WorldWideScience

Sample records for three-mode squeezed operator

  1. New Three-Mode Squeezing Operators Gained via Tripartite Entangled State Representation

    International Nuclear Information System (INIS)

    Jiang Nianquan; Fan Hongyi

    2008-01-01

    We show that the Agarwal-Simon representation of single-mode squeezed states can be generalized to find new form of three-mode squeezed states. We use the tripartite entangled state representations |p,y,z> and |x,u,v> to realize this goal.

  2. Symplectic Group Representation of the Two-Mode Squeezing Operator in the Coherent State Basis

    Science.gov (United States)

    Fan, Hong-Yi; Chen, Jun-Hua

    2003-11-01

    We find that the coherent state projection operator representation of the two-mode squeezing operator constitutes a loyal group representation of symplectic group, which is a remarkable property of the coherent state. As a consequence, the resultant effect of successively applying two-mode squeezing operators are equivalent to a single squeezing in the two-mode Fock space. Generalization of this property to the 2n-mode case is also discussed. The project supported by National Natural Science Foundation of China under Grant No. 10575057

  3. Squeeze strengthening of magnetorheological fluids using mixed mode operation

    Science.gov (United States)

    Becnel, A. C.; Sherman, S. G.; Hu, W.; Wereley, N. M.

    2015-05-01

    This research details a novel method of increasing the shear yield stress of magnetorheological fluids by combining shear and squeeze modes of operation to manipulate particle chain structures, so-called squeeze strengthening. Using a custom built Searle cell magnetorheometer, which is a model device emulating a rotary magnetorheological energy absorber (MREA), the contribution of squeeze strengthening to the total controllable yield force is experimentally investigated. Using an eccentric rotating inner cylinder, characterization data from large (1 mm) and small (0.25 mm) nominal gap geometries are compared to investigate the squeeze strengthening effect. Details of the experimental setup and method are presented, and a hybrid model is used to explain experimental trends. This study demonstrates that it is feasible, utilizing squeeze strengthening to increase yield stress, to either (1) design a rotary MREA of a given volume to achieve higher energy absorption density (energy absorbed normalized by active fluid volume), or (2) reduce the volume of a given rotary MREA to achieve the same energy absorption density.

  4. Deterministic secure communications using two-mode squeezed states

    International Nuclear Information System (INIS)

    Marino, Alberto M.; Stroud, C. R. Jr.

    2006-01-01

    We propose a scheme for quantum cryptography that uses the squeezing phase of a two-mode squeezed state to transmit information securely between two parties. The basic principle behind this scheme is the fact that each mode of the squeezed field by itself does not contain any information regarding the squeezing phase. The squeezing phase can only be obtained through a joint measurement of the two modes. This, combined with the fact that it is possible to perform remote squeezing measurements, makes it possible to implement a secure quantum communication scheme in which a deterministic signal can be transmitted directly between two parties while the encryption is done automatically by the quantum correlations present in the two-mode squeezed state

  5. Squeezing in multi-mode nonlinear optical state truncation

    International Nuclear Information System (INIS)

    Said, R.S.; Wahiddin, M.R.B.; Umarov, B.A.

    2007-01-01

    In this Letter, we show that multi-mode qubit states produced via nonlinear optical state truncation driven by classical external pumpings exhibit squeezing condition. We restrict our discussions to the two- and three-mode cases

  6. Transparency or spectral narrowing for two-mode squeezing and entanglement

    International Nuclear Information System (INIS)

    Hu Xiangming; Oh, C. H.

    2011-01-01

    We analyze the nonadiabatic effects on the propagation of a two-mode squeezed field inside a medium of three-level Λ atoms that display the dark resonance. We identify the different effects for the two-mode quantum properties: (i) unconditional transparency for the sum squeezing and (ii) induced transparency or spectral narrowing for the difference squeezing depending on the relative widths of the initial correlation spectrum to the transparency window. These effects combine to induce transparency or spectrum narrowing for the bipartite entanglement. The potential applications range from quantum information to laser spectroscopy and frequency standards.

  7. Quantum entanglement and nonlocality properties of two-mode Gaussian squeezed states

    International Nuclear Information System (INIS)

    Shao-Hua, Xiang; Bin, Shao; Ke-Hui, Song

    2009-01-01

    Quantum entanglement and nonlocality properties of a family of two-mode Gaussian pure states have been investigated. The results show that the entanglement of these states is determined by both the two-mode squeezing parameter and the difference of the two single-mode squeezing parameters. For the same two-mode squeezing parameter, these states show larger entanglement than the usual two-mode squeezed vacuum state. The violation of Bell inequality depends strongly on all the squeezing parameters of these states and disappears completely in the limit of large squeezing. In particular, these states can exhibit much stronger violation of local realism than two-mode squeezed vacuum state in the range of experimentally available squeezing values. (general)

  8. Single and two-mode mechanical squeezing of an optically levitated nanodiamond via dressed-state coherence

    International Nuclear Information System (INIS)

    Ge, Wenchao; Bhattacharya, M

    2016-01-01

    Nonclassical states of macroscopic objects are promising for ultrasensitive metrology as well as testing quantum mechanics. In this work, we investigate dissipative mechanical quantum state engineering in an optically levitated nanodiamond. First, we study single-mode mechanical squeezed states by magnetically coupling the mechanical motion to a dressed three-level system provided by a nitrogen-vacancy center in the nanoparticle. Quantum coherence between the dressed levels is created via microwave fields to induce a two-phonon transition, which results in mechanical squeezing. Remarkably, we find that in ultrahigh vacuum quantum squeezing is achievable at room temperature with feedback cooling. For moderate vacuum, quantum squeezing is possible with cryogenic temperature. Second, we present a setup for two mechanical modes coupled to the dressed three levels, which results in two-mode squeezing analogous to the mechanism of the single-mode case. In contrast to previous works, our study provides a deterministic method for engineering macroscopic squeezed states without the requirement for a cavity. (paper)

  9. Single and two-mode mechanical squeezing of an optically levitated nanodiamond via dressed-state coherence

    Science.gov (United States)

    Ge, Wenchao; Bhattacharya, M.

    2016-10-01

    Nonclassical states of macroscopic objects are promising for ultrasensitive metrology as well as testing quantum mechanics. In this work, we investigate dissipative mechanical quantum state engineering in an optically levitated nanodiamond. First, we study single-mode mechanical squeezed states by magnetically coupling the mechanical motion to a dressed three-level system provided by a nitrogen-vacancy center in the nanoparticle. Quantum coherence between the dressed levels is created via microwave fields to induce a two-phonon transition, which results in mechanical squeezing. Remarkably, we find that in ultrahigh vacuum quantum squeezing is achievable at room temperature with feedback cooling. For moderate vacuum, quantum squeezing is possible with cryogenic temperature. Second, we present a setup for two mechanical modes coupled to the dressed three levels, which results in two-mode squeezing analogous to the mechanism of the single-mode case. In contrast to previous works, our study provides a deterministic method for engineering macroscopic squeezed states without the requirement for a cavity.

  10. A group property for the coherent state representation of fermionic squeezing operators

    Science.gov (United States)

    Fan, Hong-yi; Li, Chao

    2004-06-01

    For the two-mode fermionic squeezing operators we find that their coherent state projection operator representation make up a loyal representation, which is homomorphic to an SO(4) group, though the fermionic coherent states are not mutual orthogonal. Thus the result of successively operating with many fermionic squeezing operators on a state can be equivalent to a single operation. The fermionic squeezing operators are mappings of orthogonal transformations in Grassmann number pseudo-classical space in the fermionic coherent state representation.

  11. A group property for the coherent state representation of fermionic squeezing operators

    International Nuclear Information System (INIS)

    Fan Hongyi; Li Chao

    2004-01-01

    For the two-mode fermionic squeezing operators we find that their coherent state projection operator representation make up a loyal representation, which is homomorphic to an SO(4) group, though the fermionic coherent states are not mutual orthogonal. Thus the result of successively operating with many fermionic squeezing operators on a state can be equivalent to a single operation. The fermionic squeezing operators are mappings of orthogonal transformations in Grassmann number pseudo-classical space in the fermionic coherent state representation

  12. Non-zero temperature two-mode squeezing for time-dependent two-level systems

    International Nuclear Information System (INIS)

    Aliaga, J.; Gruver, J.L.; Proto, A.N.; Cerdeira, H.A.

    1994-01-01

    A Maximum Entropy Principle density matrix method, valid for systems with temperature different from zero, is presented making it possible two-mode squeezed states in two-level systems with relevant operators and Hamiltonian connected with O(3,2). A method which allows one to relate the appearance of squeezing to the relevant operators, included in order to define the density matrix of the system is given. (author). 14 refs, 1 fig

  13. Comment on ''Teleportation of two-mode squeezed states''

    Energy Technology Data Exchange (ETDEWEB)

    He Guangqiang; Zhang Jingtao [State Key Lab of Advanced Optical Communication Systems and Networks Department of Electronic Engineering, Shanghai Jiaotong University, Shanghai 200030 (China)

    2011-10-15

    We investigate the teleportation scheme of two-mode squeezed states proposed by Adhikari et al.[S. Adhikari et al., Phys. Rev. A 77, 012337 (2008)]. It uses four-mode entangled states to teleport two-mode squeezed states. The fidelity between the original two-mode squeezed states and teleported ones is calculated. The maximal fidelity value of Adhikari's protocol is 0.38, which is incompatible with the fidelity definition with the maximal value 1. In our opinion, one reason is that they calculate the fidelity for multimodes Gaussian states using the fidelity formula for single-mode ones. Another reason is that the covariance matrix of output states should be what is obtained after applying the linear unitary Bogoliubov operations (two cascaded Fourier transformations) on the covariance matrix given in Eq. (12) in their paper. These two reasons result in the incomparable results. In addition, Adhikari's protocol can be simplified to be easily implemented.

  14. Two-mode Gaussian density matrices and squeezing of photons

    International Nuclear Information System (INIS)

    Tucci, R.R.

    1992-01-01

    In this paper, the authors generalize to 2-mode states the 1-mode state results obtained in a previous paper. The authors study 2-mode Gaussian density matrices. The authors find a linear transformation which maps the two annihilation operators, one for each mode, into two new annihilation operators that are uncorrelated and unsqueezed. This allows the authors to express the density matrix as a product of two 1-mode density matrices. The authors find general conditions under which 2-mode Gaussian density matrices become pure states. Possible pure states include the 2-mode squeezed pure states commonly mentioned in the literature, plus other pure states never mentioned before. The authors discuss the entropy and thermodynamic laws (Second Law, Fundamental Equation, and Gibbs-Duhem Equation) for the 2-mode states being considered

  15. Spatially single-mode source of bright squeezed vacuum

    OpenAIRE

    Pérez, A. M.; Iskhakov, T. Sh.; Sharapova, P.; Lemieux, S.; Tikhonova, O. V.; Chekhova, M. V.; Leuchs, G.

    2014-01-01

    Bright squeezed vacuum, a macroscopic nonclassical state of light, can be obtained at the output of a strongly pumped non-seeded traveling-wave optical parametric amplifier (OPA). By constructing the OPA of two consecutive crystals separated by a large distance we make the squeezed vacuum spatially single-mode without a significant decrease in the brightness or squeezing.

  16. Quantum entanglement and position–momentum entropic squeezing of a moving Lambda-type three-level atom interacting with a single-mode quantized field with intensity-dependent coupling

    International Nuclear Information System (INIS)

    Faghihi, M J; Tavassoly, M K

    2013-01-01

    In this paper, we study the interaction between a moving Λ-type three-level atom and a single-mode cavity field in the presence of intensity-dependent atom–field coupling. After obtaining the state vector of the entire system explicitly, we study the nonclassical features of the system such as quantum entanglement, position–momentum entropic squeezing, quadrature squeezing and sub-Poissonian statistics. According to the obtained numerical results we illustrate that the squeezed period, the duration of entropy squeezing and the maximal squeezing can be controlled by choosing the appropriate nonlinearity function together with entering the atomic motion effect by the suitable selection of the field-mode structure parameter. Also, the atomic motion, as well as the nonlinearity function, leads to the oscillatory behaviour of the degree of entanglement between the atom and field. (paper)

  17. Quantum entanglement and position-momentum entropic squeezing of a moving Lambda-type three-level atom interacting with a single-mode quantized field with intensity-dependent coupling

    Science.gov (United States)

    Faghihi, M. J.; Tavassoly, M. K.

    2013-07-01

    In this paper, we study the interaction between a moving Λ-type three-level atom and a single-mode cavity field in the presence of intensity-dependent atom-field coupling. After obtaining the state vector of the entire system explicitly, we study the nonclassical features of the system such as quantum entanglement, position-momentum entropic squeezing, quadrature squeezing and sub-Poissonian statistics. According to the obtained numerical results we illustrate that the squeezed period, the duration of entropy squeezing and the maximal squeezing can be controlled by choosing the appropriate nonlinearity function together with entering the atomic motion effect by the suitable selection of the field-mode structure parameter. Also, the atomic motion, as well as the nonlinearity function, leads to the oscillatory behaviour of the degree of entanglement between the atom and field.

  18. Impact of quantum–classical correspondence on entanglement enhancement by single-mode squeezing

    International Nuclear Information System (INIS)

    Joseph, Sijo K.; Chew, Lock Yue; Sanjuán, Miguel A.F.

    2014-01-01

    Quantum entanglement between two field modes can be achieved through the collective squeezing of the two respective modes. If single-mode squeezing is performed prior to such a two-mode squeezing, an enhancement of entanglement production can happen. Interestingly, the occurrence of this enhancement can be implicitly linked to the local classical dynamical behavior via the paradigm of quantum–classical correspondence. In particular, the entanglement generated through quantum chaos is found to be hardly enhanced by prior squeezing, since it is bounded by the saturation value of the maximally entangled Schmidt state with fixed energy. These results illustrate that entanglement enhancement via initial squeezing can serve as a useful indicator of quantum chaotic behaviour. - Highlights: • Continuous-variable entanglement is explored in the Pullen–Edmonds Hamiltonian. • The local phase-space structure and the entanglement enhancement are related. • Entanglement enhancement via squeezing is smaller for the chaotic orbit. • Entanglement enhancement via squeezing is higher for the regular orbit. • The magnitude of the entanglement enhancement serves as a quantum-chaos indicator

  19. Information Entropy Squeezing of a Two-Level Atom Interacting with Two-Mode Coherent Fields

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-Juan; FANG Mao-Fa

    2004-01-01

    From a quantum information point of view we investigate the entropy squeezing properties for a two-level atom interacting with the two-mode coherent fields via the two-photon transition. We discuss the influences of the initial state of the system on the atomic information entropy squeezing. Our results show that the squeezed component number,squeezed direction, and time of the information entropy squeezing can be controlled by choosing atomic distribution angle,the relative phase between the atom and the two-mode field, and the difference of the average photon number of the two field modes, respectively. Quantum information entropy is a remarkable precision measure for the atomic squeezing.

  20. Magnetorheological Damper Working in Squeeze Mode

    Directory of Open Access Journals (Sweden)

    Xinglong Gong

    2014-05-01

    Full Text Available This research is focused on evaluation of the magnetorheological fluids (MRFs based damper which works in squeeze mode. The operation direction of this damper is parallel to the direction of the external magnetic field. Before testing, commercial software ANSYS was used to analyze the magnetic field distribution inside the damper generated by charging current in the coil. The performance of the damper was tested by using the MTS809 (produced by MTS Systems Corporation, USA. For simulation of this damper, a mathematical model was set up. Experimental results showed that the small squeezed MR damper could produce large damping force; for example, the maximum damping force is nearly 6 kN, while the amplitude is 1.2 mm, the frequency is 1.0 Hz, and the current is 2.0 A, and the damping force was controllable by changing the current in the coil. The damping force versus displacement curves are complex. We divide them into four regions for simulation. The maximum damper force increased quickly with the increasing of the current in coil. This kind of damper can be used in vibration isolation for precise equipment.

  1. Decoherence and Fidelity in Teleportation of Coherent Photon-Added Two-Mode Squeezed Thermal States

    Science.gov (United States)

    Li, Heng-Mei; Yuan, Hong-Chun; Wan, Zhi-Long; Wang, Zhen

    2018-04-01

    We theoretically introduce a kind of non-Gaussian entangled resources, i.e., coherent photon-added two-mode squeezed thermal states (CPA-TMSTS), by successively performing coherent photon addition operation to the two-mode squeezed thermal states. The normalization factor related to bivariate Hermite polynomials is obtained. Based upon it, the nonclassicality and decoherence process are analyzed by virtue of the Wigner function. It is shown that the coherent photon addition operation is an effective way in generating partial negative values of Wigner function, which clearly manifests the nonclassicality and non-Gaussianity of the target states. Additionally, the fidelity in teleporting coherent states using CPA-TMSTS as entangled resource is quantified both analytically and numerically. It is found that the CPA-TMSTS is an entangled resource of high-efficiency and high-fidelity in quantum teleportation.

  2. Squeezing via two-photon transitions

    Science.gov (United States)

    Savage, C. M.; Walls, D. F.

    1986-05-01

    The squeezing spectrum for a cavity field mode interacting with an ensemble of three-level 'Lambda-configuration' atoms by an effective two-photon transition is calculated. The advantage of the three-level Lambda system as a squeezing medium, that is, optical nonlinearity without atomic saturation, has recently been pointed out by Reid, Walls, and Dalton. Perfect squeezing is predicted at the turning points for dispersive optical bistability and good squeezing for a range of other cases. Three-level ladder atoms interacting by an effective two-photon transition are also shown to give perfect squeezing in the dispersive limit.

  3. Toward a compact fibered squeezing parametric source.

    Science.gov (United States)

    Brieussel, Alexandre; Ott, Konstantin; Joos, Maxime; Treps, Nicolas; Fabre, Claude

    2018-03-15

    In this work, we investigate three different compact fibered systems generating vacuum squeezing that involve optical cavities limited by the end surface of a fiber and by a curved mirror and containing a thin parametric crystal. These systems have the advantage to couple squeezed states directly to a fiber, allowing the user to benefit from the flexibility of fibers in the use of squeezing. Three types of fibers are investigated: standard single-mode fibers, photonic-crystal large-mode-area single-mode fibers, and short multimode fibers taped to a single-mode fiber. The observed squeezing is modest (-0.56  dB, -0.9  dB, -1  dB), but these experiments open the way for miniaturized squeezing devices that could be a very interesting advantage in scaling up quantum systems for quantum processing, opening new perspectives in the domain of integrated quantum optics.

  4. Fidelity of Quantum Teleportation for Single-Mode Squeezed State Light

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-Xiang; XIE Chang-De; PENG Kun-Chi

    2005-01-01

    @@ The fidelity of quantum teleportation of a single-mode squeezed state of light is calculated based on the general theory of quantum-mechanical measurement in the Schrodinger picture. It is shown that the criterion for the nonclassical state teleportation is different from that for coherent state. F = 1/2 is no longer the rigorous boundary between classical and quantum teleportation for a squeezed state of light. When the quantum entanglement of an Einstein-Podolsky-Rosen (EPR) beam used for teleportation and the parameters of the system are given,the fidelity depends on the squeezing of the input squeezed state. The higher the squeezing is, the smaller the fidelity is, and the lower the classical limitation of fidelity is. The dependence of the optimum gain for teleporting a squeezed vacuum state upon the EPR entanglement is also calculated. The results obtained provide important references for designing experimental systems of teleporting a non-classical state and judging the quality of the teleported quantum state.

  5. SU(2) and SU(1,1) squeezing of interacting radiation modes

    International Nuclear Information System (INIS)

    Abdalla Sebawe, M.; Faisal El-Orany, A.A.; Perina, J.

    2000-01-01

    In this communication we discuss SU(1,1) and SU(2) squeezing of an interacting system of radiation modes in a quadratic medium in the framework of Lie algebra. We show that regardless of which state being initially considered, squeezing can be periodically generated. (authors)

  6. Squeezed State Caused by Inverse of Photon Creation Operator

    International Nuclear Information System (INIS)

    Xu Xuefen

    2006-01-01

    Using the photon creation operator's eigenstate theory we derive the normally ordered expansion of inverse of the squeezed creation operator. It turns out that using this operator a kind of excitation on the squeezed vacuum states can be formed.

  7. Entropy squeezing of the field interacting with a nearly degenerate V-type three-level atom

    Institute of Scientific and Technical Information of China (English)

    Zhou Qing-Chun; Zhu Shi-Ning

    2005-01-01

    The position- and momentum-entopic squeezing properties of the optical field in the system of a nearly degenerate three-level atom interacting with a single-mode field are investigated. Calculation results indicate that when the field is initially in the vacuum state, it may lead to squeezing of the position entropy or the momentum entropy of the field if the atom is prepared properly. The effects of initial atomic state and the splitting of the excited levels of the atom on field entropies are discussed in this case. When the initial field is in a coherent state, we find that position-entropy squeezing of the field is present even if the atom is prepared in the ground state. By comparing the variance squeezing and entropy squeezing of the field we confirm that entropy is more sensitive than variance in measuring quantum fluctuations.

  8. Noncritical quadrature squeezing in two-transverse-mode optical parametric oscillators

    International Nuclear Information System (INIS)

    Navarrete-Benlloch, Carlos; Roldan, Eugenio; Valcarcel, German J. de; Romanelli, Alejandro

    2010-01-01

    In this article we explore the quantum properties of a degenerate optical parametric oscillator when it is tuned to the first family of transverse modes at the down-converted frequency. Recently we found [C. Navarrete-Benlloch et al., Phys. Rev. Lett. 100, 203601 (2008)] that above threshold a TEM 10 mode following a random rotation in the transverse plane emerges in this system (we denote it as the bright mode), breaking thus its rotational invariance. Then, owing to the mode orientation being undetermined, we showed that the phase quadrature of the transverse mode orthogonal to this one (denoted as the dark mode) is perfectly squeezed at any pump level and without an increase in the fluctuations on its amplitude quadrature (which seems to contradict the uncertainty principle). In this article we go further in the study of this system and analyze some important features not considered previously. First we show that the apparent violation of the uncertainty principle is just that -'apparent' - as the conjugate pair of the squeezed quadrature is not another quadrature but the orientation of the bright mode (which is completely undetermined in the long term). We also study a homodyne scheme in which the local oscillator is not perfectly matched to the dark mode, as this could be impossible in real experiments due to the random rotation of the mode, showing that even in this case large levels of noise reduction can be obtained (also including the experimentally unavoidable phase fluctuations). Finally, we show that neither the adiabatic elimination of the pump variables nor the linearization of the quantum equations are responsible for the remarkable properties of the dark mode (which we prove analytically and through numerical simulations, respectively), which were simplifying assumptions used in Navarrete-Benlloch et al. [Phys. Rev. Lett. 100, 203601 (2008)]. These studies show that the production of noncritically squeezed light through spontaneous rotational

  9. Effect of oscillation mode on the free-molecule squeeze-film air damping

    KAUST Repository

    Gang Hong,

    2010-01-01

    A 3D Monte Carlo (MC) simulation approach is developed and employed to study the effect of the oscillation mode on the squeeze-film air damping in the free-molecule regime. By tracking individual gas molecule\\'s motion and its interaction with the resonator, the MC approach is by far the most accurate modeling approach for the modeling of squeeze-film damping in the free-molecule regime. The accuracy of this approach is demonstrated on several cases in which either analytical solutions or experimental measurements are available. It has been found that unlike the case when resonators oscillate in an unbounded domain, squeeze film damping is very sensitive to the mode shape, which implies that some of the existing modeling approaches based on rigid-resonator assumption may not be accurate when applied to model resonators oscillating at their deformed shape. ©2010 IEEE.

  10. Quantum properties of a superposition of squeezed displaced two-mode vacuum and single-photon states

    International Nuclear Information System (INIS)

    El-Orany, Faisal A A; Obada, A-S F; M Asker, Zafer; Perina, J

    2009-01-01

    In this paper, we study some quantum properties of a superposition of displaced squeezed two-mode vacuum and single-photon states, such as the second-order correlation function, the Cauchy-Schwarz inequality, quadrature squeezing, quasiprobability distribution functions and purity. These type of states include two mechanisms, namely interference in phase space and entanglement. We show that these states can exhibit sub-Poissonian statistics, squeezing and deviate from the classical Cauchy-Schwarz inequality. Moreover, the amount of entanglement in the system can be increased by increasing the squeezing mechanism. In the framework of the quasiprobability distribution functions, we show that the single-mode state can tend to the thermal state based on the correlation mechanism. A generation scheme for such states is given.

  11. Phase squeezed states

    International Nuclear Information System (INIS)

    Chizhov, A.V.; Paris, M.G.A.

    1998-01-01

    Phase squeezed states of a single mode radiation field have been introduced as eigenstates of a linear combination of lowering and raising operators. The explicit expression in the Fock basis has been obtained and some relevant properties have been illustrated. (author)

  12. Quantum Squeezing

    International Nuclear Information System (INIS)

    Zubairy, Suhail

    2005-01-01

    Quantum squeezed states are a consequence of uncertainty relations; a state is squeezed when the noise in one variable is reduced below the symmetric limit at the expense of the increased noise in the conjugate variable such that the Heisenberg uncertainty relation is not violated. Such states have been known since the earliest days of quantum mechanics. The realization in the early 80's that quantum squeezed states of the radiation field can have important applications in high precision Michelson interferometry for detecting gravitational waves led to a tremendous amount of activity, both in theoretical and experimental quantum optics. The present volume, edited by two eminent scientists, is a collection of papers by leading experts in the field of squeezed states on different aspects of the field as it stands today. The book is divided into three parts. In the first part, there are three articles that review the fundamentals. The first paper by Knight and Buzek presents an introductory account of squeezed states and their properties. The chapter, which opens with the quantization of the radiation field, goes on to discuss the quantum optical properties of single mode and multimode squeezed states. The second article by Hillery provides a detailed description of field quantization in the presence of a nonlinear dielectric medium, thus providing a rigorous treatment of squeezing in nonlinear media. The third article by Yurke presents a comprehensive discussion of the input-output theory of the squeezed radiation at the dielectric boundaries. The second part of the book, comprising of three articles, deals with the generation of squeezed states. In the first article, Drummond reviews the squeezing properties of light in nonlinear systems such as parametric oscillators. He also discusses squeezed light propagation through waveguides and optical fibers. In the second article, Ralph concentrates on active laser sources of squeezing and presents an analysis based on the

  13. Influence of squeeze film damping on the higher-order modes of clamped–clamped microbeams

    KAUST Repository

    Alcheikh, Nouha

    2016-05-06

    This paper presents an experimental study and a finite-element analysis of the effect of squeeze film damping on the resonance frequency and quality factor of the higher-order flexure vibrations modes of clamped-clamped microbeams. Viscoelastic and silicon nitride microbeams are fabricated and are electrostatically actuated by various electrode configurations to trigger the first, second, and third modes. The damping characteristic and the resonance frequency of these modes are examined for a wide range of gas pressure and electrostatic voltage loads. The results of the silicon nitride beams and viscoelastic beams are compared. It is found that the intrinsic material loss is the major dissipation mechanism at low pressure for the viscoelastic microbeams, significantly limiting their quality factor. It is also found that while the silicon nitride beams show higher quality factors at the intrinsic and molecular regimes of pressure, due to their low intrinsic loss, their quality factors near atmospheric pressure are lower than those of the viscoelastic microbeams. Further, the higher-order modes of all the beams show much higher quality factors at atmospheric pressure compared to the first mode, which could be promising for operating such resonators in air. Experimental results and finite element model simulations show good agreement for resonance frequency and quality factor for the three studied modes. © 2016 IOP Publishing Ltd.

  14. Entropy squeezing for a two-level atom in two-mode Raman coupled model with intrinsic decoherence

    Institute of Scientific and Technical Information of China (English)

    Zhang Jian; Shao Bin; Zou Jian

    2009-01-01

    In this paper,we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling.We obtain the dynamical evolution of the total system under the influence of intrinsic decoherence when the two quantized fields are prepared in a two-mode squeezing vacuum state initially.The effects of the field squeezing factor,the two-level atomic transition frequency,the second field frequency and the intrinsic decoherence on the entropy squeezing are discussed.Without intrinsic decoherence,the increase of field squeezing factor can break the entropy squeezing.The two-level atomic transition frequency changes only the period of oscillation but not the strength of entropy squeezing.The influence of the second field frequency is complicated.With the intrinsic decoherence taken into consideration,the results show that the stronger the intrinsic decoherence is,the more quickly the entropy squeezing will disappear.The increase of the atomic transition frequency can hasten the disappearance of entropy squeezing.

  15. Entropy squeezing for a two-level atom in two-mode Raman coupled model with intrinsic decoherence

    International Nuclear Information System (INIS)

    Jian, Zhang; Bin, Shao; Jian, Zou

    2009-01-01

    In this paper, we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling. We obtain the dynamical evolution of the total system under the influence of intrinsic decoherence when the two quantized fields are prepared in a two-mode squeezing vacuum state initially. The effects of the field squeezing factor, the two-level atomic transition frequency, the second field frequency and the intrinsic decoherence on the entropy squeezing are discussed. Without intrinsic decoherence, the increase of field squeezing factor can break the entropy squeezing. The two-level atomic transition frequency changes only the period of oscillation but not the strength of entropy squeezing. The influence of the second field frequency is complicated. With the intrinsic decoherence taken into consideration, the results show that the stronger the intrinsic decoherence is, the more quickly the entropy squeezing will disappear. The increase of the atomic transition frequency can hasten the disappearance of entropy squeezing. (classical areas of phenomenology)

  16. Optimal Operation of a Josephson Parametric Amplifier for Vacuum Squeezing

    Science.gov (United States)

    Malnou, M.; Palken, D. A.; Vale, Leila R.; Hilton, Gene C.; Lehnert, K. W.

    2018-04-01

    A Josephson parametric amplifier (JPA) can create squeezed states of microwave light, lowering the noise associated with certain quantum measurements. We experimentally study how the JPA's pump influences the phase-sensitive amplification and deamplification of a coherent tone's amplitude when that amplitude is commensurate with vacuum fluctuations. We predict and demonstrate that, by operating the JPA with a single current pump whose power is greater than the value that maximizes gain, the amplifier distortion is reduced and, consequently, squeezing is improved. Optimizing the singly pumped JPA's operation in this fashion, we directly observe 3.87 ±0.03 dB of vacuum squeezing over a bandwidth of 30 MHz.

  17. Squeezing of higher order Hermite-Gauss modes

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard

    2008-01-01

    The present paper gives an overview of the experimental generation of squeezing in higher order Hermite-Gaussian modes with an optical parametric ampli¯er (OPA). This work was awarded with The European Optical Society (EOS) price 2007. The purpose of the prize is to encourage a European dimension...... in research in pure and applied optics. The EOS prize is awarded based on the selection criteria of high professionalism, academic and technical quality. Following the EOS Prize rules, the conditions for eligibility are that the work was performed in Europe and that it is published under the auspices...

  18. Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED

    Science.gov (United States)

    Zhang, Hao; Alsaedi, Ahmed; Hayat, Tasawar; Deng, Fu-Guo

    2018-04-01

    We present a theoretical proposal for a physical implementation of entanglement concentration and purification protocols for two-mode squeezed microwave photons in circuit quantum electrodynamics (QED). First, we give the description of the cross-Kerr effect induced between two resonators in circuit QED. Then we use the cross-Kerr media to design the effective quantum nondemolition (QND) measurement on microwave-photon number. By using the QND measurement, the parties in quantum communication can accomplish the entanglement concentration and purification of nonlocal two-mode squeezed microwave photons. We discuss the feasibility of our schemes by giving the detailed parameters which can be realized with current experimental technology. Our work can improve some practical applications in continuous-variable microwave-based quantum information processing.

  19. The formation of liquid bridge in different operating modes of AFM

    Science.gov (United States)

    Wei, Zheng; Sun, Yan; Ding, WenXuan; Wang, ZaiRan

    2016-09-01

    The liquid bridge is one of the principal factors that cause artifacts in ambient-pressure atomic force microscope (AFM) images. Additionally, it is the main component of the adhesion force in ambient conditions. To understand the AFM imaging mechanism and the sample characteristics, it is essential to study the liquid bridge. This study interprets the physical mechanism involved in liquid bridge formation, which is composed of three different physical processes: the squeezing process, capillary condensation, and liquid film flow. We discuss the contributions of these three mechanisms to the volume and the capillary force of the liquid bridge in different AFM operation modes.

  20. Effect of oscillation mode on the free-molecule squeeze-film air damping

    KAUST Repository

    Gang Hong,; Wenjing Ye,

    2010-01-01

    A 3D Monte Carlo (MC) simulation approach is developed and employed to study the effect of the oscillation mode on the squeeze-film air damping in the free-molecule regime. By tracking individual gas molecule's motion and its interaction

  1. The dependence of fidelity on the squeezing parameter in teleportation of the squeezed coherent states

    Institute of Scientific and Technical Information of China (English)

    Zhang Jing-Tao; He Guang-Qiang; Ren Li-Jie; Zeng Gui-Hua

    2011-01-01

    This paper investigates an analytical expression of teleportation fidelity in the teleportation scheme of a single mode of electromagnetic field. The fidelity between the original squeezed coherent state and the teleported one is expressed in terms of the squeezing parameter r and the quantum channel parameter (two-mode squeezed state) p. The results of analysis show that the fidelity increases with the increase of the quantum channel parameter p, while the fidelity decreases with the increase of the squeezing parameter r of the squeezed state. Thus the coherent state (r = 0)is the best quantum signal for continuous variable quantum teleportation once the quantum channel is built.

  2. A magneto-rheological fluid mount featuring squeeze mode: analysis and testing

    International Nuclear Information System (INIS)

    Chen, Peng; Bai, Xian-Xu; Qian, Li-Jun; Choi, Seung-Bok

    2016-01-01

    This paper presents a mathematical model for a new semi-active vehicle engine mount utilizing magneto-rheological (MR) fluids in squeeze mode (MR mount in short) and validates the model by comparing analysis results with experimental tests. The proposed MR mount is mainly comprised of a frame for installation, a main rubber, a squeeze plate and a bobbin for coil winding. When the magnetic fields on, MR effect occurs in the upper gap between the squeeze plate and the bobbin, and the dynamic stiffness can be controlled by tuning the applied currents. Employing Bingham model and flow properties between parallel plates of MR fluids, a mathematical model for the squeeze type of MR mount is formulated with consideration of the fluid inertia, MR effect and hysteresis property. The field-dependent dynamic stiffness of the MR mount is then analyzed using the established mathematical model. Subsequently, in order to validate the mathematical model, an appropriate size of MR mount is fabricated and tested. The field-dependent force and dynamic stiffness of the proposed MR mount are evaluated and compared between the model and experimental tests in both time and frequency domains to verify the model efficiency. In addition, it is shown that both the damping property and the stiffness property of the proposed MR mount can be simultaneously controlled. (paper)

  3. The Wigner distribution function for squeezed vacuum superposed state

    International Nuclear Information System (INIS)

    Zayed, E.M.E.; Daoud, A.S.; AL-Laithy, M.A.; Naseem, E.N.

    2005-01-01

    In this paper, we construct the Wigner distribution function for a single-mode squeezed vacuum mixed-state which is a superposition of the squeezed vacuum state. This state is defined as a P-representation for the density operator. The obtained Wigner function depends, beside the phase-space variables, on the mean number of photons occupied by the coherent state of the mode. This mean number relates to the mean free path through a given relation, which enables us to measure this number experimentally by measuring the mean free path

  4. Resonance fluorescence spectra of three-level atoms in a squeezed vacuum

    International Nuclear Information System (INIS)

    Ferguson, M.R.; Ficek, Z.; Dalton, B.J.

    1996-01-01

    The fluorescence field from one of the two allowed transitions in a three-level atom can sense squeezed fluctuations of a vacuum field coupled to the other transition. We examine the fluorescence spectra of strongly driven three-level atoms in Λ, V, and cascade configurations in which one of the two one-photon transitions is coupled to a finite-bandwidth squeezed vacuum field, when the bandwidth is much smaller than the difference in the atomic transition frequencies, though much larger than atomic decay rates and Rabi frequencies of the driving fields. The driving fields are on one-photon resonance, and the squeezed vacuum field is generated by a degenerate parameter oscillator. Details are only given for the Λ configuration. The extension to the V and cascade configurations is straightforward. We find that in all configurations the fluorescence spectra of the transition not coupled to the squeezed vacuum field are composed of five lines, one central and two pairs of sidebands, with intensities and widths strongly influenced by the squeezed vacuum field. However, only the central component and the outer sidebands exhibit a dependence on the squeezing phase. We also examine the fluorescence spectrum for the cascade configuration with a squeezed vacuum field on resonance with the two-photon transition between the ground and the most excited states and now generated by a nondegenerate parametric oscillator. In this case, where the squeezed vacuum field can be made coupled to both transitions, all spectral lines depend on the squeezing phase. The spectral features are explained in terms of the dressed-atom model of the system. We show that the coherent mixing of the atomic states by the strong driving fields modifies transition rates between the dressed states, which results in the selective phase dependence of the spectral features. copyright 1996 The American Physical Society

  5. Modeling of magnetorheological fluid in quasi-static squeeze flow mode

    Science.gov (United States)

    Horak, Wojciech

    2018-06-01

    This work presents a new nonlinear model to describe MR fluid behavior in the squeeze flow mode. The basis for deriving the model were the principles of continuum mechanics and the theory of tensor transformation. The analyzed case concerned quasi-static squeeze with a constant area, between two parallel plates with non-slip boundary conditions. The developed model takes into account the rheological properties or MR fluids as a viscoplastic material for which yield stress increases due to compression. The model also takes into account the formation of normal force in the MR fluid as a result of the magnetic field impact. Moreover, a new parameter has been introduced which characterizes the behavior of MR fluid subjected to compression. The proposed model has been experimentally validated and the obtained results suggest that the assumptions made in the model development are reasonable, as good model compatibility with the experiments was obtained.

  6. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier

    International Nuclear Information System (INIS)

    Liu Kui; Cui Shu-Zhen; Yang Rong-Guo; Zhang Jun-Xiang; Gao Jiang-Rui

    2012-01-01

    We experimentally demonstrate that HG 01 (Hermit—Gauss) and HG 10 squeezed states can be generated simultaneously in an optical parametric amplifier. The HG 01 mode is a bright squeezed state and the HG 10 mode is a vacuum squeezed state. The squeezing of the HG 01 mode is −2.8 dB, and the squeezing of the HG 10 mode is −1.6 dB. We also demonstrate that the output field is also continuous-variable entanglement with orbital angular momentum. (general)

  7. A gravitational wave detector operating beyond the quantum shot-noise limit: Squeezed light in application

    Directory of Open Access Journals (Sweden)

    Schnabel Roman

    2013-08-01

    Full Text Available This contribution reviews our recent progress on the generation of squeezed light [1], and also the recent squeezed-light enhancement of the gravitational wave detector GEO 600 [2]. GEO 600 is currently the only GW observatory operated by the LIGO Scientific Collaboration in its search for gravitational waves. With the help of squeezed states of light it now operates with its best ever sensitivity, which not only proves the qualification of squeezed light as a key technology for future gravitational wave astronomy but also the usefulness of quantum entanglement.

  8. Entanglement and squeezing in a two-mode system: theory and experiment

    International Nuclear Information System (INIS)

    Josse, V; Dantan, A; Bramati, A; Giacobino, E

    2004-01-01

    We report on the generation of non-separable beams produced via the interaction of a linearly polarized beam with a cloud of cold caesium atoms placed in an optical cavity. We convert the squeezing of the two linear polarization modes into quadrature entanglement and show how to find the best entanglement generated in a two-mode system using the inseparability criterion for continuous variables (Duan et al 2000 Phys. Rev. Lett. 84 2722). We verify this method experimentally with a direct measurement of the inseparability using two homodyne detectors. We then map this entanglement into a polarization basis and achieve polarization entanglement

  9. Quantum entanglement for systems of identical bosons: II. Spin squeezing and other entanglement tests

    International Nuclear Information System (INIS)

    Dalton, B J; Goold, J; Garraway, B M; Reid, M D

    2017-01-01

    These two accompanying papers are concerned with entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. The main focus is on two mode entanglement, but multi-mode entanglement is also considered. The bosons may be atoms or molecules as in cold quantum gases. The previous paper I dealt with the general features of quantum entanglement and its specific definition in the case of systems of identical bosons. Entanglement is a property shared between two (or more) quantum sub-systems. In defining entanglement for systems of identical massive particles, it was concluded that the single particle states or modes are the most appropriate choice for sub-systems that are distinguishable, that the general quantum states must comply both with the symmetrization principle and the super-selection rules (SSR) that forbid quantum superpositions of states with differing total particle number (global SSR compliance). Further, it was concluded that (in the separable states) quantum superpositions of sub-system states with differing sub-system particle number (local SSR compliance) also do not occur. The present paper II determines possible tests for entanglement based on the treatment of entanglement set out in paper I. Several inequalities involving variances and mean values of operators have been previously proposed as tests for entanglement between two sub-systems. These inequalities generally involve mode annihilation and creation operators and include the inequalities that define spin squeezing. In this paper, spin squeezing criteria for two mode systems are examined, and spin squeezing is also considered for principle spin operator components where the covariance matrix is diagonal. The proof, which is based on our SSR compliant approach shows that the presence of spin squeezing in any one of the spin components requires entanglement of the relevant pair of modes. A simple Bloch vector test for

  10. Quantum entanglement for systems of identical bosons: II. Spin squeezing and other entanglement tests

    Science.gov (United States)

    Dalton, B. J.; Goold, J.; Garraway, B. M.; Reid, M. D.

    2017-02-01

    These two accompanying papers are concerned with entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. The main focus is on two mode entanglement, but multi-mode entanglement is also considered. The bosons may be atoms or molecules as in cold quantum gases. The previous paper I dealt with the general features of quantum entanglement and its specific definition in the case of systems of identical bosons. Entanglement is a property shared between two (or more) quantum sub-systems. In defining entanglement for systems of identical massive particles, it was concluded that the single particle states or modes are the most appropriate choice for sub-systems that are distinguishable, that the general quantum states must comply both with the symmetrization principle and the super-selection rules (SSR) that forbid quantum superpositions of states with differing total particle number (global SSR compliance). Further, it was concluded that (in the separable states) quantum superpositions of sub-system states with differing sub-system particle number (local SSR compliance) also do not occur. The present paper II determines possible tests for entanglement based on the treatment of entanglement set out in paper I. Several inequalities involving variances and mean values of operators have been previously proposed as tests for entanglement between two sub-systems. These inequalities generally involve mode annihilation and creation operators and include the inequalities that define spin squeezing. In this paper, spin squeezing criteria for two mode systems are examined, and spin squeezing is also considered for principle spin operator components where the covariance matrix is diagonal. The proof, which is based on our SSR compliant approach shows that the presence of spin squeezing in any one of the spin components requires entanglement of the relevant pair of modes. A simple Bloch vector test for

  11. Energy and Exergy Performance of three FPSO Operational Modes

    DEFF Research Database (Denmark)

    Sánchez, Yamid Alberto Carranza; Junior, Silvio de Oliveira; da Silva, Julio Augusto Mendes

    2015-01-01

    by the FPSO operator. Energy and exergy criteria have been applied to evaluate and compare the performance of components and systems of the three operational modes of the FPSO. The processing and utilities plants have been modeled and simulated by using Aspen HYSYS®. Results indicate that higher oil content...

  12. Versatile Gaussian probes for squeezing estimation

    Science.gov (United States)

    Rigovacca, Luca; Farace, Alessandro; Souza, Leonardo A. M.; De Pasquale, Antonella; Giovannetti, Vittorio; Adesso, Gerardo

    2017-05-01

    We consider an instance of "black-box" quantum metrology in the Gaussian framework, where we aim to estimate the amount of squeezing applied on an input probe, without previous knowledge on the phase of the applied squeezing. By taking the quantum Fisher information (QFI) as the figure of merit, we evaluate its average and variance with respect to this phase in order to identify probe states that yield good precision for many different squeezing directions. We first consider the case of single-mode Gaussian probes with the same energy, and find that pure squeezed states maximize the average quantum Fisher information (AvQFI) at the cost of a performance that oscillates strongly as the squeezing direction is changed. Although the variance can be brought to zero by correlating the probing system with a reference mode, the maximum AvQFI cannot be increased in the same way. A different scenario opens if one takes into account the effects of photon losses: coherent states represent the optimal single-mode choice when losses exceed a certain threshold and, moreover, correlated probes can now yield larger AvQFI values than all single-mode states, on top of having zero variance.

  13. Relationship between squeezing and entangled state transformations

    CERN Document Server

    Fan Hong Yi

    2003-01-01

    We show that c-number dilation transform in the Einstein-Podolsky-Rosen (EPR) entangled state, i.e. vertical bar eta sub 1 , eta sub 2) -> vertical bar eta sub 1 , eta sub 2 /mu) (or vertical bar eta sub 1 , eta sub 2) -> vertical bar eta sub 1 /mu, eta sub 2)), maps onto a kind of one-sided two-mode squeezing operator exp left brace i lambda/2(P sub 1 + P sub 2)(Q sub 1 + Q sub 2) - lambda/2 right brace, (or exp left brace i lambda/2(P sub 1 - P sub 2)(Q sub 1 - Q sub 2) - lambda/2 right brace). Using the IWOP technique, we derive their normally ordered form and construct the corresponding squeezed states. In doing so, some new relationship between squeezing and entangled state transformation is revealed. The dynamic Hamiltonian for such a kind of squeezing evolution is derived. The properties and application of the one-sided squeezed state are briefly discussed. These states can also be obtained with the use of a beam splitter.

  14. Photon statistical properties of photon-added two-mode squeezed coherent states

    International Nuclear Information System (INIS)

    Xu Xue-Fen; Wang Shuai; Tang Bin

    2014-01-01

    We investigate photon statistical properties of the multiple-photon-added two-mode squeezed coherent states (PA-TMSCS). We find that the photon statistical properties are sensitive to the compound phase involved in the TMSCS. Our numerical analyses show that the photon addition can enhance the cross-correlation and anti-bunching effects of the PA-TMSCS. Compared with that of the TMSCS, the photon number distribution of the PA-TMSCS is modulated by a factor that is a monotonically increasing function of the numbers of adding photons to each mode; further, that the photon addition essentially shifts the photon number distribution. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  15. Infinite-mode squeezed coherent states and non-equilibrium statistical mechanics (phase-space-picture approach)

    International Nuclear Information System (INIS)

    Yeh, L.

    1992-01-01

    The phase-space-picture approach to quantum non-equilibrium statistical mechanics via the characteristic function of infinite- mode squeezed coherent states is introduced. We use quantum Brownian motion as an example to show how this approach provides an interesting geometrical interpretation of quantum non-equilibrium phenomena

  16. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    Science.gov (United States)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.

  17. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    International Nuclear Information System (INIS)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-01-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell'Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states

  18. Short-cavity squeezing in barium

    Science.gov (United States)

    Hope, D. M.; Bachor, H-A.; Manson, P. J.; Mcclelland, D. E.

    1992-01-01

    Broadband phase sensitive noise and squeezing were experimentally observed in a system of barium atoms interacting with a single mode of a short optical cavity. Squeezing of 13 +/- 3 percent was observed. A maximum possible squeezing of 45 +/- 8 percent could be inferred for out experimental conditions, after correction for measured loss factors. Noise reductions below the quantum limit were found over a range of detection frequencies 60-170 MHz and were best for high cavity transmission and large optical depths. The amount of squeezing observed is consistent with theoretical predictions from a full quantum statistical model of the system.

  19. Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes

    DEFF Research Database (Denmark)

    Gabriel, C.; Aiello, A.; Zhong, W.

    2011-01-01

    Quantum systems such as, for example, photons, atoms, or Bose-Einstein condensates, prepared in complex states where entanglement between distinct degrees of freedom is present, may display several intriguing features. In this Letter we introduce the concept of such complex quantum states...... generates entanglement between these two different degrees of freedom. Experimentally we demonstrate amplitude squeezing of an azimuthally polarized mode by exploiting the nonlinear Kerr effect in a specially tailored photonic crystal fiber. These results display that such novel continuous......-variable entangled systems can, in principle, be realized.© 2011 American Physical Society....

  20. Deformed two-photon squeezed states in noncommutative space

    International Nuclear Information System (INIS)

    Zhang Jianzu

    2004-01-01

    Recent studies on nonperturbation aspects of noncommutative quantum mechanics explored a new type of boson commutation relations at the deformed level, described by deformed annihilation-creation operators in noncommutative space. This correlated boson commutator correlates different degrees of freedom, and shows an essential influence on dynamics. This Letter devotes to the development of formalism of deformed two-photon squeezed states in noncommutative space. General representations of deformed annihilation-creation operators and the consistency condition for the electromagnetic wave with a single mode of frequency in noncommunicative space are obtained. Two-photon squeezed states are studied. One finds that variances of the dimensionless Hermitian quadratures of the annihilation operator in one degree of freedom include variances in the other degree of freedom. Such correlations show the new feature of spatial noncommutativity and allow a deeper understanding of the correlated boson commutator

  1. Short-time fourth-order squeezing effects in spontaneous and stimulated four- and six-wave mixing processes

    International Nuclear Information System (INIS)

    Giri, Dilip Kumar; Gupta, P S

    2003-01-01

    The concept of fourth-order squeezing of the electromagnetic field is investigated in the fundamental mode in spontaneous and stimulated four- and six-wave mixing processes under the short-time approximation based on a fully quantum mechanical approach. The coupled Heisenberg equations of motion involving real and imaginary parts of the quadrature operators are established. The possibility of obtaining fourth-order squeezing is studied. The dependence of fourth-order squeezing on the number of photons is also investigated. It is shown that fourth-order squeezing, which is a higher-order squeezing, allows a much larger fractional noise reduction than lower-order squeezing. It is shown that squeezing is greater in a stimulated process than the corresponding squeezing in spontaneous interaction. The conditions for obtaining maximum and minimum squeezing are obtained. We have also established the non-classical nature of squeezed radiation using the Glauber-Sudarshan representation

  2. Nonlinear modeling and testing of magneto-rheological fluids in low shear rate squeezing flows

    International Nuclear Information System (INIS)

    Farjoud, Alireza; Ahmadian, Mehdi; Craft, Michael; Mahmoodi, Nima; Zhang, Xinjie

    2011-01-01

    A novel analytical investigation of magneto-rheological (MR) fluids in squeezing flows is performed and the results are validated with experimental test data. The squeeze flow of MR fluids has recently been of great interest to researchers. This is due to the large force capacity of MR fluids in squeeze mode compared to other modes (valve and shear modes), which makes the squeeze mode appropriate for a wide variety of applications such as impact dampers and engine mounts. Tested MR fluids were capable of providing a large range of controllable force along a short stroke in squeeze mode. A mathematical model was developed using perturbation techniques to predict closed-form solutions for velocity field, shear rate distribution, pressure distribution and squeeze force. Therefore, the obtained solutions greatly help with the design process of intelligent devices that use MR fluids in squeeze mode. The mathematical model also reduces the need for complicated and computationally expensive numerical simulations. The analytical results are validated by performing experimental tests on a novel MR device called an 'MR pouch' in an MR squeeze mode rheometer, both designed and built at CVeSS

  3. What are squeezed states really like

    International Nuclear Information System (INIS)

    Nieto, M.M.

    1984-01-01

    The simple harmonic oscillator and some quantum mechanics are reviewed. Then a special case of the squeezed states, the coherent states, is discussed. Next, the coherent states are described from the operator formalism. The squeezed states are described from the Schroedinger point of view, and their properties are discussed. Harmonic motion and coherent and squeezed states are discussed for general potentials. Then the (harmonic oscillator) squeezed states are discussed from the operator point of view and some of their mathematical properties

  4. Number-phase entropic squeezing and nonclassical properties of a three-level atom interacting with a two-mode field: intensity-dependent coupling, deformed Kerr medium, and detuning effects

    Science.gov (United States)

    Faghihi, Mohammad Javad; Tavassoly, Mohammad Kazem

    2013-11-01

    In this paper, we follow our presented model in J. Opt. Soc. Am. B {\\bf 30}, 1109--1117 (2013), in which the interaction between a $\\Lambda$-type three-level atom and a quantized two-mode radiation field in a cavity in the presence of nonlinearities is studied. After giving a brief review on the procedure of obtaining the state vector of the atom-field system, some further interesting and important physical features (which are of particular interest in the quantum optics field of research) of the whole system state, i.e., the number-phase entropic uncertainty relation (based on the two-mode Pegg-Barnett formalism) and some of the nonclassicality signs consist of sub-Poissonian statistics, Cauchy-Schwartz inequality and two kinds of squeezing phenomenon are investigated. During our presentation, the effects of intensity-dependent coupling, deformed Kerr medium and the detuning parameters on the depth and domain of each of the mentioned nonclassical criteria of the considered quantum system are studied, in detail. It is shown that each of the mentioned nonclassicality aspects can be obtained by appropriately choosing the related parameters.

  5. Squeezing, photon bunching, photon antibunching and nonclassical photon statistics in degenerate hyper Raman processes

    International Nuclear Information System (INIS)

    Sen, Biswajit; Mandal, Swapan

    2007-01-01

    An initially prepared coherent state coupled to a second-order nonlinear medium is responsible for stimulated and spontaneous hyper Raman processes. By using an intuitive approach based on perturbation theory, the Hamiltonian corresponding to the hyper Raman processes is analytically solved to obtain the temporal development of the field operators. It is true that these analytical solutions are valid for small coupling constants. However, the interesting part is that these solutions are valid for reasonably large time. Hence, the present analytical solutions are quite general and are fresh compared to those solutions under short-time approximations. By exploiting the analytical solutions of field operators for various modes, we investigate the squeezing, photon antibunching and nonclassical photon statistics for pure modes of the input coherent light responsible for hyper Raman processes. At least in one instance (stimulated hyper Raman processes for vibration phonon mode), we report the simultaneous appearance of classical (photon bunching) and nonclassical (squeezing) effects of the radiation field responsible for hyper Raman processes

  6. Investigation on the Yarn Squeezing Effect of Three Dimensional Full Five Directional Braided Composites

    Science.gov (United States)

    Hu, Long; Tao, Guoquan; Liu, Zhenguo; Wang, Yibo; Ya, Jixuan

    2018-04-01

    The influence of yarn squeezing effect on the geometric morphology and mechanical property of the three dimensional full five directional (3DF5D) braided composites is explored. Spatial path and cross-section shape of the yarns in the braided structure are characterized based on the micro computed tomography (micro CT) scanning images. The yarn distortion due to the squeezing effect is discussed and mathematical morphology of the yarn geometry is established. A new repeated unit cell (RUC) model of 3DF5D braided composites considering yarn squeezing effect is developed. Based on this model, mechanical properties of 3DF5D braided composites are analyzed. Good agreement is obtained between the predicted and experiment results. Moreover, the stress distribution of the new RUC model are compared with original RUC model, showing that the squeezing effect significantly increases the stress concentration level of the axial yarns.

  7. Quantum Phonon Optics: Squeezing Quantum Noise in the Atomic Displacements.

    Science.gov (United States)

    Hu, X.; Nori, F.

    1996-03-01

    We have investigated(X. Hu and F. Nori, Physical Review B, in press; preprints.) coherent and squeezed quantum states of phonons. Squeezed states are interesting because they allow the possibility of modulating the quantum fluctuations of atomic displacements below the zero-point quantum noise level of phonon vacuum states. We have studiedfootnotemark[1] the possibility of squeezing quantum noise in the atomic displacement using a polariton-based approach and also a method based on the three-phonon anharmonic interaction. Our focus here is on the first approach. We have diagonalized the polariton Hamiltonian and calculated the corresponding expectation values and fluctuations of both the atomic displacement and the lattice amplitude operators (the later is the phonon analog of the electric field operator for photons). Our results shows that squeezing of quantum fluctuations in the atomic displacements can be achieved with appropriate initial states of both photon and phonon fields. The degree of squeezing is directly related to the crystal susceptibility, which is indicative of the interaction strength between the incident light and the crystal.

  8. Pulsed Traveling-wave Quadrature Squeezing Using Quasi-phase Matched Lithium Niobate Crystals

    Science.gov (United States)

    Chen, Chao-Hsiang

    Interests in generating higher quantum noise squeezing in order to develop methods to enhance optical measurement below the shot-noise limit in various applications has grown in recent years. The noise suppression from squeezing can improve the SNR in coherent optical systems when the returning signal power is weak, such as optical coherence tomography, LADAR, confocal microscopy and low-light coherent imaging. Unlike the generation of squeezing with a continuous wave, which is currently developed mainly for gravitational wave detection in LIGO project, the study of pulsed-traveling waves is focused on industrial, medical and other commercial interests. This dissertation presents the experimental results of pulsed traveling wave squeezing. The intention of the study is to explore the possibility of using quasi-phase matched crystals to generate the highest possible degree of quadrature squeezing. In order to achieve this goal, efforts to test the various effects from spatial Gaussian modes and relative beam waist placement for the second-harmonic pump were carried out in order to further the understanding of limiting factors to pulsed traveling wave squeezing. 20mm and 30mm-long periodically poled lithium noibate (PPLN) crystals were used in the experiment to generate a squeezed vacuum state. A maximum of 4.2+/-0.2dB quadrature squeezing has been observed, and the measured anti-squeezing exceeds 20dB.The phase sensitive amplification (PSA) gain and de-gain performance were also measured to compare the results of measured squeezing. The PPLN crystals can produce high conversion efficiency of second-harmonic generation (SHG) without a cavity. When a long PPLN crystal is used in a squeezer, the beam propagation in the nonlinear medium does not follow the characteristics in thin crystals. Instead, it is operated under the long-crystal criteria, which the crystal length is multiple times longer than the Rayleigh range of the injected beam i n the crystals. Quasi

  9. Elastomer damper performance - A comparison with a squeeze film for a supercritical power transmission shaft

    Science.gov (United States)

    Zorzi, E. S.; Burgess, G.; Cunningham, R.

    1980-01-01

    This paper describes the design and testing of an elastomer damper on a super-critical power transmission shaft. The elastomers were designed to provide acceptable operation through the fourth bending mode and to control synchronous as well as nonsynchronous vibration throughout the operating range. The design of the elastomer was such that it could be incorporated into the system as a replacement for a squeeze-film damper without a reassembly, which could have altered the imbalance of the shaft. This provided a direct comparison of the elastomer and squeeze-film dampers without having to assess the effect of shaft imbalance changes.

  10. Noise squeezing of fields that bichromatically excite atoms in a cavity.

    Science.gov (United States)

    Li, Lingchao; Hu, Xiangming; Rao, Shi; Xu, Jun

    2016-11-14

    It is well known that bichromatic excitation on one common transition can tune the emission or absorption spectra of atoms due to the modulation frequency dependent non-linearities. However little attention has been focused on the quantum dynamics of fields under bichromatic excitation. Here we present dissipative effects on noise correlations of fields in bichromatic interactions with atoms in cavities. We first consider an ensemble of two-level atoms that interacts with the two cavity fields of different frequencies and considerable amplitudes. By transferring the atom-field nonlinearities to the dressed atoms we separate out the dissipative interactions of Bogoliubov modes with the dressed atoms. The Bogoliubov mode dissipation establishes stable two-photon processes of two involved fields and therefore leads to two-mode squeezing. As a generalization, we then consider an ensemble of three-level Λ atoms for cascade bichromatic interactions. We extract the Bogoliubov-like four-mode interactions, which establish a quadrilateral of the two-photon processes of four involved fields and thus result in four-mode squeezing.

  11. Evolution of the squeezing-enhanced vacuum state in the amplitude dissipative channel

    Science.gov (United States)

    Ren, Gang; Du, Jian-ming; Zhang, Wen-hai

    2018-05-01

    We study the evolution of the squeezing-enhanced vacuum state (SEVS) in the amplitude dissipative channel by using the two-mode entangled state in the Fock space and Kraus operator. The explicit formulation of the output state is also given. It is found that the output state does not exhibit sub-Poissonian behavior for the nonnegative value of the Mandel's Q-parameters in a wide range of values of squeezing parameter and dissipation factor. It is interesting to see that second-order correlation function is independent of the dissipation factor. However, the photon-number distribution of the output quantum state shows remarkable oscillations with respect to the dissipation factor. The shape of Wigner function and the degree of squeezing show that the initial SEVS is dissipated by the amplitude dissipative channel.

  12. Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states

    Science.gov (United States)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n -mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [ F. Dell’Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004) ], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization.

  13. Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states

    International Nuclear Information System (INIS)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-01-01

    We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n-mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [F. Dell'Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004)], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization

  14. Output field-quadrature measurements and squeezing in ultrastrong cavity-QED

    Science.gov (United States)

    Stassi, Roberto; Savasta, Salvatore; Garziano, Luigi; Spagnolo, Bernardo; Nori, Franco

    2016-12-01

    We study the squeezing of output quadratures of an electro-magnetic field escaping from a resonator coupled to a general quantum system with arbitrary interaction strengths. The generalized theoretical analysis of output squeezing proposed here is valid for all the interaction regimes of cavity-quantum electrodynamics: from the weak to the strong, ultrastrong, and deep coupling regimes. For coupling rates comparable or larger then the cavity resonance frequency, the standard input-output theory for optical cavities fails to calculate the variance of output field-quadratures and predicts a non-negligible amount of output squeezing, even if the system is in its ground state. Here we show that, for arbitrary interaction strength and for general cavity-embedded quantum systems, no squeezing can be found in the output-field quadratures if the system is in its ground state. We also apply the proposed theoretical approach to study the output squeezing produced by: (i) an artificial two-level atom embedded in a coherently-excited cavity; and (ii) a cascade-type three-level system interacting with a cavity field mode. In the latter case the output squeezing arises from the virtual photons of the atom-cavity dressed states. This work extends the possibility of predicting and analyzing the results of continuous-variable optical quantum-state tomography when optical resonators interact very strongly with other quantum systems.

  15. Entropy Squeezing in Coupled Field-Superconducting Charge Qubit with Intrinsic Decoherence

    Institute of Scientific and Technical Information of China (English)

    YAN Xue-Qun; SHAO Bin; ZOU Jian

    2007-01-01

    We investigate the entropy squeezing in the system of a superconducting charge qubit coupled to a single mode field. We find an exact solution of the Milburn equation for the system and discuss the influence of intrinsic decoherence on entropy squeezing. As a comparison, we also consider the variance squeezing. Our results show that in the absence of the intrinsic decoherence both entropy and variance squeezings have the same periodic properties of time,and occur at the same range of time. However, when the intrinsic decoherence is considered, we find that as the time going on the entropy squeezing disappears fast than the variance squeezing, there exists a range of time where entropy squeezing can occur but variance squeezing cannot.

  16. Quantum entropy and uncertainty for two-mode squeezed, coherent and intelligent spin states

    Science.gov (United States)

    Aragone, C.; Mundarain, D.

    1993-01-01

    We compute the quantum entropy for monomode and two-mode systems set in squeezed states. Thereafter, the quantum entropy is also calculated for angular momentum algebra when the system is either in a coherent or in an intelligent spin state. These values are compared with the corresponding values of the respective uncertainties. In general, quantum entropies and uncertainties have the same minimum and maximum points. However, for coherent and intelligent spin states, it is found that some minima for the quantum entropy turn out to be uncertainty maxima. We feel that the quantum entropy we use provides the right answer, since it is given in an essentially unique way.

  17. A continuous variable quantum deterministic key distribution based on two-mode squeezed states

    International Nuclear Information System (INIS)

    Gong, Li-Hua; Song, Han-Chong; Liu, Ye; Zhou, Nan-Run; He, Chao-Sheng

    2014-01-01

    The distribution of deterministic keys is of significance in personal communications, but the existing continuous variable quantum key distribution protocols can only generate random keys. By exploiting the entanglement properties of two-mode squeezed states, a continuous variable quantum deterministic key distribution (CVQDKD) scheme is presented for handing over the pre-determined key to the intended receiver. The security of the CVQDKD scheme is analyzed in detail from the perspective of information theory. It shows that the scheme can securely and effectively transfer pre-determined keys under ideal conditions. The proposed scheme can resist both the entanglement and beam splitter attacks under a relatively high channel transmission efficiency. (paper)

  18. Observation of squeezed states with strong photon-number oscillations

    International Nuclear Information System (INIS)

    Mehmet, Moritz; Vahlbruch, Henning; Lastzka, Nico; Danzmann, Karsten; Schnabel, Roman

    2010-01-01

    Squeezed states of light constitute an important nonclassical resource in the field of high-precision measurements, for example, gravitational wave detection, as well as in the field of quantum information, for example, for teleportation, quantum cryptography, and distribution of entanglement in quantum computation networks. Strong squeezing in combination with high purity, high bandwidth, and high spatial mode quality is desirable in order to achieve significantly improved performances contrasting any classical protocols. Here we report on the observation of 11.5 dB of squeezing, together with relatively high state purity corresponding to a vacuum contribution of less than 5%, and a squeezing bandwidth of about 170 MHz. The analysis of our squeezed states reveals a significant production of higher-order pairs of quantum-correlated photons and the existence of strong photon-number oscillations.

  19. Encoding qubits into oscillators with atomic ensembles and squeezed light

    Science.gov (United States)

    Motes, Keith R.; Baragiola, Ben Q.; Gilchrist, Alexei; Menicucci, Nicolas C.

    2017-05-01

    The Gottesman-Kitaev-Preskill (GKP) encoding of a qubit within an oscillator provides a number of advantages when used in a fault-tolerant architecture for quantum computing, most notably that Gaussian operations suffice to implement all single- and two-qubit Clifford gates. The main drawback of the encoding is that the logical states themselves are challenging to produce. Here we present a method for generating optical GKP-encoded qubits by coupling an atomic ensemble to a squeezed state of light. Particular outcomes of a subsequent spin measurement of the ensemble herald successful generation of the resource state in the optical mode. We analyze the method in terms of the resources required (total spin and amount of squeezing) and the probability of success. We propose a physical implementation using a Faraday-based quantum nondemolition interaction.

  20. A generalized Collins formula derived by virtue of the displacement-squeezing related squeezed coherent state representation

    International Nuclear Information System (INIS)

    Chuan-Mei, Xie; Shao-Long, Wan; Hong-Yi, Fan

    2010-01-01

    Based on the displacement-squeezing related squeezed coherent state representation |z) g and using the technique of integration within an ordered product of operators, this paper finds a generalized Fresnel operator, whose matrix element in the coordinate representation leads to a generalized Collins formula (Huygens–Fresnel integration transformation describing optical diffraction). The generalized Fresnel operator is derived by a quantum mechanical mapping from z to sz - rz * in the |z) g representation, while |z) g in phase space is graphically denoted by an ellipse. (classical areas of phenomenology)

  1. Entanglement indicators for quantum optical fields: three-mode multiport beamsplitters EPR interference experiments

    Science.gov (United States)

    Ryu, Junghee; Marciniak, Marcin; Wieśniak, Marcin; Żukowski, Marek

    2018-04-01

    We generalize a new approach to entanglement conditions for light of undefined photons numbers given in Żukowski et al (2017 Phys. Rev. A 95 042113) for polarization correlations to a broader family of interferometric phenomena. Integrated optics allows one to perform experiments based upon multiport beamsplitters. To observe entanglement effects one can use multi-mode parametric down-conversion emissions. When the structure of the Hamiltonian governing the emissions has (infinitely) many equivalent Schmidt decompositions into modes (beams), one can have perfect EPR-like correlations of numbers of photons emitted into ‘conjugate modes’ which can be monitored at spatially separated detection stations. We provide entanglement conditions for experiments involving three modes on each side, and three-input-three-output multiport beamsplitters, and show their violations by bright squeezed vacuum states. We show that a condition expressed in terms of averages of observed rates is a much better entanglement indicator than a related one for the usual intensity variables. Thus, the rates seem to emerge as a powerful concept in quantum optics, especially for fields of undefined intensities.

  2. Engineering squeezed states of microwave radiation with circuit quantum electrodynamics

    International Nuclear Information System (INIS)

    Li Pengbo; Li Fuli

    2011-01-01

    We introduce a squeezed state source for microwave radiation with tunable parameters in circuit quantum electrodynamics. We show that when a superconducting artificial multilevel atom interacting with a transmission line resonator is suitably driven by external classical fields, two-mode squeezed states of the cavity modes can be engineered in a controllable fashion from the vacuum state via adiabatic following of the ground state of the system. This scheme appears to be robust against decoherence and is realizable with present techniques in circuit quantum electrodynamics.

  3. Nonlinear Squeeze Film Dampers without Centralized Springs

    Directory of Open Access Journals (Sweden)

    Zhu Changsheng

    2000-01-01

    Full Text Available In this paper, the bifurcation behavior of a flexible rotor supported on nonlinear squeeze film dampers without centralized springs is analyzed numerically by means of rotor trajectories, Poincar maps, bifurcation diagrams and power spectra, based on the short bearing and cavitated film assumptions. It is shown that there also exist two different operations (i.e., socalled bistable operations in some speed regions in the rotor system supported on the nonlinear squeeze film dampers without centralized springs. In the bistable operation speed regions, the rotor system exhibits synchronous, sub-synchronous, sub-super-synchronous and almost-periodic as well as nonperiodic motions. The periodic bifurcation behaviors of the rotor system supported on nonlinear squeeze film dampers without centralized springs are very complex and require further investigations.

  4. Managing the spatial properties and photon correlations in squeezed non-classical twisted light

    Science.gov (United States)

    Zakharov, R. V.; Tikhonova, O. V.

    2018-05-01

    Spatial photon correlations and mode content of the squeezed vacuum light generated in a system of two separated nonlinear crystals is investigated. The contribution of both the polar and azimuthal modes with non-zero orbital angular momentum is analyzed. The control and engineering of the spatial properties and degree of entanglement of the non-classical squeezed light by changing the distance between crystals and pump parameters is demonstrated. Methods for amplification of certain spatial modes and managing the output mode content and intensity profile of quantum twisted light are suggested.

  5. Squeezed Phonons: Modulating Quantum Fluctuations of Atomic Displacements.

    Science.gov (United States)

    Hu, Xuedong; Nori, Franco

    1997-03-01

    We have studied phonon squeezed states and also put forward several proposals for their generation(On phonon parametric process, X. Hu and F. Nori, Phys. Rev. Lett. 76), 2294 (1996); on polariton mechanism, X. Hu and F. Nori, Phys. Rev. B 53, 2419 (1996); on second-order Raman scattering, X. Hu and F. Nori, preprint.. Here, we compare the relative merits and limitations of these approaches, including several factors that will limit the amount of phonon squeezing. In particular, we investigate the effect of the initial thermal states on the phonon modes. Using a model for the phonon density matrix, we also study the mixing of the phonon squeezed states with thermal states, which describes the decay of the phonon coherence. Finally, we calculate the maximum possible squeezing from a phonon parametric process limited by phonon decay.

  6. Qutrit squeezing via semiclassical evolution

    International Nuclear Information System (INIS)

    Klimov, Andrei B; Dinani, Hossein Tavakoli; Medendorp, Zachari E D; Guise, Hubert de

    2011-01-01

    We introduce a concept of squeezing in collective qutrit systems through a geometrical picture connected to the deformation of the isotropic fluctuations of su(3) operators when evaluated in a coherent state. This kind of squeezing can be generated by Hamiltonians nonlinear in the generators of su(3) algebra. A simplest model of such a nonlinear evolution is analyzed in terms of semiclassical evolution of the SU(3) Wigner function. (paper)

  7. Bright squeezed vacuum in a nonlinear interferometer: frequency/temporal Schmidt-mode description

    OpenAIRE

    Sharapova, P. R.; Tikhonova, O. V.; Lemieux, S.; Boyd, R. W.; Chekhova, M. V.

    2018-01-01

    Control over the spectral properties of the bright squeezed vacuum (BSV), a highly multimode non-classical macroscopic state of light that can be generated through high-gain parametric down conversion, is crucial for many applications. In particular, in several recent experiments BSV is generated in a strongly pumped SU(1,1) interferometer to achieve phase supersensitivity, perform broadband homodyne detection, or tailor the frequency spectrum of squeezed light. In this work, we present an an...

  8. Using galaxy pairs to investigate the three-point correlation function in the squeezed limit

    Science.gov (United States)

    Yuan, Sihan; Eisenstein, Daniel J.; Garrison, Lehman H.

    2017-11-01

    We investigate the three-point correlation function (3PCF) in the squeezed limit by considering galaxy pairs as discrete objects and cross-correlating them with the galaxy field. We develop an efficient algorithm using fast Fourier transforms to compute such cross-correlations and their associated pair-galaxy bias bp, g and the squeezed 3PCF coefficient Qeff. We implement our method using N-body cosmological simulations and a fiducial halo occupation distribution (HOD) and present the results in both the real space and redshift space. In real space, we observe a peak in bp, g and Qeff at pair separation of ∼2 Mpc, attributed to the fact that galaxy pairs at 2 Mpc separation trace the most massive dark matter haloes. We also see strong anisotropy in the bp, g and Qeff signals that track the large-scale filamentary structure. In redshift space, both the 2 Mpc peak and the anisotropy are significantly smeared out along the line of sight due to finger-of-God effect. In both the real space and redshift space, the squeezed 3PCF shows a factor of 2 variation, contradicting the hierarchical ansatz, but offering rich information on the galaxy-halo connection. Thus, we explore the possibility of using the squeezed 3PCF to constrain the HOD. When we compare two simple HOD models that are closely matched in their projected two-point correlation function (2PCF), we do not yet see a strong variation in the 3PCF that is clearly disentangled from variations in the projected 2PCF. Nevertheless, we propose that more complicated HOD models, e.g. those incorporating assembly bias, can break degeneracies in the 2PCF and show a distinguishable squeezed 3PCF signal.

  9. Dynamic viscous behavior of magneto-rheological fluid in coupled mode operation

    International Nuclear Information System (INIS)

    Kaluvan, Suresh; Park, JinHyuk; Choi, Seung-Hyun; Kim, Pyunghwa; Choi, Seung-Bok

    2015-01-01

    A new method of measuring the coupled mode viscosity behavior of magneto-rheological (MR) fluid using the resonance concept is proposed. The coupled mode viscosity measurement device is designed as a resonant system using a cantilever beam probing with the rotating shaft mechanism. The ‘C’ shaped iron core of an electromagnetic coil, mounted in a resonating cantilever beam is used as a probing tip. The MR fluid between the probing tip and the rotating shaft mechanism experiences both squeeze and shear force. The vibration induced by the resonating cantilever beam creates only squeeze force on the MR fluid when the shaft is stationary. When the cantilever beam is vibrating at resonance and the shaft is rotating, the MR fluid experiences coupled (shear and squeeze) force. The cantilever beam is vibrated at its resonant frequency using the piezoelectric actuation technique and the resonance is maintained using simple closed loop resonator electronics. The input current to the probing coil is varied to produce a variable magnetic field which causes the viscosity change of the MR fluid. The viscosity change of the MR fluid produces a coupled force, which induces an additional stiffness on the resonating cantilever beam and alters its initial resonant frequency. The shift in resonant frequency due to the change in viscosity of the MR fluid is measured with the help of a resonator electronics circuit and its viscosity is related to the field dependent coupled mode yield stress of the MR fluid. The proposed measurement device is analytically derived and experimentally evaluated. (technical note)

  10. First beam test of a combined ramp and squeeze at LHC

    CERN Document Server

    Wenninger, Jorg; Coello De Portugal - Martinez Vazquez, Jaime Maria; Gorzawski, Arkadiusz; Redaelli, Stefano; Schaumann, Michaela; Solfaroli Camillocci, Matteo; CERN. Geneva. ATS Department

    2015-01-01

    With increasing maturity of LHC operation it is possible to envisage more complex beam manipulations. At the same time operational efficiency receives increasing attention. So far ramping the beams to their target energy and squeezing the beams to smaller or higher beta are decoupled at the LHC. (De-)squeezing is always performed at the target energy, currently 6.5 TeV. Studies to combine the ramp and squeeze processes have been made for the LHC since 2011, but so far no experimental test with beam had ever performed. This note describes the first machine experiment with beam aiming at validating the combination of ramp and squeeze, the so-called combined ramp and squeeze (CRS).

  11. Waveguide Cavity Resonator as a Source of Optical Squeezing

    Science.gov (United States)

    Stefszky, M.; Ricken, R.; Eigner, C.; Quiring, V.; Herrmann, H.; Silberhorn, C.

    2017-04-01

    We present the generation of continuous-wave optical squeezing from a titanium-in-diffused lithium niobate waveguide resonator. We directly measure 2.9 ±0.1 dB of single-mode squeezing, which equates to a produced level of 4.9 ±0.1 dB after accounting for detection losses. This device showcases the current capabilities of this waveguide architecture and precipitates more complicated integrated continuous-wave quantum devices in the continuous-variable regime.

  12. Energy eigenvalues and squeezing properties of general systems of coupled quantum anharmonic oscillators

    International Nuclear Information System (INIS)

    Chung, N. N.; Chew, L. Y.

    2007-01-01

    We have generalized the two-step approach to the solution of systems of N coupled quantum anharmonic oscillators. By using the squeezed vacuum state of each individual oscillator, we construct the tensor product state, and obtain the optimal squeezed vacuum product state through energy minimization. We then employ this optimal state and its associated bosonic operators to define a basis set to construct the Heisenberg matrix. The diagonalization of the matrix enables us to obtain the energy eigenvalues of the coupled oscillators. In particular, we have applied our formalism to determine the eigenenergies of systems of two coupled quantum anharmonic oscillators perturbed by a general polynomial potential, as well as three and four coupled systems. Furthermore, by performing a first-order perturbation analysis about the optimal squeezed vacuum product state, we have also examined into the squeezing properties of two coupled oscillator systems

  13. Exploring the squeezed three-point galaxy correlation function with generalized halo occupation distribution models

    Science.gov (United States)

    Yuan, Sihan; Eisenstein, Daniel J.; Garrison, Lehman H.

    2018-04-01

    We present the GeneRalized ANd Differentiable Halo Occupation Distribution (GRAND-HOD) routine that generalizes the standard 5 parameter halo occupation distribution model (HOD) with various halo-scale physics and assembly bias. We describe the methodology of 4 different generalizations: satellite distribution generalization, velocity bias, closest approach distance generalization, and assembly bias. We showcase the signatures of these generalizations in the 2-point correlation function (2PCF) and the squeezed 3-point correlation function (squeezed 3PCF). We identify generalized HOD prescriptions that are nearly degenerate in the projected 2PCF and demonstrate that these degeneracies are broken in the redshift-space anisotropic 2PCF and the squeezed 3PCF. We also discuss the possibility of identifying degeneracies in the anisotropic 2PCF and further demonstrate the extra constraining power of the squeezed 3PCF on galaxy-halo connection models. We find that within our current HOD framework, the anisotropic 2PCF can predict the squeezed 3PCF better than its statistical error. This implies that a discordant squeezed 3PCF measurement could falsify the particular HOD model space. Alternatively, it is possible that further generalizations of the HOD model would open opportunities for the squeezed 3PCF to provide novel parameter measurements. The GRAND-HOD Python package is publicly available at https://github.com/SandyYuan/GRAND-HOD.

  14. Squeezing based on nondegenerate frequency doubling internal to a realistic laser

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund; Tidemand-Lichtenberg, Peter; Buchhave, Preben

    2004-01-01

    We investigate theoretically the quantum fluctuations of the fundamental field in the output of a nondegenerate second-harmonic generation process occurring inside a laser cavity. Due to the nondegenerate character of the nonlinear medium, a field orthogonal to the laser field is for some operating...... conditions independent of the fluctuations produced by the laser medium. We show that this fact may lead to perfect squeezing for a certain polarization mode of the fundamental field. The experimental feasibility of the system is also discussed....

  15. Light squeezing in optical parametric amplification beyond the ...

    Indian Academy of Sciences (India)

    of the medium the squeezing effect is increased, the same property we have obtained in our present study. ... classical case [2,9], the introduction of the idler mode from the rare side of the medium, a2(0), is necessary to ... ever, in contrast with the coherent state, the combination mode has unequal uncertainty. 0. 0.02. 0.04.

  16. Quantum nondemolition squeezing of a nanomechanical resonator

    Science.gov (United States)

    Ruskov, Rusko; Schwab, Keith; Korotkov, Alexander

    2005-03-01

    We discuss squeezing of the nanoresonator state produced by periodic measurement of position by a quantum point contact or a single-electron transistor. The mechanism of squeezing is the stroboscopic quantum nondemolition measurement generalized to the case of continuous measurement by a weakly coupled detector. The magnitude of squeezing is calculated for the harmonic and stroboscopic modulations of measurement, taking into account detector efficiency and nanoresonator quality factor. We also analyze the operation of the quantum feedback, which prevents fluctuations of the wavepacket center due to measurement back-action. Verification of the squeezed state can be performed in almost the same way as its preparation; similar procedure can also be used for the force detection with sensitivity beyond the standard quantum limit.

  17. Spin squeezing and entanglement in a dispersive cavity

    International Nuclear Information System (INIS)

    Deb, R. N.; Abdalla, M. Sebawe; Hassan, S. S.; Nayak, N.

    2006-01-01

    We consider a system of N two-level atoms (spins) interacting with the radiation field in a dispersive but high-Q cavity. Under an adiabatic condition, the interaction Hamiltonian reduces to a function of spin operators which is capable of producing spin squeezing. For a bipartite system (N=2), the expressions for spin squeezing get very simple, giving a clear indication of close to 100% noise reduction. We analyse this squeezing as a measure of bipartite entanglement

  18. Coupled-Mode Theory derivation of the formal equivalence between a three-mode waveguide and a set of three mutually coupled single-mode waveguides

    Directory of Open Access Journals (Sweden)

    Boucher Yann G.

    2017-01-01

    Full Text Available The formal identification between a two-mode waveguide and a system of two mutually coupled single-mode waveguides stems from the symmetries of the evolution operator. When the gap tends to zero, the super-modes of the coupled system merge continuously into the modes of the multimode waveguide. For modelling purposes, it is very tempting to extend the analogy to three-mode waveguides (and beyond. But not without some precautions…

  19. Anomalous Quantum Correlations of Squeezed Light

    Science.gov (United States)

    Kühn, B.; Vogel, W.; Mraz, M.; Köhnke, S.; Hage, B.

    2017-04-01

    Three different noise moments of field strength, intensity, and their correlations are simultaneously measured. For this purpose a homodyne cross-correlation measurement [1] is implemented by superimposing the signal field and a weak local oscillator on an unbalanced beam splitter. The relevant information is obtained via the intensity noise correlation of the output modes. Detection details like quantum efficiencies or uncorrelated dark noise are meaningless for our technique. Yet unknown insight in the quantumness of a squeezed signal field is retrieved from the anomalous moment, correlating field strength with intensity noise. A classical inequality including this moment is violated for almost all signal phases. Precognition on quantum theory is superfluous, as our analysis is solely based on classical physics.

  20. Graphene Squeeze-Film Pressure Sensors.

    Science.gov (United States)

    Dolleman, Robin J; Davidovikj, Dejan; Cartamil-Bueno, Santiago J; van der Zant, Herre S J; Steeneken, Peter G

    2016-01-13

    The operating principle of squeeze-film pressure sensors is based on the pressure dependence of a membrane's resonance frequency, caused by the compression of the surrounding gas which changes the resonator stiffness. To realize such sensors, not only strong and flexible membranes are required, but also minimization of the membrane's mass is essential to maximize responsivity. Here, we demonstrate the use of a few-layer graphene membrane as a squeeze-film pressure sensor. A clear pressure dependence of the membrane's resonant frequency is observed, with a frequency shift of 4 MHz between 8 and 1000 mbar. The sensor shows a reproducible response and no hysteresis. The measured responsivity of the device is 9000 Hz/mbar, which is a factor 45 higher than state-of-the-art MEMS-based squeeze-film pressure sensors while using a 25 times smaller membrane area.

  1. Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins

    Science.gov (United States)

    Norris, Leigh Morgan

    particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f>1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.

  2. Coherent interference effects and squeezed light generation in optomechanical systems

    Science.gov (United States)

    Qu, Kenan

    My Ph.D. dissertation is on the fundamental effects in optomechanical systems (OMS) and their important applications. The OMS are based on the possibility of the mechanical motion produced by few photons incident on the mechanical device. This dissertation presents several applications of the OMS in the area of storage of light in long-lived phonons, single mode optomechanical Ramsey interferometry, and generation of large amount of squeezing in the output radiation. The long-lived phonons can be monitored and controlled via optical means as was experimentally demonstrated. To show this, I develop the theory of transient electromagnetically induced transparency (EIT). For further applications like state transfer, especially over very different frequency regimes, I consider double-cavity OMS, where the two cavities can correspond to different spectral domains, yet the state transfer is possible via phonons. The state transfer is based on a new effect, electromagnetically induced absorption (EIA), where one uses a second control field from the other cavity to produce an absorption peak inside the EIT window. All these involve the interference of various path ways via which a final state is reached. The following chapter shows how Fano-like interference can arise in OMS. A Fano asymmetry parameter for OMS was defined. The last two chapters deal with the question if OMS can be efficient generators of squeezed light. I show by blue and red tuning the two cavities in a double-cavity OMS, one can generate effectively a two-mode parametric interaction which yields two-mode squeezed output with the squeezing magnitude of the order of 10dB. This requires a bath temperature of 10mK. Such temperatures obtained by using Helium dilution refrigerator are routinely used with superconducting OMS. The major part of this dissertation is devoted to the dispersive optomechanical interaction. However, the interaction can also be dissipative, where the mechanical displacement modulates

  3. Demonstration of deterministic and high fidelity squeezing of quantum information

    DEFF Research Database (Denmark)

    Yoshikawa, J-I.; Hayashi, T-; Akiyama, T.

    2007-01-01

    , and an ancillary squeezed vacuum state, thus direct interaction between a strong pump and the quantum state is circumvented. We demonstrate three different squeezing levels for a coherent state input. This scheme is highly suitable for the fault-tolerant squeezing transformation in a continuous variable quantum...... computer....

  4. Foamed cement for squeeze cementing low-pressure, highly permeable reservoirs

    International Nuclear Information System (INIS)

    Chmllowski, W.; Kondratoff, L.B.

    1992-01-01

    Four different cement squeezing techniques have been used on wells producing from the Keg River formation in the Rainbow Lake area of Alberta, Canada. This paper evaluates 151 cement squeeze treatments performed at 96 wellsites and compares the use of foam cement vs. conventional squeeze treatments and techniques. Discussion includes key aspects, such as candidate selection, slurry design, treatment design, economic evaluation, and operational considerations

  5. LHC Report: Preparing for a tighter squeeze

    CERN Multimedia

    Jan Uythoven for the LHC Team

    2011-01-01

    The LHC is resuming operation after a planned period of machine development followed by a technical stop. The beams returned last Friday, in the evening of 2 September, and preparations are now being made to squeeze the beams further at the collision points, aiming for new luminosity records.   To obtain as many collisions as possible in the heart of the experiments, the beams are squeezed to very small beam sizes. The beam squeezing parameter is known by experts as beta-star: the smaller the ß*, the stronger the squeezing. During the machine development period that started on 24 August, tests were made for the high-luminosity experiments ATLAS and CMS with ß* values of 1 m instead of the 1.5 m used previously. Unfortunately these tests were only partially successful, as some of the beam was lost during the squeezing process. It is thought that the beam losses were caused by the collimators, which were moved closer to the beam, and by the reduced crossing angle of the beams at ...

  6. Squeezing of Collective Excitations in Spin Ensembles

    DEFF Research Database (Denmark)

    Kraglund Andersen, Christian; Mølmer, Klaus

    2012-01-01

    We analyse the possibility to create two-mode spin squeezed states of two separate spin ensembles by inverting the spins in one ensemble and allowing spin exchange between the ensembles via a near resonant cavity field. We investigate the dynamics of the system using a combination of numerical an...

  7. A Monte Carlo Simulation approach for the modeling of free-molecule squeeze-film damping of flexible microresonators

    KAUST Repository

    Leung, Roger

    2010-03-31

    Squeeze-film damping on microresonators is a significant damping source even when the surrounding gas is highly rarefied. This article presents a general modeling approach based on Monte Carlo (MC) simulations for the prediction of squeeze-film damping on resonators in the freemolecule regime. The generality of the approach is demonstrated in its capability of simulating resonators of any shape and with any accommodation coefficient. The approach is validated using both the analytical results of the free-space damping and the experimental data of the squeeze-film damping on a clamped-clamped plate resonator oscillating at its first flexure mode. The effect of oscillation modes on the quality factor of the resonator has also been studied and semi-analytical approximate models for the squeeze-film damping with diffuse collisions have been developed.

  8. Generation of higher-order squeezing of quantum electromagnetic fields by degenerate four-wave mixing and other processes

    International Nuclear Information System (INIS)

    Li Xizeng; Shan Ying; Mandel, L.

    1988-11-01

    It is found that the field of the combined mode of the probe wave and the phase-conjugate wave in the process of degenerate four-wave mixing exhibits higher-order squeezing to all even order. The degree of squeezing increases with the order N, and the higher-order squeeze parameter q N may approach -1. (author). 3 refs, 2 figs

  9. Supersqueezed states from squeezed states

    International Nuclear Information System (INIS)

    Nieto, M.M.

    1992-01-01

    Using super-Baker-Campbell-Hausdorff relations on the elements of the supergroup OSP(2/2), we derive the supersqueeze operator and the supersqueezed states, which are the supersymmetric generalization of the squeezed states of the harmonic oscillator

  10. Squeezing and entangling nuclear spins in helium 3

    DEFF Research Database (Denmark)

    Reinaudi, Gael; Sinatra, Alice; Dantan, Aurelien Romain

    2007-01-01

    We present a realistic model for transferring the squeezing or the entanglement of optical field modes to the collective ground state nuclear spin of 3He using metastability exchange collisions. We discuss in detail the requirements for obtaining good quantum state transfer efficiency and study t...

  11. Combined Ramp and Squeeze to 6.5 TeV in the LHC

    CERN Document Server

    Solfaroli Camillocci, Matteo; Tomás, Rogelio; Wenninger, Jorg

    2016-01-01

    The cycle of the LHC is composed of an energy ramp followed by a betatron squeeze, needed to reduce the beta- star value in the interaction points. Since Run 1, studies have been carried out to investigate the feasibility of combining the two operations, thus considerably reducing the duration of the operational cycle. In Run 2, the LHC is operating at the energy of 6.5 TeV that requires a much longer cycle than that of Run 1. Therefore, the performance gains from a Combined Ramp and Squeeze (CRS) is more interesting. Merging the energy ramp and the betatron squeeze could result in a gain of several minutes for each LHC cycle. With increasing maturity of LHC operation, it is now possible to envisage more complex beam manipulations; this paper describes the first machine experiment with beam, aiming at validating the combination of ramp and squeeze, which was performed in 2015, during a machine development phase. The operation experience with the LHC run at 2.51 TeV, when CRS down to 4 meters was deployed and ...

  12. Phonon squeezed states: quantum noise reduction in solids

    Science.gov (United States)

    Hu, Xuedong; Nori, Franco

    1999-03-01

    This article discusses quantum fluctuation properties of a crystal lattice, and in particular, phonon squeezed states. Squeezed states of phonons allow a reduction in the quantum fluctuations of the atomic displacements to below the zero-point quantum noise level of coherent phonon states. Here we discuss our studies of both continuous-wave and impulsive second-order Raman scattering mechanisms. The later approach was used to experimentally suppress (by one part in a million) fluctuations in phonons. We calculate the expectation values and fluctuations of both the atomic displacement and the lattice amplitude operators, as well as the effects of the phonon squeezed states on macroscopically measurable quantities, such as changes in the dielectric constant. These results are compared with recent experiments. Further information, including preprints and animations, are available in http://www-personal.engin.umich.edu/∼nori/squeezed.html.

  13. Time-optimal thermalization of single-mode Gaussian states

    Science.gov (United States)

    Carlini, Alberto; Mari, Andrea; Giovannetti, Vittorio

    2014-11-01

    We consider the problem of time-optimal control of a continuous bosonic quantum system subject to the action of a Markovian dissipation. In particular, we consider the case of a one-mode Gaussian quantum system prepared in an arbitrary initial state and which relaxes to the steady state due to the action of the dissipative channel. We assume that the unitary part of the dynamics is represented by Gaussian operations which preserve the Gaussian nature of the quantum state, i.e., arbitrary phase rotations, bounded squeezing, and unlimited displacements. In the ideal ansatz of unconstrained quantum control (i.e., when the unitary phase rotations, squeezing, and displacement of the mode can be performed instantaneously), we study how control can be optimized for speeding up the relaxation towards the fixed point of the dynamics and we analytically derive the optimal relaxation time. Our model has potential and interesting applications to the control of modes of electromagnetic radiation and of trapped levitated nanospheres.

  14. Thermal Operating Modes

    International Nuclear Information System (INIS)

    Bechtel SAIC Company

    2002-01-01

    Higher and lower temperature operating modes (e.g., above and below the boiling point of water) are alternative approaches to managing the heat produced by the radioactive decay of spent nuclear fuel. Current analyses indicate that a repository at the Yucca Mountain site is likely to comply with applicable safety standards regardless of the particular thermal operating mode. Both modes have potential advantages and disadvantages. With a higher temperature operating mode (HTOM), waste packages (WPs) can be placed closer together. This reduces the number of drifts, the required emplacement area, construction costs, and occupational risks to construction workers. In addition, the HTOM would minimize the amount of water that might contact the waste for hundreds of years after closure. On the other hand, higher temperatures introduce uncertainties in the understanding of the long-term performance of the repository because of uncertainties in the thermal effects on WP lifetime and the near-field environment around the drifts. A lower temperature operating mode (LTOM) has the potential to reduce uncertainties in long-term performance of the repository by limiting the effects of temperature on WP lifetime and on the near-field environment around the drifts. Depending on the combination of operating parameters, a LTOM could require construction of additional drifts, a larger emplacement area, increased construction costs, increased occupational risks to construction works, and a longer period of ventilation than a HTOM. The repository design for the potential Yucca Mountain site is flexible and can be constructed and operated in various operating modes to achieve specific technical objectives, accommodate future policy decisions, and use of new information. For example, the flexible design can be operated across a range of temperatures and can be tailored to achieve specific thermal requirements in the future. To accommodate future policy decisions, the repository can be

  15. CMOS Current-mode Operational Amplifier

    OpenAIRE

    Kaulberg, Thomas

    1992-01-01

    A fully differential-input differential-output current-mode operational amplifier (COA) is described. The amplifier utilizes three second generation current-conveyors (CCII) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanced current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain bandwidth product of 8 MHz, an offset current of 0.8 ¿A (signal-r...

  16. The LHC, de-squeezed

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    Rare processes like the Higgs production require maximizing the number of proton collisions. This is done by squeezing the beams to very small sizes. However, interesting physics processes also happen when beams are not squeezed at interaction points. Last week, a dedicated run showed that the LHC is a record-breaking machine also with de-squeezed beams.   This figure shows an online hit map of one of the ATLAS/ALFA detectors. The narrow elliptical shape is the typical signal produced by elastically scattered protons. The removal of the background (central bulge) is a challenge for both experiments. The beam squeezing parameter is known by experts as beta-star (ß*): the smaller the ß*, the stronger the squeezing. To obtain as many collisions as possible in the heart of the experiments, the ß* at full energy is 0.60 m – that is, beams are squeezed to very small beam sizes. This maximizes the rate of proton collisions as required for rare process...

  17. Tripartite entanglement dynamics and entropic squeezing of a three-level atom interacting with a bimodal cavity field

    Science.gov (United States)

    Faghihi, M. J.; Tavassoly, M. K.; Bagheri Harouni, M.

    2014-04-01

    In this paper, we study the interaction between a Λ-type three-level atom and two quantized electromagnetic fields which are simultaneously injected in a bichromatic cavity surrounded by a Kerr medium in the presence of field-field interaction (parametric down conversion) and detuning parameters. By applying a canonical transformation, the introduced model is reduced to a well-known form of the generalized Jaynes-Cummings model. Under particular initial conditions which may be prepared for the atom and the field, the time evolution of the state vector of the entire system is analytically evaluated. Then, the dynamics of the atom is studied through the evolution of the atomic population inversion. In addition, two different measures of entanglement between the tripartite system (three entities make the system: two field modes and one atom), i.e., von Neumann and linear entropy are investigated. Also, two kinds of entropic uncertainty relations, from which entropy squeezing can be obtained, are discussed. In each case, the influences of the detuning parameters and Kerr medium on the above nonclassicality features are analyzed in detail via numerical results. It is illustrated that the amount of the above-mentioned physical phenomena can be tuned by choosing the evolved parameters, appropriately.

  18. Tripartite entanglement dynamics and entropic squeezing of a three-level atom interacting with a bimodal cavity field

    International Nuclear Information System (INIS)

    Faghihi, M J; Tavassoly, M K; Bagheri Harouni, M

    2014-01-01

    In this paper, we study the interaction between a Λ-type three-level atom and two quantized electromagnetic fields which are simultaneously injected in a bichromatic cavity surrounded by a Kerr medium in the presence of field–field interaction (parametric down conversion) and detuning parameters. By applying a canonical transformation, the introduced model is reduced to a well-known form of the generalized Jaynes–Cummings model. Under particular initial conditions which may be prepared for the atom and the field, the time evolution of the state vector of the entire system is analytically evaluated. Then, the dynamics of the atom is studied through the evolution of the atomic population inversion. In addition, two different measures of entanglement between the tripartite system (three entities make the system: two field modes and one atom), i.e., von Neumann and linear entropy are investigated. Also, two kinds of entropic uncertainty relations, from which entropy squeezing can be obtained, are discussed. In each case, the influences of the detuning parameters and Kerr medium on the above nonclassicality features are analyzed in detail via numerical results. It is illustrated that the amount of the above-mentioned physical phenomena can be tuned by choosing the evolved parameters, appropriately. (paper)

  19. Optimal mode of operation for biomass production

    NARCIS (Netherlands)

    Betlem, Ben H.L.; Roffel, Brian; Mulder, P.

    2002-01-01

    The rate of biomass production is optimised for a predefined feed exhaustion using the residue ratio as a degree of freedom. Three modes of operation are considered: continuous, repeated batch, and repeated fed-batch operation. By means of the Production Curve, the transition points of the optimal

  20. New Aspects of Field Entropy Squeezing as an Indicator for Mixed State Entanglement in an Effective Two-Level System with Stark Shift

    Institute of Scientific and Technical Information of China (English)

    S.Abdel-Khalek; M.M.A.Ahmed; A-S F.Obada

    2011-01-01

    We present an effective two-level system in interaction through two-photon processes with a single mode quantized electromagnetic field,initially prepared in a coherent state.Field entropy squeezing as an indicator of the entanglement in a mixed state system is suggested.The temporal evolution of the negativity,Wehrl entropy,Wehrl phase distribution and field entropy squeezing are investigated.The results highlight the important roles played by both the Stark shift parameters and the mixed state setting in the dynamics of the Wehrl entropy,Wehrl phase distribution and field entropy squeezing.%We present an effective two-level system in interaction through two-photon processes with a single mode quantized electromagnetic Reid, initially prepared in a coherent state. Field entropy squeezing as an indicator of the entanglement in a mixed state system is suggested. The temporal evolution of the negativity, Wehrl entropy, Wehrl phase distribution and field entropy squeezing are investigated. The results highlight the important roles played by both the Stark shift parameters and the mixed state setting in the dynamics of the Wehrl entropy, Wehrl phase distribution and field entropy squeezing.

  1. Properties of squeezed Schroedinger cats

    International Nuclear Information System (INIS)

    Obada, A.S.F.; Omar, Z.M.

    1995-09-01

    In this article we investigate some statistical properties of the even and odd squeezed (squeezed Schroedinger cat) states. The quasi-probability distribution functions especially W(α) and Q(α) are calculated and discussed for these states. The phase distribution function is discussed. A generation scheme is proposed for either the squeezed generalized Schroedinger cat, or the squeezed number state. (author). 35 refs, 5 figs

  2. Baryon asymmetry, inflation and squeezed states

    International Nuclear Information System (INIS)

    Bambah, Bindu A.; Chaitanya, K.V.S. Shiv; Mukku, C.

    2007-01-01

    We use the general formalism of squeezed rotated states to calculate baryon asymmetry in the wake of inflation through parametric amplification. We base our analysis on a B and CP violating Lagrangian in an isotropically expanding universe. The B and CP violating terms originate from the coupling of complex fields with non-zero baryon number to a complex background inflaton field. We show that a differential amplification of particle and antiparticle modes gives rise to baryon asymmetry

  3. Non-Markovian reservoir-dependent squeezing

    International Nuclear Information System (INIS)

    Paavola, J

    2010-01-01

    The squeezing dynamics of a damped harmonic oscillator are studied for different types of environment without making the Markovian approximation. The squeezing dynamics of a coherent state depend on the reservoir spectrum in a unique way that can, in the weak coupling approximation, be analysed analytically. Comparison of squeezing dynamics for ohmic, sub-ohmic and super-ohmic environments is done, showing a clear connection between the squeezing-non-squeezing oscillations and reservoir structure. Understanding the effects occurring due to structured reservoirs is important both from a purely theoretical point of view and in connection with evolving experimental techniques and future quantum computing applications.

  4. Squeezed-light generation in a nonlinear planar waveguide with a periodic corrugation

    International Nuclear Information System (INIS)

    Perina, Jan Jr.; Haderka, Ondrej; Sibilia, Concita; Bertolotti, Mario; Scalora, Michael

    2007-01-01

    Two-mode nonlinear interaction (second-harmonic and second-subharmonic generation) in a planar waveguide with a small periodic corrugation at the surface is studied. Scattering of the interacting fields on the corrugation leads to constructive interference that enhances the nonlinear process provided that all the interactions are phase matched. Conditions for the overall phase matching are found. Compared with a perfectly quasi-phase-matched waveguide, better values of squeezing as well as higher intensities are reached under these conditions. Procedure for finding optimum values of parameters for squeezed-light generation is described

  5. Phenomenology of the squeezed hadronic correlations at RHIC energies

    International Nuclear Information System (INIS)

    Padula, Sandra S.; Dudek, Danuce M.; Socolowski, Otavio Jr.

    2012-01-01

    We briefly review the basic theoretical results on bosonic back-to-back correlations (bBBC) and compare our predictions with the first experimental search for squeezed correlations of K + K - pairs, performed by PHENIX. The hadronic squeezed correlations are very sensitive to the functional form of the time emission distribution. The comparison is made for three different kaon time distributions. From such comparison we show that the outcome of the experimental search may still be inconclusive but it does not exclude the existence of squeezing effects on hadrons with in-medium modified masses already at RHIC energies. (author)

  6. Squeezing of a nanomechanical resonator by quantum nondemolition measurement and feedback

    Science.gov (United States)

    Ruskov, Rusko; Schwab, Keith; Korotkov, Alexander N.

    2005-06-01

    We analyze squeezing of the nanoresonator state produced by periodic measurement of position by a quantum point contact or a single-electron transistor. The mechanism of squeezing is the stroboscopic quantum nondemolition measurement generalized to the case of continuous measurement by a weakly coupled detector. The magnitude of squeezing is calculated for the harmonic and stroboscopic modulations of measurement, taking into account detector efficiency and nanoresonator quality factor. We also analyze the operation of the quantum feedback, which prevents fluctuations of the wave packet center due to measurement back-action. Verification of the squeezed state can be performed in almost the same way as its preparation; a similar procedure can also be used for the force detection with sensitivity beyond the standard quantum limit.

  7. Would one rather store squeezing or entanglement in continuous variable quantum memories?

    International Nuclear Information System (INIS)

    Yadsan-Appleby, Hulya; Serafini, Alessio

    2011-01-01

    Given two quantum memories for continuous variables and the possibility to perform passive optical operations on the optical modes before or after the storage, two possible scenarios arise resulting in generally different degrees of final entanglement. Namely, one could either store an entangled state and retrieve it directly from the memory, or rather store two separate single-mode squeezed states and then combine them with a beam-splitter to generate the final entangled state. In this Letter, we analytically determine which of the two options yields more entanglement for several regions of the system's parameters, and quantify the advantage it entails. - Highlights: → We study the optimised storage of continuous variable entanglement. → Analytical conditions to determine optimal storage schemes. → Comprehensive numerical studies complementing the analytics. → Specific discussion concerning QND feedback memories included. → Results applicable to very general Gaussian channel.

  8. CMOS Current-mode Operational Amplifier

    DEFF Research Database (Denmark)

    Kaulberg, Thomas

    1992-01-01

    current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain bandwidth product of 8 MHz, an offset current of 0.8 ¿A (signal-range ±700¿A) and a (theoretically) unlimited slew-rate. The amplifier is realized in a standard CMOS 2......A fully differential-input differential-output current-mode operational amplifier (COA) is described. The amplifier utilizes three second generation current-conveyors (CCII) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanced...

  9. Mode Combinations and International Operations

    DEFF Research Database (Denmark)

    Benito, Gabriel R. G.; Petersen, Bent; Welch, Lawrence S.

    2011-01-01

    reveals that companies tend to combine modes of operation; thereby producing unique foreign operation mode “packages” for given activities and/or countries, and that the packages are liable to be modified over time – providing a potentially important optional path for international expansion. Our data...... key markets (China, UK and USA) as the basis for an exploration of the extent to which, and how and why, companies combine clearly different foreign operation modes. We examine their use of foreign operation mode combinations within given value activities as well as within given countries. The study...

  10. Displacement-enhanced entanglement distillation of single-mode-squeezed entangled states

    DEFF Research Database (Denmark)

    Tipsmark, Anders; Neergaard-Nielsen, Jonas Schou; Andersen, Ulrik Lund

    2013-01-01

    It has been shown that entanglement distillation of Gaussian entangled states by means of local photon subtraction can be improved by local Gaussian transformations. Here we show that a similar effect can be expected for the distillation of an asymmetric Gaussian entangled state that is produced...... by a single squeezed beam. We show that for low initial entanglement, our largely simplified protocol generates more entanglement than previous proposed protocols. Furthermore, we show that the distillation scheme also works efficiently on decohered entangled states as well as with a practical photon...

  11. Performance comparison of three-phase flux reversal permanent magnet motors in BLDC and BLAC operation mode

    International Nuclear Information System (INIS)

    Stumberger, B.; Stumberger, G.; Hadziselimovic, M.; Hamler, A.; Gorican, V.; Jesenik, M.; Trlep, M.

    2008-01-01

    The paper presents a comparison of torque capability and flux-weakening performance of three-phase flux reversal permanent magnet motors with surface and inset permanent magnets. Finite element analysis is employed to determine the performance of each motor in BLDC and BLAC operation mode. It is shown that the torque capability and flux-weakening performance of surface or inset permanent magnet configuration is strongly dependent on the stator teeth number/rotor pole number combination

  12. Modes in light wave propagating in semiconductor laser

    Science.gov (United States)

    Manko, Margarita A.

    1994-01-01

    The study of semiconductor laser based on an analogy of the Schrodinger equation and an equation describing light wave propagation in nonhomogeneous medium is developed. The active region of semiconductor laser is considered as optical waveguide confining the electromagnetic field in the cross-section (x,y) and allowing waveguide propagation along the laser resonator (z). The mode structure is investigated taking into account the transversal and what is the important part of the suggested consideration longitudinal nonhomogeneity of the optical waveguide. It is shown that the Gaussian modes in the case correspond to spatial squeezing and correlation. Spatially squeezed two-mode structure of nonhomogeneous optical waveguide is given explicitly. Distribution of light among the laser discrete modes is presented. Properties of the spatially squeezed two-mode field are described. The analog of Franck-Condon principle for finding the maxima of the distribution function and the analog of Ramsauer effect for control of spatial distribution of laser emission are discussed.

  13. Mode Combinations and International Operations

    DEFF Research Database (Denmark)

    Benito, Gabriel R. G.; Petersen, Bent; Welch, Lawrence S.

    2011-01-01

    reveals that companies tend to combine modes of operation; thereby producing unique foreign operation mode “packages” for given activities and/or countries, and that the packages are liable to be modified over time—providing a potentially important optional path for international expansion. The data show...... markets (China, UK and USA) is used as the basis for an exploration of the extent to which, and how and why, companies combine clearly different foreign operation modes. We examine their use of foreign operation mode combinations within given value activities as well as within given countries. The study...

  14. High strength semi-active energy absorbers using shear- and mixedmode operation at high shear rates

    Science.gov (United States)

    Becnel, Andrew C.

    This body of research expands the design space of semi-active energy absorbers for shock isolation and crash safety by investigating and characterizing magnetorheological fluids (MRFs) at high shear rates ( > 25,000 1/s) under shear and mixed-mode operation. Magnetorheological energy absorbers (MREAs) work well as adaptive isolators due to their ability to quickly and controllably adjust to changes in system mass or impact speed while providing fail-safe operation. However, typical linear stroking MREAs using pressure-driven flows have been shown to exhibit reduced controllability as impact speed (shear rate) increases. The objective of this work is to develop MREAs that improve controllability at high shear rates by using pure shear and mixed shear-squeeze modes of operation, and to present the fundamental theory and models of MR fluids under these conditions. A proof of concept instrument verified that the MR effect persists in shear mode devices at shear rates corresponding to low speed impacts. This instrument, a concentric cylinder Searle cell magnetorheometer, was then used to characterize three commercially available MRFs across a wide range of shear rates, applied magnetic fields, and temperatures. Characterization results are presented both as flow curves according to established practice, and as an alternate nondimensionalized analysis based on Mason number. The Mason number plots show that, with appropriate correction coefficients for operating temperature, the varied flow curve data can be collapsed to a single master curve. This work represents the first shear mode characterization of MRFs at shear rates over 10 times greater than available with commercial rheometers, as well as the first validation of Mason number analysis to high shear rate flows in MRFs. Using the results from the magnetorheometer, a full scale rotary vane MREA was developed as part of the Lightweight Magnetorheological Energy Absorber System (LMEAS) for an SH-60 Seahawk helicopter

  15. Correlation measurement of squeezed light

    DEFF Research Database (Denmark)

    Krivitsky, Leonid; Andersen, Ulrik Lund; Dong, R.

    2009-01-01

    We study the implementation of a correlation measurement technique for the characterization of squeezed light which is nearly free of electronic noise. With two different sources of squeezed light, we show that the sign of the covariance coefficient, revealed from the time-resolved correlation data......, is witnessing the presence of squeezing in the system. Furthermore, we estimate the degree of squeezing using the correlation method and compare it to the standard homodyne measurement scheme. We show that the role of electronic detector noise is minimized using the correlation approach as opposed to homodyning...

  16. Study of the character of the effect of various squeezing out agents on the squeezing out process

    Energy Technology Data Exchange (ETDEWEB)

    Begnazarov, T.

    1979-01-01

    Results are examined of the study of the process of squeezing out petroleum with water with additives of a chemical reagent as a multifactor experiment, carried out in laboratory conditions. The tests were carried out in inactive petroleum of the Mishkin deposits. In the capacity of the squeezing out agents, water, solutions of caustic soda, and acetic acid were used. The basic factors, affecting the process of waterless squeezing out, included porosity, permeability in respect to gas, water saturation, pressure gradient, volume of the injection of the squeezing out agent were selected. The waterless coefficient of squeezing out also shows an effect on the complete coefficient of squeezing out. As a result of the study of the paired connections, corresponding coefficients of the regression equations and correlation coefficient were produced. The difference according to the forms of the connection between the various squeezing out agent were analyzed.

  17. Spin squeezing and quantum correlations

    Indian Academy of Sciences (India)

    2 states. A coherent spin-s state. (CSS) θ φ can then be thought of as having no quantum correlations as the constituent. 2s elementary spins point in the same direction ˆn(θ φ) which is the mean spin direction. 2. State classification and squeezing. In order to discuss squeezing, we begin with the squeezing condition itself.

  18. Displacement of microwave squeezed states with Josephson parametric amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Ling; Baust, Alexander; Xie, Edwar; Schwarz, Manuel; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Fedorov, Kirill; Menzel, Edwin; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Betzenbichler, Martin; Pogorzalek, Stefan; Haeberlein, Max; Eder, Peter; Goetz, Jan; Wulschner, Karl Friedrich; Huebl, Hans; Deppe, Frank [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany)

    2015-07-01

    Propagating quantum microwaves are promising building blocks for quantum communication. Interestingly, such itinerant quantum microwaves can be generated in the form of squeezed photon states by Josephson parametric amplifiers (JPA). We employ a specific ''dual-path'' setup for both state reconstruction and JPA characterization. Displacement operations are performed by using a directional coupler after the squeezing. We compare our results with theory predictions. In particular, we discuss our experiments in the context of remote state preparation and quantum teleportation with propagating microwaves.

  19. A CMOS current-mode operational amplifier

    DEFF Research Database (Denmark)

    Kaulberg, Thomas

    1993-01-01

    current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain-bandwidth product of 3 MHz, an offset current of 0.8 μA (signal range ±700 μA), and a (theoretically) unlimited slew rate. The amplifier is realized in a standard CMOS 2......A fully differential-input, differential-output, current-mode operational amplifier (COA) is described. The amplifier utilizes three second-generation current conveyors (CCIIs) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanced...

  20. Squeeze behavior of magnetorheological fluids under constant volume and uniform magnetic field

    International Nuclear Information System (INIS)

    Guo, Chaoyang; Gong, Xinglong; Xuan, Shouhu; Yan, Qifan; Ruan, Xiaohui

    2013-01-01

    In this work the experimental investigation of magnetorheological fluids in squeeze mode has been carried out under constant volume with a self-developed device. The magnetorheological fluids were forced to move in all directions in a horizontal plane as the two flat surfaces came together. A pair of Helmholtz coils was used to generate a uniform magnetic field in the compression gap. The normal forces within the gap were systematically studied for different magnetic field, squeeze velocity, particle concentration, viscosity of carrier fluid and initial gap distance. Two regions of behavior were obtained from the normal force versus gap distance curve: elastic deformation and plastic flow. A power law fitting was appropriate for the relation between the normal force and the gap in the plastic flow. The index of the power law was smaller than that predicted by the continuum theory, possibly due to the squeeze strengthening effect and the sealing effect. (paper)

  1. Waveguide quantum electrodynamics in squeezed vacuum

    Science.gov (United States)

    You, Jieyu; Liao, Zeyang; Li, Sheng-Wen; Zubairy, M. Suhail

    2018-02-01

    We study the dynamics of a general multiemitter system coupled to the squeezed vacuum reservoir and derive a master equation for this system based on the Weisskopf-Wigner approximation. In this theory, we include the effect of positions of the squeezing sources which is usually neglected in the previous studies. We apply this theory to a quasi-one-dimensional waveguide case where the squeezing in one dimension is experimentally achievable. We show that while dipole-dipole interaction induced by ordinary vacuum depends on the emitter separation, the two-photon process due to the squeezed vacuum depends on the positions of the emitters with respect to the squeezing sources. The dephasing rate, decay rate, and the resonance fluorescence of the waveguide-QED in the squeezed vacuum are controllable by changing the positions of emitters. Furthermore, we demonstrate that the stationary maximum entangled NOON state for identical emitters can be reached with arbitrary initial state when the center-of-mass position of the emitters satisfies certain conditions.

  2. US nuclear industry plans squeeze on O and M costs

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The United States nuclear industry, still the largest in the world with 107 operating commercial plants, wants to squeeze still more fat out of operation and maintenance costs. Success or failure could decide whether many operating units remain competitive with other forms of baseload electricity generation over the coming decade. (Author)

  3. Three types of pulses delivered from a nanotube-mode-locked fiber laser

    International Nuclear Information System (INIS)

    Yao, X K

    2015-01-01

    Three types of pulses are experimentally investigated in a switchable normal-dispersion nanotube-mode-locked fiber laser by adjusting polarizer controller and pump power. They are a standard dissipative-soliton (DS), conventional soliton (CS)-like pulse, and noiselike pulse, which correspond to three mode-locking states. The standard DS with a rectangular spectrum possesses a Gaussian-shape pulse. The CS-like operation has a Lorenz shape, and the spectrum involves several sidebands similar to the CS case. For the noiselike pulse with a bell-shaped spectrum, a 317 fs peak rides upon the 132.5 ps pedestal in the autocorrelation trace. The spectra of these three pulse operations are centered at three close wavelengths. The generation of three such different types of pulses in one identical normal- dispersion laser cavity may find an important application for the future of mode-locked laser research. (paper)

  4. Noncritical quadrature squeezing through spontaneous polarization symmetry breaking

    OpenAIRE

    Garcia-Ferrer, Ferran V.; Navarrete-Benlloch, Carlos; de Valcárcel, Germán J.; Roldán, Eugenio

    2010-01-01

    We discuss the possibility of generating noncritical quadrature squeezing by spontaneous polarization symmetry breaking. We consider first type-II frequency-degenerate optical parametric oscillators, but discard them for a number of reasons. Then we propose a four-wave mixing cavity in which the polarization of the output mode is always linear but has an arbitrary orientation. We show that in such a cavity complete noise suppression in a quadrature of the output field occurs, irrespective of ...

  5. Noncritical quadrature squeezing through spontaneous polarization symmetry breaking.

    Science.gov (United States)

    Garcia-Ferrer, Ferran V; Navarrete-Benlloch, Carlos; de Valcárcel, Germán J; Roldán, Eugenio

    2010-07-01

    We discuss the possibility of generating noncritical quadrature squeezing by spontaneous polarization symmetry breaking. We first consider Type II frequency-degenerate optical parametric oscillators but discard them for a number of reasons. Then we propose a four-wave-mixing cavity, in which the polarization of the output mode is always linear but has an arbitrary orientation. We show that in such a cavity, complete noise suppression in a quadrature of the output field occurs, irrespective of the parameter values.

  6. Squeezed colour states in gluon jet

    Science.gov (United States)

    Kilin, S. YA.; Kuvshinov, V. I.; Firago, S. A.

    1993-01-01

    The possibility of the formation of squeezed states of gluon fields in quantum chromodynamics due to nonlinear nonperturbative self interaction during jet evolution in the process of e(+)e(-) annihilation into hadrons, which are analogous to the quantum photon squeezed states in quantum electrodynamics, is demonstrated. Additionally, the squeezing parameters are calculated.

  7. Cyclotron operating mode determination based on intelligent methods

    International Nuclear Information System (INIS)

    Ouda, M.M.E.M.

    2011-01-01

    adjust the parameters of the operating mode from the acceleration- extraction- focusing and steering until end of the experiment. This process is tedious and also time consuming and these were the main reasons to search better, faster and efficient method to determine the parameters of a new operating mode. As a result the artificial neural networks as a basis for intelligent system have been used to determine new operating systems for the MGC-20 cyclotron.In this thesis; an intelligent system has been designed and developed to determine new operating systems for the MGC-20 cyclotron, Nuclear Research Center, Atomic Energy Authority. This system based on Feed Forward Back Propagation Neural Networks (FFBPNN). The system consists of five neural networks work in parallel. Every neural network consists of three layers, input, hidden, and output layers. The outputs of the five neural networks represent the normalized values (from 0 to 1 and from -1 to 0) of the 19 parameters of the new operating mode. The inputs for every neural network are the normalized values (from 0 to 1) of the particle name, the particle energy, the beam current intensity, and the duty factor. The outputs of the five neural networks must be calibrated to obtain the real values of the parameters of the new operating mode. These elements of the outputs are the magnetic lenses, the magnetic correctors, the concentric coils, and the harmonic coils. The FFBPNNs are learned by using the feed forward back propagation training algorithm. The learning has been done with different values of the learning factor , the momentum factor and also the number of the hidden layers. The best structure which needs the shortest time to learn and achieve the allowed maximum error has been used.

  8. NETWORK-CENTRIC TECHNOLOGIES FOR CONTROL OF THREE-PHASE NETWORK OPERATION MODES

    Directory of Open Access Journals (Sweden)

    Ye. I. Sokol

    2017-06-01

    Full Text Available Purpose. The development of the control system for three-phase network is based on intelligent technologies of network-centric control of heterogeneous objects. The introduction of unmanned aerial vehicles for monitoring of three-phase network increases the efficiency of management. Methodology. The case of decomposition of the instantaneous capacities of the fixed and variable components for 3-wire system. The features of power balance for the different modes of its functioning. It should be noted that symmetric sinusoidal mode is balanced and good, but really unbalanced, if the standard reactive power is not zero. To solve the problem of compensation is sufficient knowledge of the total value of the inactive components of full power (value of the inactive power without detail. The creation of a methodology of measurement and assessment will require knowledge of the magnitudes of each inactive component separately, which leads to the development of a unified approach to the measurement and compensation of inactive components of full power and the development of a generalized theory of power. Results. Procedure for the compensation of the current of zero sequence excludes from circuit the source, as the active component of instantaneous power of zero sequence, and a vector due to a current of zero sequence. This procedure is performed without time delay as it does not require integration. Only a 3–wire system with symmetrical voltage eliminates pulsations and symmetrization of the equivalent conductances of the phases of the task. Under asymmetric voltage, the power is different, its analysis requires the creation of a vector mathematical model of the energy processes of asymmetrical modes of 3–phase systems. Originality. The proposed method extends the basis of the vector method for any zero sequence voltages and shows that the various theories of instantaneous power three wired scheme due to the choice of a basis in a two

  9. Two operating modes for turbocharger system

    International Nuclear Information System (INIS)

    Bayomi, Nazih N.; Abd El-Maksoud, Rafea M.

    2012-01-01

    Highlights: ► A turbocharger system that operates in power assisted mode is introduced. ► The parameters affecting performance of the turbocharger is presented. ► Different operational charts for turbocharger are presented. ► The parametric study is helpful guide to determine turbocharger dimensioning. - Abstract: The present paper introduces a turbocharger system that operates in two different modes according to turbocharging requirements. In the first mode, the turbocharger is operating with power assistance at lower engine speeds where the power of the exhaust gases is insufficient. Thereafter, the second mode is switched leading the compressor and the turbine of the turbocharger to rotate separately for best performance. Analysis is presented to find out the parameters affecting the operation of the turbocharger and their values to achieve enhanced turbocharger performance with high efficient impellers. The parameters studied are based on data of the turbocharger operating conditions and the operational requirements of the engine. The analysis considers the turbocharger system, its turbine and its compressor. The operational charts demonstrate the simulated results for two operating modes. This study is helpful as a guide to determine the turbocharger dimensioning and blade profile assignment without using any given blade dimensional value.

  10. 30 years of squeezed light generation

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund; Gehring, Tobias; Marquardt, Christoph

    2016-01-01

    Squeezed light generation has come of age. Significant advances on squeezed light generation have been made over the last 30 years—from the initial, conceptual experiment in 1985 till today’s top-tuned, application-oriented setups. Here we review the main experimental platforms for generating...... quadrature squeezed light that have been investigated in the last 30 years....

  11. Integrated source of broadband quadrature squeezed light

    DEFF Research Database (Denmark)

    Hoff, Ulrich Busk; Nielsen, Bo Melholt; Andersen, Ulrik Lund

    2015-01-01

    An integrated silicon nitride resonator is proposed as an ultracompact source of bright single-mode quadrature squeezed light at 850 nm. Optical properties of the device are investigated and tailored through numerical simulations, with particular attention paid to loss associated with interfacing...... the device. An asymmetric double layer stack waveguide geometry with inverse vertical tapers is proposed for efficient and robust fibre-chip coupling, yielding a simulated total loss of -0.75 dB/facet. We assess the feasibility of the device through a full quantum noise analysis and derive the output...

  12. Control of Squeezed States

    OpenAIRE

    Bloch, Anthony M.; Rojo, Alberto G.

    2000-01-01

    In this paper we consider the classical and quantum control of squeezed states of harmonic oscillators. This provides a method for reducing noise below the quantum limit and provides an example of the control of under-actuated systems in the stochastic and quantum context. We consider also the interaction of a squeezed quantum oscillator with an external heat bath.

  13. The EUVE Mission at UCB: Squeezing More From Less

    Science.gov (United States)

    Stroozas, B. A.; Cullison, J. L.; McDonald, K. E.; Nevitt, R.; Malina, R. F.

    2000-05-01

    With 8 years on orbit, and over three years in an outsourced mode at U.C. Berkeley (UCB), NASA's Extreme Ultraviolet Explorer (EUVE) continues to be a highly mature and productive scientific mission. The EUVE satellite is extremely stable and exhibits little degradation in its original scientific capabilities, and science data return continues to be at the >99% level. The Project's very small, dedicated, innovative, and relatively cheap ( \\$1 million/year) support team at UCB continues to validate the success of NASA's outsourcing "experiment" while providing a very high science-per-dollar return on NASA's investment with no significant additional risk to the flight systems. The EUVE mission still has much more to offer in terms of important and exciting scientific discoveries as well as mission operations innovations. To highlight this belief the EUVE team at UCB continues to find creative ways to do more with less -- to squeeze the maximum out of available funds -- in NASA's "cheaper, better, faster" environment. This paper provides an overview of the EUVE mission's past, current, and potential future efforts toward automating and integrating its multi-functional data processing systems in proposal management, observation planning, mission operations and engineering, and the processing, archival, and delivery of raw telemetry and science data products. The paper will also discuss the creative allocation of the Project's few remaining personnel resources who support both core mission functions and new innovations, while at the same time minimizing overall risk and stretching the available budget. This work is funded through NASA/UCB Cooperative Agreement NCC5-138.

  14. Effectiveness of the squeezing out and final squeezing out of petroleum of an increased viscosity by alkaline solutions

    Energy Technology Data Exchange (ETDEWEB)

    Begnazarov, T.

    1979-01-01

    The remaining petroleum in the flooded zone is determined by the ratio of viscosity forces to the forces of the surface tension, which are expressed by the coefficient Ka. With this, for each kind of porous medium, there exists a natural cricial value Ka. For the purpose of studying the effect of the given parameters on the value of the remaining petroleum, experiments were carried out on artificial specimens. In the tests, using petroleum of the Mishkin deposit, the surface tension on the boundary of the petroleum with the distilled water and alkaline solutions were respectively equal to 37.1 and 1.33 dynes per centimeter. The experiments showed, that the squeezing out of the petroleum with water or alkaline solutions leads to similar results. This means, that the composite parameter Ka does not affect the value of the remaining petroleum saturation. The effectiveness of the final squeezing out of the petroleum of increased viscosity was also studied. These experiments were carried out in two variations of the injection of the squeezed out agent: in the first variation, the petroleum was squeezed out with water in the first stage, and in the second stage it was squeezed out by an alkaline solution, and in the subsequent stages, a change in the squeezing out agent took place. By finishing the first stage, the attained values of the coefficients of the squeezing out were practically similar (0.72). In the second stage, the final squeezing out of the petroleum with a solution of alkaline, provided a major effect.

  15. Workshop on Squeezed States and Uncertainty Relations

    International Nuclear Information System (INIS)

    Han, D.; Kim, Y.S.; Zachary, W.W.

    1992-02-01

    The proceedings from the workshop are presented, and the focus was on the application of squeezed states. There are many who say that the potential for industrial applications is enormous, as the history of the conventional laser suggests. All those who worked so hard to produce squeezed states of light are continuing their efforts to construct more efficient squeezed-state lasers. Quite naturally, they are looking for new experiments using these lasers. The physical basis of squeezed states is the uncertainty relation in Fock space, which is also the basis for the creation and annihilation of particles in quantum field theory. Indeed, squeezed states provide a unique opportunity for field theoreticians to develop a measurement theory for quantum field theory

  16. Nonlinear Polarization Rotation-Based Mode-Locked Erbium-Doped Fiber Laser with Three Switchable Operation States

    International Nuclear Information System (INIS)

    Tiu Zian Cheak; Tan Sin Jin; Zarei Arman; Ahmad Harith; Harun Sulaiman Wadi

    2014-01-01

    A simple mode-locked erbium-doped fiber laser (EDFL) with three switchable operation states is proposed and demonstrated based on nonlinear polarization rotation. The EDFL generates a stable square pulse at a third harmonic pulse repetition rate of 87 kHz as the 1480 nm pump power increases from the threshold of 17.5 mW to 34.3 mW. The square pulse duration increases from 105 ns to 245 ns as the pump power increases within this region. The pulse operation switches to the second operation state as the pump power is varied from 48.2 mW to 116.7 mW. The laser operates at a fundamental repetition rate of 29 kHz with a fixed pulse width of 8.5 μs within the pump power region. At a pump power of 116.7 mW, the average output power is 3.84 mW, which corresponds to the pulse energy of 131.5 nJ. When the pump power continues to increase, the pulse train experiences unstable oscillation before it reaches the third stable operation state within a pump power region of 138.9 mW to 145.0 mW. Within this region, the EDFL produces a fixed pulse width of 2.8 μs and a harmonic pulse repetition rate of 58 kHz. (fundamental areas of phenomenology(including applications))

  17. Tapping mode imaging and measurements with an inverted atomic force microscope.

    Science.gov (United States)

    Chan, Sandra S F; Green, John-Bruce D

    2006-07-18

    This report demonstrates the successful use of the inverted atomic force microscope (i-AFM) for tapping mode AFM imaging of cantilever-supported samples. i-AFM is a mode of AFM operation in which a sample supported on a tipless cantilever is imaged by one of many tips in a microfabricated tip array. Tapping mode is an intermittent contact mode whereby the cantilever is oscillated at or near its resonance frequency, and the amplitude and/or phase are used to image the sample. In the process of demonstrating that tapping mode images could be obtained in the i-AFM design, it was observed that the amplitude of the cantilever oscillation decreased markedly as the cantilever and tip array were approached. The source of this damping of the cantilever oscillations was identified to be the well-known "squeeze film damping", and the extent of damping was a direct consequence of the relatively shorter tip heights for the tip arrays, as compared to those of commercially available tapping mode cantilevers with integrated tips. The functional form for the distance dependence of the damping coefficient is in excellent agreement with previously published models for squeeze film damping, and the values for the fitting parameters make physical sense. Although the severe damping reduces the cantilever free amplitude substantially, we found that we were still able to access the low-amplitude regime of oscillation necessary for attractive tapping mode imaging of fragile molecules.

  18. Heralded source of bright multi-mode mesoscopic sub-Poissonian light

    DEFF Research Database (Denmark)

    Iskhakov, Timur; Usenko, V. C.; Andersen, Ulrik Lund

    2016-01-01

    In a direct detection scheme, we observed 7.8 dB of twin-beam squeezing for multi-mode two-color squeezed vacuum generated via parametric downconversion. Applying postselection, we conditionally prepared a sub-Poissonian state of light containing 6.3 . 105 photons per pulse on the average...

  19. Phase control of squeezed state in double electromagnetically induced transparency system with a loop-transition structure

    Science.gov (United States)

    Li, Yuan; Zhou, Yusheng; Wang, Yong; Ling, Qiang; Chen, Bing; Dou, Yan; Zhang, Wei; Gao, Weiqing; Guo, Zhiqiang; Zhang, Junxiang

    2018-03-01

    We theoretically study the squeezed probe light passing through a double electromagnetically induced transparency (DEIT) system, in which a microwave field and two coupling lights drive a loop transition. It is shown that the output squeezing can be maintained in both two transparency windows of DEIT, and it can also be manipulated by the relative phase of the three driving fields. The influence of the intensity of applied fields and the optical depth of atoms on the squeezing is also investigated. This study offers possibilities to manipulate the squeezing propagation in atomic media by the phase of electromagnetic fields.

  20. Scoping study on coastal squeeze in the Ayeyarwady Delta

    NARCIS (Netherlands)

    Kroon, M.E.N.; Rutten, M.M.; Stive, M.J.F.; Wunna, S.

    2015-01-01

    Coastal squeeze is the reduction in the space of coastal habitats to operate (Phan et al, 2014) and an important cause for coastline retreat, increase in flood risk, salinity intrusion etc. Land use changes, such as deforestation and urbanization, reduce the space of natural habitats, such as

  1. Quantum cooling and squeezing of a levitating nanosphere via time-continuous measurements

    Science.gov (United States)

    Genoni, Marco G.; Zhang, Jinglei; Millen, James; Barker, Peter F.; Serafini, Alessio

    2015-07-01

    With the purpose of controlling the steady state of a dielectric nanosphere levitated within an optical cavity, we study its conditional dynamics under simultaneous sideband cooling and additional time-continuous measurement of either the output cavity mode or the nanosphere’s position. We find that the average phonon number, purity and quantum squeezing of the steady-states can all be made more non-classical through the addition of time-continuous measurement. We predict that the continuous monitoring of the system, together with Markovian feedback, allows one to stabilize the dynamics for any value of the laser frequency driving the cavity. By considering state of the art values of the experimental parameters, we prove that one can in principle obtain a non-classical (squeezed) steady-state with an average phonon number {n}{ph}≈ 0.5.

  2. Mode coupling in hybrid square-rectangular lasers for single mode operation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiu-Wen; Huang, Yong-Zhen, E-mail: yzhuang@semi.ac.cn; Yang, Yue-De; Xiao, Jin-Long; Weng, Hai-Zhong; Xiao, Zhi-Xiong [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100083 (China)

    2016-08-15

    Mode coupling between a square microcavity and a Fabry-Pérot (FP) cavity is proposed and demonstrated for realizing single mode lasers. The modulations of the mode Q factor as simulation results are observed and single mode operation is obtained with a side mode suppression ratio of 46 dB and a single mode fiber coupling loss of 3.2 dB for an AlGaInAs/InP hybrid laser as a 300-μm-length and 1.5-μm-wide FP cavity connected to a vertex of a 10-μm-side square microcavity. Furthermore, tunable single mode operation is demonstrated with a continuous wavelength tuning range over 10 nm. The simple hybrid structure may shed light on practical applications of whispering-gallery mode microcavities in large-scale photonic integrated circuits and optical communication and interconnection.

  3. Plasmonic Moon: a Fano-like approach for squeezing the magnetic field in the infrared

    KAUST Repository

    Panaro, Simone

    2015-08-11

    Outstanding results have been achieved in the localization of optical electric fields via ultrasmall plasmonic cavities, paving the way to the subdiffractive confinement of local electromagnetic fields. However, due to the intrinsic constraints related to conventional architectures, no comparable squeezing factors have been managed yet for the magnetic counterpart of radiation, practically hindering the detection and manipulation of magneto-optical effects at the nanoscale. Here, we observe a strong magnetic field nanofocusing in the infrared, promoted by the induction of a coil-type Fano resonance. By triggering the coil current via a quadrupole-like plasmonic mode, we straightforwardly boost the enhancement of the infrared magnetic field and perform its efficient squeezing in localized nanovolumes.

  4. Nth-powered amplitude squeezing in fan-states

    CERN Document Server

    Duc, T M

    2002-01-01

    Squeezing properties of the Hillery-type N-powered amplitude are investigated in the fan-state vertical bar xi; 2k, f> sub F which is linearly superposed by 2k 2k-quantum nonlinear coherent states in the phase-locked manner. The general expression of squeezing is derived analytically for arbitrary xi, k, N and f showing a multi-directional character of squeezing. For a given k, squeezing may appear to the even power N=2k if f ident to 1 and N>=2k if f not =1 and the number of directions along with the Nth-powered amplitude is squeezed is exactly equal to N, for both f ident to 1 (the light field) and f not =1 (the vibrational motion of the trapped ion). Discussions are also given elucidating the qualitative difference between the cases of f ident to 1 and f not =1.

  5. Design and fabrication of a PET/PTFE-based piezoelectric squeeze mode drop-on-demand inkjet printhead with interchangeable nozzle

    KAUST Repository

    Li, Erqiang

    2010-09-01

    A PET/PTFE-based piezoelectric squeeze mode drop-on-demand inkjet printhead with interchangeable nozzles is designed and fabricated. The printhead chamber is comprised of PET (polyethylene terephthalate) tubing or PTFE (polytetrafluoroethylene, or Teflon) tubing, which of a much softer material, than the conventionally used glass tubing. Applying the same electrical voltage, PET/PTFE-based printhead will generate a larger volume change in the material to be dispensed. The novel printhead fabricated herein has successfully dispensed liquids with viscosities up to 100 cps, as compared to 20 cps for the commercial printheads. Furthermore, PTFE-based printhead provides excellent anti-corrosive property when strongly corrosive inks are involved. The interchangeable nozzle design enables the same printhead to be fitted with nozzles of different orifice size, thus a clogged nozzle can be easily removed for cleaning or replacement. The characteristics of this novel printhead are also studied by dispensing glycerin-water solutions. © 2010 Elsevier B.V. All rights reserved.

  6. An integrated operation mode for green logistics of enterprises

    Institute of Scientific and Technical Information of China (English)

    Yu Chengxue; Wu Chunyou; Fan Yu

    2006-01-01

    The integrated operation mode of green logistics is a new enterprise's logistics operation and management mode concerning environment issues based on the traditional integrated mode. Through comparative study on the integrated operation mode of logistics based on self-operation, the operation mode of an integrated logistics of enterprises based on TPL, the green-supply chain management, and the operation mode of eco-industrial park (EIP), a relatively complete objective system structure is put forward for the integrated operation mode of green logistics of enterprises. Furthermore, the correspondent practical mode is also set up to help enterprises, especially for the manufacturing companies, not only improve the environment effectively, but support the technological framework for the enterprise's economic performance and social benefits in order to realize economic, social and environmental benefits are concerned.

  7. A three-level support method for smooth switching of the micro-grid operation model

    Science.gov (United States)

    Zong, Yuanyang; Gong, Dongliang; Zhang, Jianzhou; Liu, Bin; Wang, Yun

    2018-01-01

    Smooth switching of micro-grid between the grid-connected operation mode and off-grid operation mode is one of the key technologies to ensure it runs flexible and efficiently. The basic control strategy and the switching principle of micro-grid are analyzed in this paper. The reasons for the fluctuations of the voltage and the frequency in the switching process are analyzed from views of power balance and control strategy, and the operation mode switching strategy has been improved targeted. From the three aspects of controller’s current inner loop reference signal, voltage outer loop control strategy optimization and micro-grid energy balance management, a three-level security strategy for smooth switching of micro-grid operation mode is proposed. From the three aspects of controller’s current inner loop reference signal tracking, voltage outer loop control strategy optimization and micro-grid energy balance management, a three-level strategy for smooth switching of micro-grid operation mode is proposed. At last, it is proved by simulation that the proposed control strategy can make the switching process smooth and stable, the fluctuation problem of the voltage and frequency has been effectively improved.

  8. Frequency-dependent squeeze-amplitude attenuation and squeeze-angle rotation by electromagnetically induced transparency for gravitational-wave interferometers

    International Nuclear Information System (INIS)

    Mikhailov, Eugeniy E.; Goda, Keisuke; Corbitt, Thomas; Mavalvala, Nergis

    2006-01-01

    We study the effects of frequency-dependent squeeze-amplitude attenuation and squeeze-angle rotation by electromagnetically induced transparency (EIT) on gravitational-wave (GW) interferometers. We propose the use of low-pass, bandpass, and high-pass EIT filters, an S-shaped EIT filter, and an intracavity EIT filter to generate frequency-dependent squeezing for injection into the antisymmetric port of GW interferometers. We find that the EIT filters have several advantages over the previous filter designs with regard to optical losses, compactness, and the tunability of the filter linewidth

  9. The spectral analysis of an aero-engine assembly incorporating a squeeze-film damper

    Science.gov (United States)

    Holmes, R.; Dede, M. M.

    1989-01-01

    Aero-engine structures have very low inherent damping and so artificial damping is often introduced by pumping oil into annular gaps between the casings and the outer races of some or all of the rolling-element bearings supporting the rotors. The thin oil films so formed are called squeeze film dampers and they can be beneficial in reducing rotor vibration due to unbalance and keeping to reasonable limits the forces transmitted to the engine casing. However, squeeze-film dampers are notoriously non-linear and as a result can introduce into the assembly such phenomena as subharmonic oscillations, jumps and combination frequencies. The purpose of the research is to investigate such phenomena both theoretically and experimentally on a test facility reproducing the essential features of a medium-size aero engine. The forerunner of this work was published. It was concerned with the examination of a squeeze-film damper in series with housing flexibility when supporting a rotor. The structure represented to a limited extent the essentials of the projected Rolls Royce RB401 engine. That research demonstrated the ability to calculate the oil-film forces arising from the squeeze film from known motions of the bearing components and showed that the dynamics of a shaft fitted with a squeeze film bearing can be predicted reasonably accurately. An aero-engine will normally have at least two shafts and so in addition to the excitation forces which are synchronous with the rotation of one shaft, there will also be forces at other frequencies from other shafts operating on the squeeze-film damper. Theoretical and experimental work to consider severe loading of squeeze-film dampers and to include these additional effects are examined.

  10. Multiphoton states and amplitude k-th power squeezing

    International Nuclear Information System (INIS)

    Buzek, V.; Jex, I.

    1991-01-01

    On the basis of the work of d'Ariano and coworkers a new type of multiphoton states is introduced. Amplitude k-th power squeezing of the multiphoton states are analysed. In particular, it is shown that even if the multiphoton states do not exhibit ordinary squeezing they can be amplitude k-th power squeezed

  11. The Modes of Data Development in the Internet Age

    Directory of Open Access Journals (Sweden)

    Yuxian Wu

    2007-12-01

    Full Text Available It is historical that data development has its own mode (collect, treatment, delivery, store, and use, from Manual mode, Mechanism mode, and Electronic mode, now to the Network mode. And search engine plus self-learning is the advanced mode of data development. Network mode has also been changing, the underlying motivation exits in the development & progress of Internet itself. There are two huge trends force the mode of data development to face new challenge & make decision. One is the revolution resulted by the change of the user market need & represented by Web2.0. Another is the revolution resulted by technological developing tendency & represented by Grid. Squeezed by the two huge trends from opposite directions, the lagging, crude and inefficient mode will change revolutionarily forced by wise decision-making or silent market. As for data-development mode, the change of technology & operation need the change of game rule simultaneously. So eliminating barriers, promoting resource-sharing, rationalize relations of market/non-market is to be a big inescapable work

  12. Ultrafast optical generation of squeezed magnon states and long lifetime coherent LO phonons

    Science.gov (United States)

    Zhao, Jimin

    2005-12-01

    Ultrafast optical pulses have been used to generate, probe, and control low-energy elementary excitations in crystals. In particular, we report the first experimental demonstration of the generation of quantum squeezed states of magnons (collective spin-wave excitations) in a magnetic material, and new progress in experimental investigation of anharmonic interactions in a semiconductor. The mechanism for the magnon squeezing is two-magnon impulsive stimulated Raman scattering (ISRS). Femtosecond laser pulses have been used to coherently correlate degenerate counter-propagating magnons in the antiferromagnetic insulator MnF2. In the squeezed state, fluctuations of the magnetization of a crystallographic unit cell vary periodically in time and are reduced below that of the ground-state quantum noise. Similar experiments were also performed in another antiferromagnetic insulator, FeF2, for which the squeezing effect is one order of magnitude larger. We have also investigated the anharmonic interaction of the low-frequency E2 phonon in ZnO through ISRS. Temperature dependence of the linewidth and frequency indicates that the two-phonon up-conversion process is the dominant decay channel and isotopic disorder may be the main limit on the lifetime at low temperature. We have observed the longest lifetime of an optical phonon mode in a solid (211 ps at 5 K). And we have found that pump-probe experiments, compared with spontaneous Raman spectroscopy, have extremely high accuracy in determining the frequency of a low-lying excitation.

  13. The Second International Workshop on Squeezed States and Uncertainty Relations

    Science.gov (United States)

    Han, D. (Editor); Kim, Y. S.; Manko, V. I.

    1993-01-01

    This conference publication contains the proceedings of the Second International Workshop on Squeezed States and Uncertainty Relations held in Moscow, Russia, on 25-29 May 1992. The purpose of this workshop was to study possible applications of squeezed states of light. The Workshop brought together many active researchers in squeezed states of light and those who may find the concept of squeezed states useful in their research, particularly in understanding the uncertainty relations. It was found at this workshop that the squeezed state has a much broader implication than the two-photon coherent states in quantum optics, since the squeeze transformation is one of the most fundamental transformations in physics.

  14. Optimal Protection Coordination for Microgrid under Different Operating Modes

    Directory of Open Access Journals (Sweden)

    Ming-Ta Yang

    2013-01-01

    Full Text Available Significant consequences result when a microgrid is connected to a distribution system. This study discusses the impacts of bolted three-phase faults and bolted single line-to-ground faults on the protection coordination of a distribution system connected by a microgrid which operates in utility-only mode or in grid-connected mode. The power system simulation software is used to build the test system. The linear programming method is applied to optimize the coordination of relays, and the relays coordination simulation software is used to verify if the coordination time intervals (CTIs of the primary/backup relay pairs are adequate. In addition, this study also proposes a relays protection coordination strategy when the microgrid operates in islanding mode during a utility power outage. Because conventional CO/LCO relays are not capable of detecting high impedance fault, intelligent electrical device (IED combined with wavelet transformer and neural network is proposed to accurately detect high impedance fault and identify the fault phase.

  15. Squeezed states and Hermite polynomials in a complex variable

    International Nuclear Information System (INIS)

    Ali, S. Twareque; Górska, K.; Horzela, A.; Szafraniec, F. H.

    2014-01-01

    Following the lines of the recent paper of J.-P. Gazeau and F. H. Szafraniec [J. Phys. A: Math. Theor. 44, 495201 (2011)], we construct here three types of coherent states, related to the Hermite polynomials in a complex variable which are orthogonal with respect to a non-rotationally invariant measure. We investigate relations between these coherent states and obtain the relationship between them and the squeezed states of quantum optics. We also obtain a second realization of the canonical coherent states in the Bargmann space of analytic functions, in terms of a squeezed basis. All this is done in the flavor of the classical approach of V. Bargmann [Commun. Pure Appl. Math. 14, 187 (1961)

  16. Acceleration of quasi-particle modes in Bose-Einstein condensates

    OpenAIRE

    Marzlin, Karl-Peter; Zhang, Weiping

    1998-01-01

    We analytically examine the dynamics of quasi-particle modes occuring in a Bose-Einstein condensate which is subject to a weak acceleration. It is shown that the momentum of a quasi-particle mode is squeezed rather than accelerated.

  17. Modeling Operating Modes during Plant Life Cycle

    DEFF Research Database (Denmark)

    Jørgensen, Sten Bay; Lind, Morten

    2012-01-01

    Modelling process plants during normal operation requires a set a basic assumptions to define the desired functionalities which lead to fullfillment of the operational goal(-s) for the plant. However during during start-up and shut down as well as during batch operation an ensemble of interrelated...... modes are required to cover the whole operational window of a processs plant including intermediary operating modes. Development of such an model ensemble for a plant would constitute a systematic way of defining the possible plant operating modes and thus provide a platform for also defining a set...... of candidate control structures. The present contribution focuses on development of a model ensemble for a plant with an illustartive example for a bioreactor. Starting from a functional model a process plant may be conceptually designed and qualitative operating models may be developed to cover the different...

  18. Teleportation of a Kind of Three-Mode Entangled States of Continuous Variables

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A quantum teleportation scheme to teleport a kind of tripartite entangled states of continuous variables by using a quantum channel composed of three bipartite entangled states is proposed. The joint Bell measurement is feasible because the bipartite entangled states are complete and the squeezed state has a natural representation in the entangled state basis. The calculation is greatly simplified by using the Schmidt decomposition of the entangled states.

  19. Absorption spectrum of a two-level atom in a bad cavity with injected squeezed vacuum

    Science.gov (United States)

    Zhou, Peng; Swain, S.

    1996-02-01

    We study the absorption spectrum of a coherently driven two-level atom interacting with a resonant cavity mode which is coupled to a broadband squeezed vacuum through its input-output mirror in the bad cavity limit. We study the modification of the two-photon correlation strength of the injected squeezed vacuum inside the cavity, and show that the equations describing probe absorption in the cavity environment are formally identical to these in free space, but with modified parameters describing the squeezed vacuum. The two photon correlations induced by the squeezed vacuum are always weaker than in free space. We pay particular attention to the spectral behaviour at line centre in the region of intermediate trength driving intensities, where anomalous spectral features such as hole-burning and dispersive profiles are displayed. These unusual spectral features are very sensitive to the squeezing phase and the Rabi frequency of the driving field. We also derive the threshold value of the Rabi frequency which gives rise to the transparency of the probe beam at the driving frequency. When the Rabi frequency is less than the threshold value, the probe beam is absorbed, whilst the probe beam is amplified (without population inversion under certain conditions) when the Rabi frequency is larger than this threshold. The anomalous spectral features all take place in the vicinity of the critical point dividing the different dynamical regimes, probe absorption and amplification, of the atomic radiation. The physical origin of the strong amplification without population inversion, and the feasibility of observing it, are discussed.

  20. Squeezing-out dynamics in free-standing smectic films

    Energy Technology Data Exchange (ETDEWEB)

    S̀liwa, Izabela, E-mail: izasliwa@ifmpan.poznan.pl [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznaǹ (Poland); Vakulenko, A.A. [Saint Petersburg Institute for Machine Sciences, The Russian Academy of Sciences, Saint Petersburg 199178 (Russian Federation); Zakharov, A.V., E-mail: alexandre.zakharov@yahoo.ca [Saint Petersburg Institute for Machine Sciences, The Russian Academy of Sciences, Saint Petersburg 199178 (Russian Federation)

    2016-05-06

    Highlights: • We model the dynamics of layer transitions. • We model the thermally activated nucleation of a small hole. • We model the dynamics of squeezing-out one layer. - Abstract: We have carried out a theoretical study of the dynamics of the squeezing-out of one layer from the N-layer free-standing smectic film (FSSF) coupled with a meniscus, during the layer-thinning process. Squeezing-out is initiated by a thermally activated nucleation process in which a density fluctuation forms a small void in the center of the circular FSSF. The pressure gradient develops between the squeezed-out and nonsqueezed-out areas and is responsible for the driving out of one or several layer(s) from the N-layer smectic film. The dynamics of the boundary between these areas in the FSSF is studied by the use of the conservation laws for mass and linear momentum with accounting for the coupling between the meniscus and the smectic film. This coupling has a strong effect on the dynamics of the squeezing-out process and may significantly change the time which is needed to completely squeezed-out one or several layer(s) from the N-layer smectic film.

  1. Coherent and squeezed states in phase space

    International Nuclear Information System (INIS)

    Jannussis, A.; Bartzis, V.; Vlahos, E.

    1990-01-01

    In the present paper, the coherent and the squeezed states in phase space have been studied. From the wave functions of the coherent and the squeezed state, their corresponding Wigner distribution functions are calculated. Especially the calculation of the corresponding Wigner functions for the above states permits the determination of the mean values of position and momentum and thus the Heisenberg uncertainty relation. In fact, from the related results, it is concluded that the uncertainty relation of the coherent and associated squeezed states is the same

  2. Quadrature measurements of a bright squeezed state via sideband swapping

    DEFF Research Database (Denmark)

    Schneider, J.; Glockl, O.; Leuchs, G.

    2009-01-01

    The measurement of an arbitrary quadrature of a bright quantum state of light is a commonly requested action in many quantum information protocols, but it is experimentally challenging with previously proposed schemes. We suggest that the quadrature be measured at a specific sideband frequency...... of a bright quantum state by transferring the sideband modes under interrogation to a vacuum state and subsequently measuring the quadrature via homodyne detection. The scheme is implemented experimentally, and it is successfully tested with a bright squeezed state of light....

  3. O(N) symmetries, sum rules for generalized Hermite polynomials and squeezed states

    International Nuclear Information System (INIS)

    Daboul, Jamil; Mizrahi, Salomon S

    2005-01-01

    Quantum optics has been dealing with coherent states, squeezed states and many other non-classical states. The associated mathematical framework makes use of special functions as Hermite polynomials, Laguerre polynomials and others. In this connection we here present some formal results that follow directly from the group O(N) of complex transformations. Motivated by the squeezed states structure, we introduce the generalized Hermite polynomials (GHP), which include as particular cases, the Hermite polynomials as well as the heat polynomials. Using generalized raising operators, we derive new sum rules for the GHP, which are covariant under O(N) transformations. The GHP and the associated sum rules become useful for evaluating Wigner functions in a straightforward manner. As a byproduct, we use one of these sum rules, on the operator level, to obtain raising and lowering operators for the Laguerre polynomials and show that they generate an sl(2, R) ≅ su(1, 1) algebra

  4. Squeezing corrections to the Bloch equations

    International Nuclear Information System (INIS)

    Abundo, M.; Accardi, L.

    1991-01-01

    The general analysis of quantum noise shows that a squeezing noise can produce quadratic nonlinearities in the Langevin equations leading to the Bloch equations. These quadratic nonlinearities are governed by the imaginary part of the off-diagonal terms of the covariance of the noise (the squeezing terms) and imply a correction to the usual form of the Bloch equations. Here the case of spin-one nuclei subjected to squeezing noises of particular type is studied numerically. It is shown that the corrections to the Bloch equations, suggested by the theory, to the behaviour of the macroscopic nuclear polarization in a scale of times of the order of the relaxation time can be quite substantial. In the equilibrium regime, even if the qualitative behaviour of the system is the same (exponential decay), the numerical equilibrium values predicted by the theory are consistently different from those predicted by the usual Bloch equation. It is suggested that this difference might be used to test experimentally the observable effects of squeezing noises

  5. Seismic transmission operator reciprocity - II: impedance-operator symmetry via elastic lateral modes

    Science.gov (United States)

    Thomson, C. J.

    2015-08-01

    The properties of the overburden transmission response are of particular interest for the analysis of reflectivity illumination or blurring in seismic depth imaging. The first step to showing a transmission-operator reciprocity property is to identify the symmetry of the so-called displacement-to-traction operators. The latter are analogous to Dirichlet-to-Neumann operators and they may also be called impedance operators. Their symmetry is deduced here after development of a formal spectral or modal theory of lateral wavefunctions in a laterally heterogeneous generally anisotropic elastic medium. The elastic lateral modes are displacement-traction 6-vectors and they are built from two auxiliary 3-vector lateral-mode bases. These auxiliary modes arise from Hermitian and anti-Hermitian operators, so they have familiar properties such as orthogonality. There is no assumption of down/up symmetry of the elasticity tensor, but basic assumptions are made about the existence and completeness of the elastic modes. A point-symmetry property appears and plays a central role. The 6-vector elastic modes have a symplectic orthogonality property, which facilitates the development of modal expansions for 6-vector functions of the lateral coordinates when completeness is assumed. While the elastic modal theory is consistent with the laterally homogeneous case, numerical work would provide confidence that it is correct in general. An appendix contains an introductory overview of acoustic lateral modes that were studied by other authors, given from the perspective of this new work. A distinction is drawn between unit normalization of scalar auxiliary modes and a separate energy-flux normalization of 2-vector acoustic modes. Neither is crucial to the form of acoustic pressure-to-velocity or impedance operators. This statement carries over to the elastic case for the 3-vector auxiliary- and 6-vector elastic-mode normalizations. The modal theory is used to construct the kernel of the

  6. Higher-Order Squeezing of Quantum Field and the Generalized Uncertainty Relations in Non-Degenerate Four-Wave Mixing

    Science.gov (United States)

    Li, Xi-Zeng; Su, Bao-Xia

    1996-01-01

    It is found that the field of the combined mode of the probe wave and the phase-conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. And the generalized uncertainty relations in this process are also presented.

  7. Crystal-field-modulated magnon squeezing states in a ferromagnet

    International Nuclear Information System (INIS)

    Peng Feng

    2003-01-01

    The magnon squeezing states in some magnetic crystals allow a reduction in the quantum fluctuations of the spin component to below the zero-point quantum noise level of the coherent magnon states. It is known that there are the magnon squeezing states in an antiferromagnet. However, their generating mechanism is not suitable for the ferromagnet. In this paper, we discuss the possibility of generating the magnon squeezing states in a ferromagnet, and discuss the effect of the crystal field on the magnon squeezing states

  8. Parsing polarization squeezing into Fock layers

    DEFF Research Database (Denmark)

    Mueller, Christian R.; Madsen, Lars Skovgaard; Klimov, Andrei B.

    2016-01-01

    photon number do the methods coincide; when the photon number is indefinite, we parse the state in Fock layers, finding that substantially higher squeezing can be observed in some of the single layers. By capitalizing on the properties of the Husimi Q function, we map this notion onto the Poincare space......, providing a full account of the measured squeezing....

  9. Three-dimensional graphene based passively mode-locked fiber laser.

    Science.gov (United States)

    Yang, Y; Loeblein, M; Tsang, S H; Chow, K K; Teo, E H T

    2014-12-15

    We present an all-fiber passively mode-locked fiber laser incorporating three-dimensional (3D) graphene as a saturable absorber (SA) for the first time to the best of our knowledge. The 3D graphene is synthesized by template-directed chemical vapor deposition (CVD). The SA is then simply formed by sandwiching the freestanding 3D graphene between two conventional fiber connectors without any deposition process. It is demonstrated that such 3D graphene based SA is capable to produce high quality mode-locked pulses. A passively mode-locked fiber laser is constructed and stable output pulses with a fundamental repetition rate of ~9.9 MHz and a pulse width of ~1 ps are generated from the fiber laser. The average output power of the laser is ~10.5 mW while the output pulse is operating at single pulse region. The results imply that the freestanding 3D graphene can be applied as an effective saturable absorption material for passively mode-locked lasers.

  10. Circuit breaker operation and potential failure modes during an earthquake

    International Nuclear Information System (INIS)

    Lambert, H.E.; Budnitz, R.J.

    1987-01-01

    This study addresses the effect of a strong-motion earthquake on circuit breaker operation. It focuses on the loss of offsite power (LOSP) transient caused by a strong-motion earthquake at the Zion Nuclear Power Plant. This paper also describes the operator action necessary to prevent core melt if the above circuit breaker failure modes occur simultaneously on three 4.16 KV buses. Numerous circuit breakers important to plant safety, such as circuit breakers to diesel generators and engineered safety systems (ESS), must open and/or close during this transient while strong motion is occurring. Potential seismically-induced circuit-breaker failures modes were uncovered while the study was conducted. These failure modes include: circuit breaker fails to close; circuit breaker trips inadvertently; circuit breaker fails to reclose after trip. The causes of these failure modes include: Relay chatter causes the circuit breaker to trip; Relay chatter causes anti-pumping relays to seal-in which prevents automatic closure of circuit breakers; Load sequencer failures. The incorporation of these failure modes as well as other instrumentation and control failures into a limited scope seismic probabilistic risk assessment is also discussed in this paper

  11. Squeezed light in optomechanical systems

    DEFF Research Database (Denmark)

    Harris, G. I.; Taylor, M. A.; Hoff, Ulrich Busk

    2012-01-01

    Squeezed light enhanced optomechanical measurements are demonstrated in both intra-cavity and biological contexts, with respective enhancements of 1.0 and 2.7 dB. Quantum enhanced microrheology of the cytoplasm of a yeast cell is thereby realized.......Squeezed light enhanced optomechanical measurements are demonstrated in both intra-cavity and biological contexts, with respective enhancements of 1.0 and 2.7 dB. Quantum enhanced microrheology of the cytoplasm of a yeast cell is thereby realized....

  12. Experimental Realization of a Thermal Squeezed State of Levitated Optomechanics

    Science.gov (United States)

    Rashid, Muddassar; Tufarelli, Tommaso; Bateman, James; Vovrosh, Jamie; Hempston, David; Kim, M. S.; Ulbricht, Hendrik

    2016-12-01

    We experimentally squeeze the thermal motional state of an optically levitated nanosphere by fast switching between two trapping frequencies. The measured phase-space distribution of the center of mass of our particle shows the typical shape of a squeezed thermal state, from which we infer up to 2.7 dB of squeezing along one motional direction. In these experiments the average thermal occupancy is high and, even after squeezing, the motional state remains in the remit of classical statistical mechanics. Nevertheless, we argue that the manipulation scheme described here could be used to achieve squeezing in the quantum regime if preceded by cooling of the levitated mechanical oscillator. Additionally, a higher degree of squeezing could, in principle, be achieved by repeating the frequency-switching protocol multiple times.

  13. Perspective gyrotron with mode converter for co- and counter-rotation operating modes

    Energy Technology Data Exchange (ETDEWEB)

    Chirkov, A. V.; Kuftin, A. N. [Institute of Applied Physics, Russian Academy of Sciences, 46 Ul' yanov Street, 603950 Nizhny Novgorod (Russian Federation); Denisov, G. G. [Institute of Applied Physics, Russian Academy of Sciences, 46 Ul' yanov Street, 603950 Nizhny Novgorod (Russian Federation); University of Nizhny Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod (Russian Federation)

    2015-06-29

    A gyrotron oscillator operating efficiently at modes of both rotations was developed and tested. The gyrotron operation can be switched between two modes: co- and counter rotating ones with respect to electron rotation in a resonance magnetic field. A synthesized mode converter provides output of both waves in the form of two different paraxial wave beams corresponding to direction of the mode rotation. Measured gyrotron power (up to 2 MW), interaction efficiency (34%), and diffraction losses in the mode converter (≈2%) agree well with the design values. The proposed gyrotron scheme alloys principal enhancement in the device parameters—possibility of electronic switching of output wave beam direction and possibility to arrange an effective scheme to provide frequency/phase locking of a gyrotron-oscillator.

  14. Perspective gyrotron with mode converter for co- and counter-rotation operating modes

    International Nuclear Information System (INIS)

    Chirkov, A. V.; Kuftin, A. N.; Denisov, G. G.

    2015-01-01

    A gyrotron oscillator operating efficiently at modes of both rotations was developed and tested. The gyrotron operation can be switched between two modes: co- and counter rotating ones with respect to electron rotation in a resonance magnetic field. A synthesized mode converter provides output of both waves in the form of two different paraxial wave beams corresponding to direction of the mode rotation. Measured gyrotron power (up to 2 MW), interaction efficiency (34%), and diffraction losses in the mode converter (≈2%) agree well with the design values. The proposed gyrotron scheme alloys principal enhancement in the device parameters—possibility of electronic switching of output wave beam direction and possibility to arrange an effective scheme to provide frequency/phase locking of a gyrotron-oscillator

  15. Teleportation of squeezing: Optimization using non-Gaussian resources

    International Nuclear Information System (INIS)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio; Adesso, Gerardo

    2010-01-01

    We study the continuous-variable quantum teleportation of states, statistical moments of observables, and scale parameters such as squeezing. We investigate the problem both in ideal and imperfect Vaidman-Braunstein-Kimble protocol setups. We show how the teleportation fidelity is maximized and the difference between output and input variances is minimized by using suitably optimized entangled resources. Specifically, we consider the teleportation of coherent squeezed states, exploiting squeezed Bell states as entangled resources. This class of non-Gaussian states, introduced by Illuminati and co-workers [F. Dell'Anno, S. De Siena, L. Albano, and F. Illuminati, Phys. Rev. A 76, 022301 (2007); F. Dell'Anno, S. De Siena, and F. Illuminati, ibid. 81, 012333 (2010)], includes photon-added and photon-subtracted squeezed states as special cases. At variance with the case of entangled Gaussian resources, the use of entangled non-Gaussian squeezed Bell resources allows one to choose different optimization procedures that lead to inequivalent results. Performing two independent optimization procedures, one can either maximize the state teleportation fidelity, or minimize the difference between input and output quadrature variances. The two different procedures are compared depending on the degrees of displacement and squeezing of the input states and on the working conditions in ideal and nonideal setups.

  16. Resonance Fluorescence from an Artificial Atom in Squeezed Vacuum

    Directory of Open Access Journals (Sweden)

    D. M. Toyli

    2016-07-01

    Full Text Available We present an experimental realization of resonance fluorescence in squeezed vacuum. We strongly couple microwave-frequency squeezed light to a superconducting artificial atom and detect the resulting fluorescence with high resolution enabled by a broadband traveling-wave parametric amplifier. We investigate the fluorescence spectra in the weak and strong driving regimes, observing up to 3.1 dB of reduction of the fluorescence linewidth below the ordinary vacuum level and a dramatic dependence of the Mollow triplet spectrum on the relative phase of the driving and squeezed vacuum fields. Our results are in excellent agreement with predictions for spectra produced by a two-level atom in squeezed vacuum [Phys. Rev. Lett. 58, 2539 (1987], demonstrating that resonance fluorescence offers a resource-efficient means to characterize squeezing in cryogenic environments.

  17. Photon statistics, antibunching and squeezed states

    International Nuclear Information System (INIS)

    Leuchs, G.

    1986-01-01

    This paper attempts to describe the status and addresses future prospects of experiments regarding photon antibunching, and squeezed states. Light correlation is presented in the framework of classical electrodynamics. The extension to quantized radiation fields is discussed and an introduction to the basic principles related to photon statistics, antibunching and squeezed states are presented. The effect of linear attenuation (beam splitters, neutral density filters, and detector quantum efficiency) on the detected signal is discussed. Experiments on the change of photon statistics by the nonlinear interaction of radiation fields with matter are described and some experimental observations of antibunching and sub-Poissonian photon statistics in resonance fluorescence and with possible schemes for the generation and detection of squeezed states are examined

  18. Squeezing in an injection-locked semiconductor laser

    Science.gov (United States)

    Inoue, S.; Machida, S.; Yamamoto, Y.; Ohzu, H.

    1993-09-01

    The intensity-noise properties of an injection-locked semiconductor laser were studied experimentally. The constant-current-driven semiconductor laser producing the amplitude-squeezed state whose intensity noise was reduced below the standard quantum limit (SQL) by 0.72 dB was injection-locked by an external master laser. The measured intensity-noise level of the injection-locked semiconductor laser was 0.91 dB below the SQL. This experimental result indicates that a phase-coherent amplitude-squeezed state or squeezed vacuum state together with a reference local oscillator wave can be generated directly by semiconductor laser systems.

  19. Studying fluid squeeze characteristics for aerostatic journal bearing

    International Nuclear Information System (INIS)

    Abdel-Rahman, Gamal M.

    2008-01-01

    The Reynolds equation for studying fluid squeeze of aerostatic journal bearing is solved numerically by considering the quasi-steady behavior of the air film. The radial displacement can influence the air film thickness modifying the pressure distribution in the journal-bearing gap. Also, the variations in the seal characteristics with eccentricity, time, squeeze number, length-to-diameter and supply pressure are presented. The numerical results for the squeeze load-carrying capacity are given in a non-dimensional form

  20. Online channel operation mode: Game theoretical analysis from the supply chain power structure

    Directory of Open Access Journals (Sweden)

    Song Huang

    2015-11-01

    Full Text Available Purpose: Dual-channels have been widely used in practice, and the pricing decisions and the online channel operation mode choice have been the core problems in dual-channel supply chain management. This paper focuses on the online channel operation mode choice from the supply chain power structures based on game theoretical analysis. Design/methodology/approach: This paper utilizes three kinds of game theoretical models to analyze the impact of supply chain power structures on the optimal pricing and online channel operation mode choice. Findings: Results derived in this paper indicate that when the self-price elasticity is large, the power structures have no direct impact on the decisions. However, when the self-price elasticity is small and customers’ preference for the online channel is low, then in the MS market, it is better for the retailer to operate the online channel, while in the RS market or in the VN market, it is better for the manufacturer to operate the online channel. Research limitations/implications: In this paper, we do not consider stochastic demand and asymmetric information, which may not well suit the reality. Originality/value: This paper provides a different perspective to analyze the impact of supply chain power structures on the pricing decisions and online channel operation mode choice. The comparison of these two online channel operation modes in this paper is also a unique point.

  1. Research of the Power Plant Operational Modes

    Directory of Open Access Journals (Sweden)

    Koismynina Nina M.

    2017-01-01

    Full Text Available In this article the algorithm of the power plant operational modes research is offered. According to this algorithm the program for the modes analysis and connection power transformers choice is developed. The program can be used as educational means for studying of the power plant electric part, at the same time basic data are provided. Also the program can be used for the analysis of the working power plants modes. Checks of the entered data completeness and a choice correctness of the operational modes are provided in the program; in all cases of a deviation from the correct decisions to the user the relevant information is given.

  2. Teleportation of squeezing: Optimization using non-Gaussian resources

    Science.gov (United States)

    Dell'Anno, Fabio; de Siena, Silvio; Adesso, Gerardo; Illuminati, Fabrizio

    2010-12-01

    We study the continuous-variable quantum teleportation of states, statistical moments of observables, and scale parameters such as squeezing. We investigate the problem both in ideal and imperfect Vaidman-Braunstein-Kimble protocol setups. We show how the teleportation fidelity is maximized and the difference between output and input variances is minimized by using suitably optimized entangled resources. Specifically, we consider the teleportation of coherent squeezed states, exploiting squeezed Bell states as entangled resources. This class of non-Gaussian states, introduced by Illuminati and co-workers [F. Dell’Anno, S. De Siena, L. Albano, and F. Illuminati, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.022301 76, 022301 (2007); F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.81.012333 81, 012333 (2010)], includes photon-added and photon-subtracted squeezed states as special cases. At variance with the case of entangled Gaussian resources, the use of entangled non-Gaussian squeezed Bell resources allows one to choose different optimization procedures that lead to inequivalent results. Performing two independent optimization procedures, one can either maximize the state teleportation fidelity, or minimize the difference between input and output quadrature variances. The two different procedures are compared depending on the degrees of displacement and squeezing of the input states and on the working conditions in ideal and nonideal setups.

  3. Generating spin squeezing states and Greenberger-Horne-Zeilinger entanglement using a hybrid phonon-spin ensemble in diamond

    Science.gov (United States)

    Xia, Keyu; Twamley, Jason

    2016-11-01

    Quantum squeezing and entanglement of spins can be used to improve the sensitivity in quantum metrology. Here we propose a scheme to create collective coupling of an ensemble of spins to a mechanical vibrational mode actuated by an external magnetic field. We find an evolution time where the mechanical motion decouples from the spins, and the accumulated geometric phase yields a squeezing of 5.9 dB for 20 spins. We also show the creation of a Greenberger-Horne-Zeilinger spin state for 20 spins with a fidelity of ˜0.62 at cryogenic temperature. The numerical simulations show that the geometric-phase-based scheme is mostly immune to thermal mechanical noise.

  4. Luminescence and squeezing of a superconducting light-emitting diode

    Science.gov (United States)

    Hlobil, Patrik; Orth, Peter P.

    2015-05-01

    We investigate a semiconductor p -n junction in contact with superconducting leads that is operated under forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the electroluminescence in a sharp frequency window. We demonstrate that the tunneling of Cooper pairs induces an additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence that results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes of the emitted light. We show that the squeezing angle can be electrically manipulated by changing the relative phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and show that the laser threshold is reduced due to superconductivity. This reveals how the macroscopic coherence of a superconductor can be used to control the properties of light.

  5. Colliding During the Squeeze and β* Levelling in the LHC

    CERN Document Server

    Buffat, X; Lamont, M; Pieloni, T; Redaelli, S; Wenninger, J

    2013-01-01

    While significantly more complicated in term of operation, bringing the beams into collisions prior to the β squeeze rather than after presents some advantages. Indeed, the large tune spread arising from the non-linearity of head-on beam-beam interactions is profitable, as it can damp impedance driven instabilities much more efficiently than external non-linearity such as octupoles. Moreover, this operation allows to level the luminosity in the case when the peak luminosity is too high for the experiments. Operational issues are discussed and experimental results from the LHC are presented.

  6. Collapse–revival of squeezing of two atoms in dissipative cavities

    International Nuclear Information System (INIS)

    Zou Hong-Mei; Fang Mao-Fa

    2016-01-01

    Based on the time-convolutionless master-equation approach, we investigate the squeezing dynamics of two atoms in dissipative cavities. We find that the atomic squeezing is related to initial atomic states, atom–cavity couplings, non-Markovian effects and resonant frequencies of an atom and its cavity. The results show that a collapse–revival phenomenon will occur in the atomic squeezing and this process is accompanied by the buildup and decay of entanglement between two atoms. Enhancing the atom–cavity coupling can increase the frequency of the collapse–revival of the atomic squeezing. The stronger the non-Markovian effect is, the more obvious the collapse–revival phenomenon is. In particular, if the atom–cavity coupling or the non-Markovian effect is very strong, the atomic squeezing will tend to a stably periodic oscillation in a long time. The oscillatory frequency of the atomic squeezing is dependent on the resonant frequency of the atom and its cavity. (paper)

  7. Simulations and experiments on polarization squeezing in optical fiber

    DEFF Research Database (Denmark)

    Corney, J.F.; Heersink, J.; Dong, R.

    2008-01-01

    We investigate polarization squeezing of ultrashort pulses in optical fiber, over a wide range of input energies and fiber lengths. Comparisons are made between experimental data and quantum dynamical simulations to find good quantitative agreement. The numerical calculations, performed using both...... effects cause a marked deterioration of squeezing at higher energies and longer fiber lengths. We also calculate the optimum fiber length for maximum squeezing....

  8. Magnon squeezing states in a ferromagnet

    International Nuclear Information System (INIS)

    Wang Junfeng; Cheng Ze; Ping Yunxia; Wan Jinyin; Zhang Yanmin

    2006-01-01

    In this Letter we discuss squeezing state of magnon in ferromagnet, which permits a reduction in the quantum fluctuation of the spin component to below the zero-point quantum noise level of coherent magnon states. We investigate the generation of squeezed magnon state through calculating the expectation values of spin component fluctuation. The mean field theory is introduced in dealing with the nonlinear interaction terms of Hamiltonian of magnon system

  9. Geotechnical conditions at the Konrad mine. Excavation of drifts and rooms in squeezing rock

    International Nuclear Information System (INIS)

    Stahlmann, Joachim; Missal, Christian

    2014-01-01

    The Konrad mine is a former iron ore mine near Salzgitter in Germany. The mine will be rebuilt in the next few years into a repository for low and intermediate level radioactive waste. During this conversion drifts and rooms for operating the repository are extended and newly constructed at shaft 2 on the 2nd floor level (depth 850 m). The planned useful life for the rooms is 40 years. In this period, maintenance-free operation has to be ensured. The bedrock is characterized by complex geology. In addition, the mudstone layers show partly a squeezing behavior. For the proof of stability and usability, the observation method is applied. Therefore numerical prediction models are necessary, which can reproduce the three dimensional stress redistribution and convergences in the rock mass. These numerical calculations are flanked by an extensive geotechnical measurement program in order to detect the real behavior of the bedrock. The underground support system consists of a slotted lining with sliding anchors in the areas where squeezing rock is present. This allows converging of the bedrock. During the convergence period a bearing ring is formed within the rock mass. Afterwards the final lining is created in reinforced shotcrete. One major issue is the assessment of the convergence period taking into account the numerical prediction model and the measurement program.

  10. Charging system with galvanic isolation and multiple operating modes

    Science.gov (United States)

    Kajouke, Lateef A.; Perisic, Milun; Ransom, Ray M.

    2013-01-08

    Systems and methods are provided for operating a charging system with galvanic isolation adapted for multiple operating modes. A vehicle charging system comprises a DC interface, an AC interface, a first conversion module coupled to the DC interface, and a second conversion module coupled to the AC interface. An isolation module is coupled between the first conversion module and the second conversion module. The isolation module comprises a transformer and a switching element coupled between the transformer and the second conversion module. The transformer and the switching element are cooperatively configured for a plurality of operating modes, wherein each operating mode of the plurality of operating modes corresponds to a respective turns ratio of the transformer.

  11. Squeezing survival and transfer in single and double electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Ding, J L; Hou, B P; Wang, S J

    2010-01-01

    We investigate the propagation and storage of a squeezed vacuum as the probe light in a collection of N four-level tripod configuration atoms under the condition of single or double electromagnetically induced transparency (EIT). The squeezing of the probe light is well preserved in both the single transparency channel and the double transparency one. On the other hand, the effects of the ground state dephasing rates on the propagation and storage of the squeezed vacuum are investigated. It is found that the maximum squeezing at the transparency points is suppressed by the dephasing rates in single or double EIT. Meanwhile, the mapping of the squeezing of the probe light onto the atomic ground coherences or onto the two atomic dark-state polaritons is also studied. In the absence of the Langevin atomic noise, the quasi-ideal squeezing transfer between the squeezed vacuum and the atomic ground coherences or the dark-state polaritons can be realized in such a system. When considering the Langevin atomic noise, the quantum characteristics of the atomic coherences at resonance are submerged by the Langevin noise, while in the scenario of the dark-state polariton, it is found that squeezing transfer onto one polariton is damaged, but the squeezing transfer onto the other polariton survives even in the presence of the Langevin noise.

  12. Predicting Tunnel Squeezing Using Multiclass Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Yang Sun

    2018-01-01

    Full Text Available Tunnel squeezing is one of the major geological disasters that often occur during the construction of tunnels in weak rock masses subjected to high in situ stresses. It could cause shield jamming, budget overruns, and construction delays and could even lead to tunnel instability and casualties. Therefore, accurate prediction or identification of tunnel squeezing is extremely important in the design and construction of tunnels. This study presents a modified application of a multiclass support vector machine (SVM to predict tunnel squeezing based on four parameters, that is, diameter (D, buried depth (H, support stiffness (K, and rock tunneling quality index (Q. We compiled a database from the literature, including 117 case histories obtained from different countries such as India, Nepal, and Bhutan, to train the multiclass SVM model. The proposed model was validated using 8-fold cross validation, and the average error percentage was approximately 11.87%. Compared with existing approaches, the proposed multiclass SVM model yields a better performance in predictive accuracy. More importantly, one could estimate the severity of potential squeezing problems based on the predicted squeezing categories/classes.

  13. Reduction of quantum noise in the Michelson interferometer by use of squeezed vacuum states

    International Nuclear Information System (INIS)

    Assaf, Ohad; Ben-Aryeh, Yacob

    2002-01-01

    We develop further the unified model for treating photon-counting and radiation-pressure fluctuations in the Michelson interferometer with input of squeezed vacuum state. The dependence of the quantum fluctuations on the phase of the input light is calculated. The analysis is restricted to a single-mode interferometer, but generalized in a way that includes both harmonic-oscillator and floating mirrors. We compare our results with those of other authors

  14. Topological Coherent Modes in Trapped Bose Gas

    International Nuclear Information System (INIS)

    Yukalov, V.I.; Marzlin, K.-P.; Yukalova, E.P.; Bagnato, V.S.

    2005-01-01

    The report reviews the problem of topological coherent modes, which are nonlinear collective states of Bose-condensed atoms. Such modes can be generated by means of alternating external fields, whose frequencies are in resonance with the transition frequencies between the related modes. The Bose gas with generated topological coherent modes is a collective nonlinear analog of a resonant atom. Such systems exhibit a variety of nontrivial effects, e.g. interference fringes, interference current, mode locking, dynamic transitions, critical phenomena, chaotic motion, harmonic generation, parametric conversion, atomic squeezing, and entanglement production

  15. Possible Depolarization Mechanism due to Low Beta Squeeze

    International Nuclear Information System (INIS)

    Ranjbar, V.; Luccio, A.; Bai, M.

    2008-01-01

    Simulations reveal a potential depolarization mechanism during low beta squeeze. This depolarization appears to be driven by a spin tune modulation caused by spin precession through the strong low beta quads due to the vertical fields. The modulation of the spin tune introduces an additional snake resonance condition at ν s0 ± nν x - ν z l = integer which while the same numerology as the well known sextupole resonance, can operate in the absence of sextupole elements

  16. Coherent light squeezing states within a modified microring system

    Directory of Open Access Journals (Sweden)

    J. Ali

    2018-06-01

    Full Text Available We have proposed the simple method of the squeezed light generation in the modified microring resonator, which is known as the microring conjugate mirror (MCM. When the monochromatic light is input into the MCM, the general form of the squeezed coherent states for a quantum harmonic oscillator can be generated by controlling the additional two side rings, which are the phase modulators. By using the graphical method called the Optiwave program, the coherent squeezed states of coherent light within an MCM can be obtained and interpreted as the amplitude, phase, quadrature and photon number-squeezed states. This method has shown potentials for microring related device design, which can be used before practical applications.

  17. Coherent light squeezing states within a modified microring system

    Science.gov (United States)

    Ali, J.; Pornsuwancharoen, N.; Youplao, P.; Aziz, M. S.; Amiri, I. S.; Chaiwong, K.; Chiangga, S.; Singh, G.; Yupapin, P.

    2018-06-01

    We have proposed the simple method of the squeezed light generation in the modified microring resonator, which is known as the microring conjugate mirror (MCM). When the monochromatic light is input into the MCM, the general form of the squeezed coherent states for a quantum harmonic oscillator can be generated by controlling the additional two side rings, which are the phase modulators. By using the graphical method called the Optiwave program, the coherent squeezed states of coherent light within an MCM can be obtained and interpreted as the amplitude, phase, quadrature and photon number-squeezed states. This method has shown potentials for microring related device design, which can be used before practical applications.

  18. Secure quantum key distribution using squeezed states

    International Nuclear Information System (INIS)

    Gottesman, Daniel; Preskill, John

    2001-01-01

    We prove the security of a quantum key distribution scheme based on transmission of squeezed quantum states of a harmonic oscillator. Our proof employs quantum error-correcting codes that encode a finite-dimensional quantum system in the infinite-dimensional Hilbert space of an oscillator, and protect against errors that shift the canonical variables p and q. If the noise in the quantum channel is weak, squeezing signal states by 2.51 dB (a squeeze factor e r =1.34) is sufficient in principle to ensure the security of a protocol that is suitably enhanced by classical error correction and privacy amplification. Secure key distribution can be achieved over distances comparable to the attenuation length of the quantum channel

  19. Fifth International Conference on Squeezed States and Uncertainty Relations

    Science.gov (United States)

    Han, D. (Editor); Janszky, J. (Editor); Kim, Y. S. (Editor); Man'ko, V. I. (Editor)

    1998-01-01

    The Fifth International Conference on Squeezed States and Uncertainty Relations was held at Balatonfured, Hungary, on 27-31 May 1997. This series was initiated in 1991 at the College Park Campus of the University of Maryland as the Workshop on Squeezed States and Uncertainty Relations. The scientific purpose of this series was to discuss squeezed states of light, but in recent years the scope is becoming broad enough to include studies of uncertainty relations and squeeze transformations in all branches of physics including quantum optics and foundations of quantum mechanics. Quantum optics will continue playing the pivotal role in the future, but the future meetings will include all branches of physics where squeeze transformations are basic. As the meeting attracted more participants and started covering more diversified subjects, the fourth meeting was called an international conference. The Fourth International Conference on Squeezed States and Uncertainty Relations was held in 1995 was hosted by Shanxi University in Taiyuan, China. The fifth meeting of this series, which was held at Balatonfured, Hungary, was also supported by the IUPAP. In 1999, the Sixth International Conference will be hosted by the University of Naples in 1999. The meeting will take place in Ravello near Naples.

  20. Dynamics of Foreign Operations Modes and Their Combinations

    DEFF Research Database (Denmark)

    Benito, Gabriel R. G.; Petersen, Bent; Welch, Lawrence S.

    Companies’ choice of foreign operation modes (FOM) has been a core subject of international business studies basically from its beginning (Hymer, 1960 [1976]; Root, 1964). A halfcentury of research has brought us a set of established perspectives on companies’ foreign operation mode choices...

  1. Ecological operation for Three Gorges Reservoir

    Directory of Open Access Journals (Sweden)

    Wen-xian Guo

    2011-06-01

    Full Text Available The traditional operation of the Three Gorges Reservoir has mainly focused on water for flood control, power generation, navigation, water supply, and recreation, and given less attention to the negative impacts of reservoir operation on the river ecosystem. In order to reduce the negative influence of reservoir operation, ecological operation of the reservoir should be studied with a focus on maintaining a healthy river ecosystem. This study considered ecological operation targets, including maintaining the river environmental flow and protecting the spawning and reproduction of the Chinese sturgeon and four major Chinese carps. Using flow data from 1900 to 2006 at the Yichang gauging station as the control station data for the Yangtze River, the minimal and optimal river environmental flows were analyzed, and eco-hydrological targets for the Chinese sturgeon and four major Chinese carps in the Yangtze River were calculated. This paper proposes a reservoir ecological operation model, which comprehensively considers flood control, power generation, navigation, and the ecological environment. Three typical periods, wet, normal, and dry years, were selected, and the particle swarm optimization algorithm was used to analyze the model. The results show that ecological operation modes have different effects on the economic benefit of the hydropower station, and the reservoir ecological operation model can simulate the flood pulse for the requirements of spawning of the Chinese sturgeon and four major Chinese carps. According to the results, by adopting a suitable re-operation scheme, the hydropower benefit of the reservoir will not decrease dramatically while the ecological demand is met. The results provide a reference for designing reasonable operation schemes for the Three Gorges Reservoir.

  2. A faster urethral pressure reflectometry technique for evaluating the squeezing function

    DEFF Research Database (Denmark)

    Klarskov, Niels; Saaby, Marie-Louise; Lose, Gunnar

    2013-01-01

    Abstract Objective. Urethral pressure reflectometry (UPR) has shown to be superior in evaluating the squeeze function compared to urethral pressure profilometry. The conventional UPR measurement (step method) required up to 15 squeezes to provide one measure of the squeezing opening pressure...

  3. Planar quantum squeezing and atom interferometry

    Energy Technology Data Exchange (ETDEWEB)

    He, Q. Y.; Drummond, P. D.; Reid, M. D. [ARC Centre of Excellence for Quantum-Atom Optics, Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia); Peng Shiguo [Department of Physics, Tsinghua University, Beijing 100084 (China)

    2011-08-15

    We obtain a lower bound on the sum of two orthogonal spin component variances in a plane. This gives a planar uncertainty relation which holds even when the Heisenberg relation is not useful. We investigate the asymptotic, large-J limit and derive the properties of the planar quantum squeezed states that saturate this uncertainty relation. These states extend the concept of spin squeezing to any two conjugate spin directions. We show that planar quantum squeezing can be achieved experimentally as the ground state of a Bose-Einstein condensate in two coupled potential wells with a critical attractive interaction. These states reduce interferometric phase noise at all phase angles simultaneously. This is useful for one-shot interferometric phase measurements where the measured phase is completely unknown. Our results can also be used to derive entanglement criteria for multiple spins J at separated sites, with applications in quantum information.

  4. Modeling Operating Modes for the Monju Nuclear Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Yoshikawa, H.; Jørgensen, Sten Bay

    2012-01-01

    of the process plant, its function and its structural elements. The paper explains how the means-end concepts of MFM can be used to provide formalized definitions of plant operation modes. The paper will introduce the mode types defined by MFM and show how selected operation modes can be represented...

  5. A macromodel for squeeze-film air damping in the free-molecule regime

    KAUST Repository

    Hong, Gang; Ye, Wenjing

    2010-01-01

    A three-dimensional Monte Carlo(MC) simulation approach is developed for the accurate prediction of the squeeze-film air damping on microresonators in the free-molecule gas regime. Based on the MC simulations and the analytical traveling

  6. Influence of squeeze film damping on the higher-order modes of clamped–clamped microbeams

    KAUST Repository

    Alcheikh, Nouha; Kosuru, Lakshmoji; Jaber, Nizar; Bellaredj, Mohammed Lamine Faycal; Younis, Mohammad I.

    2016-01-01

    such resonators in air. Experimental results and finite element model simulations show good agreement for resonance frequency and quality factor for the three studied modes. © 2016 IOP Publishing Ltd.

  7. Startup methods for single-mode gyrotron operation

    International Nuclear Information System (INIS)

    Whaley, D.R.; Tran, M.Q.; Alberti, S.; Tran, T.M.; Antonsen, T.M.; Tran, C.

    1995-03-01

    Experimental results of startup studies on a 118 GHz TE 22,6 gyrotron are presented and compared with theory. The theoretical excitation regimes of competing modes are computed in the energy-velocity-pitch-angle plane near the operation point. The startup paths through the plane are determined by the time evolution of the beam parameters during the startup phase. These startup paths are modified by changing the anode and cathode voltage rise from zero to their nominal values and are seen to determine the cavity oscillating mode. Experimental results show specifically that competition between the TE 22,6 and TE -19,7 mode can be completely eliminated by using the proper startup method in a case where a typical triode startup results in oscillation in the competing TE -19,7 mode. These new results are shown to be in excellent agreement with theory whose approach is general and therefore applicable to gyrotrons operating in any arbitrary cavity mode. (author) 5 figs., 1 tab., 13 refs

  8. Probe transparency in a two-level medium embedded by a squeezed vacuum

    International Nuclear Information System (INIS)

    Swain, S.; Zhou, P.

    1994-08-01

    Effect of the detuning on the probe absorption spectra of a two-level system with and without a classically driven field in a squeezed vacuum is investigated. For a strong squeezing, there is a threshold which determines the positions and widths of the absorption peaks, for the squeezed parameter M. In a large detuning, the spectra exhibit some resemblance to the Fano spectrum. The squeezing-induced transparency occurs at the frequency 2ω L - ω A in the minimum-uncertainty squeezed vacuum. This effect is not phase-sensitive. (author). 15 refs, 8 figs

  9. Entanglement dynamics and position-momentum entropic uncertainty relation of a Λ-type three-level atom interacting with a two-mode cavity field in the presence of nonlinearities

    Science.gov (United States)

    Faghihi, M. J.; Tavassoly, M. K.; Hooshmandasl, M. R.

    2013-05-01

    In this paper, the interaction between a $\\Lambda$-type three-level atom and two-mode cavity field is discussed. The detuning parameters and cross-Kerr nonlinearity are taken into account and it is assumed that atom-field coupling and Kerr medium to be $f$-deformed. Even though the system seems to be complicated, the analytical form of the state vector of the entire system for considered model is exactly obtained. The time evolution of nonclassical properties such as quantum entanglement and position-momentum entropic uncertainty relation (entropy squeezing) of the field are investigated. In each case, the influences of the detuning parameters, generalized Kerr medium and intensity-dependent coupling on the latter nonclassicality signs are analyzed, in detail.

  10. Higher-order amplitude squeezing of photons propagating through a semiconductor

    International Nuclear Information System (INIS)

    Nguyen Ba An.

    1996-12-01

    Photon amplitude K th power squeezing is studied when the coherent photon propagates through a semiconductor containing the exciton. If the exciton is prepared initially in a coherent state, the photon may become amplitude K th power squeezed. It is shown that, in the short-time limit, the photon squeezing in the P direction does not appear at all while that in the X direction is possible for all the amplitude power K. In the latter case, the amount of squeezing is larger for higher power K. Dependences on all the system parameters as well as on the output light detection moment are investigated in detail. (author). 14 refs, 8 figs

  11. Modifications needed to operate PWR's plants in G-Mode

    International Nuclear Information System (INIS)

    Stainman, J.P.

    1985-01-01

    The production of electricity from PWR nuclear plants represents 44% of the total production of electricity in France for 1984, and 68% of the electricity produced by Thermal power plants (127 TWh over 187 TWh). These data show clearly that the French PWR plants do not work in ''base mode'' anymore but have to fit production with consumption, in other words to assume the frequency control. To participate permanently to the load follow and frequency control, it appeared that some improvements in the field of pressurizer level and pressure control were necessary as well as in the field of operator aids computer. It should be noted that these improvements are useful even without taking into account the constraints due to load follow and frequency control because of the mechanical stress in the CVCS piping, for instance. Some additional tests are planned to better identify this specific problem. The need of a more flexible operating mode than ones given by the initial system (black control rods), significantly reduced in 1973 due to the application of the ECCS criterion, led EDF and Framatome to develop a new operating mode (G. Mode) allowing a faster power escalation (5% PN/mn) whatever the fuel burn-up. This new operating mode improves significantly also the flexibility of operation when the frequency control is needed, and helps a lot the operators in such cases. All the 900 MWe Nuclear plants will be able to operate in ''G mode'' before the end of 1984

  12. A novel method for polarization squeezing with Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Milanovic, Josip; Lassen, Mikael Østergaard; Andersen, Ulrik Lund

    2010-01-01

    Photonic Crystal Fibers can be tailored to increase the effective Kerr nonlinearity, while producing smaller amounts of excess noise compared to standard silicon fibers. Using these features of Photonic Crystal Fibers we create polarization squeezed states with increased purity compared to standa...... Stokes parameter squeezing of −3.9 ±0.3dB and anti-squeezing of 16.2 ±0.3dB....

  13. The precision and torque production of common hip adductor squeeze tests used in elite football

    DEFF Research Database (Denmark)

    Light, N; Thorborg, K

    2016-01-01

    OBJECTIVES: Decreased hip adductor strength is a known risk factor for groin injury in footballers, with clinicians testing adductor strength in various positions and using different protocols. Understanding how reliable and how much torque different adductor squeeze tests produce will facilitate...... choosing the most appropriate method for future testing. In this study, the reliability and torque production of three common adductor squeeze tests were investigated. DESIGN: Test-retest reliability and cross-sectional comparison. METHODS: Twenty elite level footballers (16-33 years) without previous...

  14. Forward and Reverse Process Models for the Squeeze Casting Process Using Neural Network Based Approaches

    Directory of Open Access Journals (Sweden)

    Manjunath Patel Gowdru Chandrashekarappa

    2014-01-01

    Full Text Available The present research work is focussed to develop an intelligent system to establish the input-output relationship utilizing forward and reverse mappings of artificial neural networks. Forward mapping aims at predicting the density and secondary dendrite arm spacing (SDAS from the known set of squeeze cast process parameters such as time delay, pressure duration, squeezes pressure, pouring temperature, and die temperature. An attempt is also made to meet the industrial requirements of developing the reverse model to predict the recommended squeeze cast parameters for the desired density and SDAS. Two different neural network based approaches have been proposed to carry out the said task, namely, back propagation neural network (BPNN and genetic algorithm neural network (GA-NN. The batch mode of training is employed for both supervised learning networks and requires huge training data. The requirement of huge training data is generated artificially at random using regression equation derived through real experiments carried out earlier by the same authors. The performances of BPNN and GA-NN models are compared among themselves with those of regression for ten test cases. The results show that both models are capable of making better predictions and the models can be effectively used in shop floor in selection of most influential parameters for the desired outputs.

  15. Squeeze casting of aluminum alloy A380: Microstructure and tensile behavior

    Directory of Open Access Journals (Sweden)

    Li Fang

    2015-09-01

    Full Text Available A380 alloy with a relatively thick cross-section of 25 mm was squeeze cast using a hydraulic press with an applied pressure of 90 MPa. Microstructure and tensile properties of the squeeze cast A380 were characterized and evaluated in comparison with the die cast counterpart. Results show that the squeeze cast A380 possesses a porosity level much lower than the die cast alloy, which is disclosed by both optical microscopy and the density measurement technique. The results of tensile testing indicate the improved tensile properties, specifically ultimate tensile strength (UTS: 215.9 MPa and elongation (Ef: 5.4%, for the squeeze cast samples over those of the conventional high-pressure die cast part (UTS: 173.7 MPa, Ef: 1.0%. The analysis of tensile behavior shows that the squeeze cast A380 exhibits a high tensile toughness (8.5 MJ·m-3 and resilience (179.3 kJ·m-3 compared with the die cast alloy (toughness: 1.4 MJ·m-3, resilience: 140.6 kJ·m-3, despite that, during the onset of plastic deformation, the strain-hardening rate of the die cast specimen is higher than that of the squeeze cast specimens. The microstructure analyzed by the scanning electron microscopy (SEM shows that both the squeeze and die cast specimens contain the primary α-Al, Al2Cu, Al5FeSi phase and the eutectic Si phase. But, the Al2Cu phase present in the squeeze cast alloy is relatively large in size and quantity. The SEM fractography evidently reveals the ductile fracture features of the squeeze cast A380 alloy.

  16. Language Differences and Operation Mode

    DEFF Research Database (Denmark)

    Dasi, Angels; Pedersen, Torben

    2013-01-01

    Language serves different purposes depending on the international activity in question. Language has many dimensions and firms’ communicative requirements vary by operational platform. We argue that different dimensions of language vary in their importance depending on the operation mode chosen...... for a foreign market, so that language distance matters in the case of a home-based sales force, while language incidence is key when operating through a local agent. The hypotheses are tested on a large data set encompassing 462 multinational corporations headquartered in Finland, South Korea, New Zealand......, and Sweden that have undertaken a business operation in a foreign country....

  17. Interaction of a quantum well with squeezed light: Quantum-statistical properties

    International Nuclear Information System (INIS)

    Sete, Eyob A.; Eleuch, H.

    2010-01-01

    We investigate the quantum statistical properties of the light emitted by a quantum well interacting with squeezed light from a degenerate subthreshold optical parametric oscillator. We obtain analytical solutions for the pertinent quantum Langevin equations in the strong-coupling and low-excitation regimes. Using these solutions we calculate the intensity spectrum, autocorrelation function, and quadrature squeezing for the fluorescent light. We show that the fluorescent light exhibits bunching and quadrature squeezing. We also show that the squeezed light leads to narrowing of the width of the spectrum of the fluorescent light.

  18. Manipulation of Squeezed Two-Phonon Bound States using Femtosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Nakamura Kazutaka G.

    2013-03-01

    Full Text Available Two-phonon bound states have been excited exclusively in ZnTe(110 via impulsive stimulated second-order Raman scattering, essentially being squeezed states due to phase coherent excitation of two identical components anticorrelated in the wave vector. By using coherent control technique with a pair of femtosecond laser pulses, the manipulation of squeezed states has been demonstrated in which both the amplitude and lifetime of coherent oscillations of squeezed states are modulated, indicating the feasibility to control the quantum noise and the quantum nature of phonon squeezed states, respectively.

  19. The quiescent H-mode regime for high performance edge localized mode-stable operation in future burning plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Garofalo, A. M., E-mail: garofalo@fusion.gat.com; Burrell, K. H.; Meneghini, O.; Osborne, T. H.; Paz-Soldan, C.; Smith, S. P.; Snyder, P. B.; Turnbull, A. D. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Eldon, D.; Grierson, B. A.; Solomon, W. M. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Hanson, J. M. [Columbia University, 2960 Broadway, New York, New York 10027-6900 (United States); Holland, C. [University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Huijsmans, G. T. A.; Liu, F.; Loarte, A. [ITER Organization, Route de Vinon sur Verdon, 13067 St Paul Lez Durance (France); Zeng, L. [University of California Los Angeles, P.O. Box 957099, Los Angeles, California 90095-7099 (United States)

    2015-05-15

    For the first time, DIII-D experiments have achieved stationary quiescent H-mode (QH-mode) operation for many energy confinement times at simultaneous ITER-relevant values of beta, confinement, and safety factor, in an ITER-like shape. QH-mode provides excellent energy confinement, even at very low plasma rotation, while operating without edge localized modes (ELMs) and with strong impurity transport via the benign edge harmonic oscillation (EHO). By tailoring the plasma shape to improve the edge stability, the QH-mode operating space has also been extended to densities exceeding 80% of the Greenwald limit, overcoming the long-standing low-density limit of QH-mode operation. In the theory, the density range over which the plasma encounters the kink-peeling boundary widens as the plasma cross-section shaping is increased, thus increasing the QH-mode density threshold. The DIII-D results are in excellent agreement with these predictions, and nonlinear magnetohydrodynamic analysis of reconstructed QH-mode equilibria shows unstable low n kink-peeling modes growing to a saturated level, consistent with the theoretical picture of the EHO. Furthermore, high density operation in the QH-mode regime has opened a path to a new, previously predicted region of parameter space, named “Super H-mode” because it is characterized by very high pedestals that can be more than a factor of two above the peeling-ballooning stability limit for similar ELMing H-mode discharges at the same density.

  20. Piezoelectric energy harvesting through shear mode operation

    International Nuclear Information System (INIS)

    Malakooti, Mohammad H; Sodano, Henry A

    2015-01-01

    Piezoelectric materials are excellent candidates for use in energy harvesting applications due to their high electromechanical coupling properties that enable them to convert input mechanical energy into useful electric power. The electromechanical coupling coefficient of the piezoelectric material is one of the most significant parameters affecting energy conversion and is dependent on the piezoelectric mode of operation. In most piezoceramics, the d 15 piezoelectric shear coefficient is the highest coefficient compared to the commonly used axial and transverse modes that utilize the d 33 and the d 31 piezoelectric strain coefficients. However, complicated electroding methods and challenges in evaluating the performance of energy harvesting devices operating in the shear mode have slowed research in this area. The shear deformation of a piezoelectric layer can be induced in a vibrating sandwich beam with a piezoelectric core. Here, a model based on Timoshenko beam theory is developed to predict the electric power output from a cantilever piezoelectric sandwich beam under base excitations. It is shown that the energy harvester operating in the shear mode is able to generate ∼50% more power compared to the transverse mode for a numerical case study. Reduced models of both shear and transverse energy harvesters are obtained to determine the optimal load resistance in the system and perform an efficiency comparison between two models with fixed and adaptive resistances. (paper)

  1. Dynamic performance of self-operated three-way valve used in a hybrid air conditioner

    International Nuclear Information System (INIS)

    Zhang, Penglei; Zhou, Dehai; Shi, Wenxing; Li, Xianting; Wang, Baolong

    2014-01-01

    A hybrid air conditioner combining a thermosyphon cycle with a vapor compression refrigeration cycle has a large energy saving potential compared with a common air conditioner for spaces requiring year-round cooling. The performance of the switch between the vapor compression mode and the thermosyphon mode largely impacts the safety and reliability of hybrid air conditioners. Therefore, a self-operated three-way valve is proposed. A thermodynamic model and a kinetic model are developed in this paper to evaluate the dynamic performance of the switch valve. The effects of the spring force constant, compressor discharging volume, fit clearance and piston length on the dynamic performance of the switch valve are analyzed. In conclusion, the proposed self-operated three-way valve can realize the switch operation accurately. - Highlights: •A self-operated three-way valve is proposed for hybrid air conditioners. •The thermodynamic model and kinetic model of the self-operated three-way valve are developed. •The validity of models is verified by experiments. •Effects of four main design parameters on the operating performance of the valve are researched

  2. Flower-Like Squeezing in the Motion of a Laser-Driven Trapped Ion

    Science.gov (United States)

    Nguyen, Ba An; Truong, Minh Duc

    We investigate the Nth order amplitude squeezing in the fan-state |ξ2k,f>F which is a linear superposition of the 2k-quantum nonlinear coherent states. Unlike in usual states where an ellipse is the symbol of squeezing, a 4k-winged flower results in the fan state. We first derive the analytical expression of squeezing for arbitrary k, N, f and then study in detail the case of a laser-driven trapped ion characterized by a specific form of the nonlinear function f. We show that the lowest order in which squeezing may appear and the number of directions along which the amplitude may be squeezed depend only on k whereas the precise directions of squeezing are determined also by the other physical parameters involved. Finally, we present a scheme to produce such fan-states.

  3. A comprehensive field and laboratory study of scale control and scale squeezes in Sumatra, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Oddo, J.E.; Reizer, J.M.; Sitz, C.D. [Champion Technologies, Inc., Houston, TX (United States); Setia, D.E.A. [FMT Production Duri P.T. Caltex Pacific Indonesia (Indonesia); Hinrichsen, C.J. [Texaco Panama, Bellaire, TX (United States); Sujana, W. [P.T. Champion Kumia Djaja Technologies, Jakarta (Indonesia)

    1999-11-01

    Scale squeezes were performed on thirteen wells in the Duri Field, Sumatra. At the time the squeezes were completed, seven were designed to be `Acid Squeezes` and six were designed to be `Neutral Squeezes.` In the course of preparing for the scale squeezes, produced waters were collected and analyzed. In addition, scale inhibitor evaluations, and inhibitor compatibility studies were completed. Simulated squeezes were done in the laboratory to predict field performance. The methodologies and results of the background work are reported. In addition, the relative effectiveness of the two sets of squeezes is discussed. The inhibitor flowback concentrations alter the squeezes, in all cases, can be explained using speciation chemistry and the amorphous and crystalline phase solubilities of the inhibitor used. The wells squeezed with a more acidic inhibitor have more predictable and uniform inhibitor return concentration curves than the wells squeezed with a more neutral scale inhibitor.

  4. On matrix superpotential and three-component normal modes

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Lima, A.F. de [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Fisica; Mello, E.R. Bezerra de; Bezerra, V.B. [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Fisica]. E-mails: rafael@df.ufcg.edu.br; aerlima@df.ufcg.edu.br; emello@fisica.ufpb.br; valdir@fisica.ufpb.br

    2007-07-01

    We consider the supersymmetric quantum mechanics(SUSY QM) with three-component normal modes for the Bogomol'nyi-Prasad-Sommerfield (BPS) states. An explicit form of the SUSY QM matrix superpotential is presented and the corresponding three-component bosonic zero-mode eigenfunction is investigated. (author)

  5. Use of the squeezed (sub-Poisson) state of light in small-signal detection with preamplification upon four-wave mixing

    International Nuclear Information System (INIS)

    Kozlovskii, Andrei V

    2007-01-01

    The scheme of an active interferometer for amplification of small optical signals for their subsequent photodetection is proposed. The scheme provides a considerable amplification of signals by preserving their quantum-statistical properties (ideal amplification) and also can improve these properties under certain conditions. The two-mode squeezed state of light produced upon four-wave mixing, which is used for signal amplification, can be transformed to the non-classical state of the output field squeezed in the number of photons. The scheme is phase-sensitive upon amplification of the input coherent signal. It is shown that in the case of the incoherent input signal with the average number of photons (n s )∼1, the amplification process introduces no additional quantum noise at signal amplification as large as is wished. A scheme is also proposed for the cascade small-signal amplification ((n s )∼1) in the coherent state producing the amplified signal in the squeezed sub-Poisson state, which can be used for the high-resolution detection of weak and ultraweak optical signals. (quantum optics)

  6. Grid-Forming-Mode Operation of Boost-Power-Stage Converter in PV-Generator-Interfacing Applications

    Directory of Open Access Journals (Sweden)

    Jukka Viinamäki

    2017-07-01

    Full Text Available The application of constant power control and inclusion of energy storage in grid-connected photovoltaic (PV energy systems may increase the use of two-stage system structures composed of DC–DC-converter-interfaced PV generator and grid-connected inverter connected in cascade. A typical PV-generator-interfacing DC–DC converter is a boost-power-stage converter. The renewable energy system may operate in three different operation modes—grid-forming, grid-feeding, and grid-supporting modes. In the last two operation modes, the outmost feedback loops are taken from the input terminal of the associated power electronic converters, which usually does not pose stability problems in terms of their input sources. In the grid-forming operation mode, the outmost feedback loops have to be connected to the output terminal of the associated power electronic converters, and hence the input terminal will behave as a negative incremental resistor at low frequencies. This property will limit the operation of the PV interfacing converter in either the constant voltage or constant current region of the PV generator for ensuring stable operation. The boost-power-stage converter can be applied as a voltage or current-fed converter limiting the stable operation region accordingly. The investigations of this paper show explicitly that only the voltage-fed mode would provide feasible dynamic and stability properties as a viable interfacing converter.

  7. Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence

    Science.gov (United States)

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2006-03-01

    We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise.

  8. Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2006-01-01

    We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise

  9. Microstructure characteristics and effect of aging process on the mechanical properties of squeeze-cast AZ91 alloy

    International Nuclear Information System (INIS)

    Han, G.M.; Han, Z.Q.; Luo, A.A.; Liu, B.C.

    2015-01-01

    Highlights: • Characterization of three-dimensional morphologies of precipitates using AFM. • Quantitative microstructure of aged squeeze-cast AZ91 alloy. • The non-uniform continuous precipitation during aging of squeeze-cast AZ91 alloy. • The relationship between microstructure and property of aged squeeze-cast AZ91 alloy. - Abstract: Quantitative microstructure information is critical to modeling and prediction of mechanical properties of structural components. In this study, the microstructure characteristics of aged squeeze-cast AZ91 alloy were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) analyses. Particularly, a study of the three-dimensional morphology of continuous precipitation during heat treatment was carried out using a combination of TEM and AFM. The results showed that a typical precipitate consisted of three kinds of faces, namely, broad, side, and end faces. The precipitate also presented a lath-shaped morphology with lozenge ends. Combined SEM and TEM analyses revealed quantitative information on the sizes and area number densities of precipitates after aging at different temperatures with different times. In general, the length and width of precipitates increased more rapidly than thickness during aging. The area number density initially increased and then slowly decreased because of coarsening. Furthermore, a special microstructure characteristic of the non-uniform continuous precipitation during aging was investigated using electron probe microanalysis (EPMA). The relationship between hardness response and yield strength was established

  10. Price squeezes in electric power: The new Battle of Concord

    International Nuclear Information System (INIS)

    Kwoka, J.E. Jr.

    1992-01-01

    The US Court of Appeals opinion in Town of Concord v. Boston Edison offers a vigorous statement of the position that in a regulated market, what may appear to be a price squeeze almost certainly cannot harm the competitive process and therefore should not be held to violate the antitrust laws. While not disputing the possibility of self-serving claims of price squeezes, this article shows that truly anticompetitive price squeezes may indeed occur in the electric power industry and cannot be so readily dismissed. This analysis begins with a brief factual and economic background on price squeezes, then addresses arguments made in Concord and elsewhere seeking to disprove their possibility, and demonstrate that sound economics and good policy require a more balanced approach

  11. A Current-Mode Common-Mode Feedback Circuit (CMFB) with Rail-to-Rail Operation

    Science.gov (United States)

    Suadet, Apirak; Kasemsuwan, Varakorn

    2011-03-01

    This paper presents a current-mode common-mode feedback (CMFB) circuit with rail-to-rail operation. The CMFB is a stand-alone circuit, which can be connected to any low voltage transconductor without changing or upsetting the existing circuit. The proposed CMFB employs current mirrors, operating as common-mode detector and current amplifier to enhance the loop gain of the CMFB. The circuit employs positive feedback to enhance the output impedance and gain. The circuit has been designed using a 0.18 μm CMOS technology under 1V supply and analyzed using HSPICE with BSIM3V3 device models. A pseudo-differential amplifier using two common sources and the proposed CMFB shows rail to rail output swing (± 0.7 V) with low common-mode gain (-36 dB) and power dissipation of 390 μW.

  12. Thermalization of squeezed states

    International Nuclear Information System (INIS)

    Solomon, Allan I

    2005-01-01

    Starting with a thermal squeezed state defined as a conventional thermal state based on an appropriate Hamiltonian, we show how an important physical property, the signal-to-noise ratio, is degraded, and propose a simple model of thermalization (Kraus thermalization)

  13. Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement

    DEFF Research Database (Denmark)

    Fernholz, Thomas; Krauter, Hanna; Jensen, Kasper

    2008-01-01

    quantum limit for quantum memory experiments and applications in quantum metrology and is thus a complementary alternative to spin squeezing obtained via inter-atom entanglement. Squeezing of the collective spin is verified by quantum state tomography.......We demonstrate spin squeezing in a room temperature ensemble of 1012 Cesium atoms using their internal structure, where the necessary entanglement is created between nuclear and electronic spins of each individual atom. This state provides improvement in measurement sensitivity beyond the standard...

  14. Enhancing quantum entanglement for continuous variables by a coherent superposition of photon subtraction and addition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su-Yong; Kim, Ho-Joon [Department of Physics, Texas A and M University at Qatar, P.O. Box 23874, Doha (Qatar); Ji, Se-Wan [School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-012 (Korea, Republic of); Nha, Hyunchul [Department of Physics, Texas A and M University at Qatar, P.O. Box 23874, Doha (Qatar); Institute fuer Quantenphysik, Universitaet Ulm, D-89069 Ulm (Germany)

    2011-07-15

    We investigate how the entanglement properties of a two-mode state can be improved by performing a coherent superposition operation ta+ra{sup {dagger}} of photon subtraction and addition, proposed by Lee and Nha [Phys. Rev. A 82, 053812 (2010)], on each mode. We show that the degree of entanglement, the Einstein-Podolsky-Rosen-type correlation, and the performance of quantum teleportation can be all enhanced for the output state when the coherent operation is applied to a two-mode squeezed state. The effects of the coherent operation are more prominent than those of the mere photon subtraction a and the addition a{sup {dagger}} particularly in the small-squeezing regime, whereas the optimal operation becomes the photon subtraction (case of r=0) in the large-squeezing regime.

  15. A multi-mode operation control strategy for flexible microgrid based on sliding-mode direct voltage and hierarchical controls.

    Science.gov (United States)

    Zhang, Qinjin; Liu, Yancheng; Zhao, Youtao; Wang, Ning

    2016-03-01

    Multi-mode operation and transient stability are two problems that significantly affect flexible microgrid (MG). This paper proposes a multi-mode operation control strategy for flexible MG based on a three-layer hierarchical structure. The proposed structure is composed of autonomous, cooperative, and scheduling controllers. Autonomous controller is utilized to control the performance of the single micro-source inverter. An adaptive sliding-mode direct voltage loop and an improved droop power loop based on virtual negative impedance are presented respectively to enhance the system disturbance-rejection performance and the power sharing accuracy. Cooperative controller, which is composed of secondary voltage/frequency control and phase synchronization control, is designed to eliminate the voltage/frequency deviations produced by the autonomous controller and prepare for grid connection. Scheduling controller manages the power flow between the MG and the grid. The MG with the improved hierarchical control scheme can achieve seamless transitions from islanded to grid-connected mode and have a good transient performance. In addition the presented work can also optimize the power quality issues and improve the load power sharing accuracy between parallel VSIs. Finally, the transient performance and effectiveness of the proposed control scheme are evaluated by theoretical analysis and simulation results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Slowing Quantum Decoherence by Squeezing in Phase Space

    Science.gov (United States)

    Le Jeannic, H.; Cavaillès, A.; Huang, K.; Filip, R.; Laurat, J.

    2018-02-01

    Non-Gaussian states, and specifically the paradigmatic cat state, are well known to be very sensitive to losses. When propagating through damping channels, these states quickly lose their nonclassical features and the associated negative oscillations of their Wigner function. However, by squeezing the superposition states, the decoherence process can be qualitatively changed and substantially slowed down. Here, as a first example, we experimentally observe the reduced decoherence of squeezed optical coherent-state superpositions through a lossy channel. To quantify the robustness of states, we introduce a combination of a decaying value and a rate of decay of the Wigner function negativity. This work, which uses squeezing as an ancillary Gaussian resource, opens new possibilities to protect and manipulate quantum superpositions in phase space.

  17. Spin squeezing as an indicator of quantum chaos in the Dicke model.

    Science.gov (United States)

    Song, Lijun; Yan, Dong; Ma, Jian; Wang, Xiaoguang

    2009-04-01

    We study spin squeezing, an intrinsic quantum property, in the Dicke model without the rotating-wave approximation. We show that the spin squeezing can reveal the underlying chaotic and regular structures in phase space given by a Poincaré section, namely, it acts as an indicator of quantum chaos. Spin squeezing vanishes after a very short time for an initial coherent state centered in a chaotic region, whereas it persists over a longer time for the coherent state centered in a regular region of the phase space. We also study the distribution of the mean spin directions when quantum dynamics takes place. Finally, we discuss relations among spin squeezing, bosonic quadrature squeezing, and two-qubit entanglement in the dynamical processes.

  18. Squeezed states from a quantum deformed oscillator Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez, R. [IFLP, CONICET–Department of Mathematics, University of La Plata c.c. 67 1900, La Plata (Argentina); Reboiro, M., E-mail: marta.reboiro@gmail.com [IFLP, CONICET–Department of Physics, University of La Plata c.c. 67 1900, La Plata (Argentina)

    2016-03-11

    The spectrum and the time evolution of a system, which is modeled by a non-hermitian quantum deformed oscillator Hamiltonian, is analyzed. The proposed Hamiltonian is constructed from a non-standard realization of the algebra of Heisenberg. We show that, for certain values of the coupling constants and for a range of values of the deformation parameter, the deformed Hamiltonian is a pseudo-hermitic Hamiltonian. We explore the conditions under which the Hamiltonian is similar to a Swanson Hamiltonian. Also, we show that the lowest eigenstate of the system is a squeezed state. We study the time evolution of the system, for different initial states, by computing the corresponding Wigner functions. - Highlights: • A generalization of the squeezed harmonic oscillator is constructed from a non-standard realization of the Heisenberg algebra. • It is proved that, for certain values of the parameters of the model, the Hamiltonian is a pseudo-hermitian Hamiltonian. • It is shown that the lowest eigenstate of the Hamiltonian is a squeezed state. • The squeezing behavior of the associated Gazeau–Klauder state, as a function of time, is discussed.

  19. Geometric phases for nonlinear coherent and squeezed states

    International Nuclear Information System (INIS)

    Yang Dabao; Chen Ying; Chen Jingling; Zhang Fulin

    2011-01-01

    The geometric phases for standard coherent states which are widely used in quantum optics have attracted considerable attention. Nevertheless, few physicists consider the counterparts of nonlinear coherent states, which are useful in the description of the motion of a trapped ion. In this paper, the non-unitary and non-cyclic geometric phases for two nonlinear coherent and one squeezed states are formulated, respectively. Moreover, some of their common properties are discussed, such as gauge invariance, non-locality and nonlinear effects. The nonlinear functions have dramatic impacts on the evolution of the corresponding geometric phases. They speed the evolution up or down. So this property may have an application in controlling or measuring geometric phase. For the squeezed case, when the squeezed parameter r → ∞, the limiting value of the geometric phase is also determined by a nonlinear function at a given time and angular velocity. In addition, the geometric phases for standard coherent and squeezed states are obtained under a particular condition. When the time evolution undergoes a period, their corresponding cyclic geometric phases are achieved as well. And the distinction between the geometric phases of the two coherent states may be regarded as a geometric criterion.

  20. A macromodel for squeeze-film air damping in the free-molecule regime

    KAUST Repository

    Hong, Gang

    2010-01-07

    A three-dimensional Monte Carlo(MC) simulation approach is developed for the accurate prediction of the squeeze-film air damping on microresonators in the free-molecule gas regime. Based on the MC simulations and the analytical traveling-time distribution, a macromodel, which relates air damping directly with device dimensions and operation parameters, is constructed. This model provides an efficient tool for the design of high-performance microresonators. The accuracy of the macromodel is validated through the modeling of the quality factors of several microresonators. It has been found that the relative errors of the quality factors of two resonators, as compared with experimental data, are 3.9% and 5.7%, respectively. The agreements between the macromodel results and MC simulation results, on the other hand, are excellent in all cases considered.

  1. Multi-mode operations for on-line uninterruptible power supply

    DEFF Research Database (Denmark)

    Lu, Jinghang; Savaghebi, Mehdi; Guan, Yajuan

    2018-01-01

    In this paper, the multi-mode operation of the on-line UPS system is investigated and corresponding control strategies are proposed. The proposed control strategies are able to achieve the seamless transition in traditional normal mode, PV-aided normal mode, enhanced eco-mode and burn-in test mod...

  2. Enhanced squeezing of a collective spin via control of its qudit subsystems.

    Science.gov (United States)

    Norris, Leigh M; Trail, Collin M; Jessen, Poul S; Deutsch, Ivan H

    2012-10-26

    Unitary control of qudits can improve the collective spin squeezing of an atomic ensemble. Preparing the atoms in a state with large quantum fluctuations in magnetization strengthens the entangling Faraday interaction. The resulting increase in interatomic entanglement can be converted into metrologically useful spin squeezing. Further control can squeeze the internal atomic spin without compromising entanglement, providing an overall multiplicative factor in the collective squeezing. We model the effects of optical pumping and study the tradeoffs between enhanced entanglement and decoherence. For realistic parameters we see improvements of ~10 dB.

  3. Squeezed States in Josephson Junctions.

    Science.gov (United States)

    Hu, X.; Nori, F.

    1996-03-01

    We have studied quantum fluctuation properties of Josephson junctions in the limit of large Josephson coupling energy and small charging energy, when the eigenstates of the system can be treated as being nearly localized. We have considered(X. Hu and F. Nori, preprints.) a Josephson junction in a variety of situations, e.g., coupled to one or several of the following elements: a capacitor, an inductor (in a superconducting ring), and an applied current source. By solving an effective Shrödinger equation, we have obtained squeezed vacuum (coherent) states as the ground states of a ``free-oscillating'' (linearly-driven) Josephson junction, and calculated the uncertainties of its canonical momentum, charge, and coordinate, phase. We have also shown that the excited states of the various systems we consider are similar to the number states of a simple harmonic oscillator but with different fluctuation properties. Furthermore, we have obtained the time-evolution operators for these systems. These operators can make it easier to calculate the time-dependence of the expectation values and fluctuations of various quantities starting from an arbitrary initial state.

  4. LHC Report: Freshly squeezed beams!

    CERN Multimedia

    Mike Lamont for the LHC Team

    2011-01-01

    After careful validation of  new machine settings, the LHC was ready for higher luminosity operation. New luminosity records have been set, but the operations team continues to wrestle with machine availability issues.   The commissioning of the squeeze to a ß* of 1 m in ATLAS and CMS described in the last Bulletin took until Wednesday, 7 September to complete. In order to validate the new set-up, beam losses were provoked in a controlled way with low intensity beams. The distribution of beam loss around the machine in these tests is known as a loss map. The loss maps showed that the collimation system is catching the large majority of beam losses as it should, and that the machine was ready for us to ramp the number of bunches back up and go to physics production. The ramp-up of the number of bunches went smoothly with fills at 264, 480, and 912 bunches on the way back to the machine’s previous record of 1380 bunches (first fill on Friday, 9 Se...

  5. Minimum uncertainty and squeezing in diffusion processes and stochastic quantization

    Science.gov (United States)

    Demartino, S.; Desiena, S.; Illuminati, Fabrizo; Vitiello, Giuseppe

    1994-01-01

    We show that uncertainty relations, as well as minimum uncertainty coherent and squeezed states, are structural properties for diffusion processes. Through Nelson stochastic quantization we derive the stochastic image of the quantum mechanical coherent and squeezed states.

  6. Early detection of power system disturbances as a condition for safe operation of the Dukovany NPP in the 'Island operation mode'

    International Nuclear Information System (INIS)

    Petruzela, I.

    1997-01-01

    The ''Frequency Plan'' worked out for the Czech Power System specifies a set of preventive measures along with the set of the frequency ranges. This problem was solved in details for the Dukovany nuclear power plant. The design changes under preparation support a reliable as well as safe operation in the island-operation mode until a full restoration of the whole power system. The design modifications are based on the following three main innovations: An incorporation of the FREA 16 frequency relay into the protection circuits; large modifications in turbine control loops; installation of software routine for the operator to support the island operation mode. The capability of the island operation has been demanded by relevant regulations both for the operating units and for that under construction. The capability can be tested under the transition to houseloads, as well as through the direct simulation of abnormal grid conditions. 1 fig

  7. Control of the inversionless gain and refractive index in a V-type atom via squeezed vacuum and quantum interference

    International Nuclear Information System (INIS)

    Anton, M.A.; Calderon, Oscar G.; Carreno, F.

    2004-01-01

    In this paper we analyze the steady-state populations and gain lineshape of a V-type three-level atom with a closely spaced excited doublet. The atom is driven by a strong coherent field, a weak probe, and a single broadband squeezed vacuum. We focus our attention in the interplay between the quantum interference and the squeezed field on the probe gain. It is shown that the relative phases between the two coherent fields and the squeezed field play an important role in the optical properties of the atom. Specifically, we find that the probe can experience gain without population inversion for proper values of the parameters characterizing the squeezed field and in the absence of incoherent pumping. The system can be tailored to exhibit multiple dispersion regimes accompanied by negligible gain or absorption over a large bandwidth, a desirable feature for obtaining propagation of pulses with negligible distortion

  8. Fourth International Conference on Squeezed States and Uncertainty Relations

    Science.gov (United States)

    Han, D. (Editor); Peng, Kunchi (Editor); Kim, Y. S. (Editor); Manko, V. I. (Editor)

    1996-01-01

    The fourth International Conference on Squeezed States and Uncertainty Relations was held at Shanxi University, Taiyuan, Shanxi, China, on June 5 - 9, 1995. This conference was jointly organized by Shanxi University, the University of Maryland (U.S.A.), and the Lebedev Physical Institute (Russia). The first meeting of this series was called the Workshop on Squeezed States and Uncertainty Relations, and was held in 1991 at College Park, Maryland. The second and third meetings in this series were hosted in 1992 by the Lebedev Institute in Moscow, and in 1993 by the University of Maryland Baltimore County, respectively. The scientific purpose of this series was initially to discuss squeezed states of light, but in recent years, the scope is becoming broad enough to include studies of uncertainty relations and squeeze transformations in all branches of physics, including, of course, quantum optics and foundations of quantum mechanics. Quantum optics will continue playing the pivotal role in the future, but the future meetings will include all branches of physics where squeeze transformations are basic transformation. This transition took place at the fourth meeting of this series held at Shanxi University in 1995. The fifth meeting in this series will be held in Budapest (Hungary) in 1997, and the principal organizer will be Jozsef Janszky of the Laboratory of Crystal Physics, P.O. Box 132, H-1052. Budapest, Hungary.

  9. Pump-dump iterative squeezing of vibrational wave packets.

    Science.gov (United States)

    Chang, Bo Y; Sola, Ignacio R

    2005-12-22

    The free motion of a nonstationary vibrational wave packet in an electronic potential is a source of interesting quantum properties. In this work we propose an iterative scheme that allows continuous stretching and squeezing of a wave packet in the ground or in an excited electronic state, by switching the wave function between both potentials with pi pulses at certain times. Using a simple model of displaced harmonic oscillators and delta pulses, we derive the analytical solution and the conditions for its possible implementation and optimization in different molecules and electronic states. We show that the main constraining parameter is the pulse bandwidth. Although in principle the degree of squeezing (or stretching) is not bounded, the physical resources increase quadratically with the number of iterations, while the achieved squeezing only increases linearly.

  10. Mechanism and application of a newly developed pressure casting process: horizontal squeeze casting

    Directory of Open Access Journals (Sweden)

    Li Peijie

    2014-07-01

    Full Text Available Compared to traditional high-pressure die casting (HPDC, horizontal squeeze casting (HSC is a more promising way to fabricate high-integrity castings, owing to a reduced number of gas and shrinkage porosities produced in the casting. In this paper, the differences between HSC and HPDC are assessed, through which it is shown that the cavity filling velocity and the size of the gating system to be the most notable differences. Equipment development and related applications are also reviewed. Furthermore, numerical simulation is used to analyze the three fundamental characteristics of HSC: slow cavity filling, squeeze feeding and slow sleeve filling. From this, a selection principle is given based on the three related critical casting parameters: cavity filling velocity, gate size and sleeve filling velocity. Finally, two specific applications of HSC are introduced, and the future direction of HSC development is discussed.

  11. Operation mode switchable charge-trap memory based on few-layer MoS2

    Science.gov (United States)

    Hou, Xiang; Yan, Xiao; Liu, Chunsen; Ding, Shijin; Zhang, David Wei; Zhou, Peng

    2018-03-01

    Ultrathin layered two-dimensional (2D) semiconductors like MoS2 and WSe2 have received a lot of attention because of their excellent electrical properties and potential applications in electronic devices. We demonstrate a charge-trap memory with two different tunable operation modes based on a few-layer MoS2 channel and an Al2O3/HfO2/Al2O3 charge storage stack. Our device shows excellent memory properties under the traditional three-terminal operation mode. More importantly, unlike conventional charge-trap devices, this device can also realize the memory performance with just two terminals (drain and source) because of the unique atomic crystal electrical characteristics. Under the two-terminal operation mode, the erase/program current ratio can reach up to 104 with a stable retention property. Our study indicates that the conventional charge-trap memory cell can also realize the memory performance without the gate terminal based on novel two dimensional materials, which is meaningful for low power consumption and high integration density applications.

  12. Analysis of a large-break LOCA at lower operational modes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, H.Y.; Jun, H.Y.; Lee, K. [Korea Electric Power Corporation, Taejon (Korea)

    2000-10-01

    To improve Technical Specifications and Emergency Operating Guidelines (EOGs) applicable at lower operational modes it is required to perform the safety analysis reflecting the operational characteristics in those modes. Because the component availability and system configurations at lower modes are different from those of power mode, the plant safety at lower modes should be confirmed through independent analyses. In the present study, a large-break loss-of-coolant accident is analyzed to evaluate the containment pressure and temperature control function for the preparation of EOGs applicable at lower modes. To reach the required shutdown condition, the plant cool-down is controlled by the secondary steam flow and auxiliary feedwater. The mass and energy releases from primary system are obtained from RELAP5/MOD3.1 calculation and the containment pressure and temperature are evaluated with CONTEMPT-LT code. The reference plant is Korean Next Generation Reactor having 4,000 MW thermal power. Two cases of cold leg LOCA initiated at Mode 3 with and without SIT operation are calculated. At the given plant conditions, all safety injection pumps are still available. The calculation at the condition of maximum mass and energy release shows that the containment pressure and temperature can be controlled within acceptable criteria, which means the operations of 2 or 4 fan coolers are the possible success paths to achieve the containment P/T control safety function. The peak cladding temperature with minimum safety injection flow does not show remarkable excursion, which implies the lower mode LOCA at Mode 3 can be bounded by the results obtained at full power from the viewpoint of ECCS performance. (author)

  13. Characterization of pseudosingle bunch kick-and-cancel operational mode

    Science.gov (United States)

    Sun, C.; Robin, D. S.; Steier, C.; Portmann, G.

    2015-12-01

    Pseudosingle-bunch kick-and-cancel (PSB-KAC) is a new operational mode at the Advanced Light Source of Lawrence Berkeley National Laboratory that provides full timing and repetition rate control for single x-ray pulse users while being fully transparent to other users of synchrotron radiation light. In this operational mode, a single electron bunch is periodically displaced from a main bunch train by a fast kicker magnet with a user-on-demand repetition rate, creating a single x-ray pulse to be matched to a typical laser excitation pulse rate. This operational mode can significantly improve the signal to noise ratio of single x-ray pulse experiments and drastically reduce dose-induced sample damage rate. It greatly expands the capabilities of synchrotron light sources to carry out dynamics and time-of-flight experiments. In this paper, we carry out extensive characterizations of this PSB-KAC mode both numerically and experimentally. This includes the working principle of this mode, resonance conditions and beam stability, experimental setups, and diagnostic tools and measurements.

  14. Characterization of pseudosingle bunch kick-and-cancel operational mode

    Directory of Open Access Journals (Sweden)

    C. Sun

    2015-12-01

    Full Text Available Pseudosingle-bunch kick-and-cancel (PSB-KAC is a new operational mode at the Advanced Light Source of Lawrence Berkeley National Laboratory that provides full timing and repetition rate control for single x-ray pulse users while being fully transparent to other users of synchrotron radiation light. In this operational mode, a single electron bunch is periodically displaced from a main bunch train by a fast kicker magnet with a user-on-demand repetition rate, creating a single x-ray pulse to be matched to a typical laser excitation pulse rate. This operational mode can significantly improve the signal to noise ratio of single x-ray pulse experiments and drastically reduce dose-induced sample damage rate. It greatly expands the capabilities of synchrotron light sources to carry out dynamics and time-of-flight experiments. In this paper, we carry out extensive characterizations of this PSB-KAC mode both numerically and experimentally. This includes the working principle of this mode, resonance conditions and beam stability, experimental setups, and diagnostic tools and measurements.

  15. OPERATION MODES AND CHARACTERISTICS OF PLASMA DIPOLE ANTENNA

    Directory of Open Access Journals (Sweden)

    Nikolay Nikolaevich Bogachev

    2014-02-01

    Full Text Available Existence modes of  surface electromagnetic wave on a plasma cylinder, operating modes and characteristics of the plasma antenna were studied in this paper. Solutions of the dispersion equation of surface wave were obtained for a plasma cylinder with finite radius for different plasma density values. Operation modes of the plasma asymmetric dipole antenna with finite length and radius were researched by numerical simulation. The electric field distributions of  the plasma antenna in near antenna field and the radiation pattern were obtained. These characteristics were compared to characteristics of the similar metal antenna. Numerical models verification was carried out by comparing of the counted and measured metal antenna radiation patterns.

  16. Migration behavior of Cu and Zn in landfill with different operation modes

    International Nuclear Information System (INIS)

    Long Yuyang; Shen Dongsheng; Wang Hongtao; Lu Wenjing

    2010-01-01

    Cu and Zn were chosen to study the heavy metal migration behavior and mechanism in three simulated landfills with different operation modes, namely conventional landfill (CL), leachate directly recirculated landfill (RL) and leachate pre-treated bioreactor landfill (BL). It showed that Cu and Zn in refuse experienced periodic migration and retention gradually during decomposition, and the variation of Cu(II) and Zn(II) in leachate correspondingly reflected the releasing behavior of Cu and Zn in landfill refuse at different stabilization stages. Except for their accumulated leaching amounts, Cu(II) and Zn(II) concentrations in leachate from landfills with different operation modes had no significant difference. The accumulated leaching amounts of Cu and Zn from CL showed exponential increase, while those of RL and BL showed exponential decay. The operation of bioreactor landfill with leachate recirculation can obviously attenuate the heavy metal leaching than conventional operation. The introduction of methanogenic reactor (MR) in bioreactor landfill can further promote the immobilization of heavy metal in refuse than leachate recirculation directly.

  17. Common mode noise in three-level DC-DC converters

    CSIR Research Space (South Africa)

    Grobler, Inus

    2009-09-01

    Full Text Available that three-level buck DC-DC converters in general generate much lower common mode currents than conventional two-level buck converters. Further, reductions in common mode currents are achieved by using the improved three-level topologies that have been...

  18. Three mode Er3+ ring-doped fiber amplifier for mode-division multiplexed transmission

    NARCIS (Netherlands)

    Jung, Y.; Kang, Q.; Sleiffer, V.A.J.M.; Inan, B.; Kuschnerov, M.; Veljanovski, V.; Corbett, B.; Winfield, R.; Li, Z.; Teh, P.S.; Dhar, A.; Sahu, J.K.; Poletti, F.; Alam, S.U.; Richardson, D.J.

    2013-01-01

    We successfully fabricate three-mode erbium doped fiber with a confined Er3+ doped ring structure and experimentally characterize the amplifier performance with a view to mode-division multiplexed (MDM) transmission. The differential modal gain was effectively mitigated by controlling the relative

  19. Mixed-mode Operating System for Real-time Performance

    OpenAIRE

    M.M. Hasan; S. Sultana; C.K. Foo

    2017-01-01

    The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface (GUI) operating system which is typically nonreal-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time...

  20. Mixed - mode Operating System for Real - time Performance

    OpenAIRE

    Hasan M. M.; Sultana S.; Foo C.K.

    2017-01-01

    The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface(GUI)operating system which is typicallynon-real-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time e...

  1. Improved spin squeezing of an atomic ensemble through internal state control

    Science.gov (United States)

    Hemmer, Daniel; Montano, Enrique; Deutsch, Ivan; Jessen, Poul

    2016-05-01

    Squeezing of collective atomic spins is typically generated by quantum backaction from a QND measurement of the relevant spin component. In this scenario the degree of squeezing is determined by the measurement resolution relative to the quantum projection noise (QPN) of a spin coherent state (SCS). Greater squeezing can be achieved through optimization of the 3D geometry of probe and atom cloud, or by placing the atoms in an optical cavity. We explore here a complementary strategy that relies on quantum control of the large internal spin available in alkali atoms such as Cs. Using a combination of rf and uw magnetic fields, we coherently map the internal spins in our ensemble from the SCS (| f = 4, m = 4>) to a ``cat'' state which is an equal superposition of | f = 4, m = 4>and | f = 4, m = -4>. This increases QPN by a factor of 2 f = 8 relative to the SCS, and therefore the amount of backaction and spin-spin entanglement produced by our QND measurement. In a final step, squeezing generated in the cat state basis can be mapped back to the SCS basis, where it corresponds to increased squeezing of the physical spin. Our experiments suggest that up to 8dB of metrologically useful squeezing can be generated in this way, compared to ~ 3 dB in an otherwise identical experiment starting from a SCS.

  2. A low loss Faraday isolator for squeezed vacuum injection in Advanced LIGO

    Science.gov (United States)

    Goetz, Ryan; Tanner, David; Mueller, Guido

    2016-03-01

    Using conventional interferometry, the strain sensitivity of Advanced LIGO is limited by a quantum noise floor known as the standard quantum limit (SQL). Injecting squeezed vacuum states into the output port of the interferometer allows for detector sensitivities below the SQL at frequencies within a band of observational interest. The effectiveness of squeezing in reducing quantum noise is strongly dependent upon the optical loss in the squeezed path. Thus, to combine the squeezed vacuum state with the interferometer output we require a Faraday isolator with both high power-throughput efficiency and high isolation ratio. A prototype isolator is currently being developed, and we will discuss the design goals and current status.

  3. All-fiber optical mode switching based on cascaded mode selective couplers for short-reach MDM networks

    Science.gov (United States)

    Ren, Fang; Li, Juhao; Wu, Zhongying; Yu, Jinyi; Mo, Qi; Wang, Jianping; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin

    2017-04-01

    We propose and experimentally demonstrate an all-fiber optical mode switching structure supporting independent switching, exchanging, adding, and dropping functionalities in which each mode can be switched individually. The mode switching structure consists of cascaded mode selective couplers (MSCs) capable of exciting and selecting specific higher order modes in few-mode fibers with high efficiency and one multiport optical switch routing the independent spatial modes to their destinations. The data carried on three different spatial modes can be switched, exchanged, added, and dropped through this all-fiber structure. For this experimental demonstration, optical on-off-keying (OOK) signals at 10-Gb/s carried on three spatial modes are successfully processed with open and clear eye diagrams. The mode switch exhibits power penalties of less than 3.1 dB after through operation, less than 2.7 dB after exchange operation, less than 2.8 dB after switching operation, and less than 1.6 dB after mode adding and dropping operations at the bit-error rate (BER) of 10-3, while all three channels carried on three spatial modes are simultaneously routed. The proposed structure, compatible with current optical switching networks based on single-mode fibers, can potentially be used to expand the switching scalability in advanced and flexible short-reach mode-division multiplexing-based networks.

  4. Squeezed light for the interferometric detection of high-frequency gravitational waves

    Science.gov (United States)

    Schnabel, R.; Harms, J.; Strain, K. A.; Danzmann, K.

    2004-03-01

    The quantum noise of the light field is a fundamental noise source in interferometric gravitational-wave detectors. Injected squeezed light is capable of reducing the quantum noise contribution to the detector noise floor to values that surpass the so-called standard quantum limit (SQL). In particular, squeezed light is useful for the detection of gravitational waves at high frequencies where interferometers are typically shot-noise limited, although the SQL might not be beaten in this case. We theoretically analyse the quantum noise of the signal-recycled laser interferometric gravitational-wave detector GEO 600 with additional input and output optics, namely frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We focus on the frequency range between 1 kHz and 10 kHz, where, although signal recycled, the detector is still shot-noise limited. It is found that the GEO 600 detector with present design parameters will benefit from frequency-dependent squeezed light. Assuming a squeezing strength of -6 dB in quantum noise variance, the interferometer will become thermal noise limited up to 4 kHz without further reduction of bandwidth. At higher frequencies the linear noise spectral density of GEO 600 will still be dominated by shot noise and improved by a factor of 106dB/20dB ap 2 according to the squeezing strength assumed. The interferometer might reach a strain sensitivity of 6 × 10-23 above 1 kHz (tunable) with a bandwidth of around 350 Hz. We propose a scheme to implement the desired frequency-dependent squeezing by introducing an additional optical component into GEO 600's signal-recycling cavity.

  5. Squeezed light for the interferometric detection of high-frequency gravitational waves

    International Nuclear Information System (INIS)

    Schnabel, R; Harms, J; Strain, K A; Danzmann, K

    2004-01-01

    The quantum noise of the light field is a fundamental noise source in interferometric gravitational-wave detectors. Injected squeezed light is capable of reducing the quantum noise contribution to the detector noise floor to values that surpass the so-called standard quantum limit (SQL). In particular, squeezed light is useful for the detection of gravitational waves at high frequencies where interferometers are typically shot-noise limited, although the SQL might not be beaten in this case. We theoretically analyse the quantum noise of the signal-recycled laser interferometric gravitational-wave detector GEO 600 with additional input and output optics, namely frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We focus on the frequency range between 1 kHz and 10 kHz, where, although signal recycled, the detector is still shot-noise limited. It is found that the GEO 600 detector with present design parameters will benefit from frequency-dependent squeezed light. Assuming a squeezing strength of -6 dB in quantum noise variance, the interferometer will become thermal noise limited up to 4 kHz without further reduction of bandwidth. At higher frequencies the linear noise spectral density of GEO 600 will still be dominated by shot noise and improved by a factor of 10 6dB/20dB ∼ 2 according to the squeezing strength assumed. The interferometer might reach a strain sensitivity of 6 x 10 -23 above 1 kHz (tunable) with a bandwidth of around 350 Hz. We propose a scheme to implement the desired frequency-dependent squeezing by introducing an additional optical component into GEO 600's signal-recycling cavity

  6. Mode Selection Rule for Three-Delay Systems

    Science.gov (United States)

    Takahashi, Kin'ya; Kobayashi, Taizo

    2017-12-01

    We study the mode selection rule for a three-delay system to determine which oscillation mode is first excited by the Hopf bifurcation with increasing control parameter. We use linear stability analysis to detect an oscillating mode excited by the first bifurcation. There are two conditions, relevant and irrelevant conditions, determined by the ratios of three delay times, t1, t2, and tf, where tf is fixed and t1 and t2 are set as 0 < t1 < tf and 0 < t2 < tf. In a neighborhood of the relevant condition defined such that both t1/tf = n1/m1 and t2/tf = n2/m2 are ratios of odd to odd, oscillations nearly equal to the \\tilde{m}th-harmonic mode are excited, where \\tilde{m} is the least common multiple of m1 and m2. In the parameter space (t1,t2), there are irrelevant lines each of which is determined by a rational dependence of t1, t2, and tf, and does not allow any relevant condition. Extremely high order modes are observed along both sides of the irrelevant line. In particular, the line t2 = tf - t1, i.e., a diagonal with a slope of -1, shows the strongest irrelevancy.

  7. Suppression and nonlinear excitation of parasitic modes in second harmonic gyrotrons operating in a very high order mode

    International Nuclear Information System (INIS)

    Nusinovich, Gregory S.; Pu, Ruifeng; Granatstein, Victor L.

    2015-01-01

    In recent years, there was an active development of high-power, sub-terahertz (sub-THz) gyrotrons for numerous applications. For example, a 0.67 THz gyrotron delivering more than 200 kW with about 20% efficiency was developed. This record high efficiency was achieved because the gyrotron operated in a high-order TE 31,8 -mode with the power of ohmic losses less than 10% of the power of outgoing radiation. That gyrotron operated at the fundamental cyclotron resonance, and a high magnetic field of about 27 T was created by a pulse solenoid. For numerous applications, it is beneficial to use gyrotrons at cyclotron harmonics which can operate in available cryomagnets with fields not exceeding 15 T. However, typically, the gyrotron operation at harmonics faces severe competition from parasitic modes at the fundamental resonance. In the present paper, we consider a similar 0.67 THz gyrotron designed for operation in the same TE 31,8 -mode, but at the second harmonic. We focus on two nonlinear effects typical for interaction between the fundamental and second harmonic modes, viz., the mode suppression and the nonlinear excitation of the mode at the fundamental harmonic by the second harmonic oscillations. Our study includes both the analytical theory and numerical simulations performed with the self-consistent code MAGY. The simulations show that stable second harmonic operation in the TE 31,8 mode is possible with only modest sacrifice of efficiency and power

  8. Entropy squeezing for a two-level atom in the Jaynes-Cummings model with an intensity-depend coupling

    Institute of Scientific and Technical Information of China (English)

    李春先; 方卯发

    2003-01-01

    We study the squeezing for a two-level atom in the Jaynes-Cummings model with intensity-dependent coupling using quantum information entropy, and examine the influences of the initial state of the system on the squeezed component number and direction of the information entropy squeezing. Our results show that, the squeezed component number depends on the atomic initial distribution angle, while the squeezed direction is determined by both the phases of the atom and the field for the information entropy squeezing. Quantum information entropy is shown to be a remarkable precision measure for atomic squeezing.

  9. Entropy squeezing for a two—level atom in the Jaynes—Cummings model with an intensity—depend coupling

    Institute of Scientific and Technical Information of China (English)

    李春先; 方卯发; 等

    2003-01-01

    We study the squeezing for a two-level atom in the Jaynes-Cumings model with intensity-dependent coupling using quantum information entropy,and examine the influences of the initial state of the system on the squeezed component number and direction of the information entropy squeezing.Our results show that,the squeezed component number depends on the atomic initial distribution angle,while the squeezed direction is determined by both the phases of the atom and the field for the information entropy squeezing.Quantum information entropy is shown to be a remarkable precision measure for atomic squeezing.

  10. The revised program for measurements in intense operation mode according to AVV-IMIS

    International Nuclear Information System (INIS)

    Bieringer, J.; Wirth, E.; Buehling, A.; Mueller-Neumann, M.; Haase, G.; Heinrich, T.; Steinkopff, T.; Wiezorek, C.

    2007-01-01

    The monitoring program for measurements in intense operation mode has been revised recently by a working group at the Federal Ministry for Environment, Nature Conservation and Reactor Safety (BMU). The major issues of the revision are reported in this contribution. Measurements in intense operation must be appropriate for fast assessment of the radiological situation, for estimating the dose to the population and for decisions on countermeasures to minimize the dose. In order to meet these requirements the structure of the measurement program in intense operation mode was divided into three phases when different exposition paths are relevant: before and during dispersion of radioactive material, immediately after dispersion of radioactive material has ended and a late phase when contamination values have decreased in different environmental media. For each of these phases a special measurement program was defined that is tailored to achieve the above mentioned objectives. Minimum detectable activity concentrations were introduced similar to the measurement program in routine operation mode. They follow the intervention levels in the catalogue of countermeasures and maximum permitted values given by the European Union (EU) for food and animal feed. The minimum detectable activity concentrations were defined such that the detection of 1/10 of the intervention levels for countermeasures is ensured. (orig.)

  11. Analysis of the Multiple-Solution Response of a Flexible Rotor Supported on Non-Linear Squeeze Film Dampers

    Science.gov (United States)

    ZHU, C. S.; ROBB, D. A.; EWINS, D. J.

    2002-05-01

    The multiple-solution response of rotors supported on squeeze film dampers is a typical non-linear phenomenon. The behaviour of the multiple-solution response in a flexible rotor supported on two identical squeeze film dampers with centralizing springs is studied by three methods: synchronous circular centred-orbit motion solution, numerical integration method and slow acceleration method using the assumption of a short bearing and cavitated oil film; the differences of computational results obtained by the three different methods are compared in this paper. It is shown that there are three basic forms for the multiple-solution response in the flexible rotor system supported on the squeeze film dampers, which are the resonant, isolated bifurcation and swallowtail bifurcation multiple solutions. In the multiple-solution speed regions, the rotor motion may be subsynchronous, super-subsynchronous, almost-periodic and even chaotic, besides synchronous circular centred, even if the gravity effect is not considered. The assumption of synchronous circular centred-orbit motion for the journal and rotor around the static deflection line can be used only in some special cases; the steady state numerical integration method is very useful, but time consuming. Using the slow acceleration method, not only can the multiple-solution speed regions be detected, but also the non-synchronous response regions.

  12. Squeezed condensate and confinement in a scalar model

    International Nuclear Information System (INIS)

    Blaschke, D.; Pavel, H.P.; Roepke, G.; Peradze, G.; Pervushin, V.N.

    1996-01-01

    The generating functional of a free scalar field theory is generalized to the case of a squeezed vacuum. The squeezed vacuum is prepared by macroscopically populating the original vacuum with pairs of zero energy particles. It is shown that the corresponding quark propagator has no poles on the real-k 2 axis which can be interpreted as quark confinement. In contrast, a scalar meson-like bound state exists as solution of the corresponding Bethe-Salpeter equation. 20 refs

  13. Squeezing-enhanced optomechanical transduction sensitivity

    DEFF Research Database (Denmark)

    Hoff, Ulrich Busk; Harris, Glen I.; Madsen, Lars Skovgaard

    2013-01-01

    mechanical systems. Following the proposal of Caves we have experimentally proven the applicability of squeezed light-enhanced interferometric displacement detection in the domain of micromechanical oscillators. The technique has previously been demonstrated for table-top interferometer setups and GW...

  14. The H-mode operational window as determined from the ITER H-mode database

    International Nuclear Information System (INIS)

    Ryter, F.; Kardaun, O.J.W.F.; Stroth, U.

    1994-01-01

    The H-mode is a promising regime for fusion reactors and it is essential to be able to predict its operational window in future devices. The 'H-Mode Database Working Group' started in 1992 to gather, analyze and compare H-mode threshold data from several divertor tokamaks so that predictions could be made. The database and first results were presented and the threshold database has been improved and extended since. The work has two objectives: 1) to predict the minimum heating power necessary to reach the H-mode in future devices, 2) to contribute to physics studies of the L-H transition. (author) 11 refs., 2 figs

  15. Intensity modulated operating mode of the rotating gamma system.

    Science.gov (United States)

    Sengupta, Bishwambhar; Gulyas, Laszlo; Medlin, Donald; Koroknai, Tibor; Takacs, David; Filep, Gyorgy; Panko, Peter; Godo, Bence; Hollo, Tamas; Zheng, Xiao Ran; Fedorcsak, Imre; Dobai, Jozsef; Bognar, Laszlo; Takacs, Endre

    2018-05-01

    The purpose of this work was to explore two novel operation modalities of the rotating gamma systems (RGS) that could expand its clinical application to lesions in close proximity to critical organs at risk (OAR). The approach taken in this study consists of two components. First, a Geant4-based Monte Carlo (MC) simulation toolkit is used to model the dosimetric properties of the RGS Vertex 360™ for the normal, intensity modulated radiosurgery (IMRS), and speed modulated radiosurgery (SMRS) operation modalities. Second, the RGS Vertex 360™ at the Rotating Gamma Institute in Debrecen, Hungary is used to collect experimental data for the normal and IMRS operation modes. An ion chamber is used to record measurements of the absolute dose. The dose profiles are measured using Gafchromic EBT3 films positioned within a spherical water equivalent phantom. A strong dosimetric agreement between the measured and simulated dose profiles and penumbra was found for both the normal and IMRS operation modes for all collimator sizes (4, 8, 14, and 18 mm diameter). The simulated falloff and maximum dose regions agree better with the experimental results for the 4 and 8 mm diameter collimators. Although the falloff regions align well in the 14 and 18 mm collimators, the maximum dose regions have a larger difference. For the IMRS operation mode, the simulated and experimental dose distributions are ellipsoidal, where the short axis aligns with the blocked angles. Similarly, the simulated dose distributions for the SMRS operation mode also adopt an ellipsoidal shape, where the short axis aligns with the angles where the orbital speed is highest. For both modalities, the dose distribution is highly constrained with a sharper penumbra along the short axes. Dose modulation of the RGS can be achieved with the IMRS and SMRS modes. By providing a highly constrained dose distribution with a sharp penumbra, both modes could be clinically applicable for the treatment of lesions in close

  16. Alteration in non-classicality of light on passing through a linear polarization beam splitter

    Science.gov (United States)

    Shukla, Namrata; Prakash, Ranjana

    2016-06-01

    We observe the polarization squeezing in the mixture of a two mode squeezed vacuum and a simple coherent light through a linear polarization beam splitter. Squeezed vacuum not being squeezed in polarization, generates polarization squeezed light when superposed with coherent light. All the three Stokes parameters of the light produced on the output port of polarization beam splitter are found to be squeezed and squeezing factor also depends upon the parameters of coherent light.

  17. Is the price squeeze doctrine still viable in fully-regulated energy markets?

    International Nuclear Information System (INIS)

    Spiwak, L.J.

    1993-01-01

    Simply stated, a price squeeze occurs when a firm with monopoly power on the primary, or wholesale, level engages in a prolonged price increase that drives competitors out of the secondary, or retail level, and thereby extends its monopoly power to the secondary market. A price squeeze will not be found, however, for any short-term exercise in market power. Rather, because anticompetitive effects of a price squeeze are indirect, the price squeeze must last long enough and be severe enough to produce effects on actual or potential competition in the secondary market. In regulated electric industries, a price squeeze claim usually arises from the complex relationship between the supplier, the wholesale customer, the retail customer, and the federal and state regulators. The supplier sells electric power to both wholesale and retail customers. Wholesale transactions are regulated by federal regulators, and retail transactions are regulated at the state level. The wholesale customers in turn sell power to their retail customers. Over the last several years, there have been substantial developments in the application of the price squeeze doctrine to fully-regulated electric utilities. This article will examine the current developments in this area, and attempt to highlight the burdens potential litigants, both plaintiffs and defendants, must overcome to succeed

  18. SOME ASPECTS OF THE DEFINITION OF EMPTY CARS STABILITY FROM SQUEEZING THEIR LONGITUDINAL FORCES IN THE FREIGHT TRAIN

    Directory of Open Access Journals (Sweden)

    A. O. Shvets

    2015-06-01

    Full Text Available Purpose. Despite of the implementation various programs to improve the safety of train traffic problem of reducing gatherings rolling stock off the rails is still relevant. The study aims to clarify the existing method of determining the factor of stability from the tire longitudinal forces to ensure the sustainability of cars with increasing speeds of the rolling stock. Methodology. Research was conducted by the method of mathematical modeling of loading freight car when driving at different speeds on straight and curved track sections. Findings. Analysis of the results shows that, for all selected freight cars for the calculation, the value of the safety factor by squeezing is smaller than the formulas of Standards. Corrections made to the formula for determining the safety factor by squeezing longitudinal forces, would achieve: 1 a higher safety factor of lightweight cars, excluding them squeezing longitudinal forces in the entire range of speeds of freight trains; 2 to develop and implement measures to prevent squeezing of cars in the entire range of motion; 3 to determine the degree of stability of the empty car in the head, middle and tail laden trains; 4 to offer optimal scheme of mixed trains formation. Originality. The analysis of existing methods for determining stability coefficient cars in freight trains from squeezing their longitudinal forces is presented in studies. Proposals are developed for the refinement of the design phase, construction and operation. Practical value. This study clarifies the existing method of determining the safety factor of stability from the squeezing longitudinal forces, as well as the influence on the magnitude of the coefficient of speed of movement of the rolling stock. Developed proposals for the refinement of existing methods for determining stability coefficient of longitudinal forces squeezing cars in a train, can reduce the number of retirements cars derailed by taking into account in the

  19. Squeezing of thermal and quantum fluctuations: Universal features

    DEFF Research Database (Denmark)

    Svensmark, Henrik; Flensberg, Karsten

    1993-01-01

    We study the classical and quantum fluctuations of a general damped forced oscillator close to a bifurcation instability. Near the instability point, the fluctuations are strongly phase correlated and are squeezed. In the limit of low damping, it is shown that the system has universal features when...... scaled with the damping. The same scaling law applies to the classical and to the quantum regimes. We furthermore show that the coupling to the environment is crucial in the generation of squeezed fluctuations....

  20. Second-order Monte Carlo wave-function approach to the relaxation effects on ringing revivals in a molecular system interacting with a strongly squeezed coherent field

    International Nuclear Information System (INIS)

    Nakano, Masayoshi; Kishi, Ryohei; Nitta, Tomoshige; Yamaguchi, Kizashi

    2004-01-01

    We investigate the relaxation effects on the quantum dynamics in a two-state molecular system interacting with a single-mode strongly amplitude-squeezed coherent field using the second-order Monte Carlo wave-function method. The molecular population inversion (collapse-revival behavior of Rabi oscillations) is known to show the echoes after each revival, which are referred to as ringing revivals, in the case of strongly squeezed coherent fields with oscillatory photon-number distributions due to the phase-space interference effect. Two types of relaxation effects, i.e., cavity relaxation (the dissipation of an internal single mode to outer mode) and molecular coherent (phase) relaxation caused by nuclear vibrations on ringing revivals are investigated from the viewpoint of the quantum-phase dynamics using the quasiprobability (Q function) distribution of a single-mode field and the off-diagonal molecular density matrix ρ elec1,2 (t). It turns out that the molecular phase relaxation attenuates both the entire revival-collapse behavior and the increase in ρ elec1,2 (t) during the quiescent region, whereas a very slight cavity relaxation particularly suppresses the echoes in ringing revivals more significantly than the first revival but hardly changes a primary variation in envelope of ρ elec1,2 (t) in the nonrelaxation case

  1. The magnetohydrodynamic squeeze film

    International Nuclear Information System (INIS)

    Hamza, E.A.

    1987-06-01

    The motion of an electrically conducting fluid film squeezed between two parallel disks in the presence of a magnetic field applied perpendicular to the disks is studied. Analytic solutions through use of a regular perturbation scheme are obtained. The results show that the electromagnetic forces increase the load carrying capacity considerably. (author). 5 refs, 10 figs, 3 tabs

  2. Resonance fluorescence from an atom in a squeezed vacuum

    Science.gov (United States)

    Carmichael, H. J.; Lane, A. S.; Walls, D. F.

    1987-06-01

    The fluorescent spectrum for a two-level atom which is damped by a squeezed vacuum shows striking differences from the spectrum for ordinary resonance fluorescence. For strong coherent driving fields the Mollow triplet depends on the relative phase of the driving field and the squeezed vacuum field. The central peak may have either subnatural linewidth or supernatural linewidth depending on this phase. The mean atomic polarization also shows a phase sensitivity.

  3. Engineering the Frequency Spectrum of Bright Squeezed Vacuum via Group Velocity Dispersion in an SU(1,1) Interferometer

    OpenAIRE

    Lemieux, Samuel; Manceau, Mathieu; Sharapova, Polina R.; Tikhonova, Olga V.; Boyd, Robert W.; Leuchs, Gerd; Chekhova, Maria V.

    2016-01-01

    Bright squeezed vacuum, a promising tool for quantum information, can be generated by high-gain parametric down-conversion. However, its frequency and angular spectra are typically quite broad, which is undesirable for applications requiring single-mode radiation. We tailor the frequency spectrum of high-gain parametric down-conversion using an SU(1,1) interferometer consisting of two nonlinear crystals with a dispersive medium separating them. The dispersive medium allows us to select a narr...

  4. Squeezed light in an optical parametric oscillator network with coherent feedback quantum control.

    Science.gov (United States)

    Crisafulli, Orion; Tezak, Nikolas; Soh, Daniel B S; Armen, Michael A; Mabuchi, Hideo

    2013-07-29

    We present squeezing and anti-squeezing spectra of the output from a degenerate optical parametric oscillator (OPO) network arranged in different coherent quantum feedback configurations. One OPO serves as a quantum plant, the other as a quantum controller. The addition of coherent feedback enables shaping of the output squeezing spectrum of the plant, and is found to be capable of pushing the frequency of maximum squeezing away from the optical driving frequency and broadening the spectrum over a wider frequency band. The experimental results are in excellent agreement with the developed theory, and illustrate the use of coherent quantum feedback to engineer the quantum-optical properties of the plant OPO output.

  5. Nonlinear Dynamics and Chaos of Microcantilever-Based TM-AFMs with Squeeze Film Damping Effects

    Directory of Open Access Journals (Sweden)

    Jie-Yu Chen

    2009-05-01

    Full Text Available In Atomic force microscope (AFM examination of a vibrating microcantilever, the nonlinear tip-sample interaction would greatly influence the dynamics of the cantilever. In this paper, the nonlinear dynamics and chaos of a tip-sample dynamic system being run in the tapping mode (TM were investigated by considering the effects of hydrodynamic loading and squeeze film damping. The microcantilever was modeled as a spring-mass-damping system and the interaction between the tip and the sample was described by the Lennard-Jones (LJ potential. The fundamental frequency and quality factor were calculated from the transient oscillations of the microcantilever vibrating in air. Numerical simulations were carried out to study the coupled nonlinear dynamic system using the bifurcation diagram, Poincaré maps, largest Lyapunov exponent, phase portraits and time histories. Results indicated the occurrence of periodic and chaotic motions and provided a comprehensive understanding of the hydrodynamic loading of microcantilevers. It was demonstrated that the coupled dynamic system will experience complex nonlinear oscillation as the system parameters change and the effect of squeeze film damping is not negligible on the micro-scale.

  6. Experimental test of the strongly nonclassical character of a noisy squeezed single-photon state

    DEFF Research Database (Denmark)

    Jezek, M.; Tipsmark, A.; Dong, R.

    2012-01-01

    We experimentally verify the quantum non-Gaussian character of a conditionally generated noisy squeezed single-photon state with a positive Wigner function. Employing an optimized witness based on probabilities of squeezed vacuum and squeezed single-photon states, we prove that the state cannot...... be expressed as a mixture of Gaussian states. In our experiment, the non-Gaussian state is generated by conditional subtraction of a single photon from a squeezed vacuum state. The state is probed with a homodyne detector and the witness is determined by averaging a suitable pattern function over the measured...

  7. Multiple-bunch-length operating mode design for a storage ring using hybrid low alpha and harmonic cavity method

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Weiwei, E-mail: gaomqr@mail.ustc.edu.cn [College of Mathematics and Physics, Fujian University of Technology, Fuzhou 350118 (China); Wang, Lin; Li, Heting [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China)

    2017-03-11

    In this paper we design a simultaneous three bunch length operating mode at the HLS-II (Hefei Light Source II) storage ring by installing two harmonic cavities and minimizing the momentum compaction factor. The short bunches (2.6 mm) presented in this work will meet the requirement of coherent millimeter-wave and sub-THz radiation experiments, while the long bunches (20 mm) will efficiently increase the total beam current. Therefore, this multiple-bunch-length operating mode allows present synchrotron users and coherent millimeter-wave users (or sub THz users) to carry out their experiments simultaneously. Since the relatively low energy characteristic of HLS-II we achieve the multiple-bunch-length operating mode without multicell superconducting RF cavities, which is technically feasible.

  8. Finite Element Analysis of Laser Engineered Net Shape (LENS™) Tungsten Clad Squeeze Pins

    Science.gov (United States)

    Sakhuja, Amit; Brevick, Jerald R.

    2004-06-01

    In the aluminum high-pressure die-casting and indirect squeeze casting processes, local "squeeze" pins are often used to minimize internal solidification shrinkage in heavy casting sections. Squeeze pins frequently fail in service due to molten aluminum adhering to the H13 tool steel pins ("soldering"). A wide variety of coating materials and methods have been developed to minimize soldering on H13. However, these coatings are typically very thin, and experience has shown their performance on squeeze pins is highly variable. The LENS™ process was employed in this research to deposit a relatively thick tungsten cladding on squeeze pins. An advantage of this process was that the process parameters could be precisely controlled in order to produce a satisfactory cladding. Two fixtures were designed and constructed to enable the end and outer diameter (OD) of the squeeze pins to be clad. Analyses were performed on the clad pins to evaluate the microstructure and chemical composition of the tungsten cladding and the cladding-H13 substrate interface. A thermo-mechanical finite element analysis (FEA) was performed to assess the stress distribution as a function of cladding thickness on the pins during a typical casting thermal cycle. FEA results were validated via a physical test, where the clad squeeze pins were immersed into molten aluminum. Pins subjected to the test were evaluated for thermally induced cracking and resistance to soldering of the tungsten cladding.

  9. Finite element analysis of laser engineered net shape (LENSTM) tungsten clad squeeze pins

    International Nuclear Information System (INIS)

    Sakhuja, Amit; Brevick, Jerald R.

    2004-01-01

    In the aluminum high-pressure die-casting and indirect squeeze casting processes, local 'squeeze' pins are often used to minimize internal solidification shrinkage in heavy casting sections. Squeeze pins frequently fail in service due to molten aluminum adhering to the H13 tool steel pins ('soldering'). A wide variety of coating materials and methods have been developed to minimize soldering on H13. However, these coatings are typically very thin, and experience has shown their performance on squeeze pins is highly variable. The LENS TM process was employed in this research to deposit a relatively thick tungsten cladding on squeeze pins. An advantage of this process was that the process parameters could be precisely controlled in order to produce a satisfactory cladding. Two fixtures were designed and constructed to enable the end and outer diameter (OD) of the squeeze pins to be clad. Analyses were performed on the clad pins to evaluate the microstructure and chemical composition of the tungsten cladding and the cladding-H13 substrate interface. A thermo-mechanical finite element analysis (FEA) was performed to assess the stress distribution as a function of cladding thickness on the pins during a typical casting thermal cycle. FEA results were validated via a physical test, where the clad squeeze pins were immersed into molten aluminum. Pins subjected to the test were evaluated for thermally induced cracking and resistance to soldering of the tungsten cladding

  10. Understanding squeezing of quantum states with the Wigner function

    Science.gov (United States)

    Royer, Antoine

    1994-01-01

    The Wigner function is argued to be the only natural phase space function evolving classically under quadratic Hamiltonians with time-dependent bilinear part. This is used to understand graphically how certain quadratic time-dependent Hamiltonians induce squeezing of quantum states. The Wigner representation is also used to generalize Ehrenfest's theorem to the quantum uncertainties. This makes it possible to deduce features of the quantum evolution, such as squeezing, from the classical evolution, whatever the Hamiltonian.

  11. Spin squeezing and light entanglement in Coherent Population Trapping

    DEFF Research Database (Denmark)

    Dantan, Aurelien Romain; Cviklinski, Jean; Giacobino, Elisabeth

    2006-01-01

    We show that strong squeezing and entanglement can be generated at the output of a cavity containing atoms interacting with two fields in a coherent population trapping situation, on account of a nonlinear Faraday effect experienced by the fields close to a dark-state resonance in a cavity....... Moreover, the cavity provides a feedback mechanism allowing to reduce the quantum fluctuations of the ground state spin, resulting in strong steady state spin squeezing....

  12. Control of segregation in squeeze cast Al-4.5Cu binary alloy

    Energy Technology Data Exchange (ETDEWEB)

    Durrant, G. [Oxford Univ. (United Kingdom). Dept. of Materials; Gallerneault, M. [Alcan International Ltd., Kingston, ON (Canada); Cantor, B. [Oxford Univ. (United Kingdom). Dept. of Materials

    1997-10-01

    The high pressure applied in squeeze casting allows Al alloys of wrought composition to be cast to near net-shape, although their long freezing range leads to the segregation of alloying elements. In this paper we present results on the squeeze casting and gravity casting of a model Al-4.5 wt%Cu alloy. Squeeze cast Al-4.5Cu has a normal segregation pattern with eutectic macrosegregates towards the centre of the billet, whereas gravity cast material has a typical inverse segregation pattern. Normal segregation in squeeze cast Al-4.5Cu is due to large temperature gradients during solidification. Segregation can be minimized by releasing the applied pressure during solidification to allow backflow of the interdendritic fluid, or by the addition of grain refiner to remove the large columnar dendritic growth structure. (orig.)

  13. Noise suppression in an atomic system under the action of a field in a squeezed coherent state

    International Nuclear Information System (INIS)

    Gelman, A. I.; Mironov, V. A.

    2010-01-01

    The interaction of a quantized electromagnetic field in a squeezed coherent state with a three-level Λ-atom is studied numerically by the quantum Monte Carlo method and analytically by the Heisenberg-Langevin method in the regime of electromagnetically induced transparency (EIT). The possibility of noise suppression in the atomic system through the quantum properties of squeezed light is considered in detail; the characteristics of the atomic system responsible for the relaxation processes and noise in the EIT band have been found. Further applications of the Monte Carlo method and the developed numerical code to the study of more complex systems are discussed.

  14. Impurity magnetopolaron in a parabolic quantum dot: the squeezed-state variational approach

    International Nuclear Information System (INIS)

    Kandemir, B S; Cetin, A

    2005-01-01

    We present a calculation of the ground-state binding energy of an impurity magnetopolaron confined in a three-dimensional (3D) parabolic quantum dot potential, in the framework of a variational approach based on two successive canonical transformations. First, we apply a displaced-oscillator type unitary transformation to diagonalize the relevant Froehlich Hamiltonian. Second, a single-mode squeezed-state transformation is introduced to deal with bilinear terms arising from the first transformation. Finally, the parameters of these transformations together with the parameters included in the electronic trial wavefunction are determined variationally to obtain the ground-state binding energy of an impurity magnetopolaron confined in a 3D parabolic quantum dot potential. Our approach has two advantages: first, the displaced-oscillator transformation allows one to obtain results valid for whole range of electron-phonon coupling strength since it is a special combination of Lee-Low-Pines and Huybrechts (LLP-H) canonical transformations, and second, the later transformation improves all-coupling results. It has been shown that the effects of quadratic terms arising from the all-coupling approach are very important and should be taken into account in studying the size-dependent physical properties of nanostructured materials

  15. Multi-operational tuneable Q-switched mode-locking Er fibre laser

    Science.gov (United States)

    Qamar, F. Z.

    2018-01-01

    A wavelength-spacing tuneable, Q-switched mode-locking (QML) erbium-doped fibre laser based on non-linear polarization rotation controlled by four waveplates and a cube polarizer is proposed. A mode-locked pulse train using two quarter-wave plates and a half-wave plate (HWP) is obtained first, and then an extra HWP is inserted into the cavity to produce different operation regimes. The evolutions of temporal and spectral dynamics with different orientation angles of the extra HWP are investigated. A fully modulated stable QML pulse train is observed experimentally. This is, to the author’s best knowledge, the first experimental work reporting QML operation without adding an extra saturable absorber inside the laser cavity. Multi-wavelength pulse laser operation, multi-pulse train continuous-wave mode-locking operation and pulse-splitting operations are also reported at certain HWP angles. The observed operational dynamics are interpreted as a mutual interaction of dispersion, non-linear effect and insertion loss. This work provides a new mechanism for fabricating cheap tuneable multi-wavelength lasers with QML pulses.

  16. C5 capsule operation modes analysis

    International Nuclear Information System (INIS)

    Negut, Gh.; Ancuta, Mirela; Stefan, Violeta

    2008-01-01

    This paper is part of the Nuclear Research Institute Program 13 dedicated to 'TRIGA Research Reactor performance enhancing' and its objective is improving the engineering of the structural materials irradiation. The paper raises the knowledge level on C5 capsule irradiation modes and utilizes previous results in order to increase C5 performances. In the paper the irradiation modes to test zirconium yttrium sample are assessed. These tests are proposed by AECL. There are presented the C5 initial conditions and models. Also. there are presented the thermal hydraulic conditions during normal and accidental operation. The results will be used in the C5 safety report. (authors)

  17. Calibration and fluctuation of the secular frequency peak amplitude versus initial condition distribution of the ion cloud confined into a three-dimensional quadrupole ion trap using a fourier transform operating mode and a steady ion flow injection mode

    International Nuclear Information System (INIS)

    Janulyte, A.; Andre, J.; Carette, M.; Mercury, M.; Reynard, C; Zerega, Y.

    2009-01-01

    A specific Fourier transform operating mode is applied to a 3-dimensional quadrupolar ion trap for mass analysis (Fourier Transform Quadrupolar Ion Trap (FTQIT) Operating Mode or Mass Spectrometer). With this operating mode, an image signal, which is representative of the collective motion of simultaneously confined ions, is made up from a set of recorded time-of-flight histograms. In an ion trap, the secular frequency of ion motion depends on m/Z ratio of the ion. By Fourier transformation of the image signal, one observes the frequency peak of each confined ionic species. When only one ionic species is confined, the peak amplitude is proportional to the maximal amplitude of the image signal. The maximal amplitude of the image signal is expressed according to the operating parameters, the initial conditions of the ions and the number of ions. Simulation tools lead to fluctuation calculation of the maximal amplitude of the image signal. Two origins are explored: (1) the fluctuation of the numbers of ions according to the steady ion flow injection mode (SIFIM) used with this operating mode and (2) the distribution fluctuation of the initial positions and velocities. Initial confinement conditions, obtained with SIFIM injection mode, lead to optimal detection with small fluctuations of the peak amplitude for Fourier transform operating mode applied to an ion trap. (authors)

  18. The squeezing properties in the Jaynes-Cummings model with arbitrary intensity-dependent coupling

    International Nuclear Information System (INIS)

    Rhui-Hua, X.; Dun-Huan, L.; Gong-Ou, X.

    1996-01-01

    It is studied the squeezing properties of the atom and the radiation field in arbitrary intensity-dependent-coupling Jaynes-Cummings model when it is restricted to the following initial condition: the atom in its coherent state and the field in the vacuum state. The influence of virtual-photon processes on the atomic squeezing predicted by the Jaynes-Cummings model (JCM) has been examined. The relationship between the field and atomic squeezing in the resonant multi-photon JCM has been discussed. The symmetry between the field and atomic squeezing (SFAS) has been exposed in the resonant vacuum one-photon JCM, and the influence of non-resonant interaction and virtual-photon processes on the SFAS has also been discussed

  19. Atom-number squeezing and bipartite entanglement of two-component Bose-Einstein condensates: analytical results

    Energy Technology Data Exchange (ETDEWEB)

    Jin, G R; Wang, X W; Li, D; Lu, Y W, E-mail: grjin@bjtu.edu.c [Department of Physics, Beijing Jiaotong University, Beijing 100044 (China)

    2010-02-28

    We investigate spin dynamics of a two-component Bose-Einstein condensate with weak Josephson coupling. Analytical expressions of atom-number squeezing and bipartite entanglement are presented for atom-atom repulsive interactions. For attractive interactions, there is no number squeezing; however, the squeezing parameter is still useful to recognize the appearance of Schroedinger's cat state.

  20. Proposed Entanglement Swapping in Continuous Variable Systems via Braiding

    International Nuclear Information System (INIS)

    Su Hongyi; Chen Jingling; Deng Dongling; Wu Chunfeng

    2010-01-01

    We study entanglement swapping in continuous variable systems by using braiding transformations. It is found that entanglement swapping in two-mode squeezed vacuum states and squeezed coherent states can be realized based on the braiding operators. (general)

  1. Elimination of zero sequence circulating current between parallel operating three-level inverters

    DEFF Research Database (Denmark)

    Li, Kai; Wang, Xiaodong; Dong, Zhenhua

    2016-01-01

    In order to suppress the zero sequence circulating currents (ZSCCs) between parallel operating three level voltage source inverters with common AC and DC buses, a common mode voltage reduction PWM (CMVR-PWM) technique and neural point potentials (NPPs) control based method is proposed in this paper...

  2. Density-dependent squeezing of excitons in highly excited semiconductors

    International Nuclear Information System (INIS)

    Nguyen Hong Quang.

    1995-07-01

    The time evolution from coherent states to squeezed states of high density excitons is studied theoretically based on the boson formalism and within the Random Phase Approximation. Both the mutual interaction between excitons and the anharmonic exciton-photon interaction due to phase-space filling of excitons are taken into account. It is shown that the exciton squeezing depends strongly on the exciton density in semiconductors and becomes smaller with increasing the latter. (author). 16 refs, 2 figs

  3. Section thickness-dependent tensile properties of squeeze cast magnesium alloy AM60

    Directory of Open Access Journals (Sweden)

    Xuezhi Zhang

    2012-05-01

    Full Text Available The development of alternative casting processes is essential for the high demand of light weight magnesium components to be used in the automotive industry, which often contain different section thicknesses. Squeeze casting with its inherent advantages has been approved for the capability of minimizing the gas porosity in magnesium alloys. For advanced engineering design of light magnesium automotive applications, it is critical to understand the effect of section thickness on mechanical properties of squeeze cast magnesium alloys. In this study, magnesium alloy AM60 with different section thicknesses of 6, 10 and 20 mm squeeze cast under an applied pressure of 30 MPa was investigated. The prepared squeeze cast AM60 specimens were tensile tested at room termperature. The results indicate that the mechanical properties including yield strength (YS, ultimate tensile strength (UTS and elongation (A decrease with an increase in section thickness of squeeze cast AM60. The microstructure analysis shows that the improvement in the tensile behavior of squeeze cast AM60 is primarily attributed to the low-gas porosity level and fine grain strucuture which result from the variation of cooling rate of different section thickness. The numerical simulation (Magmasoft? was employed to determine the solidification rates of each step, and the simulated results show that the solidification rate of the alloy decreases with an increase in the section thickness. The computed solidification rates support the experimental observation on grain structural development.

  4. Optimization of Squeeze Casting Parameters for 2017 A Wrought Al Alloy Using Taguchi Method

    Directory of Open Access Journals (Sweden)

    Najib Souissi

    2014-04-01

    Full Text Available This study applies the Taguchi method to investigate the relationship between the ultimate tensile strength, hardness and process variables in a squeeze casting 2017 A wrought aluminium alloy. The effects of various casting parameters including squeeze pressure, melt temperature and die temperature were studied. Therefore, the objectives of the Taguchi method for the squeeze casting process are to establish the optimal combination of process parameters and to reduce the variation in quality between only a few experiments. The experimental results show that the squeeze pressure significantly affects the microstructure and the mechanical properties of 2017 A Al alloy.

  5. Optimization of Squeeze Parameters and Modification of AlSi7Mg Alloy

    Directory of Open Access Journals (Sweden)

    Zyska A.

    2013-06-01

    Full Text Available The paper present the examination results concerning mechanical properties of castings made of AlSi7MG alloy in correlation both with the most significant squeeze casting parameters and with the modification treatment. Experiments were planned and held according to the 23 factorial design. The regression equations describing the influence of the squeeze pressure, the mould temperature, and the quantity of strontium modifier on the strength and elongation of the examined alloy were obtained. It was found that the main factor controlling the strength increase is the squeeze pressure, while the plasticity (A5 of the alloy is affected most advantageously by modification. The application of modification treatment in squeeze casting technology enables for production of the slab-type castings made of AlSi7Mg alloy exhibiting strength at the level of 230 MPa and elongation exceeding 14%.

  6. Influence of the virtual photon field on the squeezing properties of an atom laser

    International Nuclear Information System (INIS)

    Jian-Gang, Zhao; Chang-Yong, Sun; Ling-Hua, Wen; Bao-Long, Liang

    2009-01-01

    This paper investigates the squeezing properties of an atom laser without rotating-wave approximation in the system of a binomial states field interacting with a two-level atomic Bose–Einstein condensate. It discusses the influences of atomic eigenfrequency, the interaction intensity between the optical field and atoms, parameter of the binomial states field and virtual photon field on the squeezing properties. The results show that two quadrature components of an atom laser can be squeezed periodically. The duration and the degree of squeezing an atom laser have something to do with the atomic eigenfrequency and the parameter of the binomial states field, respectively. The collapse and revival frequency of atom laser fluctuation depends on the interaction intensity between the optical field and atoms. The effect of the virtual photon field deepens the depth of squeezing an atom laser

  7. Startup methods for single-mode gyrotron operation

    International Nuclear Information System (INIS)

    Whaley, D.R.; Tran, M.Q.; Alberti, S.; Tran, T.M.; Antonsen, T.M. Jr.; Dubrovin, A.; Tran, C.

    1995-01-01

    Experimental results of startup studies on a 118 GHz TE 22,6 gyrotron are presented and compared with theory. The startup paths through the energy-velocity-pitch-angle plane are determined by the time evolution of the beam parameters during the startup phase. These startup paths are modified by changing the anode and cathode voltage rise from zero to their nominal values and are seen to determine the cavity oscillating mode. Experimental results show specifically that competition between the TE 22,6 and TE -19,7 mode can be completely eliminated by use of the proper startup method in a case where a typical triode startup results in oscillation in the competing TE -19,7 mode. These new results are shown to be in excellent agreement with the theory whose approach is general and therefore applicable to gyrotrons operating in any arbitrary cavity mode. (author) 3 figs., 4 refs

  8. Wigner function and tomogram of the excited squeezed vacuum state

    International Nuclear Information System (INIS)

    Meng Xiangguo; Wang Jisuo; Fan Hongyi

    2007-01-01

    The excited squeezed light (ESL) can be the outcome of interaction between squeezed light probe and excited atom, which can explore the status and the structure of the atom. We calculate the Wigner function and tomogram of ESL that may be comparable to the experimental measurement of quadrature-amplitude distribution for the light field obtained using balanced homodyne detection. The method of calculation seems new

  9. Wigner function and tomogram of the excited squeezed vacuum state

    Energy Technology Data Exchange (ETDEWEB)

    Meng Xiangguo [Department of Physics, Liaocheng University, Shandong Province 252059 (China); Wang Jisuo [Department of Physics, Liaocheng University, Shandong Province 252059 (China)]. E-mail: jswang@lcu.edu.cn; Fan Hongyi [Department of Physics, Liaocheng University, Shandong Province 252059 (China); CCAST (World Laboratory), P.O. Box 8730, 100080 Beijing (China)

    2007-01-29

    The excited squeezed light (ESL) can be the outcome of interaction between squeezed light probe and excited atom, which can explore the status and the structure of the atom. We calculate the Wigner function and tomogram of ESL that may be comparable to the experimental measurement of quadrature-amplitude distribution for the light field obtained using balanced homodyne detection. The method of calculation seems new.

  10. Online probabilistic operational safety assessment of multi-mode engineering systems using Bayesian methods

    International Nuclear Information System (INIS)

    Lin, Yufei; Chen, Maoyin; Zhou, Donghua

    2013-01-01

    In the past decades, engineering systems become more and more complex, and generally work at different operational modes. Since incipient fault can lead to dangerous accidents, it is crucial to develop strategies for online operational safety assessment. However, the existing online assessment methods for multi-mode engineering systems commonly assume that samples are independent, which do not hold for practical cases. This paper proposes a probabilistic framework of online operational safety assessment of multi-mode engineering systems with sample dependency. To begin with, a Gaussian mixture model (GMM) is used to characterize multiple operating modes. Then, based on the definition of safety index (SI), the SI for one single mode is calculated. At last, the Bayesian method is presented to calculate the posterior probabilities belonging to each operating mode with sample dependency. The proposed assessment strategy is applied in two examples: one is the aircraft gas turbine, another is an industrial dryer. Both examples illustrate the efficiency of the proposed method

  11. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Yan, R.; Aluie, H.; Betti, R.; Sanz, J.; Liu, B.; Frank, A.

    2016-01-01

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume

  12. Based on Intelligent Robot of E-business Distribution Center Operation Mode Research

    Directory of Open Access Journals (Sweden)

    Li Juntao

    2016-01-01

    Full Text Available According to E-business distribution center operation mode in domestic and advanced experience drawing lessons at home and abroad, this paper based on intelligent robot researches E-business distribution center operation mode. And it proposes the innovation logistics storage in E-business and sorting integration system, and elaborates its principle, characteristics, as well as studies its business mode and logistics process, and its parameters and working mode of AGV equipment.

  13. Three distinct modes of intron dynamics in the evolution of eukaryotes.

    Science.gov (United States)

    Carmel, Liran; Wolf, Yuri I; Rogozin, Igor B; Koonin, Eugene V

    2007-07-01

    Several contrasting scenarios have been proposed for the origin and evolution of spliceosomal introns, a hallmark of eukaryotic genes. A comprehensive probabilistic model to obtain a definitive reconstruction of intron evolution was developed and applied to 391 sets of conserved genes from 19 eukaryotic species. It is inferred that a relatively high intron density was reached early, i.e., the last common ancestor of eukaryotes contained >2.15 introns/kilobase, and the last common ancestor of multicellular life forms harbored approximately 3.4 introns/kilobase, a greater intron density than in most of the extant fungi and in some animals. The rates of intron gain and intron loss appear to have been dropping during the last approximately 1.3 billion years, with the decline in the gain rate being much steeper. Eukaryotic lineages exhibit three distinct modes of evolution of the intron-exon structure. The primary, balanced mode, apparently, operates in all lineages. In this mode, intron gain and loss are strongly and positively correlated, in contrast to previous reports on inverse correlation between these processes. The second mode involves an elevated rate of intron loss and is prevalent in several lineages, such as fungi and insects. The third mode, characterized by elevated rate of intron gain, is seen only in deep branches of the tree, indicating that bursts of intron invasion occurred at key points in eukaryotic evolution, such as the origin of animals. Intron dynamics could depend on multiple mechanisms, and in the balanced mode, gain and loss of introns might share common mechanistic features.

  14. Production of structured lipids by acidolysis of an EPA-enriched fish oil and caprylic acid in a packed bed reactor: analysis of three different operation modes.

    Science.gov (United States)

    González Moreno, P A; Robles Medina, A; Camacho Rubio, F; Camacho Páez, B; Molina Grima, E

    2004-01-01

    Structured triacylglycerols (ST) enriched in eicosapentaenoic acid (EPA) in position 2 of the triacylglycerol (TAG) backbone were synthesized by acidolysis of a commercially available EPA-rich oil (EPAX4510, 40% EPA) and caprylic acid (CA), catalyzed by the 1,3-specific immobilized lipase Lipozyme IM. The reaction was carried out in a packed bed reactor (PBR) operating in two ways: (1) by recirculating the reaction mixture from the exit of the bed to the substrate reservoir (discontinuous mode) and (2) in continuous mode, directing the product mixture leaving the PBR to a product reservoir. By operating in these two ways and using a simple kinetic model, representative values for the apparent kinetic constants (kX) for each fatty acid (native, Li or odd, M) were obtained. The kinetic model assumes that the rate of incorporation of a fatty acid into TAG per amount of enzyme, rX (mole/(h g lipase)) is proportional to the extent of the deviation from the equilibrium for each fatty acid (i.e., the difference of concentration between the fatty acid in the triacylglycerol and the concentration of the same fatty acid in the triacylglycerol once the equilibrium of the acidolysis reaction is reached). The model allows comparing the two operating modes through the processing intensity, defined as mLt/(V[TG]0) and mL/(q[TG]0), for the discontinuous and continuous operation modes, respectively. In discontinuous mode, ST with 59.5% CA and 9.6% EPA were obtained. In contrast, a ST with 51% CA and 19.6% EPA were obtained when using the continuous operation mode. To enhance the CA incorporation when operating in continuous mode, a two-step acidolysis reaction was performed (third operation mode). This continuous two-step process yields a ST with a 64% CA and a 15% EPA. Finally, after purifying the above ST in a preparative silica gel column, impregnated with boric acid, a ST with 66.9% CA and 19.6% EPA was obtained. The analysis by reverse phase and Ag+ liquid chromatography of

  15. Low frequency phase signal measurement with high frequency squeezing

    OpenAIRE

    Zhai, Zehui; Gao, Jiangrui

    2011-01-01

    We calculate the utility of high-frequency squeezed-state enhanced two-frequency interferometry for low-frequency phase measurement. To use the high-frequency sidebands of the squeezed light, a two-frequency intense laser is used in the interferometry instead of a single-frequency laser as usual. We find that the readout signal can be contaminated by the high-frequency phase vibration, but this is easy to check and avoid. A proof-of-principle experiment is in the reach of modern quantum optic...

  16. Analysis of an Electrostatic MEMS Squeeze-film Drop Ejector

    Directory of Open Access Journals (Sweden)

    Edward P. Furlani

    2009-10-01

    Full Text Available We present an analysis of an electrostatic drop-on-demand MEMS fluid ejector. The ejector consists of a microfluidic chamber with a piston that is suspended a few microns beneath a nozzle plate. A drop is ejected when a voltage is applied between the orifice plate and the piston. This produces an electrostatic force that moves the piston towards the nozzle. The moving piston generates a squeeze-film pressure distribution that causes drop ejection. We discuss the operating physics of the ejector and present a lumped-element model for predicting its performance. We calibrate the model using coupled structural-fluidic CFD analysis.

  17. On irreversible evolutions of two-level systems approaching coherent and squeezed states

    International Nuclear Information System (INIS)

    Jurco, B.; Tolar, J.

    1988-01-01

    The concepts of completely positive quantum dynamical semigroups and SU(2)-related generalized coherence and squeezing are used to investigate conditions for Markovian evolutions leading to coherent, intelligent, minimum-uncertainty and squeezed asymptotic stationary states in a 2-level system. (author). 10 refs

  18. Temperature and Pressure Evolution during Al Alloy Solidification at Different Squeeze Pressures

    International Nuclear Information System (INIS)

    Li, Junwen; Zhao, Haidong; Chen, Zhenming

    2015-01-01

    Squeeze casting is an advanced and near net-shape casting process, in which external high pressure is applied to solidifying castings. The castings are characterized with fine grains and good mechanical properties. In this study, a series of experiments were carried out to measure the temperature and pressure histories in cavity of Al-Si-Mg direct squeeze castings with different applied solidification pressures of 0.1, 50, 75, and 100 MPa. The evolution of the measured temperatures and pressures was compared and discussed. The effect of pressure change on formation of shrinkage defects was analyzed. Further the friction between the castings and dies during solidification was calculated. It is shown that the applied squeeze pressure has significant influence on the friction at die and casting interfaces, which affects the pressure evolution and transmission. The results could provide some benchmark data for future thermal-mechanics coupled modeling of squeeze castings. (paper)

  19. Slip analysis of squeezing flow using doubly stratified fluid

    Science.gov (United States)

    Ahmad, S.; Farooq, M.; Javed, M.; Anjum, Aisha

    2018-06-01

    The non-isothermal flow is modeled and explored for squeezed fluid. The influence of velocity, thermal and solutal slip effects on transport features of squeezed fluid are analyzed through Darcy porous channel when fluid is moving due to squeezing of upper plate towards the stretchable lower plate. Dual stratification effects are illustrated in transport equations. A similarity analysis is performed and reduced governing flow equations are solved using moderated and an efficient convergent approach i.e. Homotopic technique. The significant effects of physical emerging parameters on flow velocity, temperature and fluid concentration are reporting through various plots. Graphical explanations for drag force, Nusselt and Sherwood numbers are stated and examined. The results reveal that minimum velocity field occurs near the plate, whereas it increases far away from the plate for strong velocity slip parameter. Furthermore, temperature and fluid concentration significantly decreases with increased slip effects. The current analysis is applicable in some advanced technological processes and industrial fluid mechanics.

  20. Intensity phase coherence in three-mode Fabry-Pacute erot lasers

    International Nuclear Information System (INIS)

    Nguyen, B.A.; Mandel, P.

    1996-01-01

    We study analytically the intensity phase coherence in a three-mode Fabry-Pacute erot laser. We consider in detail the case of a central mode with maximum gain and two side modes with smaller but equal gains. This laser is characterized by three relaxation oscillation frequencies Ω R double-prime approx-gt Ω L1 double-prime approx-gt Ω L2 double-prime . In the framework of a linearized theory, the laser dynamics is, respectively, inphased and perfectly antiphased at Ω R double-prime and Ω L2 double-prime , irrespective of the modal gains. At Ω L1 double-prime the antiphase is only partial if the side mode gains are smaller than the central mode gain. Analytic gain- and pump-dependent relations between the three frequencies and between the heights of the peaks in the power spectra at these frequencies are established. We also derive universal relations between the peaks of the power spectra of the modal and the total intensities at the same frequencies that do not involve any parameter at all. copyright 1996 The American Physical Society

  1. On the Generation of Intermediate Number Squeezed State of the Quantized Radiation Field

    Science.gov (United States)

    Baseia, B.; de Lima, A. F.; Bagnato, V. S.

    Recently, a new state of the quantized radiation field — the intermediate number squeezed state (INSS) — has been introduced in the literature: it interpolates between the number state |n> and the squeezed state |z, α>=Ŝ(z)|α>, and exhibits interesting nonclassical properties as antibunching, sub-Poissonian statistics and squeezing. Here we introduce a slight modification in the previous definition allowing us a proposal to generate the INSS. Nonclassical properties using a new set of parameters are also studied.

  2. New information technologies in operative control of modes in regional electrical power systems

    OpenAIRE

    ANDREY D. TEVJASHEV; TATJANA B. TIMOFEEVA

    2003-01-01

    The problem of development of software for management of modes in electrical power systems in connection with casual character of a load in network is considered. The stochastic mathematical model of a system for operating control of modes in regional electrical power systems is offered. The methods for problem solving of operating control and operating planning of operational modes in regional electrical power systems are developed. The application of the developed models and methods will al...

  3. Cosmological evolution as squeezing: a toy model for group field cosmology

    Science.gov (United States)

    Adjei, Eugene; Gielen, Steffen; Wieland, Wolfgang

    2018-05-01

    We present a simple model of quantum cosmology based on the group field theory (GFT) approach to quantum gravity. The model is formulated on a subspace of the GFT Fock space for the quanta of geometry, with a fixed volume per quantum. In this Hilbert space, cosmological expansion corresponds to the generation of new quanta. Our main insight is that the evolution of a flat Friedmann–Lemaître–Robertson–Walker universe with a massless scalar field can be described on this Hilbert space as squeezing, familiar from quantum optics. As in GFT cosmology, we find that the three-volume satisfies an effective Friedmann equation similar to the one of loop quantum cosmology, connecting the classical contracting and expanding solutions by a quantum bounce. The only free parameter in the model is identified with Newton’s constant. We also comment on the possible topological interpretation of our squeezed states. This paper can serve as an introduction into the main ideas of GFT cosmology without requiring the full GFT formalism; our results can also motivate new developments in GFT and its cosmological application.

  4. Low-noise, transformer-coupled resonant photodetector for squeezed state generation.

    Science.gov (United States)

    Chen, Chaoyong; Shi, Shaoping; Zheng, Yaohui

    2017-10-01

    In an actual setup of squeezed state generation, the stability of a squeezing factor is mainly limited by the performance of the servo-control system, which is mainly influenced by the shot noise and gain of a photodetector. We present a unique transformer-coupled LC resonant amplifier as a photodetector circuit to reduce the electronic noise and increase the gain of the photodetector. As a result, we obtain a low-noise, high gain photodetector with the gain of more than 1.8×10 5 V/A, and the input current noise of less than 4.7 pA/Hz. By adjusting the parameters of the transformer, the quality factor Q of the resonant circuit is close to 100 in the frequency range of more than 100 MHz, which meets the requirement for weak power detection in the application of squeezed state generation.

  5. Improvement of an Atomic Clock using Squeezed Vacuum

    DEFF Research Database (Denmark)

    Kruse, I.; Lange, K; Peise, Jan

    2016-01-01

    , the vacuum noise restricts the precision of the interferometer to the standard quantum limit (SQL). Here, we propose and experimentally demonstrate a novel clock configuration that surpasses the SQL by squeezing the vacuum in the empty input state. We create a squeezed vacuum state containing an average of 0.......75 atoms to improve the clock sensitivity of 10000 atoms by 2.05+0.34−0.37  dB. The SQL poses a significant limitation for today’s microwave fountain clocks, which serve as the main time reference. We evaluate the major technical limitations and challenges for devising a next generation of fountain clocks...

  6. Dual-Mode Operation of an Optical Lattice Clock Using Strontium and Ytterbium Atoms.

    Science.gov (United States)

    Akamatsu, Daisuke; Kobayashi, Takumi; Hisai, Yusuke; Tanabe, Takehiko; Hosaka, Kazumoto; Yasuda, Masami; Hong, Feng-Lei

    2018-06-01

    We have developed an optical lattice clock that can operate in dual modes: a strontium (Sr) clock mode and an ytterbium (Yb) clock mode. Dual-mode operation of the Sr-Yb optical lattice clock is achieved by alternately cooling and trapping 87 Sr and 171 Yb atoms inside the vacuum chamber of the clock. Optical lattices for Sr and Yb atoms were arranged with horizontal and vertical configurations, respectively, resulting in a small distance of the order of between the trapped Sr and Yb atoms. The 1 S 0 - 3 P 0 clock transitions in the trapped atoms were interrogated in turn and the clock lasers were stabilized to the transitions. We demonstrated the frequency ratio measurement of the Sr and Yb clock transitions by using the dual-mode operation of the Sr-Yb optical lattice clock. The dual-mode operation can reduce the uncertainty of the blackbody radiation shift in the frequency ratio measurement, because both Sr and Yb atoms share the same blackbody radiation.

  7. ANALYSIS OF OPTIMUM OPERATING MODES OF POWER TRANSFORMERS UNDER OPERATING CONDITIONS

    Directory of Open Access Journals (Sweden)

    I. V. Khomenko

    2016-12-01

    Full Text Available Purpose. The study of parallel operation optimal modes of transformer equipment for a variety of operating conditions: same or different types of transformers, with or without reactive power flows. Methodology. Losses of energy in transformers make 30 % of all losses. Therefore the choice of the economically justified parallel operation of transformers is effective action to reduce losses. Typically, in the calculations of reactive power flows in the transformers are not taken into account. It is interesting to analyze the optimal operating conditions of transformers with and without reactive power flows. Results. Calculations for transformers in distribution networks showed that the inclusion of reactive power flows in transformers significant impact on the calculated optimum regimes of transformers.

  8. Modeling Operating Modes for the Monju Nuclear Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Yoshikawa, Hidekazu; Jørgensen, Sten Bay

    2012-01-01

    The specification of supervision and control tasks in complex processes requires definition of plant states on various levels of abstraction related to plant operation in start-up, normal operation and shut-down. Modes of plant operation are often specified in relation to a plant decomposition in...... for the Japanese fast breeder reactor plant MONJU....

  9. Task Analytic Models to Guide Analysis and Design: Use of the Operator Function Model to Represent Pilot-Autoflight System Mode Problems

    Science.gov (United States)

    Degani, Asaf; Mitchell, Christine M.; Chappell, Alan R.; Shafto, Mike (Technical Monitor)

    1995-01-01

    Task-analytic models structure essential information about operator interaction with complex systems, in this case pilot interaction with the autoflight system. Such models serve two purposes: (1) they allow researchers and practitioners to understand pilots' actions; and (2) they provide a compact, computational representation needed to design 'intelligent' aids, e.g., displays, assistants, and training systems. This paper demonstrates the use of the operator function model to trace the process of mode engagements while a pilot is controlling an aircraft via the, autoflight system. The operator function model is a normative and nondeterministic model of how a well-trained, well-motivated operator manages multiple concurrent activities for effective real-time control. For each function, the model links the pilot's actions with the required information. Using the operator function model, this paper describes several mode engagement scenarios. These scenarios were observed and documented during a field study that focused on mode engagements and mode transitions during normal line operations. Data including time, ATC clearances, altitude, system states, and active modes and sub-modes, engagement of modes, were recorded during sixty-six flights. Using these data, seven prototypical mode engagement scenarios were extracted. One scenario details the decision of the crew to disengage a fully automatic mode in favor of a semi-automatic mode, and the consequences of this action. Another describes a mode error involving updating aircraft speed following the engagement of a speed submode. Other scenarios detail mode confusion at various phases of the flight. This analysis uses the operator function model to identify three aspects of mode engagement: (1) the progress of pilot-aircraft-autoflight system interaction; (2) control/display information required to perform mode management activities; and (3) the potential cause(s) of mode confusion. The goal of this paper is twofold

  10. Squeezing a wave packet with an angular-dependent mass

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Alexandre G M [Departamento de Ciencias Exatas, Universidade Federal Fluminense, Av. dos Trabalhadores 420, Volta Redonda RJ, CEP 27255-125 (Brazil)], E-mail: agmschmidt@gmail.com, E-mail: agmschmidt@pq.cnpq.br

    2009-06-19

    We present a new effect of position-dependent mass (PDM) systems: the possibility of creating squeezed wave packets at the partial revival times. We solve exactly the PDM Schroedinger equation for the two-dimensional quantum rotor with two effective masses {mu}({theta}), both free and interacting with a uniform electric field, and present their energy eigenvalues and eigenfunctions in terms of Mathieu functions. For the first one, in order to squeeze the wave packet it is necessary to apply an electric field; for the second one such an effect can be achieved without the field.

  11. Squeezing a wave packet with an angular-dependent mass

    International Nuclear Information System (INIS)

    Schmidt, Alexandre G M

    2009-01-01

    We present a new effect of position-dependent mass (PDM) systems: the possibility of creating squeezed wave packets at the partial revival times. We solve exactly the PDM Schroedinger equation for the two-dimensional quantum rotor with two effective masses μ(θ), both free and interacting with a uniform electric field, and present their energy eigenvalues and eigenfunctions in terms of Mathieu functions. For the first one, in order to squeeze the wave packet it is necessary to apply an electric field; for the second one such an effect can be achieved without the field

  12. Squeeze-film damping characteristics of cantilever microresonators ...

    African Journals Online (AJOL)

    user

    perturbation approach does not apply to cantilever plates because of ...... Direct coupling of electrostatic and structural domain has been achieved using ... forces are computed to obtain the modal squeeze stiffness and damping parameters.

  13. Mixed-mode Operating System for Real-time Performance

    Directory of Open Access Journals (Sweden)

    M.M. Hasan

    2017-11-01

    Full Text Available The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface (GUI operating system which is typically nonreal-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time events. In this research an i8751 microcontroller-based hardware was used to measure the performance of the system in real-time-only as well as non-real-time-only configurations. The real-time portion is an 486DX-40 IBM PC system running under DOS-based realtime kernel and the non-real-time portion is a Pentium III based system running under Windows NT. It was found that mixed-mode systems performed as good as a typical realtime system and in fact, gave many additional benefits such as simplified/modular programming and load tolerance.

  14. Analysis of the ITER cryoplant operational modes

    International Nuclear Information System (INIS)

    Henry, D.; Journeaux, J.Y.; Roussel, P.; Michel, F.; Poncet, J.M.; Girard, A.; Kalinin, V.; Chesny, P.

    2007-01-01

    In the framework of an EFDA task, CEA is carrying out an analysis of the various ITER cryoplant operational modes. According to the project integration document, ITER is designed to be operated 365 days per year in order to optimize the available time of the Tokamak. It is anticipated that operation will be performed in long periods separated by maintenance periods (e.g. 10 days continuous operation and 1 week break) with annual or bi-annual major shutdown periods of a few months for maintenance, further installation and commissioning. For this operation schedule, auxiliary subsystems like the cryoplant and the cryodistribution have to cope with different heat loads which depend on the different ITER operating states. The cryoplant consists of four identical 4.5 K refrigerators and two 80 K helium loops coupled with two LN2 modules. All of these cryogenic subsystems have to operate in parallel to remove the heat loads from the magnet, 80 K shields, cryopumps and other small users. After a brief recall of the main particularities of a cryogenic system operating in a Tokamak environment, the first part of this study is dedicated to the assessment of the main ITER operation states. A new design of refrigeration loop for the HTS current leads, the updated layout of the cryodistribution system and revised strategy for operations of the cryopumps have been taken into consideration. The relevant normal operating scenarios of the cryoplant are checked for the typical ITER operating states like plasma operation state, short term stand by, short term maintenance, or test and conditioning state. The second part of the paper is dedicated to the abnormal operating modes coming from the magnets and from those generated by the cryoplant itself. The occurrence of a fast discharge or a quench of the magnets generates large heat loads disturbances and produces exceptional high mass flow rates which have to be managed by the cryoplant, while a failure of a cryogenic component induces

  15. Mode stability analysis in the beam—wave interaction process for a three-gap Hughes-type coupled cavity chain

    International Nuclear Information System (INIS)

    Luo Ji-Run; Zhu Min; Guo Wei; Cui Jian

    2013-01-01

    Based on space-charge wave theory, the formulae of the beam—wave coupling coefficient and the beam-loaded conductance are given for the beam—wave interaction in an N-gap Hughes-type coupled cavity chain. The ratio of the non-beam-loaded quality factor of the coupled cavity chain to the beam quality factor is used to determine the stability of the beam—wave interaction. As an example, the stabilities of the beam—wave interaction in a three-gap Hughes-type coupled cavity chain are discussed with the formulae and the CST code for the operations of the 2π, π, and π/2 modes, respectively. The results show that stable operation of the 2π, π, and π/2 modes may all be realized in an extended-interaction klystron with the three-gap Hughes-type coupled cavity chain

  16. Novel polymeric phosphonate scale inhibitors for improved squeeze treatment lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, G.E.; Poynton, N.; McLaughlin, K.; Clark, D.R.

    1996-12-31

    New patented chemistry has provided an exciting discovery which may be used to reduce costs in scale squeeze applications. Phosphomethylated polyamines (PMPAs) have been found to possess outstanding adsorption-desorption properties which generate long squeeze lifetimes. This paper describes the core-flood tests and modelling work, which highlight these properties, plus additional scale inhibition performance studies to demonstrate the all-round capabilities of this chemistry for squeeze treatments. An example of a PMPA is used to show the extremely viable adsorption and desorption isotherms. These illustrate the efficient way in which the desorption occurs to minimise the chemical in the returns with a benefit of reduced chemical content in the discharge. The PMPA also demonstrates that both polymer and phosphonate properties can be embraced in a single product (e.g. dual scale control mechanisms) confirming that this chemistry is a true polymeric phosphonate. 13 refs., 12 figs., 1 tab.

  17. Entanglement and purity of two-mode Gaussian states in noisy channels

    International Nuclear Information System (INIS)

    Serafini, Alessio; Illuminati, Fabrizio; De Siena, Silvio; Paris, Matteo G.A.

    2004-01-01

    We study the evolution of purity, entanglement, and total correlations of general two-mode continuous variable Gaussian states in arbitrary uncorrelated Gaussian environments. The time evolution of purity, von Neumann entropy, logarithmic negativity, and mutual information is analyzed for a wide range of initial conditions. In general, we find that a local squeezing of the bath leads to a faster degradation of purity and entanglement, while it can help to preserve the mutual information between the modes

  18. Study on a New Operational Mode of Economic Operation of Islanded Microgrids Using Electric Springs

    Directory of Open Access Journals (Sweden)

    Zhao Zhiyu

    2018-01-01

    Full Text Available With the increasing penetration of intermittent renewable energy sources (RESs into microgrids, the original operation mode of power generation determined by load demand faces severe challenges due to the uncertainties of the RESs power output. The electric springs(ESs, as an emerging technology has been verified to be effective in enabling load demand to follow power generation and stabilizing fluctuation of RESs output. This paper presents a new mode of economic operation for island microgrids including non-critical loads with embedded electric springs. Its connotation includes that i the capacity of energy storage can be reduced through the interaction of the energy storage system (ESS and the electric springs, ii the electric springs reduce the stress of peak load regulation and operational cost and iii the demand of microgrids system for ramping ability of generation units is reduced with the buffer of the electric springs. Numerical results show that the coordinated operation between electric springs and energy storage system of microgrids can bring down the investment cost for the ESS and short-term operational cost in the aspect of economic dispatch, reducing requirements for the capacity and ramp ability of the energy storage system in microgrids. Energy buffering can be achieved with lower cost and the load demand can follow power generation in the new operational mode of islanded microgrids using electric springs.

  19. Advances towards QH-mode viability for ELM-stable operation in ITER

    International Nuclear Information System (INIS)

    Garofalo, A.M.; Burrell, K.H.; DeBoo, J.C.; Schaffer, M.J.; Snyder, P.B.; Solomon, W.M.; Park, J.-K.; Lanctot, M.J.; Reimerdes, H.; McKee, G.R.; Schmitz, L.

    2011-01-01

    The application of static, non-axisymmetric, nonresonant magnetic fields (NRMFs) to high beta DIII-D plasmas has allowed sustained operation with a quiescent H-mode (QH-mode) edge and both toroidal rotation and neutral beam injected torque near zero. Previous studies have shown that QH-mode operation can be accessed only if sufficient radial shear in the plasma flow is produced near the plasma edge. In past experiments, this flow shear was produced using neutral beam injection (NBI) to provide toroidal torque. In recent experiments, this torque was nearly completely replaced by the torque from applied NRMFs. The application of the NRMFs does not degrade the global energy confinement of the plasma. Conversely, the experiments show that the energy confinement quality increases with lower plasma rotation. Furthermore, the NRMF torque increases plasma resilience to locked modes at low rotation. These results open a path towards QH-mode utilization as an edge-localized mode (ELM)-stable H-mode in the self-heated burning plasma scenario, where toroidal momentum input from NBI may be small or absent.

  20. Operational conditions and characteristics of ELM-events during H-mode plasmas in the stellarator W7-AS

    International Nuclear Information System (INIS)

    Hirsch, M.; Grigull, P.; Wobig, H.; Kisslinger, J.; McCormick, K.; Anton, M.; Baldzuhn, J.; Fiedler, S.; Fuchs, Ch.; Geiger, J.; Giannone, L.; Hartfuss, H.-J.; Holzhauer, E.; Hirsch, M.; Jaenicke, R.; Kick, M.; Maassberg, H.; Wagner, F.; Weller, A.

    2000-01-01

    H-mode operation in the low-shear stellarator W7-AS is achieved for specific plasma edge topologies characterized by three 'operational windows' of the edge rotational transform. An explanation for this strong influence of the magnetic configuration could be the increase of viscous damping if rational surfaces and thus island structures occur within the relevant plasma edge layer, thereby impeding the development of an edge transport barrier. Prior to the final transition to a quiescent state, the plasma edge passes a rich phenomenology of dynamic behaviour such as dithering and ELMs. Plasma edge parameters indicate that a quiescent H-mode occurs if a certain edge pressure is achieved. (author)

  1. Gravitationally induced zero modes of the Faddeev-Popov operator in the Coulomb gauge for Abelian gauge theories

    Science.gov (United States)

    Canfora, Fabrizio; Giacomini, Alex; Oliva, Julio

    2010-08-01

    It is shown that on curved backgrounds, the Coulomb gauge Faddeev-Popov operator can have zero modes even in the Abelian case. These zero modes cannot be eliminated by restricting the path integral over a certain region in the space of gauge potentials. The conditions for the existence of these zero modes are studied for static spherically symmetric spacetimes in arbitrary dimensions. For this class of metrics, the general analytic expression of the metric components in terms of the zero modes is constructed. Such expression allows one to find the asymptotic behavior of background metrics, which induce zero modes in the Coulomb gauge, an interesting example being the three-dimensional anti-de Sitter spacetime. Some of the implications for quantum field theory on curved spacetimes are discussed.

  2. SQUEEZING EFFECT OF RAIL LOADED BY SEMI-SLEEPERS HAVING L-SHAPED CROSS-SECTION

    Directory of Open Access Journals (Sweden)

    V. N. Sukhodoev

    2015-01-01

    Full Text Available The paper considers a problem on introduction of a conception and regularities of “squeezing effect of a rail loaded non centrally by semi-sleepers having L-shaped cross-section” exemplified by belt-type tramway. Its advantages are ensured by doubled non centrally loaded foundations these are semi-sleepers. Semi-sleeper of L-shape cross-section is a lever of L-shape form, transforming a vertical load into horizontal ones and foundation squeezing. Properties of two semi-sleepers being doubled, orientated to each other and non centrally loaded have been used in order to create a positive effect. A horizontal force creates squeezing and it is revealed as a component of a vertical load during displacements which functionally depend on foundation squeezing. These dependences demonstrate that strength and deformation properties of earth foundation of vertical direction are used for creation of horizontal properties of sleeper vertical shoulder.The paper studies mechanics pertaining to a squeezing effect of a rail loaded by semi-sleepers having L-shaped cross-section. It has been established that the rail squeezing effect results from squeezing process executed in two mutually perpendicular directions (reduction of cross-sectional area by load of a rail wheel with spacers if they are set inside of a sleeper-mechanism on an elastic foundation.Methodology for calculation of parameters on the rail reduction effect is considered as a tool for handling of applied problems on belt-type tramways. Results of the proposed rail reduction effect in problem statement for elastic conditions, with unchanged cross-sectional dimension of a rail line and introduction of correction ratio coefficients due to new initial load data have recommended for practical application as reliable values.The paper has revealed a proportional dependence of the rail reduction effect according to strength on the resultant value of reaction pressure, eccentricity difference of the

  3. Squeeze-Film Air Damping of a Five-Axis Electrostatic Bearing for Rotary Micromotors.

    Science.gov (United States)

    Wang, Shunyue; Han, Fengtian; Sun, Boqian; Li, Haixia

    2017-05-13

    Air-film damping, which dominates over other losses, plays a significant role in the dynamic response of many micro-fabricated devices with a movable mass suspended by various bearing mechanisms. Modeling the damping characteristics accurately will be greatly helpful to the bearing design, control, and test in various micromotor devices. This paper presents the simulated and experimental squeeze-film air damping results of an electrostatic bearing for use in a rotary high-speed micromotor. It is shown that the boundary condition to solve the three-dimensional Reynolds equation, which governs the squeeze-film damping in the air gap between the rotor and its surrounding stator sealed in a three-layer evacuated cavity, behaves with strong cross-axis coupling characteristics. To accurately characterize the damping effect, a set of multiphysics finite-element simulations are performed by computing both the rotor velocity and the distribution of the viscous damping force acting on the rotor. The damping characteristics varying with several key structure parameters are simulated and discussed to optimize the device structure for desirable rotor dynamics. An electrical measurement method is also proposed and applied to validate the numerical results of the damping coefficients experimentally. Given that the frequency response of the electric bearing is critically dependent on the damping coefficients at atmospheric pressure, a solution to the air-film damping measurement problem is presented by taking approximate curve fitting of multi-axis experimental frequency responses. The measured squeeze-film damping coefficients for the five-axis electric bearing agrees well with the numerical solutions. This indicates that numerical multiphysics simulation is an effective method to accurately examine the air-film damping effect for complex device geometry and arbitrary boundary condition. The accurate damping coefficients obtained by FEM simulation will greatly simplify the design

  4. The Radiation Safety Interlock System for Top-Up Mode Operation at NSRRC

    CERN Document Server

    Chen Chien Rong; Kao, Sheau-Ping; Liu, Joseph; Sheu, Rong-Jiun; Wang, Jau-Ping

    2005-01-01

    The radiation safety interlock systems of NSRRC have been operated for more than a decade. Some modification actions have been implemented in the past to perfect the safe operation. The machine and its interlock system were originally designed to operate at the decay mode. Recently some improvement programs to make the machine injection from original decay mode to top-up mode at NSRRC has initiated. For users at experimental area the radiation dose resulted from top-up re-fill injections where safety shutters of beam-lines are opened will dominate. In addition to radiation safety action plans such as upgrading the shielding, enlarging the exclusion zones and improving the injection efficiency, the interlock system for top-up operation is the most important to make sure that injection efficiency is acceptable. To ensure the personnel radiation safety during the top-up mode, the safety interlock upgrade and action plans will be implemented. This paper will summarize the original design logic of the safety inter...

  5. Experimental evidence for Raman-induced limits to efficient squeezing in optical fibers

    DEFF Research Database (Denmark)

    Dong, R.; Heersink, J.; Corney, J.

    2008-01-01

    We report new experiments on polarization squeezing using ultrashort photonic pulses in a single pass of a birefringent fiber. We measure what is to our knowledge a record squeezing of -6.8 +/- 0.3 dB in optical fibers which when corrected for linear losses is -10.4 +/- 0.8 dB. The measured polar...

  6. Identifying a "default" visual search mode with operant conditioning.

    Science.gov (United States)

    Kawahara, Jun-ichiro

    2010-09-01

    The presence of a singleton in a task-irrelevant domain can impair visual search. This impairment, known as the attentional capture depends on the set of participants. When narrowly searching for a specific feature (the feature search mode), only matching stimuli capture attention. When searching broadly (the singleton detection mode), any oddball captures attention. The present study examined which strategy represents the "default" mode using an operant conditioning approach in which participants were trained, in the absence of explicit instructions, to search for a target in an ambiguous context in which one of two modes was available. The results revealed that participants behaviorally adopted the singleton detection as the default mode but reported using the feature search mode. Conscious strategies did not eliminate capture. These results challenge the view that a conscious set always modulates capture, suggesting that the visual system tends to rely on stimulus salience to deploy attention.

  7. Quantum squeezed light for probing mitochondrial membranes and study of neuroprotectants

    International Nuclear Information System (INIS)

    Gourley, Paul Lee; Copeland, Robert Guild; McDonald, Anthony Eugene; Hendricks, Judy K.; Naviaux, Robert K.

    2005-01-01

    We report a new nanolaser technique for measuring characteristics of human mitochondria. Because mitochondria are so small, it has been difficult to study large populations using standard light microscope or flow cytometry techniques. We recently discovered a nano-optical transduction method for high-speed analysis of submicron organelles that is well suited to mitochondrial studies. This ultrasensitive detection technique uses nano-squeezing of light into photon modes imposed by the ultrasmall organelle dimensions in a semiconductor biocavity laser. In this paper, we use the method to study the lasing spectra of normal and diseased mitochondria. We find that the diseased mitochondria exhibit larger physical diameter and standard deviation. This morphological differences are also revealed in the lasing spectra. The diseased specimens have a larger spectral linewidth than the normal, and have more variability in their statistical distributions

  8. Measurement Induced Enhancement of Squeezing in Nondegenerate Two-Photon Jaynes-Cummings Model

    International Nuclear Information System (INIS)

    Ye Saiyun

    2006-01-01

    Squeezing properties in the nondegenerate two-photon Jaynes-Cummings model are investigated. The effects of direct selective atomic measurement and the application of the classical field followed by atomic measurement are analyzed. Different values of the parameters of the classical field are taken into account. It is found that the field squeezing can be enhanced by measurement.

  9. Enhanced detection of a low-frequency signal by using broad squeezed light and a bichromatic local oscillator

    Science.gov (United States)

    Li, Wei; Jin, Yuanbin; Yu, Xudong; Zhang, Jing

    2017-08-01

    We experimentally study a protocol of using the broadband high-frequency squeezed vacuum to detect the low-frequency signal. In this scheme, the lower sideband field of the squeezed light carries the low-frequency modulation signal, and the two strong coherent light fields are applied as the bichromatic local oscillator in the homodyne detection to measure the quantum entanglement of the upper and lower sideband for the broadband squeezed light. The power of one of the local oscillators for detecting the upper sideband can be adjusted to optimize the conditional variance in the low-frequency regime by subtracting the photocurrent of the upper sideband field of the squeezed light from that of the lower sideband field. By means of the quantum correlation of the upper and lower sideband for the broadband squeezed light, the low-frequency signal beyond the standard quantum limit is measured. This scheme is appropriate for enhancing the sensitivity of the low-frequency signal by the aid of the broad squeezed light, such as gravitational waves detection, and does not need to directly produce the low-frequency squeezing in an optical parametric process.

  10. Adaptive phase estimation with squeezed thermal light

    DEFF Research Database (Denmark)

    Berni, A. A.; Madsen, Lars Skovgaard; Lassen, Mikael Østergaard

    2013-01-01

    Summary form only given. The use of quantum states of light in optical interferometry improves the precision in the estimation of a phase shift, paving the way for applications in quantum metrology, computation and cryptography. Sub-shot noise phase sensing can for example be achieved by injecting...... investigate the performances of such protocol under the realistic assumption of thermalization of the probe state. Indeed, adaptive phase estimation schemes with squeezed states and Bayesian processing of homodyne data have been shown to be asymptotically optimal in the pure case, thus approaching the quantum...... Cramér-Rao bound. In our protocol we take advantage of the enhanced sensitivity of homodyne detection in proximity of the optimal phase which maximizes the homodyne Fisher information. A squeezed thermal probe state (signal) undergoes an unknown phase shift. The first estimation step involves...

  11. Seven Operation Modes and Simulation Models of Solar Heating System with PCM Storage Tank

    Directory of Open Access Journals (Sweden)

    Juan Zhao

    2017-12-01

    Full Text Available A physical model and dynamic simulation models of a solar phase-change heat storage heating system with a plate solar collector, phase-change material (PCM storage tank, plate heat exchanger, and auxiliary heat sources were established. A control strategy and numerical models for each of seven different operation modes that cover the entire heating season of the system were developed for the first time. The seven proposed operation modes are Mode 1: free cooling; Mode 2: reservation of heat absorbed by the solar collector in the PCM storage tank when there is no heating demand; Mode 3: direct supply of the heating demand by the solar collector; Mode 4: use of the heat absorbed by the solar collector to meet the heating demands, with the excess heat stored in the PCM storage tank; Mode 5: use of heat stored in the PCM storage tank to meet the heating demands, Mode 6: combined use of heat stored in the PCM storage tank and the auxiliary heating sources to meet the heating demands; and Mode 7: exclusive use of the auxiliary heat sources in order to meet the heating demands. Mathematical models were established for each of the above seven operation modes, taking into consideration the effects of the outdoor meteorological parameters and terminal load on the heating system. The real-time parameters for the entire heating season of the system with respect to the different operation modes can be obtained by solving the simulation models, and used as reference for the optimal design and operation of the actual system.

  12. How to Measure Squeeze Out

    Energy Technology Data Exchange (ETDEWEB)

    Longacre, R. S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Physics Dept.

    2016-09-01

    Squeeze out happen when the expanding central fireball flows around a large surface flux tube in a central Au-Au collision at RHIC. We model such an effect in a flux tube model. Two particle correlations with respect to the v2 axis formed by the soft fireball particles flowing around this large flux tube is a way of measuring the effect.

  13. Laser modes as an eigenfunction of an operator equation

    International Nuclear Information System (INIS)

    Ripper, J.E.; Campos, M.D.; Pudensi, M.A.A.

    A new method is proposed of arriving to an approximate solution into mode problems which cannot be treated by the traditional methods. Basically the idea is to treat the laser mode as an eigenfunction of an operator equation so that the mathematical methods developed to treat the wave equations in quantum mechanics can be used as tools to solve the equation. (L.C.) [pt

  14. Simulation and Analysis of the Hybrid Operating Mode in ITER

    International Nuclear Information System (INIS)

    Kessel, C.E.; Budny, R.V.; Indireshkumar, K.

    2005-01-01

    The hybrid operating mode in ITER is examined with 0D systems analysis, 1.5D discharge scenario simulations using TSC and TRANSP, and the ideal MHD stability is discussed. The hybrid mode has the potential to provide very long pulses and significant neutron fluence if the physics regime can be produced in ITER. This paper reports progress in establishing the physics basis and engineering limitation for the hybrid mode in ITER

  15. Innovative operating modes and techniques for the spaceborne imaging radar-C instrument

    Science.gov (United States)

    Huneycutt, Bryan L.

    1990-01-01

    The operation of the spaceborne imaging radar-C (SIR-C) is discussed. The SIR-C instrument has been designed to obtain simultaneous multifrequency and simultaneous multipolarization radar images from a low earth orbit. It is a multiparameter imaging radar which will be flown during at least two different seasons. The instrument has been designed to operate in innovative modes such as the squint alignment mode, the extended aperture mode, the scansar mode, and the interferometry mode. The instrument has been designed to demonstrate innovative engineering techniques such as beam nulling for echo tracking, pulse-repetition frquency hopping for Doppler centroid tracking, generating the frequency step chirp for radar parameter flexibility, block floating point quantizing for data rate compression, and elevation beamwidth broadening for increasing the swath illumination.

  16. Schroedinger covariance states in anisotropic waveguides

    International Nuclear Information System (INIS)

    Angelow, A.; Trifonov, D.

    1995-03-01

    In this paper Squeezed and Covariance States based on Schroedinger inequality and their connection with other nonclassical states are considered for particular case of anisotropic waveguide in LiNiO 3 . Here, the problem of photon creation and generation of squeezed and Schroedinger covariance states in optical waveguides is solved in two steps: 1. Quantization of electromagnetic field is provided in the presence of dielectric waveguide using normal-mode expansion. The photon creation and annihilation operators are introduced, expanding the solution A-vector(r-vector,t) in a series in terms of the Sturm - Liouville mode-functions. 2. In terms of these operators the Hamiltonian of the field in a nonlinear waveguide is derived. For such Hamiltonian we construct the covariance states as stable (with nonzero covariance), which minimize the Schroedinger uncertainty relation. The evolutions of the three second momenta of q-circumflex j and p-circumflex j are calculated. For this Hamiltonian all three momenta are expressed in terms of one real parameters s only. It is found out how covariance, via this parameter s, depends on the waveguide profile n(x,y), on the mode-distributions u-vector j (x,y), and on the waveguide phase mismatching Δβ. (author). 37 refs

  17. Applying squeezing technique to clay-rocks: lessons learned from ten years experiments at Mont Terri

    International Nuclear Information System (INIS)

    Fernandez, A. M.; Melon, A.; Sanchez-Ledesma, D.M.; Tournassat, C.; Gaucher, E.; Astudillo, J.; Vinsot, A.

    2012-01-01

    Document available in extended abstract form only. Argillaceous formations of low permeability are considered in several countries as potential host rocks for the disposal of high level radioactive wastes (HLRW). In order to determine their suitability for waste disposal, evaluations of the hydro-geochemistry and transport mechanisms from such geologic formations to the biosphere must be undertaken. The migration of radionuclides through the geosphere will occur predominantly in the aqueous phase, and hence the pore water chemistry plays an important role in determining ion diffusion characteristics in argillaceous formations. Consequently, a great effort has been made to characterise the pore water chemistry in clay-rocks formations. In the last 10 years various techniques were developed for determining pore water composition of clay-rocks including both direct and indirect methods: 1) In situ pore water sampling (water and gas) from sealed boreholes (Pearson et al., 2003; Vinsot et al. 2008); 2) Laboratory pore water sampling from unaltered core samples by the squeezing technique at high pressures (Fernandez et al., 2009); and 3) Characterization of the water chemistry by geochemical modelling (Gaucher et al. 2009). Pore water chemistry in clay-rocks and extraction techniques were documented and reviewed in different studies (Sacchi et al., 2001). Recovering pristine pore water from low permeable and low water content systems is very difficult and sometimes impossible. Besides, uncertainties are associated to each method used for the pore water characterization. In this paper, a review about the high pressure squeezing technique applied to indurate clay-rocks was performed. For this purpose, the experimental work on Opalinus Clay at the Mont Terri Research Laboratory during the last ten years was evaluated. A complete discussion was made about different issues such as: a) why is necessary to obtain the pore water by squeezing in the context of radioactive waste

  18. Gamma irradiation facility: Evaluation of operational modes

    International Nuclear Information System (INIS)

    Adesanmi, C.A.; Ali, M.S.; Shonowo, O.A.; Akueche, E.C.; Sadare, O.O.; Mustapha, T.K.; Yusuf, U.; Inyanda, A.K.

    2007-01-01

    The multipurpose Gamma Irradiation Facility (GIF) at the Nuclear Technology Centre (NTC), Sheda Science and Technology Complex (SHETSCO), Abuja, Nigeria is designed as a semi-commercial plant with facilities for research and development (R and D). The design takes into account the different needs of the various research applications which require a wide dose range, a variety of techniques, different product sizes, shapes, mass, volume, densities and types. Programmable doses are used for food irradiation (0.04 - 10 kGy), biological seed mutation breeding and sterile insect technique (STI) (0.01- 5 kGy) sterilization of medical, pharmaceutical and cosmetic products and packages (up to 25 kGy) and cross-linking of polymers (up to 100 kGy). The six different modes of operations (sample elevator, stationary, swiveling, 2-path inner lane and 2-path outer lane and 4-path line) were evaluated. The dose range, mass range and range of irradiation time practicable were established and advantages for radiation processing of food and industrial products were enumerated for the six modes of operations for the first time

  19. Slow-roll inflation and BB-mode angular power spectrum of CMB

    Energy Technology Data Exchange (ETDEWEB)

    Malsawmtluangi, N.; Suresh, P.K. [University of Hyderabad, School of Physics, Hyderabad (India)

    2016-05-15

    The BB-mode correlation angular power spectrum of CMB is obtained by considering the primordial gravitational waves in the squeezed vacuum state for various inflationary models and results are compared with the joint analysis of the BICEP2/Keck Array and Planck 353 GHz data. The present results may constrain several models of inflation. (orig.)

  20. OPTIMIZATION OF AGGREGATION AND SEQUENTIAL-PARALLEL EXECUTION MODES OF INTERSECTING OPERATION SETS

    Directory of Open Access Journals (Sweden)

    G. М. Levin

    2016-01-01

    Full Text Available A mathematical model and a method for the problem of optimization of aggregation and of sequential- parallel execution modes of intersecting operation sets are proposed. The proposed method is based on the two-level decomposition scheme. At the top level the variant of aggregation for groups of operations is selected, and at the lower level the execution modes of operations are optimized for a fixed version of aggregation.

  1. An overmoded relativistic backward wave oscillator with efficient dual-mode operation

    International Nuclear Information System (INIS)

    Xiao, Renzhen; Li, Jiawei; Bai, Xianchen; Song, Zhimin; Teng, Yan; Ye, Hu; Li, Xiaoze; Sun, Jun; Chen, Changhua; Zhang, Xiaowei

    2014-01-01

    A dual-mode operation mechanism in an overmoded relativistic backward wave oscillator is presented. The electron beam interacts with the −1st space harmonic of TM 01 mode synchronously in the slow wave structure. Then the backward propagating TM 01 mode is converted to the forward propagating TM 02 mode. As the phase velocity of the volume harmonic of TM 02 mode is about twice that of the surface harmonic of TM 01 mode, the TM 02 mode also plays an important role in the high-power microwave generation. Particle-in-cell simulation shows that an efficiency of 48% and a significant improvement of the power capacity have been obtained

  2. Sixth International Conference on Squeezed States and Uncertainty Relations

    Science.gov (United States)

    Han, D. (Editor); Kim, Y. S. (Editor); Solimento, S. (Editor)

    2000-01-01

    These proceedings contain contributions from about 200 participants to the 6th International Conference on Squeezed States and Uncertainty Relations (ICSSUR'99) held in Naples May 24-29, 1999, and organized jointly by the University of Naples "Federico II," the University of Maryland at College Park, and the Lebedev Institute, Moscow. This was the sixth of a series of very successful meetings started in 1990 at the College Park Campus of the University of Maryland. The other meetings in the series were held in Moscow (1992), Baltimore (1993), Taiyuan P.R.C. (1995) and Balatonfuered, Hungary (1997). The present one was held at the campus Monte Sant'Angelo of the University "Federico II" of Naples. The meeting sought to provide a forum for updating and reviewing a wide range of quantum optics disciplines, including device developments and applications, and related areas of quantum measurements and quantum noise. Over the years, the ICSSUR Conference evolved from a meeting on quantum measurement sector of quantum optics, to a wide range of quantum optics themes, including multifacet aspects of generation, measurement, and applications of nonclassical light (squeezed and Schrodinger cat radiation fields, etc.), and encompassing several related areas, ranging from quantum measurement to quantum noise. ICSSUR'99 brought together about 250 people active in the field of quantum optics, with special emphasis on nonclassical light sources and related areas. The Conference was organized in 8 Sections: Squeezed states and uncertainty relations; Harmonic oscillators and squeeze transformations; Methods of quantum interference and correlations; Quantum measurements; Generation and characterisation of non-classical light; Quantum noise; Quantum communication and information; and Quantum-like systems.

  3. Three-dimensional analysis of relationship between relative orientation and motion modes

    Directory of Open Access Journals (Sweden)

    Fan Shijie

    2014-12-01

    Full Text Available Target motion modes have a close relationship with the relative orientation of missile-to-target in three-dimensional highly maneuvering target interception. From the perspective of relationship between the sensor coordinate system and the target body coordinate system, a basic model of sensor is stated and the definition of relative angular velocity between the two coordinate systems is introduced firstly. Then, the three-dimensional analytic expressions of relative angular velocity for different motion modes are derived and simplified by analyzing the influences of target centroid motion, rotation around centroid and relative motion. Finally, the relationships of the relative angular velocity directions and values with motion modes are discussed. Simulation results validate the rationality of the theoretical analysis. It is demonstrated that there are significant differences of the relative orientation in different motion modes which include luxuriant information about motion modes. The conclusions are significant for the research of motion mode identification, maneuver detection, maneuvering target tracking and interception using target signatures.

  4. Discrete coherent and squeezed states of many-qudit systems

    International Nuclear Information System (INIS)

    Klimov, Andrei B.; Munoz, Carlos; Sanchez-Soto, Luis L.

    2009-01-01

    We consider the phase space for n identical qudits (each one of dimension d, with d a primer number) as a grid of d n xd n points and use the finite Galois field GF(d n ) to label the corresponding axes. The associated displacement operators permit to define s-parametrized quasidistributions on this grid, with properties analogous to their continuous counterparts. These displacements allow also for the construction of finite coherent states, once a fiducial state is fixed. We take this reference as one eigenstate of the discrete Fourier transform and study the factorization properties of the resulting coherent states. We extend these ideas to include discrete squeezed states, and show their intriguing relation with entangled states of different qudits.

  5. Generalized squeezing rotating-wave approximation to the isotropic and anisotropic Rabi model in the ultrastrong-coupling regime

    Science.gov (United States)

    Zhang, Yu-Yu

    2016-12-01

    Generalized squeezing rotating-wave approximation (GSRWA) is proposed by employing both the displacement and the squeezing transformations. A solvable Hamiltonian is reformulated in the same form as the ordinary RWA ones. For a qubit coupled to oscillators experiment, a well-defined Schrödinger-cat-like entangled state is given by the displaced-squeezed oscillator state instead of the original displaced state. For the isotropic Rabi case, the mean photon number and the ground-state energy are expressed analytically with additional squeezing terms, exhibiting a substantial improvement of the GSRWA. And the ground-state energy in the anisotropic Rabi model confirms the effectiveness of the GSRWA. Due to the squeezing effect, the GSRWA improves the previous methods only with the displacement transformation in a wide range of coupling strengths even for large atom frequency.

  6. Research on operation mode of abrasive grain during grinding

    Science.gov (United States)

    Ivanova, T. N.; Dement’ev, V. B.; Nikitina, O. V.

    2018-03-01

    The processing of materials by cutting with an abrasive tool is carried out by means of thousands of grains bonded together as a single whole. The quality of the abrasive tool is defined by cutting properties of abrasive grains and depends on features of spreading the temperature field in time and in the abrasive grain volume. Grains are exposed to heating and cooling during work. It leads to undesired effects such as a decrease of durability of grain retention in the binder, hardness, intensification of diffusion and oxidation processes between the binder and the grain, the occurrence of considerable temperature stresses in the grain itself. The obtained equation which allows calculation of temperature field of grain for one rotation of grinding wheel shows that the temperature of the wheel depends on grinding modes and thermophysical properties of abrasive material. Thus, as the time of contact of grain with processed material increases, the temperature in the cutting area rises. As thermophysical properties increase, the temperature in cutting area decreases. Thermal working conditions are determined to be different from each other depending on contact time of the grain and the material. For example, in case of creep-feed grinding, the peak value of temperature is higher than during multistep grinding; the depth of expansion is greater. While the speed of the thermal process in creep-feed grinding is 2-3 times lower than in multistep grinding, the gradient reduces 3-4 times. The analysis of machining methods shows that creep-feed grinding ensures greater depth of grain heating, a smaller heating rate and a reduced velocity gradient. It causes a decrease of probable allotropic modifications and prevents from occurring of heat strokes - cracking of grains due to high temperature falls. Consequently, it is necessary to employ creep-feed grinding to increase the efficiency of abrasive tool employing. Three operation modes of grinding wheel including blunting, full

  7. Smart Resonant Gas Sensor and Switch Operating in Air With Metal-Organic Frameworks Coating

    KAUST Repository

    Jaber, Nizar; Ilyas, Saad; Shekhah, Osama; Eddaoudi, Mohamed; Younis, Mohammad I.

    2017-01-01

    We report a resonant gas sensor, uniformly coated with a metal-organic framework (MOF), and excited it near the higher order modes for a higher attained sensitivity. Also, switching upon exceeding a threshold value is demonstrated by operating the resonator near the bifurcation point and the dynamic pull-in instabilities. The resonator is based on an electrostatically excited clamped-clamped microbeam. The microbeam is fabricated from a polyimide layer coated from the top with Cr/Au and from the bottom with Cr/Au/Cr layer. The geometry of the resonator is optimized to reduce the effect of squeeze film damping, thereby allowing operation under atmospheric pressure. The electrostatic electrode is designed to enhance the excitation of the second mode of vibration with the minimum power required. Significant frequency shift (kHz) is demonstrated for the first time upon water vapor, acetone, and ethanol exposure due to the MOF functionalization and the higher order modes excitation. Also, the adsorption dynamics and MOF selectivity is investigated by studying the decaying time constants of the response upon gas exposure.

  8. Smart Resonant Gas Sensor and Switch Operating in Air With Metal-Organic Frameworks Coating

    KAUST Repository

    Jaber, Nizar

    2017-11-03

    We report a resonant gas sensor, uniformly coated with a metal-organic framework (MOF), and excited it near the higher order modes for a higher attained sensitivity. Also, switching upon exceeding a threshold value is demonstrated by operating the resonator near the bifurcation point and the dynamic pull-in instabilities. The resonator is based on an electrostatically excited clamped-clamped microbeam. The microbeam is fabricated from a polyimide layer coated from the top with Cr/Au and from the bottom with Cr/Au/Cr layer. The geometry of the resonator is optimized to reduce the effect of squeeze film damping, thereby allowing operation under atmospheric pressure. The electrostatic electrode is designed to enhance the excitation of the second mode of vibration with the minimum power required. Significant frequency shift (kHz) is demonstrated for the first time upon water vapor, acetone, and ethanol exposure due to the MOF functionalization and the higher order modes excitation. Also, the adsorption dynamics and MOF selectivity is investigated by studying the decaying time constants of the response upon gas exposure.

  9. Study on fluidity of squeeze cast AZ91D magnesium alloy with different wall thicknesses

    Directory of Open Access Journals (Sweden)

    Chen Yun

    2014-03-01

    Full Text Available Rectangular cross-section specimens with different section thicknesses were prepared to study the influences of pouring temperature, mould temperature and squeeze velocity on the fluidity of squeeze cast AZ91D magnesium alloy by means of orthogonal test design method. The results show that pouring temperature, mould temperature and squeeze velocity can significantly affect the fluidity of magnesium alloy specimens with wall thickness no more than 4 mm, and the pouring temperature is the most influential factor on the fluidity of specimens with wall thickness of 1, 2 and 3 mm, while mould temperature is the one for specimens with wall thickness of 4 mm. Increasing pouring temperature between 700 °C and 750 °C is beneficial to the fluidity of AZ91D magnesium alloy, and increasing mould temperature significantly enhances the filling ability of thick (3 and 4 mm section castings. The fluidity of squeeze cast magnesium alloy increases with the increase of wall thickness. It is not recommended to produce magnesium alloy casting with wall thickness of smaller than 3 mm by squeeze cast process due to the poor fluidity. The software DPS was used to generate the regression model, and linear regression equations of the fluidity of squeeze cast AZ91D with different wall thicknesses are obtained using the test results.

  10. An Experimental and numerical Study for squeezing flow

    Science.gov (United States)

    Nathan, Rungun; Lang, Ji; Wu, Qianhong; Vucbmss Team

    2017-11-01

    We report an experimental and numerical study to examine the transient squeezing flow driven by sudden external impacts. The phenomenon is widely observed in industrial applications, e.g. squeeze dampers, or in biological systems, i.e. joints lubrication. However, there is a lack of investigation that captures the transient flow feature during the process. An experimental setup was developed that contains a piston instrumented with a laser displacement sensor and a pressure transducer. The heavy piston was released from rest, creating a fast compaction on the thin fluid gap underneath. The motion of the piston and the fluid pressure build-up was recorded. For this dynamic process, a CFD simulation was performed which shows excellent agreement with the experimental data. Both the numerical and experimental results show that, the squeezing flow starts with the inviscid limit when the viscous fluid effect has no time to appear, and thereafter becomes a developing flow, in which the inviscid core flow region decreases and the viscous wall region increases until the entire fluid gap is filled with viscous fluid flow. The study presented herein, filling the gap in the literature, will have broad impacts in industrial and biomedical applications. This research was supported by the National Science Foundation under Award 1511096, and supported by the Seed Grant from The Villanova Center for the Advancement of Sustainability in Engineering (VCASE).

  11. Transverse mode instabilities in burst operation of high-power fiber laser systems

    Science.gov (United States)

    Jauregui, Cesar; Stihler, Christoph; Tünnermann, Andreas; Limpert, Jens

    2018-02-01

    We propose, to the best of our knowledge, the first mitigation strategy for TMI based on controlling the phase shift between the thermally-induced index grating and the modal intensity pattern. In particular, in this work we present a study of transverse mode instabilities in burst operation in a high-power fiber laser system. It is shown that, with a careful choice of the parameters, this operation regime can potentially lead to the mitigation of TMI by forcing an energy transfer from the higher-order-modes into the fundamental mode during the burst.

  12. Distributed Generation using Indirect Matrix Converter in Boost Operating Mode

    DEFF Research Database (Denmark)

    Liu, Xiong; Loh, Poh Chiang; Wang, Peng

    2011-01-01

    , reverse power flow operation of IMC can be implemented to meet voltage boost requirement, where the input ac source is connected to the converter's voltage source side and the output utility grid or load is connected to the current source side. This paper proposes control schemes of IMC under reverse...... power flow operation for both grid-connected and isolated modes with distributed generation suggested as a potential application. In grid-connected mode, the commanded power must be extracted from the input ac source to the grid, in addition to guarantee sinusoidal input/output waveforms, unity input...

  13. Analytical solutions by squeezing to the anisotropic Rabi model in the nonperturbative deep-strong coupling regime

    OpenAIRE

    Zhang, Yu-Yu; Chen, Xiang-You

    2017-01-01

    A novel, unexplored nonperturbative deep-strong coupling (npDSC) achieved in superconducting circuits has been studied in the anisotropic Rabi model by the generalized squeezing rotating-wave approximation (GSRWA). Energy levels are evaluated analytically from the reformulated Hamiltonian and agree well with numerical ones under a wide range of coupling strength. Such improvement ascribes to deformation effects in the displaced-squeezed state presented by the squeezed momentum variance, which...

  14. Controlling the mode of operation of organic transistors through side-chain engineering

    KAUST Repository

    Giovannitti, Alexander

    2016-10-11

    Electrolyte-gated organic transistors offer low bias operation facilitated by direct contact of the transistor channel with an electrolyte. Their operation mode is generally defined by the dimensionality of charge transport, where a field-effect transistor allows for electrostatic charge accumulation at the electrolyte/semiconductor interface, whereas an organic electrochemical transistor (OECT) facilitates penetration of ions into the bulk of the channel, considered a slow process, leading to volumetric doping and electronic transport. Conducting polymer OECTs allow for fast switching and high currents through incorporation of excess, hygroscopic ionic phases, but operate in depletion mode. Here, we show that the use of glycolated side chains on a thiophene backbone can result in accumulation mode OECTs with high currents, transconductance, and sharp subthreshold switching, while maintaining fast switching speeds. Compared with alkylated analogs of the same backbone, the triethylene glycol side chains shift the mode of operation of aqueous electrolyte-gated transistors from interfacial to bulk doping/transport and show complete and reversible electrochromism and high volumetric capacitance at low operating biases. We propose that the glycol side chains facilitate hydration and ion penetration, without compromising electronic mobility, and suggest that this synthetic approach can be used to guide the design of organic mixed conductors.

  15. Controlling the mode of operation of organic transistors through side-chain engineering

    Science.gov (United States)

    Giovannitti, Alexander; Sbircea, Dan-Tiberiu; Inal, Sahika; Nielsen, Christian B.; Bandiello, Enrico; Hanifi, David A.; Sessolo, Michele; Malliaras, George G.; McCulloch, Iain; Rivnay, Jonathan

    2016-01-01

    Electrolyte-gated organic transistors offer low bias operation facilitated by direct contact of the transistor channel with an electrolyte. Their operation mode is generally defined by the dimensionality of charge transport, where a field-effect transistor allows for electrostatic charge accumulation at the electrolyte/semiconductor interface, whereas an organic electrochemical transistor (OECT) facilitates penetration of ions into the bulk of the channel, considered a slow process, leading to volumetric doping and electronic transport. Conducting polymer OECTs allow for fast switching and high currents through incorporation of excess, hygroscopic ionic phases, but operate in depletion mode. Here, we show that the use of glycolated side chains on a thiophene backbone can result in accumulation mode OECTs with high currents, transconductance, and sharp subthreshold switching, while maintaining fast switching speeds. Compared with alkylated analogs of the same backbone, the triethylene glycol side chains shift the mode of operation of aqueous electrolyte-gated transistors from interfacial to bulk doping/transport and show complete and reversible electrochromism and high volumetric capacitance at low operating biases. We propose that the glycol side chains facilitate hydration and ion penetration, without compromising electronic mobility, and suggest that this synthetic approach can be used to guide the design of organic mixed conductors. PMID:27790983

  16. China's marriage squeeze: A decomposition into age and sex structure.

    Science.gov (United States)

    Jiang, Quanbao; Li, Xiaomin; Li, Shuzhuo; Feldman, Marcus W

    2016-06-01

    Most recent studies of marriage patterns in China have emphasized the male-biased sex ratio but have largely neglected age structure as a factor in China's male marriage squeeze. In this paper we develop an index we call "spousal sex ratio" (SSR) to measure the marriage squeeze, and a method of decomposing the proportion of male surplus into age and sex structure effects within a small spousal age difference interval. We project that China's marriage market will be confronted with a relatively severe male squeeze. For the decomposition of the cohort aged 30, from 2010 to 2020 age structure will be dominant, while from 2020 through 2034 the contribution of age structure will gradually decrease and that of sex structure will increase. From then on, sex structure will be dominant. The index and decomposition, concentrated on a specific female birth cohort, can distinguish spousal competition for single cohorts which may be covered by a summary index for the whole marriage market; these can also be used for consecutive cohorts to reflect the situation of the whole marriage market.

  17. NATO Advanced Research Workshop on Squeezed and Non-classical Light

    CERN Document Server

    Pike, E; Squeezed and Non-classical Light

    1988-01-01

    The recent generation in the laboratory of phase squeezed and intensity squeezed light beams has brought to fruition the theoretical predictions of such non-classical phenomena which have been made and developed in recent years by a number of workers in the field of quantum optics. A vigorous development is now underway of both theory and experiment and the first measurements have been coi:Jfirmed and extended already in some half dozen laboratories. Although the fields of application of these novellight sources are as yet somewhat hazy in our minds and some inspired thinking is required along these lines, the pace and excitement of the research is very clear. It is to he hoped that the new possibilities of: making measurements below the quantum shot noise lirnit which is made possible by these squeezed states of light willlead to further fundamental advances in the near future. In this NATO ARW a number of the leaders in the field met in the extremely pleasant surroundings of Cortina d'Ampezzo and th...

  18. Stable single longitudinal mode erbium-doped silica fiber laser based on an asymmetric linear three-cavity structure

    International Nuclear Information System (INIS)

    Feng Ting; Yan Feng-Ping; Li Qi; Peng Wan-Jing; Feng Su-Chun; Tan Si-Yu; Wen Xiao-Dong

    2013-01-01

    We present a stable linear-cavity single longitudinal mode (SLM) erbium-doped silica fiber laser. It consists of four fiber Bragg gratings (FBGs) directly written in a section of photosensitive erbium-doped fiber (EDF) to form an asymmetric three-cavity structure. The stable SLM operation at a wavelength of 1545.112 nm with a 3-dB bandwidth of 0.012 nm and an optical signal-to-noise ratio (OSNR) of about 60 dB is verified experimentally. Under laboratory conditions, the performance of a power fluctuation of less than 0.05 dB observed from the power meter for 6 h and a wavelength variation of less than 0.01 nm obtained from the optical spectrum analyzer (OSA) for about 1.5 h are demonstrated. The gain fiber length is no longer limited to only several centimeters for SLM operation because of the excellent mode-selecting ability of the asymmetric three-cavity structure. The proposed scheme provides a simple and cost-effective approach to realizing a stable SLM fiber laser. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. The Effect of Spin Squeezing on the Entanglement Entropy of Kicked Tops

    Directory of Open Access Journals (Sweden)

    Ernest Teng Siang Ong

    2016-04-01

    Full Text Available In this paper, we investigate the effects of spin squeezing on two-coupled quantum kicked tops, which have been previously shown to exhibit a quantum signature of chaos in terms of entanglement dynamics. Our results show that initial spin squeezing can lead to an enhancement in both the entanglement rate and the asymptotic entanglement for kicked tops when the initial state resides in the regular islands within a mixed classical phase space. On the other hand, we found a reduction in these two quantities if we were to choose the initial state deep inside the chaotic sea. More importantly, we have uncovered that an application of periodic spin squeezing can yield the maximum attainable entanglement entropy, albeit this is achieved at a reduced entanglement rate.

  20. The periodically pulsed mode of operation of magnet systems in particle accelerators

    International Nuclear Information System (INIS)

    Stange, G.

    1980-01-01

    Since in many applications in particle accelerator technology the beam duty factor, defined by the ratio of beam pulse length to the pulse to pulse period, is very small- typically in the order of 10 - 3 to 10 - 9 - it is interesting to operate the beam optical magnetic system in the periodically pulsed mode as well. Thus, by reducing the average Ohmic losses, it is possible to save energy and material. The pulsed mode of operation of magnet systems is especially adapted to those of linear accelerators and their beam transport systems, since linear accelerators are exclusively operated in this mode. But it is equally suitable for transport systems between cyclic accelerators and large storage rings as they are under development at present. (orig./WL) [de

  1. Variance squeezing and entanglement of the XX central spin model

    International Nuclear Information System (INIS)

    El-Orany, Faisal A A; Abdalla, M Sebawe

    2011-01-01

    In this paper, we study the quantum properties for a system that consists of a central atom interacting with surrounding spins through the Heisenberg XX couplings of equal strength. Employing the Heisenberg equations of motion we manage to derive an exact solution for the dynamical operators. We consider that the central atom and its surroundings are initially prepared in the excited state and in the coherent spin state, respectively. For this system, we investigate the evolution of variance squeezing and entanglement. The nonclassical effects have been remarked in the behavior of all components of the system. The atomic variance can exhibit revival-collapse phenomenon based on the value of the detuning parameter.

  2. Variance squeezing and entanglement of the XX central spin model

    Energy Technology Data Exchange (ETDEWEB)

    El-Orany, Faisal A A [Department of Mathematics and Computer Science, Faculty of Science, Suez Canal University, Ismailia (Egypt); Abdalla, M Sebawe, E-mail: m.sebaweh@physics.org [Mathematics Department, College of Science, King Saud University PO Box 2455, Riyadh 11451 (Saudi Arabia)

    2011-01-21

    In this paper, we study the quantum properties for a system that consists of a central atom interacting with surrounding spins through the Heisenberg XX couplings of equal strength. Employing the Heisenberg equations of motion we manage to derive an exact solution for the dynamical operators. We consider that the central atom and its surroundings are initially prepared in the excited state and in the coherent spin state, respectively. For this system, we investigate the evolution of variance squeezing and entanglement. The nonclassical effects have been remarked in the behavior of all components of the system. The atomic variance can exhibit revival-collapse phenomenon based on the value of the detuning parameter.

  3. Mevva ion source operated in purely gaseous mode

    International Nuclear Information System (INIS)

    Yushkov, G.Y.; MacGill, R.A.; Brown, I. G.

    2003-01-01

    We have operated a vacuum arc ion source in such a way as to form beams of purely gaseous ions. The vacuum arc configuration that is conventionally used to produce intense beams of metal ions was altered so as to form gaseous ion beams, with only minimal changes to the external circuitry and no changes at all internally to the ion source. In our experiments we formed beams from oxygen (O + and O 2 + ), nitrogen (N + and N 2 + ), argon (Ar + ) and carbon dioxide (C + , CO 2 + , O + and O 2 + ) at extraction voltage of 2 to 50 kV. We used a pulsed mode of operation, with beam pulses approximately 50 milliseconds long and repetition rate 10 pulses per second, for a duty cycle of about 50%. Downstream ion beam current as measured by a 5 cm diameter Faraday cup was typically 0.5 mA pulse or about 250 (micro)A time averaged. This time averaged beam current is very similar to that obtained for metal ions when the source is operated in the usual vacuum arc mode. Here we describe the modifications made to the source and the results of our investigations

  4. Detection of stably bright squeezed light with the quantum noise reduction of 12.6  dB by mutually compensating the phase fluctuations.

    Science.gov (United States)

    Yang, Wenhai; Shi, Shaoping; Wang, Yajun; Ma, Weiguang; Zheng, Yaohui; Peng, Kunchi

    2017-11-01

    We present a mutual compensation scheme of three phase fluctuations, originating from the residual amplitude modulation (RAM) in the phase modulation process, in the bright squeezed light generation system. The influence of the RAM on each locking loop is harmonized by using one electro-optic modulator (EOM), and the direction of the phase fluctuation is manipulated by positioning the photodetector (PD) that extracts the error signal before or after the optical parametric amplifier (OPA). Therefore a bright squeezed light with non-classical noise reduction of π is obtained. By fitting the squeezing and antisqueezing measurement results, we confirm that the total phase fluctuation of the system is around 3.1 mrad. The fluctuation of the noise suppression is 0.2 dB for 3 h.

  5. Effect of magnon-phonon interactions on magnon squeezed states in ferromagnets

    Science.gov (United States)

    Mikhail, I. F. I.; Ismail, I. M. M.; Ameen, M.

    2018-02-01

    The squeezed states of dressed magnons in ferromagnets have been investigated. No effective Debye cutoff frequency has been assumed unlike what has been done hitherto. Instead, the results have been expressed throughout in terms of the reduced temperature. The effect of dressed magnon-phonon interactions on the formulation of these states has been studied. It has been shown that the magnon-phonon interactions play a significant role in determining the squeeze factor and the variation of the dressed magnon effective mass with temperature.

  6. Recent progress towards advanced mode of operation on JET

    International Nuclear Information System (INIS)

    Litaudon, X.; Crisanti, F.; Frigione, D.

    2003-01-01

    This series of slides presents the recent performance of JET concerning ITB (internal transport barrier) operating mode. Pellet refuelling without ITB destruction has been achieved at n eo /n GW ∼ 1. A wide reversed shear ITB (3.6 m) has been sustained with mild ELM (edge localized modes) and no apparent impurity accumulation. ITBs have been maintained thanks to a simultaneous optimisation of the q-profile and edge condition, which opens the way for a steady-state ITB

  7. Business Statistics: A Comparison of Student Performance in Three Learning Modes

    Science.gov (United States)

    Simmons, Gerald R.

    2014-01-01

    The purpose of this study was to compare the performance of three teaching modes and age groups of business statistics sections in terms of course exam scores. The research questions were formulated to determine the performance of the students within each teaching mode, to compare each mode in terms of exam scores, and to compare exam scores by…

  8. Thermal characterization of phacoemulsification probes operated in axial and torsional modes.

    Science.gov (United States)

    Zacharias, Jaime

    2015-01-01

    To analyze temperature increases and identify potential sources of heat generated when sleeved and sleeveless phacoemulsification probes were operated in axial and torsional modes using the Infiniti Vision System with the Ozil torsional handpiece. Phacodynamics Laboratory, Pasteur Ophthalmic Clinic, Santiago, Chile. Experimental study. Two computer-controlled thermal transfer systems were developed to evaluate the contribution of internal metal stress and tip-to-sleeve friction on heat generation during phacoemulsification using axial and torsional ultrasound modalities. Both systems incorporated infrared thermal imaging and used a black-body film to accurately capture temperature measurements. Axial mode was consistently associated with greater temperature increases than torsional mode whether tips were operated with or without sleeves. In tests involving bare tips, axial mode and torsional mode peaked at 51.7°C and 34.2°C, respectively. In an example using sleeved tips in which a 30.0 g load was applied for 1 second, temperatures for axial mode reached 45°C and for torsional mode, 38°C. Friction between the sleeved probe and the incisional wall contributed more significantly to the temperature increase than internal metal stress regardless of the mode used. In all experiments, the temperature increase observed with axial mode was greater than that observed with torsional mode, even when conditions such as power or amplitude and flow rate were varied. Tip-to-sleeve friction was a more dominant source of phaco probe heating than internal metal stress. The temperature increase due to internal metal stress was greater with axial mode than with torsional mode. Dr. Zacharias received research funding from Alcon Laboratories, Inc., to conduct this study. He has no financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  9. Development of a numerical tool to study the mixing phenomenon occurring during mode one operation of a multi-mode ejector-augmented pulsed detonation rocket engine

    Science.gov (United States)

    Dawson, Joshua

    A novel multi-mode implementation of a pulsed detonation engine, put forth by Wilson et al., consists of four modes; each specifically designed to capitalize on flow features unique to the various flow regimes. This design enables the propulsion system to generate thrust through the entire flow regime. The Multi-Mode Ejector-Augmented Pulsed Detonation Rocket Engine operates in mode one during take-off conditions through the acceleration to supersonic speeds. Once the mixing chamber internal flow exceeds supersonic speed, the propulsion system transitions to mode two. While operating in mode two, supersonic air is compressed in the mixing chamber by an upstream propagating detonation wave and then exhausted through the convergent-divergent nozzle. Once the velocity of the air flow within the mixing chamber exceeds the Chapman-Jouguet Mach number, the upstream propagating detonation wave no longer has sufficient energy to propagate upstream and consequently the propulsive system shifts to mode three. As a result of the inability of the detonation wave to propagate upstream, a steady oblique shock system is established just upstream of the convergent-divergent nozzle to initiate combustion. And finally, the propulsion system progresses on to mode four operation, consisting purely of a pulsed detonation rocket for high Mach number flight and use in the upper atmosphere as is needed for orbital insertion. Modes three and four appear to be a fairly significant challenge to implement, while the challenge of implementing modes one and two may prove to be a more practical goal in the near future. A vast number of potential applications exist for a propulsion system that would utilize modes one and two, namely a high Mach number hypersonic cruise vehicle. There is particular interest in the dynamics of mode one operation, which is the subject of this research paper. Several advantages can be obtained by use of this technology. Geometrically the propulsion system is fairly

  10. Research on a Novel Exciting Method for a Sandwich Transducer Operating in Longitudinal-Bending Hybrid Modes

    Directory of Open Access Journals (Sweden)

    Yingxiang Liu

    2017-06-01

    Full Text Available A novel exciting method for a sandwich type piezoelectric transducer operating in longitudinal-bending hybrid vibration modes is proposed and discussed, in which the piezoelectric elements for the excitations of the longitudinal and bending vibrations share the same axial location, but correspond to different partitions. Whole-piece type piezoelectric plates with three separated partitions are used, in which the center partitions generate the first longitudinal vibration, while the upper and lower partitions produce the second bending vibration. Detailed comparisons between the proposed exciting method and the traditional one were accomplished by finite element method (FEM calculations, which were further verified by experiments. Compared with the traditional exciting method using independent longitudinal ceramics and bending ceramics, the proposed method achieves higher electromechanical coupling factors and larger vibration amplitudes, especially for the bending vibration mode. This novel exciting method for longitudinal-bending hybrid vibrations has not changed the structural dimensions of the sandwich transducer, but markedly improves the mechanical output ability, which makes it very helpful and meaningful in designing new piezoelectric actuators operated in longitudinal-bending hybrid vibration modes.

  11. Sensitive resonant gas sensor operating in air with metal organic frameworks coating

    KAUST Repository

    Jaber, Nizar; Ilyas, Saad; Shekhah, Osama; Eddaoudi, Mohamed; Younis, Mohammad I.

    2017-01-01

    We report a practical resonant gas sensor that is uniformly coated with metal organic frameworks (MOFs) and excited near the higher order modes for a higher attained sensitivity. The resonator is based on an electrostatically excited clamped-clamped microbeam. The microbeam is fabricated from a polyimide layer coated from the top with Cr/Au and from the bottom with Cr/Au/Cr layer. The geometry of the resonator is optimized to reduce the effect of the squeeze film damping, thereby allowing operation under atmospheric pressure. The electrostatic force electrode is designed to enhance the excitation of the second mode of vibration with the minimum power required. Significant frequency shift (kHz) is demonstrated for the first time upon water vapor, acetone, and ethanol exposure due to the MOFs functionalization and the higher order modes excitation. Also, the adsorption dynamics and MOF selectivity is investigated by studying the decaying time constants of the response upon gas exposure.

  12. Sensitive resonant gas sensor operating in air with metal organic frameworks coating

    KAUST Repository

    Jaber, Nizar

    2017-08-09

    We report a practical resonant gas sensor that is uniformly coated with metal organic frameworks (MOFs) and excited near the higher order modes for a higher attained sensitivity. The resonator is based on an electrostatically excited clamped-clamped microbeam. The microbeam is fabricated from a polyimide layer coated from the top with Cr/Au and from the bottom with Cr/Au/Cr layer. The geometry of the resonator is optimized to reduce the effect of the squeeze film damping, thereby allowing operation under atmospheric pressure. The electrostatic force electrode is designed to enhance the excitation of the second mode of vibration with the minimum power required. Significant frequency shift (kHz) is demonstrated for the first time upon water vapor, acetone, and ethanol exposure due to the MOFs functionalization and the higher order modes excitation. Also, the adsorption dynamics and MOF selectivity is investigated by studying the decaying time constants of the response upon gas exposure.

  13. Scaling of mode shapes from operational modal analysis using harmonic forces

    Science.gov (United States)

    Brandt, A.; Berardengo, M.; Manzoni, S.; Cigada, A.

    2017-10-01

    This paper presents a new method for scaling mode shapes obtained by means of operational modal analysis. The method is capable of scaling mode shapes on any structure, also structures with closely coupled modes, and the method can be used in the presence of ambient vibration from traffic or wind loads, etc. Harmonic excitation can be relatively easily accomplished by using general-purpose actuators, also for force levels necessary for driving large structures such as bridges and highrise buildings. The signal processing necessary for mode shape scaling by the proposed method is simple and the method can easily be implemented in most measurement systems capable of generating a sine wave output. The tests necessary to scale the modes are short compared to typical operational modal analysis test time. The proposed method is thus easy to apply and inexpensive relative to some other methods for scaling mode shapes that are available in literature. Although it is not necessary per se, we propose to excite the structure at, or close to, the eigenfrequencies of the modes to be scaled, since this provides better signal-to-noise ratio in the response sensors, thus permitting the use of smaller actuators. An extensive experimental activity on a real structure was carried out and the results reported demonstrate the feasibility and accuracy of the proposed method. Since the method utilizes harmonic excitation for the mode shape scaling, we propose to call the method OMAH.

  14. Effects of Velocity-Slip and Viscosity Variation in Squeeze Film Lubrication of Two Circular Plates

    Directory of Open Access Journals (Sweden)

    R.R. Rao

    2013-03-01

    Full Text Available A generalized form of Reynolds equation for two symmetrical surfaces is taken by considering velocity-slip at the bearing surfaces. This equation is applied to study the effects of velocity-slip and viscosity variation for the lubrication of squeeze films between two circular plates. Expressions for the load capacity and squeezing time obtained are also studied theoretically for various parameters. The load capacity and squeezing time decreases due to slip. They increase due to the presence of high viscous layer near the surface and decrease due to low viscous layer.

  15. A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: Application and performance

    International Nuclear Information System (INIS)

    Kubicek, Markus; Holzlechner, Gerald; Opitz, Alexander K.; Larisegger, Silvia; Hutter, Herbert; Fleig, Jürgen

    2014-01-01

    A novel operation mode for time of flight-secondary ion mass spectrometry (ToF-SIMS) is described for a TOF.SIMS 5 instrument with a Bi-ion gun. It features sub 100 nm lateral resolution, adjustable primary ion currents and the possibility to measure with high lateral resolution as well as high mass resolution. The adjustment and performance of the novel operation mode are described and compared to established ToF-SIMS operation modes. Several examples of application featuring novel scientific results show the capabilities of the operation mode in terms of lateral resolution, accuracy of isotope analysis of oxygen, and combination of high lateral and mass resolution. The relationship between high lateral resolution and operation of SIMS in static mode is discussed.

  16. Stability of the superconductive operating mode in high current-density devices

    International Nuclear Information System (INIS)

    Wipf, S.L.

    1979-01-01

    The superconductive operating mode represents a thermal equilibrium that can tolerate a certain amount of disturbance before it is lost. The basin of attraction (BOA), in many ways equivalent to a potential well, is a measure of the size of disturbance needed to lift the device from the superconductive into a resistive operating mode. The BOA for a simple geometry is calculated and discussed. Experimental results are reported, showing how the concept is used to gain information on the disturbances occurring in a superconducting device

  17. Response approach to the squeezed-limit bispectrum: application to the correlation of quasar and Lyman-α forest power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Chi-Ting [C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY 11794 (United States); Cieplak, Agnieszka M.; Slosar, Anže [Brookhaven National Laboratory, Blgd 510, Upton, NY 11375 (United States); Schmidt, Fabian, E-mail: chi-ting.chiang@stonybrook.edu, E-mail: acieplak@bnl.gov, E-mail: fabians@mpa-garching.mpg.de, E-mail: anze@bnl.gov [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany)

    2017-06-01

    The squeezed-limit bispectrum, which is generated by nonlinear gravitational evolution as well as inflationary physics, measures the correlation of three wavenumbers, in the configuration where one wavenumber is much smaller than the other two. Since the squeezed-limit bispectrum encodes the impact of a large-scale fluctuation on the small-scale power spectrum, it can be understood as how the small-scale power spectrum ''responds'' to the large-scale fluctuation. Viewed in this way, the squeezed-limit bispectrum can be calculated using the response approach even in the cases which do not submit to perturbative treatment. To illustrate this point, we apply this approach to the cross-correlation between the large-scale quasar density field and small-scale Lyman-α forest flux power spectrum. In particular, using separate universe simulations which implement changes in the large-scale density, velocity gradient, and primordial power spectrum amplitude, we measure how the Lyman-α forest flux power spectrum responds to the local, long-wavelength quasar overdensity, and equivalently their squeezed-limit bispectrum. We perform a Fisher forecast for the ability of future experiments to constrain local non-Gaussianity using the bispectrum of quasars and the Lyman-α forest. Combining with quasar and Lyman-α forest power spectra to constrain the biases, we find that for DESI the expected 1−σ constraint is err[ f {sub NL}]∼60. Ability for DESI to measure f {sub NL} through this channel is limited primarily by the aliasing and instrumental noise of the Lyman-α forest flux power spectrum. The combination of response approach and separate universe simulations provides a novel technique to explore the constraints from the squeezed-limit bispectrum between different observables.

  18. Aspiration Thrombectomy Using a Guiding Catheter in Acute Lower Extremity Deep Vein Thrombosis: Usefulness of the Calf-Squeeze Technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae A; Kwak, Hyo Sung; Han, Young Min; Yu, Hee Chul [Chonbuk National University Medical School, Jeonju (Korea, Republic of)

    2011-05-15

    The effectiveness of the calf-squeeze technique during aspiration thrombectomy using guiding catheter in the treatment of an acute lower extremity deep vein thrombosis (DVT) was evaluated by the use of imaging and the clinical follow-up of patients. A prospective analysis of ten patients (seven women, three men; median age, 56.9 years) with common iliac vein (CIV) obstruction and ipsilateral DVT was performed for this study. All patients presented with leg edema or pain and were treated with catheter-directed thrombolysis via an ipsilateral popliteal vein approach after insertion of a temporary inferior vena cava (IVC) filter. Subsequently, the patients were treated with by aspiration thrombectomy using a guiding catheter to remove the residual thrombus. The calf-squeeze technique during aspiration thrombectomy can be used to induce the proximal migration of thrombi in the popliteal, tibial, and muscular veins were used to increase venous flow. The calf-squeeze technique was employed at mean of 1.3 times (range, 1-3 times). All patients showed proximal migration of a popliteal and muscular vein thrombus during the execution of the calf-squeeze technique. Successful recanalization was achieved in all patients (100%) without any complications. On duplex ultrasonography, which was performed immediately after the aspiration thrombectomy, four patients had a residual thrombus in the soleal muscular veins. However, none of the patients had a thrombus in the popliteal and tibial veins; and, during follow-up, no DVT recurred in any patient. The use of the calf-squeeze technique during aspiration thrombectomy after catheter-directed thrombolysis can induce the proximal migration of thrombi in the popliotibial and muscular veins and is an effective method that can remove a thrombus in calf veins.

  19. Aspiration Thrombectomy Using a Guiding Catheter in Acute Lower Extremity Deep Vein Thrombosis: Usefulness of the Calf-Squeeze Technique

    International Nuclear Information System (INIS)

    Lee, Jae A; Kwak, Hyo Sung; Han, Young Min; Yu, Hee Chul

    2011-01-01

    The effectiveness of the calf-squeeze technique during aspiration thrombectomy using guiding catheter in the treatment of an acute lower extremity deep vein thrombosis (DVT) was evaluated by the use of imaging and the clinical follow-up of patients. A prospective analysis of ten patients (seven women, three men; median age, 56.9 years) with common iliac vein (CIV) obstruction and ipsilateral DVT was performed for this study. All patients presented with leg edema or pain and were treated with catheter-directed thrombolysis via an ipsilateral popliteal vein approach after insertion of a temporary inferior vena cava (IVC) filter. Subsequently, the patients were treated with by aspiration thrombectomy using a guiding catheter to remove the residual thrombus. The calf-squeeze technique during aspiration thrombectomy can be used to induce the proximal migration of thrombi in the popliteal, tibial, and muscular veins were used to increase venous flow. The calf-squeeze technique was employed at mean of 1.3 times (range, 1-3 times). All patients showed proximal migration of a popliteal and muscular vein thrombus during the execution of the calf-squeeze technique. Successful recanalization was achieved in all patients (100%) without any complications. On duplex ultrasonography, which was performed immediately after the aspiration thrombectomy, four patients had a residual thrombus in the soleal muscular veins. However, none of the patients had a thrombus in the popliteal and tibial veins; and, during follow-up, no DVT recurred in any patient. The use of the calf-squeeze technique during aspiration thrombectomy after catheter-directed thrombolysis can induce the proximal migration of thrombi in the popliotibial and muscular veins and is an effective method that can remove a thrombus in calf veins.

  20. A non-uniform three-gap buncher cavity with suppression of transverse-electromagnetic mode leakage in the triaxial klystron amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Zumin; Zhang, Jun, E-mail: zhangjun-nudt@126.com; Zhong, Huihuang; Zhu, Danni; Qiu, Yongfeng [College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073 (China)

    2014-01-15

    The triaxial klystron amplifier is an efficient high power relativistic klystron amplifier operating at high frequencies due to its coaxial structure with large radius. However, the coaxial structures result in coupling problems among the cavities as the TEM mode is not cut-off in the coaxial tube. Therefore, the suppression of the TEM mode leakage, especially the leakage from the buncher cavity to the input cavity, is crucial in the design of a triaxial klystron amplifier. In this paper, a non-uniform three-gap buncher cavity is proposed to suppress the TEM mode leakage. The cold cavity analysis shows that the non-uniform three-gap buncher cavity can significantly suppress the TEM mode generation compared to a uniform three-gap buncher cavity. Particle-in-cell simulation shows that the power leakage to the input cavity is less than 1.5‰ of the negative power in the buncher cavity and the buncher cavity can efficiently modulate an intense relativistic electron beam free of self-oscillations. A fundamental current modulation depth of 117% is achieved by employing the proposed non-uniform buncher cavity into an X-band triaxial amplifier, which results in the high efficiency generation of high power microwave.

  1. Optimal Control of Micro Grid Operation Mode Seamless Switching Based on Radau Allocation Method

    Science.gov (United States)

    Chen, Xiaomin; Wang, Gang

    2017-05-01

    The seamless switching process of micro grid operation mode directly affects the safety and stability of its operation. According to the switching process from island mode to grid-connected mode of micro grid, we establish a dynamic optimization model based on two grid-connected inverters. We use Radau allocation method to discretize the model, and use Newton iteration method to obtain the optimal solution. Finally, we implement the optimization mode in MATLAB and get the optimal control trajectory of the inverters.

  2. Recent progress towards advanced mode of operation on JET

    Energy Technology Data Exchange (ETDEWEB)

    Litaudon, X. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France); Crisanti, F.; Frigione, D. [Association Euratom-ENEA sulla Fusione Centro Ricerche Energia Frascati (Italy)] [and others

    2003-07-01

    This series of slides presents the recent performance of JET concerning ITB (internal transport barrier) operating mode. Pellet refuelling without ITB destruction has been achieved at n{sub eo}/n{sub GW} {approx} 1. A wide reversed shear ITB (3.6 m) has been sustained with mild ELM (edge localized modes) and no apparent impurity accumulation. ITBs have been maintained thanks to a simultaneous optimisation of the q-profile and edge condition, which opens the way for a steady-state ITB.

  3. Quadrature squeezing of a mechanical resonator generated by the electromechanical coupling with two coupled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yan [Department of Physics, Huazhong Normal University, Wuhan (China); School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou (China); Zhu, Jia-pei [Department of Physics, Honghe University, Mengzi (China); Zhao, Shao-ming; Li, Gao-xiang [Department of Physics, Huazhong Normal University, Wuhan (China)

    2015-01-01

    The quadrature squeezing of a mechanical resonator (MR) coupled with two quantum dots (QDs) through the electromechanical coupling, where the QDs are driven by a strong and two weak laser fields is investigated. By tuning the gate voltage, the electron can be trapped in a quantum pure state. Under certain conditions, the discrepancies between the transition frequency and that of two weak fields are compensated by the phonons induced by the electromechanical coupling of the MR with QDs. In this case, some dissipative processes occur resonantly. The phonons created and (or) annihilated in these dissipative processes are correlated thus leading to the quadrature squeezing of the MR. A squeezed vacuum reservoir for the MR is built up. By tuning the gate voltage to control the energy structure of the QDs, the present squeezing scheme has strong resistance against the dephasing processes of the QDs in low temperature limit. The role of the temperature of the phonon reservoir is to damage squeezing of the MR. (copyright 2014 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. QUIESCENT H-MODE, AN ELM-FREE HIGH-CONFINEMENT MODE ON DIII-D WITH POTENTIAL FOR STATIONARY STATE OPERATION

    Energy Technology Data Exchange (ETDEWEB)

    WEST,WP; BURRELL,KH; deGRASSIE,JS; DOYLE,EJ; GREENFIELD,CM; LASNIER,CJ; SNYDER,PB; ZENG,L

    2003-08-01

    OAK-B135 The quiescent H-mode (QH-mode) is an ELM-free and stationary state mode of operation discovered on DIII-D. This mode achieves H-mode levels of confinement and pedestal pressure while maintaining constant density and radiated power. The elimination of edge localized modes (ELMs) and their large divertor loads while maintaining good confinement and good density control is of interest to next generation tokamaks. This paper reports on the correlations found between selected parameters in a QH-mode database developed from several hundred DIII-D counter injected discharges. Time traces of key plasma parameters from a QH-mode discharge are shown. On DIII-D the negative going plasma current (a) indicates that the beam injection direction is counter to the plasma current direction, a common feature of all QH-modes. The D{sub {alpha}} time behavior (c) shows that soon after high powered beam heating (b) is applied, the discharge makes a transition to ELMing H-mode, then the ELMs disappear, indicating the start of the QH period that lasts for the remainder of the high power beam heating (3.5 s). Previously published work showing density and temperature profiles indicates that long-pulse, high-triangularity QH discharges develop an internal transport barrier in combination with the QH edge barrier. These discharges are known as quiescent, double-barrier discharges (QDB). The H-factor (d) and stored energy (c) rise then saturate at a constant level and the measured axial and minimum safety factors remain above 1.0 for the entire QH duration. During QDB operation the performance of the plasma can be very good, with {beta}{sub N}*H{sub 89L} product reaching 7 for > 10 energy confinement times. These discharges show promise that a stationary state can be achieved.

  5. QUIESCENT H-MODE, AN ELM-FREE HIGH-CONFINEMENT MODE ON DIII-D WITH POTENTIAL FOR STATIONARY STATE OPERATION

    International Nuclear Information System (INIS)

    WEST, WP; BURRELL, KH; DeGRASSIE, JS; DOYLE, EJ; GREENFIELD, CM; LASNIER, CJ; SNYDER, PB; ZENG, L.

    2003-01-01

    OAK-B135 The quiescent H-mode (QH-mode) is an ELM-free and stationary state mode of operation discovered on DIII-D. This mode achieves H-mode levels of confinement and pedestal pressure while maintaining constant density and radiated power. The elimination of edge localized modes (ELMs) and their large divertor loads while maintaining good confinement and good density control is of interest to next generation tokamaks. This paper reports on the correlations found between selected parameters in a QH-mode database developed from several hundred DIII-D counter injected discharges. Time traces of key plasma parameters from a QH-mode discharge are shown. On DIII-D the negative going plasma current (a) indicates that the beam injection direction is counter to the plasma current direction, a common feature of all QH-modes. The D α time behavior (c) shows that soon after high powered beam heating (b) is applied, the discharge makes a transition to ELMing H-mode, then the ELMs disappear, indicating the start of the QH period that lasts for the remainder of the high power beam heating (3.5 s). Previously published work showing density and temperature profiles indicates that long-pulse, high-triangularity QH discharges develop an internal transport barrier in combination with the QH edge barrier. These discharges are known as quiescent, double-barrier discharges (QDB). The H-factor (d) and stored energy (c) rise then saturate at a constant level and the measured axial and minimum safety factors remain above 1.0 for the entire QH duration. During QDB operation the performance of the plasma can be very good, with β N *H 89L product reaching 7 for > 10 energy confinement times. These discharges show promise that a stationary state can be achieved

  6. Resonance properties of a three-level atom with quantized field modes

    International Nuclear Information System (INIS)

    Yoo, H.I.

    1984-01-01

    A system of one three-level atom and one or two quantized electro-magnetic field modes coupled to each other by the dipole interaction, with the rotating wave approximation is studied. All three atomic configurations, i.e., cascade Lambda- and V-types, are treated simultaneously. The system is treated as closed, i.e., no interaction with the external radiation field modes, to reveal the internal structures and symmetries in the system. The general dynamics of the system are investigated under several distinct initial conditions and their similarities and differences with the dynamics of the Jaynes-Cummings model are revealed. Also investigated is the possibility of so-called coherent trapping of the atom in the quantized field modes in a resonator. An atomic state of coherent trapping exists only for limited cases, and it generally requires the field to be in some special states, depending on the system. The discussion of coherent trapping is extended into a system of M identical three-level atoms. The stability of a coherent-trapping state when fluorescence can take place is discussed. The distinction between a system with resonator field modes and one with ideal laser modes is made clear, and the atomic relaxation to the coherent-trapping atomic state when a Lambda-type atom is irradiated by two ideal laser beams is studied. The experimental prospects to observe the collapse-revival phenomena in the atomic occupation probabilities, which is characteristic of a system with quantized resonator field modes is discussed

  7. Effects of three-mode field interactions in laser instabilities and in beat-frequency spectroscopy

    International Nuclear Information System (INIS)

    Herdow, S.T.

    1982-01-01

    Population pulsations are fluctuations in the population difference (of a two level system) due to the presence of two or more coherent waves interfering in the medium. In this work, the author shows that population pulsations generated by three waves, a central wave and two mode-locked sidebands, are responsible for both the multiwavelength and the single-wavelength instabilities of single-mode lasers containing homgeneously-broadened media. The role of the population pulsations in establishing these instabilities, however, diminish as the central mode is detuned away from the atomic resonance frequency. For homogeneously-broadened lasers, the author finds two regions of single-wavelength instability. The first is at line center, for which population pulsations are solely responsible, and the second is off line center where the unsaturated medium provides the required gain and anomalous dispersion. For the case of inhomogeneously-broadened lasers, the author shows that population pulsations significantly increase the instability range over that predicted by Casperson for single-mode bad-cavity lasers. Both the unidirectional ring and the standing-wave cavities are treated. The Fourier expansion technique, used in this work, for treating three-frequency operation in saturation spectroscopy is shown to be equivalent (in appropriate limits) to the linear stability analysis in laser theory and optical bistability. The author also shows, in single-sideband saturation spectroscopy, that for long interaction lengths propagation effects can significantly influence the absorption and dispersion coefficients of the medium. Finally, the author shows that under certain conditions the pronounced splitting effects of the population pulsations develop into regions of intense absorption

  8. Study of guided modes in three-dimensional composites

    Science.gov (United States)

    Baste, S.; Gerard, A.

    The propagation of elastic waves in a three-dimensional carbon-carbon composite is modeled with a mixed variational method, using the Bloch or Floquet theories and the Hellinger-Reissner function for two independent fields. The model of the equivalent homogeneous material only exists below a cut-off frequency of about 600 kHz. The existence below the cut-off frequency of two guided waves can account for the presence of a slow guided wave on either side of the cut-off frequency. Optical modes are generated at low frequencies, and can attain high velocites (rapid guided modes of 15,000 m/sec).

  9. Squeezing more from a quantum nondemolition measurement

    DEFF Research Database (Denmark)

    Buchler, B.C.; Lam, P.K.; Bachor, H.A.

    2002-01-01

    We use a stable, 5 dB, amplitude squeezed source for a quantum nondomolition (QND) experiment. The performance of our QND system is enhanced by an electro-optic feedforward loop which improve,, the signal transfer efficiency. At best, we measure a total signal transfer of 1.81 and conditional var...

  10. Tubes, Mono Jets, Squeeze Out and CME

    Energy Technology Data Exchange (ETDEWEB)

    Longacre, R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-10-23

    Glasma Flux Tubes, Mono Jets with squeeze out flow around them plus the Chiral Magnetic Effect(CME) are physical phenomenon that generate two particle correlation with respect to the reaction plane in mid-central 20% to 30% Au-Au collision √sNN = 200.0 GeV measured at RHIC.

  11. Squeezing flow viscometry for nonelastic semiliquid foods--theory and applications.

    Science.gov (United States)

    Campanella, Osvaldo H; Peleg, Micha

    2002-01-01

    In most conventional rheometers, notably the coaxial cylinders and capillary viscometers, the food specimen is pressed into a narrow gap and its structure is altered by uncontrolled shear. Also, most semiliquid foods exhibit slip, and consequently the measurements do not always reflect their true rheological properties. A feasible solution to these two problems is squeezing flow viscometry where the specimen, practically intact and with or without suspended particles, is squeezed between parallel plates. The outward flow pattern mainly depends on the friction between the fluid and plates or its absence ("lubricated squeezing flow"). Among the possible test geometries, the one of constant area and changing volume is the most practical for foods. The test can be performed at a constant displacement rate using common Universal Testing Machines or under constant loads (creep array). The tests output is in the form of a force-height, force-time, or height-time relationship, from which several rheological parameters can be derived. With the current state of the art, the method can only be applied at small displacement rates. Despite the method's crudeness, its results are remarkably reproducible and sensitive to textural differences among semiliquid food products. The flow patterns observed in foods do not always follow the predictions of rheological models originally developed for polymer melts because of the foods' unique microstructures. The implications of these discrepancies and the role that artifacts may play are evaluated in light of theoretical and practical considerations. The use of squeezing flow viscometry to quantify rheological changes that occur during a product's handling and to determine whether they are perceived sensorily is suggested.

  12. Predicting core losses and efficiency of SRM in continuous current mode of operation using improved analytical technique

    International Nuclear Information System (INIS)

    Parsapour, Amir; Dehkordi, Behzad Mirzaeian; Moallem, Mehdi

    2015-01-01

    In applications in which the high torque per ampere at low speed and rated power at high speed are required, the continuous current method is the best solution. However, there is no report on calculating the core loss of SRM in continuous current mode of operation. Efficiency and iron loss calculation which are complex tasks in case of conventional mode of operation is even more involved in continuous current mode of operation. In this paper, the Switched Reluctance Motor (SRM) is modeled using finite element method and core loss and copper loss of SRM in discontinuous and continuous current modes of operation are calculated using improved analytical techniques to include the minor loop losses in continuous current mode of operation. Motor efficiency versus speed in both operation modes is obtained and compared. - Highlights: • Continuous current method for Switched Reluctance Motor (SRM) is explained. • An improved analytical technique is presented for SRM core loss calculation. • SRM losses in discontinuous and continuous current operation modes are presented. • Effect of mutual inductances on SRM performance is investigated

  13. Predicting core losses and efficiency of SRM in continuous current mode of operation using improved analytical technique

    Energy Technology Data Exchange (ETDEWEB)

    Parsapour, Amir, E-mail: amirparsapour@gmail.com [Department of Electrical Engineering, University of Isfahan, Isfahan (Iran, Islamic Republic of); Dehkordi, Behzad Mirzaeian, E-mail: mirzaeian@eng.ui.ac.ir [Department of Electrical Engineering, University of Isfahan, Isfahan (Iran, Islamic Republic of); Moallem, Mehdi, E-mail: moallem@cc.iut.ac.ir [Department of Electrical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2015-03-15

    In applications in which the high torque per ampere at low speed and rated power at high speed are required, the continuous current method is the best solution. However, there is no report on calculating the core loss of SRM in continuous current mode of operation. Efficiency and iron loss calculation which are complex tasks in case of conventional mode of operation is even more involved in continuous current mode of operation. In this paper, the Switched Reluctance Motor (SRM) is modeled using finite element method and core loss and copper loss of SRM in discontinuous and continuous current modes of operation are calculated using improved analytical techniques to include the minor loop losses in continuous current mode of operation. Motor efficiency versus speed in both operation modes is obtained and compared. - Highlights: • Continuous current method for Switched Reluctance Motor (SRM) is explained. • An improved analytical technique is presented for SRM core loss calculation. • SRM losses in discontinuous and continuous current operation modes are presented. • Effect of mutual inductances on SRM performance is investigated.

  14. Quantum noise on a point charge from electromagnetic squeezed vacuum fluctuations

    International Nuclear Information System (INIS)

    Wu, Tai-Hung; Hsiang, Jen-Tsung; Lee, Da-Shin

    2010-01-01

    The effect of quantum noises on a point charge from electromagnetic squeezed vacuum fluctuations is studied. Here a novel reduction phenomenon in velocity dispersion is found in the situation when the particle barely moves. It shows that the velocity dispersion of the charge can be reduced below the value solely given by the normal vacuum states of the electromagnetic fields by using an appropriate choice of the squeeze parameters. This may be viewed as a transient phenomenon. Optimally utilizing this reduction scheme for gravitational wave detection is possible, but challenging.

  15. Quantum noise on a point charge from electromagnetic squeezed vacuum fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tai-Hung; Hsiang, Jen-Tsung; Lee, Da-Shin [National Dong-Hwa University, Hua-lien, Taiwan (China)

    2010-09-15

    The effect of quantum noises on a point charge from electromagnetic squeezed vacuum fluctuations is studied. Here a novel reduction phenomenon in velocity dispersion is found in the situation when the particle barely moves. It shows that the velocity dispersion of the charge can be reduced below the value solely given by the normal vacuum states of the electromagnetic fields by using an appropriate choice of the squeeze parameters. This may be viewed as a transient phenomenon. Optimally utilizing this reduction scheme for gravitational wave detection is possible, but challenging.

  16. Entanglement between atomic thermal states and coherent or squeezed photons in a damping cavity

    Science.gov (United States)

    Yadollahi, F.; Safaiee, R.; Golshan, M. M.

    2018-02-01

    In the present study, the standard Jaynes-Cummings model, in a lossy cavity, is employed to characterize the entanglement between atoms and photons when the former is initially in a thermal state (mixed ensemble) while the latter is described by either coherent or squeezed distributions. The whole system is thus assumed to be in equilibrium with a heat reservoir at a finite temperature T, and the measure of negativity is used to determine the time evolution of atom-photon entanglement. To this end, the master equation for the density matrix, in the secular approximation, is solved and a partial transposition of the result is made. The degree of atom-photon entanglement is then numerically computed, through the negativity, as a function of time and temperature. To justify the behavior of atom-photon entanglement, moreover, we employ the so obtained total density matrix to compute and analyze the time evolution of the initial photonic coherent or squeezed probability distributions and the squeezing parameters. On more practical points, our results demonstrate that as the initial photon mean number increases, the atom-photon entanglement decays at a faster pace for the coherent distribution compared to the squeezed one. Moreover, it is shown that the degree of atom-photon entanglement is much higher and more stable for the squeezed distribution than that for the coherent one. Consequently, we conclude that the time intervals during which the atom-photon entanglement is distillable is longer for the squeezed distribution. It is also illustrated that as the temperature increases the rate of approaching separability is faster for the coherent initial distribution. The novel point of the present report is the calculation of dynamical density matrix (containing all physical information) for the combined system of atom-photon in a lossy cavity, as well as the corresponding negativity, at a finite temperature.

  17. Damage classification of pipelines under water flow operation using multi-mode actuated sensing technology

    International Nuclear Information System (INIS)

    Lee, Changgil; Park, Seunghee

    2011-01-01

    In a structure, several types of damage can occur, ranging from micro-cracking to corrosion or loose bolts. This makes identifying the damage difficult with a single mode of sensing. Therefore, a multi-mode actuated sensing system is proposed based on a self-sensing circuit using a piezoelectric sensor. In self-sensing-based multi-mode actuated sensing, one mode provides a wide frequency-band structural response from the self-sensed impedance measurement and the other mode provides a specific frequency-induced structural wavelet response from the self-sensed guided wave measurement. In this experimental study, a pipeline system under water flow operation was examined to verify the effectiveness and robustness of the proposed structural health monitoring approach. Different types of structural damage were inflicted artificially on the pipeline system. To classify the multiple types of structural damage, supervised learning-based statistical pattern recognition was implemented by composing a three-dimensional space using the damage indices extracted from the impedance and guided wave features as well as temperature variations. For a more systematic damage classification, several control parameters were optimized to determine an optimal decision boundary for the supervised learning-based pattern recognition. Further research issues are also discussed for real-world implementations of the proposed approach

  18. Teleportation of Squeezed Entangled State

    Institute of Scientific and Technical Information of China (English)

    HU Li-Yun; ZHOU Nan-Run

    2007-01-01

    Based on the coherent entangled state |α, x> we introduce the squeezed entangled state (SES). Then we propose a teleportation protocol for the SES by using Einstein-Podolsky-Rosen entangled state |η>as a quantum channel.The calculation is greatly simplified by virtue of the Schmidt decompositions of both |α, x>and |η>. Any bipartite states that can be expanded in terms of |α, x>may be teleported in this way due to the completeness of |α, x>.

  19. Demonstration of a squeezed-light-enhanced power- and signal-recycled Michelson interferometer.

    Science.gov (United States)

    Vahlbruch, Henning; Chelkowski, Simon; Hage, Boris; Franzen, Alexander; Danzmann, Karsten; Schnabel, Roman

    2005-11-18

    We report on the experimental combination of three advanced interferometer techniques for gravitational wave detection, namely, power recycling, detuned signal recycling, and squeezed field injection. For the first time, we experimentally prove the compatibility of especially the latter two. To achieve a broadband nonclassical sensitivity improvement, we applied a filter cavity for compensation of quadrature rotation. The signal-to-noise ratio was improved by up to 2.8 dB beyond the coherent state's shot noise. The complete setup was stably locked for arbitrary times and characterized by injected single-sideband modulation fields.

  20. Exponential quadratic operators and evolution of bosonic systems coupled to a heat bath

    International Nuclear Information System (INIS)

    Ni Xiaotong; Liu Yuxi; Kwek, L. C.; Wang Xiangbin

    2010-01-01

    Using exponential quadratic operators, we present a general framework for studying the exact dynamics of system-bath interaction in which the Hamiltonian is described by the quadratic form of bosonic operators. To demonstrate the versatility of the approach, we study how the environment affects the squeezing of quadrature components of the system. We further propose that the squeezing can be enhanced when parity kicks are applied to the system.

  1. Acousto-optic resonant coupling of three spatial modes in an optical fiber.

    Science.gov (United States)

    Park, Hee Su; Song, Kwang Yong

    2014-01-27

    A fiber-optic analogue to an externally driven three-level quantum state is demonstrated by acousto-optic coupling of the spatial modes in a few-mode fiber. Under the condition analogous to electromagnetically induced transparency, a narrow-bandwidth transmission within an absorption band for the fundamental mode is demonstrated. The presented structure is an efficient converter between the fundamental mode and the higher-order modes that cannot be easily addressed by previous techniques, therefore can play a significant role in the next-generation space-division multiplexing communications as an arbitrarily mode-selectable router.

  2. Modes of failure of Osteonics constrained tripolar implants: a retrospective analysis of forty-three failed implants.

    Science.gov (United States)

    Guyen, Olivier; Lewallen, David G; Cabanela, Miguel E

    2008-07-01

    The Osteonics constrained tripolar implant has been one of the most commonly used options to manage recurrent instability after total hip arthroplasty. Mechanical failures were expected and have been reported. The purpose of this retrospective review was to identify the observed modes of failure of this device. Forty-three failed Osteonics constrained tripolar implants were revised at our institution between September 1997 and April 2005. All revisions related to the constrained acetabular component only were considered as failures. All of the devices had been inserted for recurrent or intraoperative instability during revision procedures. Seven different methods of implantation were used. Operative reports and radiographs were reviewed to identify the modes of failure. The average time to failure of the forty-three implants was 28.4 months. A total of five modes of failure were observed: failure at the bone-implant interface (type I), which occurred in eleven hips; failure at the mechanisms holding the constrained liner to the metal shell (type II), in six hips; failure of the retaining mechanism of the bipolar component (type III), in ten hips; dislocation of the prosthetic head at the inner bearing of the bipolar component (type IV), in three hips; and infection (type V), in twelve hips. The mode of failure remained unknown in one hip that had been revised at another institution. The Osteonics constrained tripolar total hip arthroplasty implant is a complex device involving many parts. We showed that failure of this device can occur at most of its interfaces. It would therefore appear logical to limit its application to salvage situations.

  3. Definition, analysis and experimental investigation of operation modes in hydrogen-renewable-based power plants incorporating hybrid energy storage

    International Nuclear Information System (INIS)

    Valverde, L.; Pino, F.J.; Guerra, J.; Rosa, F.

    2016-01-01

    Highlights: • A conceptual analysis of operation modes in energy storage plants is presented. • Key Performance Indicators to select operation modes are provided. • The approach has been applied to a laboratory hybrid power plant. • The methodology provides guidance for the operation of hybrid power plants. - Abstract: This paper is concerned with Operating Modes in hybrid renewable energy-based power plants with hydrogen as the intermediate energy storage medium. Six operation modes are defined according to plant topology and the possibility of operating electrolyzer and fuel cell at steady-power or partial load. A methodology for the evaluation of plant performance is presented throughout this paper. The approach includes a set of simulations over a fully validated model, which are run in order to compare the proposed operation modes in various weather conditions. Conclusions are drawn from the simulation stage using a set of Key Performance Indicators defined in this paper. This analysis yields the conclusion that certain modes are more appropriate from technical and practical standpoints when they are implemented in a real plant. From the results of the simulation assessment, selected operating modes are applied to an experimental hydrogen-based pilot plant to illustrate and validate the performance of the proposed operation modes. Experimental results confirmed the simulation study, pointing out the advantages and disadvantages of each operation mode in terms of performance and equipment durability.

  4. Development of Abnormal Operating Strategies for Station Blackout in Shutdown Operating Mode in Pressurized Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Duk-Joo; Lee, Seung-Chan; Sung, Je-Joong; Ha, Sang-Jun [KHNP CRI, Daejeon (Korea, Republic of); Hwang, Su-Hyun [FNC Tech. Co., Yongin (Korea, Republic of)

    2016-10-15

    Loss of all AC power is classified as one of multiple failure accident by regulatory guide of Korean accident management program. Therefore we need develop strategies for the abnormal operating procedure both of power operating and shutdown mode. This paper developed abnormal operating guideline for loss of all AC power by analysis of accident scenario in pressurized water reactor. This paper analyzed the loss of ultimate heat sink (LOUHS) in shutdown operating mode and developed the operating strategy of the abnormal procedure. Also we performed the analysis of limiting scenarios that operator actions are not taken in shutdown LOUHS. Therefore, we verified the plant behavior and decided operator action to taken in time in order to protect the fuel of core with safety. From the analysis results of LOUHS, the fuel of core maintained without core uncovery for 73 minutes respectively for opened RCS states after the SBO occurred. Therefore, operator action for the emergency are required to take in 73 minutes for opened RCS state. Strategy is to cooldown by using spent fuel pool cooling system. This method required to change the plant design in some plant. In RCS boundary closed state, first abnormal operating strategy in shutdown LOUHS is first abnormal operating strategy in shutdown LOUHS is to remove the residual heat of core by steam dump flow and auxiliary feedwater of SG.

  5. China’s marriage squeeze: A decomposition into age and sex structure

    Science.gov (United States)

    LI, Xiaomin; LI, Shuzhuo; FELDMAN, Marcus W.

    2016-01-01

    Most recent studies of marriage patterns in China have emphasized the male-biased sex ratio but have largely neglected age structure as a factor in China’s male marriage squeeze. In this paper we develop an index we call “spousal sex ratio” (SSR) to measure the marriage squeeze, and a method of decomposing the proportion of male surplus into age and sex structure effects within a small spousal age difference interval. We project that China’s marriage market will be confronted with a relatively severe male squeeze. For the decomposition of the cohort aged 30, from 2010 to 2020 age structure will be dominant, while from 2020 through 2034 the contribution of age structure will gradually decrease and that of sex structure will increase. From then on, sex structure will be dominant. The index and decomposition, concentrated on a specific female birth cohort, can distinguish spousal competition for single cohorts which may be covered by a summary index for the whole marriage market; these can also be used for consecutive cohorts to reflect the situation of the whole marriage market. PMID:27242390

  6. Update on the status of hadronic squeezed correlations at RHIC energies

    International Nuclear Information System (INIS)

    Padula, S.S.; Dudek, D.M.; Socolowski, O. Jr.

    2011-01-01

    In high-energy heavy-ion collisions, a hot and dense medium is formed, where the hadronic masses may be shifted from their asymptotic values. If this mass modification occurs, squeezed back-to-back correlations (BBC) of particle-antiparticle pairs are predicted to appear, both in the fermionic (fBBC) and in the bosonic (bBBC) sectors. Although they have unlimited intensity even for finite-size expanding systems, these hadronic squeezed correlations are very sensitive to their time emission distribution. Here we discuss results in case this time emission is parameterized by a Levy-type distribution, showing that it reduces the signal even more dramatically than a Lorentzian distribution, which already reduces the intensity of the effect by orders of magnitude, as compared to the sudden emission. However, we show that the signal could still survive if the duration of the process is short, and if the effect is searched for lighter mesons, such as kaons. We compare some of our results to recent PHENIX preliminary data on squeezed correlations of K + K - pairs

  7. On the quantum information entropies and squeezing associated with the eigenstates of the isotonic oscillator

    International Nuclear Information System (INIS)

    Ghasemi, A; Hooshmandasl, M R; Tavassoly, M K

    2011-01-01

    In this paper we calculate the position and momentum space information entropies for the quantum states associated with a particular physical system, i.e. the isotonic oscillator Hamiltonian. We present our results for its ground states, as well as for its excited states. We observe that the lower bound of the sum of the position and momentum entropies expressed by the Beckner, Bialynicki-Birula and Mycielski (BBM) inequality is satisfied. Moreover, there exist eigenstates that exhibit squeezing in the position information entropy. In fact, entropy squeezing, which occurs in position, will be compensated for by an increase in momentum entropy, such that the BBM inequality is guaranteed. To complete our study we investigate the amplitude squeezing in x and p-quadratures corresponding to the eigenstates of the isotonic oscillator and show that amplitude squeezing, again in x, will be revealed as expected, while the Heisenberg uncertainty relationship is also satisfied. Finally, our numerical calculations of the entropy densities will be presented graphically.

  8. The POLIS interferometer for ponderomotive squeezed light generation

    Energy Technology Data Exchange (ETDEWEB)

    Calloni, Enrico [Dipartimento di Fisica, Università degli Studi di Napoli “Federico II”, Napoli (Italy); INFN, Sezione di Napoli (Italy); Conte, Andrea [Dipartimento di Fisica, Università di Roma “Sapienza”, Roma (Italy); INFN, Sezione di Roma1 (Italy); De Laurentis, Martina, E-mail: martina.delaurentis@na.infn.it [Dipartimento di Fisica, Università degli Studi di Napoli “Federico II”, Napoli (Italy); INFN, Sezione di Napoli (Italy); Naticchioni, Luca [Dipartimento di Fisica, Università di Roma “Sapienza”, Roma (Italy); INFN, Sezione di Roma1 (Italy); Puppo, Paola [INFN, Sezione di Roma1 (Italy); Ricci, Fulvio [Dipartimento di Fisica, Università di Roma “Sapienza”, Roma (Italy); INFN, Sezione di Roma1 (Italy)

    2016-07-11

    POLIS (POnderomotive LIght Squeezer) is a suspended interferometer, presently under construction, devoted to the generation of ponderomotive squeezed light and to the study of the interaction of non classical quantum states of light and macroscopic objects. The interferometer is a Michelson whose half-meter long arms are constituted by high-finesse cavities, suspended to a seismic isolation chain similar to the Virgo SuperAttenuator. The mass of the suspended cavity mirrors are chosen to be tens of grams: this value is sufficiently high to permit the use of the well-tested Virgo suspension techniques but also sufficiently small to generate the coupling among the two phase quadratures with a limited amount of light in the cavity, of the order of few tens of kW. In this short paper the main features of the interferometer are shown, together with the expected sensitivity and squeezing factor.

  9. Control software architecture and operating modes of the Model M-2 maintenance system

    Energy Technology Data Exchange (ETDEWEB)

    Satterlee, P.E. Jr.; Martin, H.L.; Herndon, J.N.

    1984-04-01

    The Model M-2 maintenance system is the first completely digitally controlled servomanipulator. The M-2 system allows dexterous operations to be performed remotely using bilateral force-reflecting master/slave techniques, and its integrated operator interface takes advantage of touch-screen-driven menus to allow selection of all possible operating modes. The control system hardware for this system has been described previously. This paper describes the architecture of the overall control system. The system's various modes of operation are identified, the software implementation of each is described, system diagnostic routines are described, and highlights of the computer-augmented operator interface are discussed. 3 references, 5 figures.

  10. Control software architecture and operating modes of the Model M-2 maintenance system

    International Nuclear Information System (INIS)

    Satterlee, P.E. Jr.; Martin, H.L.; Herndon, J.N.

    1984-04-01

    The Model M-2 maintenance system is the first completely digitally controlled servomanipulator. The M-2 system allows dexterous operations to be performed remotely using bilateral force-reflecting master/slave techniques, and its integrated operator interface takes advantage of touch-screen-driven menus to allow selection of all possible operating modes. The control system hardware for this system has been described previously. This paper describes the architecture of the overall control system. The system's various modes of operation are identified, the software implementation of each is described, system diagnostic routines are described, and highlights of the computer-augmented operator interface are discussed. 3 references, 5 figures

  11. Searching for squeezed particle-antiparticle correlations in high-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Padula, Sandra S.; Socolowski, O. Jr.

    2010-01-01

    Squeezed correlations of particle-antiparticle pairs were predicted to exist if the hadron masses were modified in the hot and dense medium formed in high-energy heavy-ion collisions. Although well-established theoretically, they have not yet been observed experimentally. We suggest here a clear method to search for such a signal by analyzing the squeezed correlation functions in terms of measurable quantities. We illustrate this suggestion for simulated φφ pairs at the Relativistic Heavy Ion Collider (RHIC) energies.

  12. Free-Space Squeezing Assists Perfectly Matched Layers in Simulations on a Tight Domain

    DEFF Research Database (Denmark)

    Shyroki, Dzmitry; Ivinskaya, Aliaksandra; Lavrinenko, Andrei

    2010-01-01

    outside the object, as in simulations of eigenmodes or scattering at a wavelength comparable to or larger than the object itself. Here, we show how, in addition to applying the perfectly matched layers (PMLs), outer free space can be squeezed to avoid cutting the evanescent field tails by the PMLs...... or computational domain borders. Adding the squeeze-transform layers to the standard PMLs requires no changes to the finite-difference algorithms....

  13. Research on Integrated Control of Microgrid Operation Mode

    Science.gov (United States)

    Cheng, ZhiPing; Gao, JinFeng; Li, HangYu

    2018-03-01

    The mode switching control of microgrid is the focus of its system control. According to the characteristics of different control, an integrated control system is put forward according to the detecting voltage and frequency deviation after switching of microgrid operating mode. This control system employs master-slave and peer-to-peer control. Wind turbine and photovoltaic(PV) adopt P/Q control, so the maximum power output can be achieved. The energy storage will work under the droop control if the system is grid-connected. When the system is off-grid, whether to employ droop control or P/f control is determined by system status. The simulation has been done and the system performance can meet the requirement.

  14. Avalanche and streamer mode operation of resistive plate chambers

    International Nuclear Information System (INIS)

    Cardarelli, R.; Makeev, V.; Santonico, R.

    1996-01-01

    A resistive plate chamber was operated at voltages increasing in steps of 200 V over a 3 kV interval and the transition between the avalanche and streamer modes was studied. The avalanche amplitude was observed to be exponentially dependent on the operating voltage up to a value, characteristic of the gas, where the avalanche saturation occurs and delayed streamer signals start to appear. Signal waveforms, charge and timing distributions are reported. (orig.)

  15. Generalized squeezing rotating-wave approximation to the isotropic and anisotropic Rabi model in the ultrastrong-coupling regime

    OpenAIRE

    Zhang, Yu-Yu

    2016-01-01

    Generalized squeezing rotating-wave approximation (GSRWA) is proposed by employing both the displacement and the squeezing transformations. A solvable Hamiltonian is reformulated in the same form as the ordinary RWA ones. For a qubit coupled to oscillators experiment, a well-defined Schr\\"{o}dinger-cat-like entangled state is given by the displaced-squeezed oscillator state instead of the original displaced state. For the isotropic Rabi case, the mean photon number and the ground-state energy...

  16. Effect of Surface Roughness on MHD Couple Stress Squeeze-Film Characteristics between a Sphere and a Porous Plane Surface

    Directory of Open Access Journals (Sweden)

    M. Rajashekar

    2012-01-01

    Full Text Available The combined effects of couple stress and surface roughness on the MHD squeeze-film lubrication between a sphere and a porous plane surface are analyzed, based upon the thin-film magnetohydrodynamic (MHD theory. Using Stoke’s theory to account for the couple stresses due to the microstructure additives and the Christensen’s stochastic method developed for hydrodynamic lubrication of rough surfaces derives the stochastic MHD Reynolds-type equation. The expressions for the mean MHD squeeze-film pressure, mean load-carrying capacity, and mean squeeze-film time are obtained. The results indicate that the couple stress fluid in the film region enhances the mean MHD squeeze-film pressure, load-carrying capacity, and squeeze-film time. The effect of roughness parameter is to increase (decrease the load-carrying capacity and lengthen the response time for azimuthal (radial roughness patterns as compared to the smooth case. Also, the effect of porous parameter is to decrease the load-carrying capacity and increase the squeeze-film time as compared to the solid case.

  17. Novel operation mode for eliminating influence of inclination angle and friction in atomic force microscopy

    International Nuclear Information System (INIS)

    Wang, Fei; Wang, Yueyu; Zhou, Faquan; Zhao, Xuezeng

    2010-01-01

    The accuracy of topography imaging in contact force mode of atomic force microscopy (AFM) depends on the one-to-one corresponding relationship between the cantilever deflection and the tip-sample distance, whereas such a relationship cannot be always achieved in the presence of friction and incline angle of sample surface. Recently, we have developed a novel operation mode in which we keep the van der Waals force as constant instead of the applied normal force, to eliminate the effect of inclination angle and friction on topography imaging in the contact force mode. We have improved our AFM to enable the new operation mode for validation. Comparative experiments have been performed and the results have shown that the effect of friction and inclination angle on topography imaging in contact mode of AFM can be eliminated or at least decreased effectively by working in the new operation mode we present.

  18. Simulation of operation modes of isochronous cyclotron by a new interactive method

    International Nuclear Information System (INIS)

    Taraszkiewicz, R.; Talach, M.; Sulikowski, J.; Doruch, H.; Norys, T.; Sroka, A.; Kiyan, I.N.; )

    2007-01-01

    Operation mode simulation methods are based on selection of trim coil currents in the isochronous cyclotron for formation of the required magnetic field at a certain level of the main coil current. The traditional current selection method is based on finding a solution for all trim coils simultaneously. After setting the calculated operation mode, it is usually necessary to perform a control measurement of the magnetic field map and to repeat the calculation for a more accurate solution. The new current selection method is based on successively finding solutions for each particular trim coil. The trim coils are taken one by one in reverse order from the edge to the center of the isochronous cyclotron. The new operation mode simulation method is based on the new current selection method. The new method, as against the traditional one, includes iterative calculation of the kinetic energy at the extraction radius. A series of experiments on proton beam formation within the range of working acceleration radii at extraction energies from 32 to 59 MeV, which were carried out at the AIC144 multipurpose isochronous cyclotron (designed mainly for the eye melanoma treatment and production of radioisotopes) at the INP PAS (Cracow), showed that the new method makes unnecessary any control measurements of magnetic fields for getting the desired operation mode, which indicates a high accuracy of the calculation. (authors)

  19. Analysis of Sleep-Mode Downlink Scheduling Operations in EPON Systems

    OpenAIRE

    Yan, Ying; Dittmann, Lars

    2011-01-01

    Energy management strategy has been considered as an important component in the future Ethernet Passive Optical Networks (EPONs). In this paper, a sleeping mode operation is studied, and a downlink packet scheduling scheme is analyzed to preserve energy consumption and maintain the required QoS. This paper proposes a novel sleep-mode downlink packet scheduling scheme in order to enhance the sleep control function. Simulation results confirm that the proposed approach offers effective power ma...

  20. Single-mode operation of a coiled multimode fiber amplifier

    International Nuclear Information System (INIS)

    Koplow, Jeffrey P.; Kliner, Dahv A. V.; Goldberg, Lew

    2000-01-01

    We report a new approach to obtaining single-transverse-mode operation of a multimode fiber amplifier in which the gain fiber is coiled to induce significant bend loss for all but the lowest-order mode. We demonstrated this method by constructing a coiled amplifier using Yb-doped, double-clad fiber with a core diameter of 25 μm and a numerical aperture of ∼0.1 (V≅7.4) . When the amplifier was operated as an amplified-spontaneous-emission source, the output beam had an M 2 value of 1.09±0.09 ; when seeded at 1064 nm, the slope efficiency was similar to that of an uncoiled amplifier. This technique will permit scaling of pulsed fiber lasers and amplifiers to significantly higher pulse energies and peak powers and cw fiber sources to higher average powers while maintaining excellent beam quality. (c) 2000 Optical Society of America

  1. High-power and long-pulse operation of TE{sub 31,11} mode gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Ryosuke, E-mail: ikeda.ryosuke@jaea.go.jp; Kajiwara, Ken; Oda, Yasuhisa; Takahashi, Koji; Sakamoto, Keishi

    2015-10-15

    Highlights: • We are under development of TE{sub 31,11} mode gyrotron to aim ITER specification. • HE{sub 11} mode purity reached 96% of ITER specification. • Mode competition was suppressed in initial phase of oscillation by anode voltage control. • Maximum output power of 1.2 MW was achieved. • Steady state operation of 500 MJ was achieved. - Abstract: The ITER electron cyclotron system is designed to inject a 20 MW RF beam by using twenty-four 170 GHz/1 MW gyrotrons. JAEA is currently developing a gyrotron having a high-order mode (TE{sub 31,11}) to reduce the heat load in the cavity resonator and achieve an output power greater than 1 MW. The measured radiation profile at the front of the diamond window agreed with the results of the calculation. In order to suppress RF loss in the equatorial and upper port launchers, a high-quality HE{sub 11} mode is required at the exit of the matching optics unit (MOU). An HE{sub 11} mode purity of 96% was achieved by finely adjusting the two mirrors in the MOU. During the oscillation start-up phase, mode competition with counter-rotating TE{sub 29,12} mode was observed on the higher magnetic field side which caused arcing and pressure increase in the gyrotron. To avoid the counter-rotating TE{sub 29,12} mode from being excited, a start-up scenario that controls the voltage between the anode and cathode electrodes at the initial phase of operation was introduced, which was able to achieve a stable start-up of TE{sub 31,11} mode. A 1.2 MW output power having a total electric efficiency of 43% was obtained in high-power experiments. In steady-state operation, a 1000 s oscillation length and output power of 0.51 MW was achieved.

  2. A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: Application and performance.

    Science.gov (United States)

    Kubicek, Markus; Holzlechner, Gerald; Opitz, Alexander K; Larisegger, Silvia; Hutter, Herbert; Fleig, Jürgen

    2014-01-15

    A novel operation mode for time of flight-secondary ion mass spectrometry (ToF-SIMS) is described for a TOF.SIMS 5 instrument with a Bi-ion gun. It features sub 100 nm lateral resolution, adjustable primary ion currents and the possibility to measure with high lateral resolution as well as high mass resolution. The adjustment and performance of the novel operation mode are described and compared to established ToF-SIMS operation modes. Several examples of application featuring novel scientific results show the capabilities of the operation mode in terms of lateral resolution, accuracy of isotope analysis of oxygen, and combination of high lateral and mass resolution. The relationship between high lateral resolution and operation of SIMS in static mode is discussed.

  3. Quantum teleportation of entangled squeezed vacuum states

    Institute of Scientific and Technical Information of China (English)

    蔡新华

    2003-01-01

    An optical scheme for probabilistic teleporting entangled squeezed vacuum states (SVS) is proposed. In this scheme,the teleported state is a bipartite entangled SVS,and the quantum channel is a tripartite entangled SVS.The process of the teleportation is achieved by using a 50/50 symmetric beamsplitter and photon detectors with the help of classical information.

  4. Squeezed bispectrum in the δ N formalism: local observer effect in field space

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Yuichiro [Kavli Institute for the Physics and Mathematics of the Universe (WPI), UTIAS, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Vennin, Vincent, E-mail: yuichiro.tada@ipmu.jp, E-mail: vincent.vennin@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom)

    2017-02-01

    The prospects of future galaxy surveys for non-Gaussianity measurements call for the development of robust techniques for computing the bispectrum of primordial cosmological perturbations. In this paper, we propose a novel approach to the calculation of the squeezed bispectrum in multiple-field inflation. With use of the δ N formalism, our framework sheds new light on the recently pointed out difference between the squeezed bispectrum for global observers and that for local observers, while allowing one to calculate both. For local observers in particular, the squeezed bispectrum is found to vanish in single-field inflation. Furthermore, our framework allows one to go beyond the near-equilateral ('small hierarchy') limit, and to automatically include intrinsic non-Gaussianities that do not need to be calculated separately. The explicit computational programme of our method is given and illustrated with a few examples.

  5. Social Support Networks and Quality of Life of Rural Men in a Context of Marriage Squeeze in China.

    Science.gov (United States)

    Wang, Sasa; Yang, Xueyan; Attané, Isabelle

    2018-07-01

    A significant number of rural Chinese men are facing difficulties in finding a spouse and may fail to ever marry due to a relative scarcity of women in the adult population. Research has indicated that marriage squeeze is a stressful event which is harmful to men's quality of life, and also weakens their social support networks. Using data collected in rural Chaohu city, Anhui, China, this study explores the effects of social support networks on quality of life of rural men who experience a marriage squeeze. The results indicate that the size of social contact networks is directly and positively associated with the quality of life of marriage-squeezed men, and moderate the negative effect of age on quality of life. Having no or limited instrumental support network and social contact network are double-edged swords, which have direct negative associations with the quality of life of marriage-squeezed men, and have moderate effects on the relationship between marriage squeeze and quality of life.

  6. Displaced squeezed number states: Position space representation, inner product, and some applications

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Jørgensen, Thomas Godsk; Dahl, Jens Peder

    1996-01-01

    For some applications the overall phase of a quantum state is crucial. For the so-called displaced squeezed number state (DSN), which is a generalization of the well-known squeezed coherent state, we obtain the position space representation with the correct overall phase, from the dynamics...... in a harmonic potential. The importance of the overall phase is demonstrated in the context of characteristic or moment generating functions. For two special cases the characteristic function is shown to be computable from the inner product of two different DSNs....

  7. An analysis of the binding of repressor protein ModE to modABCD (molybdate transport) operator/promoter DNA of Escherichia coli.

    Science.gov (United States)

    Grunden, A M; Self, W T; Villain, M; Blalock, J E; Shanmugam, K T

    1999-08-20

    Expression of the modABCD operon in Escherichia coli, which codes for a molybdate-specific transporter, is repressed by ModE in vivo in a molybdate-dependent fashion. In vitro DNase I-footprinting experiments identified three distinct regions of protection by ModE-molybdate on the modA operator/promoter DNA, GTTATATT (-15 to -8; region 1), GCCTACAT (-4 to +4; region 2), and GTTACAT (+8 to +14; region 3). Within the three regions of the protected DNA, a pentamer sequence, TAYAT (Y = C or T), can be identified. DNA-electrophoretic mobility experiments showed that the protected regions 1 and 2 are essential for binding of ModE-molybdate to DNA, whereas the protected region 3 increases the affinity of the DNA to the repressor. The stoichiometry of this interaction was found to be two ModE-molybdate per modA operator DNA. ModE-molybdate at 5 nM completely protected the modABCD operator/promoter DNA from DNase I-catalyzed hydrolysis, whereas ModE alone failed to protect the DNA even at 100 nM. The apparent K(d) for the interaction between the modA operator DNA and ModE-molybdate was 0.3 nM, and the K(d) increased to 8 nM in the absence of molybdate. Among the various oxyanions tested, only tungstate replaced molybdate in the repression of modA by ModE, but the affinity of ModE-tungstate for modABCD operator DNA was 6 times lower than with ModE-molybdate. A mutant ModE(T125I) protein, which repressed modA-lac even in the absence of molybdate, protected the same region of modA operator DNA in the absence of molybdate. The apparent K(d) for the interaction between modA operator DNA and ModE(T125I) was 3 nM in the presence of molybdate and 4 nM without molybdate. The binding of molybdate to ModE resulted in a decrease in fluorescence emission, indicating a conformational change of the protein upon molybdate binding. The fluorescence emission spectra of mutant ModE proteins, ModE(T125I) and ModE(Q216*), were unaffected by molybdate. The molybdate-independent mutant ModE

  8. Comparison of Three Methods in Extracting Coherent Modes from a Doppler Backscatter System

    International Nuclear Information System (INIS)

    Zhang Xiao-Hui; Liu A-Di; Zhou Chu; Hu Jian-Qiang; Wang Ming-Yuan; Yu Chang-Xuan; Liu Wan-Dong; Li Hong; Lan Tao; Xie Jin-Lin

    2015-01-01

    We compare three different methods to extract coherent modes from Doppler backscattering (DBS), which are center of gravity (COG) of the complex amplitude spectrum, spectrum of DBS phase derivative (phase derivative method), and phase spectrum, respectively. These three methods are all feasible to extract coherent modes, for example, geodesic acoustic mode oscillation. However, there are still differences between dealing with high frequency modes (several hundred kHz) and low frequency modes (several kHz) hiding in DBS signal. There is a significant amount of power at low frequencies in the phase spectrum, which can be removed by using the phase derivative method and COG. High frequency modes are clearer by using the COG and the phase derivative method than the phase spectrum. The spectrum of DBS amplitude does not show the coherent modes detected by using COG, phase derivative method and phase spectrum. When two Doppler shifted peaks exist, coherent modes and their harmonics appear in the spectrum of DBS amplitude, which are introduced by the DBS phase. (paper)

  9. N Reactor thermal plume characterization during Pu-only mode of operation

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, R.M.; Thompson, F.L.; Whelan, G.

    1983-04-01

    Pacific Northwest Laboratories (PNL) performed field and modeling studies -from March 1982 through June 1983 to characterize the thermal plume from the N Reactor heated water outfall while the N Reactor operated in the Pu-only mode. Part 1 of this report deals with the field studies conducted to characterize the N Reactor thermal plume while in the Pu-only mode of operation. It includes a description of the study area, a description of field tasks and procedures, and data collection results and discussion. Part 2 describes the computer simulation of the thermal plume under different flow conditions and the calibration of the model used. It includes a description of the computer model and the assumptions on which it is based, a presentation of the input data used in this application, and a discussion of modeling results. Because the field studies were restricted by the NPOES permit variance to the spring months when high Columbia River flows prevail the mathematical modeling of the N Reactor thermal plume while the reactor operates in the Pu-only mode is instrumental in characterizing the plume during low Columbia River flows.

  10. Dual-mode operation of 2D material-base hot electron transistors

    KAUST Repository

    Lan, Yann-Wen; Jr., Carlos M. Torres,; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R.; Lerner, Mitchell B.; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L.

    2016-01-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (V-CB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (V-CB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications.

  11. Dual-mode operation of 2D material-base hot electron transistors

    KAUST Repository

    Lan, Yann-Wen

    2016-09-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (V-CB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (V-CB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications.

  12. Dual-mode operation of 2D material-base hot electron transistors.

    Science.gov (United States)

    Lan, Yann-Wen; Torres, Carlos M; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R; Lerner, Mitchell B; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L

    2016-09-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications.

  13. Safety analysis for push-mode and rotary-mode core sampling

    International Nuclear Information System (INIS)

    Milliken, N.J.; Geschke, G.R.

    1995-01-01

    This safety analysis analyzes using the push-mode core sampling truck in the push-mode and the rotary-mode core sampling trucks in both the push- and rotary-modes to retrieve core samples that, once taken and analyzed, will yield waste characterization data for the hazardous waste tanks at the Hanford Site. Operation of the core sampling trucks in both the push- and rotary-modes was reviewed to determine whether the release of radioactive materials could occur during operation. It was concluded that there are three credible scenarios: a sample spill outside of the tank, a steam release event, and an unfiltered release to the environment during continuous exhauster operation. The probability of a sample spill was found to be 10 -4 /event, the probability of a steam release event was determined to fall in the unlikely range (10 -2 /event to 10 -4 /event), and the probability of an unfiltered release was calculated to be 5 x 10 -3 /year. Typically, events with probabilities of 10 -6 /event or less are not considered to be risk significant, and the consequences usually are not analyzed. The three accident scenarios were analyzed to calculate the dose consequences. It was determined that the steam release event is the bounding accident. The onsite and offsite dose consequences for this event are calculated to be 0.24 Sv (24 rem) and 3.2 x 10 -4 Sv (32 mrem), respectively. These consequences are below the risk acceptance guidelines for an unlikely event, as established in WHC-CM-4-46, Nonreactor Facility Safety Analysis Manual. With the design features and the use of the controls presented in Section 8.0, this operation represents a minimal risk

  14. The Study of Operation Modes and Control Strategies of a Multidirectional MC for Battery Based System

    Directory of Open Access Journals (Sweden)

    Saman Toosi

    2015-01-01

    Full Text Available To enhance the performance of stand-alone battery based system and to achieve the continuous power transmission, the behavior of multidirectional matrix converter (MDMC has been analyzed in different operation modes. A systematic method interfacing a renewable source, a storage battery, and a load is proposed for a stand-alone battery based power system (SABBPS to utilize the MDMC as PWM converter, inverter, or PWM converter and inverter in different operation modes. In this study, the Extended Direct Duty Pulse Width Modulation (EDDPWM technique has been applied to control the power flow path between the renewable source, load, and the battery. Corresponding to generator voltage, input frequency, and loads demands, several operating states and control strategies are possible. Therefore, the boundaries and distribution of operation modes are discussed and illustrated to improve the system performance. The mathematical equation of the EDDPWM under different operation modes has been derived to achieve the maximum voltage ratio in each mode. The theoretical and modulation concepts presented have been verified in simulation using MATLAB and experimental testing. Moreover, the THD, ripple, and power flow direction have been analyzed for output current to investigate the behavior of system in each operation mode.

  15. The theory of stability, bistability, and instability in three-mode class-A lasers

    International Nuclear Information System (INIS)

    Jahanpanah, J; Rahdar, A A

    2014-01-01

    Instability is an inevitable and common problem in all different kinds of lasers when they are oscillating in both single-and multi-mode states. Here, the stability conditions are investigated for a three-mode class-A laser. A set of linear equations is derived for the stable oscillation of the cavity central mode together with its left and right adjacent longitudinal modes. The coefficient determinant of stability equations is Hermitian and equal to zero for the roots of two diagonal arrays. In other words, the novelty of our work is to expand the stability coefficient determinant in terms of main diagonal arrays rather than for one row or one column. These diagonal roots lead to two lower and upper boundary curves in the form of a bifurcation. The lower boundary curve mimics the single-mode laser and delimits the instability region (with no above-threshold oscillating mode) from the bistability region (with two above-threshold oscillating modes). The upper boundary curve mimics the two-mode laser and delimits the bistability region from the stability region, in which all three-longitudinal modes are simultaneously oscillating in the above-threshold state. (paper)

  16. Comparison of acetate tape impression with squeezing versus skin scraping for the diagnosis of canine demodicosis.

    Science.gov (United States)

    Pereira, A V; Pereira, S A; Gremião, I D F; Campos, M P; Ferreira, A M R

    2012-11-01

    This study compared the sensitivity of acetate tape impression and skin squeezing with that of deep skin scraping for the diagnosis of demodicosis in dogs. Demodex canis was detected in 100% of acetate tape impressions obtained after skin squeezing and in 90% of deep skin scrapings. There was a significant difference (P < 0.001) between the techniques in the total number of mites detected. Acetate tape impression with skin squeezing was found to be more sensitive than deep skin scraping and is an alternative diagnostic method for canine demodicosis. © 2012 The Authors. Australian Veterinary Journal © 2012 Australian Veterinary Association.

  17. Operation of heavily irradiated silicon detectors in non-depletion mode

    International Nuclear Information System (INIS)

    Verbitskaya, E.; Eremin, V.; Ilyashenko, I.; Li, Z.; Haerkoenen, J.; Tuovinen, E.; Luukka, P.

    2006-01-01

    The non-depletion detector operation mode has generally been disregarded as an option in high-energy physics experiments. In this paper, the non-depletion operation is examined by detailed analysis of the electric field distribution and the current pulse response of heavily irradiated silicon (Si) detectors. The previously reported model of double junction in heavily irradiated Si detector is further developed and a simulation of the current pulse response has been performed. It is shown that detectors can operate in a non-depletion mode due to the fact that the value of the electric field in a non-depleted region is high enough for efficient carrier drift. This electric field originates from the current flow through the detector and a consequent drop of the potential across high-resistivity bulk of a non-depleted region. It is anticipated that the electric field in a non-depleted region, which is still electrically neutral, increases with fluence that improves the non-depleted detector operation. Consideration of the electric field in a non-depleted region allows the explanation of the recorded double-peak current pulse shape of heavily irradiated Si detectors and definition of the requirements for the detector operational conditions. Detailed reconstruction of the electric field distribution gives new information on radiation effects in Si detectors

  18. A Monte Carlo Simulation approach for the modeling of free-molecule squeeze-film damping of flexible microresonators

    KAUST Repository

    Leung, Roger; Cheung, Howard; Gang, Hong; Ye, Wenjing

    2010-01-01

    Squeeze-film damping on microresonators is a significant damping source even when the surrounding gas is highly rarefied. This article presents a general modeling approach based on Monte Carlo (MC) simulations for the prediction of squeeze

  19. Energy-efficient operation of a booster RF system for Taiwan light source operated in top-up mode

    International Nuclear Information System (INIS)

    Yeh, Meng-Shu; Wang, Chaoen; Chang, Lung-Hai; Chung, Fu-Tsai; Yu, Tsung-Chi; Lin, Ming-Chyuan; Chen, Ling-Jhen; Yang, Tz-Te; Chang, Mei-Hsia; Lin, Yu-Han; Tsai, Ming-Hsun; Lo, Chih-Hung; Liu, Zong-Kai

    2015-01-01

    Contemporary light sources operate in a top-up mode to maintain their photon intensity quasi-constant so as to improve significantly the thermal stability of the photon beam and to maximize ultimately the average photon flux at a designed maximum operational beam current. Operating in a top-up mode requires frequent beam injection from the synchrotron booster to the storage ring of the light source, but the injection intervals occupy only a tiny portion of the operational time of the integrated machine. To maintain a high operational reliability, the booster RF system practically operates necessarily under injection conditions around the clock and consumes full electric power whether during top-up injection or not. How to decrease the power consumption of the booster RF system during its stand-by time but not to sacrifice the reliability and availability of the RF system is obviously of fundamental interest for routine operation of the light source in a top-up mode. Here, an energy-efficient operation of a booster RF system adaptive to top-up operation of a light source is proposed that has been developed, realized and integrated into the booster RF system of the Taiwan Light Source (TLS), and routinely operated since the end of year 2008. The klystron cathode current and RF gap voltage of the booster's accelerating RF cavity are both periodically modulated to adapt the injection rhythm during top-up operation, which results in decreased consumption of electric power of the booster RF system by more than 78%. The impact on the reliability and availability of the booster RF system has been carefully monitored during the past five operational years, delivering more than 5000 h scheduled user beam time per year. The booster RF system retains its excellent reliability and availability as previously. Neither a decrease of the service time nor an induced reliability issue from the klystron or any high-power high-voltage component of the transmitter has been

  20. Why the Marriage Squeeze Cannot Cause Dowry Inflation

    NARCIS (Netherlands)

    Anderson, K.S.

    2000-01-01

    It has been argued that rising dowry payments are caused by population growth.According to that explanation, termed the `marriage squeeze', a population increase leads to an excess supply of brides since men marry younger women.As a result, dowry payments rise in order to clear the marriage

  1. Quantum statistics and squeezing for a microwave-driven interacting magnon system.

    Science.gov (United States)

    Haghshenasfard, Zahra; Cottam, Michael G

    2017-02-01

    Theoretical studies are reported for the statistical properties of a microwave-driven interacting magnon system. Both the magnetic dipole-dipole and the exchange interactions are included and the theory is developed for the case of parallel pumping allowing for the inclusion of the nonlinear processes due to the four-magnon interactions. The method of second quantization is used to transform the total Hamiltonian from spin operators to boson creation and annihilation operators. By using the coherent magnon state representation we have studied the magnon occupation number and the statistical behavior of the system. In particular, it is shown that the nonlinearities introduced by the parallel pumping field and the four-magnon interactions lead to non-classical quantum statistical properties of the system, such as magnon squeezing. Also control of the collapse-and-revival phenomena for the time evolution of the average magnon number is demonstrated by varying the parallel pumping amplitude and the four-magnon coupling.

  2. Experimental Investigation of the Dynamic Response of Squeeze Film Dampers Made of Steel and Glass/Epoxy

    Directory of Open Access Journals (Sweden)

    Waleed F. Faris

    2008-01-01

    Full Text Available This work is devoted to the fabrication and investigation of the Squeeze Film Dampers (SFDs which are widely used in many applications. This include the fabrication of a test rig and several dampers with different sizes and two different materials which composite and non-composite. Composite dampers (Glass/epoxy, each consists of 30 layers, were fabricated by hand lay-up method. Outer and inner diameters of all the fabricated dampers were maintained as 60 and 40 mm respectively. Non-composite dampers (Steel were fabricated and tested using turning machine. Three dampers of different lengths were examined for both materials. A rotor-bearing system for the analysis has been designed and fabricated. The test rig consists of mild steel shaft, two supports, oil pressure system, and two self-alignment ball bearings were fixed on each end support. Two squeeze film dampers were used for the two support ends. Vibration amplitude has been examined for all the fabricated dampers at different shaft rotational speeds. The first resonance speed was examined for all the dampers tested. Results show that the vibration amplitude of the steel damper was lower than Glass/epoxy dampers with the same L/D ratio. On the other hand, a considerable weight saving has been achieved by using Glass/epoxy composite dampers. It has been found that the performance of squeeze film damper improved with increasing length/diameter ratio (L/D within the range tested.

  3. A Brief Discussion Regarding Types of Cavitation in Squeeze Film Dampers and Cavitation Effects

    Directory of Open Access Journals (Sweden)

    Laurentiu MORARU

    2017-03-01

    Full Text Available Squeeze film dampers (SFD are probably the most used shaft control devices in aircraft jet engines; SFDs consist in oil films, elastic elements and various antirotational devices that tune the stiffness and damping of the shafts’ supports and consequently adjust the lateral dynamics of the shaft. Fluid layers in SFDs are usually thin, hence the modeling can often be done using the Reynolds’ theory,; however, some of the main features of the film, namely the behavior of the fluid in the divergent, negative squeeze area, where discontinuities may appear in the liquid, are still subject to intense research. This paper will discuss some aspects regarding the types of cavitation that appear in squeeze film dampers and some of the effects of cavitation on the SFDs.

  4. Operation Modes and Control Schemes for Internet-Based Teleoperation System with Time Delay

    Institute of Scientific and Technical Information of China (English)

    曾庆军; 宋爱国

    2003-01-01

    Teleoperation system plays an important role in executing task under hazard environment. As the computer networks such as the Internet are being used as the communication channel of teleoperation system, varying time delay causes the overall system unstable and reduces the performance of transparency. This paper proposed twelve operation modes with different control schemes for teleoperation on the Internet with time delay. And an optimal operation mode with control scheme was specified for teleoperation with time delay, based on the tradeoff between passivity and transparency properties. It experimentally confirmed the validity of the proposed optimal mode and control scheme by using a simple one DOF master-slave manipulator system.

  5. Mixed - mode Operating System for Real - time Performance

    Directory of Open Access Journals (Sweden)

    Hasan M. M.

    2017-11-01

    Full Text Available The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface(GUIoperating system which is typicallynon-real-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time events. In this research an i8751 microcontroller-based hardware was used to measure the performance of the system in real-time-only as well as non-real-time-only configurations. The real-time portion is an 486DX-40 IBM PC system running under DOS-based real-time kernel and the non-real-time portion is a Pentium IIIbased system running under Windows NT. It was found that mixed-mode systems performed as good as a typical real-time system and in fact, gave many additional benefits such as simplified/modular programming and load tolerance.

  6. Double stratification effects in chemically reactive squeezed Sutterby fluid flow with thermal radiation and mixed convection

    Directory of Open Access Journals (Sweden)

    S. Ahmad

    2018-03-01

    Full Text Available A current analysis is carried out to study theoretically the mixed convection characteristics in squeezing flow of Sutterby fluid in squeezed channel. The constitutive equation of Sutterby model is utilized to characterize the rheology of squeezing phenomenon. Flow characteristics are explored with dual stratification. In flowing fluid which contains heat and mass transport, the first order chemical reaction and radiative heat flux affect the transport phenomenon. The systems of non-linear governing equations have been modulating which then solved by mean of convergent approach (Homotopy Analysis Method. The graphs are reported and illustrated for emerging parameters. Through graphical explanations, drag force, rate of heat and mass transport are conversed for different pertinent parameters. It is found that heat and mass transport rate decays with dominant double stratified parameters and chemical reaction parameter. The present two-dimensional examination is applicable in some of the engineering processes and industrial fluid mechanics. Keywords: Squeezing flow, Sutterby fluid model, Mixed convection, Double stratification, Thermal radiation, Chemical reaction

  7. DC motor operation controlled from a DC/DC power converter in pulse mode with low duty cycle

    OpenAIRE

    Stefanov, Goce; Kukuseva, Maja; Citkuseva Dimitrovska, Biljana

    2016-01-01

    In this paper pulse mode of operation of DC motor controlled by DC/DC power converter is analyzed. DC motor operation with time intervals in which the motor operates without output load is of interest. In this mode it is possible the motor to restore energy. Also, in the paper are represented calculations for the amount of the restored energy in the pulse mode operation of the motor for different duty cycles.

  8. Coastal and Estuarine Mangrove Squeeze in the Mekong and Saigon Delta

    Science.gov (United States)

    Stive, M.

    2016-02-01

    Both in the Mekong and Saigon deltas coastal squeeze is a frequent and pregnant problem, which leads to amazingly alarmous coastal and estuarine erosion rates. From the landside the squeeze is due to encroaching dike relocations and agri- and aquacultures, from the sea side it is due to decreasing sediment sources and relative sea level rise. These multiple pressures at some locations, certainly away from the sediment sources (like Ca Mau) leads to unprecedentent erosion rates. Managed retreat may be a longer term solution, but this will require a new way of thinking. Sandy and silt nourishment strategies may be an innovative alternative, but will require underbuilding scientific and practical research.

  9. Superposition of number and squeezed states of the quantized light field

    International Nuclear Information System (INIS)

    De Brito, A.L.; Marques, G.A.; Baseia, B.; Dias, H.

    1998-01-01

    A recent paper in the literature (Mod. Phys. Lett. B, 9 (1995) 1673) introduced the Intermediate Number Squeezed State (INSS) of the quantized radiation field interpolating between the number state (n) and the squeezed-coherent state (z, α), exhibiting various nonclassical properties. Here, it's introduced an alternative state, interpolating between those limiting states and show that nonclassical effects in this new intermediate state can be greater than those exhibited by the INSS, depending on the values of the interpolating parameters. Although constituting an application of a general approach (Nuovo Cimento D, 18 (1996) 425), it concludes another case in the literature (Phys. Scr., 55 (1997) 179) as a particularisation of this

  10. Applications of quantum electro-optic control and squeezed light

    International Nuclear Information System (INIS)

    Lam, P.K.

    2000-01-01

    Full text: The control theory of electronic feedback or feedforward is a topic well understood by many scientists and engineers. With many of the modern equipment relying on automation and robotics, an understanding of this classical control theory is a common requisite for many technologists. In the field of optics, electronic control theory is also commonly used in many situations. From the temperature controlling of laser systems, the auto-alignment of optical elements, to the locking of optical resonators, all make use of electronic control theory in their operations. In this talk, we present the use the control theory in the context of quantum optics. In much the same as its classical counterpart, the 'quantum electro-optic' control loop consists simply of an optical beam splitter, a detector and an electro-optic modulator. This simple system, however, can offer many interesting applications when used in combination with nonclassical states of light. One well-known example of non-classical light is that of the squeezed state of light. A light beam is referred to as being amplitude 'squeezed' when its amplitude has less noise when compared to that of a coherent light state. In fact, the field fluctuation of such light states in some sense lower that the field fluctuation of the photonic vacuum state. Yet another interesting non-classical light state is the so-called 'Einstein-Podolsky-Rosen' entangled pair. This consists of two beams of light, each of which has properties that are highly dependent on each other. Using both the quantum electro-optic control loops and these light states, we demonstrate schemes which allow us to perform noiseless optical amplification, quantum non-demolition measurement and quantum teleportation. These schemes may be important building blocks to the realisation of future quantum communications and quantum information networks

  11. Demand and supply-based operating modes--a framework for analyzing health care service production.

    Science.gov (United States)

    Lillrank, Paul; Groop, P Johan; Malmström, Tomi J

    2010-12-01

    The structure of organizations that provide services should reflect the possibilities of and constraints on production that arise from the market segments they serve. Organizational segmentation in health care is based on urgency and severity as well as disease type, bodily function, principal method, or population subgroup. The result is conflicting priorities, goals, and performance metrics. A managerial perspective is needed to identify activities with similar requirements for integration, coordination, and control. The arguments in this article apply new reasoning to the previous literature. The method used in this article to classify health care provision distinguishes different types of health problems that share generic constraints of production. The analysis leads to seven different demand-supply combinations, each with its own operational logic. These are labeled demand and supply-based operating modes (DSO modes), and constitute the managerial building blocks of health care organizations. The modes are Prevention, Emergency, One visit, Project, Elective, Cure, and Care. As analytical categories the DSO modes can be used to understand current problems. Several operating modes in one unit create managerial problems of conflicting priorities, goals, and performance metrics. The DSO modes are constructed as managerially homogeneous categories or care platforms responding to general types of demand, and supply constraints. The DSO modes bring methods of industrial management to bear on efforts to improve health care. © 2010 Milbank Memorial Fund. Published by Wiley Periodicals Inc.

  12. Research on Group Operation Mode of Once-through Steam Generator

    International Nuclear Information System (INIS)

    Hao, Cheng Ming; Liu, Xinkai; Peng, Min Jun; Xia, Genglei

    2011-01-01

    Integrated Pressurized Water Reactor (IPWR) owns more than one once-through steam generators (OTSGs). Flow instability may occur in secondary side of OTSG under certain conditions. Trying to avoid the occurrence of flow instability is of great important for the safe and stable operation of OTSG. Because of the fact that flow instability often occurs in certain regions, so when OTSGs operate with low load, OTSGs can be separated into several groups, which can avoid flow instability. In this paper, operational characteristics of IPWR are analyzed by RELAP5/MOD3.4 code and during the discussion of group operation, a rapid change load operation scheme using OTSG group operation mode which can be used in IPWR is proposed

  13. Research on Group Operation Mode of Once-through Steam Generator

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Cheng Ming; Liu, Xinkai; Peng, Min Jun; Xia, Genglei [Harbin Engineering University, Harbin (China)

    2011-08-15

    Integrated Pressurized Water Reactor (IPWR) owns more than one once-through steam generators (OTSGs). Flow instability may occur in secondary side of OTSG under certain conditions. Trying to avoid the occurrence of flow instability is of great important for the safe and stable operation of OTSG. Because of the fact that flow instability often occurs in certain regions, so when OTSGs operate with low load, OTSGs can be separated into several groups, which can avoid flow instability. In this paper, operational characteristics of IPWR are analyzed by RELAP5/MOD3.4 code and during the discussion of group operation, a rapid change load operation scheme using OTSG group operation mode which can be used in IPWR is proposed.

  14. LHC Report: squeezing, low-energy collisions and an unidentified object

    CERN Multimedia

    Mike Lamont for the LHC team

    2015-01-01

    Commissioning of the nominal cycle – beam injection, ramp, squeezing – with low-intensity (probe) beams is progressing well. In parallel, the operators have started commissioning the machine with higher-intensity beams: a nominal bunch in each beam was taken to 6.5 TeV on Saturday, 2 May and, four days later, collisions were delivered to the experiments at the injection energy (450 GeV).   The other main commissioning thread involves preparations for higher beam intensities. To safely handle the higher number of protons per bunch and the higher number of bunches, a number of key systems have to be fully operational and set up with beam. These include the beam dump system, the beam interlock system and the collimation system. The latter involves around 100 individual pairs of jaws, each of which has to be positioned with respect to the beam during all phases of the machine cycle. Confirmation that everything is as it should be is made by deliberately provoking beam losses and c...

  15. Operation of Ferroelectric Plasma Sources in a Gas Discharge Mode

    International Nuclear Information System (INIS)

    Dunaevsky, A.; Fisch, N.J.

    2004-01-01

    Ferroelectric plasma sources in vacuum are known as sources of ablative plasma, formed due to surface discharge. In this paper, observations of a gas discharge mode of operation of the ferroelectric plasma sources (FPS) are reported. The gas discharge appears at pressures between approximately 20 and approximately 80 Torr. At pressures of 1-20 Torr, there is a transition from vacuum surface discharge to the gas discharge, when both modes coexist and the surface discharges sustain the gas discharge. At pressures between 20 and 80 Torr, the surface discharges are suppressed, and FPS operate in pure gas discharge mode, with the formation of almost uniform plasma along the entire surface of the ceramics between strips. The density of the expanding plasma is estimated to be about 1013 cm-3 at a distance of 5.5 mm from the surface. The power consumption of the discharge is comparatively low, making it useful for various applications. This paper also presents direct measurements of the yield of secondary electron emission from ferroelectric ceramics, which, at low energies of primary electrons, is high and dependent on the polarization of the ferroelectric material

  16. Quiescent H-mode operation using torque from non-axisymmetric, non-resonant magnetic fields

    International Nuclear Information System (INIS)

    Burrell, K.H.; Garofalo, A.M.; Osborne, T.H.; Snyder, P.B.; Solomon, W.M.; Park, J.-K.; Fenstermacher, M.E.; Orlov, D.M.

    2013-01-01

    Quiescent H-mode (QH-mode) sustained by magnetic torque from non-axisymmetric magnetic fields is a promising operating mode for future burning plasmas including ITER. Using magnetic torque from n = 3 fields to replace counter-I p torque from neutral beam injection, we have achieved long duration, counter-rotating QH-mode operation with neutral beam injection (NBI) torque ranging continuously from counter-I p up to co-I p values of about 1 N m. This co-I p torque is about 3 times the scaled torque that ITER will have. This range also includes operation at zero net NBI torque, applicable to rf wave heated plasmas. These n = 3 fields have been created using coils either inside or, most recently, outside the toroidal coils. Experiments utilized an ITER-relevant lower single-null plasma shape and were done with ITER-relevant values ν ped * ∼0.08, β T ped ∼ 1%$ and β N = 2. Discharges have confinement quality H 98y2 = 1.3, exceeding the value required for ITER. Initial work with low q 95 = 3.4 QH-mode plasmas transiently reached fusion gain values of G = β N H 89 /q 95 2 =0.4, which is the desired value for ITER; the limits on G have not yet been established. This paper also includes the most recent results on QH-mode plasmas run without n = 3 fields and with co-I p NBI; these shots exhibit co-I p plasma rotation and require NBI torque ⩾2 N m. The QH-mode work to date has made significant contact with theory. The importance of edge rotational shear is consistent with peeling–ballooning mode theory. We have seen qualitative and quantitative agreement with the predicted torque from neoclassical toroidal viscosity. (paper)

  17. Analytical solutions by squeezing to the anisotropic Rabi model in the nonperturbative deep-strong-coupling regime

    Science.gov (United States)

    Zhang, Yu-Yu; Chen, Xiang-You

    2017-12-01

    An unexplored nonperturbative deep strong coupling (npDSC) achieved in superconducting circuits has been studied in the anisotropic Rabi model by the generalized squeezing rotating-wave approximation. Energy levels are evaluated analytically from the reformulated Hamiltonian and agree well with numerical ones in a wide range of coupling strength. Such improvement ascribes to deformation effects in the displaced-squeezed state presented by the squeezed momentum variance, which are omitted in previous displaced states. The atom population dynamics confirms the validity of our approach for the npDSC strength. Our approach offers the possibility to explore interesting phenomena analytically in the npDSC regime in qubit-oscillator experiments.

  18. Combined Effect of Piezoviscous Dependency and Non-Newtonian Couple Stress on Squeeze-Film Porous Annular Plate

    Science.gov (United States)

    Vasanth, K. R.; Hanumagowda, B. N.; Santhosh Kumar, J.

    2018-04-01

    Squeeze film investigations focus upon film pressure, load bearing quantity and the minimum thickness of film. The combined effect of pressure viscous dependent and non- Newtonian couple stress in porous annular plate is studied. The modified equations of one dimensional pressure, load bearing quantity, non dimensional squeeze time are obtained. The conclusions obtained in the study are found to be in very good agreement compared to the previous results which are published. The load carrying capacity is increased due to the variation in the pressure dependent viscosity and also due to the couple stress effect. Finally this results in change in the squeeze film timings.

  19. Operating modes of electrochemical H-concentration probes for tritium sensors

    International Nuclear Information System (INIS)

    Juhera, E.; Colominas, S.; Abellà, J.

    2015-01-01

    Highlights: • Synthesis and chemical characterization of Sr(Ce_0_._9–Zr_0_._1)_0_._9_5Yb_0_._0_5O_3_−_α proton conductor ceramic. • Evaluation of the sensor performance at different hydrogen concentrations. • Two different operating modes of the sensors: amperometric and potentiometric. • In amperometric mode sensor sensitivity can be tuned by changing the applied voltage. - Abstract: Potentiometric hydrogen sensors using different solid-state electrolytes have been designed and tested at the Electrochemical Methods Lab at Institut Quimic de Sarria (IQS). The most promising element (Sr(Ce_0_._9–Zr_0_._1)_0_._9_5Yb_0_._0_5O_3_−_α) has been selected for this work in order to evaluate the sensor performance at different hydrogen concentrations in two different operating modes: amperometric and potentiometric. In addition, the sensor response has been evaluated at different working temperatures (500, 575 and 650 °C). The experiments performed proved that when the sensor was used in a potentiometric mode, there is a threshold hydrogen concentration that the sensor can detect depending on the working conditions; 15 mbar at 575 °C and 10 mbar 650 °C. At 500 °C the minimum working temperature of this ceramic has not been achieved, so large deviations between experimental data and theoretical calculations has been obtained. When the sensor was used in an amperometric mode the obtained currents increased as a function of the applied voltage. At a fixed potential, the higher the temperature the higher the current was. So the sensor sensitivity can be tuned by changing the applied voltage at a fixed temperature and hydrogen concentration.

  20. Generalization of the Davydov Ansatz by squeezing

    Energy Technology Data Exchange (ETDEWEB)

    Grossmann, Frank; Werther, Michael [Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden (Germany); Chen, Lipeng; Zhao, Yang [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2016-12-20

    We propose an extension of the Davydov Ansatz employing displaced squeezed states in the oscillator Hilbert space. The Dirac–Frenkel variational principle is used to derive the modified equations for the variational parameters. First numerical studies of the dynamics of the spin-boson model with a single bosonic degree of freedom reveal an overall improvement of the results as compared to the standard Davydov Ansatz.