance (2.6σ) detection of this bias with a value in agreement with the prediction from local Lagrangian biasing.

  13. Analysis Of Factors Affecting Gravity-Induced Deflection For Large And Thin Wafers In Flatness Measurement Using Three-Point-Support Method

    Directory of Open Access Journals (Sweden)

    Liu Haijun

    2015-12-01

    Full Text Available Accurate flatness measurement of silicon wafers is affected greatly by the gravity-induced deflection (GID of the wafers, especially for large and thin wafers. The three-point-support method is a preferred method for the measurement, in which the GID uniquely determined by the positions of the supports could be calculated and subtracted. The accurate calculation of GID is affected by the initial stress of the wafer and the positioning errors of the supports. In this paper, a finite element model (FEM including the effect of initial stress was developed to calculate GID. The influence of the initial stress of the wafer on GID calculation was investigated and verified by experiment. A systematic study of the effects of positioning errors of the support ball and the wafer on GID calculation was conducted. The results showed that the effect of the initial stress could not be neglected for ground wafers. The wafer positioning error and the circumferential error of the support were the most influential factors while the effect of the vertical positioning error was negligible in GID calculation.

  14. Probing the shape and internal structure of dark matter haloes with the halo-shear-shear three-point correlation function

    Science.gov (United States)

    Shirasaki, Masato; Yoshida, Naoki

    2018-04-01

    Weak lensing three-point statistics are powerful probes of the structure of dark matter haloes. We propose to use the correlation of the positions of galaxies with the shapes of background galaxy pairs, known as the halo-shear-shear correlation (HSSC), to measure the mean halo ellipticity and the abundance of subhaloes in a statistical manner. We run high-resolution cosmological N-body simulations and use the outputs to measure the HSSC for galaxy haloes and cluster haloes. Non-spherical haloes cause a characteristic azimuthal variation of the HSSC, and massive subhaloes in the outer region near the virial radius contribute to ˜ 10 per cent of the HSSC amplitude. Using the HSSC and its covariance estimated from our N-body simulations, we make forecast for constraining the internal structure of dark matter haloes with future galaxy surveys. With 1000 galaxy groups with mass greater than 1013.5 h-1M⊙, the average halo ellipticity can be measured with an accuracy of 10 percent. A spherical, smooth mass distribution can be ruled out at a ˜5σ significance level. The existence of subhaloes whose masses are in 1-10 percent of the main halo mass can be detected with ˜104 galaxies/clusters. We conclude that the HSSC provides valuable information on the structure of dark haloes and hence on the nature of dark matter.

  15. Prediction of Bending Stiffness for Laminated CFRP and Its Application to Manufacturing of Roof Reinforcement

    Directory of Open Access Journals (Sweden)

    Jeong-Min Lee

    2014-05-01

    Full Text Available Recently, carbon fiber reinforced plastic (CFRP with high strength, stiffness, and lightweight is used widely in number of composite applications such as commercial aircraft, transportation, machinery, and sports equipment. Especially, it is necessary to apply lightweight materials to car components for reducing energy consumption and CO2 emissions. In case of car roof reinforcement manufactured using CFRP, superior strength and bending stiffness are required for the safety of drivers in the rollover accident. Mechanical properties of CFRP laminates are generally dependent on the stacking sequence. Therefore, research of stacking sequence using CFRP prepreg is required for superior bending stiffness. In this study, the 3-point bending FE-analysis for predicting the bending stiffness of CFRP roof reinforcement was carried out on three cases [0PW∘]5, [0PW°/0UD°/0-PW°]s, and [0UD∘]5. Material properties that the six independent elastic constants are E11, E22, G12, G23, G13, and ν12 used in FE-analysis were evaluated by the tensile test in 0°, 45°, and 90° directions. Through structural strength analysis of the automobile roof reinforcement fabricated using CFRP, the effect of the stacking sequence on the bending stiffness was evaluated and validated through experiments under the same conditions as the analysis.

  16. Evaporation heat transfer characteristics inside the U-bend of the smooth and the microfin tube using alternative refrigerant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, K N [Sung Kyun Kwan University, Seoul (Korea, Republic of); Kim, B G [Sung Kyun Kwan University Graduate School, Seoul (Korea, Republic of)

    1997-09-01

    The present work experimentally investigated the effects of mass flux, heat flux, inlet quality on the heat transfer performance inside the U-bend of smooth and microfin tube using R-22 and R-407C refrigerants. The parameters were 200 and 400 kg/m{sup 2} s for mass flux, 6 and 12 kw/m{sup 2} for heat flux, 0.1 and 0.2 for inlet quality under the pressure of 0.65 MPa. The apparatus consisted of the test section of four straight sections and three U-bends, preheater, condenser, refrigerant pump, mass flow meter etc. The average heat transfer coefficient at the downstream straight section after U-bend was affected by U-bend due to the centrifugal force and mixing of two-phase flow in the U-bend. The average heat transfer coefficient at the U-bend was 4{approx}33 % higher than that at the straight section. The average heat transfer coefficients were affected in the order of mass flux, heat flux and inlet quality. The average heat transfer coefficients in the microfin tube were lager by 19{approx}49 % and 33{approx}69 % than that in the smooth tube at the straight section and at the U-bend separately. The average heat transfer coefficients for R-407C were larger by 33{approx}41 % and 17{approx}29% than that for R-22 in the smooth tube and the microfin tube separately. (author). 24 refs., 9 figs.

  17. Mechanical stability of roll-to-roll printed solar cells under cyclic bending and torsion

    DEFF Research Database (Denmark)

    Finn, Mickey; Martens, Christian James; Zaretski, Aliaksandr V.

    2018-01-01

    The ability of printed organic solar cells (OSCs) to survive repeated mechanical deformation is critical to large-scale implementation. This paper reports an investigation into the mechanical stability of OSCs through bending and torsion testing of whole printed modules. Two types of modules...

  18. High speed bending of 2nd level interconnects on printed circuit boards for automotive electronics

    NARCIS (Netherlands)

    Kouters, M.H.M.; Ubachs, R.; Wiel, H.J. van de; Waal, A. van der; Veer, J. van der

    2011-01-01

    Standard drop tests for portable electronics are not representative for the qualification of automotive electronics. High-frequency vibrations are more dominant than abrupt shocks during normal operation. In this work a high speed board bending (HSB) method is developed to mimic the constant cyclic

  19. Span-Dependent Distributions of the Bending Strength of Spruce Timber

    DEFF Research Database (Denmark)

    Ditlevsen, Ove; Källsner, Bo

    2005-01-01

    Tests data of bending strengths of a large number of timber beams of different spans obtained at the Swedish Institute for Wood Technology Research reveal a statistical structure that can be represented in a simple probabilistic model of series system type. A particular feature of the data from one...

  20. On the Effect of Green Water on Deck on the Wave Bending Moment

    DEFF Research Database (Denmark)

    Wang, Zhaohui; Jensen, Jørgen Juncher; Xia, Jinzhu

    1998-01-01

    and a momentum term, using an effective relative motion calibrated with the model tests, model the green water load. The resulting loads are of the same magnitude as the slamming loads. The results show only a marginal influence of the green water load on the maximum wave bending moment, although the time signal...

  1. Study on Identification of Material Model Parameters from Compact Tension Test on Concrete Specimens

    Science.gov (United States)

    Hokes, Filip; Kral, Petr; Husek, Martin; Kala, Jiri

    2017-10-01

    Identification of a concrete material model parameters using optimization is based on a calculation of a difference between experimentally measured and numerically obtained data. Measure of the difference can be formulated via root mean squared error that is often used for determination of accuracy of a mathematical model in the field of meteorology or demography. The quality of the identified parameters is, however, determined not only by right choice of an objective function but also by the source experimental data. One of the possible way is to use load-displacement curves from three-point bending tests that were performed on concrete specimens. This option shows the significance of modulus of elasticity, tensile strength and specific fracture energy. Another possible option is to use experimental data from compact tension test. It is clear that the response in the second type of test is also dependent on the above mentioned material parameters. The question is whether the parameters identified within three-point bending test and within compact tension test will reach the same values. The presented article brings the numerical study of inverse identification of material model parameters from experimental data measured during compact tension tests. The article also presents utilization of the modified sensitivity analysis that calculates the sensitivity of the material model parameters for different parts of loading curve. The main goal of the article is to describe the process of inverse identification of parameters for plasticity-based material model of concrete and prepare data for future comparison with identified values of the material model parameters from different type of fracture tests.

  2. Comparative MR study of hepatic fat quantification using single-voxel proton spectroscopy, two-point dixon and three-point IDEAL.

    Science.gov (United States)

    Kim, Hyeonjin; Taksali, Sara E; Dufour, Sylvie; Befroy, Douglas; Goodman, T Robin; Petersen, Kitt Falk; Shulman, Gerald I; Caprio, Sonia; Constable, R Todd

    2008-03-01

    Hepatic fat fraction (HFF) was measured in 28 lean/obese humans by single-voxel proton spectroscopy (MRS), a two-point Dixon (2PD), and a three-point iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) method (3PI). For the lean, obese, and total subject groups, the range of HFF measured by MRS was 0.3-3.5% (1.1 +/- 1.4%), 0.3-41.5% (11.7 +/- 12.1), and 0.3-41.5% (10.1 +/- 11.6%), respectively. For the same groups, the HFF measured by 2PD was -6.3-2.2% (-2.0 +/- 3.7%), -2.4-42.9% (12.9 +/- 13.8%), and -6.3-42.9% (10.5 +/- 13.7%), respectively, and for 3PI they were 7.9-12.8% (10.1 +/- 2.0%), 11.1-49.3% (22.0 +/- 12.2%), and 7.9-49.3% (20.0 +/- 11.8%), respectively. The HFF measured by MRS was highly correlated with those measured by 2PD (r = 0.954, P fatty liver with the MRI methods ranged from 68-93% for 2PD and 64-89% for 3PI. Our study demonstrates that the apparent HFF measured by the MRI methods can significantly vary depending on the choice of water-fat separation methods and sequences. Such variability may limit the clinical application of the MRI methods, particularly when a diagnosis of early fatty liver needs to be performed. Therefore, protocol-specific establishment of cutoffs for liver fat content may be necessary. (c) 2008 Wiley-Liss, Inc.

  3. A Comparative MR Study of Hepatic Fat Quantification Using Single-voxel Proton Spectroscopy, Two-point Dixon and Three-point IDEAL

    Science.gov (United States)

    Kim, Hyeonjin; Taksali, Sara E.; Dufour, Sylvie; Befroy, Douglas; Goodman, T. Robin; Petersen, Kitt Falk; Shulman, Gerald I.; Caprio, Sonia; Constable, R. Todd

    2009-01-01

    Hepatic fat fraction (HFF) was measured in 28 lean/obese humans by single-voxel proton spectroscopy (MRS), a two-point Dixon (2PD) and a three-point iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) method (3PI). For the lean, obese and total subject groups, the range of HFF measured by MRS was 0.3–3.5% (1.1±1.4%), 0.3–41.5% (11.7±12.1), and 0.3–41.5% (10.1±11.6%), respectively For the same groups, the HFF measured by 2PD was −6.3–2.2% (−2.0±3.7%), −2.4–42.9% (12.9±13.8%), and −6.3–42.9% (10.5±13.7%), respectively, and for 3PI they were 7.9–12.8% (10.1±2.0%), 11.1–49.3% (22.0±12.2%), and 7.9–49.3% (20.0±11.8%), respectively. The HFF measured by MRS was highly correlated with those measured by 2PD (r=0.954, pfatty liver with the MRI methods ranged 75–93% for 2PI and 79–89% for 3PI. Our study demonstrates that the apparent HFF measured by the MRI methods can significantly vary depending on the choice of water-fat separation methods and sequences. Such variability may limit the clinical application of the MRI methods, particularly when a diagnosis of early fatty liver needs to be performed. Therefore, protocol-specific establishment of cutoffs for liver fat content may be necessary. PMID:18306404

  4. The Effects of Hot Bending on the Low Cycle Fatigue Behaviors of 347 SS in PWR Primary Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho-Sub; Hong, Jong-Dae; Lee, Junho; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    Fatigue damage could be significant for some locations, especially the welds and bends where stress concentration is typically high. As a possible solution, a large radius hot-bending method has been suggested to eliminate some weld joints and all tight bends. However, for the hot-bending process which involves a high temperature thermal cycle, there is a concern about changes in mechanical properties including low cycle fatigue behaviors. In APR1400, Type 347 SS have been used as surge line pipes. Therefore, to verify the applicability of hot-bending on 347 SS surge line pipes, an environmental fatigue test program was initiated. In this paper, the preliminary results of the on-going test program are introduced. Also, the low cycle fatigue behaviors of 347 SS are compared with those of other grade of stainless steels. The effects of hot bending on the low cycle fatigue behavior of 347 SS were quantitatively evaluated. The fatigue life was compared with the estimated values per NUREG 6909 rev. 1. There are no distinct differences between NUREG 6909 and LCF tests. According to fractography and cross section analysis in progress, basically, the reduction of LCF life of 347 SS in PWR water was caused by operation of HIC mechanism. The cyclic stress responses shows that there is no secondary hardening in 330 .deg.C air and PWR water.

  5. Analysis of ductile-brittle transition shifts for standard and miniature bending specimens of irradiated steel

    International Nuclear Information System (INIS)

    Korshunov, M.E.; Korolev, Yu.N.; Krasikov, E.A.; Gabuev, N.N.; Tykhmeev, D.Yu.

    1996-01-01

    A study is made to reveal if there is a correlation between shifts in temperature curves obtained when testing thin plates and standard specimens on impact bending and fracture toughness. The tests were carried out using steel 25Kh3NM specimens irradiated by 6 x 10 19 cm -2 neutron fluence. A conclusion is made about the possibility to evaluate the degree of radiation-induced embrittlement of reactor steels on the basis of thin plate testing under quasistatic loads [ru

  6. Usage of information safety requirements in improving tube bending process

    Science.gov (United States)

    Livshitz, I. I.; Kunakov, E.; Lontsikh, P. A.

    2018-05-01

    This article is devoted to an improvement of the technological process's analysis with the information security requirements implementation. The aim of this research is the competition increase analysis in aircraft industry enterprises due to the information technology implementation by the example of the tube bending technological process. The article analyzes tube bending kinds and current technique. In addition, a potential risks analysis in a tube bending technological process is carried out in terms of information security.

  7. Recent development in low-constraint fracture toughness testing for structural integrity assessment of pipelines

    Science.gov (United States)

    Kang, Jidong; Gianetto, James A.; Tyson, William R.

    2018-03-01

    Fracture toughness measurement is an integral part of structural integrity assessment of pipelines. Traditionally, a single-edge-notched bend (SE(B)) specimen with a deep crack is recommended in many existing pipeline structural integrity assessment procedures. Such a test provides high constraint and therefore conservative fracture toughness results. However, for girth welds in service, defects are usually subjected to primarily tensile loading where the constraint is usually much lower than in the three-point bend case. Moreover, there is increasing use of strain-based design of pipelines that allows applied strains above yield. Low-constraint toughness tests represent more realistic loading conditions for girth weld defects, and the corresponding increased toughness can minimize unnecessary conservatism in assessments. In this review, we present recent developments in low-constraint fracture toughness testing, specifically using single-edgenotched tension specimens, SENT or SE(T). We focus our review on the test procedure development and automation, round-robin test results and some common concerns such as the effect of crack tip, crack size monitoring techniques, and testing at low temperatures. Examples are also given of the integration of fracture toughness data from SE(T) tests into structural integrity assessment.

  8. Construction of optimal 3-node plate bending triangles by templates

    Science.gov (United States)

    Felippa, C. A.; Militello, C.

    A finite element template is a parametrized algebraic form that reduces to specific finite elements by setting numerical values to the free parameters. The present study concerns Kirchhoff Plate-Bending Triangles (KPT) with 3 nodes and 9 degrees of freedom. A 37-parameter template is constructed using the Assumed Natural Deviatoric Strain (ANDES). Specialization of this template includes well known elements such as DKT and HCT. The question addressed here is: can these parameters be selected to produce high performance elements? The study is carried out by staged application of constraints on the free parameters. The first stage produces element families satisfying invariance and aspect ratio insensitivity conditions. Application of energy balance constraints produces specific elements. The performance of such elements in benchmark tests is presently under study.

  9. Model of Dipole Field Variations in the LEP Bending Magnets

    CERN Document Server

    Bravin, Enrico; Drees, A; Mugnai, G

    1998-01-01

    The determination of the Z mass at LEP requires a knowledge of the relative beam energy in the order of 10 ppm, therefore it is essential to understand the dipole field variations to the same level of accuracy. In LEP the bending magnet field shows a relative increase of the order of 100 ppm over 10 hours, which was found to be caused by leakage currents from railways flowing along the vacuum cham ber and temperature variations. A LEP dipole test bench was set up for systematic investigations. Field variations were monitored with NMR probes while the cooling water temperature of both coil and vacuum chamber was kept under control. The results lead to a parametrisation of the magnetic field variation as a function of the vacuum chamber current and temperature.

  10. Acoustic emission monitoring of recycled aggregate concrete under bending

    Science.gov (United States)

    Tsoumani, A. A.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    The amount of construction and demolition waste has increased considerably over the last few years, making desirable the reuse of this waste in the concrete industry. In the present study concrete specimens are subjected at the age of 28 days to four-point bending with concurrent monitoring of their acoustic emission (AE) activity. Several concrete mixtures prepared using recycled aggregates at various percentages of the total coarse aggregate and also a reference mix using natural aggregates, were included to investigate their influence of the recycled aggregates on the load bearing capacity, as well as on the fracture mechanisms. The results reveal that for low levels of substitution the influence of using recycled aggregates on the flexural strength is negligible while higher levels of substitution lead into its deterioration. The total AE activity, as well as the AE signals emitted during failure, was related to flexural strength. The results obtained during test processing were found to be in agreement with visual observation.

  11. Design Study: ELENA Bending Magnet Prototype

    CERN Document Server

    Schoerling, D

    2013-01-01

    The ELENA bending magnet prototype shall prove that the proposed design meets the requirements set by the ELENA beam dynamics. The following points will be discussed in detail: (i) production process of a magnetic yoke diluted with stainless steel plates, (ii) the stability and repeatability of the field homogeneity of such a yoke over the full working range, (iii) choice of soft magnetic steel, (iv) hysteresis effects, (v) mechanical deformations, (vi) thermal insulation to intercept heat load from baking for activation of NEG coating in the vacuum chamber, (vii) end shim design. In order to verify these points the following measurements will be performed: (i) Hall probe scanning, (ii) integrated field homogeneity measurement (DC), (iii) integrated field homogeneity measurement (AC).

  12. A theoretical/experimental approach to determining the residual strength of corroded pipelines under combined pressure/bending loads

    International Nuclear Information System (INIS)

    Kanninen, M.F.; Roy, S.; Grigory, S.C.; Pagalthivarthi, K.V.; Maple, J.

    1992-01-01

    This paper reported on a study that examined the feasibility of developing a theoretically valid methodology for assessing the residual strength of corroded oil pipelines in combined pressure loading and axial bending conditions. Bending can occur due to local subsidence that can occur in moist soil, resulting in bending stresses that can equal or exceed the pressure-related stresses. The study involved a series of pipe testing, finite element analyses and shell theory modelling. The experiment performed to validate the modelling involved an artificially degraded 20 inch diameter X52 steel pipe that was subjected to pressure and bending loadings. The integration of the 3 technical activities demonstrated the feasibility of the proposed analysis methodology for determining the potential failure of oil and gas pipelines with metal loss. Predictions were found to be in good agreement with experimental results when the methodology was combined with criteria such as the instability of the effective plastic strain. 1 ref., 7 figs.

  13. Study on Effects of Different Replacement Rate on Bending Behavior of Big Recycled Aggregate Self Compacting Concrete

    Science.gov (United States)

    Li, Jing; Guo, Tiantian; Gao, Shuai; Jiang, Lin; Zhao, Zhijun; Wang, Yalin

    2018-03-01

    Big recycled aggregate self compacting concrete is a new type of recycled concrete, which has the advantages of low hydration heat and green environmental protection, but its bending behavior can be affected by different replacement rate. Therefor, in this paper, the research status of big Recycled aggregate self compacting concrete was systematically introduced, and the effect of different replacement rate of big recycled aggregate on failure mode, crack distribution and bending strength of the beam were studied through the bending behavior test of 4 big recycled aggregate self compacting concrete beams. The results show that: The crack distribution of the beam can be affected by the replacement rate; The failure modes of big recycled aggregate beams are the same as those of ordinary concrete; The plane section assumption is applicable to the big recycled aggregate self compacting concrete beam; The higher the replacement rate, the lower the bending strength of big recycled aggregate self compacting concrete beams.

  14. Temperature dependence of bending strength for plasma sprayed zirconia coating; Plasuma yosha zirconia himaku no magetsuyosa no ondo izonsei

    Energy Technology Data Exchange (ETDEWEB)

    Arai, M.; Sakuma, T. [Central Research Inst. of Electric Power Industry, Tokyo (Japan)] Mizutani, T. [Tokyo Inst. of Tech. (Japan)] Kishimoto, K. [Tokyo Inst. of Tech. (Japan). Faculty of Engineering] Saito, M. [Toshiba Corp. (Japan). Heavy Apparatus Engineering Lab.

    1998-02-01

    Plasma sprayed zirconia applying to the thermal barrier coating in gas turbine has been developing for protecting the hot parts such as blades and nozzles from high-temperature enviroments. In this paper, four point bending tests under various temperature conditions are conducted on plasma sprayed zirconia and its mechanical properties are examined. Results show that the bending strength at room temperature for plasma sprayed zirconia is much lower than that of sintered zirconia and is decreased with the increase in temperature. However, Weibull modulus at each temperature is relatively large and the dispersion of bending strength is very small in comparison with that of sintered zirconia. It is also clarified by the SEM observations of fracture surface that many defects such as debonding and microcrack are responsible for the lower bending strength. 9 refs., 8 figs., 1 tab.

  15. Labor supply functions of working male and female pharmacists: In search of the backward bend.

    Science.gov (United States)

    Carvajal, Manuel J; Deziel, Lisa; Armayor, Graciela M

    2012-01-01

    Previous research has shown that U.S. pharmacists experience negative elasticities along a backward-bending labor supply function. The presence of a backward bend in the labor supply curve may cause a decrease in the amount of work at a time of labor shortage. Therefore, the determinants of pharmacists' labor supply functions should be explored to assess the impact of this backward bend. To determine whether female and male pharmacist work inputs are influenced by the same factors and estimate where the backward bend occurs, if at all, in their labor supply functions. Data were collected using a survey questionnaire mailed to registered pharmacists in South Florida. Labor supply functions were formulated and tested separately for 558 men and 498 women. The wage rate, other household income, human capital stock, job-related preferences, and opinion variables were hypothesized to explain labor supply differentials. Human capital stock variables included professional experience, holding a specialty board certification, and number of children; job-related preference variables included urban-rural location of work site and main role as a practitioner; and opinion variables included stress, autonomy, fairness in the workplace, flexibility, and job security. Men and women responded differently to identical stimuli, and their supply functions were influenced in different ways by the explanatory variables. Both genders exhibited positive labor supply elasticities greater than those reported in other studies. Both genders' backward bend in their labor supply functions occurred several standard deviations to the right of the mean. The backward bend in the labor supply functions of male and female pharmacists is not likely to affect in the near future the labor market's ability to regulate shortages of practitioners via increases in the wage rate. A more thorough understanding of pharmacists' labor supply functions must address gender issues and differences in response to

  16. Statistical Analysis of Bending Rigidity Coefficient Determined Using Fluorescence-Based Flicker-Noise Spectroscopy.

    Science.gov (United States)

    Doskocz, Joanna; Drabik, Dominik; Chodaczek, Grzegorz; Przybyło, Magdalena; Langner, Marek

    2018-06-01

    Bending rigidity coefficient describes propensity of a lipid bilayer to deform. In order to measure the parameter experimentally using flickering noise spectroscopy, the microscopic imaging is required, which necessitates the application of giant unilamellar vesicles (GUV) lipid bilayer model. The major difficulty associated with the application of the model is the statistical character of GUV population with respect to their size and the homogeneity of lipid bilayer composition, if a mixture of lipids is used. In the paper, the bending rigidity coefficient was measured using the fluorescence-enhanced flicker-noise spectroscopy. In the paper, the bending rigidity coefficient was determined for large populations of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphocholine vesicles. The quantity of obtained experimental data allows to perform statistical analysis aiming at the identification of the distribution, which is the most appropriate for the calculation of the value of the membrane bending rigidity coefficient. It has been demonstrated that the bending rigidity coefficient is characterized by an asymmetrical distribution, which is well approximated with the gamma distribution. Since there are no biophysical reasons for that we propose to use the difference between normal and gamma fits as a measure of the homogeneity of vesicle population. In addition, the effect of a fluorescent label and types of instrumental setups on determined values has been tested. Obtained results show that the value of the bending rigidity coefficient does not depend on the type of a fluorescent label nor on the type of microscope used.

  17. Variability of Darcian Flux in the Hyporheic Zone at a Natural Channel Bend

    Directory of Open Access Journals (Sweden)

    Shaofeng Xu

    2017-02-01

    Full Text Available Channel bends are one of the most important characteristic features of natural streams. These bends often create the conditions for a hyporheic zone, which has been recognized as a critical component of stream ecosystems. The streambed vertical hydraulic conductivity (Kv, vertical hydraulic gradient (VHG and Darcian flux (DF in the hyporheic zone were estimated at 61 locations along a channel bend of the Beiluo River during July 2015 and January 2016. All the streambed attributes showed great spatial variability along the channel bend. Both upward fluxes and downward fluxes occurred during the two test periods, most of studied stream sections were controlled by downwelling, indicating stream water discharge into the subsurface. The average downward flux was higher at the downstream side than at the upstream side of the channel bend, especially in July 2015. The distribution of streambed sediment grain size has a significant influence on the variability of Kv; high percentages of silt and clay sediments generally lead to low Kv values. Higher Kv at the depositional left bank at the upstream site shifted toward the erosional right bank at the downstream site, with Kv values positively correlated with the water depth. This study suggested that the variabilities of Kv and VHG were influenced by the stream geomorphology and that the distribution of Kv was inversely related, to a certain extent, to the distribution of VHG across the channel bend. Kv and VHG were found to have opposite effects on the DF, and the close relationship between Kv and DF indicated that the water fluxes were mainly controlled by Kv.

  18. Can hook-bending be let off the hook? Bending/unbending of pliant tools by cockatoos.

    Science.gov (United States)

    Laumer, I B; Bugnyar, T; Reber, S A; Auersperg, A M I

    2017-09-13

    The spontaneous crafting of hook-tools from bendable material to lift a basket out of a vertical tube in corvids has widely been used as one of the prime examples of animal tool innovation. However, it was recently suggested that the animals' solution was hardly innovative but strongly influenced by predispositions from habitual tool use and nest building. We tested Goffin's cockatoo, which is neither a specialized tool user nor a nest builder, on a similar task set-up. Three birds individually learned to bend hook tools from straight wire to retrieve food from vertical tubes and four subjects unbent wire to retrieve food from horizontal tubes. Pre-experience with ready-made hooks had some effect but was not necessary for success. Our results indicate that the ability to represent and manufacture tools according to a current need does not require genetically hardwired behavioural routines, but can indeed arise innovatively from domain general cognitive processing. © 2017 The Authors.

  19. Induction bending of API 5L X80 pipes; Curvamento a quente de tubos API 5L X80

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Gilmar Z. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)]. E-mail: g.zacca@petrobras.com.br; Naschpitz, Leonardo [Primus Processamento de Tubos S.A. - PROTUBO, Campo Grande, RJ (Brazil)]. E-mail: naschpitz@protubo.com.br

    2005-07-01

    The present work is a part of an extensive program to make possible the application of API 5L X80 in pipeline construction in Brazil. At this stage, the effect of the induction bending process on the microstructure and mechanical properties of the pipe is presented. For this study an API 5L X80 pipe, made by the UOE process, is used. The pipe was manufactured from a plate produced by thermo-mechanically controlled rolling without accelerated cooling. The pipe bending was carried out applying a local induction heating following by water quenching. The bend section, outer and inner curvature regions, of the pipe bend were evaluated and compared with the original pipe. The longitudinal weld and transition zones were not evaluated at this stage. Dimensional analyses, microstructural evaluation, Charpy-V impact tests, and tensile tests were performed. A significant microstructural change was verified in the bend area. The yield strength of the pipe bend was found to be lower than original pipe and standard requirements. Other tensile properties and impact properties are compatible with API 5L X80 requirements. (author)

  20. On the accuracy of analyses for in-plane bending of smooth pipe bends with end constraints

    International Nuclear Information System (INIS)

    Thomson, G.; Spence, J.

    1985-01-01

    The accuracy of theoretical analyses for in-plane bending of smooth pipebends with end constraints is discussed and investigated with a view to explaining and reducing the differences between the major works. An earlier theory of the authors is improved to give more accurate answers for bends with rigid flanges. Flanged bends are then examined in some detail, quantifying for the first time the important influence of the flange rigidity on the bend flexibility and stresses. A summary of some finite element analyses is presented from which it is clear that further work is desirable. (orig.)

  1. Bending Under Tension Test with Direct Friction Measurement

    DEFF Research Database (Denmark)

    Andreasen, Jan Lasson; Olsson, David Dam; Chodnikiewicz, K.

    2004-01-01

    A special BUT-transducer has been developed in which friction around the tool radius can be directly measured when drawing a plane sheet strip around a cylindrical tool-pin under constant back tension. The front tension, back tension and torque on the tool-pin are all measured directly, thus...... enabling accurate measurement of friction and direct determination of lubricant film breakdown for varying normal pressure, sliding speed, tool radius and tool preheat temperature. The transducer is applied in an experimental investigation focusing on limits of lubrication in drawing of stainless steel...

  2. Bending cyclic load test for crystalline silicon photovoltaic modules

    Science.gov (United States)

    Suzuki, Soh; Doi, Takuya; Masuda, Atsushi; Tanahashi, Tadanori

    2018-02-01

    The failures induced by thermomechanical fatigue within crystalline silicon photovoltaic modules are a common issue that can occur in any climate. In order to understand these failures, we confirmed the effects of compressive or tensile stresses (which were cyclically loaded on photovoltaic cells and cell interconnect ribbons) at subzero, moderate, and high temperatures. We found that cell cracks were induced predominantly at low temperatures, irrespective of the compression or tension applied to the cells, although the orientation of cell cracks was dependent on the stress applied. The fracture of cell interconnect ribbons was caused by cyclical compressive stress at moderate and high temperatures, and this failure was promoted by the elevation of temperature. On the basis of these results, the causes of these failures are comprehensively discussed in relation to the viscoelasticity of the encapsulant.

  3. Fatigue testing of TBC on structural steel by cyclic bending

    Czech Academy of Sciences Publication Activity Database

    Mušálek, Radek; Kovářík, O.; Medřický, Jan; Curry, N.; Bjorklund, S.; Nylen, P.

    2015-01-01

    Roč. 24, 1-2 (2015), s. 168-174 ISSN 1059-9630 R&D Projects: GA ČR(CZ) GPP108/12/P552 Institutional support: RVO:61389021 Keywords : atmospheric plasma spray * failure mechanism * fatigue * NiCoCrAlY * thermal barrier coatings * yttria-stabilized zirconia Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.568, year: 2015 http://link.springer.com/article/10.1007%2Fs11666-014-0180-4

  4. The effect of cracks on the limit load of pipe bends under in-plane bending

    International Nuclear Information System (INIS)

    Griffiths, J.E.

    1976-06-01

    The limit analysis of the in-plane bending of curved tubes had received attention previously, but the effect of defects in the tube has not been considered. A lower bound has been established which, with no defects present, is in agreement with previous theoretical work. The method of linear programming allows cracks to be introduced into analysis, and results have been obtained for various geometries of defect. The results show that the presence of cracks in the pipe bend can have a marked effect on the theoretical limit load: a part-through crack penetrating only half the wall thickness will reduce the limit moment by up to 10%. The worst possible case of a through-crack may reduce the limit load by 60%. (author)

  5. The effect of cracks on the limit load of pipe bends under in-plane bending

    International Nuclear Information System (INIS)

    Griffiths, J.E.

    1976-06-01

    The limit analysis of the in-plane bending of curved tubes had received attention previously, but the effect of defects in the tube has not been considered. A lower bound is established, which, with no defects present, is in agreement with previous theoretical work. The method of linear programming allows cracks to be introduced into the analysis. and results have been obtained for various geometries of defect. The results show that the presence of cracks in the pipe bend can have a marked effect on the theoretical limit load: a part-through crack penetrating only half the wall thickness will reduce the limit moment by up to 10%. The worst possible case of a through-crack may reduce the limit load by 60% (author)

  6. Evolution of microstructure and mechanical properties of Al 6061 alloy tube in cyclic rotating bending process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zicheng, E-mail: zhangzicheng2004@126.com [School of Mechanical Engineering and Automation, Northeastern University, P.O. Box 319, No. 11 Lane 3, Wenhua Rd., Heping District, Shenyang 110819, Liaoning Province (China); Department of Mechanical Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo (Japan); Shao, Shuai [School of Mechanical Engineering and Automation, Northeastern University, P.O. Box 319, No. 11 Lane 3, Wenhua Rd., Heping District, Shenyang 110819, Liaoning Province (China); Manabe, Ken-ichi [Department of Mechanical Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo (Japan); Kong, Xiangwei [School of Mechanical Engineering and Automation, Northeastern University, P.O. Box 319, No. 11 Lane 3, Wenhua Rd., Heping District, Shenyang 110819, Liaoning Province (China); Li, Yanmei [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110004, Liaoning (China)

    2016-10-31

    To refine the microstructure and improve the mechanical properties of metal tubes, a new concept of severe plastic deformation process of cyclic rotating bending (CRB) was newly introduced. The current study focused on the investigation of evolution of microstructure and mechanical properties of Al 6061 tube in the CRB process with different deformation conditions. For this purpose, the CRB processes were performed with different deformation temperatures, bending angles and deformation times. The tensile test and Vickers hardness test were employed to evaluate the tensile properties and micro-hardness of the tube, respectively. While the Optical Microscope and Scanning Electronic Microscope equipped with Electron Back-Scattered Diffraction were utilized for the microstructure characterizations. The results shows that the deformation temperature, bending angle and deformation time have the strong influences on the mechanical properties and microstructure of the tubes processed by the CRB process. As a result, the tube with an average grain size of about 55 µm, as well as ultimate tensile strength of 244 MPa and total elongation of 10.05% was successfully obtained with the optimized deformation condition of the CRB process with a temperature of 100 °C, bending angle of 174°, the rotation speed of 20 r/min, and deformation time of 5 min, respectively.

  7. Study of interface influence on bending performance of CFRP with embedded optical fibers

    Science.gov (United States)

    Liu, Rong-mei; Liang, Da-kai

    2008-11-01

    Studies showed that the bending strength of composite would be affected by embedded optical fibers. Interface strength between the embedded optical fiber and the matrix was studied in this paper. Based on the single fiber pull out tests, the interfacial shear strength between the coating and the clad is the weakest. The shear strength of the optical fiber used in this study is near to 0.8MPa. In order to study the interfacial effect on bending property of generic smart structure, a quasi-isotropic composite laminates were produced from Toray T300C/ epoxy prepreg. Optical fibers were embedded within different orientation plies of the plates, with the optical fibers embedded in the same direction. Accordingly, five different types of plates were produced. Impact tests were carried out on the 5 different plate types. It is shown that when the fiber was embedded at the upper layer, the bending strength drops mostly. The bending normal stress on material arrives at the maximum. So does the normal stress applied on the optical fiber at the surface. Therefore, destructions could originate at the interface between the coating and the clad foremost. The ultimate strength of the smart structure will be affected furthest.

  8. Effect of Bend Radius on Magnitude and Location of Erosion in S-Bend

    Directory of Open Access Journals (Sweden)

    Quamrul H. Mazumder

    2015-01-01

    Full Text Available Solid particle erosion is a mechanical process that removes material by the impact of solid particles entrained in the flow. Erosion is a leading cause of failure of oil and gas pipelines and fittings in fluid handling industries. Different approaches have been used to control or minimize damage caused by erosion in particulated gas-solid or liquid-solid flows. S-bend geometry is widely used in different fluid handling equipment that may be susceptible to erosion damage. The results of a computational fluid dynamic (CFD simulation of diluted gas-solid and liquid-solid flows in an S-bend are presented in this paper. In addition to particle impact velocity, the bend radius may have significant influence on the magnitude and the location of erosion. CFD analysis was performed at three different air velocities (15.24 m/s–45.72 m/s and three different water velocities (0.1 m/s–10 m/s with entrained solid particles. The particle sizes used in the analysis range between 50 and 300 microns. Maximum erosion was observed in water with 10 m/s, 250-micron particle size, and a ratio of 3.5. The location of maximum erosion was observed in water with 10 m/s, 300-micron particle size, and a ratio of 3.5. Comparison of CFD results with available literature data showed reasonable and good agreement.

  9. Failure analysis of fusion clad alloy system AA3003/AA6xxx sheet under bending

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Y., E-mail: shiyh@mcmaster.ca [Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Jin, H. [Novelis Global Technology Center, P.O. Box 8400, Kingston, Ontario, Canada K7L 5L9 (Canada); Wu, P.D. [Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Lloyd, D.J. [Aluminum Materials Consultants, 106 Nicholsons Point Road, Bath, Ontario, Canada K0H 1G0 (Canada); Embury, D. [Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada)

    2014-07-29

    An ingot of AA6xxx Al–Si–Mg–Cu alloy clad with AA3003 Al–Mn alloy was co-cast by Fusion technology. Bending tests and numerical modeling were performed to investigate the potential for sub-surface cracking for this laminate system. To simulate particle-induced crack initiation and growth, both random and stringer particles have been selected to mimic the particle distribution in the tested samples. The morphology of cracking in the model was similar to that observed in clad sheet tested in the Cantilever bend test. The crack initiated in the core close to the clad-core interface where the strain in the core is highest, between particles or near particles and propagates along local shear bands in the core, while the clad layer experiences extreme thinning before failure.

  10. [Odontoid bending stiffness after anterior fixation with a single lag screw: biomechanical study].

    Science.gov (United States)

    Buchvald, P; Čapek, L; Barsa, P

    2015-01-01

    PURPOSE OF THE STUDY The aim of the experiment was to compare the bending stiffness of an intact odontoid process with bending stiffness after its simulated type II fracture was fixed with a single lag screw. The experiment was done with a desire to answer the question of whether a single osteosynthetic screw is sufficient for good fixation of a type II odontoid fracture. MATERIAL AND METHODS The C2 vertebrae of six cadavers were used. With simultaneous measurement of odontoid bending stiffness, the occurrence of a fracture (type IIA, Grauer's modification of the Anderson- D'Alonzo classification) was simulated using action exerted by a tearing machine in the direction perpendicular to the odontoid axis. Each odontoid fracture was subsequently treated by direct osteosynthesis with a single lag screw inserted in the axial direction by a standard surgical procedure in order to provide conditions similar to those achieved by routine surgical management. The treated odontoid process was subsequently subjected to the same tearing machine loading as applied to it at the start of the experiment. The bending stiffness measured was then compared with that found before the fracture occurred. The results were statistically evaluated by the t-test for paired samples at the level of significance α = 0.05. RESULTS The average value of bending stiffness for odontoid processes of intact vertebrae at the moment of fracture occurrence was 318.3 N/mm. After single axial lag screw fixation of the fracture, the average bending stiffness for the odontoid processes treated was 331.3 N/mm. DISCUSSION Higher values of bending stiffness after screw fixation were found in all specimens and, in comparison with the values recorded before simulated fractures, the increase was statistically significant. CONCLUSIONS The results of our measurements suggest that the single lag screw fixation of a type IIA odontoid fracture will provide better stability for the fracture fragment-C2 body complex on

  11. Gender differences in variability patterns of forward bending

    DEFF Research Database (Denmark)

    Villumsen, Morten; Madeleine, Pascal; Jørgensen, Marie Birk

    2016-01-01

    The variability pattern is highly relevant in the analysis of occupational physical exposures. It is hypothesized that gender differences exist in the variability pattern of forward bending between work and leisure.......The variability pattern is highly relevant in the analysis of occupational physical exposures. It is hypothesized that gender differences exist in the variability pattern of forward bending between work and leisure....

  12. System effects influencing the bending strength of timber beams

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Källsner, B.

    1998-01-01

    A stochastic model of hierarchical series system type for the bending strength of spruce beams isdefined from the anticipation that the bending failure takes place at a cross-section with a defect cluster formed by knots or grain irregularities. The parameters of the model are estimated from meas...

  13. Bends in nanotubes allow electric spin control and coupling

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Marcus, Charles Masamed

    2010-01-01

    We investigate combined effects of spin-orbit coupling and magnetic field in carbon nanotubes containing one or more bends along their length. We show how bends can be used to provide electrical control of confined spins, while spins confined in straight segments remain insensitive to electric...

  14. Spontaneous bending of 2D molecular bottle-brush

    NARCIS (Netherlands)

    Subbotin, A; Jong, J; ten Brinke, G

    Using a scaling approach we consider a 2D comb copolymer brush under bending deformations. We show that the rectilinear brush is locally stable and can be characterized by a persistence length lambda increasing with the molecular weight of grafting side chains as lambda similar to M-3. A bending

  15. High-sensitivity bend angle measurements using optical fiber gratings.

    Science.gov (United States)

    Rauf, Abdul; Zhao, Jianlin; Jiang, Biqiang

    2013-07-20

    We present a high-sensitivity and more flexible bend measurement method, which is based on the coupling of core mode to the cladding modes at the bending region in concatenation with optical fiber grating serving as band reflector. The characteristics of a bend sensing arm composed of bending region and optical fiber grating is examined for different configurations including single fiber Bragg grating (FBG), chirped FBG (CFBG), and double FBGs. The bend loss curves for coated, stripped, and etched sections of fiber in the bending region with FBG, CFBG, and double FBG are obtained experimentally. The effect of separation between bending region and optical fiber grating on loss is measured. The loss responses for single FBG and CFBG configurations are compared to discover the effectiveness for practical applications. It is demonstrated that the sensitivity of the double FBG scheme is twice that of the single FBG and CFBG configurations, and hence acts as sensitivity multiplier. The bend loss response for different fiber diameters obtained through etching in 40% hydrofluoric acid, is measured in double FBG scheme that resulted in a significant increase in the sensitivity, and reduction of dead-zone.

  16. [Multiple coil pulsed magnetic resonance method to measure the SSC bending magnet multipole moments

    International Nuclear Information System (INIS)

    Clark, W.G.

    1990-01-01

    The main emphasis has been to continue development of the high frequency (to 300 MHz) instrumentation, to test the system on a prototype bending magnet, construct the high frequency 32-channel electronics and probes, to seek industrial partners for technology transfer and commercial exploitation, and to do computer simulations for optimizing design parameters. Experience gained from tests made on a dipole magnet at Lawrence Berkeley Laboratory was extremely valuable and has resulted in substantial modifications to the original design

  17. Formulation of Forming Load in V-Bending

    Directory of Open Access Journals (Sweden)

    Koumura Yuki

    2016-01-01

    Full Text Available A novel method is described to calculate the forming load in V-bending by a press brake. The data of forming load are collected by FEM analysis. With an increase of the punch stroke in V-bending, the forming load increases gradually after the elastic limit, and then decreases after showing the maximum value. The proposal formulation to trace the variations in the forming load curve includes the calculating method of the load of the elastic limit, the maximum load in air bending and the variations of the forming load before/after the bending stroke of the maximum load. The calculated precision is confirmed by comparing with the measured load-stroke curves in V-bending with a press brake.

  18. Long-Term Bending Creep Behavior of Thin-Walled CFRP Tendon Pretensioned Spun Concrete Poles

    Directory of Open Access Journals (Sweden)

    Giovanni P. Terrasi

    2014-07-01

    Full Text Available This paper discusses the long-term behavior of a series of highly-loaded, spun concrete pole specimens prestressed with carbon fiber-reinforced polymer (CFRP tendons, which were subjected to outdoor four-point bending creep tests since 1996 in the frame of collaboration with the Swiss precast concrete producer, SACAC (Società Anonima Cementi Armati Centrifugati. The 2 m span cylindrical beams studied are models for lighting poles produced for the last 10 years and sold on the European market. Five thin-walled pole specimens were investigated (diameter: 100 mm; wall-thickness: 25–27 mm. All specimens were produced in a pretensioning and spinning technique and were prestressed by pultruded CFRP tendons. Initially, two reference pole specimens were tested in quasi-static four-point bending to determine the short-term failure moment and to model the short-term flexural behavior. Then, three pole specimens were loaded to different bending creep moments: while the lowest loaded specimen was initially uncracked, the second specimen was loaded with 50% of the short-term bending failure moment and exhibited cracking immediately after load introduction. The highest loaded pole specimen sustained a bending moment of 72% of the short-term bending failure moment for 16.5 years before failing in July 2013, due to the bond failure of the tendons, which led to local crushing of the high-performance spun concrete (HPSC. Besides this, long-term monitoring of the creep tests has shown a limited time- and temperature-dependent increase of the deflections over the years, mainly due to the creep of the concrete. A concrete creep-based model allowed for the calculation of the long-term bending curvatures with reasonable accuracy. Furthermore, the pole specimens showed crack patterns that were stable over time and minimal slippage of the tendons with respect to the pole’s end-faces for the two lower load levels. The latter proves the successful and durable

  19. A bend thickness sensitivity study of Candu feeder piping

    International Nuclear Information System (INIS)

    Li, M.; Aggarwal, M.L.; Meysner, A.; Micelotta, C.

    2005-01-01

    In CANDU reactors, feeder bends close to the connection at the fuel channel may be subjected to the highest Flow Accelerated Corrosion (FAC) and stresses. Feeder pipe stress analysis is crucial in the life extension of aging CANDU plants. Typical feeder pipes are interconnected by upper link plates and spacers. It is well known that the stresses at the bends are sensitive to the local bend thicknesses. It is also known from the authors' study (Li and et al, 2005) that feeder inter linkage effect is significant and cannot be ignored. The field measurement of feeder bend thickness is difficult and may be subjected to uncertainty in accuracy. Hence, it is desirable to know how the stress on a subject feeder could be affected by the bend thickness variation of the neighboring feeders. This effect cannot be evaluated by the traditional 'single' feeder model approach. In this paper, the 'row' and 'combined' models developed in the previous study (Li and et al, 2005), which include the feeder interactions, are used to investigate the sensitivity of bend thickness. A series of random thickness bounded by maximum and minimum measured values were applied to feeders in the model. The results show that an individual feeder is not sensitive to the bend thickness variation of the remaining feeders in the model, but depends primarily on its own bend thickness. The highest stress at a feeder always occurs when the feeder has the smallest possible bend thickness. A minimum acceptable bend thickness for individual feeders can be computed by an iterative computing process. The dependency of field thickness measurement and the amount of required analysis work can be greatly reduced. (authors)

  20. Theoretical and experimental study of the bending influence on the capacitance of interdigitated micro-electrodes patterned on flexible substrates

    International Nuclear Information System (INIS)

    Molina-Lopez, F.; Briand, D.; Rooij, N. F. de; Kinkeldei, T.; Tröster, G.

    2013-01-01

    Interdigitated electrodes are common structures in the fields of microelectronics and MEMS. Recent developments in flexible electronics compel an understanding of such structures under bending constraints. In this work, the behavior of interdigitated micro-electrodes when subjected to circular bending has been theoretically and experimentally studied through changes in capacitance. An analytical model has been developed to calculate the expected variation in capacitance of such structures while undergoing outward and inward bending along the direction perpendicular to the electrodes. The model combines conformal mapping techniques to account for the electric field redistribution and fundamental aspects of solid mechanics in order to define the geometrical deformation of the electrodes while bending. To experimentally verify our theoretical predictions, several interdigitated electrode structures with different geometries were fabricated on polymeric substrates by means of photolithography. The samples, placed in a customized bending setup, were bent to controlled radii of curvature while measuring their capacitance. A maximum variation in capacitance of less than 3% was observed at a minimum radius of curvature of 2.5 mm for all the devices tested with very thin electrodes whereas changes of up to 7% were found on stiffer, plated electrodes. Larger or smaller variations would be possible, in theory, by adjusting the geometry of the device. This work establishes a useful predictive tool for the design and evaluation of truly flexible/bendable electronics consisting of interdigitated structures, allowing one to tune the bending influence on the capacitance value through geometrical design

  1. Fatigue Assessment of High Strength Steel Welded Joints Under Bending Loading

    International Nuclear Information System (INIS)

    Lee, Myeong-Woo; Kim, Yun-Jae; Park, Jun-Hyub

    2014-01-01

    In this study, a fatigue assessment method for vehicle suspension systems having welded geometries was established under a bending loading condition. For the fatigue life estimation of the actual product s welded joints made of different steels, bending fatigue tests were performed on welded specimens with a simplified shape for obtaining the moment-fatigue-life plot. Further, geometry modeling of the simplified welded specimens was conducted. Results of finite element analysis were used to obtain the stress-fatigue-life plot. The analysis results were also used to calculate the stress concentration factors for notch-factor-based fatigue life estimation. The test results were compared with results of the general notch-factor-based fatigue life estimation for improving fatigue assessment. As a result, it was concluded that both the welded fatigue tests and the notch-factor-based fatigue life estimation are necessary for accurate fatigue assessment

  2. Field measurement for large bending magnets

    International Nuclear Information System (INIS)

    Lazzaro, A.; Cappuzzello, F.; Cunsolo, A.; Cavallaro, M.; Foti, A.; Orrigo, S.E.A.; Rodrigues, M.R.D.; Winfield, J.S.

    2008-01-01

    The results of magnetic field measurements of the large bending magnet of the MAGNEX spectrometer are presented. The experimental values are used to build an Enge function by the least-squares method. The resulting field is compared to the measured one, showing too large deviation for application to ray reconstruction techniques. Similarly, the experimental values are compared with results from a three-dimensional finite elements calculation. Again the deviations between measured and calculated field are too large for a direct application of the latter to ray reconstruction, while its reliability is sufficient for analysis purposes. In particular, it has been applied to study the effect of the inaccuracies in the probe location and orientation on the precision of field reconstruction, and to establish the requirements for the field interpolation. These inaccuracies are found to be rather important, especially for the transversal components of the field, with the consequence that their effect on the reconstructed field should be minimized by special interpolation algorithms

  3. Occipital bending (Yakovlevian torque) in bipolar depression.

    Science.gov (United States)

    Maller, Jerome J; Anderson, Rodney; Thomson, Richard H; Rosenfeld, Jeffrey V; Daskalakis, Zafiris J; Fitzgerald, Paul B

    2015-01-30

    Differing levels of occipital lobe asymmetry and enlarged lateral ventricles have been reported within patients with bipolar disorder (BD) compared with healthy controls, suggesting different rates of occipital bending (OB). This may exert pressure on subcortical structures, such as the hippocampus, reduced among psychiatric patients. We investigated OB prevalence in 35 patients with BD and 36 healthy controls, and ventricular and occipital volumes. Prevalence was four times higher among BD patients (12/35 [34.3%]) than in control subjects (3/36 [8.3%]), as well as larger lateral ventricular volumes (LVVs). Furthermore, we found OB to relate to left-to-right ventricular and occipital lobe volume (OLV) ratios. Those with OB also had reduced left-to-right hippocampal volume ratios. The results suggest that OB is more common among BD patients than healthy subjects, and prevalent in both BD Type I and Type II patients. We posit that anomalies in neural pruning or ventricular enlargement may precipitate OB, consequently resulting in one occipital lobe twisting around the other. Although the clinical implications of these results are unclear, the study suggests that asymmetrical ventricular volume matched with a pattern of oppositely asymmetrical occipital volume is related to OB and may be a marker of psychiatric illness. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. General principles of control method of passenger car bodies bending vibration parameters

    Science.gov (United States)

    Skachkov, A. N.; Samoshkin, S. L.; Korshunov, S. D.; Kobishchanov, V. V.; Antipin, D. Ya

    2018-03-01

    Weight reduction of passenger cars is a promising direction of reducing the cost of their production and increasing transportation profitability. One way to reduce the weight of passenger cars is the lightweight metal body design by means of using of high-strength aluminum alloys, low-alloy and stainless steels. However, it has been found that the limit of the lightweight metal body design is not determined by the total mode of deformation, but its flexural rigidity, as the latter influences natural frequencies of body bending vibrations. With the introduction of mandatory certification for compliance with the Customs Union technical regulations, the following index was confirmed: “first natural frequency of body bending vibrations in the vertical plane”. This is due to the fact that vibration, noise and car motion depend on this index. To define the required indexes, the principles of the control method of bending vibration parameters of passenger car bodies are proposed in this paper. This method covers all stages of car design – development of design documentation, manufacturing and testing experimental and pilot models, launching the production. The authors also developed evaluation criteria and the procedure of using the results for introduction of control method of bending vibration parameters of passenger car bodies.

  5. FEA Simulation of Free-Bending - a Preforming Step in the Hydroforming Process Chain

    Science.gov (United States)

    Beulich, N.; Craighero, P.; Volk, W.

    2017-09-01

    High-strength steel and aluminum alloys are essential for developing innovative, lightly-weighted space frame concepts. The intended design is built from car body parts with high geometrical complexity and reduced material-thickness. Over the past few years, many complex car body parts have been produced using hydroforming. To increase the accuracy of hydroforming in relation to prospective car concepts, the virtual manufacturing of forming becomes more important. As a part of process digitalization, it is necessary to develop a simulation model for the hydroforming process chain. The preforming of longitudinal welded tubes is therefore implemented by the use of three-dimensional free-bending. This technique is able to reproduce complex deflection curves in combination with innovative low-thickness material design for hydroforming processes. As a first step to the complete process simulation, the content of this paper deals with the development of a finite element simulation model for the free-bending process with 6 degrees of freedom. A mandrel built from spherical segments connected by a steel rope is located inside of the tube to prevent geometrical instability. Critical parameters for the result of the bending process are therefore evaluated and optimized. The simulation model is verified by surface measurements of a two-dimensional bending test.

  6. Eddy current array probe for detection of surface breaking cracks in the extrados of feeder bends

    International Nuclear Information System (INIS)

    Obrutsky, L.S.; Cassidy, R.A.; Chaplin, K.; Martin, P.; Bureau, J.F.

    2006-01-01

    A new eddy current array probe has been implemented as a straightforward and promising technique for detection of outer diameter (OD) surface-breaking cracks on the extrados of feeder bends. The design is based on previous work performed at AECL, which had demonstrated that eddy current probes with laterally displaced transmit-receive coils can overcome some of the limitations of inspecting ferritic steel components for surface-breaking cracks. The Feeder Integrity Joint Program-CANDU Owners Group Inc. (FIJP-COG) Non-Destructive Evaluation (NDE) Team members commissioned AECL to work in collaboration with the probe manufacturer ZETEC, to develop a field usable eddy current array probe. The objective was to acquire a technique with the following capabilities: fast scanning non-contact inspection technique for surface breaking discontinuities; full inspection of the bend extrados OD surface in a single scan; ability to inspect first and second bends with similar settings and capabilities; permanent record for future reference; axial and circumferential crack detection in a single scan; capability to detect OD surface-breaking cracks, which can provide additional information to that provided by ultrasonic testing (UT) for flaw characterization, and detection threshold: Surface breaking cracks equivalent to a 0.5 mm deep, 10 mm long EDM notch located on the OD of the bend extrados. This paper discusses the basis for probe design, summarizes the experimental work to evaluate probe capabilities and analyzes the results from the field trial. (author)

  7. Eddy current array probe for detection of surface breaking cracks in the extrados of feeder bends

    Energy Technology Data Exchange (ETDEWEB)

    Obrutsky, L.S.; Cassidy, R.A.; Chaplin, K. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)]. E-mail: obrutskyl@aecl.ca; Martin, P. [NB Power, Point Lepreau NGS, Point Lepreau, New Brunswick (Canada)]. E-mail: PMartin@nbpower.com; Bureau, J.F. [Zetec, Quebec, Quebec (Canada)]. E-mail: jean-francois.bureau@zetec.com

    2006-07-01

    A new eddy current array probe has been implemented as a straightforward and promising technique for detection of outer diameter (OD) surface-breaking cracks on the extrados of feeder bends. The design is based on previous work performed at AECL, which had demonstrated that eddy current probes with laterally displaced transmit-receive coils can overcome some of the limitations of inspecting ferritic steel components for surface-breaking cracks. The Feeder Integrity Joint Program-CANDU Owners Group Inc. (FIJP-COG) Non-Destructive Evaluation (NDE) Team members commissioned AECL to work in collaboration with the probe manufacturer ZETEC, to develop a field usable eddy current array probe. The objective was to acquire a technique with the following capabilities: fast scanning non-contact inspection technique for surface breaking discontinuities; full inspection of the bend extrados OD surface in a single scan; ability to inspect first and second bends with similar settings and capabilities; permanent record for future reference; axial and circumferential crack detection in a single scan; capability to detect OD surface-breaking cracks, which can provide additional information to that provided by ultrasonic testing (UT) for flaw characterization, and detection threshold: Surface breaking cracks equivalent to a 0.5 mm deep, 10 mm long EDM notch located on the OD of the bend extrados. This paper discusses the basis for probe design, summarizes the experimental work to evaluate probe capabilities and analyzes the results from the field trial. (author)

  8. The influence of end constraints on smooth pipe bends

    International Nuclear Information System (INIS)

    Thomson, G.; Spence, J.

    1981-01-01

    With present trends in the power industries towards higher operating temperatures and pressures, problems associated with the design and safety assessment of pipework systems have become increasingly complex. Within such systems, the importance of smooth pipe bends is well established. The work which will be presented will attempt to clarify the situation and unify the results. An analytical solution of the problem of a linear elastic smooth pipe bend with end constraints under in-plane bending will be presented. The analysis will deal with constraints in the form of flanged tangents of any length. The analysis employs the theorem of minimum total potential energy with suitable kinematically admissible displacements in the form of Fourier series. The integrations and minimisation were performed numerically, thereby permitting the removal of several of the assumptions made by previous authors. Typical results for flexibilities will be given along with comparisons with other works. The differences in some earlier theory are clarified and other more recent work using different solution techniques is substantiated. The bend behaviour is shown to be strongly influenced by the pipe bend parameter, the bend angle, the tangent pipe length and the bend/cross-sectional radius ratio. (orig./GL)

  9. Bending-Tolerant Anodes for Lithium-Metal Batteries.

    Science.gov (United States)

    Wang, Aoxuan; Tang, Shan; Kong, Debin; Liu, Shan; Chiou, Kevin; Zhi, Linjie; Huang, Jiaxing; Xia, Yong-Yao; Luo, Jiayan

    2018-01-01

    Bendable energy-storage systems with high energy density are demanded for conformal electronics. Lithium-metal batteries including lithium-sulfur and lithium-oxygen cells have much higher theoretical energy density than lithium-ion batteries. Reckoned as the ideal anode, however, Li has many challenges when directly used, especially its tendency to form dendrite. Under bending conditions, the Li-dendrite growth can be further aggravated due to bending-induced local plastic deformation and Li-filaments pulverization. Here, the Li-metal anodes are made bending tolerant by integrating Li into bendable scaffolds such as reduced graphene oxide (r-GO) films. In the composites, the bending stress is largely dissipated by the scaffolds. The scaffolds have increased available surface for homogeneous Li plating and minimize volume fluctuation of Li electrodes during cycling. Significantly improved cycling performance under bending conditions is achieved. With the bending-tolerant r-GO/Li-metal anode, bendable lithium-sulfur and lithium-oxygen batteries with long cycling stability are realized. A bendable integrated solar cell-battery system charged by light with stable output and a series connected bendable battery pack with higher voltage is also demonstrated. It is anticipated that this bending-tolerant anode can be combined with further electrolytes and cathodes to develop new bendable energy systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Pipe bend wear - is tungsten carbide the answer?

    International Nuclear Information System (INIS)

    Freinkel, D.

    1988-01-01

    The purpose of the investigation was to compare the relative wear resistance of various grades of sintered tungsten carbide liners against a mild steel standard in a full-scale pneumatic conveying testing rig. Speciments ranging in cobalt content from 6 to 30 per cent and in grain size from 0,56 to 2,98 microns, including a mild steel standard, were placed on a specially designed holder which fitted into a tee type 100 mm diameter bend. The specimens were tested under various operating conditions, ie air velocity ranging from 28m/s to 52m/s, impact angles of 30 0 to 70 0 mass flow rates of 35kg/min to 83kg/min and phase densities of 1,2 to 2,9, using a 4 mm nominal size crushed granite rock. The experimental results show that the ultrafine-grained, low cobalt (6 per cent) tungsten carbide displays little sensitivity to varying velocities, impact angles, mass flow rates or phase densities, and consistently gave the best wear resistance under all testing conditions. It consistently showed the least wear resistance under all testing conditions and performed only slightly better than mild steel. The effect of the carbide grain size was found to be small, although the finer grain sizes displayed greater wear resistance than the coarse grains. The effect of cobalt content was such that the lower cobalt specimens (6 per cent range) consistently performed better than the higher cobalt contents (10 per cent, 15 per cent, 30 per cent) under all testing conditions; the wear resistance decreasing with increasing cobalt content. An empirical model for the prediction of wear for each type of material tested has been proposed, given the particular operating conditions. Microstructurally it has been shown that there is a definite relationship between erosion resistance and the inverse of the magnetic coercivity of the tungsten carbide alloys

  11. Piezo films with adjustable anisotropic strain for bending actuators with tunable bending profiles

    International Nuclear Information System (INIS)

    Wapler, Matthias C; Stürmer, Moritz; Brunne, Jens; Wallrabe, Ulrike

    2014-01-01

    We present a method to produce in-plane polarized piezo films with a freely adjustable ratio of the strains in orthogonal in-plane directions. They can be used in piezo bending actuators with a tunable curvature profile. The strains are obtained as mean strains from a periodic polarization pattern produced by a suitable doubly interdigitated electrode structure. This mechanism is demonstrated for several examples using PZT sheets. We further discuss how this tuning and the parameters of the electrode layout affect the overall magnitude of the displacement. (paper)

  12. Numerical simulation of laser bending of AISI 304 plate with a ...

    African Journals Online (AJOL)

    Keywords: laser bending; process modeling; bending angle; response surface models. ... (Shi et al., 2007) presented numerical simulation of bending for with different shapes of laser ..... Matlab 2011a application code is used to develop and.

  13. Flow patterns and hydraulic losses in quasi-coil pipes : The effects of configuration of bend cross section, curvature ratio and bend angle

    OpenAIRE

    Shimizu, Yukimaru; Sugino, Koichi; Yasui, Masaji; Hayakawa, Yukitaka; Kuzuhara, Sadao

    1985-01-01

    Pipes with bend combinations are much used in the heat exchangers, since the curved path in the bends promotes the mixing in flow for active heat transfer. In the present paper, one of the pipes with bend combinations, namely, quasi-coiled pipes composed of many bend elements are investigated, and the relationships between the hydraulic loss and the secondary flow are studied experimentally. The configurations of the cross sections, the bent angles and the curvature ratios of the bend element...

  14. Analysis of lumbar spine and hip motion during forward bending in subjects with and without a history of low back pain.

    Science.gov (United States)

    Esola, M A; McClure, P W; Fitzgerald, G K; Siegler, S

    1996-01-01

    This study analyzed two groups of subjects during forward bending. Group 1 (n = 20) contained subjects with a history of low back pain and Group 2 (n = 21) included subjects without a history of low back pain. The purposes of this study were to establish the amount and pattern of lumbar spine and hip motion during forward bending, and determine differences in motion in subjects with and without a history of low back pain. Reported values for lumbar spine motion during forward bending vary from 23.9 degrees to 60 degrees and hip motion during forward bending ranges from 26 degrees to 66 degrees. There has been no direct study of both lumbar spine and hip motion during forward bending in subjects with and without a history of low back pain to establish differences in total amounts or pattern of lumbar spine and hip motion during forward bending. A three-dimensional optoelectric motion analysis system was used to measure the amount and velocity of lumbar spine and hip motion during forward bending. Each subject performed three trials of forward bending that were averaged and used for statistical analysis. Hamstring flexibility was also assessed by two clinical tests, the passive straight leg raising and active knee extension tests. Mean total forward bending for all subjects was 111 degrees: 41.6 degrees from the lumbar spine and 69.4 degrees from the hips. There were no group differences for total amounts of lumbar spine and hip motion or velocity during forward bending. The pattern of motion was described by calculating lumbar-to-hip flexion ratios for early (0-30 degrees), middle (30-60 degrees), and late (60-90 degrees) forward bending. For all subjects, mean lumbar-to-hip ratios for early, middle, and late forward bending were 1.9, 0.9, and 0.4, respectively. Therefore, the lumbar spine had a greater contribution to early forward bending, the lumbar spine and hips contributed almost equally to middle forward bending, and the hips had a greater contribution to

  15. Creep relaxation of fuel pin bending and ovalling stresses

    International Nuclear Information System (INIS)

    Chan, D.P.; Jackson, R.J.

    1979-06-01

    Analytical methods for calculating fuel pin cladding bending and ovalling stresses due to pin bundle-duct mechanical interaction taking into account nonlinear creep are presented. Calculated results are in close agreement with finite element results by MARC-CDC program. The methods are used to investigate the effect of creep on the FTR fuel cladding bending and ovalling stresses. It is concluded that the cladding of 316 SS 20% CW and reference design has high creep rates in the FTR core region to keep the bending and ovalling stresses to low levels

  16. Localized bending fatigue behavior of high-strength steel monostrands

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2012-01-01

    In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement of the st......In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement...... displacement (opening/closing and sliding) of the helically wound wires. Moreover, the results are a step towards understanding the bending fatigue damage mechanisms of monostrand cables....

  17. Bending-active reciprocal structures based on equilateral polyhedral geometries

    DEFF Research Database (Denmark)

    Popovic Larsen, Olga; BRANCART, Stijn; DE TEMMERMAN, Niels

    2017-01-01

    As mutually supported beam structures, reciprocal frames limit the number of components that are joined at each connection to two. However, this system of intermediate connections introduces undesirable bending moments in the beam elements. By utilising elastic deformation to create curved...... of parts of reciprocal bending-active components based on a selection of polyhedral dome types. To simplify the assembly of the structures and avoid the manual bending of the components on site, we introduce the concept of a double-layered, pre-bent component. Finally, this paper presents the development...

  18. Determination of the bending field integral of the LEP spectrometer dipole

    International Nuclear Information System (INIS)

    Chritin, R.; Cornuet, D.; Dehning, B.; Hidalgo, A.; Hildreth, M.; Kalbreier, W.; Leclere, P.; Mugnai, G.; Palacios, J.; Roncarolo, F.; Torrence, E.; Wilkinson, G.

    2005-01-01

    The LEP spectrometer performed calibrations of the beam energy in the 2000 LEP run, in order to provide a kinematical constraint for the W boson mass measurement. The beam was deflected in the spectrometer by a steel core dipole, and the bending angle was measured by Beam-Position Monitors on either side of the magnet. The energy determination relies on measuring the change in bending angle when ramping the beam from a reference point at 50GeV to an energy within the LEP W physics regime, typically 93GeV. The ratio of integrated bending fields at these settings (approximately 1.18Tm/0.64Tm) must be known with a precision of a few 10 -5 . The paper reports on the field mapping measurements which were conducted to determine the bending integral under a range of excitation currents and coil temperatures. These were made in the laboratory before and after spectrometer operation, using a test-bench equipped with a moving arm, carrying an NMR probe and Hall probes, and in the LEP tunnel itself, with a mapping trolley inside the vacuum chamber. The mapping data are related to local readings supplied by fixed NMR probes in the dipole, and a predictive model developed which shows good consistency for all datasets within the estimated uncertainty, which is 14x10 -5 for the moving arm, and 3x10 -5 for the mapping trolley. Measurements are also presented of the field gradient inside the dipole, and of the environmental magnetic fields in the LEP tunnel. When applied to the spectrometer energy calibrations, the bending field model calculates the ratio of integrated fields with an estimated uncertainty of 1.5x10 -5

  19. Investigation into springback characteristics of two HSS sheets during cold v-bending

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Gang; Gao, Wei-Ran [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2013-12-16

    Considering the safety and the light-weight structure, there is an increasing requirement of high strength steel (HSS) sheets in the automotive industry. The high-precise prediction of the springback depends on constitutive equations and their corresponding material parameters. In order to investigate the springback of HSS sheets, DP590 and B280VK, their constitutive behaviors were analyzed based on the sheet tension tests. With respect to the constitutive equation, the Voce model is more proper to two hot-rolled steels, DP590 and B280VK, than the Swift model. Two steels are all saturated hardening, and the degree of hardening decreases with the strain. The cold v-banding tests of two HSS sheets were carried out for evaluation of springback characteristics. Results of v-bending experiments showed that the springback angle increases with the bending along 45°, 90° and 0° to the rolling direction of steel in turn.

  20. Investigation of bending fatigue-life of aluminum sheets based on rolling direction

    Directory of Open Access Journals (Sweden)

    Raif Sakin

    2018-03-01

    Full Text Available High-cycle fatigue (HCF and low-cycle fatigue (LCF fatigue lives of rolled AA1100 and AA1050 aluminum sheets along different directions were evaluated at room temperature. Four types of samples denoted as longitudinal (L and transverse (T to the rolling direction were compared because the samples along the two typical directions show an obvious anisotropy. A cantilever plane-bending and multi-type fatigue testing machine was specially designed for this purpose. Deflection-controlled fatigue tests were conducted under fully reversed loading. The longest fatigue lives in the LCF region were obtained for AA1050 (L while AA1100 (L samples had the longest fatigue lives in the HCF region. Keywords: AA1100, AA1050, Aluminum sheet, Bending fatigue life, Rolling direction

  1. Failure mode and fracture behavior evaluation of pipes with local wall thinning subjected to bending load

    International Nuclear Information System (INIS)

    Ahn, Seok Hwan; Nam, Ki Woo; Kim, Seon Jin; Kim, Jin Hwan; Kim, Hyun Soo; Do, Jae Yoon

    2003-01-01

    Fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear power plant. In pipes of energy plants, sometimes, the local wall thinning may result from severe Erosion-Corrosion (E/C) damage. However, the effects of local wall thinning on strength and fracture behaviors of piping system were not well studied. In this paper, the monotonic bending tests were performed of full-scale carbon steel pipes with local wall thinning. A monotonic bending load was applied to straight pipe specimens by four-point loading at ambient temperature without internal pressure. From the tests, fracture behaviors and fracture strength of locally thinned pipe were manifested systematically. The observed failure modes were divided into four types; ovalization, crack initiation/growth after ovalization, local buckling and crack initiating/growth after local buckling. Also, the strength and the allowable limit of piping system with local wall thinning were evaluated

  2. Investigation into springback characteristics of two HSS sheets during cold v-bending

    International Nuclear Information System (INIS)

    Fang, Gang; Gao, Wei-Ran

    2013-01-01

    Considering the safety and the light-weight structure, there is an increasing requirement of high strength steel (HSS) sheets in the automotive industry. The high-precise prediction of the springback depends on constitutive equations and their corresponding material parameters. In order to investigate the springback of HSS sheets, DP590 and B280VK, their constitutive behaviors were analyzed based on the sheet tension tests. With respect to the constitutive equation, the Voce model is more proper to two hot-rolled steels, DP590 and B280VK, than the Swift model. Two steels are all saturated hardening, and the degree of hardening decreases with the strain. The cold v-banding tests of two HSS sheets were carried out for evaluation of springback characteristics. Results of v-bending experiments showed that the springback angle increases with the bending along 45°, 90° and 0° to the rolling direction of steel in turn

  3. A study on the evaluation for dynamic fracture mechanics parameters of viscoelastic materials by impact bending

    International Nuclear Information System (INIS)

    Sim, Jae Ki; Cho, Kyu Jac

    1988-01-01

    In this paper We derived simple formulas for the dynamic strain intensity factor by means of the Timoshenko's beam theory including the influence of rotary inertia and shear deformation on the three-point viscoelastic bend specimen. Also the contact force between the specimen and the impactor is estimated by appling the nonlinear integral equation and the Hertz's theory to the local deformation near the contact point. The results obtained from this study are as follow : 1. Analysis results of this paper, base on Timoshenko's beam theory, were more accuracy than that of Euler-Bernouli beam theory and it can be confirmed by comparsion the results with experimental results. 2. Hertz's contact thepry is static one, but it is proved that by the solution of dynamic strain intensity factor it can be applied for the case of dynamic one. 3. It is founded that the fracture mechanics paraments are overestimatimated if the effects of rotary inertia and transverse shear deformation of specimen are negleted. (Author)

  4. Weibull statistic analysis of bending strength in the cemented carbide coatings

    International Nuclear Information System (INIS)

    Yi Yong; Shen Baoluo; Qiu Shaoyu; Li Cong

    2003-01-01

    The theoretical basis using Weibull statistics to analyze the strength of coating has been established that the Weibull distribution will be the asymptotic distribution of strength for coating as the volume of coating increase, provided that the local strength of coating is statistic independent, and has been confirmed in the following test for the bending strength of two cemented carbide coatings. The result shows that Weibull statistics can be well used to analyze the strength of two coatings. (authors)

  5. Conceptual design of bend, compression, and final focus components of ILSE [Induction Linac System Experiment

    International Nuclear Information System (INIS)

    Lee, E.P.; Fong, C.; Mukherjee, S.; Thur, W.

    1989-03-01

    The Induction Linac System Experiment (ILSE) includes a 180/degree/ bend system, drift compression line and a final focus, which test the analogous features of a heavy ion driver for inertial fusion. These components are novel in their transport of a space-charge-dominated ion beam with large head-to-tail velocity tilt. Their conceptual design is presented, including calculations of the beam envelope, momentum dispersion, and engineering design of magnets, vacuum system, diagnostics, alignment, and support. 3 refs., 5 figs

  6. Bending Strength of EN AC-44200 – Al2O3 Composites at Elevated Temperatures

    OpenAIRE

    Kurzawa A.; Kaczmar J. W.

    2017-01-01

    The paper presents results of bend tests at elevated temperatures of aluminium alloy EN AC-44200 (AlSi12) based composite materials reinforced with aluminium oxide particles. The examined materials were manufactured by squeeze casting. Preforms made of Al2O3 particles, with volumetric fraction 10, 20, 30 and 40 vol.% of particles joined with sodium silicate bridges were used as reinforcement. The preforms were characterised by open porosity ensuring proper infiltration with the EN AC-44200 (A...

  7. Applications of circularly polarized photons at the ALS with a bend magnet source

    International Nuclear Information System (INIS)

    1992-02-01

    The purpose of this workshop is to focus attention on, and to stimulate the scientific exploitation of, the natural polarization properties of bend-magnet synchrotron radiation at the ALS -- for research in biology, materials science, physics, and chemistry. The topics include: The Advanced Light Source; Magnetic Circular Dichroism and Differential Scattering on Biomolecules; Tests of Fundamental Symmetries; High T c Superconductivity; Photoemission from Magnetic and Non-magnetic Solids; Studies of Highly Correlated Systems; and Instrumentation for Photon Transport and Polarization Measurements

  8. Effect of centrifugal transverse wakefield for microbunch in bend

    International Nuclear Information System (INIS)

    Stupakov, G.V.

    1999-01-01

    We calculate centrifugal force for a short bunch in vacuum moving in a circular orbit and estimate the emittance growth of the beam in a bend due to this force. copyright 1999 American Institute of Physics

  9. experimental and analytical comparison of torsion, bending moment

    African Journals Online (AJOL)

    HOD

    In structural analysis and design, the effects of torsion are usually neglected ... bending and torsion, using these codes and experimental work; and validates the ..... [7] Kharagpur, I. Structural Analysis: Civil Engineering. Course Material (Vol.

  10. Magnetically Assisted Bilayer Composites for Soft Bending Actuators

    Directory of Open Access Journals (Sweden)

    Sung-Hwan Jang

    2017-06-01

    Full Text Available This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically distributed them by applying a strong non-uniform magnetic field to one side of the mold during the curing process. The biased magnetic field induces sedimentation of the ferromagnetic particles toward one side of the structure. The nonhomogeneous distribution of the particles induces bending of the structure when inflated, as a result of asymmetric stiffness of the composite. The bilayer composites were then characterized with a scanning electron microscopy and thermogravimetric analysis. The bending performance and the axial expansion of the actuator were discussed for manipulation applications in soft robotics and bioengineering. The magnetically assisted manufacturing process for the soft bending actuator is a promising technique for various applications in soft robotics.

  11. Magnetically Assisted Bilayer Composites for Soft Bending Actuators.

    Science.gov (United States)

    Jang, Sung-Hwan; Na, Seon-Hong; Park, Yong-Lae

    2017-06-12

    This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically distributed them by applying a strong non-uniform magnetic field to one side of the mold during the curing process. The biased magnetic field induces sedimentation of the ferromagnetic particles toward one side of the structure. The nonhomogeneous distribution of the particles induces bending of the structure when inflated, as a result of asymmetric stiffness of the composite. The bilayer composites were then characterized with a scanning electron microscopy and thermogravimetric analysis. The bending performance and the axial expansion of the actuator were discussed for manipulation applications in soft robotics and bioengineering. The magnetically assisted manufacturing process for the soft bending actuator is a promising technique for various applications in soft robotics.

  12. Computational Strategies for the Architectural Design of Bending Active Structures

    DEFF Research Database (Denmark)

    Tamke, Martin; Nicholas, Paul

    2013-01-01

    Active bending introduces a new level of integration into the design of architectural structures, and opens up new complexities for the architectural design process. In particular, the introduction of material variation reconfigures the design space. Through the precise specification...

  13. Timoshenko-Wagner-Kappus Torsion Bending Theory and Wind ...

    Indian Academy of Sciences (India)

    Theory and Wind Tunnel Balance Design. S P Govinda ... The study of torsion and bending has always been a favourite ... Since it was difficult to work quietlyin Petersburg, .... should be stiff and strong to endure shocks and ensure long life.

  14. kantorovich-euler lagrange-galerkin's method for bending analysis

    African Journals Online (AJOL)

    user

    OF CIVIL ENGINEERING, ENUGU STATE UNIVERSITY OF SCIENCE & TECHNOLOGY, ... In this work, the Kantorovich method is applied to solve the bending problem of thin ... Lagrange differential equation is determined for this functional.

  15. Research on Effective Electric-Mechanical Coupling Coefficient of Sandwich Type Piezoelectric Ultrasonic Transducer Using Bending Vibration Mode

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2015-01-01

    Full Text Available An analytical model on electromechanical coupling coefficient and the length optimization of a bending piezoelectric ultrasonic transducer are proposed. The piezoelectric transducer consists of 8 PZT elements sandwiched between four thin electrodes, and the PZT elements are clamped by a screwed connection between fore beam and back beam. Firstly, bending vibration model of the piezoelectric transducer is built based on the Timoshenko beam theory. Secondly, the analytical model of effective electromechanical coupling coefficient is built based on the bending vibration model. Energy method and electromechanical equivalent circuit method are involved in the modelling process. To validate the analytical model, sandwich type piezoelectric transducer example in second order bending vibration mode is analysed. Effective electromechanical coupling coefficient of the transducer is optimized with simplex reflection technique, and the optimized ratio of length of the transducers is obtained. Finally, experimental prototypes of the sandwich type piezoelectric transducers are fabricated. Bending vibration mode and impedance of the experimental prototypes are tested, and electromechanical coupling coefficient is obtained according to the testing results. Results show that the analytical model is in good agreement with the experimental model.

  16. Mathematical model of polyethylene pipe bending stress state

    Science.gov (United States)

    Serebrennikov, Anatoly; Serebrennikov, Daniil

    2018-03-01

    Introduction of new machines and new technologies of polyethylene pipeline installation is usually based on the polyethylene pipe flexibility. It is necessary that existing bending stresses do not lead to an irreversible polyethylene pipe deformation and to violation of its strength characteristics. Derivation of the mathematical model which allows calculating analytically the bending stress level of polyethylene pipes with consideration of nonlinear characteristics is presented below. All analytical calculations made with the mathematical model are experimentally proved and confirmed.

  17. Design and Construction of the Plat Bending Machine

    International Nuclear Information System (INIS)

    Edy Sumarno; Abdul Hafid; Ismu H; Joko P W; Bambang Heru

    2003-01-01

    The plat-bending machine has been fabricated. The type is manual. That machine was made by plate, cylinder and U plat material. The machine has dimensions 110 mm in height, 650 mm in width, and 1200 mm in height. The capability of this machine is bending the plat with 2 mm in thickness and 1000 mm in width. This machine has the advantage to operate without electrical supply and easy to operate. (author)

  18. Theory of bending waves with applications to disk galaxies

    International Nuclear Information System (INIS)

    Mark, J.W.K.

    1982-01-01

    A theory of bending waves is surveyed which provides an explanation for the required amplification of the warp in the Milky Way. It also provides for self-generated warps in isolated external galaxies. The shape of observed warps and partly their existence in isolated galaxies are indicative of substantial spheroidal components. The theory also provides a plausible explanation for the bending of the inner disk (<2 kpc) of the Milky Way

  19. NRC concerns about steam generator tube U-bend failures

    International Nuclear Information System (INIS)

    Dillon, R.L.

    1981-01-01

    This paper concerns itself with genralized NRC regulatory policy regarding SGT failures and staff reports and opinions which may tend to influence the developing policy specific to U-bend failures. The most significant analysis at hand in predicting NRC policy on SGT U-bend failures is Marsh's Evaluation of Steam Generator Tube Rupture Events. Marsh sets out to describe and analyze the five steam generator tube ruptures that are known to NRC. All have occurred in the period 1975 to 1980

  20. Standard test method for crack-tip opening displacement (CTOD) fracture toughness measurement

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the determination of critical crack-tip opening displacement (CTOD) values at one or more of several crack extension events, and may be used to measure cleavage crack initiation toughness for materials that exhibit a change from ductile to brittle behavior with decreasing temperature, such as ferritic steels. This test method applies specifically to notched specimens sharpened by fatigue cracking. The recommended specimens are three-point bend [SE(B)], compact [C(T)], or arc-shaped bend [A(B)] specimens. The loading rate is slow and influences of environment (other than temperature) are not covered. The specimens are tested under crosshead or clip gage displacement controlled loading. 1.1.1 The recommended specimen thickness, B, for the SE(B) and C(T) specimens is that of the material in thicknesses intended for an application. For the A(B) specimen, the recommended depth, W, is the wall thickness of the tube or pipe from which the specimen is obtained. Superficial surface machini...

  1. Study of laser bending of a preloaded Titanium alloy sheet

    Directory of Open Access Journals (Sweden)

    Wang Xiufeng

    2014-01-01

    Full Text Available Laser bending of sheet metals with preload offers some attractive characteristics/merits, comparing to laser free bending without prestressing on the metals. The study reported in this paper was focused on a Titanium alloy which finds widespread applications in aerospace manufacturing. FE simulation of laser bending with prestressing on the Titanium alloy sheet was conducted for the analysis of the bending process and experiment carried out to verify the model and the result. It was shown that the simulation result is close to that measured in the experiment. Based on the computed result, the load-displacement curve was analysed and transmission efficiency of the elastic energy defined to evaluate the bending effect. These enhanced understanding of the mechanism of laser bending with a preload. A method for the optimization on technological parameters was further proposed. Referring to the deformation targeted, the preload value was determined through the FE simulation. The result showed that, on the premise that the specimen surface can be prevented from damaging, transmission efficiency of the elastic energy could reach to the maximum value through adjusting technological parameters of the laser system and deformation accuracy of the specimen could also be improved through this approach. The work presented in this paper may find its application in the manufacture of Titanium alloy sheets with a more cost-effective and a more precise way.

  2. Ankle-foot orthosis bending axis influences running mechanics.

    Science.gov (United States)

    Russell Esposito, Elizabeth; Ranz, Ellyn C; Schmidtbauer, Kelly A; Neptune, Richard R; Wilken, Jason M

    2017-07-01

    Passive-dynamic ankle-foot orthoses (AFOs) are commonly prescribed to improve locomotion for people with lower limb musculoskeletal weakness. The clinical prescription and design process are typically qualitative and based on observational assessment and experience. Prior work examining the effect of AFO design characteristics generally excludes higher impact activities such as running, providing clinicians and researchers limited information to guide the development of objective prescription guidelines. The proximal location of the bending axis may directly influence energy storage and return and resulting running mechanics. The purpose of this study was to determine if the location of an AFO's bending axis influences running mechanics. Marker and force data were recorded as 12 participants with lower extremity weakness ran overground while wearing a passive-dynamic AFO with posterior struts manufactured with central (middle) and off-centered (high and low) bending axes. Lower extremity joint angles, moments, powers, and ground reaction forces were calculated and compared between limbs and across bending axis conditions. Bending axis produced relatively small but significant changes. Ankle range of motion increased as the bending axis shifted distally (pbenefits during running, although individual preference and physical ability should also be considered. Published by Elsevier B.V.

  3. Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites

    Institute of Scientific and Technical Information of China (English)

    Chen Lei; Li Ping; Wen Yu-Mei; Zhu Yong

    2013-01-01

    As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation,the ME effect is significantly enhanced in the vicinity of resonance frequency.The bending resonance frequency (fr) of bilayered Terfenol-D/PZT (MP) laminated composites is studied,and our analysis predicts that (i) the bending resonance frequency of an MP laminated composite can be tuned by an applied dc magnetic bias (Hdc) due to the △E effect; (ii) the bending resonance frequency of the MP laminated composite can be controlled by incorporating FeCuNbSiB layers with different thicknesses.The experimental results show that with Hdc increasing from 0Oe (1 Oe=79.5775 A/m)to 700 Oe,the bending resonance frequency can be shifted in a range of 32.68 kHz ≤ fr ≤ 33.96 kHz.In addition,with the thickness of the FeCuNbSiB layer increasing from 0 μm to 90 μm,the bending resonance frequency of the MP laminated composite gradually increases from 33.66 kHz to 39.18 kHz.This study offers a method of adjusting the strength of dc magnetic bias or the thicknesses of the FeCuNbSiB layer to tune the bending resonance frequency for ME composite,which plays a guiding role in the ME composite design for real applications.

  4. Bending Strength of EN AC-44200 – Al2O3 Composites at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Kurzawa A.

    2017-03-01

    Full Text Available The paper presents results of bend tests at elevated temperatures of aluminium alloy EN AC-44200 (AlSi12 based composite materials reinforced with aluminium oxide particles. The examined materials were manufactured by squeeze casting. Preforms made of Al2O3 particles, with volumetric fraction 10, 20, 30 and 40 vol.% of particles joined with sodium silicate bridges were used as reinforcement. The preforms were characterised by open porosity ensuring proper infiltration with the EN AC-44200 (AlSi12 liquid alloy. The largest bending strength was found for the materials containing 40 vol.% of reinforcing ceramic particles, tested at ambient temperature. At increased test temperature, bending strength Rg of composites decreased in average by 30 to 50 MPa per 100°C of temperature increase. Temperature increase did not significantly affect cracking of the materials. Cracks propagated mainly along the interfaces particle/matrix, with no effect of the particles falling-out from fracture surfaces. Direction of cracking can be affected by a small number of agglomerations of particles or of non-reacted binder. In the composites, the particles strongly restrict plastic deformation of the alloy, which leads to creation of brittle fractures. At elevated temperatures, however mainly at 200 and 300°C, larger numbers of broken, fragmented particles was observed in the vicinity of cracks. Fragmentation of particles occurred mainly at tensioned side of the bended specimens, in the materials with smaller fraction of Al2O3 reinforcement, i.e. 10 and 20 vol.%.

  5. Face/core debond fatigue crack growth characterization using the sandwich mixed mode bending specimen

    DEFF Research Database (Denmark)

    Manca, Marcello; Quispitupa, Amilcar; Berggreen, Christian

    2012-01-01

    Face/core fatigue crack growth in foam-cored sandwich composites is examined using the mixed mode bending (MMB) test method. The mixed mode loading at the debond crack tip is controlled by changing the load application point in the MMB test fixture. Sandwich specimens were manufactured using H45...... and H100 PVC foam cores and E-glass/polyester face sheets. All specimens were pre-cracked in order to define a sharp crack front. The static debond fracture toughness for each material configuration was measured at different mode-mixity phase angles. Fatigue tests were performed at 80% of the static...

  6. Effect OF NaOH Treatment on Bending Strength Of The Polyester Composite Reinforce By Sugar Palm Fibers

    Science.gov (United States)

    Arif Irfai, Mochamad; Wulandari, Diah; Sutriyono; Marsyahyo, Eko

    2018-04-01

    The objective of this research is to investigate the effect of NaOH treatment on bending strength of lamina composite reinforced by sugar palm fiber. To know of mechanism fracture can be done with visual inspection of the fracture surface. The Materials used are random sugar palm fibers that have been in the treatment of NaOH, polyester resin and hardener. Sugar palm fibers after washed and dried then soaked NaOH with a long time soaking 0, 2, 4, 6 and 8 hours. The bending test specimens were produced according to ASTM D 790. All specimens were post cured at 62°C for 4 hours. The Bending test was carried out on a universal testing machine. The SEM analysis has conducted to provide the analysis on interface adhesion between the surfaces of fiber with the matrix. The result shows that polyester composite reinforced by sugar palm fiber has highest bending stress 176.77 N/mm2 for 2 hours of a long time soaking NaOH, the highest flexural strain 0.27 mm for 2 hours of a long time soaking NaOH, elongation 24.05% for 2 hours of a long time soaking NaOH and the highest bending modulus 1.267 GPa for 2 hours of a long time soaking NaOH. Based on the results, it can be concluded that the polyester composite reinforced by sugar palm fiber has the optimum bending properties for a long time soaking 2 hours. The fracture surface shows that the polyester composite reinforced by sugar palm fiber pull out that indicate weakens the bond between fiber and matrix.

  7. Flow visualization study of two-phase flow in a single bend outlet feeder pipe of a CANDU reactor

    International Nuclear Information System (INIS)

    Savalaxs, S.-A.; Lister, D.H.; Steward, F.R.

    2005-01-01

    In CANDU reactors, the feeder piping that is used to direct the high-temperature water coolant between the fuel channels and the steam generators is made of carbon steel. Since 1996, several CANDU stations have reported excessive corrosion of their outlet feeders. The first metre is particularity vulnerable because the piping there consists of single or double bends, which have relatively thin walls produced by the bending process. Early studies related the attack to the hydrodynamics of the coolant and verified that it was a type of flow-accelerated corrosion. In order to understand the hydrodynamics of the coolant in the outlet feeders by flow visualization, a full-scale transparent test section simulating the geometry and orientation of an outlet feeder bend with its upstream components was fabricated. The feeder consisted of a 54 mm diameter acrylic pipe with a 73 degree bend. This was connected to the upstream component with an acrylic simulation of a Grayloc flanged fitting. A test loop supplied room temperature water to the test section at flow rates up to 0.019 m3/s. Air could be injected into the water to give a mean volume fraction of up to 0.56. In this preliminary investigation, the size and velocity of air bubbles at different flow conditions and their distribution within the pipe bend were studied. Particular attention was paid to the flow pattern at the inside of the bend, where a CFD (computational fluid dynamics) code - Fluent 6.1-had failed to predict a liquid film in an earlier study. A high-speed digital video camera was used to determine the relation between bubble size and velocity. Such a relation should help to explain the discrepancy in the CFD modelling and provide the basis for accurate predictions of phase distribution in complex geometries at high flow rates. (authors)

  8. Modeling and Bayesian parameter estimation for shape memory alloy bending actuators

    Science.gov (United States)

    Crews, John H.; Smith, Ralph C.

    2012-04-01

    In this paper, we employ a homogenized energy model (HEM) for shape memory alloy (SMA) bending actuators. Additionally, we utilize a Bayesian method for quantifying parameter uncertainty. The system consists of a SMA wire attached to a flexible beam. As the actuator is heated, the beam bends, providing endoscopic motion. The model parameters are fit to experimental data using an ordinary least-squares approach. The uncertainty in the fit model parameters is then quantified using Markov Chain Monte Carlo (MCMC) methods. The MCMC algorithm provides bounds on the parameters, which will ultimately be used in robust control algorithms. One purpose of the paper is to test the feasibility of the Random Walk Metropolis algorithm, the MCMC method used here.

  9. Observation of damage process in RC beams under cucle bending by acoustic emission

    International Nuclear Information System (INIS)

    Shigeishi, Mitsuhiro; Ohtsu, Masayasu; Tsuji, Nobuyuki; Yasuoka, Daisuke

    1997-01-01

    Reinforced concrete (RC) structures are generally applied to construction of buildings and bridges, and are imposed on cyclic loading incessantly. It is considered that detected acoustic emission (AE) waveforms are associated with the damage degree and the fracture mechanisms of RC structures. Therefor, the cyclic bending tests are applied to damaged RC beam specimens. To evaluate the interior of the damaged RC beams, the AE source kinematics are determined by 'SiGMA' procedure for AE moment tensor analysis. By using 'SiGMA' procedure, AE source kinematics, such as source locations, crack types, crack orientations and crack motions, can be identified. The results show the applicability to observation of the fracture process under cyclic bending load and evaluation the degree of damage of RC beam.

  10. A cold mass support system based on the use of oriented fiberglass epoxy rods in bending

    International Nuclear Information System (INIS)

    Green, Michael A.; Corradi, Carol A.; LaMantia, Roberto F.; Zbasnik, Jon P.

    2002-01-01

    This report describes a cold mass support system that uses oriented fiberglass epoxy (other low heat leak oriented fiber material can also be used) rods. In the direction of the rods, where forces are carried in tension or compression, the support system is very stiff. In the other directions, the rods are subjected to bending stresses. When the support rods are put in bending the cold mass support is quite compliant. This type of support system can be used in situation where space for a cold mass support system is limited and where compliance can be tolerated in at least one direction. Break test data for 15.9-mm and 19.1-mm diameter oriented fiberglass rods is presented in this report. The cold mass supports for the DFBX distribution boxes are presented as an example of this type of cold mass support system

  11. Investigation of hydrodynamics on local scour by shape of single spur dike in river bend

    International Nuclear Information System (INIS)

    Masjedi, A; Foroushani, E P

    2012-01-01

    A series of experiments were conducted in which the the scour hole associated with model spur dike was measured in a 180 degree laboratory flume bend under clear-water overtopping flows. In this study, the local scour were conducted for three different shapes of oblong, rectangulat chamfered of straight spur dikes at the bend with various Froude number. The main goals of the experiments were to evaluate the effect of the three different shapes of straight spur dikes on the volume of scour and potential aquatic habitat and on minimizing erosion adjacent to the streambanks. The experiments showed that of the three different shapes of straight spur dikes tested, the least erosion of the around in the near bank region was associated with the spur dikes with oblong shape, while the greatest volume of the scour hole was associated with the rectangular shape. So it was observed that, as Froude number increases, the scour increases.

  12. Experimental and theoretical analysis of integrated circuit (IC) chips on flexible substrates subjected to bending

    Science.gov (United States)

    Chen, Ying; Yuan, Jianghong; Zhang, Yingchao; Huang, Yonggang; Feng, Xue

    2017-10-01

    The interfacial failure of integrated circuit (IC) chips integrated on flexible substrates under bending deformation has been studied theoretically and experimentally. A compressive buckling test is used to impose the bending deformation onto the interface between the IC chip and the flexible substrate quantitatively, after which the failed interface is investigated using scanning electron microscopy. A theoretical model is established based on the beam theory and a bi-layer interface model, from which an analytical expression of the critical curvature in relation to the interfacial failure is obtained. The relationships between the critical curvature, the material, and the geometric parameters of the device are discussed in detail, providing guidance for future optimization flexible circuits based on IC chips.

  13. Experiment and simulation study on unidirectional carbon fiber composite component under dynamic 3 point bending loading

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Guowei; Sun, Qingping; Zeng, Danielle; Li, Dayong; Su, Xuming

    2018-04-10

    In current work, unidirectional (UD) carbon fiber composite hatsection component with two different layups are studied under dynamic 3 point bending loading. The experiments are performed at various impact velocities, and the effects of impactor velocity and layup on acceleration histories are compared. A macro model is established with LS-Dyna for more detailed study. The simulation results show that the delamination plays an important role during dynamic 3 point bending test. Based on the analysis with high speed camera, the sidewall of hatsection shows significant buckling rather than failure. Without considering the delamination, current material model cannot capture the post failure phenomenon correctly. The sidewall delamination is modeled by assumption of larger failure strain together with slim parameters, and the simulation results of different impact velocities and layups match the experimental results reasonable well.

  14. Flexural strength and behaviour of SFRSCC ribbed slab under four point bending

    Science.gov (United States)

    Ahmad, Hazrina; Hashim, Mohd Hisbany Mohd; Bakar, Afidah Abu; Hamzah, Siti Hawa; Rahman, Fadhillah Abdul

    2017-11-01

    An experimental investigation was carried out to study the ultimate strength and behaviour of SFRSCC ribbed slab under four point bending. Comparison was been made between ribbed slab that was fully reinforced with steel fibres (SFWS) with conventionally reinforced concrete ribbed slab (CS and CRC). The volume fraction of the 35 mm hooked end steel fibres used in the mix was 1% (80 kg/m3) with the aspect ratio of 65. Three full scale slab samples with the dimension of 2.8 x 1.2 m with 0.2 m thickness was constructed for the purpose of this study. The slab samples was loaded until failure in a four point bending test. As a whole, based on the results, it can be concluded that the performance of the steel fiber reinforced samples (SFWS) was found to be almost equivalent to the conventionally reinforced concrete ribbed slab sample (CRC).

  15. Weibull statistical analysis of Krouse type bending fatigue of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Haidyrah, Ahmed S., E-mail: ashdz2@mst.edu [Nuclear Engineering, Missouri University of Science & Technology, 301 W. 14th, Rolla, MO 65409 (United States); Nuclear Science Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Newkirk, Joseph W. [Materials Science & Engineering, Missouri University of Science & Technology, 1440 N. Bishop Ave, Rolla, MO 65409 (United States); Castaño, Carlos H. [Nuclear Engineering, Missouri University of Science & Technology, 301 W. 14th, Rolla, MO 65409 (United States)

    2016-03-15

    A bending fatigue mini-specimen (Krouse-type) was used to study the fatigue properties of nuclear materials. The objective of this paper is to study fatigue for Grade 91 ferritic-martensitic steel using a mini-specimen (Krouse-type) suitable for reactor irradiation studies. These mini-specimens are similar in design (but smaller) to those described in the ASTM B593 standard. The mini specimen was machined by waterjet and tested as-received. The bending fatigue machine was modified to test the mini-specimen with a specially designed adapter. The cycle bending fatigue behavior of Grade 91 was studied under constant deflection. The S–N curve was created and mean fatigue life was analyzed using mean fatigue life. In this study, the Weibull function was predicted probably for high stress to low stress at 563, 310 and 265 MPa. The commercial software Minitab 17 was used to calculate the distribution of fatigue life under different stress levels. We have used 2 and 3- parameters Weibull analysis to introduce the probability of failure. The plots indicated that the 3- parameter Weibull distribution fits the data well.

  16. An analysis of the temperature distribution in the pipe bending using high frequency induction heating

    International Nuclear Information System (INIS)

    Fukue, Hisayoshi; Mochizuki, Yoji; Nakamura, Harushige; Kobo, Hiroshi; Nitta, Tetsuo; Kawakami, Kiyoshi

    1986-01-01

    A pipe bending apparatus has recently been developed by applying high frequency induction heating. However, the smaller the radius of pipe bending, the greater becomes the reduction in wall thickness and the ovality of the pipe form. This makes it impossible to manufacture pipe bending which will meet the nuclear pipe design code. In order to solve this problem it is crucial to obtain a temperature distributions in a pipe which is moving. It is calculated by giving the following boundary conditions : distribution of the heat generation rate, and that of heat transfer of cooling water. In the process of analyzing these distributions, the following results were obtained. (1) The distribution of the heat generation rate is determined by the sink of energy flux of Poynting vectors. The coil efficiency thus calculated was sixty percent. This figure accords with the test data. (2) The distribution of heat transfer coefficient of cooling water is mainly determined by the rate of liquid film heat transfer, but departure from nucleate boiling and dryout has to be taken into consideration. (3) TRUMP CODE is modified so that the temperature distribution in moving pipes can be calculated by taking the boundary conditions into account. The calculated results were in accordance with the test data. (author)

  17. Weibull statistical analysis of Krouse type bending fatigue of nuclear materials

    International Nuclear Information System (INIS)

    Haidyrah, Ahmed S.; Newkirk, Joseph W.; Castaño, Carlos H.

    2016-01-01

    A bending fatigue mini-specimen (Krouse-type) was used to study the fatigue properties of nuclear materials. The objective of this paper is to study fatigue for Grade 91 ferritic-martensitic steel using a mini-specimen (Krouse-type) suitable for reactor irradiation studies. These mini-specimens are similar in design (but smaller) to those described in the ASTM B593 standard. The mini specimen was machined by waterjet and tested as-received. The bending fatigue machine was modified to test the mini-specimen with a specially designed adapter. The cycle bending fatigue behavior of Grade 91 was studied under constant deflection. The S–N curve was created and mean fatigue life was analyzed using mean fatigue life. In this study, the Weibull function was predicted probably for high stress to low stress at 563, 310 and 265 MPa. The commercial software Minitab 17 was used to calculate the distribution of fatigue life under different stress levels. We have used 2 and 3- parameters Weibull analysis to introduce the probability of failure. The plots indicated that the 3- parameter Weibull distribution fits the data well.

  18. Mechanosensing of stem bending and its interspecific variability in five neotropical rainforest species.

    Science.gov (United States)

    Coutand, Catherine; Chevolot, Malia; Lacointe, André; Rowe, Nick; Scotti, Ivan

    2010-02-01

    In rain forests, sapling survival is highly dependent on the regulation of trunk slenderness (height/diameter ratio): shade-intolerant species have to grow in height as fast as possible to reach the canopy but also have to withstand mechanical loadings (wind and their own weight) to avoid buckling. Recent studies suggest that mechanosensing is essential to control tree dimensions and stability-related morphogenesis. Differences in species slenderness have been observed among rainforest trees; the present study thus investigates whether species with different slenderness and growth habits exhibit differences in mechanosensitivity. Recent studies have led to a model of mechanosensing (sum-of-strains model) that predicts a quantitative relationship between the applied sum of longitudinal strains and the plant's responses in the case of a single bending. Saplings of five different neotropical species (Eperua falcata, E. grandiflora, Tachigali melinonii, Symphonia globulifera and Bauhinia guianensis) were subjected to a regimen of controlled mechanical loading phases (bending) alternating with still phases over a period of 2 months. Mechanical loading was controlled in terms of strains and the five species were subjected to the same range of sum of strains. The application of the sum-of-strain model led to a dose-response curve for each species. Dose-response curves were then compared between tested species. The model of mechanosensing (sum-of-strain model) applied in the case of multiple bending as long as the bending frequency was low. A comparison of dose-response curves for each species demonstrated differences in the stimulus threshold, suggesting two groups of responses among the species. Interestingly, the liana species B. guianensis exhibited a higher threshold than other Leguminosae species tested. This study provides a conceptual framework to study variability in plant mechanosensing and demonstrated interspecific variability in mechanosensing.

  19. Advantages of customer/supplier involvement in the upgrade of River Bend's IST program

    International Nuclear Information System (INIS)

    Womack, R.L.; Addison, J.A.

    1996-01-01

    At River Bend Station, IST testing had problems. Operations could not perform the test with the required repeatability; engineering could not reliably trend test data to detect degradation; licensing was heavily burdened with regulatory concerns; and maintenance could not do preventative maintenance because of poor prediction of system health status. Using Energy's Total Quality principles, it was determined that the causes were: lack of ownership, inadequate test equipment usage, lack of adequate procedures, and lack of program maintenance. After identifying the customers and suppliers of the IST program data, Energy management put together an upgrade team to address these concerns. These customers and suppliers made up the IST upgrade team. The team's mission was to supply River Bend with a reliable, functional, industry correct and user friendly IST program. The IST program in place went through a verification process that identified and corrected over 400 individual program discrepancies. Over 200 components were identified for improved testing methods. An IST basis document was developed. The operations department was trained on ASME Section XI testing. All IST tests have been simplified and shortened, due to heavy involvement by operations in the procedure development process. This significantly reduced testing time, resulting in lower cost, less dose and greater system availability

  20. Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments

    NARCIS (Netherlands)

    Chen, C.Q.; Pei, Y.T.; Hosson, J.T.M. De

    Quantitative bending and compression tests on micropillars made of two different amorphous alloys, with tip diameters ranging from 93 to 645 rim, are performed in situ in a transmission electron microscope (TEM). Under microcompression each pillar shows an intermittent plastic flow accommodated by