WorldWideScience

Sample records for three-dimensional thin-layer resistivity

  1. Method for the manufacture of a thin-layer battery stack on a three-dimensional substrate

    NARCIS (Netherlands)

    2008-01-01

    The invention relates to a method for the manufacture of a thin-layer battery stack on a three-dimensional substrate. The invention further relates to a thin-layer battery stack on a three-dimensional substrate obtainable by such a method. Moreover, the invention relates to a device comprising such

  2. Experimental study of soil-structure interaction for proving the three dimensional thin layered element method

    International Nuclear Information System (INIS)

    Kuwabara, Y.; Ogiwara, Y.; Suzuki, T.; Tsuchiya, H.; Nakayama, M.

    1981-01-01

    It is generally recognized that the earthquake response of a structure can be significantly affected by the dynamic interaction between the structure and the surrounding soil. Dynamic soil-structure interaction effects are usually analyzed by using a lumped mass model or a finite element model. In the lumped mass model, the soil is represented by springs and dashpots based on the half-space elastic theory. Each model has its advantages and limitations. The Three Dimensional Thin Layered Element Theory has been developed by Dr. Hiroshi Tajimi based on the combined results of the abovementioned lumped mass model and finite element model. The main characteristic of this theory is that, in consideration and can be applied in the analysis of many problems in soil-structure interaction, such as those involving radiation damping, embedded structures, and multi-layered soil deposits. This paper describes test results on a small scale model used to prove the validity of the computer program based on the Thin Layered Element Theory. As a numerical example, the response analysis of a PWR nuclear power plant is carried out using this program. The vibration test model is simplified and the scale is 1/750 for line. The soil layer of the model is made of congealed gelatine. The test soil layer is 80 cm long, 35 cm wide and 10 cm thick. The super structure is a one mass model made of metal sheet spring and solid mass metal. As fixed inputs, sinusoidal waves (10, 20 gal level) are used. The displacements of the top and base of the super structure, and the accelerations and the displacements of the shaking table are measured. The main parameter of the test is the shear wave velocity of the soil layer. (orig./RW)

  3. Three-dimensional, nonlinear evolution of the Rayleigh--Taylor instability of a thin layer

    International Nuclear Information System (INIS)

    Manheimer, W.; Colombant, D.; Ott, E.

    1984-01-01

    A numerical simulation scheme is developed to examine the nonlinear evolution of the Rayleigh--Taylor instability of a thin sheet in three dimensions. It is shown that the erosion of mass at the top of the bubble is approximately as described by two-dimensional simulations. However, mass is lost into spikes more slowly in three-dimensional than in two-dimensional simulations

  4. Rapid Biochemical Mixture Screening by Three-Dimensional Patterned Multifunctional Substrate with Ultra-Thin Layer Chromatography (UTLC) and Surface Enhanced Raman Scattering (SERS).

    Science.gov (United States)

    Lee, Bi-Shen; Lin, Pi-Chen; Lin, Ding-Zheng; Yen, Ta-Jen

    2018-01-11

    We present a three-dimensional patterned (3DP) multifunctional substrate with the functions of ultra-thin layer chromatography (UTLC) and surface enhanced Raman scattering (SERS), which simultaneously enables mixture separation, target localization and label-free detection. This multifunctional substrate is comprised of a 3DP silicon nanowires array (3DP-SiNWA), decorated with silver nano-dendrites (AgNDs) atop. The 3DP-SiNWA is fabricated by a facile photolithographic process and low-cost metal assisted chemical etching (MaCE) process. Then, the AgNDs are decorated onto 3DP-SiNWA by a wet chemical reduction process, obtaining 3DP-AgNDs@SiNWA multifunctional substrates. With various patterns designed on the substrates, the signal intensity could be maximized by the excellent confinement and concentrated effects of patterns. By using this 3DP-AgNDs@SiNWA substrate to scrutinize the mixture of two visible dyes, the individual target could be recognized and further boosted the Raman signal of target 15.42 times comparing to the un-patterned AgNDs@SiNWA substrate. Therefore, such a three-dimensional patterned multifunctional substrate empowers rapid mixture screening, and can be readily employed in practical applications for biochemical assays, food safety and other fields.

  5. Three-dimensional simulations of resistance spot welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Zhang, Wenqi; Perret, William

    2014-01-01

    This paper draws from the fundamentals of electro-thermo-mechanical coupling to the main aspects of finite element implementation and three-dimensional modelling of resistance welding. A new simulation environment is proposed in order to perform three-dimensional simulations and optimization...... of resistance welding together with the simulations of conventional and special-purpose quasi-static mechanical tests. Three-dimensional simulations of resistance welding consider the electrical, thermal, mechanical and metallurgical characteristics of the material as well as the operating conditions...... of the welding machines. Simulations of the mechanical tests take into account material softening due to the accumulation of ductile damage and cover conventional tests, such as tensile–shear tests, cross-tension test and peel tests, as well as the possibility of special-purpose tests designed by the users...

  6. Oxidation effects on the electric resistance of In and Al in thin layers

    International Nuclear Information System (INIS)

    Moncada, G.; Araya, J.; Clark, N.

    1981-01-01

    Measurements of electric resistance (R) in function of the time in evaporated samples of thin layers of In and Al trivalent elements in both vacuum and atmospheric pressure are reported. Measurements in samples at ambient and cooled with nitrogen temperatures taken place. The changes observed in R is attributed partly to changes in the sample surface produced by the oxidation. (L.C.) [pt

  7. Three-dimensional induced polarization data inversion for complex resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Commer, M.; Newman, G.A.; Williams, K.H.; Hubbard, S.S.

    2011-03-15

    The conductive and capacitive material properties of the subsurface can be quantified through the frequency-dependent complex resistivity. However, the routine three-dimensional (3D) interpretation of voluminous induced polarization (IP) data sets still poses a challenge due to large computational demands and solution nonuniqueness. We have developed a flexible methodology for 3D (spectral) IP data inversion. Our inversion algorithm is adapted from a frequency-domain electromagnetic (EM) inversion method primarily developed for large-scale hydrocarbon and geothermal energy exploration purposes. The method has proven to be efficient by implementing the nonlinear conjugate gradient method with hierarchical parallelism and by using an optimal finite-difference forward modeling mesh design scheme. The method allows for a large range of survey scales, providing a tool for both exploration and environmental applications. We experimented with an image focusing technique to improve the poor depth resolution of surface data sets with small survey spreads. The algorithm's underlying forward modeling operator properly accounts for EM coupling effects; thus, traditionally used EM coupling correction procedures are not needed. The methodology was applied to both synthetic and field data. We tested the benefit of directly inverting EM coupling contaminated data using a synthetic large-scale exploration data set. Afterward, we further tested the monitoring capability of our method by inverting time-lapse data from an environmental remediation experiment near Rifle, Colorado. Similar trends observed in both our solution and another 2D inversion were in accordance with previous findings about the IP effects due to subsurface microbial activity.

  8. Interfacial Microstructure and Its Influence on Resistivity of Thin Layers Copper Cladding Steel Wires

    Science.gov (United States)

    Li, Hongjuan; Ding, Zhimin; Zhao, Ruirong

    2018-04-01

    The interfacial microstructure and resistivity of cold-drawn and annealed thin layers copper cladding steel (CCS) wires have been systematically investigated by the methods of scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and resistivity testing. The results showed that the Cu and Fe atoms near interface diffused into each other matrixes. The Fe atoms diffused into Cu matrixes and formed a solid solution. The mechanism of solid solution is of substitution type. When the quantity of Fe atoms exceeds the maximum solubility, the supersaturated solid solution would form Fe clusters and decompose into base Cu and α-Fe precipitated phases under certain conditions. A few of α-Fe precipitates was observed in the copper near Cu/Fe interfaces of cold-drawn CCS wires, with 1-5 nm in size. A number of α-Fe precipitates of 1-20 nm in size can be detected in copper near Cu/Fe interfaces of CCS wires annealed at 850°C. When annealing temperature was less than 750°C, the resistivity of CCS wires annealed was lower than that of cold-drawn CCS wires. However, when annealing temperature was above 750°C, the resistivity of CCS wires was greater than that of cold-drawn CCS wires and increased with rising the annealing temperature. The relationship between nanoscale α-Fe precipitation and resistivity of CCS wires has been well discussed.

  9. [Thin layer agar represents a cost-effective alternative for the rapid diagnosis of multi-drug resistant tuberculosis].

    Science.gov (United States)

    Hernández-Sarmiento, José M; Martínez-Negrete, Milton A; Castrillón-Velilla, Diana M; Mejía-Espinosa, Sergio A; Mejía-Mesa, Gloria I; Zapata-Fernández, Elsa M; Rojas-Jiménez, Sara; Marín-Castro, Andrés E; Robledo-Restrepo, Jaime A

    2014-01-01

    Using cost-benefit analysis for comparing the thin-layer agar culture method to the standard multiple proportion method used in diagnosing multidrug-resistant tuberculosis (MDR TB). A cost-benefit evaluation of two diagnostic tests was made at the Corporación para Investigaciones Biológicas (CIB) in Medellín, Colombia. 100 patients were evaluated; 10.8% rifampicin resistance and 14.3% isoniazid resistance were found. A computer-based decision tree model was used for cost-effectiveness analysis (Treeage Pro); the thin-layer agar culture method was most cost-effective, having 100% sensitivity, specificity and predictive values for detecting rifampicin and isoniazid resistance. The multiple proportion method value was calculated as being US$ 71 having an average 49 day report time compared to US$ 18 and 14 days for the thin-layer agar culture method. New technologies have been developed for diagnosing tuberculosis which are apparently faster and more effective; their operating characteristics must be evaluated as must their effectiveness in terms of cost-benefit. The present study established that using thin-layer agar culture was cheaper, equally effective and could provide results more quickly than the traditional method. This implies that a patient could receive MDR TB treatment more quickly.

  10. Three Dimensional Visualization for the Steam Injection into Water Pool using Electrical Resistance Tomography

    International Nuclear Information System (INIS)

    Khambampati, Anil Kumar; Lee, Jeong Seong; Kim, Sin; Kim, Kyung Youn

    2010-01-01

    The direct injection of steam into a water pool is a method of heat transfer used in many process industries. The amount of research in this area however is limited to the nuclear industry, with applications relating to reactor cooling systems. Electrical resistance tomography (ERT), a low cost, non-invasive and which has high temporal resolution characteristics, can be used as a visualization tool for the resistivity distribution for the steam injection into water pool such as IRWST. In this paper, three dimensional resistivity distribution of the process is obtained through ERT using iterative Gauss-Newton method. Numerical experiments are performed by assuming different resistive objects in the water pool. Numerical results show that ERT is successful in estimating the resistivity distribution for the injection of steam in the water pool

  11. Three-dimensional forward modeling of DC resistivity using the aggregation-based algebraic multigrid method

    Science.gov (United States)

    Chen, Hui; Deng, Ju-Zhi; Yin, Min; Yin, Chang-Chun; Tang, Wen-Wu

    2017-03-01

    To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.

  12. Resistivity characterisation of Hakone volcano, Central Japan, by three-dimensional magnetotelluric inversion

    Science.gov (United States)

    Yoshimura, Ryokei; Ogawa, Yasuo; Yukutake, Yohei; Kanda, Wataru; Komori, Shogo; Hase, Hideaki; Goto, Tada-nori; Honda, Ryou; Harada, Masatake; Yamazaki, Tomoya; Kamo, Masato; Kawasaki, Shingo; Higa, Tetsuya; Suzuki, Takeshi; Yasuda, Yojiro; Tani, Masanori; Usui, Yoshiya

    2018-04-01

    On 29 June 2015, a small phreatic eruption occurred at Hakone volcano, Central Japan, forming several vents in the Owakudani geothermal area on the northern slope of the central cones. Intense earthquake swarm activity and geodetic signals corresponding to the 2015 eruption were also observed within the Hakone caldera. To complement these observations and to characterise the shallow resistivity structure of Hakone caldera, we carried out a three-dimensional inversion of magnetotelluric measurement data acquired at 64 sites across the region. We utilised an unstructured tetrahedral mesh for the inversion code of the edge-based finite element method to account for the steep topography of the region during the inversion process. The main features of the best-fit three-dimensional model are a bell-shaped conductor, the bottom of which shows good agreement with the upper limit of seismicity, beneath the central cones and the Owakudani geothermal area, and several buried bowl-shaped conductive zones beneath the Gora and Kojiri areas. We infer that the main bell-shaped conductor represents a hydrothermally altered zone that acts as a cap or seal to resist the upwelling of volcanic fluids. Enhanced volcanic activity may cause volcanic fluids to pass through the resistive body surrounded by the altered zone and thus promote brittle failure within the resistive body. The overlapping locations of the bowl-shaped conductors, the buried caldera structures and the presence of sodium-chloride-rich hot springs indicate that the conductors represent porous media saturated by high-salinity hot spring waters. The linear clusters of earthquake swarms beneath the Kojiri area may indicate several weak zones that formed due to these structural contrasts.[Figure not available: see fulltext.

  13. On fully three-dimensional resistive wall mode and feedback stabilization computations

    International Nuclear Information System (INIS)

    Strumberger, E.; Merkel, P.; Sempf, M.; Guenter, S.

    2008-01-01

    Resistive walls, located close to the plasma boundary, reduce the growth rates of external kink modes to resistive time scales. For such slowly growing resistive wall modes, the stabilization by an active feedback system becomes feasible. The fully three-dimensional stability code STARWALL, and the feedback optimization code OPTIM have been developed [P. Merkel and M. Sempf, 21st IAEA Fusion Energy Conference 2006, Chengdu, China (International Atomic Energy Agency, Vienna, 2006, paper TH/P3-8] to compute the growth rates of resistive wall modes in the presence of nonaxisymmetric, multiply connected wall structures and to model the active feedback stabilization of these modes. In order to demonstrate the capabilities of the codes and to study the effect of the toroidal mode coupling caused by multiply connected wall structures, the codes are applied to test equilibria using the resistive wall structures currently under debate for ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)] and ASDEX Upgrade [W. Koeppendoerfer et al., Proceedings of the 16th Symposium on Fusion Technology, London, 1990 (Elsevier, Amsterdam, 1991), Vol. 1, p. 208

  14. Imaging pathways in fractured rock using three-dimensional electrical resistivity tomography

    Science.gov (United States)

    Robinson, Judith; Slater, Lee; Johnson, Timothy B.; Shapiro, Allen M.; Tiedeman, Claire; Ntlargiannis, Dimitrios; Johnson, Carole D.; Day-Lewis, Frederick D.; Lacombe, Pierre; Imbrigiotta, Thomas; Lane, John W.

    2016-01-01

    Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three-dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high-resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time-lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone.

  15. Three-fluid, three-dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Usmanov, Arcadi V.; Matthaeus, William H. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov [Code 672, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-06-10

    We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are

  16. Solution of the time-dependent, three-dimensional resistive magnetohydrodynamic equations

    International Nuclear Information System (INIS)

    Finan, C.H. III; Killeen, J.; California Univ., Davis

    1981-01-01

    Resistive magnetohydrodynamics (MHD) is described by a set of eight coupled, nonlinear, three-dimensional, time-dependent, partial differential equations. A computer code, IMP (Implicit MHD Program), has been developed to solve these equations numerically by the method of finite differences on an Eulerian mesh. In this model, the equations are expressed in orthogonal curvilinear coordinates, making the code applicable to a variety of coordinate systems. The Douglas-Gunn algorithm for Alternating-Direction Implicit (ADI) temporal advancement is used to avoid the limitations in timestep size imposed by explicit methods. The equations are expressed as conservation laws, the momentum and energy equations are nonconservative. This is to: (1) provide enhanced numerical stability by eliminating errors introduced by the nonvanishing of nabla x B on the finite difference mesh; and, (2) allow the simulation of low β plasmas. The resulting finite difference equations are a coupled system of nonlinear algebraic equations which are solved by the Newton-Raphson iteration technique. We apply our model to a number of problems of importance in magnetic fusion research. Ideal and resistive internal kink instabilities are simulated in a Cartesian geometry. Growth rates and nonlinear saturation amplitudes are found to be in agreement with previous analytic and numerical predictions. We also simulate these instabilities in a torus, which demonstrates the versatility of the orthogonal curvilinear coordinate representation. (orig.)

  17. Bilinear magnetoelectric resistance as a probe of three-dimensional spin texture in topological surface states

    Science.gov (United States)

    He, Pan; Zhang, Steven S.-L.; Zhu, Dapeng; Liu, Yang; Wang, Yi; Yu, Jiawei; Vignale, Giovanni; Yang, Hyunsoo

    2018-05-01

    Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin- and angle-resolved photoemission spectroscopy. Here we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the applied electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi2Se3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.

  18. Giant magnetoresistance, three-dimensional Fermi surface and origin of resistivity plateau in YSb semimetal.

    Science.gov (United States)

    Pavlosiuk, Orest; Swatek, Przemysław; Wiśniewski, Piotr

    2016-12-09

    Very strong magnetoresistance and a resistivity plateau impeding low temperature divergence due to insulating bulk are hallmarks of topological insulators and are also present in topological semimetals where the plateau is induced by magnetic field, when time-reversal symmetry (protecting surface states in topological insulators) is broken. Similar features were observed in a simple rock-salt-structure LaSb, leading to a suggestion of the possible non-trivial topology of 2D states in this compound. We show that its sister compound YSb is also characterized by giant magnetoresistance exceeding one thousand percent and low-temperature plateau of resistivity. We thus performed in-depth analysis of YSb Fermi surface by band calculations, magnetoresistance, and Shubnikov-de Haas effect measurements, which reveals only three-dimensional Fermi sheets. Kohler scaling applied to magnetoresistance data accounts very well for its low-temperature upturn behavior. The field-angle-dependent magnetoresistance demonstrates a 3D-scaling yielding effective mass anisotropy perfectly agreeing with electronic structure and quantum oscillations analysis, thus providing further support for 3D-Fermi surface scenario of magnetotransport, without necessity of invoking topologically non-trivial 2D states. We discuss data implying that analogous field-induced properties of LaSb can also be well understood in the framework of 3D multiband model.

  19. Enhancement of oxidation resistance in Cu and Cu(Al) thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, Z.E.; Peto, G. E-mail: peto@mfa.kfki.hu; Paszti, Z.; Zsoldos, E.; Szilagyi, E.; Battistig, G.; Lohner, T.; Molnar, G.L.; Gyulai, J

    1999-01-02

    High conductivity and good resistance to electromigration makes copper a promising interconnect material in microelectronics. However, one of its disadvantages is the poor corrosion resistance. Two methods of passivation are investigated and compared: Al alloying and BF{sub 2}{sup +} ion implantation. X-ray diffraction (XRD) and Rutherford Backscattering Spectrometry (RBS) show the oxidation inhibition of both methods, but the different ratio of CuO{sub 2} to CuO phases suggests different mechanisms of passivation. There are no definite oxide lines in the XRD spectrum of the implanted and annealed Cu(Al) sample, so the presence of Al and the implantation together give increased protection against oxidation. The difference between the two mechanisms of oxidation inhibition is discussed briefly.

  20. Enhancement of oxidation resistance in Cu and Cu(Al) thin layers

    International Nuclear Information System (INIS)

    Horvath, Z.E.; Peto, G.; Paszti, Z.; Zsoldos, E.; Szilagyi, E.; Battistig, G.; Lohner, T.; Molnar, G.L.; Gyulai, J.

    1999-01-01

    High conductivity and good resistance to electromigration makes copper a promising interconnect material in microelectronics. However, one of its disadvantages is the poor corrosion resistance. Two methods of passivation are investigated and compared: Al alloying and BF 2 + ion implantation. X-ray diffraction (XRD) and Rutherford Backscattering Spectrometry (RBS) show the oxidation inhibition of both methods, but the different ratio of CuO 2 to CuO phases suggests different mechanisms of passivation. There are no definite oxide lines in the XRD spectrum of the implanted and annealed Cu(Al) sample, so the presence of Al and the implantation together give increased protection against oxidation. The difference between the two mechanisms of oxidation inhibition is discussed briefly

  1. Three-dimensional electrical resistivity model of a nuclear waste disposal site

    International Nuclear Information System (INIS)

    Rucker, Dale F.; Levitt, Marc T.; Greenwood, William J.

    2009-01-01

    A three-dimensional (3D) modeling study was completed on a very large electrical resistivity survey conducted at a nuclear waste site in eastern Washington. The acquisition included 47 pole-pole two dimensional (2D) resistivity profiles collected along parallel and orthogonal lines over an area of 850 m-570 m. The data were geo-referenced and inverted using EarthImager3D (EI3D). EI3D runs on a Microsoft 32-bit operating system (e.g. WIN-2K, XP) with a maximum usable memory of 2 GB. The memory limits the size of the domain for the inversion model to 200 m-200 m, based on the survey electrode density. Therefore, a series of increasing overlapping models were run to evaluate the effectiveness of dividing the survey area into smaller subdomains. The results of the smaller subdomains were compared to the inversion results of a single domain over a larger area using an upgraded form of EI3D that incorporates multi-processing capabilities and 32 GB of RAM memory. The contours from the smaller subdomains showed discontinuity at the boundaries between the adjacent models, which do not match the hydrogeologic expectations given the nature of disposal at the site. At several boundaries, the contours of the low resistivity areas close, leaving the appearance of disconnected plumes or open contours at boundaries are not met with a continuance of the low resistivity plume into the adjacent subdomain. The model results of the single large domain show a continuous monolithic plume within the central and western portion of the site, directly beneath the elongated trenches. It is recommended that where possible, the domain not be subdivided, but instead include as much of the domain as possible given the memory of available computing resources.

  2. Imaging Pathways in Fractured Rock Using Three-Dimensional Electrical Resistivity Tomography.

    Science.gov (United States)

    Robinson, Judith; Slater, Lee; Johnson, Timothy; Shapiro, Allen; Tiedeman, Claire; Ntarlagiannis, Dimitrios; Johnson, Carole; Day-Lewis, Frederick; Lacombe, Pierre; Imbrigiotta, Thomas; Lane, John

    2016-03-01

    Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three-dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high-resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time-lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone. © 2015, National Ground Water Association.

  3. Effect of Tin Electrode (Sn, Electrode Distance and Thin Layer Size of Zinc Phthalocyanine (ZnPc to Resistance Changes With Ozone Exposure

    Directory of Open Access Journals (Sweden)

    Agustina Mogi

    2018-01-01

    Full Text Available This study was aimed to determine the effect of tin electrode distances and the thickness of a thin layer of ZnPc (Zinc phtyalocyanine toward changes in resistance with ozone exposure. Tin deposition on the glass surface was conducted using spraying method. The reaction between ozone and ZnPc produces electrical properties that can be read through the resistance value of the multimeter. Based on this study, it was investigated that the smaller a distance between the electrode and the thicker deposition of ZnPc lead to the less resistance. This showed that a thin layer of the conductivity increases along with the longer exposure to ozone gas. The movement of electrons with the hole was free.

  4. Uncovering three-dimensional gradients in fibrillar orientation in an impact-resistant biological armour

    Science.gov (United States)

    Zhang, Y.; Paris, O.; Terrill, N. J.; Gupta, H. S.

    2016-05-01

    The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales.

  5. Uncovering three-dimensional gradients in fibrillar orientation in an impact-resistant biological armour

    OpenAIRE

    Y. Zhang; O. Paris; N. J. Terrill; H. S. Gupta

    2016-01-01

    The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation dis...

  6. Alternating-direction implicit numerical solution of the time-dependent, three-dimensional, single fluid, resistive magnetohydrodynamic equations

    Energy Technology Data Exchange (ETDEWEB)

    Finan, C.H. III

    1980-12-01

    Resistive magnetohydrodynamics (MHD) is described by a set of eight coupled, nonlinear, three-dimensional, time-dependent, partial differential equations. A computer code, IMP (Implicit MHD Program), has been developed to solve these equations numerically by the method of finite differences on an Eulerian mesh. In this model, the equations are expressed in orthogonal curvilinear coordinates, making the code applicable to a variety of coordinate systems. The Douglas-Gunn algorithm for Alternating-Direction Implicit (ADI) temporal advancement is used to avoid the limitations in timestep size imposed by explicit methods. The equations are solved simultaneously to avoid syncronization errors.

  7. A Bioengineered Three-Dimensional Cell Culture Platform Integrated with Microfluidics To Address Antimicrobial Resistance in Tuberculosis

    Directory of Open Access Journals (Sweden)

    Magdalena K. Bielecka

    2017-02-01

    Full Text Available Antimicrobial resistance presents one of the most significant threats to human health, with the emergence of totally drug-resistant organisms. We have combined bioengineering, genetically modified bacteria, longitudinal readouts, and fluidics to develop a transformative platform to address the drug development bottleneck, utilizing Mycobacterium tuberculosis as the model organism. We generated microspheres incorporating virulent reporter bacilli, primary human cells, and an extracellular matrix by using bioelectrospray methodology. Granulomas form within the three-dimensional matrix, and mycobacterial stress genes are upregulated. Pyrazinamide, a vital first-line antibiotic for treating human tuberculosis, kills M. tuberculosis in a three-dimensional culture but not in a standard two-dimensional culture or Middlebrook 7H9 broth, demonstrating that antibiotic sensitivity within microspheres reflects conditions in patients. We then performed pharmacokinetic modeling by combining the microsphere system with a microfluidic plate and demonstrated that we can model the effect of dynamic antibiotic concentrations on mycobacterial killing. The microsphere system is highly tractable, permitting variation of cell content, the extracellular matrix, sphere size, the infectious dose, and the surrounding medium with the potential to address a wide array of human infections and the threat of antimicrobial resistance.

  8. Parallelized Three-Dimensional Resistivity Inversion Using Finite Elements And Adjoint State Methods

    Science.gov (United States)

    Schaa, Ralf; Gross, Lutz; Du Plessis, Jaco

    2015-04-01

    The resistivity method is one of the oldest geophysical exploration methods, which employs one pair of electrodes to inject current into the ground and one or more pairs of electrodes to measure the electrical potential difference. The potential difference is a non-linear function of the subsurface resistivity distribution described by an elliptic partial differential equation (PDE) of the Poisson type. Inversion of measured potentials solves for the subsurface resistivity represented by PDE coefficients. With increasing advances in multichannel resistivity acquisition systems (systems with more than 60 channels and full waveform recording are now emerging), inversion software require efficient storage and solver algorithms. We developed the finite element solver Escript, which provides a user-friendly programming environment in Python to solve large-scale PDE-based problems (see https://launchpad.net/escript-finley). Using finite elements, highly irregular shaped geology and topography can readily be taken into account. For the 3D resistivity problem, we have implemented the secondary potential approach, where the PDE is decomposed into a primary potential caused by the source current and the secondary potential caused by changes in subsurface resistivity. The primary potential is calculated analytically, and the boundary value problem for the secondary potential is solved using nodal finite elements. This approach removes the singularity caused by the source currents and provides more accurate 3D resistivity models. To solve the inversion problem we apply a 'first optimize then discretize' approach using the quasi-Newton scheme in form of the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method (see Gross & Kemp 2013). The evaluation of the cost function requires the solution of the secondary potential PDE for each source current and the solution of the corresponding adjoint-state PDE for the cost function gradients with respect to the subsurface

  9. Three-dimensional internal structure of an entire alpine rockglacier, detected by Electrical Resistivity Imaging

    Science.gov (United States)

    Emmert, Adrian; Kneisel, Christof

    2017-04-01

    Uertsch rockglacier (46.61° N, 9.84°E, ca. 2500m asl.) is a tongue-shaped 300m x 100m landform at the head of a small high mountain valley in the Eastern Swiss Alps. Located at the lower end of possible permafrost existence, the rockglacier shows indications of permafrost decay although borehole temperature measurements exhibit an at least partly occurrence of permanently frozen subsurface conditions. To delimit the extent of the frozen area and to characterize subsurface structures, we performed three adjacent 3-D Electrical Resistivity Imaging (ERI) surveys consisting of data from altogether 138 merged 2-D profiles, covering nearly the entire rockglacier by an investigation area of more than 2.5 ha. More than 47000 data points of Wenner-Schlumberger and Dipol-Dipol electrode arrays grant sufficient data coverage. Ground-truthing was achieved through borehole temperature measurements and multiple comparative ground-penetrating radar (GPR) and seismic refraction tomography (SRT) surveys. Results show that the rockglacier today lacks a consistent permafrost table and only shows a patchy permafrost distribution. Several structures differing in geometry and electric resistivity show a complex pattern of ice-rich, ice-poor and ice-free areas. We could identify glacial influence in the root zone of the rockglacier, where a 3200m2 perennial surface ice field is visible. In a downslope direction, a shallow layer of high resistivity values, which is limited to the shallow subsurface, follows the ice field and indicates a genesis by refreezing meltwater. The central part of the rockglacier also shows traces of glacial interaction by the occurrence of a several meters thick buried ice patch in the shallow subsurface at a marginal position. Next to this position, in an area where longitudinal surface ridges are exposed, modelled resistivity values indicate frozen conditions with relatively low ice content, limited to the shallow subsurface. We assume that these structures

  10. Three-dimensional resistivity structure of Furnas volcano (Azores archipelago, Portugal) revealed by magnetotelluric data

    Science.gov (United States)

    Kiyan, Duygu; Hogg, Colin; Rath, Volker; Byrdina, Svetlana; Vandemeulebrouck, Jean; Revil, Andre; Silva, Catarina; Viveiros, Fatima; Ferreira, Teresa; Carmo, Rita

    2017-04-01

    The Furnas volcano is the eastern-most of the three active central volcanoes of Sao Miguel Island. The main caldera formed about 30 ka BP, followed by a younger eruption at 10-12 ka BP, which is responsible for the steep topography of more than 200 m in the target area. It contains several very young eruptive centers, and a shallow caldera lake. Tectonic features of varying directions have been identified in the caldera and its vicinity (Carmo et al., 2015). In the northern part of the caldera, containing the fumarole field of Caldeiras das Furnas, a detailed map of surface CO2 emissions was recently made available (Viveiros et al., 2010). Following a pilot survey of 13 AudioMagnetoTelluric soundings (AMT) and Electrical Resistivity Tomography (ERT) data collected along two profiles in the eastern part of Furnas caldera in 2015, a second campaign was completed in June 2016, yielding a total of 39 separate soundings including 15 broad-band magnetotelluric (MT) soundings to image the electrical conductivity of the subsurface. The data quality achieved by both techniques is very good, and initial results indicate a general correlation between regions of elevated conductivity at depth and the mapped surface CO2 emissions, suggesting that they may both be caused by the presence hydrothermal fluids. Dimensionality and directionality analysis using the WALDIM (Marti et al., 2009) approach in conjunction with Phase Tensor (Caldwell et al., 2004) indicate that the geo-electrical structure needs to be inverted in 3-D. Indicators of directionality derived from the analysis follow the general geological, fault dominated structural trend of NE-SW of Sao Miguel Island. A quantitative analysis of the potential influence of the Atlantic Ocean indicates that MT data up to 1 second period can be used in inversions with confidence without including the ocean. The 3-D inversions thus have been performed including only high-resolution topography and the Furnas lake bathymetry data

  11. Three-dimensional micro assembly of a hinged nickel micro device by magnetic lifting and micro resistance welding

    International Nuclear Information System (INIS)

    Chang, Chun-Wei; Hsu, Wensyang

    2009-01-01

    The three-dimensional micro assembly of hinged nickel micro devices by magnetic lifting and micro resistance welding is proposed here. By an electroplating-based surface machining process, the released nickel structure with the hinge mechanism can be fabricated. Lifting of the released micro structure to different tilted angles is accomplished by controlling the positions of a magnet beneath the device. An in situ electro-thermal actuator is used here to provide the pressing force in micro resistance welding for immobilizing the tilted structure. The proposed technique is shown to immobilize micro devices at controlled angles ranging from 14° to 90° with respect to the substrate. Design parameters such as the electro-thermal actuator and welding beam width are also investigated. It is found that there is a trade-off in beam width design between large contact pressure and low thermal deformation. Different dominated effects from resistivity enhancement and contact area enlargement during the welding process are also observed in the dynamic resistance curves. Finally, a lifted and immobilized electro-thermal bent-beam actuator is shown to displace upward about 27.7 µm with 0.56 W power input to demonstrate the capability of electrical transmission at welded joints by the proposed 3D micro assembly technique

  12. Thin layer activation

    International Nuclear Information System (INIS)

    Schweickert, H.; Fehsenfeld, P.

    1995-01-01

    The reliability of industrial equip ment is substantially influenced by wear and corrosion; monitoring can prevent accidents and avoid down-time. One powerful tool is thin layer activation analysis (TLA) using accelerator systems. The information is used to improve mechanical design and material usage; the technology is used by many large companies, particularly in the automotive industry, e.g. Daimler Benz. A critical area of a machine component receives a thin layer of radioactivity by irradiation with charged particles from an accelerator - usually a cyclotron. The radioactivity can be made homogeneous by suitable selection of particle, beam energy and angle of incidence. Layer thickness can be varied from 20 microns to around 1 mm with different depth distributions; the position and size of the wear zone can be set to within 0.1 mm. The machine is then reassembled and operated so that wear can be measured. An example is a combustion engine comprising piston ring, cylinder wall, cooling water jacket and housing wall, where wear measurements on the cylinder wall are required in a critical zone around the dead-point of the piston ring. Proton beam bombardment creates a radioactive layer whose thickness is known accurately, and characteristic gamma radiation from this radioactive zone penetrates through the engine and is detected externally. Measurements can be made either of the activity removed from the surface, or of the (reduced) residual activity; wear measurement of the order of 10 -9 metres is possible

  13. Three Dimensional Checkerboard Synergy Analysis of Colistin, Meropenem, Tigecycline against Multidrug-Resistant Clinical Klebsiella pneumonia Isolates.

    Directory of Open Access Journals (Sweden)

    Claudia Stein

    Full Text Available The spread of carbapenem-non-susceptible Klebsiella pneumoniae strains bearing different resistance determinants is a rising problem worldwide. Especially infections with KPC (Klebsiella pneumoniae carbapenemase - producers are associated with high mortality rates due to limited treatment options. Recent clinical studies of KPC-blood stream infections revealed that colistin-based combination therapy with a carbapenem and/or tigecycline was associated with significantly decreased mortality rates when compared to colistin monotherapy. However, it remains unclear if these observations can be transferred to K. pneumoniae harboring other mechanisms of carbapenem resistance. A three-dimensional synergy analysis was performed to evaluate the benefits of a triple combination with meropenem, tigecycline and colistin against 20 K. pneumoniae isolates harboring different β-lactamases. To examine the mechanism behind the clinically observed synergistic effect, efflux properties and outer membrane porin (Omp genes (ompK35 and ompK36 were also analyzed. Synergism was found for colistin-based double combinations for strains exhibiting high minimal inhibition concentrations against all of the three antibiotics. Adding a third antibiotic did not result in further increased synergistic effect in these strains. Antagonism did not occur. These results support the idea that colistin-based double combinations might be sufficient and the most effective combination partner for colistin should be chosen according to its MIC.

  14. Hedgehog Signals Mediate Anti-Cancer Drug Resistance in Three-Dimensional Primary Colorectal Cancer Organoid Culture

    Directory of Open Access Journals (Sweden)

    Tatsuya Usui

    2018-04-01

    Full Text Available Colorectal cancer is one of the most common causes of cancer death worldwide. In patients with metastatic colorectal cancer, combination treatment with several anti-cancer drugs is employed and improves overall survival in some patients. Nevertheless, most patients with metastatic disease are not cured owing to the drug resistance. Cancer stem cells are known to regulate resistance to chemotherapy. In the previous study, we established a novel three-dimensional organoid culture model from tumor colorectal tissues of human patients using an air–liquid interface (ALI method, which contained numerous cancer stem cells and showed resistance to 5-fluorouracil (5-FU and Irinotecan. Here, we investigate which inhibitor for stem cell-related signal improves the sensitivity for anti-cancer drug treatment in tumor ALI organoids. Treatment with Hedgehog signal inhibitors (AY9944, GANT61 decreases the cell viability of organoids compared with Notch (YO-01027, DAPT and Wnt (WAV939, Wnt-C59 signal inhibitors. Combination treatment of AY9944 or GANT61 with 5-FU, Irinotecan or Oxaliplatin decreases the cell viability of tumor organoids compared with each anti-cancer drug alone treatment. Treatment with AY9944 or GANT61 inhibits expression of stem cell markers c-Myc, CD44 and Nanog, likely through the decrease of their transcription factor, GLI-1 expression. Combination treatment of AY9944 or GANT61 with 5-FU or Irinotecan also prevents colony formation of colorectal cancer cell lines HCT116 and SW480. These findings suggest that Hedgehog signals mediate anti-cancer drug resistance in colorectal tumor patient-derived ALI organoids and that the inhibitors are useful as a combinational therapeutic strategy against colorectal cancer.

  15. Optimization of a waste heat recovery system with thermoelectric generators by three-dimensional thermal resistance analysis

    International Nuclear Information System (INIS)

    Huang, Gia-Yeh; Hsu, Cheng-Ting; Fang, Chun-Jen; Yao, Da-Jeng

    2016-01-01

    Highlights: • The waste heat recovery system is modeled by three-dimensional thermal resistance. • This is a time-saving and efficient method to estimate power generation from TEGs. • Relations between power generation and varied factors can be rapidly revealed. • TEGs positions and uniformity of velocity profile should be considered together. • Power generation is more sensitive to either internal or external flow velocity. - Abstract: Three-dimensional (3D) thermal resistance analysis provides a rapid and simple method to estimate the power generated from a waste heat recovery system with thermoelectric generators (TEGs), and facilitates an optimization of the system. Such a system comprises three parts – a waste heat recovery chamber, TEG modules and a cooling system. A fin-structured duct serves as a waste heat recovery chamber, which is attached to the hot sides of the TEGs; the cold sides of the TEGs are attached to a cooling system. The waste heat recovery chamber harvests energy from exhaust heat that the TEGs convert into electricity. The estimation of generated power is an important part of the system design. Methods of Computational Fluid Dynamics (CFD) assist the analysis and improve the performance with great accuracy but great computational duration. The use of this method saves much time relative to such CFD methods. In 3D thermal resistance analysis, a node of unknown temperature is located at the centroid of each cell into which the system is divided. The relations of unknown temperatures at the cells are based on the energy conservation and the definition of thermal resistance. The temperatures of inlet waste hot gas and ambient fluid are known. With these boundary conditions, the unknown temperatures in the system are solved, enabling estimation of the power generated with TEGs. A 3D model of the system was simulated with FloTHERM; its numerical solution matched the solution of the 3D thermal resistance analysis within 6%. The power

  16. ROSSBY WAVE INSTABILITY AT DEAD ZONE BOUNDARIES IN THREE-DIMENSIONAL RESISTIVE MAGNETOHYDRODYNAMICAL GLOBAL MODELS OF PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Lyra, Wladimir; Mac Low, Mordecai-Mark

    2012-01-01

    It has been suggested that the transition between magnetorotationally active and dead zones in protoplanetary disks should be prone to the excitation of vortices via Rossby wave instability (RWI). However, the only numerical evidence for this has come from alpha disk models, where the magnetic field evolution is not followed, and the effect of turbulence is parameterized by Laplacian viscosity. We aim to establish the phenomenology of the flow in the transition in three-dimensional resistive-magnetohydrodynamical models. We model the transition by a sharp jump in resistivity, as expected in the inner dead zone boundary, using the PENCIL CODE to simulate the flow. We find that vortices are readily excited in the dead side of the transition. We measure the mass accretion rate finding similar levels of Reynolds stress at the dead and active zones, at the α ≈ 10 –2 level. The vortex sits in a pressure maximum and does not migrate, surviving until the end of the simulation. A pressure maximum in the active zone also triggers the RWI. The magnetized vortex that results should be disrupted by parasitical magneto-elliptic instabilities, yet it subsists in high resolution. This suggests that either the parasitic modes are still numerically damped or that the RWI supplies vorticity faster than they can destroy it. We conclude that the resistive transition between the active and dead zones in the inner regions of protoplanetary disks, if sharp enough, can indeed excite vortices via RWI. Our results lend credence to previous works that relied on the alpha-disk approximation, and caution against the use of overly reduced azimuthal coverage on modeling this transition.

  17. Thin Layer Chromatography-Bioautography and Gas Chromatography-Mass Spectrometry of Antimicrobial Leaf Extracts from Philippine Piper betle L. against Multidrug-Resistant Bacteria

    Directory of Open Access Journals (Sweden)

    Demetrio L. Valle

    2016-01-01

    Full Text Available This study isolated and identified the antimicrobial compounds of Philippine Piper betle L. leaf ethanol extracts by thin layer chromatography- (TLC- bioautography and gas chromatography-mass spectrometry (GC-MS. Initially, TLC separation of the leaf ethanol extracts provided a maximum of eight compounds with Rf values of 0.92, 0.86, 0.76, 0.53, 0.40, 0.25, 0.13, and 0.013, best visualized when inspected under UV 366 nm. Agar-overlay bioautography of the isolated compounds demonstrated two spots with Rf values of 0.86 and 0.13 showing inhibitory activities against two Gram-positive multidrug-resistant (MDR bacteria, namely, methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. The compound with an Rf value of 0.86 also possessed inhibitory activity against Gram-negative MDR bacteria, namely, carbapenem-resistant Enterobacteriaceae-Klebsiella pneumoniae and metallo-β-lactamase-producing Acinetobacter baumannii. GC-MS was performed to identify the semivolatile and volatile compounds present in the leaf ethanol extracts. Six compounds were identified, four of which are new compounds that have not been mentioned in the medical literature. The chemical compounds isolated include ethyl diazoacetate, tris(trifluoromethylphosphine, heptafluorobutyrate, 3-fluoro-2-propynenitrite, 4-(2-propenylphenol, and eugenol. The results of this study could lead to the development of novel therapeutic agents capable of dealing with specific diseases that either have weakened reaction or are currently not responsive to existing drugs.

  18. Thin Layer Chromatography-Bioautography and Gas Chromatography-Mass Spectrometry of Antimicrobial Leaf Extracts from Philippine Piper betle L. against Multidrug-Resistant Bacteria.

    Science.gov (United States)

    Valle, Demetrio L; Puzon, Juliana Janet M; Cabrera, Esperanza C; Rivera, Windell L

    2016-01-01

    This study isolated and identified the antimicrobial compounds of Philippine Piper betle L. leaf ethanol extracts by thin layer chromatography- (TLC-) bioautography and gas chromatography-mass spectrometry (GC-MS). Initially, TLC separation of the leaf ethanol extracts provided a maximum of eight compounds with R f values of 0.92, 0.86, 0.76, 0.53, 0.40, 0.25, 0.13, and 0.013, best visualized when inspected under UV 366 nm. Agar-overlay bioautography of the isolated compounds demonstrated two spots with R f values of 0.86 and 0.13 showing inhibitory activities against two Gram-positive multidrug-resistant (MDR) bacteria, namely, methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. The compound with an R f value of 0.86 also possessed inhibitory activity against Gram-negative MDR bacteria, namely, carbapenem-resistant Enterobacteriaceae-Klebsiella pneumoniae and metallo-β-lactamase-producing Acinetobacter baumannii. GC-MS was performed to identify the semivolatile and volatile compounds present in the leaf ethanol extracts. Six compounds were identified, four of which are new compounds that have not been mentioned in the medical literature. The chemical compounds isolated include ethyl diazoacetate, tris(trifluoromethyl)phosphine, heptafluorobutyrate, 3-fluoro-2-propynenitrite, 4-(2-propenyl)phenol, and eugenol. The results of this study could lead to the development of novel therapeutic agents capable of dealing with specific diseases that either have weakened reaction or are currently not responsive to existing drugs.

  19. Low-resistivity C54-TiSi2 as a sidewall-confinement nanoscale electrode for three-dimensional vertical resistive memory

    KAUST Repository

    Duran Retamal, Jose Ramon; Kang, Chen-Fang; Yang, Po-Kang; Lee, Chuan-Pei; Lien, Der-Hsien; Ho, Chih-Hsiang; He, Jr-Hau

    2014-01-01

    A three-dimensional (3D) double-layer HfO2-based vertical-resistive random access memory (VRRAM) with low-resistivity C54-TiSi2 as horizontal electrodes is demonstrated using complementary metal-oxide semiconductor processing. The electrical measurements show bipolar resistive switching by using C54-TiSi2 as electrodes for resistive switching (RS) applications. The statistical analysis exhibits cycle-to-cycle and cell-to-cell stable non-volatile properties with robust endurance (100 cycles) and long term data retention (104s), suggesting that the ultrathin sidewall of C54-TiSi2 nanoscale electrodes serve to confine and stabilize the random nature of the conducting nanofilaments. The superior RS characteristics demonstrated here highlight the applicability of C54-TiSi2 sidewall-confinement nanoscale electrodes to VRRAM.

  20. Low-resistivity C54-TiSi2 as a sidewall-confinement nanoscale electrode for three-dimensional vertical resistive memory

    KAUST Repository

    Duran Retamal, Jose Ramon

    2014-11-03

    A three-dimensional (3D) double-layer HfO2-based vertical-resistive random access memory (VRRAM) with low-resistivity C54-TiSi2 as horizontal electrodes is demonstrated using complementary metal-oxide semiconductor processing. The electrical measurements show bipolar resistive switching by using C54-TiSi2 as electrodes for resistive switching (RS) applications. The statistical analysis exhibits cycle-to-cycle and cell-to-cell stable non-volatile properties with robust endurance (100 cycles) and long term data retention (104s), suggesting that the ultrathin sidewall of C54-TiSi2 nanoscale electrodes serve to confine and stabilize the random nature of the conducting nanofilaments. The superior RS characteristics demonstrated here highlight the applicability of C54-TiSi2 sidewall-confinement nanoscale electrodes to VRRAM.

  1. Low-resistance gateless high electron mobility transistors using three-dimensional inverted pyramidal AlGaN/GaN surfaces

    International Nuclear Information System (INIS)

    So, Hongyun; Senesky, Debbie G.

    2016-01-01

    In this letter, three-dimensional gateless AlGaN/GaN high electron mobility transistors (HEMTs) were demonstrated with 54% reduction in electrical resistance and 73% increase in surface area compared with conventional gateless HEMTs on planar substrates. Inverted pyramidal AlGaN/GaN surfaces were microfabricated using potassium hydroxide etched silicon with exposed (111) surfaces and metal-organic chemical vapor deposition of coherent AlGaN/GaN thin films. In addition, electrical characterization of the devices showed that a combination of series and parallel connections of the highly conductive two-dimensional electron gas along the pyramidal geometry resulted in a significant reduction in electrical resistance at both room and high temperatures (up to 300 °C). This three-dimensional HEMT architecture can be leveraged to realize low-power and reliable power electronics, as well as harsh environment sensors with increased surface area

  2. Low-resistance gateless high electron mobility transistors using three-dimensional inverted pyramidal AlGaN/GaN surfaces

    Energy Technology Data Exchange (ETDEWEB)

    So, Hongyun, E-mail: hyso@stanford.edu [Department of Aeronautics and Astronautics, Stanford University, Stanford, California 94305 (United States); Senesky, Debbie G. [Department of Aeronautics and Astronautics, Stanford University, Stanford, California 94305 (United States); Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2016-01-04

    In this letter, three-dimensional gateless AlGaN/GaN high electron mobility transistors (HEMTs) were demonstrated with 54% reduction in electrical resistance and 73% increase in surface area compared with conventional gateless HEMTs on planar substrates. Inverted pyramidal AlGaN/GaN surfaces were microfabricated using potassium hydroxide etched silicon with exposed (111) surfaces and metal-organic chemical vapor deposition of coherent AlGaN/GaN thin films. In addition, electrical characterization of the devices showed that a combination of series and parallel connections of the highly conductive two-dimensional electron gas along the pyramidal geometry resulted in a significant reduction in electrical resistance at both room and high temperatures (up to 300 °C). This three-dimensional HEMT architecture can be leveraged to realize low-power and reliable power electronics, as well as harsh environment sensors with increased surface area.

  3. Three dimensional strained semiconductors

    Science.gov (United States)

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  4. Three-dimensional collagen I promotes gemcitabine resistance in vitro in pancreatic cancer cells through HMGA2-dependent histone acetyltransferase expression.

    Directory of Open Access Journals (Sweden)

    Surabhi Dangi-Garimella

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is associated with a pronounced collagen-rich stromal reaction that has been shown to contribute to chemo-resistance. We have previously shown that PDAC cells are resistant to gemcitabine chemotherapy in the collagen microenvironment because of increased expression of the chromatin remodeling protein high mobility group A2 (HMGA2. We have now found that human PDAC tumors display higher levels of histone H3K9 and H3K27 acetylation in fibrotic regions. We show that relative to cells grown on tissue culture plastic, PDAC cells grown in three-dimensional collagen gels demonstrate increased histone H3K9 and H3K27 acetylation, along with increased expression of p300, PCAF and GCN5 histone acetyltransferases (HATs. Knocking down HMGA2 attenuates the effect of collagen on histone H3K9 and H3K27 acetylation and on collagen-induced p300, PCAF and GCN5 expression. We also show that human PDAC tumors with HMGA2 demonstrate increased histone H3K9 and H3K27 acetylation. Additionally, we show that cells in three-dimensional collagen gels demonstrate increased protection against gemcitabine. Significantly, down-regulation of HMGA2 or p300, PCAF and GCN5 HATs sensitizes the cells to gemcitabine in three-dimensional collagen. Overall, our results increase our understanding of how the collagen microenvironment contributes to chemo-resistance in vitro and identify HATs as potential therapeutic targets against this deadly cancer.

  5. Multi-region approach to free-boundary three-dimensional tokamak equilibria and resistive wall instabilities

    Science.gov (United States)

    Ferraro, N. M.; Jardin, S. C.; Lao, L. L.; Shephard, M. S.; Zhang, F.

    2016-05-01

    Free-boundary 3D tokamak equilibria and resistive wall instabilities are calculated using a new resistive wall model in the two-fluid M3D-C1 code. In this model, the resistive wall and surrounding vacuum region are included within the computational domain. This implementation contrasts with the method typically used in fluid codes in which the resistive wall is treated as a boundary condition on the computational domain boundary and has the advantage of maintaining purely local coupling of mesh elements. This new capability is used to simulate perturbed, free-boundary non-axisymmetric equilibria; the linear evolution of resistive wall modes; and the linear and nonlinear evolution of axisymmetric vertical displacement events (VDEs). Calculated growth rates for a resistive wall mode with arbitrary wall thickness are shown to agree well with the analytic theory. Equilibrium and VDE calculations are performed in diverted tokamak geometry, at physically realistic values of dissipation, and with resistive walls of finite width. Simulations of a VDE disruption extend into the current-quench phase, in which the plasma becomes limited by the first wall, and strong currents are observed to flow in the wall, in the SOL, and from the plasma to the wall.

  6. Multi-region approach to free-boundary three-dimensional tokamak equilibria and resistive wall instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, N. M., E-mail: nferraro@pppl.gov; Lao, L. L. [General Atomics, La Jolla, California 92186 (United States); Jardin, S. C. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Shephard, M. S.; Zhang, F. [Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2016-05-15

    Free-boundary 3D tokamak equilibria and resistive wall instabilities are calculated using a new resistive wall model in the two-fluid M3D-C1 code. In this model, the resistive wall and surrounding vacuum region are included within the computational domain. This implementation contrasts with the method typically used in fluid codes in which the resistive wall is treated as a boundary condition on the computational domain boundary and has the advantage of maintaining purely local coupling of mesh elements. This new capability is used to simulate perturbed, free-boundary non-axisymmetric equilibria; the linear evolution of resistive wall modes; and the linear and nonlinear evolution of axisymmetric vertical displacement events (VDEs). Calculated growth rates for a resistive wall mode with arbitrary wall thickness are shown to agree well with the analytic theory. Equilibrium and VDE calculations are performed in diverted tokamak geometry, at physically realistic values of dissipation, and with resistive walls of finite width. Simulations of a VDE disruption extend into the current-quench phase, in which the plasma becomes limited by the first wall, and strong currents are observed to flow in the wall, in the SOL, and from the plasma to the wall.

  7. Three dimensional canonical transformations

    International Nuclear Information System (INIS)

    Tegmen, A.

    2010-01-01

    A generic construction of canonical transformations is given in three-dimensional phase spaces on which Nambu bracket is imposed. First, the canonical transformations are defined as based on cannonade transformations. Second, it is shown that determination of the generating functions and the transformation itself for given generating function is possible by solving correspondent Pfaffian differential equations. Generating functions of type are introduced and all of them are listed. Infinitesimal canonical transformations are also discussed as the complementary subject. Finally, it is shown that decomposition of canonical transformations is also possible in three-dimensional phase spaces as in the usual two-dimensional ones.

  8. Three-dimensional neuroimaging

    International Nuclear Information System (INIS)

    Toga, A.W.

    1990-01-01

    This book reports on new neuroimaging technologies that are revolutionizing the study of the brain be enabling investigators to visualize its structure and entire pattern of functional activity in three dimensions. The book provides a theoretical and practical explanation of the new science of creating three-dimensional computer images of the brain. The coverage includes a review of the technology and methodology of neuroimaging, the instrumentation and procedures, issues of quantification, analytic protocols, and descriptions of neuroimaging systems. Examples are given to illustrate the use of three-dimensional enuroimaging to quantitate spatial measurements, perform analysis of autoradiographic and histological studies, and study the relationship between brain structure and function

  9. Critical Transitions in Thin Layer Turbulence

    Science.gov (United States)

    Benavides, Santiago; Alexakis, Alexandros

    2017-11-01

    We investigate a model of thin layer turbulence that follows the evolution of the two-dimensional motions u2 D (x , y) along the horizontal directions (x , y) coupled to a single Fourier mode along the vertical direction (z) of the form uq (x , y , z) = [vx (x , y) sin (qz) ,vy (x , y) sin (qz) ,vz (x , y) cos (qz) ] , reducing thus the system to two coupled, two-dimensional equations. Its reduced dimensionality allows a thorough investigation of the transition from a forward to an inverse cascade of energy as the thickness of the layer H = π / q is varied.Starting from a thick layer and reducing its thickness it is shown that two critical heights are met (i) one for which the forward unidirectional cascade (similar to three-dimensional turbulence) transitions to a bidirectional cascade transferring energy to both small and large scales and (ii) one for which the bidirectional cascade transitions to a unidirectional inverse cascade when the layer becomes very thin (similar to two-dimensional turbulence). The two critical heights are shown to have different properties close to criticality that we are able to analyze with numerical simulations for a wide range of Reynolds numbers and aspect ratios. This work was Granted access to the HPC resources of MesoPSL financed by the Region Ile de France and the project Equip@Meso (reference ANR-10-EQPX-29-01).

  10. Efficient three-dimensional resist profile-driven source mask optimization optical proximity correction based on Abbe-principal component analysis and Sylvester equation

    Science.gov (United States)

    Lin, Pei-Chun; Yu, Chun-Chang; Chen, Charlie Chung-Ping

    2015-01-01

    As one of the critical stages of a very large scale integration fabrication process, postexposure bake (PEB) plays a crucial role in determining the final three-dimensional (3-D) profiles and lessening the standing wave effects. However, the full 3-D chemically amplified resist simulation is not widely adopted during the postlayout optimization due to the long run-time and huge memory usage. An efficient simulation method is proposed to simulate the PEB while considering standing wave effects and resolution enhancement techniques, such as source mask optimization and subresolution assist features based on the Sylvester equation and Abbe-principal component analysis method. Simulation results show that our algorithm is 20× faster than the conventional Gaussian convolution method.

  11. Three-dimensional electrical resistivity model of the hydrothermal system in Long Valley Caldera, California, from magnetotellurics

    Science.gov (United States)

    Peacock, Jared R.; Mangan, Margaret T.; McPhee, Darcy K.; Wannamaker, Phil E.

    2016-01-01

    Though shallow flow of hydrothermal fluids in Long Valley Caldera, California, has been well studied, neither the hydrothermal source reservoir nor heat source has been well characterized. Here a grid of magnetotelluric data were collected around the Long Valley volcanic system and modeled in 3-D. The preferred electrical resistivity model suggests that the source reservoir is a narrow east-west elongated body 4 km below the west moat. The heat source could be a zone of 2–5% partial melt 8 km below Deer Mountain. Additionally, a collection of hypersaline fluids, not connected to the shallow hydrothermal system, is found 3 km below the medial graben, which could originate from a zone of 5–10% partial melt 8 km below the south moat. Below Mammoth Mountain is a 3 km thick isolated body containing fluids and gases originating from an 8 km deep zone of 5–10% basaltic partial melt.

  12. Three-Dimensional Flows

    CERN Document Server

    Araujo, Vitor; Viana, Marcelo

    2010-01-01

    In this book, the authors present the elements of a general theory for flows on three-dimensional compact boundaryless manifolds, encompassing flows with equilibria accumulated by regular orbits. The book aims to provide a global perspective of this theory and make it easier for the reader to digest the growing literature on this subject. This is not the first book on the subject of dynamical systems, but there are distinct aspects which together make this book unique. Firstly, this book treats mostly continuous time dynamical systems, instead of its discrete counterpart, exhaustively treated

  13. Three dimensional system integration

    CERN Document Server

    Papanikolaou, Antonis; Radojcic, Riko

    2010-01-01

    Three-dimensional (3D) integrated circuit (IC) stacking is the next big step in electronic system integration. It enables packing more functionality, as well as integration of heterogeneous materials, devices, and signals, in the same space (volume). This results in consumer electronics (e.g., mobile, handheld devices) which can run more powerful applications, such as full-length movies and 3D games, with longer battery life. This technology is so promising that it is expected to be a mainstream technology a few years from now, less than 10-15 years from its original conception. To achieve thi

  14. Three Dimensional Dirac Semimetals

    Science.gov (United States)

    Zaheer, Saad

    2014-03-01

    Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.

  15. Monitoring the Excavation Damaged Zone in Opalinus clay by three dimensional reconstruction of the electrical resistivity in the Mont Terri gallery G-04

    Science.gov (United States)

    Lesparre, N.; Adler, A.; Nicollin, F.; Gibert, D.; Nussbaum, C.

    2012-04-01

    The characteristics of opalinus clay have been studied in the last years for its capacity to retain radionuclide transport as a low permeable rock. This formation presents thereby suitable properties for hosting repository sites of radioactive waste. The Mont Terri underground rock laboratory (Switzerland) has been excavated in opalinus clay layer in order to develop experiences improving the knowledge on the physico-chemical properties of the rock. The study of electrical properties furnishes information on the rock structure, its anisotropy and the changes of these properties with time (Nicollin et al., 2010 ; Thovert et al., 2011). Here the three dimensional reconstruction of the electrical resistivity aims at monitoring the temporal evolution of the excavation damaged zone. Three rings of electrodes have been set-up around the gallery and voltage is measured between two electrodes while a current is injected between two others (Gibert et al., 2006). Measurements have been achieved from July 2004 until April 2008 before, during and after the excavation of the gallery 04. In this study we develop a computational approach to reconstruct three dimensional images of the resistivity in the vicinity of the electrodes. A finite element model is used to represent the complex geometry of the gallery. The measurements inferred from a given resistivity distribution are estimated using the software EIDORS (Adler and Lionheart, 2006), this constitutes the forward problem. The reconstruction of the media resistivity is then implemented by fitting the estimated to the measured data, via the resolution of an inverse problem. The parameters of this inverse problem are defined by mapping the forward problem elements into a coarser mesh. This allows to reduce drastically the number of unknowns and so increases the robustness of the inversion. The inversion is executed with the conjugate gradient method regularised by an analysis of the Jacobian singular values. The results show an

  16. Three-dimensional structures of the mammalian multidrug resistance P-glycoprotein demonstrate major conformational changes in the transmembrane domains upon nucleotide binding.

    Science.gov (United States)

    Rosenberg, Mark F; Kamis, Alhaji Bukar; Callaghan, Richard; Higgins, Christopher F; Ford, Robert C

    2003-03-07

    P-glycoprotein is an ATP-binding cassette transporter that is associated with multidrug resistance and the failure of chemotherapy in human patients. We have previously shown, based on two-dimensional projection maps, that P-glycoprotein undergoes conformational changes upon binding of nucleotide to the intracellular nucleotide binding domains. Here we present the three-dimensional structures of P-glycoprotein in the presence and absence of nucleotide, at a resolution limit of approximately 2 nm, determined by electron crystallography of negatively stained crystals. The data reveal a major reorganization of the transmembrane domains throughout the entire depth of the membrane upon binding of nucleotide. In the absence of nucleotide, the two transmembrane domains form a single barrel 5-6 nm in diameter and about 5 nm deep with a central pore that is open to the extracellular surface and spans much of the membrane depth. Upon binding nucleotide, the transmembrane domains reorganize into three compact domains that are each 2-3 nm in diameter and 5-6 nm deep. This reorganization opens the central pore along its length in a manner that could allow access of hydrophobic drugs (transport substrates) directly from the lipid bilayer to the central pore of the transporter.

  17. Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes

    Science.gov (United States)

    Johnson, Timothy C.; Slater, Lee D.; Ntarlagiannis, Dimitris; Day-Lewis, Frederick D.; Elwaseif, Mehrez

    2012-01-01

    Time-lapse resistivity imaging is increasingly used to monitor hydrologic processes. Compared to conventional hydrologic measurements, surface time-lapse resistivity provides superior spatial coverage in two or three dimensions, potentially high-resolution information in time, and information in the absence of wells. However, interpretation of time-lapse electrical tomograms is complicated by the ever-increasing size and complexity of long-term, three-dimensional (3-D) time series conductivity data sets. Here we use 3-D surface time-lapse electrical imaging to monitor subsurface electrical conductivity variations associated with stage-driven groundwater-surface water interactions along a stretch of the Columbia River adjacent to the Hanford 300 near Richland, Washington, USA. We reduce the resulting 3-D conductivity time series using both time-series and time-frequency analyses to isolate a paleochannel causing enhanced groundwater-surface water interactions. Correlation analysis on the time-lapse imaging results concisely represents enhanced groundwater-surface water interactions within the paleochannel, and provides information concerning groundwater flow velocities. Time-frequency analysis using the Stockwell (S) transform provides additional information by identifying the stage periodicities driving groundwater-surface water interactions due to upstream dam operations, and identifying segments in time-frequency space when these interactions are most active. These results provide new insight into the distribution and timing of river water intrusion into the Hanford 300 Area, which has a governing influence on the behavior of a uranium plume left over from historical nuclear fuel processing operations.

  18. Three dimensional energy profile:

    International Nuclear Information System (INIS)

    Kowsari, Reza; Zerriffi, Hisham

    2011-01-01

    The provision of adequate, reliable, and affordable energy has been considered as a cornerstone of development. More than one-third of the world's population has a very limited access to modern energy services and suffers from its various negative consequences. Researchers have been exploring various dimensions of household energy use in order to design strategies to provide secure access to modern energy services. However, despite more than three decades of effort, our understanding of household energy use patterns is very limited, particularly in the context of rural regions of the developing world. Through this paper, the past and the current trends in the field of energy analysis are investigated. The literature on rural energy and energy transition in developing world has been explored and the factors affecting households' decisions on energy use are listed. The and the factors affecting households' decisions on energy use are listed. The gaps identified in the literature on rural household energy analysis provide a basis for developing an alternative model that can create a more realistic view of household energy use. The three dimensional energy profile is presented as a new conceptual model for assessment of household energy use. This framework acts as a basis for building new theoretical and empirical models of rural household energy use. - Highlights: ► Reviews literature on household energy, energy transitions and decision-making in developing countries. ► Identifies gaps in rural household energy analysis and develops a new conceptual framework. ► The 3-d energy profile provides a holistic view of household energy system characteristics. ► Illustrates the use of the framework for understanding household energy transitions.

  19. Three-dimensional echocardiography

    International Nuclear Information System (INIS)

    Buck, Thomas

    2011-01-01

    Presents tips and tricks for beginners and experts Provides educational material for 3D training courses Features comprehensively illustrated cases Includes an accompanying DVD with video clips of all sample cases Three-dimensional echocardiography is the most recent fundamental advancement in echocardiography. Since real-time 3D echocardiography became commercially available in 2002, it has rapidly been accepted in echo labs worldwide. This book covers all clinically relevant aspects of this fascinating new technology, including a comprehensive explanation of its basic principles, practical aspects of clinical application, and detailed descriptions of specific uses in the broad spectrum of clinically important heart disease. The book was written by a group of well-recognized international experts in the field, who have not only been involved in the scientific and clinical evolution of 3D echocardiography since its inception but are also intensively involved in expert training courses. As a result, the clear focus of this book is on the practical application of 3D echocardiography in daily clinical routine with tips and tricks for both beginners and experts, accompanied by more than 150 case examples comprehensively illustrated in more than 800 images and more than 500 videos provided on a DVD. In addition to an in-depth review of the most recent literature on real-time 3D echocardiography, this book represents an invaluable reference work for beginners and expert users of 3D echocardiography. - Tips and tricks for beginners and experts - Educational material for 3D training courses - Comprehensively illustrated cases - DVD with video clips of all sample cases.

  20. Role of Al2O3 thin layer on improving the resistive switching properties of Ta5Si3-based conductive bridge random accesses memory device

    Science.gov (United States)

    Kumar, Dayanand; Aluguri, Rakesh; Chand, Umesh; Tseng, Tseung-Yuen

    2018-04-01

    Ta5Si3-based conductive bridge random access memory (CBRAM) devices have been investigated to improve their resistive switching characteristics for their application in future nonvolatile memory technology. Changes in the switching characteristics by the addition of a thin Al2O3 layer of different thicknesses at the bottom electrode interface of a Ta5Si3-based CBRAM devices have been studied. The double-layer device with a 1 nm Al2O3 layer has shown improved resistive switching characteristics over the single layer one with a high on/off resistance ratio of 102, high endurance of more than 104 cycles, and good retention for more than 105 s at the temperature of 130 °C. The higher thermal conductivity of Al2O3 over Ta5Si3 has been attributed to the enhanced switching properties of the double-layer devices.

  1. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2005-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context, qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  2. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2004-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by order, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  3. Three dimensional MEMS supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei

    2011-10-15

    The overall objective of this research is to achieve compact supercapacitors with high capacitance, large power density, and long cycle life for using as micro power sources to drive low power devices and sensors. The main shortcoming of supercapacitors as a power source is that its energy density typically is about 1/10 of that of batteries. To achieve compact supercapacitors of large energy density, supercapacitors must be developed with high capacitance and power density which are mainly depended on the effective surface area of the electrodes of the supercapacitors. Many studies have been done to increase the effective surface area by modifying the electrode materials, however, much less investigations are focus on machining the electrodes. In my thesis work, micro- and nano-technologies are applied as technology approaches for machining the electrodes with three dimensional (3D) microstructures. More specific, Micro-electro-mechanical system (MEMS) fabrication process flow, which integrates the key process such as LIGA-like (German acronym for Lithographie, Galvanoformung, Abformung, which mean Lithography, Electroplating and Molding) technology or DRIE (deep reactive ion etching), has been developed to enable innovative designs of 3D MEMS supercapacitors which own the electrodes of significantly increased geometric area. Two types of 3D MEMS supercapcitors, based on LIGA-like and DRIE technology respectively, were designed and successfully created. The LIGA-like based 3D MEMS supercapacitor is with an interdigital 3D structure, and consists of silicon substrate, two electroplated nickel current collectors, two PPy (poly pyrrole) electrodes, and solid state electrolyte. The fabrication process flow developed includes the flowing key processes, SU-8 lithography, nickel electroplating, PPy polymerization and solid state electrolyte coating. Electrochemical tests showed that the single electrode of the supercapacitor has the specific capacitance of 0.058 F cm-2

  4. Three-dimensional biomedical imaging

    International Nuclear Information System (INIS)

    Robb, R.A.

    1985-01-01

    Scientists in biomedical imaging provide researchers, physicians, and academicians with an understanding of the fundamental theories and practical applications of three-dimensional biomedical imaging methodologies. Succinct descriptions of each imaging modality are supported by numerous diagrams and illustrations which clarify important concepts and demonstrate system performance in a variety of applications. Comparison of the different functional attributes, relative advantages and limitations, complementary capabilities, and future directions of three-dimensional biomedical imaging modalities are given. Volume 1: Introductions to Three-Dimensional Biomedical Imaging Photoelectronic-Digital Imaging for Diagnostic Radiology. X-Ray Computed Tomography - Basic Principles. X-Ray Computed Tomography - Implementation and Applications. X-Ray Computed Tomography: Advanced Systems and Applications in Biomedical Research and Diagnosis. Volume II: Single Photon Emission Computed Tomography. Position Emission Tomography (PET). Computerized Ultrasound Tomography. Fundamentals of NMR Imaging. Display of Multi-Dimensional Biomedical Image Information. Summary and Prognostications

  5. Thin layer activation: measuring wear and corrosion

    International Nuclear Information System (INIS)

    Delvigne, T.; Leyman, D.; Oxorn, K.

    1995-01-01

    The technique known as thin layer activation (TLA) is explained and assessed in this article. Widely used, in for example the automotive industry, TLA allows on-line monitoring of the loss of matter from a critical surface, by wear erosion and corrosion. The technique offers extremely high sensitivity thus leading to reduced test times. On-line wear phenomena can be assessed during operation of a mechanical process, even through thick engine walls. (UK)

  6. Three dimensional transport model for toroidal plasmas

    International Nuclear Information System (INIS)

    Copenhauer, C.

    1980-12-01

    A nonlinear MHD model, developed for three-dimensional toroidal geometries (asymmetric) and for high β (β approximately epsilon), is used as a basis for a three-dimensional transport model. Since inertia terms are needed in describing evolving magnetic islands, the model can calculate transport, both in the transient phase before nonlinear saturation of magnetic islands and afterwards on the resistive time scale. In the β approximately epsilon ordering, the plasma does not have sufficient energy to compress the parallel magnetic field, which allows the Alfven wave to be eliminated in the reduced nonlinear equations, and the model then follows the slower time scales. The resulting perpendicular and parallel plasma drift velocities can be identified with those of guiding center theory

  7. (Weakly) three-dimensional caseology

    International Nuclear Information System (INIS)

    Pomraning, G.C.

    1996-01-01

    The singular eigenfunction technique of Case for solving one-dimensional planar symmetry linear transport problems is extended to a restricted class of three-dimensional problems. This class involves planar geometry, but with forcing terms (either boundary conditions or internal sources) which are weakly dependent upon the transverse spatial variables. Our analysis involves a singular perturbation about the classic planar analysis, and leads to the usual Case discrete and continuum modes, but modulated by weakly dependent three-dimensional spatial functions. These functions satisfy parabolic differential equations, with a different diffusion coefficient for each mode. Representative one-speed time-independent transport problems are solved in terms of these generalised Case eigenfunctions. Our treatment is very heuristic, but may provide an impetus for more rigorous analysis. (author)

  8. Equilibrium: three-dimensional configurations

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This chapter considers toroidal MHD configurations that are inherently three-dimensional. The motivation for investigation such complicated equilibria is that they possess the potential for providing toroidal confinement without the need of a net toroidal current. This leads to a number of advantages with respect to fusion power generation. First, the attractive feature of steady-state operation becomes more feasible since such configurations no longer require a toroidal current transformer. Second, with zero net current, one potentially dangerous class of MHD instabilities, the current-driven kink modes, is eliminated. Finally, three-dimensional configurations possess nondegenerate flux surfaces even in the absence of plasma pressure and plasma current. Although there is an enormous range of possible three-dimensional equilibria, the configurations of interest are accurately described as axisymmetric tori with superimposed helical fields; furthermore, they possess no net toroidal current. Instead, two different and less obvious restoring forces are developed: the helical sideband force and the toroidal dipole current force. Each is discussed in detail in Chapter 7. A detailed discussion of the parallel current constraint, including its physical significance, is given in section 7.2. A general analysis of helical sideband equilibria, along with a detailed description of the Elmo bumpy torus, is presented in sections 7.3 and 7.4. A general description of toroidal dipole-current equilibria, including a detailed discussion of stellarators, heliotrons, and torsatrons, is given in sections 7.5 and 7.6

  9. Artificial Neural Network-Based Three-dimensional Continuous Response Relationship Construction of 3Cr20Ni10W2 Heat-Resisting Alloy and Its Application in Finite Element Simulation

    Science.gov (United States)

    Li, Le; Wang, Li-yong

    2018-04-01

    The application of accurate constitutive relationship in finite element simulation would significantly contribute to accurate simulation results, which plays a critical role in process design and optimization. In this investigation, the true stress-strain data of 3Cr20Ni10W2 heat-resisting alloy were obtained from a series of isothermal compression tests conducted in a wide temperature range of 1203-1403 K and strain rate range of 0.01-10 s-1 on a Gleeble 1500 testing machine. Then the constitutive relationship was modeled by an optimally constructed and well-trained back-propagation artificial neural network (BP-ANN). The evaluation of the BP-ANN model revealed that it has admirable performance in characterizing and predicting the flow behaviors of 3Cr20Ni10W2 heat-resisting alloy. Meanwhile, a comparison between improved Arrhenius-type constitutive equation and BP-ANN model shows that the latter has higher accuracy. Consequently, the developed BP-ANN model was used to predict abundant stress-strain data beyond the limited experimental conditions and construct the three-dimensional continuous response relationship for temperature, strain rate, strain, and stress. Finally, the three-dimensional continuous response relationship was applied to the numerical simulation of isothermal compression tests. The results show that such constitutive relationship can significantly promote the accuracy improvement of numerical simulation for hot forming processes.

  10. Three-dimensional resistivity tomography in extreme coastal terrain amidst dense cultural signals: application to cliff stability assessment at the historic D-Day site

    Science.gov (United States)

    Udphuay, Suwimon; Günther, Thomas; Everett, Mark E.; Warden, Robert R.; Briaud, Jean-Louis

    2011-04-01

    Pointe du Hoc overlooking the English Channel in Normandy, France was host to one of the most important military engagements of World War II but is vulnerable to cliff collapses that threaten important German fortifications including the forward observation post (OP) and Rudder's command post. The objective of this study is to apply advanced 3-D resistivity tomography towards a detailed site stability assessment with special attention to the two at-risk buildings. 3-D resistivity tomography data sets at Pointe du Hoc in the presence of extreme topography and dense cultural clutter have been successfully acquired, inverted and interpreted. A cliff stability hazard assessment scheme has been designed in which regions of high resistivity are interpreted as zones of open, dry fractures with a moderate mass movement potential. Regions of low resistivity are zones of wet, clay-filled fractures with a high mass movement potential. The OP tomography results indicate that the highest mass movement hazard appears to be associated with the marine caverns at the base of the cliff that are positioned at the point of strongest wave attack. These caverns likely occupy the future site of development of a sea arch that will threaten the OP building. The mass movement potential at the Rudder's command post area is low to moderate. The greatest risk there is associated with soil wedge failures at the top of the cliffs.

  11. Comparison of a networks-of-zones fluid mixing model for a baffled stirred vessel with three-dimensional electrical resistance tomography

    International Nuclear Information System (INIS)

    Rodgers, T L; Siperstein, F R; Mann, R; York, T A; Kowalski, A

    2011-01-01

    Reliable models for the simulation of mixing vessels are important for the understanding of real-life mixing problems. To achieve these models, information about the mixing in the system must be measured to compare with the predicted values. Electrical resistance tomography has the capability to measure spatial and temporal changes within a vessel in three dimensions even in optically inaccessible environments. This paper discusses the creation of a network-of-zones model for the prediction of mixing within a vessel with a Cowles disc-type agitator. Solving of the network-of-zones simplified transport equations for the vessel predicts the concentration distribution of an inert tracer added to the vessel. The change in this distribution with time is calculated and compared with visual inspection of the vessel. The concentration distribution inside the vessel is also measured using electrical resistance tomography and shows good agreement with the predicted values

  12. Thin layer fibres are a knotty problem

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Concern that emergency core cooling system (ECCS) strainers can be blocked by insulation debris has been generated by an incident at the Swedish Barsebaeck-2 BWR in 1992 and two subsequent incidents at the Perry and Limerick BWR plants in the USA. Recent studies are reported which show that blockage of the small, passive suction type strainers common to these and many other BWRs can occur when only very small quantities of fibrous material present in the suppression pool combine with particulates such as corrosion products to form thin layers on the strainer surface. Layers only a few millimetres thick lead to extremely high head losses on the strainer surface and can cause cavitation in the ECCS pumps. It is concluded that the most practical reliable and cost effective solution is to replace the small strainers with larger ones. (UK)

  13. Three-dimensional aromatic networks.

    Science.gov (United States)

    Toyota, Shinji; Iwanaga, Tetsuo

    2014-01-01

    Three-dimensional (3D) networks consisting of aromatic units and linkers are reviewed from various aspects. To understand principles for the construction of such compounds, we generalize the roles of building units, the synthetic approaches, and the classification of networks. As fundamental compounds, cyclophanes with large aromatic units and aromatic macrocycles with linear acetylene linkers are highlighted in terms of transannular interactions between aromatic units, conformational preference, and resolution of chiral derivatives. Polycyclic cage compounds are constructed from building units by linkages via covalent bonds, metal-coordination bonds, or hydrogen bonds. Large cage networks often include a wide range of guest species in their cavity to afford novel inclusion compounds. Topological isomers consisting of two or more macrocycles are formed by cyclization of preorganized species. Some complicated topological networks are constructed by self-assembly of simple building units.

  14. NF-κB signaling is activated and confers resistance to apoptosis in three-dimensionally cultured EGFR-mutant lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Sakuma, Yuji; Yamazaki, Yukiko; Nakamura, Yoshiyasu; Yoshihara, Mitsuyo; Matsukuma, Shoichi; Koizume, Shiro; Miyagi, Yohei

    2012-01-01

    Highlights: ► EGFR-mutant cells in 3D culture resist EGFR inhibition compared with suspended cells. ► Degradation of IκB and activation of NF-κB are observed in 3D-cultured cells. ► Inhibiting NF-κB enhances the efficacy of the EGFR inhibitor in 3D-cultured cells. -- Abstract: Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells in suspension undergo apoptosis to a greater extent than adherent cells in a monolayer when EGFR autophosphorylation is inhibited by EGFR tyrosine kinase inhibitors (TKIs). This suggests that cell adhesion to a culture dish may activate an anti-apoptotic signaling pathway other than the EGFR pathway. Since the microenvironment of cells cultured in a monolayer are substantially different to that of cells existing in three-dimension (3D) in vivo, we assessed whether two EGFR-mutant lung adenocarcinoma cell lines, HCC827 and H1975, were more resistant to EGFR TKI-induced apoptosis when cultured in a 3D extracellular matrix (ECM) as compared with in suspension. The ECM-adherent EGFR-mutant cells in 3D were significantly less sensitive to treatment with WZ4002, an EGFR TKI, than the suspended cells. Further, a marked degradation of IκBα, the inhibitor of nuclear factor (NF)-κB, was observed only in the 3D-cultured cells, leading to an increase in the activation of NF-κB. Moreover, the inhibition of NF-κB with pharmacological inhibitors enhanced EGFR TKI-induced apoptosis in 3D-cultured EGFR-mutant cells. These results suggest that inhibition of NF-κB signaling would render ECM-adherent EGFR-mutant lung adenocarcinoma cells in vivo more susceptible to EGFR TKI-induced cell death.

  15. Three-dimensional printing spiders: back-and-forth glue application yields silk anchorages with high pull-off resistance under varying loading situations.

    Science.gov (United States)

    Wolff, Jonas O; Herberstein, Marie E

    2017-02-01

    The anchorage of structures is a crucial element of construction, both for humans and animals. Spiders use adhesive plaques to attach silk threads to substrates. Both biological and artificial adhesive structures usually have an optimal loading angle, and are prone to varying loading situations. Silk anchorages, however, must cope with loading in highly variable directions. Here we show that the detachment forces of thread anchorages of orb-web spiders are highly robust against pulling in different directions. This is gained by a two-step back-and-forth spinning pattern during the rapid production of the adhesive plaque, which shifts the thread insertion point towards the plaque centre and forms a flexible tree root-like network of branching fibres around the loading point. Using a morphometric approach and a tape-and-thread model we show that neither area, nor width of the plaque, but the shift of the loading point towards the plaque centre has the highest effect on pull-off resistance. This is explained by a circular propagation of the delamination crack with a low peeling angle. We further show that silken attachment discs are highly directional and adjusted to provide maximal performance in the upstream dragline. These results show that the way the glue is applied, crucially enhances the toughness of the anchorage without the need of additional material intake. This work is a starting point to study the evolution of tough and universal thread anchorages among spiders, and to develop bioinspired 'instant' anchorages of thread- and cable-like structures to a broad bandwidth of substrates. © 2017 The Author(s).

  16. Three dimensional imaging of otoliths

    International Nuclear Information System (INIS)

    Barry, B.; Markwitz, A.; David, B.

    2008-01-01

    Otoliths are small structures in fish ears made of calcium carbonate which carry a record of the environment in which the fish live. Traditionally, in order to study their microchemistry by a scanning technique such as PIXE the otoliths have been either ground down by hand or thin sectioned to expose the otolith core. However this technique is subject to human error in judging the core position. In this study we have scanned successive layers of otoliths 50 and 100 μm apart by removing the otolith material in a lapping machine which can be set to a few μm precision. In one study by comparing data from otoliths from the two ears of a freshwater species we found that polishing by hand could miss the core and thus give misleading results as to the life cycle of the fish. In another example we showed detail in a marine species which could be used to build a three dimensional picture of the Sr distribution. (author)

  17. Three-Dimensional Rebar Graphene.

    Science.gov (United States)

    Sha, Junwei; Salvatierra, Rodrigo V; Dong, Pei; Li, Yilun; Lee, Seoung-Ki; Wang, Tuo; Zhang, Chenhao; Zhang, Jibo; Ji, Yongsung; Ajayan, Pulickel M; Lou, Jun; Zhao, Naiqin; Tour, James M

    2017-03-01

    Free-standing robust three-dimensional (3D) rebar graphene foams (GFs) were developed by a powder metallurgy template method with multiwalled carbon nanotubes (MWCNTs) as a reinforcing bar, sintered Ni skeletons as a template and catalyst, and sucrose as a solid carbon source. As a reinforcement and bridge between different graphene sheets and carbon shells, MWCNTs improved the thermostability, storage modulus (290.1 kPa) and conductivity (21.82 S cm -1 ) of 3D GF resulting in a high porosity and structurally stable 3D rebar GF. The 3D rebar GF can support >3150× the foam's weight with no irreversible height change, and shows only a ∼25% irreversible height change after loading >8500× the foam's weight. The 3D rebar GF also shows stable performance as a highly porous electrode in lithium ion capacitors (LICs) with an energy density of 32 Wh kg -1 . After 500 cycles of testing at a high current density of 6.50 mA cm -2 , the LIC shows 78% energy density retention. These properties indicate promising applications with 3D rebar GFs in devices requiring stable mechanical and electrochemical properties.

  18. Thin-layer and paper chromatography

    International Nuclear Information System (INIS)

    Sherma, J.

    1986-01-01

    This selective review covers the literature of thin-layer chromatography (TLC) and paper chromatography (PC) cited in Chemical Abstracts from December 5, 1983, through November 25, 1985, and Analytical Abstracts from November 1983 to November 1985. Also researched directly were the following important journals publishing papers on TLC and PC: the Journal of Chromatography (including its bibliography issues), Journal of High Resolution Chromatography and Chromatography Communications, Journal of Chromatographic Science, Chromatographia, Analytical Chemistry, JAOAC, and the special TLC issues of the Journal of Liquid Chromatography. Many of the inherent advantages of TLC that are obvious to workers familiar with high performance, quantitative theory and practice still are not appreciated adequately by the majority of people using chromatography. These include unrestricted access to the separation process; introducing magnetic, thermal, electrical, and other physical forces to improve resolution; high sample throughput; truly multidimensional separations; and the use of controlled multiple gradients. Many advantages of TLC relative to column chromatography were discussed in the Introductions to our 1982 and 1984 reviews of TLC in this Journal. No complete commercial robotics system specifically for TLC has been developed, but all necessary modules are available for such a system. The combination of robotics, with the continued development of theory, practice, and instrumentation will lead eventually to TLC systems that are unrivaled for speed, versatility, accuracy, precision, and sensitivity. 573 references

  19. Thin layer joining by gas adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Taga, Yasunori, E-mail: y-taga@isc.chubu.ac.jp; Fukumura, Toshio

    2014-10-01

    Highlights: • We report thin layer molecular joining between glass and COP by gas adsorption. Thickness of joining layer is 1–2 nm and joining process was carried out at low temperature at about 100 °C. • Adhesion strength measured by 180 degree peel test revealed to be 1–10 N/25 mm and the joined stack showed high durability for practical use. - Abstract: Attempt has been made to join borosilicate glass and cycloolefin (COP) polymer film by using gas adsorption method. After corona plasma treat, COP was exposed to (3-glycidoxypropyl) trimethoxysilane (GPS) and glass to (3-aminopropyl) triethoxysilane (APS) both in air atmosphere, resulting in co-adsorption of water vapor in the atmosphere and organosilane gases. Surface characterization of plasma treated and gas adsorbed surfaces was carried out by X-ray photoelectron spectroscopy (XPS) using Mg Kα X-ray source. Joining was carried out by a roll laminator after contact of both surfaces at room temperature, followed by annealing at 130 °C for 10 min. Adhesion strength was evaluated by 180 degree peel test based on ASTM D-903 and durability was examined under the conditions of 60 °C and 95% RH. It was found that after plasma treatment, complex functional groups such as C-H, C-O, C=O, O-C=O and CO{sub 3} were found on COP and O-H on glass. Thickness of GPS gas adsorption layer on COP was evaluated by the XPS to be at least 1.1 nm by taking inelastic mean free path of Si{sub 2p} photoelectron into consideration. Joining force was found to be more than 5 N/25 mm corresponding to almost equal to COP bulk tensile strength. In addition, durability of this adhesion strength remained unchanged over 2000 h even after exposure to the durability test conditions of 60 °C and 95% RH. The results can be explained in terms of formation of H-H hydrogen bonding and Si-O covalent bonding via silanols will be made at the interface as a result of lamination and annealing processes. In conclusion, ultrathin joining method

  20. Loading Effects on Resolution in Thin Layer Chromatography and ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 11. Loading Effects on Resolution in Thin Layer Chromatography and Paper Chromatography. K Girigowda V H Mulimani. Classroom Volume 10 Issue 11 November 2005 pp 79-84 ...

  1. Elastocapillary fabrication of three-dimensional microstructures

    NARCIS (Netherlands)

    van Honschoten, J.W.; Berenschot, Johan W.; Ondarcuhu, T.; Sanders, Remco G.P.; Sundaram, J.; Elwenspoek, Michael Curt; Tas, Niels Roelof

    2010-01-01

    We describe the fabrication of three-dimensional microstructures by means of capillary forces. Using an origami-like technique, planar silicon nitride structures of various geometries are folded to produce three-dimensional objects of 50–100 m. Capillarity is a particularly effective mechanism since

  2. Utility of a Novel Three-Dimensional and Dynamic (3DD Cell Culture System for PK/PD Studies: Evaluation of a Triple Combination Therapy at Overcoming Anti-HER2 Treatment Resistance in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Anusha Ande

    2018-05-01

    Full Text Available Background: Emergence of Human epidermal growth factor receptor 2 (HER2 therapy resistance in HER2-positive (HER2+ breast cancer (BC poses a major clinical challenge. Mechanisms of resistance include the over-activation of the PI3K/mTOR and Src pathways. This work aims to investigate a novel combination therapy that employs paclitaxel (PAC, a mitotic inhibitor, with everolimus (EVE, an mTOR inhibitor, and dasatinib (DAS, an Src kinase inhibitor, as a modality to overcome resistance.Methods: Static (two dimensional, 2D and three-dimensional dynamic (3DD cell culture studies were conducted using JIMT-1 cells, a HER2+ BC cell line refractory to HER2 therapies. Cell viability and caspase-3 expression were examined after JIMT-1 cell exposure to agents as monotherapy or in combination using a 2D setting. A pharmacokinetic/pharmacodynamic (PK/PD combination study with PAC+DAS+EVE was conducted over 3 weeks in a 3DD setting. PAC was administered into the system via a 3 h infusion followed by the addition of a continuous infusion of EVE+DAS 24 h post-PAC dosing. Cell counts and caspase-3 expression were quantified every 2 days. A semi-mechanistic PK/PD model was developed using the 2D data and scaled up to capture the 3DD data. The final model integrated active caspase-3 as a biomarker to bridge between drug exposures and cancer cell dynamics. Model fittings were performed using Monolix software.Results: The triple combination significantly induced caspase-3 activity in the 2D cell culture setting. In the 3DD cell culture setting, sequential dosing of PAC then EVE+DAS showed a 5-fold increase in caspase-3 activity and 8.5-fold decrease in the total cell number compared to the control. The semi-mechanistic PK/PD models fit the data well, capturing the time-course profiles of drug concentrations, caspase-3 expression, and cell counts in the 2D and 3DD settings.Conclusion: A novel, sequential triple combination therapeutic regimen was successfully evaluated

  3. Three dimensional visualization of medical images

    International Nuclear Information System (INIS)

    Suto, Yasuzo

    1992-01-01

    Three dimensional visualization is a stereoscopic technique that allows the diagnosis and treatment of complicated anatomy site of the bone and organ. In this article, the current status and technical application of three dimensional visualization are introduced with special reference to X-ray CT and MRI. The surface display technique is the most common for three dimensional visualization, consisting of geometric model, voxel element, and stereographic composition techniques. Recent attention has been paid to display method of the content of the subject called as volume rendering, whereby information on the living body is provided accurately. The application of three dimensional visualization is described in terms of diagnostic imaging and surgical simulation. (N.K.)

  4. three dimensional photoelastic investigations on thick rectangular

    African Journals Online (AJOL)

    user

    1983-09-01

    Sep 1, 1983 ... Thick rectangular plates are investigated by means of three-dimensional photoelasticity ... a thin plate theory and a higher order thick plate theory. 1. ..... number of fringes lest the accuracy of the results will be considerably.

  5. Three-dimensional magnetotelluric axial anisotropic forward modeling and inversion

    Science.gov (United States)

    Cao, Hui; Wang, Kunpeng; Wang, Tao; Hua, Boguang

    2018-06-01

    Magnetotelluric (MT) data has been widely used to image underground electrical structural. However, when the significant axial resistivity anisotropy presents, how this influences three-dimensional MT data has not been resolved clearly yet. We here propose a scheme for three-dimensional modeling of MT data in presence of axial anisotropic resistivity, where the electromagnetic fields are decomposed into primary and secondary components. A 3D staggered-grid finite difference method is then used to resolve the resulting 3D governing equations. Numerical tests have completed to validate the correctness and accuracy of the present algorithm. A limited-memory Broyden-Fletcher-Goldfarb-Shanno method is then utilized to realize the 3D MT axial anisotropic inversion. The testing results show that, compared to the results of isotropic resistivity inversion, taking account the axial anisotropy can much improve the inverted results.

  6. Three dimensional diffusion calculations of nuclear reactors

    International Nuclear Information System (INIS)

    Caspo, N.

    1981-07-01

    This work deals with the three dimensional calculation of nuclear reactors using the code TRITON. The purposes of the work were to perform three-dimensional computations of the core of the Soreq nuclear reactor and of the power reactor ZION and to validate the TRITON code. Possible applications of the TRITON code in Soreq reactor calculations and in power reactor research are suggested. (H.K.)

  7. Three-dimensional effects in fracture mechanics

    International Nuclear Information System (INIS)

    Benitez, F.G.

    1991-01-01

    An overall view of the pioneering theories and works, which enlighten the three-dimensional nature of fracture mechanics during the last years is given. the main aim is not an exhaustive reviewing but the displaying of the last developments on this scientific field in a natural way. This work attempts to envisage the limits of disregarding the three-dimensional behaviour in theories, analyses and experiments. Moreover, it tries to draw attention on the scant fervour, although increasing, this three-dimensional nature of fracture has among the scientific community. Finally, a constructive discussion is presented on the use of two-dimensional solutions in the analysis of geometries which bear a three-dimensional configuration. the static two-dimensional solutions and its applications fields are reviewed. also, the static three-dimensional solutions, wherein a comparative analysis with elastoplastic and elastostatic solutions are presented. to end up, the dynamic three-dimensional solutions are compared to the asymptotic two-dimensional ones under the practical applications point of view. (author)

  8. Copper diffusion in TaN-based thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Nazon, J. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France); Fraisse, B. [Laboratoire Structure, Proprietes et Modelisation des Solides (UMR 8580), Ecole Centrale de Paris, Grande Voie des Vignes, 92295 Chatenay-Malabry Cedex (France); Sarradin, J. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France); Fries, S.G. [SGF Scientific Consultancy, Arndt str.9, D-52064 Aachen (Germany); Tedenac, J.C. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France); Frety, N. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France)], E-mail: Nicole.Frety@univ-montp2.fr

    2008-07-15

    The diffusion of Cu through TaN-based thin layers into a Si substrate has been studied. The barrier efficiency of TaN/Ta/TaN multilayers of 150 nm in thickness has been investigated and is compared with that of TaN single layers. Thermal stabilities of these TaN-based thin layers against Cu diffusion were determined from in situ X-ray diffraction experiments, conducted in the temperature range of 773-973 K. The TaN/Ta/TaN barrier appeared to be more efficient in preventing Cu diffusion than the TaN single layer.

  9. Three-dimensional microbubble streaming flows

    Science.gov (United States)

    Rallabandi, Bhargav; Marin, Alvaro; Rossi, Massimiliano; Kaehler, Christian; Hilgenfeldt, Sascha

    2014-11-01

    Streaming due to acoustically excited bubbles has been used successfully for applications such as size-sorting, trapping and focusing of particles, as well as fluid mixing. Many of these applications involve the precise control of particle trajectories, typically achieved using cylindrical bubbles, which establish planar flows. Using astigmatic particle tracking velocimetry (APTV), we show that, while this two-dimensional picture is a useful description of the flow over short times, a systematic three-dimensional flow structure is evident over long time scales. We demonstrate that this long-time three-dimensional fluid motion can be understood through asymptotic theory, superimposing secondary axial flows (induced by boundary conditions at the device walls) onto the two-dimensional description. This leads to a general framework that describes three-dimensional flows in confined microstreaming systems, guiding the design of applications that profit from minimizing or maximizing these effects.

  10. Towards three-dimensional optical metamaterials

    Science.gov (United States)

    Tanaka, Takuo; Ishikawa, Atsushi

    2017-12-01

    Metamaterials have opened up the possibility of unprecedented and fascinating concepts and applications in optics and photonics. Examples include negative refraction, perfect lenses, cloaking, perfect absorbers, and so on. Since these metamaterials are man-made materials composed of sub-wavelength structures, their development strongly depends on the advancement of micro- and nano-fabrication technologies. In particular, the realization of three-dimensional metamaterials is one of the big challenges in this research field. In this review, we describe recent progress in the fabrication technologies for three-dimensional metamaterials, as well as proposed applications.

  11. Development of three dimensional solid modeler

    International Nuclear Information System (INIS)

    Zahoor, R.M.A.

    1999-01-01

    The work presented in this thesis is aimed at developing a three dimensional solid modeler employing computer graphics techniques using C-Language. Primitives have been generated, by combination of plane surfaces, for various basic geometrical shapes including cylinder, cube and cone. Back face removal technique for hidden surface removal has also been incorporated. Various transformation techniques such as scaling, translation, and rotation have been included for the object animation. Three dimensional solid modeler has been created by the union of two primitives to demonstrate the capabilities of the developed program. (author)

  12. Three-dimensional topological insulators and bosonization

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, Andrea [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Randellini, Enrico [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Sisti, Jacopo [Scuola Internazionale Superiore di Studi Avanzati (SISSA),Via Bonomea 265, 34136 Trieste (Italy)

    2017-05-25

    Massless excitations at the surface of three-dimensional time-reversal invariant topological insulators possess both fermionic and bosonic descriptions, originating from band theory and hydrodynamic BF theory, respectively. We analyze the corresponding field theories of the Dirac fermion and compactified boson and compute their partition functions on the three-dimensional torus geometry. We then find some non-dynamic exact properties of bosonization in (2+1) dimensions, regarding fermion parity and spin sectors. Using these results, we extend the Fu-Kane-Mele stability argument to fractional topological insulators in three dimensions.

  13. Three-dimensional imaging utilizing energy discrimination

    International Nuclear Information System (INIS)

    Gunter, D.L.; Hoffman, K.R.; Beck, R.N.

    1990-01-01

    An algorithm is proposed for three-dimensional image reconstruction in nuclear medicine which uses scattered radiation rather than multiple projected images to determine the source depth within the body. Images taken from numerous energy windows are combined to construct the source distribution in the body. The gamma-ray camera is not moved during the imaging process. Experiments with both Tc-99m and Ga-67 demonstrate that two channels of depth information can be extracted from the low energy images produced by scattered radiation. By combining this technique with standard SPECT reconstruction using multiple projections the authors anticipate much improved spatial resolution in the overall three-dimensional reconstruction

  14. Pre-staining thin layer chromatography method for amino acid ...

    African Journals Online (AJOL)

    Jane

    2010-12-13

    Dec 13, 2010 ... inexpensive and the results obtained were clean and reproducible. However, it is suitable for the high throughput screening of amino acid-producing strains. Key words: Thin layer chromatography, pre-staining, amino acid detection. INTRODUCTION. Several analytical techniques have been often used for.

  15. Determination of ferulic acid and related compounds by thin layer ...

    African Journals Online (AJOL)

    The analysis of certain phenolic compounds from plants, and their chemical transformation with microorganisms or isolated enzymes, has application in the food and pharmaceutical industry. The rapid quantitative estimation of ferulic acid by thin layer chromatography is described by measurement of the area of the ...

  16. Evaluation of a thin-layer chromatographic technique for ...

    African Journals Online (AJOL)

    Methanol extracts of both fistula and bush samples were prepared and analysed by thin-layer chromatography. Chromatoplates, when visualised under ultraviolet light, revealed a number of fluorescent compounds, some of which were common in both the fistula and bush sample extracts. By comparing the presence of ...

  17. Outdoor open thin-layer microalgal photobioreactor: potential productivity

    Czech Academy of Sciences Publication Activity Database

    Doucha, Jiří; Lívanský, Karel

    2009-01-01

    Roč. 21, č. 1 (2009), s. 111-117 ISSN 0921-8971 Institutional research plan: CEZ:AV0Z50200510 Keywords : productivity * photobioreactor * thin layer Subject RIV: EE - Microbiology, Virology Impact factor: 1.018, year: 2009

  18. Modeling of thin layer drying of tarragon (Artemisia dracunculus L.)

    NARCIS (Netherlands)

    ArabHosseini, A.; Huisman, W.; Boxtel, van A.J.B.; Mueller, J.

    2009-01-01

    The drying behavior of tarragon leaves as well as chopped plants were evaluated at air temperatures ranging from 40 to 90 °C, at various air relative humidities and a constant air velocity of 0.6 m/s. The experimental data was fitted to a number of thin layer drying equations. The equations were

  19. Comparison of two detection methods in thin layer chromatographic ...

    African Journals Online (AJOL)

    o-tolidine plus potassium iodide and photosynthesis inhibition detection methods were investigated for the analysis of three triazine herbicides (atrazine, ametryne, simazine) and two urea herbicides (diuron, metobromuron) in a coastal savanna soil using thin layer chromatography to compare the suitability of the two ...

  20. Physicochemical, thin layer and gas-liquid chromatographic ...

    African Journals Online (AJOL)

    DELL

    2012-05-22

    May 22, 2012 ... PEG (3 m × 3 mm I. D.) was used for gas chromatography. Physicochemical analysis ... subjected to thin layer chromatography on plates (20 × 20 cm) having 0.25 mm thick silica gel ..... Headspace solid- phase microextraction ...

  1. (AJST) THIN- LAYER DRYING OF DICED CASSAVA ROOTS

    African Journals Online (AJOL)

    opiyo

    effect of drying temperature on thin-layer drying was high, followed by initial moisture .... The moisture content was converted to moisture ratio (MR) using the non-exponential part .... The Potential of Cassava As a Cash. Crop For Small Holder ...

  2. Thin Layer Drying Kinetics of Pineapple: Effect of Blanching ...

    African Journals Online (AJOL)

    Four thin-layer drying models were fitted to the experimental drying data. The .... MATLAB software package (version 6.5). The correlation ... to evaluate the goodness of fit of the simulation ... during the oven-drying process of pineapple slices.

  3. Thin layer activation techniques in research and industry

    International Nuclear Information System (INIS)

    Conlon, T.W.

    1993-01-01

    The following key application of thin layer activation technique (TLA) are discussed: ion-erosion in fusion tokamaks, bio-engineering technology, automobile industry. Future developments of the techniques, such as fission fragment TLA, multi-layer TLA and recoil implantation are discussed as well. 7 refs, 6 figs, 1 tab

  4. Three-Dimensional Messages for Interstellar Communication

    Science.gov (United States)

    Vakoch, Douglas A.

    One of the challenges facing independently evolved civilizations separated by interstellar distances is to communicate information unique to one civilization. One commonly proposed solution is to begin with two-dimensional pictorial representations of mathematical concepts and physical objects, in the hope that this will provide a foundation for overcoming linguistic barriers. However, significant aspects of such representations are highly conventional, and may not be readily intelligible to a civilization with different conventions. The process of teaching conventions of representation may be facilitated by the use of three-dimensional representations redundantly encoded in multiple formats (e.g., as both vectors and as rasters). After having illustrated specific conventions for representing mathematical objects in a three-dimensional space, this method can be used to describe a physical environment shared by transmitter and receiver: a three-dimensional space defined by the transmitter--receiver axis, and containing stars within that space. This method can be extended to show three-dimensional representations varying over time. Having clarified conventions for representing objects potentially familiar to both sender and receiver, novel objects can subsequently be depicted. This is illustrated through sequences showing interactions between human beings, which provide information about human behavior and personality. Extensions of this method may allow the communication of such culture-specific features as aesthetic judgments and religious beliefs. Limitations of this approach will be noted, with specific reference to ETI who are not primarily visual.

  5. Three-Dimensional Printing Surgical Applications.

    Science.gov (United States)

    AlAli, Ahmad B; Griffin, Michelle F; Butler, Peter E

    2015-01-01

    Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice.

  6. Electron crystallography of three dimensional protein crystals

    NARCIS (Netherlands)

    Georgieva, Dilyana

    2008-01-01

    This thesis describes an investigation of the potential of electron diffraction for studying three dimensional sub-micro-crystals of proteins and pharmaceuticals. A prerequisite for using electron diffraction for structural studies is the predictable availability of tiny crystals. A method for

  7. Three dimensional electrochemical system for neurobiological studies

    DEFF Research Database (Denmark)

    Vazquez, Patricia; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    In this work we report a novel three dimensional electrode array for electrochemical measurements in neuronal studies. The main advantage of working with these out-of-plane structures is the enhanced sensitivity of the system in terms of measuring electrochemical changes in the environment...

  8. Imaging unsteady three-dimensional transport phenomena

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... The image data can be jointly analysed with the physical laws governing transport and principles of image formation. Hence, with the experiment suitably carried out, three-dimensional physical domains with unsteady processes can be accommodated. Optical methods promise to breach the holy grail of ...

  9. Computerized three-dimensional normal atlas

    International Nuclear Information System (INIS)

    Mano, Isamu; Suto, Yasuzo; Suzuki, Masataka; Iio, Masahiro.

    1990-01-01

    This paper presents our ongoing project in which normal human anatomy and its quantitative data are systematically arranged in a computer. The final product, the Computerized Three-Dimensional Normal Atlas, will be able to supply tomographic images in any direction, 3-D images, and coded information on organs, e.g., anatomical names, CT numbers, and T 1 and T 2 values. (author)

  10. Three-Dimensional Shallow Water Acoustics

    Science.gov (United States)

    2016-03-30

    medium properties, so horizontal refraction and reflection of sound can occur and produce significant three-dimensional (3-D) sound propagation ...by the environmental factors existing commonly in the continental shelf and shelfbreak areas, such as slopes, submarine canyons, sub-bottom layers ...surface waves, internal waves and shelfbreak fronts. 15. SUBJECT TERMS Continental Shelf; 3-D Acoustics , Surface Waves, Sound Propagation 16

  11. Extraction of oxytetracycline starting from the meats of chickens and identifications by thin layer chromatography

    International Nuclear Information System (INIS)

    Elghozzi, Amira

    2007-01-01

    Use of antibiotics in the poultry also suspected as one of the cause of the emergence of resistance to antibiotics of some bacteria what causes risks on human health continuation of persistence of the residues in the foodstuffs. We were interested in detected the presence qualitatively of oxytetracyclin in samples of muscle and liver of chicken by the use of the techniques of thin layer chromatography. Although, These results are satisfactory, it is always necessary to prevent the dangers which cause the risks of the residues of oxytetracycline on health. (Author). 20 refs

  12. Arching in three-dimensional clogging

    Science.gov (United States)

    Török, János; Lévay, Sára; Szabó, Balázs; Somfai, Ellák; Wegner, Sandra; Stannarius, Ralf; Börzsönyi, Tamás

    2017-06-01

    Arching in dry granular material is a long established concept, however it remains still an open question how three-dimensional orifices clog. We investigate by means of numerical simulations and experimental data how the outflow creates a blocked configuration of particles. We define the concave surface of the clogged dome by two independent methods (geometric and density based). The average shape of the cupola for spheres is almost a hemisphere but individual samples have large holes in the structure indicating a blocked state composed of two-dimensional force chains rather than three-dimensional objects. The force chain structure justifies this assumption. For long particles the clogged configurations display large variations, and in certain cases the empty region reaches a height of 5 hole diameters. These structures involve vertical walls consisting of horizontally placed stable stacking of particles.

  13. Three-dimensional bio-printing.

    Science.gov (United States)

    Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi

    2015-05-01

    Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing.

  14. Three dimensional imaging in cardiac nuclear medicine

    International Nuclear Information System (INIS)

    Torizuka, Kanji; Ishii, Yasushi; Yonekura, Yoshiharu; Yamamoto, Kazutaka; Tamaki, Takeyoshi

    1981-01-01

    Methods to obtain three dimensional images of the heart were reviewed. Gated three dimensional display reconstructed from images using bidirectional collimator, was a useful method to detect akinesis of the heart wall. Tomographic observation of the heart can be carried out by a pinhole collimator to image ischemia with high sensitivity. However the focusing plane must be carefully selected to prevent false positives. In the case of emission CT (ECT), utilization of positron emitters gave a quantitative image without correction, whereas single photon ECT needed the correction due to the absorption of γ-ray. Though the reliability of the images by ECT was high, the time required for data acquisition was much longer than that by a 7 pinhole or bidirectional collimator. (Nakanishi, T.)

  15. Three dimensional digital imaging of environmental data

    International Nuclear Information System (INIS)

    Nichols, R.L.; Eddy, C.A.

    1991-01-01

    The Environmental Sciences Section (ESS) of the Savannah River Laboratory has recently acquired the computer hardware (Silicon Graphics Personal Iris Workstations) and software (Dynamic Graphics, Interactive Surface and Volume Modeling) to perform three dimensional analysis of hydrogeologic data. Three dimensional digital imaging of environmental data is a powerful technique that can be used to incorporate field, analytical, and modeling results from geologic, hydrologic, ecologic, and chemical studies into a comprehensive model for visualization and interpretation. This report covers the contamination of four different sites of the Savannah River Plant. Each section of this report has a computer graphic display of the concentration of contamination in the groundwater and/or sediments of each site

  16. SNAP - a three dimensional neutron diffusion code

    International Nuclear Information System (INIS)

    McCallien, C.W.J.

    1993-02-01

    This report describes a one- two- three-dimensional multi-group diffusion code, SNAP, which is primarily intended for neutron diffusion calculations but can also carry out gamma calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP can solve the multi-group neutron diffusion equations using finite difference methods. The one-dimensional slab, cylindrical and spherical geometries and the two-dimensional case are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. (Author)

  17. Three-dimensional Imaging, Visualization, and Display

    CERN Document Server

    Javidi, Bahram; Son, Jung-Young

    2009-01-01

    Three-Dimensional Imaging, Visualization, and Display describes recent developments, as well as the prospects and challenges facing 3D imaging, visualization, and display systems and devices. With the rapid advances in electronics, hardware, and software, 3D imaging techniques can now be implemented with commercially available components and can be used for many applications. This volume discusses the state-of-the-art in 3D display and visualization technologies, including binocular, multi-view, holographic, and image reproduction and capture techniques. It also covers 3D optical systems, 3D display instruments, 3D imaging applications, and details several attractive methods for producing 3D moving pictures. This book integrates the background material with new advances and applications in the field, and the available online supplement will include full color videos of 3D display systems. Three-Dimensional Imaging, Visualization, and Display is suitable for electrical engineers, computer scientists, optical e...

  18. Three-dimensional imaging modalities in endodontics

    Science.gov (United States)

    Mao, Teresa

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337

  19. Three-dimensional imaging modalities in endodontics

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Teresa; Neelakantan, Prasanna [Dept. of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha University, Chennai (India)

    2014-09-15

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome.

  20. Three-dimensional imaging modalities in endodontics

    International Nuclear Information System (INIS)

    Mao, Teresa; Neelakantan, Prasanna

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome

  1. THREE DIMENSIONAL GRAPHICAL REPRESENTATION OF QUALITY

    Directory of Open Access Journals (Sweden)

    Vineet V. Kumar

    2014-03-01

    Full Text Available Quality is an important aspect for every firm in modern era of competition. Every product has tough competition in terms of market reach. The factor, which actually makes any product long run in market, is quality and hence quality is the stepping-stone for success of any firm. For everyone meaning of quality is different. We have seen several economists who have defined quality by considering different factors, but what all of them have common in them is Customer satisfaction. Customer satisfaction is the ultimate result of quality. In three-dimensional graphical representation of quality, optimum quality is obtained by using three-dimensional graph by considering some important factors governing quality of any product, limiting factor, and customer satisfaction.

  2. Three dimensional contact/impact methodology

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1987-01-01

    The simulation of three-dimensional interface mechanics between reactor components and structures during static contact or dynamic impact is necessary to realistically evaluate their structural integrity to off-normal loads. In our studies of postulated core energy release events, we have found that significant structure-structure interactions occur in some reactor vessel head closure designs and that fluid-structure interactions occur within the reactor vessel. Other examples in which three-dimensional interface mechanics play an important role are: (1) impact response of shipping casks containing spent fuel, (2) whipping pipe impact on reinforced concrete panels or pipe-to-pipe impact after a pipe break, (3) aircraft crash on secondary containment structures, (4) missiles generated by turbine failures or tornados, and (5) drops of heavy components due to lifting accidents. The above is a partial list of reactor safety problems that require adequate treatment of interface mechanics and are discussed in this paper

  3. Thin-layer electrochemistry of ferrocenylbenzene derivatives: Intramolecular electronic communication

    International Nuclear Information System (INIS)

    Wang, Michael C.P.; Li Yunchao; Merbouh, Nabyl; Yu, Hua-Zhong

    2008-01-01

    Three arylferrocene derivatives, ferrocenylbenzene (MFcB), 1,3-diferrocenylbenzene (DFcB), and 1,3,5-triferrocenylbenzene (TFcB), were prepared and their redox properties systematically explored by thin-layer cyclic voltammetry (CV) and differential-pulse voltammetry (DPV). In contrast to conventional CV measurements that produced only a single pair of redox waves for all three compounds, the thin-layer technique discriminated between the multistep electron-transfer processes of DFcB and TFcB. In particular, two and three pairs of symmetric peaks were observed, respectively, when CV curves were recorded at a graphite electrode coated with a DFcB-containing and a TFcB-containing thin film of nitrobenzene and immersed in aqueous sodium perchlorate solution. These results demonstrate that the ferrocenyl moieties attached to the meta-positions of a benzene ring communicate electronically with each other, as a result of their distinct face-to-face orientations

  4. Application of thin-layer chromatography in radiochemistry

    International Nuclear Information System (INIS)

    Maki, Yasuyuki; Murakami, Yukio.

    1976-01-01

    In relation to the experimental procedures of thin-layer chromatography (TLC) in radiochemistry, the authors explained the preparation and development of radioactive test solutions, the methods of detection by autoradiography of isolated spots and by the calculation of measuring apparatus, and the identification of isolated spots. Next they outlined the carrier-free isolation and purification of nuclides, the quantification in combination with γ-ray spectrum, confirmation of the purity of RI-labeled medical supplies, their application to RI generator, thin-layer electrophoresis, in which electrophoresis and TLC were combined, and the application of this electrophoresis to isolation in recoil chemistry and to analysis and identification in carrier-free chemistry. (Kanao, K.)

  5. Three-dimensional simulation of vortex breakdown

    Science.gov (United States)

    Kuruvila, G.; Salas, M. D.

    1990-01-01

    The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.

  6. Impermeability effects in three-dimensional vesicles

    International Nuclear Information System (INIS)

    Biscari, P; Canevese, S M; Napoli, G

    2004-01-01

    We analyse the effects of the impermeability constraint on the equilibrium shapes of a three-dimensional vesicle hosting a rigid inclusion. A given alteration of the inclusion and/or vesicle parameters leads to shape modifications of different orders of magnitude, when applied to permeable or impermeable vesicles. Moreover, the enclosed-volume constraint wrecks the uniqueness of stationary equilibrium shapes, and gives rise to pear-shaped or stomatocyte-like vesicles

  7. Multiparallel Three-Dimensional Optical Microscopy

    Science.gov (United States)

    Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel

    2010-01-01

    Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.

  8. Three dimensional analysis of laterally loaded piles

    International Nuclear Information System (INIS)

    Yilmaz, C.

    1987-01-01

    In this study static analysis of laterally loaded pile is studied by the three models. The first model is the beam on discrete elastic springs. This model is analyzed using a flexibility method. The second model is the beam on a two-parameter elastic foundation. This model is analyzed using the linear finite element method. The third model is the finite element model, using the three-dimensional iso-parametric parabolic brick element. Three-dimensional pile group analysis is also performed using elastic constants of single pile obtained by any one of the above analyses. The main objective is to develop computer programs for each model related to single piles and to group analysis. Then, the deflections, rotations, moments, shears, stresses and strains of the single pile are obtained at any arbitrary point. Comparison is made between each model and with other studies such as Poulos 1971, Desai and Appel 1976. In addition, to provide a benchmark of three-dimensional finite element analysis, the Boussinesq problem is analyzed. (orig.)

  9. Three-Dimensional Reconstruction of Sandpile Interiors

    Science.gov (United States)

    Seidler, G. T.

    2001-03-01

    The granular bed, or sandpile, has become one of the condensed matter physicist's favorite systems. In addition to conceptual appeal, the simplest sandpile of monodisperse hard spheres is a valuable model system for understanding powders, liquids, and metallic glasses. Any fundamental approach to the transport and mechanical properties of three-dimensional mesoscale disordered materials must follow from a thorough understanding of their structure. However, in the overwhelming majority of cases, structure measurements have been limited to the mean filling fraction and the structural autocorrelation function. This is particularly unfortunate in the ongoing sandpile renaissance, where some of the most interesting questions concern structure and the relationship between structure and dynamics. I will discuss the combination of synchrotron x-ray microtomography and computer vision algorithms to perform three-dimensional virtual reconstructions of real sandpiles. This technique is rapid and noninvasive, and is applicable to samples large enough to separate bulk and boundary properties. The resulting complete knowledge of structure can be used to calculate otherwise inaccessible correlation functions. I will present results for several measures of the bond-orientational order in three-dimensional sandpiles, including fabric tensors and nematic order parameters.

  10. Three-dimensional deformation of orthodontic brackets

    Science.gov (United States)

    Melenka, Garrett W; Nobes, David S; Major, Paul W

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201

  11. Three-dimensional deformation of orthodontic brackets.

    Science.gov (United States)

    Melenka, Garrett W; Nobes, David S; Major, Paul W; Carey, Jason P

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire-bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design.

  12. Three dimensional illustrating - three-dimensional vision and deception of sensibility

    Directory of Open Access Journals (Sweden)

    Anita Gánóczy

    2009-03-01

    Full Text Available The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena of movement parallax, which can be used efficiently in making three-dimensional graphics, the Zöllner- and Corridor-illusion. There are present in this paper the visual elements, which contribute to define a plane two-dimensional image in three-dimension: coherent lines, the covering, the measurement changes, the relative altitude state, the abatement of detail profusion, the shadings and the perspective effects of colors.

  13. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

    International Nuclear Information System (INIS)

    Ono, Ichiro; Ohura, Takehiko; Kimura, Chu

    1989-01-01

    Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.)

  14. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ichiro; Ohura, Takehiko; Kimura, Chu (Hokkaido Univ., Sapporo (Japan). School of Medicine) (and others)

    1989-08-01

    Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.).

  15. Three-dimensional instability of standing waves

    Science.gov (United States)

    Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.

    2003-12-01

    We investigate the three-dimensional instability of finite-amplitude standing surface waves under the influence of gravity. The analysis employs the transition matrix (TM) approach and uses a new high-order spectral element (HOSE) method for computation of the nonlinear wave dynamics. HOSE is an extension of the original high-order spectral method (HOS) wherein nonlinear wave wave and wave body interactions are retained up to high order in wave steepness. Instead of global basis functions in HOS, however, HOSE employs spectral elements to allow for complex free-surface geometries and surface-piercing bodies. Exponential convergence of HOS with respect to the total number of spectral modes (for a fixed number of elements) and interaction order is retained in HOSE. In this study, we use TM-HOSE to obtain the stability of general three-dimensional perturbations (on a two-dimensional surface) on two classes of standing waves: plane standing waves in a rectangular tank; and radial/azimuthal standing waves in a circular basin. For plane standing waves, we confirm the known result of two-dimensional side-bandlike instability. In addition, we find a novel three-dimensional instability for base flow of any amplitude. The dominant component of the unstable disturbance is an oblique (standing) wave oriented at an arbitrary angle whose frequency is close to the (nonlinear) frequency of the original standing wave. This finding is confirmed by direct long-time simulations using HOSE which show that the nonlinear evolution leads to classical Fermi Pasta Ulam recurrence. For the circular basin, we find that, beyond a threshold wave steepness, a standing wave (of nonlinear frequency Omega) is unstable to three-dimensional perturbations. The unstable perturbation contains two dominant (standing-wave) components, the sum of whose frequencies is close to 2Omega. From the cases we consider, the critical wave steepness is found to generally decrease/increase with increasing radial

  16. Three-dimensional problems of the hydrodynamic interaction between bodies in a viscous fluid in the vicinity of their contact

    Czech Academy of Sciences Publication Activity Database

    Petrov, A. G.; Kharlamov, Alexander A.

    2013-01-01

    Roč. 48, č. 5 (2013), s. 577-587 ISSN 0015-4628 R&D Projects: GA ČR(CZ) GA103/09/2066 Grant - others:Development of the Scientific Potential of the Higher Schoo(RU) 2.1.2/3604; Russian Foundation for Basic Research (RU) 11- 01-005355 Institutional support: RVO:67985874 Keywords : lubrication layer theory * viscous and inviscid fluids * thin layer * vicinity of a contact * three-dimensional problems Subject RIV: BK - Fluid Dynamics Impact factor: 0.320, year: 2013

  17. Application of an engineering inviscid-boundary layer method to slender three-dimensional vehicle forebodies

    Science.gov (United States)

    Riley, Christopher J.

    1993-01-01

    An engineering inviscid-boundary layer method has been modified for application to slender three-dimensional (3-D) forebodies which are characteristic of transatmospheric vehicles. An improved shock description in the nose region has been added to the inviscid technique which allows the calculation of a wider range of body geometries. The modified engineering method is applied to the perfect gas solution over a slender 3-D configuration at angle of attack. The method predicts surface pressures and laminar heating rates on the windward side of the vehicle that compare favorably with numerical solutions of the thin-layer Navier-Stokes equations. These improvements extend the 3-D capabilities of the engineering method and significantly increase its design applications.

  18. Three-dimensional stereo by photometric ratios

    International Nuclear Information System (INIS)

    Wolff, L.B.; Angelopoulou, E.

    1994-01-01

    We present a methodology for corresponding a dense set of points on an object surface from photometric values for three-dimensional stereo computation of depth. The methodology utilizes multiple stereo pairs of images, with each stereo pair being taken of the identical scene but under different illumination. With just two stereo pairs of images taken under two different illumination conditions, a stereo pair of ratio images can be produced, one for the ratio of left-hand images and one for the ratio of right-hand images. We demonstrate how the photometric ratios composing these images can be used for accurate correspondence of object points. Object points having the same photometric ratio with respect to two different illumination conditions constitute a well-defined equivalence class of physical constraints defined by local surface orientation relative to illumination conditions. We formally show that for diffuse reflection the photometric ratio is invariant to varying camera characteristics, surface albedo, and viewpoint and that therefore the same photometric ratio in both images of a stereo pair implies the same equivalence class of physical constraints. The correspondence of photometric ratios along epipolar lines in a stereo pair of images under different illumination conditions is a correspondence of equivalent physical constraints, and the determination of depth from stereo can be performed. Whereas illumination planning is required, our photometric-based stereo methodology does not require knowledge of illumination conditions in the actual computation of three-dimensional depth and is applicable to perspective views. This technique extends the stereo determination of three-dimensional depth to smooth featureless surfaces without the use of precisely calibrated lighting. We demonstrate experimental depth maps from a dense set of points on smooth objects of known ground-truth shape, determined to within 1% depth accuracy

  19. Three-dimensional CT of the mandible

    International Nuclear Information System (INIS)

    Zinreich, S.J.; Price, J.C.; Wang, H.; Ahn, H.S.; Kashima, H.

    1988-01-01

    Seventeen patients with mandibular oblation for facial neoplasia, primary neoplasm, and trauma were evaluated with CT and three-dimensional CT. In eight of these patients, a computerized acrylic model was generated for preoperative planning and postoperative reconstruction. The ramus and body of the mandible were reconstructed with mirror image and fusion techniques. Reconstructions of the anterior mandible were generated from models including the midface, skull based, and residual mandibular fragments. The results are preliminary; however, the authors believe that these represent a powerful new tool and a significant advance in mandibular reconstructive technique, reduced anesthesia time, and the optimized restoration of dental alignment and facial contour

  20. Three-dimensional interpretation of TEM soundings

    Science.gov (United States)

    Barsukov, P. O.; Fainberg, E. B.

    2013-07-01

    We describe the approach to the interpretation of electromagnetic (EM) sounding data which iteratively adjusts the three-dimensional (3D) model of the environment by local one-dimensional (1D) transformations and inversions and reconstructs the geometrical skeleton of the model. The final 3D inversion is carried out with the minimal number of the sought parameters. At each step of the interpretation, the model of the medium is corrected according to the geological information. The practical examples of the suggested method are presented.

  1. Three Dimensional Double Layers in Magnetized Plasmas

    DEFF Research Database (Denmark)

    Jovanovic, D.; Lynov, Jens-Peter; Michelsen, Poul

    1982-01-01

    Experimental results are presented which demonstrate the formation of fully three dimensional double layers in a magnetized plasma. The measurements are performed in a magnetized stationary plasma column with radius 1.5 cm. Double layers are produced by introducing an electron beam with radius 0.......4 cm along the magnetic field from one end of the column. The voltage drop across the double layer is found to be determined by the energy of the incoming electron beam. In general we find that the width of the double layer along the external magnetic field is determined by plasma density and beam...

  2. Three-dimensional flow about penguin wings

    Science.gov (United States)

    Noca, Flavio; Sudki, Bassem; Lauria, Michel

    2012-11-01

    Penguins, contrary to airborne birds, do not need to compensate for gravity. Yet, the kinematics of their wings is highly three-dimensional and seems exceedingly complex for plain swimming. Is such kinematics the result of an evolutionary optimization or is it just a forced adaptation of an airborne flying apparatus to underwater swimming? Some answers will be provided based on flow dynamics around robotic penguin wings. Updates will also be presented on the development of a novel robotic arm intended to simulate penguin swimming and enable novel propulsion devices.

  3. Three-dimensional teletherapy treatment planning

    International Nuclear Information System (INIS)

    Panthaleon van Eck, R.B. van.

    1986-01-01

    This thesis deals with physical/mathematical backgrounds of computerized teletherapy treatment planning. The subjects discussed in this thesis can be subdivided into three main categories: a) Three-dimensional treatment planning. A method is evaluated which can be used for the purpose of simulation and optimization of dose distributions in three dimensions. b) The use of Computed Tomography. The use of patient information obtained from Computed Tomography for the purpose of dose computations is evaluated. c) Dose computational models for photon- and electron beams. Models are evaluated which provide information regarding the way in which the radiation dose is distributed in the patient (viz. is absorbed and/or dispersed). (Auth.)

  4. Creating three-dimensional thermal maps

    CSIR Research Space (South Africa)

    Price

    2011-11-01

    Full Text Available stream_source_info Price_2011.pdf.txt stream_content_type text/plain stream_size 30895 Content-Encoding ISO-8859-1 stream_name Price_2011.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Creating Three...-Dimensional Thermal Maps Mathew Price Cogency cc Cape Town Email: mathew@cogency.co.za Jeremy Green CSIR Centre for Mining Innovation Johannesburg Email: jgreen@csir.co.za John Dickens CSIR Centre for Mining Innovation Johannesburg Email: jdickens...

  5. Three-dimensional cooling of muons

    CERN Document Server

    Vsevolozhskaya, T A

    2000-01-01

    The simultaneous ionization cooling of muon beams in all three - the longitudinal and two transverse - directions is considered in a scheme, based on bent lithium lenses with dipole constituent of magnetic field in them, created by a special configuration of current-carrying rod. An analysis of three-dimensional cooling is performed with the use of kinetic equation method. Results of numerical calculation for a specific beam line configuration are presented together with results of computer simulation using the Moliere distribution to describe the Coulomb scattering and the Vavilov distribution used to describe the ionization loss of energy.

  6. Micro-fabrication of three dimensional pyrolysed carbon microelectrodes

    DEFF Research Database (Denmark)

    2017-01-01

    ; soft baking the photoresist layer; performing a full depth exposure with UV light through a first mask; performing a partial depth exposure with UV light through a second mask; wherein the full depth exposure and the partial depth exposure are aligned to ensure that the first and second latent images...... are connected to each other; post-exposure baking the photoresist layer; and developing the microscale patterned resist template as a free-standing structure of cross-linked resist with lateral hanging structures that are supported by vertical support structures at a free height above the substrate. The method...... is characterized by a soft baking temperature below 70 °C. Repetitive coating and partial depth exposure allows for the fabrication of multiple level laterally interconnected structures. Carbonization of the resist template provides truly three-dimensional carbon microelectrode structures....

  7. Surface enhanced Raman scattering imaging of developed thin-layer chromatography plates.

    Science.gov (United States)

    Freye, Chris E; Crane, Nichole A; Kirchner, Teresa B; Sepaniak, Michael J

    2013-04-16

    A method for hyphenating surface enhanced Raman scattering (SERS) and thin-layer chromatography (TLC) is presented that employs silver-polymer nanocomposites as an interface. Through the process of conformal blotting, analytes are transferred from TLC plates to nanocomposite films before being imaged via SERS. A procedure leading to maximum blotting efficiency was established by investigating various parameters such as time, pressure, and type and amount of blotting solvent. Additionally, limits of detection were established for test analytes malachite green isothiocyanate, 4-aminothiophenol, and Rhodamine 6G (Rh6G) ranging from 10(-7) to 10(-6) M. Band broadening due to blotting was minimal (∼10%) as examined by comparing the spatial extent of TLC-spotted Rh6G via fluorescence and then the SERS-based spot size on the nanocomposite after the blotting process. Finally, a separation of the test analytes was carried out on a TLC plate followed by blotting and the acquisition of distance × wavenumber × intensity three-dimensional TLC-SERS plots.

  8. Three-dimensional radiation treatment planning

    International Nuclear Information System (INIS)

    Mohan, R.

    1989-01-01

    A major aim of radiation therapy is to deliver sufficient dose to the tumour volume to kill the cancer cells while sparing the nearby health organs to prevent complications. With the introduction of devices such as CT and MR scanners, radiation therapy treatment planners have access to full three-dimensional anatomical information to define, simulate, and evaluate treatments. There are a limited number of prototype software systems that allow 3D treatment planning currently in use. In addition, there are more advanced tools under development or still in the planning stages. They require sophisticated graphics and computation equipment, complex physical and mathematical algorithms, and new radiation treatment machines that deliver dose very precisely under computer control. Components of these systems include programs for the identification and delineation of the anatomy and tumour, the definition of radiation beams, the calculation of dose distribution patterns, the display of dose on 2D images and as three dimensional surfaces, and the generation of computer images to verify proper patient positioning in treatment. Some of these functions can be performed more quickly and accurately if artificial intelligence or expert systems techniques are employed. 28 refs., figs

  9. Three-dimensional fluorescence lifetime tomography

    International Nuclear Information System (INIS)

    Godavarty, Anuradha; Sevick-Muraca, Eva M.; Eppstein, Margaret J.

    2005-01-01

    Near-infrared fluorescence tomography using molecularly targeted lifetime-sensitive, fluorescent contrast agents have applications for early-stage cancer diagnostics. Yet, although the measurement of fluorescent lifetime imaging microscopy (FLIM) is extensively used in microscopy and spectroscopy applications, demonstration of fluorescence lifetime tomography for medical imaging is limited to two-dimensional studies. Herein, the feasibility of three-dimensional fluorescence-lifetime tomography on clinically relevant phantom volumes is established, using (i) a gain-modulated intensified charge coupled device (CCD) and modulated laser diode imaging system, (ii) two fluorescent contrast agents, e.g., Indocyanine green and 3-3'-Diethylthiatricarbocyanine iodide differing in their fluorescence lifetime by 0.62 ns, and (iii) a two stage approximate extended Kalman filter reconstruction algorithm. Fluorescence measurements of phase and amplitude were acquired on the phantom surface under different target to background fluorescence absorption (70:1, 100:1) and fluorescence lifetime (1:1, 2.1:1) contrasts at target depths of 1.4-2 cm. The Bayesian tomography algorithm was employed to obtain three-dimensional images of lifetime and absorption owing to the fluorophores

  10. Three-dimensional image signals: processing methods

    Science.gov (United States)

    Schiopu, Paul; Manea, Adrian; Craciun, Anca-Ileana; Craciun, Alexandru

    2010-11-01

    Over the years extensive studies have been carried out to apply coherent optics methods in real-time processing, communications and transmission image. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. We describe the results of literature investigation research of processing methods for the signals of the three-dimensional images. All commercially available 3D technologies today are based on stereoscopic viewing. 3D technology was once the exclusive domain of skilled computer-graphics developers with high-end machines and software. The images capture from the advanced 3D digital camera can be displayed onto screen of the 3D digital viewer with/ without special glasses. For this is needed considerable processing power and memory to create and render the complex mix of colors, textures, and virtual lighting and perspective necessary to make figures appear three-dimensional. Also, using a standard digital camera and a technique called phase-shift interferometry we can capture "digital holograms." These are holograms that can be stored on computer and transmitted over conventional networks. We present some research methods to process "digital holograms" for the Internet transmission and results.

  11. Three dimensional animated images of anorectal malformations

    International Nuclear Information System (INIS)

    Ueno, Shigeru; Yanagimachi, Noriharu; Muro, Isao; Komiya, Taizo; Yokoyama, Seishichi; Hirakawa, Hitoshi; Tajima, Tomoo; Mitomi, Toshio; Suto, Yasuzo.

    1996-01-01

    Accurate reconstruction of the pelvic structures is a most important factor in obtaining a desirable result after anorectoplasty for a patient with anorectal malformation. Preoperative evaluation of the anatomy is indispensable for choosing an appropriate operative method in each case. To facilitate preoperative evaluation, three dimensional animated images of the pelvic structure of patients with anorectal malformations were constructed by computer graphics based upon tomographic images obtained from magnetic resonance imaging. Axial 1-mm thick images of the pelvic portion were generated with spoiling pulse gradient echo sequences using short repetition times (13 msec TR) and short echo times (6 msec TE) with a flip angle of 25 degrees with the patient in the jack-knife position. Graphic data from MR images were transferred to a graphic work station and processed on it. The skin surface, the ano-rectum, the lower urinary tract and the sphincter musculature were segmented by thresholding images by the signal intensity. Three dimensional images were displayed by surface rendering method using the segmented data of each organ and then animation images of these organs were obtained. The anatomy of each type of anomaly was easily recognized by 3-D visualization, and animation of the pelvic viscera and the sphincter musculature made the images more realistic. Animated images of the musculature were especially useful for simulating surgical procedures and could be helpful for reviewing surgical results. (author)

  12. Three-dimensional analysis of antenna sheaths

    International Nuclear Information System (INIS)

    Myra, J.R.; D'Ippolito, D.A.; Ho, Y.L.

    1996-01-01

    The present work is motivated by the importance of r.f. sheaths in determining the antenna-plasma interaction and the sensitivity of the sheaths to the complicated three-dimensional structure of modern ion cyclotron range of frequency (ICRF) antennas. To analyze r.f. sheaths on the plasma facing regions of the launcher, we first calculate the contact points of the tokamak magnetic field lines on the surface of the antenna Faraday screen and nearby limiters for realistic three-dimensional magnetic flux surface and antenna geometries. Next, the r.f. voltage that can drive sheaths at the contact points is determined and used to assess the resulting sheath power dissipation, r.f.-driven sputtering, and r.f.-induced convective cells (which produce edge profile modification). The calculations are embodied in a computer code, ANSAT (antenna sheath analysis tool), and sample ANSAT runs are shown to highlight the physics- and geometry-dependent characteristics of the r.f. sheaths and their relationship to the antenna design. One use of ANSAT is therefore as a design tool, to assess the strengths and weaknesses of a given design with respect to critical voltage handling and edge plasma interaction issues. Additionally, examples are presented where ANSAT has been useful in the analysis and interpretation of ICRF experiments (orig.)

  13. Mathematical modelling of thin layer drying of pear

    Directory of Open Access Journals (Sweden)

    Lutovska Monika

    2016-01-01

    Full Text Available In this study, a thin - layer drying of pear slices as a function of drying conditions were examined. The experimental data set of thin - layer drying kinetics at five drying air temperatures 30, 40, 50, 60 and 70°C, and three drying air velocities 1, 1.5 and 2 m s-1 were obtained on the experimental setup, designed to imitate industrial convective dryer. Five well known thin - layer drying models from scientific literature were used to approximate the experimental data in terms of moisture ratio. In order to find which model gives the best results, numerical experiments were made. For each model and data set, the statistical performance index, (φ, and chi-squared, (χ2, value were calculated and models were ranked afterwards. The performed statistical analysis shows that the model of Midilli gives the best statistical results. Because the effect of drying air temperature and drying air velocity on the empirical parameters was not included in the base Midilli model, in this study the generalized form of this model was developed. With this model, the drying kinetic data of pear slices can be approximated with high accuracy. The effective moisture diffusivity was determined by using Fick’s second laws. The obtained values of the effective moisture diffusivity, (Deff, during drying ranged between 6.49 x 10-9 and 3.29 x 10-8 m2 s-1, while the values of activation energy (E0 varied between 28.15 to 30.51 kJ mol-1.

  14. Thin-Layer Solutions of the Helmholtz and Related Equations

    KAUST Repository

    Ockendon, J. R.

    2012-01-01

    This paper concerns a certain class of two-dimensional solutions to four generic partial differential equations-the Helmholtz, modified Helmholtz, and convection-diffusion equations, and the heat conduction equation in the frequency domain-and the connections between these equations for this particular class of solutions.S pecifically, we consider thin-layer solutions, valid in narrow regions across which there is rapid variation, in the singularly perturbed limit as the coefficient of the Laplacian tends to zero.F or the wellstudied Helmholtz equation, this is the high-frequency limit and the solutions in question underpin the conventional ray theory/WKB approach in that they provide descriptions valid in some of the regions where these classical techniques fail.E xamples are caustics, shadow boundaries, whispering gallery, and creeping waves and focusing and bouncing ball modes.It transpires that virtually all such thin-layer models reduce to a class of generalized parabolic wave equations, of which the heat conduction equation is a special case. Moreover, in most situations, we will find that the appropriate parabolic wave equation solutions can be derived as limits of exact solutions of the Helmholtz equation.W e also show how reasonably well-understood thin-layer phenomena associated with any one of the four generic equations may translate into less well-known effects associated with the others.In addition, our considerations also shed some light on the relationship between the methods of matched asymptotic, WKB, and multiple-scales expansions. © 2012 Society for Industrial and Applied Mathematics.

  15. Rosenzweig instability in a thin layer of a magnetic fluid

    Science.gov (United States)

    Korovin, V. M.

    2013-12-01

    A simple mathematical model of the initial stage of nonlinear evolution of the Rosenzweig instability in a thin layer of a nonlinearly magnetized viscous ferrofluid coating a horizontal nonmagnetizable plate is constructed on the basis of the system of equations and boundary conditions of ferrofluid dynamics. A dispersion relation is derived and analyzed using the linearized equations of this model. The critical magnetization of the initial layer with a flat free surface, the threshold wavenumber, and the characteristic time of evolution of the most rapidly growing mode are determined. The equation for the neutral stability curve, which is applicable for any physically admissible law of magnetization of a ferrofluid, is derived analytically.

  16. The thin layer technique and its application to electron microscopy

    International Nuclear Information System (INIS)

    Ranc, G.

    1957-10-01

    This work deals with the technique of thin layers obtained by evaporation under vacuum, in the thickness range extending from a few monoatomic layers to several hundred angstroms. The great theoretical and practical interest of these layers has, it is well known, given rise to many investigations from Faraday onwards. Within the necessarily restricted limits of this study, we shall approach the problem more particularly from the point of view of: - their production; - their use in electron microscopy. A critical appraisal is made, in the light of present-day knowledge, based on our personal experience and on an extensive bibliography which we have collected on the subject. (author) [fr

  17. Steady, three-dimensional, internally heated convection

    International Nuclear Information System (INIS)

    Schubert, G.; Glatzmaier, G.A.; Travis, B.

    1993-01-01

    Numerical calculations have been carried out of steady, symmetric, three-dimensional modes of convection in internally heated, infinite Prandtl number, Boussinesq fluids at a Rayleigh number of 1.4x10 4 in a spherical shell with inner/outer radius of 0.55 and in a 3x3x1 rectangular box. Multiple patterns of convection occur in both geometries. In the Cartesian geometry the patterns are dominated by cylindrical cold downflows and a broad hot upwelling. In the spherical geometry the patterns consist of cylindrical cold downwellings centered either at the vertices of a tetrahedron or the centers of the faces of a cube. The cold downflow cylinders are immersed in a background of upwelling within which there are cylindrical hot concentrations (plumes) and hot halos around the downflows. The forced hot upflow return plumes of internally heated spherical convection are fundamentally different from the buoyancy-driven plumes of heated from below convection

  18. Exact solutions in three-dimensional gravity

    CERN Document Server

    Garcia-Diaz, Alberto A

    2017-01-01

    A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields, and on vacuum solutions of topologically massive gravity with a cosmological constant. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravit...

  19. Three-dimensional printing physiology laboratory technology.

    Science.gov (United States)

    Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R

    2013-12-01

    Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories.

  20. Towards microscale electrohydrodynamic three-dimensional printing

    International Nuclear Information System (INIS)

    He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen

    2016-01-01

    It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics. (paper)

  1. Three-dimensional hologram display system

    Science.gov (United States)

    Mintz, Frederick (Inventor); Chao, Tien-Hsin (Inventor); Bryant, Nevin (Inventor); Tsou, Peter (Inventor)

    2009-01-01

    The present invention relates to a three-dimensional (3D) hologram display system. The 3D hologram display system includes a projector device for projecting an image upon a display medium to form a 3D hologram. The 3D hologram is formed such that a viewer can view the holographic image from multiple angles up to 360 degrees. Multiple display media are described, namely a spinning diffusive screen, a circular diffuser screen, and an aerogel. The spinning diffusive screen utilizes spatial light modulators to control the image such that the 3D image is displayed on the rotating screen in a time-multiplexing manner. The circular diffuser screen includes multiple, simultaneously-operated projectors to project the image onto the circular diffuser screen from a plurality of locations, thereby forming the 3D image. The aerogel can use the projection device described as applicable to either the spinning diffusive screen or the circular diffuser screen.

  2. Three-dimensional echocardiography in valve disease

    Directory of Open Access Journals (Sweden)

    Cesare Fiorentini

    2009-08-01

    Full Text Available This review covers the role of three-dimensional (3D echocardiography in the diagnosis of heart valve disease. Several factors have contributed to the evolution of this technique, which is currently a simple and routine method: rapid evolution in probe and computer technologies, demonstration that 3D data sets allowed more complete and accurate evaluation of cardiac structures, emerging clinical experience indicating the strong potential particularly in valve diseases, volume and function of the two ventricle measurements and several other fields. This report will review current and future applications of 3D echocardiography in mitral, aortic and tricuspid valve diseases underlying both qualitative (morphologic and quantitative advantages of this technique. (Heart International 2007; 3: 35-41

  3. Towards microscale electrohydrodynamic three-dimensional printing

    Science.gov (United States)

    He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen

    2016-02-01

    It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics.

  4. An Introduction of Three-dimensional Grammar

    Directory of Open Access Journals (Sweden)

    Fan Xiao

    2017-12-01

    Full Text Available This paper introduces some key points of Three-dimensional Grammar. As for the structure, it can be distinguished into syntactic structure, semantic structure and pragmatic structure from the perspectives of syntax, semantics and pragmatics. And the same is true with the followings, such as grammatical constituents, grammatical functions, grammatical meanings, grammatical focuses. Sentence types which is called sentence pattern, sentence model and sentence types respectively, and analysis methods. This paper proposes that grammatical researches should be done in accordance with the four principles, that is form and meaning co-verified, static and dynamic co-referenced, structure and function co-testified and description and interpretation co-promoted.

  5. Three-dimensional function photonic crystals

    Science.gov (United States)

    Zhang, Hai-Feng

    2017-11-01

    In this paper, the properties of the photonic band gaps (PBGs) of three-dimensional (3D) function photonic crystals (PCs) are theoretically investigated by a modified plane wave expansion (PWE) method, whose equations for computations are deduced. The configuration of 3D function PCs is the dielectric spheres inserted in the air background with simple-cubic (SC) lattices whose dielectric constants are the functions of space coordinates, which can be realized by the electro-optical or optical Kerr effect in the practice. The influences of the parameter for 3D function PCs on the PBGs also are discussed. The calculated results show that the bandwidths and number of PBGs can be tuned with different distributions of function dielectrics. Compared with the conventional 3D dielectric PCs with SC lattices, the larger and more PBGs can be obtained in the 3D function PCs. Those results provide a new way to design the novel practical devices.

  6. Three-dimensional tori and Arnold tongues

    Energy Technology Data Exchange (ETDEWEB)

    Sekikawa, Munehisa, E-mail: sekikawa@cc.utsunomiya-u.ac.jp [Department of Mechanical and Intelligent Engineering, Utsunomiya University, Utsunomiya-shi 321-8585 (Japan); Inaba, Naohiko [Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kawasaki-shi 214-8571 (Japan); Kamiyama, Kyohei [Department of Electronics and Bioinformatics, Meiji University, Kawasaki-shi 214-8571 (Japan); Aihara, Kazuyuki [Institute of Industrial Science, the University of Tokyo, Meguro-ku 153-8505 (Japan)

    2014-03-15

    This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.

  7. Multiscale modeling of three-dimensional genome

    Science.gov (United States)

    Zhang, Bin; Wolynes, Peter

    The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.

  8. Three-dimensional reconstruction of CT images

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Toshiaki; Kattoh, Keiichi; Kawakami, Genichiroh; Igami, Isao; Mariya, Yasushi; Nakamura, Yasuhiko; Saitoh, Yohko; Tamura, Koreroku; Shinozaki, Tatsuyo

    1986-09-01

    Computed tomography (CT) has the ability to provide sensitive visualization of organs and lesions. Owing to the nature of CT to be transaxial images, a structure which is greater than a certain size appears as several serial CT images. Consequently each observer must reconstruct those images into a three-dimensional (3-D) form mentally. It has been supposed to be of great use if such a 3-D form can be described as a definite figure. A new computer program has been developed which can produce 3-D figures from the profiles of organs and lesions on CT images using spline curves. The figures obtained through this method are regarded to have practical applications.

  9. Full three-dimensional isotropic transformation media

    International Nuclear Information System (INIS)

    García-Meca, C; Martí, J; Martínez, A; Ortuño, R

    2014-01-01

    We present a method that enables the implementation of full three-dimensional (3D) transformation media with minimized anisotropy. It is based on a special kind of shape-preserving mapping and a subsequent optimization process. For sufficiently smooth transformations, the resulting anisotropy can be neglected, paving the way for practically realizable 3D devices. The method is independent of the considered wave phenomenon and can thus be applied to any field for which a transformational technique exists, such as acoustics or thermodynamics. Full 3D isotropy has an additional important implication for optical transformation media, as it eliminates the need for magnetic materials in many situations. To illustrate the potential of the method, we design 3D counterparts of transformation-based electromagnetic squeezers and bends. (paper)

  10. The Three-Dimensional EIT Wave

    Science.gov (United States)

    Thompson, B. J.; Biesecker, D. A.; Gilbert, H. R.; Lawrence, G. R.; Ofman, L.; Wu, S. T.; Warmuth, A.; Fisher, Richard R. (Technical Monitor)

    2002-01-01

    An EIT wave is an impulsive disturbance which has been observed in the EUV, Soft X-ray and white light corona, with corresponding observations in the chromosphere. The effects of these disturbances can be observed across the entire solar disk of the Sun, and throughout the inner heliosphere as well. However, the picture is not complete; observations alone do not establish a complete understanding of the nature of this three-dimensional phenomenon. A number of associated phenomena have been documented, though in most cases causality has not determined. Additionally, it is unclear which factors govern the impulse's ability to affect regions of the corona and heliosphere. We discuss the various observations and the models which provided links between the associated phenomena.

  11. Magnetohydrodynamic study of three-dimensional instability of the spontaneous fast magnetic reconnection

    International Nuclear Information System (INIS)

    Shimizu, T.; Kondoh, K.; Ugai, M.; Shibata, K.

    2009-01-01

    Three-dimensional instability of the spontaneous fast magnetic reconnection is studied with magnetohydrodynamic (MHD) simulation, where the two-dimensional model of the spontaneous fast magnetic reconnection is destabilized in three dimension. Generally, in two-dimensional magnetic reconnection models, every plasma condition is assumed to be uniform in the sheet current direction. In such two-dimensional MHD simulations, the current sheet destabilized by the initial resistive disturbance can be developed to fast magnetic reconnection by a current driven anomalous resistivity. In this paper, the initial resistive disturbance includes a small amount of fluctuations in the sheet current direction, i.e., along the magnetic neutral line. The other conditions are the same as that of previous two-dimensional MHD studies for fast magnetic reconnection. Accordingly, we may expect that approximately two-dimensional fast magnetic reconnection occurs in the MHD simulation. In fact, the fast magnetic reconnection activated on the first stage of the simulation is two dimensional. However, on the subsequent stages, it spontaneously becomes three dimensional and is strongly localized in the sheet current direction. The resulting three-dimensional fast magnetic reconnection intermittently ejects three-dimensional magnetic loops. Such intermittent ejections of the three-dimensional loops are similar to the intermittent downflows observed in the solar flares. The ejection of the three-dimensional loops seems to be random but, numerically and theoretically, it is shown that the aspect ratio of the ejected loops is limited under a criterion.

  12. Three-dimensional (3D) analysis of the temporomandibular joint

    DEFF Research Database (Denmark)

    Kitai, N.; Kreiborg, S.; Murakami, S.

    Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint......Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint...

  13. Three dimensional graphene transistor for ultra-sensitive pH sensing directly in biological media.

    Science.gov (United States)

    Ameri, Shideh Kabiri; Singh, Pramod K; Sonkusale, Sameer R

    2016-08-31

    In this work, pH sensing directly in biological media using three dimensional liquid gated graphene transistors is presented. The sensor is made of suspended network of graphene coated all around with thin layer of hafnium oxide (HfO2), showing high sensitivity and sensing beyond the Debye-screening limit. The performance of the pH sensor is validated by measuring the pH of isotonic buffered, Dulbecco's phosphate buffered saline (DPBS) solution, and of blood serum derived from Sprague-Dawley rat. The pH sensor shows high sensitivity of 71 ± 7 mV/pH even in high ionic strength media with molarities as high as 289 ± 1 mM. High sensitivity of this device is owing to suspension of three dimensional graphene in electrolyte which provides all around liquid gating of graphene, leading to higher electrostatic coupling efficiency of electrolyte to the channel and higher gating control of transistor channel by ions in the electrolyte. Coating graphene with hafnium oxide film (HfO2) provides binding sites for hydrogen ions, which results in higher sensitivity and sensing beyond the Debye-screening limit. The 3D graphene transistor offers the possibility of real-time pH measurement in biological media without the need for desaltation or sample preparation. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Thin layer activation and ultra thin layer activation: two complementary techniques for wear and corrosion studies in various fields

    International Nuclear Information System (INIS)

    Sauvage, T.; Vincent, L.; Blondiaux, G.

    2002-01-01

    Thin layer activation (TLA) is widely used since more than 25 years to study surface wear or corrosion. This well known technique uses most of the time charged particles activation, which gives sensitivity in the range of the micrometer, except when the fluid mode of detection is utilized. In this case application of the method is limited to phenomena where we have transport of radioactive fragments to detection point. The main disadvantage of this procedure is the error due to trapping phenomena between the wear or corrosion point and detection setup. So the ultra thin layer activation (UTLA) has been developed to get nanometric sensitivity without using any fluid for radioactivity transportation, which is the main source of error of the TLA technique. In this paper we shall briefly describe the TLA technique and the most important fields of application. Then we shall emphasise on UTLA with a presentation of the principle of the method and actual running of application. The main problem concerning UTLA is calibration which requires the use of thin films (usually 10 to 100 nanometers) deposited on substrate. This process is time consuming and we shall demonstrate how running software developed in the lab can solve it. We shall finish the presentation by giving some potential application of the technique in various fields. (authors)

  15. Turbulence in Three Dimensional Simulations of Magnetopause Reconnection

    Science.gov (United States)

    Drake, J. F.; Price, L.; Swisdak, M.; Burch, J. L.; Cassak, P.; Dahlin, J. T.; Ergun, R.

    2017-12-01

    We present two- and three-dimensional particle-in-cell simulations of the 16 October 2015 MMS magnetopause reconnection event. While the two-dimensional simulation is laminar, turbulence develops at both the x-line and along the magnetic separatrices in the three-dimensional simulation. This turbulence is electromagnetic in nature, is characterized by a wavevector k given by kρ e ˜(m_e/m_i)0.25 with ρ e the electron Larmor radius, and appears to have the ion pressure gradient as its source of free energy. Taken together, these results suggest the instability is a variant of the lower-hybrid drift instability. The turbulence produces electric field fluctuations in the out-of-plane direction (the direction of the reconnection electric field) with an amplitude of around ± 10 mV/m, which is much greater than the reconnection electric field of around 0.1 mV/m. Such large values of the out-of-plane electric field have been identified in the MMS data. The turbulence in the simulation controls the scale lengths of the density profile and current layers in asymmetric reconnection, driving them closer to √ {ρ eρ_i } than the ρ e or de scalings seen in 2D reconnection simulations, where de is the electron inertial length. The turbulence is strong enough to make the magnetic field around the reconnection island chaotic and produces both anomalous resistivity and anomalous viscosity. Each contribute significantly to breaking the frozen-in condition in the electron diffusion region. The crescent-shaped features in velocity space seen both in MMS observations and in two-dimensional simulations survive, even in the turbulent environment of the three-dimensional system. We compare and contrast these results to a three-dimensional simulation of the 8 December 2015 MMS magnetopause reconnection event in which the reconnecting and out-of-plane guide fields are comparable. LHDI is still present in this event, although its appearance is modified by the presence of the guide

  16. Study on three dimensional seismic isolation system

    International Nuclear Information System (INIS)

    Morishita, Masaki; Kitamura, Seiji

    2003-01-01

    Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC) launched joint research programs on structural design and three-dimensional seismic isolation technologies, as part of the supporting R and D activities for the feasibility studies on commercialized fast breeder reactor cycle systems. A research project by JAPC under the auspices of the Ministry of Economy, Trade, and Industry (METI) with technical support by JNC is included in this joint study. This report contains the results of the research on the three-dimensional seismic isolation technologies, and the results of this year's study are summarized in the following five aspects. (1) Study on Earthquake Condition for Developing 3-dimensional Base Isolation System. The case study S2 is one of the maximum ground motions, of which the records were investigated up to this time. But a few observed near the fault exceed the case study S2 in the long period domain, depending on the fault length and conditions. Generally it is appropriate that the response spectra ratio (vertical/horizontal) is 0.6. (2) Performance Requirement for 3-dimensional Base Isolation System and Devices. Although the integrity map of main equipment/piping dominate the design criteria for the 3-dimensional base isolation system, the combined integrity map is the same as those of FY 2000, which are under fv=1Hz and over hv=20%. (3) Developing Targets and Schedule for 3-dimensional Isolation Technology. The target items for 3-dimensional base isolation system were rearranged into a table, and developing items to be examined concerning the device were also adjusted. A development plan until FY 2009 was made from the viewpoint of realization and establishment of a design guideline on 3-dimensional base isolation system. (4) Study on 3-dimensional Entire Building Base Isolation System. Three ideas among six ideas that had been proposed in FY2001, i.e., '3-dimensional base isolation system incorporating hydraulic

  17. Clinical significance of three-dimensional sonohysterography

    International Nuclear Information System (INIS)

    Lee, Eun Hye; Lee, Mi Hwa; Lee, Chan; Kim, Jong Wook; Shin, Myung Choel

    1999-01-01

    To evaluate the usefulness of three dimensional sonohysterography (3D SHG) in the evaluation of uterine endometrial and submucosal lesions in comparison with conventional two-dimensional sonohysterography (2D SHG). Our series consisted of 26 patients (mean aged 41 years) who complained of uterine bleeding, menorrhagia, or dysmenorrhea. 2D SHG was performed, and then 3D SHG was done after the volume mode was switched on. Simultaneous display of three perpendicular two-dimensional planes and surface rendering of findings on particular section were obtained. We analyzed whether the endometrium was thickened or not, and the location, size, shape, echogenicity, posterior shadowing, and echogenic rim of the focal lesion. The results were compared with the pathologic findings or MRI. There were submucosal myomas (n=12), intramural myomas (n=2), endometrial polyps (n=7), placental polyp (n=1), and normal endometrial cavities (n=4) on SHG. Nineteen cases were confirmed by pathologic findings or MRI. The results were correlated in 89% (17/19) of the cases. We misdiagnosed 2 cases: focal endometrial hyperplasia and choriocarcinoma were misdiagnosed as endometrial polyp and placental polyp, respectively. Imaging diagnoses were same in the techniques. Comparing with 2D SHG, 3D SHG provided a subjective display of pathologic findings and an additional information about spatial relationship between focal lesion and surroundings.

  18. Clinical significance of three-dimensional sonohysterography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Hye; Lee, Mi Hwa; Lee, Chan; Kim, Jong Wook; Shin, Myung Choel [Pochon Cha University College of Medicine, Pochon (Korea, Republic of)

    1999-12-15

    To evaluate the usefulness of three dimensional sonohysterography (3D SHG) in the evaluation of uterine endometrial and submucosal lesions in comparison with conventional two-dimensional sonohysterography (2D SHG). Our series consisted of 26 patients (mean aged 41 years) who complained of uterine bleeding, menorrhagia, or dysmenorrhea. 2D SHG was performed, and then 3D SHG was done after the volume mode was switched on. Simultaneous display of three perpendicular two-dimensional planes and surface rendering of findings on particular section were obtained. We analyzed whether the endometrium was thickened or not, and the location, size, shape, echogenicity, posterior shadowing, and echogenic rim of the focal lesion. The results were compared with the pathologic findings or MRI. There were submucosal myomas (n=12), intramural myomas (n=2), endometrial polyps (n=7), placental polyp (n=1), and normal endometrial cavities (n=4) on SHG. Nineteen cases were confirmed by pathologic findings or MRI. The results were correlated in 89% (17/19) of the cases. We misdiagnosed 2 cases: focal endometrial hyperplasia and choriocarcinoma were misdiagnosed as endometrial polyp and placental polyp, respectively. Imaging diagnoses were same in the techniques. Comparing with 2D SHG, 3D SHG provided a subjective display of pathologic findings and an additional information about spatial relationship between focal lesion and surroundings.

  19. Bifurcation analysis of a three dimensional system

    Directory of Open Access Journals (Sweden)

    Yongwen WANG

    2018-04-01

    Full Text Available In order to enrich the stability and bifurcation theory of the three dimensional chaotic systems, taking a quadratic truncate unfolding system with the triple singularity equilibrium as the research subject, the existence of the equilibrium, the stability and the bifurcation of the system near the equilibrium under different parametric conditions are studied. Using the method of mathematical analysis, the existence of the real roots of the corresponding characteristic equation under the different parametric conditions is analyzed, and the local manifolds of the equilibrium are gotten, then the possible bifurcations are guessed. The parametric conditions under which the equilibrium is saddle-focus are analyzed carefully by the Cardan formula. Moreover, the conditions of codimension-one Hopf bifucation and the prerequisites of the supercritical and subcritical Hopf bifurcation are found by computation. The results show that the system has abundant stability and bifurcation, and can also supply theorical support for the proof of the existence of the homoclinic or heteroclinic loop connecting saddle-focus and the Silnikov's chaos. This method can be extended to study the other higher nonlinear systems.

  20. Three-dimensional dynamics of protostellar evolution

    International Nuclear Information System (INIS)

    Cook, T.L.

    1977-06-01

    A three-dimensional finite difference numerical methodology was developed for self-gravitating, rotating gaseous systems. The fully nonlinear equations for time-varying fluid dynamics are solved by high speed computer in a cylindrical coordinate system rotating with an instantaneous angular velocity, selected such that the net angular momentum relative to the rotating frame is zero. The time-dependent adiabatic collapse of gravitationally bound, rotating, protostellar clouds is studied for specified uniform and nonuniform initial conditions. Uniform clouds can form axisymmetric, rotating toroidal configurations. If the thermal pressure is high, nonuniform clouds can also collapse to axisymmetric toroids. For low thermal pressures, however, the collapsing cloud is unstable to initial perturbations. The fragmentation of protostellar clouds is investigated by studying the response of rotating, self-gravitating, equilibrium toroids to non-axisymmetric perturbations. The detailed evolution of the fragmenting toroid depends upon a non-dimensional function of the initial entropy, the total mass in the toroid, the angular velocity of rotation, and the number of perturbation wavelengths around the circumference of the toroid. For low and intermediate entropies, the configuration develops into co-rotating components with spiral streamers. In the spiral regions retrograde vortices are observed in some examples. For high levels of entropy, barred spirals can exist as intermediate states of the fragmentation

  1. Three-dimensional dynamics of protostellar evolution

    International Nuclear Information System (INIS)

    Cook, T.L.; Harlow, F.H.

    1978-01-01

    A three-dimensional finite difference numerical methodology has been developed for self-gravitating, rotating gaseous systems. The fully nonlinear equations for time-varying fluid dynamics are solved by high-speed computer in a cylindrical coordinate system rotating with an instantaneous angular velocity. The time-dependent adiabatic collapse of gravitationally bound, rotating, protostellar clouds is studied for specified uniform and nonuniform initial conditions. Uniform clouds can form axisymmetric, rotating toroidal configurations. If the thermal pressure is high, nonuniform clouds can also collapse to axisymmetric ellipsoids. For low thermal pressures, however, the collapsing cloud is unstable to perturbations. The resulting fragmentation of unstable protostellar clouds is investigated by studying the response of rotating, self-gravitating, equilibrium toroids to nonaxisymmetric perturbations. The detailed evolution of the fragmentation toroid depends upon a nondimensional function of the initial entropy, the total mass in the toroid, the angular velocity of rotation, and the number of perturbation wave-lengths around the circumference of the toroid. For low and intermediate entropies, the configuration develops into corotating components with spiral streamers. In the spiral regions retrograde vortices are observed in some examples. For high levels of entropy, barred spirals can exist as intermediate states of the fragmentation

  2. Three dimensional characterization and archiving system

    International Nuclear Information System (INIS)

    Sebastian, R.L.; Clark, R.; Gallman, P.

    1995-01-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D ampersand D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D ampersand D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. Chemical analysis plays a vital role throughout the process of decontamination. Before clean-up operations can begin the site must be characterized with respect to the type and concentration of contaminants, and detailed site mapping must clarify areas of both high and low risk. During remediation activities chemical analysis provides a means to measure progress and to adjust clean-up strategy. Once the clean-up process has been completed the results of chemical analysis will verify that the site is in compliance with federal and local regulations

  3. MORPHOLOGICAL DESCRIPTIONS USING THREE-DIMENSIONAL WAVEFRONTS

    Directory of Open Access Journals (Sweden)

    Jean Serra

    2011-05-01

    Full Text Available The present study deals with the analysis of three-dimensional binary objects whose structure is not obvious nor generally clearly visible. Our approach is illustrated through three examples taken from biological microscopy. In one of our examples, we need to extract the osteocytes contained in sixty confocal sections. The cells are not numerous, but are characterized by long branches, hence they will be separated using a directional wavefront The two other objects are more complex and will be analysed by means of a spherical wavefront In the first case, a kidney of a rat embryo, the tissue grows like a tree, where we want to detect the branches, their extremities,and their spatial arrangement. The wavefront method enables us to define precisely branches and extremities, and gives flexible algorithms. The last example deals with the embryonic growth of the chicken shinbone. The central part of the bone (or shaft is structured as a series of nested cylinders following the same axis, and connected by more or less long bridges. Using wavefronts, we show that it is possible to separate the cylinders,and to extract and count the bridges that connect them.

  4. Multimodal three-dimensional dynamic signature

    Directory of Open Access Journals (Sweden)

    Yury E. Kozlov

    2017-11-01

    Full Text Available Reliable authentication in mobile applications is among the most important information security challenges. Today, we can hardly imagine a person who would not own a mobile device that connects to the Internet. Mobile devices are being used to store large amounts of confidential information, ranging from personal photos to electronic banking tools. In 2009, colleagues from Rice University together with their collaborators from Motorola, proposed an authentication through in-air gestures. This and subsequent work contributing to the development of the method are reviewed in our introduction. At the moment, there exists a version of the gesture-based authentication software available for Android mobile devices. This software has not become widespread yet. One of likely reasons for that is the insufficient reliability of the method, which involves similar to its earlier analogs the use of only one device. Here we discuss the authentication based on the multimodal three-dimensional dynamic signature (MTDS performed by two independent mobile devices. The MTDS-based authentication technique is an advanced version of in-air gesture authentication. We describe the operation of a prototype of MTDS-based authentication, including the main implemented algorithms, as well as some preliminary results of testing the software. We expect that our method can be used in any mobile application, provided a number of additional improvements discussed in the conclusion are made.

  5. Three dimensional image alignment, registration and fusion

    International Nuclear Information System (INIS)

    Treves, S.T.; Mitchell, K.D.; Habboush, I.H.

    1998-01-01

    Combined assessment of three dimensional anatomical and functional images (SPECT, PET, MRI, CT) is useful to determine the nature and extent of lesions in many parts of the body. Physicians principally rely on their spatial sense of mentally re-orient and overlap images obtained with different imaging modalities. Objective methods that enable easy and intuitive image registration can help the physician arrive at more optimal diagnoses and better treatment decisions. This review describes a simple, intuitive and robust image registration approach developed in our laboratory. It differs from most other registration techniques in that it allows the user to incorporate all of the available information within the images in the registration process. This method takes full advantage of the ability of knowledgeable operators to achieve image registration and fusion using an intuitive interactive visual approach. It can register images accurately and quickly without the use of elaborate mathematical modeling or optimization techniques. The method provides the operator with tools to manipulate images in three dimensions, including visual feedback techniques to assess the accuracy of registration (grids, overlays, masks, and fusion of images in different colors). Its application is not limited to brain imaging and can be applied to images from any region in the body. The overall effect is a registration algorithm that is easy to implement and can achieve accuracy on the order of one pixel

  6. Three-Dimensional Printed Thermal Regulation Textiles.

    Science.gov (United States)

    Gao, Tingting; Yang, Zhi; Chen, Chaoji; Li, Yiju; Fu, Kun; Dai, Jiaqi; Hitz, Emily M; Xie, Hua; Liu, Boyang; Song, Jianwei; Yang, Bao; Hu, Liangbing

    2017-11-28

    Space cooling is a predominant part of energy consumption in people's daily life. Although cooling the whole building is an effective way to provide personal comfort in hot weather, it is energy-consuming and high-cost. Personal cooling technology, being able to provide personal thermal comfort by directing local heat to the thermally regulated environment, has been regarded as one of the most promising technologies for cooling energy and cost savings. Here, we demonstrate a personal thermal regulated textile using thermally conductive and highly aligned boron nitride (BN)/poly(vinyl alcohol) (PVA) composite (denoted as a-BN/PVA) fibers to improve the thermal transport properties of textiles for personal cooling. The a-BN/PVA composite fibers are fabricated through a fast and scalable three-dimensional (3D) printing method. Uniform dispersion and high alignment of BN nanosheets (BNNSs) can be achieved during the processing of fiber fabrication, leading to a combination of high mechanical strength (355 MPa) and favorable heat dispersion. Due to the improved thermal transport property imparted by the thermally conductive and highly aligned BNNSs, better cooling effect (55% improvement over the commercial cotton fiber) can be realized in the a-BN/PVA textile. The wearable a-BN/PVA textiles containing the 3D-printed a-BN/PVA fibers offer a promising selection for meeting the personal cooling requirement, which can significantly reduce the energy consumption and cost for cooling the whole building.

  7. Three-dimensional printing for craniomaxillofacial regeneration.

    Science.gov (United States)

    Gaviria, Laura; Pearson, Joseph J; Montelongo, Sergio A; Guda, Teja; Ong, Joo L

    2017-10-01

    Craniomaxillofacial injuries produce complex wound environments involving various tissue types and treatment strategies. In a clinical setting, care is taken to properly irrigate and stabilize the injury, while grafts are molded in an attempt to maintain physiological functionality and cosmesis. This often requires multiple surgeries and grafts leading to added discomfort, pain and financial burden. Many of these injuries can lead to disfigurement and resultant loss of system function including mastication, respiration, and articulation, and these can lead to acute and long-term psychological impact on the patient. A main causality of these issues is the lack of an ability to spatially control pre-injury morphology while maintaining shape and function. With the advent of additive manufacturing (three-dimensional printing) and its use in conjunction with biomaterial regenerative strategies and stem cell research, there is an increased potential capacity to alleviate such limitations. This review focuses on the current capabilities of additive manufacturing platforms, completed research and potential for future uses in the treatment of craniomaxillofacial injuries, with an in-depth discussion of regeneration of the periodontal complex and teeth.

  8. Three-dimensional supersonic vortex breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1993-01-01

    Three-dimensional supersonic vortex-breakdown problems in bound and unbound domains are solved. The solutions are obtained using the time-accurate integration of the unsteady, compressible, full Navier-Stokes (NS) equations. The computational scheme is an implicit, upwind, flux-difference splitting, finite-volume scheme. Two vortex-breakdown applications are considered in the present paper. The first is for a supersonic swirling jet which is issued from a nozzle into a supersonic uniform flow at a lower Mach number than that of the swirling jet. The second is for a supersonic swirling flow in a configured circular duct. In the first application, an extensive study of the effects of grid fineness, shape and grid-point distribution on the vortex breakdown is presented. Four grids are used in this study and they show a substantial dependence of the breakdown bubble and shock wave on the grid used. In the second application, the bubble-type and helix-type vortex breakdown have been captured.

  9. Three-dimensional laparoscopy: Principles and practice

    Directory of Open Access Journals (Sweden)

    Rakesh Y Sinha

    2017-01-01

    Full Text Available The largest challenge for laparoscopic surgeons is the eye–hand coordination within a three-dimensional (3D scene observed on a 2D display. The 2D view on flat screen laparoscopy is cerebrally intensive. The loss of binocular vision on a 2D display causes visual misperceptions, mainly loss of depth perception and adds to the surgeon's fatigue. This compromises the safety of laparoscopy. The 3D high-definition view with great depth perception and tactile feedback makes laparoscopic surgery more acceptable, safe and cost-effective. It improves surgical precision and hand–eye coordination, conventional and all straight stick instruments can be used, capital expenditure is less and recurring cost and annual maintenance cost are less. In this article, we have discussed the physics of 3D laparoscopy, principles of depth perception, and the different kinds of 3D systems available for laparoscopy. We have also discussed our experience of using 3D laparoscopy in over 2000 surgeries in the last 4 years.

  10. Three dimensional characterization and archiving system

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, R.L.; Clark, R.; Gallman, P. [Coleman Research Corp., Springfield, VA (United States)] [and others

    1995-10-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. The 3D-ICAS system robotically conveys a multisensor probe near the surface to be inspected. The sensor position and orientation are monitored and controlled by Coherent laser radar (CLR) tracking. The ICAS fills the need for high speed automated organic analysis by means of gas chromatography-mass spectrometry sensors, and also by radionuclide sensors which combines alpha, beta, and gamma counting.

  11. Three dimensional characterization and archiving system

    International Nuclear Information System (INIS)

    Sebastian, R.L.; Clark, R.; Gallman, P.

    1996-01-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D and D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D and D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. The 3D-ICAS system robotically conveys a multisensor probe near the surfaces to be inspected. The sensor position and orientation are monitored and controlled using coherent laser radar (CLR) tracking. The CLR also provides 3D facility maps which establish a 3D world view within which the robotic sensor system can operate

  12. Three-dimensional RAMA fluence methodology benchmarking

    International Nuclear Information System (INIS)

    Baker, S. P.; Carter, R. G.; Watkins, K. E.; Jones, D. B.

    2004-01-01

    This paper describes the benchmarking of the RAMA Fluence Methodology software, that has been performed in accordance with U. S. Nuclear Regulatory Commission Regulatory Guide 1.190. The RAMA Fluence Methodology has been developed by TransWare Enterprises Inc. through funding provided by the Electric Power Research Inst., Inc. (EPRI) and the Boiling Water Reactor Vessel and Internals Project (BWRVIP). The purpose of the software is to provide an accurate method for calculating neutron fluence in BWR pressure vessels and internal components. The Methodology incorporates a three-dimensional deterministic transport solution with flexible arbitrary geometry representation of reactor system components, previously available only with Monte Carlo solution techniques. Benchmarking was performed on measurements obtained from three standard benchmark problems which include the Pool Criticality Assembly (PCA), VENUS-3, and H. B. Robinson Unit 2 benchmarks, and on flux wire measurements obtained from two BWR nuclear plants. The calculated to measured (C/M) ratios range from 0.93 to 1.04 demonstrating the accuracy of the RAMA Fluence Methodology in predicting neutron flux, fluence, and dosimetry activation. (authors)

  13. Three-Dimensional Printed Graphene Foams.

    Science.gov (United States)

    Sha, Junwei; Li, Yilun; Villegas Salvatierra, Rodrigo; Wang, Tuo; Dong, Pei; Ji, Yongsung; Lee, Seoung-Ki; Zhang, Chenhao; Zhang, Jibo; Smith, Robert H; Ajayan, Pulickel M; Lou, Jun; Zhao, Naiqin; Tour, James M

    2017-07-25

    An automated metal powder three-dimensional (3D) printing method for in situ synthesis of free-standing 3D graphene foams (GFs) was successfully modeled by manually placing a mixture of Ni and sucrose onto a platform and then using a commercial CO 2 laser to convert the Ni/sucrose mixture into 3D GFs. The sucrose acted as the solid carbon source for graphene, and the sintered Ni metal acted as the catalyst and template for graphene growth. This simple and efficient method combines powder metallurgy templating with 3D printing techniques and enables direct in situ 3D printing of GFs with no high-temperature furnace or lengthy growth process required. The 3D printed GFs show high-porosity (∼99.3%), low-density (∼0.015g cm -3 ), high-quality, and multilayered graphene features. The GFs have an electrical conductivity of ∼8.7 S cm -1 , a remarkable storage modulus of ∼11 kPa, and a high damping capacity of ∼0.06. These excellent physical properties of 3D printed GFs indicate potential applications in fields requiring rapid design and manufacturing of 3D carbon materials, for example, energy storage devices, damping materials, and sound absorption.

  14. The thin layer activation method and its applications in industry

    International Nuclear Information System (INIS)

    1997-01-01

    The thin layer activation (TLA) method is one of the most effective and precise methods for the measurement and monitoring of corrosion (erosion) and wear in industry and is used for on-line remote measurement of wear and corrosion rate of central parts in machines or processing vessels under real operating conditions. This document is a comprehensive manual on TLA method in its applications for monitoring wear and corrosion in industry. It describes the theory and presents case studies on TLA method applications in industry. In addition, in annexes are given tables of nuclear data relating to TLA (decay characteristics, depth distribution of reaction products, activation data for charged-particle nuclear reactions), references from INIS database on TLA and a detailed production of the application of TLA for wear measurement of superhard turning tools

  15. Thin layer modelling of Gelidium sesquipedale solar drying process

    International Nuclear Information System (INIS)

    Ait Mohamed, L.; Ethmane Kane, C.S.; Kouhila, M.; Jamali, A.; Mahrouz, M.; Kechaou, N.

    2008-01-01

    The effect of air temperature and air flow rate on the drying kinetics of Gelidium sesquipedale was investigated in convective solar drying. Drying was conducted at 40, 50 and 60 deg. C. The relative humidity was varied from 50% to 57%, and the drying air flow rate was varied from 0.0277 to 0.0833 m 3 /s. The expression for the drying rate equation is determined empirically from the characteristic drying curve. Thirteen mathematical models of thin layer drying are selected in order to estimate the suitable model for describing the drying curves. The two term model gives the best prediction of the drying curves and satisfactorily describes the drying characteristics of G. sesquipedale with a correlation coefficient R of 0.9999 and chi-square (χ 2 ) of 3.381 x 10 -6

  16. Thin layer modelling of Gelidium sesquipedale solar drying process

    Energy Technology Data Exchange (ETDEWEB)

    Ait Mohamed, L. [Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales, Ecole Normale Superieure, BP 2400, Marrakech (Morocco); Faculte des Sciences Semlalia, BP 2390, Marrakech (Morocco); Ethmane Kane, C.S. [Faculte des Sciences de Tetouan, BP 2121, Tetouan (Morocco); Kouhila, M.; Jamali, A. [Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales, Ecole Normale Superieure, BP 2400, Marrakech (Morocco); Mahrouz, M. [Faculte des Sciences Semlalia, BP 2390, Marrakech (Morocco); Kechaou, N. [Ecole Nationale d' Ingenieurs de Sfax, BPW 3038 (Tunisia)

    2008-05-15

    The effect of air temperature and air flow rate on the drying kinetics of Gelidium sesquipedale was investigated in convective solar drying. Drying was conducted at 40, 50 and 60 C. The relative humidity was varied from 50% to 57%, and the drying air flow rate was varied from 0.0277 to 0.0833 m{sup 3}/s. The expression for the drying rate equation is determined empirically from the characteristic drying curve. Thirteen mathematical models of thin layer drying are selected in order to estimate the suitable model for describing the drying curves. The two term model gives the best prediction of the drying curves and satisfactorily describes the drying characteristics of G. sesquipedale with a correlation coefficient R of 0.9999 and chi-square ({chi}{sup 2}) of 3.381 x 10{sup -6}. (author)

  17. Robotic thin layer chromatography instrument for synthetic chemistry

    International Nuclear Information System (INIS)

    Corkan, L.A.; Haynes, E.; Kline, S.; Lindsey, J.S.

    1991-01-01

    We have constructed a second generation instrument for performing automated thin layer chromatography (TLC), The TLC instrument Consists of four dedicated stations for (1) plate dispensing, (2) sample application, (3) plate development, and (4) densitometry. A robot is used to move TLC plates among stations. The TLC instrument functions either as a stand-alone unit or as one analytical module in a robotic workstation for synthetic chemistry. An integrated hardware and software architecture enables automatic TLC analysis of samples produced concurrently from synthetic reactions in progress on the workstation. The combination of fixed automation and robotics gives a throughput of 12 TLC samples per hour. From these results a blueprint has emerged for an advanced automated TLC instrument with far greater throughput and analytical capabilities

  18. The thin layer activation method and its applications in industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The thin layer activation (TLA) method is one of the most effective and precise methods for the measurement and monitoring of corrosion (erosion) and wear in industry and is used for on-line remote measurement of wear and corrosion rate of central parts in machines or processing vessels under real operating conditions. This document is a comprehensive manual on TLA method in its applications for monitoring wear and corrosion in industry. It describes the theory and presents case studies on TLA method applications in industry. In addition, in annexes are given tables of nuclear data relating to TLA (decay characteristics, depth distribution of reaction products, activation data for charged-particle nuclear reactions), references from INIS database on TLA and a detailed production of the application of TLA for wear measurement of superhard turning tools.

  19. Investigation of Processes and Factors Regulating the Generation, Maintenance and Breakdown of Bioluminescent Thin Layers

    National Research Council Canada - National Science Library

    Widder, Edith

    2001-01-01

    .... Katz's submersible holographic camera mounted on the upper work platform. Thin layers were located using real-time sensor feedback from intensified video recordings of stimulated bioluminescence...

  20. Three-dimensional magnetotelluric characterization of the Coso geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Gregory A.; Gasperikova, Erika [Lawrence Berkeley National Laboratory, Earth Sciences Division, Berkeley, CA 94720 (United States); Hoversten, G. Michael [Chevron Energy Technology Company, Seismic Analysis and Property Estimation, San Ramon, CA 94583 (United States); Wannamaker, Philip E. [Energy and Geoscience Institute, University of Utah, Salt Lake City, UT 84108 (United States)

    2008-08-15

    A dense grid of 125 magnetotelluric (MT) stations plus a single line of contiguous bipole array profiling has been acquired over the east flank of the Coso geothermal system, CA, USA. Due to production related electromagnetic (EM) noise the permanent observatory at Parkfield, CA was used as a remote reference to suppress this cultural EM noise interference. These data have been inverted to a fully three-dimensional (3D) resistivity model. This model shows the controlling geological structures possibly influencing well production at Coso and correlations with mapped surface features such as faults and the regional geoelectric strike. The 3D model also illustrates the refinement in positioning of resistivity contacts when compared to isolated 2D inversion transects. The resistivity model has also been correlated with micro-earthquake locations, reservoir fluid production intervals and most importantly with an acoustic and shear velocity model derived by Wu and Lees [Wu, H., Lees, J.M., 1999. Three-dimensional P and S wave velocity structures of the Coso Geothermal Area, California, from microseismic travel time data. J. Geophys. Res. 104 (B6), 13217-13233]. This later correlation shows that the near-vertical low-resistivity structure on the eastern flank of the producing field is also a zone of increased acoustic velocity and increased V{sub p}/V{sub s} ratio bounded by mapped fault traces. Over of the Devils' Kitchen is an area of large geothermal well density, where highly conductive near surface material is interpreted as a smectite clay cap alteration zone manifested from the subsurface geothermal fluids and related geochemistry. Enhanced resistivity beneath this cap and within the reservoir is diagnostic of propylitic alteration causing the formation of illite clays, which is typically observed in high-temperature reservoirs (>230 C). In the southwest flank of the field the V{sub p}/V{sub s} ratio is enhanced over the production intervals, but the

  1. High performance thin layer chromatography profile of Cassytha filiformis

    Institute of Scientific and Technical Information of China (English)

    Mythili Sathiavelu; Sathiavelu Arunachalam

    2012-01-01

    Objective: To study the phenols, flavonoids, saponin profile of the medicinal plant Cassytha filiformis (C. filiformis) using high performance thin layer chromatography (HPTLC). Methods:The extracts were tested to determine the presence of various phytochmeicals like alkaloids, phenolic compounds, flavonoids, carbohydrates, glycosides, saponins, terpenoids, tannins, fixed oils, fats and protein and aminoacids (Harborne and Harborne, 1998). HPTLC studies were carried out by Harborne and Wagner et al method. Different compositions of the mobile phase for HPTLC analysis were tested in order to obtain high resolution and reproducible peaks. Results: The results of the preliminary phytochemical studies confirm the presence of phenols, alkaloids, carbohydrates, saponins, flavanoids, terpenoids and tannins in the methanolic extracts of C. filiformis. The methanolic extracts of C. filiformis displayed the presence of 13 types of phenolic substances with 13 different Rf values ranging from 0.01 to 0.96. The results illustrated the presence of 9 different types of flavonoides with 9 different Rf values ranging from 0.01 to 0.97. The results of HPTLC analysis of saponins demonstrated the presence of 11 different types of saponins with 11 different Rf values ranging from 0.04 to 0.92. Conclusions: In the present study we observed the phenols, flavonoids, saponin profile of the medicinal plant C. filiformis using high performance thin layer chromatography (HPTLC). Hence it was concluded that the phenolic compounds present in the methonolic extract could be responsible for antioxidant activities. Plant derived antioxidants, especially phenols and flavonoids, have been described to have various properties like anticancer, antiaging and prevention of cardiovascular diseases. Furthur, separation and characterization of the bioactive compound from the plant is to be evaluated and reported in near future.

  2. Application of Simulated Three Dimensional CT Image in Orthognathic Surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Don; Park, Chang Seo [Dept. of Dental Radiology, College of Dentistry, Yensei University, Seoul (Korea, Republic of); Yoo, Sun Kook; Lee, Kyoung Sang [Dept. of Medical Engineering, College of Medicine, Yensei University, Seoul (Korea, Republic of)

    1998-08-15

    In orthodontics and orthognathic surgery, cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery, too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipment and because of its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram, pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms, and for validation of new method, in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery, computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of

  3. Application of Simulated Three Dimensional CT Image in Orthognathic Surgery

    International Nuclear Information System (INIS)

    Kim, Hyun Don; Park, Chang Seo; Yoo, Sun Kook; Lee, Kyoung Sang

    1998-01-01

    In orthodontics and orthognathic surgery, cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery, too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipment and because of its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram, pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms, and for validation of new method, in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery, computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of

  4. Reprocessable thermosets for sustainable three-dimensional printing.

    Science.gov (United States)

    Zhang, Biao; Kowsari, Kavin; Serjouei, Ahmad; Dunn, Martin L; Ge, Qi

    2018-05-08

    Among all three-dimensional (3D) printing materials, thermosetting photopolymers claim almost half of the market, and have been widely used in various fields owing to their superior mechanical stability at high temperatures, excellent chemical resistance as well as good compatibility with high-resolution 3D printing technologies. However, once these thermosetting photopolymers form 3D parts through photopolymerization, the covalent networks are permanent and cannot be reprocessed, i.e., reshaped, repaired, or recycled. Here, we report a two-step polymerization strategy to develop 3D printing reprocessable thermosets (3DPRTs) that allow users to reform a printed 3D structure into a new arbitrary shape, repair a broken part by simply 3D printing new material on the damaged site, and recycle unwanted printed parts so the material can be reused for other applications. These 3DPRTs provide a practical solution to address environmental challenges associated with the rapid increase in consumption of 3D printing materials.

  5. Panoramic three-dimensional CT imaging

    International Nuclear Information System (INIS)

    Kawamata, Akitoshi; Fujishita, Masami

    1998-01-01

    Panoramic radiography is a unique projection technique for producing a single image of both maxillary and mandibular arches and many other anatomical structures. To obtain a similar panoramic image without panoramic radiography system, a modified three-dimensional (3D) CT imaging technique was designed. A set of CT slice image data extending from the chin to the orbit was used for 3D reconstruction. The CT machine used in this study was the X-Vision (TOSHIBA, Japan). The helical scan technique was used. The slice thickness of reconstructed image was one or 1.5 mm. The occlusal plane or Frankfort horizontal (FH) plane was used as the reference line. The resultant slice image data was stored on a magnetic optical disk and then used to create panoramic 3D-CT images on a Macintosh computer systems (Power Macintosh 8600/250, Apple Computer Inc., USA). To create the panoramic 3D-CT image, the following procedure was designed: Design a curved panoramic 3D-CT imaging layer using the imaging layer and the movement of the x-ray beam in panoramic radiography system as a template; Cut this imaging layer from each slice image, then the trimmed image was transformed to a rectangular layer using the ''still image warping'' special effect in the Elastic Reality special effects system (Elastic Reality Inc., USA); Create panoramic 3D-CT image using the Voxel View (Vital Images Inc., USA) rendering system and volume rendering technique. Although the image quality was primitive, a panoramic view of maxillofacial region was obtained by this technique. (author)

  6. Airway branching morphogenesis in three dimensional culture

    Directory of Open Access Journals (Sweden)

    Gudjonsson Thorarinn

    2010-11-01

    Full Text Available Abstract Background Lungs develop from the fetal digestive tract where epithelium invades the vascular rich stroma in a process called branching morphogenesis. In organogenesis, endothelial cells have been shown to be important for morphogenesis and the maintenance of organ structure. The aim of this study was to recapitulate human lung morphogenesis in vitro by establishing a three dimensional (3D co-culture model where lung epithelial cells were cultured in endothelial-rich stroma. Methods We used a human bronchial epithelial cell line (VA10 recently developed in our laboratory. This cell line cell line maintains a predominant basal cell phenotype, expressing p63 and other basal markers such as cytokeratin-5 and -14. Here, we cultured VA10 with human umbilical vein endothelial cells (HUVECs, to mimic the close interaction between these cell types during lung development. Morphogenesis and differentiation was monitored by phase contrast microscopy, immunostainings and confocal imaging. Results We found that in co-culture with endothelial cells, the VA10 cells generated bronchioalveolar like structures, suggesting that lung epithelial branching is facilitated by the presence of endothelial cells. The VA10 derived epithelial structures display various complex patterns of branching and show partial alveolar type-II differentiation with pro-Surfactant-C expression. The epithelial origin of the branching VA10 colonies was confirmed by immunostaining. These bronchioalveolar-like structures were polarized with respect to integrin expression at the cell-matrix interface. The endothelial-induced branching was mediated by soluble factors. Furthermore, fibroblast growth factor receptor-2 (FGFR-2 and sprouty-2 were expressed at the growing tips of the branching structures and the branching was inhibited by the FGFR-small molecule inhibitor SU5402. Discussion In this study we show that a human lung epithelial cell line can be induced by endothelial cells to

  7. [Precision of three-dimensional printed brackets].

    Science.gov (United States)

    Zhang, D; Wang, L C; Zhou, Y H; Liu, X M; Li, J

    2017-08-18

    This study was based on digital orthodontic diagnosis work flow for indirect bonding transfer tray model design and three-dimensional (3D) printing, and the aim of this paper was to inspect the dimensional accuracyof 3D printed brackets, which is the foundation of the follow up work and hoped that will illuminate the clinical application of the digital orthodontics work flow. The samples which consisted of 14 cases of patients with malocclusion from Department of Orthodontics Peking University were selected, including 8 cases with tooth extraction and 6 cases without tooth extraction. All the 14 patients were taken intra-oral scan (Trios 3Shape, Denmark) and cone-beam computed tomography (CBCT, NewTom 3G volumetric scanner, Aperio Service,Italy)shooting after periodontal treatment. STL data and DICOM data were obtained from intraoral scans and CBCT images.Data segmentation, registration, fusion, automatic tooth arrangement, virtual positioning of orthodontic appliance and conversion the coordinates of malocclusion model were all done with self-programming software. The data of 3D printing model with brackets on it were output finally and printed out with EDEN260V (Objet Geometries, Israel) to make indirect bonding transfer tray. Digital vernier caliper was used to measure the length and width of upper and lower left brackets and buccal tubes on those 3D models after removal of surrounding supporting material by ultrasonic vibration and water-spray. Intra-examiner reliability was assessed by using intra-class correlation coefficients (ICC), and one-sample T test was used to compare the measurements with the standard dimensional data of the brackets. There were significant differences which range in 0.04-0.17 mm between the 13 items out of the 19 measurement items. Except for the length of the lower left premolars'brackets, mean values of the other items were greater than the test value. Although the measurement results in the width of brackets and the width and

  8. Use of a wedge cuvette in thin layer photometry and its application to oximetry

    NARCIS (Netherlands)

    Spaan, J. A.; Garred, L. J.; van de Borne, P.

    1977-01-01

    A wedge cuvette was constructed by fixing 2 glass plates at a known angle with a spacer at one end. This resulted in a thin layer with thickness varying from 0 to 250 micrometer. By measuring the intensity of a beam of light through the thin layer as a function of distance along the wedge (and thus

  9. The Three-dimensional Digital Factory for Shipbuilding Technology Research

    Directory of Open Access Journals (Sweden)

    Xu Wei

    2016-01-01

    Full Text Available The three-dimensional digital factory technology research is the hotspot in shipbuilding recently. The three-dimensional digital factory technology not only focus on design the components of the product, but also discuss on the simulation and analyses of the production process.Based on the three-dimensional model, the basic data layer, application control layer and the presentation layer of hierarchical structure are established in the three-dimensional digital factory of shipbuilding in this paper. And the key technologies of three-dimensional digital factory of shipbuilding are analysed. Finally, a case study is applied and the results show that the three-dimensional digital factory will play an important role in the future.

  10. Three-dimensional reconstruction of the biliary tract using spiral computed tomography. Three-dimensional cholangiography

    International Nuclear Information System (INIS)

    Gon, Masanori; Ogura, Norihiro; Uetsuji, Shouji; Ueyama, Yasuo

    1995-01-01

    In this study, 310 patients with benign biliary diseases, 20 with gallbladder cancer, and 8 with biliary tract carcinoma underwent spiral CT (SCT) scanning at cholangiography. Depiction rate of the shape of the conjunction site of the gallbladder and biliary tract was 27.5% by conventional intravenous cholangiography (DIC), 92.5% by ERC, and 90.0% by DIC-SCT. Abnormal cystic duct course was admitted in 14.1%. Multiplanar reconstruction by DIC-SCT enabled identification of the common bile duct and intrahepatic bile duct stone. Three-dimensional reconstruction of DIC-SCT was effective in evaluating obstruction of the anastomosis or passing condition of after hepatico-jejunostomy. Two-dimensional SCT images through PTCD tube enabled degree of hepatic invasion in bile duct cancer, and three-dimensional images were useful in grasping the morphology of the bile duct branches near the obstruction site. DIC-SCT is therefore considered a useful procedure as non-invasive examination of bile duct lesions. (S.Y.)

  11. Review and applicative perspectives of thin layer activation in Romania

    International Nuclear Information System (INIS)

    Racolta, P.M.

    1999-01-01

    The Thin Layer Activation (TLA) is an ion beam based technique. It consists in an accelerated ion bombardment of the surface of interest of a machine part subjected to wear. Wear and some types of corrosion phenomena characterized by a loss of material can be studied by monitoring the resulted changes in radioactivity. In this paper some general considerations on the physical phenomena involved, a short description of the two developed measuring methods, a zoom on the specific steps of the experiments (irradiation, calibration, experimental setups and instrumentation), and some applications will be presented. Although the level of activity used in TLA lies under the limit of the range considered to be safe from the point of view of radiation protection, industry hesitates to use this technique mainly due to psychological reasons with respect to the handling of radioactive material. Recognizing this problem we have decided to offer to industry wear/corrosion measurements using TLA in the form of a 'complete package'. The conception of this procedure will be presented also. (author)

  12. Mathematical Modeling of Thin Layer Microwave Drying of Taro Slices

    Science.gov (United States)

    Kumar, Vivek; Sharma, H. K.; Singh, K.

    2016-03-01

    The present study investigated the drying kinetics of taro slices precooked in different medium viz water (WC), steam (SC) and Lemon Solution (LC) and dried at different microwave power 360, 540 and 720 W. Drying curves of all precooked slices at all microwave powers showed falling rate period along with a very short accelerating period at the beginning of the drying. At all microwave powers, higher drying rate was observed for LC slices as compared to WC and SC slices. To select a suitable drying curve, seven thin-layer drying models were fitted to the experimental data. The data revealed that the Page model was most adequate in describing the microwave drying behavior of taro slices precooked in different medium. The highest effective moisture diffusivity value of 2.11 × 10-8 m2/s was obtained for LC samples while the lowest 0.83 × 10-8 m2/s was obtained for WC taro slices. The activation energy (E a ) of LC taro slices was lower than the E a of WC and SC taro slices.

  13. Mathematical analogies in physics. Thin-layer wave theory

    Directory of Open Access Journals (Sweden)

    José M. Carcione

    2014-03-01

    Full Text Available Field theory applies to elastodynamics, electromagnetism, quantum mechanics, gravitation and other similar fields of physics, where the basic equations describing the phenomenon are based on constitutive relations and balance equations. For instance, in elastodynamics, these are the stress-strain relations and the equations of momentum conservation (Euler-Newton law. In these cases, the same mathematical theory can be used, by establishing appropriate mathematical equivalences (or analogies between material properties and field variables. For instance, the wave equation and the related mathematical developments can be used to describe anelastic and electromagnetic wave propagation, and are extensively used in quantum mechanics. In this work, we obtain the mathematical analogy for the reflection/refraction (transmission problem of a thin layer embedded between dissimilar media, considering the presence of anisotropy and attenuation/viscosity in the viscoelastic case, conductivity in the electromagnetic case and a potential barrier in quantum physics (the tunnel effect. The analogy is mainly illustrated with geophysical examples of propagation of S (shear, P (compressional, TM (transverse-magnetic and TE (transverse-electric waves. The tunnel effect is obtained as a special case of viscoelastic waves at normal incidence.

  14. Statistical-mechanical entropy by the thin-layer method

    International Nuclear Information System (INIS)

    Feng, He; Kim, Sung Won

    2003-01-01

    G. Hooft first studied the statistical-mechanical entropy of a scalar field in a Schwarzschild black hole background by the brick-wall method and hinted that the statistical-mechanical entropy is the statistical origin of the Bekenstein-Hawking entropy of the black hole. However, according to our viewpoint, the statistical-mechanical entropy is only a quantum correction to the Bekenstein-Hawking entropy of the black-hole. The brick-wall method based on thermal equilibrium at a large scale cannot be applied to the cases out of equilibrium such as a nonstationary black hole. The statistical-mechanical entropy of a scalar field in a nonstationary black hole background is calculated by the thin-layer method. The condition of local equilibrium near the horizon of the black hole is used as a working postulate and is maintained for a black hole which evaporates slowly enough and whose mass is far greater than the Planck mass. The statistical-mechanical entropy is also proportional to the area of the black hole horizon. The difference from the stationary black hole is that the result relies on a time-dependent cutoff

  15. Thin layer activation technique applied to the measurement of wear

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, P [UKAEA Research Group, Harwell. Atomic Energy Research Establishment

    1978-01-01

    A thin layer of radioactive atoms is produced in the material by bombardment with charged particles, and as the material is worn away the total activity level is monitored. If the activity to depth relationship is then known the amount of material worn away can be determined. By a selective choice of the charged particle species and energy the depth of the active layer, its natural decay rate, and the energy of the emitted radiation can be pre-determined. The Harwell Tandem Electrostatic Generator has been found very suitable for the work. The total activity level can be made as little or as large as required, but a level around 5 to 10 microcuries is usually found to be adequate, and the active layer usually has a depth of 50 to 300 ..mu..m. The activated area can be from < 1 mm/sup 2/ to 4 cm/sup 2/. Particular reference is made to the production of /sup 56/Co in Fe. Experimental arrangements for the irradiation of components are described. Some practical applications undertaken by Harwell for industry are briefly mentioned, including wear of diesel engine valve seatings and fuel injection equipment, engine testing of lubricants, surface loss of rails and railway wheels, wear of gears, wear of graphite bearing materials, and corrosion and erosion of materials. 4 references.

  16. Application of thin layer activation method to industrial use

    International Nuclear Information System (INIS)

    Yamamoto, Masago; Hatakeyama, Noriko

    1996-01-01

    A thin layer activation method was reviewed for non-destructive, rapid, precise and real-time measurement of wear and corrosion. The review included wear measurement, the principle of the method, actual measurement, application, and laws and regulations. The method is to activate the material surface alone by accelerated ions like p, d and He ions produced by cyclotron, Van de Graaf apparatus or other accelerators and to utilize the yielded radioisotopes as a tracer, is widely used in the tribology field, and is more useful than the previous method with the reactor since it activated the whole material. Application of the method was reportedly resulted in saving the 80% cost and 90% time in the wear measurement of automobile parts such as engine and transmission. Actually, the activated material was combined into the part to be run and the radioactivity was to be measured externally or in the worn particles suitably collected. The activation thickness was generally in the range of 10-200 μm and the resultant radioactivity, 0.2-2 MBq. In most cases in Japan, the method would be under the law concerning prevention from radiation hazards due to radioisotopes, etc. (K.H.)

  17. New method for solving three-dimensional Schroedinger equation

    International Nuclear Information System (INIS)

    Melezhik, V.S.

    1990-01-01

    The method derived recently for solving a multidimensional scattering problem is applied to a three-dimensional Schroedinger equation. As compared with direct three-dimensional calculations of finite elements and finite differences, this approach gives sufficiently accurate upper and lower approximations to the helium-atom binding energy, which demonstrates its efficiency. 15 refs.; 1 fig.; 2 tabs

  18. Three-dimensional low-energy topological invariants

    International Nuclear Information System (INIS)

    Bakalarska, M.; Broda, B.

    2000-01-01

    A description of the one-loop approximation formula for the partition function of a three-dimensional abelian version of the Donaldson-Witten theory is proposed. The one-loop expression is shown to contain such topological invariants of a three-dimensional manifold M like the Reidemeister-Ray-Singer torsion τ R and Betti numbers. (orig.)

  19. Collapse in a forced three-dimensional nonlinear Schrodinger equation

    DEFF Research Database (Denmark)

    Lushnikov, P.M.; Saffman, M.

    2000-01-01

    We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation.......We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation....

  20. Three-dimensional plasma equilibrium near a separatrix

    International Nuclear Information System (INIS)

    Reiman, A.H.; Pomphrey, N.; Boozer, A.H.

    1988-08-01

    The limiting behavior of a general three-dimensional MHD equilibrium near a separatrix is calculated explicitly. No expansions in β or assumptions about island widths are made. Implications of the results for the numerical calculation of such equilibria, are discussed, as well as for issues concerning the existence of three-dimensional MHD equilibria. 16 refs., 2 figs

  1. Three dimensional periodic foundations for base seismic isolation

    International Nuclear Information System (INIS)

    Yan, Y; Mo, Y L; Cheng, Z; Shi, Z; Menq, F; Tang, Y

    2015-01-01

    Based on the concept of phononic crystals, periodic foundations made of periodic materials are investigated in this paper. The periodic foundations can provide low frequency band gaps, which cover the main frequency ranges of seismic waves. Therefore, the periodic foundations are able to protect the upper structures during earthquake events. In this paper, the basic theory of three dimensional periodic foundations is studied and the finite element method was used to conduct the sensitivity study. A simplified three-dimensional periodic foundation with a superstructure was tested in the field and the feasibility of three dimensional periodic foundations was proved. The test results showed that the response of the upper structure with the three dimensional periodic foundation was reduced under excitation waves with the main frequency falling in the attenuation zones. The finite element analysis results are consistent with the experimental data, indicating that three dimensional periodic foundations are a feasible way of reducing seismic vibrations. (paper)

  2. Geometric influences of a particle confined to a curved surface embedded in three-dimensional Euclidean space

    Science.gov (United States)

    Wang, Yong-Long; Jiang, Hua; Zong, Hong-Shi

    2017-08-01

    In the spirit of the thin-layer quantization approach, we give the formula of the geometric influences of a particle confined to a curved surface embedded in three-dimensional Euclidean space. The geometric contributions can result from the reduced commutation relation between the acted function depending on normal variable and the normal derivative. According to the formula, we obtain the geometric potential, geometric momentum, geometric orbital angular momentum, geometric linear Rashba, and cubic Dresselhaus spin-orbit couplings. As an example, a truncated cone surface is considered. We find that the geometric orbital angular momentum can provide an azimuthal polarization for spin, and the sign of the geometric Dresselhaus spin-orbit coupling can be flipped through the inclination angle of generatrix.

  3. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing

    Science.gov (United States)

    Lind, Johan U.; Busbee, Travis A.; Valentine, Alexander D.; Pasqualini, Francesco S.; Yuan, Hongyan; Yadid, Moran; Park, Sung-Jin; Kotikian, Arda; Nesmith, Alexander P.; Campbell, Patrick H.; Vlassak, Joost J.; Lewis, Jennifer A.; Parker, Kevin K.

    2017-03-01

    Biomedical research has relied on animal studies and conventional cell cultures for decades. Recently, microphysiological systems (MPS), also known as organs-on-chips, that recapitulate the structure and function of native tissues in vitro, have emerged as a promising alternative. However, current MPS typically lack integrated sensors and their fabrication requires multi-step lithographic processes. Here, we introduce a facile route for fabricating a new class of instrumented cardiac microphysiological devices via multimaterial three-dimensional (3D) printing. Specifically, we designed six functional inks, based on piezo-resistive, high-conductance, and biocompatible soft materials that enable integration of soft strain gauge sensors within micro-architectures that guide the self-assembly of physio-mimetic laminar cardiac tissues. We validated that these embedded sensors provide non-invasive, electronic readouts of tissue contractile stresses inside cell incubator environments. We further applied these devices to study drug responses, as well as the contractile development of human stem cell-derived laminar cardiac tissues over four weeks.

  4. Three-dimensional printing of transparent fused silica glass

    Science.gov (United States)

    Kotz, Frederik; Arnold, Karl; Bauer, Werner; Schild, Dieter; Keller, Nico; Sachsenheimer, Kai; Nargang, Tobias M.; Richter, Christiane; Helmer, Dorothea; Rapp, Bastian E.

    2017-04-01

    Glass is one of the most important high-performance materials used for scientific research, in industry and in society, mainly owing to its unmatched optical transparency, outstanding mechanical, chemical and thermal resistance as well as its thermal and electrical insulating properties. However, glasses and especially high-purity glasses such as fused silica glass are notoriously difficult to shape, requiring high-temperature melting and casting processes for macroscopic objects or hazardous chemicals for microscopic features. These drawbacks have made glasses inaccessible to modern manufacturing technologies such as three-dimensional printing (3D printing). Using a casting nanocomposite, here we create transparent fused silica glass components using stereolithography 3D printers at resolutions of a few tens of micrometres. The process uses a photocurable silica nanocomposite that is 3D printed and converted to high-quality fused silica glass via heat treatment. The printed fused silica glass is non-porous, with the optical transparency of commercial fused silica glass, and has a smooth surface with a roughness of a few nanometres. By doping with metal salts, coloured glasses can be created. This work widens the choice of materials for 3D printing, enabling the creation of arbitrary macro- and microstructures in fused silica glass for many applications in both industry and academia.

  5. Cylindrical Three-Dimensional Porous Anodic Alumina Networks

    Directory of Open Access Journals (Sweden)

    Pedro M. Resende

    2016-11-01

    Full Text Available The synthesis of a conformal three-dimensional nanostructure based on porous anodic alumina with transversal nanopores on wires is herein presented. The resulting three-dimensional network exhibits the same nanostructure as that obtained on planar geometries, but with a macroscopic cylindrical geometry. The morphological analysis of the nanostructure revealed the effects of the initial defects on the aluminum surface and the mechanical strains on the integrity of the three-dimensional network. The results evidence the feasibility of obtaining 3D porous anodic alumina on non-planar aluminum substrates.

  6. Diffraction limited focusing with controllable arbitrary three-dimensional polarization

    International Nuclear Information System (INIS)

    Chen, Weibin; Zhan, Qiwen

    2010-01-01

    We propose a new approach that enables full control over the three-dimensional state of polarization and the field distribution near the focus of a high numerical aperture objective lens. By combining the electric dipole radiation and a vectorial diffraction method, the input field at the pupil plane for generating arbitrary three-dimensionally oriented linear polarization at the focal point with a diffraction limited spot size is found analytically by solving the inverse problem. Arbitrary three-dimensional elliptical polarization can be obtained by introducing a second electric dipole oriented in the orthogonal plane with appropriate amplitude and phase differences

  7. Fusion of three-dimensional X-ray angiography and three-dimensional echocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Rasche, Volker [University of Ulm, Department of Internal Medicine II, Ulm (Germany); Philips Medical Systems, Bothell, WA (United States); Mansour, Moussa; Reddy, Vivek; Singh, Jagmeet P.; Ruskin, Jeremy [Massachusetts General Hospital, Harvard Medical School, Cardiac Arrhythmia Service, Boston, MA (United States); Qureshi, Answer [Massachusetts General Hospital, Harvard Medical School, Echocardiography, Boston, MA (United States); Manzke, Robert; Sokka, Sham [Philips Research North America, Clinical Sites Research, Briacliff Manor, NY (United States)

    2008-03-15

    Cardiovascular intervention guidance requires knowledge of heart function relative to its blood supply or venous drainage. Functional and vascular anatomic data are usually generated on different imaging systems, so fusion of the data is necessary to simultaneously visualize the results for intervention planning and guidance. The objective of this work is to establish the feasibility of fusing volumetric ultrasound (U/S) data with three-dimensional (3D) X-ray imaging data for visualization of cardiac morphology, function and coronary venous drainage. Temporally resolved U/S volume data was registered with the 3D reconstruction of vascular structures derived from X-ray modeling and reconstruction. U/S image registration was obtained by optical tracking fiducial markers with simultaneous X-ray imaging. The proposed technique was applied to phantom data for accuracy assessment of the registration process and to biventricular pacemaker implantation as clinical example. Fusion of U/S data with 3D X-ray reconstruction data produced an RMS registration error below 2 mm. Preliminary clinical feasibility of U/S-derived data synchronously with X-ray derived 3D coronary venography was established. This technique can be applied for fusion of functional U/S data with 3D anatomic X-ray data of the coronary veins during a biventricular pacemaker implantation procedures. (orig.)

  8. Three-dimensional modelling and three-dimensional printing in pediatric and congenital cardiac surgery.

    Science.gov (United States)

    Kiraly, Laszlo

    2018-04-01

    Three-dimensional (3D) modelling and printing methods greatly support advances in individualized medicine and surgery. In pediatric and congenital cardiac surgery, personalized imaging and 3D modelling presents with a range of advantages, e.g., better understanding of complex anatomy, interactivity and hands-on approach, possibility for preoperative surgical planning and virtual surgery, ability to assess expected results, and improved communication within the multidisciplinary team and with patients. 3D virtual and printed models often add important new anatomical findings and prompt alternative operative scenarios. For the lack of critical mass of evidence, controlled randomized trials, however, most of these general benefits remain anecdotal. For an individual surgical case-scenario, prior knowledge, preparedness and possibility of emulation are indispensable in raising patient-safety. It is advocated that added value of 3D printing in healthcare could be raised by establishment of a multidisciplinary centre of excellence (COE). Policymakers, research scientists, clinicians, as well as health care financers and local entrepreneurs should cooperate and communicate along a legal framework and established scientific guidelines for the clinical benefit of patients, and towards financial sustainability. It is expected that besides the proven utility of 3D printed patient-specific anatomical models, 3D printing will have a major role in pediatric and congenital cardiac surgery by providing individually customized implants and prostheses, especially in combination with evolving techniques of bioprinting.

  9. Fusion of three-dimensional X-ray angiography and three-dimensional echocardiography

    International Nuclear Information System (INIS)

    Rasche, Volker; Mansour, Moussa; Reddy, Vivek; Singh, Jagmeet P.; Ruskin, Jeremy; Qureshi, Answer; Manzke, Robert; Sokka, Sham

    2008-01-01

    Cardiovascular intervention guidance requires knowledge of heart function relative to its blood supply or venous drainage. Functional and vascular anatomic data are usually generated on different imaging systems, so fusion of the data is necessary to simultaneously visualize the results for intervention planning and guidance. The objective of this work is to establish the feasibility of fusing volumetric ultrasound (U/S) data with three-dimensional (3D) X-ray imaging data for visualization of cardiac morphology, function and coronary venous drainage. Temporally resolved U/S volume data was registered with the 3D reconstruction of vascular structures derived from X-ray modeling and reconstruction. U/S image registration was obtained by optical tracking fiducial markers with simultaneous X-ray imaging. The proposed technique was applied to phantom data for accuracy assessment of the registration process and to biventricular pacemaker implantation as clinical example. Fusion of U/S data with 3D X-ray reconstruction data produced an RMS registration error below 2 mm. Preliminary clinical feasibility of U/S-derived data synchronously with X-ray derived 3D coronary venography was established. This technique can be applied for fusion of functional U/S data with 3D anatomic X-ray data of the coronary veins during a biventricular pacemaker implantation procedures. (orig.)

  10. Fabrication of malleable three-dimensional-printed customized bolus using three-dimensional scanner.

    Directory of Open Access Journals (Sweden)

    Jae Won Park

    Full Text Available A three-dimensional (3D-printed customized bolus (3D bolus can be used for radiotherapy application to irregular surfaces. However, bolus fabrication based on computed tomography (CT scans is complicated and also delivers unwanted irradiation. Consequently, we fabricated a bolus using a 3D scanner and evaluated its efficacy. The head of an Alderson Rando phantom was scanned with a 3D scanner. The 3D surface data were exported and reconstructed with Geomagic Design X software. A 3D bolus of 5-mm thickness designed to fit onto the nose was printed with the use of rubber-like printing material, and a radiotherapy plan was developed. We successfully fabricated the customized 3D bolus, and further, a CT simulation indicated an acceptable fit of the 3D bolus to the nose. There was no air gap between the bolus and the phantom surface. The percent depth dose (PDD curve of the phantom with the 3D bolus showed an enhanced surface dose when compared with that of the phantom without the bolus. The PDD of the 3D bolus was comparable with that of a commercial superflab bolus. The radiotherapy plan considering the 3D bolus showed improved target coverage when compared with that without the bolus. Thus, we successfully fabricated a customized 3D bolus for an irregular surface using a 3D scanner instead of a CT scanner.

  11. Thin-layer chromatography of radioactively labelled cholesterol and precursors from biological material

    International Nuclear Information System (INIS)

    Pill, J.; Aufenanger, J.; Stegmeier, K.; Schmidt, F.H.; Mueller, D.; Boehringer Mannheim G.m.b.H.

    1987-01-01

    The investigation methods of the action of xenobiotics on sterol biosynthesis from 14 C-acetate in rat hepatocyte cultures can be developed, with regard to extraction using Extrelut and the separation of the sterol pattern by thin-layer chromatography, in such a way that they are suitable for wider application, e.g., screening. Good visualisation and recognition of changes in the sterol pattern are possible using autoradiography of the thin-layer chromatogram. (orig.)

  12. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nurhandoko, Bagus Endar B., E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4" t" hfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia); Susilowati, E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Rock Fluid Imaging Lab., Bandung (Indonesia)

    2015-04-16

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.

  13. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    International Nuclear Information System (INIS)

    thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" data-affiliation=" (Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" >Nurhandoko, Bagus Endar B.; Susilowati

    2015-01-01

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia

  14. Three dimensional graphene transistor for ultra-sensitive pH sensing directly in biological media

    International Nuclear Information System (INIS)

    Ameri, Shideh Kabiri; Singh, Pramod K.; Sonkusale, Sameer R.

    2016-01-01

    In this work, pH sensing directly in biological media using three dimensional liquid gated graphene transistors is presented. The sensor is made of suspended network of graphene coated all around with thin layer of hafnium oxide (HfO_2), showing high sensitivity and sensing beyond the Debye-screening limit. The performance of the pH sensor is validated by measuring the pH of isotonic buffered, Dulbecco's phosphate buffered saline (DPBS) solution, and of blood serum derived from Sprague-Dawley rat. The pH sensor shows high sensitivity of 71 ± 7 mV/pH even in high ionic strength media with molarities as high as 289 ± 1 mM. High sensitivity of this device is owing to suspension of three dimensional graphene in electrolyte which provides all around liquid gating of graphene, leading to higher electrostatic coupling efficiency of electrolyte to the channel and higher gating control of transistor channel by ions in the electrolyte. Coating graphene with hafnium oxide film (HfO_2) provides binding sites for hydrogen ions, which results in higher sensitivity and sensing beyond the Debye-screening limit. The 3D graphene transistor offers the possibility of real-time pH measurement in biological media without the need for desaltation or sample preparation. - Graphical abstract: (a) Test setup – Direct rat blood serum pH measurements (b) Measured transfer characteristics of the transistor for blood serum at different pH values, and (c) Zoomed in version around direct point. - Highlights: • A three-dimensional graphene transistor for pH sensing is presented. • It shows sensitivity of 71 ± 7 mV/pH even in high ionic strength media. • High sensitivity attributed to 3D foam structure and all-around liquid gating. • Enables real-time pH sensing in biological media without need of desaltation.

  15. Three dimensional graphene transistor for ultra-sensitive pH sensing directly in biological media

    Energy Technology Data Exchange (ETDEWEB)

    Ameri, Shideh Kabiri; Singh, Pramod K.; Sonkusale, Sameer R., E-mail: sameer@ece.tufts.edu

    2016-08-31

    In this work, pH sensing directly in biological media using three dimensional liquid gated graphene transistors is presented. The sensor is made of suspended network of graphene coated all around with thin layer of hafnium oxide (HfO{sub 2}), showing high sensitivity and sensing beyond the Debye-screening limit. The performance of the pH sensor is validated by measuring the pH of isotonic buffered, Dulbecco's phosphate buffered saline (DPBS) solution, and of blood serum derived from Sprague-Dawley rat. The pH sensor shows high sensitivity of 71 ± 7 mV/pH even in high ionic strength media with molarities as high as 289 ± 1 mM. High sensitivity of this device is owing to suspension of three dimensional graphene in electrolyte which provides all around liquid gating of graphene, leading to higher electrostatic coupling efficiency of electrolyte to the channel and higher gating control of transistor channel by ions in the electrolyte. Coating graphene with hafnium oxide film (HfO{sub 2}) provides binding sites for hydrogen ions, which results in higher sensitivity and sensing beyond the Debye-screening limit. The 3D graphene transistor offers the possibility of real-time pH measurement in biological media without the need for desaltation or sample preparation. - Graphical abstract: (a) Test setup – Direct rat blood serum pH measurements (b) Measured transfer characteristics of the transistor for blood serum at different pH values, and (c) Zoomed in version around direct point. - Highlights: • A three-dimensional graphene transistor for pH sensing is presented. • It shows sensitivity of 71 ± 7 mV/pH even in high ionic strength media. • High sensitivity attributed to 3D foam structure and all-around liquid gating. • Enables real-time pH sensing in biological media without need of desaltation.

  16. Progress of radiotherapy by three-dimensional treatment planning

    International Nuclear Information System (INIS)

    Imada, Hajime; Nomoto, Satoshi; Takahashi, Hiroyuki; Nakata, Hajime

    1998-01-01

    The recent progress of three-dimensional radiation treatment planning was reviewed. And clinical cases such as lung cancer and breast cancer are introduced. In the University of Occupational and Development Health, the treatment system FOCUS which is made up of CT simulator and linac was used mainly. Three-dimensional treatment planning was carried for about 90% of 330 patients who underwent radiotherapy for one year. The target becomes to be accurate and dose distribution with all CT slices in radiation field can be confirmed by using three-dimensional radiation treatment planning apparatus. High dose irradiation localized to tumor part is possible. Relations between total dose and volume of normal tissue and/or tumor can be estimated numerically and easily by DVH. A prediction of indication and affection became possible by this procedure. In conclusion, generalization of three-dimensional radiation treatment planning will bring progress of more effective radiotherapy with less adverse reaction. (K.H.). 21 refs

  17. Feynman diagrams coupled to three-dimensional quantum gravity

    International Nuclear Information System (INIS)

    Barrett, John W

    2006-01-01

    A framework for quantum field theory coupled to three-dimensional quantum gravity is proposed. The coupling with quantum gravity regulates the Feynman diagrams. One recovers the usual Feynman amplitudes in the limit as the cosmological constant tends to zero

  18. Three-dimensional reconstruction and visualization system for medical images

    International Nuclear Information System (INIS)

    Preston, D.F.; Batnitzky, S.; Kyo Rak Lee; Cook, P.N.; Cook, L.T.; Dwyer, S.J.

    1982-01-01

    A three-dimensional reconstruction and visualization system could be of significant advantage in medical application such as neurosurgery and radiation treatment planning. The reconstructed anatomic structures from CT head scans could be used in a head stereotactic system to help plan the surgical procedure and the radiation treatment for a brain lesion. Also, the use of three-dimensional reconstruction algorithm provides for quantitative measures such as volume and surface area estimation of the anatomic features. This aspect of the three-dimensional reconstruction system may be used to monitor the progress or staging of a disease and the effects of patient treatment. Two cases are presented to illustrate the three-dimensional surface reconstruction and visualization system

  19. Three dimensional CT imaging of ossicular chain: a preliminary study

    International Nuclear Information System (INIS)

    Hu Chunhong; Zhong Shenbin; Fu Yindi; Zhu Wei; Wang Xueyuan; Chen Jianhua; Ding Yi

    2001-01-01

    Objective: To analysis the features of normal and abnormal ossicular chain in three dimensional images and asses the best parameters and its usefulness in diagnosis and treatment of chronic otitis media (COM). Methods: All patients, including 43 patients with normal ears and 24 ears with COM, were examined using spiral CT with inner ear software, 1-mm slice width and 1 pitch. SSD method was used in three dimensional reconstruction and the threshold was 100-300 Hu. Results: In normal cases, Malleus, incus, stapes crura, incudomalleal joints and incudostapedial joints were displayed well, but stapes footplate unsatisfactorily. The disruption of the ossicular chain showed in three-dimensional images in cases of chronic otitis media was in accord with that seen in the operation. Conclusion: It is very important for imaging with high quality through selecting proper parameters, and three-dimensional image can provide valuable information for surgery

  20. Analysis and validation of carbohydrate three-dimensional structures

    International Nuclear Information System (INIS)

    Lütteke, Thomas

    2009-01-01

    The article summarizes the information that is gained from and the errors that are found in carbohydrate structures in the Protein Data Bank. Validation tools that can locate these errors are described. Knowledge of the three-dimensional structures of the carbohydrate molecules is indispensable for a full understanding of the molecular processes in which carbohydrates are involved, such as protein glycosylation or protein–carbohydrate interactions. The Protein Data Bank (PDB) is a valuable resource for three-dimensional structural information on glycoproteins and protein–carbohydrate complexes. Unfortunately, many carbohydrate moieties in the PDB contain inconsistencies or errors. This article gives an overview of the information that can be obtained from individual PDB entries and from statistical analyses of sets of three-dimensional structures, of typical problems that arise during the analysis of carbohydrate three-dimensional structures and of the validation tools that are currently available to scientists to evaluate the quality of these structures

  1. Utility of three-dimensional method for diagnosing meniscal lesions

    International Nuclear Information System (INIS)

    Ohshima, Suguru; Nomura, Kazutoshi; Hirano, Mako; Hashimoto, Noburo; Fukumoto, Tetsuya; Katahira, Kazuhiro

    1998-01-01

    MRI of the knee is a useful method for diagnosing meniscal tears. Although the spin echo method is usually used for diagnosing meniscal tears, we examined the utility of thin slice scan with the three-dimensional method. We reviewed 70 menisci in which arthroscopic findings were confirmed. In this series, sensitivity was 90.9% for medial meniscal injuries and 68.8% for lateral meniscal injuries. There were 3 meniscal tears in which we could not detect tears on preoperative MRI. We could find tears in two of these cases when re-evaluated using the same MRI. In conclusion, we can get the same diagnostic rate with the three-dimensional method compared with the spin echo method. Scan time of the three-dimensional method is 3 minutes, on the other hand that of spin echo method in 17 minutes. This slice scan with three-dimensional method is useful for screening meniscal injuries before arthroscopy. (author)

  2. Three-dimensional Simulation of Backward Raman Amplification

    International Nuclear Information System (INIS)

    Balakin, A.A.; Fraiman, G.M.; Fisch, N.J.

    2005-01-01

    Three-dimensional (3-D) simulations for the Backward Raman Amplification (BRA) are presented. The images illustrate the effects of pump depletion, pulse diffraction, non-homogeneous plasma density, and plasma ionization

  3. Magnetic structure of two- and three-dimensional supramolecular compounds

    Energy Technology Data Exchange (ETDEWEB)

    Decurtins, S.; Schmalle, H.W.; Pellaux, R. [Zurich Univ. (Switzerland); Fischer, P.; Fauth, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ouladdiaf, B. [Institut Max von Laue - Paul Langevin, 75 - Paris (France)

    1997-09-01

    Supramolecular chiral networks of oxalato-bridged transition metals show either two- or three-dimensional structural features. The magnetic structures of such compounds have been investigated by means of elastic neutron powder diffraction. (author) 2 figs., 2 refs.

  4. Three-Dimensional scanning transmission electron microscopy of biological specimens

    KAUST Repository

    De Jonge, Niels; Sougrat, Rachid; Northan, Brian M.; Pennycook, Stephen J.

    2010-01-01

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM

  5. [Bone drilling simulation by three-dimensional imaging].

    Science.gov (United States)

    Suto, Y; Furuhata, K; Kojima, T; Kurokawa, T; Kobayashi, M

    1989-06-01

    The three-dimensional display technique has a wide range of medical applications. Pre-operative planning is one typical application: in orthopedic surgery, three-dimensional image processing has been used very successfully. We have employed this technique in pre-operative planning for orthopedic surgery, and have developed a simulation system for bone-drilling. Positive results were obtained by pre-operative rehearsal; when a region of interest is indicated by means of a mouse on the three-dimensional image displayed on the CRT, the corresponding region appears on the slice image which is displayed simultaneously. Consequently, the status of the bone-drilling is constantly monitored. In developing this system, we have placed emphasis on the quality of the reconstructed three-dimensional images, on fast processing, and on the easy operation of the surgical planning simulation.

  6. Standalone visualization tool for three-dimensional DRAGON geometrical models

    International Nuclear Information System (INIS)

    Lukomski, A.; McIntee, B.; Moule, D.; Nichita, E.

    2008-01-01

    DRAGON is a neutron transport and depletion code able to solve one-, two- and three-dimensional problems. To date DRAGON provides two visualization modules, able to represent respectively two- and three-dimensional geometries. The two-dimensional visualization module generates a postscript file, while the three dimensional visualization module generates a MATLAB M-file with instructions for drawing the tracks in the DRAGON TRACKING data structure, which implicitly provide a representation of the geometry. The current work introduces a new, standalone, tool based on the open-source Visualization Toolkit (VTK) software package which allows the visualization of three-dimensional geometrical models by reading the DRAGON GEOMETRY data structure and generating an axonometric image which can be manipulated interactively by the user. (author)

  7. Study of three-dimensional image display by systemic CT

    International Nuclear Information System (INIS)

    Fujioka, Tadao; Ebihara, Yoshiyuki; Unei, Hiroshi; Hayashi, Masao; Shinohe, Tooru; Wada, Yuji; Sakai, Takatsugu; Kashima, Kenji; Fujita, Yoshihiro

    1989-01-01

    A head phantom for CT was scanned at 2 mm intervals from the cervix to the vertex in an attempt to obtain a three-dimensional image display of bones and facial epidermis from an ordinary axial image. Clinically, three-dimensional images were formed at eye sockets and hip joints. With the three-dimensional image using the head phantom, the entire head could be displayed at any angle. Clinically, images were obtained that could not be attained by ordinary CT scanning, such as broken bones in eye sockets and stereoscopic structure at the bottom of a cranium. The three-dimensional image display is considered to be useful in clinical diagnosis. (author)

  8. Three-Dimensional Structure Determination of Botulinum Toxin

    National Research Council Canada - National Science Library

    Stevens, Ray

    1997-01-01

    ...) Based on the structure of the neurotoxin, understand the toxins mechanism of action. We have accomplished the first goal of determining the three-dimensional structure of the 150 kD botulinum neurotoxin serotype...

  9. Three-Dimensional Structure Determination of Botulinum Toxin

    National Research Council Canada - National Science Library

    Stevens, Ray

    1998-01-01

    ...) Based on the structure of the neurotoxin, understand the toxins mechanism of action. We have accomplished the first goal of determining the three-dimensional structure of the 150 kD botulinum neurotoxin serotype...

  10. Direct Linear Transformation Method for Three-Dimensional Cinematography

    Science.gov (United States)

    Shapiro, Robert

    1978-01-01

    The ability of Direct Linear Transformation Method for three-dimensional cinematography to locate points in space was shown to meet the accuracy requirements associated with research on human movement. (JD)

  11. A simple remark on three dimensional gauge theories

    International Nuclear Information System (INIS)

    Lemes, V.E.R.; Linhares de Jesus, C.; Sasaki, C.A.G.; Sorella, S.P.; Vilar, L.C.Q.; Ventura, O.S.

    1997-08-01

    Classical three dimensional Yang-Mills is seen to be related to the topological Chern-Simons term through a nonlinear but fully local and covariant gauge field redefinition. A classical recursive cohomological argument is proved. (author)

  12. Computational study of three-dimensional wake structure

    International Nuclear Information System (INIS)

    Himeno, R.; Shirayama, S.; Kamo, K.; Kuwahara, K.

    1986-01-01

    Three-dimensional wake structure is studied by numerically solving the incompressible Navier-Stokes equations. Results are visualized by a three-dimensional color graphic system. It was found that a pair of vortex tubes separated from a body plays the most important role in the wake. Near the body vortex tubes are rather stable, however, they gradually become unsteady as they flow down

  13. Three-dimensional magnetophotonic crystals based on artificial opals

    Science.gov (United States)

    Baryshev, A. V.; Kodama, T.; Nishimura, K.; Uchida, H.; Inoue, M.

    2004-06-01

    We fabricated and experimentally investigated three-dimensional magnetophotonic crystals (3D MPCs) based on artificial opals. Opal samples with three-dimensional dielectric lattices were impregnated with different types of magnetic material. Magnetic and structural properties of 3D MPCs were studied by field emission scanning electron microscopy, x-ray diffraction analysis, and vibrating sample magnetometer. We have shown that magnetic materials synthesized in voids of opal lattices and the composites obtained have typical magnetic properties.

  14. Three-dimensional magnetophotonic crystals based on artificial opals

    International Nuclear Information System (INIS)

    Baryshev, A.V.; Kodama, T.; Nishimura, K.; Uchida, H.; Inoue, M.

    2004-01-01

    We fabricated and experimentally investigated three-dimensional magnetophotonic crystals (3D MPCs) based on artificial opals. Opal samples with three-dimensional dielectric lattices were impregnated with different types of magnetic material. Magnetic and structural properties of 3D MPCs were studied by field emission scanning electron microscopy, x-ray diffraction analysis, and vibrating sample magnetometer. We have shown that magnetic materials synthesized in voids of opal lattices and the composites obtained have typical magnetic properties

  15. Three-dimensional transesophageal echocardiography of the atrial septal defects

    Directory of Open Access Journals (Sweden)

    Romero-Cárdenas Ángel

    2008-07-01

    Full Text Available Abstract Transesophageal echocardiography has advantages over transthoracic technique in defining morphology of atrial structures. Even though real time three-dimensional echocardiographic imaging is a reality, the off-line reconstruction technique usually allows to obtain higher spatial resolution images. The purpose of this study was to explore the accuracy of off-line three-dimensional transesophageal echocardiography in a spectrum of atrial septal defects by comparing them with representative anatomic specimens.

  16. Comparison of two three-dimensional cephalometric analysis computer software

    OpenAIRE

    Sawchuk, Dena; Alhadlaq, Adel; Alkhadra, Thamer; Carlyle, Terry D; Kusnoto, Budi; El-Bialy, Tarek

    2014-01-01

    Background: Three-dimensional cephalometric analyses are getting more attraction in orthodontics. The aim of this study was to compare two softwares to evaluate three-dimensional cephalometric analyses of orthodontic treatment outcomes. Materials and Methods: Twenty cone beam computed tomography images were obtained using i-CAT® imaging system from patient's records as part of their regular orthodontic records. The images were analyzed using InVivoDental5.0 (Anatomage Inc.) and 3DCeph™ (Unive...

  17. Simulation on three dimensional bubble formation using MARS

    International Nuclear Information System (INIS)

    Kunugi, Tomoaki

    1997-01-01

    This paper describes a numerical simulation on three-dimensional bubble formation by means of the MARS (Multi-interfaces Advection and Reconstruction Solver) developed by the author. The comparison between two-dimensional and three-dimensional simulation on an agglomeration of two bubbles is discussed. Moreover, some simulation results regarding a phase change phenomena such as a boiling and condensation in a two dimensional enclosure with heated and cooled walls are presented. (author)

  18. Three-dimensional reconstruction of functional brain images

    International Nuclear Information System (INIS)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao

    1999-01-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  19. Three-dimensional stellarator equilibrium as an ohmic steady state

    International Nuclear Information System (INIS)

    Park, W.; Monticello, D.A.; Strauss, H.; Manickam, J.

    1985-07-01

    A stable three-dimensional stellarator equilibrium can be obtained numerically by a time-dependent relaxation method using small values of dissipation. The final state is an ohmic steady state which approaches an ohmic equilibrium in the limit of small dissipation coefficients. We describe a method to speed up the relaxation process and a method to implement the B vector . del p = 0 condition. These methods are applied to obtain three-dimensional heliac equilibria using the reduced heliac equations

  20. Discretization model for nonlinear dynamic analysis of three dimensional structures

    International Nuclear Information System (INIS)

    Hayashi, Y.

    1982-12-01

    A discretization model for nonlinear dynamic analysis of three dimensional structures is presented. The discretization is achieved through a three dimensional spring-mass system and the dynamic response obtained by direct integration of the equations of motion using central diferences. First the viability of the model is verified through the analysis of homogeneous linear structures and then its performance in the analysis of structures subjected to impulsive or impact loads, taking into account both geometrical and physical nonlinearities is evaluated. (Author) [pt

  1. Three-dimensional reconstruction of functional brain images

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao [Kyoto Univ. (Japan)

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  2. Advancing three-dimensional MEMS by complimentary laser micro manufacturing

    Science.gov (United States)

    Palmer, Jeremy A.; Williams, John D.; Lemp, Tom; Lehecka, Tom M.; Medina, Francisco; Wicker, Ryan B.

    2006-01-01

    This paper describes improvements that enable engineers to create three-dimensional MEMS in a variety of materials. It also provides a means for selectively adding three-dimensional, high aspect ratio features to pre-existing PMMA micro molds for subsequent LIGA processing. This complimentary method involves in situ construction of three-dimensional micro molds in a stand-alone configuration or directly adjacent to features formed by x-ray lithography. Three-dimensional micro molds are created by micro stereolithography (MSL), an additive rapid prototyping technology. Alternatively, three-dimensional features may be added by direct femtosecond laser micro machining. Parameters for optimal femtosecond laser micro machining of PMMA at 800 nanometers are presented. The technical discussion also includes strategies for enhancements in the context of material selection and post-process surface finish. This approach may lead to practical, cost-effective 3-D MEMS with the surface finish and throughput advantages of x-ray lithography. Accurate three-dimensional metal microstructures are demonstrated. Challenges remain in process planning for micro stereolithography and development of buried features following femtosecond laser micro machining.

  3. Visual Interpretation with Three-Dimensional Annotations (VITA): Three-Dimensional Image Interpretation Tool for Radiological Reporting

    OpenAIRE

    Roy, Sharmili; Brown, Michael S.; Shih, George L.

    2013-01-01

    This paper introduces a software framework called Visual Interpretation with Three-Dimensional Annotations (VITA) that is able to automatically generate three-dimensional (3D) visual summaries based on radiological annotations made during routine exam reporting. VITA summaries are in the form of rotating 3D volumes where radiological annotations are highlighted to place important clinical observations into a 3D context. The rendered volume is produced as a Digital Imaging and Communications i...

  4. Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure

    Science.gov (United States)

    Shawkey, Matthew D.; Saranathan, Vinodkumar; Pálsdóttir, Hildur; Crum, John; Ellisman, Mark H.; Auer, Manfred; Prum, Richard O.

    2009-01-01

    Organismal colour can be created by selective absorption of light by pigments or light scattering by photonic nanostructures. Photonic nanostructures may vary in refractive index over one, two or three dimensions and may be periodic over large spatial scales or amorphous with short-range order. Theoretical optical analysis of three-dimensional amorphous nanostructures has been challenging because these structures are difficult to describe accurately from conventional two-dimensional electron microscopy alone. Intermediate voltage electron microscopy (IVEM) with tomographic reconstruction adds three-dimensional data by using a high-power electron beam to penetrate and image sections of material sufficiently thick to contain a significant portion of the structure. Here, we use IVEM tomography to characterize a non-iridescent, three-dimensional biophotonic nanostructure: the spongy medullary layer from eastern bluebird Sialia sialis feather barbs. Tomography and three-dimensional Fourier analysis reveal that it is an amorphous, interconnected bicontinuous matrix that is appropriately ordered at local spatial scales in all three dimensions to coherently scatter light. The predicted reflectance spectra from the three-dimensional Fourier analysis are more precise than those predicted by previous two-dimensional Fourier analysis of transmission electron microscopy sections. These results highlight the usefulness, and obstacles, of tomography in the description and analysis of three-dimensional photonic structures. PMID:19158016

  5. Atomic layer deposition of HfO{sub 2} for integration into three-dimensional metal-insulator-metal devices

    Energy Technology Data Exchange (ETDEWEB)

    Assaud, Loic [Aix Marseille Univ, CNRS, CINAM, Marseille (France); ICMMO-ERIEE, Universite Paris-Sud / Universite Paris-Saclay, CNRS, Orsay (France); Pitzschel, Kristina; Barr, Maissa K.S.; Petit, Matthieu; Hanbuecken, Margrit; Santinacci, Lionel [Aix Marseille Univ, CNRS, CINAM, Marseille (France); Monier, Guillaume [Universite Clermont Auvergne, Universite Blaise Pascal, CNRS, Institut Pascal, Clermont-Ferrand (France)

    2017-12-15

    HfO{sub 2} nanotubes have been fabricated via a template-assisted deposition process for further use in three-dimensional metal-insulator-metal (MIM) devices. HfO{sub 2} thin layers were grown by Atomic Layer Deposition (ALD) in anodic alumina membranes (AAM). The ALD was carried out using tetrakis(ethylmethylamino)hafnium and water as Hf and O sources, respectively. Long exposure durations to the precursors have been used to maximize the penetration depth of the HfO{sub 2} layer within the AAM and the effect of the process temperature was investigated. The morphology, the chemical composition, and the crystal structure were studied as a function of the deposition parameters using transmission and scanning electron microscopies, X-ray photoelectron spectroscopy, and X-ray diffraction, respectively. As expected, the HfO{sub 2} layers grown at low-temperature (T = 150 C) were amorphous, while for a higher temperature (T = 250 C), polycrystalline films were observed. The electrical characterizations have shown better insulating properties for the layers grown at low temperature. Finally, TiN/HfO{sub 2}/TiN multilayers were grown in an AAM as proof-of-concept for three-dimensional MIM nanostructures. (orig.)

  6. Three-dimensional Electromagnetic Modeling of the Hawaiian Swell

    Science.gov (United States)

    Avdeev, D.; Utada, H.; Kuvshinov, A.; Koyama, T.

    2004-12-01

    An anomalous behavior of the geomagnetic deep sounding (GDS) responses at the Honolulu geomagnetic observatory has been reported by many researchers. Kuvshinov et al (2004) found that the predicted GDS Dst C-response does not match the experimental data -- 10-20% disagreement occurs for all periods of 2 to 30 days, qualitatively implying a more resistive, rather than conductive, structure beneath the Hawaiian Islands. Simpson et al. (2000) found that the GDS Sq C-response at the Honolulu observatory is about 4 times larger than that at a Hawaii island site, again suggesting a more resistive (than elsewhere around) structure beneath the observatory. Constable and Heinson (2004, http://mahi.ucsd.edu/Steve/swell.pdf), presenting a 2-D interpretation of the magnetotelluric (MT) and GDS responses recently obtained at 7 seafloor sites to the south of the Hawaii Islands, concluded that the dataset require the presence of a narrow conducting plume just beneath the islands. The main motivation of our work is to reveal the reason of the anomalous behavior of the Honolulu response. Obviously, the cause may be due to heterogeneity of either the conductivity or the source field. We examine this problem in some detail with reference to the Constable and Heinson's seafloor dataset, as well as the available dataset from the Honolulu observatory. To address the problem we apply numerical modeling using the three-dimensional (3-D) forward modeling code of Avdeev et al. (1997, 2002). With this code we simulate various regional 3-D conductivity models that may produce EM responses that better fit the experimental datasets, at least qualitatively. Also, to explain some features of the experimental long-period GDS responses we numerically studied a possible effect in the responses caused by the equatorial electrojet. Our 3-D modeling results show that, in particular: (1) The GDS responses are better explained by models with a resistive lithosphere whereas the MT data are better fit by

  7. A plastic surgery application in evolution: three-dimensional printing.

    Science.gov (United States)

    Gerstle, Theodore L; Ibrahim, Ahmed M S; Kim, Peter S; Lee, Bernard T; Lin, Samuel J

    2014-02-01

    Three-dimensional printing represents an evolving technology still in its infancy. Currently, individuals and small business entities have the ability to manufacture physical objects from digital renderings, computer-aided design, and open source files. Design modifications and improvements in extrusion methods have made this technology much more affordable. This article explores the potential uses of three-dimensional printing in plastic surgery. A review was performed detailing the known uses of three-dimensional printing in medicine. The potential applications of three-dimensional printing in plastic surgery are discussed. Various applications for three-dimensional printing technology have emerged in medicine, including printing organs, printing body parts, bio-printing, and computer-aided tissue engineering. In plastic surgery, these tools offer various prospective applications for surgical planning, resident education, and the development of custom prosthetics. Numerous applications exist in medicine, including the printing of devices, implants, tissue replacements, and even whole organs. Plastic surgeons may likely find this technology indispensable in surgical planning, education, and prosthetic device design and development in the near future.

  8. Three-dimensional printing and pediatric liver disease.

    Science.gov (United States)

    Alkhouri, Naim; Zein, Nizar N

    2016-10-01

    Enthusiastic physicians and medical researchers are investigating the role of three-dimensional printing in medicine. The purpose of the current review is to provide a concise summary of the role of three-dimensional printing technology as it relates to the field of pediatric hepatology and liver transplantation. Our group and others have recently demonstrated the feasibility of printing three-dimensional livers with identical anatomical and geometrical landmarks to the native liver to facilitate presurgical planning of complex liver surgeries. Medical educators are exploring the use of three-dimensional printed organs in anatomy classes and surgical residencies. Moreover, mini-livers are being developed by regenerative medicine scientist as a way to test new drugs and, eventually, whole livers will be grown in the laboratory to replace organs with end-stage disease solving the organ shortage problem. From presurgical planning to medical education to ultimately the bioprinting of whole organs for transplantation, three-dimensional printing will change medicine as we know in the next few years.

  9. Three-dimensional magnetospheric equilibrium with isotropic pressure

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1995-05-01

    In the absence of the toroidal flux, two coupled quasi two-dimensional elliptic equilibrium equations have been derived to describe self-consistent three-dimensional static magnetospheric equilibria with isotropic pressure in an optimal (Ψ,α,χ) flux coordinate system, where Ψ is the magnetic flux function, χ is a generalized poloidal angle, α is the toroidal angle, α = φ - δ(Ψ,φ,χ) is the toroidal angle, δ(Ψ,φ,χ) is periodic in φ, and the magnetic field is represented as rvec B = ∇Ψ x ∇α. A three-dimensional magnetospheric equilibrium code, the MAG-3D code, has been developed by employing an iterative metric method. The main difference between the three-dimensional and the two-dimensional axisymmetric solutions is that the field-aligned current and the toroidal magnetic field are finite for the three-dimensional case, but vanish for the two-dimensional axisymmetric case. With the same boundary flux surface shape, the two-dimensional axisymmetric results are similar to the three-dimensional magnetosphere at each local time cross section

  10. Three-dimensional imagery by encoding sources of X rays

    International Nuclear Information System (INIS)

    Magnin, Isabelle

    1987-01-01

    This research thesis addresses the theoretical and practical study of X ray coded sources, and thus notably aims at exploring whether it would be possible to transform a standard digital radiography apparatus (as those operated in radiology hospital departments) into a low cost three-dimensional imagery system. The author first recalls the principle of conventional tomography and improvement attempts, and describes imagery techniques based on the use of encoding openings and source encoding. She reports the modelling of an imagery system based on encoded sources of X ray, and addresses the original notion of three-dimensional response for such a system. The author then addresses the reconstruction method by considering the reconstruction of a plane object, of a multi-plane object, and of real three-dimensional object. The frequency properties and the tomographic capacities of various types of source codes are analysed. She describes a prototype tomography apparatus, and presents and discusses three-dimensional actual phantom reconstructions. She finally introduces a new principle of dynamic three-dimensional radiography which implements an acquisition technique by 'gating code'. The acquisition principle should allow the reconstruction of volumes animated by periodic deformations, such as the heart for example [fr

  11. Three-dimensional geologic mapping of the Cenozoic basin fill, Amargosa Desert basin, Nevada and California

    Science.gov (United States)

    Taylor, Emily M.; Sweetkind, Donald S.

    2014-01-01

    Understanding the subsurface geologic framework of the Cenozoic basin fill that underlies the Amargosa Desert in southern Nevada and southeastern California has been improved by using borehole data to construct three-dimensional lithologic and interpreted facies models. Lithologic data from 210 boreholes from a 20-kilometer (km) by 90-km area were reduced to a limited suite of descriptors based on geologic knowledge of the basin and distributed in three-dimensional space using interpolation methods. The resulting lithologic model of the Amargosa Desert basin portrays a complex system of interfingered coarse- to fine-grained alluvium, playa and palustrine deposits, eolian sands, and interbedded volcanic units. Lithologic units could not be represented in the model as a stacked stratigraphic sequence due to the complex interfingering of lithologic units and the absence of available time-stratigraphic markers. Instead, lithologic units were grouped into interpreted genetic classes, such as playa or alluvial fan, to create a three-dimensional model of the interpreted facies data. Three-dimensional facies models computed from these data portray the alluvial infilling of a tectonically formed basin with intermittent internal drainage and localized regional groundwater discharge. The lithologic and interpreted facies models compare favorably to resistivity, aeromagnetic, and geologic map data, lending confidence to the interpretation.

  12. Demonstration for novel self-organization theory by three-dimensional magnetohydrodynamic simulation

    International Nuclear Information System (INIS)

    Kondoh, Yoshiomi; Hosaka, Yasuo; Liang, Jia-Ling.

    1993-03-01

    It is demonstrated by three-dimensional simulations for resistive magnetohydrodynamic (MHD) plasmas with both 'spatially nonuniform resistivity η' and 'uniformη' that the attractor of the dissipative structure in the resistive MHD plasmas is given by ∇ x (ηj) = (α/2)B which is derived from a novel self-organization theory based on the minimum dissipation rate profile. It is shown by the simulations that the attractor is reduced to ∇ x B = λB in the special case with the 'uniformη' and no pressure gradient. (author)

  13. Reduced, three-dimensional, nonlinear equations for high-β plasmas including toroidal effects

    International Nuclear Information System (INIS)

    Schmalz, R.

    1980-11-01

    The resistive MHD equations for toroidal plasma configurations are reduced by expanding to the second order in epsilon, the inverse aspect ratio, allowing for high β = μsub(o)p/B 2 of order epsilon. The result is a closed system of nonlinear, three-dimensional equations where the fast magnetohydrodynamic time scale is eliminated. In particular, the equation for the toroidal velocity remains decoupled. (orig.)

  14. Thin-layer chromatography can resolve phosphotyrosine, phosphoserine, and phosphothreonine in a protein hydrolyzate

    International Nuclear Information System (INIS)

    Neufeld, E.; Goren, H.J.; Boland, D.

    1989-01-01

    A solution of propionic acid, 1 M ammonium hydroxide, and isopropyl alcohol (45/17.5/17.5, v/v) was the ascending solvent in the separation of phosphotyrosine, phosphothreonine, and phosphoserine by thin-layer chromatography. The immobile phase was cellulose. The relative migrations were 0.44, 0.38, and 0.2, respectively. A previously described thin-layer system consisting of isobutyric acid and 0.5 M ammonium hydroxide (50/30, v/v) gave very similar relative migrations. To determine the usefulness of thin-layer chromatography in phosphoamino acid analysis, the propionic acid/ammonium hydroxide/isopropyl alcohol solution was used to characterize phosphorylated residues in a plasma membrane protein which is a substrate for the insulin receptor kinase, in insulin receptor phosphorylated histone H2B, and in an in vivo phosphorylated 90000-Da protein from IM9 cells. 32 P-labeled proteins were separated by dodecyl sulfate-gel electrophoresis, digested with trypsin, and then hydrolyzed with 6 N HCl, 2 h, 110 degrees C. Following thin-layer chromatography of the hydrolyzates and autoradiography, phosphotyrosine was detected in insulin receptor substrates, and phosphoserine and phosphothreonine were found in the in vivo-phosphorylated protein. This study supports previous reports about the practicality of thin-layer chromatography in phosphoamino acid analysis and it demonstrates that a propionic acid, ammonium hydroxide, isoprophyl alcohol solution may be a useful ascending solvent mixture for this purpose

  15. Thin layer model for nonlinear evolution of the Rayleigh-Taylor instability

    Science.gov (United States)

    Zhao, K. G.; Wang, L. F.; Xue, C.; Ye, W. H.; Wu, J. F.; Ding, Y. K.; Zhang, W. Y.

    2018-03-01

    On the basis of the thin layer approximation [Ott, Phys. Rev. Lett. 29, 1429 (1972)], a revised thin layer model for incompressible Rayleigh-Taylor instability has been developed to describe the deformation and nonlinear evolution of the perturbed interface. The differential equations for motion are obtained by analyzing the forces (the gravity and pressure difference) of fluid elements (i.e., Newton's second law). The positions of the perturbed interface are obtained from the numerical solution of the motion equations. For the case of vacuum on both sides of the layer, the positions of the upper and lower interfaces obtained from the revised thin layer approximation agree with that from the weakly nonlinear (WN) model of a finite-thickness fluid layer [Wang et al., Phys. Plasmas 21, 122710 (2014)]. For the case considering the fluids on both sides of the layer, the bubble-spike amplitude from the revised thin layer model agrees with that from the WN model [Wang et al., Phys. Plasmas 17, 052305 (2010)] and the expanded Layzer's theory [Goncharov, Phys. Rev. Lett. 88, 134502 (2002)] in the early nonlinear growth regime. Note that the revised thin layer model can be applied to investigate the perturbation growth at arbitrary Atwood numbers. In addition, the large deformation (the large perturbed amplitude and the arbitrary perturbed distributions) in the initial stage can also be described by the present model.

  16. Thin-layer voltammetry of soluble species on screen-printed electrodes: proof of concept.

    Science.gov (United States)

    Botasini, S; Martí, A C; Méndez, E

    2016-10-17

    Thin-layer diffusion conditions were accomplished on screen-printed electrodes by placing a controlled-weight onto the cast solution and allowing for its natural spreading. The restricted diffusive conditions were assessed by cyclic voltammetry at low voltage scan rates and electrochemical impedance spectroscopy. The relationship between the weight exerted over the drop and the thin-layer thickness achieved was determined, in such a way that the simple experimental set-up designed for this work could be developed into a commercial device with variable control of the thin-layer conditions. The experimental results obtained resemble those reported for the voltammetric features of electroactive soluble species employing electrodes modified with carbon nanotubes or graphene layers, suggesting that the attainment of the benefits reported for these nanomaterials could be done simply by forcing the solution to spread over the screen-printed electrodic system to form a thin layer solution. The advantages of thin-layer voltammetry in the kinetic characterization of quasi-reversible and irreversible processes are highlighted.

  17. Mathematical modeling of thin layer drying of pistachio by using solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Midilli, A [University of Nigde (Turkey). Dept. of Mechanical Engineering; Kucuk, H [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Mechanical Engineering

    2003-05-01

    This paper presents a mathematical modeling of thin layer forced and natural solar drying of shelled and unshelled pistachio samples. In order to estimate and select the suitable form of solar drying curves, eight different mathematical models, which are semi-theoretical and/or empirical, were applied to the experimental data and compared according to their coefficients of determination (r,{chi}{sup 2}), which were predicted by non-linear regression analysis using the Statistical Computer Program. It was deduced that the logarithmic model could sufficiently describe thin layer forced solar drying of shelled and unshelled pistachio, while the two term model could define thin layer natural solar drying of these products in evaluation by considering the coefficients of determination, r{sub sfsd}=0.9983, {chi}{sup 2}{sub sfsd}=2.697x10{sup -5}; r{sub ufsd}=0.9990, {chi}{sup 2}{sub ufsd}=1.639x10{sup -5} for thin layer forced solar drying and r{sub snsd}=0.9990, {chi}{sup 2}{sub snsd}=3.212x10{sup -6}; r{sub unsd}=0.9970, {chi}{sup 2}{sub unsd}=4.590x10{sup -5} for thin layer natural solar drying. (Author)

  18. Studies of oxide-based thin-layered heterostructures by X-ray scattering methods

    Energy Technology Data Exchange (ETDEWEB)

    Durand, O. [Thales Research and Technology France, Route Departementale 128, F-91767 Palaiseau Cedex (France)]. E-mail: olivier.durand@thalesgroup.com; Rogers, D. [Nanovation SARL, 103 bis rue de Versailles 91400 Orsay (France); Universite de Technologie de Troyes, 10-12 rue Marie Curie, 10010 (France); Teherani, F. Hosseini [Nanovation SARL, 103 bis rue de Versailles 91400 Orsay (France); Andrieux, M. [LEMHE, ICMMOCNRS-UMR 8182, Universite d' Orsay, Batiment 410, 91410 Orsay (France); Modreanu, M. [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland)

    2007-06-04

    Some X-ray scattering methods (X-ray reflectometry and Diffractometry) dedicated to the study of thin-layered heterostructures are presented with a particular focus, for practical purposes, on the description of fast, accurate and robust techniques. The use of X-ray scattering metrology as a routinely working non-destructive testing method, particularly by using procedures simplifying the data-evaluation, is emphasized. The model-independent Fourier-inversion method applied to a reflectivity curve allows a fast determination of the individual layer thicknesses. We demonstrate the capability of this method by reporting X-ray reflectometry study on multilayered oxide structures, even when the number of the layers constitutive of the stack is not known a-priori. Fast Fourier transform-based procedure has also been employed successfully on high resolution X-ray diffraction profiles. A study of the reliability of the integral-breadth methods in diffraction line-broadening analysis applied to thin layers, in order to determine coherent domain sizes, is also reported. Examples from studies of oxides-based thin-layers heterostructures will illustrate these methods. In particular, X-ray scattering studies performed on high-k HfO{sub 2} and SrZrO{sub 3} thin-layers, a (GaAs/AlOx) waveguide, and a ZnO thin-layer are reported.

  19. Three-dimensional particle image velocimetry measurement technique

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Seeley, C.H.; Henderson, J.A.; Schmidl, W.D.

    2004-01-01

    The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being used to determine the velocity field in two-dimensional fluid flows. In the past few years, the technique has been improved to allow the capture of flow fields in three dimensions. This paper describes changes which were made to two existing two-dimensional tracking algorithms to enable them to track three-dimensional PIV data. Results of the tests performed on these three-dimensional routines with synthetic data are presented. Experimental data was also used to test the tracking algorithms. The test setup which was used to acquire the three-dimensional experimental data is described, along with the results from both of the tracking routines which were used to analyze the experimental data. (author)

  20. Application of three-dimensional CT reconstruction cranioplasty

    International Nuclear Information System (INIS)

    Yan Shuli; Yun Yongxing; Wan Kunming; Qiu Jian

    2011-01-01

    Objective: To study the application of three-dimensional CT reconstruction in cranioplasty. Methods: 46 patients with skull defect were divided into two group. One group underwent CT examination and three-dimensional reconstruction, and then the Titanium nets production company manufactured corresponding titanium meshes were shaped those data before the operation. The other group received traditional operation in which titanium meshes were shaped during operation. The average time of operation were compared. Results: The average time of operation of the first group is 86.6±13.6 mins, and that of the second group is 115±15.0 mins. The difference of average operation time between the two groups was statistically significant. Conclusion: Three-dimensional CT reconstruction techniques contribute to shorten the average operation time, reduce the intensity of neurosurgeon's work and the patien's risk. (authors)

  1. Eustachian tube three-dimensional reconstruction of secretory otitis media

    International Nuclear Information System (INIS)

    Yu Yafeng; Zhou Weirong; Bao Xueping; Li Min; Hu Zhenmin

    2006-01-01

    Objective: To study relationship between Eustachian tube and secretory otitis media and to explore the pathogeny of secretory otitis by three-dimensional reconstruction of Eustachian tube. Methods: Thirty cases of secretory otitis media (male 19, female 11) were selected randomly. Everyone was checked by otoscope and audiometry. Their bilateral Eustachian tubes were scanning by helix CT while making Valsalva's action. All images were passed on to work station to make three-dimensional reconstruction. Results: Four patients were found have Eustachian tube diseases, while most of patients' Eustachian tubes ventilated normally. Conclusions: Three-dimensional reconstruction of Eustachian tube can open out some pathogens of some secretory otitis medias. It will be helpful to diagnosis and therapy of secretory otitis media. (authors)

  2. Three-dimensional CT of the pediatric spine

    International Nuclear Information System (INIS)

    Starshak, R.J.; Crawford, C.R.; Waisman, R.C.; Sty, J.R.

    1987-01-01

    CT of the spine has been shown to be useful in evaluating congenital, neoplastic, inflammatory, and traumatic lesions. Any portion of the neural arch may be involved by these disease processes. However, the complex nature of the spinal column can make evaluation of these abnormalities difficult on axial CT. This is especially true if the spine is distorted by scoliosis, kyphosis, or lordosis. The principal advantage of three-dimensional CT is its ability to display the surface relationships of complicated objects. The complexity of the spinal axis makes it ideal for study with three-dimensional CT. This presentation illustrates the advantages and drawbacks of three-dimensional CT in spinal abnormalities in children

  3. Two- and three-dimensional CT analysis of ankle fractures

    International Nuclear Information System (INIS)

    Magid, D.; Fishman, E.K.; Ney, D.R.; Kuhlman, J.E.

    1988-01-01

    CT with coronal and sagittal reformatting (two-dimensional CT) and animated volumetric image rendering (three-dimensional CT) was used to assess ankle fractures. Partial volume limits transaxial CT in assessments of horizontally oriented structures. Two-dimensional CT, being orthogonal to the plafond, superior mortise, talar dome, and tibial epiphysis, often provides the most clinically useful images. Two-dimensional CT is most useful in characterizing potentially confusing fractures, such as Tillaux (anterior tubercle), triplane, osteochondral talar dome, or nondisplaced talar neck fractures, and it is the best study to confirm intraarticular fragments. Two-and three-dimensional CT best indicate the percentage of articular surface involvement and best demonstrate postoperative results or complications (hardware migration, residual step-off, delayed union, DJD, AVN, etc). Animated three-dimensional images are the preferred means of integrating the two-dimensional findings for surgical planning, as these images more closely simulate the clinical problem

  4. Prognostic value of three-dimensional ultrasound for fetal hydronephrosis

    Science.gov (United States)

    WANG, JUNMEI; YING, WEIWEN; TANG, DAXING; YANG, LIMING; LIU, DONGSHENG; LIU, YUANHUI; PAN, JIAOE; XIE, XING

    2015-01-01

    The present study evaluated the prognostic value of three-dimensional ultrasound for fetal hydronephrosis. Pregnant females with fetal hydronephrosis were enrolled and a novel three-dimensional ultrasound indicator, renal parenchymal volume/kidney volume, was introduced to predict the postnatal prognosis of fetal hydronephrosis in comparison with commonly used ultrasound indicators. All ultrasound indicators of fetal hydronephrosis could predict whether postnatal surgery was required for fetal hydronephrosis; however, the predictive performance of renal parenchymal volume/kidney volume measurements as an individual indicator was the highest. In conclusion, ultrasound is important in predicting whether postnatal surgery is required for fetal hydronephrosis, and the three-dimensional ultrasound indicator renal parenchymal volume/kidney volume has a high predictive performance. Furthermore, the majority of cases of fetal hydronephrosis spontaneously regress subsequent to birth, and the regression time is closely associated with ultrasound indicators. PMID:25667626

  5. A method of image improvement in three-dimensional imaging

    International Nuclear Information System (INIS)

    Suto, Yasuzo; Huang, Tewen; Furuhata, Kentaro; Uchino, Masafumi.

    1988-01-01

    In general, image interpolation is required when the surface configurations of such structures as bones and organs are three-dimensionally constructed from the multi-sliced images obtained by CT. Image interpolation is a processing method whereby an artificial image is inserted between two adjacent slices to make spatial resolution equal to slice resolution in appearance. Such image interpolation makes it possible to increase the image quality of the constructed three-dimensional image. In our newly-developed algorithm, we have converted the presently and subsequently sliced images to distance images, and generated the interpolation images from these two distance images. As a result, compared with the previous method, three-dimensional images with better image quality have been constructed. (author)

  6. Three-dimensional, three-component wall-PIV

    Science.gov (United States)

    Berthe, André; Kondermann, Daniel; Christensen, Carolyn; Goubergrits, Leonid; Garbe, Christoph; Affeld, Klaus; Kertzscher, Ulrich

    2010-06-01

    This paper describes a new time-resolved three-dimensional, three-component (3D-3C) measurement technique called wall-PIV. It was developed to assess near wall flow fields and shear rates near non-planar surfaces. The method is based on light absorption according to Beer-Lambert’s law. The fluid containing a molecular dye and seeded with buoyant particles is illuminated by a monochromatic, diffuse light. Due to the dye, the depth of view is limited to the near wall layer. The three-dimensional particle positions can be reconstructed by the intensities of the particle’s projection on an image sensor. The flow estimation is performed by a new algorithm, based on learned particle trajectories. Possible sources of measurement errors related to the wall-PIV technique are analyzed. The accuracy analysis was based on single particle experiments and a three-dimensional artificial data set simulating a rotating sphere.

  7. A three-dimensional field solutions of Halbach

    International Nuclear Information System (INIS)

    Chen Jizhong; Xiao Jijun; Zhang Yiming; Xu Chunyan

    2008-01-01

    A three-dimensional field solutions are presented for Halback cylinder magnet. Based on Ampere equivalent current methods, the permanent magnets are taken as distributing of current density. For getting the three-dimensional field solution of ideal polarized permanent magnets, the solution method entails the use of the vector potential and involves the closed-form integration of the free-space Green's function. The programmed field solution are ideal for performing rapid parametric studies of the dipole Halback cylinder magnets made from rare earth materials. The field solutions are verified by both an analytical two-dimensional algorithm and three-dimensional finite element software. A rapid method is presented for extensive analyzing and optimizing Halbach cylinder magnet. (authors)

  8. Computational methods for three-dimensional microscopy reconstruction

    CERN Document Server

    Frank, Joachim

    2014-01-01

    Approaches to the recovery of three-dimensional information on a biological object, which are often formulated or implemented initially in an intuitive way, are concisely described here based on physical models of the object and the image-formation process. Both three-dimensional electron microscopy and X-ray tomography can be captured in the same mathematical framework, leading to closely-related computational approaches, but the methodologies differ in detail and hence pose different challenges. The editors of this volume, Gabor T. Herman and Joachim Frank, are experts in the respective methodologies and present research at the forefront of biological imaging and structural biology.   Computational Methods for Three-Dimensional Microscopy Reconstruction will serve as a useful resource for scholars interested in the development of computational methods for structural biology and cell biology, particularly in the area of 3D imaging and modeling.

  9. Three-dimensional CT imaging of soft-tissue anatomy

    International Nuclear Information System (INIS)

    Fishman, E.K.; Ney, D.R.; Magid, D.; Kuhlman, J.E.

    1988-01-01

    Three-dimensional display of computed tomographic data has been limited to skeletal structures. This was in part related to the reconstruction algorithm used, which relied on a binary classification scheme. A new algorithm, volumetric rendering with percentage classification, provides the ability to display three-dimensional images of muscle and soft tissue. A review was conducted of images in 35 cases in which muscle and/or soft tissue were part of the clinical problem. In all cases, individual muscle groups could be clearly identified and discriminated. Branching vessels in the range of 2.3 mm could be identified. Similarly, lymph nodes could be clearly defined. High-resolution three-dimensional images were found to be useful both in providing an increased understanding of complex muscle and soft tissue anatomy and in surgical planning

  10. Comparison of Wenner and dipole–dipole arrays in the study of an underground three-dimensional cavity

    International Nuclear Information System (INIS)

    Neyamadpour, Ahmad; Wan Abdullah, W A T; Taib, Samsudin; Neyamadpour, Behrang

    2010-01-01

    The objective of this paper was to compare Wenner and dipole–dipole configurations in delineating an underground cavity at a site near the University of Malaya, Malaysia. A three-dimensional electrical resistivity imaging survey was carried out along seven parallel lines using Wenner and dipole–dipole arrays. A three-dimensional least-squares algorithm, based on the robust inversion method, was used in the inversion of the apparent resistivity data. In the inverted model, both the horizontal and vertical extents of the anomalous zones were displayed. Results indicate the superiority of the Wenner array over the dipole–dipole array for determining the vertical distribution of the subsurface resistivity, although the dipole–dipole array produced a better lateral extent of the subsurface features. The results show that the three-dimensional electrical resistivity imaging survey using both the Wenner and dipole–dipole arrays, in combination with an appropriate three-dimensional inversion method and synthetic model analysis, can be highly useful for engineering and environmental applications, especially for underground three-dimensional cavity detection

  11. Three-dimensional quadrupole lenses made with permanent magnets

    International Nuclear Information System (INIS)

    Ivanov, A.S.

    1984-01-01

    The performance of accelerator systems with quadrupole magnets can be improved by using permanent magnets in quadrupole lenses. This requires better methods for treating the three-dimensional nature of the magnetic fields and the nonlinear characteristics of the magnets. A numerical method is described for simulating three-dimensional magnetic fields and used to analyze quadrupole lenses and doublets with permanent magnets. The results, which are confirmed experimentally, indicate that both the quadrupole magnetic gradient and the effective field length are changed in permanent-magnet quadrupole lenses when the pole lengths and the gap between the lenses are varied while the other characteristics of the magnets remain unchanged

  12. Three dimensional imaging technique for laser-plasma diagnostics

    International Nuclear Information System (INIS)

    Jiang Shaoen; Zheng Zhijian; Liu Zhongli

    2001-01-01

    A CT technique for laser-plasma diagnostic and a three-dimensional (3D) image reconstruction program (CT3D) have been developed. The 3D images of the laser-plasma are reconstructed by using a multiplication algebraic reconstruction technique (MART) from five pinhole camera images obtained along different sight directions. The technique has been used to measure the three-dimensional distribution of X-ray of laser-plasma experiments in Xingguang II device, and the good results are obtained. This shows that a CT technique can be applied to ICF experiments

  13. Three-dimensional flow and turbulence structure in electrostatic precipitator

    DEFF Research Database (Denmark)

    Ullum, Thorvald Uhrskov; Larsen, Poul Scheel; Özcan, Oktay

    2002-01-01

    Stereo PIV is employed to study the three-dimensional velocity and turbulence fields in a laboratory model of a negative corona, barbed-wire, smooth-plate, electrostatic precipitator (figure 1). The study is focused on determining the parametric effects of axial development, mean current density Jm...... and bulk velocity U0 on secondary flows and turbulence levels and structures due to the action of the three-dimensional electrostatic field on the charged gas. At constant bulk velocity (U0 = 1 m/s) and current density (Jm = 0.4 mA/m2), secondary flows in the form of rolls of axial vorticity with swirl...

  14. Three-dimensional wax patterning of paper fluidic devices.

    Science.gov (United States)

    Renault, Christophe; Koehne, Jessica; Ricco, Antonio J; Crooks, Richard M

    2014-06-17

    In this paper we describe a method for three-dimensional wax patterning of microfluidic paper-based analytical devices (μPADs). The method is rooted in the fundamental details of wax transport in paper and provides a simple way to fabricate complex channel architectures such as hemichannels and fully enclosed channels. We show that three-dimensional μPADs can be fabricated with half as much paper by using hemichannels rather than ordinary open channels. We also provide evidence that fully enclosed channels are efficiently isolated from the exterior environment, decreasing contamination risks, simplifying the handling of the device, and slowing evaporation of solvents.

  15. Three dimensional investigation of oceanic active faults. A demonstration survey

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Seizo; Kishimoto, Kiyoyuki; Kuramoto, Shinichi; Sato, Mikio [Geological Survey of Japan, Tsukuba, Ibaraki (Japan)

    1998-02-01

    In order to upgrade probability of activity and action potential evaluation of oceanic active faults which have some important effects on nuclear facilities, trench type oceanic active fault was investigated three dimensionally. Contents of the investigation were high precision sea bottom topographic survey and sea bottom back scattering wave image data observation by using a sea bottom topography acoustic imaginator. And, by high resolution earthquake wave survey, high precision survey of an active fault under sea bottom was conducted to detect oceanic active faults three-dimensionally. Furthermore, the generally issued data were summarized to promote to construct a data base for evaluating the active faults. (G.K.)

  16. Implementation of three dimensional treatment planning system for external radiotherapy

    International Nuclear Information System (INIS)

    Major, Tibor; Kurup, P.G.G.; Stumpf, Janos

    1997-01-01

    A three dimensional (3D) treatment planning system was installed at Apollo Cancer Hospital, Chennai, India in 1995. This paper gives a short description of the system including hardware components, calculation algorithm, measured data requirements and specific three dimensional features. The concept and the structure of the system are shortly described. The first impressions along with critical opinions and the experiences are gained during the data acquisition are mentioned. Some improvements in the user interface are suggested. It is emphasized that although a 3D system offers more detailed and accurate dose distributions compared to a 2D system, it also introduces a greatly increased workload for the planning staff. (author)

  17. Resonance fluorescence based two- and three-dimensional atom localization

    Science.gov (United States)

    Wahab, Abdul; Rahmatullah; Qamar, Sajid

    2016-06-01

    Two- and three-dimensional atom localization in a two-level atom-field system via resonance fluorescence is suggested. For the two-dimensional localization, the atom interacts with two orthogonal standing-wave fields, whereas for the three-dimensional atom localization, the atom interacts with three orthogonal standing-wave fields. The effect of the detuning and phase shifts associated with the corresponding standing-wave fields is investigated. A precision enhancement in position measurement of the single atom can be noticed via the control of the detuning and phase shifts.

  18. Three dimensional imaging technique for laser-plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Shaoen, Jiang; Zhijian, Zheng; Zhongli, Liu [China Academy of Engineering Physics, Chengdu (China)

    2001-04-01

    A CT technique for laser-plasma diagnostic and a three-dimensional (3D) image reconstruction program (CT3D) have been developed. The 3D images of the laser-plasma are reconstructed by using a multiplication algebraic reconstruction technique (MART) from five pinhole camera images obtained along different sight directions. The technique has been used to measure the three-dimensional distribution of X-ray of laser-plasma experiments in Xingguang II device, and the good results are obtained. This shows that a CT technique can be applied to ICF experiments.

  19. Three dimensional investigation of oceanic active faults. A demonstration survey

    International Nuclear Information System (INIS)

    Nakao, Seizo; Kishimoto, Kiyoyuki; Kuramoto, Shinichi; Sato, Mikio

    1998-01-01

    In order to upgrade probability of activity and action potential evaluation of oceanic active faults which have some important effects on nuclear facilities, trench type oceanic active fault was investigated three dimensionally. Contents of the investigation were high precision sea bottom topographic survey and sea bottom back scattering wave image data observation by using a sea bottom topography acoustic imaginator. And, by high resolution earthquake wave survey, high precision survey of an active fault under sea bottom was conducted to detect oceanic active faults three-dimensionally. Furthermore, the generally issued data were summarized to promote to construct a data base for evaluating the active faults. (G.K.)

  20. Three-dimensional Reciprocal Structures: Morphology, Concepts, Generative Rules

    DEFF Research Database (Denmark)

    Parigi, Dario; Pugnale, Alberto

    2012-01-01

    , causing every configuration to develop naturally out-of the plane. The structures presented here were developed and built by the students of the Master of Science in “Architectural Design” during a two week long workshop organized at Aalborg University in the fall semester 2011.......This paper present seven different three dimensional structures based on the principle of structural reciprocity with superimposition joint and standardized un-notched elements. Such typology could be regarded as being intrinsically three-dimensional because elements sit one of the top of the other...

  1. Phytochemical analysis of ethanolic extract of Dichrostachys Cinerea W and Arn leaves by a thin layer chromatography, high performance thin layer chromatography and column chromatography

    OpenAIRE

    M Vijayalakshmi; K Periyanayagam; K Kavitha; K Akilandeshwari

    2013-01-01

    Background: The leaves of Dichrostachys cinerea are used as laxative, diuretic, painkiller. It is also used in the treatment of gonorrhoea, boils, oedema, gout, veneral diseases and nasopharyngeal affections, etc. Materials and Methods: The Phytochemical investigation of ethanolic extract of D. cinerea leaves were performed by standard chemical tests, thin layer chromatography (TLC) by using various solvent systems, and by high performance liquid chromatography (HPTLC). Two compounds were...

  2. Ion exchange of alkaline metals on the thin-layer zinc ferrocyanide

    International Nuclear Information System (INIS)

    Betenekov, N.D.; Buklanov, G.V.; Ipatova, E.G.; Korotkin, Yu.S.

    1991-01-01

    Basic regularities of interphase distribution in the system of thin-layer sorbent on the basis of mixed zinc ferrocyanide (FZ)-alkaline metal solution (Na, K, Rb, Cs, Fr) in the column chromatography made are studied. It is established that interphase distribution of microgram amounts of alkaline metals in the systems thin-layer FZ-NH 4 NO 3 electrolyte solutions is of ion-exchange character and subjected to of law effective mass. It is shown that FZ thin-layer material is applicable for effective chromatographic separation of alkaline metal trace amounts. An approach to the choice of a conditions of separate elution of Na, K, Rb, Cs, Fr in the column chromatography mode

  3. A simplified computing method of pile group to seismic loads using thin layer element

    International Nuclear Information System (INIS)

    Masao, T.; Hama, I.

    1995-01-01

    In the calculation of pile group, it is said that the results of response by thin layer method give the correct solution with the isotropic and homogeneous soil material in each layer, on the other hand this procedure spends huge computing time. Dynamic stiffness matrix of thin layer method is obtained from inversion of flexibility matrix between pile-i and pile-j. This flexibility matrix is full matrix and its size increase in proportion to the number of piles and thin layers. The greater part of run time is taken into the inversion of flexibility matrix against point loading. We propose the method of decreasing the run time for computing by reducing to banded matrix of flexibility matrix. (author)

  4. Bias of shear wave elasticity measurements in thin layer samples and a simple correction strategy.

    Science.gov (United States)

    Mo, Jianqiang; Xu, Hao; Qiang, Bo; Giambini, Hugo; Kinnick, Randall; An, Kai-Nan; Chen, Shigao; Luo, Zongping

    2016-01-01

    Shear wave elastography (SWE) is an emerging technique for measuring biological tissue stiffness. However, the application of SWE in thin layer tissues is limited by bias due to the influence of geometry on measured shear wave speed. In this study, we investigated the bias of Young's modulus measured by SWE in thin layer gelatin-agar phantoms, and compared the result with finite element method and Lamb wave model simulation. The result indicated that the Young's modulus measured by SWE decreased continuously when the sample thickness decreased, and this effect was more significant for smaller thickness. We proposed a new empirical formula which can conveniently correct the bias without the need of using complicated mathematical modeling. In summary, we confirmed the nonlinear relation between thickness and Young's modulus measured by SWE in thin layer samples, and offered a simple and practical correction strategy which is convenient for clinicians to use.

  5. Sorption and movement of pesticides on thin layer plates of Brazilain soils

    International Nuclear Information System (INIS)

    Lord, K.A.; Helene, C.G.; Andrea, M.M. de; Ruegg, E.F.

    1979-01-01

    The sorption from aqueous solution, and movement in water on thin layers plates of 7 soils of 3 organochlorine, 2 organophosphorus and 1 carbamate insecticide was determined in the laboratory. Generally, all substances were sorbed most and moved least on soils richest in organic matter. However, sorption was not a function of organic matter content alone. Aldrin and DDT were most strongly sorbed and did not move from the point of application on the thin layer plates of any soil. On all 7 soils, carbaryl was the least strongly sorbed insecticide. On 5 soils, lindane, parathion and malathion were increasingly strongly sorbed, but on the other 2 soils lindane was mostly strongly sorbed. The apparent greater mobility of 14 C-labelled malathion on thin layers of soils repeatedly leached could be explained by the formation of more polar substances. (author) [pt

  6. Formation of three-dimensional images using selectograms and diffraction gratings

    International Nuclear Information System (INIS)

    Ganzherli, N.M.; Denisyuk, Yu. N.

    1995-01-01

    The results of experiments on recording referenceless selectograms reconstructing three-dimensional images are reported. Selectograms were formed by separating the radiation of an object into two components using diffraction gratings placed in front of a photosensitive layer. They were recorded on thin-layer inclined light-sensitive plates using pseudodeep holograms. The possibilities of recording referenceless selectograms by coherent radiation and radiation with disturbed spatial coherence are studied. In the case of recording a selectogram by coherent radiation, the radiation scattered by an object was separated into two components by means of a diffraction grating placed in front of an inclined photosensitive plate. Selectograms recorded in such a way reconstructed volume images of objects with resolution sufficient for visual perception. For recording by incoherent radiation, an interferometer was proposed that consisted of two diffraction gratings and translated the plane of zero phase difference of interfering beams to the center of an inclined plate. Coherence of a beam illuminating an object was disturbed by moving a diffuser illuminating an object transparency. A selectogram recorded in such a way reconstructed an image in the form of a narrow horizontal luminous strip corresponding to one of horizontal cross sections of the object being recorded. An experiment on multiple recording selectograms on a single plate using a sequential shift of the interferometer alone the optical axis of the system was performed. In this case, the reconstructed image represented a system of horizontal luminous strips, each representing one of the lines of the image of the object being recorded. 8 refs., 3 figs

  7. Photo-EMF sensitivity of porous silicon thin layer-crystalline silicon heterojunction to ammonia adsorption.

    Science.gov (United States)

    Vashpanov, Yuriy; Jung, Jae Il; Kwack, Kae Dal

    2011-01-01

    A new method of using photo-electromotive force in detecting gas and controlling sensitivity is proposed. Photo-electromotive force on the heterojunction between porous silicon thin layer and crystalline silicon wafer depends on the concentration of ammonia in the measurement chamber. A porous silicon thin layer was formed by electrochemical etching on p-type silicon wafer. A gas and light transparent electrical contact was manufactured to this porous layer. Photo-EMF sensitivity corresponding to ammonia concentration in the range from 10 ppm to 1,000 ppm can be maximized by controlling the intensity of illumination light.

  8. Nonequilibrium temperatures and second-sound propagation along nanowires and thin layers

    International Nuclear Information System (INIS)

    Jou, D.; Cimmelli, V.A.; Sellitto, A.

    2009-01-01

    It is shown that the dispersion relation of heat waves along nanowires or thin layers could allow to compare two different definitions of nonequilibrium temperature, since thermal waves are predicted to propagate with different phase speed depending on the definition of nonequilibrium temperature being used. The difference is small, but it could be in principle measurable in nanosystems, as for instance nanowires and thin layers, in a given frequency range. Such an experiment could provide a deeper view on the problem of the definition of temperature in nonequilibrium situations.

  9. Acid-base properties of complexes with three-dimensional polyligands. Complexes with three-dimensional polyphosphoric acids

    International Nuclear Information System (INIS)

    Kopylova, V.D.; Bojko, Eh.T.; Saldadze, K.M.

    1985-01-01

    By the method of potentiometric titration acid-base properties of uranyl (2) complexes with three-dimensional polyphosphoric acids, KRF-8p, KF-1, KF-7 prepared by phosphorylation of copolymer of styrene and divinylbenzene or saponification of the copolymers of di-2,2'-chloroethyl ester of vinylphosphonic acid with divinyl benzene are studied. It is shown that in case of formation in the phase of three-dimensional polyphosphoric acids of UO 2 2+ complexes with the growth of bond covalence of metal ion-phosphonic group the acidjty of the second hydroxyl of the phosphonic group increases

  10. Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields

    DEFF Research Database (Denmark)

    Sales, Morten; Strobl, Markus; Shinohara, Takenao

    2018-01-01

    Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non-destructively wi......Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non...... and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic fields in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic...... fields. The technique puts the potential of the ToF time structure of pulsed neutron sources to full use in order to optimise the recorded information quality and reduce measurement time....

  11. Three-Dimensional Extension of a Digital Library Service System

    Science.gov (United States)

    Xiao, Long

    2010-01-01

    Purpose: The paper aims to provide an overall methodology and case study for the innovation and extension of a digital library, especially the service system. Design/methodology/approach: Based on the three-dimensional structure theory of the information service industry, this paper combines a comprehensive analysis with the practical experiences…

  12. Quantum field between moving mirrors: A three dimensional example

    Science.gov (United States)

    Hacyan, S.; Jauregui, Roco; Villarreal, Carlos

    1995-01-01

    The scalar quantum field uniformly moving plates in three dimensional space is studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison of the resulting wavefunctions with their instantaneous static counterpart is performed via Bogolubov coefficients. Unlike the one dimensional problem, 'particle' creation as well as squeezing may occur. The time dependent Casimir energy is also evaluated.

  13. Three-dimensional fractal geometry for gas permeation in microchannels

    NARCIS (Netherlands)

    Malankowska, Magdalena; Schlautmann, Stefan; Berenschot, Erwin J.W.; Tiggelaar, Roald M.; Pina, Maria Pilar; Mallada, Reyes; Tas, Niels R.; Gardeniers, Han

    2018-01-01

    The novel concept of a microfluidic chip with an integrated three-dimensional fractal geometry with nanopores, acting as a gas transport membrane, is presented. The method of engineering the 3D fractal structure is based on a combination of anisotropic etching of silicon and corner lithography. The

  14. A DETERMINISTIC METHOD FOR TRANSIENT, THREE-DIMENSIONAL NUETRON TRANSPORT

    International Nuclear Information System (INIS)

    S. GOLUOGLU, C. BENTLEY, R. DEMEGLIO, M. DUNN, K. NORTON, R. PEVEY I.SUSLOV AND H.L. DODDS

    1998-01-01

    A deterministic method for solving the time-dependent, three-dimensional Boltzmam transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable of the neutron flux is known as the improved quasi-static (IQS) method. The position, energy, and angle-dependent neutron flux is computed deterministically by using the three-dimensional discrete ordinates code TORT. This paper briefly describes the methodology and selected results. The code developed at the University of Tennessee based on this methodology is called TDTORT. TDTORT can be used to model transients involving voided and/or strongly absorbing regions that require transport theory for accuracy. This code can also be used to model either small high-leakage systems, such as space reactors, or asymmetric control rod movements. TDTORT can model step, ramp, step followed by another step, and step followed by ramp type perturbations. It can also model columnwise rod movement can also be modeled. A special case of columnwise rod movement in a three-dimensional model of a boiling water reactor (BWR) with simple adiabatic feedback is also included. TDTORT is verified through several transient one-dimensional, two-dimensional, and three-dimensional benchmark problems. The results show that the transport methodology and corresponding code developed in this work have sufficient accuracy and speed for computing the dynamic behavior of complex multidimensional neutronic systems

  15. Scattering and conductance quantization in three-dimensional metal nanocontacts

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Jacobsen, Karsten Wedel; Nørskov, Jens Kehlet

    1997-01-01

    The transmission through three-dimensional nanocontacts is calculated in the presence of localized scattering centers and boundary scattering using a coupled-channel recursion method. Simple confining potentials are used to investigate how robust the observation of quantized conductance is with r...

  16. Three-dimensional reconstruction of the pigeon inner ear

    NARCIS (Netherlands)

    Hofman, R.; Segenhout, J. M.; Wit, H. P.

    2009-01-01

    Three-dimensional reconstructions of the inner ear of the pigeon (Columba livia domestica), from two-dimensional images, obtained with (conventional) light microscopy or orthogonal-plane fluorescence optical sectioning (OPFOS), are presented. The results are compared with available information on

  17. A note on the three dimensional sine--Gordon equation

    OpenAIRE

    Shariati, Ahmad

    1996-01-01

    Using a simple ansatz for the solutions of the three dimensional generalization of the sine--Gordon and Toda model introduced by Konopelchenko and Rogers, a class of solutions is found by elementary methods. It is also shown that these equations are not evolution equations in the sense that solution to the initial value problem is not unique.

  18. Three-dimensional reacting shock–bubble interaction

    NARCIS (Netherlands)

    Diegelmann, Felix; Hickel, S.; Adams, Nikolaus A.

    2017-01-01

    We investigate a reacting shock–bubble interaction through three-dimensional numerical simulations with detailed chemistry. The convex shape of the bubble focuses the shock and generates regions of high pressure and temperature, which are sufficient to ignite the diluted stoichiometric

  19. Polycrystalline diamond detectors with three-dimensional electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lagomarsino, S., E-mail: lagomarsino@fi.infn.it [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Bellini, M. [INO-CNR Firenze, Largo E. Fermi 6, 50125 Firenze (Italy); Brianzi, M. [INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Carzino, R. [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia, Genova, Via Morego 30, 16163 Genova (Italy); Cindro, V. [Joseph Stefan Institute, Jamova Cesta 39, 1000 Ljubljana (Slovenia); Corsi, C. [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); LENS Firenze, Via N. Carrara 1, 50019 Sesto Fiorentino (Italy); Morozzi, A.; Passeri, D. [INFN Perugia, Perugia (Italy); Università degli Studi di Perugia, Dipartimento di Ingegneria, via G. Duranti 93, 06125 Perugia (Italy); Sciortino, S. [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Servoli, L. [INFN Perugia, Perugia (Italy)

    2015-10-01

    The three-dimensional concept in diamond detectors has been applied, so far, to high quality single-crystal material, in order to test this technology in the best available conditions. However, its application to polycrystalline chemical vapor deposited diamond could be desirable for two reasons: first, the short inter-electrode distance of three-dimensional detectors should improve the intrinsically lower collection efficiency of polycrystalline diamond, and second, at high levels of radiation damage the performances of the poly-crystal material are not expected to be much lower than those of the single crystal one. We report on the fabrication and test of three-dimensional polycrystalline diamond detectors with several inter-electrode distances, and we demonstrate that their collection efficiency is equal or higher than that obtained with conventional planar detectors fabricated with the same material. - Highlights: • Pulsed laser fabrication of polycristalline diamond detectors with 3D electrodes. • Measurement of the charge collection efficiency (CCE) under beta irradiation. • Comparation between the CCE of 3D and conventional planar diamond sensors. • A rationale for the behavior of three-dimensional and planar sensors is given.

  20. Loop expansion in massless three-dimensional QED

    International Nuclear Information System (INIS)

    Guendelman, E.I.; Radulovic, Z.M.

    1983-01-01

    It is shown how the loop expansion in massless three-dimensional QED can be made finite, up to three loops, by absorbing the infrared divergences in a gauge-fixing term. The same method removes leading and first subleading singularities to all orders of perturbation theory, and all singularities of the fermion self-energy to four loops

  1. Three-dimensional models of the tracheostoma using stereolithography

    NARCIS (Netherlands)

    Grolman, W.; Schouwenburg, P. F.; Verbeeten, B.; de Boer, M. F.; Meeuwis, C. A.

    1995-01-01

    The availability of an accurate three-dimensional (3-D) model of the tracheostoma and trachea of the laryngectomy patient would be of great help in prototyping of endotracheal prostheses. Stereolithography has been described for skull and jaw models but never for soft-tissue reconstructions of the

  2. Three-dimensional ultrasound strain imaging of skeletal muscles

    NARCIS (Netherlands)

    Gijsbertse, Kaj; Sprengers, Andre M.; Nillesen, Maartje; Hansen, Hendrik H.G.; Verdonschot, Nico; De Korte, Chris L.

    2015-01-01

    Muscle contraction is characterized by large deformation and translation, which requires a multi-dimensional imaging modality to reveal its behavior. Previous work on ultrasound strain imaging of the muscle contraction was limited to 2D and bi-plane techniques. In this study, a three-dimensional

  3. Kondo effect in three-dimensional Dirac and Weyl systems

    NARCIS (Netherlands)

    Mitchell, Andrew K.; Fritz, Lars

    2015-01-01

    Magnetic impurities in three-dimensional Dirac and Weyl systems are shown to exhibit a fascinatingly diverse range of Kondo physics, with distinctive experimental spectroscopic signatures. When the Fermi level is precisely at the Dirac point, Dirac semimetals are in fact unlikely candidates for a

  4. Generation of a Desired Three-Dimensional Electromagnetic Field

    DEFF Research Database (Denmark)

    2005-01-01

    The present invention relates to a method and a system for synthesizing a prescribed three-dimensional electromagnetic field based on generalized phase contrast imaging. Such a method and apparatus may be utilized in advanced optical micro and nano-manipulation, such as by provision of a multiple...

  5. Three-dimensional coupled double-distribution-function lattice ...

    Indian Academy of Sciences (India)

    Ruo-Fan Qiu

    2017-11-14

    Nov 14, 2017 ... Abstract. Two three-dimensional (3D) lattice Boltzmann models in the framework of coupled double-distribution- function approach for compressible flows, in which specific-heat ratio and Prandtl number can be adjustable, are developed in this paper. The main differences between the two models are ...

  6. Three-dimensional face shape in Fabry disease

    NARCIS (Netherlands)

    Cox-Brinkman, Josanne; Vedder, Anouk; Hollak, Carla; Richfield, Linda; Mehta, Atul; Orteu, Kate; Wijburg, Frits; Hammond, Peter

    2007-01-01

    Facial dysmorphology is an important feature in several lysosomal storage disorders. Although in Fabry disease facial dysmorphism is not a prominent sign, minor facial abnormalities have been previously reported. By analysing three-dimensional images of faces, we quantified facial dysmorphology in a

  7. Three dimensional reconstruction of tomographic images of the retina

    International Nuclear Information System (INIS)

    Glittenberg, C.; Zeiler, F.; Falkner, C.; Binder, S.; Povazay, B.; Hermann, B.; Drexler, W.

    2007-01-01

    The development of a new display system for the three-dimensional visualization of tomographic images in ophthalmology. Specifically, a system that can use stacks of B-mode scans from an ultrahigh resolution optical tomography examination to vividly display retinal specimens as three-dimensional objects. Several subroutines were programmed in the rendering and raytracing program Cinema 4D XL 9.102 Studio Bundle (Maxon Computer Inc., Friedrichsburg, Germany), which could process stacks of tomographic scans into three-dimensional objects. Ultrahigh resolution optical coherence tomography examinations were performed on patients with various retinal pathologies and post processed with the subroutines that had been designed. All ultrahigh resolution optical coherence tomographies were performed with a titanium: sapphire based ultra broad bandwidth (160 nm) femtosecond laser system (INTEGRAL, Femtolasers Productions GmbH. Vienna Austria) with an axial resolution of 3 μm. A new three dimensional display system for tomographic images in ophthalmology was developed, which allows a highly vivid display of physiological and pathological structures of the retina. The system also distinguishes itself through its high interactivity and adaptability. This new display system allows the visualization of physiological and pathological structures of the retina in a new way, which will give us new insight into their morphology and development. (author) [de

  8. Numerical Investigation of Three-dimensional Instability of Standing Waves

    Science.gov (United States)

    Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.

    2002-11-01

    We study the three-dimensional instability of finite-amplitude standing waves under the influence of gravity using the transition matrix method. For accurate calculation of the transition matrices, we apply an efficient high-order spectral element method for nonlinear wave dynamics in complex domain. We consider two types of standing waves: (a) plane standing waves; and (b) standing waves in a circular tank. For the former, in addition to the confirmation of the side-band-like instability, we find a new three-dimensional instability for arbitrary base standing waves. The dominant component of the unstable disturbance is an oblique standing wave, with an arbitrary angle relative to the base flow, whose frequency is approximately equal to that of the base standing wave. Based on direct simulations, we confirm such a three-dimensional instability and show the occurrence of the Fermi-Pasta-Ulam recurrence phenomenon during nonlinear evolution. For the latter, we find that beyond a threshold wave steepness, the standing wave with frequency Ω becomes unstable to a small three-dimensional disturbance, which contains two dominant standing-wave components with frequencies ω1 and ω_2, provided that 2Ω ω1 + ω_2. The threshold wave steepness is found to decrease/increase as the radial/azimuthal wavenumber of the base standing wave increases. We show that the instability of standing waves in rectangular and circular tanks is caused by third-order quartet resonances between base flow and disturbance.

  9. Wave packet construction in three-dimensional quantum billiards ...

    Indian Academy of Sciences (India)

    E-mail: mannu_711@yahoo.co.in. MS received 14 ... The motivation to extend the study to a three-dimensional (3D) system is .... with a GWP centred around the central value of the principle quantum number n0 instead of a GWP ...... Cubical and parallelepiped billiards are the potential candidates for the creation of arti-.

  10. Green function of a three-dimensional Wick problem

    International Nuclear Information System (INIS)

    Matveev, V.A.

    1988-01-01

    An exact solution of a three-dimensional Coulomb Wick-Cutkovsky problem has been obtained which possesses the hidden 0(4)-symmetry. Here we shell give the derivation of the corresponding Green function and consider its connection with the asymptoric behaviour of the scattering amplitude. 9 refs

  11. Effects of forcing in three-dimensional turbulent flows

    NARCIS (Netherlands)

    Biferale, L.; Lanotte, A.; Toschi, F.

    2004-01-01

    We present the results of a numerical investigation of three-dimensional homogeneous and isotropic turbulence, stirred by a random forcing with a power-law spectrum, Ef(k)~k3-y. Numerical simulations are performed at different resolutions up to 5123. We show that at varying the spectrum slope y,

  12. Three-Dimensional Gauge Theories and ADE Monopoles

    OpenAIRE

    Tong, David

    1998-01-01

    We study three-dimensional N=4 gauge theories with product gauge groups constructed from ADE Dynkin diagrams. One-loop corrections to the metric on the Coulomb branch are shown to coincide with the metric on the moduli space of well-seperated ADE monopoles. We propose that this correspondence is exact.

  13. Three-dimensional simulations of free-electron laser physics

    International Nuclear Information System (INIS)

    McVey, B.D.

    1985-09-01

    A computer code has been developed to simulate three-dimensional free-electron laser physics. A mathematical formulation of the FEL equations is presented, and the numerical solution of the problem is described. Sample results from the computer code are discussed. 23 refs., 6 figs., 2 tabs

  14. Three-dimensional organization of the human interphase nucleus

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); C. Münkel (Christian); W. Waldeck (Waldemar); J. Langowski (Jörg)

    2000-01-01

    textabstractDespite the successful linear sequencing of the human genome its three-dimensional structure is widely unknown, although it is important for gene regulation and replication. For a long time the interphase nucleus has been viewed as a 'spaghetti soup' of DNA without much internal

  15. Birkhoff's Theorem for Three-Dimensional AdS Gravity

    OpenAIRE

    Ayón-Beato, Eloy; Martínez, Cristián; Zanelli, Jorge

    2004-01-01

    All three-dimensional matter-free spacetimes with negative cosmological constant, compatible with cyclic symmetry are identified. The only cyclic solutions are the 2+1 (BTZ) black hole with SO(2) x R isometry, and the self-dual Coussaert-Henneaux spacetimes, with isometry groups SO(2) x SO(2,1) or SO(2) x SO(2).

  16. Fabrication of three-dimensional carbon microelectrodes for electrochemical sensing

    DEFF Research Database (Denmark)

    Hemanth, Suhith

    Carbon microelectrodes have a wide range of applications because of their unique material properties and biocompatibility. The aim of the research work carried out in this thesis was to develop three-dimensional (3D) carbon microelectrodes for electrochemical applications. Three different fabrica...

  17. Three-dimensional echocardiographic assessment of the repaired mitral valve.

    Science.gov (United States)

    Maslow, Andrew; Mahmood, Feroze; Poppas, Athena; Singh, Arun

    2014-02-01

    This study examined the geometric changes of the mitral valve (MV) after repair using conventional and three-dimensional echocardiography. Prospective evaluation of consecutive patients undergoing mitral valve repair. Tertiary care university hospital. Fifty consecutive patients scheduled for elective repair of the mitral valve for regurgitant disease. Intraoperative transesophageal echocardiography. Assessments of valve area (MVA) were performed using two-dimensional planimetry (2D-Plan), pressure half-time (PHT), and three-dimensional planimetry (3D-Plan). In addition, the direction of ventricular inflow was assessed from the three-dimensional imaging. Good correlations (r = 0.83) and agreement (-0.08 +/- 0.43 cm(2)) were seen between the MVA measured with 3D-Plan and PHT, and were better than either compared to 2D-Plan. MVAs were smaller after repair of functional disease repaired with an annuloplasty ring. After repair, ventricular inflow was directed toward the lateral ventricular wall. Subgroup analysis showed that the change in inflow angle was not different after repair of functional disease (168 to 171 degrees) as compared to those presenting with degenerative disease (168 to 148 degrees; p<0.0001). Three-dimensional imaging provides caregivers with a unique ability to assess changes in valve function after mitral valve repair. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Mathematical modeling of three-dimensional images in emission tomography

    International Nuclear Information System (INIS)

    Koblik, Yu.N.; Khugaev, A. V.; Mktchyan, G.A.; Ioannou, P.; Dimovasili, E.

    2002-01-01

    The model of processing results of three-dimensional measurements in positron-emissive tomograph is proposed in this work. The algorithm of construction and visualization of phantom objects of arbitrary shape was developed and its concrete realization in view of program packet for PC was carried out

  19. Three-dimensional image reconstruction from stereo DSA

    International Nuclear Information System (INIS)

    Sakamoto, Kiyoshi; Kotoura, Noriko; Umehara, Takayoshi; Yamada, Eiji; Inaba, Tomohiro; Itou, Hiroshi

    1999-01-01

    The technique of interventional radiology has spread rapidly in recent years, and three-dimensional information from blood vessel images is being sought to enhance examinations. Stereo digital subtraction angiography (DSA) and rotational DSA were developed for that purpose. However, it is difficult with stereo DSA to observe the image pair during examination and to obtain positional information on blood vessels. Further, the exposure dose is increased in rotational DSA when many mask images need to be collected, and the patient is required to hold his or her breath for a long duration. We therefore devised a technique to construct three-dimensional blood vessel images by employing geometrical information extracted from stereo DSA images using the right and left images. We used a judgment method based on the correlation coefficient, although we had to extract an equal blood vessel from the right and left images to determine the three-dimensional coordinates of the blood vessel. The reconstructed three-dimensional blood vessels were projected from various angles, again by using a virtual focus, and new images were created. These image groups were displayed as rotational images by the animation display function incorporated in the DSA device. This system can observe blood vessel images of the same phase at a free angle, although the image quality is inferior to that of rotational DSA. In addition, because collection of the mask images is reduced, exposure dose can be decreased. Further, the system offers enhanced safety because no mechanical movement of the imaging system is involved. (author)

  20. Three-dimensional computer models of electrospinning systems

    Directory of Open Access Journals (Sweden)

    Smółka Krzysztof

    2017-12-01

    Full Text Available Electrospinning is a very interesting method that allows the fabrication of continuous fibers with diameters down to a few nanometers. This paper presents an overview of electrospinning systems as well as their comparison using proposed three-dimensional parameterized numerical models. The presented solutions allow an analysis of the electric field distribution.

  1. Three-Dimensional Structure of CeO2 Nanocrystals

    DEFF Research Database (Denmark)

    Tan, Joyce Pei Ying; Tan, Hui Ru; Boothroyd, Chris

    2011-01-01

    Visualization of three-dimensional (3D) structures of materials at the nanometer scale can shed important information on the performance of their applications and provide insight into the growth mechanism of shape-controlled nanomaterials. In this paper, the 3D structures and growth pathway of Ce...

  2. Three dimensional simulated modelling of diffusion capacitance of ...

    African Journals Online (AJOL)

    A three dimensional (3-D) simulated modelling was developed to analyse the excess minority carrier density in the base of a polycrystalline bifacial silicon solar cell. The concept of junction recombination velocity was ado-pted to quantify carrier flow through the junction, and to examine the solar cell diffusion capacitance for ...

  3. Signal processing of eddy current three-dimensional maps

    International Nuclear Information System (INIS)

    Birac, C.; David, D.; Lamant, D.

    1987-01-01

    Digital processing of eddy current three-dimensional maps improves accuracy of detection: flattening, filtering, computing deconvolution, mapping new variables,.., give new possibilities for difficult test problems. With simulation of defects, probes, probe travels, it is now possible to compute new eddy current processes, without machining defects or building probes

  4. Backlund transformations and three-dimensional lattice equations

    NARCIS (Netherlands)

    Nijhoff, F.W.; Capel, H.W.; Wiersma, G.L.; Quispel, G.R.W.

    1984-01-01

    A (nonlocal) linear integral equation is studied, which allows for Bäcklund transformations in the measure. The compatibility of three of these transformations leads to an integrable nonlinear three-dimensional lattice equation. In appropriate continuum limits the two-dimensional Toda-lattice

  5. A Novel Three-Dimensional Tool for Teaching Human Neuroanatomy

    Science.gov (United States)

    Estevez, Maureen E.; Lindgren, Kristen A.; Bergethon, Peter R.

    2010-01-01

    Three-dimensional (3D) visualization of neuroanatomy can be challenging for medical students. This knowledge is essential in order for students to correlate cross-sectional neuroanatomy and whole brain specimens within neuroscience curricula and to interpret clinical and radiological information as clinicians or researchers. This study implemented…

  6. Oblique water entry of a three dimensional body

    Directory of Open Access Journals (Sweden)

    Scolan Yves-Marie

    2014-12-01

    Full Text Available The problem of the oblique water entry of a three dimensional body is considered. Wagner theory is the theoretical framework. Applications are discussed for an elliptic paraboloid entering an initially flat free surface. A dedicated experimental campaign yields a data base for comparisons. In the present analysis, pressure, force and dynamics of the wetted surface expansion are assessed.

  7. Splines under tension for gridding three-dimensional data

    International Nuclear Information System (INIS)

    Brand, H.R.; Frazer, J.W.

    1982-01-01

    By use of the splines-under-tension concept, a simple algorithm has been developed for the three-dimensional representation of nonuniformly spaced data. The representations provide useful information to the experimentalist when he is attempting to understand the results obtained in a self-adaptive experiment. The shortcomings of the algorithm are discussed as well as the advantages

  8. Approaching the Sequential and Three-Dimensional Organization of Genomes

    NARCIS (Netherlands)

    T.A. Knoch (Tobias)

    2006-01-01

    textabstractGenomes are one of the major foundations of life due to their role in information storage, process regulation and evolution. To achieve a deeper unterstanding of the human genome the three-dimensional organization of the human cell nucleus, the structural-, scaling- and dynamic

  9. Evaluation of three-dimensional virtual perception of garments

    Science.gov (United States)

    Aydoğdu, G.; Yeşilpinar, S.; Erdem, D.

    2017-10-01

    In recent years, three-dimensional design, dressing and simulation programs came into prominence in the textile industry. By these programs, the need to produce clothing samples for every design in design process has been eliminated. Clothing fit, design, pattern, fabric and accessory details and fabric drape features can be evaluated easily. Also, body size of virtual mannequin can be adjusted so more realistic simulations can be created. Moreover, three-dimensional virtual garment images created by these programs can be used while presenting the product to end-user instead of two-dimensional photograph images. In this study, a survey was carried out to investigate the visual perception of consumers. The survey was conducted for three different garment types, separately. Questions about gender, profession etc. was asked to the participants and expected them to compare real samples and artworks or three-dimensional virtual images of garments. When survey results were analyzed statistically, it is seen that demographic situation of participants does not affect visual perception and three-dimensional virtual garment images reflect the real sample characteristics better than artworks for each garment type. Also, it is reported that there is no perception difference depending on garment type between t-shirt, sweatshirt and tracksuit bottom.

  10. MAGNETOHYDRODYNAMICS STUDY OF THREE-DIMENSIONAL FAST MAGNETIC RECONNECTION FOR INTERMITTENT SNAKE-LIKE DOWNFLOWS IN SOLAR FLARES

    International Nuclear Information System (INIS)

    Shimizu, T.; Kondo, K.; Ugai, M.; Shibata, K.

    2009-01-01

    Three-dimensional instability of the spontaneous fast magnetic reconnection is studied with magnetohydrodynamics (MHD) simulation, where the two-dimensional model of the spontaneous fast magnetic reconnection is destabilized in three dimensions. In two-dimensional models, every plasma condition is assumed to be uniform in the sheet current direction. In that case, it is well known that the two-dimensional fast magnetic reconnection can be caused by current-driven anomalous resistivity, when an initial resistive disturbance is locally put in a one-dimensional current sheet. In this paper, it is studied whether the two-dimensional fast magnetic reconnection can be destabilized or not when the initial resistive disturbance is three dimensional, i.e., that which has weak fluctuations in the sheet current direction. According to our study, the two-dimensional fast magnetic reconnection is developed to the three-dimensional intermittent fast magnetic reconnection which is strongly localized in the sheet current direction. The resulting fast magnetic reconnection repeats to randomly eject three-dimensional magnetic loops which are very similar to the intermittent downflows observed in solar flares. In fact, in some observations of solar flares, the current sheet seems to be approximately one dimensional, but the fast magnetic reconnection is strongly localized in the sheet current direction, i.e., fully three dimensional. In addition, the observed plasma downflows as snake-like curves. It is shown that those observed features are consistent with our numerical MHD study.

  11. Three-dimensional inversion of multisource array electromagnetic data

    Science.gov (United States)

    Tartaras, Efthimios

    Three-dimensional (3-D) inversion is increasingly important for the correct interpretation of geophysical data sets in complex environments. To this effect, several approximate solutions have been developed that allow the construction of relatively fast inversion schemes. One such method that is fast and provides satisfactory accuracy is the quasi-linear (QL) approximation. It has, however, the drawback that it is source-dependent and, therefore, impractical in situations where multiple transmitters in different positions are employed. I have, therefore, developed a localized form of the QL approximation that is source-independent. This so-called localized quasi-linear (LQL) approximation can have a scalar, a diagonal, or a full tensor form. Numerical examples of its comparison with the full integral equation solution, the Born approximation, and the original QL approximation are given. The objective behind developing this approximation is to use it in a fast 3-D inversion scheme appropriate for multisource array data such as those collected in airborne surveys, cross-well logging, and other similar geophysical applications. I have developed such an inversion scheme using the scalar and diagonal LQL approximation. It reduces the original nonlinear inverse electromagnetic (EM) problem to three linear inverse problems. The first of these problems is solved using a weighted regularized linear conjugate gradient method, whereas the last two are solved in the least squares sense. The algorithm I developed provides the option of obtaining either smooth or focused inversion images. I have applied the 3-D LQL inversion to synthetic 3-D EM data that simulate a helicopter-borne survey over different earth models. The results demonstrate the stability and efficiency of the method and show that the LQL approximation can be a practical solution to the problem of 3-D inversion of multisource array frequency-domain EM data. I have also applied the method to helicopter-borne EM

  12. Micromachined three-dimensional electrode arrays for transcutaneous nerve tracking

    Science.gov (United States)

    Rajaraman, Swaminathan; Bragg, Julian A.; Ross, James D.; Allen, Mark G.

    2011-08-01

    We report the development of metal transfer micromolded (MTM) three-dimensional microelectrode arrays (3D MEAs) for a transcutaneous nerve tracking application. The measurements of electrode-skin-electrode impedance (ESEI), electromyography (EMG) and nerve conduction utilizing these minimally invasive 3D MEAs are demonstrated in this paper. The 3D MEAs used in these measurements consist of a metalized micro-tower array that can penetrate the outer layers of the skin in a painless fashion and are fabricated using MTM technology. Two techniques, an inclined UV lithography approach and a double-side exposure of thick negative tone resist, have been developed to fabricate the 3D MEA master structure. The MEAs themselves are fabricated from the master structure utilizing micromolding techniques. Metal patterns are transferred during the micromolding process, thereby ensuring reduced process steps compared to traditional silicon-based approaches. These 3D MEAs have been packaged utilizing biocompatible Kapton® substrates. ESEI measurements have been carried out on test human subjects with standard commercial wet electrodes as a reference. The 3D MEAs demonstrate an order of magnitude lower ESEI (normalized to area) compared to wet electrodes for an area that is 12.56 times smaller. This compares well with other demonstrated approaches in literature. For a nerve tracking demonstration, we have chosen EMG and nerve conduction measurements on test human subjects. The 3D MEAs show 100% improvement in signal power and SNR/√area as compared to standard electrodes. They also demonstrate larger amplitude signals and faster rise times during nerve conduction measurements. We believe that this microfabrication and packaging approach scales well to large-area, high-density arrays required for applications like nerve tracking. This development will increase the stimulation and recording fidelity of skin surface electrodes, while increasing their spatial resolution by an order of

  13. Micromachined three-dimensional electrode arrays for transcutaneous nerve tracking

    International Nuclear Information System (INIS)

    Rajaraman, Swaminathan; Allen, Mark G; Bragg, Julian A; Ross, James D

    2011-01-01

    We report the development of metal transfer micromolded (MTM) three-dimensional microelectrode arrays (3D MEAs) for a transcutaneous nerve tracking application. The measurements of electrode–skin–electrode impedance (ESEI), electromyography (EMG) and nerve conduction utilizing these minimally invasive 3D MEAs are demonstrated in this paper. The 3D MEAs used in these measurements consist of a metalized micro-tower array that can penetrate the outer layers of the skin in a painless fashion and are fabricated using MTM technology. Two techniques, an inclined UV lithography approach and a double-side exposure of thick negative tone resist, have been developed to fabricate the 3D MEA master structure. The MEAs themselves are fabricated from the master structure utilizing micromolding techniques. Metal patterns are transferred during the micromolding process, thereby ensuring reduced process steps compared to traditional silicon-based approaches. These 3D MEAs have been packaged utilizing biocompatible Kapton® substrates. ESEI measurements have been carried out on test human subjects with standard commercial wet electrodes as a reference. The 3D MEAs demonstrate an order of magnitude lower ESEI (normalized to area) compared to wet electrodes for an area that is 12.56 times smaller. This compares well with other demonstrated approaches in literature. For a nerve tracking demonstration, we have chosen EMG and nerve conduction measurements on test human subjects. The 3D MEAs show 100% improvement in signal power and SNR/√area as compared to standard electrodes. They also demonstrate larger amplitude signals and faster rise times during nerve conduction measurements. We believe that this microfabrication and packaging approach scales well to large-area, high-density arrays required for applications like nerve tracking. This development will increase the stimulation and recording fidelity of skin surface electrodes, while increasing their spatial resolution by an order

  14. A new three-dimensional equivalent circuit of diagonal type MHD generator

    International Nuclear Information System (INIS)

    Yoshida, Masahrau; Komaya, Kiyotoshi; Umoto, Juro

    1979-01-01

    For a large scale diagonal type generator with oil combustion gas plasma, a new three-dimensional equivalent circuit is proposed, in which threre are considered the leakage resistance of the duct insulator surface, the boundary layer, the ion slip, the effect of the finite electrode segmentation etc. Next, through the relation between the Hall voltage per one electrode pitch region and the load current obtained by use of the equivalent circuit, a suitable size and number of the space elements per region and determined. Further, by comparing in detail the electrical performances of two types of the diagonal generators with diagonal conducting and insulating sidewalls, three-dimensional effects of the sidewalls are discussed. (author)

  15. Evolution of three-dimensional relativistic current sheets and development of self-generated turbulence

    Science.gov (United States)

    Takamoto, M.

    2018-05-01

    In this paper, the temporal evolution of three-dimensional relativistic current sheets in Poynting-dominated plasma is studied for the first time. Over the past few decades, a lot of efforts have been conducted on studying the evolution of current sheets in two-dimensional space, and concluded that sufficiently long current sheets always evolve into the so-called plasmoid chain, which provides a fast reconnection rate independent of its resistivity. However, it is suspected that plasmoid chain can exist only in the case of two-dimensional approximation, and would show transition to turbulence in three-dimensional space. We performed three-dimensional numerical simulation of relativistic current sheet using resistive relativistic magnetohydrodynamic approximation. The results showed that the three-dimensional current sheets evolve not into plasmoid chain but turbulence. The resulting reconnection rate is 0.004, which is much smaller than that of plasmoid chain. The energy conversion from magnetic field to kinetic energy of turbulence is just 0.01 per cent, which is much smaller than typical non-relativistic cases. Using the energy principle, we also showed that the plasmoid is always unstable for a displacement in the opposite direction to its acceleration, probably interchange-type instability, and this always results in seeds of turbulence behind the plasmoids. Finally, the temperature distribution along the sheet is discussed, and it is found that the sheet is less active than plasmoid chain. Our finding can be applied for many high-energy astrophysical phenomena, and can provide a basic model of the general current sheet in Poynting-dominated plasma.

  16. Purification of 3H-dihydroalprenolol by two dimensional thin layer chromatography

    International Nuclear Information System (INIS)

    Smisterova, J.; Soltes, L.; Kallay, Z.

    1989-01-01

    A two dimensional thin-layer chromatographic method was developed for the purification and analysis of (-)-[ 3 H]dihydroalprenolol by using an acidic mobile phase (butanol/water/acetic acid 25:10:4, v/v) in one direction and a basic eluent (chloroform/acetone/triethylamine 50:40:10, v/v) in another direction. (author)

  17. Interaction between cholesterol and non-ionic surfactants studied by thin-layer chromatography

    Czech Academy of Sciences Publication Activity Database

    Forgács, E.; Cserháti, T.; Farkas, O.; Eckhardt, Adam; Mikšík, Ivan; Deyl, Zdeněk

    2004-01-01

    Roč. 27, č. 13 (2004), s. 1981-1992 ISSN 1082-6076 Grant - others:CZ-HU(CZ) Cooperation program Institutional research plan: CEZ:AV0Z5011922 Keywords : cholesterol * non-ionic surfactant * thin - layer chromatography Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.836, year: 2004

  18. Sensitive Thin-Layer Chromatography Detection of Boronic Acids Using Alizarin

    NARCIS (Netherlands)

    Duval, F.L.; Beek, van T.A.; Zuilhof, H.

    2012-01-01

    A new method for the selective and sensitive detection of boronic acids on thin-layer chromatography plates is described. The plate is briefly dipped in an alizarin solution, allowed to dry in ambient air, and observed under 366 nm light. Alizarin emits a bright yellow fluorescence only in the

  19. Application of RF correction in thin-layer chromatography by means of two reference RF values

    NARCIS (Netherlands)

    Dhont, J.H.; Vinkenborg, C.; Compaan, H.; Ritter, F.J.; Labadie, R.P.; Verweij, A.; Zeeuw, R.A. de

    1972-01-01

    Results of the inter-laboratory experiment described in this paper show that the GALANOS AND KAPOULAS equation can be applied satisfactorily to correct RF values obtained on thin-layer chromatograms in a polar multi-component solvent. Addition of Kieselguhr to the silica gel gives RFc values

  20. A thin layer fiber-coupled luminescence dosimeter based on Al2O3:C

    DEFF Research Database (Denmark)

    Klein, F.A.; Greilich, Steffen; Andersen, Claus Erik

    2011-01-01

    In this paper we present a fiber-coupled luminescent Al2O3:C dosimeter probe with high spatial resolution (0.1 mm). It is based on thin layers of Al2O3:C crystal powder and a UV-cured acrylate monomer composition. The fabrication of the thin layers is described in detail. No influence of the intr......In this paper we present a fiber-coupled luminescent Al2O3:C dosimeter probe with high spatial resolution (0.1 mm). It is based on thin layers of Al2O3:C crystal powder and a UV-cured acrylate monomer composition. The fabrication of the thin layers is described in detail. No influence...... of the introduced polymer host matrix on the dosimetric properties was observed. Depth-dose measurements with the new detectors in a 142.66 MeV proton and 270.55 MeV/u carbon ion beam are presented as example applications. We used an RL protocol with saturated crystals allowing for time-effective measurements...... without sensitivity corrections. For protons, a relative luminescence efficiency hHCP of 0.715 0.014 was found in the Bragg peak. For carbon ions, a value of 0.498 0.001 was found in the entrance channel, 0.205 0.015 in the Bragg peak, and a mean of 0.413 0.050 in the tail region. The mean range...

  1. Thin-Layer Chromatography/Desorption Atmospheric Pressure Photoionization Orbitrap Mass Spectrometry of Lipids

    Czech Academy of Sciences Publication Activity Database

    Rejšek, Jan; Vrkoslav, Vladimír; Vaikkinen, A.; Haapala, M.; Kauppila, T. J.; Kostiainen, R.; Cvačka, Josef

    2016-01-01

    Roč. 88, č. 24 (2016), s. 12279-12286 ISSN 0003-2700 R&D Projects: GA ČR GAP206/12/0750 Institutional support: RVO:61388963 Keywords : desorption atmospheric pressure photoionization * thin-layer chromatography * lipids Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 6.320, year: 2016

  2. Normal and Reversed-Phase Thin Layer Chromatography of Green Leaf Extracts

    Science.gov (United States)

    Sjursnes, Birte Johanne; Kvittingen, Lise; Schmid, Rudolf

    2015-01-01

    Introductory experiments of chromatography are often conducted by separating colored samples, such as inks, dyes, and plant extracts, using filter paper, chalk, or thin layer chromatography (TLC) plates with various solvent systems. Many simple experiments have been reported. The relationship between normal chromatography and reversed-phase…

  3. Copper(II) Schiff base complexes and their mixed thin layers with ...

    Indian Academy of Sciences (India)

    Thin layer; ZnO nanoparticles; copper complexes; AFM; SEM; fluorescence. 1. Introduction ... ZnO nanopowders29,30 and ZnO nanoparticles doped by different metal ...... Roy S, Choubey S, Bhar K, Khan S, Mitra P and Ghosh. B K 2013 J. Mol ...

  4. Phospholipids, Dietary Supplements, and Chicken Eggs: An Inquiry-Based Exercise Using Thin-Layer Chromatography

    Science.gov (United States)

    Potteiger, Sara E.; Belanger, Julie M.

    2015-01-01

    This inquiry-based experiment is designed for organic or biochemistry undergraduate students to deduce the identity of phospholipids extracted from chicken eggs and dietary supplements. This is achieved using thin-layer chromatography (TLC) data, a series of guided questions of increasing complexity, and provided relative retention factor (Rf)…

  5. Bearing Capacity of Footings on Thin Layer of Sand on Soft Cohesive Soil

    DEFF Research Database (Denmark)

    Philipsen, J.; Sørensen, Carsten S.

    2004-01-01

    This paper contains the results of some numerical calculations performed with the aim to determine the bearing capacities of footings placed on a thin layer of sand underlain by soft cohesive soil. During the last 30-35 years different analytical and empirical calculation methods for this situation...... prepared model tests made in laboratories....

  6. Possible artefacts in thin layer chromatography of tritium-labelled hydrocortisone

    International Nuclear Information System (INIS)

    Sofronie, E.

    1982-12-01

    Artefacts appearing in thin layer chromatography of tritium labelled hydrocortisone are reported. Evidences are presented that these artefacts cause misleading results concerning radiocheemical purity determiniation. Finally, it is reported a rapid and efficient chromatographic technique allowing the elimination of these artefacts and obtaining of an accurate value for radiochemical purity. (author)

  7. Thin-layer scanner with a dot printer recorder for radiolabelled compounds

    International Nuclear Information System (INIS)

    Kralova, M.; Kysela, F.; Hradil, Z.

    1982-01-01

    A scanner combined with a matrix printer is described for automatic evaluation of thin-layer radiochromatographs of soft beta emitters such as 3 H, 14 C, and 32 P. Details of the device including block schemes and electrical schemes are given

  8. Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers

    NARCIS (Netherlands)

    Fatima, T.; Ijioma, E.R.; Ogawa, T.; Muntean, A.

    2014-01-01

    We study the homogenization of a reaction-diffusion-convection system posed in an e-periodic d-thin layer made of a two-component (solid-air) composite material. The microscopic system includes heat flow, diffusion and convection coupled with a nonlinear surface chemical reaction. We treat two

  9. Bibliography of paper and thin-layer chromatography 1970-1973 and survey of applications

    International Nuclear Information System (INIS)

    Macek, K.; Hais, I.M.; Kopecky, J.; Schwarz, V.; Gasparic, J.; Churacek, J.

    1976-01-01

    The present volume covers developments in both paper and thin-layer chromatography from 1970 to the middle of 1973 and is a continuation of the previous four volumes, published in 1960, 1962, 1968 and 1972. An author index is given

  10. Informatics solutions for Three-dimensional visualization in real time

    International Nuclear Information System (INIS)

    Guzman Montoto, Jose Ignacio

    2002-01-01

    The advances reached in the development of the hardware and in the methods of acquisition of data like tomographic scanners and systems of analysis of images, have allowed obtaining geometric models of biomedical elements with the property of being manipulated through the three-dimensional visualization (3D). Nowadays, this visualization embraces from biological applications, including analysis of structures and its functional relationships, until medical applications that include anatomical accuracies and the planning or the training for complex surgical operations. This work proposes computer solutions to satisfy visualization requirements in real time. The developed algorithms are contained in a graphic library that will facilitate the development of future works. The obtained results allow facing current problems of three-dimensional representation of complex surfaces, realism is reached in the images and they have possible application in bioinformatics and medicine

  11. Visualization of traumatic tricuspid insufficiency by three-dimensional echocardiography.

    Science.gov (United States)

    Nishimura, Kazuhisa; Okayama, Hideki; Inoue, Katsuji; Saito, Makoto; Nagai, Takayuki; Suzuki, Jun; Ogimoto, Akiyoshi; Ohtsuka, Tomoaki; Higaki, Jitsuo

    2010-01-01

    A 19-year-old male was admitted to the emergency room of our hospital after a motor vehicle accident. During his first physical examination, a holosystolic murmur was heard at the fourth left parasternal border. Transthoracic echocardiography showed severe tricuspid insufficiency, but the cause of tricuspid insufficiency was unclear. Therefore, three-dimensional echocardiography was performed and demonstrated flail anterior, posterior and septal leaflets of the tricuspid valve. The diagnosis was tricuspid insufficiency due to papillary muscle rupture secondary to chest blunt trauma. Surgical repair of the tricuspid valve was performed in this patient. After surgery, the signs and symptoms of right ventricular heart failure were relieved. In this case, three-dimensional echocardiography was very useful for the evaluation of spatial destruction of the tricuspid valve and papillary muscle. 2009 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  12. Three-dimensional simulations of Nova capsule implosion experiments

    International Nuclear Information System (INIS)

    Marinak, M.M.; Tipton, R.E.; Landen, O.L.

    1995-01-01

    Capsule implosion experiments carried out on the Nova laser are simulated with the three-dimensional HYDRA radiation hydrodynamics code. Simulations of ordered near single mode perturbations indicate that structures which evolve into round spikes can penetrate farthest into the hot spot. Bubble-shaped perturbations can burn through the capsule shell fastest, however, causing even more damage. Simulations of a capsule with multimode perturbations shows spike amplitudes evolving in good agreement with a saturation model during the deceleration phase. The presence of sizable low mode asymmetry, caused either by drive asymmetry or perturbations in the capsule shell, can dramatically affect the manner in which spikes approach the center of the hot spot. Three-dimensional coupling between the low mode shell perturbations intrinsic to Nova capsules and the drive asymmetry brings the simulated yields into closer agreement with the experimental values

  13. Three-dimensional MR imaging of congenital heart disease

    International Nuclear Information System (INIS)

    Laschinger, J.C.; Vannier, M.W.; Knapp, R.H.; Gutierrez, F.R.; Cox, J.L.

    1987-01-01

    Contiguous 5-mm thick ECG-gated MR images of the thorax were edited using surface reconstruction techniques to produce three-dimensional (3D) images of the heart and great vessels in four healthy individuals and 25 patients with congenital heart disease (aged 3 months-30 years). Anomalies studied include atrial and ventricular septal defects, aortic coarctation, AV canal defects, double outlet ventricles, hypoplastic left heart syndrome, and a wide spectrum of patients with tetralogy of Fallot. The results were correlated with echocardiographic and cineradiographic studies, and with surgical findings or pathologic specimens. Three-dimensional reconstructions accurately localized the dimensions and locations of all cardiac and great vessel anomalies and often displayed anatomic findings not diagnosed or visualized with other forms of diagnostic imaging

  14. Secondary instability and transition in three-dimensional boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, A.; Bertolotti, F.P.; Koch, W. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany). Inst. fuer Stroemungsmechanik)

    1999-01-01

    Stationary and traveling crossflow modes are the most prominent disturbances in the highly accelerated three-dimensional flow near the leading edge of a swept wing. Near transition onset, secondary three-dimensional instabilities of high frequency can be observed in such flows. A model flow on the basis of a DLR swept plate experiment allows a detailed study of transition scenarios triggered by crossflow instabilities, since the favorable pressure gradient over the whole plate inhibits instabilities of Tollmien-Schlichting type. In order to shed some light upon the role of the high-frequency secondary instabilities, the saturation characteristics of crossflow vortices in this model flow are investigated using the parabolized stability equations. In contrast to nonlinear equilibrium solutions of steady crossflow vortices, the nonlinear Polarized Stability Equations (PSE) results yield different maximal disturbance amplitudes for different initial amplitudes. (orig./AKF)

  15. Secondary instability and transition in three-dimensional boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, A.; Bertolotti, F.P.; Koch, W. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany). Inst. fuer Stroemungsmechanik

    1999-12-01

    Stationary and traveling crossflow modes are the most prominent disturbances in the highly accelerated three-dimensional flow near the leading edge of a swept wing. Near transition onset, secondary three-dimensional instabilities of high frequency can be observed in such flows. A model flow on the basis of a DLR swept plate experiment allows a detailed study of transition scenarios triggered by crossflow instabilities, since the favorable pressure gradient over the whole plate inhibits instabilities of Tollmien-Schlichting type. In order to shed some light upon the role of the high-frequency secondary instabilities, the saturation characteristics of crossflow vortices in this model flow are investigated using the parabolized stability equations. In contrast to nonlinear equilibrium solutions of steady crossflow vortices, the nonlinear Polarized Stability Equations (PSE) results yield different maximal disturbance amplitudes for different initial amplitudes. (orig./AKF)

  16. Three-dimensional metallic opals fabricated by double templating

    International Nuclear Information System (INIS)

    Yan Qingfeng; Nukala, Pavan; Chiang, Yet-Ming; Wong, C.C.

    2009-01-01

    We report a simple and cost-effective double templating method for fabricating large-area three-dimensional metallic photonic crystals of controlled thickness. A self-assembled polystyrene opal was used as the first template to fabricate a silica inverse opal on a gold-coated glass substrate via sol-gel processing. Gold was subsequently infiltrated to the pores of the silica inverse opal using electrochemical deposition. A high-quality three-dimensional gold photonic crystal was obtained after removal of the secondary template (silica inverse opal). The effects of template sphere size and deposition current density on the gold growth rate, and the resulting morphology and growth mechanism of the gold opal, were investigated.

  17. Three-dimensional P velocity structure in Beijing area

    Science.gov (United States)

    Yu, Xiang-Wei; Chen, Yun-Tai; Wang, Pei-De

    2003-01-01

    A detail three-dimensional P wave velocity structure of Beijing, Tianjin and Tangshan area (BTT area) was determined by inverting local earthquake data. In total 16 048 P wave first arrival times from 16048 shallow and mid-depth crustal earthquakes, which occurred in and around the BTT area from 1992 to 1999 were used. The first arrival times are recorded by Northern China United Telemetry Seismic Network and Yanqing-Huailai Digital Seismic Network. Hypocentral parameters of 1 132 earthquakes with magnitude M L=1.7 6.2 and the three-dimensional P wave velocity structure were obtained simultaneously. The inversion result reveals the complicated lateral heterogeneity of P wave velocity structure around BTT area. The tomographic images obtained are also found to explain other seismological observations well.

  18. Quasi-three-dimensional particle imaging with digital holography.

    Science.gov (United States)

    Kemppinen, Osku; Heinson, Yuli; Berg, Matthew

    2017-05-01

    In this work, approximate three-dimensional structures of microparticles are generated with digital holography using an automated focus method. This is done by stacking a collection of silhouette-like images of a particle reconstructed from a single in-line hologram. The method enables estimation of the particle size in the longitudinal and transverse dimensions. Using the discrete dipole approximation, the method is tested computationally by simulating holograms for a variety of particles and attempting to reconstruct the known three-dimensional structure. It is found that poor longitudinal resolution strongly perturbs the reconstructed structure, yet the method does provide an approximate sense for the structure's longitudinal dimension. The method is then applied to laboratory measurements of holograms of single microparticles and their scattering patterns.

  19. Three-Dimensional Flow Behavior Inside the Submerged Entry Nozzle

    Science.gov (United States)

    Real-Ramirez, Cesar Augusto; Carvajal-Mariscal, Ignacio; Sanchez-Silva, Florencio; Cervantes-de-la-Torre, Francisco; Diaz-Montes, Jesus; Gonzalez-Trejo, Jesus

    2018-05-01

    According to various authors, the surface quality of steel depends on the dynamic conditions that occur within the continuous casting mold's upper region. The meniscus, found in that upper region, is where the solidification process begins. The liquid steel is distributed into the mold through a submerged entry nozzle (SEN). In this paper, the dynamic behavior inside the SEN is analyzed by means of physical experiments and numerical simulations. The particle imaging velocimetry technique was used to obtain the vector field in different planes and three-dimensional flow patterns inside the SEN volume. Moreover, large eddy simulation was performed, and the turbulence model results were used to understand the nonlinear flow pattern inside the SEN. Using scaled physical and numerical models, quasi-periodic behavior was observed due to the interaction of two three-dimensional vortices that move inside the SEN lower region located between the exit ports of the nozzle.

  20. Three-dimensional computerized tomography in mandibular condyle fractures

    International Nuclear Information System (INIS)

    Bermeo, Fausto; Salazar, Abad

    2003-01-01

    Now, car accidents are so commons, this associated to the high technology in produce automobiles make this type of accidents so serious and the consequences of mandibular condyle fractures are more commons and with more gravity, some of these patients, generally need a traqueostomy to be operated, that is why every second that we can save during the surgery is important. The normal exams as X rays and simple TAC give as an important idea but no complete, on the contrary the three-dimensional TAC permits to observe every damages and its exact location, this contribute to make a better surgery organization, the number and type of plates that we have to put and the better way to treat each case, that contribute to reduce time in operating theatre which is in benefit of the patient, diminishing risks in serious patients as they are, that is why we recommend the utilization of the three-dimensional TAC. (The author)

  1. Handwriting: three-dimensional kinetic synergies in circle drawing movements.

    Science.gov (United States)

    Hooke, Alexander W; Karol, Sohit; Park, Jaebum; Kim, Yoon Hyuk; Shim, Jae Kun

    2012-07-01

    The purpose of this study was to investigate central nervous system (CNS) strategies for controlling multifinger forces during a circle-drawing task. Subjects drew 30 concentric, discontinuous clockwise and counter clockwise circles, at self and experimenter-set paces. The three-dimensional trajectory of the pen's center of mass and the three-dimensional forces and moments of force at each contact between the hand and the pen were recorded. Uncontrolled Manifold Analysis was used to quantify the synergies between pen-hand contact forces in radial, tangential and vertical directions. Results showed that synergies in the radial and tangential components were significantly stronger than in the vertical component. Synergies in the clockwise direction were significantly stronger than the counterclockwise direction in the radial and vertical components. Pace was found to be insignificant under any condition.

  2. Three Dimensional Energy Transmitting Boundary in the Time Domain

    Directory of Open Access Journals (Sweden)

    Naohiro eNakamura

    2015-11-01

    Full Text Available Although the energy transmitting boundary is accurate and efficient for the FEM earthquake response analysis, it could be applied in the frequency domain only. In the previous papers, the author proposed an earthquake response analysis method using the time domain energy transmitting boundary for two dimensional problems. In this paper, this technique is expanded for three dimensional problems. The inner field is supposed to be a hexahedron shape and the approximate time domain boundary is explained, first. Next, two dimensional anti-plane time domain boundary is studied for a part of the approximate three dimensional boundary method. Then, accuracy and efficiency of the proposed method are confirmed by example problems.

  3. Canonical and symplectic analysis for three dimensional gravity without dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Escalante, Alberto, E-mail: aescalan@ifuap.buap.mx [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48 72570, Puebla, Pue. (Mexico); Osmart Ochoa-Gutiérrez, H. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado postal 1152, 72001 Puebla, Pue. (Mexico)

    2017-03-15

    In this paper a detailed Hamiltonian analysis of three-dimensional gravity without dynamics proposed by V. Hussain is performed. We report the complete structure of the constraints and the Dirac brackets are explicitly computed. In addition, the Faddeev–Jackiw symplectic approach is developed; we report the complete set of Faddeev–Jackiw constraints and the generalized brackets, then we show that the Dirac and the generalized Faddeev–Jackiw brackets coincide to each other. Finally, the similarities and advantages between Faddeev–Jackiw and Dirac’s formalism are briefly discussed. - Highlights: • We report the symplectic analysis for three dimensional gravity without dynamics. • We report the Faddeev–Jackiw constraints. • A pure Dirac’s analysis is performed. • The complete structure of Dirac’s constraints is reported. • We show that symplectic and Dirac’s brackets coincide to each other.

  4. The thermoelectric performance of bulk three-dimensional graphene

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhi, E-mail: yangzhi@tyut.edu.cn [Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024 (China); College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Lan, Guoqiang; Ouyang, Bin [Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5 (Canada); Xu, Li-Chun; Liu, Ruiping [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Xuguang, E-mail: liuxuguang@tyut.edu.cn [Key Lab of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Song, Jun [Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5 (Canada)

    2016-11-01

    The electronic and thermoelectric properties of a new carbon bulk material, three-dimensional (3D) graphene, are investigated in this study. Our results show that 3D graphene has unique electronic structure, i.e., near the Fermi level there exist Dirac cones. More importantly, the thermoelectric performance of 3D graphene is excellent, at room temperature the thermoelectric figure of merit (ZT) is 0.21, an order of magnitude higher than that of graphene. By introducing line defects, the ZT of 3D graphene could be enhanced to 1.52, indicating 3D graphene is a powerful candidate for constructing novel thermoelectric materials. - Highlights: • There exist Dirac cones in three-dimensional (3D) graphene. • The thermoelectric performance of 3D graphene is excellent. • The defective 3D graphene has better thermoelectric performance.

  5. Three-dimensional Modeling of Type Ia Supernova Explosions

    Science.gov (United States)

    Khokhlov, Alexei

    2001-06-01

    A deflagration explosion of a Type Ia Supernova (SNIa) is studied using three-dimensional, high-resolution, adaptive mesh refinement fluid dynamic calculations. Deflagration speed in an exploding Chandrasekhar-mass carbon-oxygen white dwarf (WD) grows exponentially, reaches approximately 30the speed of sound, and then declines due to a WD expansion. Outermost layers of the WD remain unburned. The explosion energy is comparable to that of a Type Ia supernova. The freezing of turbulent motions by expansion appears to be a crucial physical mechanism regulating the strength of a supernova explosion. In contrast to one-dimensional models, three-dimensional calculations predict the formation of Si-group elements and pockets of unburned CO in the middle and in central regions of a supernova ejecta. This, and the presence of unburned outer layer of carbon-oxygen may pose problems for SNIa spectra. Explosion sensitivity to initial conditions and its relation to a diversity of SNIa is discussed.

  6. SNAP-3D: a three-dimensional neutron diffusion code

    International Nuclear Information System (INIS)

    McCallien, C.W.J.

    1975-10-01

    A preliminary report is presented describing the data requirements of a one- two- or three-dimensional multi-group diffusion code, SNAP-3D. This code is primarily intended for neutron diffusion calculations but it can also carry out gamma calculations if the diffuse approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. It is assumed the reader is familiar with the older, two-dimensional code SNAP and can refer to the report [TRG-Report-1990], describing it. The present report concentrates on the enhancements to SNAP that have been made to produce the three-dimensional version, SNAP-3D, and is intended to act a a guide on data preparation until a single, comprehensive report can be published. (author)

  7. Analytical Prediction of Three Dimensional Chatter Stability in Milling

    Science.gov (United States)

    Altintas, Yusuf

    The chip regeneration mechanism during chatter is influenced by vibrations in three directions when milling cutters with ball end, bull nose, or inclined cutting edges are used. A three dimensional chatter stability is modeled analytically in this article. The dynamic milling system is formulated as a function of cutter geometry, the frequency response of the machine tool structure at the cutting zone in three Cartesian directions, cutter engagement conditions and material property. The dynamic milling system with nonlinearities and periodic delayed differential equations is reduced to a three dimensional linear stability problem by approximations based on the physics of milling. The chatter stability lobes are predicted in the frequency domain using the proposed analytical solution, and verified experimentally in milling a Titanium alloy with a face milling cutter having circular inserts.

  8. Pattern formation and three-dimensional instability in rotating flows

    Science.gov (United States)

    Christensen, Erik A.; Aubry, Nadine; Sorensen, Jens N.

    1997-03-01

    A fluid flow enclosed in a cylindrical container where fluid motion is created by the rotation of one end wall as a centrifugal fan is studied. Direct numerical simulations and spatio-temporal analysis have been performed in the early transition scenario, which includes a steady-unsteady transition and a breakdown of axisymmetric to three-dimensional flow behavior. In the early unsteady regime of the flow, the central vortex undergoes a vertical beating motion, accompanied by axisymmetric spikes formation on the edge of the breakdown bubble. As traveling waves, the spikes move along the central vortex core toward the rotating end-wall. As the Reynolds number is increased further, the flow undergoes a three-dimensional instability. The influence of the latter on the previous patterns is studied.

  9. Three-dimensional theory for light-matter interaction

    DEFF Research Database (Denmark)

    Sørensen, Martin Westring; Sørensen, Anders Søndberg

    2008-01-01

    We present a full quantum mechanical three dimensional theory describing an electromagnetic field interacting with an ensemble of identical atoms. The theory is constructed such that it describes recent experiments on light-matter quantum interfaces, where the quantum fluctuations of light...... to a dressed state picture, where the light modes are solutions to the diffraction problem, and develop a perturbative expansion in the fluctuations. The fluctuations are due to quantum fluctuations as well as the random positions of the atoms. In this perturbative expansion we show how the quantum...... fluctuations are mapped between atoms and light while the random positioning of the atoms give rise to decay due to spontaneous emission. Furthermore we identify limits, where the full three dimensional theory reduce to the one dimensional theory typically used to describe the interaction....

  10. Three-dimensional imaging technology offers promise in medicine.

    Science.gov (United States)

    Karako, Kenji; Wu, Qiong; Gao, Jianjun

    2014-04-01

    Medical imaging plays an increasingly important role in the diagnosis and treatment of disease. Currently, medical equipment mainly has two-dimensional (2D) imaging systems. Although this conventional imaging largely satisfies clinical requirements, it cannot depict pathologic changes in 3 dimensions. The development of three-dimensional (3D) imaging technology has encouraged advances in medical imaging. Three-dimensional imaging technology offers doctors much more information on a pathology than 2D imaging, thus significantly improving diagnostic capability and the quality of treatment. Moreover, the combination of 3D imaging with augmented reality significantly improves surgical navigation process. The advantages of 3D imaging technology have made it an important component of technological progress in the field of medical imaging.

  11. Design of three-dimensional nonimaging concentrators with inhomogeneous media

    Science.gov (United States)

    Minano, J. C.

    1986-09-01

    A three-dimensional nonimaging concentrator is an optical system that transforms a given four-parametric manifold of rays reaching a surface (entry aperture) into another four-parametric manifold of rays reaching the receiver. A procedure of design of such concentrators is developed. In general, the concentrators use mirrors and inhomogeneous media (i.e., gradient-index media). The concentrator has the maximum concentration allowed by the theorem of conservation of phase-space volume. This is the first known concentrator with such properties. The Welford-Winston edge-ray principle in three-dimensional geometry is proven under several assumptions. The linear compound parabolic concentrator is derived as a particular case of the procedure of design.

  12. Single florescent nanodiamond in a three dimensional ABEL trap

    Science.gov (United States)

    Kayci, Metin; Radenovic, Aleksandra

    2015-01-01

    Three dimensional single particle trapping and manipulation is an outstanding challenge in various fields ranging from basic physics to life sciences. By monitoring the response of a trapped particle to a designed environment one can extract its characteristics. In addition, quantum dynamics of a spatially scanned well-known particle can provide environmental information. Precise tracking and positioning of such a particle in aqueous environment is crucial task for achieving nano-scale resolution. Here we experimentally demonstrate three dimensional ABEL trap operating at high frequency by employing a hybrid approach in particle tracking. The particle location in the transverse plane is detected via a scanning laser beam while the axial position is determined by defocused imaging. The scanning of the trapped particle is accomplished through a nano positioning stage integrated to the trap platform. PMID:26559890

  13. Three-dimensional metamaterials fabricated using Proton Beam Writing

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A.A., E-mail: a.bettiol@nus.edu.sg [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Dr. 3, Singapore 117542 (Singapore); Turaga, S.P.; Yan, Y.; Vanga, S.K. [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Dr. 3, Singapore 117542 (Singapore); Chiam, S.Y. [NUS High School for Maths and Science, 20 Clementi Avenue 1, Singapore 129957 (Singapore)

    2013-07-01

    Proton Beam Writing (PBW) is a direct write lithographic technique that has recently been applied to the fabrication of three dimensional metamaterials. In this work, we show that the unique capabilities of PBW, namely the ability to fabricate arrays of high resolution, high aspect ratio microstructures in polymer or replicated into metal, is well suited to metamaterials research. We have also developed a novel method for selectively electroless plating silver directly onto polymer structures that were fabricated using PBW. This method opens up new avenues for utilizing PBW for making metamaterials and other sub-wavelength metallic structures. Several potential applications of three dimensional metamaterials fabricated using PBW are discussed, including sensing and negative refractive index materials.

  14. Three-dimensional passive sensing photon counting for object classification

    Science.gov (United States)

    Yeom, Seokwon; Javidi, Bahram; Watson, Edward

    2007-04-01

    In this keynote address, we address three-dimensional (3D) distortion-tolerant object recognition using photon-counting integral imaging (II). A photon-counting linear discriminant analysis (LDA) is discussed for classification of photon-limited images. We develop a compact distortion-tolerant recognition system based on the multiple-perspective imaging of II. Experimental and simulation results have shown that a low level of photons is sufficient to classify out-of-plane rotated objects.

  15. Three-dimensional discrete ordinates reactor assembly calculations on GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Thomas M [ORNL; Joubert, Wayne [ORNL; Hamilton, Steven P [ORNL; Johnson, Seth R [ORNL; Turner, John A [ORNL; Davidson, Gregory G [ORNL; Pandya, Tara M [ORNL

    2015-01-01

    In this paper we describe and demonstrate a discrete ordinates sweep algorithm on GPUs. This sweep algorithm is nested within a multilevel comunication-based decomposition based on energy. We demonstrated the effectiveness of this algorithm on detailed three-dimensional critical experiments and PWR lattice problems. For these problems we show improvement factors of 4 6 over conventional communication-based, CPU-only sweeps. These sweep kernel speedups resulted in a factor of 2 total time-to-solution improvement.

  16. Three-dimensional, computer simulated navigation in endoscopic neurosurgery

    Directory of Open Access Journals (Sweden)

    Roberta K. Sefcik, BHA

    2017-06-01

    Conclusion: Three-dimensional, frameless neuronavigation systems are useful in endoscopic neurosurgery to assist in the pre-operative planning of potential trajectories and to help localize the pathology of interest. Neuronavigation appears to be accurate to <1–2 mm without issues related to brain shift. Further work is necessary in the investigation of the effect of neuronavigation on operative time, cost, and patient-centered outcomes.

  17. Existence of a new three-dimensional chaotic attractor

    International Nuclear Information System (INIS)

    Wang Jiezhi; Chen Zengqiang; Yuan Zhuzhi

    2009-01-01

    In this paper, one heteroclinic orbit of a new three-dimensional continuous autonomous chaotic system, whose chaotic attractor belongs to the conjugate Lue attractor, is found. The series expression of the heteroclinic orbit of Shil'nikov type is derived by using the undetermined coefficient method. The uniform convergence of the precise series expansions of this heteroclinic orbits is proved. According to the Shil'nikov theorem, this system clearly has Smale horseshoes and the horseshoe chaos.

  18. Heat engine in the three-dimensional spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Jie-Xiong [Institute of Theoretical Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Department of Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Liang, Feng [Department of Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Li, Gu-Qiang [Institute of Theoretical Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Department of Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China)

    2017-03-02

    We define a kind of heat engine via three-dimensional charged BTZ black holes. This case is quite subtle and needs to be more careful. The heat flow along the isochores does not equal to zero since the specific heat C{sub V}≠0 and this point completely differs from the cases discussed before whose isochores and adiabats are identical. So one cannot simply apply the paradigm in the former literatures. However, if one introduces a new thermodynamic parameter associated with the renormalization length scale, the above problem can be solved. We obtain the analytical efficiency expression of the three-dimensional charged BTZ black hole heat engine for two different schemes. Moreover, we double check with the exact formula. Our result presents the first specific example for the sound correctness of the exact efficiency formula. We argue that the three-dimensional charged BTZ black hole can be viewed as a toy model for further investigation of holographic heat engine. Furthermore, we compare our result with that of the Carnot cycle and extend the former result to three-dimensional spacetime. In this sense, the result in this paper would be complementary to those obtained in four-dimensional spacetime or ever higher. Last but not the least, the heat engine efficiency discussed in this paper may serve as a criterion to discriminate the two thermodynamic approaches introduced in ref. https://www.doi.org/10.1103/PhysRevD.92.124069 and our result seems to support the approach which introduces a new thermodynamic parameter R=r{sub 0}.

  19. Three-dimensional echocardiographic assessment of atrial septal defects

    Directory of Open Access Journals (Sweden)

    Charles German

    2015-01-01

    Full Text Available Echocardiography provides a useful tool in the diagnosis of many congenital heart diseases, including atrial septal defects, and aids in further delineating treatment options. Although two-dimensional echocardiography has been the standard of care in this regard, technological advancements have made three-dimensional echocardiography possible, and the images obtained in this new imaging modality are able to accurately portray the morphology, location, dimensions, and dynamic changes of defects and many other heart structures during the cardiac cycle.

  20. Birkhoff's theorem for three-dimensional AdS gravity

    International Nuclear Information System (INIS)

    Ayon-Beato, Eloy; Martinez, Cristian; Zanelli, Jorge

    2004-01-01

    All three-dimensional matter-free space-times with negative cosmological constant, compatible with cyclic symmetry, are identified. The only cyclic solutions are the 2+1 (BTZ) black hole with SO(2)xR isometry, and the self-dual Coussaert-Henneaux space-times, with isometry groups SO(2)xSO(2,1) or SO(2)xSO(2)

  1. Three-dimensional CT of the pediatric spine

    International Nuclear Information System (INIS)

    Starshak, R.J.; Crawford, C.R.; Waisman, R.C.; Sty, J.R.

    1987-01-01

    CT of the spine has been shown to be useful in evaluating congenital, neoplastic, inflammatory, and traumatic lesions. Any portion of the neural arch may be involved by these disease processes. The complex nature of the spinal column can make evaluation of these abnormalities difficult on axial CT. This is especially true if the spine is distorted by scoliosis, kyphosis, or lordosis. This exhibit illustrates the advantages and drawbacks of three-dimensional CT reconstructed images of spinal abnormalities in children

  2. Environmental, Transient, Three-Dimensional, Hydrothermal, Mass Transport Code - FLESCOT

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bao, Jie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glass, Kevin A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Eyler, L. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Okumura, Masahiko [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-28

    The purpose of the project was to modify and apply the transient, three-dimensional FLESCOT code to be able to effectively simulate cesium behavior in Fukushima lakes/dam reservoirs, river mouths, and coastal areas. The ultimate objective of the FLESCOT simulation is to predict future changes of cesium accumulation in Fukushima area reservoirs and costal water. These evaluation results will assist ongoing and future environmental remediation activities and policies in a systematic and comprehensive manner.

  3. Study of three-dimensional effects on vortex breakdown

    Science.gov (United States)

    Salas, M. D.; Kuruvila, G.

    1988-01-01

    The incompressible axisymmetric steady Navier-Stokes equations in primitive variables are used to simulate vortex breakdown. The equations, discretized using a second-order, central-difference scheme, are linearized and then solved using an exact LU decomposition, Gaussian elimination, and Newton iteration. Solutions are presented for Reynolds numbers, based on vortex-core radius, as high as 1500. An attempt to study the stability of the axisymmetric solutions against three-dimensional perturbations is discussed.

  4. Three-dimensional massive gravity and the bigravity black hole

    International Nuclear Information System (INIS)

    Banados, Maximo; Theisen, Stefan

    2009-01-01

    We study three-dimensional massive gravity formulated as a theory with two dynamical metrics, like the f-g theories of Isham-Salam and Strathdee. The action is parity preserving and has no higher derivative terms. The spectrum contains a single massive graviton. This theory has several features discussed recently in TMG and NMG. We find warped black holes, a critical point, and generalized Brown-Henneaux boundary conditions.

  5. Spinorial characterizations of surfaces into three-dimensional homogeneous manifolds

    Science.gov (United States)

    Roth, Julien

    2010-06-01

    We give spinorial characterizations of isometrically immersed surfaces into three-dimensional homogeneous manifolds with four-dimensional isometry group in terms of the existence of a particular spinor field. This generalizes works by Friedrich for R3 and Morel for S3 and H3. The main argument is the interpretation of the energy-momentum tensor of such a spinor field as the second fundamental form up to a tensor depending on the structure of the ambient space.

  6. Three-dimensional harmonic control of a nuclear reactor

    International Nuclear Information System (INIS)

    Potapenko, P.T.

    1989-01-01

    Algorithms for neutron flux control based on harmonic three-dimensional core are considered. The essence of the considered approach includes determination of harmonics amplitudes by signals self-powered detectors placed in reactor channels and reconstruction of neutron field distribution over the reactor core volume using the data obtained. Neutron field harmonic control is shown to be reduced to independent measurement and calculation of height harmonics in channels using techniques developed for channel power control

  7. Three-dimensional wound measurements for monitoring wound healing

    DEFF Research Database (Denmark)

    Bisgaard Jørgensen, Line; Møller Jeppesen, Sune; Halekoh, Ulrich

    Telemedicine is increasingly used for monitoring wound healing. Three-dimensional (3D) measurement methods enable clinicians to assess wound healing with respect to all dimensions. However, the currently available methods are inaccurate, costly or complicated to use. To address these issues, a 3D......-WAM camera was developed. This camera is able to measure wound size (2D area, 3D area, perimeter and volume) and to assess wound characteristics....

  8. Three-dimensional charge transport in organic semiconductor single crystals.

    Science.gov (United States)

    He, Tao; Zhang, Xiying; Jia, Jiong; Li, Yexin; Tao, Xutang

    2012-04-24

    Three-dimensional charge transport anisotropy in organic semiconductor single crystals - both plates and rods (above and below, respectively, in the figure) - is measured in well-performing organic field-effect transistors for the first time. The results provide an excellent model for molecular design and device preparation that leads to good performance. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Simulating Photons and Plasmons in a Three-dimensional Lattice

    International Nuclear Information System (INIS)

    Pletzer, A.; Shvets, G.

    2002-01-01

    Three-dimensional metallic photonic structures are studied using a newly developed mixed finite element-finite difference (FE-FD) code, Curly3d. The code solves the vector Helmholtz equation as an eigenvalue problem in the unit cell of a triply periodic lattice composed of conductors and/or dielectrics. The mixed FE-FD discretization scheme ensures rapid numerical convergence of the eigenvalue and allows the code to run at low resolution. Plasmon and photonic band structure calculations are presented

  10. A three-dimensional nodal neutron kinetics capability for relaps

    International Nuclear Information System (INIS)

    Judd, J.L.; Weaver, W.L.

    1996-01-01

    The incorporation of a three-dimensional neutron kinetics capability into the DOE version of the RELAP5/MOD3.2 reactor safety code is discussed. A brief discussion of the kinetics method is given along with a discussion of the cross section parameterization models available in RELAP5/MOD3.2. The RELAP5/MOD3.2 code is then used to perform calculations of the NEACRP rod ejection and rod withdrawal benchmarks, and results are presented

  11. Three-dimensional friction measurement during hip simulation.

    Directory of Open Access Journals (Sweden)

    Robert Sonntag

    Full Text Available Wear of total hip replacements has been the focus of many studies. However, frictional effects, such as high loading on intramodular connections or the interface to the bone, as well as friction associated squeaking have recently increased interest about the amount of friction that is generated during daily activities. The aim of this study was thus to establish and validate a three-dimensional friction setup under standardized conditions.A standard hip simulator was modified to allow for high precision measurements of small frictional effects in the hip during three-dimensional hip articulation. The setup was verified by an ideal hydrostatic bearing and validated with a static-load physical pendulum and an extension-flexion rotation with a dynamic load profile. Additionally, a pendulum model was proposed for screening measurement of frictional effects based on the damping behavior of the angular oscillation without the need for any force/moment transducer. Finally, three-dimensional friction measurements have been realized for ceramic-on-polyethylene bearings of three different sizes (28, 36 and 40 mm.A precision of less than 0.2 Nm during three-dimensional friction measurements was reported, while increased frictional torque (resultant as well as taper torque was measured for larger head diameters. These effects have been confirmed by simple pendulum tests and the theoretical model. A comparison with current literature about friction measurements is presented.This investigation of friction is able to provide more information about a field that has been dominated by the reduction of wear. It should be considered in future pre-clinical testing protocols given by international organizations of standardization.

  12. Three-Dimensional Computer Graphics Brain-Mapping Project

    Science.gov (United States)

    1988-03-24

    1975-76, one of these brains was hand digitized. It was then reconstructed three dimensionally, using an Evans and Sutherland Picture System 2. This...Yakovlev Collection, we use the Evans and Sutherland Picture System 2 which we have been employing for this purpose for a dozen years. Its virtue is...careful, experimentally designed new protocol (See Figure 20). Most of these heads were imaged with Computed Tomography, thanks to Clint Stiles of Picker

  13. Three-dimensional TDHF calculation for reactions of unstable nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ka-Hae; Otsuka, Takaharu [Tokyo Univ. (Japan). Dept. of Physics; Bonche, P.

    1998-07-01

    The fusion is studied for reactions between a stable and an unstable nuclei with neutron skin. The reactions {sup 16,28}O+{sup 40}Ca and {sup 16}O+{sup 16,28}O are taken as examples, and the three-dimensional time-dependent Hartree-Fock method with the full Skyrme interaction is used. It is confirmed that the fusion cross section in low-energy region is sensitive to the interaction used in the calculation. (author)

  14. Three Dimensional Steady Subsonic Euler Flows in Bounded Nozzles

    OpenAIRE

    Chen, Chao; Xie, Chunjing

    2013-01-01

    In this paper, we study the existence and uniqueness of three dimensional steady Euler flows in rectangular nozzles when prescribing normal component of momentum at both the entrance and exit. If, in addition, the normal component of the voriticity and the variation of Bernoulli's function at the exit are both zero, then there exists a unique subsonic potential flow when the magnitude of the normal component of the momentum is less than a critical number. As the magnitude of the normal compon...

  15. Analysis of the three dimensional flow in a turbine scroll

    Science.gov (United States)

    Hamed, A.; Baskharone, E.

    1979-01-01

    The present analysis describes the three-dimensional compressible inviscid flow in the scroll and the vaneless nozzle of a radial inflow turbine. The solution to this flow field, which is further complicated by the geometrical shape of the boundaries, is obtained using the finite element method. Symmetric and nonsymmetric scroll cross sectional geometries are investigated to determine their effect on the general flow field and on the exit flow conditions.

  16. Accuracy of three-dimensional printing for manufacturing replica teeth

    OpenAIRE

    Lee, Keun-Young; Cho, Jin-Woo; Chang, Na-Young; Chae, Jong-Moon; Kang, Kyung-Hwa; Kim, Sang-Cheol; Cho, Jin-Hyoung

    2015-01-01

    Objective Three-dimensional (3D) printing is a recent technological development that may play a significant role in orthodontic diagnosis and treatment. It can be used to fabricate skull models or study models, as well as to make replica teeth in autotransplantation or tooth impaction cases. The aim of this study was to evaluate the accuracy of fabrication of replica teeth made by two types of 3D printing technologies. Methods Fifty extracted molar teeth were selected as samples. They were sc...

  17. Is a three-dimensional-printed tooth filling possible?

    OpenAIRE

    Muhammet Kerim Ayar

    2016-01-01

    Introduction: Three-dimensional (3-D) printing is seen as an innovative production process in many fields of dentistry and medicine. But implantation of this novel production process into the treatment of decayed teeth in dentistry remains lacking. Destruction of dental tissues as a result of dental caries is generally treated with dental resin composite fillings. However, a 3-D-printed tooth filling approach, which could be an alternative to traditional approaches, has a potential to reduce ...

  18. Predicting transition in two- and three-dimensional separated flows

    International Nuclear Information System (INIS)

    Cutrone, L.; De Palma, P.; Pascazio, G.; Napolitano, M.

    2008-01-01

    This paper is concerned with the numerical prediction of two- and three-dimensional transitional separated flows of turbomachinery interest. The recently proposed single-point transition model based on the use of a laminar kinetic energy transport equation is considered, insofar as it does not require to evaluate any integral parameter, such as boundary-layer thickness, and is thus directly applicable to three-dimensional flows. A well established model, combining a transition-onset correlation with an intermittency transport equation, is also used for comparison. Both models are implemented within a Reynolds-averaged Navier-Stokes solver employing a low-Reynolds-number k-ω turbulence model. The performance of the transition models have been evaluated and tested versus well-documented incompressible flows past a flat plate with semi-circular leading edge, namely: tests T3L2, T3L3, T3L5, and T3LA1 of ERCOFTAC, with different Reynolds numbers and free-stream conditions, the last one being characterized by a non-zero pressure gradient. In all computations, the first model has proven as adequate as or superior to the second one and has been then applied with success to two more complex test cases, for which detailed experimental data are available in the literature, namely: the two- and three-dimensional flows through the T106 linear turbine cascade

  19. Three-dimensional features on oscillating microbubbles streaming flows

    Science.gov (United States)

    Rossi, Massimiliano; Marin, Alvaro G.; Wang, Cheng; Hilgenfeldt, Sascha; Kähler, Christian J.

    2013-11-01

    Ultrasound-driven oscillating micro-bubbles have been used as active actuators in microfluidic devices to perform manifold tasks such as mixing, sorting and manipulation of microparticles. A common configuration consists in side-bubbles, created by trapping air pockets in blind channels perpendicular to the main channel direction. This configuration results in bubbles with a semi-cylindrical shape that creates a streaming flow generally considered quasi two-dimensional. However, recent experiments performed with three-dimensional velocimetry methods have shown how microparticles can present significant three-dimensional trajectories, especially in regions close to the bubble interface. Several reasons will be discussed such as boundary effects of the bottom/top wall, deformation of the bubble interface leading to more complex vibrational modes, or bubble-particle interactions. In the present investigation, precise measurements of particle trajectories close to the bubble interface will be performed by means of 3D Astigmatic Particle Tracking Velocimetry. The results will allow us to characterize quantitatively the three-dimensional features of the streaming flow and to estimate its implications in practical applications as particle trapping, sorting or mixing.

  20. Comparison of two three-dimensional cephalometric analysis computer software.

    Science.gov (United States)

    Sawchuk, Dena; Alhadlaq, Adel; Alkhadra, Thamer; Carlyle, Terry D; Kusnoto, Budi; El-Bialy, Tarek

    2014-10-01

    Three-dimensional cephalometric analyses are getting more attraction in orthodontics. The aim of this study was to compare two softwares to evaluate three-dimensional cephalometric analyses of orthodontic treatment outcomes. Twenty cone beam computed tomography images were obtained using i-CAT(®) imaging system from patient's records as part of their regular orthodontic records. The images were analyzed using InVivoDental5.0 (Anatomage Inc.) and 3DCeph™ (University of Illinois at Chicago, Chicago, IL, USA) software. Before and after orthodontic treatments data were analyzed using t-test. Reliability test using interclass correlation coefficient was stronger for InVivoDental5.0 (0.83-0.98) compared with 3DCeph™ (0.51-0.90). Paired t-test comparison of the two softwares shows no statistical significant difference in the measurements made in the two softwares. InVivoDental5.0 measurements are more reproducible and user friendly when compared to 3DCeph™. No statistical difference between the two softwares in linear or angular measurements. 3DCeph™ is more time-consuming in performing three-dimensional analysis compared with InVivoDental5.0.

  1. Supersymmetric quantum mechanics in three-dimensional space, 1

    International Nuclear Information System (INIS)

    Ui, Haruo

    1984-01-01

    As a direct generalization of the model of supersymmetric quantum mechanics by Witten, which describes the motion of a spin one-half particle in the one-dimensional space, we construct a model of the supersymmetric quantum mechanics in the three-dimensional space, which describes the motion of a spin one-half particle in central and spin-orbit potentials in the context of the nonrelativistic quantum mechanics. With the simplest choice of the (super) potential, this model is shown to reduce to the model of the harmonic oscillator plus constant spin-orbit potential of unit strength of both positive and negative signs, which was studied in detail in our recent paper in connection with ''accidental degeneracy'' as well as the ''graded groups''. This simplest model is discussed in some detail as an example of the three-dimensional supersymmetric quantum mechanical system, where the supersymmetry is an exact symmetry of the system. More general choice of a polynomial superpotential is also discussed. It is shown that the supersymmetry cannot be spontaneously broken for any polynomial superpotential in our three-dimensional model; this result is contrasted to the corresponding one in the one-dimensional model. (author)

  2. Three-dimensional simulations in optimal performance trial between two types of Hall sensors fabrication technologies

    Energy Technology Data Exchange (ETDEWEB)

    Paun, Maria-Alexandra, E-mail: map65@cam.ac.uk

    2015-10-01

    The main objective of the present work is to make a comparison between Hall devices integrated in regular bulk and Silicon-on-Insulator (SOI) CMOS technology. A three-dimensional model based on numerical estimation is provided for a particular XL Hall structure in two different technologies (the first one is XFAB XH 0.35 µm regular bulk CMOS and the second one is XFAB SOI XI10 1 µm non-fully depleted). In assessing the performance of the Hall Effect sensors included in the comparison, both three-dimensional physical simulations and measurements results will be used. In order to discriminate which category of sensors has the highest performance, their main characteristic parameters, including input resistance, Hall voltage, absolute sensitivity and their temperature drift, will be extracted and compared. Electrostatic potential and current density distribution are important aspects that are also investigated. The particular technology offering the highest sensor performance is identified. - Highlights: • A comparison between Hall devices integrated in regular bulk and SOI CMOS technologies is made. • A three-dimensional model for the XL Hall structure, in the two technologies, is provided. • The main characteristic parameters and the temperature drift are investigated. • The sensors performance is evaluated using 3D physical simulations and measurements data.

  3. A three-dimensional non-isothermal model for a membraneless direct methanol redox fuel cell

    Science.gov (United States)

    Wei, Lin; Yuan, Xianxia; Jiang, Fangming

    2018-05-01

    In the membraneless direct methanol redox fuel cell (DMRFC), three-dimensional electrodes contribute to the reduction of methanol crossover and the open separator design lowers the system cost and extends its service life. In order to better understand the mechanisms of this configuration and further optimize its performance, the development of a three-dimensional numerical model is reported in this work. The governing equations of the multi-physics field are solved based on computational fluid dynamics methodology, and the influence of the CO2 gas is taken into consideration through the effective diffusivities. The numerical results are in good agreement with experimental data, and the deviation observed for cases of large current density may be related to the single-phase assumption made. The three-dimensional electrode is found to be effective in controlling methanol crossover in its multi-layer structure, while it also increases the flow resistance for the discharging products. It is found that the current density distribution is affected by both the electronic conductivity and the concentration of reactants, and the temperature rise can be primarily attributed to the current density distribution. The sensitivity and reliability of the model are analyzed through the investigation of the effects of cell parameters, including porosity values of gas diffusion layers and catalyst layers, methanol concentration and CO2 volume fraction, on the polarization characteristics.

  4. Integration of Computed Tomography and Three-Dimensional Echocardiography for Hybrid Three-Dimensional Printing in Congenital Heart Disease.

    Science.gov (United States)

    Gosnell, Jordan; Pietila, Todd; Samuel, Bennett P; Kurup, Harikrishnan K N; Haw, Marcus P; Vettukattil, Joseph J

    2016-12-01

    Three-dimensional (3D) printing is an emerging technology aiding diagnostics, education, and interventional, and surgical planning in congenital heart disease (CHD). Three-dimensional printing has been derived from computed tomography, cardiac magnetic resonance, and 3D echocardiography. However, individually the imaging modalities may not provide adequate visualization of complex CHD. The integration of the strengths of two or more imaging modalities has the potential to enhance visualization of cardiac pathomorphology. We describe the feasibility of hybrid 3D printing from two imaging modalities in a patient with congenitally corrected transposition of the great arteries (L-TGA). Hybrid 3D printing may be useful as an additional tool for cardiologists and cardiothoracic surgeons in planning interventions in children and adults with CHD.

  5. Phase Diagrams of Three-Dimensional Anderson and Quantum Percolation Models Using Deep Three-Dimensional Convolutional Neural Network

    Science.gov (United States)

    Mano, Tomohiro; Ohtsuki, Tomi

    2017-11-01

    The three-dimensional Anderson model is a well-studied model of disordered electron systems that shows the delocalization-localization transition. As in our previous papers on two- and three-dimensional (2D, 3D) quantum phase transitions [J. Phys. Soc. Jpn. 85, 123706 (2016), 86, 044708 (2017)], we used an image recognition algorithm based on a multilayered convolutional neural network. However, in contrast to previous papers in which 2D image recognition was used, we applied 3D image recognition to analyze entire 3D wave functions. We show that a full phase diagram of the disorder-energy plane is obtained once the 3D convolutional neural network has been trained at the band center. We further demonstrate that the full phase diagram for 3D quantum bond and site percolations can be drawn by training the 3D Anderson model at the band center.

  6. Three-dimensional appearance of the lips muscles with three-dimensional isotropic MRI: in vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Raphael; Reychler, H. [Universite Catholique de Louvain, Department of Oral and Maxillofacial Surgery, Cliniques Universitaires Saint Luc, Brussels (Belgium); Liu, Y.; Xu, T.M. [Peking University School and Hospital of Stomatology, Department of Orthodontics, Beijing (China); Duprez, T. [Universite Catholique de Louvain, Department of Radiology, Cliniques Universitaires Saint Luc, Brussels (Belgium)

    2009-06-15

    Our knowledge of facial muscles is based primarily on atlases and cadaveric studies. This study describes a non-invasive in vivo method (3D MRI) for segmenting and reconstructing facial muscles in a three-dimensional fashion. Three-dimensional (3D), T1-weighted, 3 Tesla, isotropic MRI was applied to a subject. One observer performed semi-automatic segmentation using the Editor module from the 3D Slicer software (Harvard Medical School, Boston, MA, USA), version 3.2. We were able to successfully outline and three-dimensionally reconstruct the following facial muscles: pars labialis orbicularis oris, m. levatro labii superioris alaeque nasi, m. levator labii superioris, m. zygomaticus major and minor, m. depressor anguli oris, m. depressor labii inferioris, m. mentalis, m. buccinator, and m. orbicularis oculi. 3D reconstruction of the lip muscles should be taken into consideration in order to improve the accuracy and individualization of existing 3D facial soft tissue models. More studies are needed to further develop efficient methods for segmentation in this field. (orig.)

  7. Three-dimensional labeling program for elucidation of the geometric properties of biological particles in three-dimensional space.

    Science.gov (United States)

    Nomura, A; Yamazaki, Y; Tsuji, T; Kawasaki, Y; Tanaka, S

    1996-09-15

    For all biological particles such as cells or cellular organelles, there are three-dimensional coordinates representing the centroid or center of gravity. These coordinates and other numerical parameters such as volume, fluorescence intensity, surface area, and shape are referred to in this paper as geometric properties, which may provide critical information for the clarification of in situ mechanisms of molecular and cellular functions in living organisms. We have established a method for the elucidation of these properties, designated the three-dimensional labeling program (3DLP). Algorithms of 3DLP are so simple that this method can be carried out through the use of software combinations in image analysis on a personal computer. To evaluate 3DLP, it was applied to a 32-cell-stage sea urchin embryo, double stained with FITC for cellular protein of blastomeres and propidium iodide for nuclear DNA. A stack of optical serial section images was obtained by confocal laser scanning microscopy. The method was found effective for determining geometric properties and should prove applicable to the study of many different kinds of biological particles in three-dimensional space.

  8. Three-dimensional appearance of the lips muscles with three-dimensional isotropic MRI: in vivo study.

    Science.gov (United States)

    Olszewski, Raphael; Liu, Y; Duprez, T; Xu, T M; Reychler, H

    2009-06-01

    Our knowledge of facial muscles is based primarily on atlases and cadaveric studies. This study describes a non-invasive in vivo method (3D MRI) for segmenting and reconstructing facial muscles in a three-dimensional fashion. Three-dimensional (3D), T1-weighted, 3 Tesla, isotropic MRI was applied to a subject. One observer performed semi-automatic segmentation using the Editor module from the 3D Slicer software (Harvard Medical School, Boston, MA, USA), version 3.2. We were able to successfully outline and three-dimensionally reconstruct the following facial muscles: pars labialis orbicularis oris, m. levatro labii superioris alaeque nasi, m. levator labii superioris, m. zygomaticus major and minor, m. depressor anguli oris, m. depressor labii inferioris, m. mentalis, m. buccinator, and m. orbicularis oculi. 3D reconstruction of the lip muscles should be taken into consideration in order to improve the accuracy and individualization of existing 3D facial soft tissue models. More studies are needed to further develop efficient methods for segmentation in this field.

  9. Asymmetric three-dimensional topography over mantle plumes.

    Science.gov (United States)

    Burov, Evgueni; Gerya, Taras

    2014-09-04

    The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes.

  10. Three dimensional topography correction applied to magnetotelluric data from Sikkim Himalayas

    Science.gov (United States)

    Kumar, Sushil; Patro, Prasanta K.; Chaudhary, B. S.

    2018-06-01

    Magnetotelluric (MT) method is one of the powerful tools to investigate the deep crustal image of mountainous regions such as Himalayas. Topographic variations due to irregular surface terrain distort the resistivity curves and hence may not give accurate interpretation of magnetotelluric data. The two-dimensional (2-D) topographic effects in Transverse Magnetic (TM) mode is only galvanic whereas inductive in Transverse Electric (TE) mode, thus TM mode responses is much more important than TE mode responses in 2-D. In three-dimensional (3-D), the topography effect is both galvanic and inductive in each element of impedance tensor and hence the interpretation is complicated. In the present work, we investigate the effects of three-dimensional (3-D) topography for a hill model. This paper presents the impedance tensor correction algorithm to reduce the topographic effects in MT data. The distortion caused by surface topography effectively decreases by using homogeneous background resistivity in impedance correction method. In this study, we analyze the response of ramp, distance from topographic edges, conductive and resistive dykes. The new correction method is applied to the real data from Sikkim Himalayas, which brought out the true nature of the basement in this region.

  11. Three-dimensional illumination procedure for photodynamic therapy of dermatology

    Science.gov (United States)

    Hu, Xiao-ming; Zhang, Feng-juan; Dong, Fei; Zhou, Ya

    2014-09-01

    Light dosimetry is an important parameter that affects the efficacy of photodynamic therapy (PDT). However, the irregular morphologies of lesions complicate lesion segmentation and light irradiance adjustment. Therefore, this study developed an illumination demo system comprising a camera, a digital projector, and a computing unit to solve these problems. A three-dimensional model of a lesion was reconstructed using the developed system. Hierarchical segmentation was achieved with the superpixel algorithm. The expected light dosimetry on the targeted lesion was achieved with the proposed illumination procedure. Accurate control and optimization of light delivery can improve the efficacy of PDT.

  12. Optical Forging of Graphene into Three-Dimensional Shapes.

    Science.gov (United States)

    Johansson, Andreas; Myllyperkiö, Pasi; Koskinen, Pekka; Aumanen, Jukka; Koivistoinen, Juha; Tsai, Hung-Chieh; Chen, Chia-Hao; Chang, Lo-Yueh; Hiltunen, Vesa-Matti; Manninen, Jyrki J; Woon, Wei Yen; Pettersson, Mika

    2017-10-11

    Atomically thin materials, such as graphene, are the ultimate building blocks for nanoscale devices. But although their synthesis and handling today are routine, all efforts thus far have been restricted to flat natural geometries, since the means to control their three-dimensional (3D) morphology has remained elusive. Here we show that, just as a blacksmith uses a hammer to forge a metal sheet into 3D shapes, a pulsed laser beam can forge a graphene sheet into controlled 3D shapes in the nanoscale. The forging mechanism is based on laser-induced local expansion of graphene, as confirmed by computer simulations using thin sheet elasticity theory.

  13. Development of three dimensional ocean current model for coastal region

    International Nuclear Information System (INIS)

    Kobayashi, Takuya

    1999-12-01

    In order to study the migration behavior of radionuclides released into a coastal region around Japan, Princeton Ocean Model (POM) was introduced. This three-dimensional ocean current model was modified to be applied for oceanic simulations around Japan. This report describes the governing equations, numerical methods and model improvements. In addition, database system which is utilized for calculations and visualization system for graphical outputs are also described. Model simulation was carried out at off the area of Shimokita. Aomori-ken, Japan to investigate the effects of the boundary conditions on simulated results. (author)

  14. Three-dimensional fractional topological insulators in coupled Rashba layers

    Science.gov (United States)

    Volpez, Yanick; Loss, Daniel; Klinovaja, Jelena

    2017-08-01

    We propose a model of three-dimensional topological insulators consisting of weakly coupled electron- and hole-gas layers with Rashba spin-orbit interaction stacked along a given axis. We show that in the presence of strong electron-electron interactions the system realizes a fractional strong topological insulator, where the rotational symmetry and condensation energy arguments still allow us to treat the problem as quasi-one-dimensional with bosonization techniques. We also show that if Rashba and Dresselhaus spin-orbit interaction terms are equally strong, by doping the system with magnetic impurities, one can bring it into the Weyl semimetal phase.

  15. Three-dimensional problems in the theory of cracks

    International Nuclear Information System (INIS)

    Panasyuk, V.V.; Andrejkiv, A.E.; Stadnik, M.M.

    1979-01-01

    Review of the main mechanical conceptions and mathematic methods, used in solving of spatial problems of the theory of cracks is given. At that, cases of effects upon a body of force static and cyclic and geometrically variable temperature fields are considered. The main calculation models of the theory of cracks are characterized in detail. Other models, derived from these ones and used in solving the above problems are also mentioned. Analysis and synthesis of the most general mathematic methods of solving three-dimensional problems of the theory of cracks are made. Besides precise methods, approximate ones are also presented, being efficient enough in engineering practice

  16. Impurity states in two - and three-dimensional disordered systems

    International Nuclear Information System (INIS)

    Silva, A.F. da; Fabbri, M.

    1984-01-01

    We investigate the microscopic structure of the impurity states in two-and three-dimensional (2D and 3d) disordered systems. A cluster model is outlined for the donor impurity density of states (DIDS) of doped semiconductors. It is shown that the impurity states are very sensitive to a change in the dimensionality of the system, i.e from 3D to 2D system. It is found that all eigenstates become localized in 2D disordered system for a large range of concentration. (Author) [pt

  17. Three-Dimensional Numerical Simulation to Mud Turbine for LWD

    Science.gov (United States)

    Yao, Xiaojiang; Dong, Jingxin; Shang, Jie; Zhang, Guanqi

    Hydraulic performance analysis was discussed for a type of turbine on generator used for LWD. The simulation models were built by CFD analysis software FINE/Turbo, and full three-dimensional numerical simulation was carried out for impeller group. The hydraulic parameter such as power, speed and pressure drop, were calculated in two kinds of medium water and mud. Experiment was built in water environment. The error of numerical simulation was less than 6%, verified by experiment. Based on this rationalization proposals would be given to choice appropriate impellers, and the rationalization of methods would be explored.

  18. Surgical accuracy of three-dimensional virtual planning

    DEFF Research Database (Denmark)

    Stokbro, Kasper; Aagaard, Esben; Torkov, Peter

    2016-01-01

    This retrospective study evaluated the precision and positional accuracy of different orthognathic procedures following virtual surgical planning in 30 patients. To date, no studies of three-dimensional virtual surgical planning have evaluated the influence of segmentation on positional accuracy...... and transverse expansion. Furthermore, only a few have evaluated the precision and accuracy of genioplasty in placement of the chin segment. The virtual surgical plan was compared with the postsurgical outcome by using three linear and three rotational measurements. The influence of maxillary segmentation...

  19. Recurrence relations in the three-dimensional Ising model

    International Nuclear Information System (INIS)

    Yukhnovskij, I.R.; Kozlovskij, M.P.

    1977-01-01

    Recurrence relations between the coefficients asub(2)sup((i)), asub(4)sup((i)) and Psub(2)sup((i)), Psub(4)sup((i)) which characterize the probabilities of distribution for the three-dimensional Ising model are studied. It is shown that for large arguments z of the Makdonald functions Ksub(ν)(z) the recurrence relations correspond to the known Wilson relations. But near the critical point for small values of the transfer momentum k this limit case does not take place. In the pointed region the argument z tends to zero, and new recurrence relations take place

  20. Evaluation of solar energy over three dimensional objects

    International Nuclear Information System (INIS)

    Serposhan, S.; Yaghoubi, M.

    2002-01-01

    The knowledge of solar irradiation is important in heating and cooling of buildings architectural engineering, various solar energy utilizations, and for any system design exposed to sun radiation. In the present article, simulation is made to predict solar irradiation over any three-dimensional objects. Special consideration is made to evaluate solar radiation intensity distribution over semi-circular roof and domed roofs. For practical applications, hourly and average daily solar radiation distribution for a series of three Heller type huge cooling towers of Fars Power Plant is also determined

  1. Three-dimensional cranio-facial computed tomography

    International Nuclear Information System (INIS)

    Pozzi Muccelli, R.; Stagul, F.; Pozzi Muccelli, F.; Zuiani, C.; Smathers, R.

    1986-01-01

    Computed tomography allows today to reconstruct three-dimensional (eD) images fram axial scans. The authors report their experience in cranio-facial pathology achived in two Departments of Radiology (University of Trieste, Italy and University of Standford, California). 3D images have been realized using two different softwares, one of which allows to reconstruct both soft tissue and bone structures. The application in maxillo-facial traumas, cranio-facial malformations and head tumours are disscussed. 3D images turned out to be very useful for the optimal visualization and for the spatial demostration of the lesion and have potential applications in cranio-facial surgery and radiotherapy

  2. Kaon-nucleon scattering in three-dimensional technique

    International Nuclear Information System (INIS)

    Salam, Agus; Fachruddin, Imam

    2016-01-01

    Kaon-nucleon (KN) scattering is formulated in the three-dimensional (3D) momentum space, in which the basis state is not expanded into partial waves. Based on this basis the Lippmann-Schwinger equation for the T-matrix is evaluated. We obtain as final equation for the T-matrix elements a set of two coupled integral equations in two variables, which are the momentum’s magnitude and the scattering angle. Calculations for the differential cross section and some spin observables are shown, for which we employ a hadrons exchange model with the second order contributions only.

  3. Three-dimensional measurement of a tightly focused laser beam

    Directory of Open Access Journals (Sweden)

    Xiangsheng Xie

    2013-02-01

    Full Text Available The spatial structure of a tightly focused light field is measured with a double knife-edge scanning method. The measurement method is based on the use of a high-quality double knife-edge fabricated from a right-angled silicon fragment mounted on a photodetector. The reconstruction of the three-dimensional structures of tightly focused spots is carried out with both uniform and partially obstructed linearly polarized incident light beams. The optical field distribution is found to deviate substantially from the input beam profile in the tightly focused region, which is in good agreement with the results of numerical simulations.

  4. Photogrammetry: applications of a three-dimensional remote measurement technique

    International Nuclear Information System (INIS)

    Peak, K.

    1988-01-01

    Photogrammetry is defined as the precise art of abstracting measurements from photographic images. Used for many years as a means to produce the world's maps, it has, in recent years, been applied in many engineering environments. The nuclear industry has, in particular, benefitted from the close range applications of photogrammetry. This paper sets out to describe the techniques involved, from the site photography through to the analytical data extraction. It will include a number of examples of where photogrammetry has been used in the nuclear industry as a remote measurement technique, from simple monitoring exercises to the compilation of complex three-dimensional as-built computer models. (author)

  5. Three-dimensional, subsurface imaging synthetic aperture radar

    International Nuclear Information System (INIS)

    Moussally, G.J.

    1994-01-01

    The objective of this applied research and devolpment project is to develop a system known as 3-D SISAR. This sytem consists of a gound penetrating radar with software algorithms designed for detection, location, and identification of buried objects in the underground hazardous waste environments found at US DOE storage sites. Three-dimensional maps can assist the development of remdiation strategies and characterization of the digface during remediation. The system should also be useful for monitoring hydrocarbon-based contaminant migration after remediation. 5 figs

  6. 3D radiation sensors with three dimensional electrodes

    CERN Document Server

    Da Via, Cinzia; Parker, Sherwood

    2018-01-01

    This book covers the technical properties, fabrication details, measurement results and applications of three-dimensional silicon radiation sensors. Such devices are currently used in the ATLAS experiment at the European Centre for Particle Physics (CERN) for particle tracking in high energy physics. They are the radiation hardest devices ever fabricated. They have applications in neutron detection, medical dosimetry and space. Written by the leading names in this field, the book explains to non-experts the essential features of silicon particle detectors, interactions of radiation with matter, radiation damage effects, and micro-fabrication. It also provides an historical view of the above.

  7. Integrating three-dimensional printing and nanotechnology for musculoskeletal regeneration

    Science.gov (United States)

    Nowicki, Margaret; Castro, Nathan J.; Rao, Raj; Plesniak, Michael; Zhang, Lijie Grace

    2017-09-01

    The field of tissue engineering is advancing steadily, partly due to advancements in rapid prototyping technology. Even with increasing focus, successful complex tissue regeneration of vascularized bone, cartilage and the osteochondral interface remains largely illusive. This review examines current three-dimensional printing techniques and their application towards bone, cartilage and osteochondral regeneration. The importance of, and benefit to, nanomaterial integration is also highlighted with recent published examples. Early-stage successes and challenges of recent studies are discussed, with an outlook to future research in the related areas.

  8. Self-assembled three-dimensional chiral colloidal architecture

    Science.gov (United States)

    Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna C.; Sha, Ruojie; Seeman, Nadrian C.; Chaikin, Paul M.

    2017-11-01

    Although stereochemistry has been a central focus of the molecular sciences since Pasteur, its province has previously been restricted to the nanometric scale. We have programmed the self-assembly of micron-sized colloidal clusters with structural information stemming from a nanometric arrangement. This was done by combining DNA nanotechnology with colloidal science. Using the functional flexibility of DNA origami in conjunction with the structural rigidity of colloidal particles, we demonstrate the parallel self-assembly of three-dimensional microconstructs, evincing highly specific geometry that includes control over position, dihedral angles, and cluster chirality.

  9. Modified Three-Dimensional Multicarrier Optical Prime Codes

    Directory of Open Access Journals (Sweden)

    Rajesh Yadav

    2016-01-01

    Full Text Available We propose a mathematical model for novel three-dimensional multicarrier optical codes in terms of wavelength/time/space based on the prime sequence algorithm. The proposed model has been extensively simulated on MATLAB for prime numbers (P to analyze the performance of code in terms of autocorrelation and cross-correlation. The simulated outcome resembles the mathematical model and gives better results over other methods available in the literature as far as autocorrelation and cross-correlation are concerned. The proposed 3D optical codes are more efficient in terms of cardinality, improved security, and providing quality of services.

  10. ORMEC: a three-dimensional MHD spectral inverse equilibrium code

    International Nuclear Information System (INIS)

    Hirshman, S.P.; Hogan, J.T.

    1986-02-01

    The Oak Ridge Moments Equilibrium Code (ORMEC) is an efficient computer code that has been developed to calculate three-dimensional MHD equilibria using the inverse spectral method. The fixed boundary formulation, which is based on a variational principle for the spectral coefficients (moments) of the cylindrical coordinates R and Z, is described and compared with the finite difference code BETA developed by Bauer, Betancourt, and Garabedian. Calculations for the Heliotron, Wendelstein VIIA, and Advanced Toroidal Facility (ATF) configurations are performed to establish the accuracy and mesh convergence properties for the spectral method. 16 refs., 13 figs

  11. A Three-dimensional Topological Model of Ternary Phase Diagram

    International Nuclear Information System (INIS)

    Mu, Yingxue; Bao, Hong

    2017-01-01

    In order to obtain a visualization of the complex internal structure of ternary phase diagram, the paper realized a three-dimensional topology model of ternary phase diagram with the designed data structure and improved algorithm, under the guidance of relevant theories of computer graphics. The purpose of the model is mainly to analyze the relationship between each phase region of a ternary phase diagram. The model not only obtain isothermal section graph at any temperature, but also extract a particular phase region in which users are interested. (paper)

  12. Wave field restoration using three-dimensional Fourier filtering method.

    Science.gov (United States)

    Kawasaki, T; Takai, Y; Ikuta, T; Shimizu, R

    2001-11-01

    A wave field restoration method in transmission electron microscopy (TEM) was mathematically derived based on a three-dimensional (3D) image formation theory. Wave field restoration using this method together with spherical aberration correction was experimentally confirmed in through-focus images of amorphous tungsten thin film, and the resolution of the reconstructed phase image was successfully improved from the Scherzer resolution limit to the information limit. In an application of this method to a crystalline sample, the surface structure of Au(110) was observed in a profile-imaging mode. The processed phase image showed quantitatively the atomic relaxation of the topmost layer.

  13. Monopole gas in three dimensional SU(2) gluodynamics

    International Nuclear Information System (INIS)

    Chernodub, M.N.; Ishiguro, Katsuya; Suzuki, Tsuneo

    2004-01-01

    We study properties of the Abelian monopoles in the Maximal Abelian projection of the three dimensional pure SU(2) gauge model. We match the lattice monopole dynamics with the continuum Coulomb gas model using a method of blocking from continuum. We obtain the Debye screening length and the monopole density in continuum using numerical results for the density to the (squared) monopole charges and for the monopole action. The monopoles treated within our blocking method provide about 75% contribution to the non-Abelian Debye screening length. We also find that monopoles form a Coulomb plasma which is not dilute. (author)

  14. Quantum tunneling from three-dimensional black holes

    International Nuclear Information System (INIS)

    Ejaz, Asiya; Gohar, H.; Lin, Hai; Saifullah, K.; Yau, Shing-Tung

    2013-01-01

    We study Hawking radiation from three-dimensional black holes. For this purpose the emission of charged scalar and charged fermionic particles is investigated from charged BTZ black holes, with and without rotation. We use the quantum tunneling approach incorporating WKB approximation and spacetime symmetries. Another class of black holes which is asymptotic to a Sol three-manifold has also been investigated. This procedure gives us the tunneling probability of outgoing particles, and we compute the temperature of the radiation for these black holes. We also consider the quantum tunneling of particles from black hole asymptotic to Sol geometry

  15. Three-Dimensional Bone Adaptation of the Proximal Femur

    DEFF Research Database (Denmark)

    Bagge, Mette

    1998-01-01

    The bone remodeling of a three-dimensional model of the proximal femur is considered. The bone adaptation is numerically described as an evolution in time formulated such that the structural change goes in an optimal direction within each time step for the optimal boundary conditions. In the bone...... remodeling scheme is included the memory of past loadings to account for the delay in the bone response to the load changes. In order to get a realistic bone adaptation process, the bone structure at the onset of the remodeling needs to be realistic too. A start design is obtained by structural optimization...

  16. Fate of superconductivity in three-dimensional disordered Luttinger semimetals

    Science.gov (United States)

    Mandal, Ipsita

    2018-05-01

    Superconducting instability can occur in three-dimensional quadratic band crossing semimetals only at a finite coupling strength due to the vanishing of density of states at the quadratic band touching point. Since realistic materials are always disordered to some extent, we study the effect of short-ranged-correlated disorder on this superconducting quantum critical point using a controlled loop-expansion applying dimensional regularization. The renormalization group (RG) scheme allows us to determine the RG flows of the various interaction strengths and shows that disorder destroys the superconducting quantum critical point. In fact, the system exhibits a runaway flow to strong disorder.

  17. Teaching veterinary obstetrics using three-dimensional animation technology.

    Science.gov (United States)

    Scherzer, Jakob; Buchanan, M Flint; Moore, James N; White, Susan L

    2010-01-01

    In this three-year study, test scores for students taught veterinary obstetrics in a classroom setting with either traditional media (photographs, text, and two-dimensional graphical presentations) were compared with those for students taught by incorporating three-dimensional (3D) media (linear animations and interactive QuickTime Virtual Reality models) into the classroom lectures. Incorporation of the 3D animations and interactive models significantly increased students' scores on essay questions designed to assess their comprehension of the subject matter. This approach to education may help to better prepare students for dealing with obstetrical cases during their final clinical year and after graduation.

  18. Nanofluidic structures with complex three-dimensional surfaces

    International Nuclear Information System (INIS)

    Stavis, Samuel M; Gaitan, Michael; Strychalski, Elizabeth A

    2009-01-01

    Nanofluidic devices have typically explored a design space of patterns limited by a single nanoscale structure depth. A method is presented here for fabricating nanofluidic structures with complex three-dimensional (3D) surfaces, utilizing a single layer of grayscale photolithography and standard integrated circuit manufacturing tools. This method is applied to construct nanofluidic devices with numerous (30) structure depths controlled from ∼10 to ∼620 nm with an average standard deviation of 1 cm. A prototype 3D nanofluidic device is demonstrated that implements size exclusion of rigid nanoparticles and variable nanoscale confinement and deformation of biomolecules.

  19. Study of guided modes in three-dimensional composites

    Science.gov (United States)

    Baste, S.; Gerard, A.

    The propagation of elastic waves in a three-dimensional carbon-carbon composite is modeled with a mixed variational method, using the Bloch or Floquet theories and the Hellinger-Reissner function for two independent fields. The model of the equivalent homogeneous material only exists below a cut-off frequency of about 600 kHz. The existence below the cut-off frequency of two guided waves can account for the presence of a slow guided wave on either side of the cut-off frequency. Optical modes are generated at low frequencies, and can attain high velocites (rapid guided modes of 15,000 m/sec).

  20. Coherent states on horospheric three-dimensional Lobachevsky space

    Energy Technology Data Exchange (ETDEWEB)

    Kurochkin, Yu., E-mail: y.kurochkin@ifanbel.bas-net.by; Shoukavy, Dz., E-mail: shoukavy@ifanbel.bas-net.by [Institute of Physics, National Academy of Sciences of Belarus, 68 Nezalezhnasci Ave., Minsk 220072 (Belarus); Rybak, I., E-mail: Ivan.Rybak@astro.up.pt [Institute of Physics, National Academy of Sciences of Belarus, 68 Nezalezhnasci Ave., Minsk 220072 (Belarus); Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2016-08-15

    In the paper it is shown that due to separation of variables in the Laplace-Beltrami operator (Hamiltonian of a free quantum particle) in horospheric and quasi-Cartesian coordinates of three dimensional Lobachevsky space, it is possible to introduce standard (“conventional” according to Perelomov [Generalized Coherent States and Their Applications (Springer-Verlag, 1986), p. 320]) coherent states. Some problems (oscillator on horosphere, charged particle in analogy of constant uniform magnetic field) where coherent states are suitable for treating were considered.

  1. Methods for preparation of three-dimensional bodies

    Science.gov (United States)

    Mulligan, Anthony C.; Rigali, Mark J.; Sutaria, Manish P.; Artz, Gregory J.; Gafner, Felix H.; Vaidyanathan, K. Ranji

    2004-09-28

    Processes for mechanically fabricating two and three-dimensional fibrous monolith composites include preparing a fibrous monolith filament from a core composition of a first powder material and a boundary material of a second powder material. The filament includes a first portion of the core composition surrounded by a second portion of the boundary composition. One or more filaments are extruded through a mechanically-controlled deposition nozzle onto a working surface to create a fibrous monolith composite object. The objects may be formed directly from computer models and have complex geometries.

  2. Photonic Paint Developed with Metallic Three-Dimensional Photonic Crystals

    Science.gov (United States)

    Sun, Po; Williams, John D.

    2012-01-01

    This work details the design and simulation of an inconspicuous photonic paint that can be applied onto an object for anticounterfeit and tag, track, and locate (TTL) applications. The paint consists of three-dimensional metallic tilted woodpile photonic crystals embedded into a visible and infrared transparent polymer film, which can be applied to almost any surface. The tilted woodpile photonic crystals are designed with a specific pass band detectable at nearly all incident angles of light. When painted onto a surface, these crystals provide a unique reflective infra-red optical signature that can be easily observed and recorded to verify the location or contents of a package.

  3. Two-and three-dimensional CT reconstruction

    International Nuclear Information System (INIS)

    Fishman, E.K.; Ney, D.R.; Magid, D.

    1990-01-01

    This paper determines the optimal imaging sequence for creating two- and three-dimensional (2D/3D) skeletal reconstructions from CT data. A cadaver femur, a bone phantom, and a surgically created fracture were scanned with varying protocols to determine the optimal protocol for creating 2D/3D images. The scanning protocols used varying section thickness (2, 4, and 8 mm) as well as scan spacing (2, 3, 4 and 8 mm). All images were reconstructed into 2D data sets with a bicubic interpolation and 3D datasets with volumetric rendering. The results were reviewed by two reviewers to determine the quality of images reconstruction

  4. Fuel assembly inspection by three-dimensional neutron radiography

    International Nuclear Information System (INIS)

    Lapinski, N.P.; Reimann, K.J.; Berger, H.

    1979-01-01

    Radiographic inspection of complex objects such as fuel subassemblies often presents problems because superimposition of images at different depths in the object complicates interpretation. One method for obtaining and displaying three-dimensional neutron radiographic images in multiple-film laminagraphy; a series of radiographs generated at different angular orientations are superimposed to provide focussed images of any object plane. In the present work multiple-film neutron laminagraphs were generated using direct and indirect exposure techniques, with neutrons in thermal, epithermal, and fast energy ranges

  5. Three-dimensional laser pulse intensity diagnostic for photoinjectors

    Directory of Open Access Journals (Sweden)

    Heng Li

    2011-11-01

    Full Text Available Minimizing the electron-beam emittance of photoinjectors is an important task for maximizing the brightness of the next-generation x-ray facilities, such as free-electron lasers and energy recovery linacs. Optimally shaped laser pulses can significantly reduce emittance. A reliable diagnostic for the laser pulse intensity is required for this purpose. We demonstrate measurement of three-dimensional spatiotemporal intensity profiles, with spatial resolution of 20  μm and temporal resolution of 130 fs. The capability is illustrated by measurements of stacked soliton pulses and pulses from a dissipative-soliton laser.

  6. Three-dimensional display techniques: description and critique of methods

    International Nuclear Information System (INIS)

    Budinger, T.F.

    1982-01-01

    The recent advances in non invasive medical imaging of 3 dimensional spatial distribution of radionuclides, X-ray attenuation coefficients, and nuclear magnetic resonance parameters necessitate development of a general method for displaying these data. The objective of this paper is to give a systematic description and comparison of known methods for displaying three dimensional data. The discussion of display methods is divided into two major categories: 1) computer-graphics methods which use a two dimensional display screen; and 2) optical methods (such as holography, stereopsis and vari-focal systems)

  7. Three-dimensional spatial imaging in multiphoton ionization rate measurements

    International Nuclear Information System (INIS)

    Bredy, Richard; Camp, Howard A.; Nguyen, Hai; Awata, Takaaki; Shan Bing; Chang Zhenghu; DePaola, B.D.

    2004-01-01

    An experiment is described in which an apparatus is used to demonstrate the feasibility of measuring multiphoton photoionization rates in the interaction of short pulsed lasers with atoms or molecules. With this methodology, the ionization rate is measured as a function of the spatial position in the beam-waist region of the laser through the direct three-dimensional spatial imaging of the ionization events. Thus, if the spatial dependence of the laser beam intensity were known, a series of experiments could yield the intensity dependence of multiphoton ionization without the assumptions or errors that are generally inherent in the integration over one or more dimensions in the laser focal volume

  8. Three-dimensional cranio-facial computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi Muccelli, R; Stagul, F; Pozzi Muccelli, F; Zuiani, C; Smathers, R

    1986-01-01

    Computed tomography allows today to reconstruct three-dimensional (eD) images fram axial scans. The authors report their experience in cranio-facial pathology achived in two Departments of Radiology (University of Trieste, Italy and University of Standford, California). 3D images have been realized using two different softwares, one of which allows to reconstruct both soft tissue and bone structures. The application in maxillo-facial traumas, cranio-facial malformations and head tumours are disscussed. 3D images turned out to be very useful for the optimal visualization and for the spatial demostration of the lesion and have potential applications in cranio-facial surgery and radiotherapy.

  9. Three-dimensional multifunctional optical coherence tomography for skin imaging

    Science.gov (United States)

    Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Sasaoka, Tomoko; Yamanari, Masahiro; Sugiyama, Satoshi; Yasuno, Yoshiaki

    2016-02-01

    Optical coherence tomography (OCT) visualizes cross-sectional microstructures of biological tissues. Recent developments of multifunctional OCT (MF-OCT) provides multiple optical contrasts which can reveal currently unknown tissue properties. In this contribution we demonstrate multifunctional OCT specially designed for dermatological investigation. And by utilizing it to measure four different body parts of in vivo human skin, three-dimensional scattering OCT, OCT angiography, polarization uniformity tomography, and local birefringence tomography images were obtained by a single scan. They respectively contrast the structure and morphology, vasculature, melanin content and collagen traits of the tissue.

  10. Three-dimensional graphene networks: synthesis,properties and applications

    Institute of Scientific and Technical Information of China (English)

    Yanfeng Ma; Yongsheng Chen

    2015-01-01

    Recently, three-dimensional graphene/graphene oxide(GO) networks(3DGNs) in the form of foams,sponges and aerogels have atracted much atention. 3D structures provide graphene materials with high speciic surface areas, large pore volumes, strong mechanical strengths and fast mass and electron transport,owing to the combination of the 3D porous structures and the excellent intrinsic properties of graphene.his review focuses on the latest advances in the preparation, properties and potential applications of 3D micro-/nano-architectures made of graphene/GO-based networks, with emphasis on graphene foams and sponges.

  11. Kaon-nucleon scattering in three-dimensional technique

    Energy Technology Data Exchange (ETDEWEB)

    Salam, Agus, E-mail: agus.salam@sci.ui.ac.id; Fachruddin, Imam [Departemen Fisika, FMIPA, Universitas Indonesia, Depok 16424 (Indonesia)

    2016-03-11

    Kaon-nucleon (KN) scattering is formulated in the three-dimensional (3D) momentum space, in which the basis state is not expanded into partial waves. Based on this basis the Lippmann-Schwinger equation for the T-matrix is evaluated. We obtain as final equation for the T-matrix elements a set of two coupled integral equations in two variables, which are the momentum’s magnitude and the scattering angle. Calculations for the differential cross section and some spin observables are shown, for which we employ a hadrons exchange model with the second order contributions only.

  12. Three-dimensional image reconstruction. I. Determination of pattern orientation

    International Nuclear Information System (INIS)

    Blankenbecler, Richard

    2004-01-01

    The problem of determining the Euler angles of a randomly oriented three-dimensional (3D) object from its 2D Fraunhofer diffraction patterns is discussed. This problem arises in the reconstruction of a positive semidefinite 3D object using oversampling techniques. In such a problem, the data consist of a measured set of magnitudes from 2D tomographic images of the object at several unknown orientations. After the orientation angles are determined, the object itself can then be reconstructed by a variety of methods using oversampling, the magnitude data from the 2D images, physical constraints on the image, and then iteration to determine the phases

  13. Three-dimensional assessment of facial asymmetry: A systematic review.

    Science.gov (United States)

    Akhil, Gopi; Senthil Kumar, Kullampalayam Palanisamy; Raja, Subramani; Janardhanan, Kumaresan

    2015-08-01

    For patients with facial asymmetry, complete and precise diagnosis, and surgical treatments to correct the underlying cause of the asymmetry are significant. Conventional diagnostic radiographs (submento-vertex projections, posteroanterior radiography) have limitations in asymmetry diagnosis due to two-dimensional assessments of three-dimensional (3D) images. The advent of 3D images has greatly reduced the magnification and projection errors that are common in conventional radiographs making it as a precise diagnostic aid for assessment of facial asymmetry. Thus, this article attempts to review the newly introduced 3D tools in the diagnosis of more complex facial asymmetries.

  14. Tag gas burnup based on three-dimensional FTR analysis

    International Nuclear Information System (INIS)

    Kidman, R.B.

    1976-01-01

    Flux spectra from a three-dimensional diffusion theory analysis of the Fast Test Reactor (FTR) are used to predict gas tag ratio changes, as a function of exposure, for each FTR fuel and absorber subassembly plenum. These flux spectra are also used to predict Xe-125 equilibrium activities in absorber plena in order to assess the feasibility of using Xe-125 gamma rays to detect and distinguish control rod failures from fuel rod failures. Worst case tag burnup changes are used in conjunction with burnup and mass spectrometer uncertainties to establish the minimum spacing of tags which allows the tags to be unambiguously identified

  15. Observation of three dimensional optical rogue waves through obstacles

    International Nuclear Information System (INIS)

    Leonetti, Marco; Conti, Claudio

    2015-01-01

    We observe three-dimensional rogue waves in the speckle distribution of a spatially modulated optical beam. Light is transmitted beyond a partially reflecting obstacle generating optical rogue waves at a controlled position in the shadow of the barrier. When the barrier transmits only 0.07% of the input laser power, we observe the mostly localized event. These results demonstrate that an optimum amount of spatial non-homogeneity maximizes the probability of a gigantic event while the technique we exploit enables to control light behind a fully reflective wall

  16. Three-dimensional phase-field simulations of directional solidification

    Science.gov (United States)

    Plapp, Mathis

    2007-05-01

    The phase-field method has become the method of choice for simulating microstructural pattern formation during solidification. One of its main advantages is that time-dependent three-dimensional simulations become feasible, which makes it possible to address long-standing questions of pattern stability and pattern selection. Here, a brief introduction to the phase-field model and its implementation is given, and its capabilities are illustrated by examples taken from the directional solidification of binary alloys. In particular, the morphological stability of hexagonal cellular arrays and of eutectic lamellar patterns is investigated.

  17. Problems of high temperature superconductivity in three-dimensional systems

    Energy Technology Data Exchange (ETDEWEB)

    Geilikman, B T

    1973-01-01

    A review is given of more recent papers on this subject. These papers have dealt mainly with two-dimensional systems. The present paper extends the treatment to three-dimensional systems, under the following headings: systems with collective electrons of one group and localized electrons of another group (compounds of metals with non-metals-dielectrics, organic substances, undoped semiconductors, molecular crystals); experimental investigations of superconducting compounds of metals with organic compounds, dielectrics, semiconductors, and semi-metals; and systems with two or more groups of collective electrons. Mechanics are considered and models are derived. 86 references.

  18. Three-dimensional characterization of stress corrosion cracks

    DEFF Research Database (Denmark)

    Lozano-Perez, S.; Rodrigo, P.; Gontard, Lionel Cervera

    2011-01-01

    the best spatial resolution. To illustrate the power of these techniques, different parts of dominant stress corrosion cracks in Ni-alloys and stainless steels have been reconstructed in 3D. All relevant microstructural features can now be studied in detail and its relative orientation respect......Understanding crack propagation and initiation is fundamental if stress corrosion cracking (SCC) mechanisms are to be understood. However, cracking is a three-dimensional (3D) phenomenon and most characterization techniques are restricted to two-dimensional (2D) observations. In order to overcome...

  19. Three-dimensional dilatonic gravity's rainbow: Exact solutions

    International Nuclear Information System (INIS)

    Hossein Hendi, Seyed; Eslam Panah, Behzad; Panahiyan, Shahram

    2016-01-01

    Deep relations of dark energy scenario and string theory results into dilaton gravity, on the one hand, and the connection between quantum gravity and gravity's rainbow, on the other hand, motivate us to consider three-dimensional dilatonic black hole solutions in gravity's rainbow. We obtain two classes of the solutions, which are polynomial and logarithmic forms. We also calculate conserved and thermodynamic quantities, and examine the first law of thermodynamics for both classes. In addition, we study thermal stability and show that one of the classes is thermally stable while the other one is unstable.

  20. The three-dimensional crystal structure of cholera toxin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rong-Guang; Westbrook, M.L.; Nance, S.; Spangler, B.D. [Argonne National Lab., IL (United States); Scott, D.L. [Yale Univ., New Haven, CT (United States). Dept. of Molecular Biophysics and Biochemistry; Westbrook, E.M. [Northwestern Univ., Evanston, IL (United States)

    1996-02-01

    The clinical manifestations of cholera are largely attributable to the actions of a secreted hexameric AB{sub 5} enterotoxin (choleragen). We have solved the three-dimensional structure of choleragen at 2.5 {Angstrom} resolution and compared the refined coordinates with those of choleragenoid (isolated B pentamer) and the heat-labile enterotoxin from Escherichia coli (LT). The crystalline coordinates provide a detailed view of the stereochemistry implicated in binding to GM1 gangliosides and in carrying out ADP-ribosylation. The A2 chain of choleragen, in contrast to that of LT, is a nearly continuous {alpha}-helix with an interpretable carboxyl tail.

  1. Three-dimensional triaxial testing of marine sediments

    International Nuclear Information System (INIS)

    Nelson, J.D.; Thompson, E.G.

    1981-01-01

    The purpose of this investigation has been to develop testing methods and upgrade equipment for the determination of shear strength of and constitutive relationships for ocean bottom sediments under true three dimensional triaxial states of stress. The research to date has utilized existing 3-D triaxial equipment capable of controlling the three principal stresses independently of each other. Experiments are currently concerned with up-grading the equipment for use with ocean bottom cohesive soils. In addition, stage triaxial tests using conventional laboratory test equipment are being performed

  2. Three-dimensional micro electromechanical system piezoelectric ultrasound transducer

    Science.gov (United States)

    Hajati, Arman; Latev, Dimitre; Gardner, Deane; Hajati, Azadeh; Imai, Darren; Torrey, Marc; Schoeppler, Martin

    2012-12-01

    Here we present the design and experimental acoustic test data for an ultrasound transducer technology based on a combination of micromachined dome-shaped piezoelectric resonators arranged in a flexible architecture. Our high performance niobium-doped lead zirconate titanate film is implemented in three-dimensional dome-shaped structures, which form the basic resonating cells. Adjustable frequency response is realized by mixing these basic cells and modifying their dimensions by lithography. Improved characteristics such as high sensitivity, adjustable wide-bandwidth frequency response, low transmit voltage compatible with ordinary integrated circuitry, low electrical impedance well matched to coaxial cabling, and intrinsic acoustic impedance match to water are demonstrated.

  3. Three-dimensional integrated CAE system applying computer graphic technique

    International Nuclear Information System (INIS)

    Kato, Toshisada; Tanaka, Kazuo; Akitomo, Norio; Obata, Tokayasu.

    1991-01-01

    A three-dimensional CAE system for nuclear power plant design is presented. This system utilizes high-speed computer graphic techniques for the plant design review, and an integrated engineering database for handling the large amount of nuclear power plant engineering data in a unified data format. Applying this system makes it possible to construct a nuclear power plant using only computer data from the basic design phase to the manufacturing phase, and it increases the productivity and reliability of the nuclear power plants. (author)

  4. A simple three dimensional wide-angle beam propagation method

    Science.gov (United States)

    Ma, Changbao; van Keuren, Edward

    2006-05-01

    The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.

  5. Active immobilization of biomolecules on a hybrid three-dimensional nanoelectrode by dielectrophoresis for single-biomolecule study

    International Nuclear Information System (INIS)

    Yamamoto, Takatoki; Fujii, Teruo

    2007-01-01

    We propose and experimentally demonstrate a method of active immobilization for biomolecules on a three-dimensional nanometre-scale electrode (3D nanoelectrode) using dielectrophoresis to immobilize the biomolecules at predetermined locations for single-biomolecule study. We have developed a novel two-step fabrication process for obtaining a 3D nanoelectrode having a sharp top, which is necessary for immobilizing a single biomolecule at a single point. The first step is to fabricate the backbone structure, which is rigid and defines the shape of the 3D nanoelectrode. It was fabricated with diamond-like carbon (DLC) obtained using focused ion beam assisted chemical vapour deposition followed by post-plasma etching, which reshapes the DLC structure. The second step coats the DLC structure with a thin layer of aluminium, which supplies electrical conductivity to the DLC structure. By applying a high frequency (of the order of megahertz) and high intensity (greater than or equal to a few megavolts per metre) electric field using the 3D nanoelectrodes, the generated dielectrophoresis attracted and then immobilized target biomolecules onto the tops of 3D nanoelectrodes, as a demonstration of active immobilization of biomolecules

  6. On elastic waves in an thinly-layered laminated medium with stress couples under initial stress

    Directory of Open Access Journals (Sweden)

    P. Pal Roy

    1988-01-01

    Full Text Available The present work is concerned with a simple transformation rule in finding out the composite elastic coefficients of a thinly layered laminated medium whose bulk properties are strongly anisotropic with a microelastic bending rigidity. These elastic coefficients which were not known completely for a layered laminated structure, are obtained suitably in terms of initial stress components and Lame's constants λi, μi of initially isotropic solids. The explicit solutions of the dynamical equations for a prestressed thinly layered laminated medium under horizontal compression in a gravity field are derived. The results are discussed specifying the effects of hydrostatic, deviatoric and couple stresses upon the characteristic propagation velocities of shear and compression wave modes.

  7. A Simple Thin Layer Chromatography Method for Separation of Selected Natural Steroid Hormones

    International Nuclear Information System (INIS)

    Nowakowska, J.; Rudnicka-Litka, K.; Ciura, K.; Pikul, P.; Piotrowicz, J.

    2015-01-01

    Chromatographic properties of seven steroids: estrogens (β-estradiol and estrone), androgens (testosterone, methyltestosterone, trans-androsterone), progesterone and cholesterol have been studied by planar chromatography with usage of High Performance Thin Layer Chromatography (HPTLC) and Thin Layer Chromatography (TLC) plates. Normal, reversed and cyano-bonded silica stationary phases were tested with five binary mobile phases (acetonitrile-water, acetonitrile-DMSO, acetonitrile-methanol, acetone-petroleum ether, acetone-water) in which the concentration of organic modifier varied from 0 to 100 % (v/v). This study reports the optimization of steroid hormones separation. Principal Component Analysis (PCA) based on calculated molecular descriptors quantitatively differentiating solutes was performed in order to investigate the similarity and dissimilarity between tested compounds. The separation abilities of mobile and stationary phases were compared based on separation factor α. Chromatographic retention data and possible retention mechanisms also were discussed. (author)

  8. Thin-layer chromatography and colorimetric analysis of multi-component explosive mixtures

    Science.gov (United States)

    Pagoria, Philip F.; Mitchell, Alexander R.; Whipple, Richard E.; Carman, M. Leslie

    2014-08-26

    A thin-layer chromatography method for detection and identification of common military and peroxide explosives in samples includes the steps of provide a reverse-phase thin-layer chromatography plate; prepare the plate by marking spots on which to deposit the samples by touching the plate with a marker; spot one micro liter of a first standard onto one of the spots, spot one micro liter of a second standard onto another of the spots, and spot samples onto other of spots producing a spotted plate; add eluent to a developing chamber; add the spotted plate to the developing chamber; remove the spotted plate from the developing chamber producing a developed plate; place the developed plate in an ultraviolet light box; add a visualization agent to a dip tank; dip the developed plate in the dip tank and remove the developed plate quickly; and detect explosives by viewing said developed plate.

  9. Characterization of the porosity of silicon nitride thin layers by Electrochemical Impedance Spectroscopy

    International Nuclear Information System (INIS)

    Barrès, T.; Tribollet, B.; Stephan, O.; Montigaud, H.; Boinet, M.; Cohin, Y.

    2017-01-01

    Silicon nitride thin films are widely used as diffusion barriers within stacks in the glass industry but turn out to be porous at the nanometric scale. EIS measurements were conducted on SiNx thin layers deposited on a gold layer. An electrochemical model was established to fit the EIS measurements making use of data from other complementary techniques. In particular, Transmission Electron Microscopy was performed on these thin layers to determine the diameter and the qualitative morphology of the pores. A quantitative determination of the through-porosity of the layer was deduced from the EIS model and was in good agreement with TEM measurements. Moreover, combining EIS with local observations enabled inhomogeneities in the layer to be probed by highlighting a specific region in the layer.

  10. Mathematical modelling of the thin layer solar drying of banana, mango and cassava

    Energy Technology Data Exchange (ETDEWEB)

    Koua, Kamenan Blaise; Fassinou, Wanignon Ferdinand; Toure, Siaka [Laboratoire d' Energie Solaire, Universite de Cocody- Abidjan, 22 BP 582 Abidjan 22 (Ivory Coast); Gbaha, Prosper [Laboratoire d' Energie Nouvelle et Renouvelable, Institut National Polytechnique, Felix HOUPHOUET - BOIGNY de Yamoussoukro (Ivory Coast)

    2009-10-15

    The main objectives of this paper are firstly to investigate the behaviour of the thin layer drying of plantain banana, mango and cassava experimentally in a direct solar dryer and secondly to perform mathematical modelling by using thin layer drying models encountered in literature. The variation of the moisture content of the products studied and principal drying parameters are analysed. Seven statistical models, which are empirical or semi-empirical, are tested to validate the experimental data. A non-linear regression analysis using a statistical computer program is used to evaluate the constants of the models. The Henderson and Pabis drying model is found to be the most suitable for describing the solar drying curves of plantain banana, mango and cassava. The drying data of these products have been analysed to obtain the values of the effective diffusivity during the falling drying rate phase. (author)

  11. Study of wear in piston ring of the vehicle engine using thin layer activation technique

    International Nuclear Information System (INIS)

    Khan, I.H.; Farooq, M.; Ghiyas-ud-Din; Gul, S.; Qureshi, R.M.; Jin Joon Ha; Wallace, G.

    2004-01-01

    Thin Layer Activation (TLA) technique was used to investigate piston ring wear of a six cylinders vehicle engine at various engine speeds and load conditions. The activated ring was installed in cylinder no.5 of the engine at middle position (compression ring). Monitoring was carried out on-line (extremely on the engine block) using 'Thin Layer Difference Method'. The calibration curve of the activity profile was prepared with the help of activation parameters determined at the time of ring activation in particle accelerator. The results show that the piston ring wear varies from 0.309 micron/hour to 0.404 micron/hour at given engine speed and load conditions. (author)

  12. A validated high performance thin layer chromatography method for determination of yohimbine hydrochloride in pharmaceutical preparations

    OpenAIRE

    Jihan M Badr

    2013-01-01

    Background: Yohimbine is an indole alkaloid used as a promising therapy for erectile dysfunction. A number of methods were reported for the analysis of yohimbine in the bark or in pharmaceutical preparations. Materials and Method: In the present work, a simple and sensitive high performance thin layer chromatographic method is developed for determination of yohimbine (occurring as yohimbine hydrochloride) in pharmaceutical preparations and validated according to International Conference of Ha...

  13. Phonon and electron temperature and non-Fourier heat transport in thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Carlomagno, I.; Cimmelli, V.A. [Department of Mathematics, Computer Science and Economics, University of Basilicata, Campus Macchia Romana, Viale dell' Ateneo Lucano 10, 85100 Potenza (Italy); Sellitto, A. [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Italy)

    2017-04-15

    We present a thermodynamic model of heat conductor which allows for different temperatures of phonons and electrons. This model is applied to calculate the steady-state radial temperature profile in a circular thin layer. The compatibility of the obtained temperature profiles with the second law of thermodynamics is investigated in view of the requirement of positive entropy production and of a nonlocal constitutive equation for the entropy flux.

  14. A thin-layer liquid culture technique for the growth of Helicobacter pylori.

    Science.gov (United States)

    Joo, Jung-Soo; Park, Kyung-Chul; Song, Jae-Young; Kim, Dong-Hyun; Lee, Kyung-Ja; Kwon, Young-Cheol; Kim, Jung-Min; Kim, Kyung-Mi; Youn, Hee-Shang; Kang, Hyung-Lyun; Baik, Seung-Chul; Lee, Woo-Kon; Cho, Myung-Je; Rhee, Kwang-Ho

    2010-08-01

    Several attempts have been successful in liquid cultivation of Helicobaccter pylori. However, there is a need to improve the growth of H. pylori in liquid media in order to get affluent growth and a simple approach for examining bacterial properties. We introduce here a thin-layer liquid culture technique for the growth of H. pylori. A thin-layer liquid culture system was established by adding liquid media to a 90-mm diameter Petri dish. Optimal conditions for bacterial growth were investigated and then viability, growth curve, and released proteins were examined. Maximal growth of H. pylori was obtained by adding 3 mL of brucella broth supplemented with 10% horse to a Petri dish. H. pylori grew in both DMEM and RPMI-1640 supplemented with 10% fetal bovine serum and 0.5% yeast extract. Serum-free RPMI-1640 supported the growth of H. pylori when supplemented with dimethyl-beta-cyclodextrin (200 microg/mL) and 1% yeast extract. Under optimal growth, H. pylori grew exponentially for 28 hours, reaching a density of 3.4 OD(600) with a generation time of 3.3 hours. After 24 hours, cultures at a cell density of 1.0 OD(600) contained 1.3 +/- 0.1 x 10(9 )CFU/mL. gamma-Glutamyl transpeptidase, nuclease, superoxide dismutase, and urease were not detected in culture supernatants at 24 hours in thin-layer liquid culture, but were present at 48 hours, whereas alcohol dehydrogenase, alkylhydroperoxide reductase, catalase, and vacuolating cytotoxin were detected at 24 hours. Thin-layer liquid culture technique is feasible, and can serve as a versatile liquid culture technique for investigating bacterial properties of H. pylori.

  15. A demonstration of on-line plant corrosion monitoring using thin layer activation

    International Nuclear Information System (INIS)

    Asher, J.; Webb, J.W.; Wilkins, N.J.M.; Lawrence, P.F.; UKAEA Atomic Energy Research Establishment, Harwell. Materials Development Div.)

    1981-12-01

    The corrosion of a 1 inch water pipe in an evaporative cooling system has been monitored over three periods of plant operation using thin layer activation (TLA). The corrosion rate was followed at a sensitivity of about 1 μm and clearly reflected changes in plant operation. Examination of the test section after removal, both by autoradiography and metallography revealed the extent of corrosion and pitting over the active area. (author)

  16. Thin layer chromatography of glucose and sorbitol on Cu(II)-impregnated silica gel plates

    Energy Technology Data Exchange (ETDEWEB)

    Hadzija, O. (Ruder Boskovic Inst., Zagreb (Croatia)); Spoljar, B. (Ruder Boskovic Inst., Zagreb (Croatia)); Sesartic, L. (Inst. of Immunology, Zagreb (Croatia))

    1994-04-01

    A thin-layer chromatographic (TLC) separation of glucose and sorbitol on CU(II)-impregnated silica gel plates with n-propanol: Water (4:1) v/v as developer and potassium permanganate as detecting reagent has been worked out. The new impregnant is completely insoluble in water and thus enables the use of an aqueous developer. The R[sub f]-values are 55 and 10 for glucose and sorbitol, respectively. (orig.)

  17. Use of low volatility mobile phases in electroosmotic thin-layer chromatography.

    Science.gov (United States)

    Berezkin, V G; Balushkin, A O; Tyaglov, B V; Litvin, E F

    2005-08-19

    A variant of electroosmotic thin-layer chromatography is suggested with the use of low volatility compounds as mobile phases aimed at drastically decreasing the evaporation of the mobile phase and improving the reproducibility of the method. The linear movement velocity of zones of separated compounds is experimentally shown to increase 2-12-fold in electroosmotic chromatography (compared to similar values in traditional TLC). The separation efficiency is also considerably increased.

  18. Thin layer settling - a promising method for purifying industrial waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Perevalov, V G; Kolokhmatova, N M; Malkina, I I; Smyslov, A I

    1979-01-01

    Proposed for removing oil and suspended substances from waste waters is a thin layer, tubular settler, whose elements are made from polyethylene pipes. The operational effectiveness of the settler on the average is 90-95%, the duration of the purification is 10-11 min, which is 1/12 of that in the most common and contemporary oil traps. The volume of the settler structure with this productivity may be reduced by 12 times.

  19. Application of thin-layer Navier-Stokes equations near maximum lift

    Science.gov (United States)

    Anderson, W. K.; Thomas, J. L.; Rumsey, C. L.

    1984-01-01

    The flowfield about a NACA 0012 airfoil at a Mach number of 0.3 and Reynolds number of 1 million is computed through an angle of attack range, up to 18 deg, corresponding to conditions up to and beyond the maximum lift coefficient. Results obtained using the compressible thin-layer Navier-Stokes equations are presented as well as results from the compressible Euler equations with and without a viscous coupling procedure. The applicability of each code is assessed and many thin-layer Navier-Stokes benchmark solutions are obtained which can be used for comparison with other codes intended for use at high angles of attack. Reasonable agreement of the Navier-Stokes code with experiment and the viscous-inviscid interaction code is obtained at moderate angles of attack. An unsteady solution is obtained with the thin-layer Navier-Stokes code at the highest angle of attack considered. The maximum lift coefficient is overpredicted, however, in comparison to experimental data, which is attributed to the presence of a laminar separation bubble near the leading edge not modeled in the computations. Two comparisons with experimental data are also presented at a higher Mach number.

  20. Characterisation by optical spectroscopy of a plasma of depositions of thins layers

    International Nuclear Information System (INIS)

    Chouan, Yannick

    1984-01-01

    This research thesis reports a work which, by correlating emission and absorption spectroscopic measurements with properties of deposited thin layers, aimed at being a complement to works undertaken by a team in charge of the realisation of a flat screen. In a first part, the author reports the study of a cathodic pulverisation of a silicon target. He describes the experimental set-up, presents correlations obtained between plasma electric properties (target self-polarisation voltage), emission spectroscopic measurements (line profile and intensity) and absorption spectroscopic measurements (density of metastables), and the composition of deposited thin layers for two reactive pulverisation plasmas (Ar-H_2 and Ar-CH_4). The second part addresses the relationship between experimental conditions and spectroscopic characteristics (emission and absorption lines, excitation and rotation temperature) of a He-SiH_4 plasma. The author also determined the most adapted spectroscopic measurements to the 'control' of deposition, and which result in an optimisation of electronic properties and of the deposition rate for the hydrogenated amorphous silicon. The third part reports the characterisation of depositions. Electric and optic measurements are reported. Then, for both deposition techniques, the author relates the influence of experimental conditions to deposition properties and to spectroscopic diagnosis. The author finally presents static characteristics of a thin-layer-based transistor