Size effect studies on geometrically scaled three point bend type specimens with U-notches
Energy Technology Data Exchange (ETDEWEB)
Krompholz, K.; Kalkhof, D.; Groth, E
2001-02-01
One of the objectives of the REVISA project (REactor Vessel Integrity in Severe Accidents) is to assess size and scale effects in plastic flow and failure. This includes an experimental programme devoted to characterising the influence of specimen size, strain rate, and strain gradients at various temperatures. One of the materials selected was the forged reactor pressure vessel material 20 MnMoNi 55, material number 1.6310 (heat number 69906). Among others, a size effect study of the creep response of this material was performed, using geometrically similar smooth specimens with 5 mm and 20 mm diameter. The tests were done under constant load in an inert atmosphere at 700 {sup o}C, 800 {sup o}C, and 900 {sup o}C, close to and within the phase transformation regime. The mechanical stresses varied from 10 MPa to 30 MPa, depending on temperature. Prior to creep testing the temperature and time dependence of scale oxidation as well as the temperature regime of the phase transformation was determined. The creep tests were supplemented by metallographical investigations.The test results are presented in form of creep curves strain versus time from which characteristic creep data were determined as a function of the stress level at given temperatures. The characteristic data are the times to 5% and 15% strain and to rupture, the secondary (minimum) creep rate, the elongation at fracture within the gauge length, the type of fracture and the area reduction after fracture. From metallographical investigations the accent's phase contents at different temperatures could be estimated. From these data also the parameters of the regression calculation (e.g. Norton's creep law) were obtained. The evaluation revealed that the creep curves and characteristic data are size dependent of varying degree, depending on the stress and temperature level, but the size influence cannot be related to corrosion or orientation effects or to macroscopic heterogeneity (position effect
Czech Academy of Sciences Publication Activity Database
Klon, J.; Sobek, J.; Malíková, L.; Seitl, Stanislav
2017-01-01
Roč. 11, č. 41 (2017), s. 183-190 ISSN 1971-8993 Institutional support: RVO:68081723 Keywords : Finite element method * Loading curve * Specific fracture energy * Three-point bending test * Work of fracture Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis
International Nuclear Information System (INIS)
Ikonen, K.
1993-07-01
The report describes the work performed for achieving readiness to calculate fracture toughness dependence on dimension effects and loading conditions in fracture test specimens and real structures. In the report two- and three-dimensional computer codes developed and calculational methods applied are described. One of the main goals is to converse fracture toughness from small scale three point bending test specimens to case of a depth crack in plane strain i.e. to small scale yielding state (SSY) by numerical elastic-plastic stress analysis. Thickness effect of a test specimens and effect of a crack depth are separately investigated. Tests of three point bending specimens with and without sidegrooves and curved crack front are numerically simulated and experimental and computed results are compared. J-integral is calculated along crack front and also from force-deflection dependence of the beam. For the analyses the computing system was thoroughly automatized. Measuring capacity of three point bending test specimens was tried to evaluate. (orig.) (7 refs., 54 figs.)
Czech Academy of Sciences Publication Activity Database
Stratil, Luděk; Šiška, Filip; Dlouhý, Ivo; Serrano, M.
2017-01-01
Roč. 139, č. 4 (2017), č. článku 041410. ISSN 0094-9930 R&D Projects: GA ČR GJ15-21292Y; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : fracture toughness * Master Curve * the reference temperature * JRQ steel * miniaturized specimens Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 0.729, year: 2016
Numerical analysis of sandwich beam with corrugated core under three-point bending
Energy Technology Data Exchange (ETDEWEB)
Wittenbeck, Leszek [Poznan University of Technology, Institute of Mathematics Piotrowo Street No. 5, 60-965 Poznan (Poland); Grygorowicz, Magdalena; Paczos, Piotr [Poznan University of Technology, Institute of Applied Mechanics Jana Pawla IIStreet No. 24, 60-965 Poznan (Poland)
2015-03-10
The strength problem of sandwich beam with corrugated core under three-point bending is presented.The beam are made of steel and formed by three mutually orthogonal corrugated layers. The finite element analysis (FEA) of the sandwich beam is performed with the use of the FEM system - ABAQUS. The relationship between the applied load and deflection in three-point bending is considered.
Three-Point Bending Tests of Zirconia Core/Veneer Ceramics for Dental Restorations
Directory of Open Access Journals (Sweden)
Massimo Marrelli
2013-01-01
Full Text Available Introduction. The mechanical strength and the surface hardness of commercially available yttrium-doped zirconia were investigated. Furthermore, a comparative study of eight different ceramic veneers, to be used for the production of two-layered all-ceramic restorative systems, was carried out. Materials and Methods. Four types of zirconia specimens were analyzed, according to a standard ISO procedure (ISO 6872. Besides, two-layered zirconia-veneer specimens were prepared for three-point bending tests. Results. A strong effect of the surface roughness on the mechanical strength of zirconia specimens was observed. Finally, a comparative study of eight commercially available veneering ceramics shows different modes of failure between the selected veneers. Conclusion. The results indicate that close attention should be paid to the preparation of zirconia-based crowns and bridges by CAD/CAM process, because surface roughness has an important effect on the mechanical strength of the material. Finally, the results of the mechanical tests on two-layered specimens represent an important support to the choice of the veneering ceramic.
Three-point bending fatigue behavior of WC–Co cemented carbides
International Nuclear Information System (INIS)
Li, Anhai; Zhao, Jun; Wang, Dong; Gao, Xinliang; Tang, Hongwei
2013-01-01
Highlights: ► Mechanical fatigue tests were conducted on a specific designed jig. ► Three-point bending fatigue behavior of WC–Co cemented carbides was studied. ► Fatigue mechanisms of WC–Co cemented carbides with different WC grain sizes and Co binder contents were revealed. -- Abstract: WC–Co cemented carbides with different WC grain sizes and Co binder contents were sintered and fabricated. The three-point bending specimens with a single edge notch were prepared for tests. In the experiments, the mechanical properties of materials were investigated under static and cyclic loads (20 Hz) in air at room temperature. The fatigue behaviors of the materials under the same applied loading conditions are presented and discussed. Optical microscope and scanning electron microscopy were used to investigate the micro-mechanisms of damage during fatigue, and the results were used to correlate with the mechanical fatigue behavior of WC–Co cemented carbides. Experimental results indicated that the fatigue fracture surfaces exhibited more fracture origins and diversification of crack propagation paths than the static strength fracture surfaces. The fatigue fracture typically originates from inhomogeneities or defects such as micropores or aggregates of WC grains near the notch tip. Moreover, due to the diversity and complexity of the fatigue mechanisms, together with the evolution of the crack tip and the ductile deformation zone, the fatigue properties of WC–Co cemented carbides were largely relevant with the combination of transverse rupture strength and fracture toughness, rather than only one of them. Transverse rupture strength dominated the fatigue behavior of carbides with low Co content, whilst the fatigue behavior of carbides with high Co content was determined by fracture toughness.
X-Ray Radiography of Three-Point Bending of Single Human Trabecula
Czech Academy of Sciences Publication Activity Database
Jiroušek, Ondřej; Doktor, Tomáš; Kytýř, Daniel; Zlámal, Petr
2012-01-01
Roč. 45, S1 (2012), s. 261-261 ISSN 0021-9290 R&D Projects: GA ČR(CZ) GAP105/10/2305 Institutional support: RVO:68378297 Keywords : microspheres * strain measurement * three-point bending * trabecular bone * X-ray radiography Subject RIV: FI - Traumatology, Orthopedics Impact factor: 2.716, year: 2012
Corrosion fatigue studies on a bulk glassy Zr-based alloy under three-point bending
Grell, Daniel; Wilkin, Yannic; Gostin, Petre F.; Gebert, Annett; Kerscher, Eberhard
2016-12-01
Corrosion fatigue (CF) tests were carried out on bulk glassy Zr52.5Cu17.9Al10Ni14.6Ti5 (Vitreloy 105) samples under load-controlled three-point bending conditions with a load ratio of R = 0.1 in 0.01 M Na2SO4 + 0.01 M NaCl electrolyte. During cyclic testing, the bar-shaped specimens were polarized in situ at constant potentials and the current was monitored. Three different anodic potentials within the interval between the pitting potential EP and the repassivation potential ER, and three different load amplitudes were applied. In some cases, in situ microscopic observations revealed the formation of black corrosion products in the vicinity of the crack tip during anodic polarization. Fractographic analysis revealed a clear distinction between two modes of crack growth characterized by smooth dissolution induced regions on the one hand and slim fast fracture areas on the other hand. Both alternating features contributed to a broad striated corrosion fatigue fracture surface. Moreover, further fatigue tests were carried out under free corrosion conditions yielding additional information on crack initiation and crack propagation period by means of the open circuit potential (OCP) changes. Thereby, a slight increase in OCP was detected after rupture of the passive layer due to bare metal exposed to the electrolyte. The electrochemical response increased continuously according to stable crack propagation until fracture occurred. Finally, the fracture surfaces of the corrosion fatigue samples were investigated by energy dispersive X-ray with the objective of analyzing the elemental distribution after anodic dissolution. Interestingly, anodic polarization at a near repassivation potential of -50 mV vs. SCE (Saturated Calomel Electrode, E = 0.241 V vs. SHE, Standard Hydrogen Electrode) led to favorable effects on the fatigue lifetime. In conclusion, all results are conflated to a corrosion fatigue model for bulk glassy Vitreloy 105 under anodic polarization in chloride
Stergiopoulos, Ch.; Stavrakas, I.; Triantis, D.; Vallianatos, F.; Stonham, J.
2015-02-01
Weak electric signals termed as 'Pressure Stimulated Currents, PSC' are generated and detected while cement based materials are found under mechanical load, related to the creation of cracks and the consequent evolution of cracks' network in the bulk of the specimen. During the experiment a set of cement mortar beams of rectangular cross-section were subjected to Three-Point Bending (3PB). For each one of the specimens an abrupt mechanical load step was applied, increased from the low load level (Lo) to a high final value (Lh) , where Lh was different for each specimen and it was maintained constant for long time. The temporal behavior of the recorded PSC show that during the load increase a spike-like PSC emission was recorded and consequently a relaxation of the PSC, after reaching its final value, follows. The relaxation process of the PSC was studied using non-extensive statistical physics (NESP) based on Tsallis entropy equation. The behavior of the Tsallis q parameter was studied in relaxation PSCs in order to investigate its potential use as an index for monitoring the crack evolution process with a potential use in non-destructive laboratory testing of cement-based specimens of unknown internal damage level. The dependence of the q-parameter on the Lh (when Lh <0.8Lf), where Lf represents the 3PB strength of the specimen, shows an increase on the q value when the specimens are subjected to gradually higher bending loadings and reaches a maximum value close to 1.4 when the applied Lh becomes higher than 0.8Lf. While the applied Lh becomes higher than 0.9Lf the value of the q-parameter gradually decreases. This analysis of the experimental data manifests that the value of the entropic index q obtains a characteristic decrease while reaching the ultimate strength of the specimen, and thus could be used as a forerunner of the expected failure.
Comparison of ring compression testing to three point bend testing for unirradiated ZIRLO cladding
Energy Technology Data Exchange (ETDEWEB)
None, None
2015-04-01
Safe shipment and storage of nuclear reactor discharged fuel requires an understanding of how the fuel may perform under the various conditions that can be encountered. One specific focus of concern is performance during a shipment drop accident. Tests at Savannah River National Laboratory (SRNL) are being performed to characterize the properties of fuel clad relative to a mechanical accident condition such as a container drop. Unirradiated ZIRLO tubing samples have been charged with a range of hydride levels to simulate actual fuel rod levels. Samples of the hydrogen charged tubes were exposed to a radial hydride growth treatment (RHGT) consisting of heating to 400°C, applying initial hoop stresses of 90 to 170 MPa with controlled cooling and producing hydride precipitates. Initial samples have been tested using both a) ring compression test (RCT) which is shown to be sensitive to radial hydride and b) three-point bend tests which are less sensitive to radial hydride effects. Hydrides are generated in Zirconium based fuel cladding as a result of coolant (water) oxidation of the clad, hydrogen release, and a portion of the released (nascent) hydrogen absorbed into the clad and eventually exceeding the hydrogen solubility limit. The orientation of the hydrides relative to the subsequent normal and accident strains has a significant impact on the failure susceptability. In this study the impacts of stress, temperature and hydrogen levels are evaluated in reference to the propensity for hydride reorientation from the circumferential to the radial orientation. In addition the effects of radial hydrides on the Quasi Ductile Brittle Transition Temperature (DBTT) were measured. The results suggest that a) the severity of the radial hydride impact is related to the hydrogen level-peak temperature combination (for example at a peak drying temperature of 400°C; 800 PPM hydrogen has less of an impact/ less radial hydride fraction than 200 PPM hydrogen for the same thermal
International Nuclear Information System (INIS)
Jia Su; Wang Xi-Shu; Ren Huai-Hui
2012-01-01
High density packaging is developing toward miniaturization and integration, which causes many difficulties in designing, manufacturing, and reliability testing. Package-on-Package (PoP) is a promising three-dimensional high-density packaging method that integrates a chip scale package (CSP) in the top package and a fine-pitch ball grid array (FBGA) in the bottom package. In this paper, in-situ scanning electron microscopy (SEM) observation is carried out to detect the deformation and damage of the PoP structure under three-point bending loading. The results indicate that the cracks occur in the die of the top package, then cause the crack deflection and bridging in the die attaching layer. Furthermore, the mechanical principles are used to analyse the cracking process of the PoP structure based on the multi-layer laminating hypothesis and the theoretical analysis results are found to be in good agreement with the experimental results. (condensed matter: structural, mechanical, and thermal properties)
BOUROUIS FAIROUZ; MILI FAYCAL
2012-01-01
Sandwich beams loaded in three points bending may fail in several ways including tension or compression failure of facings. In this paper , The effect of the transverse shear on the face yielding and face wrinkling failure modes of sandwich beams loaded in three points bending have been studied, the beams were made of various composites materials carbon/epoxy, kevlar/epoxy, glass/epoxy at sequence [+θ/-θ]3s, [0°/90°]3s. . The stresses in the face were calculated using maximum stress criterion...
DEFF Research Database (Denmark)
Zhou, Hong Wei; Mishnaevsky, Leon; Brøndsted, Povl
2010-01-01
Glass fiber-reinforced polymer (GFRP) composites are widely used in low-weight constructions. SEM (scanning electron microscopy) in situ experiments of damage growth in GFRP composite under three-point bending loads are carried out. By summarizing the experimental results of three groups of samples...
International Nuclear Information System (INIS)
Katagiri, K; Nyilas, A; Sato, T; Hatakeyama, Y; Hokari, T; Teshima, H; Iwamoto, A; Mito, T
2006-01-01
Dy-Ba-Cu-O bulk superconductor has an excellent capability of trapping magnetic flux and lower heat conductivity at cryogenic temperatures as compared with Y-Ba-Cu-O bulk superconductor. The Young's modulus and the bending strength in the range from room temperature to 7 K were measured by the three-point bending tests using specimens cut from a melt-processed Dy-Ba-Cu-O bulk superconductor. They were tested in a helium gas flow type cryostat at Forschungszentrum Karlsruhe and in a liquid nitrogen bath at Iwate University. The Young's modulus was calculated by either the slope of stress-strain curve or that of the load-deflection curve of the specimen. Although the bending strength measured in the two institutes coincided well, there was a significant discrepancy in the Young's modulus. The Young's modulus and bending strength increased with decrease of temperature down to 7 K. The amount of increase in the Young's modulus and the bending strength were about 32% and 36% of those at room temperature, respectively. The scatter of data for each run was significant and did not depend on temperature. The temperature dependence of the Young's modulus coincided with that in Y-Ba-Cu-O obtained by ultrasonic velocity. The temperature dependence of the Young's modulus and the bending strength was discussed from the view point of interatomic distance of the bulk crystal
International Nuclear Information System (INIS)
Ren, F.Z.; Liu, P.; Jia, S.G.; Tian, B.H.; Su, J.H.
2006-01-01
Electroplating was employed to fabricate the Ni film on the Ti substrate. Adhesion strength of Ni film on Ti substrate was determined using the three-point bend technique that was proposed in standard mechanics test. The experimental results demonstrate that the interface fracture energies obviously increase with the roughness of Ti substrates, and are independence with the thickness of Ni films. Moreover, the adhesion strength of Ni film on Ti substrate was also measured by peel test, and was evaluated by Miedema model of experiential electron theory. The intrinsic interface fracture energy measured by three-point bend test is reasonable agreement with that obtained by theoretical calculation of Miedema model, and is roughly comparable to that by peel test
Wang, Hong-mei; Wang, Bang-kang; Ren, Chao-chao; Bai, Yu-xing
2011-03-01
To investigate the mechanical properties of Ni-Ti wires with direct electric resistance heat treatment (DERHT) method in three-point bending tests. Two superelastic Ni-Ti wires (wire A: Smart SE, wire B: SENTALLOY SE, 0.406 mm × 0.559 mm) and 2 heat-actived Ni-Ti wires (wire C: Smart SM, wire D: L&H TITAN, 0.406 mm × 0.559 mm) were selected. They were heat-treated using the DERHT method by a controlled electric current (6.36 A) applied for different period of time [0 (control), 1.0, 1.5, 2.0, 2.5 seconds). Then, a three-point bending test was performed under controlled temperature (37°C) to examine the relationships between the deflection and the load in the bending of wires. After DERHT treatment, the plateau in the force-deflection curve of superelastic Ni-Ti wires and heat-activated Ni-Ti wires were increased. When the wires were heated for 2.0 seconds and deflected to 1.5 mm, the loading force of A, B, C and D Ni-Ti wires increased from (3.85 ± 0.11), (3.62 ± 0.07), (3.28 ± 0.09), (2.91 ± 0.23) N to (4.33 ± 0.07), (4.07 ± 0.05), (4.52 ± 0.08), (3.27 ± 0.15) N respectively. DERHT method is very convenient for clinical use. It is possible to change the arch form and superelastic force of NiTi wires. The longer the heating time is, the more the superelastic characteristics of the wires are altered.
Three Point Bending of Top-Hat Stiffened Chopped Short Fibre Ramie/HDPE Thermoplastic Composite Beam
Hadi, Bambang K.; Nuril, Yogie S.
2018-04-01
The use of natural fibre and thermoplastic matrices in composite materials increased significantly during the last decade especially in the automotive industries. Ramie is one of these potential natural fibres. In this paper, a three point bending of top-hat beam made of ramie/HDPE (High-Density-Polyethylene) composites was performed. Top-hat stiffened structures were common structures found in the aerospace industries. Nevertheless, these structures are beginning to be applied in automotive structures in the forms of chassis and bumpers. The ramie/HDPE composite was manufactured using hot-press technique. The temperature was set to be 135°C and the pressure was 6 bars. Chopped short ramie fibre was used, due to good drape ability characteristics. The experiments showed that the beams produced a large non-linearity. Linear Finite Element Analysis was carried out to be compared with the experimental data. The differences are reasonable.
Rahman, M. Muzibur; Ahmad, S. Reaz
2017-12-01
An analytical investigation of elastic fields for a guided deep beam of orthotropic composite material having three point symmetric bending is carried out using displacement potential boundary modeling approach. Here, the formulation is developed as a single function of space variables defined in terms of displacement components, which has to satisfy the mixed type of boundary conditions. The relevant displacement and stress components are derived into infinite series using Fourier integral along with suitable polynomials coincided with boundary conditions. The results are presented mainly in the form of graphs and verified with finite element solutions using ANSYS. This study shows that the analytical and numerical solutions are in good agreement and thus enhances reliability of the displacement potential approach.
Design Analysis of the Mixed Mode Bending Sandwich Specimen
DEFF Research Database (Denmark)
Quispitupa, Amilcar; Berggreen, Christian; Carlsson, Leif A.
2010-01-01
A design analysis of the mixed mode bending (MMB) sandwich specimen for face–core interface fracture characterization is presented. An analysis of the competing failure modes in the foam cored sandwich specimens is performed in order to achieve face–core debond fracture prior to other failure modes...... for the chosen geometries and mixed mode loading conditions....
Validity of fracture toughness determined with small bend specimens
International Nuclear Information System (INIS)
Wallin, K.; Rintamaa, R.; Valo, M.
1994-02-01
This report considers the validity of fracture toughness estimates obtained with small bend specimens in relation to fracture toughness estimates obtained with large specimens. The study is based upon the analysis and comparison of actual test results. The results prove the validity of the fracture toughness determined based upon small bend specimens, especially when the results are only used to determine the fracture toughness transition temperature T o . In this case the possible error is typically less than 5 deg C and at most 10 deg C. It can be concluded that small bend specimens are very suitable for the estimation of fracture toughness in the case of brittle fracture, provided the results are corrected for statistical size effects. (orig.). (20 refs., 17 figs.)
Directory of Open Access Journals (Sweden)
Xu Jiang
2016-08-01
Full Text Available Influence of moisture absorption/desorption on the flexural properties of Glass-fibre-reinforced polymer (GFRP laminates was experimentally investigated under hot/wet aging environments. To characterize mechanical degradation, three-point bending tests were performed following the ASTM test standard (ASTM D790-10A. The flexural properties of dry (0% Mt/M∞, moisture unsaturated (30% Mt/M∞ and 50% Mt/M∞ and moisture saturated (100% Mt/M∞ specimens at both 20 and 40 °C test temperatures were compared. One cycle of moisture absorption-desorption process was considered in this study to investigate the mechanical degradation scale and the permanent damage of GFRP laminates induced by moisture diffusion. Experimental results confirm that the combination of moisture and temperature effects sincerely deteriorates the flexural properties of GFRP laminates, on both strength and stiffness. Furthermore, the reducing percentage of flexural strength is found much larger than that of E-modulus. Unrecoverable losses of E-modulus (15.0% and flexural strength (16.4% for the GFRP laminates experiencing one cycle of moisture absorption/desorption process are evident at the test temperature of 40 °C, but not for the case of 20 °C test temperature. Moreover, a coupled hygro-mechanical Finite Element (FE model was developed to characterize the mechanical behaviors of GFRP laminates at different moisture absorption/desorption stages, and the modeling method was subsequently validated with flexural test results.
Finite Element Analysis for Bending Process of U-Bending Specimens
Energy Technology Data Exchange (ETDEWEB)
Park, Won Dong; Bahn, Chi Bum [Pusan National University, Busan (Korea, Republic of)
2015-10-15
ASTM G30 suggests that the applied strain can be calculated by dividing thickness by a bend radius. It should be noted, however, that the formula is reliable under an assumption that the ratio of thickness to bend radius is less than 0.2. Typically, to increase the applied stress/strain, the ratio of thickness to bend radius becomes larger than 0.2. This suggests that the estimated strain values by ASTM G30 are not reliable to predict the actual residual strain state of the highly deformed U-bend specimen. For this reason, finite element analysis (FEA) for the bending process of Ubend specimens was conducted by using a commercial finite element analysis software ABAQUS. ver.6.14- 2;2014. From the results of FEA, PWSCC initiation time and U-bend specimen size can be determined exactly. Since local stress and strain have a significant effect on the initiation of PWSCC, it was inappropriate to apply results of ASTM G30 to the PWSCC test directly. According to results of finite element analysis (FEA), elastic relaxation can cause inaccuracy in intended final residual stress. To modify this inaccuracy, additional process reducing the spring back is required. However this additional process also may cause uncertainty of stress/strain state. Therefore, the U-bending specimen size which is not creating uncertainty should be optimized and selected. With the bending radius of 8.3 mm, the thickness of 3 mm and the roller distance of 32.6 mm, calculated maximum stress and strain were 670 MPa and 0.21, respectively.
Czech Academy of Sciences Publication Activity Database
Seitl, Stanislav; Thienpont, T.; De Corte, W.
2017-01-01
Roč. 11, č. 39 (2017), s. 110-117 ISSN 1971-8993 R&D Projects: GA MŠk LM2015069 Institutional support: RVO:68081723 Keywords : Fatigue crack behaviour * Tree-point bending test * Wedge splitting test * Self-compacting concrete Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis
Czech Academy of Sciences Publication Activity Database
Stratil, Luděk; Hadraba, Hynek; Kozák, Vladislav; Dlouhý, Ivo
2013-01-01
Roč. 58, č. 2 (2013), s. 141-155 ISSN 0001-7043 Institutional support: RVO:68081723 Keywords : GTN model, Eurofer97 * smooth tensile test * J–R curve * KLST specimen Subject RIV: JL - Materials Fatigue, Friction Mechanics
Directory of Open Access Journals (Sweden)
A. Kyriazopoulos
2017-04-01
Full Text Available Two experimental techniques are used study the response of cement mortar beams subjected to three-point bending under various load¬ing protocols. The techniques used are the detection of weak electric current emissions known as Pressure Stimulated Currents and the Acoustic Emissions (in particular, the cumulative AE energy and the b-value analysis. Patterns are detected that can be used to predict upcoming fracture, regard¬less of the adopted loading protocol in each experiment. The expe¬rimental results of the AE and PSC techniques lead to the conclusion that when the calculated Ib values decrease, the PSC starts increasing strongly.
Directory of Open Access Journals (Sweden)
Sabine G. Gebhardt-Henrich
2017-08-01
Full Text Available Keel bone damage is a wide-spread welfare problem in laying hens. It is unclear so far whether bone quality relates to keel bone damage. The goal of the present study was to detect possible associations between keel bone damage and bone properties of intact and damaged keel bones and of tibias in end-of-lay hens raised in loose housing systems. Bones were palpated and examined by peripheral quantitative computer tomography (PQCT, a three-point bending test, and analyses of bone ash. Contrary to our expectations, PQCT revealed higher cortical and trabecular contents in fractured than in intact keel bones. This might be due to structural bone repair after fractures. Density measurements of cortical and trabecular tissues of keel bones did not differ between individuals with and without fractures. In the three-point bending test of the tibias, ultimate shear strength was significantly higher in birds with intact vs. fractured keel bones. Likewise, birds with intact or slightly deviated keel bones had higher mineral and calcium contents of the keel bone than birds with fractured keel bones. Calcium content in keel bones was correlated with calcium content in tibias. Although there were some associations between bone traits related to bone strength and keel bone damage, other factors such as stochastic events related to housing such as falls and collisions seem to be at least as important for the prevalence of keel bone damage.
International Nuclear Information System (INIS)
Singh, A.K.; Mehta, H.R.; Bhattacharya, S.
2003-01-01
Acoustic Emission data is very weak and passive in nature that leads to a challenging task to separate AE data from noise. This paper illuminates the work done of post analysis of acoustic emission data of seal plug leakage of operating PHWR, NAPS-2, Narora and Fatigue Crack initiation of three-point bend sample using cluster analysis and artificial neural network (ANN). First the known AE data generated in lab by PCB debonding and pencil leak break were analyzed using ANN to get the confidence. After that the AE data acquired by scanning all 306-coolant channels at NAPS-2 was sorted out in five separate clusters for different leakage rate and background noise. Fatigue crack initiation, AE data generated in MSD lab on three-point bend sample was clustered in ten separate clusters in which one cluster was having 98% AE data of crack initiation period noted with the help of travelling microscope but remaining clusters indicating AE data of different sources and noise. The above data was further analysed with self organizing map of Artificial Neural Network. (author)
International Nuclear Information System (INIS)
Jung, Yang Il; Park, Sang Yoon; Park, Jeong Yong; Jeong, Yong Hwan
2010-01-01
In a light water reactor, the fuel cladding play an important role of preventing leakage of radioactive materials into the coolant, and thus the mechanical integrity of the cladding should be guaranteed under the conditions of normal and transient operation. In the case of a loss of coolant accident (LOCA), the cladding is subjected to a high temperature oxidation which is finally quenched because of an emergency coolant reflooding into the core. In this situation, the current LOCA criteria consist of five separate requirements: i) peak cladding temperature, ii) maximum cladding oxidation, iii) maximum hydrogen generation, iv) coolable geometry, and v) long-term cooling. The claddings lose their ductility due to the microstructural phase transformation from beta to martensite alpha-prime. and hydrogen up-take after LOCA. Since the reduction in ductility can induce embrittlement of claddings, post-quench ductility is one of the major concerns in transient operation circumstances. For the analysis, usually ring compression test are performed on ring samples cut from the tube to examine the oxidized cladding ductility. However, the test would not be applicable to the platelet samples which are general form of a specimen for developing alloys. As a high burn-up fuel cladding materials, Zircaloys are being replaced by modern zirconium alloys such as ZIRLO, and M5. Korea has also developed a new fuel cladding material HANA (high performance alloy for nuclear application) by the Korea Atomic Energy Research Institute. Because of the different composition of the newer claddings in comparison with the conventional Zircaloy-4, the high temperature oxidation behavior and the ductility after the oxidation would be different, and the properties should be evaluated how much the newer claddings were improved
Directory of Open Access Journals (Sweden)
S. Seitl
2017-01-01
Full Text Available The fracture mechanical properties of silicate based materials are determined from various fracture mechanicals tests, e.g. three- or four- point bending test, wedge splitting test, modified compact tension test etc. For evaluation of the parameters, knowledge about the calibration and compliance functions is required. Therefore, in this paper, the compliance and calibration curves for a novel test geometry based on combination of the wedge splitting test and three-point bending test are introduced. These selected variants exhibit significantly various stress state conditions at the crack tip, or, more generally, in the whole specimen ligament. The calibration and compliance curves are compared and used for evaluation of the data from pilot experimental measurement.
A Debonded Sandwich Specimen Under Mixed Mode Bending (MMB)
DEFF Research Database (Denmark)
Quispitupa, Amilcar; Berggreen, Christian; Carlsson, Leif A.
2008-01-01
Face/core interface crack propagation in sandwich specimens is analyzed. A thorough analysis of the typical failure modes in sandwich composites was performed in order to design the MMB specimen to promote face/core debond fracture. Displacement, compliance and energy release rate expressions...... for the MMB specimen were derived from a superposition analysis. An experimental verification of the methodology proposed was performed using MMB sandwich specimens with H100 PVC foam core and E-glass/polyester non-crimp quadro-axial [0/45/90/-45]s DBLT-850 faces. Different mixed mode loadings were applied...
DEFF Research Database (Denmark)
Sørensen, Bent F.; Jørgensen, K.; Jacobsen, T.K.
2004-01-01
A mixed mode specimen is proposed for fracture mechanics characterisation of adhesive joints, laminates and multilayers. The specimen is a double cantilever beam specimen loaded with uneven bending moments at the two free beams. By varying the ratiobetween the two applied moments, the full mode...... glass-fibre laminates was studied. The mixed mode fracture resistance increased with increasing crack length due to fibre bridging, eventually reaching asteady-state level (R-curve behaviour). The steady-state fracture toughness level increased with increasing tangential crack opening displacement....
Testing machine for fatigue crack kinetic investigation in specimens under bending
International Nuclear Information System (INIS)
Panasyuk, V.V.; Ratych, L.V.; Dmytrakh, I.N.
1978-01-01
A kinematic diagram of testing mashine for the investigation of fatigue crack kinetics in prismatic specimens, subjected to pure bending is described. Suggested is a technique of choosing an optimum ratio of the parameters of ''the testing machine-specimen'' system, which provide the stabilization of the stress intensity coefficient for a certain region of crack development under hard loading. On the example of the 40KhS and 15Kh2MFA steel specimens the pliability of the machine constructed according to the described diagram and designed for the 30ONxm maximum bending moment. The results obtained can be used in designing of the testing machines for studying pure bending under hard loading and in choosing the sizes of specimens with rectangular cross sections for investigations into the kinetics of the fatigue crack
International Nuclear Information System (INIS)
Korshunov, M.E.; Korolev, Yu.N.; Krasikov, E.A.; Gabuev, N.N.; Tykhmeev, D.Yu.
1996-01-01
A study is made to reveal if there is a correlation between shifts in temperature curves obtained when testing thin plates and standard specimens on impact bending and fracture toughness. The tests were carried out using steel 25Kh3NM specimens irradiated by 6 x 10 19 cm -2 neutron fluence. A conclusion is made about the possibility to evaluate the degree of radiation-induced embrittlement of reactor steels on the basis of thin plate testing under quasistatic loads [ru
Troive, L.
2017-09-01
Friction-free 3-point bending has become a common test-method since the VDA 238-100 plate-bending test [1] was introduced. According to this test the criterion for failure is when the force suddenly drops. It was found by the author that the evolution of the cross-section moment is a more preferable measure regarding the real material response instead of the force. Beneficially, the cross-section moment gets more or less a constant maximum steady-state level when the cross-section becomes fully plastified. An expression for the moment M is presented that fulfils the criteria for energy of conservation at bending. Also an expression calculating the unit-free moment, M/Me, i.e. current moment to elastic-moment ratio, is demonstrated specifically proposed for detection of failures. The mathematical expressions are simple making it easy to transpose measured force F and stroke position S to the corresponding cross-section moment M. From that point of view it’s even possible to implement, e.g. into a conventional measurement system software, studying the cross-section moment in real-time during a test. It’s even possible to calculate other parameters such as flow-stress and shape of curvature at every stage. It has been tested on different thicknesses and grades within the range from 1.0 to 10 mm with very good results. In this paper the present model is applied on a 6.1 mm hot-rolled high strength steel from the same batch at three different conditions, i.e. directly quenched, quenched and tempered, and a third variant quench and tempered with levelling. It will be shown that very small differences in material-response can be predicted by this method.
Energy Technology Data Exchange (ETDEWEB)
Soerensen, B.F.; Joergensen, K.; Oestergaard, R.C. [Risoe National Lab., Materials Dept., Roskilde (Denmark); Jacobsen, T.K. [LM Glasfiber A/S, Lunderskov (Denmark)
2004-03-01
A mixed mode specimen is proposed for fracture mechanics characterisation of adhesive joints, laminates and multilayers. The specimen is a double cantilever beam specimen loaded with uneven bending moments at the two free beams. By varying the ratio between the two applied moments, the full mode mixity range from pure mode I to pure mode II can be generated for the same specimen geometry. The specimen allows stable crack growth. In case of large scale crack bridging, mixed mode cohesive laws can be obtained by a J integral based approach. As a preliminary example, fracture of adhesive joints between two glass-fibre laminates was studied. The mixed mode fracture resistance increased with increasing crack length due to fibre cross over bridging, eventually reaching a steady-state level (R-curve behaviour). The steady-state fracture toughness level increased with increasing tangential crack opening displacement. Cohesive stresses were determined by a J integral approach. The deducted shear stress was found to be relative high ({approx} = 20 MPa) in comparison with the normal stress ({approx} = 1 MPa). (au)
DEFF Research Database (Denmark)
Manca, Marcello; Quispitupa, Amilcar; Berggreen, Christian
2012-01-01
Face/core fatigue crack growth in foam-cored sandwich composites is examined using the mixed mode bending (MMB) test method. The mixed mode loading at the debond crack tip is controlled by changing the load application point in the MMB test fixture. Sandwich specimens were manufactured using H45...... and H100 PVC foam cores and E-glass/polyester face sheets. All specimens were pre-cracked in order to define a sharp crack front. The static debond fracture toughness for each material configuration was measured at different mode-mixity phase angles. Fatigue tests were performed at 80% of the static...
Text Fixture for Double Cantilever Beam (DCB) Specimens Subjected to Uneven Bending Moments
DEFF Research Database (Denmark)
Svenninggaard, Jon; Andreasen, Jens; Bak, Brian
Bending Moments as a function of the phase angle ranging from mode I to mode II loading including mixed modes in-between. The test fixture utilizes an existing tensile testing machine and can subject specimens to loads up to 350 Nm. The test fixture is compact in size and designed using standard aluminium...... profiles for the main structure. The load is transferred from the test machine to the specimen through a 2 mm Dyneema rope. The rope is routed over a set of rollers that are positioned according to the specified mode mixity and phase angle. The kinematics of the test fixture has been analysed extensively...... strength in layered materials the cohesive law and fracture strength must be known. Ideally the entire cohesive law is known in order to aid in the design of components and structures. In this work we present a novel test fixture which can be used to test DCB specimens that are subjected to pure Uneven...
Face/core interface fracture characterization of mixed mode bending sandwich specimens
DEFF Research Database (Denmark)
Quispitupa, Amilcar; Berggreen, Christian; Carlsson, L.A.
2011-01-01
and PVC H45, H100 and H250 foam core materials were evaluated. A methodology to perform precracking on fracture specimens in order to achieve a sharp and representative crack front is outlined. The mixed mode loading was controlled in the mixed mode bending (MMB) test rig by changing the loading......Debonding of the core from the face sheets is a critical failure mode in sandwich structures. This paper presents an experimental study on face/core debond fracture of foam core sandwich specimens under a wide range of mixed mode loading conditions. Sandwich beams with E‐glass fibre face sheets...... application point (lever arm distance). Finite element analysis was performed to determine the mode‐mixity at the crack tip. The results showed that the face/core interface fracture toughness increased with increased mode II loading. Post failure analysis of the fractured specimens revealed that the crack...
Proton irradiation effects on tensile and bend-fatigue properties of welded F82H specimens
Energy Technology Data Exchange (ETDEWEB)
Saito, S., E-mail: saito.shigeru@jaea.go.j [JAEA Tokai, J-PARC Center, 2-4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Kikuchi, K.; Hamaguchi, D. [JAEA Tokai, J-PARC Center, 2-4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Usami, K.; Ishikawa, A.; Nishino, Y.; Endo, S. [JAEA Tokai, Department of Hot Laboratories, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Kawai, M. [KEK, Tsukuba-shi, Ibaraki-ken 305-0801 (Japan); Dai, Y. [PSI, Spallation Source Division, 5232 Villigen PSI (Switzerland)
2010-03-15
In several institutes, research and development for an accelerator-driven transmutation system (ADS) have been progressed. Ferritic/martensitic (FM) steels are the candidate materials for the beam window of ADS. To evaluate of the mechanical properties of the irradiated materials, the post irradiation examination (PIE) work of the SINQ (Swiss spallation neutron source) target irradiation program (STIP) specimens was carried out at JAEA. In present study, the results of PIE on FM steel F82H and its welded joint have been reported. The present irradiation conditions of the specimens were as follows: proton energy was 580 MeV. Irradiation temperatures were ranged from 130 to 380 deg. C, and displacement damage level was ranged from 5.7 to 11.8 dpa. The results of tensile tests performed at 22 deg. C indicated that the irradiation hardening occurred with increasing the displacement damage up to 10.1 dpa at 320 deg. C irradiation. At higher dose (11.8 dpa) and higher temperature (380 deg. C), irradiation hardening was observed, but degradation of ductility was relaxed in F82H welded joint. In present study, all specimens kept its ductility after irradiation and fractured in ductile manner. The results on bend-fatigue tests showed that the fatigue life (N{sub f}) of F82H base metal irradiated up to 6.3 dpa was almost the same with that of unirradiated specimens. The N{sub f} of the specimens irradiated up to 9.1 dpa was smaller than that of unirradiated specimens. Though the number of specimen was limited, the N{sub f} of F82H EB (15 mm) and EB (3.3 mm) welded joints seemed to increase after irradiation and the fracture surfaces of the specimens showed transgranular morphology. While F82H TIG welded specimens were not fractured by 10{sup 7} cycles.
International Nuclear Information System (INIS)
Borovik, V.G.; Chushko, V.M.; Kovalev, S.P.
1995-01-01
Fracture testing of ceramics by using controlled crack growth is proposed to allow study of crack-kinetics behavior under a given loading history. A computer-aided, real-time data acquisition system improves the quality of crack-growth parameters obtained in a simple, single-specimen bend test. Several ceramic materials were tested in the present study: aluminum nitride as a linear-elastic material; and alumina and yttria-stabilized zirconia, both representative of ceramics with microstructure-dependent nonlinear fracture properties. Ambiguities in the crack-growth diagrams are discussed to show the importance of accounting for crack-growth history in correctly describing nonequilibrium fracture behavior
Czech Academy of Sciences Publication Activity Database
Seitl, Stanislav; Ríjos, J. D.; Cifuentes, H.
2017-01-01
Roč. 11, č. 42 (2017), s. 56-65 ISSN 1971-8993 R&D Projects: GA ČR(CZ) GA16-18702S; GA MŠk LM2015069 Institutional support: RVO:68081723 Keywords : Concrete * Stress intensity factors * T-stress * Compact tension test * Fracture behavior * Fracture toughness Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis
Energy Technology Data Exchange (ETDEWEB)
Chen, Xiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sokolov, Mikhail A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Clowers, Logan N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-11-01
In this report, we present the feasibility study of using pre-cracked miniature multi-notch bend bar specimens (M4CVN) with a dimension of 45mm (length) x 3.3mm (width) x 1.65mm (thickness) to characterize the transition fracture toughness of Eurofer97 based on the ASTM E1921 Master Curve method. From literature survey results, we did not find any obvious specimen size effects on the measured fracture toughness of unirradiated Eurofer97. Nonetheless, in order to exclude the specimen size effect on the measured fracture toughness of neutron irradiated Eurofer97, comparison of results obtained from larger size specimens with those from smaller size specimens after neutron irradiation is necessary, which is not practical and can be formidably expensive. However, limited literature results indicate that the transition fracture toughness of Eurofer97 obtained from different specimen sizes and geometries followed the similar irradiation embrittlement trend. We then described the newly designed experimental setup to be used for testing neutron irradiated Eurofer97 pre-cracked M4CVN bend bars in the hot cell. We recently used the same setup for testing neutron irradiated F82H pre-cracked miniature multi-notch bend bars with great success. Considering the similarity in materials, specimen types, and the nature of tests between Eurofer97 and F82H, we believe the newly designed experimental setup can be used successfully in fracture toughness testing of Eurofer97 pre-cracked M4CVN specimens.
International Nuclear Information System (INIS)
Liu, Guan Yong; Kim, Myung Soo; Baek, Tae Hyun
2014-01-01
In a photoelastic experiment, it is necessary to know the material stress fringe constant of the photoelastic specimen to determine the stresses from the measured isochromatic fringe orders. The material stress fringe constant can be obtained using a simple tension specimen and/or a circular disk under diametric compression. In these methods, there is generally a need to apply numerous loads to the specimen in response to the relationship of the fringe order. Then, the least squares method is used to obtain the material constant. In this paper, the fringe orders that appear on a four-point bending specimen are used to determine the fringe constant. This method requires four photoelastic fringes obtained from a circular polariscope by rotating the analyzer to 0, π/4, π/2, and 3π/4 radians. Using the four-point bending specimen to determine the material stress fringe constant has an advantage because measurements can be made at different locations by applying a constant load. The stress fringe constant measured with this method is within the range suggested by the manufacturer of the photoelastic material
Calculations of the stress intensity factor on a specimen for a four-point bend
International Nuclear Information System (INIS)
Lauerova, D.
1995-02-01
The stress intensity factor K I was calculated in dependence on the crack length in a sample for a (non-standard) four-point bend assuming elastic properties of the material. It is shown that the SYSTUS code gives the best results when calculating the K I value from the J-integral. 4 tabs., 12 figs., 4 refs
Mark Alexander Butler; Joseph Dahlen; Finto Antony; Michael Kane; Thomas L. Eberhardt; Huizhe Jin; Kim Love-Myers; John Paul McTague
2016-01-01
Prior to the 1980s, the allowable stresses for lumber in North America were derived from testing of small clear specimens. However, the procedures were changed because these models were found to be inaccurate. Nevertheless, small clear testing continues to be used around the world for allowable stress determinations and in studies that examine forest management impacts...
Numerical simulation of impact bend tests on araldite B and steel specimens
International Nuclear Information System (INIS)
Stoeckl, H.; Boehme, W.
1983-09-01
As a preliminary stage in the numerical simulation of impact bend tests on elastic-plastic sample materials some simpler experiments were calculated for this report, some of which occured without crack propagation, others with linear elastic crack propagation. These calculations were performed with an own program based on the method of finite differences and also with the finite element program ADINA. In the numerical models plane stress was assumed. Crack propagation was governed by a relation between crack velocity and stress intensity factor. As load input the measured hammer load was used in some cases, mass and initial velocity of the hammer in others. The sample looses contact to the anvils and to the hammer for some time, which had to be considered in model building. The stiffening of the model in the contact region caused by the discretization had to be compensated by springs inserted between the sample and the anvils. The simulation reproduces the experimentally observed behaviour of the sample quite well. Furthermore, additional information can be extracted from the experiment, e.g. concerning the partition of the impact energy. (orig.) [de
Pacheco, Anderson; Fontana, Filipe; Viotti, Matias R.; Veiga, Celso L. N.; Lothhammer, Lívia R.; Albertazzi G., Armando, Jr.
2015-08-01
The authors developed an achromatic speckle pattern interferometer able to measure in-plane displacements in polar coordinates. It has been used to measure combined stresses resulting from the superposition of mechanical loading and residual stresses. Relaxation methods have been applied to produce on the surface of the specimen a displacement field that can be used to determine the amount of combined stresses. Two relaxation methods are explored in this work: blind hole-drilling and indentation. The first one results from a blind hole drilled with a high-speed drilling unit in the area of interest. The measured displacement data is fitted in an appropriate model to quantify the stress level using an indirect approach based on a set of finite element coefficients. The second approach uses indentation, where a hard spherical tip is firmly pressed against the surface to be measured with a predetermined indentation load. A plastic flow occurs around the indentation mark producing a radial in-plane displacement field that is related to the amount of combined stresses. Also in this case, displacements are measured by the radial interferometer and used to determine the stresses by least square fitting it to a displacement field determined by calibration. Both approaches are used to quantify the amount of bending stresses and moment in eight sections of a 12 m long 200 mm diameter steel pipe submitted to a known transverse loading. Reference values of bending stresses are also determined by strain gauges. The comparison between the four results is discussed in the paper.
Energy Technology Data Exchange (ETDEWEB)
Pisarenko, G.S.; Leonets, V.A.; Bega, N.D. (AN Ukrainskoj SSR, Kiev. Inst. Problem Prochnosti)
1983-08-01
Effect of specimen length on intensity of plastic deformation development and cyclic strength is studied for annealed 12Kh18N10T steel under cyclic symmetrical bending. The intensity of microplastic deformations and cyclic strength of annealed 12Kh18N10T steel in the considered case is due to self-heating.
International Nuclear Information System (INIS)
Bass, B.R.; Bryson, J.W.; Mcafee, W.J.; Pennell, W.E.; Theiss, T.J.
1993-01-01
Pressurized-thermal-shock loading in a reactor pressure vessel produces significant positive out-of-plane stresses along the crack front for both circumferential and axial cracks. Experimental evidence, while very limited, seems to indicate that a reduction in toughness is associated with out-of-plane biaxial loading when compared with toughness values obtained under uniaxial conditions. A testing program is described that seeks to determine the effects of out-of-plane biaxial tensile loading on fracture toughness of RPV steels. A cruciform bend specimen that meets specified criteria for the testing pregam is analyzed using three-dimensional elastic-plastic finite-element techniques. These analysis results provide the basis for proposed test conditions that are judged likely to produce a biaxial loading effect in the cruciform bend specimen
International Nuclear Information System (INIS)
Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.
1998-01-01
A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a prototypic, far-field. out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for RPV materials. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies. namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness, the conventional maximum principal stress criterion indicated no effect
Energy Technology Data Exchange (ETDEWEB)
Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.
1998-06-01
A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states.
International Nuclear Information System (INIS)
Belkin, L.M.; Filimonov, G.N.; Belkin, M.Ya.; Vishnevskij, A.P.; Volkov, I.B.
1986-01-01
VP6 alloy is studied for its relaxation stability and fatigue strength. Results of the study are presented. Tests are carried out on the specimens with smooth working part to study relaxation properties of the material, with thread working part to determine stress relaxation in a loose thread, on the thread joints to study relaxation in the working thread. All the studied members of the thread joint under cyclic loading are shown to obey a common regularity. Characteristics of the relaxation material stability under different values on an average stress cycle are presented. Stress concentration associated with inhomogeneity in distribution of axial tensile stresses in a loose thread and nonuniformity in the working thread. All the studied members of the thread joint under cyclic loading are shown to obey a common regularity. Characteristics of the relaxation material stability under different values on an average stress cycle are presented. Stress concentration associated with inhomogeneity in distribution of axial tensile stresses in a loose thread and nonuniformity in the load on the working thread turns along the nut length are studied for their effect on the stress relaxation in the thread joint. Ultimate longevity of the materials under conditions of cyclic stress relaxation is evaluated allowing for relaxation and fatigue characteristics of the material
Lap belts and three-point belts.
Kampen, L.T.B. van & Edelman, A.
1975-01-01
Results of the swov-accident investigation prove that if there are any differences in the effectiveness of lap belts and three-point belts, these are so small that they cannot form a basis for giving preference to one type over the other. Furthermore, in spite of the results of this investigation
Development of U-frame bending system for studying the vibration integrity of spent nuclear fuel
Wang, Hong; Wang, Jy-An John; Tan, Ting; Jiang, Hao; Cox, Thomas S.; Howard, Rob L.; Bevard, Bruce B.; Flanagan, Michelle
2013-09-01
A bending fatigue system developed to evaluate the response of spent nuclear fuel rods to vibration loads is presented. A U-frame testing setup is used for imposing bending loads on the fuel rod specimen. The U-frame setup consists of two rigid arms, side connecting plates to the rigid arms, and linkages to a universal testing machine. The test specimen's curvature is obtained through a three-point deflection measurement method. The tests using surrogate specimens with stainless steel cladding revealed increased flexural rigidity under unidirectional cyclic bending, significant effect of cladding-pellets bonding on the response of surrogate rods, and substantial cyclic softening in reverse bending mode. These phenomena may cast light on the expected response of a spent nuclear fuel rod. The developed U-frame system is thus verified and demonstrated to be ready for further pursuit in hot-cell tests.
Three points of view in transport theory
Energy Technology Data Exchange (ETDEWEB)
Ruben, Panta Pazos [Faculdade de Matematica, PUCRS, Porto Alegre, RS (Brazil); Tilio de Vilhena, M. [Instituto de Matematica, UFRGS, Porto Alegre, RS (Brazil)
2001-07-01
A lot of efforts in Transport Theory is used to develop numerical methods or hybrid numerical-analytical techniques. We present in this work three points of view about transport problems. First the C0 semigroup approach, in which the free transport operator {psi} {yields} {mu} {nabla} generates an strongly continuous semigroup. The operators operator {psi} {yields} {sigma}t and operator {psi} {yields} {integral} {nabla} k(x,{mu},{mu}') {psi}(x,{mu}') d{mu}' are bounded operators, and by perturbation the transport operator {psi} {yields} {mu} {nabla} {psi} + {sigma}t {psi} - K {psi} also generates an strongly continuous semigroup. To prove the convergence of the approximations of a numerical methods to the exact solution we use the approximation theorem of C0 semi-groups in canonical form. In other way, the discrete schemes theory is employed in searching the rate of convergence of numerical techniques in transport theory. For 1D dependent of time transport problem and two-dimensional steady state problem we summarize some estimates, incorporating different boundary conditions. Finally we give a survey about the dynamical behavior of the SN approximations. In order to give a unified approach, some results illustrates the equivalence of the three points of views for the case of the steady-state transport problem for slab geometry. (author)
Three points of view in transport theory
International Nuclear Information System (INIS)
Ruben, Panta Pazos; Tilio de Vilhena, M.
2001-01-01
A lot of efforts in Transport Theory is used to develop numerical methods or hybrid numerical-analytical techniques. We present in this work three points of view about transport problems. First the C0 semigroup approach, in which the free transport operator ψ → μ ∇ generates an strongly continuous semigroup. The operators operator ψ → σt and operator ψ → ∫ ∇ k(x,μ,μ' ψ(x,μ') dμ' are bounded operators, and by perturbation the transport operator ψ → μ ∇ ψ + σt ψ - K ψ also generates an strongly continuous semigroup. To prove the convergence of the approximations of a numerical methods to the exact solution we use the approximation theorem of C0 semi-groups in canonical form. In other way, the discrete schemes theory is employed in searching the rate of convergence of numerical techniques in transport theory. For 1D dependent of time transport problem and two-dimensional steady state problem we summarize some estimates, incorporating different boundary conditions. Finally we give a survey about the dynamical behavior of the SN approximations. In order to give a unified approach, some results illustrates the equivalence of the three points of views for the case of the steady-state transport problem for slab geometry. (author)
Impact compressive and bending behaviour of rocks accompanied by electromagnetic phenomena.
Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Watanabe, Keiko
2014-08-28
It is well known that electromagnetic phenomena are often observed preceding earthquakes. However, the mechanism by which these electromagnetic waves are generated during the fracture and deformation of rocks has not been fully identified. Therefore, in order to examine the relationship between the electromagnetic phenomena and the mechanical properties of rocks, uniaxial compression and three-point bending tests for two kinds of rocks with different quartz content, granite and gabbro, have been carried out at quasi-static and dynamic rates. Especially, in the bending tests, pre-cracked specimens of granite were also tested. Using a split Hopkinson pressure bar and a ferrite-core antenna in close proximity to the specimens, both the stress-strain (load-displacement) curve and simultaneous electromagnetic wave magnitude were measured. It was found that the dynamic compressive and bending strengths and the stress increase slope of both rocks were higher than those observed in static tests; therefore, there is a strain-rate dependence in their strength and stress increase rate. It was found from the tests using the pre-cracked bending specimens that the intensity of electromagnetic waves measured during crack extension increased almost proportionally to the increase of the maximum stress intensity factor of specimens. This tendency was observed in both the dynamic and quasi-static three-point bending tests for granite. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
A three-point Taylor algorithm for three-point boundary value problems
J.L. López; E. Pérez Sinusía; N.M. Temme (Nico)
2011-01-01
textabstractWe consider second-order linear differential equations $\\varphi(x)y''+f(x)y'+g(x)y=h(x)$ in the interval $(-1,1)$ with Dirichlet, Neumann or mixed Dirichlet-Neumann boundary conditions given at three points of the interval: the two extreme points $x=\\pm 1$ and an interior point
Development of U-frame bending system for studying the vibration integrity of spent nuclear fuel
International Nuclear Information System (INIS)
Wang, Hong; Wang, Jy-An John; Tan, Ting; Jiang, Hao; Cox, Thomas S.; Howard, Rob L.; Bevard, Bruce B.; Flanagan, Michelle
2013-01-01
A bending fatigue system developed to evaluate the response of spent nuclear fuel rods to vibration loads is presented. A U-frame testing setup is used for imposing bending loads on the fuel rod specimen. The U-frame setup consists of two rigid arms, side connecting plates to the rigid arms, and linkages to a universal testing machine. The test specimen’s curvature is obtained through a three-point deflection measurement method. The tests using surrogate specimens with stainless steel cladding revealed increased flexural rigidity under unidirectional cyclic bending, significant effect of cladding-pellets bonding on the response of surrogate rods, and substantial cyclic softening in reverse bending mode. These phenomena may cast light on the expected response of a spent nuclear fuel rod. The developed U-frame system is thus verified and demonstrated to be ready for further pursuit in hot-cell tests
Czech Academy of Sciences Publication Activity Database
Seitl, Stanislav; Řoutil, L.; Klusák, Jan; Veselý, V.
2008-01-01
Roč. 2, č. 1 (2008), s. 123-132 ISSN 1802-680X Institutional research plan: CEZ:AV0Z20410507 Keywords : three point bending specimens * cement based composites * fracture parameters * notch geometry * notch width Subject RIV: JL - Materials Fatigue, Friction Mechanics
Czech Academy of Sciences Publication Activity Database
Veselý, V.; Frantík, P.; Sopek, J.; Malíková, L.; Seitl, Stanislav
2015-01-01
Roč. 38, č. 2 (2015), s. 200-214 ISSN 8756-758X R&D Projects: GA ČR(CZ) GAP104/11/0833 Institutional support: RVO:68081723 Keywords : near-crack tip fields * Williams series * higher-order terms * stress field * failure criterion * nonlinear zone * quasi-brittle fracture * splitting-bending geometry Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.838, year: 2015
Bend testing for miniature disks
International Nuclear Information System (INIS)
Huang, F.H.; Hamilton, M.L.; Wire, G.L.
1982-01-01
A bend test was developed to obtain ductility measurements on a large number of alloy variants being irradiated in the form of miniature disks. Experimental results were shown to be in agreement with a theoretical analysis of the bend configuration. Disk specimens fabricated from the unstrained grip ends of previously tested tensile specimens were used for calibration purposes; bend ductilities and tensile ductilities were in good agreement. The criterion for estimating ductility was judged acceptable for screening purposes
Simulating Stresses Associated with the Bending of Wood Using a Finite Element Method
Directory of Open Access Journals (Sweden)
Milan Gaff
2015-02-01
Full Text Available This article examines the stress-strain curves of various thicknesses of soft and hard wood when bent during three-point loading. The finite element method was used to simulate the course of stresses that occurred during the bending of these materials. Reference curves obtained by bending real specimens offered a basis for simulation. The results showed that with increasing material thickness, deflection values decreased and the proportionality limit increased; eventually, the bendability coefficient value decreased and the loading force necessary for bending increased. Moreover, it was apparent when bending hard materials that higher loading forces were necessary for different materials of the same thickness. It is possible to determine the stress-strain curves without having to perform experiments (except for indispensable reference ones under real conditions.
Instrumented impact testing machine with reduced specimen oscillation effects
International Nuclear Information System (INIS)
Rintamaa, R.; Rahka, K.; Wallin, K.
1984-07-01
Owing to small and inexpensive specimens the Charpy impact test is widely used in quality control and alloy development. Limitations in power reactor survellance capsules it is also widely used for safety analysis purposes. Instrumenting the tup and computerizing data acquisition, makes dynamic fracture mechanics data measurement possible and convenient. However, the dynamic effects (inertia forces, specimen oscillations) in the impact test cause inaccuracies in the recorded load-time diagram and hence diminish the reliability of the calculated dynamic fracture mechanics parameters. To decrease inaccuracies a new pendulum type of instrumented impact test apparatus has been developed and constructed in the Metals Laboratory of the Technical Research Centre of Finland. This tester is based on a new principle involving inverted test geometry. The purpose of the geometry inversion is to reduce inertia load and specimen oscillation effects. Further, the new impact tester has some other novel features: e.g. the available initia impact energy is about double compared to the conventional standard (300 J) impact tester allowing the use of larger (10 x 20 x 110 mm) bend specimens than normal Charpy specimens. Also, the rotation asix in the three point bending is nearly stationary making COD-measurements possible. An experimental test series is described in which the inertia effects and specimen oscillations are compared in the conventional and new impact tester utilizing Charpy V-notch specimens. Comparison of the two test geometries is also made with the aid of an analytical model using finite element method (FEM) analysis. (author)
Three-point statistics of cosmological stochastic gravitational waves
International Nuclear Information System (INIS)
Adshead, Peter; Lim, Eugene A.
2010-01-01
We consider the three-point function (i.e. the bispectrum or non-Gaussianity) for stochastic backgrounds of gravitational waves. We estimate the amplitude of this signal for the primordial inflationary background, gravitational waves generated during preheating, and for gravitational waves produced by self-ordering scalar fields following a global phase transition. To assess detectability, we describe how to extract the three-point signal from an idealized interferometric experiment and compute the signal to noise ratio as a function of integration time. The three-point signal for the stochastic gravitational wave background generated by inflation is unsurprisingly tiny. For gravitational radiation generated by purely causal, classical mechanisms we find that, no matter how nonlinear the process is, the three-point correlations produced vanish in direct detection experiments. On the other hand, we show that in scenarios where the B-mode of the cosmic microwave background is sourced by gravitational waves generated by a global phase transition, a strong three-point signal among the polarization modes is also produced. This may provide another method of distinguishing inflationary B-modes. To carry out this computation, we have developed a diagrammatic approach to the calculation of stochastic gravitational waves sourced by scalar fluids, which has applications beyond the present scenario.
Computing three-point functions for short operators
International Nuclear Information System (INIS)
Bargheer, Till; Institute for Advanced Study, Princeton, NJ; Minahan, Joseph A.; Pereira, Raul
2013-11-01
We compute the three-point structure constants for short primary operators of N=4 super Yang.Mills theory to leading order in 1/√(λ) by mapping the problem to a flat-space string theory calculation. We check the validity of our procedure by comparing to known results for three chiral primaries. We then compute the three-point functions for any combination of chiral and non-chiral primaries, with the non-chiral primaries all dual to string states at the first massive level. Along the way we find many cancellations that leave us with simple expressions, suggesting that integrability is playing an important role.
Computing three-point functions for short operators
Energy Technology Data Exchange (ETDEWEB)
Bargheer, Till [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Minahan, Joseph A.; Pereira, Raul [Uppsala Univ. (Sweden). Dept. of Physics and Astronomy
2013-11-15
We compute the three-point structure constants for short primary operators of N=4 super Yang.Mills theory to leading order in 1/√(λ) by mapping the problem to a flat-space string theory calculation. We check the validity of our procedure by comparing to known results for three chiral primaries. We then compute the three-point functions for any combination of chiral and non-chiral primaries, with the non-chiral primaries all dual to string states at the first massive level. Along the way we find many cancellations that leave us with simple expressions, suggesting that integrability is playing an important role.
Two- and three-point functions in Liouville theory
International Nuclear Information System (INIS)
Dorn, H.; Otto, H.J.
1994-04-01
Based on our generalization of the Goulian-Li continuation in the power of the 2D cosmological term we construct the two and three-point correlation functions for Liouville exponentials with generic real coefficients. As a strong argument in favour of the procedure we prove the Liouville equation of motion on the level of three-point functions. The analytical structure of the correlation functions as well as some of its consequences for string theory are discussed. This includes a conjecture on the mass shell condition for excitations of noncritical strings. We also make a comment concerning the correlation functions of the Liouville field itself. (orig.)
New results on holographic three-point functions
International Nuclear Information System (INIS)
Bianchi, Massimo; Prisco, Maurizio; Mueck, Wolfgang
2003-01-01
We exploit a gauge invariant approach for the analysis of the equations governing the dynamics of active scalar fluctuations coupled to the fluctuations of the metric along holographic RG flows. In the present approach, a second order ODE for the active scalar emerges rather simply and makes it possible to use the Green's function method to deal with (quadratic) interaction terms. We thus fill a gap for active scalar operators, whose three-point functions have been inaccessible so far, and derive a general, explicitly Bose symmetric formula thereof. As an application we compute the relevant three-point function along the GPPZ flow and extract the irreducible trilinear couplings of the corresponding super glueballs by amputating the external legs on-shell. (author)
Three point functions in the large N=4 holography
International Nuclear Information System (INIS)
Ahn, Changhyun; Kim, Hyunsu
2015-01-01
Sixteen higher spin currents with spins (1,(3/2),(3/2),2), ((3/2),2,2,(5/2)), ((3/2),2,2,(5/2)), and (2,(5/2),(5/2),3) were previously obtained in an extension of the large N=4 ‘nonlinear’ superconformal algebra in two dimensions. By carefully analyzing the zero-mode eigenvalue equations, three-point functions of bosonic (higher spin) currents are obtained with two scalars for any finite N (where SU(N+2) is the group of coset) and k (the level of spin-1 Kac Moody current). Furthermore, these 16 higher spin currents are implicitly obtained in an extension of large N=4 ‘linear’ superconformal algebra for generic N and k. The corresponding three-point functions are also determined. Under the large N ’t Hooft limit, the two corresponding three-point functions in the nonlinear and linear versions coincide even though they are completely different for finite N and k.
The fractography analysis of IN718 alloy after three-point flexure fatigue test
Directory of Open Access Journals (Sweden)
Belan Juraj
2018-01-01
Full Text Available In this study, the high cycle fatigue (HCF properties of IN718 superalloy with given chemical composition were investigated at three-point flexure fatigue test at room temperature. INCONEL alloy 718 is nickel-chromium-iron hardenable alloy and due to its unique combination of mechanical properties (high-strength; corrosion-resistant and so on used for production of heat resistant parts of aero jet engine mostly. Mechanical properties of this alloy are strongly dependent on microstructure and on presence of structural features such are principal strengthening phase gamma double prime, gamma prime and due to its morphology less desired delta phases. The mentioned phases precipitate at various temperature ranges and Nb content as well. The three-point flexure fatigue test was performed on ZWICK/ROELL Amsler 150 HFP 5100 test equipment with approximate loading frequency f=150 Hz. The S – N (Stress – Number of cycles curve was obtained after testing. With the help of scanning electron microscope (SEM, fractography analyses were performed to disclose the fracture features of specimens in different life ranges. The brief comparison of three-point flexure and push-pull fatigue loading modes and its influence on fatigue life is discussed as well.
Influence of specimen size/type on the fracture toughness of five irradiated RPV materials
International Nuclear Information System (INIS)
Sokolov, Mikhail A; Lucon, Enrico
2015-01-01
The Heavy-Section Steel Irradiation (HSSI) Program had previously irradiated five reactor pressure vessel (RPV) steels/welds at fast neutron fluxes of about 4 to 8 x 10 11 n/cm 2 /s (>1 MeV) to fluences from 0.5 to 3.4 10 19 n/cm 2 and at 288 °C. The unirradiated fracture toughness tests were performed by Oak Ridge National Laboratory with 12.7-mm and 25.4-mm thick (0.5T and 1T) compact specimens, while the HSSI Program provided tensile and 5 x 10-mm three-point bend specimens to SCK-CEN for irradiation in the in-pile section of the Belgian Reactor BR2 at fluxes > 10 13 n/cm 2 /s and subsequent testing by SCK-CEN. The BR2 irradiations were conducted at about 2 and 4 x 10 13 n/cm 2 /s with irradiation temperature between 295 °C and 300 °C (water temperature), and to fluences between 6 and 10 x 10 19 n/cm 2 . The irradiation-induced shifts of the Master Curve reference temperatures, ΔT 0 , for most of the materials deviated from the embrittlement correlations much more than expected, motivating the testing of 5 x 10-mm three-point bend specimens of all five materials in the unirradiated condition to eliminate specimen size and geometry as a variable. Tests of the unirradiated small bend specimens resulted in Master Curve reference temperatures, ΔT 0 , 25 °C to 53 °C lower than those from the larger compact specimens, meaning that the irradiation-induced reference temperature shifts, ΔT 0 , were larger than the initial measurements, resulting in much improved agreement between the measured and predicted fracture toughness shifts.
Correct Use of Three-Point Seatbelt by Pregnant Occupants
Directory of Open Access Journals (Sweden)
B. Serpil Acar
2017-12-01
Full Text Available The largest cause of accidental death and placental abruption in pregnancy is automobile collisions. Lives can be saved by correct use of the three-point seatbelt during pregnancy. Human interaction is essential for correct use of seatbelts. The objective of this study is to investigate pregnant women’s use of correct shoulder section together with correct lap section as advised by obstetricians and highway experts and to identify the most common seatbelt misuse during pregnancy. An international web survey was conducted in five languages for this study. 1931 pregnant women reported their use of seatbelts and how they position the shoulder and lap sections of their seatbelts. Special attention was paid to distinguish between ‘partly correct’ and ‘correct’ seatbelt positioning. The questionnaire responses are used to determine the magnitude of every combination of the correct and incorrect shoulder and lap section of the seatbelt positioning during pregnancy. Results show that seatbelt usage in pregnancy is generally high in the world. However, the correct use of the entire seatbelt is very low, at only 4.3% of all respondents. 40.8% of the respondents use the shoulder portion of the belt correctly, whilst a 13.2% use the lap section correctly. The most common misuse is ‘across abdomen’ or ‘not using the seatbelt at all’, and both pose danger to pregnant women and their fetuses. Correct use of three point seatbelts is a challenge during pregnancy. We recommend that the media, medical community, and automotive industry provide targeted information about correct seatbelt use during pregnancy and accident databases include ‘correct seatbelt use’ information in crash statistics.
Role of specimen size upon the measured toughness of cellular solids
International Nuclear Information System (INIS)
Christodoulou, I; Tan, P J
2013-01-01
It is well known that the mechanical properties of cellular solids depend critically upon the specimen size and that a 'sufficiently' large test specimen is needed to obtain representative bulk values. Notwithstanding, the fracture toughness of cellular solids is still measured experimentally based on standards, such as the ASTM E399 and E813, developed for solid materials that do not possess an intermediate, 'cell-level' length scale. Experimental data in the literature appears to show that the toughness of stochastic 3D foams is, also, size-dependent. This paper presents the results of a detailed finite element (FE) study that will quantify, and identify the physical origin of, the size-dependent effect. Three-point bending of a single-edge notched (or SEN(B)) specimen, with a 2D Voronoi micro-architecture, is modelled numerically to obtain estimates of fracture toughness which are compared to those obtained with a 'boundary-layer' analysis
An automated tensile machine for small specimens heavily neutron irradiated in FFTF/MOTA
International Nuclear Information System (INIS)
Kohyama, Akira; Sato, Shinji; Hamada, Kenichi
1993-01-01
The objective of this work is to develop a fully automated tensile machine for post-irradiation examination (PIE) of Fast Flux Test Facility (FFTF)/Materials Open Test Assembly (MOTA) irradiated miniature tension specimens. The anticipated merit of the automated tensile machine is to reduce damage to specimens during specimen handling for PIE and to reduce exposure to radioactive specimens. This machine is designed for testing at elevated temperatures, up to 873 K, in a vacuum or in an inert gas environment. Twelve specimen assemblies are placed in the vacuum chamber that can be tested successively in a fully automated manner. A unique automated tensile machine for the PIE of FFTF/MOTA irradiated specimens, the Monbusho Automated Tensile Machine (MATRON) consists of a test frame with controlling units and an automated specimen-loading apparatus. The qualification of the test frame has been completed, and the results have satisfied the machine specifications. The capabilities of producing creep and relaxation data have been demonstrated for Cu, Al, 316SS, and ferritic steels. The specimen holders for the three-point bending test and the small bulge test (small punch test; SP test) were also designed and produced
Use of precracked Charpy and smaller specimens to establish the master curve
International Nuclear Information System (INIS)
Sokolov, M.A.; McCabe, D.E.; Nanstad, R.K.; Davidov, Y.A.
1997-01-01
The current provisions used in the U.S. Code of Federal Regulations for the determination of the fracture toughness of reactor pressure vessel steels employs an assumption that there is a direct correlation between K Ic lower-bound toughness and the Charpy V-notch transition curve. Such correlations are subject to scatter from both approaches which weakens the reliability of fracture mechanics-based analyses. In this study, precracked Charpy and smaller size specimens are used in three-point static bend testing to develop fracture mechanics based K k values. The testing is performed under carefully controlled conditions such that the values can be used to predict the fracture toughness performance of large specimens. The concept of a universal transition curve (master curve) is applied. Data scatter that is characteristic of commercial grade steels and their weldments is handled by Weibull statistical modeling. The master curve is developed to describe the median K Jc fracture toughness for 1T size compact specimens. Size effects are modeled using weakest-link theory and are studied for different specimen geometries. It is shown that precracked Charpy specimens when tested within their confined validity limits follow the weakest-link size-adjustment trend and predict the fracture toughness of larger specimens. Specimens of smaller than Charpy sizes (5 mm thick) exhibit some disparities in results relative to weakest-link size adjustment prediction suggesting that application of such adjustment to very small specimens may have some limitations
Didia, E E; Akon, A B; Thiam, A; Djeredou, K B
2010-03-01
One of the concerns of the dental surgeon in the realization of any operational act is the durability of this one. The mechanical resistance of the provisional prostheses contributes in a large part to the durability of those. The resins in general, have weak mechanical properties. The purpose of this study is to evaluate the resistance in inflection of temporary bridges reinforced with glass fibre. To remedy the weak mechanical properties of resins, we thought in this study, to reinforce them with glass fibres. For this purpose, we realized with two different resins, four groups of temporary bridges of 3 elements, including two groups reinforced fibreglass and the others not. Tests of inflection 3 points have been made on these bridges and resistance to fracture was analysed. The statistical tests showed a significant difference in four groups with better resistance for the reinforced bridges.
The influence of applied heat-treatment on in 718 fatigue life at three point flexural bending
Directory of Open Access Journals (Sweden)
J. Belan
2017-01-01
Full Text Available The Inconel alloy 718 is an iron-nickel based superalloy with a working temperature up to 650 °C. Presented phases such as γ'' (Ni3Nb, γ' (Ni3Al, and δ (delta – Ni3Nb are responsible for the alloy's unique properties. The δ – delta phase is profitable when situated at grain boundaries in small quantities due to increasing fatigue life. However, at temperatures close to 650 °C the γ'' transforms to δ – delta and causes a decrease in fatigue life. Heat-treatment (800°C/ for 72 hours and its influence on fatigue life are discussed in this paper. Fatigue tests were carried out at room temperature. After the tests we plotted the S-N curves for both stages. SEM (Scanning Electron Microscopy fractography was carried out as well.
Czech Academy of Sciences Publication Activity Database
Zlámal, P.; Jiroušek, Ondřej; Kytýř, Daniel; Doktor, Tomáš
2013-01-01
Roč. 58, č. 2 (2013), s. 157-171 ISSN 0001-7043 R&D Projects: GA ČR(CZ) GAP105/10/2305 Institutional support: RVO:68378297 Keywords : elasto-visco-plastic-damage model * FEM * nanoindentation * trabecular bone Subject RIV: FI - Traumatology, Orthopedics http://journal.it.cas.cz/index.php?stranka= contents
Directory of Open Access Journals (Sweden)
Umal Hiralal Doshi
2013-01-01
Conclusion: Steel wires showed highest strength values, requiring the incorporation of loops and folds to reduce the load/deflection. NiTi and GFRPC wires produced more deflection at low levels of force, however the esthetic wire was shown to fracture and break.
Modular correction method of bending elastic modulus based on sliding behavior of contact point
International Nuclear Information System (INIS)
Ma, Zhichao; Zhao, Hongwei; Zhang, Qixun; Liu, Changyi
2015-01-01
During the three-point bending test, the sliding behavior of the contact point between the specimen and supports was observed, the sliding behavior was verified to affect the measurements of both deflection and span length, which directly affect the calculation of the bending elastic modulus. Based on the Hertz formula to calculate the elastic contact deformation and the theoretical calculation of the sliding behavior of the contact point, a theoretical model to precisely describe the deflection and span length as a function of bending load was established. Moreover, a modular correction method of bending elastic modulus was proposed, via the comparison between the corrected elastic modulus of three materials (H63 copper–zinc alloy, AZ31B magnesium alloy and 2026 aluminum alloy) and the standard modulus obtained from standard uniaxial tensile tests, the universal feasibility of the proposed correction method was verified. Also, the ratio of corrected to raw elastic modulus presented a monotonically decreasing tendency as the raw elastic modulus of materials increased. (technical note)
Standard test methods for bend testing of material for ductility
American Society for Testing and Materials. Philadelphia
2009-01-01
1.1 These test methods cover bend testing for ductility of materials. Included in the procedures are four conditions of constraint on the bent portion of the specimen; a guided-bend test using a mandrel or plunger of defined dimensions to force the mid-length of the specimen between two supports separated by a defined space; a semi-guided bend test in which the specimen is bent, while in contact with a mandrel, through a specified angle or to a specified inside radius (r) of curvature, measured while under the bending force; a free-bend test in which the ends of the specimen are brought toward each other, but in which no transverse force is applied to the bend itself and there is no contact of the concave inside surface of the bend with other material; a bend and flatten test, in which a transverse force is applied to the bend such that the legs make contact with each other over the length of the specimen. 1.2 After bending, the convex surface of the bend is examined for evidence of a crack or surface irregu...
MIT miniaturized disk bend test
International Nuclear Information System (INIS)
Harling, O.K.; Lee, M.; Sohn, D.S.; Kohse, G.; Lau, C.W.
1983-01-01
A miniaturized disk bend test (MDBT) using transmission electron microscopy specimens for the determination of various mechanical properties is being developed at MIT. Recent progress in obtaining strengths and ductilities of highly irradiated metal alloys is reviewed. Other mechanical properties can also be obtained using the MDBT approach. Progress in fatigue testing and in determination of the ductile-to-brittle transition temperature is reviewed briefly. 11 figures
Influence of specimen size/type on the fracture toughness of five irradiated RPV materials
Energy Technology Data Exchange (ETDEWEB)
Sokolov, Mikhail A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lucon, Enrico [National Inst. of Standards and Technology (NIST), Boulder, CO (United States)
2015-01-01
The Heavy-Section Steel Irradiation (HSSI) Program had previously irradiated five reactor pressure vessel (RPV) steels/welds at fast neutron fluxes of about 4 to 8 x 10^{11} n/cm^{2}/s (>1 MeV) to fluences from 0.5 to 3.4 10^{19} n/cm^{2} and at 288 °C. The unirradiated fracture toughness tests were performed by Oak Ridge National Laboratory with 12.7-mm and 25.4-mm thick (0.5T and 1T) compact specimens, while the HSSI Program provided tensile and 5 x 10-mm three-point bend specimens to SCK-CEN for irradiation in the in-pile section of the Belgian Reactor BR2 at fluxes > 10^{13} n/cm^{2}/s and subsequent testing by SCK-CEN. The BR2 irradiations were conducted at about 2 and 4 x 10^{13} n/cm^{2}/s with irradiation temperature between 295 °C and 300 °C (water temperature), and to fluences between 6 and 10 x 10^{19}n/cm^{2}. The irradiation-induced shifts of the Master Curve reference temperatures, ΔT_{0}, for most of the materials deviated from the embrittlement correlations much more than expected, motivating the testing of 5 x 10-mm three-point bend specimens of all five materials in the unirradiated condition to eliminate specimen size and geometry as a variable. Tests of the unirradiated small bend specimens resulted in Master Curve reference temperatures, T_{0}, 25 °C to 53 °C lower than those from the larger compact specimens, meaning that the irradiation-induced reference temperature shifts, ΔT_{0}, were larger than the initial measurements, resulting in much improved agreement between the measured and predicted fracture toughness shifts.
Estimation of Fatigue Crack Growth Behavior of Cracked Specimen Under Mixed-mode Loads
International Nuclear Information System (INIS)
Han, Jeong Woo; Woo, Eun Taek; Han, Seung Ho
2015-01-01
To estimate the fatigue crack propagation behavior of compact tension shear (CTS) specimen under mixed-mode loads, crack path prediction theories and Tanaka’s equation were applied. The stress intensity factor at a newly created crack tip was calculated using a finite element method via ANSYS, and the crack path and crack increment were then obtained from the crack path prediction theories, Tanaka’s equation, and the Paris’ equation, which were preprogrammed in Microsoft Excel. A new method called the finite element crack tip updating method (FECTUM) was developed. In this method, the finite element method and Microsoft Excel are used to calculate the stress intensity factors and the crack path, respectively, at the crack tip per each crack increment. The developed FECTUM was applied to simulate the fatigue crack propagation of a single-edge notched bending (SENB) specimen under eccentric three-point bending loads. The results showed that the number of cycles to failure of the specimen obtained experimentally and numerically were in good agreement within an error range of less than 3%
Estimation of Fatigue Crack Growth Behavior of Cracked Specimen Under Mixed-mode Loads
Energy Technology Data Exchange (ETDEWEB)
Han, Jeong Woo [KIMM, Daejeon (Korea, Republic of); Woo, Eun Taek; Han, Seung Ho [Dong-A University, Busan (Korea, Republic of)
2015-07-15
To estimate the fatigue crack propagation behavior of compact tension shear (CTS) specimen under mixed-mode loads, crack path prediction theories and Tanaka’s equation were applied. The stress intensity factor at a newly created crack tip was calculated using a finite element method via ANSYS, and the crack path and crack increment were then obtained from the crack path prediction theories, Tanaka’s equation, and the Paris’ equation, which were preprogrammed in Microsoft Excel. A new method called the finite element crack tip updating method (FECTUM) was developed. In this method, the finite element method and Microsoft Excel are used to calculate the stress intensity factors and the crack path, respectively, at the crack tip per each crack increment. The developed FECTUM was applied to simulate the fatigue crack propagation of a single-edge notched bending (SENB) specimen under eccentric three-point bending loads. The results showed that the number of cycles to failure of the specimen obtained experimentally and numerically were in good agreement within an error range of less than 3%.
Hatamleh, Muhanad M; Watts, David C
2010-07-01
The purpose of this study was to test the effect of different periods of accelerated artificial daylight aging on bond strength of glass fiber bundles embedded into maxillofacial silicone elastomer and on bending strength of the glass fiber bundles. Forty specimens were fabricated by embedding resin-impregnated fiber bundles (1.5-mm diameter, 20-mm long) into maxillofacial silicone elastomer. Specimens were randomly allocated into four groups, and each group was subjected to different periods of accelerated daylight aging as follows (in hours); 0, 200, 400, and 600. The aging cycle included continuous exposure to quartz-filtered visible daylight (irradiance 760 W/m(2)) under an alternating weathering cycle (wet for 18 minutes, dry for 102 minutes). Pull-out tests were performed to evaluate bond strength between fiber bundles and silicone using a universal testing machine at 1 mm/min crosshead speed. Also a three-point bending test was performed to evaluate bending strength of the fiber bundles. One-way ANOVA and Bonferroni post hoc tests were carried out to detect statistical significance (p aging only. After 200 hours of exposure to artificial daylight and moisture conditions, bond strength between glass fibers and heat-cured silicones is optimal, and the bending strength of the glass fiber bundles is enhanced.
Fatigue Performance of SFPSC under Hot-Wet Environments and Cyclic Bending Loads
Directory of Open Access Journals (Sweden)
Shanshan Luo
2018-01-01
Full Text Available A new structural material named “steel fiber polymer structural concrete (SFPSC” with features of both high strength and high toughness was developed by this research group and applied to the bridge superstructures in the hot-wet environments. In order to investigate the fatigue performance and durability of SFPSC under hot-wet environments, the environment and fatigue load uncoupling method and the coupling action of environment and fatigue load were used or developed. Three-point bending fatigue experiments with uncoupling action of environments and cyclic loads were carried out for SFPSC specimens which were pretreated under hot-wet environments, and the experiments with the coupling action of environments and cyclic loads for SFPSC specimens were carried out under hot-wet environments. Then, the effects of hot-wet environments and the experimental methods on the fatigue mechanism of SFPSC material were discussed, and the environmental fatigue equations of SFPSC material under coupling and uncoupling action of hot-wet environments and cyclic bending loads were established. The research results show that the fatigue limits of SFPSC under the coupling action of the environments and cyclic loads were lower about 15%. The proposed fatigue equations could be used to estimate the fatigue lives and fatigue limits of SFPSC material.
Effect of two different forms of three-point line on game actions in ...
African Journals Online (AJOL)
The aim of this study was to compare two different designs of the three-point line to analyze which one allows for a higher frequency of motor actions that, according to the literature, should be strengthened when including a three-point line in youth basketball. In the first of two championships, female mini-basketball players ...
International Nuclear Information System (INIS)
Sokolov, M.A.; Wallin, K.; McCabe, D.E.
1996-01-01
In this study, precracked Charpy V-notch (PCVN) specimens were used to characterize the fracture toughness of unirradiated and irradiated reactor pressure vessel steels in the transition region by means of three-point static bending. Fracture toughness at cleavage instability was calculated in terms of elastic-plastic K Jc values. A statistical size correction based upon weakest-link theory was performed. The concept of a master curve was applied to analyze fracture toughness properties. Initially, size-corrected PCVN data from A 533 grade B steel, designated HSST Plate O2, were used to position the master curve and a 5% tolerance bound for K Jc data. By converting PCVN data to IT compact specimen equivalent K Jc data, the same master curve and 5% tolerance bound curve were plotted against the Electric Power Research Institute valid linear-elastic K Jc database and the ASME lower bound K Ic curve. Comparison shows that the master curve positioned by testing several PCVN specimens describes very well the massive fracture toughness database of large specimens. These results give strong support to the validity of K Jc with respect to K Ic in general and to the applicability of PCVN specimens to measure fracture toughness of reactor vessel steels in particular. Finally, irradiated PCVN specimens of other materials were tested, and the results are compared to compact specimen data. The current results show that PCVNs demonstrate very good capacity for fracture toughness characterization of reactor pressure vessel steels. It provides an opportunity for direct measurement of fracture toughness of irradiated materials by means of precracking and testing Charpy specimens from surveillance capsules. However, size limits based on constraint theory restrict the operational test temperature range for K Jc data from PCVN specimens. 13 refs., 8 figs., 1 tab
International Nuclear Information System (INIS)
Krompholz, K.; Ullrich, G.
1985-01-01
J-integral experiments at room temperature were performed on three point bend type specimens of the nuclear pressure vessel material A 533 B1 with a/w-ratios of 0.3 and 0.5. Following the ASTM-proposal for the multi-specimen technique a value is obtained close to the value obtained in the HSST round robin test. On the other hand, from the measurement of the Jsub(IC)-value by means of the potential drop technique there is an indication that a lower value of Jsub(IC) is correct. This is in agreement with the multi-specimen technique using linear regression lines without excluding 'invalid' points. That is reasonable if fractographic investigations gives clear indications that stable crack growth has occurred as is the case in this work. (Auth.)
On Existence of Solutions to the Caputo Type Fractional Order Three-Point Boundary Value Problems
Directory of Open Access Journals (Sweden)
B.M.B. Krushna
2016-10-01
Full Text Available In this paper, we establish the existence of solutions to the fractional order three-point boundary value problems by utilizing Banach contraction principle and Schaefer's fixed point theorem.
The Euclidean three-point function in loop and perturbative gravity
International Nuclear Information System (INIS)
Rovelli, Carlo; Zhang Mingyi
2011-01-01
We compute the leading order of the three-point function in loop quantum gravity, using the vertex expansion of the Euclidean version of the new spin foam dynamics, in the region of γ < 1. We find results consistent with Regge calculus in the limit γ → 0, j → ∞. We also compute the tree-level three-point function of perturbative quantum general relativity in position space and discuss the possibility of directly comparing the two results.
Three-point Green's function of massless QED in position space to lowest order
International Nuclear Information System (INIS)
Mitra, Indrajit
2009-01-01
The transverse part of the three-point Green's function of massless QED is determined to the lowest order in position space. Taken together with the evaluation of the longitudinal part in Mitra (2008) (J. Phys. A: Math. Theor. 41 315401), this gives a relation for QED which is analogous to the star-triangle relation. We relate our result to conformal-invariant three-point functions
International Nuclear Information System (INIS)
Sim, Jae Ki; Cho, Kyu Jac
1988-01-01
In this paper We derived simple formulas for the dynamic strain intensity factor by means of the Timoshenko's beam theory including the influence of rotary inertia and shear deformation on the three-point viscoelastic bend specimen. Also the contact force between the specimen and the impactor is estimated by appling the nonlinear integral equation and the Hertz's theory to the local deformation near the contact point. The results obtained from this study are as follow : 1. Analysis results of this paper, base on Timoshenko's beam theory, were more accuracy than that of Euler-Bernouli beam theory and it can be confirmed by comparsion the results with experimental results. 2. Hertz's contact thepry is static one, but it is proved that by the solution of dynamic strain intensity factor it can be applied for the case of dynamic one. 3. It is founded that the fracture mechanics paraments are overestimatimated if the effects of rotary inertia and transverse shear deformation of specimen are negleted. (Author)
On the regularization of extremal three-point functions involving giant gravitons
Directory of Open Access Journals (Sweden)
Charlotte Kristjansen
2015-11-01
Full Text Available In the AdS5/CFT4 set-up, extremal three-point functions involving two giant 1/2 BPS gravitons and one point-like 1/2 BPS graviton, when calculated using semi-classical string theory methods, match the corresponding three-point functions obtained in the tree-level gauge theory. The string theory computation relies on a certain regularization procedure whose justification is based on the match between gauge and string theory. We revisit the regularization procedure and reformulate it in a way which allows a generalization to the ABJM set-up where three-point functions of 1/2 BPS operators are not protected and where a match between tree-level gauge theory and semi-classical string theory is hence not expected.
Constraints from conformal symmetry on the three point scalar correlator in inflation
International Nuclear Information System (INIS)
Kundu, Nilay; Shukla, Ashish; Trivedi, Sandip P.
2015-01-01
Using symmetry considerations, we derive Ward identities which relate the three point function of scalar perturbations produced during inflation to the scalar four point function, in a particular limit. The derivation assumes approximate conformal invariance, and the conditions for the slow roll approximation, but is otherwise model independent. The Ward identities allow us to deduce that the three point function must be suppressed in general, being of the same order of magnitude as in the slow roll model. They also fix the three point function in terms of the four point function, upto one constant which we argue is generically suppressed. Our approach is based on analyzing the wave function of the universe, and the Ward identities arise by imposing the requirements of spatial and time reparametrization invariance on it.
Three Point Functions in Higher Spin AdS3 Holography with 1/N Corrections
Directory of Open Access Journals (Sweden)
Yasuaki Hikida
2017-10-01
Full Text Available We examine three point functions with two scalar operators and a higher spin current in 2d W N minimal model to the next non-trivial order in 1 / N expansion. The minimal model was proposed to be dual to a 3d higher spin gauge theory, and 1 / N corrections should be interpreted as quantum effects in the dual gravity theory. We develop a simple and systematic method to obtain three point functions by decomposing four point functions of scalar operators with Virasoro conformal blocks. Applying the method, we reproduce known results at the leading order in 1 / N and obtain new ones at the next leading order. As confirmation, we check that our results satisfy relations among three point functions conjectured before.
Three-point correlation functions of giant magnons with finite size
International Nuclear Information System (INIS)
Ahn, Changrim; Bozhilov, Plamen
2011-01-01
We compute holographic three-point correlation functions or structure constants of a zero-momentum dilaton operator and two (dyonic) giant magnon string states with a finite-size length in the semiclassical approximation. We show that the semiclassical structure constants match exactly with the three-point functions between two su(2) magnon single trace operators with finite size and the Lagrangian in the large 't Hooft coupling constant limit. A special limit J>>√(λ) of our result is compared with the relevant result based on the Luescher corrections.
A cardy formula for three-point coefficients or how the black hole got its spots
Energy Technology Data Exchange (ETDEWEB)
Kraus, Per [Department of Physics and Astronomy, University of California,Los Angeles, CA 90095 (United States); Maloney, Alexander [Physics Department, McGill University,Montréal, QC H3A 2T8 (Canada)
2017-05-31
Modular covariance of torus one-point functions constrains the three point function coefficients of a two dimensional CFT. This leads to an asymptotic formula for the average value of light-heavy-heavy three point coefficients, generalizing Cardy’s formula for the high energy density of states. The derivation uses certain asymptotic properties of one-point conformal blocks on the torus. Our asymptotic formula matches a dual AdS{sub 3} computation of one point functions in a black hole background. This is evidence that the BTZ black hole geometry emerges upon course-graining over a suitable family of heavy microstates.
2002-01-01
A Japanese team has found a way to bend and shape silicon substrates by growing a thin layer of diamond on top. The technique has been proposed as an alternative to mechanical bending, which is currently used to make reflective lenses for X-ray systems and particle physics systems (2 paragraphs).
Occipital bending in schizophrenia.
Maller, Jerome J; Anderson, Rodney J; Thomson, Richard H; Daskalakis, Zafiris J; Rosenfeld, Jeffrey V; Fitzgerald, Paul B
2017-01-01
To investigate the prevalence of occipital bending (an occipital lobe crossing or twisting across the midline) in subjects with schizophrenia and matched healthy controls. Occipital bending prevalence was investigated in 37 patients with schizophrenia and 44 healthy controls. Ratings showed that prevalence was nearly three times higher among schizophrenia patients (13/37 [35.1%]) than in control subjects (6/44 [13.6%]). Furthermore, those with schizophrenia had greater normalized gray matter volume but less white matter volume and had larger brain-to-cranial ratio. The results suggest that occipital bending is more prevalent among schizophrenia patients than healthy subjects and that schizophrenia patients have different gray matter-white matter proportions. Although the cause and clinical ramifications of occipital bending are unclear, the results infer that occipital bending may be a marker of psychiatric illness.
Evaluation on ductile tearing properties of girth weld pipelines using SE(T) and SE(B) specimens
Energy Technology Data Exchange (ETDEWEB)
Mathias, Leonardo Luiz Siqueira; Ruggieri, Claudio [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Naval e Oceanica
2012-07-01
Predictive methodologies aimed at quantifying the impact of defects in oil and gas pipelines play a key role in safety assessment procedures of in-service facilities. Current methodologies for structural integrity assessments advocate the use of geometry dependent resistance curves so that crack-tip constraint in the test specimen closely matches the crack tip constraint for the structural component. Testing standards now under development to measure fracture resistance of pipeline steels (J and CTOD) most often employ single edge notched specimens under tension (SENT) to match a postulated defect in the structural component. This paper presents an investigation of the ductile tearing properties for a girth weld of an API 5L X80 pipeline steel using experimentally measured crack growth resistance curves (J-R curves). Testing of the girth weld pipeline steels employed side-grooved, clamped SE(T) specimen with center-crack weld and side-grooved, three-point bending SE(B) (or SENB) specimens to determine the J-R curves. The methods were compared in terms of geometry, relative crack size and crack-tip constraint, and the results were applied to a case study, to evaluate the degree of conservativeness in defect acceptance criteria. The tests involving SE(B) specimens are usually considered conservative, however, the comparison between this two methods may point an accurate alternative for girth weld assessments, since adequate geometry is adopted to describe accurately the structure's behavior. (author)
Numerical solutions of a three-point boundary value problem with an ...
African Journals Online (AJOL)
Numerical solutions of a three-point boundary value problem with an integral condition for a third-order partial differential equation by using Laplace transform method Solutions numeriques d'un probleme pour une classe d'equations differentielles d'ordr.
On nonseparated three-point boundary value problems for linear functional differential equations
Czech Academy of Sciences Publication Activity Database
Rontó, András; Rontó, M.
2011-01-01
Roč. 2011, - (2011), s. 326052 ISSN 1085-3375 Institutional research plan: CEZ:AV0Z10190503 Keywords : functional-differential equation * three-point boundary value problem * nonseparated boundary condition Subject RIV: BA - General Mathematics Impact factor: 1.318, year: 2011 http://www.hindawi.com/journals/ aaa /2011/326052/
Appell functions and the scalar one-loop three-point integrals in Feynman diagrams
Energy Technology Data Exchange (ETDEWEB)
Cabral-Rosetti, L G [Departamento de Posgrado, Centro Interdisciplinario de Investigacion y Docencia en Educacion Tecnica (CIIDET), Av. Universidad 282 Pte., Col. Centro, A. Postal 752, C.P. 76000, Santiago de Queretaro, Qro. (Mexico); Sanchis-Lozano, M A [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, 46100 Burjassot, Valencia (Spain)
2006-05-15
The scalar three-point function appearing in one-loop Feynman diagrams is compactly expressed in terms of a generalized hypergeometric function of two variables. Use is made of the connection between such Appell function and dilogarithms coming from a previous investigation. Special cases are obtained for particular values of internal masses and external momenta.
Mechanical bending strength of (Bi0.5Na0.5 TiO3-based lead-Free piezoelectric ceramics
Directory of Open Access Journals (Sweden)
Hiroaki Takahashi
2017-09-01
Full Text Available (Bi0.5Na0.5TiO3 [BNT] is expected as one of candidate lead-free materials because these ceramics show relatively good high-power piezoelectric properties. In this study, we tried to understand the bending strength and fracture behavior of the BNT-based ceramics. To measure the bending strength, a three-point bending test on the basis of JIS was conducted using 12.0 × 4.0 × 1.0 mm3 specimens. An average bending strength, σA, of pure BNT ceramics sintered at 1100 °C for 2, 12 and 24 h were 217, 195 and 187 MPa, respectively. It is cleared that the σA increased with decreasing the sintering time, (grain size and pore size. We also investigated the bending strength of Nb2O5 doped BNT ceramics [BNT-Nb x, x = 0.05 ∼ 1.5 wt%] and MnCO3 doped BNT ceramics [BNT-Mn x, x = 0.5 and 1.0 wt%]. Values of the σA of BNT-Nb 0.5 and BNT-Mn 0.5 were 222, and 188 MPa, respectively. It is clarified that soft dopants (Nb can improve the bending strength of BNT-based ceramics. Additionally, hot-pressed BNT [HP-BNT] were sintered at 1050 °C for 5 h, and the σA of HP-BNT was 245 MPa.
International Nuclear Information System (INIS)
Lee, Baik Woo; Kwon, Dong Il; Jang, Jae Il
2000-01-01
Notch effect and loading rate dependency on fracture toughness were considered when evaluating fracture toughness of small notched specimens using the instrumented impact test. Notch effect was analyzed into stress redistribution effect and stress relaxation with a viewpoint of stress triaxiality. Stress redistribution effect was corrected by introducing effective crack length, which was the sum of actual crack length and plastic zone size. Stress relaxation effect was also corrected using elastic stress concentration factor, which would decrease if plastic deformation occurred. As a result, corrected fracture toughness of the notched specimen was very consistent with the reference fracture toughness obtained using precracked specimen. In addition, limiting notch root radius, below which fracture toughness was independent of notch radius, was observed and discussed. Loading rate dependency on fracture toughness, which was obtained from the static three point bending test and the instrumented impact test, was also discussed with stress field in plastic zone ahead of a notch and fracture based on stress control mechanism. (author)
The three-point correlation function of the cosmic microwave background in inflationary models
Gangui, Alejandro; Matarrese, Sabino; Mollerach, Silvia
1994-01-01
We analyze the temperature three-point correlation function and the skewness of the Cosmic Microwave Background (CMB), providing general relations in terms of multipole coefficients. We then focus on applications to large angular scale anisotropies, such as those measured by the {\\em COBE} DMR, calculating the contribution to these quantities from primordial, inflation generated, scalar perturbations, via the Sachs--Wolfe effect. Using the techniques of stochastic inflation we are able to provide a {\\it universal} expression for the ensemble averaged three-point function and for the corresponding skewness, which accounts for all primordial second-order effects. These general expressions would moreover apply to any situation where the bispectrum of the primordial gravitational potential has a {\\em hierarchical} form. Our results are then specialized to a number of relevant models: power-law inflation driven by an exponential potential, chaotic inflation with a quartic and quadratic potential and a particular c...
Three-point functions in N=4 SYM: the hexagon proposal at three loops
Energy Technology Data Exchange (ETDEWEB)
Eden, Burkhard [Institut für Mathematik & Institut für Physik, Humboldt-Universität zu Berlin,Zum großen Windkanal 6, D-12489 Berlin (Germany); Sfondrini, Alessandro [Institut für Theoretische Physik, ETH Zürich,Wolfgang-Pauli-Str. 27, CH-8093 Zürich (Switzerland)
2016-02-24
Basso, Komatsu and Vieira recently proposed an all-loop framework for the computation of three-point functions of single-trace operators of N=4 super-Yang-Mills, the “hexagon program”. This proposal results in several remarkable predictions, including the three-point function of two protected operators with an unprotected one in the SU(2) and SL(2) sectors. Such predictions consist of an “asymptotic” part — similar in spirit to the asymptotic Bethe Ansatz of Beisert and Staudacher for two-point functions — as well as additional finite-size “wrapping” Lüscher-like corrections. The focus of this paper is on such wrapping corrections, which we compute at three-loops in the SL(2) sector. The resulting structure constants perfectly match the ones obtained in the literature from four-point correlators of protected operators.
Two- and three-point functions in the D=1 matrix model
International Nuclear Information System (INIS)
Ben-Menahem, S.
1991-01-01
The critical behavior of the genus-zero two-point function in the D=1 matrix model is carefully analyzed for arbitrary embedding-space momentum. Kostov's result is recovered for momenta below a certain value P 0 (which is 1/√α' in the continuum language), with a non-universal form factor which is expressed simply in terms of the critical fermion trajectory. For momenta above P 0 , the Kostov scaling term is found to be subdominant. We then extend the large-N WKB treatment to calculate the genus-zero three-point function, and elucidate its critical behavior when all momenta are below P 0 . The resulting universal scaling behavior, as well as the non-universal form factor for the three-point function, are related to the two-point functions of the individual external momenta, through the factorization familiar from continuum conformal field theories. (orig.)
The MIT miniaturized disk bend test
International Nuclear Information System (INIS)
Harling, O.K.; Lee, M.; Sohn, D.S.; Kohse, G.; Lau, C.W.
1983-01-01
A miniaturized disk bend test (MDBT) using transmission electron microscopy specimens for the determination of various mechanical properties is being developed at MIT. Recent progress in obtaining strengths and ductilities of highly irradiated metal alloys is reviewed. Possibilities exist for applying the MDBT approach to the determination of other mechanical properties. Progress in fatigue testing and in determination of the ductile-to-brittle transition temperature is reviewed briefly
Standard test method for determination of breaking strength of ceramic tiles by three-point loading
American Society for Testing and Materials. Philadelphia
2001-01-01
1.1 This test method covers the determination of breaking strength of ceramic tiles by three-point loading. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
Classical integrability for three-point functions: cognate structure at weak and strong couplings
Energy Technology Data Exchange (ETDEWEB)
Kazama, Yoichi [Research Center for Mathematical Physics, Rikkyo University,Toshima-ku, Tokyo 171-8501 (Japan); Quantum Hadron Physics Laboratory, RIKEN Nishina Center, Wako 351-0198 (Japan); Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Komatsu, Shota [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario, N2L 2Y5 (Canada); Nishimura, Takuya [Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)
2016-10-10
In this paper, we develop a new method of computing three-point functions in the SU(2) sector of the N=4 super Yang-Mills theory in the semi-classical regime at weak coupling, which closely parallels the strong coupling analysis. The structure threading two disparate regimes is the so-called monodromy relation, an identity connecting the three-point functions with and without the insertion of the monodromy matrix. We shall show that this relation can be put to use directly for the semi-classical regime, where the dynamics is governed by the classical Landau-Lifshitz sigma model. Specifically, it reduces the problem to a set of functional equations, which can be solved once the analyticity in the spectral parameter space is specified. To determine the analyticity, we develop a new universal logic applicable at both weak and strong couplings. As a result, compact semi-classical formulas are obtained for a general class of three-point functions at weak coupling including the ones whose semi-classical behaviors were not known before. In addition, the new analyticity argument applied to the strong coupling analysis leads to a modification of the integration contour, producing the results consistent with the recent hexagon bootstrap approach. This modification also makes the Frolov-Tseytlin limit perfectly agree with the weak coupling form.
Study on Identification of Material Model Parameters from Compact Tension Test on Concrete Specimens
Hokes, Filip; Kral, Petr; Husek, Martin; Kala, Jiri
2017-10-01
Identification of a concrete material model parameters using optimization is based on a calculation of a difference between experimentally measured and numerically obtained data. Measure of the difference can be formulated via root mean squared error that is often used for determination of accuracy of a mathematical model in the field of meteorology or demography. The quality of the identified parameters is, however, determined not only by right choice of an objective function but also by the source experimental data. One of the possible way is to use load-displacement curves from three-point bending tests that were performed on concrete specimens. This option shows the significance of modulus of elasticity, tensile strength and specific fracture energy. Another possible option is to use experimental data from compact tension test. It is clear that the response in the second type of test is also dependent on the above mentioned material parameters. The question is whether the parameters identified within three-point bending test and within compact tension test will reach the same values. The presented article brings the numerical study of inverse identification of material model parameters from experimental data measured during compact tension tests. The article also presents utilization of the modified sensitivity analysis that calculates the sensitivity of the material model parameters for different parts of loading curve. The main goal of the article is to describe the process of inverse identification of parameters for plasticity-based material model of concrete and prepare data for future comparison with identified values of the material model parameters from different type of fracture tests.
Adjustable Tooling for Bending Brake
Ellis, J. M.
1986-01-01
Deep metal boxes and other parts easily fabricated. Adjustable tooling jig for bending brake accommodates spacing blocks and either standard male press-brake die or bar die. Holds spacer blocks, press-brake die, bar window die, or combination of three. Typical bending operations include bending of cut metal sheet into box and bending of metal strip into bracket with multiple inward 90 degree bends. By increasing free space available for bending sheet-metal parts jig makes it easier to fabricate such items as deep metal boxes or brackets with right-angle bends.
Design and Development of A Three-Point Auto Hitch Dynamometer for An Agricultural Tractor
Directory of Open Access Journals (Sweden)
A. F. Kheiralla
2017-12-01
Full Text Available This paper describes the design, development and calibration of a three-point auto hitch dynamometer for measuring the horizontal and vertical forces that existed at the three-point hitch of an agricultural tractor. The design concept of the dynamometer was based on an instrumented inverted U frame assembly that was mounted between tractor links and implement. The design incorporates for both lower point hitch spread and mast height adjustments, and quick hitch capability in accordance with category 1 and II three-point hitch system. The force sensing elements were comprised of three steel extended octagonal ring transducers that were located between the inverted U frame and hook brackets. Electrical resistance strain gauges were mounted on the extended octagonal ring transducer at strain angle nodes to independently monitor strains that were proportional to the horizontal and vertical forces at the ring center. Each transducer was designed for maximum horizontal and vertical forces of 25 kN and 10 kN at measurement mean sensitivities of 25.19 µStrain/kN and 25.60 µStrain/kN, respectively. However, the complete dynamometer has been designed to measure the maximum resultant horizontal and vertical forces of 50 kN and 20 kN, respectively. Field demonstration tests on the dynamometer and data acquisition system showed that they were able to function effectively as intended. The data acquisition system was able to successfully scan and record the dynamometer signals as programmed. This dynamometer was part of the complete instrumentation system to be developed onboard a Massey Ferguson 3060 tractor for the generation of a comprehensive database on the power and energy requirements of the tractor and its working implement in the field.
Brischetto, Salvatore; Ferro, Carlo Giovanni; Torre, Roberto; Maggiore, Paolo
2018-04-01
Desktop 3D FDM (Fused Deposition Modelling) printers are usually employed for the production of nonstructural objects. In recent years, the present authors tried to use this technology also to produce structural elements employed in the construction of small UAVs (Unmanned Aerial Vehicles). Mechanical stresses are not excessive for small multirotor UAVs. Therefore, the FDM technique combined with polymers, such as the ABS (Acrylonitrile Butadiene Styrene) and the PLA(Poly Lactic Acid), can be successfully employed to produce structural components. The present new work is devoted to the production and preliminary structural analysis of sandwich configurations. These new lamination schemes could lead to an important weight reduction without significant decreases of mechanical properties. Therefore, it could be possible, for the designed application (e.g., a multifunctional small UAV produced via FDM), to have stiffener and lighter structures easy to be manufactured with a low-cost 3D printer. The new sandwich specimens here proposed are PLA sandwich specimens embedding a PLA honeycomb core produced by means of the same extruder, multilayered specimens with ABS external layers and an internal homogeneous PLA core using different extruders for the two materials, sandwich specimens with external ABS skins and an internal PLA honeycomb core using different extruders for the two materials, and sandwich specimens where two different extruders have been employed for PLA material used for skins and for the internal honeycomb core. For all the proposed configurations, a detailed description of the production activity is given.Moreover, several preliminary results about three-point bending tests, different mechanical behaviors and relative delamination problems for each sandwich configuration will be discussed in depth.
Effect of Heart rate on Basketball Three-Point Shot Accuracy
Luca P. Ardigò; Goran Kuvacic; Antonio D. Iacono; Giacomo Dascanio; Johnny Padulo; Johnny Padulo
2018-01-01
The three-point shot (3S) is a fundamental basketball skill used frequently during a game, and is often a main determinant of the final result. The aim of the study was to investigate the effect of different metabolic conditions, in terms of heart rates, on 3S accuracy (3S%) in 24 male (Under 17) basketball players (age 16.3 ± 0.6 yrs). 3S performance was specifically investigated at different heart rates. All sessions consisted of 10 consecutive 3Ss from five different significant field spot...
An Investigation of Three-point Shooting through an Analysis of NBA Player Tracking Data
Sliz, Bradley A.
2017-01-01
I address the difficult challenge of measuring the relative influence of competing basketball game strategies, and I apply my analysis to plays resulting in three-point shots. I use a glut of SportVU player tracking data from over 600 NBA games to derive custom position-based features that capture tangible game strategies from game-play data, such as teamwork, player matchups, and on-ball defender distances. Then, I demonstrate statistical methods for measuring the relative importance of any ...
POSITIVE SOLUTIONS OF A NONLINEAR THREE-POINT EIGENVALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS
Directory of Open Access Journals (Sweden)
FAOUZI HADDOUCHI
2015-11-01
Full Text Available In this paper, we study the existence of positive solutions of a three-point integral boundary value problem (BVP for the following second-order differential equation u''(t + \\lambda a(tf(u(t = 0; 0 0 is a parameter, 0 <\\eta < 1, 0 <\\alpha < 1/{\\eta}. . By using the properties of the Green's function and Krasnoselskii's fixed point theorem on cones, the eigenvalue intervals of the nonlinear boundary value problem are considered, some sufficient conditions for the existence of at least one positive solutions are established.
Effects of Notch Introduction on 3-Point Bending Cutting Characteristics of Frozen Fish
Hagura, Yoshio; Suzuki, Kanichi
2002-01-01
We have proposed a freeze cutting method in which a three point bending load is applied on a frozen fish body to cut in round slices. Lowering the three-point bending load can facilitate the freeze cutting processing. Based on the idea that a notch in the fish body may lower the cutting load, the effect of introducing a notch was examined with respect to cutting stress and smoothness of cut surface in model fish meat and in saury. It was found that the introduced notch effectively lowered the...
Diagonal form factors and heavy-heavy-light three-point functions at weak coupling
International Nuclear Information System (INIS)
Hollo, Laszlo; Jiang, Yunfeng; Petrovskii, Andrei
2015-01-01
In this paper we consider a special kind of three-point functions of HHL type at weak coupling in N=4 SYM theory and analyze its volume dependence. At strong coupling this kind of three-point functions were studied recently by Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050. The authors considered some cases of HHL correlator in the su(2) sector and, relying on their explicit results, formulated a conjecture about the form of the volume dependence of the symmetric HHL structure constant to be valid at any coupling up to wrapping corrections. In order to test this hypothesis we considered the HHL correlator in su(2) sector at weak coupling and directly showed that, up to one loop, the finite volume dependence has exactly the form proposed in http://dx.doi.org/10.1007/JHEP09(2014)050. Another side of the conjecture suggests that computation of the symmetric structure constant is equivalent to computing the corresponding set of infinite volume form factors, which can be extracted as the coefficients of finite volume expansion. In this sense, extracting appropriate coefficients from our result gives a prediction for the corresponding infinite volume form factors.
Diagonal form factors and heavy-heavy-light three-point functions at weak coupling
Energy Technology Data Exchange (ETDEWEB)
Hollo, Laszlo [MTA Lendület Holographic QFT Group, Wigner Research Centre for Physics,H-1525 Budapest 114, P.O.B. 49 (Hungary); Jiang, Yunfeng; Petrovskii, Andrei [Institut de Physique Théorique, DSM, CEA, URA2306 CNRS,Saclay, F-91191 Gif-sur-Yvette (France)
2015-09-18
In this paper we consider a special kind of three-point functions of HHL type at weak coupling in N=4 SYM theory and analyze its volume dependence. At strong coupling this kind of three-point functions were studied recently by Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050. The authors considered some cases of HHL correlator in the su(2) sector and, relying on their explicit results, formulated a conjecture about the form of the volume dependence of the symmetric HHL structure constant to be valid at any coupling up to wrapping corrections. In order to test this hypothesis we considered the HHL correlator in su(2) sector at weak coupling and directly showed that, up to one loop, the finite volume dependence has exactly the form proposed in http://dx.doi.org/10.1007/JHEP09(2014)050. Another side of the conjecture suggests that computation of the symmetric structure constant is equivalent to computing the corresponding set of infinite volume form factors, which can be extracted as the coefficients of finite volume expansion. In this sense, extracting appropriate coefficients from our result gives a prediction for the corresponding infinite volume form factors.
The scalar-scalar-tensor inflationary three-point function in the axion monodromy model
Chowdhury, Debika; Sreenath, V.; Sriramkumar, L.
2016-11-01
The axion monodromy model involves a canonical scalar field that is governed by a linear potential with superimposed modulations. The modulations in the potential are responsible for a resonant behavior which gives rise to persisting oscillations in the scalar and, to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been shown to lead to an improved fit to the cosmological data than the more conventional, nearly scale invariant, primordial power spectra. The scalar bi-spectrum in the model too exhibits continued modulations and the resonance is known to boost the amplitude of the scalar non-Gaussianity parameter to rather large values. An analytical expression for the scalar bi-spectrum had been arrived at earlier which, in fact, has been used to compare the model with the cosmic microwave background anisotropies at the level of three-point functions involving scalars. In this work, with future applications in mind, we arrive at a similar analytical template for the scalar-scalar-tensor cross-correlation. We also analytically establish the consistency relation (in the squeezed limit) for this three-point function. We conclude with a summary of the main results obtained.
The scalar-scalar-tensor inflationary three-point function in the axion monodromy model
International Nuclear Information System (INIS)
Chowdhury, Debika; Sriramkumar, L.; Sreenath, V.
2016-01-01
The axion monodromy model involves a canonical scalar field that is governed by a linear potential with superimposed modulations. The modulations in the potential are responsible for a resonant behavior which gives rise to persisting oscillations in the scalar and, to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been shown to lead to an improved fit to the cosmological data than the more conventional, nearly scale invariant, primordial power spectra. The scalar bi-spectrum in the model too exhibits continued modulations and the resonance is known to boost the amplitude of the scalar non-Gaussianity parameter to rather large values. An analytical expression for the scalar bi-spectrum had been arrived at earlier which, in fact, has been used to compare the model with the cosmic microwave background anisotropies at the level of three-point functions involving scalars. In this work, with future applications in mind, we arrive at a similar analytical template for the scalar-scalar-tensor cross-correlation. We also analytically establish the consistency relation (in the squeezed limit) for this three-point function. We conclude with a summary of the main results obtained.
Temperature dependence of three-point correlation functions of viscous liquids: the case of glycerol
Energy Technology Data Exchange (ETDEWEB)
Dalle-Ferrier, Cecile; Eibl, Stefan; Alba-Simionesco, Christiane [Laboratoire de Chimie Physique, UMR 8000, Batiment 349, Universite Paris-Sud, 91405 Orsay (France); Pappas, Catherine [BENSC, Hahn-Meitner-Institute, HMI Berlin, Glienicker Strasse 100, D-14109 Berlin (Germany)], E-mail: cecile.dalle-ferrier@lcp.u-psud.fr
2008-12-10
What causes the dramatic slowing down of flow and relaxation that leads to glass formation in liquids as temperature decreases is hardly understood so far and is the subject of intensive research work. It is tempting to ascribe the strong temperature dependence of the dynamics, irrespective of molecular details, to a collective or cooperative behavior characterized by a length scale that grows as one approaches the glass transition. To access this length experimentally, we use the recently introduced three-point dynamic susceptibility, from which the number of molecules dynamically correlated during the structural relaxation, N{sub corr}, can be extracted. The three-point functions are related to the sensitivity of the averaged two-time dynamics to external control parameters, such as temperature and density. We studied N{sub corr} values in an important temperature range for a large number of liquids, and found that it systematically grows when approaching the glass transition. Here we specially emphasize the case of glycerol for which we combined dielectric and neutron spin echo spectroscopy to cover more than 16 decades in relaxation time.
Effect of Heart rate on Basketball Three-Point Shot Accuracy
Directory of Open Access Journals (Sweden)
Luca P. Ardigò
2018-02-01
Full Text Available The three-point shot (3S is a fundamental basketball skill used frequently during a game, and is often a main determinant of the final result. The aim of the study was to investigate the effect of different metabolic conditions, in terms of heart rates, on 3S accuracy (3S% in 24 male (Under 17 basketball players (age 16.3 ± 0.6 yrs. 3S performance was specifically investigated at different heart rates. All sessions consisted of 10 consecutive 3Ss from five different significant field spots just beyond the FIBA three-point line, i.e., about 7 m from the basket (two counter-clockwise “laps” at different heart rates: rest (0HR, after warm-up (50%HRMAX [50HR], and heart rate corresponding to 80% of its maximum value (80%HRMAX [80HR]. We found that 50HR does not significantly decrease 3S% (−15%, P = 0.255, while 80HR significantly does when compared to 0HR (−28%, P = 0.007. Given that 50HR does not decrease 3S% compared to 0HR, we believe that no preliminary warm-up is needed before entering a game in order to specifically achieve a high 3S%. Furthermore, 3S training should be performed in conditions of moderate-to-high fatigued state so that a high 3S% can be maintained during game-play.
Yield strengths of tungsten-base composites determined from bend tests
International Nuclear Information System (INIS)
Zukas, E.G.; Eash, D.T.
1976-08-01
The variation in yield strength with either strain rate or temperature was determined for a number of tungsten-base composites by use of the simple three-point bend test. The yield strengths were comparable with those obtained in standard tensile tests. Additional studies on 1019 steel, either in the as-rolled or annealed condition, gave results in agreement with handbook values, as did two aluminum alloys. These results demonstrate that the bend test deserves wider acceptance in materials testing programs
Occipital bending in depression.
Maller, Jerome J; Thomson, Richard H S; Rosenfeld, Jeffrey V; Anderson, Rodney; Daskalakis, Zafiris J; Fitzgerald, Paul B
2014-06-01
There are reports of differences in occipital lobe asymmetry within psychiatric populations when compared with healthy control subjects. Anecdotal evidence and enlarged lateral ventricles suggests that there may also be a different pattern of curvature whereby one occipital lobe wraps around the other, termed 'occipital bending'. We investigated the prevalence of occipital bending in 51 patients with major depressive disorder (males mean age = 41.96 ± 14.00 years, females mean age = 40.71 ± 12.41 years) and 48 age- and sex-matched healthy control subjects (males mean age = 40.29 ± 10.23 years, females mean age = 42.47 ± 14.25 years) and found the prevalence to be three times higher among patients with major depressive disorder (18/51, 35.3%) when compared with control subjects (6/48, 12.5%). The results suggest that occipital bending is more common among patients with major depressive disorder than healthy subjects, and that occipital asymmetry and occipital bending are separate phenomena. Incomplete neural pruning may lead to the cranial space available for brain growth being restricted, or ventricular enlargement may exacerbate the natural occipital curvature patterns, subsequently causing the brain to become squashed and forced to 'wrap' around the other occipital lobe. Although the clinical implications of these results are unclear, they provide an impetus for further research into the relevance of occipital bending in major depression disorder. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Solution matching for a three-point boundary-value problem on atime scale
Directory of Open Access Journals (Sweden)
Martin Eggensperger
2004-07-01
Full Text Available Let $mathbb{T}$ be a time scale such that $t_1, t_2, t_3 in mathbb{T}$. We show the existence of a unique solution for the three-point boundary value problem $$displaylines{ y^{DeltaDeltaDelta}(t = f(t, y(t, y^Delta(t, y^{DeltaDelta}(t, quad t in [t_1, t_3] cap mathbb{T},cr y(t_1 = y_1, quad y(t_2 = y_2, quad y(t_3 = y_3,. }$$ We do this by matching a solution to the first equation satisfying a two-point boundary conditions on $[t_1, t_2] cap mathbb{T}$ with a solution satisfying a two-point boundary conditions on $[t_2, t_3] cap mathbb{T}$.
Directory of Open Access Journals (Sweden)
Imen Boutana
2007-12-01
Full Text Available This paper provide some applications of Pettis integration to differential inclusions in Banach spaces with three point boundary conditions of the form $$ ddot{u}(t in F(t,u(t,dot u(t+H(t,u(t,dot u(t,quad hbox{a.e. } t in [0,1], $$ where $F$ is a convex valued multifunction upper semicontinuous on $Eimes E$ and $H$ is a lower semicontinuous multifunction. The existence of solutions is obtained under the non convexity condition for the multifunction $H$, and the assumption that $F(t,x,ysubset Gamma_{1}(t$, $H(t,x,ysubset Gamma_{2}(t$, where the multifunctions $Gamma_{1},Gamma_{2}:[0,1] ightrightarrows E$ are uniformly Pettis integrable.
Mass effects in three-point chronological current correlators in n-dimensional multifermion models
International Nuclear Information System (INIS)
Kucheryavyj, V.I.
1991-01-01
Three-types of quantities associated with three-point chronological fermion-current correlators having arbitrary Lorentz and internal structure are calculated in the n-dimensional multifermion models with different masses. The analysis of vector and axial-vector Ward identities for regular (finite) and dimensionally regularized values of these quantities is carried out. Quantum corrections to the canonical Ward identities are obtained. These corrections are generally homogenious functions of zeroth order in masses and under some definite conditions they are reduced to known axial-vector anomalies. The structure and properties of quantum corrections to AVV and AAA correlators in the four-dimension space-time are investigated in detail
Planetary Load Sharing in Three-Point- Mounted Wind Turbine Gearboxes: Preprint
Energy Technology Data Exchange (ETDEWEB)
Guo, Yi [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keller, Jonathan A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-09-15
Wind turbine gearboxes do not achieve their expected design life. The cost of gearbox replacements and rebuilds and the downtime associated with these failures increase the cost of wind energy. In 2007, the U.S. Department of Energy established the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC). Its goals are to understand the root causes of premature gearbox failures and improve their reliability. To date, the GRC has focused on a 750-kW drivetrain with a three-stage, three-point-mounted gearbox. A nonproprietary version of the gearbox containing CRBs with C3 clearances in the planetary stage was customized. Two of these gearboxes, GB1 and GB2, were manufactured and then tested in the National Wind Technology Center's 2.5-MW dynamometer and in the field. Major GRC findings include the detrimental effect of rotor moments on planetary load sharing and predicted fatigue, and the risk of bearing sliding in low-torque conditions for three-point configuration drivetrains. Based on the knowledge gained from testing and analysis of the original design, the GRC gearbox was redesigned to improve its load-sharing characteristics and predicted fatigue. This new gearbox is named GB3. As shown in Figure 1, its key improvement is the incorporation of preloaded TRBs that support the planet carrier and planets. Roller loads can be optimized and bearing life maximized with a small preload [4]. These preloaded bearings, along with interference-fitted planet pins, improve alignments and load-sharing characteristics. A semi-integrated planet bearing design also increases capacity and eliminates outer race fretting. Romax Technology, with Powertrain Engineers and the Timken Company (Timken), completed the redesign. Timken manufactured and instrumented the planet gears and bearings. Brad Foote Gearing manufactured the other gearing and assembled the gearbox.
Urine culture - catheterized specimen
Culture - urine - catheterized specimen; Urine culture - catheterization; Catheterized urine specimen culture ... urinary tract infections may be found in the culture. This is called a contaminant. You may not ...
CERN PhotoLab
1980-01-01
The very particular lattice of the AA required 2 types of dipole (bending magnets; BLG, long and narrow; BST, short and wide). The BLG had a steel length of 4.70 m, a good field width of 0.24 m, and a weight of about 70 t. Jean-Claude Brunet inspects the lower half of a BLG. For the BST magnets see 7811105 and 8006036.
Three-Point Flexural Properties of Bonded Reinforcement Elements for Pleasure Craft Decks
Di Bella, G.; Galtieri, G.; Borsellino, C.
2018-02-01
The aim of this work was both to study the performances of pleasure craft reinforced components, bonded using a structural adhesive, and to compare them with those obtained using over-lamination as joining system, typically employed in the shipbuilding. With such aim, two different lots of components were prepared: in the first lot, the reinforcement structures were laminated directly on the investigated composite components and, in the second one; they were made separately in a mould and, then, bonded to the composite components. This last method allowed to evaluate the introduction of a product/process innovation in a field typically unwilling to innovation, still tied to craft, and non-standardized procedures. The results of bending tests, performed in order to evaluate the mechanical behaviour of the reinforced components, evidenced the goodness of this innovative design choice. Finally, a finite element analysis was performed. [Figure not available: see fulltext.
Anomalies in Ward identities revisited. Explicit calculation of the three point functions
International Nuclear Information System (INIS)
Dalmolin, Fabricio Tronco
2007-01-01
others already performed within the same issue. In particular, in one of such investigation a pioneer and traditional reference has been revisited by using the alternative strategy mentioned above. In such study, a systematic treatment of purely fermionic one, two and three point functions, associated to scalar, pseudo-scalar, vector and axial-vector densities, has done. There, however, only the explicit expressions for one and two point functions were developed. The conclusions pointed out, in a very clear way, that the association between intrinsic ambiguities of the perturbative calculation and violations in symmetry properties is not consistent. At the same time, it was concluded that only in an investigation where the explicit forms for the three point functions involved are considered clean and sound conclusions can be extracted. This is due to the fact that, in the relevant symmetry properties, it is involved three ward identities and a low energy limit. This is precisely the main purpose of the present work: to promote a detailed investigation of the relations among green functions and ward identities, within the context of a model having only one specie of 1/2 spin fermionic field, that consider all the amplitudes having superficial degree of divergence higher than the logarithmic one, in a similar way as that made in the work of Gerstein and Jackiw, taking however the explicit form for the three point functions. This is one to get in the analysis, simultaneously, the ward identities and the low energy limits involved in the anomalous amplitudes as required by the Sutherland-Veltman theorem, in order to get an adequate understanding of the anomaly phenomena. We will show that our final results can be mapped in those found with the use of the Dimensional Regularization, in situation where this technique can be applied, or in those of Gerstein and Jackiw, however with conflicting interpretations. Finally, we will show that in the context of the adopted technique
Study of laser bending of a preloaded Titanium alloy sheet
Directory of Open Access Journals (Sweden)
Wang Xiufeng
2014-01-01
Full Text Available Laser bending of sheet metals with preload offers some attractive characteristics/merits, comparing to laser free bending without prestressing on the metals. The study reported in this paper was focused on a Titanium alloy which finds widespread applications in aerospace manufacturing. FE simulation of laser bending with prestressing on the Titanium alloy sheet was conducted for the analysis of the bending process and experiment carried out to verify the model and the result. It was shown that the simulation result is close to that measured in the experiment. Based on the computed result, the load-displacement curve was analysed and transmission efficiency of the elastic energy defined to evaluate the bending effect. These enhanced understanding of the mechanism of laser bending with a preload. A method for the optimization on technological parameters was further proposed. Referring to the deformation targeted, the preload value was determined through the FE simulation. The result showed that, on the premise that the specimen surface can be prevented from damaging, transmission efficiency of the elastic energy could reach to the maximum value through adjusting technological parameters of the laser system and deformation accuracy of the specimen could also be improved through this approach. The work presented in this paper may find its application in the manufacture of Titanium alloy sheets with a more cost-effective and a more precise way.
Examining the consistency relations describing the three-point functions involving tensors
International Nuclear Information System (INIS)
Sreenath, V.; Sriramkumar, L.
2014-01-01
It is well known that the non-Gaussianity parameter f NL characterizing the scalar bi-spectrum can be expressed in terms of the scalar spectral index in the squeezed limit, a property that is referred to as the consistency relation. In contrast to the scalar bi-spectrum, the three-point cross-correlations involving scalars and tensors and the tensor bi-spectrum have not received adequate attention, which can be largely attributed to the fact that the tensors had remained undetected at the level of the power spectrum until very recently. The detection of the imprints of the primordial tensor perturbations by BICEP2 and its indication of a rather high tensor-to-scalar ratio, if confirmed, can open up a new window for understanding the tensor perturbations, not only at the level of the power spectrum, but also in the realm of non-Gaussianities. In this work, we consider the consistency relations associated with the three-point cross-correlations involving scalars and tensors as well as the tensor bi-spectrum in inflationary models driven by a single, canonical, scalar field. Characterizing the cross-correlations in terms of the dimensionless non-Gaussianity parameters C NL R and C NL γ that we had introduced earlier, we express the consistency relations governing the cross-correlations as relations between these non-Gaussianity parameters and the scalar or tensor spectral indices, in a fashion similar to that of the purely scalar case. We also discuss the corresponding relation for the non-Gaussianity parameter h NL used to describe the tensor bi-spectrum. We analytically establish these consistency relations explicitly in the following two situations: a simple example involving a specific case of power law inflation and a non-trivial scenario in the so-called Starobinsky model that is governed by a linear potential with a sharp change in its slope. We also numerically verify the consistency relations in three types of inflationary models that permit deviations from
Modelling Elasto-Plastic Behaviour of Human Single Trabecula-Comparison with Bending Test
Czech Academy of Sciences Publication Activity Database
Zlamal, P.; Jiroušek, Ondřej; Doktor, Tomáš; Kytýř, Daniel
2012-01-01
Roč. 45, S1 (2012), s. 479-479 ISSN 0021-9290 R&D Projects: GA ČR(CZ) GAP105/10/2305 Institutional support: RVO:68378297 Keywords : digital image correlation * elasto-plastic material model * FEM * three-point bending * trabecular bone Subject RIV: FI - Traumatology, Orthopedics Impact factor: 2.716, year: 2012
Three-point phase correlations: A new measure of non-linear large-scale structure
Wolstenhulme, Richard; Obreschkow, Danail
2015-01-01
We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the non-linear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F_2, which governs the non-linear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a very good agreement for separations r>20 Mpc/h. Fitting formulae for the power spectrum and the non-linear coupling kernel at small scales allow us to extend our prediction into the strongly non-linear regime. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the linear bias. Furtherm...
Disentangling interacting dark energy cosmologies with the three-point correlation function
Moresco, Michele; Marulli, Federico; Baldi, Marco; Moscardini, Lauro; Cimatti, Andrea
2014-10-01
We investigate the possibility of constraining coupled dark energy (cDE) cosmologies using the three-point correlation function (3PCF). Making use of the CODECS N-body simulations, we study the statistical properties of cold dark matter (CDM) haloes for a variety of models, including a fiducial ΛCDM scenario and five models in which dark energy (DE) and CDM mutually interact. We measure both the halo 3PCF, ζ(θ), and the reduced 3PCF, Q(θ), at different scales (2 values of the halo 3PCF for perpendicular (elongated) configurations. The effect is also scale-dependent, with differences between ΛCDM and cDE models that increase at large scales. We made use of these measurements to estimate the halo bias, that results in fair agreement with the one computed from the two-point correlation function (2PCF). The main advantage of using both the 2PCF and 3PCF is to break the bias-σ8 degeneracy. Moreover, we find that our bias estimates are approximately independent of the assumed strength of DE coupling. This study demonstrates the power of a higher order clustering analysis in discriminating between alternative cosmological scenarios, for both present and forthcoming galaxy surveys, such as e.g. Baryon Oscillation Spectroscopic Survey and Euclid.
Analytical three-point Dixon method: With applications for spiral water-fat imaging.
Wang, Dinghui; Zwart, Nicholas R; Li, Zhiqiang; Schär, Michael; Pipe, James G
2016-02-01
The goal of this work is to present a new three-point analytical approach with flexible even or uneven echo increments for water-fat separation and to evaluate its feasibility with spiral imaging. Two sets of possible solutions of water and fat are first found analytically. Then, two field maps of the B0 inhomogeneity are obtained by linear regression. The initial identification of the true solution is facilitated by the root-mean-square error of the linear regression and the incorporation of a fat spectrum model. The resolved field map after a region-growing algorithm is refined iteratively for spiral imaging. The final water and fat images are recalculated using a joint water-fat separation and deblurring algorithm. Successful implementations were demonstrated with three-dimensional gradient-echo head imaging and single breathhold abdominal imaging. Spiral, high-resolution T1 -weighted brain images were shown with comparable sharpness to the reference Cartesian images. With appropriate choices of uneven echo increments, it is feasible to resolve the aliasing of the field map voxel-wise. High-quality water-fat spiral imaging can be achieved with the proposed approach. © 2015 Wiley Periodicals, Inc.
The three-point function as a probe of models for large-scale structure
International Nuclear Information System (INIS)
Frieman, J.A.; Gaztanaga, E.
1993-01-01
The authors analyze the consequences of models of structure formation for higher-order (n-point) galaxy correlation functions in the mildly non-linear regime. Several variations of the standard Ω = 1 cold dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain more power on large scales, R p ∼20 h -1 Mpc, e.g., low-matter-density (non-zero cosmological constant) models, open-quote tilted close-quote primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower, et al. The authors show that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale-dependence leads to a dramatic decrease of the hierarchical amplitudes Q J at large scales, r approx-gt R p . Current observational constraints on the three-point amplitudes Q 3 and S 3 can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales
THREE-POINT PHASE CORRELATIONS: A NEW MEASURE OF NONLINEAR LARGE-SCALE STRUCTURE
Energy Technology Data Exchange (ETDEWEB)
Wolstenhulme, Richard; Bonvin, Camille [Kavli Institute for Cosmology Cambridge and Institute of Astronomy, Madingley Road, Cambridge CB3 OHA (United Kingdom); Obreschkow, Danail [International Centre for Radio Astronomy Research (ICRAR), M468, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia)
2015-05-10
We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the nonlinear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F{sub 2}, which governs the nonlinear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a 1σ agreement for separations r ≳ 30 h{sup −1} Mpc. Fitting formulae for the power spectrum and the nonlinear coupling kernel at small scales allow us to extend our prediction into the strongly nonlinear regime, where we find a 1σ agreement with the simulations for r ≳ 2 h{sup −1} Mpc. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the bias, in the regime where the bias is local and linear. Furthermore, the variance of the line correlation is independent of the Gaussian variance on the modulus of the density field. This suggests that the line correlation can probe more precisely the nonlinear regime of gravity, with less contamination from the power spectrum variance.
Directory of Open Access Journals (Sweden)
Grondin F.
2010-06-01
Full Text Available Creep and damage in concrete govern the long-term deformability of concrete. Thus, it is important to understand the interaction between creep and damage in order to design reliable civil engineering structures subjected to high level loading during a long time. Many investigations have been performed on the influence of concrete mixture, the effect of the bond between the matrix and the aggregates, temperature, aging and the size effect on the cracking mechanism and fracture parameters of concrete. But there is a lack of results on the influence of the creep loading history. In the present paper, an experimental investigation on the fracture properties of concrete beams submitted to three point bending tests with high levels of sustained load that deals with creep is reported. The results aim first to investigate the ranges of variation of the time response due to creep damage coupled effects under constant load and secondly to evaluate the residual capacity after creep. For this purpose a series of tests were carried out on geometrically similar specimens of size 100x200x800mm with notch to depth ratio of 0.2 in all the test specimens. The exchange of moisture was prevented and beams were subjected to a constant load of 70% and 90% of the maximum capacity. Three point bending test were realized on specimen at the age of 28 days to determine the characteristics of concrete and the maximum load so we could load the specimens in creep. Threepoint bend creep tests were performed on frames placed in a climate controlled chamber [1]. Then after four months of loading, the beams subjected to creep were removed from the creep frames and then immediately subjected to three-point bending test loading up to failure with a constant loading rate as per RILEM-FMC 50 recommendations. The residual capacity on the notched beams and the evolution of the characteristics of concrete due to the basic creep was considered. The results show that sustained loading
Saliba, J.; Loukili, A.; Grondin, F.
2010-06-01
Creep and damage in concrete govern the long-term deformability of concrete. Thus, it is important to understand the interaction between creep and damage in order to design reliable civil engineering structures subjected to high level loading during a long time. Many investigations have been performed on the influence of concrete mixture, the effect of the bond between the matrix and the aggregates, temperature, aging and the size effect on the cracking mechanism and fracture parameters of concrete. But there is a lack of results on the influence of the creep loading history. In the present paper, an experimental investigation on the fracture properties of concrete beams submitted to three point bending tests with high levels of sustained load that deals with creep is reported. The results aim first to investigate the ranges of variation of the time response due to creep damage coupled effects under constant load and secondly to evaluate the residual capacity after creep. For this purpose a series of tests were carried out on geometrically similar specimens of size 100x200x800mm with notch to depth ratio of 0.2 in all the test specimens. The exchange of moisture was prevented and beams were subjected to a constant load of 70% and 90% of the maximum capacity. Three point bending test were realized on specimen at the age of 28 days to determine the characteristics of concrete and the maximum load so we could load the specimens in creep. Threepoint bend creep tests were performed on frames placed in a climate controlled chamber [1]. Then after four months of loading, the beams subjected to creep were removed from the creep frames and then immediately subjected to three-point bending test loading up to failure with a constant loading rate as per RILEM-FMC 50 recommendations. The residual capacity on the notched beams and the evolution of the characteristics of concrete due to the basic creep was considered. The results show that sustained loading had a strengthening
Directory of Open Access Journals (Sweden)
Hikmah Annur
2015-03-01
Full Text Available Dalam dunia kedokteran jika terapi fisik dan obat-obatan tidak dapat mengatasi kelainan atau kerusakan pada sendi rahang pasien maka jalan satu-satunya adalah dengan dilakukan perawatan bedah dengan mengganti sendi yang mengalami gangguan dengan prosthesis sebagai pengganti anggota gerak yang hilang. Dalam penelitian ini digunakan material hidroksiapatit dalam pengujian bending karena memiliki komposisi kimia yang sama dengan jaringan keras pada manusia seperti gigi dan tulang. Penelitian ini bertujuan mencari nilai tegangan bending maksimum yang bisa diterima oleh komposit hidroksiapatit. Penelitian ini dilakukan dengan mengambil variasi fraksi volume hidroksiapatit 40% HA, 50% HA, 60% HA, dan 70% HA. Setelah itu material di uji bending dengan menggunakan standar ASTM D790 dengan menggunakan metode pengujian three point bending. Dari penelitian ini didapatkan bahwa tegangan bending maksimum sebesar 31.2 Mpa pada spesimen dengan persentase hidroksiapatit 50% fraksi volume. Fraksi ini adalah fraksi yang paling optimal di antara variabel-variabel uji lain.
AGS superconducting bending magnets
International Nuclear Information System (INIS)
Robins, K.E.; Sampson, W.B.; McInturff, A.D.; Dahl, P.F.; Abbatiello, F.; Aggus, J.; Bamberger, J.; Brown, D.; Damm, R.; Kassner, D.; Lasky, C.; Schlafke, A.
1976-01-01
Four large aperture superconducting bending magnets are being built for use in the experimental beams at the AGS. Each of these magnets is 2.5 m long and has a room temperature aperture of 20 cm. The magnets are similar in design to the dipoles being developed for ISABELLE and employ a low temperature iron core. Results are presented on the ''training'' behavior of the magnets and a comparison will be made with the smaller aperture versions of this design. The magnet field measurements include end fields and leakage fields as well as the harmonic components of the straight section of the magnet
Using galaxy pairs to investigate the three-point correlation function in the squeezed limit
Yuan, Sihan; Eisenstein, Daniel J.; Garrison, Lehman H.
2017-11-01
We investigate the three-point correlation function (3PCF) in the squeezed limit by considering galaxy pairs as discrete objects and cross-correlating them with the galaxy field. We develop an efficient algorithm using fast Fourier transforms to compute such cross-correlations and their associated pair-galaxy bias bp, g and the squeezed 3PCF coefficient Qeff. We implement our method using N-body cosmological simulations and a fiducial halo occupation distribution (HOD) and present the results in both the real space and redshift space. In real space, we observe a peak in bp, g and Qeff at pair separation of ∼2 Mpc, attributed to the fact that galaxy pairs at 2 Mpc separation trace the most massive dark matter haloes. We also see strong anisotropy in the bp, g and Qeff signals that track the large-scale filamentary structure. In redshift space, both the 2 Mpc peak and the anisotropy are significantly smeared out along the line of sight due to finger-of-God effect. In both the real space and redshift space, the squeezed 3PCF shows a factor of 2 variation, contradicting the hierarchical ansatz, but offering rich information on the galaxy-halo connection. Thus, we explore the possibility of using the squeezed 3PCF to constrain the HOD. When we compare two simple HOD models that are closely matched in their projected two-point correlation function (2PCF), we do not yet see a strong variation in the 3PCF that is clearly disentangled from variations in the projected 2PCF. Nevertheless, we propose that more complicated HOD models, e.g. those incorporating assembly bias, can break degeneracies in the 2PCF and show a distinguishable squeezed 3PCF signal.
Testing the consistency of three-point halo clustering in Fourier and configuration space
Hoffmann, K.; Gaztañaga, E.; Scoccimarro, R.; Crocce, M.
2018-05-01
We compare reduced three-point correlations Q of matter, haloes (as proxies for galaxies) and their cross-correlations, measured in a total simulated volume of ˜100 (h-1 Gpc)3, to predictions from leading order perturbation theory on a large range of scales in configuration space. Predictions for haloes are based on the non-local bias model, employing linear (b1) and non-linear (c2, g2) bias parameters, which have been constrained previously from the bispectrum in Fourier space. We also study predictions from two other bias models, one local (g2 = 0) and one in which c2 and g2 are determined by b1 via approximately universal relations. Overall, measurements and predictions agree when Q is derived for triangles with (r1r2r3)1/3 ≳60 h-1 Mpc, where r1 - 3 are the sizes of the triangle legs. Predictions for Qmatter, based on the linear power spectrum, show significant deviations from the measurements at the BAO scale (given our small measurement errors), which strongly decrease when adding a damping term or using the non-linear power spectrum, as expected. Predictions for Qhalo agree best with measurements at large scales when considering non-local contributions. The universal bias model works well for haloes and might therefore be also useful for tightening constraints on b1 from Q in galaxy surveys. Such constraints are independent of the amplitude of matter density fluctuation (σ8) and hence break the degeneracy between b1 and σ8, present in galaxy two-point correlations.
International Nuclear Information System (INIS)
Mitsuya, Masaki; Sakanoue, Takashi
2015-01-01
This study focuses on the opening mode of induction bends; this mode represents the deformation outside a bend. Bending experiments on induction bends are shown and the manner of failure of these bends was investigated. Ruptures occur at the intrados of the bends, which undergo tensile stress, and accompany the local reduction of wall thickness, i.e., necking that indicates strain localization. By implementing finite element analysis (FEA), it was shown that the rupture is dominated not by the fracture criterion of material but by the initiation of strain localization that is a deformation characteristic of the material. These ruptures are due to the rapid increase of local strain after the initiation of strain localization and suddenly reach the fracture criterion. For the evaluation of the deformability of the bends, a method based on FEA that can predict the displacement at the rupture is proposed. We show that the yield surface shape and the true stress–strain relationship after uniform elongation have to be defined on the basis of the actual properties of the bend material. The von Mises yield criterion, which is commonly used in cases of elastic–plastic FEA, could not predict the rupture and overestimated the deformability. In contrast, a yield surface obtained by performing tensile tests on a biaxial specimen could predict the rupture. The prediction of the rupture was accomplished by an inverse calibration method that determined the true stress-strain relationship after uniform elongation. As an alternative to the inverse calibration, a simple extrapolation method of the true stress-strain relationship after uniform elongation which can predict the rupture is proposed. - Highlights: • A method based on FEA that can predict the displacement at the rupture is proposed. • The yield surface shape and the true stress–strain have to be defined precisely. • The von Mises yield criterion overestimated the deformability. • The ruptures are due to the
Experimental verification of a weak zone model for timber in bending
DEFF Research Database (Denmark)
Källsner, B.; Ditlevsen, Ove Dalager; Salmela, K.
1997-01-01
In order to verify a stochastic model for the variation of bending strength within and between structural timber members, tests with long members subjected to constant bending moment have been performed. The span with constant moment contained between five and nine weak zones, i.e. zones...... with a cluster of knots. In a previous investigation test specimens, each containing one weak zone, have been tested in bending separately. Based on these tests a hierarchical model with two levels was formulated. The test results show that the bending strength of the long timber members on the average is 5...
Rotating bending fatigue strength evaluation of ceramic materials
International Nuclear Information System (INIS)
Govila, R.K.; Swank, L.R.
1995-01-01
Cyclic fatigue under rotary bending tests were conducted on partially stabilized zirconia (PSZ) from NGK and Nilsen, and silicon nitride from NGK and Norton. Fractography was performed on the failed specimens to determine the fracture structure and morphology. The results showed that the cyclic fatigue fracture was the same as the fracture structure previously observed in bending tests. The cyclic fatigue data indicated that structural ceramic could function in fatigue stress levels at a higher percentage of their average fast fracture strength than the fifty percent of ultimate strength used for wrought steels
Ito, Yukihiro; Natsu, Wataru; Kunieda, Masanori
This paper describes the influences of anisotropy found in the elastic modulus of monocrystalline silicon wafers on the measurement accuracy of the three-point-support inverting method which can measure the warp and thickness of thin large panels simultaneously. Deflection due to gravity depends on the crystal orientation relative to the positions of the three-point-supports. Thus the deviation of actual crystal orientation from the direction indicated by the notch fabricated on the wafer causes measurement errors. Numerical analysis of the deflection confirmed that the uncertainty of thickness measurement increases from 0.168µm to 0.524µm due to this measurement error. In addition, experimental results showed that the rotation of crystal orientation relative to the three-point-supports is effective for preventing wafer vibration excited by disturbance vibration because the resonance frequency of wafers can be changed. Thus, surface shape measurement accuracy was improved by preventing resonant vibration during measurement.
Directory of Open Access Journals (Sweden)
Kai Lu
2016-05-01
Full Text Available In order to improve the properties of silica sol shell for investment casting process, various contents of cattail fibers were added into the slurry to prepare a fiber-reinforced shell in the present study. The bending strength of fiber-reinforced shell was investigated and the fracture surfaces of shell specimens were observed using SEM. It is found that the bending strength increases with the increase of fiber content, and the bending strength of a green shell with 1.0 wt.% fiber addition increases by 44% compared to the fiber-free shell. The failure of specimens of the fiber-reinforced green shell results from fiber rupture and debonding between the interface of fibers and adhesive under the bending load. The micro-crack propagation in the matrix is inhibited by the micro-holes for ablation of fibers in specimens of the fiber-reinforced shell during the stage of being fired. As a result, the bending strength of specimens of the fired shell had no significant drop. Particularly, the bending strength of specimens of the fired shell reinforced with 0.6wt.% fiber reached the maximum value of 4.6 MPa.
Characterization of the bending strength of craniofacial sutures.
Maloul, Asmaa; Fialkov, Jeffrey; Whyne, Cari M
2013-03-15
The complex, thin and irregular bones of the human craniofacial skeleton (CFS) are connected together through bony articulations and connective tissues. These articulations are known as sutures and are commonly divided into two groups, facial and cranial sutures, based on their location in the CFS. CFS sutures can exhibit highly variable degrees of interdigitation and complexity and are believed to play a role in accommodating the mechanical demands of the skull. This study aimed to evaluate the mechanical behavior of CFS bone samples with and without sutures and to determine the effect of sutural interdigitations on mechanical strength. Sagittal, coronal, frontozygomatic and zygomaticotemporal sutures along with adjacent bone samples not containing sutures were excised from six fresh-frozen cadaveric heads. The interdigitation of the sutures was quantified through μCT based analysis. Three-point bending to failure was performed on a total of 29 samples. The bending strength of bone samples without sutures demonstrated a non-significant increase of 14% as compared to samples containing sutures (P=0.2). The bending strength of bones containing sutures was positively correlated to the sutural interdigitation index (R=0.701, P=0.002). The higher interdigitation indices found in human cranial vs. facial sutures may be present to resist bending loads as a functional requirement in protecting the brain. Copyright © 2012 Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Sørup, Hjalte Jomo Danielsen; Lerer, Sara Maria; Arnbjerg-Nielsen, Karsten
2016-01-01
We present a method to assess and communicate the efficiency of stormwater control measures for retrofitting existing urban areas. The tool extends the Three Points Approach to quantitatively distinguish three rainfall domains: (A) rainwater resource utilisation, (B) urban stormwater drainage pip...
DEFF Research Database (Denmark)
Sørup, Hjalte Jomo Danielsen; Lerer, Sara Maria; Arnbjerg-Nielsen, Karsten
2016-01-01
We present a method to assess and communicate the efficiency of stormwater control measures for retrofitting existing urban areas. The tool extends the Three Points Approach to quantitatively distinguish three rainfall domains: (A) rainwater resource utilisation, (B) urban stormwater drainage pipe......, stormwater drainage and flood risks....
Laparoscopic specimen retrieval bags.
Smorgick, Noam
2014-10-01
Specimen retrieval bags have long been used in laparoscopic gynecologic surgery for contained removal of adnexal cysts and masses. More recently, the concerns regarding spread of malignant cells during mechanical morcellation of myoma have led to an additional use of specimen retrieval bags for contained "in-bag" morcellation. This review will discuss the indications for use retrieval bags in gynecologic endoscopy, and describe the different specimen bags available to date.
Yield stress determination from miniaturized disk bend test data
International Nuclear Information System (INIS)
Sohn, D.S.; Kohse, G.; Harling, O.K.
1985-04-01
Methodology for testing 3.0 mm diameter by 0.25 mm thick disks by bending in a punch and die has been described previously. This paper describes the analysis of load/deflection data from such miniaturized disk bend tests (MDBT) using a finite element simulation. Good simulation has been achieved up to a point just beyond the predominantly elastic response, linear initial region. The load at which deviation from linearity begins has been found to correlate with yield stress, and yield stress has been successfully extracted from disk bend tests of a number of known materials. Although finite element codes capable of dealing with large strains and large rotations have been used, simulation of the entire load/deflection curve up to fracture of the specimen has not yet been achieved
Georeferencing Animal Specimen Datasets
van Erp, M.G.J.; Hensel, R.; Ceolin, D.; van der Meij, M.
2014-01-01
For biodiversity research, the field of study that is concerned with the richness of species of our planet, it is of the utmost importance that the location of an animal specimen find is known with high precision. Due to specimens often having been collected over the course of many years, their
Fracture mechanics characterisation of medium-size adhesive joint specimens
DEFF Research Database (Denmark)
Sørensen, Bent F.; Jacobsen, T.K.
2004-01-01
Medium-size specimens (glass-fibre beams bonded together by an adhesive layer were tested in four point bending to determine their load carrying capacity. Specimens having different thickness were tested. Except for onespecimen, the cracking occurred as cracking...... along the adhesive layer; initially cracking occurred along the adhesive/laminate interface, but after some crack extension the cracking took place inside the laminate (for one specimen the later part of thecracking occurred unstably along the adhesive/ laminate interface). Crack bridging by fibres...
OPE-RχT matching at order αs: hard gluonic corrections to three-point Green functions
International Nuclear Information System (INIS)
Jamin, Matthias; Mateu, Vicent
2008-01-01
In this work we push the matching between the QCD operator product expansion (OPE) and resonance chiral theory (RχT) to order α s . To this end we compute two- and three-point QCD Green functions (GFs) in both theories and compare the results. GFs which are order parameters of chiral symmetry breaking make this matching more transparent and thus we concentrate on those. On the OPE side one needs to calculate the hard-gluon virtual corrections to the quark condensate, and in particular for three-point GFs this computation was hitherto missing. We also discuss the need for including the infinite tower of hadronic states in the hadronic representation of the GF when non-analytic terms such as logarithms are present in the OPE Wilson coefficients
The effect of load-controlled bending load on the failure pressure of wall-thinned pipe elbows
International Nuclear Information System (INIS)
Kim, Jin Weon; Yoon, Min Soo; Park, Chi Yong
2013-01-01
Highlights: • We evaluated bending load effect on the failure pressure of wall-thinned pipe elbows. • Burst tests were conducted on real-scale elbow specimens with local wall thinning. • The tests were performed under combined pressure and load-controlled bending. • Load-controlled bending reduced the failure pressure of wall-thinned elbows. • Bending load effect was significant for opening-mode and intrados wall-thinning case. - Abstract: In this research, burst tests were conducted on real-scale elbow specimens, each with an artificial local wall-thinning defect, under combined internal pressure and constant in-plane bending load, as well as under simple internal pressure, to evaluate the effect of load-controlled bending load on the failure pressure of locally wall-thinned pipe elbows. Ninety-degree, 65A Schedule 80 elbows, with wall-thinning defects in the intrados and extrados, were used as specimens. The bending loads were in-plane opening- and closing-mode bending, applied in load-control mode. The results clearly indicated that a load-controlled in-plane bending load reduced the failure pressure of wall-thinned pipe elbows, in contrast to observations previously made under displacement-controlled bending conditions. The effect of the bending load was more significant for opening-mode than for closing-mode bending, regardless of the wall-thinning location in the elbow. Also, the effect was greater when the wall-thinning defect was located in the intrados region of the elbow, rather than the extrados region. Existing models that have been proposed to evaluate the failure of wall-thinned elbows under simple internal pressure conservatively predicted the failure pressure of elbows subjected to a combined internal pressure and load-controlled bending load
The next 16 higher spin currents and three-point functions in the large N = 4 holography
Energy Technology Data Exchange (ETDEWEB)
Ahn, Changhyun; Kim, Dong-gyu; Kim, Man Hea [Kyungpook National University, Department of Physics, Taegu (Korea, Republic of)
2017-08-15
By using the known operator product expansions (OPEs) between the lowest 16 higher spin currents of spins (1, (3)/(2), (3)/(2), (3)/(2), (3)/(2), 2,2,2,2,2,2, (5)/(2), (5)/(2), (5)/(2), (5)/(2), 3) in an extension of the large N = 4 linear superconformal algebra, one determines the OPEs between the lowest 16 higher spin currents in an extension of the large N = 4 nonlinear superconformal algebra for generic N and k. The Wolf space coset contains the group G = SU(N + 2) and the affine Kac-Moody spin 1 current has the level k. The next 16 higher spin currents of spins (2, (5)/(2), (5)/(2), (5)/(2), (5)/(2), 3,3,3,3,3,3, (7)/(2), (7)/(2), (7)/(2), (7)/(2), 4) arise in the above OPEs. The most general lowest higher spin 2 current in this multiplet can be determined in terms of affine Kac-Moody spin (1)/(2), 1 currents. By careful analysis of the zero mode (higher spin) eigenvalue equations, the three-point functions of bosonic higher spin 2, 3, 4 currents with two scalars are obtained for finite N and k. Furthermore, we also analyze the three-point functions of bosonic higher spin 2, 3, 4 currents in the extension of the large N = 4 linear superconformal algebra. It turns out that the three-point functions of higher spin 2, 3 currents in the two cases are equal to each other at finite N and k. Under the large (N, k) 't Hooft limit, the two descriptions for the three-point functions of higher spin 4 current coincide with each other. The higher spin extension of SO(4) Knizhnik Bershadsky algebra is described. (orig.)
R-current three-point functions in 4d $\\mathcal{N}=1$ superconformal theories arXiv
Manenti, Andrea; Vichi, Alessandro
In 4d $\\mathcal{N}=1$ superconformal field theories (SCFTs) the R-symmetry current, the stress-energy tensor, and the supersymmetry currents are grouped into a single object, the Ferrara--Zumino multiplet. In this work we study the most general form of three-point functions involving two Ferrara--Zumino multiplets and a third generic multiplet. We solve the constraints imposed by conservation in superspace and show that non-trivial solutions can only be found if the third multiplet is R-neutral and transforms in suitable Lorentz representations. In the process we give a prescription for counting independent tensor structures in superconformal three-point functions. Finally, we set the Grassmann coordinates of the Ferrara--Zumino multiplets to zero and extract all three-point functions involving two R-currents and a third conformal primary. Our results pave the way for bootstrapping the correlation function of four R-currents in 4d $\\mathcal{N}=1$ SCFTs.
Li, R.; Li, W. B.; Wang, X. M.; Li, W. B.
2018-03-01
The effects of the initiation diameter and synchronicity error on the formation of fins and stable-flight velocity of an explosively formed projectile (EFP) with three-point initiation are investigated. The pressure and area of the Mach wave acting on the metal liner at different initiation diameters are calculated employing the Whitham method. LS-DYNA software is used to investigate the asymmetric collision of detonation waves resulting from three-point initiation synchronicity error, the distortion characteristics of the liner resulting from the composite detonation waves, and the performance parameters of the EFP with fins. Results indicate that deviations of the Y-shaped high-pressure zone and central ultrahigh-pressure zone from the liner center can be attributed to the error of three-point initiation, which leads to the irregular formation of EFP fins. It is noted that the area of the Mach wave decreases, but the pressure of the Mach wave and the final speed and length-to-diameter ( L/ D) ratio of the EFP increase, benefiting the formation of the EFP fins, as the initiation diameter increases.
Isa, Mariyam I; Fenton, Todd W; Deland, Trevor; Haut, Roger C
2018-01-01
Current literature associates bending failure with butterfly fracture, in which fracture initiates transversely at the tensile surface of a bent bone and branches as it propagates toward the impact surface. The orientation of the resulting wedge fragment is often considered diagnostic of impact direction. However, experimental studies indicate bending does not always produce complete butterfly fractures or produces wedge fragments variably in tension or compression, precluding their use in interpreting directionality. This study reports results of experimental 3-point bending tests on thirteen unembalmed human femora. Complete fracture patterns varied following bending failure, but incomplete fractures and fracture surface characteristics were observed in all impacted specimens. A flat, billowy fracture surface was observed in tension, while jagged, angular peaks were observed in compression. Impact direction was accurately reconstructed using incomplete tension wedge butterfly fractures and tension and compression fracture surface criteria in all thirteen specimens. © 2017 American Academy of Forensic Sciences.
Performance of composite I-beams under axial compression and bending load modes
International Nuclear Information System (INIS)
Khalid, Y.A.; Ali, F.A.; Sahari, B.B.; Saad, E.M.A.
2005-01-01
An experimental and finite-element analyses for glass/epoxy composite I-beams have been carried out. Four, six, eight and 10 layers of woven fabric glass/epoxy composite I-beams were fabricated by a hand lay-up (molding) process. Quasi-static axial crushing and bending loading modes were used for this investigation. The load-displacement response was obtained and the energy absorption values were calculated for all the composite I-beams. Three tests were done for each composite I-beams type and each loading case for the results conformation. The second part of this study includes the elastic behavior of composite I-beams of the same dimensions and materials using finite-element analysis. The woven fabric glass/epoxy composite I-beams mechanical properties have been obtained from tensile tests. Results from this investigation show that the load required and the specific energy absorption for composite I-beams under axial compression load were higher than those for three and four point bending. On the other hand, the loads required for composite I-beams under four point bending were higher than those for three point bending, while the specific energy absorption for composite I-beams under three point bending were higher than those for four point bending. The first crushing loads difference between the experimental and finite-element results fell in the 3.6-10.92% range for axial compression tests, while fell in the 1.44-12.99% and 4.94-22.0% range for three and four point bending, respectively
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A new kind of bend sensor is introduced.It can be used to detect the bend angle of an object or inclination between two objects.It has characteristics of small size, lightweight, high reliability, fine flexibility and plasticity.When this bend sensor is used with a proper converting circuit, it can implement dynamic measuring the bend angle of an object conveniently.The application of the bend sensor in dataglove is also described.
Some recent innovations in small specimen testing
International Nuclear Information System (INIS)
Odette, G.R.; He, M.; Gragg, D.; Klingensmith, D.; Lucas, G.E.
2002-01-01
New innovative small specimen test techniques are described. Finite element simulations show that combinations of cone indentation pile-up geometry and load-penetration depth relations can be used to determine both the yield stress and strain-hardening behavior of a material. Techniques for pre-cracking and testing sub-miniaturized fracture toughness bend bars, with dimensions of 1.65x1.65x9 mm 3 , or less, are described. The corresponding toughness-temperature curves have a very steep transition slope, primarily due to rapid loss of constraint, which has advantages in some experiments to characterize the effects of specified irradiation variables. As one example of using composite specimens, an approach to evaluating helium effects is proposed, involving diffusion bonding small wires of a 54 Fe-based ferritic-martensitic alloy to a surrounding fracture specimen composed of an elemental Fe-based alloy. Finally, we briefly outline some potential approaches to multipurpose specimens and test automation
Ketahanan Bending Komposit Hybrid Serat Batang Kelapa/Serat Gelas Dengan Matrik Urea Formaldehyde
Directory of Open Access Journals (Sweden)
Nasmi Herlina Sari
2012-11-01
Full Text Available The composite has its own advantages compared to other alternative techniques such material is strong, lightweight,corrosion-resistant, economical and so on. The purpose of this study was to investigate the characteristics of bending strengthfiber composite hybrid coconut trunk / fiber glass using urea formaldehyde resin.Hybrid palm trunk fiber /glass fiber composite have been made by hand lay up which volume fraction fiber hybridvariation namely 10:20, 15:15 and 20:10 (% with length fiber 2 cm. Every Tests conducted were bending testing with eachvariation performed three times repetition. Bending test specimens in accordance with standard ASTMD 790.The results of bending strength of palm trunk fiber hybrid composite / fiber-glass with random fiber direction that thehighest bending strength in the palm trunk fiber volume fraction 10% and 20% glass fiber that is 22.7 N/mm2.
Bending characteristics of resin concretes
Directory of Open Access Journals (Sweden)
Ribeiro Maria Cristina Santos
2003-01-01
Full Text Available In this research work the influence of composition and curing conditions in bending strength of polyester and epoxy concrete is analyzed. Various mixtures of resin and aggregates were considered in view of an optimal combination. The Taguchi methodology was applied in order to reduce the number of tests, and in order to evaluate the influence of various parameters in concrete properties. This methodology is very useful for the planning of experiments. Test results, analyzed by this methodology, shown that the most significant factors affecting bending strength properties of resin concretes are the type of resin, resin content and charge content. An optimal formulation leading to a maximum bending strength was achieved in terms of material parameters.
The creep bending of short radius pipe bends
International Nuclear Information System (INIS)
Spence, John
1975-01-01
In existing and proposed liquid metal fast breeder reactor design the pipework has considerable importance. Parts of the LMFBR include thin walled short radius bends which are expected to operate in the creep regime. In linear elasticity it is known that the assumption of long radius bends is not too severe as far as the flexibility characteristics are concerned although some modifications are necessary for accurate determination of the stresses. No data exists for nonlinear creep. Current work is aimed at elucidating the effect of the various assumptions common to linear elastic theory in so far as they affect the creep characteristics of bends on systems. Herein an energy based analysis using a simple n power constitutive law for stationary creep is employed to derive basic design data for flexibilities and stresses which will be necessary before complete systems can be assessed for creep. The analysis shows on comparison with the long radius work that the assumption of R>r is not much more restrictive in creep than for linear elasticity. Flexibilities for short radius bends appear to be well approximated by the long radius values. Thus the attractive reference stress information already derived may be used directly to find deformations without a complete knowledge of the constitutive relationship. However, stresses are somewhat different. Fortunately the maximum deviation occurs at relatively low levels of stress, the peak stresses being in fair agreement. When n=1 the present results reduce essentially to those obtained from existing linear elastic theory
Controlled Environment Specimen Transfer
DEFF Research Database (Denmark)
Damsgaard, Christian Danvad; Zandbergen, Henny W.; Hansen, Thomas Willum
2014-01-01
an environmental transmission electron microscope to an in situ X-ray diffractometer through a dedicated transmission electron microscope specimen transfer holder, capable of sealing the specimen in a gaseous environment at elevated temperatures. Two catalyst material systems have been investigated; Cu/ZnO/Al2O3...... transferred in a reactive environment to the environmental transmission electron microscope where further analysis on the local scale were conducted. The Co/Al2O3 catalyst was reduced in the environmental microscope and successfully kept reduced outside the microscope in a reactive environment. The in situ......Specimen transfer under controlled environment conditions, such as temperature, pressure, and gas composition, is necessary to conduct successive complementary in situ characterization of materials sensitive to ambient conditions. The in situ transfer concept is introduced by linking...
International Nuclear Information System (INIS)
Vardoulakis, I.; Kourkoulis, S.K.; Exadaktylos, G.
1998-01-01
A gradient bending theory is developed based on a strain energy function that includes the classical Bernoulli-Euler term, the shape correction term (microstructural length scale) introduced by Timoshenko, and a term associated with surface energy (micromaterial length scale) accounting for the bending moment gradient effect. It is shown that the last term is capable to interpret the size effect in three-point bending (3PB), namely the decrease of the failure load with decreasing beam length for the same aspect ratio. This theory is used to describe the mechanical behaviour of Dionysos-Pentelikon marble in 3PB. Series of tests with prismatic marble beams of the same aperture but with different lengths were conducted and it was concluded that the present theory predicts well the size effect. (orig.)
Fracture probability properties of pure and cantilever bending fatigue of STS304 steel
International Nuclear Information System (INIS)
Roh, Sung Kuk; Park, Dae Hyun; Jeong, Soon Uk
2001-01-01
Big accidents of flyings, vessel, subways, gas equipments, buildings and bridge happens frequently. Therefore many people are suffering harm of property. The destruction cause of marcaine components is almost accused by fatigue. This study is test for STS304 specimen using pure and cantilever bending state. Rounded and notched specimen including fracture surface investigation was comparatively experimented, fatigue life according to degree of surface finishing was examined. Fatigue fracture probability of notched canilever specimens were predicted by P-S-N curve, median rank and Weibull distribution. And at the relation with the rotational speed and stress, the fatigue life of the test specimen was higher at high speed than low speed
Preserve specimens for reproducibility
Czech Academy of Sciences Publication Activity Database
Krell, F.-T.; Klimeš, Petr; Rocha, L. A.; Fikáček, M.; Miller, S. E.
2016-01-01
Roč. 539, č. 7628 (2016), s. 168 ISSN 0028-0836 Institutional support: RVO:60077344 Keywords : reproducibility * specimen * biodiversity Subject RIV: EH - Ecology, Behaviour Impact factor: 40.137, year: 2016 http://www.nature.com/nature/journal/v539/n7628/full/539168b.html
An elastic solution for a new notched residual stess specimen subjected to an anti-clastic loading
DEFF Research Database (Denmark)
Jakobsen, Johnny; Lyckegaard, Anders
A new test specimen has been proposed to explore the mechanical properties of thermoset resin exposed to residual stresses induced by curing and thermal expansion. The test principle is based on anti-clastic bending of a plate with a hole. An elastic solution to the bending problem is derived...
Long-Term Bending Creep Behavior of Thin-Walled CFRP Tendon Pretensioned Spun Concrete Poles
Directory of Open Access Journals (Sweden)
Giovanni P. Terrasi
2014-07-01
Full Text Available This paper discusses the long-term behavior of a series of highly-loaded, spun concrete pole specimens prestressed with carbon fiber-reinforced polymer (CFRP tendons, which were subjected to outdoor four-point bending creep tests since 1996 in the frame of collaboration with the Swiss precast concrete producer, SACAC (Società Anonima Cementi Armati Centrifugati. The 2 m span cylindrical beams studied are models for lighting poles produced for the last 10 years and sold on the European market. Five thin-walled pole specimens were investigated (diameter: 100 mm; wall-thickness: 25–27 mm. All specimens were produced in a pretensioning and spinning technique and were prestressed by pultruded CFRP tendons. Initially, two reference pole specimens were tested in quasi-static four-point bending to determine the short-term failure moment and to model the short-term flexural behavior. Then, three pole specimens were loaded to different bending creep moments: while the lowest loaded specimen was initially uncracked, the second specimen was loaded with 50% of the short-term bending failure moment and exhibited cracking immediately after load introduction. The highest loaded pole specimen sustained a bending moment of 72% of the short-term bending failure moment for 16.5 years before failing in July 2013, due to the bond failure of the tendons, which led to local crushing of the high-performance spun concrete (HPSC. Besides this, long-term monitoring of the creep tests has shown a limited time- and temperature-dependent increase of the deflections over the years, mainly due to the creep of the concrete. A concrete creep-based model allowed for the calculation of the long-term bending curvatures with reasonable accuracy. Furthermore, the pole specimens showed crack patterns that were stable over time and minimal slippage of the tendons with respect to the pole’s end-faces for the two lower load levels. The latter proves the successful and durable
A three-point backward finite-difference method has been derived for a system of mixed hyperbolic¯¯parabolic (convection¯¯diffusion) partial differential equations (mixed PDEs). The method resorts to the three-point backward differenci...
International Nuclear Information System (INIS)
Simin'kovich, V.N.; Gladkij, Ya.N.; Deev, N.A.
1981-01-01
Bending tests of 40KhS steel specimens, tempered at 200 and 500 deg C, are conducted to investigate the possible effects of specimen thickness on fatigue crack growth. Kinetic fatigue diagrams are constructed using the investigation results. An increase in crack growth with thickness is observed only in high-tempered specimens. Changes in specimen thickness do not affect crack growth in 40KhS low-tempered steel [ru
Biaxial Creep Specimen Fabrication
International Nuclear Information System (INIS)
JL Bump; RF Luther
2006-01-01
This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments
Biaxial Creep Specimen Fabrication
Energy Technology Data Exchange (ETDEWEB)
JL Bump; RF Luther
2006-02-09
This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.
Energy Technology Data Exchange (ETDEWEB)
Colin, Ch
2003-09-01
These PhD work in the frame of Pellet-Cladding Interactions studies, in the fuel assemblies of nuclear plants. Electricite de France (EDF) must well demonstrate and insure the integrity of the cladding. For that purpose, the viscoplastic behaviour of the nuclear fuel has to be known and, if possible, controlled. This PhD work aimed to characterize the creep of uranium dioxide, in conditions of transient power regime. First, a literature survey on mechanical behaviour of UO{sub 2} revealed that the ceramic was essentially studied with compressive tests, and that its creep behaviour is characterized by two domains, depending on the stress level. To estimate the loadings in a fuel pellet, EDF and CEA developed specific global codes. A simulation during a power ramp allowed the order of magnitude of the loadings in the pellet to be determined (temperature, thermal gradients, strains, strain rate...). The stress calculation using a finite element simulation requires the identification of behaviour laws, able to describe the behaviour under small strains, low strain rates, and under tensile stresses. Starting from this observation, three point bending method has been chosen to test the uranium dioxide. As, for representativeness reasons, testing specimens cut in actual fuel pads was required in our study; a ten millimeters span has been used. For this study, a specific three-point testing device has been developed, that can tests specimens up to 2 000 C in a controlled atmosphere (Ar + 5% H{sub 2}). A special care has been taken for the measurement of the deflexion of the sample, which is measured using a laser beam, that allow an accuracy of {+-}2{mu}m to be reached at high temperature. Specimens with 0,5 to 1 mm thickness have been tested using this jig. A Norton's law describe, with respective stress exponent and activation energy values of 1.73 and 540 kJ.mole-1, provided a good description of the stationary creep rate. Then, the mechanical behaviour of the fuel
NASA Biological Specimen Repository
McMonigal, K. A.; Pietrzyk, R. A.; Sams, C. F.; Johnson, M. A.
2010-01-01
The NASA Biological Specimen Repository (NBSR) was established in 2006 to collect, process, preserve and distribute spaceflight-related biological specimens from long duration ISS astronauts. This repository provides unique opportunities to study longitudinal changes in human physiology spanning may missions. The NBSR collects blood and urine samples from all participating ISS crewmembers who have provided informed consent. These biological samples are collected once before flight, during flight scheduled on flight days 15, 30, 60, 120 and within 2 weeks of landing. Postflight sessions are conducted 3 and 30 days after landing. The number of in-flight sessions is dependent on the duration of the mission. Specimens are maintained under optimal storage conditions in a manner that will maximize their integrity and viability for future research The repository operates under the authority of the NASA/JSC Committee for the Protection of Human Subjects to support scientific discovery that contributes to our fundamental knowledge in the area of human physiological changes and adaptation to a microgravity environment. The NBSR will institute guidelines for the solicitation, review and sample distribution process through establishment of the NBSR Advisory Board. The Advisory Board will be composed of representatives of all participating space agencies to evaluate each request from investigators for use of the samples. This process will be consistent with ethical principles, protection of crewmember confidentiality, prevailing laws and regulations, intellectual property policies, and consent form language. Operations supporting the NBSR are scheduled to continue until the end of U.S. presence on the ISS. Sample distribution is proposed to begin with selections on investigations beginning in 2017. The availability of the NBSR will contribute to the body of knowledge about the diverse factors of spaceflight on human physiology.
Mechano sorptive behaviour of notched beams in bending
DEFF Research Database (Denmark)
Jensen, Signe Kamp; Hoffmeyer, Preben
1996-01-01
Short term bending tests with end-notched beams at constant or varying moisture content have shown an apparent contradictory dependency between moisture content and strength. The higher the moisture content the higher the strength. Varying moisture results in particularly significant differences...... and by neglecting deformation due to shear. Compression stresses perpendicular to grain in excess of 6 MPa were found in the vicinity of the notch following a period of adsorption. Similarly, small tension stresses of the order 1 MPa were registered in this area when the specimens were at their most dry condition...
Stöckel, Tino; Fries, Udo
2013-01-01
We examined the influence of visual context information on skilled motor behaviour and motor adaptation in basketball. The rules of basketball in Europe have recently changed, such that that the distance for three-point shots increased from 6.25 m to 6.75 m. As such, we tested the extent to which basketball experts can adapt to the longer distance when a) only the unfamiliar, new three-point line was provided as floor markings (NL group), or b) the familiar, old three-point line was provided in addition to the new floor markings (OL group). In the present study 20 expert basketball players performed 40 three-point shots from 6.25 m and 40 shots from 6.75 m. We assessed the percentage of hits and analysed the landing position of the ball. Results showed better adaptation of throwing performance to the longer distance when the old three-point line was provided as a visual landmark, compared to when only the new three-point line was provided. We hypothesise that the three-point line delivered relevant information needed to successfully adapt to the greater distance in the OL group, whereas it disturbed performance and ability to adapt in the NL group. The importance of visual landmarks on motor adaptation in basketball throwing is discussed relative to the influence of other information sources (i.e. angle of elevation relative to the basket) and sport practice.
International Nuclear Information System (INIS)
Miller, G.E.; Rogers, P.J.; Nabor, W.G.; Bair, H.
1984-01-01
In 1980, an operator at the UCI TRIGA Reactor noticed difficulties with the rotation of the specimen rack. Investigations showed that the drive bearing in the rack had failed and allowed the bearings to enter the rack. After some time of operation in static mode it was decided that installation of a bearing substitute - a graphite sleeve - would be undertaken. Procedures were written and approved for removal of the rack, fabrication and installation of the sleeve, and re-installation of the rack. This paper describes these procedures in some detail. Detailed drawings of the necessary parts may be obtained from the authors
Follstaedt, David M.; Moran, Michael P.
2005-03-15
A method for thinning (such as in grinding and polishing) a material surface using an instrument means for moving an article with a discontinuous surface with an abrasive material dispersed between the material surface and the discontinuous surface where the discontinuous surface of the moving article provides an efficient means for maintaining contact of the abrasive with the material surface. When used to dimple specimens for microscopy analysis, a wheel with a surface that has been modified to produce a uniform or random discontinuous surface significantly improves the speed of the dimpling process without loss of quality of finish.
In-situ measurement of bending strength of TiC whiskers in the scanning electron microscope
Energy Technology Data Exchange (ETDEWEB)
Seino, Yutaka; Shin, Shoichiro; Nagai, Satoshi [National Research Lab. of Metrology, Tsukuba, Ibaraki (Japan)
1995-10-01
The three-point bending strength of TiC whiskers was measured in a scanning electron microscope. The whisker samples have {approximately} 50 {micro}m length and 2 {approximately} 4 {micro}m diameter and are commercially available as reinforcements. For composite materials. The distribution of the bending strengths of the whiskers showed a double peak around 5.2GPa and 30.4GPa, respectively. The difference in these values is attributed to differences in the cleavage strength of two crystal planes depending on whisker growth direction.
Deducing material quality in cast and hot-forged steels by new bending test
Valberg, Henry; Langøy, Morten; Nedreberg, Mette; Helvig, Torgeir
2017-10-01
A special bend test has been developed and applied for the purpose of characterization and comparison of the material ductility in crankpin steel discs manufactured by casting, or casting subsequently followed by hot open-die forging (ODF) or closed-die forging (CDF). The bending test specimen consists of a small rectangular plate of material with a round hole cut out in the middle. The "eye-shape" specimens were cut out from various positions either near to the surface of, or from the interior of the discs. The test method revealed differences in ductility for the investigated materials, and for different depth positions inside the discs. The roughening of the specimen surface on the top-side of the specimen bend also varied dependent on the processing method for the material. Current results show that this test method is useful for evaluation of material quality in differently processed material. Experimental bend test results are presented for differently processed variants of the same material, i.e., crankpin discs either made by solely casting or casting subsequently followed by hot working either by ODF or CDF.
Enhanced bending failure strain in biological glass fibers due to internal lamellar architecture.
Monn, Michael A; Kesari, Haneesh
2017-12-01
The remarkable mechanical properties of biological structures, like tooth and bone, are often a consequence of their architecture. The tree ring-like layers that comprise the skeletal elements of the marine sponge Euplectella aspergillum are a quintessential example of the intricate architectures prevalent in biological structures. These skeletal elements, known as spicules, are hair-like fibers that consist of a concentric array of silica cylinders separated by thin, organic layers. Thousands of spicules act like roots to anchor the sponge to the sea floor. While spicules have been the subject of several structure-property investigations, those studies have mostly focused on the relationship between the spicule's layered architecture and toughness properties. In contrast, we hypothesize that the spicule's layered architecture enhances its bending failure strain, thereby allowing it to provide a better anchorage to the sea floor. We test our hypothesis by performing three-point bending tests on E. aspergillum spicules, measuring their bending failure strains, and comparing them to those of spicules from a related sponge, Tethya aurantia. The T. aurantia spicules have a similar chemical composition to E. aspergillum spicules but have no architecture. Thus, any difference between the bending failure strains of the two types of spicules can be attributed to the E. aspergillum spicules' layered architecture. We found that the bending failure strains of the E. aspergillum spicules were roughly 2.4 times larger than those of the T. aurantia spicules. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of nonlinear stress-strain relationship on bending strength of isotropic graphite
International Nuclear Information System (INIS)
Arai, Taketoshi; Oku, Tatsuo
1978-05-01
Four-point bending tests were made on rectangular isotropic 7477PT graphite specimens of different sizes to observe the relation between load and outermost fiber strain. Analytical methods, allowing for nonlinear stress-strain relationships different between tension and compression, were developed for calculating the fiber stress distribution in a beam and the failure probability based on the Weibull statistical theory for bending fracture. With increase of the stress, the stress-strain curves for tension deviate from the linearity and also from those for compression. The true bending strengths of the rectangular bars are 10 -- 20 percent lower than elastic bending strengths. Revised Weibull theory gives failure probability distributions agreeing with measured ones, compared with the theory based on elastic behavior. (auth.)
Directory of Open Access Journals (Sweden)
George N. Galanis
2005-10-01
Full Text Available In this paper we prove the existence of positive solutions for the three-point singular boundary-value problem$$ -[phi _{p}(u']'=q(tf(t,u(t,quad 0
International Nuclear Information System (INIS)
Zhang, Zhenjiu; Hu, Hong
2013-01-01
The linear and rotary axes are fundamental parts of multi-axis machine tools. The geometric error components of the axes must be measured for motion error compensation to improve the accuracy of the machine tools. In this paper, a simple method named the three point method is proposed to measure the geometric error of the linear and rotary axes of the machine tools using a laser tracker. A sequential multilateration method, where uncertainty is verified through simulation, is applied to measure the 3D coordinates. Three noncollinear points fixed on the stage of each axis are selected. The coordinates of these points are simultaneously measured using a laser tracker to obtain their volumetric errors by comparing these coordinates with ideal values. Numerous equations can be established using the geometric error models of each axis. The geometric error components can be obtained by solving these equations. The validity of the proposed method is verified through a series of experiments. The results indicate that the proposed method can measure the geometric error of the axes to compensate for the errors in multi-axis machine tools.
Bending and stretching of plates
Mansfield, E H; Hemp, W S
1964-01-01
The Bending and Stretching of Plates deals with elastic plate theory, particularly on small- and large-deflexion theory. Small-deflexion theory concerns derivation of basic equations, rectangular plates, plates of various shapes, plates whose boundaries are amenable to conformal transformation, plates with variable rigidity, and approximate methods. Large-deflexion theory includes general equations and some exact solutions, approximate methods in large-deflexion theory, asymptotic large-deflexion theories for very thin plates. Asymptotic theories covers membrane theory, tension field theory, a
International Nuclear Information System (INIS)
Studness, C.M.
1990-01-01
This article looks at the attempts by Gulf States Utilities to get the River Bend Nuclear Plant into its rate base. The review begins with the initial filing of rate cases in Texas and Louisiana in 1986 and continues through many court cases and appeals all the way to the Texas Supreme Court. The preferred and preference shareholders now nominally control the company through election of 10 of 15 members of the company's board of directors. This case is used as an argument for deregulation in favor of competition
Bending properties of Ce-TZP/A nanocomposite clasps for removable partial dentures.
Urano, Shinjiro; Hotta, Yasuhiro; Miyazaki, Takashi; Baba, Kazuyoshi
2015-01-01
Ceria-stabilized zirconia/alumina nanocomposite (Ce-TZP/A) has excellent fracture toughness and bending strength that could be useful for partial denture framework application. The aim of this study was to investigate the effects of three-dimensional (3D) geometry on the bending and fatigue properties of a model simulation of Ce-TZP/A clasps. Half oval-shaped Ce-TZP/A rods were prepared in six 3D designs. Specimens were either of standard (width divided by thickness: 2.0/1.0 mm) or flat type (2.5/0.8 mm) cross-sectional areas with taper ratios of 1.0, 0.8, or 0.6. As a comparison, cobalt-chromium (Co-Cr) alloy rods of the same shape as the Ce-TZP/A standard shape rod were prepared. All specimens were subjected to the cantilever test and loaded until fracture. They were also cyclically loaded 106 times with various constant displacements, and the maximum displacement prior to fracture was determined for each specimen. Three-dimensional finite element analysis (3D FEA), simulating the cantilever test, was performed to determine the stress distribution during loading. Specimens with the standard cross-sectional shape exhibited higher rigidity and higher fracture loads than the flat specimens by the cantilever test. In addition, lower taper ratios were consistently associated with larger displacements at fracture. Fatigue tests revealed that the maximum displacement prior to fracture of Ce-TZP/A specimens was comparable to that of Co-Cr alloy specimens. The 3D FEA showed that specimens with a taper ratio of 0.6 had the least stress concentration. Ce-TZP/A clasp specimens with a standard cross-sectional shape and a 0.6 taper ratio exhibited the best bending properties among those tested.
Directory of Open Access Journals (Sweden)
Young-Doo Kwon
2013-01-01
Full Text Available This study examined the characteristics of a variable three-point Gauss quadrature using a variable set of weighting factors and corresponding optimal sampling points. The major findings were as follows. The one-point, two-point, and three-point Gauss quadratures that adopt the Legendre sampling points and the well-known Simpson’s 1/3 rule were found to be special cases of the variable three-point Gauss quadrature. In addition, the three-point Gauss quadrature may have out-of-domain sampling points beyond the domain end points. By applying the quadratically extrapolated integrals and nonlinearity index, the accuracy of the integration could be increased significantly for evenly acquired data, which is popular with modern sophisticated digital data acquisition systems, without using higher-order extrapolation polynomials.
The effect of residual stresses induced by prestraining on fatigue life of notched specimens
Sadeler, R.; Ozel, A.; Kaymaz, I.; Totik, Y.
2005-06-01
The effect of tensile prestraining-induced residual stress on the fatigue life of notched steel parts was investigated. The study was performed on AISI 4140 steel. Rotating bending fatigue tests were carried out on semicircular notched specimens with different notch radii in the as-quenched and tempered conditions. Metallography of the specimens was performed by means of light optical microscopy. The finite-element method was used to evaluate the residual stress distribution near the notch region. Fatigue tests revealed fatigue life improvement for notched specimens, which changes depending on the notch radii and applied stress. Scanning electron microscopy was used to examine the fracture surfaces of the specimens.
Weibull statistical analysis of Krouse type bending fatigue of nuclear materials
Energy Technology Data Exchange (ETDEWEB)
Haidyrah, Ahmed S., E-mail: ashdz2@mst.edu [Nuclear Engineering, Missouri University of Science & Technology, 301 W. 14th, Rolla, MO 65409 (United States); Nuclear Science Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Newkirk, Joseph W. [Materials Science & Engineering, Missouri University of Science & Technology, 1440 N. Bishop Ave, Rolla, MO 65409 (United States); Castaño, Carlos H. [Nuclear Engineering, Missouri University of Science & Technology, 301 W. 14th, Rolla, MO 65409 (United States)
2016-03-15
A bending fatigue mini-specimen (Krouse-type) was used to study the fatigue properties of nuclear materials. The objective of this paper is to study fatigue for Grade 91 ferritic-martensitic steel using a mini-specimen (Krouse-type) suitable for reactor irradiation studies. These mini-specimens are similar in design (but smaller) to those described in the ASTM B593 standard. The mini specimen was machined by waterjet and tested as-received. The bending fatigue machine was modified to test the mini-specimen with a specially designed adapter. The cycle bending fatigue behavior of Grade 91 was studied under constant deflection. The S–N curve was created and mean fatigue life was analyzed using mean fatigue life. In this study, the Weibull function was predicted probably for high stress to low stress at 563, 310 and 265 MPa. The commercial software Minitab 17 was used to calculate the distribution of fatigue life under different stress levels. We have used 2 and 3- parameters Weibull analysis to introduce the probability of failure. The plots indicated that the 3- parameter Weibull distribution fits the data well.
Weibull statistical analysis of Krouse type bending fatigue of nuclear materials
International Nuclear Information System (INIS)
Haidyrah, Ahmed S.; Newkirk, Joseph W.; Castaño, Carlos H.
2016-01-01
A bending fatigue mini-specimen (Krouse-type) was used to study the fatigue properties of nuclear materials. The objective of this paper is to study fatigue for Grade 91 ferritic-martensitic steel using a mini-specimen (Krouse-type) suitable for reactor irradiation studies. These mini-specimens are similar in design (but smaller) to those described in the ASTM B593 standard. The mini specimen was machined by waterjet and tested as-received. The bending fatigue machine was modified to test the mini-specimen with a specially designed adapter. The cycle bending fatigue behavior of Grade 91 was studied under constant deflection. The S–N curve was created and mean fatigue life was analyzed using mean fatigue life. In this study, the Weibull function was predicted probably for high stress to low stress at 563, 310 and 265 MPa. The commercial software Minitab 17 was used to calculate the distribution of fatigue life under different stress levels. We have used 2 and 3- parameters Weibull analysis to introduce the probability of failure. The plots indicated that the 3- parameter Weibull distribution fits the data well.
Reddy, K Vijay; Pal, Snehanshu
2018-03-07
The dependence of creep deformation behavior of nickel bicrystal specimens on grain boundary (GB) complexion was investigated by performing a simulated bending creep test using molecular dynamics methods. Strain burst phenomena were observed during the low temperature [500 K, i.e., creep process. Atomic strain and dislocation analyses showed that the time of occurrence of strain burst depends on how easily GB migration happens in bicrystal specimens. Specimens with kite monolayer segregation GB complexion were found to be stable at low temperature (500 K), whereas specimens with split-kite GB complexion were stable at a comparatively higher temperature (900 K). In case of further elevated creep temperatures, e.g., 1100 K and 1300 K, split-kite GB complexion becomes unstable and leads to early failure of the specimen at those temperatures. Additionally, it was observed that split-kite bilayer segregation and normal kite GB complexions exhibit localized increases in elastic modulus during bending creep process, occurring at temperatures of 1100 K and 1300 K, respectively, due to the formation of interpenetrating icosahedral clusters. Graphical abstract Representative creep curves during bending creep deformation of various grain boundary complexions at 900 K.
Strip specimen tests for pipeline materials and girth welds
Energy Technology Data Exchange (ETDEWEB)
Mohr, William C. [Edison Welding Institute (EWI), Columbus, Ohio (United States)
2009-07-01
Strip specimen testing of pipeline materials has been widely applied as a method of getting data relevant to the performance of pipelines under axial direction loading. Comparisons of strip specimen against smaller standard tests (round tensile bar, fracture toughness specimens, polished round bars) and against full-scale or large-scale testing will be explored. Data from early-generation pipe welds from the 1920's to the 1940's to the most recent materials for offshore reeled pipe will be used for examples. Strip samples can provide full thickness information to take account of varying material properties or imperfection distribution through the thickness. Strip samples can also accommodate measurement of effects of the original surface finish or weld surface shape. Strip samples have more design flexibility than standard tests, but must be designed to limit stress concentrations and effects of local bending. (author)
A new shape specimens determined the J1c value of nuclear pressure vessel steel
International Nuclear Information System (INIS)
Xu, W.Q.
1989-01-01
The J integral has two basic definitions, a two-dimensional energy line integral definition and an energy rate definition. The line integral definition cannot be used for this experimental determination. The energy rate definition can be used but the procedure is somewhat laborious. Methods were developed for more easily determining J by approximation formulas. The first of these were where J could be estimated with reasonable accuracy for a deeply cracked bend-type specimen. This method is slightly inaccurate. This paper is concerned with a new shape specimen. It is called the W-shape specimen. The W-shape specimens are smaller volume than the compact specimens. It is convenient to operate the W-shape specimens in hot cell. It can be put into surveillance capsules and can also do specimen irradiation in engineering test reactor
Evaluation on Bending Properties of Biomaterial GUM Metal Meshed Plates for Bone Graft Applications
Suzuki, Hiromichi; He, Jianmei
2017-11-01
There are three bone graft methods for bone defects caused by diseases such as cancer and accident injuries: Autogenous bone grafts, Allografts and Artificial bone grafts. In this study, meshed GUM Metal plates with lower elasticity, high strength and high biocompatibility are introduced to solve the over stiffness & weight problems of ready-used metal implants. Basic mesh shapes are designed and applied to GUM Metal plates using 3D CAD modeling tools. Bending properties of prototype meshed GUM Metal plates are evaluated experimentally and analytically. Meshed plate specimens with 180°, 120° and 60° axis-symmetrical types were fabricated for 3-point bending tests. The pseudo bending elastic moduli of meshed plate specimens obtained from 3-point bending test are ranged from 4.22 GPa to 16.07 GPa, within the elasticity range of natural cortical bones from 2.0 GPa to 30.0 GPa. Analytical approach method is validated by comparison with experimental and analytical results for evaluation on bending property of meshed plates.
The Effect Of Processing Temperature On Bending Strength Of Coated Steels
International Nuclear Information System (INIS)
Hishamuddin Husain; Abdul Razak Daud; Muhamad Daud; Zaifol Samsu; Julie Andrianny Murshidi
2014-01-01
Steel is the most common materials used as structural materials in industries. It is due its strength and low cost. There are several methods used in protecting steels against corrosion. One of them is through hot dipped coating. In this study, mechanical properties of stainless steel type 304, 316L and mild steel before and after hot dipped aluminising was investigated. The bending strength was determined by using three-point bend test and the hardness of the samples was determined by hardness test. Finally, the microstructure of the samples was investigated by using optical microscope. From the result obtained, we can conclude that strength of heated samples was decreased by heating but showed increment after application of coating. Although the strength for coated layer would decrease as compared to bare steel, it has great potential to increase the corrosion protection. (author)
Directory of Open Access Journals (Sweden)
Jauhar Fajrin
2017-03-01
Full Text Available This paper presents a comparison of theoretical and experimental deflection of a hybrid sandwich panel under four-point bending load. The paper initially presents few basic equations developed under three-point load, followed by development of model under four-point bending load and a comparative analysis between theoretical and experimental results. It was found that the proposed model for predicting the deflection of hybrid sandwich panels provided fair agreement with the experimental values. Most of the sandwich panels showed theoretical deflection values higher than the experimental values, which is desirable in the design. It was also noticed that the introduction of intermediate layer does not contribute much to reduce the deflection of sandwich panel as the main contributor for the total deflection was the shear deformation of the core that mostly determined by the geometric of the samples and the thickness of the core.
Bending test in epoxy composites reinforced with continuous and aligned PALF fibers
Directory of Open Access Journals (Sweden)
Gabriel Oliveira GlÃ³ria
2017-10-01
Full Text Available Sustainable actions aiming to prevent increasing worldwide pollution are motivating the substitution of environmentally friendly materials for conventional synthetic ones. A typical example is the use of natural lignocellulosic fiber (LCF as reinforcement of polymer composites that have traditionally been reinforced with glass fiber. Both scientific research and engineering applications support the use of numerous LCFs composites. The pineapple fiber (PALF, extracted from the leaves of Ananas comosus, is considered a LCF with potential for composite reinforcement. However, specific mechanical properties and microstructural characterization are still necessary for this purpose. Therefore, the objective of this short work is to evaluate the flexural properties, by means of three points, bend tests, of epoxy composites incorporated with up to 30Â vol% of PALF. Results reveal that continuous and aligned fibers significantly increase the flexural strength. Scanning electron microscopy disclosed the fracture mechanism responsible for this reinforcement. Keywords: Pineapple fibers, PALF, Flexural properties, Bending test, Epoxy composites, Fracture mechanism
A Numerical Study of the Spring-Back Phenomenon in Bending with a Rebar Bending Machine
Directory of Open Access Journals (Sweden)
Chang Hwan Choi
2014-10-01
Full Text Available Recently, the rebar bending methodology started to change from field processing to utilizing rebar bending machines at plant sites prior to transport to the construction locations. Computerized control of rebar plant bending machines provides more accurate and faster bending of rebars than the low quality inefficient field processing alternative. The bending process involves plastic deformation of rebars, where bending stress beyond the yield point of the material is applied. When the bending stress is removed, spring back is caused by the elastic restoring stress. Therefore, an accurate numerical analysis of the spring-back process is required to reduce the bending process errors. The most sensitive factors affecting the spring-back process are the bending radius, the bending angle, the diameter of the rebar, the friction coefficient, and the yielding strength of material. In this paper, we suggest a numerical modeling method using these factors. The finite element modeling of the dynamic mechanical behavior of the material during bending is performed using a commercial dynamic analysis program “DAFUL.” We use the least squares approach to derive the spring-back deflection as a function of the rebar bending parameters.
Ductile failure of pipes with defects under combined pressure and bending
International Nuclear Information System (INIS)
Darlaston, B.J.L.; Harrison, R.P.
1977-01-01
The main part of the experimental programme was carried out on 3.5'' diam. pipes with a wall thickness of 0.064''. Various lengths of defect were assessed but only two depths, 0.044'' and 0.060''. Some full penetration defect tests were carried out under bending loading. The defects were 0.012'' wide and nominally flat bottomed. The tensile properties of the pipes were determined by taking specimens from each of the tubes. The pipes were exposed to pressure only test, bending only test and combined bending and pressure test. The results are given in tables. The observations led to the postulation of a design rule relating to the effect of defect in pipes under combined internal pressure and bending. It applies only to ductile situations in which the mode of failure is by a collapse mechanism: If the failure of a pipe containing an axial defect occurs by plastic collapse then provided the bending moment does not exceed half that for collapse due to bending alone, it will have a negligible effect on the failure pressure. (J.B.)
Splitting tests on rock specimens
Energy Technology Data Exchange (ETDEWEB)
Davies, J D; Stagg, K G
1970-01-01
Splitting tests are described for a square-section sandstone specimens line loaded through steel or timber packings on the top face and supported on the bottom face either on similar packings (type A specimen) or directly on the lower platen plate of the testing machine (type B specimens). The stress distribution across the vertical central plane and the horizontal central plane were determined from a linear elastic finite element analysis for both types. Two solutions were obtained for the type B specimen: one assuming no friction between the base of the specimen and the platen plate and the other assuming no relative slip between the surfaces. Vertical and horizontal strains were measured at the center of the specimens for all loads up to failure.
Bends and splitters in graphene nanoribbon waveguides
DEFF Research Database (Denmark)
Zhu, Xiaolong; Yan, Wei; Mortensen, N. Asger
2013-01-01
We investigate the performance of bends and splitters in graphene nanoribbon waveguides. Although the graphene waveguides are lossy themselves, we show that bends and splitters do not induce any additional loss provided that the nanoribbon width is sub-wavelength. We use transmission line theory...
Janka hardness using nonstandard specimens
David W. Green; Marshall Begel; William Nelson
2006-01-01
Janka hardness determined on 1.5- by 3.5-in. specimens (2Ã4s) was found to be equivalent to that determined using the 2- by 2-in. specimen specified in ASTM D 143. Data are presented on the relationship between Janka hardness and the strength of clear wood. Analysis of historical data determined using standard specimens indicated no difference between side hardness...
Ratcheting failure of pressurised straight pipes and elbows under reversed bending
International Nuclear Information System (INIS)
Vishnuvardhan, S.; Raghava, G.; Gandhi, P.; Saravanan, M.; Goyal, Sumit; Arora, Punit; Gupta, Suneel K.; Bhasin, Vivek
2013-01-01
Ratcheting studies were carried out on Type 304LN stainless steel straight pipes and elbows subjected to steady internal pressure and cyclic bending load. The internal pressure for all the straight pipes was 35 MPa and in the case of elbows the internal pressure was varied for different elbows, ranging from 27.6 MPa to 39.2 MPa. Cyclic bending load was applied on the specimens by subjecting them to different levels of load-line displacement. The specimens have undergone significant ratchet swelling (ballooning), ovalization and consequent thinning of the cross-section during ratcheting. The straight pipes failed either by occurrence of through-wall crack accompanied by simultaneous ballooning, or bursting with simultaneous ballooning. All the elbows failed by occurrence of through-wall crack accompanied by simultaneous ballooning. Ratcheting behaviour of straight pipes and elbows were compared and it was generally inferred that ratcheting was more pronounced in straight pipes than in elbows. -- Graphical abstract: Strain history for the specimen QCE-RAT-6-L1. Highlights: • Studies were carried out under combined internal pressure and cyclic bending. • Ratcheting strains were measured at critical locations of the specimens. • Quantified the percentage of ballooning, ovalization and reduction in thickness. • Modes of ratcheting failure of straight pipes and elbows are studied. • Inferred that ratcheting is more pronounced in straight pipes than in elbows
Plastic loads of pipe bends under combined pressure and out-of-plane bending
International Nuclear Information System (INIS)
Lee, Kuk Hee; Kim, Yun Jae; Park, Chi Yong; Lee, Sung Ho; Kim, Tae Ryong
2007-01-01
Based on three-Dimensional (3-D) FE limit analyses, this paper provides plastic limit and TES(Twice- Elastic-Slope) loads for pipe bends under combined pressure and out-of-plane bending. The plastic limit loads are determined from FE limit analyses based on elastic.perfectly-plastic materials using the small geometry change option, and the FE limit analyses using the large geometry change option provide TES plastic loads. A wide range of parameters related to the bend geometry is considered. Based on the FE results, closed-form approximations of plastic limit and TES plastic load solutions for pipe bends under out-of-plane bending are proposed
In-plane and out-of-plane bending tests on carbon steel pipe bends
International Nuclear Information System (INIS)
Brouard, D.; Tremblais, A.; Vrillon, B.
1979-01-01
The objectives of these tests were to obtain experimental results on bends behaviour in elastic and plastic regime by in plane and out of plane bending. Results were used to improve the computer model, for large distorsion of bends, to be used in a simplified beam type computer code for piping calculations. Tests were made on type ANSI B 169 DN 5 bends in ASTM A 106 Grade B carbon steel. These tests made it possible to measure, for identical bends, in elastic regime, the flexibility factors and, in plastic regime, the total evolution in opening, in closing and out of plane. Flexibility factors of 180 0 bend without flanges are approximately the same in opening and in closing. The end effect due to flanges is not very significant, but it is important for 90 0 bends. In plastic regime, collapse loads or collapse moments of bends depends also of both the end effects and the angle bend. The end effects and the angle bend are more sensitive in opening than in closing. The interest of these tests is to procure some precise evolution curves of identical bends well characterized in geometry and metal strength, deflected in large distorsions. (orig./HP)
Development of piezoelectric ceramics driven fatigue testing machine for small specimens
International Nuclear Information System (INIS)
Saito, S.; Kikuchi, K.; Onishi, Y.; Nishino, T.
2002-01-01
A new fatigue testing machine with piezoelectric ceramics actuators was developed and a prototype was manufactured for high-cycle fatigue tests with small specimens. The machine has a simple mechanism and is compact. These features make it easy to set up and to maintain the machine in a hot cell. The excitation of the actuator can be transmitted to the specimen using a lever-type testing jig. More than 100 μm of displacement could be prescribed precisely to the specimen at a frequency of 50 Hz. This was sufficient performance for high-cycle bend fatigue tests on specimens irradiated at the SINQ target in Paul Scherrer Institute. The relationship of a displacement applied to the specimen and the strain of the necking part were obtained by experimental methods and by finite element method (FEM) calculations. Both results showed good agreement. This fact makes it possible to evaluate the strain of irradiated specimens by FEM simulations
Tensile and bending fatigue of the adhesive interface to dentin.
Belli, Renan; Baratieri, Luiz Narciso; Braem, Marc; Petschelt, Anselm; Lohbauer, Ulrich
2010-12-01
The aim of this study was to evaluate the fatigue limits of the dentin-composite interfaces established either with an etch-and-rinse or an one-step self-etch adhesive systems under tensile and bending configurations. Flat specimens (1.2 mm×5 mm×35 mm) were prepared using a plexiglass mold where dentin sections from human third molars were bonded to a resin composite, exhibiting the interface centrally located. Syntac Classic and G-Bond were used as adhesives and applied according to the manufacturer's instructions. The fluorochrome Rhodamine B was added to the adhesives to allow for fractographic evaluation. Tensile strength was measured in an universal testing machine and the bending strength (n=15) in a Flex machine (Flex, University of Antwerp, Belgium), respectively. Tensile (TFL) and bending fatigue limits (BFL) (n=25) were determined under wet conditions for 10(4) cycles following a staircase approach. Interface morphology and fracture mechanisms were observed using light, confocal laser scanning and scanning electron microscopy. Statistical analysis was performed using three-way ANOVA (mod LSD test, pTensile and bending characteristic strengths at 63.2% failure probability for Syntac were 23.8 MPa and 71.5 MPa, and 24.7 MPa and 72.3 MPa for G-Bond, respectively. Regarding the applied methods, no significant differences were detected between adhesives. However, fatigue limits for G-Bond (TFL=5.9 MPa; BFL=36.2 MPa) were significantly reduced when compared to Syntac (TFL=12.6 MPa; BFL=49.7 MPa). Fracture modes of Syntac were generally of adhesive nature, between the adhesive resin and dentin, while G-Bond showed fracture planes involving the adhesive-dentin interface and the adhesive resin. Cyclic loading under tensile and bending configurations led to a significant strength degradation, with a more pronounced fatigue limit decrease for G-Bond. The greater decrease in fracture strength was observed in the tensile configuration. Copyright © 2010 Academy of
International Nuclear Information System (INIS)
Joyce, James A.
1988-01-01
During the past three years a test method has been developed for dynamic testing of fracture mechanics specimens which is specifically designed for application to the upper transition temperature range. The method uses drop tower loading rates of 2.5 m/sec and obtains a J IC or a J-R curve using an analytical key curve approach verified by initial and final crack length measurements obtained from the fracture surface. A J-R curve is obtained from each specimen and contains crack growth corrections so that it is directly comparable with static results obtained in accordance with the ASTM E1152 J-R curve test method. The test procedure has been applied to A106 steel, A533B steel and US Navy HY80 and HY100 steels at temperatures from -200F to 150F. Standard 1T three point bend specimens were used for the A533B and the HY100 steel. Static test results have shown that the J at cleavage initiation (which is presently an unstandardized quantity) is specimen a/W independent throughout the ductile to brittle transition but of course demonstrates considerable statistical scatter in the vicinity of the ductile upper shelf. Dynamic J-R tests have shown an increase in J IC with test rate for most, but not for all, materials. Separation of J into elastic and plastic components shows that the elastic J component increases with test rate in a fashion consistent with the materials tensile sensitivity to test rate but the plastic J component decreases with test rate - an apparent visco-plastic phenomena. For A106 steel the plastic J decrease exceeds the elastic J increase and the upper shelf toughness falls - while the other materials have demonstrated a relatively larger increase in the elastic J component and a smaller decrease in the plastic J component giving an overall increase in upper shelf toughness. Separation of the J integral into elastic and plastic components has demonstrated that J EL is specimen scale and geometry dependent while J PL is relatively scale and geometry
Investigation of cutting-induced damage in CMC bend bars
Directory of Open Access Journals (Sweden)
Neubrand A.
2015-01-01
Full Text Available Ceramic matrix composites (“CMC” with a strong fibre-matrix interface can be made damage-tolerant by introducing a highly porous matrix. Such composites typically have only a low interlaminar shear strength, which can potentially promote damage when preparing specimens or components by cutting. In order to investigate the damage induced by different cutting methods, waterjet cutting with and without abrasives, laser-cutting, wire eroding and cutoff grinding were used to cut plates of two different CMCs with a matrix porosity up to 35 vol.-%. For each combination of cutting method and composite, the flexural and interlaminar shear strength of the resulting specimens was determined. Additionally, the integrity of the regions near the cut surfaces was investigated by high-resolution x-ray computer tomography. It could be shown that the geometrical quality of the cut is strongly affected by the cutting method employed. Laser cut and waterjet cut specimens showed damage and delaminations near the cut surface leading to a reduced interlaminar shear strength of short bend bars in extreme cases.
Experimental procedure for the characterization of cyclic behavior from very thin plate specimens
International Nuclear Information System (INIS)
Maury, A.; Moulin, D.
1983-01-01
Many investigators, including those involved in the INTERNATIONAL BENCHMARK PROJECT ON SIMPLIFIED METHODS FOR ELEVATED TEMPERATURE DESIGN AND ANALYSIS - PROBLEM II, have tried to reproduce experimentally observed behavior by inelastic calculations. Unfortunately, the material characteristics used in the computer code were established from monotonic tensile tests performed with specimens extracted from the plate product itself (1.45 mm thick) employed to construct the ratchetting specimen. It now appears that the cyclic behavior of the material is much more relevant to the phenomenon observed. Hence the need to make this kind of characterization. Nevertheless, the practical problem is to produce cyclic stresses, i.e. tensile and compressive stresses, with very thin specimens. The main difficulty is to prevent the buckling effect. A new special device set up for this particular purpose is described here. The solution adopted was to create uniformly distributed alternative pure bending stresses in the thin plate specimen. Bending moments were produced by two end-grips fixed to the specimen, and these grips were mounted on a conventional test-machine which was displacement-controlled. To reduce tensile and compressive membrane stresses inside the specimen, the grips had two parallel axles of rotation. The forces produced by the machine and the displacements of a number of points of the specimen were continuously recorded during the test, so that cyclically stabilized, bending moments could be evaluated easily for each curvature variation imposed. The very first cyclic experimental data obtained, at room temperature, for the material of the sodium test specimen, a 316 type stainless steel, are presented. It may be noted that the simple specimens were very easy to prepare and hence inexpensive. (orig.)
Effect of heat treatment on bend stress relaxation of pure tungsten
International Nuclear Information System (INIS)
Sasaki, Kenta; Nogami, Shuhei; Fukuda, Makoto; Katakai, Yasuyuki; Hasegawa, Akira
2013-01-01
Highlights: • Bend stress relaxation test was performed on the pure tungsten after heat treatment for stress relief. • The BSR ratio of the heat treated specimen was larger than that of the as-received specimen at this temperature region. • Small reduction in the BSR ratio was observed at the temperatures of 500–800 °C. • The BSR ratio of the heat treated specimen decreased significantly at the temperatures of 900–1000 °C. • The BSR ratio decreased significantly in a short time below 0.1 h, and then decreased slowly. -- Abstract: Bend stress relaxation (BSR) tests at temperatures of 500, 600, 800, 900 and 1000 °C for 0.1, 0.5 and 1 h in vacuum were performed on the pure tungsten after heat treatment for stress relief at 900 °C for 1 h. The degree of stress relaxation increased with test temperature. The BSR ratio of the heat treated specimen was larger than that of the as-received specimen at this temperature region. Small reduction in the BSR ratio was observed at the temperatures of 500, 600 and 800 °C. The BSR ratio of the heat treated specimen decreased significantly at the temperatures of 900 and 1000 °C and it was close to that of the as-received specimen. The BSR ratio of the heat treated specimen and the as-received specimen exhibited similar trend of time-evolution. The stress was exponentially relaxed with increasing test time. The BSR ratio decreased significantly in a short time below 0.1 h, and then decreased slowly. Higher activation energy of stress relaxation evaluated by cross-cut method was obtained for the higher temperature
Electrostatic bending response of a charged helix
Zampetaki, A. V.; Stockhofe, J.; Schmelcher, P.
2018-04-01
We explore the electrostatic bending response of a chain of charged particles confined on a finite helical filament. We analyze how the energy difference Δ E between the bent and the unbent helical chain scales with the length of the helical segment and the radius of curvature and identify features that are not captured by the standard notion of the bending rigidity, normally used as a measure of bending tendency in the linear response regime. Using Δ E to characterize the bending response of the helical chain we identify two regimes with qualitatively different bending behaviors for the ground state configuration: the regime of small and the regime of large radius-to-pitch ratio, respectively. Within the former regime, Δ E changes smoothly with the variation of the system parameters. Of particular interest are its oscillations with the number of charged particles encountered for commensurate fillings which yield length-dependent oscillations in the preferred bending direction of the helical chain. We show that the origin of these oscillations is the nonuniformity of the charge distribution caused by the long-range character of the Coulomb interactions and the finite length of the helix. In the second regime of large values of the radius-to-pitch ratio, sudden changes in the ground state structure of the charges occur as the system parameters vary, leading to complex and discontinuous variations in the ground state bending response Δ E .
International Nuclear Information System (INIS)
Kim, Nam In; Kim, Young Sik; Kim, Kyung Soo; Chang, Hyun Young; Park, Heung Bae; Sung, Gi Ho; Sung, Gi Ho
2015-01-01
The usage of bending products recently have increased since many industries such as automobile, aerospace, shipbuilding, and chemical plants need the application of pipings. Bending process is one of the inevitable steps to fabricate the facilities. Induction heat bending is composed of compressive bending process by local heating and cooling. This work focused on the effect of induction heat bending process on the properties of ASME SA312 Gr. TP304 stainless steel pipes. Tests were performed for base metal and bended area including extrados, intrados, crown up, and down parts. Microstructure was analyzed using an optical microscope and SEM. In order to determine intergranular corrosion resistance, Double Loop Electrochemical Potentiokinetic Reactivation (DL-EPR) test and ASTM A262 practice A and C tests were done. Every specimen revealed non-metallic inclusion free under the criteria of 1.5i of the standard and the induction heat bending process did not affect the non-metallic inclusion in the alloys. Also, all the bended specimens had finer grain size than ASTM grain size number 5 corresponding to the grain sizes of the base metal and thus the grain size of the pipe bended by induction heat bending process is acceptable. Hardness of transition start, bend, and transition end areas of ASME SA312 TP304 stainless steel was a little higher than that of base metal. Intergranular corrosion behavior was determined by ASTM A262 practice A and C and DL-EPR test, and respectively step structure, corrosion rate under 0.3 mm/y, and Degree of Sensitization (DOS) of 0.001 - 0.075 % were obtained. That is, the induction heat bending process didn't affect the intergranular corrosion behavior of ASME SA312 TP304 stainless steel
Composite material bend-twist coupling for wind turbine blade applications
Walsh, Justin M.
Current efforts in wind turbine blade design seek to employ bend-twist coupling of composite materials for passive power control by twisting blades to feather. Past efforts in this area of study have proved to be problematic, especially in formulation of the bend-twist coupling coefficient alpha. Kevlar/epoxy, carbon/epoxy and glass/epoxy specimens were manufactured to study bend-twist coupling, from which numerical and analytical models could be verified. Finite element analysis was implemented to evaluate fiber orientation and material property effects on coupling magnitude. An analytical/empirical model was then derived to describe numerical results and serve as a replacement for the commonly used coupling coefficient alpha. Through the results from numerical and analytical models, a foundation for aeroelastic design of wind turbines blades utilizing biased composite materials is provided.
Bending stresses in Facetted Glass Shells
DEFF Research Database (Denmark)
Bagger, Anne; Jönsson, Jeppe; Almegaard, Henrik
2008-01-01
A shell structure of glass combines a highly effective structural principle with a material of optimal permeability to light. A facetted shell structure has a piecewise plane geometry, and together the facets form an approximation to a curved surface. A distributed load on a plane-based facetted...... structure will locally cause bending moments in the loaded facets. The bending stresses are dependent on the stiffness of the joints. Approximate solutions are developed to estimate the magnitude of the bending stresses. A FE-model of a facetted glass shell structure is used to validate the expressions...
Frohn, Peter; Engel, Bernd; Groth, Sebastian
2018-05-01
Kinematic forming processes shape geometries by the process parameters to achieve a more universal process utilizations regarding geometric configurations. The kinematic forming process Incremental Swivel Bending (ISB) bends sheet metal strips or profiles in plane. The sequence for bending an arc increment is composed of the steps clamping, bending, force release and feed. The bending moment is frictionally engaged by two clamping units in a laterally adjustable bending pivot. A minimum clamping force hindering the material from slipping through the clamping units is a crucial criterion to achieve a well-defined incremental arc. Therefore, an analytic description of a singular bent increment is developed in this paper. The bending moment is calculated by the uniaxial stress distribution over the profiles' width depending on the bending pivot's position. By a Coulomb' based friction model, necessary clamping force is described in dependence of friction, offset, dimensions of the clamping tools and strip thickness as well as material parameters. Boundaries for the uniaxial stress calculation are given in dependence of friction, tools' dimensions and strip thickness. The results indicate that changing the bending pivot to an eccentric position significantly affects the process' bending moment and, hence, clamping force, which is given in dependence of yield stress and hardening exponent. FE simulations validate the model with satisfactory accordance.
Effect of couple-stress on the pure bending of a prismatic bar
International Nuclear Information System (INIS)
Tzung, F.; Kao, B.; Ho, F.; Tang, P.
1981-02-01
An evaluation of the applicability of the couple-stress theory to the stress analysis of graphite structures is performed by solving a pure bending problem. The differences between solutions from the couple-stress theory and from the classical theory of elasticity are compared. It is found that the differences are sufficient to account for the inconsistencies which have often been observed between the classical elasticity theory and actual behavior of graphite under bend and tensile loadings. An experimental procedure to measure the material constants in the couple-stress theory is also suggested. The linear couple-stress theory, the origins of which go back to the turn of the last century, adds linear relations between couple-stresses and rotation gradients to the classical stress-strain law. By adopting the classical assumption that the plane cross section remains plane after deformation, the pure-bending problem is reduced to a plane couple-stress problem with traction-free boundary conditions. A general solution for an isotropic elastic prismatic bar under pure bending is then obtained using the Airy stress function and another stress function wich accounts for the couple-stresss. For a cylindrical bar, it reduces to a simple series solution. The moment-curvature and stress-curvature relations derived for a cylindrical bar from the general solution are used to examine the effect of couple-stresses. Numerical compilation of relations indicates that the couple stress parameters can be practically determined by measuring the moment-curvature ratio of various diametered specimens under bending. Although there is not sufficient data for such evaluation at present, it appears that the theory is consistent with the limited bend and tensile strength data of cylindrical specimens for H-451 graphite
Regularities in development of surface cracks in low-alloy steel under asymmetric cyclic bending
International Nuclear Information System (INIS)
Letunov, V.I.; Shul'ginov, B.S.; Plundrova, I.; Vajnshtok, V.A.; Kramarenko, I.V.
1985-01-01
Semielliptical cracks in low-alloy 09g2 and 12gn2mfayu steels are studied for regularities of their growth. It is shown that the growth rate of the semielliptical crack at the preset ΔK and R values is higher in the maximally depressed point of the front than in the point on the surface on the specimen under cyclic bending. A decrease of the 1/C parameter with growth of the semielliptical crack is experimentally established being attributed to the increase in difference of ΔK both in maximally depressed point of the crack front (phi=0) and in the point on the specimen surface (phi= π/2). Experiments have proved the correctness of the previously established formulas of stress-intensity factor calculation for semielliptical surface cracks under bending
Fatigue Assessment of High Strength Steel Welded Joints Under Bending Loading
International Nuclear Information System (INIS)
Lee, Myeong-Woo; Kim, Yun-Jae; Park, Jun-Hyub
2014-01-01
In this study, a fatigue assessment method for vehicle suspension systems having welded geometries was established under a bending loading condition. For the fatigue life estimation of the actual product s welded joints made of different steels, bending fatigue tests were performed on welded specimens with a simplified shape for obtaining the moment-fatigue-life plot. Further, geometry modeling of the simplified welded specimens was conducted. Results of finite element analysis were used to obtain the stress-fatigue-life plot. The analysis results were also used to calculate the stress concentration factors for notch-factor-based fatigue life estimation. The test results were compared with results of the general notch-factor-based fatigue life estimation for improving fatigue assessment. As a result, it was concluded that both the welded fatigue tests and the notch-factor-based fatigue life estimation are necessary for accurate fatigue assessment
Acoustic emission behavior under bending deformation of YBCO bulk superconductor
International Nuclear Information System (INIS)
Yoneda, K.; Ye, J.; Tomita, M.
2005-01-01
Bending tests were conducted on U-notched specimens cut from a YBCO bulk superconductor. Acoustic emission (AE) signals obtained under loading parallel or perpendicular to the c-axis were analyzed to investigate the correlation between crack growth behavior and the AE signals. As a result of analyzing log-log plots of strength (σ B ) versus total AE energy (ΣE AE ), a linear relationship was found between ΣE AE and σ B n . Cracks could be broadly divided into two types based on the value of n as an index of crack growth behavior. One type consisted of microcracks originating from cleavage planes and gas holes; these crack propagated parallel to the c-axis and had an n index value of approximately 0.7. The other type was a main crack that originated from the U-notch and had an n index value of approximately 6.5. A sample (A) loaded parallel to the c-axis showed mean bending strength of 74.8MPa. Cracks displaying two different growth patterns of n=0.7 and 6.5 were presented in this sample. Microcracks parallel to the c-axis occurred in the vicinity of 5-10MPa. This sample was characterized by mixed crack growth of a main crack and microcracks. A sample (B) loaded perpendicular to the c-axis displayed mean bending strength of 43MPa. A main crack occurred in the vicinity of 20MPa and displayed a single growth pattern of n=6.5. By analyzing AE signals in this way in the process of conducting a strength evaluation, it was possible to evaluate the failure process of the bulk superconductor in relation to the strength level induced by the applied load
Fatigue Debond Growth in Sandwich Structures Loaded in Mixed Mode Bending (MMB)
DEFF Research Database (Denmark)
Quispitupa, Amilcar; Berggreen, Christian; Carlsson, Leif A.
2008-01-01
Static and cyclic debond growth in sandwich specimens loaded in mixed mode bending (MMB) is examined. The MMB sandwich specimens were manufactured using H100 PVC foam core and E-glass/polyester non-crimp quadro-axial [0/45/90/-45]s DBLT-850 face sheets. Static test were performed to determine...... the fracture toughness of the debonded sandwich specimens at different mixed mode loadings. The mixed mode ratio (mode I to mode II) was controlled by changing the lever arm distance of the MMB test rig. Compliance technique and visual inspection was employed to measure the crack length during fatigue. Fatigue...... tests were performed at 90% of the static fracture toughness at a loading ratio of R=0.1. Fatigue results revealed higher debond crack growth rates when the lever arm distance was increased. For some specimens, the crack propagated just below the face/core interface in the foam core and for others...
Directory of Open Access Journals (Sweden)
Jun-Hyong Kim
2015-08-01
Full Text Available This study investigates the influence of ultrasonic nanocrystal surface modification (UNSM technique on fatigue properties of SAE AMS 5662 (solution treatment of Inconel 718 alloys. The fatigue properties of the specimens were investigated using a rotary bending fatigue tester. Results revealed that the UNSM-treated specimens showed longer fatigue life in comparison with those of the untreated specimens. The improvement in fatigue life of the UNSM-treated specimens is attributed mainly to the induced compressive residual stress, increased hardness, reduced roughness and refined grains at the top surface. Fractured surfaces were analysed using a scanning electron microscopy (SEM in order to give insight into the effectiveness of UNSM technique on fracture mechanisms and fatigue life.
Acoustic emission monitoring of recycled aggregate concrete under bending
Tsoumani, A. A.; Barkoula, N.-M.; Matikas, T. E.
2015-03-01
The amount of construction and demolition waste has increased considerably over the last few years, making desirable the reuse of this waste in the concrete industry. In the present study concrete specimens are subjected at the age of 28 days to four-point bending with concurrent monitoring of their acoustic emission (AE) activity. Several concrete mixtures prepared using recycled aggregates at various percentages of the total coarse aggregate and also a reference mix using natural aggregates, were included to investigate their influence of the recycled aggregates on the load bearing capacity, as well as on the fracture mechanisms. The results reveal that for low levels of substitution the influence of using recycled aggregates on the flexural strength is negligible while higher levels of substitution lead into its deterioration. The total AE activity, as well as the AE signals emitted during failure, was related to flexural strength. The results obtained during test processing were found to be in agreement with visual observation.
Big Bend National Park: Acoustical Monitoring 2010
2013-06-01
During the summer of 2010 (September October 2010), the Volpe Center collected baseline acoustical data at Big Bend National Park (BIBE) at four sites deployed for approximately 30 days each. The baseline data collected during this period will he...
Interpretation of bend strength increase of graphite by the couple-stress theory
International Nuclear Information System (INIS)
Tang, P.Y.
1981-05-01
This paper presents a continued evaluation of the applicability of the couple-stress constitutive theory to graphite. The evaluation is performed by examining four-point bend and uniaxial tensile data of various sized cylindrical and square specimens for three grades of graphites. These data are superficially inconsistent and, usually, at variance with the predictions of classical theories. Nevertheless, this evaluation finds that they can be consistently interpreted by the couple-stress theory. This is compatible with results of an initial evaluation that considered one size of cylindrical specimen for H-451 graphite
Experimental evaluation of J in cracked straight and curved pipes under bending
International Nuclear Information System (INIS)
Moulin, D.; Touboul, F.; Foucher, N.; Lebey, J.; Acker, D.
1989-01-01
An experimental program is being carried out at the CEA Saclay in collaboration with FRAMATOME and IPSN with a view to validate analysis methods applicable for evaluation of leak before break behavior in P.W.R. piping. A large experimental work was already performed in USA, Germany and Japan and cracked pipes made of stainless steel material under bending. The methods of analysis got same validations for straight pipes. However applicability to elbows and comparison with toughness values obtained on small specimens like CT specimens was not completely dealt with
DEFF Research Database (Denmark)
Valvo, Paolo S.; Sørensen, Bent F.; Toftegaard, Helmuth Langmaack
2015-01-01
A theoretical model of the double cantilever beam tests with bending moments (DCB-UBM) is presented. The specimen is modelled as the assemblage of two laminated beams connected by a cohesive interface. It is assumed that the traction-separation laws – i.e. the relationships between the interfacial...... the cohesive law parameters from experiments. Experimental tests have been conducted on glass fibre reinforced specimens under pure mode I and II loading conditions. The predictions of the theoretical model turn out to be in very good agreement with the experimental results....
This is a slice of a LEP dipole bending magnet, made as a concrete and iron sandwich. The bending field needed in LEP is small (about 1000 Gauss), equivalent to two of the magnets people stick on fridge doors. Because it is very difficult to keep a low field steady, a high field was used in iron plates embedded in concrete. A CERN breakthrough in magnet design, LEP dipoles can be tuned easily and are cheaper than conventional magnets.
A transparent bending-insensitive pressure sensor
Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao
2016-05-01
Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions.
Bending sound in graphene: Origin and manifestation
Energy Technology Data Exchange (ETDEWEB)
Adamyan, V.M., E-mail: vadamyan@onu.edu.ua [Department of Theoretical Physics, Odessa I.I. Mechnikov National University, 2 Dvoryanska St., Odessa 65026 (Ukraine); Bondarev, V.N., E-mail: bondvic@onu.edu.ua [Department of Theoretical Physics, Odessa I.I. Mechnikov National University, 2 Dvoryanska St., Odessa 65026 (Ukraine); Zavalniuk, V.V., E-mail: vzavalnyuk@onu.edu.ua [Department of Theoretical Physics, Odessa I.I. Mechnikov National University, 2 Dvoryanska St., Odessa 65026 (Ukraine); Department of Fundamental Sciences, Odessa Military Academy, 10 Fontanska Road, Odessa 65009 (Ukraine)
2016-11-11
Highlights: • The origin of sound-like dispersion of graphene bending mode is disclosed. • The speed of graphene bending sound is determined. • The renormalized graphene bending rigidity is derived. • The intrinsic corrugations of graphene are estimated. - Abstract: It is proved that the acoustic-type dispersion of bending mode in graphene is generated by the fluctuation interaction between in-plane and out-of-plane terms in the free energy arising with account of non-linear components in the graphene strain tensor. In doing so we use an original adiabatic approximation based on the alleged (confirmed a posteriori) significant difference of sound speeds for in-plane and bending modes. The explicit expression for the bending sound speed depending only on the graphene mass density, in-plane elastic constants and temperature is deduced as well as the characteristics of the microscopic corrugations of graphene. The obtained results are in good quantitative agreement with the data of real experiments and computer simulations.
Bending sound in graphene: Origin and manifestation
International Nuclear Information System (INIS)
Adamyan, V.M.; Bondarev, V.N.; Zavalniuk, V.V.
2016-01-01
Highlights: • The origin of sound-like dispersion of graphene bending mode is disclosed. • The speed of graphene bending sound is determined. • The renormalized graphene bending rigidity is derived. • The intrinsic corrugations of graphene are estimated. - Abstract: It is proved that the acoustic-type dispersion of bending mode in graphene is generated by the fluctuation interaction between in-plane and out-of-plane terms in the free energy arising with account of non-linear components in the graphene strain tensor. In doing so we use an original adiabatic approximation based on the alleged (confirmed a posteriori) significant difference of sound speeds for in-plane and bending modes. The explicit expression for the bending sound speed depending only on the graphene mass density, in-plane elastic constants and temperature is deduced as well as the characteristics of the microscopic corrugations of graphene. The obtained results are in good quantitative agreement with the data of real experiments and computer simulations.
Screen-film specimen radiography
International Nuclear Information System (INIS)
Shepard, S.J.; Hogan, J.; Schreck, B.
1990-01-01
This paper reports on the reproducibility and quality of biopsy specimen radiographs, a unique phototimed cabinet x-ray system is being developed. The system utilizes specially modified Kodal Min-R cassettes and will be compatible with current mammographic films. Tube voltages are in the 14-20-kVp range with 0.1-1.0-second exposure times. A top-hat type compression device is used (1) to compress the specimen to uniform thickness, (2) to measure the specimen thickness and determine optimum kVp, and (3) to superimpose a grid over the specimen for identification of objects of radiographic interest. The phototiming circuit developed specifically for this purpose will be described along with the modified Min-R cassette. Characteristics of the generator and cabinet will also be described. Tests will be performed on phantoms to evaluate the system limitations
International Nuclear Information System (INIS)
Brunet, M.; Morestin, F.; Godereaux, S.
2000-01-01
An inverse identification technique is proposed based on bending-unbending experiments on anisotropic sheet-metal strips. The initial anisotropy theory of plasticity is extended to include the concept of combined isotropic and non-linear kinematic hardening. This theory is adopted to characterise the anisotropic hardening due to loading-unloading which occurs in sheet-metal forming processes. To this end, a specific bending-unbending apparatus has been built to provide experimental moment-curvature curves. The constant bending moment applied over the length of the specimen to determine numerically the strain-stress behaviour but without Finite Element Analysis. Four constitutive parameters have to be identified by an inverse approach. Our identification results show that bending-unbending tests are suitable to model quite accurately the constitutive behaviour of sheet metals under complex loading paths. (author)
DNA extraction from herbarium specimens.
Drábková, Lenka Záveská
2014-01-01
With the expansion of molecular techniques, the historical collections have become widely used. Studying plant DNA using modern molecular techniques such as DNA sequencing plays an important role in understanding evolutionary relationships, identification through DNA barcoding, conservation status, and many other aspects of plant biology. Enormous herbarium collections are an important source of material especially for specimens from areas difficult to access or from taxa that are now extinct. The ability to utilize these specimens greatly enhances the research. However, the process of extracting DNA from herbarium specimens is often fraught with difficulty related to such variables as plant chemistry, drying method of the specimen, and chemical treatment of the specimen. Although many methods have been developed for extraction of DNA from herbarium specimens, the most frequently used are modified CTAB and DNeasy Plant Mini Kit protocols. Nine selected protocols in this chapter have been successfully used for high-quality DNA extraction from different kinds of plant herbarium tissues. These methods differ primarily with respect to their requirements for input material (from algae to vascular plants), type of the plant tissue (leaves with incrustations, sclerenchyma strands, mucilaginous tissues, needles, seeds), and further possible applications (PCR-based methods or microsatellites, AFLP).
A review of literature for the structural assessment of mitred bends
International Nuclear Information System (INIS)
Wood, J.
2008-01-01
This paper presents a state-of-the-art review of literature available for the structural assessment of all types of mitred pipe bends. Compared with smooth bends, the volume of literature available for mitres is less extensive and its scope is not as wide. Historically, this reflects a reduced application level, as well as a less demanding range of applications, such as non-high temperature use. There is also the issue that an analysis of a mitred bend is complicated by discontinuity stresses, as well as those due to cross-section ovalisation. This fact delayed the development of non-linear analysis of mitred bends. Nevertheless, there is now a substantial body of work on mitred bends. This review tabulates and characterises all publications to date in chronological order. The details of experimental specimens are highlighted, with a view to these perhaps providing useful verification data for any future finite element analysis for example. Issues of particular interest to pipework designers are discussed, including the effects of combinations of loading, out-of-circularity, tangent pipe length and flanges. Failure characteristics and loads are discussed where relevant. Topics for further research are also noted. For example, comprehensive design curves do not exist for the elastic and plastic behaviour of all mitre types, over a practical range of geometry and loading parameters. Similarly, there is still scope for further work on the effect of combined loading, end effects and out-of-circularity. Limit, collapse and burst loads are not yet available across the entire spectrum of bends and loading parameters either. Creep and optimisation represent virgin territory as far as mitred bends are concerned and given that unforeseen vibration is a common source of high-cycle fatigue failure in pipework, there must also be scope for vibration-induced fatigue studies
Estimates of plastic loads for pipe bends under combined in-plane and out-of-plane bending moment
International Nuclear Information System (INIS)
Kim, Nak Hyun; Oh, Chang Sik; Kim, Yun Jae
2008-01-01
This paper provides a method to estimate plastic loads (defined by twice-elastic-slope) for pipe bends under combined in-plane and out-of-plane bending moment, based on detailed 3-D FE limit analyses using elastic-perfectly plastic materials. Because closing bending moment is always lower than opening bending moment, the combination of in-plane closing bending and out-of-plane bending moment becomes the most significant case. Due to conservatism of each bending moments, the resultant moment provided by ASME B and PV code is unduly conservative. However, the concept of the resultant moment is still valid. In this paper, FE results show that the accurate solutions of bending moments provide better estimates of plastic loads of pipe bend under combined in-plane bending and out-of-plane bending moment
Test methodology and technology of fracture toughness for small size specimens
Energy Technology Data Exchange (ETDEWEB)
Wakai, E.; Takada, F.; Ishii, T.; Ando, M. [Japan Atomic Energy Agency, Naga-gun, Ibaraki-ken (Japan); Matsukawa, S. [JNE Techno-Research Co., Kanagawa-ken (Japan)
2007-07-01
Full text of publication follows: Small specimen test technology (SSTT) is required to investigate mechanical properties in the limited availability of effective irradiation volumes in test reactors and accelerator-based neutron and charged particle sources. The test methodology guideline and the manufacture processes for very small size specimens have not been established, and we would have to formulate it. The technology to control exactly the load and displacement is also required in the test technology under the environment of high dose radiation produced from the specimens. The objective of this study is to examine the test technology and methodology of fracture toughness for very small size specimens. A new bend test machine installed in hot cell has been manufactured to obtain fracture toughness and DBTT (ductile - brittle transition temperature) of reduced-activation ferritic/martensitic steels for small bend specimens of t/2-1/3PCCVN (pre-cracked 1/3 size Charpy V-notch) with 20 mm length and DFMB (deformation and fracture mini bend specimen) with 9 mm length. The new machine can be performed at temperatures from -196 deg. C to 400 deg. C under unloading compliance method. Neutron irradiation was also performed at about 250 deg. C to about 2 dpa in JMTR. After the irradiation, fracture toughness and DBTT were examined by using the machine. Checking of displacement measurement between linear gauge of cross head's displacement and DVRT of the specimen displacement was performed exactly. Conditions of pre-crack due to fatigue in the specimen preparation were also examined and it depended on the shape and size of the specimens. Fracture toughness and DBTT of F82H steel for t/2-1/3PCCVN, DFMB and 0.18DCT specimens before irradiation were examined as a function of temperature. DBTT of smaller size specimens of DFMB was lower than that of larger size specimen of t/2-1/3PCCVN and 0.18DCT. The changes of fracture toughness and DBTT due to irradiation were also
Institute of Scientific and Technical Information of China (English)
LIN; Kuang-Jang; LIN; Chii-Ruey
2010-01-01
The Photovoltaic Array has a best optimal operating point where the array operating can obtain the maximum power.However, the optimal operating point can be compromised by the strength of solar radiation,angle,and by the change of environment and load.Due to the constant changes in these conditions,it has become very difficult to locate the optimal operating point by following a mathematical model.Therefore,this study will focus mostly on the application of Fuzzy Logic Control theory and Three-point Weight Comparison Method in effort to locate the optimal operating point of solar panel and achieve maximum efficiency in power generation. The Three-point Weight Comparison Method is the comparison between the characteristic curves of the voltage of photovoltaic array and output power;it is a rather simple way to track the maximum power.The Fuzzy Logic Control,on the other hand,can be used to solve problems that cannot be effectively dealt with by calculation rules,such as concepts,contemplation, deductive reasoning,and identification.Therefore,this paper uses these two kinds of methods to make simulation successively. The simulation results show that,the Three-point Comparison Method is more effective under the environment with more frequent change of solar radiation;however,the Fuzzy Logic Control has better tacking efficiency under the environment with violent change of solar radiation.
Mcclelland, J.; Silk, J.
1978-01-01
Higher-order correlation functions for the large-scale distribution of galaxies in space are investigated. It is demonstrated that the three-point correlation function observed by Peebles and Groth (1975) is not consistent with a distribution of perturbations that at present are randomly distributed in space. The two-point correlation function is shown to be independent of how the perturbations are distributed spatially, and a model of clustered perturbations is developed which incorporates a nonuniform perturbation distribution and which explains the three-point correlation function. A model with hierarchical perturbations incorporating the same nonuniform distribution is also constructed; it is found that this model also explains the three-point correlation function, but predicts different results for the four-point and higher-order correlation functions than does the model with clustered perturbations. It is suggested that the model of hierarchical perturbations might be explained by the single assumption of having density fluctuations or discrete objects all of the same mass randomly placed at some initial epoch.
Reliability of non-heated tube bends of boilers
International Nuclear Information System (INIS)
Bugaj, N.V.; Akhremenko, V.L.; Zamotaev, V.S.
1984-01-01
Bend failures are described for non-heated boiler tubes of 12Kh1MF and 20 steels. Methods of reliability evaluations are presented which permit revealing and replacing the bends with inadequate resources. Influences of operation conditions on bend durability is shown as well as the factors which are dominating at bend failures
Bending and tensile deformation of metallic nanowires
International Nuclear Information System (INIS)
McDowell, Matthew T; Leach, Austin M; Gall, Ken
2008-01-01
Using molecular statics simulations and the embedded atom method, a technique for bending silver nanowires and calculating Young's modulus via continuum mechanics has been developed. The measured Young's modulus values extracted from bending simulations were compared with modulus values calculated from uniaxial tension simulations for a range of nanowire sizes, orientations and geometries. Depending on axial orientation, the nanowires exhibit stiffening or softening under tension and bending as size decreases. Bending simulations typically result in a greater variation of Young's modulus values with nanowire size compared with tensile deformation, which indicates a loading-method-dependent size effect on elastic properties at sub-5 nm wire diameters. Since the axial stress is maximized at the lateral surfaces in bending, the loading-method-dependent size effect is postulated to be primarily a result of differences in nanowire surface and core elastic modulus. The divergence of Young's modulus from the bulk modulus in these simulations occurs at sizes below the range in which experiments have demonstrated a size scale effect on elastic properties of metallic nanowires. This difference indicates that other factors beyond native metallic surface properties play a role in experimentally observed nanowire elastic modulus size effects
Bending the law: tidal bending and its effects on ice viscosity and flow
Rosier, S.; Gudmundsson, G. H.
2017-12-01
Many ice shelves are subject to strong ocean tides and, in order to accommodate this vertical motion, the ice must bend within the grounding zone. This tidal bending generates large stresses within the ice, changing its effective viscosity. For a confined ice shelf, this is particularly relevant because the tidal bending stresses occur along the sidewalls, which play an important role in the overall flow regime of the ice shelf. Hence, tidal bending stresses will affect both the mean and time-varying components of ice shelf flow. GPS measurements reveal strong variations in horizontal ice shelf velocities at a variety of tidal frequencies. We show, using full-Stokes viscoelastic modelling, that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of horizontal ice shelf flow. Furthermore, our model shows that in the absence of a vertical tidal forcing, the mean flow of the ice shelf is reduced considerably.
Strength measurement of optical fibers by bending
Srubshchik, Leonid S.
1999-01-01
A two-point bending technique has been used not only to measure the breaking stress of optical fiber but also to predict its static and dynamic fatigue. The present theory of this test is based on elastica theory of rod. However, within the limits of elastica theory the tensile and shear stresses cannot be determined. In this paper we study dynamic and static problems for optical fiber in the two- point bending test on the base of geometrically exact theory in which rod can suffer flexure, extension, and shear. We obtain the governing partial differential equations taking into account the fact that the lateral motion of the fiber is restrained by the presence of flat parallel plates. We develop the computational methods for solving the initial and equilibrium free-boundary nonlinear planar problems. We derive the formulas for predicting of the tensile strength from strength in the bending and calculate one example.
Magnetic field of longitudinal gradient bend
Aiba, Masamitsu; Böge, Michael; Ehrlichman, Michael; Streun, Andreas
2018-06-01
The longitudinal gradient bend is an effective method for reducing the natural emittance in light sources. It is, however, not a common element. We have analyzed its magnetic field and derived a set of formulae. Based on the derivation, we discuss how to model the longitudinal gradient bend in accelerator codes that are used for designing electron storage rings. Strengths of multipole components can also be evaluated from the formulae, and we investigate the impact of higher order multipole components in a very low emittance lattice.
Slice through an LHC bending magnet
Slice through an LHC superconducting dipole (bending) magnet. The slice includes a cut through the magnet wiring (niobium titanium), the beampipe and the steel magnet yokes. Particle beams in the Large Hadron Collider (LHC) have the same energy as a high-speed train, squeezed ready for collision into a space narrower than a human hair. Huge forces are needed to control them. Dipole magnets (2 poles) are used to bend the paths of the protons around the 27 km ring. Quadrupole magnets (4 poles) focus the proton beams and squeeze them so that more particles collide when the beams’ paths cross. There are 1232 15m long dipole magnets in the LHC.
Bending energy of buckled edge dislocations
Kupferman, Raz
2017-12-01
The study of elastic membranes carrying topological defects has a longstanding history, going back at least to the 1950s. When allowed to buckle in three-dimensional space, membranes with defects can totally relieve their in-plane strain, remaining with a bending energy, whose rigidity modulus is small compared to the stretching modulus. In this paper we study membranes with a single edge dislocation. We prove that the minimum bending energy associated with strain-free configurations diverges logarithmically with the size of the system.
Gee, C; Weddell, J N; Swain, M V
2017-09-01
To quantify the adhesion of two bonding approaches of zirconia to more aesthetic glass-ceramic materials using the Schwickerath (ISO 9693-2:2016) three point bend (3PB) [1] test to determine the fracture initiation strength and strain energy release rate associated with stable crack extension with this test and the Charalamabides et al. (1989) [2] four point bend (4PB) test. Two glass-ceramic materials (VITABLOCS Triluxe forte, Vita Zahnfabrik, Germany and IPS.emax CAD, Ivoclar Vivadent, Liechtenstein) were bonded to sintered zirconia (VITA InCeram YZ). The former was resin bonded using a dual-cure composite resin (Panavia F 2.0, Kuraray Medical Inc., Osaka, Japan) following etching and silane conditioning, while the IPS.emax CAD was glass bonded (IPS e.max CAD Crystall/Connect) during crystallization of the IPS.emax CAD. Specimens (30) of the appropriate dimensions were fabricated for the Schwickerath 3PB and 4PB tests. Strength values were determined from crack initiation while strain energy release rate values were determined from the minima in the force-displacement curves with the 3PB test (Schneider and Swain, 2015) [3] and for 4PB test from the plateau region of stable crack extension. Strength values for the resin and glass bonded glass ceramics to zirconia were 22.20±6.72MPa and 27.02±3.49MPa respectively. The strain energy release rates for the two methods used were very similar and for the glass bonding, (4PB) 15.14±5.06N/m (or J/m 2 ) and (3PB) 16.83±3.91N/m and resin bonding (4PB) 8.34±1.93N/m and (3PB) 8.44±2.81N/m respectively. The differences in strength and strain energy release rate for the two bonding approaches were statistically significant (pceramics to zirconia. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
José Ignacio Alonso Roque
2008-10-01
Full Text Available Resumen El reglamento de Minibasket no ha sufrido modificaciones significativas desde sus inicios. Para la temporada 2005/2006 la Federación Española de Baloncesto propuso unas modificaciones al reglamento, de las cuales destaca una línea de tres puntos con forma rectangular. El objetivo de este trabajo fue analizar la bibliografía con respecto a las modificaciones reglamentarias y a la línea de tres puntos en Minibasket, desde un enfoque formativo para el jugador. Las reglas de los deportes de iniciación y en concreto de Minibasket deben responder a las demandas de los sujetos, sus necesidades y motivaciones con el fin de lograr un aprendizaje óptimo. En este sentido, tras revisar la bibliografía, no se encuentran estudios científicos que se centren en analizar la inclusión de la línea de tres puntos, ni que analicen la posición y distancia a la que se debe situar dicha línea para mejorar el juego en Minibasket. Sin embargo, la inclusión de la línea de tres puntos, en las competiciones de las cuales se ha encontrado referencias, fue todo un éxito. Por lo que son necesarias investigaciones que ayuden a esclarecer las limitaciones que existen a la hora de proponer una línea de tres puntos, adaptada a las necesidades formativas y a las características de los jugadores de Minibasket, para favorecer el lanzamiento y obtener éxito desde posiciones alejadas. Abstract Mini-basketball rules do not have been changed in a significant way regarding the original idea. For the season 2005-2006, the Spanish Federation of Basketball proposed some changes in its rules, from which a rectangular three-point line stands out. The aim of this study was to examine the bibliography with respect to the rule modifications and to the three-point line in Mini-basketball from a formative point of view. In sport initiation and in Mini-basketball, rules must improve the skill efficiency, performance, enjoyment and satisfaction to the learners. After review
International Nuclear Information System (INIS)
Wakai, Eiichi; Ohtsuka, Hideo; Jitsukawa, Shiro; Matsukawa, Shingo; Ando, Masami
2006-03-01
Small specimen test technology (SSTT) has been developed to investigate mechanical properties of nuclear materials. SSTT has been driven by limited availability of effective irradiation volumes in test reactors and accelerator-based neutron and charged particle sources, and it is very useful for the reduction of waste materials produced in nuclear engineering. In this study new bend test machines have been developed to obtain fracture behaviors of F82H steel for very small bend specimens of pre-cracked t/2-1/3CVN (Charpy V-notch) with 20 mm-length and DFMB (deformation and fracture mini bend specimen) with 9 mm-length and disk compact tension of 0.18DCT type, and fracture behaviors were examined to evaluate DBTT (ductile-brittle transition temperature) at temperature from -180 to 25degC. The effect of specimen size on DBTT of F82H steel was also examined by using Charpy type specimens such as 1/2t-CVN, 1/3CVN and t/2-1/3CVN. In this paper, it also provides the information of the specimens irradiated at 250degC and 350degC to about 2 dpa in the capsule of 04M-67A and 04M-68A of JMTR experiments. (author)
Directory of Open Access Journals (Sweden)
George L. Karakostas
2006-08-01
Full Text Available We provide sufficient conditions for the existence of positive solutions of a three-point boundary value problem concerning a second order delay differential equation with damping and forcing term whose the delayed part is an actively bounded function, a meaning introduced in [19]. By writing the damping term as a difference of two factors one can extract more information on the solutions. (For instance, in an application, given in the last section, we can give the exact value of the norm of the solution.
Comparison of different nail bending apparatus
Vianen, H.P.C.A.; Schot, F.; Vermeltfoort, A.Th.
1992-01-01
A research to develope a registrated testmethod to define the allowable bending moment of a nail was started in spring of this year. A request for a registrated testmethod is caused by the final project of ir. H.P.C.A. Vianen ‘s study. The consequence of developing new codes in The Netherlands and
Amplification caused by gravitational bending of light
International Nuclear Information System (INIS)
Schneider, P.
1985-01-01
Gravitational bending of light may not only lead to multiple imaging (gravitational lens effect), but also affects the apparent luminosity of a source. It is shown here that a mass distribution near the line-of-sight to any source always increases the observable flux relative to the case in which the deflector is absent
Interdisciplinary Invitations: Exploring Gee's Bend Quilts
Mitchell, Rebecca; Whitin, Phyllis; Whitin, David
2012-01-01
Engaging with the quilts of Gee's Bend offers a rich opportunity for students in grades four through eight to develop appreciation for pattern, rhythm, and innovation while learning about history, entrepreneurship, and political activism. By easily accessing print, film, and Internet resources teachers can include these vibrant quilts and…
Demonstration model of LEP bending magnet
CERN PhotoLab
1981-01-01
To save iron and raise the flux density, the LEP bending magnet laminations were separated by spacers and the space between the laminations was filled with concrete. This is a demonstration model, part of it with the spaced laminations only, the other part filled with concrete.
Tubular lining material for pipelines having bends
Energy Technology Data Exchange (ETDEWEB)
Moringa, A.; Sakaguchi, Y.; Hyodo, M.; Yagi, I.
1987-03-24
A tubular lining material for pipelines having bends or curved portions comprises a tubular textile jacket made of warps and wefts woven in a tubular form overlaid with a coating of a flexible synthetic resin. It is applicable onto the inner surface of a pipeline having bends or curved portions in such manner that the tubular lining material with a binder onto the inner surface thereof is inserted into the pipeline and allowed to advance within the pipeline, with or without the aid of a leading rope-like elongated element, while turning the tubular lining material inside out under fluid pressure. In this manner the tubular lining material is applied onto the inner surface of the pipeline with the binder being interposed between the pipeline and the tubular lining material. The lining material is characterized in that a part of all of the warps are comprised of an elastic yarn around which, over the full length thereof, a synthetic fiber yarn or yarns have been left-and/or right-handedly coiled. This tubular lining material is particularly suitable for lining a pipeline having an inner diameter of 25-200 mm and a plurality of bends, such as gas service pipelines or house pipelines, without occurrence of wrinkles in the lining material in a bend.
Systematisk løbende refleksion
DEFF Research Database (Denmark)
Kristiansson, Michael
2010-01-01
Artiklen omhandler en model kaldet systematisk løbende refleksion, der repræsenterer en procedure til overvejelse og genovervejelse af de vurderingskriterier, man lægger til grund for evaluering af et udviklingsprojekt. Pointen er at justere udviklingsprojektet ind i en ønsket retning. Formålet m...
Fuzzy model for Laser Assisted Bending Process
Directory of Open Access Journals (Sweden)
Giannini Oliviero
2016-01-01
Full Text Available In the present study, a fuzzy model was developed to predict the residual bending in a conventional metal bending process assisted by a high power diode laser. The study was focused on AA6082T6 aluminium thin sheets. In most dynamic sheet metal forming operations, the highly nonlinear deformation processes cause large amounts of elastic strain energy stored in the formed material. The novel hybrid forming process was thus aimed at inducing the local heating of the mechanically bent workpiece in order to decrease or eliminate the related springback phenomena. In particular, the influence on the extent of springback phenomena of laser process parameters such as source power, scan speed and starting elastic deformation of mechanically bent sheets, was experimentally assessed. Consistent trends in experimental response according to operational parameters were found. Accordingly, 3D process maps of the extent of the springback phenomena according to operational parameters were constructed. The effect of the inherent uncertainties on the predicted residual bending caused by the approximation in the model parameters was evaluated. In particular, a fuzzy-logic based approach was used to describe the model uncertainties and the transformation method was applied to propagate their effect on the residual bending.
Aerosol deposition in bends with turbulent flow
Energy Technology Data Exchange (ETDEWEB)
McFarland, A.R.; Gong, H.; Wente, W.B. [Texas A& M Univ., College Station, TX (United States)] [and others
1997-08-01
The losses of aerosol particles in bends were determined numerically for a broad range of design and operational conditions. Experimental data were used to check the validity of the numerical model, where the latter employs a commercially available computational fluid dynamics code for characterizing the fluid flow field and Lagrangian particle tracking technique for characterizing aerosol losses. Physical experiments have been conducted to examine the effect of curvature ratio and distortion of the cross section of bends. If it curvature ratio ({delta} = R/a) is greater than about 4, it has little effect on deposition, which is in contrast with the recommendation given in ANSI N13.1-1969 for a minimum curvature ratio of 10. Also, experimental results show that if the tube cross section is flattened by 25% or less, the flattening also has little effect on deposition. Results of numerical tests have been used to develop a correlation of aerosol penetration through a bend as a function of Stokes number (Stk), curvature ratio ({delta}) and the bend angle ({theta}). 17 refs., 10 figs., 2 tabs.
Symmetric bends how to join two lengths of cord
Miles, Roger E
1995-01-01
A bend is a knot securely joining together two lengths of cord (or string or rope), thereby yielding a single longer length. There are many possible different bends, and a natural question that has probably occurred to many is: "Is there a 'best' bend and, if so, what is it?"Most of the well-known bends happen to be symmetric - that is, the two constituent cords within the bend have the same geometric shape and size, and interrelationship with the other. Such 'symmetric bends' have great beauty, especially when the two cords bear different colours. Moreover, they have the practical advantage o
New specimen design for studying the growth of small fatigue cracks with surface acoustic waves
London, Blair
1985-08-01
The study of small surface fatigue cracks in AISI 4140 quenched and tempered steel by a nondestructive surface acoustic wave technique is summarized. A novel cantilevered bending, plate-type fatigue specimen is described that is compatible with the acoustic method. Small cracks are initiated from a 25-μm deep surface pit produced by an electrospark machine. The importance of studying these cracks which closely approximate naturally occurring fatigue cracks is briefly discussed.
Residual stress state in pipe cut ring specimens for fracture toughness testing
Energy Technology Data Exchange (ETDEWEB)
Damjanovic, Darko [J.J. Strossmayer Univ. of Osijek, Slavonski Brod (Croatia). Mechanical Engineering Faculty; Kozak, Drazan [Zagreb Univ. (Croatia). Dept. for Mechanical Design; Marsoner, Stefan [Materials Center, Leoben (Austria).; Gubeljak, Nenad [Maribor Univ. (Slovenia). Chair of Mechanics
2017-07-01
Thin-walled pipes are not suitable for measuring fracture toughness parameters of vital importance because longitudinal crack failure is the most common failure mode in pipes. This is due to the impossibility to manufacture standard specimens for measuring fracture toughness, such as SENB or CT specimens, from the thin wall of the pipe. Previous works noticed this problem, but until now, a good and convenient solution has not been found or developed. To overcome this problem, very good alternative solution was proposed, the so-called pipe ring notched bend specimen (PRNB) [1-5]. Until now, only the idealized geometry PRNB specimen is analyzed, i. e., a specimen which is not cut out from an actual pipe but produced from steel plate. Based on that, residual stresses are neglected along with the imperfections in geometry (elliptical and eccentricity). The aim of this research is to estimate the residual stress state(s) in real pipes used in the boiler industry produced by hot rolling technique. These types of pipes are delivered only in normalized condition, but not stress relieved. Therefore, there are residual stresses present due to the manufacturing technique, but also due to uneven cooling after the production process. Within this paper, residual stresses are estimated by three methods: the incremental hole drilling method (IHMD), X-ray diffraction (XRD) and the splitting method (SM). Knowing the residual stress state in the ring specimen, it is possible to assess their impact on fracture toughness measured on the corresponding PRNB specimen(s).
Residual stress state in pipe cut ring specimens for fracture toughness testing
International Nuclear Information System (INIS)
Damjanovic, Darko; Kozak, Drazan; Marsoner, Stefan; Gubeljak, Nenad
2017-01-01
Thin-walled pipes are not suitable for measuring fracture toughness parameters of vital importance because longitudinal crack failure is the most common failure mode in pipes. This is due to the impossibility to manufacture standard specimens for measuring fracture toughness, such as SENB or CT specimens, from the thin wall of the pipe. Previous works noticed this problem, but until now, a good and convenient solution has not been found or developed. To overcome this problem, very good alternative solution was proposed, the so-called pipe ring notched bend specimen (PRNB) [1-5]. Until now, only the idealized geometry PRNB specimen is analyzed, i. e., a specimen which is not cut out from an actual pipe but produced from steel plate. Based on that, residual stresses are neglected along with the imperfections in geometry (elliptical and eccentricity). The aim of this research is to estimate the residual stress state(s) in real pipes used in the boiler industry produced by hot rolling technique. These types of pipes are delivered only in normalized condition, but not stress relieved. Therefore, there are residual stresses present due to the manufacturing technique, but also due to uneven cooling after the production process. Within this paper, residual stresses are estimated by three methods: the incremental hole drilling method (IHMD), X-ray diffraction (XRD) and the splitting method (SM). Knowing the residual stress state in the ring specimen, it is possible to assess their impact on fracture toughness measured on the corresponding PRNB specimen(s).
[Odontoid bending stiffness after anterior fixation with a single lag screw: biomechanical study].
Buchvald, P; Čapek, L; Barsa, P
2015-01-01
PURPOSE OF THE STUDY The aim of the experiment was to compare the bending stiffness of an intact odontoid process with bending stiffness after its simulated type II fracture was fixed with a single lag screw. The experiment was done with a desire to answer the question of whether a single osteosynthetic screw is sufficient for good fixation of a type II odontoid fracture. MATERIAL AND METHODS The C2 vertebrae of six cadavers were used. With simultaneous measurement of odontoid bending stiffness, the occurrence of a fracture (type IIA, Grauer's modification of the Anderson- D'Alonzo classification) was simulated using action exerted by a tearing machine in the direction perpendicular to the odontoid axis. Each odontoid fracture was subsequently treated by direct osteosynthesis with a single lag screw inserted in the axial direction by a standard surgical procedure in order to provide conditions similar to those achieved by routine surgical management. The treated odontoid process was subsequently subjected to the same tearing machine loading as applied to it at the start of the experiment. The bending stiffness measured was then compared with that found before the fracture occurred. The results were statistically evaluated by the t-test for paired samples at the level of significance α = 0.05. RESULTS The average value of bending stiffness for odontoid processes of intact vertebrae at the moment of fracture occurrence was 318.3 N/mm. After single axial lag screw fixation of the fracture, the average bending stiffness for the odontoid processes treated was 331.3 N/mm. DISCUSSION Higher values of bending stiffness after screw fixation were found in all specimens and, in comparison with the values recorded before simulated fractures, the increase was statistically significant. CONCLUSIONS The results of our measurements suggest that the single lag screw fixation of a type IIA odontoid fracture will provide better stability for the fracture fragment-C2 body complex on
Yoshimaru, S.; Kiyokawa, S.; Ito, T.; Ikehara, M.; Horie, K.; Takehara, M.; Sano, T.; Nyame, F. K.; Tetteh, G. M.
2016-12-01
This study investigated the depositional environments and bioactivities of well preserved volcaniclastic sequences in the Cape Three Points area in the Paleoproterozoic Axim-Konongo (Ashanti) belt in the Birimian of Ghana. Our current research outlines the stratigraphy, structure, approximate age and depositional setting of the volcaniclastic sequence in the Cape Three Points area in Ghana, West Africa.Axim-Konongo (Ashanti) belt is composed of mainly andesitic basalts, volcaniclastic rocks and belt type granitoids, which are unconformably overlain by Tarkwaian conglomerates and metasedimentary rocks. The rocks show NE-SW strike with maximum depositional age of overlying metasedimentary rocks of 2154±2 Ma (U-Pb zircon; Oberthür et al., 1998). The oldest age of an intrusive into Birimian volcanic rock near Sekondi is 2174±2 Ma (U-Pb zircon; Oberthür et al., 1998). Thick volcaniclastic succession over 4000 m thickness was reconstructed for 1000 m thickness after detailed field investigations. The succession shows approximately N-S strike mainly 60-80° dip to the east and generally upward sequence. The rocks were affected by greenschist facies metamorphism. TiO2/Al2O3 ratios of chromites and whole- rock trace elements compositions with low Nb concentration and high LREE concentration support deposition on mid-deep sea floor in a volcanic arc. New age data were obtained from foliated porphyritic dyke which occurs in the Cape Three Points area. Zircon grains, measured by SHRIMP at National Institute of Polar Research (NIPR), yielded a weighted mean 204Pb-corrected 207Pb/206Pb age of 2265.6±4.6 Ma (95% confidence). Thus, the volcaniclastic sequence was deposited before 2265.6±4.6 Ma and was deformed after 2265 Ma. 2260 Ma is the oldest age at which early volcanic activity in the Birimian terrane occurred (Loh and Hirdes, 1999). References Oberthür T et al. (1998) Precambrian Research 89: 129-143 Loh G and Hirdes W (1999) Exlplanatory Notes for the Geological Map
Observation of damage process in RC beams under cucle bending by acoustic emission
International Nuclear Information System (INIS)
Shigeishi, Mitsuhiro; Ohtsu, Masayasu; Tsuji, Nobuyuki; Yasuoka, Daisuke
1997-01-01
Reinforced concrete (RC) structures are generally applied to construction of buildings and bridges, and are imposed on cyclic loading incessantly. It is considered that detected acoustic emission (AE) waveforms are associated with the damage degree and the fracture mechanisms of RC structures. Therefor, the cyclic bending tests are applied to damaged RC beam specimens. To evaluate the interior of the damaged RC beams, the AE source kinematics are determined by 'SiGMA' procedure for AE moment tensor analysis. By using 'SiGMA' procedure, AE source kinematics, such as source locations, crack types, crack orientations and crack motions, can be identified. The results show the applicability to observation of the fracture process under cyclic bending load and evaluation the degree of damage of RC beam.
International Nuclear Information System (INIS)
Ahn, Seok Hwan; Nam, Ki Woo; Kim, Seon Jin; Kim, Jin Hwan; Kim, Hyun Soo; Do, Jae Yoon
2003-01-01
Fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear power plant. In pipes of energy plants, sometimes, the local wall thinning may result from severe Erosion-Corrosion (E/C) damage. However, the effects of local wall thinning on strength and fracture behaviors of piping system were not well studied. In this paper, the monotonic bending tests were performed of full-scale carbon steel pipes with local wall thinning. A monotonic bending load was applied to straight pipe specimens by four-point loading at ambient temperature without internal pressure. From the tests, fracture behaviors and fracture strength of locally thinned pipe were manifested systematically. The observed failure modes were divided into four types; ovalization, crack initiation/growth after ovalization, local buckling and crack initiating/growth after local buckling. Also, the strength and the allowable limit of piping system with local wall thinning were evaluated
Incomplete (bending) fractures of the mandibular condyle in children
International Nuclear Information System (INIS)
Ahrendt, D.; Swischuk, L.E.; Hayden, C.K. Jr.; Texas Univ., Galveston
1984-01-01
Incomplete, bending or bowing fractures of the mandibular condyle in children frequently go undetected. The reason is that the bending deformity often is subtle and passes for normal. This is especially true if the fractures are bilateral. (orig.)
Investigation of Asphalt Mixture Creep Behavior Using Thin Beam Specimens
International Nuclear Information System (INIS)
Zofka, Adam; Marasteanu, Mihai; Turos, Mugur
2008-01-01
The asphalt pavement layer consists of two or more lifts of compacted asphalt mixture; the top of the layer is also exposed to aging, a factor that significantly affects the mixture properties. The current testing specifications use rather thick specimens that cannot be used to investigate the gradual change in properties with pavement depth. This paper investigates the feasibility of using the 3-point bending test with thin asphalt mixture beams (127x12.7x6.35 mm) to determine the low-temperature creep compliance of the mixtures. Several theoretical and semi-empirical models, from the theory of composites, are reviewed and evaluated using numerical and experimental data. Preliminary results show that this method can be used for low-temperature mixture characterization but several crucial factors need further inspection and interpretation
International Nuclear Information System (INIS)
Pereira, L.C.; Darwish, F.A.I.
1981-01-01
The specimen strength ratio (R sub(sb)) determined for precraked Charpy specimens fractured in dynamic bending was correlated with plane strain fracture toughness (K sub(Id)) obtained through valid measurements of the J-integral at the moment of fracture initiation in various microstructures of the AISI 4140 steel. The results indicate a linear relationship between K sub(Id) and R sub(sb) for the microstructures considered in this work. The range of validity of this linear correlation is presented and discussed in terms of the ASTM E399 specimen size criterion. (Author) [pt
A Study on U-bending Technology using Rotary Draw Bending
Energy Technology Data Exchange (ETDEWEB)
Kwak, Ok-gyu; Kim, Won-seok [BHI Co., Gyunsang-Namdo (Korea, Republic of); Ku, Tae-wan [Pusan National Univ., Busan (Korea, Republic of)
2014-10-15
In the steam generator, heat transfer phenomenon for producing the steam between the primary system of the nuclear reactor and the secondary one occurs around the heat transfer tube. That is, the primary coolant with high temperature(320 .deg.. C) and high pressure(157Kgf/cm2) derived from the reactor flows in the heat transfer tube, and the secondary one runs out that tube. Therefore, it is able to mention that the heat transfer tube itself is a boundary of the heat transfer phenomenon. The heat transfer tube bundle of each steam generator used for the PWR and the PHWR(Pressurized Heavy Water Reactor) is generally composed of about 8,000-13,000 U-tubes. And these tubes are the core component as the structural and heat transfer material in the steam generator, which is in charge of cooling about 70% of the cooling surface of the primary system. For achieving the U-bending process with the thin walled tube, generally, a mandrel could be inserted in the tube according to the bending radius. But when the bending radius is small, the tube U-bending process could be also performed without the mandrel. In this study, numerical and experimental investigations on the U-bending process for producing the heat transfer tubes by using the straight and long tubes were carried out with the consideration of the elastic recovery after the U-bending. In the numerical approach, finite element analysis scheme was adopted with a commercial code, ABAQUS Implicit/Explicit. As the precedent study, the related experiment was also performed to verify the predicted results on the ovality and the minimum wall thickness of the U-bending heat transfer tube. Furthermore, its bending process was also conducted to analyze the deformation behavior for the Alloy 690 tube. In this study, the U-bending process was considered to simulate and manufactured the heat transfer tube used for the steam generator. To investigate the deformation behavior of the U-bending process, and a series of the
DEFF Research Database (Denmark)
Fratini, Chiara; Geldof, Govert Daan; Kluck, J.
2012-01-01
Urban flood risk is increasing as a consequence of climate change and growing impervious surfaces. Increasing complexity of the urban context, gradual loss of tacit knowledge and decreasing social awareness are at the same time leading to inadequate choices with respect to urban flood risk...... management (UFRM). The European Flood Risk Directive emphasises the need for non-structural measures aimed at urban resilience and social preparedness. The Three Points Approach (3PA) provides a structure facilitating the decision making processes dealing with UFRM. It helps to accept the complexity...... water managers and operators an efficient communication tool and thinking system, which helps to reduce complexity to a level suitable when organising strategy plans for UFRM and urban adaptation to climate change....
International Nuclear Information System (INIS)
Jing Yipeng.
1989-08-01
We study the three-point correlation functions ρ(r, u, v) of clusters in the two types of explosion models by numerical simulations. The clusters are identified as the ''knots'' where three shells intersect. The shells are assumed to have the constant radii (the constant models) or have the power law radius distributions (the power law models). In both kinds of models, we find that ρ can be approximately expressed by the scaling form: ρ = Q(ξ 1 ξ 2 + ξ 2 ξ 3 + ξ 3 ξ 1 ), and Q is about 1, which are consistent with the observations. More detailed studies of r-, u- and v-dependences of Q show that Q remains constant in the constant models. In the power-law models, Q is independent of the shape parameters u and v, while it has some moderate r-dependences (variations with r about a factor of 1 or 2). (author). 27 refs, 9 figs
Riedl, Dennis; Heuer, Andreas; Strauss, Bernd
2015-06-01
Incentives guide human behavior by altering the level of external motivation. We apply the idea of loss aversion from prospect theory (Kahneman & Tversky, 1979) to the point reward systems in soccer and investigate the controversial impact of the three-point rule on reducing the fraction of draws in this sport. Making use of the Poisson nature of goal scoring, we compared empirical results with theoretically deduced draw ratios from 24 countries encompassing 20 seasons each (N = 118.148 matches). The rule change yielded a slight reduction in the ratio of draws, but despite adverse incentives, still 18% more matches ended drawn than expected, t(23) = 11.04, p prospect theory assertions. Alternative point systems that manipulated incentives for losses yielded reductions at or below statistical expectation. This provides support for the deduced concept of how arbitrary aims, such as the reduction of draws in the world's soccer leagues, could be more effectively accomplished than currently attempted.
Thermal Analysis of Bending Under Tension Test
DEFF Research Database (Denmark)
Ceron, Ermanno; Martins, Paulo A.F.; Bay, Niels
2014-01-01
during testing is similar to the one in the production tool. A universal sheet tribo-tester has been developed, which can run multiple tests automatically from coil. This allows emulating the temperature increase as in production. The present work performs finite element analysis of the evolution......The tribological conditions in deep drawing can be simulated in the Bending Under Tension test to evaluate the performance of new lubricants, tool materials, etc. Deep drawing production with automatic handling runs normally at high rate. This implies considerable heating of the tools, which...... sometimes can cause lubricant film breakdown and galling. In order to replicate the production conditions in bending under tension testing it is thus important to control the tool/workpiece interface temperature. This can be done by pre-heating the tool, but it is essential that the interface temperature...
Vortex breakdown in simple pipe bends
Ault, Jesse; Shin, Sangwoo; Stone, Howard
2016-11-01
Pipe bends and elbows are one of the most common fluid mechanics elements that exists. However, despite their ubiquity and the extensive amount of research related to these common, simple geometries, unexpected complexities still remain. We show that for a range of geometries and flow conditions, these simple flows experience unexpected fluid dynamical bifurcations resembling the bubble-type vortex breakdown phenomenon. Specifically, we show with simulations and experiments that recirculation zones develop within the bends under certain conditions. As a consequence, fluid and particles can remain trapped within these structures for unexpectedly-long time scales. We also present simple techniques to mitigate this recirculation effect which can potentially have impact across industries ranging from biomedical and chemical processing to food and health sciences.
Nuclear fuels accounting interface: River Bend experience
International Nuclear Information System (INIS)
Barry, J.E.
1986-01-01
This presentation describes nuclear fuel accounting activities from the perspective of nuclear fuels management and its interfaces. Generally, Nuclear Fuels-River Bend Nuclear Group (RBNG) is involved on a day-by-day basis with nuclear fuel materials accounting in carrying out is procurement, contract administration, processing, and inventory management duties, including those associated with its special nuclear materials (SNM)-isotopics accountability oversight responsibilities as the Central Accountability Office for the River Bend Station. As much as possible, these duties are carried out in an integrated, interdependent manner. From these primary functions devolve Nuclear Fuels interfacing activities with fuel cost and tax accounting. Noting that nuclear fuel tax accounting support is of both an esoteric and intermittent nature, Nuclear Fuels-RBNG support of developments and applications associated with nuclear fuel cost accounting is stressed in this presentation
Effect of confinements: Bending in Paramecium
Eddins, Aja; Yang, Sung; Spoon, Corrie; Jung, Sunghwan
2012-02-01
Paramecium is a unicellular eukaryote which by coordinated beating of cilia, generates metachronal waves which causes it to execute a helical trajectory. We investigate the swimming parameters of the organism in rectangular PDMS channels and try to quantify its behavior. Surprisingly a swimming Paramecium in certain width of channels executes a bend of its flexible body (and changes its direction of swimming) by generating forces using the cilia. Considering a simple model of beam constrained between two walls, we predict the bent shapes of the organism and the forces it exerts on the walls. Finally we try to explain how bending (by sensing) can occur in channels by conducting experiments in thin film of fluid and drawing analogy to swimming behavior observed in different cases.
Measuring device for bending of beryllium reflector
International Nuclear Information System (INIS)
Nishida, Seiri; Sakamoto, Naoki.
1994-01-01
The device of the present invention can measure bending of a beryllium reflector formed in a reactor core of a nuclear reactor by a relatively easy operation. Namely, a sensor portion comprises a long-support that can be inserted to a fuel element-insertion hole disposed in the reactor and a plurality of distance sensors disposed in a longitudinal direction of the support. A supersonic wave sensor which is advantageous in the heat resistance, the size and the accuracy and can conduct measurement in water relatively easily is used as the distance sensors. However, other sensors, instead of the sensor described above, may also be used. The plurality of distance sensors detect the bending amount of the beryllium reflector in the longitudinal direction by such an easy operation of inserting such a sensor portion to the fuel element-insertion hole upon exchange of fuel elements. (I.S.)
Molecular Origin of Model Membrane Bending Rigidity
International Nuclear Information System (INIS)
Kurtisovski, Erol; Taulier, Nicolas; Waks, Marcel; Ober, Raymond; Urbach, Wladimir
2007-01-01
The behavior of the bending modulus κ of bilayers in lamellar phases was studied by Small Angle X-ray Scattering technique for various nonionic C i E j surfactants. The bilayers are either unswollen and dispersed in water or swollen by water and dispersed in dodecane. For unswollen bilayers, the values of κ decrease with both an increase in the area per surfactant molecule and in the polar head length. They increase when the aliphatic chain length increases at constant area per surfactant molecule. Whereas for water-swollen membranes, the values of κ decrease as the content of water increases converging to the value of the single monolayer bending modulus. Such a behavior results from the decoupling of the fluctuations of the two surfactant membrane monolayers. Our results emphasize the determinant contribution of the surfactant conformation to κ
Holey fibers for low bend loss
Nakajima, Kazuhide; Saito, Kotaro; Yamada, Yusuke; Kurokawa, Kenji; Shimizu, Tomoya; Fukai, Chisato; Matsui, Takashi
2013-12-01
Bending-loss insensitive fiber (BIF) has proved an essential medium for constructing the current fiber to the home (FTTH) network. By contrast, the progress that has been made on holey fiber (HF) technologies provides us with novel possibilities including non-telecom applications. In this paper, we review recent progress on hole-assisted type BIF. A simple design consideration is overviewed. We then describe some of the properties of HAF including its mechanical reliability. Finally, we introduce some applications of HAF including to high power transmission. We show that HAF with a low bending loss has the potential for use in various future optical technologies as well as in the optical communication network.
Parallel monostrand stay cable bending fatigue
DEFF Research Database (Denmark)
Winkler, Jan Pawel
This dissertation investigates the bending fatigue response of high-strength steel monostrands and multistrand stay cables to cyclic transverse deformations. Increasing bridge stock numbers and a push for longer cable-supported span lengths have led to an increased number of reported incidents...... of damage and replacement of bridge stay cables due to wind and traffic-induced fatigue. The understanding of fatigue mechanisms in most steel structures is well established. However, in the case of cables composed of steel strands, many important aspects related with bending fatigue remain to be clarified...... associated with variable loading, and different testing procedures. As most of the contemporary stay cables are comprised of a number of individual highstrength steel monostrands, the research study started with an extensive experimental work on the fatigue response of a single monostrand to cyclic flexural...
Foam topology. Bending versus stretching dominated architectures
International Nuclear Information System (INIS)
Deshpande, V.; Ashby, M.; Fleck, N.
2000-01-01
Cellular solids can deform by either the bending or stretching of the cell walls. While most cellular solids are bending-dominated, those that are stretching-dominated are much more weight-efficient for structural applications. In this study we have investigated the topological criteria that dictate the deformation mechanism of a cellular solid by analysing the rigidity (or otherwise) of pin-jointed frameworks comprising inextensional struts. We show that the minimum node connectivity for a special class of lattice structured materials to be stretching-dominated is 6 for 2D foams and 12 for 3D foams. Similarly, sandwich plates comprising of truss cores faced with planar trusses require a minimum node connectivity of 9 to undergo stretching-dominated deformation for all loading states. (author)
Hydrodynamic processes in sharp meander bends and their morphological implications
Blanckaert, K.
2011-01-01
The migration rate of sharp meander bends exhibits large variance and indicates that some sharply curved bends tend to stabilize. These observations remain unexplained. This paper examines three hydrodynamic processes in sharp bends with fixed banks and discusses their morphological implications:
Effects of laser bending on the microstructural constituents
CSIR Research Space (South Africa)
Tshabalala, L
2012-01-01
Full Text Available This article will illustrate the correlation between microstructural and microhardness changes in high-strength-low-alloy steel that occur as a result of laser-bending. Laser bending is a process of bending metal shapes using the laser beam...
Metal-bending brake facilitates lightweight, close-tolerance fabrication
Ercoline, A. L.; Wilton, K. B.
1964-01-01
A lightweight, metal bending brake ensures very accurate bends. Features of the brake that adapt it for making complex reverse bends to close tolerances are a pronounced relief or cutaway of the underside of the bodyplate combined with modification in the leaf design and its suspension.
Characterization and study of photonic crystal fibres with bends
International Nuclear Information System (INIS)
Belhadj, W.; AbdelMalek, F.; Bouchriha, H.
2006-01-01
Analysis of a photonic crystal fibre (PRCF) with bends is presented. Using the versatile finite difference time domain method, the modal characteristics of the PCFs are found. Possibilities of employing PCFs with bends in sensing are discussed. It is found that a large evanescent field is present when the bend angle exceeds 45 o
Smoothed particle hydrodynamics simulations of flow separation at bends
Hou, Q.; Kruisbrink, A.C.H.; Pearce, F.R.; Tijsseling, A.S.; Yue, T.
2014-01-01
The separated flow in two-dimensional bends is numerically simulated for a right-angled bend with different ratios of the channel widths and for a symmetric bend with different turning angles. Unlike the potential flow solutions that have several restrictive assumptions, the Euler equations are
Smoothed particle hydrodynamics simulations of flow separation at bends
Hou, Q.; Kruisbrink, A.C.H.; Pearce, F.R.; Tijsseling, A.S.; Yue, T.
2013-01-01
The separated flow in two-dimensional bends is numerically simulated for a right-angled bend with different ratios of the channel widths and for a symmetric bend with different turning angles. Unlike the potential flow solutions that have several restrictive assumptions, the Euler equations are
AA, assembly of wide bending magnet
CERN PhotoLab
1980-01-01
The very particular lattice of the AA required 2 types of dipoles (bending magnets; BST, short and wide; BLG, long and narrow). The wide ones had a steel length of 2.71 m, a "good field" width of 0.564 m, and a weight of about 75 t. Here we see the copper coils being hoisted onto the lower half of a BST. See also 7811105, 8006050. For a BLG, see 8001044.
Closed-form plastic collapse loads of pipe bends under combined pressure and in-plane bending
International Nuclear Information System (INIS)
Oh, Chang Sik; Kim, Yun Jae
2006-01-01
Based on three-dimensional (3-D) FE limit analyses, this paper provides plastic limit, collapse and instability load solutions for pipe bends under combined pressure and in-plane bending. The plastic limit loads are determined from FE limit analyses based on elastic-perfectly plastic materials using the small geometry change option, and the FE limit analyses using the large geometry change option provide plastic collapse loads (using the twice-elastic-slope method) and instability loads. For the bending mode, both closing bending and opening bending are considered, and a wide range of parameters related to the bend geometry is considered. Based on the FE results, closed-form approximations of plastic limit and collapse load solutions for pipe bends under combined pressure and bending are proposed
Pipe bend wear - is tungsten carbide the answer?
International Nuclear Information System (INIS)
Freinkel, D.
1988-01-01
The purpose of the investigation was to compare the relative wear resistance of various grades of sintered tungsten carbide liners against a mild steel standard in a full-scale pneumatic conveying testing rig. Speciments ranging in cobalt content from 6 to 30 per cent and in grain size from 0,56 to 2,98 microns, including a mild steel standard, were placed on a specially designed holder which fitted into a tee type 100 mm diameter bend. The specimens were tested under various operating conditions, ie air velocity ranging from 28m/s to 52m/s, impact angles of 30 0 to 70 0 mass flow rates of 35kg/min to 83kg/min and phase densities of 1,2 to 2,9, using a 4 mm nominal size crushed granite rock. The experimental results show that the ultrafine-grained, low cobalt (6 per cent) tungsten carbide displays little sensitivity to varying velocities, impact angles, mass flow rates or phase densities, and consistently gave the best wear resistance under all testing conditions. It consistently showed the least wear resistance under all testing conditions and performed only slightly better than mild steel. The effect of the carbide grain size was found to be small, although the finer grain sizes displayed greater wear resistance than the coarse grains. The effect of cobalt content was such that the lower cobalt specimens (6 per cent range) consistently performed better than the higher cobalt contents (10 per cent, 15 per cent, 30 per cent) under all testing conditions; the wear resistance decreasing with increasing cobalt content. An empirical model for the prediction of wear for each type of material tested has been proposed, given the particular operating conditions. Microstructurally it has been shown that there is a definite relationship between erosion resistance and the inverse of the magnetic coercivity of the tungsten carbide alloys
First multi-bend achromat lattice consideration
Energy Technology Data Exchange (ETDEWEB)
Einfeld, Dieter, E-mail: dieter.einfeld@maxlab.lu.se [Lund University, PO Box 118, Lund SE-221 00 (Sweden); Plesko, Mark [COSYLAB, Teslova ulica 30, Ljubljana SI-1000 (Slovakia); Schaper, Joachim [HAWK University of Applied Sciences and Arts, Hohnsen 4, D-31134 Hildesheim (Germany)
2014-08-27
The first proposed lattice for a ‘diffraction-limited light source’ is reported. This approach has now more or less been used for the MAX IV project. By the beginning of 1990, three third-generation synchrotron light sources had been successfully commissioned in Grenoble, Berkeley and Trieste (ESRF, ALS and ELETTRA). Each of these new machines reached their target specifications without any significant problems. In parallel, already at that time discussions were underway regarding the next generation, the ‘diffraction-limited light source (DLSR)’, which featured sub-nm rad electron beam emittance, photon beam brilliance exceeding 10{sup 22} and the potential to emit coherent radiation. Also, at about that time, a first design for a 3 GeV DLSR was developed, based on a modified multiple-bend achromat (MBA) design leading to a lattice with normalized emittance of ∊{sub x} = 0.5 nm rad. The novel feature of the MBA lattice was the use of seven vertically focusing bend magnets with different bending angles throughout the achromat cell to keep the radiation integrals and resulting beam emittance low. The baseline design called for a 400 m ring circumference with 12 straight sections of 6 m length. The dynamic aperture behaviour of the DLSR lattice was estimated to produce > 5 h beam lifetime at 100 mA stored beam current.
The multi-bend achromat storage rings
Energy Technology Data Exchange (ETDEWEB)
Eriksson, Mikael [MAX IV Laboratory Ole Römers v. 1 22100 Lund Sweden (Sweden)
2016-07-27
Not very long ago, the 3{sup rd} generation storage ring technology was judged as mature. Most of the 3{sup rd} generation storage rings used the Double-Bend Achromat (DBA) or Triple-Bend Achromat (TBA) concepts. It was however a well-known fact that increasing the number of magnet cells in the rings is a powerful way of decreasing the electron beam emittance and thus the source brilliance, but at the penalty of increasing the size and cost of the rings. Preserving the Dynamic Aperture (DA) in the rings became also an issue when increasing the number of magnet cells. The Multi-Bend Achromat (MBA) concept, including a miniaturization of the ring elements, has now drastically changed the picture. The MBA rings, now in construction or being planned, offer orders of magnitudes higher brilliance than rings of conventional designs. Several light sources around the world are now implementing or planning to implement this MBA concept. This article touches on the science drivers for higher brilliance. We will then describe the MBA concept with its advantages as well as its challenges. A short survey of the MBA activity around the world will also be presented. The author apologies for focusing on the MAX IV project regarding technical solutions. This is motivated by that MAX IV is the facility he knows best and it might be regarded as a fore-runner for the MBA concept.
BENDING BEHAVIOUR OF MAGNETIC COTTON YARNS
Directory of Open Access Journals (Sweden)
LUPU Iuliana G.
2017-05-01
Full Text Available Magnetic yarns are composite yarns, i.e. they combine elements of various natures and properties, with proven potential for electromagnetic interference (EMI shielding. In this paper, different mixtures of hard and soft magnetic powder were chosen to cover materials made of cotton yarn. The physical properties and bending behavior of the produced composite yarns were investigated in order to evaluate the yarns for further textile processing.The cotton yarn used as base material was covered with hard (barium hexaferrite BaFe12O19 and soft (Black Toner magnetic particles. An in-house developed laboratory equipment has been used to cover the twist cotton yarns with seven mixtures having different amounts of magnetic powder (30% – 50%. The bending behavior of the coated yarns was evaluated based on the average width of cracks which appeared on the yarn surface after repeated flexural tests. The obtained results revealed that usage of a polyurethane adhesive in the coating solution prevents crack formation on the surface of hard magnetic yarns after flexural tests. At the same time, the higher the mass percentage of hard magnetic powder in the mixture, the higher was the cracks’ width. The soft magnetic yarns are more flexible and a smaller crack width is observed on their surface. Both the coating solution composition and the powder diameter are expected to influence the bending behavior of coated yarns.
The multi-bend achromat storage rings
International Nuclear Information System (INIS)
Eriksson, Mikael
2016-01-01
Not very long ago, the 3"r"d generation storage ring technology was judged as mature. Most of the 3"r"d generation storage rings used the Double-Bend Achromat (DBA) or Triple-Bend Achromat (TBA) concepts. It was however a well-known fact that increasing the number of magnet cells in the rings is a powerful way of decreasing the electron beam emittance and thus the source brilliance, but at the penalty of increasing the size and cost of the rings. Preserving the Dynamic Aperture (DA) in the rings became also an issue when increasing the number of magnet cells. The Multi-Bend Achromat (MBA) concept, including a miniaturization of the ring elements, has now drastically changed the picture. The MBA rings, now in construction or being planned, offer orders of magnitudes higher brilliance than rings of conventional designs. Several light sources around the world are now implementing or planning to implement this MBA concept. This article touches on the science drivers for higher brilliance. We will then describe the MBA concept with its advantages as well as its challenges. A short survey of the MBA activity around the world will also be presented. The author apologies for focusing on the MAX IV project regarding technical solutions. This is motivated by that MAX IV is the facility he knows best and it might be regarded as a fore-runner for the MBA concept.
Forming and bending of metal foams
International Nuclear Information System (INIS)
Nebosky, Paul; Tyszka, Daniel; Niebur, Glen; Schmid, Steven
2004-01-01
This study examines the formability of a porous tantalum foam, known as trabecular metal (TM). Used as a bone ingrowth surface on orthopedic implants, TM is desirable due to its combination of high strength, low relative density, and excellent osteoconductive properties. This research aims to develop bend and stretch forming as a cost-effective alternative to net machining and EDM for manufacturing thin parts made of TM. Experimentally, bending about a single axis using a wiping die was studied by observing cracking and measuring springback. It was found that die radius and clearance strongly affect the springback properties of TM, while punch speed, embossings, die radius and clearance all influence cracking. Depending on the various combinations of die radius and clearance, springback factor ranged from .70-.91. To examine the affect of the foam microstructure, bending also was examined numerically using a horizontal hexagonal mesh. As the hexagonal cells were elongated along the sheet length, elastic springback decreased. This can be explained by the earlier onset of plastic hinging occurring at the vertices of the cells. While the numerical results matched the experimental results for the case of zero clearance, differences at higher clearances arose due to an imprecise characterization of the post-yield properties of tantalum. By changing the material properties of the struts, the models can be modified for use with other open-cell metallic foams
Emittance growth of bunched beams in bends
International Nuclear Information System (INIS)
Carlsten, B.E.; Raubenheimer, T.O.
1995-01-01
Talman [Phys. Rev. Lett. 56, 1429 (1986)] has proposed a novel relativistic effect that occurs when a charged particle beam is bent in the magnetic field from an external dipole. The consequence of this effect is that the space-charge forces from the particles do not exhibit the usual inverse-square energy dependence and some part of them are, in fact, independent of energy. This led to speculation that this effect could introduce significant emittance growth for a bending electron beam. Subsequently, it was shown that this effect's influence on the beam's transverse motion is canceled for a dc beam by a potential depression within the beam (to first order in the beam radius divided by the bend radius). In this paper, we extend the analysis to include short bunch lengths (as compared to the beam pipe dimensions) and find that there is no longer the cancellation for forces both transverse to and in the direction of motion. We provide an estimate for the emittance growth as a function of bend angle, beam radius, and current, and for magnetic compression of an electron bunch
Arif Irfai, Mochamad; Wulandari, Diah; Sutriyono; Marsyahyo, Eko
2018-04-01
The objective of this research is to investigate the effect of NaOH treatment on bending strength of lamina composite reinforced by sugar palm fiber. To know of mechanism fracture can be done with visual inspection of the fracture surface. The Materials used are random sugar palm fibers that have been in the treatment of NaOH, polyester resin and hardener. Sugar palm fibers after washed and dried then soaked NaOH with a long time soaking 0, 2, 4, 6 and 8 hours. The bending test specimens were produced according to ASTM D 790. All specimens were post cured at 62°C for 4 hours. The Bending test was carried out on a universal testing machine. The SEM analysis has conducted to provide the analysis on interface adhesion between the surfaces of fiber with the matrix. The result shows that polyester composite reinforced by sugar palm fiber has highest bending stress 176.77 N/mm2 for 2 hours of a long time soaking NaOH, the highest flexural strain 0.27 mm for 2 hours of a long time soaking NaOH, elongation 24.05% for 2 hours of a long time soaking NaOH and the highest bending modulus 1.267 GPa for 2 hours of a long time soaking NaOH. Based on the results, it can be concluded that the polyester composite reinforced by sugar palm fiber has the optimum bending properties for a long time soaking 2 hours. The fracture surface shows that the polyester composite reinforced by sugar palm fiber pull out that indicate weakens the bond between fiber and matrix.
Directory of Open Access Journals (Sweden)
L. Zortea
2010-10-01
Full Text Available In the last years, the attention to environmental topics led a new approach solution in classical protection techniques, introducing innovative way oriented to optimize different coating properties. Hot-dip galvanizing is a classical process aimed to generate coatings on iron-based surfaces, used unchanged since 200 years: some chemical elements are added in the bath with different aims (e.g., Pb is really important for its fluidizing properties, sometimes replaced by Sn but sometimes these elements are dangerous for human health (e.g. … Pb!.In this work, the influence of dipping time and coatings chemical compositions on damaging micromechanisms was investigated considering different Sn and Ti contents. Main damaging micromechanisms in hot dip zinc coated ipersandelin steel specimens were investigated by means of bending tests. Longitudinal sections of bended specimens were observed by means of a LOM (Light Optical Microscope: main damage micromechanisms were identified as longitudinal and radial cracks.
DEFF Research Database (Denmark)
Harpøth, Anders; Frandsen, Lars Hagedorn; Kristensen, Martin
2004-01-01
We have designed, simulated and fabricated a photonic crystal waveguide Z-bend, which displays a total bend loss of ~1dB per bend in a wavelength range of more than 200nm. The fabricated component performs in excellent agreement with 3D finite-difference time-domain calculations....
2011-12-29
... License Application for Bell Bend Nuclear Power Plant; Exemption 1.0 Background PPL Bell Bend, LLC... for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant (BBNPP... based upon the U.S. EPR reference COL (RCOL) application for UniStar's Calvert Cliffs Nuclear Power...
Recent developments in bend-insensitive and ultra-bend-insensitive fibers
Boivin, David; de Montmorillon, Louis-Anne; Provost, Lionel; Montaigne, Nelly; Gooijer, Frans; Aldea, Eugen; Jensma, Jaap; Sillard, Pierre
2010-02-01
Designed to overcome the limitations in case of extreme bending conditions, Bend- and Ultra-Bend-Insensitive Fibers (BIFs and UBIFs) appear as ideal solutions for use in FTTH networks and in components, pigtails or patch-cords for ever demanding applications such as military or sensing. Recently, however, questions have been raised concerning the Multi-Path-Interference (MPI) levels in these fibers. Indeed, they are potentially subject to interferences between the fundamental mode and the higher-order mode that is also bend resistant. This MPI is generated because of discrete discontinuities such as staples, bends and splices/connections that occur on distance scales that become comparable to the laser coherent length. In this paper, we will demonstrate the high MPI tolerance of all-solid single-trench-assisted BIFs and UBIFs. We will present the first comprehensive study combining theoretical and experimental points of view to quantify the impact of fusion splices on coherent MPI. To be complete, results for mechanical splices will also be reported. Finally, we will show how the single-trench- assisted concept combined with the versatile PCVD process allows to tightly control the distributions of fibers characteristics. Such controls are needed to massively produce BIFs and to meet the more stringent specifications of the UBIFs.
Influence of flock coating on bending rigidity of woven fabrics
Ozdemir, O.; Kesimci, M. O.
2017-10-01
This work presents the preliminary results of our efforts that focused on the effect of the flock coating on the bending rigidity of woven fabrics. For this objective, a laboratory scale flocking unit is designed and flocked samples of controlled flock density are produced. Bending rigidity of the samples with different flock densities are measured on both flocked and unflocked sides. It is shown that the bending rigidity depends on both flock density and whether the side to be measured is flocked or not. Adhesive layer thickness on the bending rigidity is shown to be dramatic. And at higher basis weights, flock density gets less effective on bending rigidity.
A preliminary bending fatigue spectrum for steel monostrand cables
DEFF Research Database (Denmark)
Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.
2011-01-01
This paper presents the results of the experimental study on the bending fatigue resistance of high-strength steel monostrand cables. From the conducted fatigue tests in the high-stress, low-cycle region, a preliminary bending fatigue spectrum is derived for the estimation of monostrand cable...... service life expectancy. The presented preliminary bending fatigue spectrum of high-strength monostrands is currently unavailable in the published literature. The presented results provide relevant information on the bending mechanism and fatigue characteristics of monostrand steel cables in tension...... and flexure and show that localized cable bending has a pronounced influence on the fatigue resistance of cables under dynamic excitations....
Permanent bending and alignment of ZnO nanowires
Energy Technology Data Exchange (ETDEWEB)
Borschel, Christian; Spindler, Susann; Oertel, Michael; Ronning, Carsten [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Lerose, Damiana [MPI fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle/Saale (Germany); Institut fuer Photonische Technologien, Albert-Einstein-Strasse 9, 07745 Jena (Germany); Bochmann, Arne [Institut fuer Photonische Technologien, Albert-Einstein-Strasse 9, 07745 Jena (Germany); Christiansen, Silke H. [Institut fuer Photonische Technologien, Albert-Einstein-Strasse 9, 07745 Jena (Germany); MPI fuer die Physik des Lichts, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Nietzsche, Sandor [Zentrum fuer Elektronenmikroskopie, Friedrich-Schiller-Universitaet Jena, Ziegelmuehlenweg 1, 07743 Jena (Germany)
2011-07-01
Ion beams can be used to bend or re-align nanowires permanently, after they have been grown. We have irradiated ZnO nanowires with ions of different species and energy, achieving bending and alignment in various directions. We study the bending of single nanowires as well as the simultaneous alignment of large ensembles of ZnO nanowires in detail. Computer simulations show that the bending is initiated by ion beam induced damage. Dislocations are identified to relax stresses and make the bending and alignment permanent and resistant against annealing procedures.
Tunable waveguide bends with graphene-based anisotropic metamaterials
Chen, Zhao-xian; Chen, Ze-guo; Ming, Yang; Wu, Ying; Lu, Yan-qing
2016-01-01
We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.
Tunable waveguide bends with graphene-based anisotropic metamaterials
Chen, Zhao-xian
2016-01-15
We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.
Effects of texture on shear band formation in plane strain tension/compression and bending
DEFF Research Database (Denmark)
Kuroda, M.; Tvergaard, Viggo
2007-01-01
In this study, effects of typical texture components observed in rolled aluminum alloy sheets on shear band formation in plane strain tension/compression and bending are systematically studied. The material response is described by a generalized Taylor-type polycrystal model, in which each grain ...... shear band formation in bent specimens is compared to that in the tension/compression problem. Finally, the present results are compared to previous related studies, and the efficiency of the present method for materials design in future is discussed....
Experimental Study on Temperature Behavior of SC Structures under Pure Bending
International Nuclear Information System (INIS)
Ham, K. W.; Lee, K. J.; Park, D. S.; Jeon, J. H.
2006-01-01
SC(Steel plate Concrete) module method uses steel plate instead of reinforcing bar and mold in existing RC structure. Steel plate modules are fabricated in advance, installed and poured with concrete in construction field, so construction period is remarkably shortened by SC module technique. In case of existence of temperature gap between internal and external structure surface such as spent fuel storage pool, thermal stress is taken place and as a result of it, structural strength is deteriorated. In this study, we designed three test specimens and several tests with or without temperature heating were conducted to evaluate temperature behavior of SC structures under pure bending loading condition
Ehsan Bari; Reza Oladi; Olaf Schmidt; Carol A. Clausen; Katie Ohno; Darrel D. Nicholas; Mehrdad Ghodskhah Daryaei; Maryam Karim
2015-01-01
The scope of this research was to evaluate the influence of xylem ray (XR) and degree of polymerization (DP) of holocellulose in Oriental beech wood (Fagus orientalis Lipsky.) on impact bending strength against two white-rot fungi. Beech wood specimens, exposed to Pleurotus ostreatus and Trametes versicolor, were evaluated for...
Collagen Quantification in Tissue Specimens.
Coentro, João Quintas; Capella-Monsonís, Héctor; Graceffa, Valeria; Wu, Zhuning; Mullen, Anne Maria; Raghunath, Michael; Zeugolis, Dimitrios I
2017-01-01
Collagen is the major extracellular protein in mammals. Accurate quantification of collagen is essential in the biomaterials (e.g., reproducible collagen scaffold fabrication), drug discovery (e.g., assessment of collagen in pathophysiologies, such as fibrosis), and tissue engineering (e.g., quantification of cell-synthesized collagen) fields. Although measuring hydroxyproline content is the most widely used method to quantify collagen in biological specimens, the process is very laborious. To this end, the Sircol™ Collagen Assay is widely used due to its inherent simplicity and convenience. However, this method leads to overestimation of collagen content due to the interaction of Sirius red with basic amino acids of non-collagenous proteins. Herein, we describe the addition of an ultrafiltration purification step in the process to accurately determine collagen content in tissues.
Energy Technology Data Exchange (ETDEWEB)
Dalmolin, Fabricio Tronco
2007-07-01
others already performed within the same issue. In particular, in one of such investigation a pioneer and traditional reference has been revisited by using the alternative strategy mentioned above. In such study, a systematic treatment of purely fermionic one, two and three point functions, associated to scalar, pseudo-scalar, vector and axial-vector densities, has done. There, however, only the explicit expressions for one and two point functions were developed. The conclusions pointed out, in a very clear way, that the association between intrinsic ambiguities of the perturbative calculation and violations in symmetry properties is not consistent. At the same time, it was concluded that only in an investigation where the explicit forms for the three point functions involved are considered clean and sound conclusions can be extracted. This is due to the fact that, in the relevant symmetry properties, it is involved three ward identities and a low energy limit. This is precisely the main purpose of the present work: to promote a detailed investigation of the relations among green functions and ward identities, within the context of a model having only one specie of 1/2 spin fermionic field, that consider all the amplitudes having superficial degree of divergence higher than the logarithmic one, in a similar way as that made in the work of Gerstein and Jackiw, taking however the explicit form for the three point functions. This is one to get in the analysis, simultaneously, the ward identities and the low energy limits involved in the anomalous amplitudes as required by the Sutherland-Veltman theorem, in order to get an adequate understanding of the anomaly phenomena. We will show that our final results can be mapped in those found with the use of the Dimensional Regularization, in situation where this technique can be applied, or in those of Gerstein and Jackiw, however with conflicting interpretations. Finally, we will show that in the context of the adopted technique
Notch effects in uniaxial tension specimens
International Nuclear Information System (INIS)
Delph, T.J.
1979-03-01
Results of a literature survey on the effect of notches on the time-dependent failure of uniaxial tension specimens at elevated temperatures are presented. Particular attention is paid to the failure of notched specimens containing weldments
Measurements and Counts for Notacanthidae Specimens
National Oceanic and Atmospheric Administration, Department of Commerce — Taxonomic data were collected for specimens of deep-sea spiny eels (Notacanthidae) from the Hawaiian Ridge by Bruce C. Mundy. Specimens were collected off the north...
Energy Technology Data Exchange (ETDEWEB)
Zhao, P.F. [State Key Laboratory for Strength and Vibration, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an (China); Li, X.D. [State Key Laboratory for Strength and Vibration, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an (China); Aircraft Strength Research Institute of China, Xi' an, 710065 (China); Shang, F.L., E-mail: shangfl@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an (China); Li, C.J. [State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an (China)
2011-09-25
Highlights: {yields} A non-standard modified four-point bending specimen is adopted for delamination test. {yields} Typical failure mode of the TBC system with TGO layer is demonstrated. {yields} Fracture toughness of 8YSZ on a cold-sprayed MCrAlY coating is evaluated theoretically. - Abstract: This work concerns the failure mode and fracture toughness of plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) deposited on a cold-sprayed MCrAlY bond coat (BC) after thermal oxidation. Upon high-temperature exposure, a thermally grown oxide (TGO) layer was formed along the interface between the BC layer and YSZ ceramic coating layer through oxidation of the bond coat. By utilizing a non-standard modified four-point bending specimen, in conjunction with fractured surface examinations by scanning electron microscope and energy disperse spectroscope, the failure mode of this thermal barrier coating (TBC) system has been checked experimentally. It is shown that delamination cracks firstly initiate at the YSZ/BC interface edge, and then propagate along a wavy path near the interface, not only through the TBC but also within the TGO and along the interlamellar interfaces. Through a theoretical analysis of the bending specimen, the fracture toughness of this TBC system, in terms of strain energy release rate, has been determined from the load-displacement curves which were recorded during the tests.
International Nuclear Information System (INIS)
Oh, Chang Sik; Kim, Yun Jae
2006-01-01
In the present paper, approximate plastic limit load solutions for pipe bends under combined internal pressure and bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. The present FE results show that existing limit load solutions for pipe bends are lower bounds but can be very different from the present FE results in some cases, particularly for bending. Accordingly closed-form approximations are proposed for pipe bends under combined pressure and in-plane bending based on the present FE results. The proposed limit load solutions would be a basis of defective pipe bends and be useful to estimate non-linear fracture mechanics parameters based on the reference stress approach
Bending of light in quantum gravity.
Bjerrum-Bohr, N E J; Donoghue, John F; Holstein, Barry R; Planté, Ludovic; Vanhove, Pierre
2015-02-13
We consider the scattering of lightlike matter in the presence of a heavy scalar object (such as the Sun or a Schwarzschild black hole). By treating general relativity as an effective field theory we directly compute the nonanalytic components of the one-loop gravitational amplitude for the scattering of massless scalars or photons from an external massive scalar field. These results allow a semiclassical computation of the bending angle for light rays grazing the Sun, including long-range ℏ contributions. We discuss implications of this computation, in particular, the violation of some classical formulations of the equivalence principle.
Structural analysis of suerconducting bending magnets
International Nuclear Information System (INIS)
Meuser, R.B.
1980-05-01
Mechanical stresses, displacements, and the effects of displacements upon aberrations of the magnetic field in the aperture have been calculated for a class of superconducting bending-magnet configurations. The analytical model employed for the coil is one in which elements are free to slide without restraint upon each other, and upon the surrounding structure. Coil configurations considered range from an idealized one in which the current density varies as cosine theta to more realistic ones consisting of regions of uniform current density. With few exceptions, the results for the more realistic coils closely match those of the cos theta coil
Extension versus Bending for Continuum Robots
Directory of Open Access Journals (Sweden)
George Grimes
2008-11-01
Full Text Available In this paper, we analyze the capabilities of a novel class of continuous-backbone ("continuum" robots. These robots are inspired by biological "trunks, and tentacles". However, the capabilities of established continuum robot designs, which feature controlled bending but not extension, fall short of those of their biological counterparts. In this paper, we argue that the addition of controlled extension provides dual and complementary functionality, and correspondingly enhanced performance, in continuum robots. We present an interval-based analysis to show how the inclusion of controllable extension significantly enhances the workspace and capabilities of continuum robots.
Minimum emittance of three-bend achromats
International Nuclear Information System (INIS)
Li Xiaoyu; Xu Gang
2012-01-01
The calculation of the minimum emittance of three-bend achromats (TBAs) made by Mathematical software can ignore the actual magnets lattice in the matching condition of dispersion function in phase space. The minimum scaling factors of two kinds of widely used TBA lattices are obtained. Then the relationship between the lengths and the radii of the three dipoles in TBA is obtained and so is the minimum scaling factor, when the TBA lattice achieves its minimum emittance. The procedure of analysis and the results can be widely used in achromats lattices, because the calculation is not restricted by the actual lattice. (authors)
Clinical bending of nickel titanium wires
Directory of Open Access Journals (Sweden)
Stephen Chain
2015-01-01
Full Text Available Since the evolution and the involvement of Nickel Titanium wires in the field of Orthodontics. The treatment plan has evolved with the use of low force Nickel Titanium wires. Because of their high springback, low stiffness, they are the key initial wires in leveling and alignment but have poor formability. Since poor formability limits its ability to create variable arch forms thus; limits the form of treatment. We have devised a method to bend the Nickel Titanium wires to help in our inventory but also customized the wire according to the treatment.
A New High-Speed, High-Cycle, Gear-Tooth Bending Fatigue Test Capability
Stringer, David B.; Dykas, Brian D.; LaBerge, Kelsen E.; Zakrajsek, Andrew J.; Handschuh, Robert F.
2011-01-01
A new high-speed test capability for determining the high cycle bending-fatigue characteristics of gear teeth has been developed. Experiments were performed in the test facility using a standard spur gear test specimens designed for use in NASA Glenn s drive system test facilities. These tests varied in load condition and cycle-rate. The cycle-rate varied from 50 to 1000 Hz. The loads varied from high-stress, low-cycle loads to near infinite life conditions. Over 100 tests were conducted using AISI 9310 steel spur gear specimen. These results were then compared to previous data in the literature for correlation. Additionally, a cycle-rate sensitivity analysis was conducted by grouping the results according to cycle-rate and comparing the data sets. Methods used to study and verify load-path and facility dynamics are also discussed.
Directory of Open Access Journals (Sweden)
Sara Maria Lerer
2017-11-01
Full Text Available The city of Copenhagen currently pursues a very ambitious plan to make the city ‘cloudburst proof’ within the next 30 years. The cloudburst management plan has the potential to support the city’s aim to become more green, liveable, and sustainable. In this study, we assessed stormwater system designs using the Three Point Approach (3PA as a framework, where an indicator value for each domain was calculated using state-of-the-art modelling techniques. We demonstrated the methodology on scenarios representing sequential enhancements of the cloudburst management plan for a district that has been appointed to become the first climate resilient neighbourhood in Copenhagen. The results show that if the cloudburst system is exploited to discharge runoff from selected areas that are disconnected from the combined sewer system, then the plan leads to multiple benefits. These include improved flood protection under a 100-years storm (i.e., compliance with the new demands in domain C of the 3PA, reduced surcharge to terrain under a 10-years storm (i.e., compliance with the service goal in domain B of the 3PA and an improved yearly water balance (i.e., better performance in domain A of the 3PA.
Slepian, Zachary; Eisenstein, Daniel J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Gil-Marín, Héctor; Ho, Shirley; Kitaura, Francisco-Shu; Percival, Will J.; Ross, Ashley J.; Rossi, Graziano; Seo, Hee-Jong; Slosar, Anže; Vargas-Magaña, Mariana
2017-08-01
We present the large-scale three-point correlation function (3PCF) of the Sloan Digital Sky Survey DR12 Constant stellar Mass (CMASS) sample of 777 202 Luminous Red Galaxies, the largest-ever sample used for a 3PCF or bispectrum measurement. We make the first high-significance (4.5σ) detection of baryon acoustic oscillations (BAO) in the 3PCF. Using these acoustic features in the 3PCF as a standard ruler, we measure the distance to z = 0.57 to 1.7 per cent precision (statistical plus systematic). We find DV = 2024 ± 29 Mpc (stat) ± 20 Mpc (sys) for our fiducial cosmology (consistent with Planck 2015) and bias model. This measurement extends the use of the BAO technique from the two-point correlation function (2PCF) and power spectrum to the 3PCF and opens an avenue for deriving additional cosmological distance information from future large-scale structure redshift surveys such as DESI. Our measured distance scale from the 3PCF is fairly independent from that derived from the pre-reconstruction 2PCF and is equivalent to increasing the length of BOSS by roughly 10 per cent; reconstruction appears to lower the independence of the distance measurements. Fitting a model including tidal tensor bias yields a moderate-significance (2.6σ) detection of this bias with a value in agreement with the prediction from local Lagrangian biasing.
Directory of Open Access Journals (Sweden)
Liu Haijun
2015-12-01
Full Text Available Accurate flatness measurement of silicon wafers is affected greatly by the gravity-induced deflection (GID of the wafers, especially for large and thin wafers. The three-point-support method is a preferred method for the measurement, in which the GID uniquely determined by the positions of the supports could be calculated and subtracted. The accurate calculation of GID is affected by the initial stress of the wafer and the positioning errors of the supports. In this paper, a finite element model (FEM including the effect of initial stress was developed to calculate GID. The influence of the initial stress of the wafer on GID calculation was investigated and verified by experiment. A systematic study of the effects of positioning errors of the support ball and the wafer on GID calculation was conducted. The results showed that the effect of the initial stress could not be neglected for ground wafers. The wafer positioning error and the circumferential error of the support were the most influential factors while the effect of the vertical positioning error was negligible in GID calculation.
Shirasaki, Masato; Yoshida, Naoki
2018-04-01
Weak lensing three-point statistics are powerful probes of the structure of dark matter haloes. We propose to use the correlation of the positions of galaxies with the shapes of background galaxy pairs, known as the halo-shear-shear correlation (HSSC), to measure the mean halo ellipticity and the abundance of subhaloes in a statistical manner. We run high-resolution cosmological N-body simulations and use the outputs to measure the HSSC for galaxy haloes and cluster haloes. Non-spherical haloes cause a characteristic azimuthal variation of the HSSC, and massive subhaloes in the outer region near the virial radius contribute to ˜ 10 per cent of the HSSC amplitude. Using the HSSC and its covariance estimated from our N-body simulations, we make forecast for constraining the internal structure of dark matter haloes with future galaxy surveys. With 1000 galaxy groups with mass greater than 1013.5 h-1M⊙, the average halo ellipticity can be measured with an accuracy of 10 percent. A spherical, smooth mass distribution can be ruled out at a ˜5σ significance level. The existence of subhaloes whose masses are in 1-10 percent of the main halo mass can be detected with ˜104 galaxies/clusters. We conclude that the HSSC provides valuable information on the structure of dark haloes and hence on the nature of dark matter.
Development of Reconstitution Technology for Surveillance Specimens
International Nuclear Information System (INIS)
Yasushi Atago; Shunichi Hatano; Eiichiro Otsuka
2002-01-01
The Japan Power Engineering and Inspection Corporation (JAPEIC) has been carrying out the project titled 'Nuclear Power Plant Integrated Management Technology (PLIM)' consigned by Japanese Ministry of Economy, Trade and Industry (METI) since 1996FY as a 10-years project. As one of the project themes, development of reconstitution technology for reactor pressure vessel (RPV/RV) surveillance specimens, which are installed in RPVs to monitor the neutron irradiation embrittlement on RPV/RV materials, is now on being carried out to deal with the long-term operation of nuclear power plants. The target of this theme is to establish the technical standard for applicability of reconstituted surveillance specimens including the reconstitution of the Charpy specimens and Compact Tension (CT) specimens. With the Charpy specimen reconstitution, application of 10 mm length inserts is used, which enables the conversion of tests from the LT-direction to the TL-direction. This paper presents the basic data from Charpy and CT specimens of RPV materials using the surveillance specimens obtained for un-irradiated materials including the following. 1) Reconstitution Technology of Charpy Specimens. a) The interaction between plastic zone and Heat Affected Zone (HAZ). b) The effects of the possible deviations from the standard specimens for the reconstituted specimens. 2) Reconstitution Technology of CT specimens. a) The correlation between fracture toughness and plastic zone width. Because the project is now in progress, this paper describes the outline of the results obtained as of the end of 2000 FY. (authors)
Peripheral Protein Unfolding Drives Membrane Bending.
Siaw, Hew Ming Helen; Raghunath, Gokul; Dyer, R Brian
2018-06-20
Dynamic modulation of lipid membrane curvature can be achieved by a number of peripheral protein binding mechanisms such as hy-drophobic insertion of amphipathic helices and membrane scaffolding. Recently, an alternative mechanism was proposed in which crowding of peripherally bound proteins induces membrane curvature through steric pressure generated by lateral collisions. This effect was enhanced using intrinsically disordered proteins that possess high hydrodynamic radii, prompting us to explore whether membrane bending can be triggered by the folding-unfolding transition of surface-bound proteins. We utilized histidine-tagged human serum albumin bound to Ni-NTA-DGS containing liposomes as our model system to test this hypothesis. We found that reduction of the disulfide bonds in the protein resulted in unfolding of HSA, which subsequently led to membrane tubule formation. The frequency of tubule formation was found to be significantly higher when the proteins were unfolded while being localized to a phase-separated domain as opposed to randomly distributed in fluid phase liposomes, indicating that the steric pressure generated from protein unfolding is directly responsible for membrane deformation. Our results are critical for the design of peripheral membrane protein-immobilization strategies and open new avenues for exploring mechanisms of membrane bending driven by conformational changes of peripheral membrane proteins.
Standard test method for guided bend test for ductility of welds
American Society for Testing and Materials. Philadelphia
2002-01-01
1.1 This test method covers a guided bend test for the determination of soundness and ductility of welds in ferrous and nonferrous products. Defects, not shown by X rays, may appear in the surface of a specimen when it is subjected to progressive localized overstressing. This guided bend test has been developed primarily for plates and is not intended to be substituted for other methods of bend testing. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. Note 1—For additional information see Terminology E 6, and American Welding Society Standard D 1.1. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
Ho, Kimberly K; Abrams-Ogg, Anthony Cg; Wood, R Darren; O'Sullivan, M Lynne; Kirby, Gordon M; Blois, Shauna L
2017-06-01
Objectives The objective was to determine if decreased platelet function could be detected after treatment with aspirin and/or clopidogrel in healthy cats using three point-of-care platelet function tests that evaluate platelet function by different methods: Multiplate (by impedance), Platelet Function Analyzer 100 (by mechanical aperture closure) and Plateletworks (by platelet counting). Methods Thirty-six healthy cats were randomly assigned to receive one of three oral treatments over an 8 day period: (1) aspirin 5 mg q72h; (2) aspirin 20.25 mg q72h; or (3) clopidogrel 18.75 mg q24h. Cats treated with 5 and 20.25 mg aspirin also received clopidogrel on days 4-8. Platelet aggregation in response to adenosine diphosphate and collagen ± arachidonic acid was assessed on days 1 (baseline), 4 and 8. Aspirin and clopidogrel metabolites were measured by high-performance liquid chromatography. Platelet function in response to treatment was analyzed by ANCOVA, linear regression and Spearman correlation. Results The only solitary aspirin effect was detected using Plateletworks with collagen in cats treated with 20.25 mg. The only effect detected by Multiplate was using arachidonic acid in cats treated with both aspirin 20.25 mg and clopidogrel. All clopidogrel treatment effects were detected by Platelet Function Analyzer 100, Plateletworks (adenosine diphosphate) and Plateletworks (collagen). Drug metabolites were present in all cats, but concentrations were minimally correlated to platelet function test results. Conclusions and relevance Platelet Function Analyzer 100 and Plateletworks using adenosine diphosphate ± collagen agonists may be used to detect decreased platelet function in response to clopidogrel treatment. Either aspirin is not as effective an antiplatelet drug as clopidogrel, or the tests used were not optimal to measure aspirin effect. Cats with heart disease are commonly prescribed antiplatelet drugs to decrease the risk of aortic thromboembolism
Kim, Hyeonjin; Taksali, Sara E; Dufour, Sylvie; Befroy, Douglas; Goodman, T Robin; Petersen, Kitt Falk; Shulman, Gerald I; Caprio, Sonia; Constable, R Todd
2008-03-01
Hepatic fat fraction (HFF) was measured in 28 lean/obese humans by single-voxel proton spectroscopy (MRS), a two-point Dixon (2PD), and a three-point iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) method (3PI). For the lean, obese, and total subject groups, the range of HFF measured by MRS was 0.3-3.5% (1.1 +/- 1.4%), 0.3-41.5% (11.7 +/- 12.1), and 0.3-41.5% (10.1 +/- 11.6%), respectively. For the same groups, the HFF measured by 2PD was -6.3-2.2% (-2.0 +/- 3.7%), -2.4-42.9% (12.9 +/- 13.8%), and -6.3-42.9% (10.5 +/- 13.7%), respectively, and for 3PI they were 7.9-12.8% (10.1 +/- 2.0%), 11.1-49.3% (22.0 +/- 12.2%), and 7.9-49.3% (20.0 +/- 11.8%), respectively. The HFF measured by MRS was highly correlated with those measured by 2PD (r = 0.954, P fatty liver with the MRI methods ranged from 68-93% for 2PD and 64-89% for 3PI. Our study demonstrates that the apparent HFF measured by the MRI methods can significantly vary depending on the choice of water-fat separation methods and sequences. Such variability may limit the clinical application of the MRI methods, particularly when a diagnosis of early fatty liver needs to be performed. Therefore, protocol-specific establishment of cutoffs for liver fat content may be necessary. (c) 2008 Wiley-Liss, Inc.
Kim, Hyeonjin; Taksali, Sara E.; Dufour, Sylvie; Befroy, Douglas; Goodman, T. Robin; Petersen, Kitt Falk; Shulman, Gerald I.; Caprio, Sonia; Constable, R. Todd
2009-01-01
Hepatic fat fraction (HFF) was measured in 28 lean/obese humans by single-voxel proton spectroscopy (MRS), a two-point Dixon (2PD) and a three-point iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) method (3PI). For the lean, obese and total subject groups, the range of HFF measured by MRS was 0.3–3.5% (1.1±1.4%), 0.3–41.5% (11.7±12.1), and 0.3–41.5% (10.1±11.6%), respectively For the same groups, the HFF measured by 2PD was −6.3–2.2% (−2.0±3.7%), −2.4–42.9% (12.9±13.8%), and −6.3–42.9% (10.5±13.7%), respectively, and for 3PI they were 7.9–12.8% (10.1±2.0%), 11.1–49.3% (22.0±12.2%), and 7.9–49.3% (20.0±11.8%), respectively. The HFF measured by MRS was highly correlated with those measured by 2PD (r=0.954, pfatty liver with the MRI methods ranged 75–93% for 2PI and 79–89% for 3PI. Our study demonstrates that the apparent HFF measured by the MRI methods can significantly vary depending on the choice of water-fat separation methods and sequences. Such variability may limit the clinical application of the MRI methods, particularly when a diagnosis of early fatty liver needs to be performed. Therefore, protocol-specific establishment of cutoffs for liver fat content may be necessary. PMID:18306404
International Nuclear Information System (INIS)
Futakawa, Masatoshi; Steinbrech, R.W.; Tanabe, Yuji; Hara, Toshiaki
2000-01-01
The indentation crack length approach was adopted and further elaborated to evaluate residual stress and toughness of the brittle coatings: two kinds of glass coatings on steel. The influence of the residual stress on indentation cracking was examined in as-received coating condition and by in-situ superimposing a counteracting tensile stress. For purpose of providing reference toughness values stress-free pieces of separated coating material have also been examined. Thus results of the two complementary sets of experiments were assumed to prove self-consistently toughness and residual stress data of the coating. In particular, the in-situ bending of specimen in combination with the indentation test allowed us to vary deliberately the residual stress situation in glass coating. Thus experiments which utilized the combination of bending test and micro-indentation were introduced as a method to provide unambiguous information about residual compressive stress. Toughness and residual compressive stress of glass coatings used in this study were 0.46-0.50 MPa·m 1/2 and 94-111 MPa, respectively. Furthermore, a thermoelastic calculation of the residual compressive stress was performed and it is found that the value of residual compressive stress at coating surface of specimen was 90-102 MPa. (author)
Evaluation of mechanical properties of Dy123 bulk superconductors by 3-point bending tests
International Nuclear Information System (INIS)
Katagiri, K.; Hatakeyama, Y.; Sato, T.; Kasaba, K.; Shoji, Y.; Murakami, A.; Teshima, H.; Hirano, H.
2006-01-01
In order to evaluate the mechanical properties, such as Young's modulus and strength, of Dy123 bulk superconductors and those with 10 wt.% Ag 2 O, we performed 3-point bending tests at room (RT) and liquid nitrogen temperatures (LNT) using specimens cut from the bulks. The Young's modulus and the bending strength increased with decrease in temperature. In the tests loading in the direction of c-axis and ones perpendicular to it, Young's moduli were almost comparable at both RT and LNT. Although the strengths for both orientations were also comparable at LNT, those at RT were different. Young's moduli loaded in the direction of c-axis for Ag 2 O added bulk specimens, 127 GPa in average at RT, were almost comparable to those without Ag 2 O, and 134 GPa at LNT, were slightly lower than those without Ag 2 O. On the other hand, the strengths at both RT and LNT were enhanced by 20% by the Ag addition. The mechanical properties of Dy123 bulks without Ag 2 O were compared with those of Y123 bulks obtained previously. The Young's modulus for loading in the direction of c-axis was slightly lower, and the strength was comparable to those in Y123 bulks, respectively
Histopathologic analysis of appendectomy specimens
Directory of Open Access Journals (Sweden)
R Shrestha
2012-03-01
Full Text Available Background: Acute appendicitis is one of the common conditions requiring emergency surgery. A retrospective study was performed to determine various histopathological diagnoses, their demographics and the rates of perforated appendicitis, negative appendectomy and incidental appendectomy. Materials and Methods: Histopathological records of resected appendices submitted to histopathology department Chitwan medical college teaching hospital over the period of 2 yrs from May, 2009 to April 2011 were reviewed retrospectively. Results: Out of 930 specimens of appendix, appendicitis accounted for 88.8% with peak age incidence in the age group of 11 to 30 yrs in both sexes. Histopathologic diagnoses included acute appendicitis (45.6%, acute suppurative (20.8%, gangrenous (16.3%, perforated (1.7%, resolving /recurrent/non specific chronic appendicitis (2.5%, acute eosinophilic appendicitis (1.2%, periappendicitis (0.2%, and carcinoid tumour (0.1%. Other important coexisting pathologies were parasitic infestation (0.2% and Meckel’s diverticulum (0.2%. Negative appendectomy rate was 10.8% and three times more common in females with peak occurrence in the age group of 21-30 yrs. There were 10 cases of acute appendicitis in incidental appendectomies (2.5%, 24 cases with 7 times more common in females of age group of 31- 60 yrs. Conclusion: There is a high incidence of appendicitis in adolescents and young adults in central south region of Nepal. Negative appendectomy is also very common in females. Incidental appendectomy in elderly females may have preventive value. DOI: http://dx.doi.org/10.3126/jpn.v2i3.6025 JPN 2012; 2(3: 215-219
Miniaturization of specimens for mechanical testing
International Nuclear Information System (INIS)
Harling, O.K.; Kohse, G.
1987-01-01
The development of mechanical property tests based on bending of a 3 mm diameter by (typically) 0.25 mm thick disk is described. Slow strain rate testing of such a disk is used to obtain tensile properties. Finite element computer modelling is used to extract yield stress values with accuracies of at least +- 10% of uniaxial tensile test values for a variety of materials. Analytical estimates of ductility from disk bend test values are possible for low-ductility materials. Work directed toward finite element calculations for ductility and ultimate tensile strength is also discussed. Preliminary data indicating the feasibility of high strain rate testing for estimation of ductile-to-brittle transition temperatures, and an example of the successful application of miniature bend testing in obtaining relative fatigue information are also presented. (author)
Specimen size effects in Charpy impact testing
International Nuclear Information System (INIS)
Alexander, D.J.; Klueh, R.L.
1989-01-01
Full-size , half-size, and third-size specimens from several different steels have been tested as part of an ongoing alloy development program. The smaller specimens permit more specimens to be made from small trail heats and are much more efficient for irradiation experiments. The results of several comparisons between the different specimen sizes have shown that the smaller specimens show qualitatively similar behavior to large specimens, although the upper-shelf energy level and ductile-to-ductile transition temperature are reduced. The upper-shelf energy levels from different specimen sizes can be compared by using a simple volume normalization method. The effect of specimen size and geometry on the ductile-to-ductile transition temperature is more difficult to predict, although the available data suggest a simple shift in the transition temperature due to specimen size changes.The relatively shallower notch used in smaller specimens alters the deformation pattern, and permits yielding to spread back to the notched surface as well as through to the back. This reduces the constraint and the peak stresses, and thus the initiation of cleavage is more difficult. A better understanding of the stress and strain distributions is needed. 19 refs., 3 figs., 3 tabs
Usage of information safety requirements in improving tube bending process
Livshitz, I. I.; Kunakov, E.; Lontsikh, P. A.
2018-05-01
This article is devoted to an improvement of the technological process's analysis with the information security requirements implementation. The aim of this research is the competition increase analysis in aircraft industry enterprises due to the information technology implementation by the example of the tube bending technological process. The article analyzes tube bending kinds and current technique. In addition, a potential risks analysis in a tube bending technological process is carried out in terms of information security.
Preliminary investigation of candidate specimens for the Egyptian environmental specimen bank
International Nuclear Information System (INIS)
Shawky, S.; Amer, H.; Schladot, J.D.; Ostapczuk, P.; Emons, H.; Abou El-Nour, F.
2000-01-01
In the frame of establishing an environmental monitoring program related to environmental specimen banking in egypt, some candidate specimens from the aquatic environment (Fish muscle, fish liver; mussels) were investigated. The selection of specimens and sampling sites is described. Specimens are chemically characterised with respect to some major and trace elements and the results are compared with data obtained from comparable specimens collected in aquatic ecosystems of germany
Hatamleh, Muhanad M; Watts, David C
2011-02-01
To evaluate the effect of three commonly used bond primers on the bending strength of glass fibers and their bond strength to maxillofacial silicone elastomer after 360 hours of accelerated daylight aging. Eighty specimens were fabricated by embedding resin-impregnated fiber bundles (1.5-mm diameter, 20-mm long) into maxillofacial silicone elastomer M511 (Cosmesil). Twenty fiber bundles served as control and did not receive surface treatment with primers, whereas the remaining 60 fibers were treated with three primers (n = 20): G611 (Principality Medical), A-304 (Factor II), and A-330-Gold (Factor II). Forty specimens were dry stored at room temperature (23 ± 1°C) for 24 hours, and the remaining specimens were aged using an environmental chamber under accelerated exposure to artificial daylight for 360 hours. The aging cycle included continuous exposure to quartz-filtered visible daylight (irradiance 760 W/m(2) ) under an alternating weathering cycle (wet for 18 minutes, dry for 102 minutes). Pull-out tests were performed to evaluate bond strength between fiber bundles and silicone using a universal testing machine at 1 mm/min crosshead speed. A 3-point bending test was performed to evaluate the bending strength of the fiber bundles. One-way Analysis of Variance (ANOVA), Bonferroni post hoc test, and an independent t-test were carried out to detect statistical significances (p accelerated daylight aging. Treatment with primer and accelerated daylight aging increased bending strength of glass fibers. © 2011 by The American College of Prosthodontists.
Bending Strength of EN AC-44200 – Al2O3 Composites at Elevated Temperatures
Directory of Open Access Journals (Sweden)
Kurzawa A.
2017-03-01
Full Text Available The paper presents results of bend tests at elevated temperatures of aluminium alloy EN AC-44200 (AlSi12 based composite materials reinforced with aluminium oxide particles. The examined materials were manufactured by squeeze casting. Preforms made of Al2O3 particles, with volumetric fraction 10, 20, 30 and 40 vol.% of particles joined with sodium silicate bridges were used as reinforcement. The preforms were characterised by open porosity ensuring proper infiltration with the EN AC-44200 (AlSi12 liquid alloy. The largest bending strength was found for the materials containing 40 vol.% of reinforcing ceramic particles, tested at ambient temperature. At increased test temperature, bending strength Rg of composites decreased in average by 30 to 50 MPa per 100°C of temperature increase. Temperature increase did not significantly affect cracking of the materials. Cracks propagated mainly along the interfaces particle/matrix, with no effect of the particles falling-out from fracture surfaces. Direction of cracking can be affected by a small number of agglomerations of particles or of non-reacted binder. In the composites, the particles strongly restrict plastic deformation of the alloy, which leads to creation of brittle fractures. At elevated temperatures, however mainly at 200 and 300°C, larger numbers of broken, fragmented particles was observed in the vicinity of cracks. Fragmentation of particles occurred mainly at tensioned side of the bended specimens, in the materials with smaller fraction of Al2O3 reinforcement, i.e. 10 and 20 vol.%.
Bending of pipes with inconel cladding
Energy Technology Data Exchange (ETDEWEB)
Nachpitz, Leonardo; Menezes, Carlos Eduardo B; Vieira, Carlos R. Tavares [Primus Processamento de Tubos S.A. (PROTUBO), Macae, RJ (Brazil)
2009-07-01
The high-frequency induction bending process, using API pipes coated with Inconel 625 reconciled to a mechanical transformation for a higher degree of resistance, was developed through a careful specification and control of the manufacturing parameters and inherent heat treatments. The effects of this technology were investigated by a qualification process consisting of a sequence of tests and acceptance criteria typically required by the offshore industry, and through the obtained results was proved the effectiveness of this entire manufacturing process, without causing interference in the properties and the quality of the inconel cladding, adding a gain of resistance to the base material, guaranteed by the requirements of the API 5L Standard. (author)
Design Study: ELENA Bending Magnet Prototype
Schoerling, D
2013-01-01
The ELENA bending magnet prototype shall prove that the proposed design meets the requirements set by the ELENA beam dynamics. The following points will be discussed in detail: (i) production process of a magnetic yoke diluted with stainless steel plates, (ii) the stability and repeatability of the field homogeneity of such a yoke over the full working range, (iii) choice of soft magnetic steel, (iv) hysteresis effects, (v) mechanical deformations, (vi) thermal insulation to intercept heat load from baking for activation of NEG coating in the vacuum chamber, (vii) end shim design. In order to verify these points the following measurements will be performed: (i) Hall probe scanning, (ii) integrated field homogeneity measurement (DC), (iii) integrated field homogeneity measurement (AC).
Lundquist, Eugene E; Stowell, Elbridge Z
1942-01-01
An analysis is presented of the results of tests made by the Massachusetts Institute of Technology and by the National Advisory Committee for Aeronautics on an investigation of the strength of thin-walled circular and elliptic cylinders in pure bending and in combined torsion and bending. In each of the loading conditions, the bending moments were applied in the plane of the major axis of the ellipse.
Load tests with a pipe bend DN 425, applying slowly changing bending loads up to occurrence of leak
International Nuclear Information System (INIS)
Uhlmann, D.; Hunger, H.
1990-01-01
The experimental program deals with the formation of incipient cracks and subsequent crack growth of axially oriented cracks at a pipe bend with a nominal width of DN 425. The pipe bend consists of the ferritic material 20MnMoNi55. The numerical experiments by means of 3 D-FE analyses concentrate on determining the influence of the asymmetric crack depths at the two bend halves, and of the multiple crack fields, on the effective crack strain. (DG) [de
Czech Academy of Sciences Publication Activity Database
Seitl, Stanislav; Liedo, R.
2017-01-01
Roč. 11, č. 39 (2017), s. 100-109 ISSN 1971-8993 R&D Projects: GA MŠk LM2015069 Institutional support: RVO:68081723 Keywords : Concrete * Finite element method * Numerical simulation * Stress intensity factors Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis
On the accuracy of analyses for in-plane bending of smooth pipe bends with end constraints
International Nuclear Information System (INIS)
Thomson, G.; Spence, J.
1985-01-01
The accuracy of theoretical analyses for in-plane bending of smooth pipebends with end constraints is discussed and investigated with a view to explaining and reducing the differences between the major works. An earlier theory of the authors is improved to give more accurate answers for bends with rigid flanges. Flanged bends are then examined in some detail, quantifying for the first time the important influence of the flange rigidity on the bend flexibility and stresses. A summary of some finite element analyses is presented from which it is clear that further work is desirable. (orig.)
The effect of cracks on the limit load of pipe bends under in-plane bending
International Nuclear Information System (INIS)
Griffiths, J.E.
1976-06-01
The limit analysis of the in-plane bending of curved tubes had received attention previously, but the effect of defects in the tube has not been considered. A lower bound has been established which, with no defects present, is in agreement with previous theoretical work. The method of linear programming allows cracks to be introduced into analysis, and results have been obtained for various geometries of defect. The results show that the presence of cracks in the pipe bend can have a marked effect on the theoretical limit load: a part-through crack penetrating only half the wall thickness will reduce the limit moment by up to 10%. The worst possible case of a through-crack may reduce the limit load by 60%. (author)
The effect of cracks on the limit load of pipe bends under in-plane bending
International Nuclear Information System (INIS)
Griffiths, J.E.
1976-06-01
The limit analysis of the in-plane bending of curved tubes had received attention previously, but the effect of defects in the tube has not been considered. A lower bound is established, which, with no defects present, is in agreement with previous theoretical work. The method of linear programming allows cracks to be introduced into the analysis. and results have been obtained for various geometries of defect. The results show that the presence of cracks in the pipe bend can have a marked effect on the theoretical limit load: a part-through crack penetrating only half the wall thickness will reduce the limit moment by up to 10%. The worst possible case of a through-crack may reduce the limit load by 60% (author)
Effect of Bend Radius on Magnitude and Location of Erosion in S-Bend
Directory of Open Access Journals (Sweden)
Quamrul H. Mazumder
2015-01-01
Full Text Available Solid particle erosion is a mechanical process that removes material by the impact of solid particles entrained in the flow. Erosion is a leading cause of failure of oil and gas pipelines and fittings in fluid handling industries. Different approaches have been used to control or minimize damage caused by erosion in particulated gas-solid or liquid-solid flows. S-bend geometry is widely used in different fluid handling equipment that may be susceptible to erosion damage. The results of a computational fluid dynamic (CFD simulation of diluted gas-solid and liquid-solid flows in an S-bend are presented in this paper. In addition to particle impact velocity, the bend radius may have significant influence on the magnitude and the location of erosion. CFD analysis was performed at three different air velocities (15.24 m/s–45.72 m/s and three different water velocities (0.1 m/s–10 m/s with entrained solid particles. The particle sizes used in the analysis range between 50 and 300 microns. Maximum erosion was observed in water with 10 m/s, 250-micron particle size, and a ratio of 3.5. The location of maximum erosion was observed in water with 10 m/s, 300-micron particle size, and a ratio of 3.5. Comparison of CFD results with available literature data showed reasonable and good agreement.
International Nuclear Information System (INIS)
Li Heng; Yang He; Zhan Mei
2010-01-01
Thin-walled tube bending(TWTB) method of Al-alloy tube has attracted wide applications in aerospace, aviation and automobile,etc. While, under in-plane double tensile stress states at the extrados of bending tube, the over-thinning induced ductile fracture is one dominant defect in Al-alloy tube bending. The main objective of this study is to predict the critical wall-thinning of Al-alloy tube bending by coupling two ductile fracture criteria(DFCs) into FE simulation. The DFCs include Continuum Damage Mechanics(CDM)-based model and GTN porous model. Through the uniaxial tensile test of the curved specimen, the basic material properties of the Al-alloy 5052O tube is obtained; via the inverse problem solution, the damage parameters of both the two fracture criteria are interatively determined. Thus the application study of the above DFCs in the TWTB is performed, and the more reasonable one is selected to obtain the critical thinning of Al-alloy tube in bending. The virtual damage initiation and evolution (when and where the ductile fracture occurs) in TWTB are investigated, and the fracture mechanisms of the voided Al-alloy tube in tube bending are consequently discussed.
International Nuclear Information System (INIS)
Ishiyama, Chiemi
2012-01-01
Adhesive bend and shear tests of micro-sized bonded component have been performed to clarify the relationship between effects of heat-treatment on the adhesive strength and the bonded specimen shape using Weibull analysis. Multiple micro-sized SU-8 columns with four different diameters were fabricated on a Si substrate under the same fabrication condition. Heat-treatment can improve both of the adhesive bend and shear strength. The improvement rate of the adhesive shear strength is much larger than that of the adhesive bend strength, because the residual stress, which must change by heat-treatment, should effect more strongly on the shear loading. In case of bend type test, the adhesive bend strength in the smaller diameters (50 and 75 μm) widely vary, because the critical size of the natural defect (micro-crack) should vary more widely in the smaller diameters. In contrast, in case of shear type test, the adhesive shear strengths in each diameter of the columns little vary. This suggests that the size of the natural defects may not strongly influence on the adhesive shear strength. All the result suggests that both of the adhesive bend and shear strengths should be complicatedly affected by heat-treatment and the bonded columnar diameter
American Society for Testing and Materials. Philadelphia
2005-01-01
1.1 Included in this practice are methods covering the determination of the amount of bending that occurs during the application of tensile and compressive forces to notched and unnotched test specimens in the elastic range and to plastic strains less than 0.002. These methods are particularly applicable to the force application rates normally used for tension testing, creep testing, and uniaxial fatigue testing.
American Society for Testing and Materials. Philadelphia
2014-01-01
1.1 Included in this practice are methods covering the determination of the amount of bending that occurs during the application of tensile and compressive forces to notched and unnotched test specimens in the elastic range and to plastic strains less than 0.002. These methods are particularly applicable to the force application rates normally used for tension testing, creep testing, and uniaxial fatigue testing.
Gender differences in variability patterns of forward bending
DEFF Research Database (Denmark)
Villumsen, Morten; Madeleine, Pascal; Jørgensen, Marie Birk
2016-01-01
The variability pattern is highly relevant in the analysis of occupational physical exposures. It is hypothesized that gender differences exist in the variability pattern of forward bending between work and leisure.......The variability pattern is highly relevant in the analysis of occupational physical exposures. It is hypothesized that gender differences exist in the variability pattern of forward bending between work and leisure....
Disk-bend ductility tests for irradiated materials
International Nuclear Information System (INIS)
Klueh, R.L.; Braski, D.N.
1984-01-01
We modified the HEDL disk-bend test machine and are using it to qualitatively screen alloys that are susceptible to embrittlement caused by irradiation. Tests designed to understand the disk-bend test in relation to a uniaxial test are discussed. Selected results of tests of neutron-irradiated material are also presented
System effects influencing the bending strength of timber beams
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager; Källsner, B.
1998-01-01
A stochastic model of hierarchical series system type for the bending strength of spruce beams isdefined from the anticipation that the bending failure takes place at a cross-section with a defect cluster formed by knots or grain irregularities. The parameters of the model are estimated from meas...
Bends in nanotubes allow electric spin control and coupling
DEFF Research Database (Denmark)
Flensberg, Karsten; Marcus, Charles Masamed
2010-01-01
We investigate combined effects of spin-orbit coupling and magnetic field in carbon nanotubes containing one or more bends along their length. We show how bends can be used to provide electrical control of confined spins, while spins confined in straight segments remain insensitive to electric...
Spontaneous bending of 2D molecular bottle-brush
Subbotin, A; Jong, J; ten Brinke, G
Using a scaling approach we consider a 2D comb copolymer brush under bending deformations. We show that the rectilinear brush is locally stable and can be characterized by a persistence length lambda increasing with the molecular weight of grafting side chains as lambda similar to M-3. A bending
High-sensitivity bend angle measurements using optical fiber gratings.
Rauf, Abdul; Zhao, Jianlin; Jiang, Biqiang
2013-07-20
We present a high-sensitivity and more flexible bend measurement method, which is based on the coupling of core mode to the cladding modes at the bending region in concatenation with optical fiber grating serving as band reflector. The characteristics of a bend sensing arm composed of bending region and optical fiber grating is examined for different configurations including single fiber Bragg grating (FBG), chirped FBG (CFBG), and double FBGs. The bend loss curves for coated, stripped, and etched sections of fiber in the bending region with FBG, CFBG, and double FBG are obtained experimentally. The effect of separation between bending region and optical fiber grating on loss is measured. The loss responses for single FBG and CFBG configurations are compared to discover the effectiveness for practical applications. It is demonstrated that the sensitivity of the double FBG scheme is twice that of the single FBG and CFBG configurations, and hence acts as sensitivity multiplier. The bend loss response for different fiber diameters obtained through etching in 40% hydrofluoric acid, is measured in double FBG scheme that resulted in a significant increase in the sensitivity, and reduction of dead-zone.
7 CFR 97.8 - Specimen requirements.
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Specimen requirements. 97.8 Section 97.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... required by the examiner to furnish representative specimens of the variety, or its flower, fruit, or seeds...
Formulation of Forming Load in V-Bending
Directory of Open Access Journals (Sweden)
Koumura Yuki
2016-01-01
Full Text Available A novel method is described to calculate the forming load in V-bending by a press brake. The data of forming load are collected by FEM analysis. With an increase of the punch stroke in V-bending, the forming load increases gradually after the elastic limit, and then decreases after showing the maximum value. The proposal formulation to trace the variations in the forming load curve includes the calculating method of the load of the elastic limit, the maximum load in air bending and the variations of the forming load before/after the bending stroke of the maximum load. The calculated precision is confirmed by comparing with the measured load-stroke curves in V-bending with a press brake.
Recent advances on Charpy specimen reconstitution techniques
Energy Technology Data Exchange (ETDEWEB)
Andrade, Arnaldo H.P.; Lobo, Raquel M.; Miranda, Carlos Alexandre J., E-mail: aandrade@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2017-07-01
Charpy specimen reconstitution is widely used around the world as a tool to enhance or supplement surveillance programs of nuclear reactor pressure vessels. The reconstitution technique consists in the incorporation of a small piece from a previously tested specimen into a compound specimen, allowing to increase the number of tests. This is especially important if the available materials is restricted and fracture mechanics parameter have to be determined. The reconstitution technique must fulfill some demands, among them tests results like the original standard specimens and the loaded material of the insert must not be influenced by the welding and machining procedure. It is known that reconstitution of Charpy specimens may affect the impact energy in a consequence of the constraint of plastic deformation by the hardened weldment and HAZ. This paper reviews some recent advances of the reconstitution technique and its applications. (author)
Recent advances on Charpy specimen reconstitution techniques
International Nuclear Information System (INIS)
Andrade, Arnaldo H.P.; Lobo, Raquel M.; Miranda, Carlos Alexandre J.
2017-01-01
Charpy specimen reconstitution is widely used around the world as a tool to enhance or supplement surveillance programs of nuclear reactor pressure vessels. The reconstitution technique consists in the incorporation of a small piece from a previously tested specimen into a compound specimen, allowing to increase the number of tests. This is especially important if the available materials is restricted and fracture mechanics parameter have to be determined. The reconstitution technique must fulfill some demands, among them tests results like the original standard specimens and the loaded material of the insert must not be influenced by the welding and machining procedure. It is known that reconstitution of Charpy specimens may affect the impact energy in a consequence of the constraint of plastic deformation by the hardened weldment and HAZ. This paper reviews some recent advances of the reconstitution technique and its applications. (author)
Energy Technology Data Exchange (ETDEWEB)
Kikuchi, Shoichi, E-mail: kikuchi@mech.kobe-u.ac.jp [Department of Mechanical Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe-shi, Hyogo 657-8501 (Japan); Nakamura, Yuki [Department of Mechanical Engineering, National Institute of Technology, Toyota College, 2-1 Eisei-cho, Toyota-shi, Aichi 471-8525 (Japan); Nambu, Koichiro [Department of Mechanical Engineering, National Institute of Technology, Suzuka College, Shiroko-cho, Suzuka-shi, Mie 510-0294 (Japan); Ando, Masafumi [Innovation Team, IKK SHOT Co. Ltd., 412-4, Nunowari, Minami-Shibata-machi, Tokai-shi, Aichi 476-0001 (Japan)
2016-01-15
Shot peening using particles 10 μm in diameter (ultra-fine particle peening: Ultra-FPP) was introduced to improve the fatigue properties of 5056 aluminum alloy. The surface microstructures of the Ultra-FPP treated specimens were characterized using a micro-Vickers hardness tester, scanning electron microscopy (SEM), X-ray diffraction (XRD), non-contact scanning white light interferometry, and electron backscatter diffraction (EBSD). The Ultra-FPP treated specimen had higher hardness than the conventional FPP treated specimen with a short nozzle distance due to the high velocity of the ultra-fine particles. Furthermore, the surface hardness of the Ultra-FPP treated specimen tended to increase as the peening time decreased. Fatigue tests were performed in air at room temperature using a cantilever-type rotating bending fatigue testing machine. It was found that the fatigue life of the Ultra-FPP treated specimen tended to increase with decreasing peening time. Mainly, the Ultra-FPP improved the fatigue properties of 5056 aluminum alloy in the very high cycle regime of more than 10{sup 7} cycles compared with the un-peened specimens. This is because the release of the compressive residual stress is small during fatigue tests at low stress amplitudes.
A bend thickness sensitivity study of Candu feeder piping
International Nuclear Information System (INIS)
Li, M.; Aggarwal, M.L.; Meysner, A.; Micelotta, C.
2005-01-01
In CANDU reactors, feeder bends close to the connection at the fuel channel may be subjected to the highest Flow Accelerated Corrosion (FAC) and stresses. Feeder pipe stress analysis is crucial in the life extension of aging CANDU plants. Typical feeder pipes are interconnected by upper link plates and spacers. It is well known that the stresses at the bends are sensitive to the local bend thicknesses. It is also known from the authors' study (Li and et al, 2005) that feeder inter linkage effect is significant and cannot be ignored. The field measurement of feeder bend thickness is difficult and may be subjected to uncertainty in accuracy. Hence, it is desirable to know how the stress on a subject feeder could be affected by the bend thickness variation of the neighboring feeders. This effect cannot be evaluated by the traditional 'single' feeder model approach. In this paper, the 'row' and 'combined' models developed in the previous study (Li and et al, 2005), which include the feeder interactions, are used to investigate the sensitivity of bend thickness. A series of random thickness bounded by maximum and minimum measured values were applied to feeders in the model. The results show that an individual feeder is not sensitive to the bend thickness variation of the remaining feeders in the model, but depends primarily on its own bend thickness. The highest stress at a feeder always occurs when the feeder has the smallest possible bend thickness. A minimum acceptable bend thickness for individual feeders can be computed by an iterative computing process. The dependency of field thickness measurement and the amount of required analysis work can be greatly reduced. (authors)
LPTR irradiation of LLL vanadium tensile specimens and LLL Nb--1Zr tensile specimens
International Nuclear Information System (INIS)
MacLean, S.C.; Rowe, C.L.
1977-01-01
The LPTR irradiation of 14 LLL vanadium tensile specimens and 14 LLL Nb-1Zr tensile specimens is described. Sample packaging, the irradiation schedule and neutron fluences for three energy ranges are given
Effects of die quench forming on sheet thinning and 3-point bend testing of AA7075-T6
Kim, Samuel; Omer, Kaab; Rahmaan, Taamjeed; Butcher, Clifford; Worswick, Michael
2017-10-01
Lab-scaled AA7075 aluminum side impact beams were manufactured using the die quenching technique in which the sheet was solutionized and then quenched in-die during forming to a super saturated solid state. Sheet thinning measurements were taken at various locations throughout the length of the part and the effect of lubricant on surface scoring and material pick-up on the die was evaluated. The as-formed beams were subjected to a T6 aging treatment and then tested in three-point bending. Simulations were performed of the forming and mechanical testing experiments using the LS-DYNA finite element code. The thinning and mechanical response was predicted well.
Fisher, D. M.; Repko, A. J.
1972-01-01
Tests of bend and compact specimens were conducted according to ASTM Tentative Method E 399-70T on a 200 grade maraging steel over a range of yield strengths from 123 to 234 ksi. The toughness of any given yield strength level was greater for the overaged condition than for the underaged. Some results which met the specimen size requirements of the method were distinctly lower than corresponding results from larger specimens. Inconsistencies in both validation and invalidation of results by the requirement for linearity of the test record were also noted.
Large Deformation Dynamic Bending of Composite Beams
Derian, E. J.; Hyer, M. W.
1986-01-01
Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams were loaded dynamically with a gravity driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 30 deg or 15 deg off-axis plies occured in several events. All laminates exhibited bimodular elastic properties. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.
Field measurement for large bending magnets
International Nuclear Information System (INIS)
Lazzaro, A.; Cappuzzello, F.; Cunsolo, A.; Cavallaro, M.; Foti, A.; Orrigo, S.E.A.; Rodrigues, M.R.D.; Winfield, J.S.
2008-01-01
The results of magnetic field measurements of the large bending magnet of the MAGNEX spectrometer are presented. The experimental values are used to build an Enge function by the least-squares method. The resulting field is compared to the measured one, showing too large deviation for application to ray reconstruction techniques. Similarly, the experimental values are compared with results from a three-dimensional finite elements calculation. Again the deviations between measured and calculated field are too large for a direct application of the latter to ray reconstruction, while its reliability is sufficient for analysis purposes. In particular, it has been applied to study the effect of the inaccuracies in the probe location and orientation on the precision of field reconstruction, and to establish the requirements for the field interpolation. These inaccuracies are found to be rather important, especially for the transversal components of the field, with the consequence that their effect on the reconstructed field should be minimized by special interpolation algorithms
Occipital bending (Yakovlevian torque) in bipolar depression.
Maller, Jerome J; Anderson, Rodney; Thomson, Richard H; Rosenfeld, Jeffrey V; Daskalakis, Zafiris J; Fitzgerald, Paul B
2015-01-30
Differing levels of occipital lobe asymmetry and enlarged lateral ventricles have been reported within patients with bipolar disorder (BD) compared with healthy controls, suggesting different rates of occipital bending (OB). This may exert pressure on subcortical structures, such as the hippocampus, reduced among psychiatric patients. We investigated OB prevalence in 35 patients with BD and 36 healthy controls, and ventricular and occipital volumes. Prevalence was four times higher among BD patients (12/35 [34.3%]) than in control subjects (3/36 [8.3%]), as well as larger lateral ventricular volumes (LVVs). Furthermore, we found OB to relate to left-to-right ventricular and occipital lobe volume (OLV) ratios. Those with OB also had reduced left-to-right hippocampal volume ratios. The results suggest that OB is more common among BD patients than healthy subjects, and prevalent in both BD Type I and Type II patients. We posit that anomalies in neural pruning or ventricular enlargement may precipitate OB, consequently resulting in one occipital lobe twisting around the other. Although the clinical implications of these results are unclear, the study suggests that asymmetrical ventricular volume matched with a pattern of oppositely asymmetrical occipital volume is related to OB and may be a marker of psychiatric illness. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Hakan Keskin
2016-04-01
Full Text Available The aim of this study was to investigate the effects of impregnation with Tanalith-E on the bending strengths and modulus of elasticity in bending of some wood types. The test samples prepared from beech, oak, walnut, poplar, ash and pine wood materials - that are of common use in the forest products industry of TURKEY - according to TS 345, were treated with according to ASTM D 1413-76 substantially. Un-impregnated samples according to impregnated wood materials, the bending strengths in beech to 6.83%, 5.12% in ash, 5.93% in pine, the elasticity module values to 7.15% in oak and ash, at a rate of 6.58% in the higher were found. The highest values of bending strengths and modulus of elasticity in bending were obtained in beech and ash woods impregnated with Tanalith-E, whereas the lowest values were obtained in the poplar wood.
16 CFR Figure 3 to Part 1610 - Specimen Holder Supported in Specimen Rack
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Specimen Holder Supported in Specimen Rack 3 Figure 3 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT... Holder Supported in Specimen Rack ER25MR08.002 ...
Tang, Dalin; Yang, Chun; Kobayashi, Shunichi; Zheng, Jie; Woodard, Pamela K; Teng, Zhongzhao; Billiar, Kristen; Bach, Richard; Ku, David N
2009-06-01
Heart attack and stroke are often caused by atherosclerotic plaque rupture, which happens without warning most of the time. Magnetic resonance imaging (MRI)-based atherosclerotic plaque models with fluid-structure interactions (FSIs) have been introduced to perform flow and stress/strain analysis and identify possible mechanical and morphological indices for accurate plaque vulnerability assessment. For coronary arteries, cyclic bending associated with heart motion and anisotropy of the vessel walls may have significant influence on flow and stress/strain distributions in the plaque. FSI models with cyclic bending and anisotropic vessel properties for coronary plaques are lacking in the current literature. In this paper, cyclic bending and anisotropic vessel properties were added to 3D FSI coronary plaque models so that the models would be more realistic for more accurate computational flow and stress/strain predictions. Six computational models using one ex vivo MRI human coronary plaque specimen data were constructed to assess the effects of cyclic bending, anisotropic vessel properties, pulsating pressure, plaque structure, and axial stretch on plaque stress/strain distributions. Our results indicate that cyclic bending and anisotropic properties may cause 50-800% increase in maximum principal stress (Stress-P1) values at selected locations. The stress increase varies with location and is higher when bending is coupled with axial stretch, nonsmooth plaque structure, and resonant pressure conditions (zero phase angle shift). Effects of cyclic bending on flow behaviors are more modest (9.8% decrease in maximum velocity, 2.5% decrease in flow rate, 15% increase in maximum flow shear stress). Inclusion of cyclic bending, anisotropic vessel material properties, accurate plaque structure, and axial stretch in computational FSI models should lead to a considerable improvement of accuracy of computational stress/strain predictions for coronary plaque vulnerability
Handling of biological specimens for electron microscopy
International Nuclear Information System (INIS)
Bullock, G.
1987-01-01
There are many different aspects of specimen preparation procedure which need to be considered in order to achieve good results. Whether using the scanning or transmission microscope, the initial handling procedures are very similar and are selected for the information required. Handling procedures and techniques described are: structural preservation; immuno-and histo-chemistry; x-ray microanalysis and autoradiography; dehydration and embedding; mounting and coating specimens for scanning electron microscopy; and sectioning of resin embedded material. With attention to detail and careful choice of the best available technique, excellent results should be obtainable whatever the specimen. 6 refs
Evaluation of irradiated coating material specimens
International Nuclear Information System (INIS)
Lee, Yong Jin; Nam, Seok Woo; Cho, Lee Moon
2007-12-01
Evaluation result of irradiated coating material specimens - Coating material specimens radiated Gamma Energy(Co 60) in air condition. - Evaluation conditions was above 1 X 10 4 Gy/hr, and radiated TID 2.0 X 10 6 Gy. - The radiated coating material specimens, No Checking, Cracking, Flaking, Delamination, Peeling and Blistering. - Coating system at the Kori no. 1 and APR 1400 Nuclear power plant, evaluation of irradiated coating materials is in accordance with owner's requirement(2.0 X 10 6 Gy)
The influence of end constraints on smooth pipe bends
International Nuclear Information System (INIS)
Thomson, G.; Spence, J.
1981-01-01
With present trends in the power industries towards higher operating temperatures and pressures, problems associated with the design and safety assessment of pipework systems have become increasingly complex. Within such systems, the importance of smooth pipe bends is well established. The work which will be presented will attempt to clarify the situation and unify the results. An analytical solution of the problem of a linear elastic smooth pipe bend with end constraints under in-plane bending will be presented. The analysis will deal with constraints in the form of flanged tangents of any length. The analysis employs the theorem of minimum total potential energy with suitable kinematically admissible displacements in the form of Fourier series. The integrations and minimisation were performed numerically, thereby permitting the removal of several of the assumptions made by previous authors. Typical results for flexibilities will be given along with comparisons with other works. The differences in some earlier theory are clarified and other more recent work using different solution techniques is substantiated. The bend behaviour is shown to be strongly influenced by the pipe bend parameter, the bend angle, the tangent pipe length and the bend/cross-sectional radius ratio. (orig./GL)
Bending-Tolerant Anodes for Lithium-Metal Batteries.
Wang, Aoxuan; Tang, Shan; Kong, Debin; Liu, Shan; Chiou, Kevin; Zhi, Linjie; Huang, Jiaxing; Xia, Yong-Yao; Luo, Jiayan
2018-01-01
Bendable energy-storage systems with high energy density are demanded for conformal electronics. Lithium-metal batteries including lithium-sulfur and lithium-oxygen cells have much higher theoretical energy density than lithium-ion batteries. Reckoned as the ideal anode, however, Li has many challenges when directly used, especially its tendency to form dendrite. Under bending conditions, the Li-dendrite growth can be further aggravated due to bending-induced local plastic deformation and Li-filaments pulverization. Here, the Li-metal anodes are made bending tolerant by integrating Li into bendable scaffolds such as reduced graphene oxide (r-GO) films. In the composites, the bending stress is largely dissipated by the scaffolds. The scaffolds have increased available surface for homogeneous Li plating and minimize volume fluctuation of Li electrodes during cycling. Significantly improved cycling performance under bending conditions is achieved. With the bending-tolerant r-GO/Li-metal anode, bendable lithium-sulfur and lithium-oxygen batteries with long cycling stability are realized. A bendable integrated solar cell-battery system charged by light with stable output and a series connected bendable battery pack with higher voltage is also demonstrated. It is anticipated that this bending-tolerant anode can be combined with further electrolytes and cathodes to develop new bendable energy systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Piezo films with adjustable anisotropic strain for bending actuators with tunable bending profiles
International Nuclear Information System (INIS)
Wapler, Matthias C; Stürmer, Moritz; Brunne, Jens; Wallrabe, Ulrike
2014-01-01
We present a method to produce in-plane polarized piezo films with a freely adjustable ratio of the strains in orthogonal in-plane directions. They can be used in piezo bending actuators with a tunable curvature profile. The strains are obtained as mean strains from a periodic polarization pattern produced by a suitable doubly interdigitated electrode structure. This mechanism is demonstrated for several examples using PZT sheets. We further discuss how this tuning and the parameters of the electrode layout affect the overall magnitude of the displacement. (paper)
Numerical simulation of laser bending of AISI 304 plate with a ...
African Journals Online (AJOL)
Keywords: laser bending; process modeling; bending angle; response surface models. ... (Shi et al., 2007) presented numerical simulation of bending for with different shapes of laser ..... Matlab 2011a application code is used to develop and.
Shimizu, Yukimaru; Sugino, Koichi; Yasui, Masaji; Hayakawa, Yukitaka; Kuzuhara, Sadao
1985-01-01
Pipes with bend combinations are much used in the heat exchangers, since the curved path in the bends promotes the mixing in flow for active heat transfer. In the present paper, one of the pipes with bend combinations, namely, quasi-coiled pipes composed of many bend elements are investigated, and the relationships between the hydraulic loss and the secondary flow are studied experimentally. The configurations of the cross sections, the bent angles and the curvature ratios of the bend element...
Creep relaxation of fuel pin bending and ovalling stresses
International Nuclear Information System (INIS)
Chan, D.P.; Jackson, R.J.
1979-06-01
Analytical methods for calculating fuel pin cladding bending and ovalling stresses due to pin bundle-duct mechanical interaction taking into account nonlinear creep are presented. Calculated results are in close agreement with finite element results by MARC-CDC program. The methods are used to investigate the effect of creep on the FTR fuel cladding bending and ovalling stresses. It is concluded that the cladding of 316 SS 20% CW and reference design has high creep rates in the FTR core region to keep the bending and ovalling stresses to low levels
Localized bending fatigue behavior of high-strength steel monostrands
DEFF Research Database (Denmark)
Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.
2012-01-01
In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement of the st......In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement...... displacement (opening/closing and sliding) of the helically wound wires. Moreover, the results are a step towards understanding the bending fatigue damage mechanisms of monostrand cables....
Bending-active reciprocal structures based on equilateral polyhedral geometries
DEFF Research Database (Denmark)
Popovic Larsen, Olga; BRANCART, Stijn; DE TEMMERMAN, Niels
2017-01-01
As mutually supported beam structures, reciprocal frames limit the number of components that are joined at each connection to two. However, this system of intermediate connections introduces undesirable bending moments in the beam elements. By utilising elastic deformation to create curved...... of parts of reciprocal bending-active components based on a selection of polyhedral dome types. To simplify the assembly of the structures and avoid the manual bending of the components on site, we introduce the concept of a double-layered, pre-bent component. Finally, this paper presents the development...
50 CFR 14.24 - Scientific specimens.
2010-10-01
..., POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS... international mail system. Provided, that this exception will not apply to any specimens or parts thereof taken...
"Bending the cost curve" in gastroenterology.
Slattery, E; Harewood, G C; Murray, F; Patchett, S
2013-12-01
Increasing attention is being focused on reigning in escalating costs of healthcare, i.e. trying to 'bend the cost curve'. In gastroenterology (GI), inpatient hospital care represents a major component of overall costs. This study aimed to characterize the trend in cost of care for GI-related hospitalizations in recent years and to identify the most costly diagnostic groups. All hospital inpatients admitted between January 2008 and December 2009 with a primary diagnosis of one of the six most common GI-related Diagnosis Related Groups (DRGs) in this hospital system were identified; all DRGs contained at least 40 patients during the study period. Patient Level Costing (PLC) was used to express the total cost of hospital care for each patient; PLC comprised a weighted daily bed cost plus cost of all medical services provided (e.g., radiology, pathology tests) calculated according to an activity-based costing approach; cost of medications were excluded. All costs were discounted to 2009 values. Mean length of stay (LOS) was also calculated for each DRG. Over 2 years, 470 patients were admitted with one of the six most common GI DRGs. Mean cost of care increased from 2008 to 2009 for all six DRGs with the steepest increases seen in 'GI hemorrhage (non-complex)' (31 % increase) and 'Cirrhosis/Alcoholic hepatitis (non-complex)' (45 % increase). No differences in readmission rates were observed over time. There was a strong correlation between year-to-year change in costs and change in mean LOS, r = 0.93. The cost of GI-related inpatient care appears to be increasing in recent years with the steepest increases observed in non-complex GI hemorrhage and non-complex Cirrhosis/Alcoholic hepatitis. Efforts to control the increasing costs should focus on these diagnostic categories.
Impact of specimen adequacy on the assessment of renal allograft biopsy specimens.
Cimen, S; Geldenhuys, L; Guler, S; Imamoglu, A; Molinari, M
2016-01-01
The Banff classification was introduced to achieve uniformity in the assessment of renal allograft biopsies. The primary aim of this study was to evaluate the impact of specimen adequacy on the Banff classification. All renal allograft biopsies obtained between July 2010 and June 2012 for suspicion of acute rejection were included. Pre-biopsy clinical data on suspected diagnosis and time from renal transplantation were provided to a nephropathologist who was blinded to the original pathological report. Second pathological readings were compared with the original to assess agreement stratified by specimen adequacy. Cohen's kappa test and Fisher's exact test were used for statistical analyses. Forty-nine specimens were reviewed. Among these specimens, 81.6% were classified as adequate, 6.12% as minimal, and 12.24% as unsatisfactory. The agreement analysis among the first and second readings revealed a kappa value of 0.97. Full agreement between readings was found in 75% of the adequate specimens, 66.7 and 50% for minimal and unsatisfactory specimens, respectively. There was no agreement between readings in 5% of the adequate specimens and 16.7% of the unsatisfactory specimens. For the entire sample full agreement was found in 71.4%, partial agreement in 20.4% and no agreement in 8.2% of the specimens. Statistical analysis using Fisher's exact test yielded a P value above 0.25 showing that - probably due to small sample size - the results were not statistically significant. Specimen adequacy may be a determinant of a diagnostic agreement in renal allograft specimen assessment. While additional studies including larger case numbers are required to further delineate the impact of specimen adequacy on the reliability of histopathological assessments, specimen quality must be considered during clinical decision making while dealing with biopsy reports based on minimal or unsatisfactory specimens.
Specimen environments in thermal neutron scattering experiments
International Nuclear Information System (INIS)
Cebula, D.J.
1980-11-01
This report is an attempt to collect into one place outline information concerning the techniques used and basic design of sample environment apparatus employed in neutron scattering experiments. Preliminary recommendations for the specimen environment programme of the SNS are presented. The general conclusion reached is that effort should be devoted towards improving reliability and efficiency of operation of specimen environment apparatus and developing systems which are robust and easy to use, rather than achieving performance at the limits of technology. (author)
Thermal property testing technique on micro specimen
International Nuclear Information System (INIS)
Baba, Tetsuya; Kishimoto, Isao; Taketoshi, Naoyuki
2000-01-01
This study aims at establishment of further development on some testing techniques on the nuclear advanced basic research accumulated by the National Research Laboratory of Metrology for ten years. For this purpose, a technology to test heat diffusion ratio and specific heat capacity of less than 3 mm in diameter and 1 mm in thickness of micro specimen and technology to test heat diffusion ratio at micro area of less than 1 mm in area along cross section of less than 10 mm in diameter of column specimen were developed to contribute to common basic technology supporting the nuclear power field. As a result, as an element technology to test heat diffusion ratio and specific heat capacity of the micro specimen, a specimen holding technique stably to hold a micro specimen with 3 mm in diameter could be developed. And, for testing the specific heat capacity by using the laser flush differential calorimetry, a technique to hold two specimen of 5 mm in diameter at their proximities was also developed. In addition, by promoting development of thermal property data base capable of storing thermal property data obtained in this study and with excellent workability in this 1998 fiscal year a data in/out-put program with graphical user interface could be prepared. (G.K.)
Comparative study on Charpy specimen reconstitution techniques
International Nuclear Information System (INIS)
Bourdiliau, B.; Decroix, G.-M.; Averty, X.; Wident, P.; Bienvenu, Y.
2011-01-01
Highlights: → Welding processes are used to reconstitute previously tested Charpy specimens. → Stud welding is preferred for a quick installation, almost immediately operational. → Friction welding produces better quality welds, but requires a development effort. - Abstract: Reconstitution techniques are often used to allow material from previously fractured Charpy-V specimens to be reused for additional experiments. This paper presents a comparative experimental study of various reconstitution techniques and evaluates the feasibility of these methods for future use in shielded cells. The following techniques were investigated: arc stud welding, 6.0 kW CO 2 continuous wave laser welding, 4.5 kW YAG continuous wave laser welding and friction welding. Subsize Charpy specimens were reconstituted using a 400 W YAG pulsed wave laser. The best result was obtained with arc stud welding; the resilience of the reconstituted specimens and the load-displacement curves agreed well with the reference specimens, and the temperature elevation caused by the welding process was limited to the vicinity of the weld. Good results were also obtained with friction welding; this process led to the best quality welds. Laser welding seems to have affected the central part of the specimens, thus leading to different resilience values and load-displacement curves.
Advantages of customer/supplier involvement in the upgrade of River Bend`s IST program
Energy Technology Data Exchange (ETDEWEB)
Womack, R.L.; Addison, J.A.
1996-12-01
At River Bend Station, IST testing had problems. Operations could not perform the test with the required repeatability; engineering could not reliably trend test data to detect degradation; licensing was heavily burdened with regulatory concerns; and maintenance could not do preventative maintenance because of poor prediction of system health status. Using Energy`s Total Quality principles, it was determined that the causes were: lack of ownership, inadequate test equipment usage, lack of adequate procedures, and lack of program maintenance. After identifying the customers and suppliers of the IST program data, Energy management put together an upgrade team to address these concerns. These customers and suppliers made up the IST upgrade team. The team`s mission was to supply River Bend with a reliable, functional, industry correct and user friendly IST program. The IST program in place went through a verification process that identified and corrected over 400 individual program discrepancies. Over 200 components were identified for improved testing methods. An IST basis document was developed. The operations department was trained on ASME Section XI testing. All IST tests have been simplified and shortened, due to heavy involvement by operations in the procedure development process. This significantly reduced testing time, resulting in lower cost, less dose and greater system availability.
A study on the evaluation of dynamic stress intensity factor in repeated impact bending test
International Nuclear Information System (INIS)
Sim, Jae Ki; Cho, Gyu Jae; Han, Gill Young
1988-01-01
The purpose of the present paper was to establish the evaluation of the dynamic stress intensity factor in repeated impact three point bending test. Contact force between the impact bar and the cracked beam (simple supported beam) was analyzed by the using Hertz's contact law. In order to clarify the validity of theoretical analysis, experiments of dynamic stress intensity factir k I (t) are made on the cracked beam. The results obtained from this study are as follow: 1. In case of impact force analysis the theoretical result was obtained by the use of the Hertz's contact law. It's result was agreemant with the experimental result. Particularly, it was good agreement in the low impact velocity range. 2. The time variation of the dynamic stress intensity was determined by using the simple formula developed in this pqper. And the validity of it's result can be confirmed by experiment. Particlarly, this theoretical analysis was a good agreement to actual phenomena on from 0.3 msec to 0.65 msec. (Author)
Directory of Open Access Journals (Sweden)
Dasar Amry
2016-01-01
Full Text Available Six prestressed concrete beams (PC beam were used for evaluation, consist of four post-tension beams (PC-O and two pre-tension beams (PC-R. In order to investigate the effect of crack on prestress loss and bending capacity after long-term exposed, prestressed concrete beams were pre-crack and then exposed to marine environment. Experimental work was carried out to evaluate PC beams performance after long-term exposed. In addition, visual observations and load bearing capacity test was carried out. Furthermore, evaluation of prestress loss conducted using three-point loading bending test and the remaining tendon forces in the beam were determined using Crack Re-opening Method. The experimental results revealed that prestress loss was increased due to corrosion of strand/wire which affected by the pre-crack on the prestressed beams. Approximately a prestress loss around 26% and 30% was recorded for post-tension and pre-tension beams respectively.
Compressive and bending behavior of sandwich panels with Octet truss core fabricated from wires
International Nuclear Information System (INIS)
Lim, Ji Hyun; Nah, Seong Jun; Kang, Ki Ju; Koo, Man Hoe
2005-01-01
Ultra light metal structures have been studied for several years because of their superior specific stiffness, strength and potential of multi functions. Many studies have been focused on how to manufacture ultra light metal structures and optimize them. In this study, we introduced a new idea to make sandwich panels having Octet truss cores. Wires bent in a shape of triangular wave were assembled to construct an Octet truss core and it was bonded with two face sheets to be a sandwich panel. The bending and compressive strength and stiffness were estimated through elementary mechanics for the sandwich specimens with two kinds of face sheets and the results were compared with the ones measured by experiments. Some aspects of assembling and mechanical behavior were discussed compared with Kagome core fabricated from wire, which had been introduced in the authors' previous work
Effect of centrifugal transverse wakefield for microbunch in bend
International Nuclear Information System (INIS)
Stupakov, G.V.
1999-01-01
We calculate centrifugal force for a short bunch in vacuum moving in a circular orbit and estimate the emittance growth of the beam in a bend due to this force. copyright 1999 American Institute of Physics
experimental and analytical comparison of torsion, bending moment
African Journals Online (AJOL)
HOD
In structural analysis and design, the effects of torsion are usually neglected ... bending and torsion, using these codes and experimental work; and validates the ..... [7] Kharagpur, I. Structural Analysis: Civil Engineering. Course Material (Vol.
Magnetically Assisted Bilayer Composites for Soft Bending Actuators
Directory of Open Access Journals (Sweden)
Sung-Hwan Jang
2017-06-01
Full Text Available This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically distributed them by applying a strong non-uniform magnetic field to one side of the mold during the curing process. The biased magnetic field induces sedimentation of the ferromagnetic particles toward one side of the structure. The nonhomogeneous distribution of the particles induces bending of the structure when inflated, as a result of asymmetric stiffness of the composite. The bilayer composites were then characterized with a scanning electron microscopy and thermogravimetric analysis. The bending performance and the axial expansion of the actuator were discussed for manipulation applications in soft robotics and bioengineering. The magnetically assisted manufacturing process for the soft bending actuator is a promising technique for various applications in soft robotics.
Magnetically Assisted Bilayer Composites for Soft Bending Actuators.
Jang, Sung-Hwan; Na, Seon-Hong; Park, Yong-Lae
2017-06-12
This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically distributed them by applying a strong non-uniform magnetic field to one side of the mold during the curing process. The biased magnetic field induces sedimentation of the ferromagnetic particles toward one side of the structure. The nonhomogeneous distribution of the particles induces bending of the structure when inflated, as a result of asymmetric stiffness of the composite. The bilayer composites were then characterized with a scanning electron microscopy and thermogravimetric analysis. The bending performance and the axial expansion of the actuator were discussed for manipulation applications in soft robotics and bioengineering. The magnetically assisted manufacturing process for the soft bending actuator is a promising technique for various applications in soft robotics.
Computational Strategies for the Architectural Design of Bending Active Structures
DEFF Research Database (Denmark)
Tamke, Martin; Nicholas, Paul
2013-01-01
Active bending introduces a new level of integration into the design of architectural structures, and opens up new complexities for the architectural design process. In particular, the introduction of material variation reconfigures the design space. Through the precise specification...
Low Cycle Fatigue of Steel in Strain Controled Cyclic Bending
Directory of Open Access Journals (Sweden)
Kulesa Anna
2016-03-01
Full Text Available The paper presents a comparison of the fatigue life curves based on test of 15Mo3 steel under cyclic, pendulum bending and tension-compression. These studies were analyzed in terms of a large and small number of cycles where strain amplitude is dependent on the fatigue life. It has been shown that commonly used Manson-Coffin-Basquin model cannot be used for tests under cyclic bending due to the impossibility of separating elastic and plastic strains. For this purpose, some well-known models of Langer and Kandil and one new model of authors, where strain amplitude is dependent on the number of cycles, were proposed. Comparing the results of bending with tension-compression it was shown that for smaller strain amplitudes the fatigue life for both test methods were similar, for higher strain amplitudes fatigue life for bending tests was greater than for tension-compression.
Timoshenko-Wagner-Kappus Torsion Bending Theory and Wind ...
Indian Academy of Sciences (India)
Theory and Wind Tunnel Balance Design. S P Govinda ... The study of torsion and bending has always been a favourite ... Since it was difficult to work quietlyin Petersburg, .... should be stiff and strong to endure shocks and ensure long life.
kantorovich-euler lagrange-galerkin's method for bending analysis
African Journals Online (AJOL)
user
OF CIVIL ENGINEERING, ENUGU STATE UNIVERSITY OF SCIENCE & TECHNOLOGY, ... In this work, the Kantorovich method is applied to solve the bending problem of thin ... Lagrange differential equation is determined for this functional.
Turbulent flow computation in a circular U-Bend
Directory of Open Access Journals (Sweden)
Miloud Abdelkrim
2014-03-01
Full Text Available Turbulent flows through a circular 180° curved bend with a curvature ratio of 3.375, defined as the the bend mean radius to pipe diameter is investigated numerically for a Reynolds number of 4.45×104. The computation is performed for a U-Bend with full long pipes at the entrance and at the exit. The commercial ANSYS FLUENT is used to solve the steady Reynolds–Averaged Navier–Stokes (RANS equations. The performances of standard k-ε and the second moment closure RSM models are evaluated by comparing their numerical results against experimental data and testing their capabilities to capture the formation and extend this turbulence driven vortex. It is found that the secondary flows occur in the cross-stream half-plane of such configurations and primarily induced by high anisotropy of the cross-stream turbulent normal stresses near the outer bend.
Turbulent flow computation in a circular U-Bend
Miloud, Abdelkrim; Aounallah, Mohammed; Belkadi, Mustapha; Adjlout, Lahouari; Imine, Omar; Imine, Bachir
2014-03-01
Turbulent flows through a circular 180° curved bend with a curvature ratio of 3.375, defined as the the bend mean radius to pipe diameter is investigated numerically for a Reynolds number of 4.45×104. The computation is performed for a U-Bend with full long pipes at the entrance and at the exit. The commercial ANSYS FLUENT is used to solve the steady Reynolds-Averaged Navier-Stokes (RANS) equations. The performances of standard k-ɛ and the second moment closure RSM models are evaluated by comparing their numerical results against experimental data and testing their capabilities to capture the formation and extend this turbulence driven vortex. It is found that the secondary flows occur in the cross-stream half-plane of such configurations and primarily induced by high anisotropy of the cross-stream turbulent normal stresses near the outer bend.
Mathematical model of polyethylene pipe bending stress state
Serebrennikov, Anatoly; Serebrennikov, Daniil
2018-03-01
Introduction of new machines and new technologies of polyethylene pipeline installation is usually based on the polyethylene pipe flexibility. It is necessary that existing bending stresses do not lead to an irreversible polyethylene pipe deformation and to violation of its strength characteristics. Derivation of the mathematical model which allows calculating analytically the bending stress level of polyethylene pipes with consideration of nonlinear characteristics is presented below. All analytical calculations made with the mathematical model are experimentally proved and confirmed.
Design and Construction of the Plat Bending Machine
International Nuclear Information System (INIS)
Edy Sumarno; Abdul Hafid; Ismu H; Joko P W; Bambang Heru
2003-01-01
The plat-bending machine has been fabricated. The type is manual. That machine was made by plate, cylinder and U plat material. The machine has dimensions 110 mm in height, 650 mm in width, and 1200 mm in height. The capability of this machine is bending the plat with 2 mm in thickness and 1000 mm in width. This machine has the advantage to operate without electrical supply and easy to operate. (author)
Theory of bending waves with applications to disk galaxies
International Nuclear Information System (INIS)
Mark, J.W.K.
1982-01-01
A theory of bending waves is surveyed which provides an explanation for the required amplification of the warp in the Milky Way. It also provides for self-generated warps in isolated external galaxies. The shape of observed warps and partly their existence in isolated galaxies are indicative of substantial spheroidal components. The theory also provides a plausible explanation for the bending of the inner disk (<2 kpc) of the Milky Way
NRC concerns about steam generator tube U-bend failures
International Nuclear Information System (INIS)
Dillon, R.L.
1981-01-01
This paper concerns itself with genralized NRC regulatory policy regarding SGT failures and staff reports and opinions which may tend to influence the developing policy specific to U-bend failures. The most significant analysis at hand in predicting NRC policy on SGT U-bend failures is Marsh's Evaluation of Steam Generator Tube Rupture Events. Marsh sets out to describe and analyze the five steam generator tube ruptures that are known to NRC. All have occurred in the period 1975 to 1980
The response of pressure vessel steel specimens on drop weight loading
International Nuclear Information System (INIS)
Winkler, S.; Kalthoff, J.F.; Gerscha, A.
1979-01-01
Load records obtained in instrumented impact tests in general are disturbed by inertia effects. The influence of mechanical damping provisions on these disturbing inertia effects is investigated. Precracked bend specimens are dynamically loaded in a drop weight testing system. The specimens of size 620 mm x 150 mm (25 mm or 50 mm thick) were machined from the pressure vessel steel 22 NiMoCr 37 which was heat treated to achieve a specially hardened condition. The tests were performed at two different low temperatures. The impact velocity was about 4 m/s. As it is usual in instrumented impact testing, the load at the tup of the impining striker is recorded as a function of time during the impact process. In addition the specimen is instrumented by a strain gage close to the crack tip in order to directly measure the stress intensification. Experiments were performed under pure and damped impact conditions. Damping was achieved by utilizing a soft aluminum plate between the striker and the specimen. (orig.)
Closeout of JOYO-1 Specimen Fabrication Efforts
International Nuclear Information System (INIS)
ME Petrichek; JL Bump; RF Luther
2005-01-01
Fabrication was well under way for the JOYO biaxial creep and tensile specimens when the NR Space program was canceled. Tubes of FS-85, ASTAR-811C, and T-111 for biaxial creep specimens had been drawn at True Tube (Paso Robles, CA), while tubes of Mo-47.5 Re were being drawn at Rhenium Alloys (Cleveland, OH). The Mo-47.5 Re tubes are now approximately 95% complete. Their fabrication and the quantities produced will be documented at a later date. End cap material for FS-85, ASTAR-811C, and T-111 had been swaged at Pittsburgh Materials Technology, Inc. (PMTI) (Large, PA) and machined at Vangura (Clairton, PA). Cutting of tubes, pickling, annealing, and laser engraving were in process at PMTI. Several biaxial creep specimen sets of FS-85, ASTAR-811C, and T-111 had already been sent to Pacific Northwest National Laboratory (PNNL) for weld development. In addition, tensile specimens of FS-85, ASTAR-811C, T-111, and Mo-47.5 Re had been machined at Kin-Tech (North Huntington, PA). Actual machining of the other specimen types had not been initiated. Flowcharts 1-3 detail the major processing steps each piece of material has experienced. A more detailed description of processing will be provided in a separate document [B-MT(SRME)-51]. Table 1 lists the in-process materials and finished specimens. Also included are current metallurgical condition of these materials and specimens. The available chemical analyses for these alloys at various points in the process are provided in Table 2
Simon, David D; Andrews, Sharon M; Robinson-Zeigler, Rebecca; Valdes, Thelma; Woods, Terry O
2018-02-01
Current mechanical testing of surgical mesh focuses primarily on tensile properties even though implanted devices are not subjected to pure tensile loads. Our objective was to determine the flexural (bending) properties of surgical mesh and determine if they correlate with mesh tensile properties. The flexural rigidity values of 11 different surgical mesh designs were determined along three textile directions (machine, cross-machine, and 45° to machine; n = 5 for each) using ASTM D1388-14 while tracking surface orientation. Tensile testing was also performed on the same specimens using ASTM D882-12. Linear regressions were performed to compare mesh flexural rigidity to mesh thickness, areal mass density, filament diameter, ultimate tensile strength, and maximum extension. Of 33 mesh specimen groups, 30 had significant differences in flexural rigidity values when comparing surface orientations (top and bottom). Flexural rigidity and mesh tensile properties also varied with textile direction (machine and cross-machine). There was no strong correlation between the flexural and tensile properties, with mesh thickness having the best overall correlation with flexural rigidity. Currently, surface orientation is not indicated on marketed surgical mesh, and a single mesh may behave differently depending on the direction of loading. The lack of correlation between flexural stiffness and tensile properties indicates the need to examine mesh bending stiffness to provide a more comprehensive understanding of surgical mesh mechanical behaviors. Further investigation is needed to determine if these flexural properties result in the surgical mesh behaving mechanically different depending on implantation direction. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 854-862, 2018. © 2017 Wiley Periodicals, Inc.
Bending spring rate investigation of nanopipette for cell injection
Shen, Yajing; Zhang, Zhenhai; Fukuda, Toshio
2015-04-01
Bending of nanopipette tips during cell penetration is a major cause of cell injection failure. However, the flexural rigidity of nanopipettes is little known due to their irregular structure. In this paper, we report a quantitative method to estimate the flexural rigidity of a nanopipette by investigating its bending spring rate. First nanopipettes with a tip size of 300 nm are fabricated from various glass tubes by laser pulling followed by focused ion beam (FIB) milling. Then the bending spring rate of the nanopipettes is investigated inside a scanning electron microscope (SEM). Finally, a yeast cell penetration test is performed on these nanopipettes, which have different bending spring rates. The results show that nanopipettes with a higher bending spring rate have better cell penetration capability, which confirms that the bending spring rate may well reflect the flexural rigidity of a nanopipette. This method provides a quantitative parameter for characterizing the mechanical property of a nanopipette that can be potentially taken as a standard specification in the future. This general method can also be used to estimate other one-dimensional structures for cell injection, which will greatly benefit basic cell biology research and clinical applications.
Bending spring rate investigation of nanopipette for cell injection
International Nuclear Information System (INIS)
Shen, Yajing; Zhang, Zhenhai; Fukuda, Toshio
2015-01-01
Bending of nanopipette tips during cell penetration is a major cause of cell injection failure. However, the flexural rigidity of nanopipettes is little known due to their irregular structure. In this paper, we report a quantitative method to estimate the flexural rigidity of a nanopipette by investigating its bending spring rate. First nanopipettes with a tip size of 300 nm are fabricated from various glass tubes by laser pulling followed by focused ion beam (FIB) milling. Then the bending spring rate of the nanopipettes is investigated inside a scanning electron microscope (SEM). Finally, a yeast cell penetration test is performed on these nanopipettes, which have different bending spring rates. The results show that nanopipettes with a higher bending spring rate have better cell penetration capability, which confirms that the bending spring rate may well reflect the flexural rigidity of a nanopipette. This method provides a quantitative parameter for characterizing the mechanical property of a nanopipette that can be potentially taken as a standard specification in the future. This general method can also be used to estimate other one-dimensional structures for cell injection, which will greatly benefit basic cell biology research and clinical applications. (paper)
Ankle-foot orthosis bending axis influences running mechanics.
Russell Esposito, Elizabeth; Ranz, Ellyn C; Schmidtbauer, Kelly A; Neptune, Richard R; Wilken, Jason M
2017-07-01
Passive-dynamic ankle-foot orthoses (AFOs) are commonly prescribed to improve locomotion for people with lower limb musculoskeletal weakness. The clinical prescription and design process are typically qualitative and based on observational assessment and experience. Prior work examining the effect of AFO design characteristics generally excludes higher impact activities such as running, providing clinicians and researchers limited information to guide the development of objective prescription guidelines. The proximal location of the bending axis may directly influence energy storage and return and resulting running mechanics. The purpose of this study was to determine if the location of an AFO's bending axis influences running mechanics. Marker and force data were recorded as 12 participants with lower extremity weakness ran overground while wearing a passive-dynamic AFO with posterior struts manufactured with central (middle) and off-centered (high and low) bending axes. Lower extremity joint angles, moments, powers, and ground reaction forces were calculated and compared between limbs and across bending axis conditions. Bending axis produced relatively small but significant changes. Ankle range of motion increased as the bending axis shifted distally (pbenefits during running, although individual preference and physical ability should also be considered. Published by Elsevier B.V.
Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites
Institute of Scientific and Technical Information of China (English)
Chen Lei; Li Ping; Wen Yu-Mei; Zhu Yong
2013-01-01
As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation,the ME effect is significantly enhanced in the vicinity of resonance frequency.The bending resonance frequency (fr) of bilayered Terfenol-D/PZT (MP) laminated composites is studied,and our analysis predicts that (i) the bending resonance frequency of an MP laminated composite can be tuned by an applied dc magnetic bias (Hdc) due to the △E effect; (ii) the bending resonance frequency of the MP laminated composite can be controlled by incorporating FeCuNbSiB layers with different thicknesses.The experimental results show that with Hdc increasing from 0Oe (1 Oe=79.5775 A/m)to 700 Oe,the bending resonance frequency can be shifted in a range of 32.68 kHz ≤ fr ≤ 33.96 kHz.In addition,with the thickness of the FeCuNbSiB layer increasing from 0 μm to 90 μm,the bending resonance frequency of the MP laminated composite gradually increases from 33.66 kHz to 39.18 kHz.This study offers a method of adjusting the strength of dc magnetic bias or the thicknesses of the FeCuNbSiB layer to tune the bending resonance frequency for ME composite,which plays a guiding role in the ME composite design for real applications.
Wang, Yingbing; Ebuoma, Lilian; Saksena, Mansi; Liu, Bob; Specht, Michelle; Rafferty, Elizabeth
2014-08-01
Use of mobile digital specimen radiography systems expedites intraoperative verification of excised breast specimens. The purpose of this study was to evaluate the performance of a such a system for verifying targets. A retrospective review included 100 consecutive pairs of breast specimen radiographs. Specimens were imaged in the operating room with a mobile digital specimen radiography system and then with a conventional digital mammography system in the radiology department. Two expert reviewers independently scored each image for image quality on a 3-point scale and confidence in target visualization on a 5-point scale. A target was considered confidently verified only if both reviewers declared the target to be confidently detected. The 100 specimens contained a total of 174 targets, including 85 clips (49%), 53 calcifications (30%), 35 masses (20%), and one architectural distortion (1%). Although a significantly higher percentage of mobile digital specimen radiographs were considered poor quality by at least one reviewer (25%) compared with conventional digital mammograms (1%), 169 targets (97%), were confidently verified with mobile specimen radiography; 172 targets (98%) were verified with conventional digital mammography. Three faint masses were not confidently verified with mobile specimen radiography, and conventional digital mammography was needed for confirmation. One faint mass and one architectural distortion were not confidently verified with either method. Mobile digital specimen radiography allows high diagnostic confidence for verification of target excision in breast specimens across target types, despite lower image quality. Substituting this modality for conventional digital mammography can eliminate delays associated with specimen transport, potentially decreasing surgical duration and increasing operating room throughput.
Sproul, John S; Maddison, David R
2017-11-01
Despite advances that allow DNA sequencing of old museum specimens, sequencing small-bodied, historical specimens can be challenging and unreliable as many contain only small amounts of fragmented DNA. Dependable methods to sequence such specimens are especially critical if the specimens are unique. We attempt to sequence small-bodied (3-6 mm) historical specimens (including nomenclatural types) of beetles that have been housed, dried, in museums for 58-159 years, and for which few or no suitable replacement specimens exist. To better understand ideal approaches of sample preparation and produce preparation guidelines, we compared different library preparation protocols using low amounts of input DNA (1-10 ng). We also explored low-cost optimizations designed to improve library preparation efficiency and sequencing success of historical specimens with minimal DNA, such as enzymatic repair of DNA. We report successful sample preparation and sequencing for all historical specimens despite our low-input DNA approach. We provide a list of guidelines related to DNA repair, bead handling, reducing adapter dimers and library amplification. We present these guidelines to facilitate more economical use of valuable DNA and enable more consistent results in projects that aim to sequence challenging, irreplaceable historical specimens. © 2017 John Wiley & Sons Ltd.
Quantification of Applied Stresses of C-Ring Specimens for Stress Corrosion Cracking Tests
International Nuclear Information System (INIS)
Kim, Woo Gon; Kim, Sun Jae; Rhee, Chang Kyu; Kuk, Il Hiun; Choi, Jong Ho
1997-01-01
For comparing their resistances for stress-corrosion cracking(SCC) in the K600-MA, K690-MA, and K600-TT tubes, C-ring specimens were fabricated with the various thermal-treatments to control the distributions of the precipitates like Cr-carbides. The bending stresses were analyzed to determine the amounts to make the stress quantitatively to all the C-ring samples, and then the stresses were calculated with the relation to the outer diameter(O.D) deflection(δ) of the C-rings. To measure accurately the bending strains of the C-ring specimens, the strain gauges were used and the compression test was also carried out. In the elastic region, the stresses in both the transverse and the circumferential directions were different with the locations of the strain gauges as attached at α= 30 .deg., 45 .deg., and 90 .deg. to the principal stress direction, but those in the longitudinal direction were independent of their attached locations. Calculated stresses from the strains obtained using the strain gauges were well agreed with the theoretical. In the plastic region over δ=1.0mm, the stresses for the TT tubes showed lower values of about 400MPa than those for the MA tubes. However, the stresses among the TT tubes showed almost the similar values in this region. Therefore, the states of the stresses applied to the C-ring specimens would be different with the material conditions, i.e, the chemical compositions, the thermal treatments such as MA and TT
LOCA scenario tests of irradiated fuel rod specimens
International Nuclear Information System (INIS)
Scott, Harold
2004-01-01
Full text: The NRC's cladding performance program at Argonne National Laboratory (ANL) is testing fueled high-burnup segments subjected to LOCA integral phenomena. The data are provided to NRC and the nuclear industry for their independent assessment of the adequacy of licensing criteria for LOCA events. The tests are being conducted with high-burnup 30 cm segments from Limerick (9x9 Zry-2) and H.B. Robinson (15x15 Zry-4) reactors. Prior to testing, sibling samples are characterized with respect to fuel morphology, fuel-cladding bond, cladding oxide layer thickness, hydrogen content and high-temperature steam oxidation kinetics. Specimens that survive quench are subjected to four-point bend tests, followed by local diametral compression tests. The retention of post-quench ductility is a more limiting requirement than surviving thermal stresses during quench. Companion tests are conducted with unirradiated cladding to generate baseline data for comparison with the high-burnup fuel results. LOCA integral tests have the following sequential steps: stabilization of temperature, internal pressure and steam flow at 300 C, ramping of temperature (∼5C/s) through ballooning and burst to 1204 C, hold at 1204 C for 1-5 minutes, slow-cooling (∼3C/s) to 800 C, and water quenching at ∼800C. Two high-burnup tests were completed in 2002 with Limerick BWR rod segments: ramp to burst in argon followed by slow cooling; and the LOCA test with 5-minute hold time at 1204 C, followed by slow cooling. With the exception of burst-opening shape, results for burst temperature, burst pressure, burst length, and ballooning strain profile are more similar to, than different from, results for unirradiated Zry-2 cladding exposed to the same time-temperature history. The 3rd Limerick test with quench was performed in December 2003, and a 4th Limerick test was performed in March 2004. Tests on high-burnup Robinson PWR fuel segments are scheduled to begin in June 2004. The presentation points
Virus isolation: Specimen type and probable transmission
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. Virus isolation: Specimen type and probable transmission. Over 500 CHIK virus isolations were made. 4 from male Ae. Aegypti (?TOT). 6 from CSF (neurological involvement). 1 from a 4-day old child (transplacental transmission.
Modeling and Calculation of Dent Based on Pipeline Bending Strain
Directory of Open Access Journals (Sweden)
Qingshan Feng
2016-01-01
Full Text Available The bending strain of long-distance oil and gas pipelines can be calculated by the in-line inspection tool which used inertial measurement unit (IMU. The bending strain is used to evaluate the strain and displacement of the pipeline. During the bending strain inspection, the dent existing in the pipeline can affect the bending strain data as well. This paper presents a novel method to model and calculate the pipeline dent based on the bending strain. The technique takes inertial mapping data from in-line inspection and calculates depth of dent in the pipeline using Bayesian statistical theory and neural network. To verify accuracy of the proposed method, an in-line inspection tool is used to inspect pipeline to gather data. The calculation of dent shows the method is accurate for the dent, and the mean relative error is 2.44%. The new method provides not only strain of the pipeline dent but also the depth of dent. It is more benefit for integrity management of pipeline for the safety of the pipeline.
Rehydration of forensically important larval Diptera specimens.
Sanford, Michelle R; Pechal, Jennifer L; Tomberlin, Jeffery K
2011-01-01
Established procedures for collecting and preserving evidence are essential for all forensic disciplines to be accepted in court and by the forensic community at large. Entomological evidence, such as Diptera larvae, are primarily preserved in ethanol, which can evaporate over time, resulting in the dehydration of specimens. In this study, methods used for rehydrating specimens were compared. The changes in larval specimens with respect to larval length and weight for three forensically important blow fly (Diptera: Calliphoridae) species in North America were quantified. Phormia regina (Meigen), Cochliomyia macellaria (F.), and Chrysomya rufifacies (Macquart) third-instar larvae were collected from various decomposing animals and preserved with three preservation methods (80% ethanol, 70% isopropyl alcohol, and hot-water kill then 80% ethanol). Preservative solutions were allowed to evaporate. Rehydration was attempted with either of the following: 80% ethanol, commercial trisodium phosphate substitute solution, or 0.5% trisodium phosphate solution. All three methods partially restored weight and length of specimens recorded before preservation. Analysis of variance results indicated that effects of preservation, rehydration treatment, and collection animal were different in each species. The interaction between preservative method and rehydration treatment had a significant effect on both P. regina and C. macellaria larval length and weight. In addition, there was a significant interaction effect of collection animal on larval C. macellaria measurements. No significant effect was observed in C. rufifacies larval length or weight among the preservatives or treatments. These methods could be used to establish a standard operating procedure for dealing with dehydrated larval specimens in forensic investigations.
Simultaneous specimen and stage cleaning device for analytical electron microscope
Zaluzec, Nestor J.
1996-01-01
An improved method and apparatus are provided for cleaning both a specimen stage, a specimen and an interior of an analytical electron microscope (AEM). The apparatus for cleaning a specimen stage and specimen comprising a plasma chamber for containing a gas plasma and an air lock coupled to the plasma chamber for permitting passage of the specimen stage and specimen into the plasma chamber and maintaining an airtight chamber. The specimen stage and specimen are subjected to a reactive plasma gas that is either DC or RF excited. The apparatus can be mounted on the analytical electron microscope (AEM) for cleaning the interior of the microscope.
Chen, X.; Le, T.; Ewing, D.; Ching, C. Y.
2016-12-01
The mass transfer to turbulent flow through back-to-back pipe bends arranged in a 180° configuration with different lengths of pipe between the bends was measured using a dissolving gypsum test section in water. The measurements were performed for bends with a radius of curvature of 1.5 times the pipe diameter ( D) at a Reynolds numbers of 70,000 and Schmidt number of 1280. The maximum mass transfer in the bends decreased from approximately 1.8 times the mass transfer in the upstream pipe when there was no separation distance between the bends to 1.7 times when there was a 1 D or 5 D length of pipe between the bends. The location of the maximum mass transfer was on the inner sidewall downstream of the second bend when there was no separation distance between the bends. This location changed to the inner wall at the beginning of the second bend when there was a 1 D long pipe between the bends, and to the inner sidewall at the end of the first bend when there was a 5 D long pipe between the bends.
Platonic scattering cancellation for bending waves in a thin plate
Farhat, Mohamed
2014-04-10
We propose an ultra-thin elastic cloak to control the scattering of bending waves in isotropic heterogeneous thin plates. The cloak design makes use of the scattering cancellation technique applied, for the first time, to the biharmonic operator describing the propagation of bending waves in thin plates. We first analyze scattering from hard and soft cylindrical objects in the quasistatic limit, then we prove that the scattering of bending waves from an object in the near and far-field regions can be suppressed significantly by covering it with a suitably designed coating. Beyond camouflaging, these findings may have potential applications in protection of buildings from earthquakes and isolating structures from vibrations in the motor vehicle industry.
Differential quadrature method of nonlinear bending of functionally graded beam
Gangnian, Xu; Liansheng, Ma; Wang, Youzhi; Quan, Yuan; Weijie, You
2018-02-01
Using the third-order shear deflection beam theory (TBT), nonlinear bending of functionally graded (FG) beams composed with various amounts of ceramic and metal is analyzed utilizing the differential quadrature method (DQM). The properties of beam material are supposed to accord with the power law index along to thickness. First, according to the principle of stationary potential energy, the partial differential control formulae of the FG beams subjected to a distributed lateral force are derived. To obtain numerical results of the nonlinear bending, non-dimensional boundary conditions and control formulae are dispersed by applying the DQM. To verify the present solution, several examples are analyzed for nonlinear bending of homogeneous beams with various edges. A minute parametric research is in progress about the effect of the law index, transverse shear deformation, distributed lateral force and boundary conditions.
Bending and Force Recovery in Polymer Films and Microgel Formation
Elder, Theresa Marie
To determine correlation between geometry and material three different model films: polymethylsiloxane (PDMS), polystyrene (PS), and polycarbonate (PC), were singly bent and doubly bent (forming D-cones). Bends were chosen as they are fundamental in larger complex geometries such as origami and crumples. Bending was carried out between two plates taking force and displacement measurements. Processing of data using moment equations yielded values for bending moduli for studied films that were close to accepted values. Force recovery showed logarithmic trends for PDMS and stretched exponential trends for PS and PC. In a separate experiment a triblock copolymer of polystyrene-polyacrylic acid-polystyrene was subjected to different good and bad solvent mixing with any resulting particle morphology examined. Particles formed more uniformly with high water concentration, particles formed with high toluene concentration and agitation yielded three separate morphologies.
Platonic scattering cancellation for bending waves in a thin plate
Farhat, Mohamed; Chen, P.-Y.; Bagci, Hakan; Enoch, S.; Guenneau, S.; Alù , A.
2014-01-01
We propose an ultra-thin elastic cloak to control the scattering of bending waves in isotropic heterogeneous thin plates. The cloak design makes use of the scattering cancellation technique applied, for the first time, to the biharmonic operator describing the propagation of bending waves in thin plates. We first analyze scattering from hard and soft cylindrical objects in the quasistatic limit, then we prove that the scattering of bending waves from an object in the near and far-field regions can be suppressed significantly by covering it with a suitably designed coating. Beyond camouflaging, these findings may have potential applications in protection of buildings from earthquakes and isolating structures from vibrations in the motor vehicle industry.
Evaluation of River Bend Station Unit 1 Technical Specifications
International Nuclear Information System (INIS)
Baxter, D.E.; Bruske, S.J.
1985-08-01
This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the River Bend Station Unit 1 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the requirements of the Final Safety Analysis Report (FSAR) as amended, and the requirements of the Safety Evaluation Report (SER) as supplemented. A comparative audit of the FSAR as amended, and the SER as supplemented was performed with the River Bend T/S. Several discrepancies were identified and subsequently resolved through discussions with the cognizant NRC reviewer, NRC staff reviewers and/or utility representatives. The River Bend Station Unit 1 T/S, to the extent reviewed, are in conformance with the FSAR and SER
Piezoelectric micromotor based on the structure of serial bending arms.
Tong, Jianhua; Cui, Tianhong; Shao, Peige; Wang, Liding
2003-09-01
This paper presents a new piezoelectric micromotor based on the structure of serial bending arms. Serial bending arms are composed of two piezoelectric bimorphs with one end fixed and the other end free, driven by two signals of a biased square wave with a phase difference of pi/2. The free end of a cantilever arm will move along an elliptic orbit so that the cantilever is used to drive a cylinder rotor. The rotor's end surface contacts the free end of the cantilever, resulting in the rotor's rotation. There are six serial bending arms anchored on the base. The driving mechanism of the micromotor is proposed and analyzed. A new micromotor prototype, 5 mm in diameter, has been fabricated and characterized. The maximum rotational speed reaches 325 rpm, and the output torque is about 36.5 microNm.
Longitudinal-bending mode micromotor using multilayer piezoelectric actuator.
Yao, K; Koc, B; Uchino, K
2001-07-01
Longitudinal-bending mode ultrasonic motors with a diameter of 3 mm were fabricated using stacked multilayer piezoelectric actuators, which were self-developed from hard lead zirconate titanate (PZT) ceramic. A bending vibration was converted from a longitudinal vibration with a longitudinal-bending coupler. The motors could be bidirectionally operated by changing driving frequency. Their starting and braking torque were analyzed based on the transient velocity response. With a load of moment of inertia 2.5 x 10(-7) kgm2, the motor showed a maximum starting torque of 127.5 microNm. The braking torque proved to be a constant independent on the motor's driving conditions and was roughly equivalent to the maximum starting torque achievable with our micromotors.
Energy Technology Data Exchange (ETDEWEB)
Sasidharan, Sumesh; Arunachalam, Veerappan; Subramaniam, Shanmugam [Dept. of Mechanical Engineering, National Institute of Technology, Tiruchirappalli (India)
2017-02-15
Finite-element analysis based on elastic-perfectly plastic material was conducted to examine the influence of structural deformations on collapse loads of circumferential through-wall critically cracked 90 .deg. pipe bends undergoing in-plane closing bending and internal pressure. The critical crack is defined for a through-wall circumferential crack at the extrados with a subtended angle below which there is no weakening effect on collapse moment of elbows subjected to in-plane closing bending. Elliptical and semioval cross sections were postulated at the bend regions and compared. Twice-elastic-slope method was utilized to obtain the collapse loads. Structural deformations, namely, ovality and thinning, were each varied from 0% to 20% in steps of 5% and the normalized internal pressure was varied from 0.2 to 0.6. Results indicate that elliptic cross sections were suitable for pipe ratios 5 and 10, whereas for pipe ratio 20, semioval cross sections gave satisfactory solutions. The effect of ovality on collapse loads is significant, although it cancelled out at a certain value of applied internal pressure. Thinning had a negligible effect on collapse loads of bends with crack geometries considered.
Light squeezing through arbitrarily shaped plasmonic channels and sharp bends
International Nuclear Information System (INIS)
Alu, Andrea; Engheta, Nader
2008-01-01
We propose a mechanism for optical energy squeezing and anomalous light transmission through arbitrarily-shaped plasmonic ultranarrow channels and bends connecting two larger plasmonic metal-insulator-metal waveguides. It is shown how a proper design of subwavelength optical channels at cutoff, patterned by plasmonic implants and connecting larger plasmonic waveguides, may allow enhanced resonant transmission inspired by the anomalous properties of epsilon-near-zero (ENZ) metamaterials. The resonant transmission is shown to be only weakly dependent on the channel length and its specific geometry, such as possible presence of abruptions and bends
Test Equal Bending by Gravity for Space and Time
Sweetser, Douglas
2009-05-01
For the simplest problem of gravity - a static, non-rotating, spherically symmetric source - the solution for spacetime bending around the Sun should be evenly split between time and space. That is true to first order in M/R, and confirmed by experiment. At second order, general relativity predicts different amounts of contribution from time and space without a physical justification. I show an exponential metric is consistent with light bending to first order, measurably different at second order. All terms to all orders show equal contributions from space and time. Beautiful minimalism is Nature's way.
Origin of bending in uncoated microcantilever - Surface topography?
International Nuclear Information System (INIS)
Lakshmoji, K.; Prabakar, K.; Tripura Sundari, S.; Jayapandian, J.; Tyagi, A. K.; Sundar, C. S.
2014-01-01
We provide direct experimental evidence to show that difference in surface topography on opposite sides of an uncoated microcantilever induces bending, upon exposure to water molecules. Examination on opposite sides of the microcantilever by atomic force microscopy reveals the presence of localized surface features on one side, which renders the induced stress non-uniform. Further, the root mean square inclination angle characterizing the surface topography shows a difference of 73° between the opposite sides. The absence of deflection in another uncoated microcantilever having similar surface topography confirms that in former microcantilever bending is indeed induced by differences in surface topography
Comparison between instrumented precracked Charpy and compact specimen tests of carbon steels
International Nuclear Information System (INIS)
Nanstad, R.K.
1980-01-01
The General Atomic Company High Temperature Gas-Cooled Reactor (HTGR) is housed within a prestressed concrete reactor vessel (PCRV). Various carbon steel structural members serve as closures at penetrations in the vessel. A program of testing and evaluation is underway to determine the need for reference fracture toughness (K/sub IR/) and indexing procedures for these materials as described in Appendix G to Section III, ASME Code for light water reactor steels. The materials of interest are carbon steel forgings (SA508, Class 1) and plates (SA537, Classes 1 and 2) as well as weldments of these steels. The fracture toughness behavior is characterized with instrumented precracked Charpy V-votch specimens (PCVN) - slow-bend and dynamic - and compact specimens (10-mm and 25-mm thicknesses) using both linear elastic (ASTM E399) and elastic-plastic (equivalent Energy and J-Integral) analytical procedures. For the dynamic PCVN tests, force-time traces are analyzed according to the procedures of the Pressure Vessel Research Council (PVRC)/Metal Properties Council (MPC). Testing and analytical procedures are discussed and PCVN results are compared to those obtained with compact specimens
International Nuclear Information System (INIS)
Green, G.; Knott, J.F.
It was ascertained that it is possible to relate critical crack opening displacement (COD) values, deltasub(crit), obtained on small specimens of A 533-B pressure vessel steel to the fracture toughness value representing the initiation of fracture in a large structure. The variation of deltasub(crit) with temperature is given. A sharp increase in deltasub(crit) is observed above a temperature of approximately -100 degC and this was found to be associated with the initiation of small amounts of fibrous fracture, prior to a cleavage instability. An upper limit to the deltasub(crit) values was obtained above -50 degC, where the fracture was found to be fully ductile. Values of deltasub(crit) estimated from the valid fracture toughness results are shown for comparison. At low temperatures the estimated deltasub(crit) values are seen to be less than those measured in the small bend specimens and the sharp increase in the estimated deltasub(crit) values occurs at a higher temperature, approximately 0 degC. The room temperature deltasub(crit) value, estimated from the valid toughness results (0.15 mm) compares well with COD for the initiation of fibrous fracture, measured at the same temperature in small bend specimens (0.175 mm). The following conclusions were drawn from the experiments: 1. The ductile/brittle transition temperature, determined by critical COD measurements, is influenced by the relaxation of triaxial stresses in small specimens. 2. It is possible to relate critical COD values for the initiation of fibrous fracture, measured in small specimens, to the fracture toughness representing this behaviour in a large structure
DEFF Research Database (Denmark)
Joki, R. K.; Grytten, F.; Hayman, Brian
2016-01-01
by differentiating the fracture resistance with respect to opening displacement at the initial location of the crack tip, measured at the specimen edge. 2) Extend the bridging law to a cohesive law by accounting for crack tip fracture energy. 3) Fine-tune the cohesive law through an iterative modelling approach so......The cohesive law for Mode I delamination in glass fibre Non-Crimped Fabric reinforced vinylester is determined for use in finite element models. The cohesive law is derived from a delamination test based on DCB specimens loaded with pure bending moments taking into account the presence of large...... that the changing state of stress and deformation across the width of the test specimen is taken into account. The changing state of stress and deformation across the specimen width is shown to be significant for small openings (small fracture process zone size). This will also be important for the initial part...
Standard guide for preparation of metallographic specimens
American Society for Testing and Materials. Philadelphia
2011-01-01
1.1 The primary objective of metallographic examinations is to reveal the constituents and structure of metals and their alloys by means of a light optical or scanning electron microscope. In special cases, the objective of the examination may require the development of less detail than in other cases but, under nearly all conditions, the proper selection and preparation of the specimen is of major importance. Because of the diversity in available equipment and the wide variety of problems encountered, the following text presents for the guidance of the metallographer only those practices which experience has shown are generally satisfactory; it cannot and does not describe the variations in technique required to solve individual specimen preparation problems. Note 1—For a more extensive description of various metallographic techniques, refer to Samuels, L. E., Metallographic Polishing by Mechanical Methods, American Society for Metals (ASM) Metals Park, OH, 3rd Ed., 1982; Petzow, G., Metallographic Etchin...
Natural History Specimen Digitization: Challenges and Concerns
Directory of Open Access Journals (Sweden)
Ana Vollmar
2010-10-01
Full Text Available A survey on the challenges and concerns invovled with digitizing natural history specimens was circulated to curators, collections managers, and administrators in the natural history community in the Spring of 2009, with over 200 responses received. The overwhelming barrier to digitizing collections was a lack of funding, based on a limited number of sources, leaving institutions mostly responsible for providing the necessary support. The uneven digitization landscape leads to a patchy accumulation of records at varying qualities, and based on different priorities, ulitimately influencing the data's fitness for use. The survey also found that although the kind of specimens found in collections and their storage can be quite varible, there are many similar challenges when digitizing including imaging, automated text scanning and parsing, geo-referencing, etc. Thus, better communication between domains could foster knowledge on digitization leading to efficiencies that could be disseminated through documentation of best practices and training.
Thermal endurance tests on silicone rubber specimens
International Nuclear Information System (INIS)
Warburton, C.
1977-07-01
Thermal endurance tests have been performed on a range of silicone rubber specimens at temperature above 300 0 C. It is suggested that the rubber mix A2426, the compound from which Wylfa sealing rings are manufactured, will fail at temperatures above 300 0 C within weeks. Hardness measurements show that this particular rubber performs in a similar manner to Walker's S.I.L./60. (author)
The working procedure of human autopsy specimens
International Nuclear Information System (INIS)
Chen Rusong; Liu Guodong
2000-01-01
In order to perform the Coordinated Research Program for the Reference Asian Man (phase 2): Ingestion and body content of trace elements of importance in Radiation Protection, study on elemental content in organs of normal Chinese has been worked by China Institute for Radiation Protection and Institute of Radiation Medicine - CAMS in recent two years. Sampling and sample collection of human tissues and the procedures of sample preparation of human autopsy specimens are enlisted
Bireflectance imaging of coal and carbon specimens
Energy Technology Data Exchange (ETDEWEB)
Crelling, J.C. [Department of Geology, 1259 Lincoln Drive, Southern Illinois University, Carbondale, Illinois 62901 (United States); Glasspool, I.J.; Gibbins, J.R.; Seitz, M. [Department of Mechanical Engineering, Imperial College, Exhibition Road, London, SW7 2BX (United Kingdom)
2005-11-10
Although bireflectance measurements are routine, to date they have been limited to selected single point measurements. This study uses a 360{sup o} rotating polarizer in the incident light path combined with digital imaging to map the optical bireflectance of a polished specimen over the complete field of view, a system herein referred to as 'Bireflectance Imaging of Coal and Carbon Specimens' (BRICCS). True maximum reflectance maps and maps of polarizer angle for maximum reflectance (to identify co-ordered regions) are obtainable from the same data. A variety of coal, coke, char, graphite, and carbon/carbon specimens have been examined with the BRICCS system and the results demonstrate that the system can produce accurate maximum and apparent minimum reflectance, bireflectance, and extinction angle images. For example, flakes of natural graphite show no bireflectance along their long axis except in areas that have been strained. The images are maps showing the value of every pixel that has been calibrated by mineral reflectance standards. The maps are unique in that they show fields of view that cannot be seen by normal viewing through the microscope. For example, the bireflectance maps show the maximum difference between the maximum and apparent minimum reflectance for each of the million pixels at twenty orientations of the polarizer. (author)
Specimen loading list for the varying temperature experiment
International Nuclear Information System (INIS)
Qualls, A.L.; Sitterson, R.G.
1998-01-01
The varying temperature experiment HFIR-RB-13J has been assembled and inserted in the reactor. Approximately 5300 specimens were cleaned, inspected, matched, and loaded into four specimen holders. A listing of each specimen loaded into the steady temperature holder, its position in the capsule, and the identification of the corresponding specimen loaded into the varying temperature holder is presented in this report
National Oceanic and Atmospheric Administration, Department of Commerce — This data set includes physical specimens, paper logs and Freezerworks database of all logged information on specimens collected from Hawaiian monk seals since 1975....
Use of globally unique identifiers (GUIDs) to link herbarium specimen records to physical specimens.
Nelson, Gil; Sweeney, Patrick; Gilbert, Edward
2018-02-01
With the advent of the U.S. National Science Foundation's Advancing Digitization of Biodiversity Collections program and related worldwide digitization initiatives, the rate of herbarium specimen digitization in the United States has expanded exponentially. As the number of electronic herbarium records proliferates, the importance of linking these records to the physical specimens they represent as well as to related records from other sources will intensify. Although a rich and diverse literature has developed over the past decade that addresses the use of specimen identifiers for facilitating linking across the internet, few implementable guidelines or recommended practices for herbaria have been advanced. Here we review this literature with the express purpose of distilling a specific set of recommendations especially tailored to herbarium specimen digitization, curation, and management. We argue that associating globally unique identifiers (GUIDs) with physical herbarium specimens and including these identifiers in all electronic records about those specimens is essential to effective digital data curation. We also address practical applications for ensuring these associations.
Development of fatigue life evaluation technique using miniature specimen
International Nuclear Information System (INIS)
Nogami, Shuhei; Nishimura, Arata; Fujiwara, Masaharu; Hisaka, Tomoaki
2012-01-01
To develop the fatigue life evaluation technique using miniature specimen, the investigation of the effect of specimen size and specimen shape on the fatigue life and the development of the fatigue testing machine, especially the extensometer, were carried out. The effect of specimen size on the fatigue life was almost negligible for the round-bar specimens. The shorter fatigue life at relatively low strain range conditions for the hourglass specimen that the standard specimen were observed. Therefore the miniature round-bar specimen was considered to be adequate for the fatigue life evaluation using small specimen. Several types of the extensometer system using a strain gauge and a laser has been developed for realizing the fatigue test of the miniature round-bar specimen at high temperature in vacuum. (author)
International Nuclear Information System (INIS)
Silva, Luiz L. da; Filho, Nelson do N.A.; Gomes, Paulo de T.V.; Rabello, Emerson G.; Mansur, Tanius R.
2013-01-01
Fatigue is the fail phenomenon of a material subjected to cyclic loads. This phenomenon affects any component under loads (forces, temperatures, etc.) that changes in time. When there is a combined load, originating multiaxial fatigue, which is the most of the real loads, worst is the situation. Before the component fail, the fatigue phenomenon produces damages to its material and this is a cumulative process that could not be reduced. In the continuum mechanic context, material damage is defined as a parameter that reduces the component resistance and this could cause its fail. The process of damage measuring by changes in electrical resistance is used in this work, and from experimental results of SAE 8620 steel specimens subjected to multiaxial fatigue in corrosive and neutral environment, the remaining specimen time life could be determined. Each specimen has its initial electrical resistance measured and after a certain number of fatigue cycles stopping points, its electrical resistance was measured again. In order to study multiaxial fatigue in specimens, a machine that induces simultaneously bending and torsional loads in the specimen was developed. Air at the temperature range of 18 deg C and 20 deg C was considered neutral environment. The corrosive environment was a NaCl solution with a concentration of 3,5% in weigh. The experimental results showed that the measuring fatigue damage using the changes in electrical resistance is efficient and that is possible to estimate the effect of a corrosive environment in the fatigue damage. (author)
Four point bending setup for characterization of semiconductor piezoresistance
DEFF Research Database (Denmark)
Richter, Jacob; Arnoldus, Morten Berg; Hansen, Ole
2008-01-01
bending fixture is manufactured in polyetheretherketon and a dedicated silicon chip with embedded piezoresistors fits in the fixture. The fixture is actuated by a microstepper actuator and a high sensitivity force sensor measures the applied force on the fixture and chip. The setup includes heaters...
Extreme bendability of DNA double helix due to bending asymmetry
Salari, H.; Eslami-Mossallam, B.; Nederi, S.; Ejtehadi, M.R.
2015-01-01
Experimental data of the DNA cyclization (J-factor) at short length scales exceed the theoretical expectation based on the wormlike chain (WLC) model by several orders of magnitude. Here, we propose that asymmetric bending rigidity of the double helix in the groove direction can be responsible for
High precision optical fiber alignment using tube laser bending
Folkersma, Ger; Römer, Gerardus Richardus, Bernardus, Engelina; Brouwer, Dannis Michel; Herder, Justus Laurens
2016-01-01
In this paper, we present a method to align optical fibers within 0.2 μm of the optimal position, using tube laser bending and in situ measuring of the coupling efficiency. For near-UV wavelengths, passive alignment of the fibers with respect to the waveguides on photonic integrated circuit chips
Magnetically assisted bilayer composites for soft bending actuators
Jang, S.H.; Na, Seon Hong; Park, Yong Lae
2017-01-01
This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically
Space charge effects in a bending magnet system
International Nuclear Information System (INIS)
Lee, E.P.; Close, E.; Smith, L.
1987-03-01
In order to examine problems and phenomena associated with space charge in a beam bending system, the beam dynamics code HICURB has been written. Its principal features include momentum variations, vertical and horizontal envelope dynamics coupled to the off-axis centroid, curvature effect on fields, and images. Preliminary results for an achromatic lattice configuration are presented
Tidal bending of glaciers: a linear viscoelastic approach
DEFF Research Database (Denmark)
Reeh, Niels; Christensen, Erik Lintz; Mayer, Christoph
2003-01-01
In theoretical treatments of tidal bending of floating glaciers, the glacier is usually modelled as an elastic beam with uniform thickness, resting on an elastic foundation. With a few exceptions, values of the elastic (Young's) modulus E of ice derived from tidal deflection records of floating...
Bend-twist coupling potential of wind turbine blades
DEFF Research Database (Denmark)
Fedorov, Vladimir; Berggreen, Christian
2014-01-01
-twist coupling magnitude of up to 0.2 is feasible to achieve in the baseline blade structure made of glass-fiber reinforced plastics. Further, by substituting the glass-fibers with carbon-fibers the coupling effect can be increased to 0.4. Additionally, the effect of introduction of bend-twist coupling...
Multiphase fluid structure interaction in bends and T-joints
Cargnelutti, M.F.; Belfroid, S.P.C.; Schiferli, W.; Osch, M.M.E. van
2010-01-01
Air-water experiments were carried out in a horizontal 1" pipe system to measure the magnitude of the forces induced by the multiphase flow. Forces and accelerations were measured on a number of bends and T-joint configurations for a wide range of operating conditions. Five different configurations
Photoelastic stress analysis in mitred bend under internal pressure
International Nuclear Information System (INIS)
Sawa, Yoshiaki
1987-01-01
The stress analysis and stress relaxation in mitred bend subjected to internal pressure have been studied by means of the photoelastic stress freezing method. The experimental results show that stress concentration occurs in the wedge tip of the intersectional plane and it is considerably influenced by the bent angle. Then, the stress relaxation was obtained by planing the wedge tip. (author)
Bolted flanged connections subjected to longitudinal bending moments
International Nuclear Information System (INIS)
Blach, A.E.
1992-01-01
Flanges in piping systems and also pressure vessel flanges on tall columns are often subjected to longitudinal bending moments of considerable magnitude, be it from thermal expansion stresses in piping systems or from wind or seismic loadings on tall vertical pressure vessels. Except for the ASME Code, Section III, Subsections NB, NC, and ND, other pressure vessel and piping codes do not contain design ASME Nuclear Power Plant Code (Section III), an empirical formula is given, expressing a longitudinal bending moment in bolted flanged connections in terms of an equivalent internal pressure to be added to the design pressure of the flange. In this paper, an attempt is made to analyse the stresses on flanges and bolting due to external bending moments and to compare flange thicknesses thus obtained with thicknesses required using the equivalent design pressure specified in Subsections NB, NC, and ND. A design method is proposed, based on analysis and experimental work, which may be suitable for flange bending moment analysis when the rules of the Nuclear Power Plant Code are not mandatory. (orig.)
Analysis of Bending Waves in Phononic Crystal Beams with Defects
Directory of Open Access Journals (Sweden)
Yongqiang Guo
2018-01-01
Full Text Available Existing investigations on imperfect phononic crystal beams mainly concern periodic multi-span beams carrying either one or two channel waves with random or deterministic disorder in span-length. This paper studies the two channel bending waves in phononic crystal beams consisting of many phases of materials with defects introduced as one structural segment having different cross-sectional dimensions or material parameters. The method of reverberation-ray matrix (MRRM based on the Timoshenko beam theory, which can conduct high-frequency analysis, is extended for the theoretical analysis of dispersion and transmission of bending waves. The supercell technique and the Floquet–Bloch theorem are adopted for modeling the dispersion characteristics, and the whole finite structural model is used to calculate the transmission spectra. Experimental measurements and numerical calculations are provided to validate the displacement transmission obtained by the proposed MRRM, with the effect of damping on transmission spectra being concerned. The high-frequency calculation applicability of the proposed MRRM is also confirmed by comparing the present results with the corresponding ones either using the transfer matrix method (TMM or MRRM based on Euler—Bernoulli beam theory. The influences of defect size, defect form, and unit-cell number on the transmission spectra and the band structures are discussed. The drawn conclusions may be useful for designing or evaluating the defected phononic crystal beams in bending wave control. In addition, our conclusions are especially potential for identifying the defect location through bending wave signals.
Radio occultation bending angle anomalies during tropical cyclones
DEFF Research Database (Denmark)
Biondi, Riccardo; Neubert, Torsten; Syndergaard, S.
2011-01-01
-located radiosondes, climatology of tropopause altitudes and GOES analyses are also shown to support the hypothesis that the bending angle anomaly can be used as an indicator of convective towers. The results are discussed in connection to the GPS radio occultation receiver which will be part of the Atomic Clock...
Space charge effects in a bending magnet system
International Nuclear Information System (INIS)
Lee, E.P.; Close, E.; Smith, L.
1987-01-01
In order to examine problems and phenomena associated with space charge in a beam bending system, the beam dynamics code HICURB has been written. Its principal features include momentum variations, vertical and horizontal envelope dynamics coupled to the off-axis centroid, curvature effect on fields, and images. Preliminary results for an achromatic lattice configuration are presented
Effect of hexane treatment and uniaxial stretching on bending ...
African Journals Online (AJOL)
PVDF) film was studied. The quantity, β31, defined as the bending piezoelectric stress constant, was calculated. After hexane treatment and uniaxial stretching of the PVDF film, the value of β31 was 5.75 mV/m and 8.00 mV/m for draw ratio of ...
The Clinch Bend Regional Industrial Site and economic development opportunities
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-12-31
This effort focuses initially on the Clinch Bend site. Other sites and developable tracts of land are identified with the assistance of communities in proximity to Oak Ridge, the State of Tennessee, and others, and compared with the projected site requirements for large industrial facilities.
Dynamic shear-bending buckling experiments of cylindrical shells
International Nuclear Information System (INIS)
Hagiwara, Y.; Akiyama, H.
1995-01-01
Dynamic experimental studies of the plastic shear/bending buckling of cylindrical shells were performed. They clarified the inelastic response reduction and the seismic margin of FBR reactor vessels. The test results were incorporated into the draft of the seismic buckling design guidelines of FBR. (author). 15 refs., 3 figs
Radio Occultation Bending Angle Anomalies During Tropical Cyclones
DEFF Research Database (Denmark)
Biondi, Riccardo; Neubert, Torsten; Syndergaard, Stig
signature in radio occultation profiles in the tropical tropopause layer. Using tropical cyclone best track database and data from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC), we show that the bending angle anomaly of a GPS radio occultation signal is typically larger...
Secondary flow in sharp open-channel bends
Blanckaert, K.; De Vriend, H.J.
2004-01-01
Secondary currents are a characteristic feature of flow in open-channel bends. Besides the classical helical motion (centre-region cell), a weaker and smaller counter-rotating circulation cell (outer-bank cell) is often observed near the outer bank, which is believed to play an important role in
A Novel Rotary Piezoelectric Motor Using First Bending Hybrid Transducers
Directory of Open Access Journals (Sweden)
Yingxiang Liu
2015-08-01
Full Text Available We report a novel rotary piezoelectric motor using bending transducers in this work. Three transducers are used to drive a disk-shaped rotor together by the elliptical movements of their driving tips; these motions are produced by the hybrid of two first bending vibration modes. The proposed piezoelectric transducer has a simple structure as it only contains an aluminum alloy beam and four pieces of PZT plates. Symmetrical structure is the only necessary condition in the design process as it will ensure the resonance frequencies of the two orthogonal first bending modes are equal. Transducers with first bending resonance frequency of about 53 kHz were fabricated and assembled into a rotary motor. The proposed motor exhibits good performance on speed and torque control. Under a working frequency of 53.2 kHz, the maximum no-load speed and the maximum torque of the prototype are tested to be 53.3 rpm and of 27 mN·m.
Nonlinear electric reaction arising in dry bone subjected to 4-point bending
Murasawa, Go; Cho, Hideo; Ogawa, Kazuma
2007-04-01
Bone is a smart, self-adaptive and also partly self-repairing tissue. In recent years, many researchers seek to find how to give the effective mechanical stimulation to bone, because it is the predominant loading that determines the bone shape and macroscopic structure. However, the trial of regeneration of bone is still under way. On the other hand, it has been known that electrical potential generates from bone by mechanical stimulation (Yasuda, 1977; Williams, 1982; Starkebaum, 1979; Cochran, 1968; Lanyon, 1977; Salzstein, 1987a,b; Friedenberg, 1966). This is called "stress-generated potential (SGP)". The process of information transfer between "strain" and "cells" is not still clear. But, there is some possibility that SGP has something to do with the process of information transfer. If the electrical potential is more clear under some mechanical loadings, we will be able to regenerate bone artificially and freely. Therefore, it is important to investigate SGP in detail. The aim of present study is to investigate the electric reaction arising in dry bone subjected to mechanical loadings at high amplitude and low frequency strain. Firstly, specimen is fabricated from femur of cow. Next, the speeds of wave propagation in bone are tried to measure by laser ultra sonic technique and wavelet transform, because these have relationship with bone density. Secondary, 4-point bending test is conducted up to fracture. Then, electric reaction arising in bone is measured during loading. Finally, cyclic 4-point bending tests are conducted to investigate the electric reaction arising in bone at low frequency strain.
Paleomagnetic modeling of seamounts near the Hawaiian Emperor bend
Sager, William W.; Lamarche, Amy J.; Kopp, Christian
2005-08-01
The Hawaiian-Emperor Seamount chain records the motion of the Pacific Plate relative to the Hawaiian mantle hotspot for ˜80 m.y. A notable feature of the chain is the pronounced bend at its middle. This bend had been widely credited to a change in plate motion, but recent research suggests a change in hotspot motion as an alternative. Existing paleomagnetic data from the Emperor Chain suggest that the hotspot moved south during the Late Cretaceous and Early Tertiary, but reached its current latitude by the age of the bend. Thus, data from area of the bend are important for understanding changes in plume latitude. In this study, we analyze the magnetic anomalies of five seamounts (Annei, Daikakuji-W, Daikakuji- E, Abbott, and Colahan) in the region of the bend. These particular seamounts were chosen because they have been recently surveyed to collect multibeam bathymetry and magnetic data positioned with GPS navigation. Inversions of the magnetic and bathymetric data were performed to determine the mean magnetization of each seamount and from these results, paleomagnetic poles and paleolatitudes were calculated. Three of the five seamounts have reversed magnetic polarities (two are normal) and four contain a small volume of magnetic polarity opposite to the main body, consistent with formation during the Early Cenozoic, a time of geomagnetic field reversals. Although magnetization inhomogene ties can degrade the accuracy of paleomagnetic poles calculated from such models, the seamounts give results consistent with one another and with other Pacific paleomagnetic data of approximately the same age. Seamount paleolatitudes range from 13.7 to 23.7, with an average of 19.4 ± 7.4 (2σ). These values are indistinguishable from the present-day paleolatitude of the Hawaiian hotspot. Together with other paleomagnetic and geologic evidence, these data imply that the Hawaiian hotspot has moved little in latitude during the past ˜45 m.y.
Controlling coupled bending-twisting vibrations of anisotropic composite wing
Ryabov, Victor; Yartsev, Boris
2018-05-01
The paper discusses the possibility to control coupled bending-twisting vibrations of anisotropic composite wing by means of the monoclinic structures in the reinforcement of the plating. Decomposing the potential straining energy and kinetic energy of natural vibration modes into interacting and non-interacting parts, it became possible to introduce the two coefficients that integrally consider the effect of geometry and reinforcement structure upon the dynamic response parameters of the wing. The first of these coefficients describes the elastic coupling of the natural vibration modes, the second coefficient describes the inertial one. The paper describes the numerical studies showing how the orientation of considerably anisotropic CRP layers in the plating affects natural frequencies, loss factors, coefficients of elastic and inertial coupling for several lower tones of natural bending-twisting vibrations of the wing. Besides, for each vibration mode, partial values of the above mentioned dynamic response parameters were determined by means of the relationships for orthotropic structures where instead of "free" shearing modulus in the reinforcement plant, "pure" shearing modulus is used. Joint analysis of the obtained results has shown that each pair of bending-twisting vibration modes has its orientation angle ranges of the reinforcing layers where the inertial coupling caused by asymmetry of the cross-section profile with respect to the main axes of inertia decreases, down to the complete extinction, due to the generation of the elastic coupling in the plating material. These ranges are characterized by the two main features: 1) the difference in the natural frequencies of the investigated pair of bending-twisting vibration modes is the minimum and 2) natural frequencies of bending-twisting vibrations belong to a stretch restricted by corresponding partial natural frequencies of the investigated pair of vibration modes. This result is of practical importance
Experimental study of a macrocrack propagation in a concrete specimen subjected to creep loading
Rossi, P.; Boulay, C.; Tailhan, J.-L.; Martin, E.
2013-07-01
Structures managers need a better prediction of the delayed failure of concrete structures, especially for very important structures like nuclear power plant encasement. Sustained loadings at high level (above 75% of loading capacity of the structure), can lead to structure failure after some time. In this study, a series of 4-point bending tests were performed in order to characterize the creep behaviour of pre-cracked beams under high load level. The specimens were made of normal strength concrete. A power law relationship is observed between the secondary deflection creep rate and the failure time. It is also shown that when crack propagation occurs during the creep loading, the creep deflection rate increases with the creep loading level and with the crack propagation rate.
Energy Technology Data Exchange (ETDEWEB)
Rossi, Pierre, E-mail: pierre.rossi@lcpc.fr; Boulay, Claude; Tailhan, Jean-Louis; Martin, Eric; Desnoyers, Dominic
2014-09-15
This study presents a series of 4-point bending tests performed to describe the delayed behavior of unreinforced pre-cracked beams under low, moderate and high sustained loading levels. The deflection creep rate, the failure time and the load level were assessed. A linear relation, in a semi-log scale, was found for the deflection creep rate at high load levels. In addition, a linear relation, in a log–log scale, between the secondary deflection creep rate and failure time was observed. Besides, it was shown that the secondary creep deflection rate increases with the sustained loading level and the macrocrack propagation rate when macrocrack propagation occurs during the sustained loading. Physical mechanisms are proposed to explain these results and may be summarized as follows: the delayed behavior of an unreinforced cracked concrete specimen under sustained loading is mainly due to the cracking evolution, thus the creation of microcracks and/or the propagation of a macrocrack.
International Nuclear Information System (INIS)
Rossi, Pierre; Boulay, Claude; Tailhan, Jean-Louis; Martin, Eric; Desnoyers, Dominic
2014-01-01
This study presents a series of 4-point bending tests performed to describe the delayed behavior of unreinforced pre-cracked beams under low, moderate and high sustained loading levels. The deflection creep rate, the failure time and the load level were assessed. A linear relation, in a semi-log scale, was found for the deflection creep rate at high load levels. In addition, a linear relation, in a log–log scale, between the secondary deflection creep rate and failure time was observed. Besides, it was shown that the secondary creep deflection rate increases with the sustained loading level and the macrocrack propagation rate when macrocrack propagation occurs during the sustained loading. Physical mechanisms are proposed to explain these results and may be summarized as follows: the delayed behavior of an unreinforced cracked concrete specimen under sustained loading is mainly due to the cracking evolution, thus the creation of microcracks and/or the propagation of a macrocrack
Below Knee Impact Responses using Cadaveric Specimens.
Balasubramanian, Sriram; Beillas, Philippe; Belwadi, Aditya; Hardy, Warren N; Yang, King H; King, Albert I; Masuda, Mitsutoshi
2004-11-01
Knee injuries represent about 10% of all injuries suffered during car crashes. Efforts to assess the injury risk to the posterior cruciate ligament (PCL) have been based on a study available in the literature (Viano et al., 1978), in which only two of the five knees tested had PCL ruptures. The aims of the current study were to repeat the study with a higher number of samples, study the effects of other soft tissues on knee response, and assess the adequacy of the experimental setup for the identification of a PCL tolerance. A total of 14 knees were tested using a high-speed materials testing machine. Eight were intact knees (with the patella and all the muscular and ligamentous structures), three were PCL-only knees (patella and all the muscular and ligamentous structures other than the PCL removed), and the last three were PCL-only knees with the tibia protected from bending fracture. Of the eight intact knees tested, only one had PCL mid substance rupture, one had a partial articular fracture of the tibia below the plateau, and six had simple transverse fracture of the tibial metaphysis. Of the three PCL-only knees without tibial protection, one had PCL mid substance rupture, one had avulsion at the posterior intercondylar attachment point, and the last one had a simple oblique fracture of the tibial metaphysis. Of the three PCL only knees with tibia protection, two had PCL mid-substance ruptures and the third one had an avulsion at the tibial insertion site with partial articular fracture of the lateral plateau. Overall, the results of the current study were similar to those observed by Viano et al. (1978). The average displacement at failure for all PCL related injuries was 17.2+/-2.8 mm for the current study (n=6) and 16.2+/-3.9 mm for Viano et al. (1978) (n=4). This value is higher than the Injury Assessment Reference Value of 15 mm proposed by Mertz (1984) and used in various regulations. Both studies suggest that the existence of the soft tissues other
A comparison of plastic collapse and limit loads for single mitred pipe bends under in-plane bending
International Nuclear Information System (INIS)
Neilson, R.; Wood, J.; Hamilton, R.; Li, H.
2010-01-01
This paper presents a comparison of the plastic collapse loads from experimental in-plane bending tests on three 90 o single un-reinforced mitred pipe bends, with the results from various 3D solid finite element models. The bending load applied reduced the bend angle and in turn, the resulting cross-sectional ovalisation led to a recognised weakening mechanism. In addition, at maximum load there was a reversal in stiffness, characteristic of buckling. This reversal in stiffness was accompanied by significant ovalisation and plasticity at the mitre intersection. Both the weakening mechanism and the post-buckling behaviour are only observable by testing or by including large displacement effects in the plastic finite element solution. A small displacement limit solution with an elastic-perfectly plastic material model overestimated the collapse load by more than 40% and could not reproduce the buckling behaviour. The plastic collapse finite element solution, with large displacements, produced excellent agreement with the experiment. Sufficient experimental detail is presented for these results to be used as a benchmark for analysts in this area. Given the robustness of non-linear solutions in commercial finite element codes and the ready availability of computing resources, it is argued that pressure vessel code developers should now be recommending large displacement analysis as the default position for limit and plastic collapse analyses, rather than expecting engineers to anticipate weakening mechanisms and related non-linear phenomena.
Histological evaluation of 400 cholecystectomy specimens
Directory of Open Access Journals (Sweden)
H Kumar
2015-09-01
Full Text Available Background: A majority of gallbladder specimens show changes associated with chronic cholecystitis; however few harbour a highly lethal carcinoma. This study was conducted to review the significant histopathological findings encountered in gallbladder specimens received in our laboratory.Materials and Methods: Four hundred cholecystectomy specimens were studied over a period of five years (May, 2002 to April, 2007 received at department of pathology, Kasturba Medical College, Mangalore, India. Results: Gallstones and associated diseases were more common in women in the 4th to 5th decade as compared to men with M: F ratio of 1:1.33. Maximum number of patients (28.25% being 41 to 50 years old. Histopathologically, the most common diagnosis was chronic cholecystitis (66.75%, followed by chronic active cholecystitis (20.25%, acute cholecystitis (6%, gangrenous cholecystitis (2.25%,xanthogranulomatous cholecystitis (0.50%, empyema (1%, mucocele (0.25%, choledochal cyst (0.25%, adenocarcinoma gallbladder (1.25% and normal gallbladders (1%.Conclusion: All lesions were found more frequently in women except chronic active cholecystitis. Gallstones were present in (80.25% cases, and significantly associated with various lesions (P value 0.009. Pigment stones were most common, followed by cholesterol stones and mixed stones. Adequate sectioning is mandatory in all cases to assess epithelial changes arising from cholelithiasis and chronic cholecystitis as it has been known to progress to malignancy in some cases.
Wildlife specimen collection, preservation, and shipment
White, C. LeAnn; Dusek, Robert J.; Franson, J. Christian; Friend, Milton; Gibbs, Samantha E.J.; Wild, Margaret A.
2015-01-01
Specimens are used to provide supporting information leading to the determination of the cause of disease or death in wildlife and for disease monitoring or surveillance. Commonly used specimens for wildlife disease investigations include intact carcasses, tissues from carcasses, euthanized or moribund animals, parasites, ingested food, feces, or environmental samples. Samples from live animals or the environment (e.g., contaminated feed) in the same vicinity as a mortality event also may be helpful. The type of specimen collected is determined by availability of samples and biological objectives. Multiple fresh, intact carcasses from affected species are the most useful in establishing a cause for a mortality event. Submission of entire carcasses allows observation of gross lesions and abnormalities, as well as disease testing of multiple tissues. Samples from live animals may be more appropriate when sick animals cannot be euthanized (e.g., threatened or endangered species) or for research and monitoring projects examining disease or agents circulating in apparently healthy animals or those not exhibiting clinical signs. Samples from live animals may include collections of blood, hair, feathers, feces, or ectoparasites, or samples obtained by swabbing lesions or orifices. Photographs and videos are useful additions for recording field and clinical signs and conveying conditions at the site. Collection of environmental samples (e.g., feces, water, feed, or soil) may be appropriate when animals cannot be captured for sampling or the disease agent may persist in the environment. If lethal collection is considered necessary, biologists should refer to the policies, procedures, and permit requirements of their institution/facility and the agency responsible for species management (U.S. Fish and Wildlife Service or State natural resource agency) prior to use in the field. If threatened or endangered species are found dead, or there is evidence of illegal take, field
Bright field electron microscopy of biological specimens
International Nuclear Information System (INIS)
Johansen, B.V.
1976-01-01
A preirradiation procedure is described which preserves negatively stained morphological features in bright field electron micrographs to a resolution of about 1.2 nm. Prior to microscopy the pre-irradiation dose (1.6 x 10 -3 C cm -2 ) is given at low electron optical magnification at five different areas on the grid (the centre plus four 'corners'). This pre-irradiation can be measured either with a Faraday cage or through controlled exposure-developing conditions. Uranyl formate stained T2 bacteriophages and stacked disk aggregates of Tobacco Mosaic Virus (TMV) protein served as test objects. A comparative study was performed on specimens using either the pre-irradiation procedure or direct irradiation by the 'minimum beam exposure' technique. Changes in the electron diffraction pattern of the stain-protein complex and the disappearance of certain morphological features in the specimens were both used in order to compare the pre-irradiation method with the direct exposure technique. After identical electron exposures the pre-irradiation approach gave a far better preservation of specimen morphology. Consequently this procedure gives the microscopist more time to select and focus appropriate areas for imaging before deteriorations take place. The investigation also suggested that microscopy should be carried out between 60,000 and 100,000 times magnification. Within this magnification range, it is possible to take advantage of the phase contrast transfer characteristics of the objective lens while the electron load on the object is kept at a moderate level. Using the pre-irradiation procedure special features of the T2 bacteriophage morphology could be established. (author)
Ligament rupture and unstable burst behaviors of axial flaws in steam generator U-bends
Energy Technology Data Exchange (ETDEWEB)
Bahn, Chi Bum, E-mail: bahn@pusan.ac.kr [Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Oh, Young-Jin [KEPCO Engineering & Construction Co. Inc., Seongnam 463-870 (Korea, Republic of); Majumdar, Saurin [Argonne National Laboratory, Lemont, IL 60439 (United States)
2015-11-15
Highlights: • Ligament rupture and unstable burst pressure tests were conducted with U-bends. • In general, U-bends showed higher ligament rupture and burst pressures than straight tubes. • U-bend test data was bounded by 90% lower limit of the probabilistic models for straight tubes. • Prediction models for straight tubes could be conservatively applied to U-bends. - Abstract: Incidents of U-bend cracking in steam generator (SG) tubes have been reported, some of which have led to tube rupture. Experimental and analytical modeling efforts to determine the failure criteria of flawed SG U-bends are limited. To evaluate structural integrity of flawed U-bends, ligament rupture and unstable burst pressure tests were conducted on 57 and 152 mm bend radius U-bends with axial electrical discharge machining notches. In general, the ligament rupture and burst pressures of the U-bends were higher than those of straight tubes with similar notches. To quantitatively address the test data scatter issue, probabilistic models were introduced. All ligament rupture and burst pressures of U-bends were bounded by 90% lower limits of the probabilistic models for straight tubes. It was concluded that the prediction models for straight tubes could be applied to U-bends to conservatively evaluate the ligament rupture and burst pressures of U-bends with axial flaws.
Ligament rupture and unstable burst behaviors of axial flaws in steam generator U-bends
International Nuclear Information System (INIS)
Bahn, Chi Bum; Oh, Young-Jin; Majumdar, Saurin
2015-01-01
Highlights: • Ligament rupture and unstable burst pressure tests were conducted with U-bends. • In general, U-bends showed higher ligament rupture and burst pressures than straight tubes. • U-bend test data was bounded by 90% lower limit of the probabilistic models for straight tubes. • Prediction models for straight tubes could be conservatively applied to U-bends. - Abstract: Incidents of U-bend cracking in steam generator (SG) tubes have been reported, some of which have led to tube rupture. Experimental and analytical modeling efforts to determine the failure criteria of flawed SG U-bends are limited. To evaluate structural integrity of flawed U-bends, ligament rupture and unstable burst pressure tests were conducted on 57 and 152 mm bend radius U-bends with axial electrical discharge machining notches. In general, the ligament rupture and burst pressures of the U-bends were higher than those of straight tubes with similar notches. To quantitatively address the test data scatter issue, probabilistic models were introduced. All ligament rupture and burst pressures of U-bends were bounded by 90% lower limits of the probabilistic models for straight tubes. It was concluded that the prediction models for straight tubes could be applied to U-bends to conservatively evaluate the ligament rupture and burst pressures of U-bends with axial flaws.
Experimental J estimation from a load-cmod curve for mis-matched SENB and CCT specimens
International Nuclear Information System (INIS)
Hornet, P.; Eripret, Ch.; Hao, S.
1997-01-01
This paper addresses the problem of the determination of the J-integral from experimentally measured quantities for mismatched Single Notched Bend specimens (SENB) or through thickness Centre Cracked panels loaded in Tension (CCT). Commonly, the experimental J-integral is calculated from the area under the load versus load-line displacement curve. Nevertheless, in the case of gross-section yielding, which can occur for short cracked specimens or overmatching cases, this methodology mis-estimates the effective J-integral. A new proposal, based on analytical considerations is made to estimate the J-integral from the area under load versus CMOD curves. This proposal is validated by 2D and 3D finite element analyses. (authors)
Development of fatigue life evaluation method using small specimen
International Nuclear Information System (INIS)
Nogami, Shuhei; Nishimura, Arata; Wakai, Eichi; Tanigawa, Hiroyasu; Itoh, Takamoto; Hasegawa, Akira
2013-01-01
For developing the fatigue life evaluation method using small specimen, the effect of specimen size and shape on the fatigue life of the reduced activation ferritic/martensitic steels (F82H-IEA, F82H-BA07 and JLF-1) was investigated by the fatigue test at room temperature in air using round-bar and hourglass specimens with various specimen sizes (test section diameter: 0.85–10 mm). The round-bar specimen showed no specimen size and no specimen shape effects on the fatigue life, whereas the hourglass specimen showed no specimen size effect and obvious specimen shape effect on it. The shorter fatigue life of the hourglass specimen observed under low strain ranges could be attributed to the shorter micro-crack initiation life induced by the stress concentration dependent on the specimen shape. On the basis of this study, the small round-bar specimen was an acceptable candidate for evaluating the fatigue life using small specimen
Recent advances in FIB-TEM specimen preparation techniques
International Nuclear Information System (INIS)
Li Jian; Malis, T.; Dionne, S.
2006-01-01
Preparing high-quality transmission electron microscopy (TEM) specimens is of paramount importance in TEM studies. The development of the focused ion beam (FIB) microscope has greatly enhanced TEM specimen preparation capabilities. In recent years, various FIB-TEM foil preparation techniques have been developed. However, the currently available techniques fail to produce TEM specimens from fragile and ultra-fine specimens such as fine fibers. In this paper, the conventional FIB-TEM specimen preparation techniques are reviewed, and their advantages and shortcomings are compared. In addition, a new technique suitable to prepare TEM samples from ultra-fine specimens is demonstrated