WorldWideScience

Sample records for three-dimensional soft tissue

  1. Three-dimensional CT imaging of soft-tissue anatomy

    International Nuclear Information System (INIS)

    Fishman, E.K.; Ney, D.R.; Magid, D.; Kuhlman, J.E.

    1988-01-01

    Three-dimensional display of computed tomographic data has been limited to skeletal structures. This was in part related to the reconstruction algorithm used, which relied on a binary classification scheme. A new algorithm, volumetric rendering with percentage classification, provides the ability to display three-dimensional images of muscle and soft tissue. A review was conducted of images in 35 cases in which muscle and/or soft tissue were part of the clinical problem. In all cases, individual muscle groups could be clearly identified and discriminated. Branching vessels in the range of 2.3 mm could be identified. Similarly, lymph nodes could be clearly defined. High-resolution three-dimensional images were found to be useful both in providing an increased understanding of complex muscle and soft tissue anatomy and in surgical planning

  2. Soft-tissue segmentation and three-dimensional display with MR imaging

    International Nuclear Information System (INIS)

    Koenig, H.A.; Laub, G.

    1987-01-01

    The purpose of this study is to design a method capable of segmenting different soft-tissue types. The investigated cases were measured using fast three-dimensional (3D) sequences (FISP of fast low-angle shot) with isotropic voxel resolution of nearly 1 mm. The segmentation is based on the assumption that different tissue types are discernible by their morphologic and/or physical features. Surface reconstructions are then used to display specific tissue types from different viewing directions. This automatic procedure is applied to different head cases to represent specific tissues in 3D format. With 3D techniques, rotation of classified objects in cine format is performed for better topologic correlation and therapeutic planning

  3. Three-dimensional analysis of elbow soft tissue footprints and anatomy.

    Science.gov (United States)

    Capo, John T; Collins, Christopher; Beutel, Bryan G; Danna, Natalie R; Manigrasso, Michaele; Uko, Linda A; Chen, Linda Y

    2014-11-01

    Tendinous and ligamentous injuries commonly occur in the elbow. This study characterized the location, surface areas, and origin and insertional footprints of major elbow capsuloligamentous and tendinous structures in relation to bony landmarks with the use of a precision 3-dimensional modeling system. Nine unpaired cadaveric elbow specimens were dissected and mounted on a custom jig. Mapping of the medial collateral ligament (MCL), lateral ulnar collateral ligament (LUCL), triceps, biceps, brachialis, and capsular reflections was then performed with 3-dimensional digitizing technology. The location, surface areas, and footprints of the soft tissues were calculated. The MCL had a mean origin (humeral) footprint of 216 mm(2), insertional footprint of 154 mm(2), and surface area of 421 mm(2). The LUCL had a mean origin footprint of 136 mm(2), an insertional footprint of 142 mm(2), and a surface area of 532 mm(2). Of the tendons, the triceps maintained the largest insertional footprint, followed by the brachialis and the biceps (P anatomy of key elbow capsuloligamentous and tendinous structures is crucial for effective reconstruction after bony or soft tissue trauma. This study provides the upper extremity surgeon with information that may aid in restoring elbow biomechanics and preserving range of motion in these patients. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  4. Three-dimensional micro-scale strain mapping in living biological soft tissues.

    Science.gov (United States)

    Moo, Eng Kuan; Sibole, Scott C; Han, Sang Kuy; Herzog, Walter

    2018-04-01

    Non-invasive characterization of the mechanical micro-environment surrounding cells in biological tissues at multiple length scales is important for the understanding of the role of mechanics in regulating the biosynthesis and phenotype of cells. However, there is a lack of imaging methods that allow for characterization of the cell micro-environment in three-dimensional (3D) space. The aims of this study were (i) to develop a multi-photon laser microscopy protocol capable of imprinting 3D grid lines onto living tissue at a high spatial resolution, and (ii) to develop image processing software capable of analyzing the resulting microscopic images and performing high resolution 3D strain analyses. Using articular cartilage as the biological tissue of interest, we present a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning length scales from the tissue to the cell level. Using custom image processing software, we provide accurate and robust 3D micro-strain analysis that allows for detailed qualitative and quantitative assessment of the 3D tissue kinematics. This novel technique preserves tissue structural integrity post-scanning, therefore allowing for multiple strain measurements at different time points in the same specimen. The proposed technique is versatile and opens doors for experimental and theoretical investigations on the relationship between tissue deformation and cell biosynthesis. Studies of this nature may enhance our understanding of the mechanisms underlying cell mechano-transduction, and thus, adaptation and degeneration of soft connective tissues. We presented a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning from tissue length scale to cellular length scale. Using a custom image processing software (lsmgridtrack), we provide accurate and robust micro

  5. Three-dimensional assessment of brain tissue morphology

    Science.gov (United States)

    Müller, Bert; Germann, Marco; Jeanmonod, Daniel; Morel, Anne

    2006-08-01

    The microstructure of brain tissues becomes visible using different types of optical microscopy after the tissue sectioning. This preparation procedure introduces stress and strain in the anisotropic and inhomogeneous soft tissue slices, which are several 10 μm thick. Consequently, the three-dimensional dataset, generated out of the two-dimensional images with lateral submicrometer resolution, needs algorithms to correct the deformations, which can be significant for mellow tissue such as brain segments. The spatial resolution perpendicular to the slices is much worse with respect to the lateral sub-micrometer resolution. Therefore, we propose as complementary method the synchrotron-radiation-based micro computed tomography (SRμCT), which avoids any kind of preparation artifacts due to sectioning and histological processing and yields true micrometer resolution in the three orthogonal directions. The visualization of soft matter by the use of SRμCT, however, is often based on elaborate staining protocols, since the tissue exhibits (almost) the same x-ray absorption as the surrounding medium. Therefore, it is unexpected that human tissue from the pons and the medulla oblongata in phosphate buffer show several features such as the blood vessels and the inferior olivary nucleus without staining. The value of these tomograms lies especially in the precise non-rigid registration of the different sets of histological slices. Applications of this method to larger pieces of brain tissue, such as the human thalamus are planned in the context of stereotactic functional neurosurgery.

  6. Soft-tissue volumetric changes following monobloc distraction procedure: analysis using digital three-dimensional photogrammetry system (3dMD).

    Science.gov (United States)

    Chan, Fuan Chiang; Kawamoto, Henry K; Federico, Christina; Bradley, James P

    2013-03-01

    We have previously reported that monobloc advancement by distraction osteogenesis resulted in decreased morbidity and greater advancement with less relapse compared with acute monobloc advancement with bone grafting. In this study, we examine the three-dimensional (3D) volumetric soft-tissue changes in monobloc distraction.Patients with syndromic craniosynostosis who underwent monobloc distraction from 2002 to 2010 at University of California-Los Angeles Craniofacial Center were studied (n = 12). We recorded diagnosis, indications for the surgery, and volumetric changes for skeletal and soft-tissue midface structures (preoperative/postoperative [6 weeks]/follow-up [>1 year]). Computed tomography scans and a digital 3D photogrammetry system were used for image analysis.Patients ranged from 6 to 14 years of age (mean, 10.1 years) at the time of the operation (follow-up 2-11 years); mean distraction advancement was 19.4 mm (range, 14-25 mm). There was a mean increase in the 3D volumetric soft-tissue changes: 99.5 ± 4.0 cm(3) (P < 0.05) at 6 weeks and 94.9 ± 3.6 cm(3) (P < 0.05) at 1-year follow-up. When comparing soft-tissue changes at 6 weeks postoperative to 1-year follow-up, there were minimal relapse changes. The overall mean 3D skeletal change was 108.9 ± 4.2 cm. For every 1 cm of skeletal gain, there was 0.78 cm(3) of soft-tissue gain.Monobloc advancement by distraction osteogenesis using internal devices resulted in increased volumetric soft-tissue changes, which remained stable at 1 year. The positive linear correlation between soft-tissue increments and bony advancement can be incorporated during the planning of osteotomies to achieve optimum surgical outcomes with monobloc distraction.

  7. Three-dimensional evaluation of soft tissue changes in the orofacial region after tooth-borne and bone-borne surgically assisted rapid maxillary expansion

    NARCIS (Netherlands)

    Nada, R.M.; Loon, B. van; Maal, T.J.J.; Berge, S.J.; Mostafa, Y.A.; Kuijpers-Jagtman, A.M.; Schols, J.G.J.H.

    2013-01-01

    OBJECTIVES: This study seeks to three-dimensionally assess soft tissue changes in the orofacial region following tooth-borne and bone-borne surgically assisted rapid maxillary expansion (SARME). MATERIALS AND METHODS: This prospective cohort study included 40 skeletally mature patients with

  8. Injectable Shape-Memorizing Three-Dimensional Hyaluronic Acid Cryogels for Skin Sculpting and Soft Tissue Reconstruction

    Science.gov (United States)

    Cheng, Liying; Ji, Kai; Shih, Ting-Yu; Haddad, Anthony; Giatsidis, Giorgio; Mooney, David J.; Orgill, Dennis P.

    2017-01-01

    Introduction: Hyaluronic acid (HA)-based fillers are used for various cosmetic procedures. However, due to filler migration and degradation, reinjections of the fillers are often required. Methacrylated HA (MA-HA) can be made into injectable shape-memorizing fillers (three-dimensional [3D] MA-HA) aimed to address these issues. In this study, shape retention, firmness, and biocompatibility of 3D MA-HA injected subcutaneously in mice were evaluated. Materials and Methods: Fifteen mice, each receiving two subcutaneous injections in their back, were divided into four groups receiving HA, MA-HA, 3D MA-HA, or saline, respectively. Digital imaging, scanning electron microscope (SEM) and in vivo imaging system (IVIS), durometry, and histology were utilized to evaluate in vitro/vivo degradation and migration, material firmness, and the angiogenic (CD31) and immunogenic (CD45) response of the host tissue toward the injected materials. Results: Digital imaging, SEM, and IVIS revealed that 3D MA-HA fillers maintained their predetermined shape for at least 30 days in vitro and in vivo. Little volume effects were noted in the saline and other control groups. There were no differences in skin firmness between the groups or over time. Histology showed intact skin architecture in all groups. Three-dimensional MA-HA maintained its macroporous structure with significant angiogenesis at the 3D MA-HA/skin interfaces and throughout the 3D MA-HA. There was no significant inflammatory response to any of the injected materials. Conclusion: 3D MA-HA showed remarkable tissue compatibility, compliance, and shape predictability, as well as retention, and thus might be suitable for various skin sculpting and soft tissue reconstruction purposes. PMID:27875939

  9. Three-dimensional structure of brain tissue at submicrometer resolution

    Energy Technology Data Exchange (ETDEWEB)

    Saiga, Rino; Mizutani, Ryuta, E-mail: ryuta@tokai-u.jp [Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292 (Japan); Inomoto, Chie; Takekoshi, Susumu; Nakamura, Naoya; Tsuboi, Akio; Osawa, Motoki [Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Arai, Makoto; Oshima, Kenichi; Itokawa, Masanari [Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506 (Japan); Uesugi, Kentaro; Takeuchi, Akihisa; Terada, Yasuko; Suzuki, Yoshio [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo 679-5198 (Japan)

    2016-01-28

    Biological objects are composed of submicrometer structures such as cells and organelles that are essential for their functions. Here, we report on three-dimensional X-ray visualization of cells and organelles at resolutions up to 100 nm by imaging microtomography (micro-CT) equipped with Fresnel zone plate optics. Human cerebral tissue, fruit fly cephalic ganglia, and Escherichia coli bacteria labeled with high atomic-number elements were embedded in epoxy resin and subjected to X-ray microtomography at the BL37XU and BL47XU beamlines of the SPring-8 synchrotron radiation facility. The obtained results indicated that soft tissue structures can be visualized with the imaging microtomography.

  10. Evaluation of nasal cartilage using three-dimensional soft tissue images in patients with unilateral cleft lip

    International Nuclear Information System (INIS)

    Hasegawa, Yoshimichi; Saijo, Hideto; Yonehara, Yoshiyuki; Takato, Tsuyoshi; Nakatuka, Takashi

    2008-01-01

    In the treatment of nasal deformities associated with cleft lip and palate, deformities of the alar cartilage and upper lateral cartilage are usually repaired. It is very useful if deformities of the nasal cartilage are evaluated preoperatively. We created three-dimensional CT images of soft tissues by the volume rendering method, the nasal cartilage. In 26 patients with unilateral cleft lip and palate, the alar cartilage, upper lateral cartilage, and septal cartilage were evaluated morphologically. As a result, in each case, these cartilages were deviated and deformed. However, the size of both the alar cartilage and the upper lateral cartilage on the cleft side were approximately similar to those on the healthy side. It is suggested that using this method formulated for the imaging of cartilaginous morphology, preoperative planning and follow-up can be performed easily. (author)

  11. Self-assembled three dimensional network designs for soft electronics.

    Science.gov (United States)

    Jang, Kyung-In; Li, Kan; Chung, Ha Uk; Xu, Sheng; Jung, Han Na; Yang, Yiyuan; Kwak, Jean Won; Jung, Han Hee; Song, Juwon; Yang, Ce; Wang, Ao; Liu, Zhuangjian; Lee, Jong Yoon; Kim, Bong Hoon; Kim, Jae-Hwan; Lee, Jungyup; Yu, Yongjoon; Kim, Bum Jun; Jang, Hokyung; Yu, Ki Jun; Kim, Jeonghyun; Lee, Jung Woo; Jeong, Jae-Woong; Song, Young Min; Huang, Yonggang; Zhang, Yihui; Rogers, John A

    2017-06-21

    Low modulus, compliant systems of sensors, circuits and radios designed to intimately interface with the soft tissues of the human body are of growing interest, due to their emerging applications in continuous, clinical-quality health monitors and advanced, bioelectronic therapeutics. Although recent research establishes various materials and mechanics concepts for such technologies, all existing approaches involve simple, two-dimensional (2D) layouts in the constituent micro-components and interconnects. Here we introduce concepts in three-dimensional (3D) architectures that bypass important engineering constraints and performance limitations set by traditional, 2D designs. Specifically, open-mesh, 3D interconnect networks of helical microcoils formed by deterministic compressive buckling establish the basis for systems that can offer exceptional low modulus, elastic mechanics, in compact geometries, with active components and sophisticated levels of functionality. Coupled mechanical and electrical design approaches enable layout optimization, assembly processes and encapsulation schemes to yield 3D configurations that satisfy requirements in demanding, complex systems, such as wireless, skin-compatible electronic sensors.

  12. Self-assembled three dimensional network designs for soft electronics

    Science.gov (United States)

    Jang, Kyung-In; Li, Kan; Chung, Ha Uk; Xu, Sheng; Jung, Han Na; Yang, Yiyuan; Kwak, Jean Won; Jung, Han Hee; Song, Juwon; Yang, Ce; Wang, Ao; Liu, Zhuangjian; Lee, Jong Yoon; Kim, Bong Hoon; Kim, Jae-Hwan; Lee, Jungyup; Yu, Yongjoon; Kim, Bum Jun; Jang, Hokyung; Yu, Ki Jun; Kim, Jeonghyun; Lee, Jung Woo; Jeong, Jae-Woong; Song, Young Min; Huang, Yonggang; Zhang, Yihui; Rogers, John A.

    2017-06-01

    Low modulus, compliant systems of sensors, circuits and radios designed to intimately interface with the soft tissues of the human body are of growing interest, due to their emerging applications in continuous, clinical-quality health monitors and advanced, bioelectronic therapeutics. Although recent research establishes various materials and mechanics concepts for such technologies, all existing approaches involve simple, two-dimensional (2D) layouts in the constituent micro-components and interconnects. Here we introduce concepts in three-dimensional (3D) architectures that bypass important engineering constraints and performance limitations set by traditional, 2D designs. Specifically, open-mesh, 3D interconnect networks of helical microcoils formed by deterministic compressive buckling establish the basis for systems that can offer exceptional low modulus, elastic mechanics, in compact geometries, with active components and sophisticated levels of functionality. Coupled mechanical and electrical design approaches enable layout optimization, assembly processes and encapsulation schemes to yield 3D configurations that satisfy requirements in demanding, complex systems, such as wireless, skin-compatible electronic sensors.

  13. Noninvasive computerized scanning method for the correlation between the facial soft and hard tissues for an integrated three-dimensional anthropometry and cephalometry.

    Science.gov (United States)

    Galantucci, Luigi Maria; Percoco, Gianluca; Lavecchia, Fulvio; Di Gioia, Eliana

    2013-05-01

    The article describes a new methodology to scan and integrate facial soft tissue surface with dental hard tissue models in a three-dimensional (3D) virtual environment, for a novel diagnostic approach.The facial and the dental scans can be acquired using any optical scanning systems: the models are then aligned and integrated to obtain a full virtual navigable representation of the head of the patient. In this article, we report in detail and further implemented a method for integrating 3D digital cast models into a 3D facial image, to visualize the anatomic position of the dentition. This system uses several 3D technologies to scan and digitize, integrating them with traditional dentistry records. The acquisitions were mainly performed using photogrammetric scanners, suitable for clinics or hospitals, able to obtain high mesh resolution and optimal surface texture for the photorealistic rendering of the face. To increase the quality and the resolution of the photogrammetric scanning of the dental elements, the authors propose a new technique to enhance the texture of the dental surface. Three examples of the application of the proposed procedure are reported in this article, using first laser scanning and photogrammetry and then only photogrammetry. Using cheek retractors, it is possible to scan directly a great number of dental elements. The final results are good navigable 3D models that integrate facial soft tissue and dental hard tissues. The method is characterized by the complete absence of ionizing radiation, portability and simplicity, fast acquisition, easy alignment of the 3D models, and wide angle of view of the scanner. This method is completely noninvasive and can be repeated any time the physician needs new clinical records. The 3D virtual model is a precise representation both of the soft and the hard tissue scanned, and it is possible to make any dimensional measure directly in the virtual space, for a full integrated 3D anthropometry and

  14. Dimensional soft tissue changes following soft tissue grafting in conjunction with implant placement or around present dental implants: a systematic review.

    Science.gov (United States)

    Poskevicius, Lukas; Sidlauskas, Antanas; Galindo-Moreno, Pablo; Juodzbalys, Gintaras

    2017-01-01

    To systematically review changes in mucosal soft tissue thickness and keratinised mucosa width after soft tissue grafting around dental implants. An electronic literature search was conducted of the MEDLINE database published between 2009 and 2014. Sequential screenings at the title, abstract, and full-text levels were performed. Clinical human studies in the English language that had reported changes in soft tissue thickness or keratinised mucosa width after soft tissue grafting at implant placement or around a present implant at 6-month follow-up or longer were included. The search resulted in fourteen articles meeting the inclusion criteria: Six of them reported connective tissue grafting around present dental implants, compared to eight at the time of implant placement. Better long-term soft tissue thickness outcomes were reported for soft tissue augmentation around dental implants (0.8-1.4 mm), compared with augmentation at implant placement (-0.25-1.43 mm). Both techniques were effective in increasing keratinised tissue width: at implant placement (2.5 mm) or around present dental implants (2.33-2.57 mm). The present systematic review discovered that connective tissue grafts enhanced keratinised mucosa width and soft tissue thickness for an observation period of up to 48 months. However, some shrinkage may occur, resulting in decreases in soft tissue, mostly for the first three months. Further investigations using accurate evaluation methods need to be done to evaluate the appropriate time for grafting. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Real-time three-dimensional ultrasound-assisted axillary plexus block defines soft tissue planes.

    Science.gov (United States)

    Clendenen, Steven R; Riutort, Kevin; Ladlie, Beth L; Robards, Christopher; Franco, Carlo D; Greengrass, Roy A

    2009-04-01

    Two-dimensional (2D) ultrasound is commonly used for regional block of the axillary brachial plexus. In this technical case report, we described a real-time three-dimensional (3D) ultrasound-guided axillary block. The difference between 2D and 3D ultrasound is similar to the difference between plain radiograph and computer tomography. Unlike 2D ultrasound that captures a planar image, 3D ultrasound technology acquires a 3D volume of information that enables multiple planes of view by manipulating the image without movement of the ultrasound probe. Observation of the brachial plexus in cross-section demonstrated distinct linear hyperechoic tissue structures (loose connective tissue) that initially inhibited the flow of the local anesthesia. After completion of the injection, we were able to visualize the influence of arterial pulsation on the spread of the local anesthesia. Possible advantages of this novel technology over current 2D methods are wider image volume and the capability to manipulate the planes of the image without moving the probe.

  16. Design and characterization of microcapsules-integrated collagen matrixes as multifunctional three-dimensional scaffolds for soft tissue engineering.

    Science.gov (United States)

    Del Mercato, Loretta L; Passione, Laura Gioia; Izzo, Daniela; Rinaldi, Rosaria; Sannino, Alessandro; Gervaso, Francesca

    2016-09-01

    Three-dimensional (3D) porous scaffolds based on collagen are promising candidates for soft tissue engineering applications. The addition of stimuli-responsive carriers (nano- and microparticles) in the current approaches to tissue reconstruction and repair brings about novel challenges in the design and conception of carrier-integrated polymer scaffolds. In this study, a facile method was developed to functionalize 3D collagen porous scaffolds with biodegradable multilayer microcapsules. The effects of the capsule charge as well as the influence of the functionalization methods on the binding efficiency to the scaffolds were studied. It was found that the binding of cationic microcapsules was higher than that of anionic ones, and application of vacuum during scaffolds functionalization significantly hindered the attachment of the microcapsules to the collagen matrix. The physical properties of microcapsules-integrated scaffolds were compared to pristine scaffolds. The modified scaffolds showed swelling ratios, weight losses and mechanical properties similar to those of unmodified scaffolds. Finally, in vitro diffusional tests proved that the collagen scaffolds could stably retain the microcapsules over long incubation time in Tris-HCl buffer at 37°C without undergoing morphological changes, thus confirming their suitability for tissue engineering applications. The obtained results indicate that by tuning the charge of the microcapsules and by varying the fabrication conditions, collagen scaffolds patterned with high or low number of microcapsules can be obtained, and that the microcapsules-integrated scaffolds fully retain their original physical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A finite element evaluation of mechanical function for 3 distal extension partial dental prosthesis designs with a 3-dimensional nonlinear method for modeling soft tissue.

    Science.gov (United States)

    Nakamura, Yoshinori; Kanbara, Ryo; Ochiai, Kent T; Tanaka, Yoshinobu

    2014-10-01

    The mechanical evaluation of the function of partial removable dental prostheses with 3-dimensional finite element modeling requires the accurate assessment and incorporation of soft tissue behavior. The differential behaviors of the residual ridge mucosa and periodontal ligament tissues have been shown to exhibit nonlinear displacement. The mathematic incorporation of known values simulating nonlinear soft tissue behavior has not been investigated previously via 3-dimensional finite element modeling evaluation to demonstrate the effect of prosthesis design on the supporting tissues. The purpose of this comparative study was to evaluate the functional differences of 3 different partial removable dental prosthesis designs with 3-dimensional finite element analysis modeling and a simulated patient model incorporating known viscoelastic, nonlinear soft tissue properties. Three different designs of distal extension removable partial dental prostheses were analyzed. The stress distributions to the supporting abutments and soft tissue displacements of the designs tested were calculated and mechanically compared. Among the 3 dental designs evaluated, the RPI prosthesis demonstrated the lowest stress concentrations on the tissue supporting the tooth abutment and also provided wide mucosa-borne areas of support, thereby demonstrating a mechanical advantage and efficacy over the other designs evaluated. The data and results obtained from this study confirmed that the functional behavior of partial dental prostheses with supporting abutments and soft tissues are consistent with the conventional theories of design and clinical experience. The validity and usefulness of this testing method for future applications and testing protocols are shown. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Dimensional Changes of Fresh Sockets With Reactive Soft Tissue Preservation: A Cone Beam CT Study.

    Science.gov (United States)

    Crespi, Roberto; Capparé, Paolo; Crespi, Giovanni; Gastaldi, Giorgio; Gherlone, Enrico Felice

    2017-06-01

    The aim of this study was to assess dimensional changes of the fresh sockets grafted with collagen sheets and maintenance of reactive soft tissue, using cone beam computed tomography (CBCT). Tooth extractions were performed with maximum preservation of the alveolar housing, reactive soft tissue was left into the sockets and collagen sheets filled bone defects. Cone beam computed tomography were performed before and 3 months after extractions. One hundred forty-five teeth, 60 monoradiculars and 85 molars, were extracted. In total, 269 alveoli were evaluated. In Group A, not statistically significant differences were found between monoradiculars, whereas statistically significant differences (P 0.05) for all types of teeth. This study reported an atraumatic tooth extraction, reactive soft tissue left in situ, and grafted collagen sponge may be helpful to reduce fresh socket collapse after extraction procedures.

  19. Two-dimensional real-time blood flow and temperature of soft tissue around maxillary anterior implants.

    Science.gov (United States)

    Nakamoto, Tetsuji; Kanao, Masato; Kondo, Yusuke; Kajiwara, Norihiro; Masaki, Chihiro; Takahashi, Tetsu; Hosokawa, Ryuji

    2012-12-01

    The aims of this study were to (1) evaluate the basic nature of soft tissue surrounding maxillary anterior implants by simultaneous measurements of blood flow and surface temperature and (2) analyze differences with and without bone grafting associated with implant placement to try to detect the signs of surface morphology change. Twenty maxillary anterior implant patients, 10 bone grafting and 10 graftless, were involved in this clinical trial. Soft tissue around the implant was evaluated with 2-dimensional laser speckle imaging and a thermograph. Blood flow was significantly lower in attached gingiva surrounding implants in graftless patients (P = 0.0468). On the other hand, it was significantly lower in dental papillae (P = 0.0254), free gingiva (P = 0.0198), and attached gingiva (P = 0.00805) in bone graft patients. Temperature was significantly higher in free gingiva (P = 0.00819) and attached gingiva (P = 0.00593) in graftless patients, whereas it was significantly higher in dental papilla and free gingiva in implants with bone grafting. The results suggest that simultaneous measurements of soft-tissue blood flow and temperature is a useful technique to evaluate the microcirculation of soft tissue surrounding implants.

  20. Three-dimensional magnetic properties of soft magnetic composite materials

    International Nuclear Information System (INIS)

    Lin, Z.W.; Zhu, J.G.

    2007-01-01

    A three-dimensional (3-D) magnetic property measurement system, which can control the three components of the magnetic flux density B vector and measure the magnetic field strength H vector in a cubic sample of soft magnetic material, has been developed and calibrated. This paper studies the relationship between the B and H loci in 3-D space, and the power losses features of a soft magnetic composite when the B loci are controlled to be circles with increasing magnitudes and ellipses evolving from a straight line to circle in three orthogonal planes. It is found that the B and H loci lie in the same magnetization plane, but the H loci and power losses strongly depend on the orientation, position, and process of magnetization. On the other hand, the H vector evolves into a unique locus, and the power loss approaches a unique value, respectively, when the B vector evolves into the round locus with the same magnitude from either a series of circles or ellipses

  1. Hydatid disease of the soft tissues of the lower limb: findings in three cases

    International Nuclear Information System (INIS)

    Martin, J.; Marco, V.; Zidan, A.; Marco, C.

    1993-01-01

    Three cases of hydatid disease are reported, all presenting as soft tissue lesions in the lower extremities. All three cases were studied with ultrasound (US), two with computed tomography (CT), and two with magnetic resonance (MR) imaging techniques. Two patients presented with multivesicular lesions which were considered diagnostic of hydatid disease. The third patient showed a lesion with a predominantly solid pattern, closely mimicking a soft-tissue neoplasm. US was not diagnostic, but MR outlined vesicular structures and a fibrous pericyst. Hydatid disease presenting in the soft tissues can therefore be diagnosed with confidence when it shows multivesicular lesions but MR may be the most useful imaging technique when a complex or solid pattern is present. (orig.)

  2. Vascularization of soft tissue engineering constructs

    DEFF Research Database (Denmark)

    Pimentel Carletto, Rodrigo

    with mechanical properties in the range of soft tissues has not been fully achieved. My project focused on the fabrication and the active perfusion of hydrogel constructs with multi-dimensional vasculature and controlled mechanical properties targeting soft tissues. Specifically, the initial part of the research...... nanotechnology-based paradigm for engineering vascularised liver tissue for transplantation”) and the Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug delivery and sensing Using microcontainers and Nanomechanics (Danish National Research Foundation (DNRF122)....

  3. Osteotomy simulation and soft tissue prediction using computer tomography scans

    International Nuclear Information System (INIS)

    Teschner, M.; Girod, S.; Girod, B.

    1999-01-01

    In this paper, a system is presented that can be used to simulate osteotomies of the skull and to estimate the resulting of tissue changes. Thus, the three-dimensional, photorealistic, postoperative appearance of a patient can be assessed. The system is based on a computer tomography scan and a photorealistic laser scan of the patient's face. In order to predict the postoperative appearance of a patient the soft tissue must follow the movement of the underlying bone. In this paper, a multi-layer soft tissue model is proposed that is based on springs. It incorporates features like skin turgor, gravity and sliding bone contact. The prediction of soft tissue changes due to bone realignments is computed using a very efficient and robust optimization method. The system can handle individual patient data sets and has been tested with several clinical cases. (author)

  4. Exceptional soft tissues preservation in a mummified frog-eating Eocene salamander

    Directory of Open Access Journals (Sweden)

    Jérémy Tissier

    2017-10-01

    Full Text Available Fossils are almost always represented by hard tissues but we present here the exceptional case of a three-dimensionally preserved specimen that was ‘mummified’ (likely between 40 and 34 million years ago in a terrestrial karstic environment. This fossil is the incomplete body of a salamander, Phosphotriton sigei, whose skeleton and external morphology are well preserved, as revealed by phase-contrast synchrotron X-ray microtomography. In addition, internal structures composed of soft tissues preserved in three dimensions are now identified: a lung, the spinal cord, a lumbosacral plexus, the digestive tract, muscles and urogenital organs that may be cloacal glands. These are among the oldest known cases of three-dimensional preservation of these organs in vertebrates and shed light on the ecology of this salamander. Indeed, the digestive tract contains remains of a frog, which represents the only known case of an extinct salamander that fed on a frog, an extremely rare type of predation in extant salamanders. These new data improve our scarce knowledge on soft tissue anatomy of early urodeles and should prove useful for future biologists and palaeontologists working on urodele evolutionary biology. We also suggest that the presence of bat guano and carcasses represented a close source of phosphorus, favouring preservation of soft tissues. Bone microanatomy indicates that P. sigei was likely amphibious or terrestrial, and was probably not neotenic.

  5. Exceptional soft tissues preservation in a mummified frog-eating Eocene salamander.

    Science.gov (United States)

    Tissier, Jérémy; Rage, Jean-Claude; Laurin, Michel

    2017-01-01

    Fossils are almost always represented by hard tissues but we present here the exceptional case of a three-dimensionally preserved specimen that was 'mummified' (likely between 40 and 34 million years ago) in a terrestrial karstic environment. This fossil is the incomplete body of a salamander, Phosphotriton sigei , whose skeleton and external morphology are well preserved, as revealed by phase-contrast synchrotron X-ray microtomography. In addition, internal structures composed of soft tissues preserved in three dimensions are now identified: a lung, the spinal cord, a lumbosacral plexus, the digestive tract, muscles and urogenital organs that may be cloacal glands. These are among the oldest known cases of three-dimensional preservation of these organs in vertebrates and shed light on the ecology of this salamander. Indeed, the digestive tract contains remains of a frog, which represents the only known case of an extinct salamander that fed on a frog, an extremely rare type of predation in extant salamanders. These new data improve our scarce knowledge on soft tissue anatomy of early urodeles and should prove useful for future biologists and palaeontologists working on urodele evolutionary biology. We also suggest that the presence of bat guano and carcasses represented a close source of phosphorus, favouring preservation of soft tissues. Bone microanatomy indicates that P. sigei was likely amphibious or terrestrial, and was probably not neotenic.

  6. Quantified Facial Soft-tissue Strain in Animation Measured by Real-time Dynamic 3-Dimensional Imaging

    Directory of Open Access Journals (Sweden)

    Vivian M. Hsu, MD

    2014-09-01

    Conclusions: This pilot study illustrates that the face can be objectively and quantitatively evaluated using dynamic major strain analysis. The technology of 3-dimensional optical imaging can be used to advance our understanding of facial soft-tissue dynamics and the effects of animation on facial strain over time.

  7. A three-dimensional soft tissue analysis of Class III malocclusion: a case-controlled cross-sectional study.

    Science.gov (United States)

    Johal, Ama; Chaggar, Amrit; Zou, Li Fong

    2018-03-01

    The present study used the optical surface laser scanning technique to compare the facial features of patients aged 8-18 years presenting with Class I and Class III incisor relationship in a case-control design. Subjects with a Class III incisor relationship, aged 8-18 years, were age and gender matched with Class I control and underwent a 3-dimensional (3-D) optical surface scan of the facial soft tissues. Landmark analysis revealed Class III subjects displayed greater mean dimensions compared to the control group most notably between the ages of 8-10 and 17-18 years in both males and females, in respect of antero-posterior (P = 0.01) and vertical (P = 0.006) facial dimensions. Surface-based analysis, revealed the greatest difference in the lower facial region, followed by the mid-face, whilst the upper face remained fairly consistent. Significant detectable differences were found in the surface facial features of developing Class III subjects.

  8. Soft tissue augmentation 2006: filler fantasy.

    Science.gov (United States)

    Klein, Arnold William

    2006-01-01

    As an increasing number of patients seek esthetic improvement through minimally invasive procedures, interest in soft tissue augmentation and filling agents is at an all-time high. One reason for this interest is the availability of botulinum toxin type A, which works superbly in the upper face. The rejuvenation of the upper face has created much interest in injectable filling agents and implant techniques that work equally well in the restoration of the lower face. One of the central tenets of soft tissue augmentation is the concept of the three-dimensional face. The youthful face has a soft, full appearance, as opposed to the flat, pulled, two-dimensional look often achieved by more traditional surgical approaches. Injectable filling agents can augment and even at times, replace pulling. Additionally, with the lip as the focal center of the lower face, subtle lip enhancement is here to stay, and is in fact, the number one indication for injectable fillers. Moreover, minimally invasive soft tissue augmentation offers cosmetic enhancement without the cost and recovery time associated with more invasive procedures. As more and more physicians take interest in minimally invasive surgery, courses in cosmetic surgery techniques are becoming increasingly popular at the medical meetings of many specialties. Today, physicians have a much larger armamentarium of techniques and materials with which to improve facial contours, ameliorate wrinkles, and provide esthetic rejuvenation to the face. For a substance or device to be amenable for soft tissue augmentation in the medical community, it must meet certain criteria. It must have both a high "use" potential, producing cosmetically pleasing results with a minimum undesirable reactions, and have a low abuse potential in that widespread or incorrect or indiscriminate use would not result in significant morbidity. It must be nonteratogenic, noncarcinogenic, and nonmigratory. In addition, the agent must provide predictable

  9. Three-dimensional portable document format: a simple way to present 3-dimensional data in an electronic publication

    NARCIS (Netherlands)

    Danz, J.C.; Katsaros, C.

    2011-01-01

    Three-dimensional (3D) models of teeth and soft and hard tissues are tessellated surfaces used for diagnosis, treatment planning, appliance fabrication, outcome evaluation, and research. In scientific publications or communications with colleagues, these 3D data are often reduced to 2-dimensional

  10. Soft tissue response and facial symmetry after orthognathic surgery.

    Science.gov (United States)

    Wermker, Kai; Kleinheinz, Johannes; Jung, Susanne; Dirksen, Dieter

    2014-09-01

    In orthognathic surgery aesthetic issues and facial symmetry are vital parameters in surgical planning. Aim of this investigation was to document and analyze the results of orthognathic surgery on the base of a three-dimensional photogrammetric assessment, to assess the soft tissue response related to the skeletal shift and the alterations in facial symmetry after orthognathic surgery. In this prospective clinical trial from January 2010 to June 2011, 104 patients were examined who underwent orthognathic surgery due to mono- or bimaxillary dysgnathia. The standardized measurements, based on optical 3D face scans, took place one day before orthognathic surgery (T1) and one day before removal of osteosynthesis material (T2). Soft tissue changes after procedures involving the mandible showed significant positive correlations and strong soft tissue response (p  0.05). The facial surfaces became more symmetric and harmonic with the exception of surgical maxillary expansion, but improvement of facial symmetry revealed no statistical significance. Soft tissue response after orthognathic surgery and symmetry are only partially predictable, especially in the maxillary and midfacial region. Computer programs predicting soft tissue changes are not currently safely reliable and should not be used or with caution to demonstrate a patient potential outcome of surgery. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  11. MR Histoanatomical Distribution of 290 Soft-tissue Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Tae Yong; Lee, In Sook; Lee, Gee Won; Kim, Jeung Il; Choi, Kyung Un; Kim, Won Taek [Pusan National University Hospital, Busan (Korea, Republic of)

    2008-12-15

    This study was designed too identify the MR histoanatomical distribution of soft-tissue tumors. A total of 290 soft-tissue tumors of 281 patients were analyzed by the use of MR imaging and were pathologically confirmed after surgical resection or a biopsy. There were 120 malignant soft-tissue tumors including tumors of an intermediate malignancy and 170 benign tumors. The histoanatomical locations were divided into three types: 'type I' with superficial layer tumors that involved the cutaneous and subcutaneous tissue, 'type II' with deep layer tumors that involved the muscle or tendon and 'type III' with soft tissue tumors that involved both the superficial and deep layers. Soft-tissue tumors with more than three cases with a frequency of more than 75% included dermatofibrosarcoma protuberans, glomus tumor, angiolipoma, leiomyosarcoma and lymphoma as 'type I' tumors. 'Type II' tumors with more than three cases with a frequency of more than 75% included liposarcoma, fibromatosis, papillary endothelial hyperplasia and rhabdomyosarcoma. 'Type III' tumors with more than three cases with a frequency of more than 50% included neurofibromatosis. The MR histoanatomical distributions of soft tissue tumors are useful in the differential pathological diagnosis when a soft-tissue tumor has a nonspecific MR appearance.

  12. Three-dimensional epithelial tissues generated from human embryonic stem cells.

    Science.gov (United States)

    Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A

    2009-11-01

    The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.

  13. A mummified duck-billed dinosaur with a soft-tissue cock's comb.

    Science.gov (United States)

    Bell, Phil R; Fanti, Federico; Currie, Philip J; Arbour, Victoria M

    2014-01-06

    Among living vertebrates, soft tissues are responsible for labile appendages (combs, wattles, proboscides) that are critical for activities ranging from locomotion to sexual display [1]. However, soft tissues rarely fossilize, and such soft-tissue appendages are unknown for many extinct taxa, including dinosaurs. Here we report a remarkable "mummified" specimen of the hadrosaurid dinosaur Edmontosaurus regalis from the latest Cretaceous Wapiti Formation, Alberta, Canada, that preserves a three-dimensional cranial crest (or "comb") composed entirely of soft tissue. Previously, crest function has centered on the hypertrophied nasal passages of lambeosaurine hadrosaurids, which acted as resonance chambers during vocalization [2-4]. The fleshy comb in Edmontosaurus necessitates an alternative explanation most likely related to either social signaling or sexual selection [5-7]. This discovery provides the first view of bizarre, soft-tissue signaling structures in a dinosaur and provides additional evidence for social behavior. Crest evolution within Hadrosaurinae apparently culminated in the secondary loss of the bony crest at the terminal Cretaceous; however, the new specimen indicates that cranial ornamentation was in fact not lost but substituted in Edmontosaurus by a fleshy display structure. It also implies that visual display played a key role in the evolution of hadrosaurine crests and raises the possibility of similar soft-tissue structures among other dinosaurs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Three-dimensional models of the tracheostoma using stereolithography

    NARCIS (Netherlands)

    Grolman, W.; Schouwenburg, P. F.; Verbeeten, B.; de Boer, M. F.; Meeuwis, C. A.

    1995-01-01

    The availability of an accurate three-dimensional (3-D) model of the tracheostoma and trachea of the laryngectomy patient would be of great help in prototyping of endotracheal prostheses. Stereolithography has been described for skull and jaw models but never for soft-tissue reconstructions of the

  15. Vascularization of soft tissue engineering constructs

    DEFF Research Database (Denmark)

    Pimentel Carletto, Rodrigo

    nanotechnology-based paradigm for engineering vascularised liver tissue for transplantation”) and the Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug delivery and sensing Using microcontainers and Nanomechanics (Danish National Research Foundation (DNRF122).......Vascularization is recognized to be the biggest challenge for the fabrication of tissues and finally, organs in vitro. So far, several fabrication techniques have been proposed to create a perfusable vasculature within hydrogels, however, the vascularization and perfusion of hydrogels...... with mechanical properties in the range of soft tissues has not been fully achieved. My project focused on the fabrication and the active perfusion of hydrogel constructs with multi-dimensional vasculature and controlled mechanical properties targeting soft tissues. Specifically, the initial part of the research...

  16. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.

    Science.gov (United States)

    Riehl, Brandon D; Park, Jae-Hong; Kwon, Il Keun; Lim, Jung Yul

    2012-08-01

    Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.

  17. The effect of hard tissue surgical changes on soft tissue displacement: a pilot CBCT study

    Directory of Open Access Journals (Sweden)

    Leonardo Koerich

    Full Text Available ABSTRACT Introduction: This pilot study had as main objective to test the reliability of a new method to evaluate orthognathic surgery outcomes and also, to understand the effect of hard tissue changes on soft tissue displacement. Methods: The sample consisted of eight patients that underwent bimaxillary advancement and had CBCT at two time points (before surgery and 6-8 months follow-up. Voxel-based cranial base superimposition was used to register the scans. A different technique of iterative closest point (ICP was used to measure and correlate the changes. The average displacement of 15 areas (4 hard tissue and 11 soft tissue were measured twice. Results: ICC was > 0.99 for all areas. Changes in the tip of the nose did not correlate with changes in any maxillary area, whereas soft tissue A point, A point and upper lips had correlation with several areas. The highest correlation for the maxilla was between the upper lip and the left/right supra cheilion (p< 0.001, r= 0.91 and p< 0.001, r= 0.93, respectively. In the mandible, the majority of the correlations involved soft tissue pogonion, pogonion and lower incisors, with the strongest one between pogonion and lower incisors (p< 0.001, r= 0.98. Conclusion: With the proper case selection, ICP is a reliable method that can be used to assess three-dimensional changes.

  18. Soft Tissue Sarcoma

    Science.gov (United States)

    ... muscles, tendons, fat, and blood vessels. Soft tissue sarcoma is a cancer of these soft tissues. There ... have certain genetic diseases. Doctors diagnose soft tissue sarcomas with a biopsy. Treatments include surgery to remove ...

  19. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces

    Science.gov (United States)

    Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin

    2017-05-01

    For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ˜26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.

  20. Three-dimensional bioprinting in tissue engineering and regenerative medicine.

    Science.gov (United States)

    Gao, Guifang; Cui, Xiaofeng

    2016-02-01

    With the advances of stem cell research, development of intelligent biomaterials and three-dimensional biofabrication strategies, highly mimicked tissue or organs can be engineered. Among all the biofabrication approaches, bioprinting based on inkjet printing technology has the promises to deliver and create biomimicked tissue with high throughput, digital control, and the capacity of single cell manipulation. Therefore, this enabling technology has great potential in regenerative medicine and translational applications. The most current advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review, including vasculature, muscle, cartilage, and bone. In addition, the benign side effect of bioprinting to the printed mammalian cells can be utilized for gene or drug delivery, which can be achieved conveniently during precise cell placement for tissue construction. With layer-by-layer assembly, three-dimensional tissues with complex structures can be printed using converted medical images. Therefore, bioprinting based on thermal inkjet is so far the most optimal solution to engineer vascular system to the thick and complex tissues. Collectively, bioprinting has great potential and broad applications in tissue engineering and regenerative medicine. The future advances of bioprinting include the integration of different printing mechanisms to engineer biphasic or triphasic tissues with optimized scaffolds and further understanding of stem cell biology.

  1. Differences in three-dimensional soft tissue changes after upper, lower, or both jaw orthognathic surgery in skeletal class III patients.

    Science.gov (United States)

    Verdenik, M; Ihan Hren, N

    2014-11-01

    The decision is not always straightforward as to which orthognathic procedure is best for a good aesthetic result; three-dimensional imaging has brought new insight into this topic. The aim of this prospective study was to verify objectively whether postoperative changes occur within those regions not directly affected by surgical movements of the underlying jaw bones. The study included 83 young adults with skeletal class III deformities. They were classified into three groups according to the type of surgery: bilateral sagittal split osteotomy set-back of the mandible (BSSO), Le Fort I advancement of the maxilla, or a combination of both. Pre- and postoperative optical scans were registered as regional best-fits on the areas of the foreheads and both orbits. The shell to shell differences were measured and the average distances between the observed regions were calculated. As expected, changes were greatest in the regions where the underlying bones had been moved, but regardless of the operation performed, changes were found over the whole face. Changes in the nose, cheek, and upper lip regions in the BSSO group and in the lower lip and chin region in the Le Fort I group confirmed the concept of the facial soft tissue mask acting as one unit. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. Facial soft-tissue asymmetry in three-dimensional cone-beam computed tomography images of children with surgically corrected unilateral clefts.

    Science.gov (United States)

    Starbuck, John Marlow; Ghoneima, Ahmed; Kula, Katherine

    2014-03-01

    Cleft lip with or without cleft palate (CL/P) is a relatively common craniofacial malformation involving bony and soft-tissue disruptions of the nasolabial and dentoalveolar regions. The combination of CL/P and subsequent craniofacial surgeries to close the cleft and improve appearance of the cutaneous upper lip and nose can cause scarring and muscle pull, possibly resulting in soft-tissue depth asymmetries across the face. We tested the hypothesis that tissue depths in children with unilateral CL/P exhibit differences in symmetry across the sides of the face. Twenty-eight tissue depths were measured on cone-beam computed tomography images of children with unilateral CL/P (n = 55), aged 7 to 17 years, using Dolphin software (version 11.5). Significant differences in tissue depth symmetry were found around the cutaneous upper lip and nose in patients with unilateral CL/P.

  3. CT Imaging of facial trauma. The role of different types of reconstruction. Part II - soft tissues

    International Nuclear Information System (INIS)

    Myga-Porosilo, J.; Sraga, W.; Borowiak, H.; Jackowska, Z.; Kluczewska, E.; Skrzelewski, S.

    2011-01-01

    Background: Injury to facial soft tissues as a complication of skeleton fractures is an important problem among patients with facial trauma. The aim of this work was to assess the value of multiplanar and three-dimensional (3D) reconstruction computed tomography (CT) images obtained by using multi-detector row technology in spiral data acquisition in patients with facial injuries of soft tissue. Material/Methods: Sixty-seven patients diagnosed with injury to the facial skeleton underwent a CT scan with the use of GE Hispeed Qx/i scanner. For each patient: a two-dimensional (2D) multiplanar reconstruction (MPR), maximum intensity projection (MIP), and 3D volume rendering (VR) were conducted. Post-injury lesions of soft tissues were assessed. During the assessment of the post-injury lesions of soft tissues, the following features were evaluated: Extra ocular muscle and fat tissue herniation through fractures in the medial and inferior orbital walls. Fluid in the sinuses and in the nasal cavity. Subcutaneous tissue emphysema. Results: For subcutaneous emphysema and sinus fluid imaging, both the axial and the 2D image reconstruction proved comparably effective. However, 2D reconstructions were superior to transverse plane images with regard to herniations into fractures of the inferior orbital wall. 3D reconstruction has no importance in diagnosing soft tissue injuries. Conclusions: Multiplanar CT reconstructions increase the effectiveness of imaging of orbital tissue herniations, especially in case of fractures in the inferior orbital wall. In suspected soft tissue herniations, as well as prior to surgical treatment, spiral CT with 2D multiplanar reconstructions should be the method of choice. (authors)

  4. Mechanical characterization of bioprinted in vitro soft tissue models

    International Nuclear Information System (INIS)

    Zhang, Ting; Ouyang, Liliang; Sun, Wei; Yan, Karen Chang

    2013-01-01

    Recent development in bioprinting technology enables the fabrication of complex, precisely controlled cell-encapsulated tissue constructs. Bioprinted tissue constructs have potential in both therapeutic applications and nontherapeutic applications such as drug discovery and screening, disease modelling and basic biological studies such as in vitro tissue modelling. The mechanical properties of bioprinted in vitro tissue models play an important role in mimicking in vivo the mechanochemical microenvironment. In this study, we have constructed three-dimensional in vitro soft tissue models with varying structure and porosity based on the 3D cell-assembly technique. Gelatin/alginate hybrid materials were used as the matrix material and cells were embedded. The mechanical properties of these models were assessed via compression tests at various culture times, and applicability of three material constitutive models was examined for fitting the experimental data. An assessment of cell bioactivity in these models was also carried out. The results show that the mechanical properties can be improved through structure design, and the compression modulus and strength decrease with respect to time during the first week of culture. In addition, the experimental data fit well with the Ogden model and experiential function. These results provide a foundation to further study the mechanical properties, structural and combined effects in the design and the fabrication of in vitro soft tissue models. (paper)

  5. Scanning ion conductance microscopy for visualizing the three-dimensional surface topography of cells and tissues.

    Science.gov (United States)

    Nakajima, Masato; Mizutani, Yusuke; Iwata, Futoshi; Ushiki, Tatsuo

    2018-01-01

    Scanning ion conductance microscopy (SICM), which belongs to the family of scanning probe microscopy, regulates the tip-sample distance by monitoring the ion current through the use of an electrolyte-filled nanopipette as the probing tip. Thus, SICM enables "contact-free" imaging of cell surface topography in liquid conditions. In this paper, we applied hopping mode SICM for obtaining topographical images of convoluted tissue samples such as trachea and kidney in phosphate buffered saline. Some of the SICM images were compared with the images obtained by scanning electron microscopy (SEM) after drying the same samples. We showed that the imaging quality of hopping mode SICM was excellent enough for investigating the three-dimensional surface structure of the soft tissue samples. Thus, SICM is expected to be used for imaging a wide variety of cells and tissues - either fixed or alive- at high resolution under physiologically relevant liquid conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Quantified Facial Soft-tissue Strain in Animation Measured by Real-time Dynamic 3-Dimensional Imaging.

    Science.gov (United States)

    Hsu, Vivian M; Wes, Ari M; Tahiri, Youssef; Cornman-Homonoff, Joshua; Percec, Ivona

    2014-09-01

    The aim of this study is to evaluate and quantify dynamic soft-tissue strain in the human face using real-time 3-dimensional imaging technology. Thirteen subjects (8 women, 5 men) between the ages of 18 and 70 were imaged using a dual-camera system and 3-dimensional optical analysis (ARAMIS, Trilion Quality Systems, Pa.). Each subject was imaged at rest and with the following facial expressions: (1) smile, (2) laughter, (3) surprise, (4) anger, (5) grimace, and (6) pursed lips. The facial strains defining stretch and compression were computed for each subject and compared. The areas of greatest strain were localized to the midface and lower face for all expressions. Subjects over the age of 40 had a statistically significant increase in stretch in the perioral region while lip pursing compared with subjects under the age of 40 (58.4% vs 33.8%, P = 0.015). When specific components of lip pursing were analyzed, there was a significantly greater degree of stretch in the nasolabial fold region in subjects over 40 compared with those under 40 (61.6% vs 32.9%, P = 0.007). Furthermore, we observed a greater degree of asymmetry of strain in the nasolabial fold region in the older age group (18.4% vs 5.4%, P = 0.03). This pilot study illustrates that the face can be objectively and quantitatively evaluated using dynamic major strain analysis. The technology of 3-dimensional optical imaging can be used to advance our understanding of facial soft-tissue dynamics and the effects of animation on facial strain over time.

  7. Hydrogel microfabrication technology toward three dimensional tissue engineering

    Directory of Open Access Journals (Sweden)

    Fumiki Yanagawa

    2016-03-01

    Full Text Available The development of biologically relevant three-dimensional (3D tissue constructs is essential for the alternative methods of organ transplantation in regenerative medicine, as well as the development of improved drug discovery assays. Recent technological advances in hydrogel microfabrication, such as micromolding, 3D bioprinting, photolithography, and stereolithography, have led to the production of 3D tissue constructs that exhibit biological functions with precise 3D microstructures. Furthermore, microfluidics technology has enabled the development of the perfusion culture of 3D tissue constructs with vascular networks. In this review, we present these hydrogel microfabrication technologies for the in vitro reconstruction and cultivation of 3D tissues. Additionally, we discuss current challenges and future perspectives of 3D tissue engineering.

  8. Ultrasonic characterization of three animal mammary tumors from three-dimensional acoustic tissue models

    Science.gov (United States)

    Mamou, Jonathan M.

    This dissertation investigated how three-dimensional (3D) tissue models can be used to improve ultrasonic tissue characterization (UTC) techniques. Anatomic sites in tissue responsible for ultrasonic scattering are unknown, which limits the potential applications of ultrasound for tumor diagnosis. Accurate 3D models of tumor tissues may help identify the scattering sites. Three mammary tumors were investigated: a rat fibroadenoma, a mouse carcinoma, and a mouse sarcoma. A 3D acoustic tissue model, termed 3D impedance map (3DZM), was carefully constructed from consecutive histologic sections for each tumor. Spectral estimates (scatterer size and acoustic concentration) were obtained from the 3DZMs and compared to the same estimates obtained with ultrasound. Scatterer size estimates for three tumors were found to be similar (within 10%). The 3DZMs were also used to extract tissue-specific scattering models. The scattering models were found to allow clear distinction between the three tumors. This distinction demonstrated that UTC techniques may be helpful for noninvasive clinical tumor diagnosis.

  9. Three-dimensional hard and soft tissue imaging of the human cochlea by scanning laser optical tomography (SLOT.

    Directory of Open Access Journals (Sweden)

    Nadine Tinne

    Full Text Available The present study focuses on the application of scanning laser optical tomography (SLOT for visualization of anatomical structures inside the human cochlea ex vivo. SLOT is a laser-based highly efficient microscopy technique which allows for tomographic imaging of the internal structure of transparent specimens. Thus, in the field of otology this technique is best convenient for an ex vivo study of the inner ear anatomy. For this purpose, the preparation before imaging comprises decalcification, dehydration as well as optical clearing of the cochlea samples in toto. Here, we demonstrate results of SLOT imaging visualizing hard and soft tissue structures with an optical resolution of down to 15 μm using extinction and autofluorescence as contrast mechanisms. Furthermore, the internal structure can be analyzed nondestructively and quantitatively in detail by sectioning of the three-dimensional datasets. The method of X-ray Micro Computed Tomography (μCT has been previously applied to explanted cochlea and is solely based on absorption contrast. An advantage of SLOT is that it uses visible light for image formation and thus provides a variety of contrast mechanisms known from other light microscopy techniques, such as fluorescence or scattering. We show that SLOT data is consistent with μCT anatomical data and provides additional information by using fluorescence. We demonstrate that SLOT is applicable for cochlea with metallic cochlear implants (CI that would lead to significant artifacts in μCT imaging. In conclusion, the present study demonstrates the capability of SLOT for resolution visualization of cleared human cochleae ex vivo using multiple contrast mechanisms and lays the foundation for a broad variety of additional studies.

  10. Controlled molecular self-assembly of complex three-dimensional structures in soft materials.

    Science.gov (United States)

    Huang, Changjin; Quinn, David; Suresh, Subra; Hsia, K Jimmy

    2018-01-02

    Many applications in tissue engineering, flexible electronics, and soft robotics call for approaches that are capable of producing complex 3D architectures in soft materials. Here we present a method using molecular self-assembly to generate hydrogel-based 3D architectures that resembles the appealing features of the bottom-up process in morphogenesis of living tissues. Our strategy effectively utilizes the three essential components dictating living tissue morphogenesis to produce complex 3D architectures: modulation of local chemistry, material transport, and mechanics, which can be engineered by controlling the local distribution of polymerization inhibitor (i.e., oxygen), diffusion of monomers/cross-linkers through the porous structures of cross-linked polymer network, and mechanical constraints, respectively. We show that oxygen plays a role in hydrogel polymerization which is mechanistically similar to the role of growth factors in tissue growth, and the continued growth of hydrogel enabled by diffusion of monomers/cross-linkers into the porous hydrogel similar to the mechanisms of tissue growth enabled by material transport. The capability and versatility of our strategy are demonstrated through biomimetics of tissue morphogenesis for both plants and animals, and its application to generate other complex 3D architectures. Our technique opens avenues to studying many growth phenomena found in nature and generating complex 3D structures to benefit diverse applications. Copyright © 2017 the Author(s). Published by PNAS.

  11. Helical 3D-CT images of soft tissue tumors in the hand

    Energy Technology Data Exchange (ETDEWEB)

    Otani, Kazuhiro; Kikuchi, Hiraku; Tan, Akihiro; Hamanishi, Chiaki; Tanaka, Seisuke [Kinki Univ., Osaka-Sayama (Japan). School of Medicine

    2000-02-01

    X-ray, ultrasonograph CT, MRI and angiography are used to detect tumoral lesions. Recently, helical CT has been revealed to be a useful method for the diagnosis and preoperative evaluation of soft tissue tumors, by which high quality and accurate three dimensional (3D) images can be obtained quickly. We analyzed the preoperative 3D-CT images of soft tissue tumors in the hands of 11 cases (hemangioma in 6 cases, giant cell tumor, lipoma, angiofibroma, chondrosarcoma and malignant fibro-histiocytoma in one case each). Enhanced 3D-CT clearly visualized hemangiomas and solid tumors from the surrounding tissues. The tumors could easily be observed from any direction and color-coded according to the CT number. Helical 3D-CT was thus confirmed to be useful for the diagnosis and preoperative planning by indicating the details of tumor expansion into surrounding tissues. (author)

  12. Digital dissection - using contrast-enhanced computed tomography scanning to elucidate hard- and soft-tissue anatomy in the Common Buzzard Buteo buteo.

    Science.gov (United States)

    Lautenschlager, Stephan; Bright, Jen A; Rayfield, Emily J

    2014-04-01

    Gross dissection has a long history as a tool for the study of human or animal soft- and hard-tissue anatomy. However, apart from being a time-consuming and invasive method, dissection is often unsuitable for very small specimens and often cannot capture spatial relationships of the individual soft-tissue structures. The handful of comprehensive studies on avian anatomy using traditional dissection techniques focus nearly exclusively on domestic birds, whereas raptorial birds, and in particular their cranial soft tissues, are essentially absent from the literature. Here, we digitally dissect, identify, and document the soft-tissue anatomy of the Common Buzzard (Buteo buteo) in detail, using the new approach of contrast-enhanced computed tomography using Lugol's iodine. The architecture of different muscle systems (adductor, depressor, ocular, hyoid, neck musculature), neurovascular, and other soft-tissue structures is three-dimensionally visualised and described in unprecedented detail. The three-dimensional model is further presented as an interactive PDF to facilitate the dissemination and accessibility of anatomical data. Due to the digital nature of the data derived from the computed tomography scanning and segmentation processes, these methods hold the potential for further computational analyses beyond descriptive and illustrative proposes. © 2013 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  13. Soft tissue grafting to improve implant esthetics

    Directory of Open Access Journals (Sweden)

    Moawia M Kassab

    2010-09-01

    Full Text Available Moawia M KassabDivision of Periodontics, Marquette University, School of Dentistry, Milwaukee, WI, USAAbstract: Dental implants are becoming the treatment of choice to replace missing teeth, especially if the adjacent teeth are free of restorations. When minimal bone width is present, implant placement becomes a challenge and often resulting in recession and dehiscence around the implant that leads to subsequent gingival recession. To correct such defect, the author turned to soft tissue autografting and allografting to correct a buccal dehiscence around tooth #24 after a malpositioned implant placed by a different surgeon. A 25-year-old woman presented with the chief complaint of gingival recession and exposure of implant threads around tooth #24. The patient received three soft tissue grafting procedures to augment the gingival tissue. The first surgery included a connective tissue graft to increase the width of the keratinized gingival tissue. The second surgery included the use of autografting (connective tissue graft to coronally position the soft tissue and achieve implant coverage. The third and final surgery included the use of allografting material Alloderm to increase and mask the implant from showing through the gingiva. Healing period was uneventful for the patient. After three surgical procedures, it appears that soft tissue grafting has increased the width and height of the gingiva surrounding the implant. The accomplished thickness of gingival tissue appeared to mask the showing of implant threads through the gingival tissue and allowed for achieving the desired esthetic that the patient desired. The aim of the study is to present a clinical case with soft tissue grafting procedures.Keywords: case report, connective tissue, dental implants, allograft, coronally positioned flap

  14. Three-dimensional appearance of the lips muscles with three-dimensional isotropic MRI: in vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Raphael; Reychler, H. [Universite Catholique de Louvain, Department of Oral and Maxillofacial Surgery, Cliniques Universitaires Saint Luc, Brussels (Belgium); Liu, Y.; Xu, T.M. [Peking University School and Hospital of Stomatology, Department of Orthodontics, Beijing (China); Duprez, T. [Universite Catholique de Louvain, Department of Radiology, Cliniques Universitaires Saint Luc, Brussels (Belgium)

    2009-06-15

    Our knowledge of facial muscles is based primarily on atlases and cadaveric studies. This study describes a non-invasive in vivo method (3D MRI) for segmenting and reconstructing facial muscles in a three-dimensional fashion. Three-dimensional (3D), T1-weighted, 3 Tesla, isotropic MRI was applied to a subject. One observer performed semi-automatic segmentation using the Editor module from the 3D Slicer software (Harvard Medical School, Boston, MA, USA), version 3.2. We were able to successfully outline and three-dimensionally reconstruct the following facial muscles: pars labialis orbicularis oris, m. levatro labii superioris alaeque nasi, m. levator labii superioris, m. zygomaticus major and minor, m. depressor anguli oris, m. depressor labii inferioris, m. mentalis, m. buccinator, and m. orbicularis oculi. 3D reconstruction of the lip muscles should be taken into consideration in order to improve the accuracy and individualization of existing 3D facial soft tissue models. More studies are needed to further develop efficient methods for segmentation in this field. (orig.)

  15. Three-dimensional appearance of the lips muscles with three-dimensional isotropic MRI: in vivo study.

    Science.gov (United States)

    Olszewski, Raphael; Liu, Y; Duprez, T; Xu, T M; Reychler, H

    2009-06-01

    Our knowledge of facial muscles is based primarily on atlases and cadaveric studies. This study describes a non-invasive in vivo method (3D MRI) for segmenting and reconstructing facial muscles in a three-dimensional fashion. Three-dimensional (3D), T1-weighted, 3 Tesla, isotropic MRI was applied to a subject. One observer performed semi-automatic segmentation using the Editor module from the 3D Slicer software (Harvard Medical School, Boston, MA, USA), version 3.2. We were able to successfully outline and three-dimensionally reconstruct the following facial muscles: pars labialis orbicularis oris, m. levatro labii superioris alaeque nasi, m. levator labii superioris, m. zygomaticus major and minor, m. depressor anguli oris, m. depressor labii inferioris, m. mentalis, m. buccinator, and m. orbicularis oculi. 3D reconstruction of the lip muscles should be taken into consideration in order to improve the accuracy and individualization of existing 3D facial soft tissue models. More studies are needed to further develop efficient methods for segmentation in this field.

  16. An electromechanical based deformable model for soft tissue simulation.

    Science.gov (United States)

    Zhong, Yongmin; Shirinzadeh, Bijan; Smith, Julian; Gu, Chengfan

    2009-11-01

    Soft tissue deformation is of great importance to surgery simulation. Although a significant amount of research efforts have been dedicated to simulating the behaviours of soft tissues, modelling of soft tissue deformation is still a challenging problem. This paper presents a new deformable model for simulation of soft tissue deformation from the electromechanical viewpoint of soft tissues. Soft tissue deformation is formulated as a reaction-diffusion process coupled with a mechanical load. The mechanical load applied to a soft tissue to cause a deformation is incorporated into the reaction-diffusion system, and consequently distributed among mass points of the soft tissue. Reaction-diffusion of mechanical load and non-rigid mechanics of motion are combined to govern the simulation dynamics of soft tissue deformation. An improved reaction-diffusion model is developed to describe the distribution of the mechanical load in soft tissues. A three-layer artificial cellular neural network is constructed to solve the reaction-diffusion model for real-time simulation of soft tissue deformation. A gradient based method is established to derive internal forces from the distribution of the mechanical load. Integration with a haptic device has also been achieved to simulate soft tissue deformation with haptic feedback. The proposed methodology does not only predict the typical behaviours of living tissues, but it also accepts both local and large-range deformations. It also accommodates isotropic, anisotropic and inhomogeneous deformations by simple modification of diffusion coefficients.

  17. Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software.

    Science.gov (United States)

    Idkaidek, Ashraf; Jasiuk, Iwona

    2015-12-01

    We aim to achieve a fast and accurate three-dimensional (3D) simulation of a porcine liver deformation under a surgical tool pressure using the commercial finite element software Abaqus. The liver geometry is obtained using magnetic resonance imaging, and a nonlinear constitutive law is employed to capture large deformations of the tissue. Effects of implicit versus explicit analysis schemes, element type, and mesh density on computation time are studied. We find that Abaqus explicit and implicit solvers are capable of simulating nonlinear soft tissue deformations accurately using first-order tetrahedral elements in a relatively short time by optimizing the element size. This study provides new insights and guidance on accurate and relatively fast nonlinear soft tissue simulations. Such simulations can provide force feedback during robotic surgery and allow visualization of tissue deformations for surgery planning and training of surgical residents.

  18. Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling

    Science.gov (United States)

    Aoki, Michio; Juang, Jia-Yang

    2018-02-01

    Conventional manufacturing techniques-moulding, machining and casting-exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures.

  19. Log corrections to entropy of three dimensional black holes with soft hair

    Science.gov (United States)

    Grumiller, Daniel; Perez, Alfredo; Tempo, David; Troncoso, Ricardo

    2017-08-01

    We calculate log corrections to the entropy of three-dimensional black holes with "soft hairy" boundary conditions. Their thermodynamics possesses some special features that preclude a naive direct evaluation of these corrections, so we follow two different approaches. The first one exploits that the BTZ black hole belongs to the spectrum of Brown-Henneaux as well as soft hairy boundary conditions, so that the respective log corrections are related through a suitable change of the thermodynamic ensemble. In the second approach the analogue of modular invariance is considered for dual theories with anisotropic scaling of Lifshitz type with dynamical exponent z at the boundary. On the gravity side such scalings arise for KdV-type boundary conditions, which provide a specific 1-parameter family of multi-trace deformations of the usual AdS3/CFT2 setup, with Brown-Henneaux corresponding to z = 1 and soft hairy boundary conditions to the limiting case z → 0+. Both approaches agree in the case of BTZ black holes for any non-negative z. Finally, for soft hairy boundary conditions we show that not only the leading term, but also the log corrections to the entropy of black flowers endowed with affine û (1) soft hair charges exclusively depend on the zero modes and hence coincide with the ones for BTZ black holes.

  20. Media Compositions for Three-Dimensional Mammalian Tissue Growth under Microgravity Culture Conditions

    Science.gov (United States)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue.The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  1. Media Compositions for Three Dimensional Mammalian Tissue Growth Under Microgravity Culture Conditions

    Science.gov (United States)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  2. Three-dimensional evaluation of changes in lip position from before to after orthodontic appliance removal.

    Science.gov (United States)

    Eidson, Lindsey; Cevidanes, Lucia H S; de Paula, Leonardo Koerich; Hershey, H Garland; Welch, Gregory; Rossouw, P Emile

    2012-09-01

    Our objectives were to develop a reproducible method of superimposing 3-dimensional images for measuring soft-tissue changes over time and to use this method to document changes in lip position after the removal of orthodontic appliances. Three-dimensional photographs of 50 subjects were made in repose and maximum intercuspation before and after orthodontic appliance removal with a stereo camera. For reliability assessment, 2 photographs were repeated for 15 patients. The images were registered on stable areas, and surface-to-surface measurements were made for defined landmarks. Mean changes were below the level of clinical significance (set at 1.5 mm). However, 51% and 18% of the subjects experienced changes greater than 1.5 mm at the commissures and lower lips, respectively. The use of serial 3-dimensional photographs is a reliable method of documenting soft-tissue changes. Soft-tissue changes after appliance removal are not clinically significant; however, there is great individual variability. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  3. Clinical management of soft tissue sarcomas

    International Nuclear Information System (INIS)

    Pinedo, H.M.; Verweij, J.

    1986-01-01

    This book is concerned with the clinical management of soft tissue sarcomas. Topics covered include: Radiotherapy; Pathology of soft tissue sarcomas; Surgical treatment of soft tissue sarcomas; and Chemotherapy in advanced soft tissue sarcomas

  4. Review of soft tissue augmentation in the face

    Directory of Open Access Journals (Sweden)

    James Newman

    2009-08-01

    Full Text Available James NewmanFacial Plastic Surgery, Stanford University Medical Center, Palo Alto, CAFacial Plastic Surgery, Stanford University Medical Center, Palo Alto, CA, USAAbstract: A primary pillar of facial rejuvenation is the replacement of soft tissue atrophy via a variety of augmentation techniques. The techniques can be classified into three categories, skeletal onlay grafts, subcutaneous volumizers, and dermal fillers. While onlay grafts and subcutaneous volumizers have the most persistent results, the emergence of improved dermal fillers in the past 5 years has become increasingly popular. An accurate diagnosis of the level(s of soft tissue atrophy in the face needs to be made prior to selection of the category or combination of techniques. In the younger patient, the selection of a dermal filler or combination of fillers can be adequate for treatment. A comparison of the composition and characteristics of the available dermal fillers are discussed in detail to assist the clinician in understanding the actual mechanism of soft tissue augmentation. In the more advanced aging face, a combination of the three categories may be necessary to produce optimal results. Just as dermal fillers have become more differentiated to increase their longevity, the non-injectible long-lasting implants are becoming more developed to mimic accurate viscoelastic properties of the facial soft tissues. All three classes of augmentation techniques can provide patients with very satisfactory results as part of overall facial rejuvenation.Keywords: soft tissue, dermal fillers, facial implants, facial augmentation

  5. Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces

    Science.gov (United States)

    Boys, Alexander J.; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J.; Estroff, Lara A.

    2017-01-01

    Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors. PMID:29333332

  6. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing

    Science.gov (United States)

    Lind, Johan U.; Busbee, Travis A.; Valentine, Alexander D.; Pasqualini, Francesco S.; Yuan, Hongyan; Yadid, Moran; Park, Sung-Jin; Kotikian, Arda; Nesmith, Alexander P.; Campbell, Patrick H.; Vlassak, Joost J.; Lewis, Jennifer A.; Parker, Kevin K.

    2017-03-01

    Biomedical research has relied on animal studies and conventional cell cultures for decades. Recently, microphysiological systems (MPS), also known as organs-on-chips, that recapitulate the structure and function of native tissues in vitro, have emerged as a promising alternative. However, current MPS typically lack integrated sensors and their fabrication requires multi-step lithographic processes. Here, we introduce a facile route for fabricating a new class of instrumented cardiac microphysiological devices via multimaterial three-dimensional (3D) printing. Specifically, we designed six functional inks, based on piezo-resistive, high-conductance, and biocompatible soft materials that enable integration of soft strain gauge sensors within micro-architectures that guide the self-assembly of physio-mimetic laminar cardiac tissues. We validated that these embedded sensors provide non-invasive, electronic readouts of tissue contractile stresses inside cell incubator environments. We further applied these devices to study drug responses, as well as the contractile development of human stem cell-derived laminar cardiac tissues over four weeks.

  7. Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses

    Science.gov (United States)

    Wu, Zi Liang; Moshe, Michael; Greener, Jesse; Therien-Aubin, Heloise; Nie, Zhihong; Sharon, Eran; Kumacheva, Eugenia

    2013-03-01

    Although Nature has always been a common source of inspiration in the development of artificial materials, only recently has the ability of man-made materials to produce complex three-dimensional (3D) structures from two-dimensional sheets been explored. Here we present a new approach to the self-shaping of soft matter that mimics fibrous plant tissues by exploiting small-scale variations in the internal stresses to form three-dimensional morphologies. We design single-layer hydrogel sheets with chemically distinct, fibre-like regions that exhibit differential shrinkage and elastic moduli under the application of external stimulus. Using a planar-to-helical three-dimensional shape transformation as an example, we explore the relation between the internal architecture of the sheets and their transition to cylindrical and conical helices with specific structural characteristics. The ability to engineer multiple three-dimensional shape transformations determined by small-scale patterns in a hydrogel sheet represents a promising step in the development of programmable soft matter.

  8. Integrated three-dimensional display of MR, CT, and PET images of the brain

    International Nuclear Information System (INIS)

    Levin, D.N.; Herrmann, A.; Chen, G.T.Y.

    1988-01-01

    MR, CT, and PET studies depict complementary aspects of brain anatomy and function. The authors' own image-processing software and a Pixar image computer were used to create three-dimensional models of brain soft tissues from MR images, of the skull and calcifications from CT scans, and of brain metabolism from PET images. An image correlation program, based on surface fitting, was used for retrospective registration and merging of these three-dimensional models. The results are demonstrated in a video clip showing how the operator may rotate and perform electronic surgery on the integrated, multimodality three-dimensional model of each patient's brain

  9. Soft-tissue facial characteristics of attractive Chinese men compared to normal men.

    Science.gov (United States)

    Wu, Feng; Li, Junfang; He, Hong; Huang, Na; Tang, Youchao; Wang, Yuanqing

    2015-01-01

    To compare the facial characteristics of attractive Chinese men with those of reference men. The three-dimensional coordinates of 50 facial landmarks were collected in 40 healthy reference men and in 40 "attractive" men, soft tissue facial angles, distances, areas, and volumes were computed and compared using analysis of variance. When compared with reference men, attractive men shared several similar facial characteristics: relatively large forehead, reduced mandible, and rounded face. They had a more acute soft tissue profile, an increased upper facial width and middle facial depth, larger mouth, and more voluminous lips than reference men. Attractive men had several facial characteristics suggesting babyness. Nonetheless, each group of men was characterized by a different development of these features. Esthetic reference values can be a useful tool for clinicians, but should always consider the characteristics of individual faces.

  10. Three-Dimensional Geometry of Collagenous Tissues by Second Harmonic Polarimetry.

    Science.gov (United States)

    Reiser, Karen; Stoller, Patrick; Knoesen, André

    2017-06-01

    Collagen is a biological macromolecule capable of second harmonic generation, allowing label-free detection in tissues; in addition, molecular orientation can be determined from the polarization dependence of the second harmonic signal. Previously we reported that in-plane orientation of collagen fibrils could be determined by modulating the polarization angle of the laser during scanning. We have now extended this method so that out-of-plane orientation angles can be determined at the same time, allowing visualization of the 3-dimensional structure of collagenous tissues. This approach offers advantages compared with other methods for determining out-of-plane orientation. First, the orientation angles are directly calculated from the polarimetry data obtained in a single scan, while other reported methods require data from multiple scans, use of iterative optimization methods, application of fitting algorithms, or extensive post-optical processing. Second, our method does not require highly specialized instrumentation, and thus can be adapted for use in almost any nonlinear optical microscopy setup. It is suitable for both basic and clinical applications. We present three-dimensional images of structurally complex collagenous tissues that illustrate the power of such 3-dimensional analyses to reveal the architecture of biological structures.

  11. Soft tissue modelling with conical springs.

    Science.gov (United States)

    Omar, Nadzeri; Zhong, Yongmin; Jazar, Reza N; Subic, Aleksandar; Smith, Julian; Shirinzadeh, Bijan

    2015-01-01

    This paper presents a new method for real-time modelling soft tissue deformation. It improves the traditional mass-spring model with conical springs to deal with nonlinear mechanical behaviours of soft tissues. A conical spring model is developed to predict soft tissue deformation with reference to deformation patterns. The model parameters are formulated according to tissue deformation patterns and the nonlinear behaviours of soft tissues are modelled with the stiffness variation of conical spring. Experimental results show that the proposed method can describe different tissue deformation patterns using one single equation and also exhibit the typical mechanical behaviours of soft tissues.

  12. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink

    Science.gov (United States)

    Pati, Falguni; Jang, Jinah; Ha, Dong-Heon; Won Kim, Sung; Rhie, Jong-Won; Shim, Jin-Hyung; Kim, Deok-Ho; Cho, Dong-Woo

    2014-06-01

    The ability to print and pattern all the components that make up a tissue (cells and matrix materials) in three dimensions to generate structures similar to tissues is an exciting prospect of bioprinting. However, the majority of the matrix materials used so far for bioprinting cannot represent the complexity of natural extracellular matrix (ECM) and thus are unable to reconstitute the intrinsic cellular morphologies and functions. Here, we develop a method for the bioprinting of cell-laden constructs with novel decellularized extracellular matrix (dECM) bioink capable of providing an optimized microenvironment conducive to the growth of three-dimensional structured tissue. We show the versatility and flexibility of the developed bioprinting process using tissue-specific dECM bioinks, including adipose, cartilage and heart tissues, capable of providing crucial cues for cells engraftment, survival and long-term function. We achieve high cell viability and functionality of the printed dECM structures using our bioprinting method.

  13. A Review of Three-Dimensional Printing in Tissue Engineering.

    Science.gov (United States)

    Sears, Nick A; Seshadri, Dhruv R; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth

    2016-08-01

    Recent advances in three-dimensional (3D) printing technologies have led to a rapid expansion of applications from the creation of anatomical training models for complex surgical procedures to the printing of tissue engineering constructs. In addition to achieving the macroscale geometry of organs and tissues, a print layer thickness as small as 20 μm allows for reproduction of the microarchitectures of bone and other tissues. Techniques with even higher precision are currently being investigated to enable reproduction of smaller tissue features such as hepatic lobules. Current research in tissue engineering focuses on the development of compatible methods (printers) and materials (bioinks) that are capable of producing biomimetic scaffolds. In this review, an overview of current 3D printing techniques used in tissue engineering is provided with an emphasis on the printing mechanism and the resultant scaffold characteristics. Current practical challenges and technical limitations are emphasized and future trends of bioprinting are discussed.

  14. Three-dimensional prediction of the human eyeball and canthi for craniofacial reconstruction using cone-beam computed tomography.

    Science.gov (United States)

    Kim, Sang-Rok; Lee, Kyung-Min; Cho, Jin-Hyoung; Hwang, Hyeon-Shik

    2016-04-01

    An anatomical relationship between the hard and soft tissues of the face is mandatory for facial reconstruction. The purpose of this study was to investigate the positions of the eyeball and canthi three-dimensionally from the relationships between the facial hard and soft tissues using cone-beam computed tomography (CBCT). CBCT scan data of 100 living subjects were used to obtain the measurements of facial hard and soft tissues. Stepwise multiple regression analyses were carried out using the hard tissue measurements in the orbit, nasal bone, nasal cavity and maxillary canine to predict the most probable positions of the eyeball and canthi within the orbit. Orbital width, orbital height, and orbital depth were strong predictors of the eyeball and canthi position. Intercanine width was also a predictor of the mediolateral position of the eyeball. Statistically significant regression models for the positions of the eyeball and canthi could be derived from the measurements of orbit and maxillary canine. These results suggest that CBCT data can be useful in predicting the positions of the eyeball and canthi three-dimensionally. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Soft Tissue Sarcoma—Health Professional Version

    Science.gov (United States)

    Soft tissue sarcomas are malignant tumors that arise in any of the mesodermal tissues of the extremities, trunk and retroperitoneum, or head and neck. Soft tissue sarcomas may be heterogeneous. Find evidence-based information on soft tissue sarcoma treatment and research.

  16. Three-dimensional analysis and classification of arteries in the skin and subcutaneous adipofascial tissue by computer graphics imaging.

    Science.gov (United States)

    Nakajima, H; Minabe, T; Imanishi, N

    1998-09-01

    To develop new types of surgical flaps that utilize portions of the skin and subcutaneous tissue (e.g., a thin flap or an adipofascial flap), three-dimensional investigation of the vasculature in the skin and subcutaneous tissue has been anticipated. In the present study, total-body arterial injection and three-dimensional imaging of the arteries by computer graphics were performed. The full-thickness skin and subcutaneous adipofascial tissue samples, which were obtained from fresh human cadavers injected with radio-opaque medium, were divided into three distinct layers. Angiograms of each layer were introduced into a personal computer to construct three-dimensional images. On a computer monitor, each artery was shown color-coded according to the three portions: the deep adipofascial layer, superficial adipofascial layer, and dermis. Three-dimensional computerized images of each artery in the skin and subcutaneous tissue revealed the components of each vascular plexus and permitted their classification into six types. The distribution of types in the body correlated with the tissue mobility of each area. Clinically, appreciation of the three-dimensional structure of the arteries allowed the development of several new kinds of flaps.

  17. [Skin and Soft Tissue Infections Due to Corynebacterium ulcerans - Case Reports].

    Science.gov (United States)

    Jenssen, Christian; Schwede, Ilona; Neumann, Volker; Pietsch, Cristine; Handrick, Werner

    2017-10-01

    History and clinical findings  We report on three patients suffering from skin and soft tissue infections of the legs due to toxigenic Corynebacterium ulcerans strains. In all three patients, there was a predisposition due to chronic diseases. Three patients had domestic animals (cat, dog) in their households. Investigations and diagnosis  A mixed bacterial flora including Corynebacterium ulcerans was found in wound swab samples. Diphtheric toxin was produced by the Corynebacterium ulcerans strains in all three cases. Treatment and course  In all three patients, successful handling of the skin and soft tissue infections was possible by combining local treatment with antibiotics. Diphtheria antitoxin was not administered in any case. Conclusion  Based on a review of the recent literature pathogenesis, clinical symptoms and signs, diagnostics and therapy of skin and soft tissue infections due to Corynebacterium ulcerans are discussed. Corynebacterium ulcerans should be considered as a potential cause of severe skin and soft tissue infections. Occupational or domestic animal contacts should be evaluated. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Culture of three-dimensional tissue model and its application in bystander-effect research

    International Nuclear Information System (INIS)

    Wu Ruqun; Xu An; Wu Lijun; Hu Burong

    2012-01-01

    Compared with the cultured monolayer (2D) cells, three-dimensional (3D) tissue could be more similar to the environment in vivo including the physical support, chemical factors, cell-cell and cell-matrix interaction and so on. With the development of three-dimensional cell culture techniques (TDCC), 3D tissue is widely used in the areas of bystander effect research. This review focuses on introducing the TDCC method and its application in bystander-effect research. First, the development process of 3D tissue culture method was introduced. Secondly, the induction of radiation induced bystander effects both in 2D cell and 3D tissue and its mechanisms were reviewed. Finally, because heavy ion (carbon ion beam) has been developed as a useful tool to cure solid cancer, and the 3D tissue model is an ideal material to study the damages on body after being irradiated and to understand the underlying mechanisms, future study about heavy ion radiation inducing bystander effect in 3D tissue was discussed. (authors)

  19. Engineering Three-dimensional Epithelial Tissues Embedded within Extracellular Matrix.

    Science.gov (United States)

    Piotrowski-Daspit, Alexandra S; Nelson, Celeste M

    2016-07-10

    The architecture of branched organs such as the lungs, kidneys, and mammary glands arises through the developmental process of branching morphogenesis, which is regulated by a variety of soluble and physical signals in the microenvironment. Described here is a method created to study the process of branching morphogenesis by forming engineered three-dimensional (3D) epithelial tissues of defined shape and size that are completely embedded within an extracellular matrix (ECM). This method enables the formation of arrays of identical tissues and enables the control of a variety of environmental factors, including tissue geometry, spacing, and ECM composition. This method can also be combined with widely used techniques such as traction force microscopy (TFM) to gain more information about the interactions between cells and their surrounding ECM. The protocol can be used to investigate a variety of cell and tissue processes beyond branching morphogenesis, including cancer invasion.

  20. Soft-tissue tension total knee arthroplasty.

    Science.gov (United States)

    Asano, Hiroshi; Hoshino, Akiho; Wilton, Tim J

    2004-08-01

    It is far from clear how best to define the proper strength of soft-tissue tensioning in total knee arthroplasty (TKA). We attached a torque driver to the Monogram balancer/tensor device and measured soft-tissue tension in full extension and 90 degrees flexion during TKA. In our surgical procedure, when we felt proper soft-tissue tension was being applied, the mean distraction force was noted to be 126N in extension and 121N in flexion. There was no significant correlation between soft-tissue tension and the postoperative flexion angle finally achieved. To the best of our knowledge, this is the first study to assess the actual distraction forces in relation to soft-tissue tension in TKA. Further study may reveal the most appropriate forces to achieve proper soft-tissue tension in the wide variety of circumstances presenting at knee arthroplasty.

  1. Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering.

    Science.gov (United States)

    Obregon, F; Vaquette, C; Ivanovski, S; Hutmacher, D W; Bertassoni, L E

    2015-09-01

    Craniofacial tissues are organized with complex 3-dimensional (3D) architectures. Mimicking such 3D complexity and the multicellular interactions naturally occurring in craniofacial structures represents one of the greatest challenges in regenerative dentistry. Three-dimensional bioprinting of tissues and biological structures has been proposed as a promising alternative to address some of these key challenges. It enables precise manufacture of various biomaterials with complex 3D architectures, while being compatible with multiple cell sources and being customizable to patient-specific needs. This review describes different 3D bioprinting methods and summarizes how different classes of biomaterials (polymer hydrogels, ceramics, composites, and cell aggregates) may be used for 3D biomanufacturing of scaffolds, as well as craniofacial tissue analogs. While the fabrication of scaffolds upon which cells attach, migrate, and proliferate is already in use, printing of all the components that form a tissue (living cells and matrix materials together) to produce tissue constructs is still in its early stages. In summary, this review seeks to highlight some of the key advantages of 3D bioprinting technology for the regeneration of craniofacial structures. Additionally, it stimulates progress on the development of strategies that will promote the translation of craniofacial tissue engineering from the laboratory bench to the chair side. © International & American Associations for Dental Research 2015.

  2. Radiosensitivity of soft tissue sarcomas

    International Nuclear Information System (INIS)

    Hirano, Toru; Iwasaki, Katsuro; Suzuki, Ryohei; Monzen, Yoshio; Hombo, Zenichiro

    1989-01-01

    The correlation between the effectiveness of radiation therapy and the histology of soft tissue sarcomas was investigated. Of 31 cases with a soft tissue sarcoma of an extremity treated by conservative surgery and postoperative radiation of 3,000-6,000 cGy, local recurrence occurred in 12; 5 out of 7 synovial sarcomas, 4 of 9 MFH, one of 8 liposarcomas, none of 4 rhabdomyosarcomas and 2 of 3 others. As for the histological subtyping, the 31 soft tissue sarcomas were divided into spindle cell, pleomorphic cell, myxoid and round cell type, and recurrence rates were 75%, 33.3%, 16.7% and 0%, respectively. From the remarkable difference in recurrent rate, it was suggested that round cell and myxoid type of soft tissue sarcomas showed a high radiosensitivity compared to the spindle cell type with low sensitivity. Clarifying the degree of radiosensitivity is helpful in deciding on the management of limb salvage in soft tissue sarcomas of an extremity. (author)

  3. Three-dimensional photogrammetry for surgical planning of tissue expansion in hemifacial microsomia.

    Science.gov (United States)

    Jayaratne, Yasas S N; Lo, John; Zwahlen, Roger A; Cheung, Lim K

    2010-12-01

    We aim to illustrate the applications of 3-dimensional (3-D) photogrammetry for surgical planning and longitudinal assessment of the volumetric changes in hemifacial microsomia. A 3-D photogrammetric system was employed for planning soft tissue expansion and transplantation of a vascularized scapular flap for a patient with hemifacial microsomia. The facial deficiency was calculated by superimposing a mirror of the normal side on the preoperative image. Postsurgical volumetric changes were monitored by serial superimposition of 3-D images. A total of 31 cm(3) of tissue expansion was achieved within a period of 4 weeks. A scapular free flap measuring 8 cm × 5 cm was transplanted to augment the facial deficiency. Postsurgical shrinkage of the flap was observed mainly in the first 3 months and it was minimal thereafter. 3-D photogrammetry can be used as a noninvasive objective tool for assessing facial deformity, planning, and postoperative follow-up of surgical correction of facial asymmetry.

  4. Applications of two- and three-dimensional microstructures formed by soft lithographic techniques

    Science.gov (United States)

    Jackman, Rebecca Jane

    This thesis describes the development of several soft lithographic techniques. Each of these techniques has applications in two- and three-dimensional microfabrication or in the design of microreactor systems. All soft lithographic techniques make use of an elastomeric element that is formed by casting and curing a prepolymer against a planar substrate having three-dimensional (3D) relief. Chapters 1--3 (and Appendices I--VII) describe the use of a soft lithographic technique, microcontact printing (muCP), to produce patterns with micron-scale resolution on both planar and non-planar substrates. Electrodeposition transforms patterns produced by muCP into functional, 3D structures. It is an additive method that: (i) strengthens the metallic patterns; (ii) increases the conductivity of the structures; (iii) enables high-strain deformations to be performed on the structures; and (iv) welds non-connected structures. Applications for cylindrical microstructures, formed by the combination of muCP and electroplating, are presented. Some important classes of materials---biological macromolecules, gels, sol-gels, some polymers, low molecular weight organic and organometallic species---are often incompatible with conventional patterning techniques. Chapters 4 and 5 describe the use of elastomeric membranes as dry resists or as masks in dry lift-off to produce simple features as small as 5 mum from these and other materials on both planar and non-planar surfaces. These procedures are "dry" because the membranes conformed and sealed reversibly to surfaces without the use of solvents. This technique, for example, produced a simple electroluminescent device. By using two membranes simultaneously, multicolored, photoluminescent patterns of organic materials were created. Membranes were also used in sequential, dry-lift off steps to produce patterns with greater complexity. Chapter 6 (and Appendix XII) demonstrates that the ability to mold elastomers enables the fabrication of

  5. Three-dimensional cranio-facial computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi Muccelli, R; Stagul, F; Pozzi Muccelli, F; Zuiani, C; Smathers, R

    1986-01-01

    Computed tomography allows today to reconstruct three-dimensional (eD) images fram axial scans. The authors report their experience in cranio-facial pathology achived in two Departments of Radiology (University of Trieste, Italy and University of Standford, California). 3D images have been realized using two different softwares, one of which allows to reconstruct both soft tissue and bone structures. The application in maxillo-facial traumas, cranio-facial malformations and head tumours are disscussed. 3D images turned out to be very useful for the optimal visualization and for the spatial demostration of the lesion and have potential applications in cranio-facial surgery and radiotherapy.

  6. Three-dimensional cranio-facial computed tomography

    International Nuclear Information System (INIS)

    Pozzi Muccelli, R.; Stagul, F.; Pozzi Muccelli, F.; Zuiani, C.; Smathers, R.

    1986-01-01

    Computed tomography allows today to reconstruct three-dimensional (eD) images fram axial scans. The authors report their experience in cranio-facial pathology achived in two Departments of Radiology (University of Trieste, Italy and University of Standford, California). 3D images have been realized using two different softwares, one of which allows to reconstruct both soft tissue and bone structures. The application in maxillo-facial traumas, cranio-facial malformations and head tumours are disscussed. 3D images turned out to be very useful for the optimal visualization and for the spatial demostration of the lesion and have potential applications in cranio-facial surgery and radiotherapy

  7. Three-dimensional CT diagnosis of myositis ossificans of the sacrospinous ligament

    International Nuclear Information System (INIS)

    Agrons, G.A.; Markowitz, R.I.; Bronson, W.E.

    1993-01-01

    We present the case of a 4-year-old female with a complex fracture of the left hemipelvis who, on follow-up CT imaging, developed new ossific densities within the peripelvic soft tissues of the contralateral side. Three-dimensional surface reformations of the pelvis demonstrated myositis ossificans along the course of the right sacrospinous ligament, thus elucidating unsuspected ligamentous injury and implying prior instability. (orig.)

  8. Three-dimensional CT diagnosis of myositis ossificans of the sacrospinous ligament

    Energy Technology Data Exchange (ETDEWEB)

    Agrons, G.A. (Children' s Hospital of Philadelphia, PA (United States)); Markowitz, R.I. (Children' s Hospital of Philadelphia, PA (United States)); Bronson, W.E. (Children' s Hospital of Philadelphia, PA (United States))

    1993-04-01

    We present the case of a 4-year-old female with a complex fracture of the left hemipelvis who, on follow-up CT imaging, developed new ossific densities within the peripelvic soft tissues of the contralateral side. Three-dimensional surface reformations of the pelvis demonstrated myositis ossificans along the course of the right sacrospinous ligament, thus elucidating unsuspected ligamentous injury and implying prior instability. (orig.)

  9. Imaging of musculoskeletal soft tissue infections

    Energy Technology Data Exchange (ETDEWEB)

    Turecki, Marcin B.; Taljanovic, Mihra S.; Holden, Dean A.; Hunter, Tim B.; Rogers, Lee F. [University of Arizona HSC, Department of Radiology, Tucson, AZ (United States); Stubbs, Alana Y. [Southern Arizona VA Health Care System, Department of Radiology, Tucson, AZ (United States); Graham, Anna R. [University of Arizona HSC, Department of Pathology, Tucson, AZ (United States)

    2010-10-15

    Prompt and appropriate imaging work-up of the various musculoskeletal soft tissue infections aids early diagnosis and treatment and decreases the risk of complications resulting from misdiagnosis or delayed diagnosis. The signs and symptoms of musculoskeletal soft tissue infections can be nonspecific, making it clinically difficult to distinguish between disease processes and the extent of disease. Magnetic resonance imaging (MRI) is the imaging modality of choice in the evaluation of soft tissue infections. Computed tomography (CT), ultrasound, radiography and nuclear medicine studies are considered ancillary. This manuscript illustrates representative images of superficial and deep soft tissue infections such as infectious cellulitis, superficial and deep fasciitis, including the necrotizing fasciitis, pyomyositis/soft tissue abscess, septic bursitis and tenosynovitis on different imaging modalities, with emphasis on MRI. Typical histopathologic findings of soft tissue infections are also presented. The imaging approach described in the manuscript is based on relevant literature and authors' personal experience and everyday practice. (orig.)

  10. Imaging of musculoskeletal soft tissue infections

    International Nuclear Information System (INIS)

    Turecki, Marcin B.; Taljanovic, Mihra S.; Holden, Dean A.; Hunter, Tim B.; Rogers, Lee F.; Stubbs, Alana Y.; Graham, Anna R.

    2010-01-01

    Prompt and appropriate imaging work-up of the various musculoskeletal soft tissue infections aids early diagnosis and treatment and decreases the risk of complications resulting from misdiagnosis or delayed diagnosis. The signs and symptoms of musculoskeletal soft tissue infections can be nonspecific, making it clinically difficult to distinguish between disease processes and the extent of disease. Magnetic resonance imaging (MRI) is the imaging modality of choice in the evaluation of soft tissue infections. Computed tomography (CT), ultrasound, radiography and nuclear medicine studies are considered ancillary. This manuscript illustrates representative images of superficial and deep soft tissue infections such as infectious cellulitis, superficial and deep fasciitis, including the necrotizing fasciitis, pyomyositis/soft tissue abscess, septic bursitis and tenosynovitis on different imaging modalities, with emphasis on MRI. Typical histopathologic findings of soft tissue infections are also presented. The imaging approach described in the manuscript is based on relevant literature and authors' personal experience and everyday practice. (orig.)

  11. Tissue Engineering Applications of Three-Dimensional Bioprinting.

    Science.gov (United States)

    Zhang, Xiaoying; Zhang, Yangde

    2015-07-01

    Recent advances in tissue engineering have adapted the additive manufacturing technology, also known as three-dimensional printing, which is used in several industrial applications, for the fabrication of bioscaffolds and viable tissue and/or organs to overcome the limitations of other in vitro conventional methods. 3D bioprinting technology has gained enormous attention as it enabled 3D printing of a multitude of biocompatible materials, different types of cells and other supporting growth factors into complex functional living tissues in a 3D format. A major advantage of this technology is its ability for simultaneously 3D printing various cell types in defined spatial locations, which makes this technology applicable to regenerative medicine to meet the need for suitable for transplantation suitable organs and tissues. 3D bioprinting is yet to successfully overcome the many challenges related to building 3D structures that closely resemble native organs and tissues, which are complex structures with defined microarchitecture and a variety of cell types in a confined area. An integrated approach with a combination of technologies from the fields of engineering, biomaterials science, cell biology, physics, and medicine is required to address these complexities. Meeting this challenge is being made possible by directing the 3D bioprinting to manufacture biomimetic-shaped 3D structures, using organ/tissue images, obtained from magnetic resonance imaging and computerized tomography, and employing computer-aided design and manufacturing technologies. Applications of 3D bioprinting include the generation of multilayered skin, bone, vascular grafts, heart valves, etc. The current 3D bioprinting technologies need to be improved with respect to the mechanical strength and integrity in the manufactured constructs as the presently used biomaterials are not of optimal viscosity. A better understanding of the tissue/organ microenvironment, which consists of multiple types of

  12. Electroroentgenography in diagnosis of soft tissue tumors

    International Nuclear Information System (INIS)

    Vintergal'ter, S.F.; Vishevnik, B.I.

    1989-01-01

    Clinical, electroroentgenographic and X-ray studies of soft tissues were carried out in 425 patients with malignant (75), benign (246) soft tissue tumors and in cases of such soft tissue pathologies of the extremities and body (104). The paper discusses the technicalities of electroroentgenography which produces on one roentgenogram separate images of all components of soft tissues and bones in a given segment. A comparions of image quality assured by electroroentgeno- and roentgenography did not establish any significant difference in soft tissue tumor semiotics

  13. Computational model of soft tissues in the human upper airway.

    Science.gov (United States)

    Pelteret, J-P V; Reddy, B D

    2012-01-01

    This paper presents a three-dimensional finite element model of the tongue and surrounding soft tissues with potential application to the study of sleep apnoea and of linguistics and speech therapy. The anatomical data was obtained from the Visible Human Project, and the underlying histological data was also extracted and incorporated into the model. Hyperelastic constitutive models were used to describe the material behaviour, and material incompressibility was accounted for. An active Hill three-element muscle model was used to represent the muscular tissue of the tongue. The neural stimulus for each muscle group was determined through the use of a genetic algorithm-based neural control model. The fundamental behaviour of the tongue under gravitational and breathing-induced loading is investigated. It is demonstrated that, when a time-dependent loading is applied to the tongue, the neural model is able to control the position of the tongue and produce a physiologically realistic response for the genioglossus.

  14. Soft tissue tumors - imaging methods

    International Nuclear Information System (INIS)

    Arlart, I.P.

    1985-01-01

    Soft Tissue Tumors - Imaging Methods: Imaging methods play an important diagnostic role in soft tissue tumors concerning a preoperative evaluation of localization, size, topographic relationship, dignity, and metastatic disease. The present paper gives an overview about diagnostic methods available today such as ultrasound, thermography, roentgenographic plain films and xeroradiography, radionuclide methods, computed tomography, lymphography, angiography, and magnetic resonance imaging. Besides sonography particularly computed tomography has the most important diagnostic value in soft tissue tumors. The application of a recently developed method, the magnetic resonance imaging, cannot yet be assessed in its significance. (orig.) [de

  15. Bioprinted three dimensional human tissues for toxicology and disease modeling.

    Science.gov (United States)

    Nguyen, Deborah G; Pentoney, Stephen L

    2017-03-01

    The high rate of attrition among clinical-stage therapies, due largely to an inability to predict human toxicity and/or efficacy, underscores the need for in vitro models that better recapitulate in vivo human biology. In much the same way that additive manufacturing has revolutionized the production of solid objects, three-dimensional (3D) bioprinting is enabling the automated production of more architecturally and functionally accurate in vitro tissue culture models. Here, we provide an overview of the most commonly used bioprinting approaches and how they are being used to generate complex in vitro tissues for use in toxicology and disease modeling research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. [Inconformity between soft tissue defect and bony defect in incomplete cleft palate].

    Science.gov (United States)

    Zhou, Xia; Ma, Lian

    2014-12-01

    To evaluate the inconformity between soft tissue defect and bony defect by observing the cleft extent of palate with complete secondary palate bony cleft in incomplete cleft palate patient. The patients with incomplete cleft palate treated in Hospital of Stomatology Peking University from July 2012 to June 2013 were reviewed, of which 75 cases with complete secondary palate bony cleft were selected in this study. The CT scan and intraoral photograph were taken before operation. The patients were classified as four types according to the extent of soft tissue defect. Type 1: soft tissue defect reached incisive foremen region, Type 2 was hard and soft cleft palate, Type 3 soft cleft palate and Type 4 submucous cleft palate. Type 1 was defined as conformity group (CG). The other three types were defined as inconformity group (ICG) and divided into three subgroups (ICG-I), (ICG-II) and (ICG-III). Fifty-seven patients were in ICG group, and the rate of inconformity was 76% (57/75). The percentage of ICG-I, ICG-II and ICG-III was 47% (27/57), 23% (13/57) and 30% (17/57), respevtively. There are different types of soft tissue deformity with complete secondary palate bony cleft. The inconformity between soft tissue and hard tissue defect exits in 3/4 of isolated cleft palate patients.

  17. Reconstruction of soft tissue after complicated calcaneal fractures.

    Science.gov (United States)

    Koski, E Antti; Kuokkanen, Hannu O M; Koskinen, Seppo K; Tukiainen, Erkki J

    2004-01-01

    A total of 35 flap reconstructions were done to cover exposed calcaneal bones in 31 patients. All patients had calcaneal fractures, 19 of which were primarily open. Soft tissue reconstruction for the closed fractures was indicated by a postoperative wound complication. A microvascular flap was used for reconstruction in 21 operations (gracilis, n = 11; anterolateral thigh, n = 5; rectus abdominis, n = 3; and latissimus dorsi, n = 2). A suralis neurocutaneous flap was used in eight, local muscle flaps in three, and local skin flaps in three cases. The mean follow-up time was 14 months (range 3 months-4 years). One suralis flap failed and was replaced by a latissimus dorsi flap. Necrosis of the edges that required revision affected three flaps. Deep infection developed in two patients and delayed wound healing in another four. During the follow-up the soft tissues healed in all patients and there were no signs of calcaneal osteitis. Flaps were considered too bulky in five patients. Soft tissues heal most rapidly with microvascular flaps. In the long term, gracilis muscle covered with free skin grafts gives a good contour to the foot. The suralis flap is reliable and gives a good final aesthetic outcome. Local muscles can be transposed for reconstruction in small defects.

  18. A novel method for soft tissue retraction during periapical surgery using 3D technology: a case report.

    Science.gov (United States)

    Patel, S; Aldowaisan, A; Dawood, A

    2017-08-01

    This case report describes a new approach to isolation and soft tissue retraction during endodontic surgery using cone-beam computed tomography (CBCT), computer-aided design (CAD) and three-dimensional (3D) printing. A 53-year-old patient presented for endodontic treatment of her maxillary left central incisor. It was decided to treat this tooth with a microsurgical approach. The data from the diagnostic CBCT scan were also used to make a physical model of the operative site, and CAD software was used to design a soft tissue retractor to be used during the patient's surgery. A custom retractor was then fabricated using a 3D printer. The custom-made retractor enhanced visualization and soft tissue handling during the patient's surgery. The patient was asymptomatic at a 1-year review. No abnormalities were detected during her clinical examination, and radiographic examination revealed complete healing of the surgical site. The significance of proper soft tissue retraction in periapical microsurgery is underemphasized. Geometric data from CBCT scans may be harvested for a variety of uses, adding value to the examination. 3D printing is a promising technology that may potentially have many uses in endodontic surgery. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  19. Three-dimensional display of the heart, aorta, lungs, and airway using CT

    International Nuclear Information System (INIS)

    Fram, E.K.; Godwin, J.D.; Putman, C.E.

    1982-01-01

    In previous studies of human anatomy, three-dimensional display of CT data has required laborious manual boundary tracking, except for high-contrast structures such as the spine. Automated boundary tracking techniques have been extended so that they can function well for both high-contrast and soft-tissue interfaces. These methods have been applied to the in vivo study of human lungs, heart, aorta, and larynx in this paper

  20. Magnetic resonance imaging-three-dimensional printing technology fabricates customized scaffolds for brain tissue engineering

    Institute of Scientific and Technical Information of China (English)

    Feng Fu; Chong Chen; Sai Zhang; Ming-liang Zhao; Xiao-hong Li; Zhe Qin; Chao Xu; Xu-yi Chen; Rui-xin Li; Li-na Wang; Ding-wei Peng; Hong-tao Sun; Yue Tu

    2017-01-01

    Conventional fabrication methods lack the ability to control both macro- and micro-structures of generated scaffolds. Three-dimensional printing is a solid free-form fabrication method that provides novel ways to create customized scaffolds with high precision and accuracy. In this study, an electrically controlled cortical impactor was used to induce randomized brain tissue defects. The overall shape of scaffolds was designed using rat-specific anatomical data obtained from magnetic resonance imaging, and the internal structure was created by computer- aided design. As the result of limitations arising from insufficient resolution of the manufacturing process, we magnified the size of the cavity model prototype five-fold to successfully fabricate customized collagen-chitosan scaffolds using three-dimensional printing. Results demonstrated that scaffolds have three-dimensional porous structures, high porosity, highly specific surface areas, pore connectivity and good internal characteristics. Neural stem cells co-cultured with scaffolds showed good viability, indicating good biocompatibility and biodegradability. This technique may be a promising new strategy for regenerating complex damaged brain tissues, and helps pave the way toward personalized medicine.

  1. Radionuclide imaging of soft tissue neoplasms

    International Nuclear Information System (INIS)

    Chew, F.S.; Hudson, T.M.; Enneking, W.F.

    1981-01-01

    Two classes of radiopharmaceuticals may be used for imaging tumors of the musculoskeletal system. The first is comprised of soft tissue or tumor specific agents such as gallium-67, bleomycin, and radionuclide-labeled antibodies, which may be useful for detecting and localizing these tumors. The other class of tracer is comprised of those with avidity for bone. The 99mTc-labeled-phosphate skeletal imaging compounds have been found to localize in a variety of soft tissue lesions, including benign and malignant tumors. In 1972, Enneking began to include bone scans in the preoperative evaluation of soft tissue masses. Later, he and his associates reported that these scans were useful in planning operative treatment of sarcomas by detecting involvement of bone by the tumors. Nearly all malignant soft tissue tumors take up bone-seeking radiopharmaceuticals, and bone involvement was indicated in two-thirds of the scans we reviewed. About half of benign soft tissue lesions had normal scans, but the other half showed uptake within the lesion and a few also showed bone involvement. Careful, thorough imaging technique is essential to proper evaluation. Multiple, high-resolution static gamma camera images in different projections are necessary to adequately demonstrate the presence or absence of soft tissue abnormality and to define the precise relationship of the tumor to the adjacent bone

  2. Mechanical verification of soft-tissue attachment on bioactive glasses and titanium implants.

    Science.gov (United States)

    Zhao, Desheng; Moritz, Niko; Vedel, Erik; Hupa, Leena; Aro, Hannu T

    2008-07-01

    Soft-tissue attachment is a desired feature of many clinical biomaterials. The aim of the current study was to design a suitable experimental method for tensile testing of implant incorporation with soft-tissues. Conical implants were made of three compositions of bioactive glass (SiO(2)-P(2)O(5)-B(2)O(3)-Na(2)O-K(2)O-CaO-MgO) or titanium fiber mesh (porosity 84.7%). The implants were surgically inserted into the dorsal subcutaneous soft-tissue or back muscles in the rat. Soft-tissue attachment was evaluated by pull-out testing using a custom-made jig 8 weeks after implantation. Titanium fiber mesh implants had developed a relatively high pull-out force in subcutaneous tissue (12.33+/-5.29 N, mean+/-SD) and also measurable attachment with muscle tissue (2.46+/-1.33 N). The bioactive glass implants failed to show mechanically relevant soft-tissue bonding. The experimental set-up of mechanical testing seems to be feasible for verification studies of soft-tissue attachment. The inexpensive small animal model is beneficial for large-scale in vivo screening of new biomaterials.

  3. Dynamic analysis of a needle insertion for soft materials: Arbitrary Lagrangian-Eulerian-based three-dimensional finite element analysis.

    Science.gov (United States)

    Yamaguchi, Satoshi; Tsutsui, Kihei; Satake, Koji; Morikawa, Shigehiro; Shirai, Yoshiaki; Tanaka, Hiromi T

    2014-10-01

    Our goal was to develop a three-dimensional finite element model that enables dynamic analysis of needle insertion for soft materials. To demonstrate large deformation and fracture, we used the arbitrary Lagrangian-Eulerian (ALE) method for fluid analysis. We performed ALE-based finite element analysis for 3% agar gel and three types of copper needle with bevel tips. To evaluate simulation results, we compared the needle deflection and insertion force with corresponding experimental results acquired with a uniaxial manipulator. We studied the shear stress distribution of agar gel on various time scales. For 30°, 45°, and 60°, differences in deflections of each needle between both sets of results were 2.424, 2.981, and 3.737mm, respectively. For the insertion force, there was no significant difference for mismatching area error (p<0.05) between simulation and experimental results. Our results have the potential to be a stepping stone to develop pre-operative surgical planning to estimate an optimal needle insertion path for MR image-guided microwave coagulation therapy and for analyzing large deformation and fracture in biological tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Three-dimensional reconstruction of colorectal tumors from serial tissue sections by computer graphics: a preliminary study.

    Science.gov (United States)

    Kikuchi, S; Matsuzaki, H; Kondo, K; Ohtani, Y; Ihara, A; Hiki, Y; Kakita, A; Kuwao, S

    2000-01-01

    We present herein the three-dimensional reconstruction of colorectal tumors, with particular reference to growth pattern into each layer of the colorectal wall, and measurement of tumor volume and surface area. Conventional tissue section images of colorectal tumors were analyzed using a computer graphics analysis program. The two-dimensional extent of invasion by each tumor into each layer of intestinal wall were determined from the images of each section. Based on data from multiple sections, tumor and surrounding normal tissue layers were reconstructed three-dimensionally, and volume and surface area of the tumors were determined. Using this technique, three-dimensional morphology of tumor and tumor progression into colorectal wall could be determined. Volume and surface area of the colon tumor were 4871 mm3 and 1741 mm2, respectively. Volume and surface area of the rectal tumor were 1090 mm3 and 877 mm2, respectively. This technique may provide a new approach for pathological analysis of colorectal carcinoma.

  5. Assessment of Soft Tissue Changes by Cephalometry and Two-Dimensional Photogrammetry in Bilateral Sagittal Split Ramus Osteotomy Cases

    Directory of Open Access Journals (Sweden)

    Jan Rustemeyer

    2011-07-01

    Full Text Available Objectives: We aimed to compare the standard methods of cephalometry and two-dimensional photogrammetry, to evaluate the reliability and accuracy of both methods.Material and Methods: Twenty-six patients (mean age 25.5, standard deviation (SD 5.2 years with Class II relationship and 23 patients with Class III relationship (mean age 26.4, SD 4.7 years who had undergone bilateral sagittal split ramus osteotomy were selected, with a median follow-up of 8 months between pre- and postsurgical evaluation. Pre- and postsurgical cephalograms and lateral photograms were traced and changes were recorded.Results: Pre- and postsurgical measurements of hard tissue angles and distances revealed higher correlations with cephalometrically performed soft tissue measurements of facial convexity (Class II: N-PG, r = - 0.50, P = 0.047; Class III: ANB, r = 0.73, P = 0.005; NaPg , r = 0.71, P = 0.007; and labiomental angle (Class II: SNB, r = 0.72, P = 0.002; ANB, r = - 0.72, P = 0.002; N-B, r = - 0.68, P = 0.004; ANS-Gn, r = 0.71, P = 0.002; Class III: ANS-Gn, r = 0.65, P = 0.043 compared with two-dimensional photogrammetry. However, two-dimensional photogrammetry revealed higher correlation between lower lip length and cephalometrically assessed angular hard tissue changes (Class II: SNB, r = 0.98, P = 0.007; N-B, r = 0.89, P = 0.037; N-Pg, r = 0.90, P = 0.033; Class III: SNB, r = - 0.54, P = 0.060; NAPg, r = - 0.65, P = 0.041; N-Pg, r = 0.58, P = 0.039.Conclusions: Our findings suggest that cephalometry and two-dimensional photogrammetry offer the possibility to complement one another.

  6. Assessment of Soft Tissue Changes by Cephalometry and Two-Dimensional Photogrammetry in Bilateral Sagittal Split Ramus Osteotomy Cases

    Science.gov (United States)

    Martin, Alice

    2011-01-01

    ABSTRACT Objectives We aimed to compare the standard methods of cephalometry and two-dimensional photogrammetry, to evaluate the reliability and accuracy of both methods. Material and Methods Twenty-six patients (mean age 25.5, standard deviation (SD) 5.2 years) with Class II relationship and 23 patients with Class III relationship (mean age 26.4, SD 4.7 years) who had undergone bilateral sagittal split ramus osteotomy were selected, with a median follow-up of 8 months between pre- and postsurgical evaluation. Pre- and postsurgical cephalograms and lateral photograms were traced and changes were recorded. Results Pre- and postsurgical measurements of hard tissue angles and distances revealed higher correlations with cephalometrically performed soft tissue measurements of facial convexity (Class II: N-PG, r = - 0.50, P = 0.047; Class III: ANB, r = 0.73, P = 0.005; NaPg , r = 0.71, P = 0.007;) and labiomental angle (Class II: SNB, r = 0.72, P = 0.002; ANB, r = - 0.72, P = 0.002; N-B, r = - 0.68, P = 0.004; ANS-Gn, r = 0.71, P = 0.002; Class III: ANS-Gn, r = 0.65, P = 0.043) compared with two-dimensional photogrammetry. However, two-dimensional photogrammetry revealed higher correlation between lower lip length and cephalometrically assessed angular hard tissue changes (Class II: SNB, r = 0.98, P = 0.007; N-B, r = 0.89, P = 0.037; N-Pg, r = 0.90, P = 0.033; Class III: SNB, r = - 0.54, P = 0.060; NAPg, r = - 0.65, P = 0.041; N-Pg, r = 0.58, P = 0.039). Conclusions Our findings suggest that cephalometry and two-dimensional photogrammetry offer the possibility to complement one another. PMID:24421994

  7. Volumetric image processing: A new technique for three-dimensional imaging

    International Nuclear Information System (INIS)

    Fishman, E.K.; Drebin, B.; Magid, D.; St Ville, J.A.; Zerhouni, E.A.; Siegelman, S.S.; Ney, D.R.

    1986-01-01

    Volumetric three-dimensional (3D) image processing was performed on CT scans of 25 normal hips, and image quality and potential diagnostic applications were assessed. In contrast to surface detection 3D techniques, volumetric processing preserves every pixel of transaxial CT data, replacing the gray scale with transparent ''gels'' and shading. Anatomically, accurate 3D images can be rotated and manipulated in real time, including simulated tissue layer ''peeling'' and mock surgery or disarticulation. This pilot study suggests that volumetric rendering is a major advance in signal processing of medical image data, producing a high quality, uniquely maneuverable image that is useful for fracture interpretation, soft-tissue analysis, surgical planning, and surgical rehearsal

  8. Facial soft tissue analysis among various vertical facial patterns

    International Nuclear Information System (INIS)

    Jeelani, W.; Fida, M.; Shaikh, A.

    2016-01-01

    Background: The emergence of soft tissue paradigm in orthodontics has made various soft tissue parameters an integral part of the orthodontic problem list. The purpose of this study was to determine and compare various facial soft tissue parameters on lateral cephalograms among patients with short, average and long facial patterns. Methods: A cross-sectional study was conducted on the lateral cephalograms of 180 adult subjects divided into three equal groups, i.e., short, average and long face according to the vertical facial pattern. Incisal display at rest, nose height, upper and lower lip lengths, degree of lip procumbency and the nasolabial angle were measured for each individual. The gender differences for these soft tissue parameters were determined using Mann-Whitney U test while the comparison among different facial patterns was performed using Kruskal-Wallis test. Results: Significant differences in the incisal display at rest, total nasal height, lip procumbency, the nasolabial angle and the upper and lower lip lengths were found among the three vertical facial patterns. A significant positive correlation of nose and lip dimensions was found with the underlying skeletal pattern. Similarly, the incisal display at rest, upper and lower lip procumbency and the nasolabial angle were significantly correlated with the lower anterior facial height. Conclusion: Short facial pattern is associated with minimal incisal display, recumbent upper and lower lips and acute nasolabial angle while the long facial pattern is associated with excessive incisal display, procumbent upper and lower lips and obtuse nasolabial angle. (author)

  9. Musculoskeletal Application of Ultrasound Elastography: Soft Tissue Lipoma

    International Nuclear Information System (INIS)

    Choi, Ja Young; Hong, Sung Hwan; Yoo, Hye Jin; Kim, Su Jin

    2010-01-01

    Real-time freehand elastography. Conventional ultrasonography (US) and real-time freehand US elastography were performed in nine patients (M:F = 4:5: mean age, 53 years: 29-64 years) with soft-tissue lipoma confirmed by surgical resection. The elastogram was color-coded by 256 scales according to the degree of strain induced by light compression. The relative strains for lipoma and surrounding soft tissue were measured and mean strains were examined by using a Wilcoxon signed rank test. The elastograms showed red to sky-blue color in all lipomas and predominantly black in surrounding soft tissue. The mean relative strain (±standard deviation) was 67.9±28.5, 77.1±25.3, 63.3±31.2, and 15.7±18.3 for total, intramuscular, and subcutaneous lipoma, and surrounding soft tissue, respectively. The mean strain of the lipoma was significantly higher than one of surrounding soft tissue (p = .008, Wilcoxon signed rank test). Real-time elastography yields characteristic elastographic features of soft tissue lipoma distinguishing from those of adjacent soft tissues

  10. Accuracy of Intraoral Digital Impressions for Whole Upper Jaws, Including Full Dentitions and Palatal Soft Tissues.

    Science.gov (United States)

    Gan, Ning; Xiong, Yaoyang; Jiao, Ting

    2016-01-01

    Intraoral digital impressions have been stated to meet the clinical requirements for some teeth-supported restorations, though fewer evidences were proposed for larger scanning range. The aim of this study was to compare the accuracy (trueness and precision) of intraoral digital impressions for whole upper jaws, including the full dentitions and palatal soft tissues, as well as to determine the effect of different palatal vault height or arch width on accuracy of intraoral digital impressions. Thirty-two volunteers were divided into three groups according to the palatal vault height or arch width. Each volunteer received three scans with TRIOS intraoral scanner and one conventional impression of whole upper jaw. Three-dimensional (3D) images digitized from conventional gypsum casts by a laboratory scanner were chose as the reference models. All datasets were imported to a specific software program for 3D analysis by "best fit alignment" and "3D compare" process. Color-coded deviation maps showed qualitative visualization of the deviations. For the digital impressions for palatal soft tissues, trueness was (130.54±33.95)μm and precision was (55.26±11.21)μm. For the digital impressions for upper full dentitions, trueness was (80.01±17.78)μm and precision was (59.52±11.29)μm. Larger deviations were found between intraoral digital impressions and conventional impressions in the areas of palatal soft tissues than that in the areas of full dentitions (pimpressions for palatal soft tissues was slightly better than that for full dentitions (p = 0.049). There was no significant effect of palatal vault height on accuracy of digital impressions for palatal soft tissues (p>0.05), but arch width was found to have a significant effect on precision of intraoral digital impressions for full dentitions (p = 0.016). A linear correlation was found between arch width and precision of digital impressions for whole upper jaws (r = 0.326, p = 0.034 for palatal soft tissues and r

  11. Accuracy of Intraoral Digital Impressions for Whole Upper Jaws, Including Full Dentitions and Palatal Soft Tissues

    Science.gov (United States)

    Gan, Ning; Xiong, Yaoyang; Jiao, Ting

    2016-01-01

    Intraoral digital impressions have been stated to meet the clinical requirements for some teeth-supported restorations, though fewer evidences were proposed for larger scanning range. The aim of this study was to compare the accuracy (trueness and precision) of intraoral digital impressions for whole upper jaws, including the full dentitions and palatal soft tissues, as well as to determine the effect of different palatal vault height or arch width on accuracy of intraoral digital impressions. Thirty-two volunteers were divided into three groups according to the palatal vault height or arch width. Each volunteer received three scans with TRIOS intraoral scanner and one conventional impression of whole upper jaw. Three-dimensional (3D) images digitized from conventional gypsum casts by a laboratory scanner were chose as the reference models. All datasets were imported to a specific software program for 3D analysis by "best fit alignment" and "3D compare" process. Color-coded deviation maps showed qualitative visualization of the deviations. For the digital impressions for palatal soft tissues, trueness was (130.54±33.95)μm and precision was (55.26±11.21)μm. For the digital impressions for upper full dentitions, trueness was (80.01±17.78)μm and precision was (59.52±11.29)μm. Larger deviations were found between intraoral digital impressions and conventional impressions in the areas of palatal soft tissues than that in the areas of full dentitions (pimpressions for palatal soft tissues was slightly better than that for full dentitions (p = 0.049). There was no significant effect of palatal vault height on accuracy of digital impressions for palatal soft tissues (p>0.05), but arch width was found to have a significant effect on precision of intraoral digital impressions for full dentitions (p = 0.016). A linear correlation was found between arch width and precision of digital impressions for whole upper jaws (r = 0.326, p = 0.034 for palatal soft tissues and r

  12. Tailor-made three-dimensional hybrid scaffolds for cell cultures

    International Nuclear Information System (INIS)

    Psycharakis, Stylianos; Melissinaki, Vasileia; Giakoumaki, Anastasia; Ranella, Anthi; Tosca, Androniki

    2011-01-01

    The construction of the ideal three-dimensional scaffold for cell culture is one of the most intriguing topics in tissue engineering. It has been shown that cells can be cultured on most organic biomimetic materials, which now are losing popularity in favour of novel, hybrid systems. In this study, a series of photosensitive sol-gel hybrid materials, based on silicon-zirconium and silicon-titanium oxides, have been investigated for their suitability in three-dimensional scaffold fabrication. These materials can be structured by two-photon polymerization, a laser-based technique allowing the fabrication of micrometre-size structures with submicron resolution. The work presented here examined the effect of the organic/inorganic composition of the materials on cell behaviour and the establishment of a 'cell-culture friendly' environment. This is vital for cell adhesion, growth and differentiation, as the organic part of the material provides the soft matrix for cell growth, whereas the inorganic component gives the mechanical stability and rigidity of the three-dimensional structures. In addition, the use of femtosecond laser structuring permits the fabrication of a wide range of mechanically stable scaffolds of different sizes and shapes to be tested in terms of cell viability, proliferation and orientation.

  13. Three-Dimensional Microstructure of Biological Tissues during Freezing and Thawing

    Science.gov (United States)

    Ishiguro, Hiroshi; Horimizu, Takashi; Kataori, Akinobu; Kajigaya, Hiroshi

    Three-dimensional behavior of ice crystals and cells during the freezing and thawing of biological tissues was investigated microscopically in real time by using a confocal laser scanning microscope(CLSM) and a fluorescent dye, acridine orange (AO). Fresh tender meat (2nd pectoral muscles) of chicken was stained with the AO in physiological saline to distinguish ice crystals and cells by their different colors, and then frozen and thawed under two different thermal protocols: a) slow-cooling and rapid-warming and b) rapid-cooling and rapid-warming. The CLSM noninvasively produced optical tomograms of the tissues to clarify the pattern of freezing, morphology of ice crystals in the tissues, and the interaction between ice crystals and cells. Also, the tissues were morphologically investigated by pathological means after the freezing and thawing. Typical freezing pattern during the slow-cooling was extracellular-freezing, and those during the rapid-cooling were extracellular-freezing and intracellular freezing with a lot of fine ice crystals in the cells. Cracks caused by the extracellular and intracellular ice crystals remained in the muscle tissues after the thawing. The results obtained by using the CLSM/dye method were consistent with pathologically morphological changes in the tissues through freezing and thawing.

  14. Printing soft matter in three dimensions

    Science.gov (United States)

    Truby, Ryan L.; Lewis, Jennifer A.

    2016-12-01

    Light- and ink-based three-dimensional (3D) printing methods allow the rapid design and fabrication of materials without the need for expensive tooling, dies or lithographic masks. They have led to an era of manufacturing in which computers can control the fabrication of soft matter that has tunable mechanical, electrical and other functional properties. The expanding range of printable materials, coupled with the ability to programmably control their composition and architecture across various length scales, is driving innovation in myriad applications. This is illustrated by examples of biologically inspired composites, shape-morphing systems, soft sensors and robotics that only additive manufacturing can produce.

  15. Comparison of soft-tissue orbital morphometry in attractive and normal Italian subjects.

    Science.gov (United States)

    Sforza, Chiarella; Dolci, Claudia; Grandi, Gaia; Tartaglia, Gianluca M; Laino, Alberto; Ferrario, Virgilio F

    2015-01-01

    To identify esthetic characteristics of the orbital soft tissues of attractive Italian adult women and men. Three-dimensional computerized digitizers were used to collect the coordinates of facial landmarks in 199 healthy, normal subjects aged 18 to 30 years (71 women, 128 men; mean age, 22 years) and in 126 coetaneous attractive subjects (92 women, 34 men; mean age, 20 years) selected during beauty competitions. From the landmarks, six linear distances, two ratios, six angles, and two areas were calculated. Attractive subjects were compared with normal ones by computing z-scores. Intercanthal width was reduced while eye fissure lengths were increased in both genders. Orbital heights (os-or) were increased only in attractive women, with a significant gender-related difference. The inclinations of the eye fissure were increased in attractive subjects, while the inclinations of the orbit were reduced. For several of the analyzed measurements, similar patterns of z-scores were observed for attractive men and women (r  =  .883). Attractive women and men had several specific esthetic characteristics in their orbital soft tissues; esthetic reference values can be used to determine optimal goals in surgical treatment.

  16. Soft-Tissue Chondroma of Anterior Gingiva: A Rare Entity

    Directory of Open Access Journals (Sweden)

    Dhana Lakshmi Jeyasivanesan

    2018-01-01

    Full Text Available Soft-tissue chondroma is a rare, benign, slow-growing tumor made up of heterotopic cartilaginous tissue. It occurs most commonly in the third and fourth decades in the hands and feet. Oral soft-tissue chondromas are uncommon and soft-tissue chondroma of gingiva is extremely uncommon. Here, we report an unusual case of soft-tissue chondroma of gingiva in a 50-year-old woman.

  17. Development of human nervous tissue upon differentiation of embryonic stem cells in three-dimensional culture.

    Science.gov (United States)

    Preynat-Seauve, Olivier; Suter, David M; Tirefort, Diderik; Turchi, Laurent; Virolle, Thierry; Chneiweiss, Herve; Foti, Michelangelo; Lobrinus, Johannes-Alexander; Stoppini, Luc; Feki, Anis; Dubois-Dauphin, Michel; Krause, Karl Heinz

    2009-03-01

    Researches on neural differentiation using embryonic stem cells (ESC) require analysis of neurogenesis in conditions mimicking physiological cellular interactions as closely as possible. In this study, we report an air-liquid interface-based culture of human ESC. This culture system allows three-dimensional cell expansion and neural differentiation in the absence of added growth factors. Over a 3-month period, a macroscopically visible, compact tissue developed. Histological coloration revealed a dense neural-like neural tissue including immature tubular structures. Electron microscopy, immunochemistry, and electrophysiological recordings demonstrated a dense network of neurons, astrocytes, and oligodendrocytes able to propagate signals. Within this tissue, tubular structures were niches of cells resembling germinal layers of human fetal brain. Indeed, the tissue contained abundant proliferating cells expressing markers of neural progenitors. Finally, the capacity to generate neural tissues on air-liquid interface differed for different ESC lines, confirming variations of their neurogenic potential. In conclusion, this study demonstrates in vitro engineering of a human neural-like tissue with an organization that bears resemblance to early developing brain. As opposed to previously described methods, this differentiation (a) allows three-dimensional organization, (b) yields dense interconnected neural tissue with structurally and functionally distinct areas, and (c) is spontaneously guided by endogenous developmental cues.

  18. Hemorrhagic lesions in soft tissue: utility and limitations of magnetic resonance

    International Nuclear Information System (INIS)

    Legorburu, A.; Oleaga, L.; Ibarra, V.; Grande, D.

    1998-01-01

    We present four patients with hemorrhagic soft tissue tumors. The diagnosis was malignant fibrous histiocytoma in three of the patients and hematoma in the fourth. We show the magnetic resonance findings in these four cases, stressing the value of this technique in the assessment of the extension of soft tissue tumors. The difficulty in differentiating tumors with bleeding, as often occurs with malignant fibrous histiocytoma, from true hematomas. (Author) 8 refs

  19. Five-dimensional ultrasound system for soft tissue visualization.

    Science.gov (United States)

    Deshmukh, Nishikant P; Caban, Jesus J; Taylor, Russell H; Hager, Gregory D; Boctor, Emad M

    2015-12-01

    A five-dimensional ultrasound (US) system is proposed as a real-time pipeline involving fusion of 3D B-mode data with the 3D ultrasound elastography (USE) data as well as visualization of these fused data and a real-time update capability over time for each consecutive scan. 3D B-mode data assist in visualizing the anatomy of the target organ, and 3D elastography data adds strain information. We investigate the feasibility of such a system and show that an end-to-end real-time system, from acquisition to visualization, can be developed. We present a system that consists of (a) a real-time 3D elastography algorithm based on a normalized cross-correlation (NCC) computation on a GPU; (b) real-time 3D B-mode acquisition and network transfer; (c) scan conversion of 3D elastography and B-mode volumes (if acquired by 4D wobbler probe); and (d) visualization software that fuses, visualizes, and updates 3D B-mode and 3D elastography data in real time. We achieved a speed improvement of 4.45-fold for the threaded version of the NCC-based 3D USE versus the non-threaded version. The maximum speed was 79 volumes/s for 3D scan conversion. In a phantom, we validated the dimensions of a 2.2-cm-diameter sphere scan-converted to B-mode volume. Also, we validated the 5D US system visualization transfer function and detected 1- and 2-cm spherical objects (phantom lesion). Finally, we applied the system to a phantom consisting of three lesions to delineate the lesions from the surrounding background regions of the phantom. A 5D US system is achievable with real-time performance. We can distinguish between hard and soft areas in a phantom using the transfer functions.

  20. Iodine-enhanced micro-CT imaging: methodological refinements for the study of the soft-tissue anatomy of post-embryonic vertebrates.

    Science.gov (United States)

    Gignac, Paul M; Kley, Nathan J

    2014-05-01

    The now widespread use of non-destructive X-ray computed tomography (CT) and micro-CT (µCT) has greatly augmented our ability to comprehensively detail and quantify the internal hard-tissue anatomy of vertebrates. However, the utility of X-ray imaging for gaining similar insights into vertebrate soft-tissue anatomy has yet to be fully realized due to the naturally low X-ray absorption of non-mineralized tissues. In this study, we show how a wide diversity of soft-tissue structures within the vertebrate head-including muscles, glands, fat deposits, perichondria, dural venous sinuses, white and gray matter of the brain, as well as cranial nerves and associated ganglia-can be rapidly visualized in their natural relationships with extraordinary levels of detail using iodine-enhanced (i-e) µCT imaging. To date, Lugol's iodine solution (I2 KI) has been used as a contrast agent for µCT imaging of small invertebrates, vertebrate embryos, and certain isolated parts of larger, post-embryonic vertebrates. These previous studies have all yielded promising results, but visualization of soft tissues in smaller invertebrate and embryonic vertebrate specimens has generally been more complete than that for larger, post-embryonic vertebrates. Our research builds on these previous studies by using high-energy µCT together with more highly concentrated I2 KI solutions and longer staining times to optimize the imaging and differentiation of soft tissues within the heads of post-embryonic archosaurs (Alligator mississippiensis and Dromaius novaehollandiae). We systematically quantify the intensities of tissue staining, demonstrate the range of anatomical structures that can be visualized, and generate a partial three-dimensional reconstruction of alligator cephalic soft-tissue anatomy. © 2014 Wiley Periodicals, Inc.

  1. Novel Three-Dimensional Understanding of Maxillary Cleft Distraction.

    Science.gov (United States)

    Vaughan, Stephen Michael; Kau, Chung How; Waite, Peter Daniel

    2016-09-01

    To set forth a universal standard methodology for quantifying volumetric and linear changes in the craniofacial complex, utilizing three-dimensional data captured from a cleft-lip palate patient who underwent rigid external device (RED) distraction. Cone beam computed tomography images of a 14-year-old patient were captured using a Kodak 9500 (Atlanta, GA) Cone Beam system device and a stereophotogrammetric system (3dMDface(TM) Atlanta, GA). The subject was a nonsyndromic unilateral cleft-lip palate patient who received RED distraction as part of maxillary advancement in conjunction with orthodontic treatment. Preop (T1) and postop (T2) images were superimposed using Invivo 5.2.3 (San Jose, CA) software. Volumetric rendering of the airway, bone, and soft tissues, as well as linear measurements were analyzed. Each measurement was captured 10 times to ensure reliability and reproducibility of methodology. Data from T1 to T2 revealed mean differences as follows: airway total volume +5250 mm, minimum cross-sectional area +67.84 mm; bone +1719 mm, soft tissue +44,432 mm. Mean of linear measurements: Pronasale 1.98 mm, Subnasale 3.35 mm, Labial superius 10.79 mm, Labial inferius 4.13 mm, Right alare 5.71 mm, Right cheilion 7.83 mm, Left alare 4.97 mm, Left cheilion 5.50 mm, Pogonion 3.01 mm, B-point 2.49 mm, U1-U1 9.77 mm, and L1-L1 0.00 mm. P values are distractions in a three-dimensional format. A universal standard analysis of the craniofacial complex can be implemented using the techniques and method outlined in this study.

  2. Collecting and Storing Tissue, Blood, and Bone Marrow Samples From Patients With Rhabdomyosarcoma or Other Soft Tissue Sarcoma

    Science.gov (United States)

    2017-12-11

    Adult Rhabdomyosarcoma; Childhood Desmoplastic Small Round Cell Tumor; Chordoma; Desmoid Tumor; Metastatic Childhood Soft Tissue Sarcoma; Nonmetastatic Childhood Soft Tissue Sarcoma; Previously Treated Childhood Rhabdomyosarcoma; Previously Untreated Childhood Rhabdomyosarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Soft Tissue Sarcoma; Stage I Adult Soft Tissue Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma

  3. Necrotising soft tissue infection following mastectomy

    Directory of Open Access Journals (Sweden)

    Jackson P

    2010-03-01

    Full Text Available Necrotising fasciitis is a rare but rapidly progressive soft tissue disease which can lead to extensive necrosis, systemic sepsis and death. Including this case, only 7 other cases have been reported in the world literature with only 2 others affecting the patient post mastectomy.This 59 year old Caucasian lady presented with severe soft tissue infection soon after mastectomy, which was successfully treated with a combination of debridement, triangulation, VAC© dressing and skin grafting.Necrotising soft tissue infections following mastectomy are rapidly progressive and potentially extremely serious. It is essential that a high index of clinical suspicion is maintained together with prompt aggressive treatment in a multidisciplinary environment to prevent worsening physical and psychological sequelae.

  4. Three-dimensional lithographically-defined organotypic tissue arrays for quantitative analysis of morphogenesis and neoplastic progression

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Celeste M.; Inman, Jamie L.; Bissell, Mina J.

    2008-02-13

    Here we describe a simple micromolding method to construct three-dimensional arrays of organotypic epithelial tissue structures that approximate in vivo histology. An elastomeric stamp containing an array of posts of defined geometry and spacing is used to mold microscale cavities into the surface of type I collagen gels. Epithelial cells are seeded into the cavities and covered with a second layer of collagen. The cells reorganize into hollow tissues corresponding to the geometry of the cavities. Patterned tissue arrays can be produced in 3-4 h and will undergo morphogenesis over the following one to three days. The protocol can easily be adapted to study a variety of tissues and aspects of normal and neoplastic development.

  5. Three-Dimensional Printing Model as a Tool to Assist in Surgery for Large Mandibular Tumour: a Case Report

    Directory of Open Access Journals (Sweden)

    Kazuyuki Yusa

    2017-06-01

    Full Text Available Objectives: Recently, three-dimensional printing models based on preoperative computed tomography and magnetic resonance imaging images have been widely used in medical fields. This study presents an effective use of the three-dimensional printing model in exploring complex spatial relationship between the tumour and surrounding tissue and in simulation surgery based planning of the operative procedure. Material and Methods: The patient was a 7-year-old boy with ameloblastic fibro-odontoma. Prior to surgery, a hybrid three-dimensional printing model consisting of the jaw bone, the tumour and the inferior alveolar nerve was fabricated. After the simulation surgery based on this model, enucleation of the tumour, leaving tooth 46 intact (Universal Numbering System by ADA safe, was planned. Results: Enucleation of the tumour was successfully carried out. One year later, healing was found to be satisfactory both clinically and radiographically. Conclusions: The study presented an effective application of a novel hybrid three-dimensional printing model composed of hard and soft tissues. Such innovations can bring significant benefits, especially to the field of oncological surgery.

  6. Modern Soft Tissue Pathology | Center for Cancer Research

    Science.gov (United States)

    This book comprehensively covers modern soft tissue pathology and includes both tumors and non-neoplastic entities. Soft tissues make up a large bulk of the human body, and they are susceptible to a wide range of diseases. Many soft-tissue tumors are biologically very aggressive, and the chance of them metastasizing to vital organs is quite high. In recent years, the outlook

  7. Post-radiation soft tissue sarcoma

    International Nuclear Information System (INIS)

    Tomita, Yasuhiko; Kuratsu, Shigeyuki; Myoui, Akira; Ohsawa, Masahiko; Aozasa, Katsuyuki; Uchida, Atsumasa; Ono, Keiro

    1993-01-01

    Seven patients received radiation for malignancies, and two received for benign tumors. The latency period from radiation to symptom ranged from two years to 36 years (mean 17.2 years). Post-radiation soft tissue sarcomas (PRS) comprised six cases of malignant fibrous histiocytomas, two leiomyosarcomas, and one angiosarcoma. The five-year survival of PRS was 16.7% showing a worse prognosis than spontaneously occurring soft tissue sarcomas. Seven PRS occurred superficially, and two were deeply located. Four cases occurring in the superficial tissues had histories of radiation-induced dermatitis. The radiation-induced dermatitis was suggested to be a risk factor for development of PRS. (author)

  8. Three dimensional image reconstruction of computed tomograms of the head and neck in the pediatric age group

    International Nuclear Information System (INIS)

    Armstrong, E.A.; Smith, T.H.; Salyer, K.E.

    1985-01-01

    Between August 1983, and April 1984, we have clinically evaluated an experimental computed tomography (CT) software package capable of producing three dimensional (3-D) reconstructed images from axial CT scans. Three dimensional reconstructions have been performed in 115 patient CT examinations for congenital or acquired craniofacial abnormalities, 103 patients; intracranial neoplasms, 6 patients: and the cervical spine and craniocervical junction, 6 patients. Several patients have had studies pre- and postoperatively to plan craniofacial surgery and later evaluate its results on both the bone and soft tissue structures. The results indicate that three dimensional reconstruction using a low dose technique yields information valuable to conceptualize and demonstrate to clinicians the spatial relationships of often complex anatomical relationships in the craniofacial and craniocervical areas [fr

  9. Tailor-made three-dimensional hybrid scaffolds for cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Psycharakis, Stylianos; Melissinaki, Vasileia; Giakoumaki, Anastasia; Ranella, Anthi [Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, PO Box 1527, 711 10 Heraklion, Crete (Greece); Tosca, Androniki, E-mail: ranthi@iesl.forth.gr [Department of Medicine, University of Crete, 710 03 Heraklion, Crete (Greece)

    2011-08-15

    The construction of the ideal three-dimensional scaffold for cell culture is one of the most intriguing topics in tissue engineering. It has been shown that cells can be cultured on most organic biomimetic materials, which now are losing popularity in favour of novel, hybrid systems. In this study, a series of photosensitive sol-gel hybrid materials, based on silicon-zirconium and silicon-titanium oxides, have been investigated for their suitability in three-dimensional scaffold fabrication. These materials can be structured by two-photon polymerization, a laser-based technique allowing the fabrication of micrometre-size structures with submicron resolution. The work presented here examined the effect of the organic/inorganic composition of the materials on cell behaviour and the establishment of a 'cell-culture friendly' environment. This is vital for cell adhesion, growth and differentiation, as the organic part of the material provides the soft matrix for cell growth, whereas the inorganic component gives the mechanical stability and rigidity of the three-dimensional structures. In addition, the use of femtosecond laser structuring permits the fabrication of a wide range of mechanically stable scaffolds of different sizes and shapes to be tested in terms of cell viability, proliferation and orientation.

  10. Reliability of various skeletal indicators in assessing vertical facial soft tissue pattern

    International Nuclear Information System (INIS)

    Ahmed, M.; Shaikh, A.; Fida, M.

    2016-01-01

    Background: Angle paradigm has ruled the orthodontic diagnosis and treatment planning for past several decades, but the recent introduction of the soft tissue paradigm has significantly changed the dynamics of orthodontic practice. This study was designed to identify skeletal analyses that best correlates with the parameters use to assess facial soft tissue profile that may lead to an accurate diagnosis and efficient treatment plan. Methods: A total of 192 subjects (96 males and 96 females; mean age 22.95±4.75 years) were included in the study. The total sample was distributed into three equal groups (i.e., long, normal and short face) on the basis of soft tissue vertical pattern. Pre-treatment lateral cephalograms were used to assess various vertical linear and angular parameters. Various skeletal analyses and soft tissue parameters were correlated using the Pearson correlation in different vertical groups, separately for males and females. Results: In males, a weak positive correlation (r=0.485) was found between skeletal anterior facial height ratio (Sk. LAFH/TAFH) and soft tissue anterior facial height ratio (LAFH/TAFH), whereas in females maxillary-mandibular plane angle (MMA) showed a weak positive correlation (r=0.300). In the long face group, a positive but a weak correlation (r=0.349) was present between cranial base angle (SN-GoGn) and LAFH/TAFH. Conclusions: Skeletal analyses (MMA, Sk. LAFH/TAFH) significantly correlated to soft tissue parameters. Males and long faced individuals showed a higher correlation between skeletal and soft tissue parameters as compared to that of the females. (author)

  11. Necrotizing Soft Tissue Infection

    Directory of Open Access Journals (Sweden)

    Sahil Aggarwal, BS

    2018-04-01

    Full Text Available History of present illness: A 71-year-old woman with a history of metastatic ovarian cancer presented with sudden onset, rapidly progressing painful rash in the genital region and lower abdominal wall. She was febrile to 103°F, heart rate was 114 beats per minute, and respiratory rate was 24 per minute. Her exam was notable for a toxic-appearing female with extensive areas of erythema, tenderness, and induration to her lower abdomen, intertriginous areas, and perineum with intermittent segments of crepitus without hemorrhagic bullae or skin breakdown. Significant findings: Computed tomography (CT of the abdominal and pelvis with intravenous (IV contrast revealed inflammatory changes, including gas and fluid collections within the ventral abdominal wall extending to the vulva, consistent with a necrotizing soft tissue infection. Discussion: Necrotizing fasciitis is a serious infection of the skin and soft tissues that requires an early diagnosis to reduce morbidity and mortality. Classified into several subtypes based on the type of microbial infection, necrotizing fasciitis can rapidly progress to septic shock or death if left untreated.1 Diagnosing necrotizing fasciitis requires a high index of suspicion based on patient risk factors, presentation, and exam findings. Definitive treatment involves prompt surgical exploration and debridement coupled with IV antibiotics.2,3 Clinical characteristics such as swelling, disproportionate pain, erythema, crepitus, and necrotic tissue should be a guide to further diagnostic tests.4 Unfortunately, lab values such as white blood cell count and lactate imaging studies have high sensitivity but low specificity, making the diagnosis of necrotizing fasciitis still largely a clinical one.4,5 CT is a reliable method to exclude the diagnosis of necrotizing soft tissue infections (sensitivity of 100%, but is only moderately reliable in correctly identifying such infections (specificity of 81%.5 Given the emergent

  12. Nasal Soft-Tissue Triangle Deformities.

    Science.gov (United States)

    Foda, Hossam M T

    2016-08-01

    The soft-tissue triangle is one of the least areas attended to in rhinoplasty. Any postoperative retraction, notching, or asymmetries of soft triangles can seriously affect the rhinoplasty outcome. A good understanding of the risk factors predisposing to soft triangle deformities is necessary to prevent such problems. The commonest risk factors in our study were the wide vertical domal angle between the lateral and intermediate crura, and the increased length of intermediate crus. Two types of soft triangle grafts were described to prevent and treat soft triangle deformities. The used soft triangle grafts resulted in an excellent long-term aesthetic and functional improvement. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. Three-Dimensional Printing Articular Cartilage: Recapitulating the Complexity of Native Tissue.

    Science.gov (United States)

    Guo, Ting; Lembong, Josephine; Zhang, Lijie Grace; Fisher, John P

    2017-06-01

    In the past few decades, the field of tissue engineering combined with rapid prototyping (RP) techniques has been successful in creating biological substitutes that mimic tissues. Its applications in regenerative medicine have drawn efforts in research from various scientific fields, diagnostics, and clinical translation to therapies. While some areas of therapeutics are well developed, such as skin replacement, many others such as cartilage repair can still greatly benefit from tissue engineering and RP due to the low success and/or inefficiency of current existing, often surgical treatments. Through fabrication of complex scaffolds and development of advanced materials, RP provides a new avenue for cartilage repair. Computer-aided design and three-dimensional (3D) printing allow the fabrication of modeled cartilage scaffolds for repair and regeneration of damaged cartilage tissues. Specifically, the various processes of 3D printing will be discussed in details, both cellular and acellular techniques, covering the different materials, geometries, and operational printing conditions for the development of tissue-engineered articular cartilage. Finally, we conclude with some insights on future applications and challenges related to this technology, especially using 3D printing techniques to recapitulate the complexity of native structure for advanced cartilage regeneration.

  14. Soft tissue strain measurement using an optical method

    Science.gov (United States)

    Toh, Siew Lok; Tay, Cho Jui; Goh, Cho Hong James

    2008-11-01

    Digital image correlation (DIC) is a non-contact optical technique that allows the full-field estimation of strains on a surface under an applied deformation. In this project, the application of an optimized DIC technique is applied, which can achieve efficiency and accuracy in the measurement of two-dimensional deformation fields in soft tissue. This technique relies on matching the random patterns recorded in images to directly obtain surface displacements and to get displacement gradients from which the strain field can be determined. Digital image correlation is a well developed technique that has numerous and varied engineering applications, including the application in soft and hard tissue biomechanics. Chicken drumstick ligaments were harvested and used during the experiments. The surface of the ligament was speckled with black paint to allow for correlation to be done. Results show that the stress-strain curve exhibits a bi-linear behavior i.e. a "toe region" and a "linear elastic region". The Young's modulus obtained for the toe region is about 92 MPa and the modulus for the linear elastic region is about 230 MPa. The results are within the values for mammalian anterior cruciate ligaments of 150-300 MPa.

  15. Correlation Between Bone and Soft Tissue Thickness in Maxillary Anterior Teeth

    Directory of Open Access Journals (Sweden)

    Nasrin Esfahanizadeh

    2016-12-01

    Full Text Available Objectives: The purpose of this study was to determine buccal bone and soft tissue thicknesses and their correlation in the maxillary anterior region using cone beam computed tomography (CBCT.Materials and Methods: In this cross sectional study, 330 sound maxillary incisors in 60 patients with a mean age of 37.5 years were assessed by CBCT scans. For better visualization of soft tissue, patients were asked to use plastic retractors in order to retract their lips and cheeks away from the gingival tissue before taking the scans. Measurements were made in three different positions: at the crest and at 2 and 5mm apical to the crest. The cementoenamel junction‒crest distance was measured. for data analyses, the Pearson’s correlation coefficient, ANOVA and intraclass correlation coefficient were used.Results: There were mildly significant linear associations between labial soft tissue and bone thickness in the canines and incisors (r<0.40, P<0.05, but no association was found for the lateral incisors. The mean thickness of buccal bone differed significantly in the maxillary anterior teeth, being greater for the lateral incisors (P<0.05. For soft tissue thickness, the results were the same, and the least thickness was recorded for the canines. There was a mild association between labial soft tissue and bone thickness in canines and incisors (r=0.2, P=0.3, but no such linear association was seen for the lateral incisors.Conclusions: The mean thickness of buccal bone and soft tissue in the anterior maxilla was <1mm and there was a mild linear correlation between them.Keywords: Facial Bones; Cone-Beam Computed Tomography; Maxilla; Esthetics, Dental

  16. Mathematical models of soft tissue injury repair : towards understanding musculoskeletal disorders

    OpenAIRE

    Dunster, Joanne L.

    2012-01-01

    The process of soft tissue injury repair at the cellular lew I can be decomposed into three phases: acute inflammation including coagulation, proliferation and remodelling. While the later phases are well understood the early phase is less so. We produce a series of new mathematical models for the early phases coagulation and inflammation. The models produced are relevant not only to soft tissue injury repair but also to the many disease states in which coagulation and inflammation play a rol...

  17. MRI features of soft-tissue lumps and bumps

    International Nuclear Information System (INIS)

    Zhuang, K.D.; Tandon, A.A.; Ho, B.C.S.; Chong, B.K.

    2014-01-01

    Superficial soft-tissue lesions are frequently encountered by radiologists in everyday practice. Characterization of these soft-tissue lesions remains problematic, despite advances in imaging. By systematically using clinical history, anatomical location, and signal intensity characteristics on MRI images, one can determine the diagnosis for the subset of determinate lesions that have characteristic clinical and imaging features as well as narrow the differential diagnoses for lesions with non-specific or indeterminate characteristics. In this review, a spectrum of histologically proven benign and malignant superficial soft-tissue lesions from a single institution will be presented. In addition, a few tumour-like conditions will be included as they can be encountered during imaging of soft-tissue masses

  18. Medical image of the week: necrotizing soft tissue infection

    Directory of Open Access Journals (Sweden)

    Taylor A

    2016-03-01

    Full Text Available No abstract available. Article truncated at 150 words. A 70-year-old man with a history of coronary artery disease, chronic back pain, and general debilitation presented to the emergency department with complaints of fever, weakness and right buttock discomfort. Physical exam was remarkable for a temperature of 101.7º F, and for moderate erythema of the skin of the right inguinal area and right buttock, with associated tenderness. Laboratory exam was significant for a WBC of 22.7 K/ɥL, erythrocyte sedimentation rate of 82 mm, and serum creatinine phosphokinase of 2856 U/L. CAT of the abdomen and pelvis demonstrated extensive gluteal and perineal soft tissue inflammation with gas formation, consistent with a necrotizing soft tissue infection (Figures 1 and 2. Three basic subsets of necrotizing soft tissue infections (NSTIs have been described. Type I infections are the most common form and are characterized by a polymicrobial process typically involving gram positive cocci, gram negative rods, and anaerobes. Type I infections occur ...

  19. Soft-Rt: software for IMRT simulations based on MCNPX

    International Nuclear Information System (INIS)

    Ferreira F, T. C.; Campos, T.

    2015-10-01

    Intensity Modulated Radiation Therapy (IMRT) is an advanced treatment technique, widely used in external radiotherapy. This paper presents the Soft-Rt which allows the simulation of an entire IMRT treatment protocol. The Soft-Rt performs a full three-dimensional rendering of a set of patient images, including the definitions of region of interest with organs in risk, and the target tumor volume and margins (PTV). Thus, a more accurate analysis and planning can be performed, taking into account the features and orientation of the radiation beams. The exposed tissues as well as the amount of absorbed dose is depicted in healthy and/or cancerous tissues. As conclusion, Soft-Rt can predict dose on the PTV accurately, preserving the surrounding healthy tissues. Soft-Rt is coupled with SISCODES code. The SISCODES code is firstly applied to segment the set of CT or MRI patient images in distinct tissues pointing out its respective density and chemical compositions. Later, the voxel model is export to the Soft-Rt IMRT planning module in which a full treatment planning is created. All geometrical parameters are sent to the general purpose Monte Carlo transport code - MCNP - to simulate the interaction of each incident beam towards to the PTV avoiding organs in risk. The normalized dose results are exported to the Soft-Rt out-module, in which the three-dimensional model visualization is shown in a transparent glass procedure adopting gray scale for the dependence on the mass density of the correlated tissue; while, a color scale to depict dose values in a superimpose protocol. (Author)

  20. Soft-Rt: software for IMRT simulations based on MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira F, T. C. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Campos, T., E-mail: tcff01@gmail.com [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Programa de Pos Graduacao em Ciencias e Tecnicas Nucleares, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Intensity Modulated Radiation Therapy (IMRT) is an advanced treatment technique, widely used in external radiotherapy. This paper presents the Soft-Rt which allows the simulation of an entire IMRT treatment protocol. The Soft-Rt performs a full three-dimensional rendering of a set of patient images, including the definitions of region of interest with organs in risk, and the target tumor volume and margins (PTV). Thus, a more accurate analysis and planning can be performed, taking into account the features and orientation of the radiation beams. The exposed tissues as well as the amount of absorbed dose is depicted in healthy and/or cancerous tissues. As conclusion, Soft-Rt can predict dose on the PTV accurately, preserving the surrounding healthy tissues. Soft-Rt is coupled with SISCODES code. The SISCODES code is firstly applied to segment the set of CT or MRI patient images in distinct tissues pointing out its respective density and chemical compositions. Later, the voxel model is export to the Soft-Rt IMRT planning module in which a full treatment planning is created. All geometrical parameters are sent to the general purpose Monte Carlo transport code - MCNP - to simulate the interaction of each incident beam towards to the PTV avoiding organs in risk. The normalized dose results are exported to the Soft-Rt out-module, in which the three-dimensional model visualization is shown in a transparent glass procedure adopting gray scale for the dependence on the mass density of the correlated tissue; while, a color scale to depict dose values in a superimpose protocol. (Author)

  1. The efficacy of cetuximab in a tissue-engineered three-dimensional in vitro model of colorectal cancer

    Directory of Open Access Journals (Sweden)

    Tarig Magdeldin

    2014-07-01

    Full Text Available The preclinical development process of chemotherapeutic drugs is often carried out in two-dimensional monolayer cultures. However, a considerable amount of evidence demonstrates that two-dimensional cell culture does not accurately reflect the three-dimensional in vivo tumour microenvironment, specifically with regard to gene expression profiles, oxygen and nutrient gradients and pharmacokinetics. With this objective in mind, we have developed and established a physiologically relevant three-dimensional in vitro model of colorectal cancer based on the removal of interstitial fluid from collagen type I hydrogels. We employed the RAFT™ (Real Architecture For 3D Tissue system for producing three-dimensional cultures to create a controlled reproducible, multiwell testing platform. Using the HT29 and HCT116 cell lines to model epidermal growth factor receptor expressing colorectal cancers, we characterized three-dimensional cell growth and morphology in addition to the anti-proliferative effects of the anti–epidermal growth factor receptor chemotherapeutic agent cetuximab in comparison to two-dimensional monolayer cultures. Cells proliferated well for 14 days in three-dimensional culture and formed well-defined cellular aggregates within the concentrated collagen matrix. Epidermal growth factor receptor expression levels revealed a twofold and threefold increase in three-dimensional cultures for both HT29 and HCT116 cells in comparison to two-dimensional monolayers, respectively (p < 0.05; p < 0.01. Cetuximab efficacy was significantly lower in HT29 three-dimensional cultures in comparison to two-dimensional monolayers, whereas HCT116 cells in both two-dimension and three-dimension were non-responsive to treatment in agreement with their KRAS mutant status. In summary, these results confirm the use of a three-dimensional in vitro cancer model as a suitable drug-screening platform for in vitro pharmacological testing.

  2. Three-dimensional display of the pelvic viscera using multi-sliced MR images

    International Nuclear Information System (INIS)

    Ueno, Shigeru; Suto, Yasuzo.

    1995-01-01

    Accurate reconstruction of the pelvic structure is the most important factor to obtain desirable results after anorectal surgery. Preoperative evaluation of the anatomy is indispensable for choosing an appropriate operative method in each case. To facilitate the preoperative evaluation, three dimensional images of the pelvic structure of patients with anorectal malformations were constructed by computer graphics based upon two dimensional images obtained from MR-CT. Graphic data from MR images were transferred to a graphic work station. The anorectum, bladder and sphincter musculature were displayed three-dimensionally after segmenting these organs by (1) manually regioning the area containing the specific organ and (2) thresholding the area by the T 1 intensity level. The anatomy of each type of anomaly is easily recognized by the 3-D visualization of pelvic viscera and sphincter musculature with emphasis on position and shape of the musculature although there are some difficulties to visualize soft tissue organs. The advanced programs could show the graphic images from any desirable angle quickly enough to be helpful for the simulation of the surgery. Three-dimensional display can be very useful for better understanding of each anomaly and determining the operative method prior to surgery. (author)

  3. In vivo X-Ray Computed Tomographic Imaging of Soft Tissue with Native, Intravenous, or Oral Contrast

    Directory of Open Access Journals (Sweden)

    W. Matthew Leevy

    2013-05-01

    Full Text Available X-ray Computed Tomography (CT is one of the most commonly utilized anatomical imaging modalities for both research and clinical purposes. CT combines high-resolution, three-dimensional data with relatively fast acquisition to provide a solid platform for non-invasive human or specimen imaging. The primary limitation of CT is its inability to distinguish many soft tissues based on native contrast. While bone has high contrast within a CT image due to its material density from calcium phosphate, soft tissue is less dense and many are homogenous in density. This presents a challenge in distinguishing one type of soft tissue from another. A couple exceptions include the lungs as well as fat, both of which have unique densities owing to the presence of air or bulk hydrocarbons, respectively. In order to facilitate X-ray CT imaging of other structures, a range of contrast agents have been developed to selectively identify and visualize the anatomical properties of individual tissues. Most agents incorporate atoms like iodine, gold, or barium because of their ability to absorb X-rays, and thus impart contrast to a given organ system. Here we review the strategies available to visualize lung, fat, brain, kidney, liver, spleen, vasculature, gastrointestinal tract, and liver tissues of living mice using either innate contrast, or commercial injectable or ingestible agents with selective perfusion. Further, we demonstrate how each of these approaches will facilitate the non-invasive, longitudinal, in vivo imaging of pre-clinical disease models at each anatomical site.

  4. In vivo X-Ray Computed Tomographic Imaging of Soft Tissue with Native, Intravenous, or Oral Contrast

    Science.gov (United States)

    Wathen, Connor A.; Foje, Nathan; van Avermaete, Tony; Miramontes, Bernadette; Chapaman, Sarah E.; Sasser, Todd A.; Kannan, Raghuraman; Gerstler, Steven; Leevy, W. Matthew

    2013-01-01

    X-ray Computed Tomography (CT) is one of the most commonly utilized anatomical imaging modalities for both research and clinical purposes. CT combines high-resolution, three-dimensional data with relatively fast acquisition to provide a solid platform for non-invasive human or specimen imaging. The primary limitation of CT is its inability to distinguish many soft tissues based on native contrast. While bone has high contrast within a CT image due to its material density from calcium phosphate, soft tissue is less dense and many are homogenous in density. This presents a challenge in distinguishing one type of soft tissue from another. A couple exceptions include the lungs as well as fat, both of which have unique densities owing to the presence of air or bulk hydrocarbons, respectively. In order to facilitate X-ray CT imaging of other structures, a range of contrast agents have been developed to selectively identify and visualize the anatomical properties of individual tissues. Most agents incorporate atoms like iodine, gold, or barium because of their ability to absorb X-rays, and thus impart contrast to a given organ system. Here we review the strategies available to visualize lung, fat, brain, kidney, liver, spleen, vasculature, gastrointestinal tract, and liver tissues of living mice using either innate contrast, or commercial injectable or ingestible agents with selective perfusion. Further, we demonstrate how each of these approaches will facilitate the non-invasive, longitudinal, in vivo imaging of pre-clinical disease models at each anatomical site. PMID:23711461

  5. Cytokeratin expression of engrafted three-dimensional culture tissues using epithelial cells derived from porcine periodontal ligaments.

    Science.gov (United States)

    Yamada, Rie; Kitajima, Kayoko; Arai, Kyoko; Igarashi, Masaru

    2014-09-01

    This study investigated the differentiation and proliferation of epithelial cells derived from periodontal ligaments after three-dimensional culture using collagen gel with fibroblasts in vitro and in vivo. Epithelial cells and fibroblasts were derived from porcine periodontal ligaments. Epithelial cells were labeled using a fluorescent red membrane marker (PKH-26GL) and were seeded onto collagen gel with fibroblasts, followed by incubation in an air-liquid interface for 7 days. Three-dimensional cultures were grafted onto the backs of nude mice and removed at 1, 7, and 14 days after surgery (in vivo model). Unfixed sections (5 μm) were used to detect the presence of red fluorescent cells. Paraffin sections were analyzed histologically and immunohistochemically. Specimens were compared with three-dimensional culture tissues at 8, 14 and 21 days (in vitro model). Grafted three-dimensional cultures formed a stratified epithelial structure similar to skin in vivo. Epithelial cells were sequenced in basal-layer-like structures at 14 days in vivo. Immunohistochemical findings showed that the expression of cytokeratin was detected in the epithelial layer in in vitro and in vivo models. Ck8 + 18 + 19 was expressed in the upper epithelial layer in the in vitro model at 14 and 21 days, but not in vivo. Involucrin was expressed in the certified layers in vitro at 14 days, but not in vivo. Laminin was detected at the dermo-epidermal junction in vivo at 7 and 14 days, but not in vitro. These results suggest that differentiation of three-dimensional culture tissues differs in vivo and in vitro. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Development of a Three-Dimensional Hand Model Using Three-Dimensional Stereophotogrammetry: Assessment of Image Reproducibility.

    Directory of Open Access Journals (Sweden)

    Inge A Hoevenaren

    Full Text Available Using three-dimensional (3D stereophotogrammetry precise images and reconstructions of the human body can be produced. Over the last few years, this technique is mainly being developed in the field of maxillofacial reconstructive surgery, creating fusion images with computed tomography (CT data for precise planning and prediction of treatment outcome. Though, in hand surgery 3D stereophotogrammetry is not yet being used in clinical settings.A total of 34 three-dimensional hand photographs were analyzed to investigate the reproducibility. For every individual, 3D photographs were captured at two different time points (baseline T0 and one week later T1. Using two different registration methods, the reproducibility of the methods was analyzed. Furthermore, the differences between 3D photos of men and women were compared in a distance map as a first clinical pilot testing our registration method.The absolute mean registration error for the complete hand was 1.46 mm. This reduced to an error of 0.56 mm isolating the region to the palm of the hand. When comparing hands of both sexes, it was seen that the male hand was larger (broader base and longer fingers than the female hand.This study shows that 3D stereophotogrammetry can produce reproducible images of the hand without harmful side effects for the patient, so proving to be a reliable method for soft tissue analysis. Its potential use in everyday practice of hand surgery needs to be further explored.

  7. New possibilities of three-dimensional reconstruction of computed tomography scans

    International Nuclear Information System (INIS)

    Herman, M.; Tarjan, Z.; Pozzi-Mucelli, R.S.

    1996-01-01

    Three-dimensional (3D) computed tomography (CT) scan reconstructions provide impressive and illustrative images of various parts of the human body. Such images are reconstructed from a series of basic CT scans by dedicated software. The state of the art in 3D computed tomography is demonstrated with emphasis on the imaging of soft tissues. Examples are presented of imaging the craniofacial and maxillofacial complex, central nervous system, cardiovascular system, musculoskeletal system, gastrointestinal and urogenital systems, and respiratory system, and their potential in clinical practice is discussed. Although contributing no new essential diagnostic information against conventional CT scans, 3D scans can help in spatial orientation. 11 figs., 25 refs

  8. Computed tomography in soft-tissue lesions of the hand and forearm

    International Nuclear Information System (INIS)

    Schmitt, R.; Warmuth-Metz, M.; Lucas, D.; Feyerabend, T.; Schindler, G.; Lanz, U.

    1990-01-01

    Computed tomography was carried out in 32 patients with clinically equivocal soft-tissue lesions of the hand (24 times) and forearm (8 times). The CT scans were performed with the patients in standard positions; thin slices and zoom technique were used. All soft-tissue tumors were correctly diagnosed with regard to localization, size and infiltration of the surrounding tissue. The histological diagnosis was correct in tendon-sheath proliferations, deposits caused by metabolic disorders, epithelial and ganglion cysts, hemangiomas, lipomas and in one schwannoma. A malignancy was suspected and was proven to be correct in two cases. False-positive diagnoses of a malignant soft-tissue tumor were made in one case of an aggressive fibromatosis, in a rapidly progressive, ossifying myositis, and three times in the presence of postoperative scar tissue following the resection of a sarcoma. Finally, a case of proliferative myositis regarded as semimalignant was underrated by CT. The hand surgeon considered CT diagnostics to be very helpful in planning operations in an anatomically complex organ such as the hand. (orig.) [de

  9. On clinical usefulness of Tl-201 scintigraphy for the management of malignant soft tissue tumors

    International Nuclear Information System (INIS)

    Terui, Shoji; Terauchi, Takashi; Abe, Hiroyuki; Fukuma, Hisatoshi; Beppu, Yasuo; Chuman, Koichi; Yokoyama, Ryohei

    1994-01-01

    The purpose of this study was to investigate Tl-201 as a tumor scanning agent in patients with malignant soft tissue sarcomas and to establish the sensitivity of this type of scintigraphy concerning local recurrences or metastases that may remain clinically suspected. Seventy-eight patients with malignant soft tissue sarcomas and 22 with benign soft tissue tumors were studied. Of these 78 malignant soft tissue sarcomas patients, the sensitivity of Tl-201 (81.2%) was higher than that of Ga-67 (68.8%). Thirty-three out of 78 patients received a total of 95 consecutive scintigraphic follow-up examinations. Therapeutic effects was assessed by comparing the results of Tl-201 examinations with the clinical findings. Of these 33 patients, the therapeutic effects observed were as follows: complete remission 1, partial remission 8, progress of disease 1, and no remarkable change 23. Tl-201 scintigraphy has proved itself very useful not only in clinically detecting the malignant soft tissue sarcomas and in assessing therapeutic effects on these diseases, but also in assessing the follow-up patients with malignant soft tissue sarcomas. (author)

  10. Clinical usefulness of facial soft tissues thickness measurement using 3D computed tomographic images

    International Nuclear Information System (INIS)

    Jeong, Ho Gul; Kim, Kee Deog; Hu, Kyung Seok; Lee, Jae Bum; Park, Hyok; Han, Seung Ho; Choi, Seong Ho; Kim, Chong Kwan; Park, Chang Seo

    2006-01-01

    To evaluate clinical usefulness of facial soft tissue thickness measurement using 3D computed tomographic images. One cadaver that had sound facial soft tissues was chosen for the study. The cadaver was scanned with a Helical CT under following scanning protocols about slice thickness and table speed: 3 mm and 3 mm/sec, 5 mm and 5 mm/sec, 7 mm and 7 mm/sec. The acquired data were reconstructed 1.5, 2.5, 3.5 mm reconstruction interval respectively and the images were transferred to a personal computer. Using a program developed to measure facial soft tissue thickness in 3D image, the facial soft tissue thickness was measured. After the ten-time repeation of the measurement for ten times, repeated measure analysis of variance (ANOVA) was adopted to compare and analyze the measurements using the three scanning protocols. Comparison according to the areas was analysed by Mann-Whitney test. There were no statistically significant intraobserver differences in the measurements of the facial soft tissue thickness using the three scanning protocols (p>0.05). There were no statistically significant differences between measurements in the 3 mm slice thickness and those in the 5 mm, 7 mm slice thickness (p>0.05). There were statistical differences in the 14 of the total 30 measured points in the 5 mm slice thickness and 22 in the 7 mm slice thickness. The facial soft tissue thickness measurement using 3D images of 7 mm slice thickness is acceptable clinically, but those of 5 mm slice thickness is recommended for the more accurate measurement

  11. Macroporous Hydrogel Scaffolds for Three-Dimensional Cell Culture and Tissue Engineering.

    Science.gov (United States)

    Fan, Changjiang; Wang, Dong-An

    2017-10-01

    Hydrogels have been promising candidate scaffolds for cell delivery and tissue engineering due to their tissue-like physical properties and capability for homogeneous cell loading. However, the encapsulated cells are generally entrapped and constrained in the submicron- or nanosized gel networks, seriously limiting cell growth and tissue formation. Meanwhile, the spatially confined settlement inhibits attachment and spreading of anchorage-dependent cells, leading to their apoptosis. In recent years, macroporous hydrogels have attracted increasing attention in use as cell delivery vehicles and tissue engineering scaffolds. The introduction of macropores within gel scaffolds not only improves their permeability for better nutrient transport but also creates space/interface for cell adhesion, proliferation, and extracellular matrix deposition. Herein, we will first review the development of macroporous gel scaffolds and outline the impact of macropores on cell behaviors. In the first part, the advantages and challenges of hydrogels as three-dimensional (3D) cell culture scaffolds will be described. In the second part, the fabrication of various macroporous hydrogels will be presented. Third, the enhancement of cell activities within macroporous gel scaffolds will be discussed. Finally, several crucial factors that are envisaged to propel the improvement of macroporous gel scaffolds are proposed for 3D cell culture and tissue engineering.

  12. Three-dimensional hydrogel cell culture systems for modeling neural tissue

    Science.gov (United States)

    Frampton, John

    Two-dimensional (2-D) neural cell culture systems have served as physiological models for understanding the cellular and molecular events that underlie responses to physical and chemical stimuli, control sensory and motor function, and lead to the development of neurological diseases. However, the development of three-dimensional (3-D) cell culture systems will be essential for the advancement of experimental research in a variety of fields including tissue engineering, chemical transport and delivery, cell growth, and cell-cell communication. In 3-D cell culture, cells are provided with an environment similar to tissue, in which they are surrounded on all sides by other cells, structural molecules and adhesion ligands. Cells grown in 3-D culture systems display morphologies and functions more similar to those observed in vivo, and can be cultured in such a way as to recapitulate the structural organization and biological properties of tissue. This thesis describes a hydrogel-based culture system, capable of supporting the growth and function of several neural cell types in 3-D. Alginate hydrogels were characterized in terms of their biomechanical and biochemical properties and were functionalized by covalent attachment of whole proteins and peptide epitopes. Methods were developed for rapid cross-linking of alginate hydrogels, thus permitting the incorporation of cells into 3-D scaffolds without adversely affecting cell viability or function. A variety of neural cell types were tested including astrocytes, microglia, and neurons. Cells remained viable and functional for longer than two weeks in culture and displayed process outgrowth in 3-D. Cell constructs were created that varied in cell density, type and organization, providing experimental flexibility for studying cell interactions and behavior. In one set of experiments, 3-D glial-endothelial cell co-cultures were used to model blood-brain barrier (BBB) structure and function. This co-culture system was

  13. Significance of prevertebral soft tissue measurement in cervical spine injuries

    Energy Technology Data Exchange (ETDEWEB)

    Dai Liyang E-mail: lydai@etang.com

    2004-07-01

    Objective: The objective of this study was to evaluate the diagnostic value of prevertebral soft tissue swelling in cervical spine injuries. Materials and methods: A group of 107 consecutive patients with suspected injuries of the cervical vertebrae were reviewed retrospectively to identify the presence of prevertebral soft tissue swelling and to investigate the association of prevertebral soft tissue swelling with the types and degrees of cervical spine injuries. Results: Prevertebral soft tissue swelling occurred in 47 (43.9%) patients. Of the 47 patients, 38 were found with bony injury and nine were without. The statistic difference was significant (P<0.05). No correlation was demonstrated between soft tissue swelling and either the injured level of the cervical vertebrae or the degree of the spinal cord injury (P>0.05). Anterior element injuries in the cervical vertebrae had widening of the prevertebral soft tissue more than posterior element injuries (P<0.05). Conclusion: The diagnostic value of prevertebral soft tissue swelling for cervical spine injuries is significant, but the absence of this sign does not mean that further image evaluation can be spared.

  14. Soft tissue response in orthognathic surgery patients treated by bimaxillary osteotomy: cephalometry compared with 2-D photogrammetry.

    Science.gov (United States)

    Rustemeyer, Jan; Martin, Alice

    2013-03-01

    Since improvement of facial aesthetics after orthognathic surgery moves increasingly into the focus of patients, prediction of soft tissue response to hard tissue movement becomes essential for planning. The aim of this study was to assess the facial soft tissue response in skeletal class II and III patients undergoing orthognathic surgery and to compare the potentials of cephalometry and two-dimensional (2-D) photogrammetry for predicting soft tissue changes. Twenty-eight patients with class II relationship and 33 with class III underwent bimaxillary surgery. All subjects had available both a traced lateral cephalogram and a traced lateral photogram taken pre- and postsurgery in natural head position (median follow-up, 9.4 ± 0.6 months). Facial convexity and lower lip length were highly correlated with hard tissue movements cephalometrically in class III patients and 2-D photogrammetrically in both classes. In comparison, cephalometric correlations for class II patients were weak. Correlations of hard and soft tissue movements between pre- and postoperative corresponding landmarks in horizontal and vertical planes were significant for cephalometry and 2-D photogrammetry. No significant difference was found between cephalometry and 2-D photogrammetry with respect to soft to hard tissue movement ratios. This study revealed that cephalometry is still a feasible standard for evaluating and predicting outcomes in routine orthognathic surgery cases. Accuracy could be enhanced with 2-D photogrammetry, especially in class II patients.

  15. Sequential chimeric medial femoral condyle and anterolateral thigh flow-through flaps for one-stage reconstructions of composite bone and soft tissue defects: Report of three cases.

    Science.gov (United States)

    Henn, Dominic; Abouarab, Mohamed H; Hirche, Christoph; Hernekamp, Jochen F; Schmidt, Volker J; Kneser, Ulrich; Kremer, Thomas

    2017-10-01

    Small recalcitrant non-unions with poor perfusion require reconstruction with vascularized bone flaps. Cases with concomitant large soft tissue defects are especially challenging, since vascularized soft tissue transfer is often indicated and distant microvascular anastomoses may be required. We introduce a sequential chimeric free flap composed of a medial femoral condyle corticoperiosteal flap anastomosed to an anterolateral thigh flow-through flap (MFC-ALT flap) and report its use for reconstruction of small non-unions with concomitant large soft tissue defects in three exemplary patients. Two female and one male patients ages 39-58 years suffered from composite bone and soft tissue defects of the lower extremity and clavicle caused by tumor resection and postoperative radiation resp. infected tibial pilon fracture. The sizes of the soft tissue defects ranged from 15-23 × 4.5-6 cm and the sizes of the bone defects ranged from 1.5-4 × 2-4 cm. Defect reconstructions were performed in all cases with sequential chimeric MFC-ALT flaps with sizes ranging from 2-4 × 1.6-4 cm for the MFC and 21-23 × 7-8 cm for the ALT skin paddles. Functional reconstructions were achieved in all cases resulting in stable unions and soft tissue coverage enabling the patients to bear full weight without assistance on 5-months follow-up. Postoperative course was uneventful and complications were restricted to a small skin necrosis at the suture line in one case. MFC-ALT flaps may be a safe, and effective procedure for one-stage reconstructions of small, irregularly shaped bone defects with concomitant large soft tissue loss or surrounding instable scarring, particularly in cases of recalcitrant non-unions after radiation exposure. © 2017 Wiley Periodicals, Inc.

  16. [RESEARCH PROGRESS OF THREE-DIMENSIONAL PRINTING POROUS SCAFFOLDS FOR BONE TISSUE ENGINEERING].

    Science.gov (United States)

    Wu, Tianqi; Yang, Chunxi

    2016-04-01

    To summarize the research progress of several three-dimensional (3-D)-printing scaffold materials in bone tissue engineering. The recent domestic and international articles about 3-D printing scaffold materials were reviewed and summarized. Compared with conventional manufacturing methods, 3-D printing has distinctive advantages, such as enhancing the controllability of the structure and increasing the productivity. In addition to the traditional metal and ceramic scaffolds, 3-D printing scaffolds carrying seeding cells and tissue factors as well as scaffolds filling particular drugs for special need have been paid more and more attention. The development of 3-D printing porous scaffolds have revealed new perspectives in bone repairing. But it is still at the initial stage, more basic and clinical researches are still needed.

  17. Damage Models for Soft Tissues: A Survey.

    Science.gov (United States)

    Li, Wenguang

    Damage to soft tissues in the human body has been investigated for applications in healthcare, sports, and biomedical engineering. This paper reviews and classifies damage models for soft tissues to summarize achievements, identify new directions, and facilitate finite element analysis. The main ideas of damage modeling methods are illustrated and interpreted. A few key issues related to damage models, such as experimental data curve-fitting, computational effort, connection between damage and fractures/cracks, damage model applications, and fracture/crack extension simulation, are discussed. Several new challenges in the field are identified and outlined. This review can be useful for developing more advanced damage models and extending damage modeling methods to a variety of soft tissues.

  18. A cone-beam computed tomography triple scan procedure to obtain a three-dimensional augmented virtual skull model appropriate for orthognathic surgery planning.

    NARCIS (Netherlands)

    Swennen, G.R.J.; Mollemans, W.; Clercq, C. De; Abeloos, J.V.S.; Lamoral, P.; Lippens, F.R.C.; Neyt, N.; Casselman, J.W.; Schutyser, F.A.C.

    2009-01-01

    The aim of this study was to present a new approach to acquire a three-dimensional virtual skull model appropriate for orthognathic surgery planning without the use of plaster dental models and without deformation of the facial soft-tissue mask. A "triple" cone-beam computed tomography (CBCT) scan

  19. Soft Tissue Biomechanical Modeling for Computer Assisted Surgery

    CERN Document Server

    2012-01-01

      This volume focuses on the biomechanical modeling of biological tissues in the context of Computer Assisted Surgery (CAS). More specifically, deformable soft tissues are addressed since they are the subject of the most recent developments in this field. The pioneering works on this CAS topic date from the 1980's, with applications in orthopaedics and biomechanical models of bones. More recently, however, biomechanical models of soft tissues have been proposed since most of the human body is made of soft organs that can be deformed by the surgical gesture. Such models are much more complicated to handle since the tissues can be subject to large deformations (non-linear geometrical framework) as well as complex stress/strain relationships (non-linear mechanical framework). Part 1 of the volume presents biomechanical models that have been developed in a CAS context and used during surgery. This is particularly new since most of the soft tissues models already proposed concern Computer Assisted Planning, with ...

  20. Ultrasound of musculoskeletal soft-tissue tumors superficial to the investing fascia.

    Science.gov (United States)

    Hung, Esther Hiu Yee; Griffith, James Francis; Ng, Alex Wing Hung; Lee, Ryan Ka Lok; Lau, Domily Ting Yi; Leung, Jason Chi Shun

    2014-06-01

    The objective of our study was to evaluate the diagnostic accuracy of ultrasound in assessing musculoskeletal soft-tissue tumors superficial to the investing fascia. Seven hundred fourteen superficial soft-tissue tumors evaluated with ultrasound by two musculoskeletal radiologists were retrospectively reviewed. In all ultrasound reports, the reporting radiologists provided one, two, or three diagnoses depending on their perceived level of diagnostic certainty. Two hundred forty-seven tumors had subsequent histologic correlation, thus allowing the accuracy of the ultrasound diagnosis to be determined. Images of the lesions with a discordant ultrasound diagnosis and histologic diagnosis were reviewed, and the ultrasound features were further classified as concordant with the known histologic diagnosis, concordant with the known histologic diagnosis with atypical features present, or discordant with the known histologic diagnosis. Four hundred sixty-seven tumors without pathologic confirmation were followed up clinically. Overall the accuracy of ultrasound examination for assessing superficial soft-tissue masses was 79.0% when all differential diagnoses were considered and 77.0% when only the first differential diagnosis was considered. The sensitivity and specificity of the first ultrasound diagnosis were 95.2% and 94.3%, respectively, for lipoma; 73.0% and 97.7% for vascular malformation; 80.0% and 95.4% for epidermoid cyst; and 68.8% and 95.2% for nerve sheath tumor. Reduced observer awareness of specific tumor entities tended to contribute to underdiagnosis more than poor specificity of ultrasound findings. Most tumors (236/247, 96%) were benign. The sensitivity and specificity of ultrasound for identifying malignant superficial soft-tissue tumors was 94.1% and 99.7%, respectively. The diagnostic accuracy of ultrasound in the assessment of superficial musculoskeletal soft-tissue tumors is high and can be improved through increased radiologist awareness of less

  1. Evaluation of the relationship between extremity soft tissue sarcomas and adjacent major vessels using contrast-enhanced multidetector CT and three-dimensional volume-rendered CT angiography - A preliminary study

    International Nuclear Information System (INIS)

    Li, YangKang; Lin, JianBang; Cai, AiQun; Zhou, XiuGuo; Zheng, Yu; Wei, XiaoLong; Cheng, Ying; Liu, GuoRui

    2013-01-01

    Background: Accurate description of the relationship between extremity soft tissue sarcoma and the adjacent major vessels is crucial for successful surgery. In addition to magnetic resonance imaging (MRI) or in patients who cannot undergo MRI, two-dimensional (2D) postcontrast computed tomography (CT) images and three-dimensional (3D) volume-rendered CT angiography may be valuable alternative imaging techniques for preoperative evaluation of extremity sarcomas. Purpose: To preoperatively assess extremity sarcomas using multidetector CT (MDCT), with emphasis on postcontrast MDCT images and 3D volume-rendered MDCT angiography in evaluating the relationship between tumors and adjacent major vessels. Material and Methods: MDCT examinations were performed on 13 patients with non-metastatic extremity sarcomas. Conventional CT images and 3D volume-rendered CT angiography were evaluated, with focus on the relationship between tumors and adjacent major vessels. Kappa consistency statistics were performed with surgery serving as the reference standard. Results: The relationship between sarcomas and adjacent vessels was described as one of three patterns: proximity, adhesion, and encasement. Proximity was seen in five cases on postcontrast CT images or in eight cases on volume-rendered images. Adhesion was seen in three cases on both postcontrast CT images and volume-rendered images. Encasement was seen in five cases on postcontrast CT images or in two cases on volume-rendered images. Compared to surgical results, postcontrast CT images had 100% sensitivity, 83.3% specificity, 87.5% positive predictive value, 100% negative predictive value, and 92.3% accuracy in the detection of vascular invasion (κ = 0.843, P = 0.002). 3D volume-rendered CT angiography had 71.4% sensitivity, 100% specificity, 100% positive predictive value, 75% negative predictive value, and 84.6% accuracy in the detection of vascular invasion (κ = 0.698, P = 0.008). On volume-rendered images, all cases

  2. Accuracy of Intraoral Digital Impressions for Whole Upper Jaws, Including Full Dentitions and Palatal Soft Tissues.

    Directory of Open Access Journals (Sweden)

    Ning Gan

    Full Text Available Intraoral digital impressions have been stated to meet the clinical requirements for some teeth-supported restorations, though fewer evidences were proposed for larger scanning range. The aim of this study was to compare the accuracy (trueness and precision of intraoral digital impressions for whole upper jaws, including the full dentitions and palatal soft tissues, as well as to determine the effect of different palatal vault height or arch width on accuracy of intraoral digital impressions. Thirty-two volunteers were divided into three groups according to the palatal vault height or arch width. Each volunteer received three scans with TRIOS intraoral scanner and one conventional impression of whole upper jaw. Three-dimensional (3D images digitized from conventional gypsum casts by a laboratory scanner were chose as the reference models. All datasets were imported to a specific software program for 3D analysis by "best fit alignment" and "3D compare" process. Color-coded deviation maps showed qualitative visualization of the deviations. For the digital impressions for palatal soft tissues, trueness was (130.54±33.95μm and precision was (55.26±11.21μm. For the digital impressions for upper full dentitions, trueness was (80.01±17.78μm and precision was (59.52±11.29μm. Larger deviations were found between intraoral digital impressions and conventional impressions in the areas of palatal soft tissues than that in the areas of full dentitions (p0.05, but arch width was found to have a significant effect on precision of intraoral digital impressions for full dentitions (p = 0.016. A linear correlation was found between arch width and precision of digital impressions for whole upper jaws (r = 0.326, p = 0.034 for palatal soft tissues and r = 0.485, p = 0.002 for full dentitions. It was feasible to use the intraoral scanner to obtain digital impressions for whole upper jaws. Wider dental arch contributed to lower precision of an intraoral

  3. Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Gu, Chengfan

    2018-05-30

    Soft tissue deformation modelling forms the basis of development of surgical simulation, surgical planning and robotic-assisted minimally invasive surgery. This paper presents a new methodology for modelling of soft tissue deformation based on reaction-diffusion mechanics via neural dynamics. The potential energy stored in soft tissues due to a mechanical load to deform tissues away from their rest state is treated as the equivalent transmembrane potential energy, and it is distributed in the tissue masses in the manner of reaction-diffusion propagation of nonlinear electrical waves. The reaction-diffusion propagation of mechanical potential energy and nonrigid mechanics of motion are combined to model soft tissue deformation and its dynamics, both of which are further formulated as the dynamics of cellular neural networks to achieve real-time computational performance. The proposed methodology is implemented with a haptic device for interactive soft tissue deformation with force feedback. Experimental results demonstrate that the proposed methodology exhibits nonlinear force-displacement relationship for nonlinear soft tissue deformation. Homogeneous, anisotropic and heterogeneous soft tissue material properties can be modelled through the inherent physical properties of mass points. Graphical abstract Soft tissue deformation modelling with haptic feedback via neural dynamics-based reaction-diffusion mechanics.

  4. Soft tissue technique - lateral view of the foot

    Energy Technology Data Exchange (ETDEWEB)

    Seyss, R.

    1980-02-01

    For exact anatomic analysis, radiographs are made of and correlated with anatomic sections of a cadaver foot. Three regions are being differentiated: The dorsal and the plantar and the calcaneal region. Normal findings are being presented as well as some pathologic soft tissue changes with special emphasis on the syndrome of 'high edge calcaneus'.

  5. Soft tissue technique - lateral view of the foot

    International Nuclear Information System (INIS)

    Seyss, R.

    1980-01-01

    For exact anatomic analysis, radiographs are made of and correlated with anatomic sections of a cadaver foot. Three regions are being differentiated: The dorsal and the plantar and the calcaneal region. Normal findings are being presented as well as some pathologic soft tissue changes with special emphasis on the syndrome of 'high edge calcaneus'. (orig.) [de

  6. Prevalence of bone and soft tissue tumors.

    Science.gov (United States)

    Yücetürk, Güven; Sabah, Dündar; Keçeci, Burçin; Kara, Ahmet Duran; Yalçinkaya, Selçuk

    2011-01-01

    Multidisciplinary approach is a necessity for the appropriate diagnosis and treatment of bone and soft tissue tumors. The Ege University Musculoskeletal Tumor Council offers consultation services to other hospitals in the Aegean region. Since 1988 the Council has met weekly and spent approximately 1,500 hours evaluating almost 6,000 patients with suspected skeletal system tumors. Our objective was to present the data obtained from this patient group. A total of 5,658 patients, suspected to have a musculoskeletal tumor, were evaluated retrospectively. Multiple records of the patients due to multiple attendance to the Council were excluded. The prevalance of the bone and soft tissue tumors in these patients were analysed. Malignant mesenchymal tumors accounted for 39.7% of the total patients, benign tumors for 17%, tumor-like lesions for 17.8% and metastatic carsinomas for 8.6%. Malignant bone tumors were 50.2% and malignant soft tissue tumors were 49.8% of all the sarcomas. Among the malignant bone tumors the most common was osteosarcomas at a rate of 33.6%, followed by Ewing-PNET at 25.5%, chondrosarcomas at 19.4% and haematopoietic tumors at 17.6%. Pleomorphic sarcomas (24.5%), liposarcoma (16.4%), synovial sarcoma (13%) and undifferential sarcomas (8.8%) were the most common types of malignant sof tissue tumors. Benign soft tissue tumors (48%), benign cartilage tumors (28%), giant cell tumor (15%) and osteogenic tumors (9%) were found among the benign tumors. Hemangioma, lipoma, agressive fibromatosis, enchondroma, solitary chondroma and osteoid osteoma were the most common tumors in their groups. Lung (27%), breast (24%), gastrointestinal system (10.5%) and kidney (8.2%) carcinomas were the most common primary sites of the bone metastasis. Turkey still lacks a comprehensive series indicating the incidence and diagnostic distribution of bone and soft tissue tumors. The presented data would add to our knowledge on the specific rates of the bone and soft tissue

  7. Olaratumab for advanced soft tissue sarcoma.

    Science.gov (United States)

    Tobias, Alexander; O'brien, Michael P; Agulnik, Mark

    2017-07-01

    Olaratumab is a humanized IgG1 monoclonal antibody that blocks the platelet-derived growth factor receptor alpha (PDGFRα). Its antagonistic behavior inhibits the receptor's tyrosine kinase activity, thereby, turning off the downstream signaling cascades responsible for soft tissue sarcoma tumorigenesis. In October 2016, olaratumab received Food and Drug Administration (FDA) approval for its use in combination with doxorubicin for treatment of advanced soft tissue sarcoma. Areas covered: This drug profile takes a comprehensive look at the clinical studies leading to FDA approval of olaratumab as well as its safety and efficacy as a front-line treatment option for sarcoma patients. The literature search was primarily conducted using PubMed. Expert commentary: The combination of olaratumab plus doxorubicin has provided a new front-line therapeutic option for soft tissue sarcoma patients. An open-label phase Ib and randomized phase II trial in patients with advanced soft tissue sarcoma demonstrated that the addition of olaratumab to doxorubicin prolonged progression-free survival by 2.5 months and overall survival by 11.8 months when compared to doxorubicin alone. Of importance, this clinically meaningful increase in overall survival did not come at the expense of a significantly greater number of toxicities. A phase III confirmatory trial (ClinicalTrials.gov Identifier NCT02451943) will be completed in 2020.

  8. Tissue Friendly Pendulum: Soft Liner to prevent Tissue Irritation

    Directory of Open Access Journals (Sweden)

    Siddharth Shashidhar Revankar

    2014-01-01

    Full Text Available Palatal mucosal irritation is commonly encountered with the Pendulum appliance. The efficiency of soft liners in reducing tissue irritation has been well documented in the field of prosthodontics. The following article describes an innovative technique where soft liner can be used to reduce palatal mucosal irritation caused by pendulum appliance.

  9. Three-dimensional finite element models of the human pubic symphysis with viscohyperelastic soft tissues.

    Science.gov (United States)

    Li, Zuoping; Alonso, Jorge E; Kim, Jong-Eun; Davidson, James S; Etheridge, Brandon S; Eberhardt, Alan W

    2006-09-01

    Three-dimensional finite element (FE) models of human pubic symphyses were constructed from computed tomography image data of one male and one female cadaver pelvis. The pubic bones, interpubic fibrocartilaginous disc and four pubic ligaments were segmented semi-automatically and meshed with hexahedral elements using automatic mesh generation schemes. A two-term viscoelastic Prony series, determined by curve fitting results of compressive creep experiments, was used to model the rate-dependent effects of the interpubic disc and the pubic ligaments. Three-parameter Mooney-Rivlin material coefficients were calculated for the discs using a heuristic FE approach based on average experimental joint compression data. Similarly, a transversely isotropic hyperelastic material model was applied to the ligaments to capture average tensile responses. Linear elastic isotropic properties were assigned to bone. The applicability of the resulting models was tested in bending simulations in four directions and in tensile tests of varying load rates. The model-predicted results correlated reasonably with the joint bending stiffnesses and rate-dependent tensile responses measured in experiments, supporting the validity of the estimated material coefficients and overall modeling approach. This study represents an important and necessary step in the eventual development of biofidelic pelvis models to investigate symphysis response under high-energy impact conditions, such as motor vehicle collisions.

  10. Structural Analysis of Three-dimensional Human Neural Tissue derived from Induced Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Terrence Brooks, Patrick; Rasmussen, Mikkel Aabech; Hyttel, Poul

    2016-01-01

    Objective: The present study aimed at establishing a method for production of a three-dimensional (3D) human neural tissue derived from induced pluripotent stem cells (iPSCs) and analyzing the outcome by a combination of tissue ultrastructure and expression of neural markers. Methods: A two......-step cell culture procedure was implemented by subjecting human iPSCs to a 3D scaffoldbased neural differentiation protocol. First, neural fate-inducing small molecules were used to create a neuroepithelial monolayer. Second, the monolayer was trypsinized into single cells and seeded into a porous...... polystyrene scaffold and further cultured to produce a 3D neural tissue. The neural tissue was characterized by a combination of immunohistochemistry and transmission electron microscopy (TEM). Results: iPSCs developed into a 3D neural tissue expressing markers for neural progenitor cells, early neural...

  11. Soft-tissue mineralization in Werner syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Leone, Antonio; Costantini, Alessandro Maria; Brigida, Raffaela; Antoniol, Onorina Monica; Bonomo, Lorenzo [Universita Cattolica School of Medicine, Department of Radiology, Rome (Italy); Antonelli-Incalzi, Raffaele [Universita Cattolica School of Medicine, Department of Geriatrics, Rome (Italy)

    2005-01-01

    Werner syndrome is a rare autosomal recessive disorder characterized by clinical signs of premature aging, short stature, scleroderma-like skin changes, endocrine abnormalities, cataracts, and an increased incidence of malignancies. We report on a 48-year-old woman with Werner syndrome associated with intracranial meningiomas who had extensive musculoskeletal manifestations including osteoporosis of the extremities, extensive tendinopathy about the ankles, osteomyelitis of the phalanges of the first left toe, abundant soft-tissue calcification, and two dense ossified soft-tissue masses, with cortical bone and trabeculae arising from the posterosuperior aspect of the calcanei and extending into Kager fat pads. A review of previous descriptions of the radiological abnormalities of Werner syndrome indicates that the presence of soft-tissue calcifications has either not been noted or been mentioned only briefly. Moreover, there is no mention of bony masses associated with Werner syndrome in the world literature, and this would appear to be the first report of this kind. (orig.)

  12. Automatic extraction of soft tissues from 3D MRI head images using model driven analysis

    International Nuclear Information System (INIS)

    Jiang, Hao; Yamamoto, Shinji; Imao, Masanao.

    1995-01-01

    This paper presents an automatic extraction system (called TOPS-3D : Top Down Parallel Pattern Recognition System for 3D Images) of soft tissues from 3D MRI head images by using model driven analysis algorithm. As the construction of system TOPS we developed, two concepts have been considered in the design of system TOPS-3D. One is the system having a hierarchical structure of reasoning using model information in higher level, and the other is a parallel image processing structure used to extract plural candidate regions for a destination entity. The new points of system TOPS-3D are as follows. (1) The TOPS-3D is a three-dimensional image analysis system including 3D model construction and 3D image processing techniques. (2) A technique is proposed to increase connectivity between knowledge processing in higher level and image processing in lower level. The technique is realized by applying opening operation of mathematical morphology, in which a structural model function defined in higher level by knowledge representation is immediately used to the filter function of opening operation as image processing in lower level. The system TOPS-3D applied to 3D MRI head images consists of three levels. First and second levels are reasoning part, and third level is image processing part. In experiments, we applied 5 samples of 3D MRI head images with size 128 x 128 x 128 pixels to the system TOPS-3D to extract the regions of soft tissues such as cerebrum, cerebellum and brain stem. From the experimental results, the system is robust for variation of input data by using model information, and the position and shape of soft tissues are extracted corresponding to anatomical structure. (author)

  13. Estimation of soft- and hard-tissue thickness at implant sites

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2014-01-01

    Full Text Available Introduction: Anchorage control is a critical consideration when planning treatment for patients with dental and skeletal malocclusions. To obtain sufficient stability of implants, the thickness of the soft tissue and the cortical-bone in the placement site must be considered; so as to provide an anatomical map in order to assist the clinician in the placement of the implants. Objective: The aim of this study is to evaluate the thickness of soft- and hard-tissue. Materials and Methods: To measure soft tissue and cortical-bone thicknesses, 12 maxillary cross-sectional specimens were obtained from the cadavers, which were made at three maxillary mid-palatal suture areas: The interdental area between the first and second premolars (Group 1, the second premolar and the first molar (Group 2, and the first and second molars (Group 3. Sectioned samples along with reference rulers were digitally scanned. Scanned images were calibrated and measurements were made with image-analysis software. We measured the thickness of soft and hard-tissues at five sectional areas parallel to the buccopalatal cementoenamel junction (CEJ line at 2-mm intervals and also thickness of soft tissue at the six landmarks including the incisive papilla (IP on the palate. The line perpendicular to the occlusal plane was made and measurement was taken at 4-mm intervals from the closest five points to IP. Results: (1 Group 1:6 mm from CEJ in buccal side and 2 mm from CEJ in palatal side. (2 Group 2:8 mm from CEJ in buccal side and 4 mm from CEJ in palatal side. (3 Group 3:8 mm from CEJ in buccal side and 8 mm from CEJ in palatal side. Conclusions: The best site for placement of implant is with thinnest soft tissue and thickest hard tissue, which is in the middle from CEJ in buccal side and closest from CEJ in palatal side in Group 1 and faraway from CEJ in buccal side and closest from CEJ in palatal side in Group 2 and faraway from CEJ in buccal side and faraway from CEJ in palatal

  14. Three-dimensional spheroid culture targeting versatile tissue bioassays using a PDMS-based hanging drop array.

    Science.gov (United States)

    Kuo, Ching-Te; Wang, Jong-Yueh; Lin, Yu-Fen; Wo, Andrew M; Chen, Benjamin P C; Lee, Hsinyu

    2017-06-29

    Biomaterial-based tissue culture platforms have emerged as useful tools to mimic in vivo physiological microenvironments in experimental cell biology and clinical studies. We describe herein a three-dimensional (3D) tissue culture platform using a polydimethylsiloxane (PDMS)-based hanging drop array (PDMS-HDA) methodology. Multicellular spheroids can be achieved within 24 h and further boosted by incorporating collagen fibrils in PDMS-HDA. In addition, the spheroids generated from different human tumor cells exhibited distinct sensitivities toward drug chemotherapeutic agents and radiation as compared with two-dimensional (2D) cultures that often lack in vivo-like biological insights. We also demonstrated that multicellular spheroids may enable key hallmarks of tissue-based bioassays, including drug screening, tumor dissemination, cell co-culture, and tumor invasion. Taken together, these results offer new opportunities not only to achieve the active control of 3D multicellular spheroids on demand, but also to establish a rapid and cost-effective platform to study anti-cancer therapeutics and tumor microenvironments.

  15. Facial soft tissue thickness in North Indian adult population

    Directory of Open Access Journals (Sweden)

    Tanushri Saxena

    2012-01-01

    Full Text Available Objectives: Forensic facial reconstruction is an attempt to reproduce a likeness of facial features of an individual, based on characteristics of the skull, for the purpose of individual identification - The aim of this study was to determine the soft tissue thickness values of individuals of Bareilly population, Uttar Pradesh, India and to evaluate whether these values can help in forensic identification. Study design: A total of 40 individuals (19 males, 21 females were evaluated using spiral computed tomographic (CT scan with 2 mm slice thickness in axial sections and soft tissue thicknesses were measured at seven midfacial anthropological facial landmarks. Results: It was found that facial soft tissue thickness values decreased with age. Soft tissue thickness values were less in females than in males, except at ramus region. Comparing the left and right values in individuals it was found to be not significant. Conclusion: Soft tissue thickness values are an important factor in facial reconstruction and also help in forensic identification of an individual. CT scan gives a good representation of these values and hence is considered an important tool in facial reconstruction- This study has been conducted in North Indian population and further studies with larger sample size can surely add to the data regarding soft tissue thicknesses.

  16. MRI evaluation of soft tissue hydatid disease

    International Nuclear Information System (INIS)

    Garcia-Diez, A.I.; Ros Mendoza, L.H.; Villacampa, V.M.; Cozar, M.; Fuertes, M.I.

    2000-01-01

    Infestation in soft tissue by Echinococcus granulosus is not a common disease, and its diagnosis is based on clinical, laboratory data and radiological findings. The aim of our retrospective study is to give an overview of the different signs and patterns shown by MRI that can be useful in characterizing soft tissue hydatid disease. The MRI images obtained in seven patients with soft tissue and subcutaneous hydatidosis were reviewed. Typical signs of hydatidosis were multivesicular lesions with or without hypointense peripheral ring (''rim sign''). Related to the presence and absence, respectively, of viable scolices in the microscopic exam, daughter cysts were presented either as high signal intensity or low signal intensity on T2-weighted images. Low-intensity detached layers within the cyst and peripheral enhancement with gadolinium-DTPA were also presented. Atypical signs were presented in an infected muscular cyst, a subcutaneous unilocular cyst and several unilocular cysts. Knowledge of the different patterns in MRI of soft tissue hydatid disease can be useful in diagnosing this entity. We observed that the ''rim sign'' is not as common as in other locations, and in addition, MRI seems to be of assistance when evaluating the vitality of the cysts. (orig.)

  17. Reproducibility of the pink esthetic score--rating soft tissue esthetics around single-implant restorations with regard to dental observer specialization.

    Science.gov (United States)

    Gehrke, Peter; Lobert, Markus; Dhom, Günter

    2008-01-01

    The pink esthetic score (PES) evaluates the esthetic outcome of soft tissue around implant-supported single crowns in the anterior zone by awarding seven points for the mesial and distal papilla, soft-tissue level, soft-tissue contour, soft-tissue color, soft-tissue texture, and alveolar process deficiency. The aim of this study was to measure the reproducibility of the PES and assess the influence exerted by the examiner's degree of dental specialization. Fifteen examiners (three general dentists, three oral maxillofacial surgeons, three orthodontists, three postgraduate students in implant dentistry, and three lay people) applied the PES to 30 implant-supported single restorations twice at an interval of 4 weeks. Using a 0-1-2 scoring system, 0 being the lowest, 2 being the highest value, the maximum achievable PES was 14. At the second assessment, the photographs were scored in reverse order. Differences between the two assessments were evaluated with the Spearman's rank correlation coefficient (R). The Wilcoxon signed-rank test was used for comparisons of differences between the ratings. A significance level of p esthetic restorations showed the smallest deviations. Orthodontists were found to have assigned significantly poorer ratings than any other group. The assessment of postgraduate students and laypersons were the most favorable. The PES allows for a more objective appraisal of the esthetic short- and long-term results of various surgical and prosthetic implant procedures. It reproducibly evaluates the peri-implant soft tissue around single-implant restorations and results in good intra-examiner agreement. However, an effect of observer specialization on rating soft-tissue esthetics can be shown.

  18. Three-dimensional bioprinting of stem-cell derived tissues for human regenerative medicine.

    Science.gov (United States)

    Skeldon, Gregor; Lucendo-Villarin, Baltasar; Shu, Wenmiao

    2018-07-05

    Stem cell technology in regenerative medicine has the potential to provide an unlimited supply of cells for drug testing, medical transplantation and academic research. In order to engineer a realistic tissue model using stem cells as an alternative to human tissue, it is essential to create artificial stem cell microenvironment or niches. Three-dimensional (3D) bioprinting is a promising tissue engineering field that offers new opportunities to precisely place stem cells within their niches layer-by-layer. This review covers bioprinting technologies, the current development of 'bio-inks' and how bioprinting has already been applied to stem-cell culture, as well as their applications for human regenerative medicine. The key considerations for bioink properties such as stiffness, stability and biodegradation, biocompatibility and printability are highlighted. Bioprinting of both adult and pluriopotent stem cells for various types of artificial tissues from liver to brain has been reviewed. 3D bioprinting of stem-cell derived tissues for human regenerative medicine is an exciting emerging area that represents opportunities for new research, industries and products as well as future challenges in clinical translation.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'. © 2018 The Author(s).

  19. Lasers in Esthetic Dentistry: Soft Tissue Photobiomodulation, Hard Tissue Decontamination, and Ceramics Conditioning

    Directory of Open Access Journals (Sweden)

    Karen Müller Ramalho

    2014-01-01

    Full Text Available The increasing concern and the search for conservative dental treatments have resulted in the development of several new technologies. Low and high power lasers can be cited as one of these new technologies. Low power lasers act at cellular level leading to pain reduction, modulation of inflammation, and improvement of tissue healing. High power lasers act by increasing temperature and have the potential to promote microbial reduction and ablation of hard and soft tissues. The clinical application of both low and high power lasers requires specific knowledge concerning laser interaction with biological tissues, so that the correct irradiation protocol can be established. The present case report describes the clinical steps of two metal-ceramic crowns development in a 60-year-old patient. Three different laser wavelengths were applied throughout the treatment with different purposes: Nd:YAG laser (1,064 nm for dentin decontamination, diode (660 nm for soft tissue biomodulation, and Er:YAG laser (2,940 nm for inner ceramic surface conditioning. Lasers were successfully applied in the present case report as coadjutant in the treatment. This coadjutant technology can be a potential tool to assist treatment to reach the final success.

  20. Material parameter identification and inverse problems in soft tissue biomechanics

    CERN Document Server

    Evans, Sam

    2017-01-01

    The articles in this book review hybrid experimental-computational methods applied to soft tissues which have been developed by worldwide specialists in the field. People developing computational models of soft tissues and organs will find solutions for calibrating the material parameters of their models; people performing tests on soft tissues will learn what to extract from the data and how to use these data for their models and people worried about the complexity of the biomechanical behavior of soft tissues will find relevant approaches to address this complexity.

  1. Systematic literature review of digital three-dimensional superimposition techniques to create virtual dental patients.

    Science.gov (United States)

    Joda, Tim; Brägger, Urs; Gallucci, German

    2015-01-01

    Digital developments have led to the opportunity to compose simulated patient models based on three-dimensional (3D) skeletal, facial, and dental imaging. The aim of this systematic review is to provide an update on the current knowledge, to report on the technical progress in the field of 3D virtual patient science, and to identify further research needs to accomplish clinical translation. Searches were performed electronically (MEDLINE and OVID) and manually up to March 2014 for studies of 3D fusion imaging to create a virtual dental patient. Inclusion criteria were limited to human studies reporting on the technical protocol for superimposition of at least two different 3D data sets and medical field of interest. Of the 403 titles originally retrieved, 51 abstracts and, subsequently, 21 full texts were selected for review. Of the 21 full texts, 18 studies were included in the systematic review. Most of the investigations were designed as feasibility studies. Three different types of 3D data were identified for simulation: facial skeleton, extraoral soft tissue, and dentition. A total of 112 patients were investigated in the development of 3D virtual models. Superimposition of data on the facial skeleton, soft tissue, and/or dentition is a feasible technique to create a virtual patient under static conditions. Three-dimensional image fusion is of interest and importance in all fields of dental medicine. Future research should focus on the real-time replication of a human head, including dynamic movements, capturing data in a single step.

  2. Three-dimensional bio-printing.

    Science.gov (United States)

    Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi

    2015-05-01

    Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing.

  3. Three-Dimensionally Engineered Normal Human Broncho-epithelial Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    Science.gov (United States)

    Goodwin, T. J.; McCarthy, M.; Lin, Y-H

    2006-01-01

    In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.

  4. Quantification and validation of soft tissue deformation

    DEFF Research Database (Denmark)

    Mosbech, Thomas Hammershaimb; Ersbøll, Bjarne Kjær; Christensen, Lars Bager

    2009-01-01

    We present a model for soft tissue deformation derived empirically from 10 pig carcases. The carcasses are subjected to deformation from a known single source of pressure located at the skin surface, and the deformation is quantified by means of steel markers injected into the tissue. The steel...... markers are easy to distinguish from the surrounding soft tissue in 3D computed tomography images. By tracking corresponding markers using methods from point-based registration, we are able to accurately quantify the magnitude and propagation of the induced deformation. The deformation is parameterised...

  5. Soft-tissue metastasis revealing a pancreatic adenocarcinoma: One ...

    African Journals Online (AJOL)

    Soft tissue metastases from pancreatic adenocarcinoma are rare lesions and can be the source of diagnostic confusion both clinically and pathologically. To our knowledge, one patient has been reported on with soft tissue lesions that ultimately disclose a pancreatic adenocarcinoma. We report here on a patient who ...

  6. Soft Tissue Masses of Hand: A Radio-Pathological Correlation

    International Nuclear Information System (INIS)

    Agarwal, Aditi; Prakash, Mahesh; Gupta, Pankaj; Tripathy, Satyaswarup; Kakkar, Nandita; Srinivasan, Radhika; Khandelwal, Niranjan

    2015-01-01

    Aim. To evaluate soft tissue masses of the hand with magnetic resonance imaging (MRI) and ultrasonography (USG) and to correlate imaging findings with pathological findings. Material and Methods. Thirty-five patients with soft tissue masses of the hand were evaluated with high resolution USG and contrast enhanced MRI of the hand, prospectively over a period of 2.5 years. The radiological diagnosis was then compared with cytology/histopathology. Results. There were a total of 19 (55%) females. The mean age was 27.45 ± 14.7 years. Majority (45%) of cases were heteroechoic. Four cases were predominantly hyperechoic. These were later diagnosed as lipomas. Four cases were anechoic (diagnosed as ganglions). Only four lesions showed hyperintense signal on T1-weighted images. Out of these, 3 were lipomas and one was cavernous haemangioma. Three lesions were hypointense on T2-weighted images. All these lesions were diagnosed as giant cell tumor of the tendon sheath. A correct diagnosis was possible on MRI in 80% of cases (n = 28). Conclusion. MRI provides specific findings for diagnosis of certain soft tissue lesions of the hand. Ultrasonography allows accurate diagnosis of hemangioma/vascular malformations. However, in most conditions, imaging findings are nonspecific and diagnosis rests on pathologic evaluation

  7. Three-dimensional printer-aided casting of soft, custom silicone boluses (SCSBs) for head and neck radiation therapy.

    Science.gov (United States)

    Chiu, Tsuicheng; Tan, Jun; Brenner, Mathew; Gu, Xuejun; Yang, Ming; Westover, Kenneth; Strom, Tobin; Sher, David; Jiang, Steve; Zhao, Bo

    Custom tissue compensators provide dosimetric advantages for treating superficial or complex anatomy, but currently available fabrication technology is expensive or impractical for most clinical operations and yields compensators that are difficult for patients to tolerate. We aimed to develop an inexpensive, clinically feasible workflow for generating patient-specific, soft, custom silicone boluses (SCSBs) for head-and-neck (HN) radiation therapy. We developed a method using 3-dimensional printed parts for generating SCSBs for the treatment of HN cancers. The clinical workflow for generation of SCSBs was characterized inclusive of patient simulation to treatment in terms of resource time and cost. Dosimetric properties such as percentage depth dose and dose profiles were measured for SCSBs using GaF films. Comprehensive measurements were also conducted on an HN phantom. SCSBs were generated and used for electron or photon based radiation treatments of 7 HN patients with lesions at nose, cheek, eye, or ears. In vivo dose measurements with optically simulated luminescence dosimeters were performed. Total design and fabrication time from patient simulation to radiation treatment start required approximately 1 week, with fabrication constituting 1 to 2 working days depending on bolus surface area, volume, and complexity. Computed tomography and dosimetric properties of the soft bolus were similar to water. In vivo dose measurements on 7 treated patients confirmed that the dose deposition conformed to planned doses. Material costs were lower than currently available hard plastic boluses generated with 3-dimensional printing technology. All treated patients tolerated SCSBs for the duration of therapy. Generation and use of SCSBs for clinical use is feasible and effective for the treatment of HN cancers. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  8. Prevalence of Soft Tissue Calcifications in CBCT Images of Mandibular Region.

    Science.gov (United States)

    Khojastepour, Leila; Haghnegahdar, Abdolaziz; Sayar, Hamed

    2017-06-01

    Most of the soft tissue calcifications within the head and neck region might not be accompanied by clinical symptoms but may indicate some pathological conditions. The aim of this research was to determine the prevalence of soft tissue calcifications in cone beam computed tomography (CBCT) images of mandibular region. In this cross sectional study the CBCT images of 602 patients including 294 men and 308 women with mean age 41.38±15.18 years were evaluated regarding the presence, anatomical location; type (single or multiple) and size of soft tissue calcification in mandibular region. All CBCT images were acquired by NewTom VGi scanner. Odds ratio and chi-square tests were used for data analysis and p < 0.05 was considered to be statistically significant. 156 out of 602 patients had at least one soft tissue calcification in their mandibular region (25.9%. of studied population with mean age 51.7±18.03 years). Men showed significantly higher rate of soft tissue calcification than women (30.3% vs. 21.8%). Soft tissue calcification was predominantly seen at posterior region of the mandible (88%) and most of them were single (60.7%). The prevalence of soft tissue calcification increased with age. Most of the detected soft tissue calcifications were smaller than 3mm (90%). Soft tissue calcifications in mandibular area were a relatively common finding especially in posterior region and more likely to happen in men and in older age group.

  9. Angiofibroma of soft tissue: clinicopathologic study of 2 cases of a recently characterized benign soft tissue tumor.

    Science.gov (United States)

    Zhao, Ming; Sun, Ke; Li, Changshui; Zheng, Jiangjiang; Yu, Jingjing; Jin, Jie; Xia, Wenping

    2013-01-01

    Angiofibroma of soft tissue is a very recently characterized, histologically distinctive benign mesenchymal neoplasm of unknown cellular origin composed of 2 principal components, the spindle cell component and very prominent stromal vasculatures. It usually occurs in middle-aged adults, with a female predominance. Herein, we describe the clinical and pathologic details of 2 other examples of this benign tumor. Both patients were middle-aged male and presented with a slow-growing, painless mass located in the deep-seated soft tissue of thigh and left posterior neck region, respectively. Grossly, both tumors were well-demarcated, partial encapsulated of a grayish-white color with firm consistence. Histologically, one case showed morphology otherwise identical to those have been described before, whereas the other case showed in areas being more cellular than most examples of this subtype tumor had, with the lesional cells frequently exhibiting short fascicular, vaguely storiform and occasionally swirling arrangements, which posed a challenging differential diagnosis. Immunostains performed on both tumors did not confirm any specific cell differentiation with lesional cells only reactive for vimentin and focally desmin and negative for all the other markers tested. This report serves to broaden the morphologic spectrum of angiofibroma of soft tumor. Awareness of this tumor is important to prevent misdiagnosis as other more aggressive soft tissue tumor.

  10. Thermal-mechanical deformation modelling of soft tissues for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Jazar, Reza; Subic, Aleksandar

    2014-01-01

    Modeling of thermal-induced mechanical behaviors of soft tissues is of great importance for thermal ablation. This paper presents a method by integrating the heating process with thermal-induced mechanical deformations of soft tissues for simulation and analysis of the thermal ablation process. This method combines bio-heat transfer theories, constitutive elastic material law under thermal loads as well as non-rigid motion dynamics to predict and analyze thermal-mechanical deformations of soft tissues. The 3D governing equations of thermal-mechanical soft tissue deformation are discretized by using the finite difference scheme and are subsequently solved by numerical algorithms. Experimental results show that the proposed method can effectively predict the thermal-induced mechanical behaviors of soft tissues, and can be used for the thermal ablation therapy to effectively control the delivered heat energy for cancer treatment.

  11. Fat-containing soft-tissue masses in children.

    Science.gov (United States)

    Sheybani, Elizabeth F; Eutsler, Eric P; Navarro, Oscar M

    2016-12-01

    The diagnosis of soft-tissue masses in children can be difficult because of the frequently nonspecific clinical and imaging characteristics of these lesions. However key findings on imaging can aid in diagnosis. The identification of macroscopic fat within a soft-tissue mass narrows the differential diagnosis considerably and suggests a high likelihood of a benign etiology in children. Fat can be difficult to detect with sonography because of the variable appearance of fat using this modality. Fat is easier to recognize using MRI, particularly with the aid of fat-suppression techniques. Although a large portion of fat-containing masses in children are adipocytic tumors, a variety of other tumors and mass-like conditions that contain fat should be considered by the radiologist confronted with a fat-containing mass in a child. In this article we review the sonographic and MRI findings in the most relevant fat-containing soft-tissue masses in the pediatric age group, including adipocytic tumors (lipoma, angiolipoma, lipomatosis, lipoblastoma, lipomatosis of nerve, and liposarcoma); fibroblastic/myofibroblastic tumors (fibrous hamartoma of infancy and lipofibromatosis); vascular anomalies (involuting hemangioma, intramuscular capillary hemangioma, phosphate and tensin homologue (PTEN) hamartoma of soft tissue, fibro-adipose vascular anomaly), and other miscellaneous entities, such as fat necrosis and epigastric hernia.

  12. MRI evaluation of soft tissue hydatid disease

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Diez, A.I.; Ros Mendoza, L.H.; Villacampa, V.M.; Cozar, M.; Fuertes, M.I. [Dept. of Radiology, Hospital Miguel Servet, Zaragoza (Spain)

    2000-03-01

    Infestation in soft tissue by Echinococcus granulosus is not a common disease, and its diagnosis is based on clinical, laboratory data and radiological findings. The aim of our retrospective study is to give an overview of the different signs and patterns shown by MRI that can be useful in characterizing soft tissue hydatid disease. The MRI images obtained in seven patients with soft tissue and subcutaneous hydatidosis were reviewed. Typical signs of hydatidosis were multivesicular lesions with or without hypointense peripheral ring (''rim sign''). Related to the presence and absence, respectively, of viable scolices in the microscopic exam, daughter cysts were presented either as high signal intensity or low signal intensity on T2-weighted images. Low-intensity detached layers within the cyst and peripheral enhancement with gadolinium-DTPA were also presented. Atypical signs were presented in an infected muscular cyst, a subcutaneous unilocular cyst and several unilocular cysts. Knowledge of the different patterns in MRI of soft tissue hydatid disease can be useful in diagnosing this entity. We observed that the ''rim sign'' is not as common as in other locations, and in addition, MRI seems to be of assistance when evaluating the vitality of the cysts. (orig.)

  13. Fat-containing soft-tissue masses in children

    Energy Technology Data Exchange (ETDEWEB)

    Sheybani, Elizabeth F. [University of Toronto, Department of Medical Imaging, Toronto, ON (Canada); The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, ON (Canada); Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Eutsler, Eric P. [Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Navarro, Oscar M. [University of Toronto, Department of Medical Imaging, Toronto, ON (Canada); The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, ON (Canada)

    2016-12-15

    The diagnosis of soft-tissue masses in children can be difficult because of the frequently nonspecific clinical and imaging characteristics of these lesions. However key findings on imaging can aid in diagnosis. The identification of macroscopic fat within a soft-tissue mass narrows the differential diagnosis considerably and suggests a high likelihood of a benign etiology in children. Fat can be difficult to detect with sonography because of the variable appearance of fat using this modality. Fat is easier to recognize using MRI, particularly with the aid of fat-suppression techniques. Although a large portion of fat-containing masses in children are adipocytic tumors, a variety of other tumors and mass-like conditions that contain fat should be considered by the radiologist confronted with a fat-containing mass in a child. In this article we review the sonographic and MRI findings in the most relevant fat-containing soft-tissue masses in the pediatric age group, including adipocytic tumors (lipoma, angiolipoma, lipomatosis, lipoblastoma, lipomatosis of nerve, and liposarcoma); fibroblastic/myofibroblastic tumors (fibrous hamartoma of infancy and lipofibromatosis); vascular anomalies (involuting hemangioma, intramuscular capillary hemangioma, phosphate and tensin homologue (PTEN) hamartoma of soft tissue, fibro-adipose vascular anomaly), and other miscellaneous entities, such as fat necrosis and epigastric hernia. (orig.)

  14. Soft Tissue Masses in the Extremities: The Accuracy of an Ultrasonographic Diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    An, Ji Young; Park, So Young; Park, Ji Seon; Jin, Wook; Ryu, Kyung Nam [Kyung Hee University Medical Center, Seoul (Korea, Republic of)

    2011-09-15

    We wanted to retrospectively determine the accuracy of an ultrasonographic diagnosis of superficial soft tissue masses in the extremities by using the histologic results as the reference standard. From January 2005 to June 2010, 154 patients with soft tissue masses in the extremities and who underwent ultrasonographic evaluation followed by biopsy or resection were retrospectively evaluated. The ultrasonographic and histologic diagnoses of the soft tissue masses were lipoma, ganglion cyst, hemangioma, neurogenic tumor, giant cell tumor of the tendon sheath, epidermoid cyst, fibroma, glomus tumor, Baker's cyst and neurofibromatosis. Out of 154 patients, 114 (74%) patients showed concordance between the histologic diagnosis and the ultrasonographic diagnosis, and the remaining 40 (26%) patients did not. The diagnostic accuracy of each soft tissue mass was 95% for lipoma, 83% for ganglion cyst, 75% for hemangioma, 72% for neurogenic tumor, 50% for giant cell tumor of the tendon sheath, 43% for epidermoid cyst, 33% for fibroma and 100% each for glomus tumor, fibromatosis and Baker's cyst. Aside from these tumors, there were also sarcoma, malignant melanoma, elastofibroma, Kimura disease and pilomatricoma. Among the cases that showed discordance between the histologic diagnosis and the ultrasonographic diagnosis, three of them were notable; pilomatricoma being misdiagnosed as dermatofibroma protuberans, angiolipoma being misdiagnosed as vascular leiomyoma and malignant fibrous histiocytoma being misdiagnosed as a malignant soft tissue mass. The accuracy of an ultrasonographic diagnosis for soft tissue masses in the extremities varies greatly according to each type of mass. Lipoma, ganglion cyst, hemangioma, glomus tumor, neurogenic tumor and Baker's cyst showed a relatively high rate of concordance between the ultrasonographic diagnosis and the histologic diagnosis, but epidermoid cyst and fibroma showed a relatively lower rate of concordance

  15. A preliminary study of patient-specific mechanical properties of diabetic and healthy plantar soft tissue from gated magnetic resonance imaging.

    Science.gov (United States)

    Williams, Evan D; Stebbins, Michael J; Cavanagh, Peter R; Haynor, David R; Chu, Baocheng; Fassbind, Michael J; Isvilanonda, Vara; Ledoux, William R

    2017-07-01

    Foot loading rate, load magnitude, and the presence of diseases such as diabetes can all affect the mechanical properties of the plantar soft tissues of the human foot. The hydraulic plantar soft tissue reducer instrument was designed to gain insight into which variables are the most significant in determining these properties. It was used with gated magnetic resonance imaging to capture three-dimensional images of feet under dynamic loading conditions. Custom electronics controlled by LabVIEW software simultaneously recorded system pressure, which was then translated to applied force values based on calibration curves. Data were collected for two subjects, one without diabetes (Subject A) and one with diabetes (Subject B). For a 0.2-Hz loading rate, and strains 0.16, 0.18, 0.20, and 0.22, Subject A's average tangential heel pad stiffness was 10 N/mm and Subject B's was 24 N/mm. Maximum test loads were approximately 200 N. Loading rate and load magnitude limitations (both were lower than physiologic values) will continue to be addressed in the next version of the instrument. However, the current hydraulic plantar soft tissue reducer did produce a data set for healthy versus diabetic tissue stiffness that agrees with previous trends. These data are also being used to improve finite element analysis models of the foot as part of a related project.

  16. Dermal fillers for facial soft tissue augmentation.

    Science.gov (United States)

    Dastoor, Sarosh F; Misch, Carl E; Wang, Hom-Lay

    2007-01-01

    Nowadays, patients are demanding not only enhancement to their dental (micro) esthetics, but also their overall facial (macro) esthetics. Soft tissue augmentation via dermal filling agents may be used to correct facial defects such as wrinkles caused by age, gravity, and trauma; thin lips; asymmetrical facial appearances; buccal fold depressions; and others. This article will review the pathogenesis of facial wrinkles, history, techniques, materials, complications, and clinical controversies regarding dermal fillers for soft tissue augmentation.

  17. Pediatric rhabdomyosarcomas and nonrhabdomyosarcoma soft tissue sarcoma

    OpenAIRE

    Agarwala Sandeep

    2006-01-01

    Tumors arising from the soft tissues are uncommon in children, accounting for about 6% of all childhood malignancies. More than half (53%) of these originate from the striated muscles and are called rhabdomyosarcomas (RMS) the remaining are nonrhabdomyosarcoma soft tissue sarcomas (NRSTS). Almost two-thirds of RMS cases are diagnosed in children < 6 years of age. They can arise at varied locations like the head and neck region, genitourinary tract, extremities, trunk and retrope...

  18. Fibre-Matrix Interaction in Soft Tissue

    International Nuclear Information System (INIS)

    Guo, Zaoyang

    2010-01-01

    Although the mechanical behaviour of soft tissue has been extensively studied, the interaction between the collagen fibres and the ground matrix has not been well understood and is therefore ignored by most constitutive models of soft tissue. In this paper, the human annulus fibrosus is used as an example and the potential fibre-matrix interaction is identified by careful investigation of the experimental results of biaxial and uniaxial testing of the human annulus fibrosus. First, the uniaxial testing result of the HAF along the axial direction is analysed and it is shown that the mechanical behaviour of the ground matrix can be well simulated by the incompressible neo-Hookean model when the collagen fibres are all under contraction. If the collagen fibres are stretched, the response of the ground matrix can still be described by the incompressible neo-Hookean model, but the effective stiffness of the matrix depends on the fibre stretch ratio. This stiffness can be more than 10 times larger than the one obtained with collagen fibres under contraction. This phenomenon can only be explained by the fibre-matrix interaction. Furthermore, we find that the physical interpretation of this interaction includes the inhomogeneity of the soft tissue and the fibre orientation dispersion. The dependence of the tangent stiffness of the matrix on the first invariant of the deformation tensor can also be explained by the fibre orientation dispersion. The significant effect of the fibre-matrix interaction strain energy on mechanical behaviour of the soft tissue is also illustrated by comparing some simulation results.

  19. Assessing the quality of force feedback in soft tissue simulation.

    Science.gov (United States)

    Basafa, Ehsan; Sefati, Shahin; Okamura, Allison M

    2011-01-01

    Many types of deformable models have been proposed for simulation of soft tissue in surgical simulators, but their realism in comparison to actual tissue is rarely assessed. In this paper, a nonlinear mass-spring model is used for realtime simulation of deformable soft tissues and providing force feedback to a human operator. Force-deformation curves of real soft tissue samples were obtained experimentally, and the model was tuned accordingly. To test the realism of the model, we conducted two human-user experiments involving palpation with a rigid probe. First, in a discrimination test, users identified the correct category of real and virtual tissue better than chance, and tended to identify the tissues as real more often than virtual. Second, users identified real and virtual tissues by name, after training on only real tissues. The sorting accuracy was the same for both real and virtual tissues. These results indicate that, despite model limitations, the simulation could convey the feel of touching real tissues. This evaluation approach could be used to compare and validate various soft-tissue simulators.

  20. Microwave tomography for functional imaging of extremity soft tissues: feasibility assessment

    International Nuclear Information System (INIS)

    Semenov, Serguei; Kellam, James; Althausen, Peter; Williams, Thomas; Abubakar, Aria; Bulyshev, Alexander; Sizov, Yuri

    2007-01-01

    It is important to assess the viability of extremity soft tissues, as this component is often the determinant of the final outcome of fracture treatment. Microwave tomography (MWT) and sensing might be able to provide a fast and mobile assessment of such properties. MWT imaging of extremities possesses a complicated, nonlinear, high dielectric contrast inverse problem of diffraction tomography. There is a high dielectric contrast between bone and soft tissue in the extremities. A contrast between soft tissue abnormalities is less pronounced when compared with the high bone-soft tissue contrast. The goal of this study was to assess the feasibility of MWT for functional imaging of extremity soft tissues, i.e. to detect a relatively small contrast within soft tissues in closer proximity to high contrast boney areas. Both experimental studies and computer simulation were performed. Experiments were conducted using live pigs with compromised blood flow and compartment syndrome within an extremity. A whole 2D tomographic imaging cycle at 1 GHz was computer simulated and images were reconstructed using the Newton, MR-CSI and modified Born methods. Results of experimental studies demonstrate that microwave technology is sensitive to changes in the soft tissue blood content and elevated compartment pressure. It was demonstrated that MWT is feasible for functional imaging of extremity soft tissues, circulatory-related changes, blood flow and elevated compartment pressure

  1. Cellular immunotherapy for soft tissue sarcomas

    Science.gov (United States)

    Finkelstein, Steven Eric; Fishman, Mayer; Conley, Anthony P.; Gabrilovich, Dmitry; Antonia, Scott; Chiappori, Alberto

    2015-01-01

    SUMMARY Soft tissue sarcomas are rare neoplasms, with approximately 9,000 new cases in the United States every year. Unfortunately, there is little progress in the treatment of metastatic soft tissue sarcomas in the past two decades beyond the standard approaches of surgery, chemotherapy, and radiation. Immunotherapy is a modality complementary to conventional therapy,. It is appealing because functional anti-tumor activity could affect both local-regional and systemic disease and act over a prolonged period of time. In this report, we review immunotherapeutic investigative strategies being developed, including several tumor vaccine, antigen vaccine, and dendritic cell vaccine strategies. PMID:22401634

  2. In vivo imaging of human oral hard and soft tissues by polarization-sensitive optical coherence tomography

    Science.gov (United States)

    Walther, Julia; Golde, Jonas; Kirsten, Lars; Tetschke, Florian; Hempel, Franz; Rosenauer, Tobias; Hannig, Christian; Koch, Edmund

    2017-12-01

    Since optical coherence tomography (OCT) provides three-dimensional high-resolution images of biological tissue, the benefit of polarization contrast in the field of dentistry is highlighted in this study. Polarization-sensitive OCT (PS OCT) with phase-sensitive recording is used for imaging dental and mucosal tissues in the human oral cavity in vivo. An enhanced polarization contrast of oral structures is reached by analyzing the signals of the co- and crosspolarized channels of the swept source PS OCT system quantitatively with respect to reflectivity, retardation, optic axis orientation, and depolarization. The calculation of these polarization parameters enables a high tissue-specific contrast imaging for the detailed physical interpretation of human oral hard and soft tissues. For the proof-of-principle, imaging of composite restorations and mineralization defects at premolars as well as gingival, lingual, and labial oral mucosa was performed in vivo within the anterior oral cavity. The achieved contrast-enhanced results of the investigated human oral tissues by means of polarization-sensitive imaging are evaluated by the comparison with conventional intensity-based OCT.

  3. The Diagnostic and Prognostic Value of Hematological and Chemical Abnormalities in Soft Tissue Sarcoma: A Comparative Study in Patients with Benign and Malignant Soft Tissue Tumors.

    Science.gov (United States)

    Ariizumi, Takashi; Kawashima, Hiroyuki; Ogose, Akira; Sasaki, Taro; Hotta, Tetsuo; Hatano, Hiroshi; Morita, Tetsuro; Endo, Naoto

    2018-01-01

    The value of routine blood tests in malignant soft tissue tumors remains uncertain. To determine if these tests can be used for screening, the routine pretreatment blood test findings were retrospectively investigated in 359 patients with benign and malignant soft tissue tumors. Additionally, the prognostic potential of pretreatment blood abnormalities was evaluated in patients with soft tissue sarcomas. We compared clinical factors and blood tests findings between patients with benign and malignant soft tissue tumors using univariate and multivariate analysis. Subsequently, patients with malignant tumors were divided into two groups based on blood test reference values, and the prognostic significance of each parameter was evaluated. In the univariate analysis, age, tumor size, and tumor depth were significant clinical diagnostic factors. Significant increases in the granulocyte count, C-reactive protein (CRP) level, erythrocyte sedimentation rate (ESR), and γ-glutamyl transpeptidase (γ-GTP) levels were found in patients with malignant soft tissue tumors. Multiple logistic regression showed that tumor size and ESR were independent factors that predicted malignant soft tissue tumors. The Kaplan-Meier survival analysis revealed that granulocyte counts, γ-GTP levels, and CRP levels correlated significantly with overall survival. Thus, pretreatment routine blood tests are useful diagnostic and prognostic markers for diagnosing soft tissue sarcoma. © 2018 by the Association of Clinical Scientists, Inc.

  4. Imaging of benign and malignant soft tissue masses of the foot

    International Nuclear Information System (INIS)

    Waldt, Simone; Rummeny, Ernst J.; Woertler, Klaus; Rechl, Hans

    2003-01-01

    The foot is a relatively uncommon site of neoplastic and non-neoplastic soft tissue tumors. Although it contains a relatively small amount of somatic soft tissue elements, the foot is considerably rich in tendons, fasciae, retinaculae, and synovium. Corresponding to this distribution of soft tissue elements, some soft tissue lesions, such as giant cell tumor of tendon sheath, fibromatosis, and synovial sarcoma, are commonly seen in this location. Vascular tumors represent common soft tissue masses of the foot as well. Magnetic resonance imaging is the modality of choice in the assessment of soft tissue tumors. The presence of a suspected lesion can be confirmed and tumor margins can be defined accurately. In general, MRI does not provide histologic specificity, but considering some MR features may often help in correctly distinguishing benign from malignant lesions. In addition, characteristic features of the most common benign tumors (i.e., fibromatosis, cavernous hemangioma) and reactive processes of the foot (ganglion cyst, Morton's neuroma) often suggest a specific diagnosis. (orig.)

  5. Diode laser soft-tissue surgery: advancements aimed at consistent cutting, improved clinical outcomes.

    Science.gov (United States)

    Romanos, Georgios E

    2013-01-01

    Laser dentistry and soft-tissue surgery, in particular, have become widely adopted in recent years. Significant cost reductions for dental lasers and the increasing popularity of CADCAM, among other factors, have contributed to a substantial increase in the installed base of dental lasers, especially soft-tissue lasers. New development in soft-tissue surgery, based on the modern understanding of laser-tissue interactions and contact soft-tissue surgery mechanisms, will bring a higher quality and consistency level to laser soft-tissue surgery. Recently introduced diode-laser technology enables enhanced control of side effects that result from tissue overheating and may improve soft-tissue surgical outcomes.

  6. Deep soft tissue leiomyoma of the thigh

    International Nuclear Information System (INIS)

    Watson, G.M.T.; Saifuddin, A.; Sandison, A.

    1999-01-01

    A case of ossified leiomyoma of the deep soft tissues of the left thigh is presented. The radiographic appearance suggested a low-grade chondrosarcoma. MRI of the lesion showed signal characteristics similar to muscle on both T1- and T2-weighted spin echo sequences with linear areas of high signal intensity on T1-weighted images consistent with medullary fat in metaplastic bone. Histopathological examination of the resected specimen revealed a benign ossified soft tissue leiomyoma. (orig.)

  7. Single-stage soft tissue reconstruction and orbital fracture repair for complex facial injuries.

    Science.gov (United States)

    Wu, Peng Sen; Matoo, Reshvin; Sun, Hong; Song, Li Yuan; Kikkawa, Don O; Lu, Wei

    2017-02-01

    Orbital fractures with open periorbital wounds cause significant morbidity. Timing of debridement with fracture repair and soft tissue reconstruction is controversial. This study focuses on the efficacy of early single-stage repair in combined bony and soft tissue injuries. Retrospective review. Twenty-three patients with combined open soft tissue wounds and orbital fractures were studied for single-stage orbital reconstruction and periorbital soft tissue repair. Inclusion criteria were open soft tissue wounds with clinical and radiographic evidence of orbital fractures and repair performed within 48 h after injury. Surgical complications and reconstructive outcomes were assessed over 6 months. The main outcome measures were enophthalmos, pre- and post-CT imaging of orbits, scar evaluation, presence of diplopia, and eyelid position. Enophthalmos was corrected in 16/19 cases and improved in 3/19 cases. 3D reconstruction of CT images showed markedly improved orbital alignment with objective measurements of the optic foramen to cornea distance (mm) in reconstructed orbits relative to intact orbits of 0.66, 95% confidence interval [CI] (lower 0.33, upper 0.99) mm. The mean baseline of Stony Brook Scar Evaluation Scale was 0.6, 95%CI (0.30-0.92), and for 6 months, the mean score was 3.4, 95%CI (3.05-3.73). Residual diplopia in secondary gazes was present in two patients; one patient had ectropion. Complications included one case of local wound infection. An early single-stage repair of combined soft tissue and orbital fractures yields satisfactory functional and aesthetic outcomes. Complications are low and likely related to trauma severity. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. Functional Attachment of Soft Tissues to Bone: Development, Healing, and Tissue Engineering

    Science.gov (United States)

    Lu, Helen H.; Thomopoulos, Stavros

    2014-01-01

    Connective tissues such as tendons or ligaments attach to bone across a multitissue interface with spatial gradients in composition, structure, and mechanical properties. These gradients minimize stress concentrations and mediate load transfer between the soft and hard tissues. Given the high incidence of tendon and ligament injuries and the lack of integrative solutions for their repair, interface regeneration remains a significant clinical challenge. This review begins with a description of the developmental processes and the resultant structure-function relationships that translate into the functional grading necessary for stress transfer between soft tissue and bone. It then discusses the interface healing response, with a focus on the influence of mechanical loading and the role of cell-cell interactions. The review continues with a description of current efforts in interface tissue engineering, highlighting key strategies for the regeneration of the soft tissue–to-bone interface, and concludes with a summary of challenges and future directions. PMID:23642244

  9. Peripheral soft tissue ewing's sarcoma: a rare case report

    Directory of Open Access Journals (Sweden)

    Farzana Shegufta

    2013-07-01

    Full Text Available A 22 years male patient presented with gradual left forearm swelling for 6 months. X ray forearm revealed large soft tissue swelling with tiny calcification and mild scalloping at inner aspect of ulna and ultrasonogram (USG revealed soft tissue mass having calcification and necrotic areas within and spectral Doppler showed arterial type of blood flow with no augmentation. Later computerized tomography (CT scan showed soft tissue mass with necrotic area and calcification with no bony involvement. Magnetic resonance imaging (MRI with contrast revealed a large heterogeneously enhancing lobulated mixed intensity lesion in antero-medial compartment of the left forearm involving flexor group of muscles causing displacement of fat plane. MRI and subsequent histopathology of the lesion revealed it as a rare soft tissue Ewing’s sarcoma / primitive neuroectodermal tumor (PNET in extremity. Ibrahim Med. Coll. J. 2013; 7(2: 43-46

  10. Stochastic hyperelastic constitutive laws and identification procedure for soft biological tissues with intrinsic variability.

    Science.gov (United States)

    Staber, B; Guilleminot, J

    2017-01-01

    In this work, we address the constitutive modeling, in a probabilistic framework, of the hyperelastic response of soft biological tissues. The aim is on the one hand to mimic the mean behavior and variability that are typically encountered in the experimental characterization of such materials, and on the other hand to derive mathematical models that are almost surely consistent with the theory of nonlinear elasticity. Towards this goal, we invoke information theory and discuss a stochastic model relying on a low-dimensional parametrization. We subsequently propose a two-step methodology allowing for the calibration of the model using standard data, such as mean and standard deviation values along a given loading path. The framework is finally applied and benchmarked on three experimental databases proposed elsewhere in the literature. It is shown that the stochastic model allows experiments to be accurately reproduced, regardless of the tissue under consideration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Soft tissue sarcoma - diagnosis and treatment

    International Nuclear Information System (INIS)

    Ruka, W.; Rutkowski, P.; Krzakowski, M.

    2009-01-01

    Significant progress in the treatment of soft tissue sarcoma (STS), both primary tumor and local recurrences/metastatic disease, has been achieved in recent years. Surgery is essential modality, but the use of combined treatment (standard combination of surgery with adjuvant radiotherapy, chemotherapy in selected cases and perioperative rehabilitation) in highly-experienced centers increased possibility of cure and limitations of extent of local surgery. Current combined therapy together with the use of reconstructive methods allows for limb-sparing surgery in majority of soft tissue sarcoma patients (amputation in 10% of cases as compared to approximately 50% in the 1960 - 70s). The slow, but constant, increase of rate of soft tissue sarcoma patients with long-term survival has been observed. Contemporary 5-year overall survival rate in patients with extremity soft tissue sarcomas is 55 -78%. In case of diagnosis of metastatic disease the prognosis is still poor (survival of approximately 1 year). Good results of local therapy may be expected only after planned (e.g., after preoperative biopsy - tru - cut or incisional) radical surgical excision of primary tumor with pathologically negative margins (R0 resection). Following appropriate diagnostic check-up, adjuvant radiotherapy is necessary in the majority of patients treated with radical surgery need, as well as long-term rehabilitation and follow-up examinations in treating center are needed for at least 5 years. The progress is due to the introduction of targeted therapy acting on molecular or genetic cellular disturbances detected during studies on etiopathogenetic mechanisms of sarcoma subtypes. In view of rarity of sarcomas and necessity of multidisciplinary therapy, the crucial issue is that management of these tumors should be hold in experienced oncological sarcoma centers. (authors)

  12. The clinical study of the early soft tissue healing and marginal bone resorption after non-submerged implants

    International Nuclear Information System (INIS)

    Xu Anchen; Yang Desheng; Hu Bei; Leng Bin; Zhang Li

    2009-01-01

    Objective: To compare the amount of early marginal bone resorption in the first three months after non-submerged implants and to explore the relationship between the amount of early marginal bone resorption and the soft tissue healing in the first month. Method: ITI with non-submerged implants were implanted in 33 patients. Digital panoramic radiographs were taken during the operation, one month and three months later. The amount of marginal bone resorption was measured in the first, second and the third month after implant operation. The soft tissue healing was observed after 10 days. Results: There was significant difference (P<0.01) in the amount of early marginal bone resorption between one month and three months later. The early marginal bone resorption in the first month after implantation kept correlation with the soft tissue healing on 10th day(r=0.794, P<0.01). Conclusion: The amount of early marginal bone resorption in the first month exceeds that in the second and the third months after implant operation, and the soft tissue healing affects the amount of early marginal bone resorption in the first month. Biological seal is the critical factor influencing the early marginal bone resorption. (authors)

  13. Soft tissue sparganosis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ki Soon; Lee, Yul; Chung, Soo Young; Park, Choong Ki; Lee, Kwan Sup [Hallym University College of Medicine, Seoul (Korea, Republic of); Cho, In Hwan; Suh, Hyoung Sim [Daelin S. Mary' s Hospital, Seoul (Korea, Republic of)

    1993-11-15

    Sparganosis is a rare tissue-parasitic infestation caused by a plerocercoid tapeworm larva(sparganum), genus Spirometra. The most common clinical presentation of sparganosis is a palpable subcutaneous mass or masses. Fifteen simple radiographs and 10 ultrasosnograms of 17 patients with operatively verified subcutaneous sparganosis were retrospectively analyzed to find its radiologic characteristics for preoperative diagnosis of sparganosis. The location of the subcutaneous sparganosis were lower extremity, abdominal wall, breast, inguinal region and scrotum in order of frequency. The simple radiographs showed linear or elongated calcification with or without nodular elongated shaped soft tissue mass shadows in 8 patients, soft tissue mass shadow only in 2 patients and lateral abdominal wall thickening in 1 patient. But no specific findings was noted in 4 patients with small abdominal and inguinal masses. We could classify the subcutaneous sparganosis by ultrasound into 2 types: one is long band-like hypoechoic structures, corresponding to the subcutaneous tunnel-like tracks formed by migration of sparganum larva and the order is elongated or ovoid hyperechoic nodules, representing granulomas. Long band-like hypoechoic structures within or associated with mixed echoic granulomatous masses were noted in 6 patients and elongated or ovoid hypoechoic mass or masses were noted in 4 patients. In conclusion, sparganosis should be considered when these radiologic findings-irregular linear calcifications on simple radiograph and long band-like hypoechoic structures on ultrasonography, corresponding to the subcutaneous tunnel-like tracks formed by migration of sparganum larva are noted in the patients who have subcutaneous palpable mass or masses. And radiologic examination especially ultrasonography is very helpful to diagnose sparganosis.

  14. Deep soft tissue leiomyoma of the thigh

    Energy Technology Data Exchange (ETDEWEB)

    Watson, G.M.T.; Saifuddin, A. [Department of Radiology, The Royal National Orthopaedic Hospital Trust, Brockley Hill (United Kingdom); Sandison, A. [Department of Pathology, The Royal National Orthopaedic Hospital Trust, Stanmore, Middlesex (United Kingdom)

    1999-07-01

    A case of ossified leiomyoma of the deep soft tissues of the left thigh is presented. The radiographic appearance suggested a low-grade chondrosarcoma. MRI of the lesion showed signal characteristics similar to muscle on both T1- and T2-weighted spin echo sequences with linear areas of high signal intensity on T1-weighted images consistent with medullary fat in metaplastic bone. Histopathological examination of the resected specimen revealed a benign ossified soft tissue leiomyoma. (orig.) With 3 figs., 13 refs.

  15. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre

    Science.gov (United States)

    Leite, Ivo T.; Turtaev, Sergey; Jiang, Xin; Šiler, Martin; Cuschieri, Alfred; Russell, Philip St. J.; Čižmár, Tomáš

    2018-01-01

    Holographic optical tweezers (HOT) hold great promise for many applications in biophotonics, allowing the creation and measurement of minuscule forces on biomolecules, molecular motors and cells. Geometries used in HOT currently rely on bulk optics, and their exploitation in vivo is compromised by the optically turbid nature of tissues. We present an alternative HOT approach in which multiple three-dimensional (3D) traps are introduced through a high-numerical-aperture multimode optical fibre, thus enabling an equally versatile means of manipulation through channels having cross-section comparable to the size of a single cell. Our work demonstrates real-time manipulation of 3D arrangements of micro-objects, as well as manipulation inside otherwise inaccessible cavities. We show that the traps can be formed over fibre lengths exceeding 100 mm and positioned with nanometric resolution. The results provide the basis for holographic manipulation and other high-numerical-aperture techniques, including advanced microscopy, through single-core-fibre endoscopes deep inside living tissues and other complex environments.

  16. Ultrasound of soft tissue masses of the hand

    Directory of Open Access Journals (Sweden)

    James Teh

    2012-12-01

    Full Text Available Most soft tissue mass lesions of the hand are benign. Ganglia are the commonest lesions encountered, followed by giant cell tumors of the tendon sheath. Malignant tumors are rare. Often a specific diagnosis can be achieved on imaging by considering the location and anatomical relations of the lesion within the hand or wrist, and assessing its morphology. Magnetic resonance imaging is an excellent modality for evaluating soft tissue tumors with its multiplanar capability and ability to characterize tissue. Ultrasound plays a complementary role to MRI. It is often the initial modality used for assessing masses as it is cheap and available, and allows reliable differentiation of cystic from solid lesions, along with a real time assessment of vascularity. This review describes the US appearances of the most frequently encountered soft tissue masses of the wrist and hand, correlating the findings with MRI where appropriate.

  17. Ultrasound elastography assessment of bone/soft tissue interface

    International Nuclear Information System (INIS)

    Parmar, Biren J; Yang, Xu; Chaudhry, Anuj; Shajudeen, Peer Shafeeq; Nair, Sanjay P; Righetti, Raffaella; Weiner, Bradley K; Tasciotti, Ennio; Krouskop, Thomas A

    2016-01-01

    We report on the use of elastographic imaging techniques to assess the bone/soft tissue interface, a region that has not been previously investigated but may provide important information about fracture and bone healing. The performance of axial strain elastograms and axial shear strain elastograms at the bone/soft tissue interface was studied ex vivo on intact and fractured canine and ovine tibias. Selected ex vivo results were corroborated on intact sheep tibias in vivo. The elastography results were statistically analyzed using elastographic image quality tools. The results of this study demonstrate distinct patterns in the distribution of the normalized local axial strains and axial shear strains at the bone/soft tissue interface with respect to the background soft tissue. They also show that the relative strength and distribution of the elastographic parameters change in the presence of a fracture and depend on the degree of misalignment between the fracture fragments. Thus, elastographic imaging modalities might be used in the future to obtain information regarding the integrity of bones and to assess the severity of fractures, alignment of bone fragments as well as to follow bone healing. (paper)

  18. Ultrasound elastography assessment of bone/soft tissue interface

    Science.gov (United States)

    Parmar, Biren J.; Yang, Xu; Chaudhry, Anuj; Shafeeq Shajudeen, Peer; Nair, Sanjay P.; Weiner, Bradley K.; Tasciotti, Ennio; Krouskop, Thomas A.; Righetti, Raffaella

    2016-01-01

    We report on the use of elastographic imaging techniques to assess the bone/soft tissue interface, a region that has not been previously investigated but may provide important information about fracture and bone healing. The performance of axial strain elastograms and axial shear strain elastograms at the bone/soft tissue interface was studied ex vivo on intact and fractured canine and ovine tibias. Selected ex vivo results were corroborated on intact sheep tibias in vivo. The elastography results were statistically analyzed using elastographic image quality tools. The results of this study demonstrate distinct patterns in the distribution of the normalized local axial strains and axial shear strains at the bone/soft tissue interface with respect to the background soft tissue. They also show that the relative strength and distribution of the elastographic parameters change in the presence of a fracture and depend on the degree of misalignment between the fracture fragments. Thus, elastographic imaging modalities might be used in the future to obtain information regarding the integrity of bones and to assess the severity of fractures, alignment of bone fragments as well as to follow bone healing.

  19. Imaging of soft tissue sarcomas

    International Nuclear Information System (INIS)

    Vanel, D.; Le Treut, A.

    1988-01-01

    Modern imaging of soft tissue sarcomas now includes ultrasounds, CT and MRI. These new techniques allow a better evaluation of initial local extension, of the response to treatment and are able to detect local recurrences early [fr

  20. Application of an object-oriented programming paradigm in three-dimensional computer modeling of mechanically active gastrointestinal tissues.

    Science.gov (United States)

    Rashev, P Z; Mintchev, M P; Bowes, K L

    2000-09-01

    The aim of this study was to develop a novel three-dimensional (3-D) object-oriented modeling approach incorporating knowledge of the anatomy, electrophysiology, and mechanics of externally stimulated excitable gastrointestinal (GI) tissues and emphasizing the "stimulus-response" principle of extracting the modeling parameters. The modeling method used clusters of class hierarchies representing GI tissues from three perspectives: 1) anatomical; 2) electrophysiological; and 3) mechanical. We elaborated on the first four phases of the object-oriented system development life-cycle: 1) analysis; 2) design; 3) implementation; and 4) testing. Generalized cylinders were used for the implementation of 3-D tissue objects modeling the cecum, the descending colon, and the colonic circular smooth muscle tissue. The model was tested using external neural electrical tissue excitation of the descending colon with virtual implanted electrodes and the stimulating current density distributions over the modeled surfaces were calculated. Finally, the tissue deformations invoked by electrical stimulation were estimated and represented by a mesh-surface visualization technique.

  1. Volumetric segmentation of ADC maps and utility of standard deviation as measure of tumor heterogeneity in soft tissue tumors.

    Science.gov (United States)

    Singer, Adam D; Pattany, Pradip M; Fayad, Laura M; Tresley, Jonathan; Subhawong, Ty K

    2016-01-01

    Determine interobserver concordance of semiautomated three-dimensional volumetric and two-dimensional manual measurements of apparent diffusion coefficient (ADC) values in soft tissue masses (STMs) and explore standard deviation (SD) as a measure of tumor ADC heterogeneity. Concordance correlation coefficients for mean ADC increased with more extensive sampling. Agreement on the SD of tumor ADC values was better for large regions of interest and multislice methods. Correlation between mean and SD ADC was low, suggesting that these parameters are relatively independent. Mean ADC of STMs can be determined by volumetric quantification with high interobserver agreement. STM heterogeneity merits further investigation as a potential imaging biomarker that complements other functional magnetic resonance imaging parameters. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues.

    Science.gov (United States)

    Eiraku, Mototsugu; Sasai, Yoshiki

    2011-12-15

    Generation of compound tissues with complex structures is a major challenge in cell biology. In this article, we describe a protocol for mouse embryonic stem cell (ESC) culture for in vitro generation of three-dimensional retinal tissue, comparing it with the culture protocol for cortical tissue generation. Dissociated ESCs are reaggregated in a 96-well plate with reduced cell-plate adhesion and cultured as floating aggregates. Retinal epithelium is efficiently generated when ESC aggregates are cultured in serum-free medium containing extracellular matrix proteins, spontaneously forming hemispherical vesicles and then progressively transforming into a shape reminiscent of the embryonic optic cup in 9-10 d. In long-term culture, the ESC-derived optic cup generates a fully stratified retinal tissue consisting of all major neural retinal components. In contrast, the cortical differentiation culture can be started without exogenous extracellular matrix proteins, and it generates stratified cortical epithelia consisting of four distinct layers in 13 d.

  3. Aspergillus: a rare primary organism in soft-tissue infections.

    Science.gov (United States)

    Johnson, M A; Lyle, G; Hanly, M; Yeh, K A

    1998-02-01

    Nonclostridial necrotizing soft-tissue infections are usually polymicrobial, with greater than 90 per cent involving beta-hemolytic streptococci or coagulase-positive staphylococci. The remaining 10 per cent are usually due to Gram-negative enteric pathogens. We describe the case of a 46-year-old woman with bilateral lower extremity fungal soft tissue infections. She underwent multiple surgical debridements of extensive gangrenous necrosis of the skin and subcutaneous fat associated with severe acute arteritis. Histopathological examination revealed Aspergillus niger as the sole initial pathogen. Despite aggressive surgical debridement, allografts, and intravenous amphotericin B, her condition clinically deteriorated and she ultimately died of overwhelming infection. Treatment for soft-tissue infections include surgical debridement and intravenous antibiotics. More specifically, Aspergillus can be treated with intravenous amphotericin B, 5-fluorocytosine, and rifampin. Despite these treatment modalities, necrotizing fascitis is associated with a 60 per cent mortality rate. Primary fungal pathogens should be included in the differential diagnosis of soft-tissue infections.

  4. THE EFFECTS OF MAXILLARY EXPANSION ON THE SOFT TISSUE FACIAL PROFILE

    Directory of Open Access Journals (Sweden)

    Işıl ARAS

    2017-10-01

    Full Text Available Purpose: The aims of this retrospective study were to evaluate the possible changes in soft tissue facial profile induced by orthopedic rapid maxillary expansion (RME and surgically assisted rapid maxillary expansion (SARME, and to correlate them with the underlying hard tissue alterations. Materials and Methods: 16 patients who received bone borne SARME and 25 patients who were subjected to RME using metal cast splint hyrax appliance were analyzed retrospectively. This research was conducted on lateral cephalometric radiographs taken on 2 occasions: before expansion (T1 and at the beginning of any further orthodontic treatment (T2. Investigated lateral cephalometric parameters consisted of Holdaway soft tissue measurements with some supplementary soft tissue, skeletal and dental assessments. Results: The acquisition of T2 cephalograms which conforms to the initiation of further orthodontic treatment corresponded to 83.25±3.51 days for SARME and 85.68±4.37 days for RME after the expansion was completed. The only significant change in soft tissue profile of the SARME group was a decrease in upper lip thickness (p<0.05, whereas in the RME group, decrease in soft tissue facial profile angle and increase in H angle were found to be statistically significant (p<0.05 for each. For the RME group, the changes in soft tissue facial profile angle and H angle correlated only with the changes in SNB angle (p<0.05. Conclusion: While bone-borne SARME did not seem to possess the potential to alter soft tissue profile, tooth-borne RME caused a more convex soft tissue profile related to a reduction in SNB.

  5. Childhood Soft Tissue Sarcoma Treatment (PDQ®)—Health Professional Version

    Science.gov (United States)

    Pediatric soft tissue sarcomas are a heterogenous group of malignant tumors that originate from primitive mesenchymal tissue and account for 7% of all childhood tumors. Get detailed information about clinical presentation, diagnosis, prognosis, and treatment of newly diagnosed and recurrent soft tissue sarcoma in this summary for clinicians.

  6. Comparisons of Soft Tissue Thickness Measurements in Adult Patients With Various Vertical Patterns

    Directory of Open Access Journals (Sweden)

    Neslihan Seyhan Cezairli

    2017-08-01

    Full Text Available Objective: The purposes of this study were to evaluate to study soft tissue facial profile among the different vertical patterns using the Holdaway analysis and the soft tissue thickness measurements. Materials and Methods: The study sample consisted of 90 patients divided into 3 groups: low angle group (30 patients; mean age, 20.38±3.76 years, normal angle group (30 patients; mean age, 19.36±2.83 years and high angle group (30 patients; mean age, 19.44±2.14 years. The study sample, comprised a total of 90 patients (54 women and 36 men divided into low-angle, normal-angle and high angle groups based on vertical growth pattern using the SN/GoGn angle (high-angle group >37°; low-angle group <27°; and control group or normal angle group 27-37°. Facial soft-tissue thickness and Holdaway measurements were analyzed on each radiograph with Image J programme. One-way analysis of variance and post-hoc test (Tukey were used to compare Holdaway measurements and soft tissue thicknesses among the three groups. Results: Significant differences among vertical patterns were observed for the ‘gnathion’, ‘menton’, ‘stomion’ and ‘inferior sulcus to H line’ when both genders were combined. These measurements were thinner in the high-angle group. Significant differences among vertical patterns were observed for ‘gnathion’ and ‘lower lip to H line’ in women; for ‘stomion’ and ‘nose prominence’ in men when examined separately. Conclusion: Facial soft tissue measurements except some for in high angle group were thinner than in low angle group. All soft tissue measurements were greater except for gnathion in low angle group in men than in women.

  7. A biphasic model for bleeding in soft tissue

    Science.gov (United States)

    Chang, Yi-Jui; Chong, Kwitae; Eldredge, Jeff D.; Teran, Joseph; Benharash, Peyman; Dutson, Erik

    2017-11-01

    The modeling of blood passing through soft tissues in the body is important for medical applications. The current study aims to capture the effect of tissue swelling and the transport of blood under bleeding or hemorrhaging conditions. The soft tissue is considered as a non-static poro-hyperelastic material with liquid-filled voids. A biphasic formulation effectively, a generalization of Darcy's law-is utilized, treating the phases as occupying fractions of the same volume. The interaction between phases is captured through a Stokes-like friction force on their relative velocities and a pressure that penalizes deviations from volume fractions summing to unity. The soft tissue is modeled as a hyperelastic material with a typical J-shaped stress-strain curve, while blood is considered as a Newtonian fluid. The method of Smoothed Particle Hydrodynamics is used to discretize the conservation equations based on the ease of treating free surfaces in the liquid. Simulations of swelling under acute hemorrhage and of draining under gravity and compression will be demonstrated. Ongoing progress in modeling of organ tissues under injuries and surgical conditions will be discussed.

  8. Soft-tissue reactions following irradiation of primary brain and pituitary tumors

    International Nuclear Information System (INIS)

    Baglan, R.J.; Marks, J.E.

    1981-01-01

    One hundred and ninety-nine patients who received radiation therapy for a primary brain or pituitary tumor were studied for radiation-induced soft-tissue reactions of the cranium, scalp, ears and jaw. The frequency of these reactions was studied as a function of: the radiation dose 5 mm below the skin surface, dose distribution, field size and fraction size. Forty percent of patients had complete and permanent epilation, while 21% had some other soft-tissue complication, including: scalp swelling-6%, external otitis-6%, otitis media-5%, ear swelling-4%, etc. The frequency of soft-tissue reactions correlates directly with the radiation dose at 5 mm below the skin surface. Patients treated with small portals ( 2 ) had few soft-tissue reactions. The dose to superficial tissues, and hence the frequency of soft-tissue reactions can be reduced by: (1) using high-energy megavoltage beams; (2) using equal loading of beams; and (3) possibly avoiding the use of electron beams

  9. Ultrasonographic findings of benign soft tissue tumors

    International Nuclear Information System (INIS)

    Kim, Ki Sung; Oh, Dong Heon; Jung, Tae Gun; Kim, Yong Kil; Kwon, Jung Hyeok

    1994-01-01

    To clarify the characteristic sonographic features of benign soft tissue tumors and to evaluate the usefulness of sonographic imaging. We retrospectively reviewed ultrasonographic images of 70 cases in 68 patients with histologically proved benign soft tissue tumors. The tumors include 33 lipomas, 11 hemangiomas, 11 lymphangiomas, 7 neurilemmomas, 4 epidermoid cysts, 2 fibromas, 1 mesenchymoma, and 1 myxoma. The sonographic appearances of the lesions were mainly solid in 53 cases(33 lipomas, 8 hemangiomas, 2 lymphangiomas, 7 neurilemmomas, 2 fibromas and 1 mesenchymoma), mainly cystic in 14 cases(1 hemangioma, 8 lymphangiomas, 4 epidermoid cysts, and 1 myxomal), and mixed in 3 cases(2 hemangiomas and 1 lymphangioma). Although an accurate histologic prediction could not be made in most cases, certain patterns appeared to be characteristic of specific tumor types. 26 cases(78%) of lipoma were seen as lentiform, iso- or hyperechoic, solid mass. Hemangioma had variable appearance and characteristic calcifications were seen in 3 cases. Unicameral or multiseptated cystic mass with variable thickness of echogenic septa and solid portion was the characteristic finding of lymhangioma. Neurilemmoma showed lobulated, oval to round , relatively hypoechoic mass or with without internal cystic portion. Sonographic evaluation of benign soft tissue tumors is useful in demonstrating the location, size, extent, and internal characteristic of the mass. A relatively confident diagnosis can made when the characteristic features of the benign soft tissue tumor are present on sonographic imaging

  10. Ultrasonographic findings of benign soft tissue tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Sung; Oh, Dong Heon; Jung, Tae Gun; Kim, Yong Kil; Kwon, Jung Hyeok [Dongkang Genernal Hospital, Ulsan (Korea, Republic of)

    1994-05-15

    To clarify the characteristic sonographic features of benign soft tissue tumors and to evaluate the usefulness of sonographic imaging. We retrospectively reviewed ultrasonographic images of 70 cases in 68 patients with histologically proved benign soft tissue tumors. The tumors include 33 lipomas, 11 hemangiomas, 11 lymphangiomas, 7 neurilemmomas, 4 epidermoid cysts, 2 fibromas, 1 mesenchymoma, and 1 myxoma. The sonographic appearances of the lesions were mainly solid in 53 cases(33 lipomas, 8 hemangiomas, 2 lymphangiomas, 7 neurilemmomas, 2 fibromas and 1 mesenchymoma), mainly cystic in 14 cases(1 hemangioma, 8 lymphangiomas, 4 epidermoid cysts, and 1 myxomal), and mixed in 3 cases(2 hemangiomas and 1 lymphangioma). Although an accurate histologic prediction could not be made in most cases, certain patterns appeared to be characteristic of specific tumor types. 26 cases(78%) of lipoma were seen as lentiform, iso- or hyperechoic, solid mass. Hemangioma had variable appearance and characteristic calcifications were seen in 3 cases. Unicameral or multiseptated cystic mass with variable thickness of echogenic septa and solid portion was the characteristic finding of lymhangioma. Neurilemmoma showed lobulated, oval to round , relatively hypoechoic mass or with without internal cystic portion. Sonographic evaluation of benign soft tissue tumors is useful in demonstrating the location, size, extent, and internal characteristic of the mass. A relatively confident diagnosis can made when the characteristic features of the benign soft tissue tumor are present on sonographic imaging.

  11. Incidence of Staphylococcus aureus nasal colonization and soft tissue infection among high school football players.

    Science.gov (United States)

    Lear, Aaron; McCord, Gary; Peiffer, Jeffrey; Watkins, Richard R; Parikh, Arpan; Warrington, Steven

    2011-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) skin and soft tissue infections have been documented with increasing frequency in both team and individual sports in recent years. It also seems that the level of MRSA skin and soft tissue infections in the general population has increased. One hundred ninety athletes from 6 local high school football teams were recruited for this prospective observational study to document nasal colonization and the potential role this plays in skin and soft tissue infections in football players and, in particular, MRSA infections. Athletes had nasal swabs done before their season started, and they filled out questionnaires regarding potential risk factors for skin and soft tissue infections. Those enrolled in the study were then observed over the course of the season for skin and soft tissue infections. Those infected had data about their infections collected. One hundred ninety of 386 available student athletes enrolled in the study. Forty-four of the subjects had nasal colonization with methicillin-susceptible S. aureus, and none were colonized with MRSA. There were 10 skin and soft tissue infections (8 bacterial and 2 fungal) documented over the course of the season. All were treated as outpatients with oral or topical antibiotics, and none were considered serious. Survey data from the preseason questionnaire showed 21% with skin infection, 11% with methicillin-susceptible S. aureus, and none with MRSA infection during the past year. Three reported a remote history of MRSA infection. We documented an overall skin infection rate of 5.3% among high school football players over a single season. Our results suggest that skin and soft tissue infection may not be widespread among high school athletes in northeast Ohio.

  12. Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering

    International Nuclear Information System (INIS)

    Hwang, Chang Mo; Sant, Shilpa; Masaeli, Mahdokht; Kachouie, Nezamoddin N; Zamanian, Behnam; Khademhosseini, Ali; Lee, Sang-Hoon

    2010-01-01

    For tissue engineering applications, scaffolds should be porous to enable rapid nutrient and oxygen transfer while providing a three-dimensional (3D) microenvironment for the encapsulated cells. This dual characteristic can be achieved by fabrication of porous hydrogels that contain encapsulated cells. In this work, we developed a simple method that allows cell encapsulation and pore generation inside alginate hydrogels simultaneously. Gelatin beads of 150-300 μm diameter were used as a sacrificial porogen for generating pores within cell-laden hydrogels. Gelation of gelatin at low temperature (4 0 C) was used to form beads without chemical crosslinking and their subsequent dissolution after cell encapsulation led to generation of pores within cell-laden hydrogels. The pore size and porosity of the scaffolds were controlled by the gelatin bead size and their volume ratio, respectively. Fabricated hydrogels were characterized for their internal microarchitecture, mechanical properties and permeability. Hydrogels exhibited a high degree of porosity with increasing gelatin bead content in contrast to nonporous alginate hydrogel. Furthermore, permeability increased by two to three orders while compressive modulus decreased with increasing porosity of the scaffolds. Application of these scaffolds for tissue engineering was tested by encapsulation of hepatocarcinoma cell line (HepG2). All the scaffolds showed similar cell viability; however, cell proliferation was enhanced under porous conditions. Furthermore, porous alginate hydrogels resulted in formation of larger spheroids and higher albumin secretion compared to nonporous conditions. These data suggest that porous alginate hydrogels may have provided a better environment for cell proliferation and albumin production. This may be due to the enhanced mass transfer of nutrients, oxygen and waste removal, which is potentially beneficial for tissue engineering and regenerative medicine applications.

  13. Percutaneous interventional forceps removal of radiopaque foreign bodies in soft-tissue under fluoroscopic guidance

    International Nuclear Information System (INIS)

    Yang Xiujun; Xing Guangfu; Shi Changwen; Li Wei

    2011-01-01

    Objective: To evaluate the clinical value and limitations of percutaneous interventional forceps retrieval technique under fluoroscopic guidance in removing radiopaque foreign bodies in soft-tissue. Methods: A total of 4 105 consecutive soft-tissue injury patients with radiopaque foreign bodies, encountered in authors' hospital during the period from June 2005 to June 2010, were involved in this study. The diagnosis was confirmed by plain X-ray films in all patients. Additional CT scanning was performed in 1 591 patients, in some of them 3D reconstruction was adopted. With local anesthesia percutaneous interventional forceps retrieval of radiopaque foreign bodies (PIRFB) was carried out under C-arm video-fluoroscopic guidance. Results: Of all patients in this study, 61.34% (2 518/4 105) was treated by PIRFB (study group), and 38.66% (1 587/4 105) was not treated with PIRFB (control group). In study group,the complete and partial curative rate was 95.07% (2 394/2 518) and 4.81% (121/2 518) respectively, and the failure rate was 0.12% (3/2 518). Of 1 587 patients in control group, 25.02% (n=397) left hospital by patient's own reasons and 74.98% (n=1190) was discharged from hospital due to medical or technical reasons. In control group,the foreign objects were close to big vessels in 65.22% (1 035/1 587), large local hematoma was accompanied in 2.90% (46/1 587), associated traumatic pseudoaneurysm was seen in 1.32% (21/1 587) and the foreign objects were glass pieces and the like were found in 5.55% (88/1 587). No serious postoperative complications that required specific therapy, such as bleeding, infection and nerve damage, etc. occurred. CT, especially enhanced CT three-dimensional images, could precisely display the vasculatures nearby the foreign body, which helped make the correct judgment of the removal ability and the operation risk for foreign bodies with interventional procedure. Conclusion: Percutaneous interventional forceps retrieval technique under

  14. Soft tissue sarcoma of the extremity.

    LENUS (Irish Health Repository)

    Cooper, T M

    2012-02-03

    A retrospective review of 33 cases of soft tissue sarcoma of the extremity presenting over a 10 year period was undertaken. The history, patterns of referral, diagnostic investigations, procedures undertaken and outcomes were studied. We found there was a frequent delay in diagnosis and sometimes misinterpretation of biopsy specimens. Patients were seen by a variety of specialists from disciplines such as general surgery, plastic surgery, orthopaedic surgery and rheumatology. Considerable progress has been made in the treatment of soft tissue sarcomas, often allowing local control of the tumour without amputation. We believe there should be early referral of patients having these tumours to a centre where a combined multidisciplinary approach can be undertaken.

  15. Soft-tissue amyloidoma with associated plasmacytoma

    Directory of Open Access Journals (Sweden)

    Bibhas Saha Dalal

    2016-01-01

    Full Text Available Soft tissue amyloidoma with features similar to plasmacytoma, in absence of systemic amyloidosis, is an extremely rare finding. We hereby report the case of a 77 year old man who presented with a painless, nodular swelling on chest wall, diagnosed as soft tissue amyloidoma with plasma cell infiltration. Congo red staining was done to prove the presence of amyloid which showed characteristic "apple-green" birefringence on polarized microscopy. The plasma cells were monoclonal in origin as demonstrated by serum protein and immunofixation electrophoresis. To the best of our knowledge, this is the second such reported case. However close follow up is required, as this patient may develop multiple myeloma in future.

  16. Managing the Difficult Soft Tissue Envelope in Facial and Rhinoplasty Surgery.

    Science.gov (United States)

    Kosins, Aaron M; Obagi, Zein E

    2017-02-01

    The nasal soft tissue envelope affects the final rhinoplasty result, and can limit the expected improvement. Currently, no dependable and objective test exists to measure the thickness of the nasal skin and underlying soft tissue. This paper presents a simple, yet reliable method to determine the thickness of the soft tissue envelope. An algorithm is presented for treatment of the dermis and/or soft tissue apart from surgery of the underlying osseocartilaginous structures. Seventy-five patients presenting for primary rhinoplasty underwent visual and ultrasound assessment of their nasal soft tissue envelope. At preoperative evaluation, the Obagi "skin pinch test" was used to assess the thickness of the nasolabial fold and whether or not the skin was oily. Patients were classified based on the pinch thickness. At time of surgery prior to injection of local anesthesia, ultrasonic assessment was done at the nasolabial fold, keystone junction, supratip, and tip to measure the thickness of the nasal dermis and underlying soft tissue. Patients determined to have thin, normal, and thick skin by the "skin pinch test" were found to have a nasolabial fold dermal thickness with an average of 0.7 mm (0.4-1.2 mm), 1.1 mm (0.8-1.8 mm), and 1.4 mm (0.7-2.0 mm). Patients determined to have thin, normal, and thick skin were found to have a dermal thickness at the keystone junction with an average of 0.3 mm (0.2-0.4 mm), 0.5 mm (0.3-1.1 mm), and 0.9 mm (0.6-1.2 mm), respectively. This difference in thickness also translated to the supratip and tip areas measured. However, all areas were also affected by the oiliness of the skin. Soft tissue thickness (SMAS and muscle) underlying the dermis was variable. Patients of non-Caucasian background were more likely to have a thicker soft tissue layer. The "skin pinch test" is an easy and reliable way for the surgeon to evaluate the thickness of the nasal soft tissue envelope. The rhinoplasty surgeon can make decisions pre- and postoperatively

  17. Thicker three-dimensional tissue from a "symbiotic recycling system" combining mammalian cells and algae.

    Science.gov (United States)

    Haraguchi, Yuji; Kagawa, Yuki; Sakaguchi, Katsuhisa; Matsuura, Katsuhisa; Shimizu, Tatsuya; Okano, Teruo

    2017-01-31

    In this paper, we report an in vitro co-culture system that combines mammalian cells and algae, Chlorococcum littorale, to create a three-dimensional (3-D) tissue. While the C2C12 mouse myoblasts and rat cardiac cells consumed oxygen actively, intense oxygen production was accounted for by the algae even in the co-culture system. Although cell metabolism within thicker cardiac cell-layered tissues showed anaerobic respiration, the introduction of innovative co-cultivation partially changed the metabolism to aerobic respiration. Moreover, the amount of glucose consumption and lactate production in the cardiac tissues and the amount of ammonia in the culture media decreased significantly when co-cultivated with algae. In the cardiac tissues devoid of algae, delamination was observed histologically, and the release of creatine kinase (CK) from the tissues showed severe cardiac cell damage. On the other hand, the layered cell tissues with algae were observed to be in a good histological condition, with less than one-fifth decline in CK release. The co-cultivation with algae improved the culture condition of the thicker tissues, resulting in the formation of 160 μm-thick cardiac tissues. Thus, the present study proposes the possibility of creating an in vitro "symbiotic recycling system" composed of mammalian cells and algae.

  18. Histologic response of soft tissue sarcoma to radiation therapy

    International Nuclear Information System (INIS)

    Willett, C.G.; Schiller, A.L.; Suit, H.D.; Mankin, H.J.; Rosenberg, A.

    1987-01-01

    Twenty-seven patients with soft tissue sarcoma had preoperative radiotherapy, limb-sparing marginal surgical resection and whole-mount tumor histologic analysis. Incisional biopsy specimens before radiotherapy were reviewed for tumor type, grade, and extent of necrosis. Preoperative radiotherapy was given in either of two regimens: 13 patients received a mean total dose of 5250 cGy in one daily 180 to 200 cGy fractions and 14 patients a mean total dose of 4770 cGy in two daily fractions of 180 to 200 cGy separated by 4 hours. Twenty-one specimens had at least 80% necrosis or severely altered cells, a 3+ to 4+ response. Grade and size of the tumor appeared to be indicators of response to treatment rather than histologic type. Three of five patients (60%) with Grade 1, eight of 11 patients (73%) with Grade 2 lesions, and ten of 11 patients (91%) with Grade 3 tumors had 80% or greater necrosis or severely altered cells. For tumors 10 cm or less in greatest diameter, the 3+ to 4+ histologic response was seen in 12 of 14 patients (86%) whereas for lesions greater than 10 cm, this response was observed in nine of 13 patients (69%). For patients with Grade 2 or 3 soft tissue sarcoma, 13 of 14 patients (93%) treated with two fractions per day and two of four patients (50%) receiving one fraction per day exhibited significant response. All six patients treated twice daily for lesions greater than 10 cm had 3+ to 4+ histologic response compared to three of seven (43%) patients treated once per day. Therefore, grade and size of soft tissue sarcoma are important predictors of response to radiotherapy and preoperative twice daily radiotherapy may more likely permit the conservative surgical excision of sarcomas of borderline resectability

  19. Trochanteric Soft Tissue Thickness and Hip Fracture in Older Men

    Science.gov (United States)

    Nielson, Carrie M.; Bouxsein, Mary L.; Freitas, Sinara S.; Ensrud, Kristine E.; Orwoll, Eric S.

    2009-01-01

    Background: Greater thickness of the tissue extending laterally from the greater trochanter has been associated with a lower risk of hip fracture in women. The effect of trochanteric soft tissue thickness on the risk of incident hip fracture has not been evaluated in men. Methods: We measured trochanteric soft tissue thickness by dual-energy x-ray absorptiometry for all incident hip fracture cases (n = 70) and 222 randomly selected noncases in older men (≥65 yr) enrolled in the Osteoporotic Fractures in Men (MrOS) Study. Differences in tissue thickness between cases and controls were examined. Changes in fall force and factor-of-risk (the ratio of force from a sideways fall to femoral bone strength) associated with tissue thickness were determined. The relative risk for incident hip fracture per sd decrease in tissue thickness was calculated. Results: Mean trochanteric soft tissue thickness did not differ significantly between cases and noncases (29.1 ± 11.9 vs 31.0 ± 11.5 mm; P = 0.2). Although increased tissue thickness reduced both the estimates of fall force and the factor-of-risk, tissue thickness was not associated with the risk of hip fracture (age- and bone mineral density-adjusted relative risk per sd decrease in tissue thickness = 0.90; 95% confidence interval, 0.70–1.16). Conclusions: In this study of elderly community-dwelling men, we found no significant association between trochanteric soft tissue thickness and incident hip fracture. Trochanteric soft tissue thickness in these men was less than previously reported in older women and may explain the difference between these results and those reported in women. PMID:19017753

  20. Soft tissue wound healing around teeth and dental implants.

    Science.gov (United States)

    Sculean, Anton; Gruber, Reinhard; Bosshardt, Dieter D

    2014-04-01

    To provide an overview on the biology and soft tissue wound healing around teeth and dental implants. This narrative review focuses on cell biology and histology of soft tissue wounds around natural teeth and dental implants. The available data indicate that: (a) Oral wounds follow a similar pattern. (b) The tissue specificities of the gingival, alveolar and palatal mucosa appear to be innately and not necessarily functionally determined. (c) The granulation tissue originating from the periodontal ligament or from connective tissue originally covered by keratinized epithelium has the potential to induce keratinization. However, it also appears that deep palatal connective tissue may not have the same potential to induce keratinization as the palatal connective tissue originating from an immediately subepithelial area. (d) Epithelial healing following non-surgical and surgical periodontal therapy appears to be completed after a period of 7–14 days. Structural integrity of a maturing wound between a denuded root surface and a soft tissue flap is achieved at approximately 14-days post-surgery. (e) The formation of the biological width and maturation of the barrier function around transmucosal implants requires 6–8 weeks of healing. (f) The established peri-implant soft connective tissue resembles a scar tissue in composition, fibre orientation, and vasculature. (g) The peri-implant junctional epithelium may reach a greater final length under certain conditions such as implants placed into fresh extraction sockets versus conventional implant procedures in healed sites. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Soft tissue twisting injuries of the knee

    International Nuclear Information System (INIS)

    Magee, T.; Shapiro, M.

    2001-01-01

    Twisting injuries occur as a result of differential motion of different tissue types in injuries with some rotational force. These injuries are well described in brain injuries but, to our knowledge, have not been described in the musculoskeletal literature. We correlated the clinical examination and MR findings of 20 patients with twisting injuries of the soft tissues around the knee. Design and patients: We prospectively followed the clinical courses of 20 patients with knee injuries who had clinical histories and MR findings to suggest twisting injuries of the subcutaneous tissues. Patients with associated internal derangement of the knee (i.e., meniscal tears, ligamentous or bone injuries) were excluded from this study. MR findings to suggest twisting injuries included linear areas of abnormal dark signal on T1-weighted sequences and abnormal bright signal on T2-weighted or short tau inversion recovery (STIR) sequences and/or signal to suggest hemorrhage within the subcutaneous tissues. These MR criteria were adapted from those established for indirect musculotendinous junction injuries. Results: All 20 patients presented with considerable pain that suggested internal derangement on physical examination by the referring orthopedic surgeons. All presented with injuries associated with rotational force. The patients were placed on a course of protected weight-bearing of the affected extremity for 4 weeks. All patients had pain relief by clinical examination after this period of protected weight-bearing. Twisting injuries of the soft tissues can result in considerable pain that can be confused with internal derangement of the knee on physical examination. Soft tissue twisting injuries need to be recognized on MR examinations as they may be the cause of the patient's pain despite no MR evidence of internal derangement of the knee. The demonstration of soft tissue twisting injuries in a patient with severe knee pain but no documented internal derangement on MR

  2. Mapping of Mechanical Strains and Stresses around Quiescent Engineered Three-Dimensional Epithelial Tissues

    Science.gov (United States)

    Gjorevski, Nikolce; Nelson, Celeste M.

    2012-01-01

    Understanding how physical signals guide biological processes requires qualitative and quantitative knowledge of the mechanical forces generated and sensed by cells in a physiologically realistic three-dimensional (3D) context. Here, we used computational modeling and engineered epithelial tissues of precise geometry to define the experimental parameters that are required to measure directly the mechanical stress profile of 3D tissues embedded within native type I collagen. We found that to calculate the stresses accurately in these settings, we had to account for mechanical heterogeneities within the matrix, which we visualized and quantified using confocal reflectance and atomic force microscopy. Using this technique, we were able to obtain traction forces at the epithelium-matrix interface, and to resolve and quantify patterns of mechanical stress throughout the surrounding matrix. We discovered that whereas single cells generate tension by contracting and pulling on the matrix, the contraction of multicellular tissues can also push against the matrix, causing emergent compression. Furthermore, tissue geometry defines the spatial distribution of mechanical stress across the epithelium, which communicates mechanically over distances spanning hundreds of micrometers. Spatially resolved mechanical maps can provide insight into the types and magnitudes of physical parameters that are sensed and interpreted by multicellular tissues during normal and pathological processes. PMID:22828342

  3. A Review of the Responses of Two- and Three-Dimensional Engineered Tissues to Electric Fields

    Science.gov (United States)

    Hronik-Tupaj, Marie

    2012-01-01

    The application of external biophysical signals is one approach to tissue engineering that is explored less often than more traditional additions of exogenous biochemical and chemical factors to direct cell and tissue outcomes. The study of bioelectromagnetism and the field of electrotherapeutics have evolved over the years, and we review biocompatible electric stimulation devices and their successful application to tissue growth. Specifically, information on capacitively coupled alternating current, inductively coupled alternating current, and direct current devices is described. Cell and tissue responses from the application of these devices, including two- and three-dimensional in vitro studies and in vivo studies, are reviewed with regard to cell proliferation, adhesion, differentiation, morphology, and migration and tissue function. The current understanding of cellular mechanisms related to electric stimulation is detailed. The advantages of electric stimulation are compared with those pf other techniques, and areas in which electric fields are used as an adjuvant therapy for healing and regeneration are discussed. PMID:22046979

  4. Diode Laser Application in Soft Tissue Oral Surgery

    Science.gov (United States)

    Azma, Ehsan; Safavi, Nassimeh

    2013-01-01

    Introduction: Diode laser with wavelengths ranging from 810 to 980 nm in a continuous or pulsed mode was used as a possible instrument for soft tissue surgery in the oral cavity. Discussion: Diode laser is one of laser systems in which photons are produced by electric current with wavelengths of 810, 940 and 980nm. The application of diode laser in soft tissue oral surgery has been evaluated from a safety point of view, for facial pigmentation and vascular lesions and in oral surgery excision; for example frenectomy, epulis fissuratum and fibroma. The advantages of laser application are that it provides relatively bloodless surgical and post surgical courses with minimal swelling and scarring. We used diode laser for excisional biopsy of pyogenic granuloma and gingival pigmentation. Conclusion: The diode laser can be used as a modality for oral soft tissue surgery PMID:25606331

  5. Idiopathic Soft Tissue Calcification in an Extremity: A Case Report

    Directory of Open Access Journals (Sweden)

    Dinesh Dhar

    2013-03-01

    Full Text Available We report a case of a-15-days-old infant presenting with firm palpable thickening of the left leg soft tissues along with induration. Radiographs of the leg revealed generalized calcification of soft tissues. No obvious underlying cause could be identified for tissue calcification and hence termed as Idiopathic calcinois cutis. There are reports of this condition in Pediatric and Dermatology literature, but very few reports in orthopedic literature. The aim of this report is to highlight the pathogenesis, course and review of literature of this relatively uncommon condition which can easily be mistaken by Orthopedic or General Surgeons for infective bony of soft tissue infection.

  6. Current Molecular Targeted Therapies for Bone and Soft Tissue Sarcomas

    Directory of Open Access Journals (Sweden)

    Kenji Nakano

    2018-03-01

    Full Text Available Systemic treatment options for bone and soft tissue sarcomas remained unchanged until the 2000s. These cancers presented challenges in new drug development partly because of their rarity and heterogeneity. Many new molecular targeting drugs have been tried in the 2010s, and some were approved for bone and soft tissue sarcoma. As one of the first molecular targeted drugs approved for solid malignant tumors, imatinib’s approval as a treatment for gastrointestinal stromal tumors (GISTs has been a great achievement. Following imatinib, other tyrosine kinase inhibitors (TKIs have been approved for GISTs such as sunitinib and regorafenib, and pazopanib was approved for non-GIST soft tissue sarcomas. Olaratumab, the monoclonal antibody that targets platelet-derived growth factor receptor (PDGFR-α, was shown to extend the overall survival of soft tissue sarcoma patients and was approved in 2016 in the U.S. as a breakthrough therapy. For bone tumors, new drugs are limited to denosumab, a receptor activator of nuclear factor κB ligand (RANKL inhibitor, for treating giant cell tumors of bone. In this review, we explain and summarize the current molecular targeting therapies approved and in development for bone and soft tissue sarcomas.

  7. Roentgenographic study on maxillofacial soft tissue in the mixed dentition

    International Nuclear Information System (INIS)

    Lee, Jai Hei; Ahn, Hyung Kyu

    1977-01-01

    The purpose of this study was to obtain the cephalometric maxillofacial soft tissue measurements and to define the differences that exist between male and female on the soft tissue profile who had normal occlusion in mixed dentitions. For the object of this study, cephalometric radiographs were obtained from the centric occlusion with the relaxed lip position. Copper filter was designed to obtain both hard and soft tissue structure on the same film. The subjects consist of 100 male and 100 female from 8 to 12.4 years with the normal occlusion and acceptable profiles. The author measured facial depth, vertical height from the cephalometric soft tissue profiles in the mixed dentitions. The significant test was performed to compare male with females. The following results were obtained from the study 1. In facial convexity, much more larger female than that of male. 2. Inclination of the lip posture was more larger in maxilla (male) and in female more larger in the mandible. 3. The thickness of soft tissue was thicker in male, the height of nose was more prominent in female. 4. There were no significant differences in both sexes.

  8. Soft Tissue Extramedullary Plasmacytoma

    Directory of Open Access Journals (Sweden)

    Fernando Ruiz Santiago

    2010-01-01

    Full Text Available We present the uncommon case of a subcutaneous fascia-based extramedullary plasmacytoma in the leg, which was confirmed by the pathology report and followed up until its remission. We report the differential diagnosis with other more common soft tissue masses. Imaging findings are nonspecific but are important to determine the tumour extension and to plan the biopsy.

  9. Three-dimensional multislice spiral computed tomographic angiography: a potentially useful tool for safer free tissue transfer to complicated regions

    DEFF Research Database (Denmark)

    Demirtas, Yener; Cifci, Mehmet; Kelahmetoglu, Osman

    2009-01-01

    Three-dimensional multislice spiral computed tomographic angiography (3D-MSCTA) is a minimally invasive method of vascular mapping. The aim of this study was to evaluate the clinical usefulness of this imaging technique in delineating the recipient vessels for safer free tissue transfer to compli......Three-dimensional multislice spiral computed tomographic angiography (3D-MSCTA) is a minimally invasive method of vascular mapping. The aim of this study was to evaluate the clinical usefulness of this imaging technique in delineating the recipient vessels for safer free tissue transfer...... be kept in mind, especially inthe patients with peripheral vascular disease. 3D-MSCTA has the potential to replace digital subtraction angiography for planning of microvascular reconstructions and newer devices with higher resolutions will probably increase the reliability of this technique. (c) 2009...

  10. Magnetic resonance imaging of pediatric soft-tissue vascular anomalies

    International Nuclear Information System (INIS)

    Navarro, Oscar M.

    2016-01-01

    Magnetic resonance (MR) imaging can be used in the management of pediatric soft-tissue vascular anomalies for diagnosing and assessing extent of lesions and for evaluating response to therapy. MR imaging studies often involve a combination of T1- and T2-weighted images in addition to MR angiography and fat-suppressed post-contrast sequences. The MR imaging features of these vascular anomalies when combined with clinical findings can aid in diagnosis. In cases of complex vascular malformations and syndromes associated with vascular anomalies, MR imaging can be used to evaluate accompanying soft-tissue and bone anomalies. This article reviews the MR imaging protocols and appearances of the most common pediatric soft-tissue vascular anomalies. (orig.)

  11. Radiation-induced soft-tissue and bone sarcoma

    International Nuclear Information System (INIS)

    Kim, J.H.; Chu, F.C.; Woodard, H.Q.; Melamed, R.; Huvos, A.; Cantin, J.

    1978-01-01

    From the records of Memorial Hospital of the past 50 years, 47 cases with an established diagnosis of radiation-induced sarcoma were identified and divided into two groups: the first included 20 cases of soft-tissue sarcoma arising from irradiated tissues, and the second comprised 27 cases of bone sarcoma arising from normal bones in the irradiated field. Medians for the latent periods from irradiation to diagnosis of bone and soft-tissue sarcoma were 11 and 12, years, respectively. In bone sarcomas, the latent period was longer after larger radiation doses and children appeared to be more susceptible to cancer induction than adults. Criteria for establishing the diagnosis of radiation-induced sarcoma and the magnitude of the risk of bone sarcoma are discussed

  12. Bone and soft tissue ischemia

    International Nuclear Information System (INIS)

    Berquist, T.H.; Brown, M.L.; Joyce, J.W.; Johnson, K.A.

    1989-01-01

    This paper discusses clinical features and imaging techniques for ischemic necrosis, a common problem in the foot, particularly in diabetics and patients with other vascular diseases. Necrosis of bone and soft tissues will be considered separately as the underlying etiology and imaging evaluation differ considerably

  13. Rehabilitation effect of exercise with soft tissue manipulation in ...

    African Journals Online (AJOL)

    Rehabilitation effect of exercise with soft tissue manipulation in patients with lumbar muscle strain. H Li, H Zhang, S Liu, Y Wang, D Gai, Q Lu, H Gan, Y Shi, W Qi. Abstract. Objective: To study the rehabilitation effect of exercise with soft tissue manipulation therapy for patients with lumbar muscle strain. Methods: Patients with ...

  14. Soft tissue and it’s affect on craniofacial growth and the dentition

    Directory of Open Access Journals (Sweden)

    Mansjur Nasir

    2016-06-01

    Full Text Available Soft tissue dysfunction, mouth breathing, tongue thrusting, incorrect swallowing and other myofunctional habits effect on malocclusion, poor facial development and relapse also Temporo Mandibular Joint (TMJ Disorder as well. How the dynamics of form and function affect the dentition, skeletal structures and the face. Soft tissues control dental position and should be considered in conjunction with any treatment. Treatment of soft tissue dysfunction will stable the result the orthodontic treatment. Diagnosis and treatment of soft tissue dysfunction is the responsibility of the General Dentist and Pedodontist and Orthodontist as well.

  15. Chitosan composite three dimensional macrospheric scaffolds for bone tissue engineering.

    Science.gov (United States)

    Vyas, Veena; Kaur, Tejinder; Thirugnanam, Arunachalam

    2017-11-01

    The present work deals with the fabrication of chitosan composite scaffolds with controllable and predictable internal architecture for bone tissue engineering. Chitosan (CS) based composites were developed by varying montmorillonite (MMT) and hydroxyapatite (HA) combinations to fabricate macrospheric three dimensional (3D) scaffolds by direct agglomeration of the sintered macrospheres. The fabricated CS, CS/MMT, CS/HA and CS/MMT/HA 3D scaffolds were characterized for their physicochemical, biological and mechanical properties. The XRD and ATR-FTIR studies confirmed the presence of the individual constituents and the molecular interaction between them, respectively. The reinforcement with HA and MMT showed reduced swelling and degradation rate. It was found that in comparison to pure CS, the CS/HA/MMT composites exhibited improved hemocompatibility and protein adsorption. The sintering of the macrospheres controlled the swelling ability of the scaffolds which played an important role in maintaining the mechanical strength of the 3D scaffolds. The CS/HA/MMT composite scaffold showed 14 folds increase in the compressive strength when compared to pure CS scaffolds. The fabricated scaffolds were also found to encourage the MG 63 cell proliferation. Hence, from the above studies it can be concluded that the CS/HA/MMT composite 3D macrospheric scaffolds have wider and more practical application in bone tissue regeneration applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effect of bone-soft tissue friction on ultrasound axial shear strain elastography.

    Science.gov (United States)

    Tang, Songyuan; Chaudhry, Anuj; Kim, Namhee; Reddy, J N; Righetti, Raffaella

    2017-07-12

    Bone-soft tissue friction is an important factor affecting several musculoskeletal disorders, frictional syndromes and the ability of a bone fracture to heal. However, this parameter is difficult to determine using non-invasive imaging modalities, especially in clinical settings. Ultrasound axial shear strain elastography is a non-invasive imaging modality that has been used in the recent past to estimate the bonding between different tissue layers. As most elastography methods, axial shear strain elastography is primarily used in soft tissues. More recently, this technique has been proposed to assess the bone-soft tissue interface. In this paper, we investigate the effect of a variation in bone-soft tissue friction coefficient in the resulting axial shear strain elastograms. Finite element poroelastic models of bone specimens exhibiting different bone-soft tissue friction coefficients were created and mechanically analyzed. These models were then imported to an ultrasound elastography simulation module to assess the presence of axial shear strain patterns. In vitro experiments were performed to corroborate selected simulation results. The results of this study show that the normalized axial shear strain estimated at the bone-soft tissue interface is statistically correlated to the bone-soft tissue coefficient of friction. This information may prove useful to better interpret ultrasound elastography results obtained in bone-related applications and, possibly, monitor bone healing.

  17. Multiphase poroelastic finite element models for soft tissue structures

    International Nuclear Information System (INIS)

    Simon, B.R.

    1992-01-01

    During the last two decades, biological structures with soft tissue components have been modeled using poroelastic or mixture-based constitutive laws, i.e., the material is viewed as a deformable (porous) solid matrix that is saturated by mobile tissue fluid. These structures exhibit a highly nonlinear, history-dependent material behavior; undergo finite strains; and may swell or shrink when tissue ionic concentrations are altered. Give the geometric and material complexity of soft tissue structures and that they are subjected to complicated initial and boundary conditions, finite element models (FEMs) have been very useful for quantitative structural analyses. This paper surveys recent applications of poroelastic and mixture-based theories and the associated FEMs for the study of the biomechanics of soft tissues, and indicates future directions for research in this area. Equivalent finite-strain poroelastic and mixture continuum biomechanical models are presented. Special attention is given to the identification of material properties using a porohyperelastic constitutive law ans a total Lagrangian view for the formulation. The associated FEMs are then formulated to include this porohyperelastic material response and finite strains. Extensions of the theory are suggested in order to include inherent viscoelasticity, transport phenomena, and swelling in soft tissue structures. A number of biomechanical research areas are identified, and possible applications of the porohyperelastic and mixture-based FEMs are suggested. 62 refs., 11 figs., 3 tabs

  18. A plastic surgery application in evolution: three-dimensional printing.

    Science.gov (United States)

    Gerstle, Theodore L; Ibrahim, Ahmed M S; Kim, Peter S; Lee, Bernard T; Lin, Samuel J

    2014-02-01

    Three-dimensional printing represents an evolving technology still in its infancy. Currently, individuals and small business entities have the ability to manufacture physical objects from digital renderings, computer-aided design, and open source files. Design modifications and improvements in extrusion methods have made this technology much more affordable. This article explores the potential uses of three-dimensional printing in plastic surgery. A review was performed detailing the known uses of three-dimensional printing in medicine. The potential applications of three-dimensional printing in plastic surgery are discussed. Various applications for three-dimensional printing technology have emerged in medicine, including printing organs, printing body parts, bio-printing, and computer-aided tissue engineering. In plastic surgery, these tools offer various prospective applications for surgical planning, resident education, and the development of custom prosthetics. Numerous applications exist in medicine, including the printing of devices, implants, tissue replacements, and even whole organs. Plastic surgeons may likely find this technology indispensable in surgical planning, education, and prosthetic device design and development in the near future.

  19. Strain Elastography for Prediction of Malignancy in Soft Tissue Tumours--Preliminary Results

    DEFF Research Database (Denmark)

    Riishede, I; Ewertsen, C; Carlsen, J

    2015-01-01

    PURPOSE: To evaluate the ability of strain elastography to predict malignancy in patients with soft tissue tumors, and to compare three evaluation methods of strain elastography: strain ratios, strain histograms and visual scoring. MATERIALS AND METHODS: 60 patients with 61 tumors were analyzed...

  20. Three-dimensional volumetric MRI with isotropic resolution: improved speed of acquisition, spatial resolution and assessment of lesion conspicuity in patients with recurrent soft tissue sarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Ahlawat, Shivani [The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Morris, Carol [The Johns Hopkins Medical Institutions, Department of Orthopedic Surgery, Baltimore, MD (United States); The Johns Hopkins Medical Institutions, Department of Oncology, Baltimore, MD (United States); Fayad, Laura M. [The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); The Johns Hopkins Medical Institutions, Department of Orthopedic Surgery, Baltimore, MD (United States); The Johns Hopkins Medical Institutions, Department of Oncology, Baltimore, MD (United States)

    2016-05-15

    To assess the acquisition speed, lesion conspicuity, and inter-observer agreement associated with volumetric T{sub 1}-weighted MR sequences with isotropic resolution for detecting recurrent soft-tissue sarcoma (STS). Fifteen subjects with histologically proven recurrent STS underwent MRI, including axial and coronal T{sub 1}-weighted spin echo (T{sub 1}-WSE) (5-mm slice thickness) and coronal 3D volumetric T{sub 1}-weighted (fat-suppressed, volume-interpolated, breath-hold examination; repetition time/echo time, 3.7/1.4 ms; flip angle, 9.5 ; 1-mm slice thickness) sequences before and after intravenous contrast administration. Subtraction imaging and multiplanar reformations (MPRs) were performed. Acquisition times for T{sub 1}-WSE in two planes and 3D sequences were reported. Two radiologists reviewed images for quality (>50 % artifacts, 25-50 % artifacts, <25 % artifacts, and no substantial artifacts), lesion conspicuity, contrast-to-noise ratio (CNR{sub muscle}), recurrence size, and recurrence-to-joint distance. Descriptive and intraclass correlation (ICC) statistics are given. Mean acquisition times were significantly less for 3D imaging compared with 2-plane T{sub 1}-WSE (183.6 vs 342.6 s; P = 0.012). Image quality was rated as having no substantial artifacts in 13/15 and <25 % artifacts in 2/15. Lesion conspicuity was significantly improved for subtracted versus unsubtracted images (CNR{sub muscle}, 100 ± 138 vs 181 ± 199; P = 0.05). Mean recurrent lesion size was 2.5 cm (range, 0.7-5.7 cm), and measurements on 3D sequences offered excellent interobserver agreement (ICC, 0.98 for lesion size and 0.96 for recurrence-to-joint distance with MPR views). Three-dimensional volumetric sequences offer faster acquisition times, higher spatial resolution, and MPR capability compared with 2D T{sub 1}-WSE for postcontrast imaging. Subtraction imaging provides higher lesion conspicuity for detecting recurrent STS in skeletal muscle, with excellent interobserver

  1. Differential diagnosis between benign and malignant soft tissue tumors utilizing ultrasound parameters.

    Science.gov (United States)

    Morii, Takeshi; Kishino, Tomonori; Shimamori, Naoko; Motohashi, Mitsue; Ohnishi, Hiroaki; Honya, Keita; Aoyagi, Takayuki; Tajima, Takashi; Ichimura, Shoichi

    2018-01-01

    Preoperative discrimination between benign and malignant soft tissue tumors is critical for the prevention of excess application of magnetic resonance imaging and biopsy as well as unplanned resection. Although ultrasound, including power Doppler imaging, is an easy, noninvasive, and cost-effective modality for screening soft tissue tumors, few studies have investigated reliable discrimination between benign and malignant soft tissue tumors. To establish a modality for discrimination between benign and malignant soft tissue tumors using ultrasound, we extracted the significant risk factors for malignancy based on ultrasound information from 40 malignant and 56 benign pathologically diagnosed soft tissue tumors and established a scoring system based on these risk factors. The maximum size, tumor margin, and vascularity evaluated using ultrasound were extracted as significant risk factors. Using the odds ratio from a multivariate regression model, a scoring system was established. Receiver operating characteristic analyses revealed a high area under the curve value (0.85), confirming the accuracy of the scoring system. Ultrasound is a useful modality for establishing the differential diagnosis between benign and malignant soft tissue tumors.

  2. NMR imaging of soft tissue tumors

    International Nuclear Information System (INIS)

    Laval-Jeantet, M.; Tobolsk, F.; Delepine, N.; Delepine, G.; Roger, B.; Cabanis, E.A.

    1986-01-01

    Preliminary findings on NMR imaging of 30 soft tissue tumors demonstrated the indispensable value of this examination (particularly when a surface antenna is used) for preoperative investigation and diagnosis of tumoral recurrence when compared with other radiologic techniques. The possible potential of NMR imaging for characterization of tissues, apart from lipoma or liposarcoma, cannot be evaluated at the present time [fr

  3. Magnetic resonance imaging appearance of soft-tissue metastases: our experience at an orthopedic oncology center

    International Nuclear Information System (INIS)

    Sammon, Jennifer; Jain, Abhishek; Bleakney, Robert; Mohankumar, Rakesh

    2017-01-01

    To assess the prevalence and magnetic resonance imaging appearance of metastasis presenting as a soft-tissue mass. A retrospective chart review was performed on 51 patients who presented to an orthopedic oncology center with soft-tissue masses, with a histology-proven diagnosis of soft-tissue metastasis, over a 14-year period. Their magnetic resonance imaging, primary origin, and follow-up have been assessed. Soft-tissue metastasis was identified in patients ranging from 18 to 85 years old. Most (80%) of the masses were located deep to the deep fascia. In our cohort of patients, melanoma was the most common primary malignancy contributing to soft-tissue metastasis (21.8%). Among soft-tissue metastasis from solid organs, breast and lung were the most frequent (9.1% each). Five patients had soft-tissue metastases from an unknown primary. Imaging diagnosis of soft-tissue metastases is challenging as it can demonstrate imaging appearances similar to primary soft-tissue sarcoma. The presence of a known malignancy may not be evident in everyone, and even if available, histopathology will be necessary for diagnosis if this is the only site of recurrence/metastasis to differentiate from a primary soft-tissue sarcoma. Moreover, soft-tissue metastasis may be the initial presentation of a malignancy. Primary malignancies with soft-tissue metastasis carry a poor prognosis; hence, prompt diagnosis and management in essential. (orig.)

  4. Magnetic resonance imaging appearance of soft-tissue metastases: our experience at an orthopedic oncology center

    Energy Technology Data Exchange (ETDEWEB)

    Sammon, Jennifer; Jain, Abhishek; Bleakney, Robert; Mohankumar, Rakesh [Mount Sinai Hospital and University of Toronto, Division of Musculoskeletal Imaging, Joint Department of Medical Imaging, Toronto, Ontario (Canada)

    2017-04-15

    To assess the prevalence and magnetic resonance imaging appearance of metastasis presenting as a soft-tissue mass. A retrospective chart review was performed on 51 patients who presented to an orthopedic oncology center with soft-tissue masses, with a histology-proven diagnosis of soft-tissue metastasis, over a 14-year period. Their magnetic resonance imaging, primary origin, and follow-up have been assessed. Soft-tissue metastasis was identified in patients ranging from 18 to 85 years old. Most (80%) of the masses were located deep to the deep fascia. In our cohort of patients, melanoma was the most common primary malignancy contributing to soft-tissue metastasis (21.8%). Among soft-tissue metastasis from solid organs, breast and lung were the most frequent (9.1% each). Five patients had soft-tissue metastases from an unknown primary. Imaging diagnosis of soft-tissue metastases is challenging as it can demonstrate imaging appearances similar to primary soft-tissue sarcoma. The presence of a known malignancy may not be evident in everyone, and even if available, histopathology will be necessary for diagnosis if this is the only site of recurrence/metastasis to differentiate from a primary soft-tissue sarcoma. Moreover, soft-tissue metastasis may be the initial presentation of a malignancy. Primary malignancies with soft-tissue metastasis carry a poor prognosis; hence, prompt diagnosis and management in essential. (orig.)

  5. Soft tissue chondroma: a rare tumor presenting as a cutaneous nodule

    Directory of Open Access Journals (Sweden)

    Dibakar Podder

    2015-04-01

    Full Text Available Soft tissue chondroma (STC, also known as extraskeletal chondroma or chondroma of soft parts is a benign cartilaginous tumor which arise de novo from soft tissue. Also, it is an extremely rare entity predominantly involving extremities, especially fingers. A 26 year old male presented with 3 year history of swelling in left index finger. On local examination a hard 2 × 2 cm swelling was seen over the volar aspect of left 2nd proximal phalanx. Swelling was mobile on contraction of tendons. X-ray showed a soft tissue shadow on volar aspect of left second proximal phalanx. Histopathology showed a well encapsulated, hypo cellular nodule composed of benign chondrocytes surrounded by hyaline chondroid matrix. Nuclear pleomorphism, mitosis or necrosis was not seen. Based on radiological and histopathological findings a diagnosis of STC was made. STC should be considered in patients with slow growing, soft tissue masses.

  6. Radiologic diagnosis of malignant soft-tissue tumors of the extremities

    International Nuclear Information System (INIS)

    Peters, P.E.; Friedmann, G.

    1983-01-01

    In malignant soft-tissue tumors of the extremities the radiologist is asked to define size and extent of the lesion and it's relationship to adjacent structures. The assessment of the nature of the lesion is of utmost importance, however, the contribution of the different imaging modalities varies considerably. In a review article the current roles of conventional radiography, xeroradiography, real-time ultrasonography, computed tomography and arteriography in the diagnostic workup of malignant soft-tissue tumors of the extremities are discussed. The statements made are based upon own comparative studies as well as on a review of the literature. In the assessment of the nature of a soft-tissue mass the contribution of all radiologic imaging methods is rather limited, although arteriography may add valuable information if performed complementary to CT. Real-time ultrasonography is well suited to define size, location and extent of peripheral soft-tissue masses. It is therefore recommended as the first imaging method and for follow-up studies. Equivocal findings by real-time sonography and new cases for treatment planning must be confirmed by computed tomography which proved to be the most reliable and the best reproducible imaging method for soft-tissue tumors of the extremities. (orig.)

  7. Soft tissue reconstruction for calcaneal fractures or osteomyelitis.

    Science.gov (United States)

    Attinger, C; Cooper, P

    2001-01-01

    A systematic approach of the surgical management of a calcaneal fracture can minimize the potential of soft tissue complications. When reducing a closed calcaneal fracture, the incision used affects the postoperative complications. The L-shaped incision with the horizontal limb lying on the lateral glabrous junction ensures maximum blood flow to either side of the incision. Whether or not the wound can be closed primarily depends on the preexisting edema, the lost calcaneal height, and the delay between the fracture and reduction (Fig. 20). The wrinkle test is a good indicator that the incision can be closed primarily if the amount of height restored is minimal. If the edema is too great, steps should be taken to reduce it sufficiently to allow successful wound closure. If the wound, after reduction, is too wide to allow primary closure, an ADM flap laterally or an AHM flap medially should be used. For larger defects, a free flap should be considered. The three important steps to reconstruction of soft tissue defects around the calcaneus include good blood supply, a infection-free wound, and the simplest soft tissue reconstructive option that covers the wound successfully. Adequate blood supply can be determined by the use of Doppler. If the supply is inadequate, revascularization is necessary before proceeding. Achieving a clean wound requires aggressive debridement, intravenous antibiotics, and good wound care. Adjuncts that can help in achieving a clean wound include topical antibiotics (silver sulfadiazine), the VAC, and hyperbaric oxygen. Osteomyelitis has to be treated aggressively. Any suspicious bone has to be removed. Only clean, healthy, bleeding bone is left behind. Antibiotic beads can be useful when there is doubt as to whether the cancellous bone is infection-free. The beads are not a substitute for good debridement, however. Soft tissue reconstruction ranges from delayed primary closure to the use of microsurgical free flaps (Fig. 21). When bone or

  8. Stabilizing sodium hypochlorite at high pH: effects on soft tissue and dentin.

    Science.gov (United States)

    Jungbluth, Holger; Marending, Monika; De-Deus, Gustavo; Sener, Beatrice; Zehnder, Matthias

    2011-05-01

    When sodium hypochlorite solutions react with tissue, their pH drops and tissue sorption decreases. We studied whether stabilizing a NaOCl solution at a high pH would increase its soft-tissue dissolution capacity and effects on the dentin matrix compared with a standard NaOCl solution of the same concentration and similar initial pH. NaOCl solutions were prepared by mixing (1:1) a 10% stock solution with water (standard) or 2 mol/L NaOH (stabilized). Physiological saline and 1 mol/L NaOH served as the controls. Chlorine content and alkaline capacity of NaOCl solutions were determined. Standardized porcine palatal soft-tissue specimens and human root dentin bars were exposed to test and control solutions. Weight loss percentage was assessed in the soft-tissue dissolution assay. Three-point bending tests were performed on the root dentin bars to determine the modulus of elasticity and flexural strength. Values between groups were compared using one-way analysis of variance with the Bonferroni correction for multiple testing (α pH level of 7.5, respectively. The stabilized NaOCl dissolved significantly more soft tissue than the standard solution, and the pH remained high. It also caused a higher loss in elastic modulus and flexure strength (P < .05) than the control solutions, whereas the standard solution did not. NaOH-stabilized NaOCl solutions have a higher alkaline capacity and are thus more proteolytic than standard counterparts. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Quantification of Cardiomyocyte Alignment from Three-Dimensional (3D) Confocal Microscopy of Engineered Tissue.

    Science.gov (United States)

    Kowalski, William J; Yuan, Fangping; Nakane, Takeichiro; Masumoto, Hidetoshi; Dwenger, Marc; Ye, Fei; Tinney, Joseph P; Keller, Bradley B

    2017-08-01

    Biological tissues have complex, three-dimensional (3D) organizations of cells and matrix factors that provide the architecture necessary to meet morphogenic and functional demands. Disordered cell alignment is associated with congenital heart disease, cardiomyopathy, and neurodegenerative diseases and repairing or replacing these tissues using engineered constructs may improve regenerative capacity. However, optimizing cell alignment within engineered tissues requires quantitative 3D data on cell orientations and both efficient and validated processing algorithms. We developed an automated method to measure local 3D orientations based on structure tensor analysis and incorporated an adaptive subregion size to account for multiple scales. Our method calculates the statistical concentration parameter, κ, to quantify alignment, as well as the traditional orientational order parameter. We validated our method using synthetic images and accurately measured principal axis and concentration. We then applied our method to confocal stacks of cleared, whole-mount engineered cardiac tissues generated from human-induced pluripotent stem cells or embryonic chick cardiac cells and quantified cardiomyocyte alignment. We found significant differences in alignment based on cellular composition and tissue geometry. These results from our synthetic images and confocal data demonstrate the efficiency and accuracy of our method to measure alignment in 3D tissues.

  10. Soft tissue cephalometric analysis applied to Himachali ethnic population

    Directory of Open Access Journals (Sweden)

    Isha Aggarwal

    2016-01-01

    Full Text Available Introduction: The modern society considers facial attractiveness as an important physical attribute. The great variance in soft tissue drape of the human face complicates accurate assessment of the soft tissue profile, and it is a known fact that facial features of different ethnic groups differ significantly. This study was undertaken to establish norms for Himachali ethnic population. Materials and Methods: The sample comprised lateral cephalograms taken in natural head position of 100 normal individuals (50 males, 50 females. The cephalograms were analyzed by Arnett soft tissue cephalometric analysis for orthodontic diagnosis and treatment planning. Student's t-test was used to compare the means of the two groups. Results: Statistically significant differences were found between Himachali males and females in certain key parameters. Males have thicker soft tissue structures and a more acute nasolabial angle than females. Males have longer faces and females have greater interlabial gap and maxillary incisor exposure. Males have more deep-set facial structures than females. Conclusions: Statistically significant differences were found between Himachali males and females in certain key parameters. Differences were also noted between other ethnic groups and Himachali faces.

  11. Can plantar soft tissue mechanics enhance prognosis of diabetic foot ulcer?

    Science.gov (United States)

    Naemi, R; Chatzistergos, P; Suresh, S; Sundar, L; Chockalingam, N; Ramachandran, A

    2017-04-01

    To investigate if the assessment of the mechanical properties of plantar soft tissue can increase the accuracy of predicting Diabetic Foot Ulceration (DFU). 40 patients with diabetic neuropathy and no DFU were recruited. Commonly assessed clinical parameters along with plantar soft tissue stiffness and thickness were measured at baseline using ultrasound elastography technique. 7 patients developed foot ulceration during a 12months follow-up. Logistic regression was used to identify parameters that contribute to predicting the DFU incidence. The effect of using parameters related to the mechanical behaviour of plantar soft tissue on the specificity, sensitivity, prediction strength and accuracy of the predicting models for DFU was assessed. Patients with higher plantar soft tissue thickness and lower stiffness at the 1st Metatarsal head area showed an increased risk of DFU. Adding plantar soft tissue stiffness and thickness to the model improved its specificity (by 3%), sensitivity (by 14%), prediction accuracy (by 5%) and prognosis strength (by 1%). The model containing all predictors was able to effectively (χ 2 (8, N=40)=17.55, P<0.05) distinguish between the patients with and without DFU incidence. The mechanical properties of plantar soft tissue can be used to improve the predictability of DFU in moderate/high risk patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Soft-tissue tumor differentiation using 3D power Doppler ultrasonography with echo-contrast medium injection.

    Science.gov (United States)

    Chiou, Hong-Jen; Chou, Yi-Hong; Chen, Wei-Ming; Chen, Winby; Wang, Hsin-Kai; Chang, Cheng-Yen

    2010-12-01

    We aimed to evaluate the ability of 3-dimensional power Doppler ultrasonography to differentiate soft-tissue masses from blood flow and vascularization with contrast medium. Twenty-five patients (mean age, 44.1 years; range, 12-77 years) with a palpable mass were enrolled in this study. Volume data were acquired using linear and convex 3-dimensional probes and contrast medium injected manually by bolus. Data were stored and traced slice by slice for 12 slices. All patients were scanned by the same senior sonologist. The vascular index (VI), flow index (FI), and vascular-flow index (VFI) were automatically calculated after the tumor was completely traced. All tumors were later confirmed by pathology. The study included 8 benign (mean, 36.5 mL; range, 2.4-124 mL) and 17 malignant (mean, 319.4 mL; range, 9.9-1,179.6 mL) tumors. Before contrast medium injection, mean VI, FI and VFI were, respectively, 3.22, 32.26 and 1.07 in benign tumors, and 1.97, 29.33 and 0.67 in malignant tumors. After contrast medium injection, they were, respectively, 20.85, 37.33 and 8.52 in benign tumors, and 40.12, 41.21 and 17.77 in malignant tumors. The mean differences between with and without contrast injection for VI, FI and VFI were, respectively, 17.63, 5.07 and 7.45 in benign tumors, and 38.15, 11.88 and 16.55 in malignant tumors. Tumor volume, VI, FI and VFI were not significantly different between benign and malignant tumors before and after echo-contrast medium injection. However, VI, FI and VFI under self-differentiation (differences between with and without contrast injection) were significantly different between malignant and benign tumors. Three-dimensional power Doppler ultrasound is a valuable tool for differential diagnosis of soft-tissue tumors, especially with the injection of an echo-contrast medium. Copyright © 2010 Elsevier. Published by Elsevier B.V. All rights reserved.

  13. Drugs Approved for Soft Tissue Sarcoma

    Science.gov (United States)

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for soft tissue sarcoma. The list includes generic names and brand names. The drug names link to NCI's Cancer Drug Information summaries.

  14. Skin and soft-tissue infec tions

    African Journals Online (AJOL)

    2010-06-01

    Jun 1, 2010 ... Patients with skin and soft-tissue infections (SSTIs) often initially present to family physicians. ..... Nosocomial infections are often caused by MRSA or mixed .... site infections are good hand hygiene, good surgical technique.

  15. THE POTENTIAL VALUE OF ULTRASOUND IN DIAGNOSIS OF SOFT TISSUE SARCOMA (LITERATURE REVIEW

    Directory of Open Access Journals (Sweden)

    I. G. Frolova

    2015-01-01

    Full Text Available Literature data on the potential value of ultrasound imaging in diagnosis of soft tissue sarcoma were analyzed. Ultrasound in B-regime was used to assess the extent of soft tissue sarcoma, Doppler ultrasonography was used to study tumor vascularization and sonoelastography was useful to differentiate benign from malignant tumors of soft tissues. The analysis of diagnostic value of ultrasound in detection of soft tissue lesions was carried out.  Criteria characterizing various histological types of tumors were identified.

  16. Weak light emission of soft tissues induced by heating

    Science.gov (United States)

    Spinelli, Antonello E.; Durando, Giovanni; Boschi, Federico

    2018-04-01

    The main goal of this work is to show that soft tissue interaction with high-intensity focused ultrasound (HIFU) or direct heating leads to a weak light emission detectable using a small animal optical imaging system. Our results show that the luminescence signal is detectable after 30 min of heating, resembling the time scale of delayed luminescence. The imaging of a soft tissue after heating it using an HIFU field shows that the luminescence pattern closely matches the shape of the cone typical of the HIFU beam. We conclude that heating a soft tissue using two different sources leads to the emission of a weak luminescence signal from the heated region with a decay half-life of a few minutes (4 to 6 min). The origin of such light emission needs to be further investigated.

  17. Carbon ion radiotherapy in bone and soft tissue sarcomas

    International Nuclear Information System (INIS)

    Kamada, Tadashi; Imai, Reiko; Kagei, Kenji; Tsuji, Hiroshi; Yanagi, Takeshi; Ishikawa, Hitoshi; Tsujii, Hirohiko

    2006-01-01

    The Heavy Ion Medical Accelerator in Chiba (HIMAC) is the world's first heavy ion accelerator complex dedicated to medical use in a hospital environment. Heavy ions have superior depth-dose distribution and greater cell-killing capability. In June 1996, clinical research for the treatment of bone and soft tissue sarcomas was begun using carbon ions generated by the HIMAC. As of February 2006, a total of the 278 patients with bone and soft tissue sarcoma had been enrolled into the clinical trial. Most of the patients had locally advanced and/or medically inoperable tumors. The clinical trial revealed that carbon ion radiotherapy provided definite local control and offered a survival advantage without unacceptable morbidity in bone and soft tissue sarcomas that were hard to cure with other modalities. (author)

  18. Indentation and Observation of Anisotropic Soft Tissues Using an Indenter Device

    Directory of Open Access Journals (Sweden)

    Parinaz ASHRAFI

    2015-01-01

    Full Text Available Soft tissues of human body have complex structures and different mechanical behaviors than those of traditional engineering materials. There is a great urge to understand tissue behavior of human body. Experimental data is needed for improvement of soft tissue modeling and advancement in implants and prosthesis, as well as diagnosis of diseases. Mechanical behavior and responses change when tissue loses its liveliness and viability. One of the techniques for soft tissue testing is indentation, which is applied on live tissue in its physiological environment. Indentation affords several advantages over other types of tests such as uniaxial tension, biaxial tension, and simple shear and suction, thus it is of interest to develop new indentation techniques from which more valid data can be extracted. In this study a new indenter device was designed and constructed. Displacement and force rate cyclic loading, and relaxation experiments were conducted on human arm. The in-vivo force rate controlled cyclic loading test method which is novel is compared with the traditional displacement controlled cyclic loading tests. Anisotropic behavior of tissue cannot be determined by axisymmetric tips, therefore ellipsoid tips were used for examining anisotropy and inplane material direction of bulk soft tissues

  19. Soft tissue chondroma: a case report

    Directory of Open Access Journals (Sweden)

    Haeri H

    2011-04-01

    Full Text Available "n 800x600 Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Background: Soft tissue chondroma is a rare slow-growing benign cartilage forming tumor. Tumors of this kind arise from the relative mesenchymal tissue and have tendency to occur in the fingers and toes. Due to its rarity, this tumor is likely to go undiagnosed. Histopathological examination usually reveals the correct diagnosis."n"nCase presentation: Hereby, we report a case of soft tissue chondroma in a 27 year-old woman presented with a slow-growing mass in the volar aspect of her right hand. The tumor had developed over a 7-month period. The skeletal system was unremarkable on X-ray evaluation. The lesion was excised and the histopathological findings revealed a well-delineated cartilaginous neoplasm with lobular pattern. The tumor was composed of mature chondrocytes without atypia and the findings were compatible with chondroma."n"nConclusion: There are various hypotheses about the etiology of soft tissue chondromas and their microscopic findings are variable. They have a good prognosis. Recurrence is rare and malignant transformation has not been reported yet.

  20. Photoactivated Composite Biomaterial for Soft Tissue Restoration in Rodents and in Humans

    OpenAIRE

    Hillel, Alexander T.; Unterman, Shimon; Nahas, Zayna; Reid, Branden; Coburn, Jeannine M.; Axelman, Joyce; Chae, Jemin J.; Guo, Qiongyu; Trow, Robert; Thomas, Andrew; Hou, Zhipeng; Lichtsteiner, Serge; Sutton, Damon; Matheson, Christine; Walker, Patricia

    2011-01-01

    Soft tissue reconstruction often requires multiple surgical procedures that can result in scars and disfiguration. Facial soft tissue reconstruction represents a clinical challenge because even subtle deformities can severely affect an individual’s social and psychological function. We therefore developed a biosynthetic soft tissue replacement composed of poly(ethylene glycol) (PEG) and hyaluronic acid (HA) that can be injected and photocrosslinked in situ with transdermal ligh...

  1. Vertebral osteoid osteoma masquerading as a malignant bone or soft-tissue tumor on MRI

    International Nuclear Information System (INIS)

    Lefton, D.R.; Torrisi, J.M.; Haller, J.O.

    2001-01-01

    Purpose. Four pediatric patients were sent to our institution with the diagnosis of soft-tissue/malignant bone tumor. In all cases an MRI was the initial study performed for neck or back pain. All were surgically proven to have an osteoid osteoma/osteoblastoma (OO) as a final diagnosis. The MRI findings are reviewed. Methods. Four patients, three boys and one girl, ranging in age from 5 to 17 years, presented with symptoms of neck or back pain for 2 months to 2 years. Two had neurological findings. All patients underwent MRI. Results. All MRIs demonstrated decreased T1 signal and increased T2 signal in the soft tissues and bone surrounding the lesions consistent with edema. Enhancement was observed in the adjacent soft tissues and in the lesion nidus retrospectively. Conclusion. Investigating neck or back pain with an initial MRI may lead to misleading diagnoses unless the radiologist is aware of the typical MRI appearance of vertebral osteoid osteoma. (orig.)

  2. Thicker three-dimensional tissue from a “symbiotic recycling system” combining mammalian cells and algae

    Science.gov (United States)

    Haraguchi, Yuji; Kagawa, Yuki; Sakaguchi, Katsuhisa; Matsuura, Katsuhisa; Shimizu, Tatsuya; Okano, Teruo

    2017-01-01

    In this paper, we report an in vitro co-culture system that combines mammalian cells and algae, Chlorococcum littorale, to create a three-dimensional (3-D) tissue. While the C2C12 mouse myoblasts and rat cardiac cells consumed oxygen actively, intense oxygen production was accounted for by the algae even in the co-culture system. Although cell metabolism within thicker cardiac cell-layered tissues showed anaerobic respiration, the introduction of innovative co-cultivation partially changed the metabolism to aerobic respiration. Moreover, the amount of glucose consumption and lactate production in the cardiac tissues and the amount of ammonia in the culture media decreased significantly when co-cultivated with algae. In the cardiac tissues devoid of algae, delamination was observed histologically, and the release of creatine kinase (CK) from the tissues showed severe cardiac cell damage. On the other hand, the layered cell tissues with algae were observed to be in a good histological condition, with less than one-fifth decline in CK release. The co-cultivation with algae improved the culture condition of the thicker tissues, resulting in the formation of 160 μm-thick cardiac tissues. Thus, the present study proposes the possibility of creating an in vitro “symbiotic recycling system” composed of mammalian cells and algae. PMID:28139713

  3. Human endothelial cell growth and phenotypic expression on three dimensional poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering.

    Science.gov (United States)

    Jabbarzadeh, Ehsan; Jiang, Tao; Deng, Meng; Nair, Lakshmi S; Khan, Yusuf M; Laurencin, Cato T

    2007-12-01

    Bone tissue engineering offers promising alternatives to repair and restore tissues. Our laboratory has employed poly(lactide-co-glycolide) PLAGA microspheres to develop a three dimensional (3-D) porous bioresorbable scaffold with a biomimetic pore structure. Osseous healing and integration with the surrounding tissue depends in part on new blood vessel formation within the porous structure. Since endothelial cells play a key role in angiogenesis (formation of new blood vessels from pre-existing vasculature), the purpose of this study was to better understand human endothelial cell attachment, viability, growth, and phenotypic expression on sintered PLAGA microsphere scaffold. Scanning electron microscopy (SEM) examination showed cells attaching to the surface of microspheres and bridging the pores between the microspheres. Cell proliferation studies indicated that cell number increased during early stages and reached a plateau between days 10 and 14. Immunofluorescent staining for actin showed that cells were proliferating three dimensionally through the scaffolds while staining for PECAM-1 (platelet endothelial cell adhesion molecule) displayed typical localization at cell-cell contacts. Gene expression analysis showed that endothelial cells grown on PLAGA scaffolds maintained their normal characteristic phenotype. The cell proliferation and phenotypic expression were independent of scaffold pore architecture. These results demonstrate that PLAGA sintered microsphere scaffolds can support the growth and biological functions of human endothelial cells. The insights from this study should aid future studies aimed at enhancing angiogenesis in three dimensional tissue engineered scaffolds.

  4. Needle path planning and steering in a three-dimensional non-static environment using two-dimensional ultrasound images

    Science.gov (United States)

    Vrooijink, Gustaaf J.; Abayazid, Momen; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak

    2015-01-01

    Needle insertion is commonly performed in minimally invasive medical procedures such as biopsy and radiation cancer treatment. During such procedures, accurate needle tip placement is critical for correct diagnosis or successful treatment. Accurate placement of the needle tip inside tissue is challenging, especially when the target moves and anatomical obstacles must be avoided. We develop a needle steering system capable of autonomously and accurately guiding a steerable needle using two-dimensional (2D) ultrasound images. The needle is steered to a moving target while avoiding moving obstacles in a three-dimensional (3D) non-static environment. Using a 2D ultrasound imaging device, our system accurately tracks the needle tip motion in 3D space in order to estimate the tip pose. The needle tip pose is used by a rapidly exploring random tree-based motion planner to compute a feasible needle path to the target. The motion planner is sufficiently fast such that replanning can be performed repeatedly in a closed-loop manner. This enables the system to correct for perturbations in needle motion, and movement in obstacle and target locations. Our needle steering experiments in a soft-tissue phantom achieves maximum targeting errors of 0.86 ± 0.35 mm (without obstacles) and 2.16 ± 0.88 mm (with a moving obstacle). PMID:26279600

  5. Extremity Soft Tissue Sarcoma: A Review of 19 Cases. | Eyesan ...

    African Journals Online (AJOL)

    Background: Although soft tissue sarcoma is a rare tumour, it accounts for a significant proportion of malignancies seen in many orthopaedic practices. The objectives of this study are to evaluate the pattern of presentation of extremity soft tissue sarcoma and the treatment outcome in our patients. Method: This is a 3 year ...

  6. The design and validation of a magnetic resonance imaging-compatible device for obtaining mechanical properties of plantar soft tissue via gated acquisition.

    Science.gov (United States)

    Williams, Evan D; Stebbins, Michael J; Cavanagh, Peter R; Haynor, David R; Chu, Baocheng; Fassbind, Michael J; Isvilanonda, Vara; Ledoux, William R

    2015-10-01

    Changes in the mechanical properties of the plantar soft tissue in people with diabetes may contribute to the formation of plantar ulcers. Such ulcers have been shown to be in the causal pathway for lower extremity amputation. The hydraulic plantar soft tissue reducer (HyPSTER) was designed to measure in vivo, rate-dependent plantar soft tissue compressive force and three-dimensional deformations to help understand, predict, and prevent ulcer formation. These patient-specific values can then be used in an inverse finite element analysis to determine tissue moduli, and subsequently used in a foot model to show regions of high stress under a wide variety of loading conditions. The HyPSTER uses an actuator to drive a magnetic resonance imaging-compatible hydraulic loading platform. Pressure and actuator position were synchronized with gated magnetic resonance imaging acquisition. Achievable loading rates were slower than those found in normal walking because of a water-hammer effect (pressure wave ringing) in the hydraulic system when the actuator direction was changed rapidly. The subsequent verification tests were, therefore, performed at 0.2 Hz. The unloaded displacement accuracy of the system was within 0.31%. Compliance, presumably in the system's plastic components, caused a displacement loss of 5.7 mm during a 20-mm actuator test at 1354 N. This was accounted for with a target to actual calibration curve. The positional accuracy of the HyPSTER during loaded displacement verification tests from 3 to 9 mm against a silicone backstop was 95.9% with a precision of 98.7%. The HyPSTER generated minimal artifact in the magnetic resonance imaging scanner. Careful analysis of the synchronization of the HyPSTER and the magnetic resonance imaging scanner was performed. With some limitations, the HyPSTER provided key functionality in measuring dynamic, patient-specific plantar soft tissue mechanical properties. © IMechE 2015.

  7. Prevalence of oral soft tissue lesions in HIV-infected minority children treated with highly active antiretroviral therapies.

    Science.gov (United States)

    Flanagan, M A; Barasch, A; Koenigsberg, S R; Fine, D; Houpt, M

    2000-01-01

    This project studied the prevalence of oral soft tissue disease in HIV-infected children treated with highly active antiretroviral therapy (HAART). Thirty-eight HIV-infected children participated in the study. Twenty-three of these patients were treated with HAART while 14 received exclusively reverse transcriptase inhibitors (RTI) and served as controls. The children were examined three times at approximately one-month intervals while their health history and laboratory data were abstracted from medical charts. Analyses were performed to determine differences in lesion prevalence between treatment groups as well as between lesion and no lesion groups with regard to immune differences. Thirty patients (79%) had oral lesions detected in at least one visit. There were no differences in specific lesion prevalence between HAART compared with RTI-treated children. However, a trend for more oral candidiasis in the latter group was observed. Subjects with oral soft tissue lesions had lower CD4 counts (P = 0.04) and percentage (P = 0.01) but similar viral loads when compared to patients without oral soft tissue disease. HAART does not appear to significantly affect oral soft tissue disease prevalence in HIV-infected children. Presence of lesions was associated with decreased immunity and may signal advancing disease.

  8. Reptile Soft Tissue Surgery.

    Science.gov (United States)

    Di Girolamo, Nicola; Mans, Christoph

    2016-01-01

    The surgical approach to reptiles can be challenging. Reptiles have unique physiologic, anatomic, and pathologic differences. This may result in frustrating surgical experiences. However, recent investigations provided novel, less invasive, surgical techniques. The purpose of this review was to describe the technical aspects behind soft tissue surgical techniques that have been used in reptiles, so as to provide a general guideline for veterinarians working with reptiles. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Finite-element modeling of soft tissue rolling indentation.

    Science.gov (United States)

    Sangpradit, Kiattisak; Liu, Hongbin; Dasgupta, Prokar; Althoefer, Kaspar; Seneviratne, Lakmal D

    2011-12-01

    We describe a finite-element (FE) model for simulating wheel-rolling tissue deformations using a rolling FE model (RFEM). A wheeled probe performing rolling tissue indentation has proven to be a promising approach for compensating for the loss of haptic and tactile feedback experienced during robotic-assisted minimally invasive surgery (H. Liu, D. P. Noonan, B. J. Challacombe, P. Dasgupta, L. D. Seneviratne, and K. Althoefer, "Rolling mechanical imaging for tissue abnormality localization during minimally invasive surgery, " IEEE Trans. Biomed. Eng., vol. 57, no. 2, pp. 404-414, Feb. 2010; K. Sangpradit, H. Liu, L. Seneviratne, and K. Althoefer, "Tissue identification using inverse finite element analysis of rolling indentation," in Proc. IEEE Int. Conf. Robot. Autom. , Kobe, Japan, 2009, pp. 1250-1255; H. Liu, D. Noonan, K. Althoefer, and L. Seneviratne, "The rolling approach for soft tissue modeling and mechanical imaging during robot-assisted minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom., May 2008, pp. 845-850; H. Liu, P. Puangmali, D. Zbyszewski, O. Elhage, P. Dasgupta, J. S. Dai, L. Seneviratne, and K. Althoefer, "An indentation depth-force sensing wheeled probe for abnormality identification during minimally invasive surgery," Proc. Inst. Mech. Eng., H, vol. 224, no. 6, pp. 751-63, 2010; D. Noonan, H. Liu, Y. Zweiri, K. Althoefer, and L. Seneviratne, "A dual-function wheeled probe for tissue viscoelastic property identification during minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom. , 2008, pp. 2629-2634; H. Liu, J. Li, Q. I. Poon, L. D. Seneviratne, and K. Althoefer, "Miniaturized force indentation-depth sensor for tissue abnormality identification," IEEE Int. Conf. Robot. Autom., May 2010, pp. 3654-3659). A sound understanding of wheel-tissue rolling interaction dynamics will facilitate the evaluation of signals from rolling indentation. In this paper, we model the dynamic interactions between a wheeled probe and a

  10. Immersion radiography for enhancement of soft tissue contrast - experimental study and clinical application -

    International Nuclear Information System (INIS)

    Lee, Kyung Soo; Kang, Heung Sik; Kim, Chu Wan

    1986-01-01

    Detection and evaluation of early soft tissue changes are important in rheumatoid arthritis or other joint diseases. The most important factors for radiologic demonstration of soft tissue changes are resolving power and the optimization of contrast differences between structures representing skin and subcutaneous tissue densities. Phantom study was done by using combination of immersion technique and mammography to get the most reliable method for improvement of soft tissue contrast without deterioration of resolution. Clinical application was also done in 5 normal volunteers and 5 rheumatoid patients. The results indicate that soft tissue contrast, especially between skin and subcutaneous tissues can be significantly improved with combination of immersion technique and mammography with 50% ethanol in both phantom and clinical study.

  11. FDG-PET for preoperative differential diagnosis between benign and malignant soft tissue masses

    International Nuclear Information System (INIS)

    Aoki, J.; Koyama, Y.; Sato, N.; Watanabe, H.; Shinozaki, T.; Takagishi, K.; Tokunaga, M.; Endo, K.

    2003-01-01

    To evaluate the standardized uptake value (SUV) of [ 18 F]2-deoxy-2-fluoro-d-glucose at positron emission tomography (FDG-PET) for preoperative differential diagnosis between benign and malignant soft tissue masses.Design One hundred and fourteen soft tissue masses (80 benign, 34 malignant) were examined by FDG-PET prior to tissue diagnosis. The SUVs were calculated and compared between benign and malignant lesions and among different histologic subgroups which included three or more cases. There was a statistically significant difference in SUV between benign (1.80±1.42 [SD]) and malignant (4.20±3.16) soft tissue masses in total (P<0.0001). However, a considerable overlap in SUV was observed between many benign and malignant lesions. Liposarcomas (2.16±1.72) and synovial sarcomas (1.60±0.43) did not show significantly higher SUV than any benign lesions. Metastases (4.23±2.35) showed no statistically significant difference in SUV as compared with schwannomas (1.75±0.84), desmoids (2.77±1.32), sarcoidosis (3.62±1.53), or giant cell tumors of tendon sheath (GCT of TS; 5.06±1.63). Even malignant fibrous histiocytomas (5.37±1.40) could not be differentiated from sarcoidosis or GCT of TS, based on the SUV. A large accumulation of FDG can be observed in both benign and malignant histiocytic, fibroblastic, or neurogenic lesions. SUV at conventional FDG-PET is limited to differentiating benign from malignant soft tissue masses, when all kinds of histologic subtypes are included. (orig.)

  12. Soft tissue masses of extremities: MR findings

    Energy Technology Data Exchange (ETDEWEB)

    Son, Seok Hyun; Yang, Seoung Oh; Choi, Jong Chul; Park, Byeong Ho; Lee, Ki Nam; Choi, Sun Seob; Chung, Duck Hwan [Dong-A University College of Medicine, Pusan (Korea, Republic of)

    1993-11-15

    To evaluate MR findings of soft tissue masses in extremities and to find the helpful findings of distinguish benignity from malignancy, 28 soft tissue masses (22 benign and 6 malignant) in extremities were reviewed. TI-weighted, proton density, T2-weighted and Gd-DTPA enhanced images were obtained. MR images allowed a specific diagnosis in large number of benign masses, such as hemangioma(8/9), lipoma(2/2), angiolipoma(1/1), epidermoid cyst(2/2), myositis ossificans(1/1), synovial chondromatosis(1/1) and pigmented villonodular synovitis(1/2). Specific diagnosis was difficult in the rest of the masses including malignancy. However, inhomogeneous signal intensities with necrosis and inhomogeneous enhancement may suggest malignant masses.

  13. The study on facial soft tissue thickness using Han population in Xinjiang.

    Science.gov (United States)

    Wang, Jierui; Zhao, Xi; Mi, Congbo; Raza, Iqbal

    2016-09-01

    Facial profile is an important aspect in physical anthropology, forensic science, and cosmetic research. Thus, facial soft tissue measurement technology plays a significant role in facial restoration. A considerable amount of work has investigated facial soft tissue thickness, which significantly varies according to gender, age, and race. However, only few studies have considered the nutritional status of the investigated individuals. Moreover, no sufficient research among Chinese ethnic groups, particularly Xinjiang population in China, is currently available. Hence, the current study investigated the adaptability of facial soft tissue to the underlying hard tissue among young adults of Han population in Xinjiang, China; the analysis was performed on the basis of gender, skeletal class, and body mass index (BMI). Measurements were obtained from the lateral cephalometric radiographs of 256 adults aged 18-26 years old. Differences in soft tissue thickness were observed between genders and among skeletal classes. With regard to gender, significant differences in soft tissue thickness were found at rhinion, glabella, subnasale, stomion, labrale superius, pogonion, and gnathion among different BMI groups. Thus, nutritional status should be considered when reconstructing an individual's facial profile. Results showed that the thinnest and thickest craniofacial soft tissues existed in rhinion and lip regions, respectively. Overall, this research provides valuable data for forensic facial reconstruction and identification of young adults in Xinjiang, China. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Soft tissue sarcoma - Compliance with guidelines

    NARCIS (Netherlands)

    Nijhuis, PHA; Schaapveld, M; Otter, R; Hoekstra, HJ

    2001-01-01

    BACKGROUND. Because soft tissue sarcomas (STS) are rare, guidelines for the diagnosis and treatment of patients with STS were developed. Because the diagnostic management is essential for definitive treatment, adherence to these guidelines is important. METHODS. Primary STS registered by the

  15. A review of techniques for visualising soft tissue microstructure deformation and quantifying strain Ex Vivo.

    Science.gov (United States)

    Disney, C M; Lee, P D; Hoyland, J A; Sherratt, M J; Bay, B K

    2018-04-14

    Many biological tissues have a complex hierarchical structure allowing them to function under demanding physiological loading conditions. Structural changes caused by ageing or disease can lead to loss of mechanical function. Therefore, it is necessary to characterise tissue structure to understand normal tissue function and the progression of disease. Ideally intact native tissues should be imaged in 3D and under physiological loading conditions. The current published in situ imaging methodologies demonstrate a compromise between imaging limitations and maintaining the samples native mechanical function. This review gives an overview of in situ imaging techniques used to visualise microstructural deformation of soft tissue, including three case studies of different tissues (tendon, intervertebral disc and artery). Some of the imaging techniques restricted analysis to observational mechanics or discrete strain measurement from invasive markers. Full-field local surface strain measurement has been achieved using digital image correlation. Volumetric strain fields have successfully been quantified from in situ X-ray microtomography (micro-CT) studies of bone using digital volume correlation but not in soft tissue due to low X-ray transmission contrast. With the latest developments in micro-CT showing in-line phase contrast capability to resolve native soft tissue microstructure, there is potential for future soft tissue mechanics research where 3D local strain can be quantified. These methods will provide information on the local 3D micromechanical environment experienced by cells in healthy, aged and diseased tissues. It is hoped that future applications of in situ imaging techniques will impact positively on the design and testing of potential tissue replacements or regenerative therapies. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  16. Hard and soft tissue correlations in facial profiles: a canonical correlation study

    Directory of Open Access Journals (Sweden)

    Shamlan MA

    2015-01-01

    Full Text Available Manal A Shamlan,1 Abdullah M Aldrees2 1Faculty of Dentistry, King Abdulaziz University, Jeddah, 2Division of Orthodontics, Department of Pediatric Dentistry and Orthodontics, College of Dentistry, King Saud University, Riyadh, Saudi Arabia Background: The purpose of this study was to analyze the relationship between facial hard and soft tissues in normal Saudi individuals by studying the canonical correlation between specific hard tissue landmarks and their corresponding soft tissue landmarks. Methods: A retrospective, cross-sectional study was designed, with a sample size of 60 Saudi adults (30 males and 30 females who had a class I skeletal and dental relationship and normal occlusion. Lateral cephalometric radiographs of the study sample were investigated using a series of 29 linear and angular measurements of hard and soft tissue features. The measurements were calculated electronically using Dolphin® software, and the data were analyzed using canonical correlation. Results: Eighty-four percent of the variation in the soft tissue was explained by the variation in hard tissue. Conclusion: The position of the upper and lower incisors and inclination of the lower incisors influence upper lip length and lower lip position. The inclination of the upper incisors is associated with lower lip length. Keywords: facial profile, hard tissue, soft tissue, canonical correlation

  17. Giant cell tumor of soft tissue: a case report with emphasis on MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Moon Young; Jee, Won-Hee [The Catholic University of Korea, Department of Radiology, Seoul St. Mary' s Hospital, School of Medicine, Seocho-gu, Seoul (Korea, Republic of); Jung, Chan Kwon [The Catholic University of Korea, Department of Pathology, Seoul St. Mary' s Hospital, College of Medicine, Seocho-gu, Seoul (Korea, Republic of); Yoo, Ie Ryung [The Catholic University of Korea, Department of Nuclear Medicine, Seoul St. Mary' s Hospital, College of Medicine, Seocho-gu, Seoul (Korea, Republic of); Chung, Yang-Guk [The Catholic University of Korea, Department of Orthopedic Surgery, Seoul St. Mary' s Hospital, College of Medicine, Seocho-gu, Seoul (Korea, Republic of)

    2015-04-03

    Giant cell tumor of soft tissue is a rare neoplasm, histologically resembling giant cell tumor of bone. In this report, we describe a deep and solid giant cell tumor of soft tissue interpreted as a benign soft tissue tumor based on magnetic resonance (MR) findings with hypointense to intermediate signals on T2-weighted images and impeded diffusivity (water movement) on diffusion-weighted imaging (DWI), which could suggest a giant-cell-containing benign soft tissue tumor, despite the malignancy suggested by {sup 18}F-fluorodeoxyglucose positron emission tomography-computed tomography in a 35-year-old male. To our knowledge, this report introduces the first deep, solid giant cell tumor of soft tissue with MR features of a giant-cell-containing benign soft tissue tumor, despite the malignancy-mimicking findings on {sup 18}F-FDG PET-CT. (orig.)

  18. Clinical significance of abnormal nonosseous soft tissue uptake of bone tracer

    International Nuclear Information System (INIS)

    Zhu Bao; Shang Yukun; Li Jiannan; Bai Jing; Cai Liang

    2006-01-01

    Objective: To evaluate the clinical significance of abnormal soft tissue uptake of bone tracer. Methods: Thirty patients with abnormal soft tissue uptake of bone tracer on 99 Tc m -methylene diphosphonic acid (MDP) skeletal imaging were analyzed. Radioactivity of soft tissue accumulated equal to or greater than the ribs were considered as abnormal. The result was compared with pathology, MRI, CT, X-ray, ultrasound, findings for evaluating its clinical significance. Results: In 7 patients with diffuse liver uptake of 99 Tc m -MDP, 6 were massive and 1 nodular liver cancer. In 2 patients with local liver uptake, one was metastatic and the other primary liver cancer. In 5 local lung uptake cases 4 were primary lung cancer and one metastatic. In 5 cases with colonic uptake 1 was schistosomiasis while the other 4 unexplainable. Subcutaneous tissue uptake was observed in 4 patients, symmetrical uptake in 2 patients with metastatic calcification microfoci in multiple myeloma, unsymmetrical uptake in 2 patients with hemangioma and abscess. Pleural uptake in 3 patients all was metastatic cancer. Abdominal uptake in 3 patients was omentum, paravertebral soft tissue metastasis and unknown cause. Breast uptake in one patient was due to breast cancer. Conclusions: There are many causes resulting in abnormal nonosseous soft tissue uptake of 99 Tc m -MDP. The final diagnosis should correlate with clinical data and other examinations. (authors)

  19. Radiographic and ultrasonographic imaging of soft tissue disorders of the equine carpus

    International Nuclear Information System (INIS)

    Dik, K.J.

    1990-01-01

    Common soft tissue disorders of the equine carpus are fluctuating or firm soft tissue swellings, wounds and draining tracts. Survey radiography may show the size, position and origin of the swellings and reveals soft tissue calcification, accumulation of air and radiopaque foreign material. Contrast radiography enables accurate visualization of the size, shape, position and origin of fluctuating soft tissue swellings, demonstrates abnormal intersynovial communication and allows precise demonstration of the extent of puncture wounds and draining tracts. Ultrasonography allows differentiation between a firm solid or thick-walled cystic lesion, clearly reveals injuries to tendons, muscle and ligaments, reveals minor irregularities of the wall and the lumen of distended tendon sheaths and may demonstrate radiolucent foreign material more clearly than contrast radiography

  20. ALK-positive anaplastic large cell lymphoma with soft tissue involvement in a young woman

    Directory of Open Access Journals (Sweden)

    Gao KH

    2016-07-01

    Full Text Available Kehai Gao, Hongtao Li, Caihong Huang, Huazhuang Li, Jun Fang, Chen Tian Department of Orthopaedics, Yidu Central Hospital, Shandong, People’s Republic of China Introduction: Anaplastic large cell lymphoma (ALCL is a type of non-Hodgkin lymphoma that has strong expression of CD30. ALCL can sometimes involve the bone marrow, and in advanced stages, it can produce destructive extranodal lesions. But anaplastic large cell lymphoma kinase (ALK+ ALCL with soft tissue involvement is very rare.Case report: A 35-year-old woman presented with waist pain for over 1 month. The biopsy of soft tissue lesions showed that these cells were positive for ALK-1, CD30, TIA-1, GranzymeB, CD4, CD8, and Ki67 (90%+ and negative for CD3, CD5, CD20, CD10, cytokeratin (CK, TdT, HMB-45, epithelial membrane antigen (EMA, and pan-CK, which identified ALCL. After six cycles of Hyper-CVAD/MA regimen, she achieved partial remission. Three months later, she died due to disease progression.Conclusion: This case illustrates the unusual presentation of ALCL in soft tissue with a bad response to chemotherapy. Because of the tendency for rapid progression, ALCL in young adults with extranodal lesions are often treated with high-grade chemotherapy, such as Hyper-CVAD/MA. Keywords: anaplastic large cell lymphoma, ALK+, soft tissue involvement, Hyper-CVAD/MA

  1. Magnetic resonance imaging of peripheral soft tissue hemangiomas

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, M C; Stull, M A; Patt, R H; Freedman, M T [Georgetown Univ., Washington, DC (USA). Dept. of Radiology; Teitelbaum, G P [Georgetown Univ., Washington, DC (USA). Dept. of Radiology University of Southern California, Los Angeles (USA). Dept. of Radiology; Lack, E E [Georgetown Univ., Washington, DC (USA). Dept. of Pathology; Bogumill, G P [Georgetown Univ., Washington, DC (USA). Dept. of Orthopedic Surgery

    1990-10-01

    Ten patients with soft tissue hemangiomas outside the central nervous system were studied with MR imaging. Eight patients were studied at 1.5 Tesla (T) with T{sub 1}-weighted and triple echo T{sub 2}-weighted sequences. Two additional patients were imaged on a 0.5-T system. The MR images were correlated with images from other modalities. It was found that prolonged T{sub 2}-weighted imaging together with standard spin echo T{sub 1} and T{sub 2} pulse sequences is a good substitute for contrast-enhanced CT and arteriographic evaluation of soft tissue hemangiomas. (orig./DG).

  2. Biomimetic fabrication and tunable wetting properties of three-dimensional hierarchical ZnO structures by combining soft lithography templated with lotus leaf and hydrothermal treatments

    OpenAIRE

    Dai, Shuxi; Zhang, Dianbo; Shi, Qing; Han, Xiao; Wang, Shujie; Du, Zuliang

    2013-01-01

    Three-dimensional hierarchical ZnO films with lotus-leaf-like micro/nano structures were successfully fabricated via a biomimetic route combining sol-gel technique, soft lithography and hydrothermal treatments. PDMS mold replicated from a fresh lotus leaf was used to imprint microscale pillar structures directly into a ZnO sol film. Hierarchical ZnO micro/nano structures were subsequently fabricated by a low-temperature hydrothermal growth of secondary ZnO nanorod arrays on the micro-structur...

  3. In vivo evaluation of defined polished titanium surfaces to prevent soft tissue adhesion.

    Science.gov (United States)

    Hayes, Jessica S; Welton, Joanne L; Wieling, Ronald; Richards, R Geoff

    2012-04-01

    Soft tissue-implant adhesion is often required for implant integration into the body; however, in some situations, the tissue is required to glide freely over an implant. In the case of distal radius fracture treatment, current literature describes how titanium and its alloys tend to lead to more intra-tendon inflammatory reactions compared with stainless steel. This leads to tendon-implant adhesion and damage possibly causing limited palmar flexion and even tendon rupture. The goal of this study was to analyze the effect of different surface polishings of titanium and titanium molybdenum implants on soft tissue reactions in vivo, with the aim to prevent direct soft tissue adhesion. Using a nonfracture model, to allow for study of the soft-tissue-implant surface interactions only, six surface variants of the same plate design were implanted onto the tibia of 24 New Zealand white rabbits and left in situ for 12 weeks. Results indicate that paste polished commercially pure titanium and titanium molybdenum alloy had the least soft tissue adhesion, with the concomitant development of a soft tissue capsule. Surface topography did not appear influence the thickness of the connective tissue surrounding the plate. Therefore, suitable surface polishing could be applied to plates for clinical use, where free gliding of tissues is required. Copyright © 2012 Wiley Periodicals, Inc.

  4. Devising tissue ingrowth metrics: a contribution to the computational characterization of engineered soft tissue healing.

    Science.gov (United States)

    Alves, Antoine; Attik, Nina; Bayon, Yves; Royet, Elodie; Wirth, Carine; Bourges, Xavier; Piat, Alexis; Dolmazon, Gaëlle; Clermont, Gaëlle; Boutrand, Jean-Pierre; Grosgogeat, Brigitte; Gritsch, Kerstin

    2018-03-14

    The paradigm shift brought about by the expansion of tissue engineering and regenerative medicine away from the use of biomaterials, currently questions the value of histopathologic methods in the evaluation of biological changes. To date, the available tools of evaluation are not fully consistent and satisfactory for these advanced therapies. We have developed a new, simple and inexpensive quantitative digital approach that provides key metrics for structural and compositional characterization of the regenerated tissues. For example, metrics provide the tissue ingrowth rate (TIR) which integrates two separate indicators; the cell ingrowth rate (CIR) and the total collagen content (TCC) as featured in the equation, TIR% = CIR% + TCC%. Moreover a subset of quantitative indicators describing the directional organization of the collagen (relating structure and mechanical function of tissues), the ratio of collagen I to collagen III (remodeling quality) and the optical anisotropy property of the collagen (maturity indicator) was automatically assessed as well. Using an image analyzer, all metrics were extracted from only two serial sections stained with either Feulgen & Rossenbeck (cell specific) or Picrosirius Red F3BA (collagen specific). To validate this new procedure, three-dimensional (3D) scaffolds were intraperitoneally implanted in healthy and in diabetic rats. It was hypothesized that quantitatively, the healing tissue would be significantly delayed and of poor quality in diabetic rats in comparison to healthy rats. In addition, a chemically modified 3D scaffold was similarly implanted in a third group of healthy rats with the assumption that modulation of the ingrown tissue would be quantitatively present in comparison to the 3D scaffold-healthy group. After 21 days of implantation, both hypotheses were verified by use of this novel computerized approach. When the two methods were run in parallel, the quantitative results revealed fine details and

  5. Treatment of oral soft tissues benign tumors using laser

    Science.gov (United States)

    Crisan, Bogdan; Baciut, Mihaela; Crisan, Liana; Bran, Simion; Rotar, Horatiu; Dinu, Cristian; Moldovan, Iuliu; Baciut, Grigore

    2014-01-01

    The present study aimed to assess the efficacy and indications of surgical laser therapy in the treatment of oral soft tissues benign tumors compared to classic surgery. A controlled clinical study was conducted in a group of 93 patients presenting various forms of oral soft tissues benign tumors. These patients were examined pre-and postoperatively and the oral benign tumors were measured linearly and photographed. The surgery of laser-assisted biopsy excision of oral benign tumors was carried out using a diode laser device of 980 nm. In patients who received surgical laser treatment, therapeutic doses of laser to biostimulate the operated area were administered on the first day after the surgery. The interventions of conventional excision of oral soft tissues benign tumors consisted in removing them using scalpel. In patients who have received therapeutic doses of laser for biostimulation of the operated area, a faster healing of wound surfaces and tumor bed was observed during the first days after surgery. Two weeks after the surgical treatment, good healing without scarring or discomfort in the area of excision was documented. Surgical treatment of oral soft tissues benign tumors with laser assisted postoperative therapy confirms the benefits of this surgical procedure. A faster healing process of the excision area due to laser biostimulation of low intensity has been observed in patients with surgical laser assisted treatment in the postoperative period.

  6. Vorinostat in refractory soft tissue sarcomas - Results of a multi-centre phase II trial of the German Soft Tissue Sarcoma and Bone Tumour Working Group (AIO).

    Science.gov (United States)

    Schmitt, Thomas; Mayer-Steinacker, Regine; Mayer, Frank; Grünwald, Viktor; Schütte, Jochen; Hartmann, Jörg T; Kasper, Bernd; Hüsing, Johannes; Hajda, Jacek; Ottawa, Gregor; Mechtersheimer, Gunhild; Mikus, Gerd; Burhenne, Jürgen; Lehmann, Lorenz; Heilig, Christoph E; Ho, Anthony D; Egerer, Gerlinde

    2016-09-01

    New treatment options for patients with metastatic Soft Tissue Sarcoma are urgently needed. Preclinical studies suggested activity of vorinostat, a histone deacetylase inhibitor. A multi-centre, open-label, non-randomised phase II trial to investigate the efficacy and safety of vorinostat in patients with locally advanced or metastatic Soft Tissue Sarcoma failing 1st-line anthracycline-based chemotherapy was initiated. Patients were treated with vorinostat 400 mg po qd for 28 d followed by a treatment-free period of 7 d, representing a treatment cycle of 5 weeks. Restaging was performed every three cycles or at clinical progression. Between 06/10 and 09/13, 40 Soft Tissue Sarcoma patients were treated with vorinostat at seven participating centres. Patients had received 1 (n=8, 20%), 2 (n=10, 25%) or ≥3 (n=22, 55%) previous lines of chemotherapy. Best response after three cycles of treatment was stable disease (n=9, 23%). Median progression-free survival and overall survival were 3.2 and 12.3 months, respectively. Six patients showed long-lasting disease stabilisation for up to ten cycles. Statistical analyses failed to identify baseline predictive markers in this subgroup. Major toxicities (grade ≥III) included haematological toxicity (n=6, 15%) gastrointestinal disorders (n=5, 13%), fatigue (n=4, 10%), musculoskeletal pain (n=4, 10%), and pneumonia (n=2, 5%). In a heavily pre-treated patient population, objective response to vorinostat was low. However, a small subgroup of patients had long-lasting disease stabilisation. Further studies aiming to identify predictive markers for treatment response as well as exploration of combination regimens are warranted. NCT00918489 (ClinicalTrials.gov) EudraCT-number: 2008-008513-19. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Facial soft-tissue fillers conference: assessing the state of the science.

    Science.gov (United States)

    Rohrich, Rod J; Hanke, C William; Busso, Mariano; Carruthers, Alastair; Carruthers, Jean; Fagien, Steven; Fitzgerald, Rebecca; Glogau, Richard; Greenberger, Phyllis E; Lorenc, Z Paul; Marmur, Ellen S; Monheit, Gary D; Pusic, Andrea; Rubin, Mark G; Rzany, Berthold; Sclafani, Anthony; Taylor, Susan; Weinkle, Susan; McGuire, Michael F; Pariser, David M; Casas, Laurie A; Collishaw, Karen J; Dailey, Roger A; Duffy, Stephen C; Edgar, Elizabeth Jan; Greenan, Barbara L; Haenlein, Kelly; Henrichs, Ronald A; Hume, Keith M; Lum, Flora; Nielsen, David R; Poulsen, Lisle; Shoaf, Lori; Schoaf, Lori; Seward, William; Begolka, Wendy Smith; Stanton, Robert G; Svedman, Katherine J; Thomas, J Regan; Sykes, Jonathan M; Wargo, Carol; Weiss, Robert A

    2011-04-01

    : The American Society of Plastic Surgeons and the American Academy of Dermatology, with the support of other sister societies, conducted the Facial Soft-Tissue Fillers: Assessing the State of the Science conference in December of 2009. The American Society of Plastic Surgeons and the American Academy of Dermatology established a panel of leading experts in the field of soft-tissue fillers-from researchers to clinicians-and other stakeholders for the conference to examine and discuss issues of patient safety, efficacy, and effectiveness in relation to the approved and off-label use of soft-tissue fillers, and other factors, including the training and level of experience of individuals administering fillers. This report represents the systematic literature review that examines comprehensively the available evidence and gaps in the evidence related to soft-tissue fillers, to inform and support the work of the state-of-the-science conference panel. This evidence-based medicine review will serve as the foundation for future evidence-based medicine reports in this growing field.

  8. Preservation of three-dimensional anatomy in phosphatized fossil arthropods enriches evolutionary inference.

    Science.gov (United States)

    Schwermann, Achim H; Dos Santos Rolo, Tomy; Caterino, Michael S; Bechly, Günter; Schmied, Heiko; Baumbach, Tilo; van de Kamp, Thomas

    2016-02-05

    External and internal morphological characters of extant and fossil organisms are crucial to establishing their systematic position, ecological role and evolutionary trends. The lack of internal characters and soft-tissue preservation in many arthropod fossils, however, impedes comprehensive phylogenetic analyses and species descriptions according to taxonomic standards for Recent organisms. We found well-preserved three-dimensional anatomy in mineralized arthropods from Paleogene fissure fillings and demonstrate the value of these fossils by utilizing digitally reconstructed anatomical structure of a hister beetle. The new anatomical data facilitate a refinement of the species diagnosis and allowed us to reject a previous hypothesis of close phylogenetic relationship to an extant congeneric species. Our findings suggest that mineralized fossils, even those of macroscopically poor preservation, constitute a rich but yet largely unexploited source of anatomical data for fossil arthropods.

  9. Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans

    Science.gov (United States)

    Corlu, Alper; Choe, Regine; Durduran, Turgut; Rosen, Mark A.; Schweiger, Martin; Arridge, Simon R.; Schnall, Mitchell D.; Yodh, Arjun G.

    2007-05-01

    We present three-dimensional (3D) in vivo images of human breast cancer based on fluorescence diffuse optical tomography (FDOT). To our knowledge, this work represents the first reported 3D fluorescence tomography of human breast cancer in vivo. In our protocol, the fluorophore Indocyanine Green (ICG) is injected intravenously. Fluorescence excitation and detection are accomplished in the soft-compression, parallel-plane, transmission geometry using laser sources at 786 nm and spectrally filtered CCD detection. Phantom and in vivo studies confirm the signals are due to ICG fluorescence, rather than tissue autofluorescence and excitation light leakage. Fluorescence images of breast tumors were in good agreement with those of MRI, and with DOT based on endogenous contrast. Tumorto- normal tissue contrast based on ICG fluorescence was two-to-four-fold higher than contrast based on hemoglobin and scattering parameters. In total the measurements demonstrate that FDOT of breast cancer is feasible and promising.

  10. Integration of soft tissue model and open haptic device for medical training simulator

    Science.gov (United States)

    Akasum, G. F.; Ramdhania, L. N.; Suprijanto; Widyotriatmo, A.

    2016-03-01

    Minimally Invasive Surgery (MIS) has been widely used to perform any surgical procedures nowadays. Currently, MIS has been applied in some cases in Indonesia. Needle insertion is one of simple MIS procedure that can be used for some purposes. Before the needle insertion technique used in the real situation, it essential to train this type of medical student skills. The research has developed an open platform of needle insertion simulator with haptic feedback that providing the medical student a realistic feel encountered during the actual procedures. There are three main steps in build the training simulator, which are configure hardware system, develop a program to create soft tissue model and the integration of hardware and software. For evaluating its performance, haptic simulator was tested by 24 volunteers on a scenario of soft tissue model. Each volunteer must insert the needle on simulator until rearch the target point with visual feedback that visualized on the monitor. From the result it can concluded that the soft tissue model can bring the sensation of touch through the perceived force feedback on haptic actuator by looking at the different force in accordance with different stiffness in each layer.

  11. MR imaging of uncommon soft tissue tumors in the foot: a pictorial essay

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Joo; Chun, Kyung Ah; Kim, Jee Young; Sung, Mi Sook; Kim, Ki Tae [The Catholic University of Korea, Uijeongbu (Korea, Republic of)

    2007-06-15

    The large variety of masses occur in the foot. The foot is a comparatively rare site of soft tissue neoplasms. MRI has greatly improved the ability to detect and delineate soft tissue lesions and is now considered the gold-standard imaging technique in their investigation. Recently, we have encountered rare soft tissue tumors of the foot. The presented cases include benign masses such as granuloma annulare, angiomyoma, neural fibrolipoma, and giant cell tumor of tendon sheath, as well as malignant tumors such as melanoma, synovial sarcoma, rhabdomyosarcoma and extraskeletal myxoid chondrosarcoma. We wish to illustrate the MR findings of these uncommon soft tissue mors to aid in their diagnosis.

  12. [Update on soft tissue sarcomas].

    Science.gov (United States)

    Bui, Binh Nguyen; Tabrizi, Reza; Dagada, Corinne; Trufflandier, Nathalie; St ckle, Eberhard; Coindre, Jean-Michel

    2002-01-01

    Important refinements have taken place in the diagnosis of soft tissue sarcoma with extensive use of immuno-histochemistry. New entities have been described, while malignant histiocytofibroma, the most diagnosed sarcoma type during the last two decades, has been dismembered. As for prognosis, the new UICC classification is effectively more discriminating in the definition of prognostic groups; but the usefullness of new biological or genetic markers remains to be assessed. Several breakthrough have taken place in the last years in the treatment of soft tissue sarcoma. Isolated limb perfusion with TNF, hyperthermia and melphalan have proven its efficacy, and is now an alternative to preoperative chemotherapy and/or radiotherapy for limb sparing treatment of the primary tumor site or to amputation. For systemic treatments, novel cytostatic drugs have been shown to be active in sarcomas, including ecteinascidine (ET743) and Glivec (STI571). This last drug has been shown to be remarkably active in c-kit+ stromal sarcoma of the gastro-intestinal tract. It can hopefully regarded as an example for targeted therapies, which may come with a better understanding of the molecular mechanisms triggered by the fundamental, specific genetic alterations shown in sarcoma.

  13. Soft tissue thickness of face profile conditioning by dento-skeletal anomalies

    Directory of Open Access Journals (Sweden)

    Tanić Tatjana

    2011-01-01

    Full Text Available Introduction. Orthodontic treatment of dento-skeletal anomalies is generally based on the correction of teeth and jaws relationship, while it is expected that soft facial tissue spontaneously adapts to therapeutically achieved relationship and to accompany hard tissue changes. Objective. To establish facial soft tissue thickness conditioning by the presence of dento-skeletal anomalies. Methods. The study was performed at the Dental Clinic of Niš, and involved the analysis of cephalometric rendgenograms in 121 patients, aged 12-18 years, with no previous orthodontical treatment. According to dento-skeletal relationship between teeth and jaws the patients were divided into four groups; class I (control group, class II of division 1, class II of division 2 and class III. The standard analysis of dento-skeletal profile was done according to Steiner and soft tissue profile according to Burstone was done in all. Results. The patients of class II/1 had a significantly thinner upper lip (t=2.650; p<0.05 and thinner upper lip sulcus (t=1.999; p<0.05. The patients of class II/2 had a significantly thicker upper lip (t=2.912; p<0.01, while those of class III had a significantly thinner lower lip (t=3.900; p<0.001. Conclusion. The thickness of facial soft tissue considerably influences facial profile appearance in persons with a dento-skeletal anomaly. Not only do soft tissues adapt to the existing jaws relationship, but can also camouflage present anomalies.

  14. Soft Tissue Tumor Immunohistochemistry Update: Illustrative Examples of Diagnostic Pearls to Avoid Pitfalls.

    Science.gov (United States)

    Wei, Shi; Henderson-Jackson, Evita; Qian, Xiaohua; Bui, Marilyn M

    2017-08-01

    - Current 2013 World Health Organization classification of tumors of soft tissue arranges these tumors into 12 groups according to their histogenesis. Tumor behavior is classified as benign, intermediate (locally aggressive), intermediate (rarely metastasizing), and malignant. In our practice, a general approach to reaching a definitive diagnosis of soft tissue tumors is to first evaluate clinicoradiologic, histomorphologic, and cytomorphologic features of the tumor to generate some pertinent differential diagnoses. These include the potential line of histogenesis and whether the tumor is benign or malignant, and low or high grade. Although molecular/genetic testing is increasingly finding its applications in characterizing soft tissue tumors, currently immunohistochemistry still not only plays an indispensable role in defining tumor histogenesis, but also serves as a surrogate for underlining molecular/genetic alterations. Objective- To provide an overview focusing on the current concepts in the classification and diagnosis of soft tissue tumors, incorporating immunohistochemistry. This article uses examples to discuss how to use the traditional and new immunohistochemical markers for the diagnosis of soft tissue tumors. Practical diagnostic pearls, summary tables, and figures are used to show how to avoid diagnostic pitfalls. - Data were obtained from pertinent peer-reviewed English-language literature and the authors' first-hand experience as bone and soft tissue pathologists. - -The ultimate goal for a pathologist is to render a specific diagnosis that provides diagnostic, prognostic, and therapeutic information to guide patient care. Immunohistochemistry is integral to the diagnosis and management of soft tissue tumors.

  15. Three-dimensional simultaneous optical coherence tomography and confocal fluorescence microscopy for investigation of lung tissue.

    Science.gov (United States)

    Gaertner, Maria; Cimalla, Peter; Meissner, Sven; Kuebler, Wolfgang M; Koch, Edmund

    2012-07-01

    Although several strategies exist for a minimal-invasive treatment of patients with lung failure, the mortality rate of acute respiratory distress syndrome still reaches 30% at minimum. This striking number indicates the necessity of understanding lung dynamics on an alveolar level. To investigate the dynamical behavior on a microscale, we used three-dimensional geometrical and functional imaging to observe tissue parameters including alveolar size and length of embedded elastic fibers during ventilation. We established a combined optical coherence tomography (OCT) and confocal fluorescence microscopy system that is able to monitor the distension of alveolar tissue and elastin fibers simultaneously within three dimensions. The OCT system can laterally resolve a 4.9 μm line pair feature and has an approximately 11 μm full-width-half-maximum axial resolution in air. confocal fluorescence microscopy visualizes molecular properties of the tissue with a resolution of 0.75 μm (laterally), and 5.9 μm (axially) via fluorescence detection of the dye sulforhodamine B specifically binding to elastin. For system evaluation, we used a mouse model in situ to perform lung distension by application of different constant pressure values within the physiological regime. Our method enables the investigation of alveolar dynamics by helping to reveal basic processes emerging during artificial ventilation and breathing.

  16. Use of Artelon® Cosmetic in soft tissue augmentation in dentistry

    Directory of Open Access Journals (Sweden)

    Ko YK

    2011-06-01

    Full Text Available Youngkyung Ko, NamRyang Kim, Seojin Park, Jun-Beom ParkDepartment of Periodontics, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, KoreaBackground: Soft tissue augmentation is a widely used procedure in partially and fully edentulous patients to increase soft tissue volume. Polyurethanes have been used for scaffolds in a variety of implantable devices. Artelon® is a degradable polyurethane that has been manufactured as fibers, films, and porous scaffolds to be used for various purposes. In this review, the characteristics of Artelon are described, and its clinical applications in orthopedics, dermatology, cardiovascular medicine, and dentistry are also discussed.Methods: A Medline (PubMed search was conducted, and articles published in English were included. Keywords, including “Artelon”, “polyurethanes”, “soft tissue augmentation”, “biocompatibility”, “resorption”, “mechanical stability”, and “complications” were used in different combinations. Titles and abstracts were screened, and full text article analyses were performed.Results: Most of the studies reported orthopedic, dermal, and myocardial applications. There were only a few reports related to dental and implant applications. Artelon has been successfully used for reinforcement of soft tissues, including the rotator cuff, Achilles, patellar, biceps, and quadriceps tendons in orthopedic surgery, and is used clinically for the treatment of osteoarthritis in the hand, wrist, and foot. One type of Artelon material, Artelon Cosmetic, has been used in the dental field to increase soft tissue volume, and stable results are achieved for up to 6 months. This material is reported to be easily handled when cut to the desired shape, with little additional time needed for manipulation during surgery, eliminates the need for connective tissue autografts, and thereby decreases patient morbidity and postoperative discomfort, with increased likelihood of a

  17. Preoperative radiotherapy for bone and soft tissue sarcoma

    International Nuclear Information System (INIS)

    Matsumoto, Seiichi; Kawaguchi, Noriyoshi; Amino, Katsuhisa; Manabe, Jun; Yamashita, Takashi; Kaneta, Kouichi; Furuya, Kohtaro; Isobe, Yasushi.

    1989-01-01

    The role of preoperative radiotherapy was evaluated in 16 cases with soft tissue sarcoma and 13 cases with osteosarcoma. Nine osteosarcoma cases underwent radiotherapy of whole lesion, and 4 cases had radiotherapy only of the surgically uncurable portion. There were no local recurrences in M0 cases, but skin necrosis occurred in the whole radiation group. As for the soft tissue sarcomas, local recurrence was not seen in virgin cases, but two cases which had received previous treatment showed local recurrence. There were no cases with severe side effects. Partial radiotherapy was effective as preoperative treatment for osteosarcoma. Preoperative radiotherapy is better than postoperative radiotherapy from many standpoints. (author)

  18. Soft tissue around three different implant types after 1.5 years of functional loading without oral hygiene: a preliminary study in baboons.

    Science.gov (United States)

    Watzak, Georg; Zechner, Werner; Tangl, Stefan; Vasak, Christoph; Donath, Karl; Watzek, Georg

    2006-04-01

    The purpose of this study was to determine the peri-implant soft tissue dimension (PSD) and peri-implant bone level (BL) of dental implants with different designs and surface modifications after functional loading without oral hygiene. Three types of dental implants were placed in the posterior jaws of adult baboons, three of the same design per quadrant, and fitted with fixed partial dentures. After 1.5 years of functional loading and plaque accumulation, all implants showed severe peri-implant mucositis and comparatively high BL. A histomorphometric evaluation of the sulcus depth (SD), the dimension of the junctional epithelium (JE) and the connective tissue contact (CTC) resulted in no significant differences between the three implant designs, neither in the maxilla nor in the mandible (P>0.05). The sum of SD, JE and CTC forming the PSD was nearly the same in the maxilla (commercially pure titanium, CpTi: 3.5 mm 2.9/4.1 confidence interval (CI); titanium plasma sprayed (TPS): 3.5 mm 2.9/4.2 CI; sand blasted acid-etched (GBAE): 3.2 mm 2.7/3.9 CI) and in the mandible (CpTi: 3.2 mm 2.6/3.8 CI; TPS: 3.2 mm 2.6/3.8 CI; GBAE: 3.2 mm 2.7/3.9 CI; P>0.05). There was no difference in BL around the three implant designs (maxilla: CpTi: 0.9 mm 0.5/1.6 CI; TPS: 0.9 mm 0.5/1.5CI; GBAE: 0.9 mm 0.5/1.6 CI; mandible: CpTi: 0.8 mm 0.5/1.2 CI; TPS: 0.6 mm 0.4/0.9 CI; GBAE: 0.7 mm 0.5/1.1 CI; P>0.05). Overall, the data presented did not show any significant differences in peri-implant soft tissue conditions in baboons. Moreover, plaque accumulation and propagation of peri-implant mucositis after 1.5 years of functional loading was not influenced by implant design and surface modifications in baboons.

  19. Optimization and real-time control for laser treatment of heterogeneous soft tissues.

    Science.gov (United States)

    Feng, Yusheng; Fuentes, David; Hawkins, Andrea; Bass, Jon M; Rylander, Marissa Nichole

    2009-01-01

    Predicting the outcome of thermotherapies in cancer treatment requires an accurate characterization of the bioheat transfer processes in soft tissues. Due to the biological and structural complexity of tumor (soft tissue) composition and vasculature, it is often very difficult to obtain reliable tissue properties that is one of the key factors for the accurate treatment outcome prediction. Efficient algorithms employing in vivo thermal measurements to determine heterogeneous thermal tissues properties in conjunction with a detailed sensitivity analysis can produce essential information for model development and optimal control. The goals of this paper are to present a general formulation of the bioheat transfer equation for heterogeneous soft tissues, review models and algorithms developed for cell damage, heat shock proteins, and soft tissues with nanoparticle inclusion, and demonstrate an overall computational strategy for developing a laser treatment framework with the ability to perform real-time robust calibrations and optimal control. This computational strategy can be applied to other thermotherapies using the heat source such as radio frequency or high intensity focused ultrasound.

  20. Interventions for preventing lower limb soft-tissue running injuries.

    Science.gov (United States)

    Yeung, Simon S; Yeung, Ella W; Gillespie, Lesley D

    2011-07-06

    Overuse soft-tissue injuries occur frequently in runners. Stretching exercises, modification of training schedules, and the use of protective devices such as braces and insoles are often advocated for prevention. This is an update of a review first published in 2001. To assess the effects of interventions for preventing lower limb soft-tissue running injuries. We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register (March 2011); The Cochrane Library 2010, Issue 4; MEDLINE (1966 to January 2011); EMBASE (1980 to January 2011); and international trial registries (17 January 2011). Randomised or quasi-randomised trials evaluating interventions to prevent lower limb soft-tissue running injuries. Two authors independently assessed risk of bias (relating to sequence generation, allocation concealment, blinding, incomplete outcome data) and extracted data. Data were adjusted for clustering if necessary and pooled using the fixed-effect model when appropriate. We included 25 trials (30,252 participants). Participants were military recruits (19 trials), runners from the general population (three trials), soccer referees (one trial), and prisoners (two trials). The interventions tested in the included trials fell into four main preventive strategies: exercises, modification of training schedules, use of orthoses, and footwear and socks. All 25 included trials were judged as 'unclear' or 'high' risk of bias for at least one of the four domains listed above.We found no evidence that stretching reduces lower limb soft-tissue injuries (6 trials; 5130 participants; risk ratio [RR] 0.85, 95% confidence interval [95% CI] 0.65 to 1.12). As with all non-significant results, this is compatible with either a reduction or an increase in soft-tissue injuries. We found no evidence to support a training regimen of conditioning exercises to improve strength, flexibility and coordination (one trial; 1020 participants; RR 1.20, 95% CI 0.77 to 1.87).We found no

  1. Exatecan in pretreated adult patients with advanced soft tissue sarcoma: results of a phase II--study of the EORTC Soft Tissue and Bone Sarcoma Group

    DEFF Research Database (Denmark)

    Reichardt, P; Nielsen, Ole Steen; Bauer, S

    2007-01-01

    No standard treatment is established for patients with advanced soft tissue sarcoma after previous chemotherapy with anthracyclines and ifosfamide, given either in combination or sequentially. Exatecan (DX-8951f) is a totally synthetic analogue of the topoisomerase I-inhibitor camptothecin, which...... was synthesised to impart increased aqueous solubility, greater tumour efficacy, and less toxicity than camptothecin itself, topotecan or irinotecan. Since some activity against soft tissue sarcomas, especially leiomyosarcomas, has been reported for topoisomerase I-inhibitors, a study with a new and more potent...... agent seemed justified. We report on a prospective multicentre phase II study of Exatecan in adult soft tissue sarcomas failing 1 or 2 lines of chemotherapy in advanced phase, performed within the STBSG of EORTC. Thirty-nine patients (16 leiomyosarcomas and 23 other histologies) were included in two...

  2. Extracranial soft-tissue swelling: a normal postmortem radiographic finding or a sign of trauma?

    International Nuclear Information System (INIS)

    Strouse, P.J.; Caplan, M.; Owings, C.L.

    1998-01-01

    Objective. To determine if extracranial soft-tissue swelling is an expected postmortem finding or a sign of trauma. Materials and methods. Extracranial soft-tissue thickness was measured at 5 standardized locations on postmortem skull films obtained of 18 infants with no evidence of trauma on autopsy. The same measurements were performed on the skull films of 100 living children, all less than 3 years old and without clinical history of trauma. Results. Extracranial soft tissues measured only slightly greater in the postmortem group than on films of living children; however, the difference did achieve statistical significance. Conclusion. Minimal extracranial soft-tissue swelling is a normal finding on a postmortem skeletal survey. The presence of substantial or asymmetric extracranial soft-tissue swelling should be viewed with suspicion for trauma. (orig.)

  3. Extracranial soft-tissue swelling: a normal postmortem radiographic finding or a sign of trauma?

    Energy Technology Data Exchange (ETDEWEB)

    Strouse, P.J. [Section of Pediatric Radiology, University of Michigan Medical Center, Ann Arbor (United States); Caplan, M. [Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan (United States); Owings, C.L. [Department of Pediatrics and Communicable Diseases, C. S. Mott Children`s Hospital, Ann Arbor, Michigan (United States)

    1998-08-01

    Objective. To determine if extracranial soft-tissue swelling is an expected postmortem finding or a sign of trauma. Materials and methods. Extracranial soft-tissue thickness was measured at 5 standardized locations on postmortem skull films obtained of 18 infants with no evidence of trauma on autopsy. The same measurements were performed on the skull films of 100 living children, all less than 3 years old and without clinical history of trauma. Results. Extracranial soft tissues measured only slightly greater in the postmortem group than on films of living children; however, the difference did achieve statistical significance. Conclusion. Minimal extracranial soft-tissue swelling is a normal finding on a postmortem skeletal survey. The presence of substantial or asymmetric extracranial soft-tissue swelling should be viewed with suspicion for trauma. (orig.) With 2 tabs., 5 refs.

  4. A continuum mechanics constitutive framework for transverse isotropic soft tissues

    Science.gov (United States)

    Garcia-Gonzalez, D.; Jérusalem, A.; Garzon-Hernandez, S.; Zaera, R.; Arias, A.

    2018-03-01

    In this work, a continuum constitutive framework for the mechanical modelling of soft tissues that incorporates strain rate and temperature dependencies as well as the transverse isotropy arising from fibres embedded into a soft matrix is developed. The constitutive formulation is based on a Helmholtz free energy function decoupled into the contribution of a viscous-hyperelastic matrix and the contribution of fibres introducing dispersion dependent transverse isotropy. The proposed framework considers finite deformation kinematics, is thermodynamically consistent and allows for the particularisation of the energy potentials and flow equations of each constitutive branch. In this regard, the approach developed herein provides the basis on which specific constitutive models can be potentially formulated for a wide variety of soft tissues. To illustrate this versatility, the constitutive framework is particularised here for animal and human white matter and skin, for which constitutive models are provided. In both cases, different energy functions are considered: Neo-Hookean, Gent and Ogden. Finally, the ability of the approach at capturing the experimental behaviour of the two soft tissues is confirmed.

  5. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering

    International Nuclear Information System (INIS)

    Lee, Ju-Yeon; Choi, Bogyu; Wu, Benjamin; Lee, Min

    2013-01-01

    Three-dimensional printing (3DP) is a rapid prototyping technique that can create complex 3D structures by inkjet printing of a liquid binder onto powder biomaterials for tissue engineering scaffolds. Direct fabrication of scaffolds from 3DP, however, imposes a limitation on material choices by manufacturing processes. In this study, we report an indirect 3DP approach wherein a positive replica of desired shapes was printed using gelatin particles, and the final scaffold was directly produced from the printed mold. To create patient-specific scaffolds that match precisely to a patient's external contours, we integrated our indirect 3DP technique with imaging technologies and successfully created custom scaffolds mimicking human mandibular condyle using polycaprolactone and chitosan for potential osteochondral tissue engineering. To test the ability of the technique to precisely control the internal morphology of the scaffolds, we created orthogonal interconnected channels within the scaffolds using computer-aided-design models. Because very few biomaterials are truly osteoinductive, we modified inert 3D printed materials with bioactive apatite coating. The feasibility of these scaffolds to support cell growth was investigated using bone marrow stromal cells (BMSC). The BMSCs showed good viability in the scaffolds, and the apatite coating further enhanced cellular spreading and proliferation. This technique may be valuable for complex scaffold fabrication. (paper)

  6. Characterization of MOSFET dosimeter angular dependence in three rotational axes measured free-in-air and in soft-tissue equivalent material.

    Science.gov (United States)

    Koivisto, Juha; Kiljunen, Timo; Wolff, Jan; Kortesniemi, Mika

    2013-09-01

    When performing dose measurements on an X-ray device with multiple angles of irradiation, it is necessary to take the angular dependence of metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters into account. The objective of this study was to investigate the angular sensitivity dependence of MOSFET dosimeters in three rotational axes measured free-in-air and in soft-tissue equivalent material using dental photon energy. Free-in-air dose measurements were performed with three MOSFET dosimeters attached to a carbon fibre holder. Soft tissue measurements were performed with three MOSFET dosimeters placed in a polymethylmethacrylate (PMMA) phantom. All measurements were made in the isocenter of a dental cone-beam computed tomography (CBCT) scanner using 5º angular increments in the three rotational axes: axial, normal-to-axial and tangent-to-axial. The measurements were referenced to a RADCAL 1015 dosimeter. The angular sensitivity free-in-air (1 SD) was 3.7 ± 0.5 mV/mGy for axial, 3.8 ± 0.6 mV/mGy for normal-to-axial and 3.6 ± 0.6 mV/mGy for tangent-to-axial rotation. The angular sensitivity in the PMMA phantom was 3.1 ± 0.1 mV/mGy for axial, 3.3 ± 0.2 mV/mGy for normal-to-axial and 3.4 ± 0.2 mV/mGy for tangent-to-axial rotation. The angular sensitivity variations are considerably smaller in PMMA due to the smoothing effect of the scattered radiation. The largest decreases from the isotropic response were observed free-in-air at 90° (distal tip) and 270° (wire base) in the normal-to-axial and tangent-to-axial rotations, respectively. MOSFET dosimeters provide us with a versatile dosimetric method for dental radiology. However, due to the observed variation in angular sensitivity, MOSFET dosimeters should always be calibrated in the actual clinical settings for the beam geometry and angular range of the CBCT exposure.

  7. Characterization of MOSFET dosimeter angular dependence in three rotational axes measured free-in-air and in soft-tissue equivalent material

    International Nuclear Information System (INIS)

    Koivisto, Juha; Kiljunen, Timo; Wolff, Jan; Kortesniemi, Mika

    2013-01-01

    When performing dose measurements on an X-ray device with multiple angles of irradiation, it is necessary to take the angular dependence of metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters into account. The objective of this study was to investigate the angular sensitivity dependence of MOSFET dosimeters in three rotational axes measured free-in-air and in soft-tissue equivalent material using dental photon energy. Free-in-air dose measurements were performed with three MOSFET dosimeters attached to a carbon fibre holder. Soft tissue measurements were performed with three MOSFET dosimeters placed in a polymethylmethacrylate (PMMA) phantom. All measurements were made in the isocenter of a dental cone-beam computed tomography (CBCT) scanner using 5° angular increments in the three rotational axes: axial, normal-to-axial and tangent-to-axial. The measurements were referenced to a RADCAL 1015 dosimeter. The angular sensitivity free-in-air (1 SD) was 3.7 ± 0.5 mV/mGy for axial, 3.8 ± 0.6 mV/mGy for normal-to-axial and 3.6 ± 0.6 mV/mGy for tangent-to-axial rotation. The angular sensitivity in the PMMA phantom was 3.1 ± 0.1 mV/mGy for axial, 3.3 ± 0.2 mV/mGy for normal-to-axial and 3.4 ± 0.2 mV/mGy for tangent-to-axial rotation. The angular sensitivity variations are considerably smaller in PMMA due to the smoothing effect of the scattered radiation. The largest decreases from the isotropic response were observed free-in-air at 90° (distal tip) and 270° (wire base) in the normal-to-axial and tangent-to-axial rotations, respectively. MOSFET dosimeters provide us with a versatile dosimetric method for dental radiology. However, due to the observed variation in angular sensitivity, MOSFET dosimeters should always be calibrated in the actual clinical settings for the beam geometry and angular range of the CBCT exposure. (author)

  8. DYSTOCIA DUE TO SOFT TISSUE

    Science.gov (United States)

    DeCarle, Donald W.

    1954-01-01

    In dystocia caused by abnormal conditions of the soft parts, the etiologic changes may be either in the genital tissues or in adjacent soft structures. Broadly, the conditions causing the difficulty may be grouped as follows: (1) anomalies or congenital modifications; (2) tumors; (3) modifications due to age, accident or surgical operations; (4) modification of the expulsive forces; (5) abnormalities of the products of conception. Often in such circumstances cesarean section is necessary. Sometimes when tumor is present it can be removed before it interferes with delivery, but decision to excise the growth must be guided by such factors as the location of the lesion and the stage of gestation. This would determine to what extent the maintenance of pregnancy would be jeopardized by surgical intervention before term. PMID:13190430

  9. Factors that influence soft tissue thickness over the greater trochanter: application to understanding hip fractures.

    Science.gov (United States)

    Levine, Iris C; Minty, Lauren E; Laing, Andrew C

    2015-03-01

    Fall-related hip injuries are a concern for the growing population of older adults. Evidence suggests that soft tissue overlying the greater trochanter attenuates the forces transmitted to the proximal femur during an impact, reducing mechanical risk of hip fracture. However, there is limited information about the factors that influence trochanteric soft tissue thickness. The current study used ultrasonography and electromyography to determine whether trochanteric soft tissue thickness could be quantified reproducibly and whether it was influenced by: (1) gender; (2) hip postures associated with potential falling configurations in the sagittal plane (from 30° of extension to 60° of flexion, at 15° intervals), combined adduction-flexion, and combined adduction-extension; and (3) activation levels of the tensor fascia lata (TFL) and gluteus medius (GM) muscles. Our results demonstrated that soft tissue thickness can be measured reliably in nine hip postures and three muscle activation conditions (for all conditions, ICC >0.98). Mean (SD) thickness in quiet stance was 2.52 cm. Thickness was 27.0% lower for males than females during quiet stance. It was 16.4% greater at maximum flexion than quiet standing, 27.2% greater at maximum extension, and 12.5% greater during combined adduction-flexion. However, there was no significant difference between combined adduction-extension and quiet standing. Thickness was not affected by changes in muscle activity. Forces applied to the femoral neck during a lateral fall decrease as trochanteric soft tissue thickness increases; gender and postural configuration at impact could influence the loads applied to the proximal femur (and thus hip fracture risk) during falls on the hip. © 2014 Wiley Periodicals, Inc.

  10. [Epidemiological characteristics and mortality risk factors in patients admitted in hospitals with soft tissue infections. A multicentric STIMG (Soft Tissue Infections Malacitan Group) study results].

    Science.gov (United States)

    Salgado Ordóñez, F; Villar Jiménez, J; Hidalgo Conde, A; Villalobos Sánchez, A; de la Torre Lima, J; Aguilar García, J; da Rocha Costa, I; García Ordóñez, M A; Nuño Alvarez, E; Ramos Cantes, C; Martín Pérez, M

    2006-07-01

    To describe the characteristics of patients admitted in hospitals with soft tissue infections, and analyse the variables whose died, in order to define risk groups. retrospective analysis of medical reports of all patient admitted during 2002 year for soft tissue infections in public malacitans hospitals. We excluded the patient with soft tissue infections associated with burns, surgery, pressure ulcers, and orbit cellulitis. We analysed clinical, biochemical variables and indications for yields and imaging tests, so the empiric antibiotic treatment established and its correlations with practice guidelines. We analysed 391 admissions of 374 patients. Cellulitis was the most frequent diagnosis (69.3%). We did imaging tests in 51.6%. In 94.3% of cases were treated with empirics antibiotics. The most prescribed drug was amoxiciline plus clavulanate (39%). 27 patients died, 40.7% of them for septic cause. All deceased patients had chronic diseases. The only biochemical parameters associated with mortality were serum proteins and albumina (55 +/- 9 g/L vs. 63 +/- 8 g/L; p = 0.0231) and (22 +/- 7 g/L vs. 29 +/- 7 g/L; p = 0.0125) respectively. Cellullitis are the most frequent soft tissue infections that requires admissions in hospitals. We overuse imaging test and don t follow the practice guidelines recommendations in antibiotic therapy. Primary soft issue infection s mortality is low and it s restricted to people with chronic illness, deep infections and bad nutritional status.

  11. CT after gastrectomy for gastric carcinoma : significance of soft tissue surrounding the celiac axis

    International Nuclear Information System (INIS)

    Baek, Seung Yon; Kim, Hae Young; Choi, Hye Young; Lee, Sun Wha; Ko, Eun Joo; Lee, Myung Sook

    1997-01-01

    extent, degree and pattern of attenuation between the two groups. Since the second FU-CT examination, soft tissue surrounding the celiac axis was seen to have changed. In one patient in the recurrence group it had a distinct margin, was nodular in shape, unilateral in extent and showed attenuation similar to that of the spleen. In one patient in the normal group, it had changed and had an indistinct margin, three patients showed a decrease in the amount of soft tissue and eight showed decreased attenuation. Follow-up abdominal CT is useful in the differentiation of cancer recurrence and postoperative change, and for observing changes in soft tissue surrounding the celiac axis

  12. Soft tissue anchor systems.

    Science.gov (United States)

    Yu, G V; Chang, T; White, J M

    1994-04-01

    The concept of soft tissue attachment and reattachment has been addressed over the years through a variety of surgical techniques. This includes tendons and ligaments that have been detached both surgically and traumatically from their osseous origins or insertions. This study is designed to provide the reader with a comprehensive overview of current commercially available devices. Detailed descriptions of the various devices are provided along with a discussion of the advantages and disadvantages of each. Their application and use in reconstructive foot and ankle surgery are also discussed.

  13. MR characterization of post-irradiation soft tissue edema

    International Nuclear Information System (INIS)

    Richardson, M.L.; Zink-Brody, G.C.; Patten, R.M.; Koh Wuijin; Conrad, E.U.

    1996-01-01

    Objective. Radiation therapy is often used to treat bone und soft tissue neoplasms, and commonly results in soft tissue edema in the radiation field. However, the time course, distribution and degree of this edema have not been well characterized. Our study was carried out to better define these features of the edema seen following neutron and photon radiation therapy. Results. In general, soft tissue signal intensity in the radiation field initially increased over time, peaking at about 6 months for neutron-treated patients and at about 12-18 months for photon-treated patients. Signal intensity then decreased slowly over time. However, at the end of the follow-up period, signal intensity remained elevated for most patients in both groups. Signal intensity in a particular tissue was greater and tended to persist longer on STIR sequences than on T2-weighted sequences. Survival analysis of signal intensity demonstrated much longer edema survival times for neutron-treated patients than for photon-treated patients. Signal intensity increase in the intramuscular septa persisted for much longer than for fat or muscle. A mild increase in size was noted in the subcutaneous fat and intramuscular septa. Muscle, on the other hand, showed a decrease in size following treatment. This was mild for the photon-treated group and more marked for the neutron-treated group. Conclusions. There is a relatively wide variation in the duration and degree of post-irradiation edema in soft tissues. This edema seems to persist longer in the intramuscular septa than in fat or muscle. Although the duration of follow-up was limited, our study suggests that this edema resolves in roughly half the photon-treated patients within 2-3 years post-treatment and in less than 20% of neutron-treated patients by 3-4 years post-treatment. Muscle atrophy was seen in both photon- and neutron-treated patients, but was more severe in the neutron-treated group. (orig./vhe). With 4 figs

  14. Validation of a Radiography-Based Quantification Designed to Longitudinally Monitor Soft Tissue Calcification in Skeletal Muscle.

    Science.gov (United States)

    Moore, Stephanie N; Hawley, Gregory D; Smith, Emily N; Mignemi, Nicholas A; Ihejirika, Rivka C; Yuasa, Masato; Cates, Justin M M; Liu, Xulei; Schoenecker, Jonathan G

    2016-01-01

    Soft tissue calcification, including both dystrophic calcification and heterotopic ossification, may occur following injury. These lesions have variable fates as they are either resorbed or persist. Persistent soft tissue calcification may result in chronic inflammation and/or loss of function of that soft tissue. The molecular mechanisms that result in the development and maturation of calcifications are uncertain. As a result, directed therapies that prevent or resorb soft tissue calcifications remain largely unsuccessful. Animal models of post-traumatic soft tissue calcification that allow for cost-effective, serial analysis of an individual animal over time are necessary to derive and test novel therapies. We have determined that a cardiotoxin-induced injury of the muscles in the posterior compartment of the lower extremity represents a useful model in which soft tissue calcification develops remote from adjacent bones, thereby allowing for serial analysis by plain radiography. The purpose of the study was to design and validate a method for quantifying soft tissue calcifications in mice longitudinally using plain radiographic techniques and an ordinal scoring system. Muscle injury was induced by injecting cardiotoxin into the posterior compartment of the lower extremity in mice susceptible to developing soft tissue calcification. Seven days following injury, radiographs were obtained under anesthesia. Multiple researchers applied methods designed to standardize post-image processing of digital radiographs (N = 4) and quantify soft tissue calcification (N = 6) in these images using an ordinal scoring system. Inter- and intra-observer agreement for both post-image processing and the scoring system used was assessed using weighted kappa statistics. Soft tissue calcification quantifications by the ordinal scale were compared to mineral volume measurements (threshold 450.7mgHA/cm3) determined by μCT. Finally, sample-size calculations necessary to discriminate

  15. MicroRNAs in the Tumor Biology of Soft Tissue Sarcomas

    NARCIS (Netherlands)

    C.M.M. Gits (Caroline)

    2013-01-01

    markdownabstract__Abstract__ Soft tissue sarcomas represent a rare, heterogeneous group of mesenchymal tumors. In sarcomas, histological classification, prediction of clinical behaviour and prognosis, and targeted treatment is often a challenge. A better understanding of the biology of soft

  16. Soft tissue angiosarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Morales, P.H.; Lindberg, R.D.; Barkley, H.T.

    1981-12-01

    From 1949 to 1979, 12 patients with soft tissue angiosarcoma received radiotherapy (alone or in combination with other modalities of treatment) with curative intent at The University of Texas M.D. Anderson Hospital and Tumor Institute. The primary site was the head and neck in six patients (scalp, four; maxillary antrum, one; and oral tongue, one), the breast in four patients, and the thigh in two patients. All four patients with angiosarcoma of the scalp had advanced multifocal tumors, and two of them had clinically positive neck nodes. None of these tumors were controlled locally, and local recurrences occurred within and/or at a distance from the generous fields of irradiation. The remaining two patients with head and neck lesions had their disease controlled by surgery and postoperative irradiation. Three of the four angiosarcomas of the breast were primary cases which were treated by a combination of surgery (excisional biopsy, simple mastectomy, radical mastectomy) and postoperative irradiation. One patient also received adjuvant chemotherapy. The fourth patient was treated for scar recurrence after radical mastectomy. All four patients had their disease locally controlled, and two of them have survived over 5 years. The two patients with angiosarcoma of the thigh were treated by conservative surgical excision and postoperative irradiation. One patient had her disease controlled; the other had a local recurrence requiring hip disarticulation and subsequent hemipelvectomy for salvage.

  17. ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-07-20

    Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.

  18. Soft Tissue Surgical Procedures for Optimizing Anterior Implant Esthetics

    Science.gov (United States)

    Ioannou, Andreas L.; Kotsakis, Georgios A.; McHale, Michelle G.; Lareau, Donald E.; Hinrichs, James E.; Romanos, Georgios E.

    2015-01-01

    Implant dentistry has been established as a predictable treatment with excellent clinical success to replace missing or nonrestorable teeth. A successful esthetic implant reconstruction is predicated on two fundamental components: the reproduction of the natural tooth characteristics on the implant crown and the establishment of soft tissue housing that will simulate a healthy periodontium. In order for an implant to optimally rehabilitate esthetics, the peri-implant soft tissues must be preserved and/or augmented by means of periodontal surgical procedures. Clinicians who practice implant dentistry should strive to achieve an esthetically successful outcome beyond just osseointegration. Knowledge of a variety of available techniques and proper treatment planning enables the clinician to meet the ever-increasing esthetic demands as requested by patients. The purpose of this paper is to enhance the implant surgeon's rationale and techniques beyond that of simply placing a functional restoration in an edentulous site to a level whereby an implant-supported restoration is placed in reconstructed soft tissue, so the site is indiscernible from a natural tooth. PMID:26124837

  19. Bones - joints - soft tissues II. 7. rev. ed.

    International Nuclear Information System (INIS)

    Dihlmann, W.; Frommhold, W.

    1991-01-01

    With the publication of the 2nd part to Volume VI, 'Bones - joints - soft tissues', the 7th edition of 'Diagnostic radiology in the hospital and medical practice' is complete. The advances made particularly during the past decade in the field of diagnostic radiology have made it neccesary for all the individual sections to be completely revised. Recently developed methods of imaging like sonography, computed tomography and magnetic resonance tomography are increasingly used as a replacement for or, at least, an adjunct to conventional X-ray procedures. Owing to the development and continuous refinement of related methods of intervention the gap between mere diagnostic applications and therapeutic uses of radiology could eventually be closed. The issues mainly discussed in this volume are bone fractures and healing, bone transplantation, osteopathy and osteoarthropathy, fibrous dyplasia or Albright's disease, Pagetoid osteitis, genetically transmitted constitutional disorders of the skeleton and soft tissue changes. While in the key sections on bone fractures and healing, osteopathy and osteoarthropathy as well as constitutional genetic disorders X-ray techniques are still described as the prevailing method of diagnosis, diseases of soft tissues now are much more commonly diagnosed using magnetic resonance imaging. (orig./MG) With 2248 figs., 59 tabs [de

  20. Pazopanib for the treatment of soft-tissue sarcoma

    Directory of Open Access Journals (Sweden)

    Heudel P

    2012-10-01

    Full Text Available Pierre Heudel,1 Philippe Cassier,1 Olfa Derbel,1 Armelle Dufresne,1 Pierre Meeus,2 Philippe Thiesse,3 Dominique Ranchère-Vince,4 Jean Yves Blay,1 Isabelle Ray-Coquard1,51Department of Medical Oncology, 2Department of Surgical Oncology, 3Department of Radiology, 4Department of Pathology, Leon Berard Center, Lyon, 5EAM 4128 Sante-Individu-Societe, Lyon University, Lyon, FranceAbstract: Pazopanib is a multikinase inhibitor which potently inhibits the activity of major receptor tyrosine kinases, including vascular endothelial growth factor receptor-1, vascular endothelial growth factor receptor-2, vascular endothelial growth factor receptor-3, platelet-derived growth factor receptor-a, platelet-derived growth factor receptor-a, and c-Kit. Approved by the Food and Drug Administration in 2009 in the United States for the treatment of metastatic renal cell carcinoma, pazopanib has been tested in advanced or metastatic soft-tissue sarcoma. Unlike other tyrosine kinase inhibitors, a statistically significant efficacy in phase II but also in randomized phase III studies has been shown. In comparison with sunitinib or sorafenib, pazopanib has a similar toxicity profile and is generally well tolerated. This review details the development of this new therapeutic class in the treatment of metastatic soft-tissue sarcomas.Keywords: soft-tissue sarcoma, pazopanib, tyrosine kinase inhibitor

  1. Three dimensional illustrating - three-dimensional vision and deception of sensibility

    Directory of Open Access Journals (Sweden)

    Anita Gánóczy

    2009-03-01

    Full Text Available The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena of movement parallax, which can be used efficiently in making three-dimensional graphics, the Zöllner- and Corridor-illusion. There are present in this paper the visual elements, which contribute to define a plane two-dimensional image in three-dimension: coherent lines, the covering, the measurement changes, the relative altitude state, the abatement of detail profusion, the shadings and the perspective effects of colors.

  2. Development and validation of a numerical model for cross-section optimization of a multi-part probe for soft tissue intervention.

    Science.gov (United States)

    Frasson, L; Neubert, J; Reina, S; Oldfield, M; Davies, B L; Rodriguez Y Baena, F

    2010-01-01

    The popularity of minimally invasive surgical procedures is driving the development of novel, safer and more accurate surgical tools. In this context a multi-part probe for soft tissue surgery is being developed in the Mechatronics in Medicine Laboratory at Imperial College, London. This study reports an optimization procedure using finite element methods, for the identification of an interlock geometry able to limit the separation of the segments composing the multi-part probe. An optimal geometry was obtained and the corresponding three-dimensional finite element model validated experimentally. Simulation results are shown to be consistent with the physical experiments. The outcome of this study is an important step in the provision of a novel miniature steerable probe for surgery.

  3. Masticatory loading, function, and plasticity: a microanatomical analysis of mammalian circumorbital soft-tissue structures.

    Science.gov (United States)

    Jasarević, Eldin; Ning, Jie; Daniel, Ashley N; Menegaz, Rachel A; Johnson, Jeffrey J; Stack, M Sharon; Ravosa, Matthew J

    2010-04-01

    In contrast to experimental evidence regarding the postorbital bar, postorbital septum, and browridge, there is exceedingly little evidence regarding the load-bearing nature of soft-tissue structures of the mammalian circumorbital region. This hinders our understanding of pronounced transformations during primate origins, in which euprimates evolved a postorbital bar from an ancestor with the primitive mammalian condition where only soft tissues spanned the lateral orbital margin between frontal bone and zygomatic arch. To address this significant gap, we investigated the postorbital microanatomy of rabbits subjected to long-term variation in diet-induced masticatory stresses. Rabbits exhibit a masticatory complex and feeding behaviors similar to primates, yet retain a more primitive mammalian circumorbital region. Three cohorts were obtained as weanlings and raised on different diets until adult. Following euthanasia, postorbital soft tissues were dissected away, fixed, and decalcified. These soft tissues were divided into inferior, intermediate, and superior units and then dehydrated, embedded, and sectioned. H&E staining was used to characterize overall architecture. Collagen orientation and complexity were evaluated via picrosirius-red staining. Safranin-O identified proteoglycan content with additional immunostaining performed to assess Type-II collagen expression. Surprisingly, the ligament along the lateral orbital wall was composed of elastic fibrocartilage. A more degraded organization of collagen fibers in this postorbital fibrocartilage is correlated with increased masticatory forces due to a more fracture-resistant diet. Furthermore, the lack of marked changes in the extracellular composition of the lateral orbital wall related to tissue viscoelasticity suggests it is unlikely that long-term exposure to elevated masticatory stresses underlies the development of a bony postorbital bar. (c) 2010 Wiley-Liss, Inc.

  4. Use of synchrotron-based diffraction-enhanced imaging for visualization of soft tissues in invertebrates

    International Nuclear Information System (INIS)

    Rao, Donepudi V.; Swapna, Medasani; Cesareo, Roberto; Brunetti, Antonio; Zhong, Zhong; Akatsuka, Takao; Yuasa, Tetsuya; Takeda, Tohoru; Gigante, Giovanni E.

    2010-01-01

    Images of terrestrial and marine invertebrates (snails and bivalves) have been obtained by using an X-ray phase-contrast imaging technique, namely, synchrotron-based diffraction-enhanced imaging. Synchrotron X-rays of 20, 30 and 40 keV were used, which penetrate deep enough into animal soft tissues. The phase of X-ray photons shifts slightly as they traverse an object, such as animal soft tissue, and interact with its atoms. Biological features, such as shell morphology and animal physiology, have been visualized. The contrast of the images obtained at 40 keV is the best. This optimum energy provided a clear view of the internal structural organization of the soft tissue with better contrast. The contrast is higher at edges of internal soft-tissue structures. The image improvements achieved with the diffraction-enhanced imaging technique are due to extinction, i.e., elimination of ultra-small-angle scattering. They enabled us to identify a few embedded internal shell features, such as the origin of the apex, which is the firmly attached region of the soft tissue connecting the umbilicus to the external morphology. Diffraction-enhanced imaging can provide high-quality images of soft tissues valuable for biology.

  5. Use of synchrotron-based diffraction-enhanced imaging for visualization of soft tissues in invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Donepudi V., E-mail: donepudi_venkateswararao@rediffmail.co [Istituto di Matematica e Fisica, Universita degli Studi di Sassari, Via Vienna 2, 07100 Sassari (Italy); Swapna, Medasani, E-mail: medasanisw@gmail.co [Istituto di Matematica e Fisica, Universita degli Studi di Sassari, Via Vienna 2, 07100 Sassari (Italy); Cesareo, Roberto; Brunetti, Antonio [Istituto di Matematica e Fisica, Universita degli Studi di Sassari, Via Vienna 2, 07100 Sassari (Italy); Zhong, Zhong [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973 (United States); Akatsuka, Takao; Yuasa, Tetsuya [Department of Bio-System Engineering, Faculty of Engineering, Yamagata University, Yonezawa-shi, Yamagata-992-8510 (Japan); Takeda, Tohoru [Allied Health Science, Kitasato University 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555 (Japan); Gigante, Giovanni E. [Dipartimento di Fisica, Universita di Roma, La Sapienza, 00185 Roma (Italy)

    2010-09-15

    Images of terrestrial and marine invertebrates (snails and bivalves) have been obtained by using an X-ray phase-contrast imaging technique, namely, synchrotron-based diffraction-enhanced imaging. Synchrotron X-rays of 20, 30 and 40 keV were used, which penetrate deep enough into animal soft tissues. The phase of X-ray photons shifts slightly as they traverse an object, such as animal soft tissue, and interact with its atoms. Biological features, such as shell morphology and animal physiology, have been visualized. The contrast of the images obtained at 40 keV is the best. This optimum energy provided a clear view of the internal structural organization of the soft tissue with better contrast. The contrast is higher at edges of internal soft-tissue structures. The image improvements achieved with the diffraction-enhanced imaging technique are due to extinction, i.e., elimination of ultra-small-angle scattering. They enabled us to identify a few embedded internal shell features, such as the origin of the apex, which is the firmly attached region of the soft tissue connecting the umbilicus to the external morphology. Diffraction-enhanced imaging can provide high-quality images of soft tissues valuable for biology.

  6. Development of Three-Dimensional Multicellular Tissue-Like Constructs for Mutational Analysis Using Macroporous Microcarriers

    Science.gov (United States)

    Jordan, Jacqueline A.; Fraga, Denise N.; Gonda, Steve R.

    2002-01-01

    A three-dimensional (3-D), tissue-like model was developed for the genotoxic assessment of space environment. In previous experiments, we found that culturing mammalian cells in a NASA-designed bioreactor, using Cytodex-3 beads as a scaffold, generated 3-D multicellular spheroids. In an effort to generate scaffold-free spheroids, we developed a new 3-D tissue-like model by coculturing fibroblast and epithelial cell in a NASA bioreactor using macroporous Cultispher-S(TradeMark) microcarriers. Big Blue(Registered Trademark) Rat 2(Lambda) fibroblasts, genetically engineered to contain multiple copies (>60 copies/cell) of the Lac I target gene, were cocultured with radio-sensitive human epithelial cells, H184F5. Over an 8-day period, samples were periodically examined by microscopy and histology to confirm cell attachment, growth, and viability. Immunohistochemistry and western analysis were used to evaluate the expression of specific cytoskeletal and adhesion proteins. Key cell culture parameters (glucose, pH, and lactate concentrations) were monitored daily. Controls were two-dimensional mono layers of fibroblast or epithelial cells cultured in T-flasks. Analysis of 3-D spheroids from the bioreactor suggests fibroblast cells attached to and completely covered the bead surface and inner channels by day 3 in the bioreactor. Treatment of the 3-day spheroids with dispase II dissolved the Cultisphers(TradeMark) and produced multicellular, bead-less constructs. Immunohistochemistry confirmed the presence of vi.mentin, cytokeratin and E-cadherin in treated spheroids. Examination of the dispase II treated spheroids with transmission electron microscopy (TEM) also showed the presence of desmosomes. These results suggest that the controlled enzymatic degradation of an artificial matrix in the low shear environment of the NASA-designed bioreactor can produce 3-D tissue-like spheroids. 2

  7. Soft tissue healing in alveolar socket preservation technique: histologic evaluations.

    Science.gov (United States)

    Pellegrini, Gaia; Rasperini, Giulio; Obot, Gregory; Farronato, Davide; Dellavia, Claudia

    2014-01-01

    After tooth extraction, 14 alveolar sockets were grafted with porous bovine bone mineral particles and covered with non-cross-linked collagen membrane (test group), and 14 alveolar sockets were left uncovered. At 5 and 12 weeks, microvascular density (MVD), collagen content, and amount of lymphocytes (Lym) T and B were analyzed in soft tissue. At 5 weeks, MVD was significantly lower and Lym T was significantly higher in tests than in controls (P healing process of the soft tissue.

  8. Characterization of Soft Tissue Tumors by Diffusion-Weighted Imaging

    International Nuclear Information System (INIS)

    Pekcevik, Yeliz; Kahya, Mehmet Onur; Kaya, Ahmet

    2015-01-01

    Diffusion-weighted imaging (DWI) is a noninvasive method for investigation of tumor histological content. It has been applied for some musculoskeletal tumors and reported to be useful. The aim of the present study was to prospectively evaluate the apparent diffusion coefficient (ADC) values of benign and malignant soft tissue tumors and to determine if ADC can help differentiate these tumors. DWI was performed on 25 histologically proven soft tissue masses. It was obtained with a single-shot echo-planar imaging technique using a 1.5T magnetic resonance (MR) machine. The mean ADC values were calculated. We grouped soft tissue tumors as benign cystic, benign solid or mixed, malignant cystic and malignant solid or mixed tumors and compared mean ADC values between these groups. There was only one patient with a malignant cystic tumor and was not included in the statistical analysis. The median ADC values of benign and malignant tumors were 2.31 ± 1.29 and 0.90 ± 0.70 (median ± interquartile range), respectively. The mean ADC values were different between benign and malignant tumors (P = 0.031). Benign cystic tumors had significantly higher ADC values than benign solid or mixed tumors and malignant solid or mixed tumors (p values were < 0.001 and 0.003, respectively). Malignant solid or mixed tumors had lower ADC values than benign solid or mixed tumors (P = 0.02). Our preliminary results have shown that although there is some overlap between benign and malignant tumors, adding DWI, MR imaging to routine soft tissue tumor protocols may improve diagnostic accuracy

  9. Soft Tissue Coverage of the Lower Limb following Oncological Surgery.

    Science.gov (United States)

    Radtke, Christine; Panzica, Martin; Dastagir, Khaled; Krettek, Christian; Vogt, Peter M

    2015-01-01

    The treatment of lower limb tumors has been shifted by advancements in adjuvant treatment protocols and microsurgical reconstruction from limb amputation to limb salvage. Standard approaches include oncological surgery by a multidisciplinary team in terms of limb sparing followed by soft tissue reconstruction and adjuvant therapy when indicated. For the development of a comprehensive surgical plan, the identity of the tumor should first be determined by histology after biopsy. Then the surgical goal and comprehensive treatment concept should be developed by a multidisciplinary tumor board and combined with soft tissue reconstruction. In this article, plastic surgical reconstruction options for soft coverage of the lower extremity following oncological surgery will be described along with the five clinical cases.

  10. Soft tissue coverage of the lower limb following oncological surgery

    Directory of Open Access Journals (Sweden)

    Christine eRadtke

    2016-01-01

    Full Text Available The treatment of lower limb tumours has been shifted by advancements in adjuvant treatment protocols and microsurgical reconstruction from limb amputation to limb salvage. Standard approaches include oncological surgery by a multidisciplinary team in terms of limb sparing followed by soft tissue reconstruction and adjuvant therapy when indicated. For development of a comprehensive surgical plan, the identity of the tumour should first be determined by histology after biopsy. Then the surgical goal and comprehensive treatment concept should be developed by a multidisciplinary tumour board and combined with soft tissue reconstruction. In this article, plastic surgical reconstruction options for soft coverage of the lower extremity following oncologic surgery will be described along with five clinical cases.

  11. Segmental sandwich osteotomy and tunnel technique for three-dimensional reconstruction of the jaw atrophy: a case report.

    Science.gov (United States)

    Santagata, Mario; Sgaramella, Nicola; Ferrieri, Ivo; Corvo, Giovanni; Tartaro, Gianpaolo; D'Amato, Salvatore

    2017-12-01

    A three-dimensionally favourable mandibular bone crest is desirable to be able to successfully implant placement to meet the aesthetic and functional criteria in the implant-prosthetic rehabilitation. Several surgical procedures have been advocated for bone augmentation of the atrophic mandible, and the sandwich osteotomy is one of these techniques. The aim of the present case report was to assess the suitability of segmental mandibular sandwich osteotomy combined with a tunnel technique of soft tissue. Based on our knowledge, nobody described before the sandwich osteotomy with tunnel technique to improve the healing of the wound and meet the dimensional requirements of preimplant bone augmentation in cases of a severely atrophic mandible. A 59-year-old woman with a severely atrophied right mandible was treated with the sandwich osteotomy technique filled with autologous bone graft harvested by a cortical bone collector from the ramus. Clinical examination revealed that the mandible was edentulous bilaterally from the first molar to the second molar region. Radiographically, atrophy of the mandibular alveolar ridge in the same teeth site was observed. We began to treat the right side. A horizontal osteotomy of the edentulous mandibular bone was then made with a piezoelectric device after tunnel technique of the soft tissue. The segmental mandibular sandwich osteotomy (SMSO) was finished by two (mesial and distal) slightly divergent vertical osteotomies. The entire bone fragment was displaced cranially, and the desirable position was obtained. The gap was filled completely with autologous bone chips harvested from the mandibular ramus through a cortical bone collector. No barrier membranes were used to protect the grafts. The vertical incisions were closing with interruptive suturing of the flaps with a resorbable material. In this way, the suture will not fall on the osteotomy line of the jaw; the result will be a better predictability of soft and hard tissue

  12. Estimating patient-specific soft-tissue properties in a TKA knee.

    Science.gov (United States)

    Ewing, Joseph A; Kaufman, Michelle K; Hutter, Erin E; Granger, Jeffrey F; Beal, Matthew D; Piazza, Stephen J; Siston, Robert A

    2016-03-01

    Surgical technique is one factor that has been identified as critical to success of total knee arthroplasty. Researchers have shown that computer simulations can aid in determining how decisions in the operating room generally affect post-operative outcomes. However, to use simulations to make clinically relevant predictions about knee forces and motions for a specific total knee patient, patient-specific models are needed. This study introduces a methodology for estimating knee soft-tissue properties of an individual total knee patient. A custom surgical navigation system and stability device were used to measure the force-displacement relationship of the knee. Soft-tissue properties were estimated using a parameter optimization that matched simulated tibiofemoral kinematics with experimental tibiofemoral kinematics. Simulations using optimized ligament properties had an average root mean square error of 3.5° across all tests while simulations using generic ligament properties taken from literature had an average root mean square error of 8.4°. Specimens showed large variability among ligament properties regardless of similarities in prosthetic component alignment and measured knee laxity. These results demonstrate the importance of soft-tissue properties in determining knee stability, and suggest that to make clinically relevant predictions of post-operative knee motions and forces using computer simulations, patient-specific soft-tissue properties are needed. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Imaging of tuberculosis. Pt. 5. Peripheral osteoarticular and soft-tissue tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Hugosson, C. [Dept. of Radiology, King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia); Nyman, R.S. [Dept. of Radiology, King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia); Brismar, J. [Dept. of Radiology, King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia); Larsson, S.G. [Dept. of Radiology, King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia); Lindahl, S. [Dept. of Radiology, King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia); Lundstedt, C. [Dept. of Radiology, King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia)

    1996-07-01

    Purpose: To assess frequency, location, and appearance of peripheral osteoarticular and soft-tissue tuberculosis (TB). Material and Methods: Twenty-five of 503 patients with TB had peripheral osteoarticular TB and 5 had soft-tissue TB. Chest radiography, CT, and MR imaging were applied. Results: The location of the osteoarticular lesion was articular/epiphyseal in 14 patients, articular/metaphyseal in 3, and metaphyseal without joint involvement in 3. Involvement of flat bone was found in 4 patients (5 lesions). The morphologic appearance was similar to that of a lytic tumour in 9 patients (10 lesions) and that of a destructive joint lesion in 16 patients. The soft-tissue TB in all 5 patients presented as an abscess. Twelve patients had a total of 20 additional sites of involvement: Chest in 9, abdomen in 4, spine in 4, the neck in 3, and the central nervous system in one patient. Conclusion: On the basis of radiologic appearance, it can be difficult to differentiate peripheral osteoarticular and soft-tissue TB from other degenerative, inflammatory, or neoplastic disorders, and the importance of a high awareness is stressed in order to reach an early diagnosis. (orig.).

  14. Imaging of tuberculosis. Pt. 5. Peripheral osteoarticular and soft-tissue tuberculosis

    International Nuclear Information System (INIS)

    Hugosson, C.; Nyman, R.S.; Brismar, J.; Larsson, S.G.; Lindahl, S.; Lundstedt, C.

    1996-01-01

    Purpose: To assess frequency, location, and appearance of peripheral osteoarticular and soft-tissue tuberculosis (TB). Material and Methods: Twenty-five of 503 patients with TB had peripheral osteoarticular TB and 5 had soft-tissue TB. Chest radiography, CT, and MR imaging were applied. Results: The location of the osteoarticular lesion was articular/epiphyseal in 14 patients, articular/metaphyseal in 3, and metaphyseal without joint involvement in 3. Involvement of flat bone was found in 4 patients (5 lesions). The morphologic appearance was similar to that of a lytic tumour in 9 patients (10 lesions) and that of a destructive joint lesion in 16 patients. The soft-tissue TB in all 5 patients presented as an abscess. Twelve patients had a total of 20 additional sites of involvement: Chest in 9, abdomen in 4, spine in 4, the neck in 3, and the central nervous system in one patient. Conclusion: On the basis of radiologic appearance, it can be difficult to differentiate peripheral osteoarticular and soft-tissue TB from other degenerative, inflammatory, or neoplastic disorders, and the importance of a high awareness is stressed in order to reach an early diagnosis. (orig.)

  15. Clinical Presentation of Soft-tissue Infections and its Management: A Study of 100 Cases.

    Science.gov (United States)

    Singh, Baldev; Singh, Sukha; Khichy, Sudhir; Ghatge, Avinash

    2017-01-01

    Soft-tissue infections vary widely in their nature and severity. A clear approach to the management must allow their rapid identification and treatment as they can be life-threatening. Clinical presentation of soft-tissue infections and its management. A prospective study based on 100 patients presenting with soft-tissue infections was done. All the cases of soft-tissue infections were considered irrespective of age, sex, etiological factors, or systemic disorders. The findings were evaluated regarding the pattern of soft-tissue infections in relation to age and sex, clinical presentation, complications, duration of hospital stay, management, and mortality. The most commonly involved age group was in the range of 41-60 years with male predominance. Abscess formation (45%) was the most common clinical presentation. Type 2 diabetes mellitus was the most common associated comorbid condition. Staphylococcus aureus was the most common culture isolate obtained. The most common complication seen was renal failure. Patients with surgical site infections had maximum duration of stay in the hospital. About 94% of the cases of soft-tissue infections were managed surgically. Mortality was mostly encountered in the cases of complications of cellulitis. Skin and soft-tissue infections are among the most common infections encountered by the emergency physicians. Ignorance, reluctance to treatment, economic constraints, and illiteracy delay the early detection and the initiation of proper treatment. Adequate and timely surgical intervention in most of the cases is of utmost importance to prevent the complications and reduce the mortality.

  16. Bone and Soft Tissue Changes after Two-Jaw Surgery in Cleft Patients

    Directory of Open Access Journals (Sweden)

    Yung Sang Yun

    2015-07-01

    Full Text Available BackgroundOrthognathic surgery is required in 25% to 35% of patients with a cleft lip and palate, for whom functional recovery and aesthetic improvement after surgery are important. The aim of this study was to examine maxillary and mandibular changes, along with concomitant soft tissue changes, in cleft patients who underwent LeFort I osteotomy and sagittal split ramus osteotomy (two-jaw surgery.MethodsTwenty-eight cleft patients who underwent two-jaw surgery between August 2008 and November 2013 were included. Cephalometric analysis was conducted before and after surgery. Preoperative and postoperative measurements of the bone and soft tissue were compared.ResultsThe mean horizontal advancement of the maxilla (point A was 6.12 mm, while that of the mandible (point B was -5.19 mm. The mean point A-nasion-point B angle was -4.1° before surgery, and increased to 2.5° after surgery. The mean nasolabial angle was 72.7° before surgery, and increased to 88.7° after surgery. The mean minimal distance between Rickett's E-line and the upper lip was 6.52 mm before surgery and 1.81 mm after surgery. The ratio of soft tissue change to bone change was 0.55 between point A and point A' and 0.93 between point B and point B'.ConclusionsPatients with cleft lip and palate who underwent two-jaw surgery showed optimal soft tissue changes. The position of the soft tissue (point A' was shifted by a distance equal to 55% of the change in the maxillary bone. Therefore, bone surgery without soft tissue correction can achieve good aesthetic results.

  17. Methods of Monitoring Cell Fate and Tissue Growth in Three-Dimensional Scaffold-Based Strategies for In Vitro Tissue Engineering.

    Science.gov (United States)

    Leferink, Anne M; van Blitterswijk, Clemens A; Moroni, Lorenzo

    2016-08-01

    In the field of tissue engineering, there is a need for methods that allow assessing the performance of tissue-engineered constructs noninvasively in vitro and in vivo. To date, histological analysis is the golden standard to retrieve information on tissue growth, cellular distribution, and cell fate on tissue-engineered constructs after in vitro cell culture or on explanted specimens after in vivo applications. Yet, many advances have been made to optimize imaging techniques for monitoring tissue-engineered constructs with a sub-mm or μm resolution. Many imaging modalities have first been developed for clinical applications, in which a high penetration depth has been often more important than lateral resolution. In this study, we have reviewed the current state of the art in several imaging approaches that have shown to be promising in monitoring cell fate and tissue growth upon in vitro culture. Depending on the aimed tissue type and scaffold properties, some imaging methods are more applicable than others. Optical methods are mostly suited for transparent materials such as hydrogels, whereas magnetic resonance-based methods are mostly applied to obtain contrast between hard and soft tissues regardless of their transparency. Overall, this review shows that the field of imaging in scaffold-based tissue engineering is developing at a fast pace and has the potential to overcome the limitations of destructive endpoint analysis.

  18. A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique

    International Nuclear Information System (INIS)

    Jung, Jin Woo; Lee, Hyungseok; Hong, Jung Min; Park, Jeong Hun; Cho, Dong-Woo; Shim, Jung Hee; Choi, Tae Hyun

    2015-01-01

    Due to its simplicity and effectiveness, the physical blending of polymers is considered to be a practical strategy for developing a versatile scaffold having desirable mechanical and biochemical properties. In the present work, an indirect three-dimensional (i3D) printing technique was proposed to fabricate a 3D free-form scaffold using a blend of immiscible materials, such as polycaprolactone (PCL) and gelatin. The i3D printing technique includes 3D printing of a mold and a sacrificial molding process. PCL/chloroform and gelatin/water were physically mixed to prepare the blend solution, which was subsequently injected into the cavity of a 3D printed mold. After solvent removal and gelatin cross-linking, the mold was dissolved to obtain a PCL–gelatin (PG) scaffold, with a specific 3D structure. Scanning electron microscopy and Fourier transform infrared spectroscopy analysis indicated that PCL masses and gelatin fibers in the PG scaffold homogenously coexisted without chemical bonding. Compression tests confirmed that gelatin incorporation into the PCL enhanced its mechanical flexibility and softness, to the point of being suitable for soft-tissue engineering, as opposed to pure PCL. Human adipose-derived stem cells, cultured on a PG scaffold, exhibited enhanced in vitro chondrogenic differentiation and tissue formation, compared with those on a PCL scaffold. The i3D printing technique can be used to blend a variety of materials, facilitating 3D scaffold fabrication for specific tissue regeneration. Furthermore, this convenient and versatile technique may lead to wider application of 3D printing in tissue engineering. (paper)

  19. A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique.

    Science.gov (United States)

    Jung, Jin Woo; Lee, Hyungseok; Hong, Jung Min; Park, Jeong Hun; Shim, Jung Hee; Choi, Tae Hyun; Cho, Dong-Woo

    2015-11-03

    Due to its simplicity and effectiveness, the physical blending of polymers is considered to be a practical strategy for developing a versatile scaffold having desirable mechanical and biochemical properties. In the present work, an indirect three-dimensional (i3D) printing technique was proposed to fabricate a 3D free-form scaffold using a blend of immiscible materials, such as polycaprolactone (PCL) and gelatin. The i3D printing technique includes 3D printing of a mold and a sacrificial molding process. PCL/chloroform and gelatin/water were physically mixed to prepare the blend solution, which was subsequently injected into the cavity of a 3D printed mold. After solvent removal and gelatin cross-linking, the mold was dissolved to obtain a PCL-gelatin (PG) scaffold, with a specific 3D structure. Scanning electron microscopy and Fourier transform infrared spectroscopy analysis indicated that PCL masses and gelatin fibers in the PG scaffold homogenously coexisted without chemical bonding. Compression tests confirmed that gelatin incorporation into the PCL enhanced its mechanical flexibility and softness, to the point of being suitable for soft-tissue engineering, as opposed to pure PCL. Human adipose-derived stem cells, cultured on a PG scaffold, exhibited enhanced in vitro chondrogenic differentiation and tissue formation, compared with those on a PCL scaffold. The i3D printing technique can be used to blend a variety of materials, facilitating 3D scaffold fabrication for specific tissue regeneration. Furthermore, this convenient and versatile technique may lead to wider application of 3D printing in tissue engineering.

  20. Angular photogrammetric soft tissue facial profile analysis of Bangladeshi young adults

    Directory of Open Access Journals (Sweden)

    Lubna Akter

    2017-01-01

    Full Text Available Introduction: Angular photogrammetric soft tissue facial profile analysis provides a permanent record for the actual appearance of a person, which would also serve to establish an ideal esthetic treatment goal. The aim of the present study was to evaluate the average angular variables that define the soft tissue facial profile of a Bangladeshi sample. Materials and Methods: This cross-sectional study was carried out at Department of Orthodontics and Dentofacial Orthopedics of Dhaka Dental College and Hospital, Bangladesh, from July to December 2015. Soft tissue facial profiles of 200 participants (100 males and 100 females between 18 and 25 years of age, with a dental Class I occlusal relationship and harmonious soft tissue profile, were selected by convenience sampling among students, doctors, and patients of Dhaka Dental College. Standardized photographs of 200 samples were taken in the natural head position. The photographic records were analyzed with the software for Windows, Microsoft Visio 2007, Standard Edition. All data were analyzed through standard methods using Statistical Package for the Statistical Package for Social Science Software (SPSS Version-20, IBM Corp, USA. Results: The average angular measurements for nasofrontal, total facial angle, facial angle, upper lip angle, projection of lower lip to chin, and mentolabial angle were wider in females. The mean value for nose tip angle, nasolabial angle, nasomental angle, and projection of upper lip to chin angle was higher in males compared to females. Nasofrontal angle (G-N-Nd (P = 0.000 and mentolabial angle (Li-Sm-Pg (P = 0.001 showed statistically significant differences. The greatest variability was found for mentolabial angle. Conclusion: The study of angular photogrammetric soft tissue facial profile analysis of Bangladeshi young adults contributes to the establishment of standardized normal values for the population. This study provides data which can be used in treatment

  1. Progress of radiotherapy by three-dimensional treatment planning

    International Nuclear Information System (INIS)

    Imada, Hajime; Nomoto, Satoshi; Takahashi, Hiroyuki; Nakata, Hajime

    1998-01-01

    The recent progress of three-dimensional radiation treatment planning was reviewed. And clinical cases such as lung cancer and breast cancer are introduced. In the University of Occupational and Development Health, the treatment system FOCUS which is made up of CT simulator and linac was used mainly. Three-dimensional treatment planning was carried for about 90% of 330 patients who underwent radiotherapy for one year. The target becomes to be accurate and dose distribution with all CT slices in radiation field can be confirmed by using three-dimensional radiation treatment planning apparatus. High dose irradiation localized to tumor part is possible. Relations between total dose and volume of normal tissue and/or tumor can be estimated numerically and easily by DVH. A prediction of indication and affection became possible by this procedure. In conclusion, generalization of three-dimensional radiation treatment planning will bring progress of more effective radiotherapy with less adverse reaction. (K.H.). 21 refs

  2. The role of the plain radiograph in the characterisation of soft tissue tumours

    International Nuclear Information System (INIS)

    Gartner, Louise; Saifuddin, Asif; Pearce, Christopher J.

    2009-01-01

    A radiograph is often the first investigation to be requested when a patient presents with limb pain or a mass. Whilst we do not advocate that this is the only investigation to be employed in the evaluation of such patients, a working knowledge of the variety of abnormal findings that can present in the soft tissues on radiographs remains useful. We reviewed the radiographic findings of soft tissue masses from a prospectively compiled database of all such lesions presenting to a specialist orthopaedic oncology service over the past 8 years. Of the cohort of 1,058 individuals with a proven soft tissue tumour, 454 had had a radiograph taken of the affected area. Of these, 281 (62%) patients had a positive radiographic finding. The most common findings were a visible soft tissue mass (n = 141), the presence of calcification (n = 76), fat (n = 32) and evidence of bone involvement (n = 62). More than one finding was sometimes present in the same patient. These findings were present in both benign and malignant tumours. This review article describes the incidence and diagnostic relevance of these plain film findings for suspected soft tissue tumours. (orig.)

  3. Malignant fibrous histiocytoma of soft tissue with metaplastic bone and cartilage formation

    International Nuclear Information System (INIS)

    Dorfman, H.D.; Bhagavan, B.S.

    1982-01-01

    The presence of bone and cartilage in some cases of malignant fibrous histiocytoma of the soft tissue as a microscopic finding has been reported previously but little note has been taken of the radiologic manifestations of these tumor elements. A series of five such cases with sufficient metaplastic osseous and cartilaginous elements to produce roentgenographic evidence of their presence is reported here. An additional two cases showed only histologic evidence of bone or cartilage formation. The reactive ossification tends to be peripheral in location, involving the pseudocapsule of the sarcoma or its fibrous septa. In three there was a zoning pattern with peripheral or polar orientation, strongly suggesting the diagnosis of myositis ossificans. The latter was the diagnosis considered radiologically in four of the five cases. Malignant fibrous histiocytoma with reactive bone and cartilage must be considered in the differential diagnosis of soft tissue masses with calcific densities, particularly when these occur in tumors of the extremities. (orig.)

  4. Adverse reactions to injectable soft tissue fillers

    DEFF Research Database (Denmark)

    Requena, Luis; Requena, Celia; Christensen, Lise

    2011-01-01

    In recent years, injections with filler agents are often used for wrinkle-treatment and soft tissue augmentation by dermatologists and plastic surgeons. Unfortunately, the ideal filler has not yet been discovered and all of them may induce adverse reactions. Quickly biodegradable or resorbable ag...

  5. Biodegradable elastomeric scaffolds for soft tissue engineering

    NARCIS (Netherlands)

    Pêgo, A.P.; Poot, Andreas A.; Grijpma, Dirk W.; Feijen, Jan

    2003-01-01

    Elastomeric copolymers of 1,3-trimethylene carbonate (TMC) and ε-caprolactone (CL) and copolymers of TMC and D,L-lactide (DLLA) have been evaluated as candidate materials for the preparation of biodegradable scaffolds for soft tissue engineering. TMC-DLLA copolymers are amorphous and degrade more

  6. A Computational Modeling Approach for Investigating Soft Tissue Balancing in Bicruciate Retaining Knee Arthroplasty

    Directory of Open Access Journals (Sweden)

    Shahram Amiri

    2012-01-01

    Full Text Available Bicruciate retaining knee arthroplasty, although has shown improved functions and patient satisfaction compared to other designs of total knee replacement, remains a technically demanding option for treating severe cases of arthritic knees. One of the main challenges in bicruciate retaining arthroplasty is proper balancing of the soft tissue during the surgery. In this study biomechanics of soft tissue balancing was investigated using a validated computational model of the knee joint with high fidelity definitions of the soft tissue structures along with a Taguchi method for design of experiments. The model was used to simulate intraoperative balancing of soft tissue structures following the combinations suggested by an orthogonal array design. The results were used to quantify the corresponding effects on the laxity of the joint under anterior-posterior, internal-external, and varus-valgus loads. These effects were ranked for each ligament bundle to identify the components of laxity which were most sensitive to the corresponding surgical modifications. The resulting map of sensitivity for all the ligament bundles determined the components of laxity most suitable for examination during intraoperative balancing of the soft tissue. Ultimately, a sequence for intraoperative soft tissue balancing was suggested for a bicruciate retaining knee arthroplasty.

  7. A Computational Modeling Approach for Investigating Soft Tissue Balancing in Bicruciate Retaining Knee Arthroplasty

    Science.gov (United States)

    Amiri, Shahram; Wilson, David R.

    2012-01-01

    Bicruciate retaining knee arthroplasty, although has shown improved functions and patient satisfaction compared to other designs of total knee replacement, remains a technically demanding option for treating severe cases of arthritic knees. One of the main challenges in bicruciate retaining arthroplasty is proper balancing of the soft tissue during the surgery. In this study biomechanics of soft tissue balancing was investigated using a validated computational model of the knee joint with high fidelity definitions of the soft tissue structures along with a Taguchi method for design of experiments. The model was used to simulate intraoperative balancing of soft tissue structures following the combinations suggested by an orthogonal array design. The results were used to quantify the corresponding effects on the laxity of the joint under anterior-posterior, internal-external, and varus-valgus loads. These effects were ranked for each ligament bundle to identify the components of laxity which were most sensitive to the corresponding surgical modifications. The resulting map of sensitivity for all the ligament bundles determined the components of laxity most suitable for examination during intraoperative balancing of the soft tissue. Ultimately, a sequence for intraoperative soft tissue balancing was suggested for a bicruciate retaining knee arthroplasty. PMID:23082090

  8. Ultrasound for initial evaluation and triage of clinically suspicious soft-tissue masses

    International Nuclear Information System (INIS)

    Lakkaraju, A.; Sinha, R.; Garikipati, R.; Edward, S.; Robinson, P.

    2009-01-01

    Aim: To evaluate the efficacy of ultrasound as a first-line investigation in patients with a clinical soft-tissue mass. Methods: Three hundred and fifty-eight consecutive patients (155 male, 203 female, mean age 48 years) referred from primary and secondary care with soft-tissue masses underwent ultrasound evaluation. Five radiologists performed ultrasound using a 10-15 MHz linear transducer and recorded the referrer diagnosis, history, lesion size, anatomical location and depth, internal echogenicity, external margins (well-defined rim or infiltrative), and vascularity on power Doppler (absent or present, if present the pattern was listed as either linear or disorganized). A provisional ultrasound diagnosis was made using one of eight categories. Benign categories (categories 1-5) were referred back to a non-sarcoma specialist or original referrer for observation. Indeterminate or possible sarcomas (categories 6-8) were referred for magnetic resonance imaging (MRI) within 14 days. Additionally category 8 lesions were referred to the regional sarcoma service. Institutional and regional database follow-up was performed. Results: Two hundred and eighty-four of the 358 (79%) lesions were classified as benign (categories 1-5). On follow-up 15 of the 284 patients were re-referred but none (284/284) had a malignancy on follow-up (24-30 months). Overall at ultrasound 33 lesions were larger than 5 cm, 42 lesions were deep to deep fascia with 20 showing both features. In this subgroup of 95 patients there were six malignant tumours with the rest benign. Seventy-three of the 358 patients underwent MRI; the results of which indicated that there were 60 benign or non-tumours, 10 possible sarcomas, and three indeterminate lesions. Overall six of 12 (6/358, 1.68% of total patients) lesions deemed to represent possible sarcomas on imaging were sarcomas. Conclusion: Ultrasound is an effective diagnostic triage tool for the evaluation of soft-tissue masses referred from primary

  9. Traumatic hallux varus repair utilizing a soft-tissue anchor: a case report.

    Science.gov (United States)

    Labovitz, J M; Kaczander, B I

    2000-01-01

    Hallux varus is usually iatrogenic in nature; however, congenital and acquired etiologies have been described in the literature. The authors present a case of traumatic hallux varus secondary to rupture of the adductor tendon. Surgical correction was performed using a soft tissue anchor for maintenance of the soft tissues utilized for repair.

  10. Suspended liquid subtractive lithography: printing three dimensional channels directly into uncured PDMS

    Science.gov (United States)

    Helmer, D.; Voigt, A.; Wagner, S.; Keller, N.; Sachsenheimer, K.; Kotz, F.; Nargang, T. M.; Rapp, B. E.

    2018-02-01

    Polydimethylsiloxane (PDMS) is one of the most widely used polymers for the generation of microfluidic chips. The standard procedures of soft lithography require the formation of a new master structure for every design which is timeconsuming and expensive. All channel generated by soft lithography need to be consecutively sealed by bonding which is a process that can proof to be hard to control. Channel cross-sections are largely restricted to squares or flat-topped designs and the generation of truly three-dimensional designs is not straightforward. Here we present Suspended Liquid Subtractive Lithography (SLSL) a method for generating microfluidic channels of nearly arbitrary three-dimensional structures in PDMS that do not require master formation or bonding and give circular channel cross sections which are especially interesting for mimicking in vivo environments. In SLSL, an immiscible liquid is introduced into the uncured PDMS by a capillary mounted on a 3D printer head. The liquid forms continuous "threads" inside the matrix thus creating void suspended channel structures.

  11. Technique to Obtain a Predictable Aesthetic Result through Appropriate Placement of the Prosthesis/Soft Tissue Junction in the Edentulous Patient with a Gingival Smile.

    Science.gov (United States)

    Demurashvili, Georgy; Davarpanah, Keyvan; Szmukler-Moncler, Serge; Davarpanah, Mithridade; Raux, Didier; Capelle-Ouadah, Nedjoua; Rajzbaum, Philippe

    2015-10-01

    Treating the edentulous patient with a gingival smile requires securing the prosthesis/soft tissue junction (PSTJ) under the upper lip. To present a simple method that helps achieve a predictable aesthetic result when alveoplasty of the anterior maxilla is needed to place implants apical to the presurgical position of the alveolar ridge. The maximum smile line of the patient is recorded and carved on a thin silicone bite impression as a soft tissue landmark. During the three-dimensional radiographic examination, the patient wears the silicone guide loaded with radiopaque markers. The NobelClinician® software is then used to bring the hard and soft tissue landmarks together in a single reading. Using the software, a line is drawn 5 mm apical to the smile line; it dictates the position of the crestal ridge to be reached following the alveoplasty. Subsequently, the simulated implant position and the simulated residual bone height following alveoplasty can be simultaneously evaluated on each transverse section. An alveoplasty of the anterior maxilla was performed as simulated on the software, and implants were placed accordingly. The PSTJ was always under the upper lip, even during maximum smile events. The aesthetic result was, therefore, fully satisfactory. This simple method permits the placement of the PSTJ under the upper lip with a predictable outcome; it ensures a reliable aesthetic result for the edentulous patient with a gingival smile. © 2013 Wiley Periodicals, Inc.

  12. The effects of LIPUS on soft-tissue healing: a review of literature.

    Science.gov (United States)

    Khanna, Anil; Nelmes, Richard T C; Gougoulias, Nikolaos; Maffulli, Nicola; Gray, Jim

    2009-01-01

    Ultrasound is widely used for imaging purposes and as an adjunct to physiotherapy. Low-intensity pulsed ultrasound (LIPUS), having removed the thermal component found at higher intensities, is used to improve bone healing. However, its potential role in soft-tissue healing is still under investigation. We searched on Medline using the keywords: low-intensity pulsed ultrasound, LIPUS and LIPUS and soft-tissue healing. Thirty-two suitable articles were identified. Research, mainly pre-clinical, so far has shown encouraging result, with LIPUS able to promote healing in various soft tissues such as cartilage, inter-vertebral disc, etc. The effect on the bone-tendon junction, however, is primarily on bone. The role of LIPUS in treating tendinopathies is questionable. Adequately powered human studies with standardisation of intensities and dosages of LIPUS for each target tissue are needed.

  13. The Three-Dimensional EIT Wave

    Science.gov (United States)

    Thompson, B. J.; Biesecker, D. A.; Gilbert, H. R.; Lawrence, G. R.; Ofman, L.; Wu, S. T.; Warmuth, A.; Fisher, Richard R. (Technical Monitor)

    2002-01-01

    An EIT wave is an impulsive disturbance which has been observed in the EUV, Soft X-ray and white light corona, with corresponding observations in the chromosphere. The effects of these disturbances can be observed across the entire solar disk of the Sun, and throughout the inner heliosphere as well. However, the picture is not complete; observations alone do not establish a complete understanding of the nature of this three-dimensional phenomenon. A number of associated phenomena have been documented, though in most cases causality has not determined. Additionally, it is unclear which factors govern the impulse's ability to affect regions of the corona and heliosphere. We discuss the various observations and the models which provided links between the associated phenomena.

  14. Small metal soft tissue foreign body extraction by using 3D CT guidance: A reliable method

    International Nuclear Information System (INIS)

    Tao, Kai; Xu, Sen; Liu, Xiao-yan; Liang, Jiu-long; Qiu, Tao; Tan, Jia-nan; Che, Jian-hua; Wang, Zi-hua

    2012-01-01

    Objective: To introduce a useful and accurate technique for the locating and removal of small metal foreign bodies in the soft tissues. Methods: Eight patients presented with suspected small metal foreign bodies retained in the soft tissues of various body districts. Under local anesthesia, 3–6 pieces of 5 ml syringe needles or 1 ml syringe needles were induced through three different planes around the entry point of the foreign bodies. Using these finders, the small metal FBs were confirmed under 3D CT guidance. Based on the CT findings, the soft tissues were dissected along the path of the closest needle and the FBs were easily found and removed according to the relation with the closest needle finder. Results: Eight metal foreign bodies (3 slices, 3 nails, 1 fish hook, 1 needlepoint) were successfully removed under 3D CT guidance in all patients. The procedures took between 35 min and 50 min and the operation times took between 15 min and 25 min. No complications arose after the treatment. Conclusion: 3D CT-guided technique is a good alternative for the removal of small metal foreign body retained in the soft tissues as it is relatively accurate, reliable, quick, carries a low risk of complications and can be a first-choice procedure for the extraction of small metal foreign body.

  15. Soft tissue augmentation techniques and materials used in the oral cavity : an overview

    NARCIS (Netherlands)

    Wolff, J.; Farré-Guasch, E.; Sándor, G.K.; Gibbs, S.; Jager, D.J.; Forouzanfar, T.

    2016-01-01

    Purpose: Oral soft tissue augmentation or grafting procedures are often necessary to achieve proper wound closure after deficits resulting from tumor excision, clefts, trauma, dental implants, and tooth recessions. Materials and Methods: Autologous soft tissue grafts still remain the gold standard

  16. EPIDEMIOLOGY AND SURVIVAL OF PATIENTS WITH MALIGNANT TUMORS OF CONNECTIVE AND SOFT TISSUE

    Directory of Open Access Journals (Sweden)

    V. M. Merabishvili

    2015-01-01

    Full Text Available Introduction. Malignant tumors of connective and soft tissue are met relatively rare, although in general in Russia each year more than 1.500 new cases are registered. On five administrative territories of Russia during a year there are recorded less than 5 new cases of malignant tumors of connective and soft tissue (Yamal-Nenets A.R. – 4; Tuva Republic – 0, Magadan Region – 3; Chukotka A.R. – 0; Jewish A.R. – 4. More seldom data on these patients’ survival are published. Purpose of study. To estimate dynamics of incidence of malignant tumors of connective and soft tissue on the basis of public reporting, to calculate the index accuracy and observed and relative survival rates by histological forms, including sarcomas. Material and methods. To perform a detailed study there were selected, for two periods of observation, respectively 1054 patients (1995–2001 and 919 patients (2002–2008. Estimation of survival was carried out using software, which had been developed together with Ltd. «Novel» (Director – T.L.Tsvetkova, Ph.D.. results of study. The most typical incidence rate for of malignant tumors of connective and soft tissue (S47, 49 that are presented by  cancer registries of different countries is from 1.5 to 2.5 0/   in men and 1.5–2.0 0/   in women. Dynamics  of morbidity of the Russian population, Moscow and St. Petersburg indicates that the level of standardized  incidence rates is in the range of 2.0 0/   in men and within 1.5 0/   in women. The mortality rate in 2013  was respectively for men and women in Russia in total 1.7 0/   and 1.13 0/   , in Moscow – 1.42 0/   and  1.24 0/   , in St. Petersburg – 1.88 0/   and 1.26 0/   . The index accuracy for both sexes in Russia is 0.88,  in Moscow – 1.2; in St. Petersburg – 1.4. This index should be used for the site of these diseases with high fatality. According to official data a one-year lethality of patients with tumors of connective and soft

  17. Real-time haptic cutting of high-resolution soft tissues.

    Science.gov (United States)

    Wu, Jun; Westermann, Rüdiger; Dick, Christian

    2014-01-01

    We present our systematic efforts in advancing the computational performance of physically accurate soft tissue cutting simulation, which is at the core of surgery simulators in general. We demonstrate a real-time performance of 15 simulation frames per second for haptic soft tissue cutting of a deformable body at an effective resolution of 170,000 finite elements. This is achieved by the following innovative components: (1) a linked octree discretization of the deformable body, which allows for fast and robust topological modifications of the simulation domain, (2) a composite finite element formulation, which thoroughly reduces the number of simulation degrees of freedom and thus enables to carefully balance simulation performance and accuracy, (3) a highly efficient geometric multigrid solver for solving the linear systems of equations arising from implicit time integration, (4) an efficient collision detection algorithm that effectively exploits the composition structure, and (5) a stable haptic rendering algorithm for computing the feedback forces. Considering that our method increases the finite element resolution for physically accurate real-time soft tissue cutting simulation by an order of magnitude, our technique has a high potential to significantly advance the realism of surgery simulators.

  18. Soft tissue Burkitt's lymphoma: radiological findings

    International Nuclear Information System (INIS)

    Garcia-Barredo, R.; Fernandez Echevarria, M.A.; Riego, M. del; Canga, A.

    1998-01-01

    An unusual case is reported of a soft tissue mass in the lower extremity, without bone involvement, in an 85-year-old woman; the histopathological diagnosis was Burkitt's lymphoma. Pertinent clinical history, histological examination, and imaging procedures allowed early diagnosis. To our knowledge, the radiological findings in Burkitt's lymphoma with this unusual clinical presentation have not been described previously. (orig.)

  19. Clinical presentation of soft-tissue infections and its management: A study of 100 cases

    Directory of Open Access Journals (Sweden)

    Baldev Singh

    2017-01-01

    Full Text Available Background: Soft-tissue infections vary widely in their nature and severity. A clear approach to the management must allow their rapid identification and treatment as they can be life-threatening. Objective: Clinical presentation of soft-tissue infections and its management. Materials and Methods: A prospective study based on 100 patients presenting with soft-tissue infections was done. All the cases of soft-tissue infections were considered irrespective of age, sex, etiological factors, or systemic disorders. The findings were evaluated regarding the pattern of soft-tissue infections in relation to age and sex, clinical presentation, complications, duration of hospital stay, management, and mortality. Results: The most commonly involved age group was in the range of 41–60 years with male predominance. Abscess formation (45% was the most common clinical presentation. Type 2 diabetes mellitus was the most common associated comorbid condition. Staphylococcus aureus was the most common culture isolate obtained. The most common complication seen was renal failure. Patients with surgical site infections had maximum duration of stay in the hospital. About 94% of the cases of soft-tissue infections were managed surgically. Mortality was mostly encountered in the cases of complications of cellulitis. Conclusion: Skin and soft-tissue infections are among the most common infections encountered by the emergency physicians. Ignorance, reluctance to treatment, economic constraints, and illiteracy delay the early detection and the initiation of proper treatment. Adequate and timely surgical intervention in most of the cases is of utmost importance to prevent the complications and reduce the mortality.

  20. Checklist and scoring system for the assessment of soft tissue preservation in CT examinations of human mummies. Application to the Tyrolean Iceman

    Energy Technology Data Exchange (ETDEWEB)

    Panzer, Stephanie [Trauma Center Murnau (Germany). Dept. of Radiology; Trauma Center Murnau and Paracelsus Medical Univ. Salzburg, Murnau (Germany). Inst. of Biomechanics; Pernter, Patrizia [Central Hospital, Bozen (Italy). Dept. of Radiodiagnostics; Piombino-Mascali, Dario; Jankauskas, Rimantas [Vilnius Univ. (Lithuania). Dept. of Anatomy, Histology and Anthropology; Zesch, Stephanie; Rosendahl, Wilfried [Reiss-Engelhorn Museen, Mannheim (Germany). German Mummy Project; Hotz, Gerhard [Natural History Museum of Basel (Switzerland). Anthropology; Zink, Albert R. [EURAC-Institute for Mummies and the Iceman, Bolzano (Italy)

    2017-12-15

    Soft tissues make a skeleton into a mummy and they allow for a diagnosis beyond osteology. Following the approach of structured reporting in clinical radiology, a recently developed checklist was used to evaluate the soft tissue preservation status of the Tyrolean Iceman using computed tomography (CT). The purpose of this study was to apply the ''Checklist and Scoring System for the Assessment of Soft Tissue Preservation in CT Examinations of Human Mummies'' to the Tyrolean Iceman, and to compare the Iceman's soft tissue preservation score to the scores calculated for other mummies. A whole-body (CT) (SOMATOM Definition Flash, Siemens, Forchheim, Germany) consisting of five scans, performed in January 2013 in the Department of Radiodiagnostics, Central Hospital, Bolzano, was used (slice thickness 0.6mm; kilovolt ranging from80 to 140). For standardized evaluation the ''CT Checklist and Scoring System for the Assessment of Soft Tissue Preservation in Human Mummies'' was used. All checkpoints under category ''A. Soft Tissues of Head and Musculoskeletal System'' and more than half in category ''B. Organs and Organ Systems'' were observed. The scoring system accounted for a total score of 153 (out of 200). The comparison of the scores between the Iceman and three mummy collections from Vilnius, Lithuania, and Palermo, Sicily, as well as one Egyptian mummy resulted in overall higher soft tissue preservation scores for the Iceman. Application of the checklist allowed for standardized assessment and documentation of the Iceman's soft tissue preservation status. The scoring system allowed for a quantitative comparison between the Iceman and other mummies. The Iceman showed remarkable soft tissue preservation.

  1. Checklist and scoring system for the assessment of soft tissue preservation in CT examinations of human mummies. Application to the Tyrolean Iceman

    International Nuclear Information System (INIS)

    Panzer, Stephanie

    2017-01-01

    Soft tissues make a skeleton into a mummy and they allow for a diagnosis beyond osteology. Following the approach of structured reporting in clinical radiology, a recently developed checklist was used to evaluate the soft tissue preservation status of the Tyrolean Iceman using computed tomography (CT). The purpose of this study was to apply the ''Checklist and Scoring System for the Assessment of Soft Tissue Preservation in CT Examinations of Human Mummies'' to the Tyrolean Iceman, and to compare the Iceman's soft tissue preservation score to the scores calculated for other mummies. A whole-body (CT) (SOMATOM Definition Flash, Siemens, Forchheim, Germany) consisting of five scans, performed in January 2013 in the Department of Radiodiagnostics, Central Hospital, Bolzano, was used (slice thickness 0.6mm; kilovolt ranging from80 to 140). For standardized evaluation the ''CT Checklist and Scoring System for the Assessment of Soft Tissue Preservation in Human Mummies'' was used. All checkpoints under category ''A. Soft Tissues of Head and Musculoskeletal System'' and more than half in category ''B. Organs and Organ Systems'' were observed. The scoring system accounted for a total score of 153 (out of 200). The comparison of the scores between the Iceman and three mummy collections from Vilnius, Lithuania, and Palermo, Sicily, as well as one Egyptian mummy resulted in overall higher soft tissue preservation scores for the Iceman. Application of the checklist allowed for standardized assessment and documentation of the Iceman's soft tissue preservation status. The scoring system allowed for a quantitative comparison between the Iceman and other mummies. The Iceman showed remarkable soft tissue preservation.

  2. Two- and three-dimensional accuracy of dental impression materials: effects of storage time and moisture contamination.

    Science.gov (United States)

    Chandran, Deepa T; Jagger, Daryll C; Jagger, Robert G; Barbour, Michele E

    2010-01-01

    Dental impression materials are used to create an inverse replica of the dental hard and soft tissues, and are used in processes such as the fabrication of crowns and bridges. The accuracy and dimensional stability of impression materials are of paramount importance to the accuracy of fit of the resultant prosthesis. Conventional methods for assessing the dimensional stability of impression materials are two-dimensional (2D), and assess shrinkage or expansion between selected fixed points on the impression. In this study, dimensional changes in four impression materials were assessed using an established 2D and an experimental three-dimensional (3D) technique. The former involved measurement of the distance between reference points on the impression; the latter a contact scanning method for producing a computer map of the impression surface showing localised expansion, contraction and warpage. Dimensional changes were assessed as a function of storage times and moisture contamination comparable to that found in clinical situations. It was evident that dimensional changes observed using the 3D technique were not always apparent using the 2D technique, and that the former offers certain advantages in terms of assessing dimensional accuracy and predictability of impression methods. There are, however, drawbacks associated with 3D techniques such as the more time-consuming nature of the data acquisition and difficulty in statistically analysing the data.

  3. A systematic review on soft-to-hard tissue ratios in orthognathic surgery part II: Chin procedures.

    Science.gov (United States)

    San Miguel Moragas, Joan; Oth, Olivier; Büttner, Michael; Mommaerts, Maurice Y

    2015-10-01

    evidence level IIIb, three were evidence level IIb, and the rest were evidence level IV. Three studies were prospective in nature. A high variability of soft-to-hard tissue ratios regarding genioplasty seemed to disappear if data were stratified according to confounding factors. With the available data, a soft-to-hard pogonion ratio of 0.9:1 and 0.55:1 could be used for chin advancement and chin setback surgery, respectively. Advancement and extrusion movements of the chin segment show respectively a 0.9:1 of sPg:Pg horizontally and 0.95:1 of sMe:Me vertically. Setback and impaction movements show respectively a -0.52:1 of sPg:Pg horizontally and -0.43:1 of sMe:Me vertically. Prospective studies are needed that stratify by confounding factors such as type of osteotomy technique, magnitude of the movement, age, sex, race/ethnicity, and quantity and quality of the soft tissues. More specifically, studies are needed regarding soft-to-hard tissue changes after chin extrusion ("downgrafting"), intrusion ("impaction"), and widening and narrowing surgery. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  4. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds.

    Science.gov (United States)

    Mondschein, Ryan J; Kanitkar, Akanksha; Williams, Christopher B; Verbridge, Scott S; Long, Timothy E

    2017-09-01

    This review highlights the synthesis, properties, and advanced applications of synthetic and natural polymers 3D printed using stereolithography for soft tissue engineering applications. Soft tissue scaffolds are of great interest due to the number of musculoskeletal, cardiovascular, and connective tissue injuries and replacements humans face each year. Accurately replacing or repairing these tissues is challenging due to the variation in size, shape, and strength of different types of soft tissue. With advancing processing techniques such as stereolithography, control of scaffold resolution down to the μm scale is achievable along with the ability to customize each fabricated scaffold to match the targeted replacement tissue. Matching the advanced manufacturing technique to polymer properties as well as maintaining the proper chemical, biological, and mechanical properties for tissue replacement is extremely challenging. This review discusses the design of polymers with tailored structure, architecture, and functionality for stereolithography, while maintaining chemical, biological, and mechanical properties to mimic a broad range of soft tissue types. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Value of the Strain Ratio on Ultrasonic Elastography for Differentiation of Benign and Malignant Soft Tissue Tumors.

    Science.gov (United States)

    Hahn, Seok; Lee, Young Han; Lee, Seung Hyun; Suh, Jin-Suck

    2017-01-01

    The purpose of this study was to evaluate whether the strain ratio provides additional value to conventional visual elasticity scores in the differentiation of benign and malignant soft tissue tumors by ultrasonic elastography. The Institutional Review Board approved the protocol of this retrospective review. Seventy-three patients who underwent elastography and had a soft tissue mass pathologically confirmed by ultrasound-guided core biopsy or surgical excision were enrolled from April 2012 through October 2014. On elastography, elasticity scores were determined with a 5-point visual scale, and the strain ratio to adjacent soft tissue at the same depth was calculated. Tumors were divided into benign and malignant groups according to the pathologic diagnoses. Elasticity scores and strain ratios were compared between benign and malignant groups, and diagnostic performance was evaluated by receiver operating characteristic curves. Of the 73 patients, 40 had benign tumors, and 33 had malignant tumors. Strain ratios (P = .003) and elasticity scores (P = .048) were significantly different between pathologic results. The areas under the receiver operating characteristic curves were 0.700 (95% confidence interval, 0.581-0.802) for the strain ratio and 0.623 (95% confidence interval, 0.515-0.746) for elastography. The strain ratios of malignant soft tissue tumors were lower than those of benign tumors and showed better diagnostic performance than did elasticity scores. The strain ratio can be used as a diagnostic indicator to predict the malignant potential of soft tissue tumors. © 2016 by the American Institute of Ultrasound in Medicine.

  6. MAXILLOFACIAL SOFT TISSUE INJURIES IN NAIROBI, KENYA

    African Journals Online (AJOL)

    2012-09-09

    Sep 9, 2012 ... Conclusion: The leading causes of MF-STIs apparently differ from those of skeletal fractures. INTRODUCTION. Maxillofacial (MF) soft tissue injuries (STIs) are often overlooked in clinical surveys compared to fractures, yet these injuries negatively impact both on function and esthetics. Previous surveys on ...

  7. Photoactivated Composite Biomaterial for Soft Tissue Restoration in Rodents and in Humans

    Science.gov (United States)

    Nahas, Zayna; Reid, Branden; Coburn, Jeannine M.; Axelman, Joyce; Chae, Jemin J.; Guo, Qiongyu; Trow, Robert; Thomas, Andrew; Hou, Zhipeng; Lichtsteiner, Serge; Sutton, Damon; Matheson, Christine; Walker, Patricia; David, Nathaniel; Mori, Susumu; Taube, Janis M.; Elisseeff, Jennifer H.

    2015-01-01

    Soft tissue reconstruction often requires multiple surgical procedures that can result in scars and disfiguration. Facial soft tissue reconstruction represents a clinical challenge because even subtle deformities can severely affect an individual’s social and psychological function. We therefore developed a biosynthetic soft tissue replacement composed of poly(ethylene glycol) (PEG) and hyaluronic acid (HA) that can be injected and photocrosslinked in situ with transdermal light exposure. Modulating the ratio of synthetic to biological polymer allowed us to tune implant elasticity and volume persistence. In a small-animal model, implanted photocrosslinked PEG-HA showed a dose-dependent relationship between increasing PEG concentration and enhanced implant volume persistence. In direct comparison with commercial HA injections, the PEG-HA implants maintained significantly greater average volumes and heights. Reversibility of the implant volume was achieved with hyaluronidase injection. Pilot clinical testing in human patients confirmed the feasibility of the transdermal photocrosslinking approach for implantation in abdomen soft tissue, although an inflammatory response was observed surrounding some of the materials. PMID:21795587

  8. Neoadjuvant chemotherapy for high-grade soft-tissue sarcomas of the limbs

    International Nuclear Information System (INIS)

    Ramos, Pedro; Gonzalez, Manuel; Perry, Fernando; Cardona, Andres Felipe

    2005-01-01

    Background: the use of neoadjuvant chemotherapy for high-grade soft-tissue sarcomas of the limbs continues to be an area of controversy; however, the number of clinical studies favoring the use of an anthracycline and iphosphamide-based regimen is increasing steadily. This approach may provide some advantages for facilitating the surgical resection of the tumor and for local disease control. The historical 5-year survival rate of approximately 50% in this high-risk group treated with local therapy alone represents a poor standard of care; thus, there is a need to incorporate systemic therapy early in the management of these patients. Objective: to describe the role of neoadjuvant chemotherapy in the treatment of soft-tissue sarcomas. Materials and methods: the records of 42 patients who attended the national cancer institute of Colombia in search for management of primary soft-tissue sarcomas were retrospectively reviewed. Ten patients with high-grade tumors larger than 8 cm, treated from June 2000 to February 2002 with neoadjuvant chemotherapy based on an anthracycline and iphosphamide regimen, plus vincristin and cisplatinum in selected cases, followed by surgery and adjuvant therapy with chemotherapy combined with local radiotherapy, were included. Evaluations of objective tumor response, survival, and toxicity were carried out. Results: after neoadjuvant therapy, s ix patients underwent conservative and limb-salvage surgery, three required radical interventions, and one refused surgical treatment. Seven experienced an objective response: it was complete in four and partial in three; the disease kept stable in two patients, and the tumor progressed in one case. After an average 46-month follow-up, four patients were permanently free of disease. Hematological and gastrointestinal toxicity was remarkable, and no patient had a long-term morbidity related to the treatment. Conclusions: this limited retrospective review suggests an advantage for the use of

  9. Benign mural nodules within fluid collections at MRI after soft-tissue sarcoma resection.

    Science.gov (United States)

    Lantos, Joshua E; Hwang, Sinchun; Panicek, David M

    2014-06-01

    The purpose of this study was to determine the prevalence and clinical significance of nodules within fluid collections on MRI after surgical resection of soft-tissue sarcoma. This retrospective study included 175 patients who underwent resection of primary soft-tissue sarcoma and whose postoperative MRI reports mentioned fluid. Images were reviewed to determine the presence of fluid collections of 1 cm or greater in diameter in the surgical bed and any nodule (measuring ≥ 0.7 cm) within the collection. Signal intensity and characteristics of each collection and rim and presence of septa or blood products were recorded. Size, signal intensity, and contrast enhancement of nodules were reviewed. Nodules were classified as benign or malignant on the basis of histologic results or clinical or MRI follow-up. Fluid collections were present in 75 patients. Of those, 45 collections (60%) showed homogeneous fluid signal intensity and 30 (40%) were heterogeneous; septa were present in 45 (60%) and blood products in 12 (16%). Most collections showed a thin rim (59%) and rim enhancement (88%). Nodules were present along the inner wall of six (8%) collections. Four (66%) nodules enhanced and two (33%) were T1 hyperintense. At follow-up MRI, two nodules were stable in size, one decreased, and three resolved. Nodules in three patients were biopsied; all were benign. Two other patients had no recurrence at follow-up, and another died at 3 months. A nodule within a postoperative fluid collection at MRI after soft-tissue sarcoma resection generally does not represent tumor recurrence; short-interval follow-up MRI is recommended rather than immediate biopsy.

  10. Histologic assessment of peritumoral edema in soft tissue sarcoma

    International Nuclear Information System (INIS)

    White, Lawrence M.; Wunder, Jay S.; Bell, Robert S.; O'Sullivan, Brian; Catton, Charles; Ferguson, Peter; Blackstein, Martin; Kandel, Rita A.

    2005-01-01

    Purpose: To evaluate whether satellite tumor cells can be identified histologically in the tissues surrounding a soft tissue sarcoma and whether their presence correlates with increased T 2 -weighted signal intensity on MRI. Methods and Materials: Fifteen patients with a high-grade extremity or truncal soft tissue sarcoma underwent preoperative MRI. The extent of high T 2 -weighted signal changes in the tissues surrounding tumor, thought to represent peritumoral edema/reactive changes, was determined. Twelve patients received i.v. gadolinium, and contrast enhancement was determined. All patients underwent surgical resection in the absence of preoperative chemotherapy or radiotherapy. The presence of tumor cells in the surrounding tissues was determined histologically in representative paraffin-embedded sections and correlated with the MRI findings. Results: The extent of peritumoral T 2 -weighted MRI signal changes ranged from 0 to 7.1 cm (mean, 2.5 cm); contrast enhancement ranged from 0 to 5.3 cm (mean, 1.1 cm). Sarcoma cells were identified histologically in the tissues beyond the tumor in 10 of 15 cases. In 6 cases, tumor cells were located within 1 cm of the tumor margin, and in 4 cases, malignant cells were found at a distance >1 cm and up to a maximum of 4 cm. The location of tumor cells beyond the margin did not correlate with tumor size nor did it correlate with the location or extent of peritumoral changes. Conclusion: The ability to identify tumor cells beyond the margin of a soft tissue sarcoma has important implications in planning appropriate targets for treatment. This could influence the use of new radiotherapy technologies such as intensity-modulated radiotherapy that aim to minimize treatment volumes through conformal planning

  11. Human soft tissue analysis using x-ray or gamma-ray techniques

    International Nuclear Information System (INIS)

    Theodorakou, C; Farquharson, M J

    2008-01-01

    This topical review is intended to describe the x-ray techniques used for human soft tissue analysis. X-ray techniques have been applied to human soft tissue characterization and interesting results have been presented over the last few decades. The motivation behind such studies is to provide improved patient outcome by using the data obtained to better understand a disease process and improve diagnosis. An overview of theoretical background as well as a complete set of references is presented. For each study, a brief summary of the methodology and results is given. The x-ray techniques include x-ray diffraction, x-ray fluorescence, Compton scattering, Compton to coherent scattering ratio and attenuation measurements. The soft tissues that have been classified using x-rays or gamma rays include brain, breast, colon, fat, kidney, liver, lung, muscle, prostate, skin, thyroid and uterus. (topical review)

  12. Three-dimensional morphologic description and visualization of brain anatomy from MR images

    International Nuclear Information System (INIS)

    Kraske, W.; George, F.W.; Zee, C.S.; Colletti, P.M.; Halls, J.M.; Boswell, W.O.

    1989-01-01

    The USC VOXAR-MRI system incorporates MR tissue classification algorithms to provide dynamic three- dimensional volumetric visualization and discrimination of brain anatomy and pathology for precision diagnosis, staging, and treatment planning. The VOXAR-MRI approach to tissue classification employs the three-dimensional reconstruction of various intracranial features from gray-scale morphologic erosion and dilation (GMED)-derived skeleton representation of the MR acquisition. Case presentations include an array of VOXAR-MRI-demonstrated tumors, abscesses, hematomas, and other lesions

  13. Injection resorbable polymer shells for soft tissue augmentation

    CSIR Research Space (South Africa)

    Naidoo, Kersch

    2008-11-01

    Full Text Available CSIR researchers have developed an injectable, resorbable soft tissue bulking product that has potential applications in fields ranging from heart and recontructive surgery, to minimally invasive cosmetic surgery. Biomaterials research is very...

  14. Hard and soft tissue changes following alveolar ridge preservation: a systematic review.

    Science.gov (United States)

    MacBeth, Neil; Trullenque-Eriksson, Anna; Donos, Nikolaos; Mardas, Nikos

    2017-08-01

    : -0.554 to 0.239) for socket grafting. A proximal vertical bone height reduction of -0.356 mm (95% CI: -0.490 to -0.222) was recorded for GBR, with a horizontal dimensional reduction of -1.45 mm (95% CI: -1.892 to -1.008) measured following GBR and -1.613 mm (95% CI: -1.989 to -1.238) for socket grafting procedures. Five papers reported on histological findings after ARP. Two papers indicated an increase in the width of the keratinised tissue following GBR, with two papers reporting a reduction in the thickness of the keratinised tissue following GBR. Histological examination revealed extensive variations in the treatment protocols and biomaterials materials used to evaluate extraction socket healing. GBR studies reported a variation in total bone formation of 47.9 ± 9.1% to 24.67 ± 15.92%. Post-operative complications were reported by 29 papers, with the most common findings soft tissue inflammation and infection. ARP results in a significant reduction in the vertical bone dimensional change following tooth extraction when compared to unassisted socket healing. The reduction in horizontal alveolar bone dimensional change was found to be variable. No evidence was identified to clearly indicate the superior impact of a type of ARP intervention (GBR, socket filler and socket seal) on bone dimensional preservation, bone formation, keratinised tissue dimensions and patient complications. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Measurement of facial soft tissues thickness using 3D computed tomographic images

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ho Gul; Kim, Kee Deog; Shin, Dong Won; Hu, Kyung Seok; Lee, Jae Bum; Park, Hyok; Park, Chang Seo [Yonsei Univ. Hospital, Seoul (Korea, Republic of); Han, Seung Ho [Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2006-03-15

    To evaluate accuracy and reliability of program to measure facial soft tissue thickness using 3D computed tomographic images by comparing with direct measurement. One cadaver was scanned with a Helical CT with 3 mm slice thickness and 3 mm/sec table speed. The acquired data was reconstructed with 1.5 mm reconstruction interval and the images were transferred to a personal computer. The facial soft tissue thickness were measured using a program developed newly in 3D image. For direct measurement, the cadaver was cut with a bone cutter and then a ruler was placed above the cut side. The procedure was followed by taking pictures of the facial soft tissues with a high-resolution digital camera. Then the measurements were done in the photographic images and repeated for ten times. A repeated measure analysis of variance was adopted to compare and analyze the measurements resulting from the two different methods. Comparison according to the areas was analyzed by Mann-Whitney test. There were no statistically significant differences between the direct measurements and those using the 3D images(p>0.05). There were statistical differences in the measurements on 17 points but all the points except 2 points showed a mean difference of 0.5 mm or less. The developed software program to measure the facial soft tissue thickness using 3D images was so accurate that it allows to measure facial soft tissue thickness more easily in forensic science and anthropology.

  16. Measurement of facial soft tissues thickness using 3D computed tomographic images

    International Nuclear Information System (INIS)

    Jeong, Ho Gul; Kim, Kee Deog; Shin, Dong Won; Hu, Kyung Seok; Lee, Jae Bum; Park, Hyok; Park, Chang Seo; Han, Seung Ho

    2006-01-01

    To evaluate accuracy and reliability of program to measure facial soft tissue thickness using 3D computed tomographic images by comparing with direct measurement. One cadaver was scanned with a Helical CT with 3 mm slice thickness and 3 mm/sec table speed. The acquired data was reconstructed with 1.5 mm reconstruction interval and the images were transferred to a personal computer. The facial soft tissue thickness were measured using a program developed newly in 3D image. For direct measurement, the cadaver was cut with a bone cutter and then a ruler was placed above the cut side. The procedure was followed by taking pictures of the facial soft tissues with a high-resolution digital camera. Then the measurements were done in the photographic images and repeated for ten times. A repeated measure analysis of variance was adopted to compare and analyze the measurements resulting from the two different methods. Comparison according to the areas was analyzed by Mann-Whitney test. There were no statistically significant differences between the direct measurements and those using the 3D images(p>0.05). There were statistical differences in the measurements on 17 points but all the points except 2 points showed a mean difference of 0.5 mm or less. The developed software program to measure the facial soft tissue thickness using 3D images was so accurate that it allows to measure facial soft tissue thickness more easily in forensic science and anthropology

  17. 2-Dimensional changes of the soft tissue profile of augmented and non-augmented human extraction sockets: a randomized pilot study.

    Science.gov (United States)

    Flügge, Tabea; Nelson, Katja; Nack, Claudia; Stricker, Andres; Nahles, Susanne

    2015-04-01

    This study identified the soft tissue changes of the alveolar ridge at different time points within 12 weeks after tooth extraction with and without socket augmentation. In 38 patients with single tooth extractions, 40 sockets were augmented and 39 extraction sockets were not augmented. At 2, 4, 6, 8 and 12 weeks impressions were taken and casts digitized with a laser scanner. The horizontal and vertical changes were compared between augmented and non-augmented sites. A p-value sockets were between 0.4 mm (2 weeks) and 0.8 mm (12 weeks). In non-augmented sockets changes of 0.7 mm (2 weeks) and of 1.0 mm (12 weeks) were demonstrated. The mean values differed significantly between the buccal and oral region (p sockets showed less resorption within 4 weeks after extraction compared to non-augmented sockets. Non-augmented sockets showed a continuous dimensional loss with a great variation over 12 weeks whereas augmented sockets had the highest degree of resorption between 4 and 6 weeks. At 12 weeks a comparable resorption in augmented and non-augmented sockets was observed. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device.

    Science.gov (United States)

    Hamid, Q; Snyder, J; Wang, C; Timmer, M; Hammer, J; Guceri, S; Sun, W

    2011-09-01

    In the field of biofabrication, tissue engineering and regenerative medicine, there are many methodologies to fabricate a building block (scaffold) which is unique to the target tissue or organ that facilitates cell growth, attachment, proliferation and/or differentiation. Currently, there are many techniques that fabricate three-dimensional scaffolds; however, there are advantages, limitations and specific tissue focuses of each fabrication technique. The focus of this initiative is to utilize an existing technique and expand the library of biomaterials which can be utilized to fabricate three-dimensional scaffolds rather than focusing on a new fabrication technique. An expanded library of biomaterials will enable the precision extrusion deposition (PED) device to construct three-dimensional scaffolds with enhanced biological, chemical and mechanical cues that will benefit tissue generation. Computer-aided motion and extrusion drive the PED to precisely fabricate micro-scaled scaffolds with biologically inspired, porosity, interconnectivity and internal and external architectures. The high printing resolution, precision and controllability of the PED allow for closer mimicry of tissues and organs. The PED expands its library of biopolymers by introducing an assisting cooling (AC) device which increases the working extrusion temperature from 120 to 250 °C. This paper investigates the PED with the integrated AC's capabilities to fabricate three-dimensional scaffolds that support cell growth, attachment and proliferation. Studies carried out in this paper utilized a biopolymer whose melting point is established to be 200 °C. This polymer was selected to illustrate the newly developed device's ability to fabricate three-dimensional scaffolds from a new library of biopolymers. Three-dimensional scaffolds fabricated with the integrated AC device should illustrate structural integrity and ability to support cell attachment and proliferation.

  19. Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device

    International Nuclear Information System (INIS)

    Hamid, Q; Snyder, J; Wang, C; Guceri, S; Sun, W; Timmer, M; Hammer, J

    2011-01-01

    In the field of biofabrication, tissue engineering and regenerative medicine, there are many methodologies to fabricate a building block (scaffold) which is unique to the target tissue or organ that facilitates cell growth, attachment, proliferation and/or differentiation. Currently, there are many techniques that fabricate three-dimensional scaffolds; however, there are advantages, limitations and specific tissue focuses of each fabrication technique. The focus of this initiative is to utilize an existing technique and expand the library of biomaterials which can be utilized to fabricate three-dimensional scaffolds rather than focusing on a new fabrication technique. An expanded library of biomaterials will enable the precision extrusion deposition (PED) device to construct three-dimensional scaffolds with enhanced biological, chemical and mechanical cues that will benefit tissue generation. Computer-aided motion and extrusion drive the PED to precisely fabricate micro-scaled scaffolds with biologically inspired, porosity, interconnectivity and internal and external architectures. The high printing resolution, precision and controllability of the PED allow for closer mimicry of tissues and organs. The PED expands its library of biopolymers by introducing an assisting cooling (AC) device which increases the working extrusion temperature from 120 to 250 deg. C. This paper investigates the PED with the integrated AC's capabilities to fabricate three-dimensional scaffolds that support cell growth, attachment and proliferation. Studies carried out in this paper utilized a biopolymer whose melting point is established to be 200 deg. C. This polymer was selected to illustrate the newly developed device's ability to fabricate three-dimensional scaffolds from a new library of biopolymers. Three-dimensional scaffolds fabricated with the integrated AC device should illustrate structural integrity and ability to support cell attachment and proliferation.

  20. Immersion technique in soft tissue radiography of the hands

    International Nuclear Information System (INIS)

    Maekelae, P.; Haaslahti, J.O.

    1978-01-01

    Soft tissue radiography of hands using the technique of mammary radiography and immersion in a 2.5 cm layer of 1 : 1 water-ethanol solution is evaluated. Using immersion the average background density decreases with a factor of about 2.5 : 1, with little deterioration in resolution (MTF). The immersion procedure makes the demonstration and evaluation of soft tisse swelling and periarticular oedema easier. (Auth.)

  1. Rapid fabrication of detachable three-dimensional tissues by layering of cell sheets with heating centrifuge.

    Science.gov (United States)

    Haraguchi, Yuji; Kagawa, Yuki; Hasegawa, Akiyuki; Kubo, Hirotsugu; Shimizu, Tatsuya

    2018-01-18

    Confluent cultured cells on a temperature-responsive culture dish can be harvested as an intact cell sheet by decreasing temperature below 32°C. A three-dimensional (3-D) tissue can be fabricated by the layering of cell sheets. A resulting 3-D multilayered cell sheet-tissue on a temperature-responsive culture dish can be also harvested without any damage by only temperature decreasing. For shortening the fabrication time of the 3-D multilayered constructs, we attempted to layer cell sheets on a temperature-responsive culture dish with centrifugation. However, when a cell sheet was attached to the culture surface with a conventional centrifuge at 22-23°C, the cell sheet hardly adhere to the surface due to its noncell adhesiveness. Therefore, in this study, we have developed a heating centrifuge. In centrifugation (55g) at 36-37°C, the cell sheet adhered tightly within 5 min to the dish without significant cell damage. Additionally, centrifugation accelerated the cell sheet-layering process. The heating centrifugation shortened the fabrication time by one-fifth compared to a multilayer tissue fabrication without centrifugation. Furthermore, the multilayered constructs were finally detached from the dishes by decreasing temperature. This rapid tissue-fabrication method will be used as a valuable tool in the field of tissue engineering and regenerative therapy. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  2. Assessment of cone beam CT registration for prostate radiation therapy: fiducial marker and soft tissue methods.

    Science.gov (United States)

    Deegan, Timothy; Owen, Rebecca; Holt, Tanya; Fielding, Andrew; Biggs, Jennifer; Parfitt, Matthew; Coates, Alicia; Roberts, Lisa

    2015-02-01

    This investigation aimed to assess the consistency and accuracy of radiation therapists (RTs) performing cone beam computed tomography (CBCT) alignment to fiducial markers (FMs) (CBCTFM ) and the soft tissue prostate (CBCTST ). Six patients receiving prostate radiation therapy underwent daily CBCTs. Manual alignment of CBCTFM and CBCTST was performed by three RTs. Inter-observer agreement was assessed using a modified Bland-Altman analysis for each alignment method. Clinically acceptable 95% limits of agreement with the mean (LoAmean ) were defined as ±2.0 mm for CBCTFM and ±3.0 mm for CBCTST . Differences between CBCTST alignment and the observer-averaged CBCTFM (AvCBCTFM ) alignment were analysed. Clinically acceptable 95% LoA were defined as ±3.0 mm for the comparison of CBCTST and AvCBCTFM . CBCTFM and CBCTST alignments were performed for 185 images. The CBCTFM 95% LoAmean were within ±2.0 mm in all planes. CBCTST 95% LoAmean were within ±3.0 mm in all planes. Comparison of CBCTST with AvCBCTFM resulted in 95% LoA of -4.9 to 2.6, -1.6 to 2.5 and -4.7 to 1.9 mm in the superior-inferior, left-right and anterior-posterior planes, respectively. Significant differences were found between soft tissue alignment and the predicted FM position. FMs are useful in reducing inter-observer variability compared with soft tissue alignment. Consideration needs to be given to margin design when using soft tissue matching due to increased inter-observer variability. This study highlights some of the complexities of soft tissue guidance for prostate radiation therapy. © 2014 The Royal Australian and New Zealand College of Radiologists.

  3. Assessment of cone beam CT registration for prostate radiation therapy: fiducial marker and soft tissue methods

    International Nuclear Information System (INIS)

    Deegan, Timothy; Owen, Rebecca; Holt, Tanya; Fielding, Andrew; Biggs, Jennifer; Parfitt, Matthew; Coates, Alicia; Roberts, Lisa

    2015-01-01

    This investigation aimed to assess the consistency and accuracy of radiation therapists (RTs) performing cone beam computed tomography (CBCT) alignment to fiducial markers (FMs) (CBCT FM ) and the soft tissue prostate (CBCT ST ). Six patients receiving prostate radiation therapy underwent daily CBCTs. Manual alignment of CBCT FM and CBCT ST was performed by three RTs. Inter-observer agreement was assessed using a modified Bland–Altman analysis for each alignment method. Clinically acceptable 95% limits of agreement with the mean (LoA mean ) were defined as ±2.0 mm for CBCT FM and ±3.0 mm for CBCT ST . Differences between CBCT ST alignment and the observer-averaged CBCT FM (AvCBCT FM ) alignment were analysed. Clinically acceptable 95% LoA were defined as ±3.0 mm for the comparison of CBCT ST and AvCBCT FM . CBCT FM and CBCT ST alignments were performed for 185 images. The CBCT FM 95% LoA mean were within ±2.0 mm in all planes. CBCT ST 95% LoA mean were within ±3.0 mm in all planes. Comparison of CBCT ST with AvCBCT FM resulted in 95% LoA of −4.9 to 2.6, −1.6 to 2.5 and −4.7 to 1.9 mm in the superior–inferior, left–right and anterior–posterior planes, respectively. Significant differences were found between soft tissue alignment and the predicted FM position. FMs are useful in reducing inter-observer variability compared with soft tissue alignment. Consideration needs to be given to margin design when using soft tissue matching due to increased inter-observer variability. This study highlights some of the complexities of soft tissue guidance for prostate radiation therapy.

  4. Subungual Hypervascular Soft Tissue Chondroma Mimicking a Glomus Tumor: A Case Report

    International Nuclear Information System (INIS)

    Park, Jong Chun; Lee, Young Hwan; Jung, Kyung Jae

    2009-01-01

    Soft tissue chondroma, or extraskeletal chondroma, is a relatively rare, benign cartilaginous tumor that occurs most frequently in the hands and feet - a subungual location is quite rare. The authors describe a subungual soft tissue chondroma in a 25-year-old man that was visualized as a hypervascular mass on color Doppler ultrasonography and initially misdiagnosed as a glomus tumor

  5. Subungual Hypervascular Soft Tissue Chondroma Mimicking a Glomus Tumor: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Chun; Lee, Young Hwan; Jung, Kyung Jae [Catholic University of Daegu, School of Medicine, Daegu (Korea, Republic of)

    2009-09-15

    Soft tissue chondroma, or extraskeletal chondroma, is a relatively rare, benign cartilaginous tumor that occurs most frequently in the hands and feet - a subungual location is quite rare. The authors describe a subungual soft tissue chondroma in a 25-year-old man that was visualized as a hypervascular mass on color Doppler ultrasonography and initially misdiagnosed as a glomus tumor

  6. Effectiveness of soft tissue diode laser in treatment of oral mucosal lesions

    Directory of Open Access Journals (Sweden)

    Amanpreet Kaur

    2017-01-01

    Full Text Available Soft tissue diode lasers are becoming popular among clinicians due to their potential value in surgical procedures providing surface sterilization, dry surgical field, and increased patient acceptance. Two patients with different soft tissue lesions were selected, and soft tissue diode laser was used for excision and wound healing was assessed by visual method with photographs. No discomfort to the patient during and after the laser procedure was observed. Inspite of using minimal local anesthesia, avoiding placement of sutures, and not prescribing any antibiotics, minimal bleeding, no edema, and good wound healing was observed. We conclude that lasers treatments can be superior to conventional approaches with regards to easy ablation, decontamination, and hemostasis, and are less painful during and after the procedure.

  7. Micro-fabrication of three dimensional pyrolysed carbon microelectrodes

    DEFF Research Database (Denmark)

    2017-01-01

    ; soft baking the photoresist layer; performing a full depth exposure with UV light through a first mask; performing a partial depth exposure with UV light through a second mask; wherein the full depth exposure and the partial depth exposure are aligned to ensure that the first and second latent images...... are connected to each other; post-exposure baking the photoresist layer; and developing the microscale patterned resist template as a free-standing structure of cross-linked resist with lateral hanging structures that are supported by vertical support structures at a free height above the substrate. The method...... is characterized by a soft baking temperature below 70 °C. Repetitive coating and partial depth exposure allows for the fabrication of multiple level laterally interconnected structures. Carbonization of the resist template provides truly three-dimensional carbon microelectrode structures....

  8. Accurate registration of peri-implant soft tissues to create an optimal emergence profile

    Directory of Open Access Journals (Sweden)

    Ibraheem Fahad Alshiddi

    2015-01-01

    Full Text Available One of the challenges in restoring anterior space with implant restoration is maintaining the natural looking of peri-implant area. This case report presents a clinical procedure to create the soft tissue emergence profile for anterior maxillary teeth. A 49-year-old male presented with missing right maxillary lateral incisor. A provisional restoration was inserted 1 week after implant placement. Area of the provisional restoration related to the gingival tissue (transmucosal area was adjusted to create an optimum emergence profile. Two months later, an indirect method was used to accurately transfer the soft peri-implant tissues to the master cast. This clinical technique minimizes surgical procedure and avoids the possibility of soft tissue collapsing that may occur during the impression procedure.

  9. Ginsenoside Rg1 and platelet-rich fibrin enhance human breast adipose-derived stem cells function for soft tissue regeneration

    Science.gov (United States)

    Li, Hong-Mian; Peng, Qi-Liu; Huang, Min-Hong; Li, De-Quan; Liang, Yi-Dan; Chi, Gang-Yi; Li, De-Hui; Yu, Bing-Chao; Huang, Ji-Rong

    2016-01-01

    Adipose-derived stem cells (ASCs) can be used to repair soft tissue defects, wounds, burns, and scars and to regenerate various damaged tissues. The cell differentiation capacity of ASCs is crucial for engineered adipose tissue regeneration in reconstructive and plastic surgery. We previously reported that ginsenoside Rg1 (G-Rg1 or Rg1) promotes proliferation and differentiation of ASCs in vitro and in vivio. Here we show that both G-Rg1 and platelet-rich fibrin (PRF) improve the proliferation, differentiation, and soft tissue regeneration capacity of human breast adipose-derived stem cells (HBASCs) on collagen type I sponge scaffolds in vitro and in vivo. Three months after transplantation, tissue wet weight, adipocyte number, intracellular lipid, microvessel density, and gene and protein expression of VEGF, HIF-1α, and PPARγ were higher in both G-Rg1- and PRF-treated HBASCs than in control grafts. More extensive new adipose tissue formation was evident after treatment with G-Rg1 or PRF. In summary, G-Rg1 and/or PRF co-administration improves the function of HBASCs for soft tissue regeneration engineering. PMID:27191987

  10. Thallium-201 scintigraphy for bone and soft tissue tumors

    Energy Technology Data Exchange (ETDEWEB)

    Tokuumi, Yuji; Tsuchiya, Hiroyuki; Sunayama, Chiaki; Matsuda, Eizo; Asada, Naohiro; Taki, Junichi; Sumiya, Hisashi; Miyauchi, Tsutomu; Tomita, Katsuro [Kanazawa Univ. (Japan). School of Medicine

    1995-05-01

    This study was undertaken to assess the usefulness of thallium-201 scintigraphy in bone and soft tissue tumors. Pre-therapy scintigraphy was undertaken in a total of 136 patients with histologically confirmed diagnosis, consisting of 74 with malignant bone and soft tissue tumors, 39 with benign ones, 12 with diseases analogous to tumors, and 11 others. Thallium activity was graded on a scale of 0-4: 0=background activity, 1=equivocal activity, 2=definitive activity, but less than myocardium, 3=definite activity equal to myocardium, and 4=activity greater than myocardium. In the group of malignant tumors, thallium-201 uptake was found in 80%, although it was low for chondrosarcoma (2/8) and malignant Schwannoma (one/3). The group of benign tumors, however, showed it in only 41%, being restricted to those with giant cell tumors, chondroblastoma, fibromatosis, and osteoid osteoma. Thallium-201 uptake was also found in all 8 patients with metastatic tumors. In 23 patients undergoing thallium imaging before and after chemotherapy, scintigraphic findings revealed a high correlation with histopathological findings. Thus, thallium-201 scintigraphy may be potentially used to distinguish malignant from benign bone and soft tissue tumors, except for a few histopathological cases, as well as to determine loco-regional metastases and response to chemotherapy. (N.K.).

  11. Accuracy of combined maxillary and mandibular repositioning and of soft tissue prediction in relation to maxillary antero-superior repositioning combined with mandibular set back A computerized cephalometric evaluation of the immediate postsurgical outcome using the TIOPS planning system

    DEFF Research Database (Denmark)

    Donatsky, Ole; Bjørn-Jørgensen, Jens; Hermund, Niels Ulrich

    2009-01-01

    surgical planning system (TIOPS). MATERIAL AND METHODS: Out of 100 prospectively and consecutively treated patients, 52 patients manifested dentofacial deformities requiring bimaxillary orthognathic surgery with maxillary antero-superior repositioning combined with mandibular set back and so were included......AIM: The purpose of the present study was to evaluate the immediate postsurgical outcome of planned and predicted hard and soft tissue positional changes in relation to maxillary antero-superior repositioning combined with mandibular set back using the computerized, cephalometric, orthognathic...... positional changes were transferred to model surgery on a three-dimensional articulator system (SAM) and finally to surgery. Five to six weeks after surgery, the actually obtained hard and soft tissue profile changes were cephalometricly assessed. RESULTS: The mean accuracy of the planned and predicted hard...

  12. Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery.

    Science.gov (United States)

    Stelzle, Florian; Tangermann-Gerk, Katja; Adler, Werner; Zam, Azhar; Schmidt, Michael; Douplik, Alexandre; Nkenke, Emeka

    2010-04-01

    Laser surgery does not provide haptic feedback for operating layer-by-layer and thereby preserving vulnerable anatomical structures like nerve tissue or blood vessels. Diffuse reflectance spectra can facilitate remote optical tissue differentiation. It is the aim of the study to use this technique on soft tissue samples, to set a technological basis for a remote optical feedback system for tissue-specific laser surgery. Diffuse reflectance spectra (wavelength range: 350-650 nm) of ex vivo types of soft tissue (a total of 10,800 spectra) of the midfacial region of domestic pigs were remotely measured under reduced environmental light conditions and analyzed in order to differentiate between skin, mucosa, muscle, subcutaneous fat, and nerve tissue. We performed a principal components (PC) analysis (PCA) to reduce the number of variables. Linear discriminant analysis (LDA) was utilized for classification. For the tissue differentiation, we calculated the specificity and sensitivity by receiver operating characteristic (ROC) analysis and the area under curve (AUC). Six PCs were found to be adequate for tissue differentiation with diffuse reflectance spectra using LDA. All of the types of soft tissue could be differentiated with high specificity and sensitivity. Only the tissue pairs nervous tissue/fatty tissue and nervous tissue/mucosa showed a decline of differentiation due to bio-structural similarity. However, both of these tissue pairs could still be differentiated with a specificity and sensitivity of more than 90%. Analyzing diffuse reflectance spectroscopy with PCA and LDA allows for remote differentiation of biological tissue. Considering the limitations of the ex vivo conditions, the obtained results are promising and set a basis for the further development of a feedback system for tissue-specific laser surgery. (c) 2010 Wiley-Liss, Inc.

  13. Imaging the hard/soft tissue interface.

    Science.gov (United States)

    Bannerman, Alistair; Paxton, Jennifer Z; Grover, Liam M

    2014-03-01

    Interfaces between different tissues play an essential role in the biomechanics of native tissues and their recapitulation is now recognized as critical to function. As a consequence, imaging the hard/soft tissue interface has become increasingly important in the area of tissue engineering. Particularly as several biotechnology based products have made it onto the market or are close to human trials and an understanding of their function and development is essential. A range of imaging modalities have been developed that allow a wealth of information on the morphological and physical properties of samples to be obtained non-destructively in vivo or via destructive means. This review summarizes the use of a selection of imaging modalities on interfaces to date considering the strengths and weaknesses of each. We will also consider techniques which have not yet been utilized to their full potential or are likely to play a role in future work in the area.

  14. Necrotizing soft tissue infection in pregnancy

    Directory of Open Access Journals (Sweden)

    Nestorović Milica

    2017-01-01

    Full Text Available Introduction. Necrotizing soft tissue infection (NSTI is a life-threatening condition, characterized by widely spread necrosis of skin, subcutaneous fat, fascia and muscles. Treatment involves surgical debridement and broad-spectrum antimicrobial therapy. Mortality is still high due to diagnostic delays. NSTI is rare in general population, there are even less literature data of this condition in pregnancy. Timely diagnosis and therapy is crucial for outcome of these patients. Clinicians should have in mind NSTI in patients with perianal infections, especially in cases where immunosuppressive role of pregnancy is present. Case outline. We present a case of a 21-year-old pregnant woman with NSTI spreading from perianal region. The patient was admitted to hospital in the 31st week of otherwise healthy twin pregnancy one day after incision of perianal abscess. At admission she was examined by a gynecologist; vital signs were stable, laboratory results showed the presence of infection. She was referred for another surgical procedure and broad-spectrum antibiotics were prescribed. The next morning the patient complained of intense abdominal pain. Clinical exam revealed only discrete redness of the skin tender on palpation, crepitating. She was immediately referred to surgery. Intraoperative findings revealed massive soft tissue infection spreading up to the chest wall. Wide skin incisions and debridement were performed. The patient developed septic shock and after initial resuscitation gynecologist confirmed intrauterine death of twins and indicated labor induction. Over the next few days the patient’s general condition improved. On several occasions the wounds were aggressively debrided under general anesthesia, which left the patient with large abdominal wall defect. Twenty-three days after the initial operation, the defect was reconstructed with partial-thickness skin grafts, providing satisfactory results. Conclusion. Diagnosis and outcome of

  15. Systemic Aspects of Soft Tissue Rheumatic Disorders (STRDs)

    International Nuclear Information System (INIS)

    Owlia, M. B.; Mehrpoor, G.

    2014-01-01

    Objective: To determine the markers of systemic inflammation in soft tissue rheumatic disorders (STRDs). Study Design: Case series. Place and Duration of Study: Rheumatology Clinic, Yazd, Iran, from November 2010 to December 2011. Methodology: Patients aged 20 years or above with known diagnosis of STRD according to clinical criteria and/ or paraclinical investigations for at least 3 weeks duration were longitudinally followed. Patients with diagnosis of rheumatoid arthritis, hypothyroidism, or any other known systemic conditions (other than diabetes mellitus) were excluded. After careful and detailed history taking, laboratory tests indicating systemic inflammation including erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and routine screening rheumatologic tests were assessed. Results: Of the 90 patients, 75% were female and 25% were male and 28 (31.1%) of patients had diabetes mellitus. Fifty six (62%) and 49 (54%) of all studies cases had some degrees of morning stiffness and remarkable fatigue respectively. Twenty two (24%) had elevated CRP and 5 (5.5%) had abnormal ESR. Rheumatoid factor (RF) and anti-CCP was positive in 5 (5.5%) and 12 (13.3%) of patients accordingly. Three (3.3%) patients suffered from anemia of chronic disease. Mean ESR was 48 A +- 7.34 (hl) and mean CRP was 10.06 A +- 1.96 mg/dl. Mean RF was 10.8 A +- 1.64 U/ml and mean anti- CCP was 18.5 A +- 2.71 U/ml. Mean hemoglobin was between 10.4 A +- 1.01 g/dl. Conclusion: Features of subtle systemic inflammation are positive in some cases of soft tissue rheumatism. (author)

  16. Electron probe microanalysis for clinical investigations: Microdrop and soft tissue analysis

    International Nuclear Information System (INIS)

    Ingram, M.J.; Ingram, F.D.

    1984-01-01

    The most important advantage offered by electron probe microanalysis (EPA) for clinical investigations is the ability to analyze smaller volumes of tissue than is possible with conventional techniques. The sample can be a biological soft tissue specimen, which involves subcellular localization, or a picoliter fluid droplet. In either case, the analysis can be nondestructive and permit multiple analyses for a number of elements in a given sample. The most highly developed electron microprobe analytical technique is fluid drop analysis, popularly referred to as microdrop analysis. This method provides the investigator with an analytic capability that has an accuracy of measurement often 1% or better on 20 to 30 picoliter fluid droplets. Electron microprobe techniques have been used for studies of animal hard tissue and for studies that involve insoluble inclusions. However, the development of techniques for studies of labile constituents in animal soft tissue has been much slower. It has been necessary not only to develop appropriate methods of tissue preparation, but also to establish sound techniques for tissue collection. Although there are adequate methods for collection of most types of tissue from laboratory animals, many of these methods are not suitable for human subjects. In order to provide the reader with a better understanding of the capabilities and potential for the application of electron microprobe methodology to problems in clinical medicine, the authors discuss some of their experiences with liquid droplet analysis and quantitative electrolyte distribution measurements in animal soft tissue

  17. Fabrication and Characterization of three dimensional Scaffolds for tissue engineering application via microstereolithography technique

    International Nuclear Information System (INIS)

    Marina Talib; Covington, J.A.; Dove, A.; Bolarinwa, A.; Grover, L.

    2012-01-01

    Microstereolithography is a method used for rapid proto typing of polymeric and ceramic components. This technique converts a computer-aided design (CAD) to a three dimensional (3D) model, and enables layer-per-layer fabrication curing a liquid resin with UV-light or laser source. However, the use of stereo lithography in tissue engineering has not been significantly explored possibly due to the lack of commercially available implantable or biocompatible materials from the SL industry. This study seeks to develop a range of new bio-compatible/degradable materials that are compatible with a commercial 3D direct manufacture system (envisionTEC Desktop). Firstly, a selection of multifunctional polymer and calcium phosphate were studied in order to formulate biodegradable photo polymer resin for specific tissue engineering applications. A 3D structure was successfully fabricated from the formulated photo curable resins. The photo polymer of ceramic suspension was prepared with the addition of 50-70 wt % of calcium pyrophosphate (CPP) and hydroxyapatite (HA). They were then sintered at high temperature for polymer removal, to obtain a ceramic of the desired porosity. Mechanical properties, morphology and calcium phosphate content of the sintered polymers were characterised and investigated with SEM and XRD, respectively. The addition of calcium phosphate coupled with high temperature sintering, had a significant effect on the mechanical properties exhibited by the bio ceramic. The successful fabrication of novel bio ceramic polymer composite with MSL technique offers the possibility of designing complex tissue scaffolds with optimum mechanical properties for specific tissue engineering applications. (author)

  18. Surgical considerations when reporting MRI studies of soft tissue sarcoma of the limbs

    Energy Technology Data Exchange (ETDEWEB)

    De la Hoz Polo, Marcela [Kings College Hospital, Radiology Department, London, Brixton (United Kingdom); Dick, Elizabeth [St Mary' s Hospital, Imperial College Healthcare NHS Trust, Radiology Department, London (United Kingdom); Bhumbra, Rej [Newham and The Royal London Hospitals, Trauma and Orthopaedic Department, Barts Health Orthopaedic Centre, London, Whitechapel (United Kingdom); Pollock, Rob [Royal National Orthopaedic Hospital, Trauma and Orthopaedic Department, Stanmore (United Kingdom); Sandhu, Ranbir [University Hospitals Birmingham, Radiology Department, Queen Elizabeth Hospital, Birmingham (United Kingdom); Saifuddin, Asif [Royal National Orthopaedic Hospital, Radiology Department, Stanmore (United Kingdom)

    2017-12-15

    Soft tissue sarcomas (STS) are rare tumours that require prompt diagnosis and treatment at a specialist centre. Magnetic resonance imaging (MRI) has become the modality of choice for identification, characterisation, biopsy planning and staging of soft tissue masses. MRI enables both the operating surgeon and patient to be optimally prepared prior to surgery for the likelihood of margin-negative resection and to anticipate possible sacrifice of adjacent structures and consequent loss of function. The aim of this review is to aid the radiologist in performing and reporting MRI studies of soft tissue sarcomas, with particular reference to the requirements of the surgical oncologist. (orig.)

  19. Nonsurgical management of soft tissue around the restorations of maxillary anterior implants: a clinical report

    Directory of Open Access Journals (Sweden)

    Seyedan K

    2010-01-01

    Full Text Available "nBackground and Aims: Soft tissue management with providing the esthetic for restoration of a single implant in the anterior maxilla is of great importance. Tissue training helps to develop a proper emergence profile and natural tooth appearance. The aim of this article was to report a nonsurgical management of undesirable contours of soft tissue around maxillary anterior implants to achieve an optimum appearance. "nMaterials and Methods: A 23-year-old female with congenital missing of maxillary lateral incisors, after completion of a fixed orthodontic treatment and gain enough space, received 2 dental implants. After second phase surgery and healing period, construction of the restorations was not possible through conventional method because of severe soft tissue collapse. In this case, soft tissue contours were corrected using a provisional restoration and then final restoration was made and delivered. "nConclusion: Tissue training with a provisional restoration helps to re-establish normal gingival tissue contours and interdental papillae around the restoration of maxillary anterior implants.

  20. Soft tissue augmentation - Use of hyaluronic acid as dermal filler

    Directory of Open Access Journals (Sweden)

    Vedamurthy Maya

    2004-11-01

    Full Text Available Soft tissue augmentation has revolutionized the treatment of the aging face. It is a technique in which a substance is injected under the skin. The concept of utilizing materials for soft tissue augmentation actually began around 1950 with the use of fluid silicone. Today we have a large armamentarium of implant materials to delay the tell tale signs of aging. Filling has replaced conventional surgery in facial rejuvenation. In this article, the emphasis will be on hyaluronic acid as this substance is easily available in India and ranks among the most widely used dermal fillers.

  1. Soft tissue augmentation - Use of hyaluronic acid as dermal filler

    Directory of Open Access Journals (Sweden)

    Vedamurthy Maya

    2004-01-01

    Full Text Available Soft tissue augmentation has revolutionized the treatment of the aging face. It is a technique in which a substance is injected under the skin. The concept of utilizing materials for soft tissue augmentation actually began around 1950 with the use of fluid silicone. Today we have a large armamentarium of implant materials to delay the tell tale signs of aging. Filling has replaced conventional surgery in facial rejuvenation. In this article, the emphasis will be on hyaluronic acid as this substance is easily available in India and ranks among the most widely used dermal fillers.

  2. Necrotizing Soft Tissue Infection Occurring after Exposure to Mycobacterium marinum

    Directory of Open Access Journals (Sweden)

    Shivani S. Patel

    2014-01-01

    Full Text Available Cutaneous infections caused by Mycobacterium marinum have been attributed to aquarium or fish exposure after a break in the skin barrier. In most instances, the upper limbs and fingers account for a majority of the infection sites. While previous cases of necrotizing soft tissue infections related to M. marinum have been documented, the importance of our presenting case is to illustrate the aggressive nature of M. marinum resulting in a persistent necrotizing soft tissue infection of a finger that required multiple aggressive wound debridements, followed by an amputation of the affected extremity, in order to hasten recovery.

  3. Soft-tissue imaging with C-arm cone-beam CT using statistical reconstruction

    International Nuclear Information System (INIS)

    Wang, Adam S; Stayman, J Webster; Otake, Yoshito; Siewerdsen, Jeffrey H; Kleinszig, Gerhard; Vogt, Sebastian; Gallia, Gary L; Khanna, A Jay

    2014-01-01

    The potential for statistical image reconstruction methods such as penalized-likelihood (PL) to improve C-arm cone-beam CT (CBCT) soft-tissue visualization for intraoperative imaging over conventional filtered backprojection (FBP) is assessed in this work by making a fair comparison in relation to soft-tissue performance. A prototype mobile C-arm was used to scan anthropomorphic head and abdomen phantoms as well as a cadaveric torso at doses substantially lower than typical values in diagnostic CT, and the effects of dose reduction via tube current reduction and sparse sampling were also compared. Matched spatial resolution between PL and FBP was determined by the edge spread function of low-contrast (∼40–80 HU) spheres in the phantoms, which were representative of soft-tissue imaging tasks. PL using the non-quadratic Huber penalty was found to substantially reduce noise relative to FBP, especially at lower spatial resolution where PL provides a contrast-to-noise ratio increase up to 1.4–2.2× over FBP at 50% dose reduction across all objects. Comparison of sampling strategies indicates that soft-tissue imaging benefits from fully sampled acquisitions at dose above ∼1.7 mGy and benefits from 50% sparsity at dose below ∼1.0 mGy. Therefore, an appropriate sampling strategy along with the improved low-contrast visualization offered by statistical reconstruction demonstrates the potential for extending intraoperative C-arm CBCT to applications in soft-tissue interventions in neurosurgery as well as thoracic and abdominal surgeries by overcoming conventional tradeoffs in noise, spatial resolution, and dose. (paper)

  4. Comparing the 810nm diode laser with conventional surgery in orthodontic soft tissue procedures.

    Science.gov (United States)

    Ize-Iyamu, I N; Saheeb, B D; Edetanlen, B E

    2013-09-01

    To compare the use of the 810nm diode laser with conventional surgery in the management of soft tissue mucogingival problems associated with orthodontic treatment. Orthodontic patients requiring different soft tissue surgical procedures were randomly assigned to receive conventional surgery or soft tissue diode laser, (wavelength 810 nm). Parameters documented include the type of anaesthesia used, intra and post operative pain, bleeding, the use of scalpel and sutures. The chi-squared test was used to test for significance at 95% confidence level. Probability values (p-values) less than 0.05 were regarded as significant. Only 2(16.7%) of the procedures carried out with the soft tissue laser required infiltration anaesthesia compared to 10 (90.9%) with conventional surgery and this was significant (Pdiode laser (Pdiode laser. No sutures were used in all soft tissue cases managed with the diode laser and this was significant (Plaser compared with conventional surgery. Orthodontic patients treated with the diode laser required less infiltration anaesthesia, had reduced bleeding during and after surgery, rapid postoperative haemostasis, elimination of the need for sutures and an improved postoperative comfort and healing.

  5. Oral paracetamol and/or ibuprofen for treating pain after soft tissue injuries: Single centre double-blind, randomised controlled clinical trial.

    Directory of Open Access Journals (Sweden)

    Kevin K C Hung

    Full Text Available Soft tissue injuries commonly present to the emergency department (ED, often with acute pain. They cause significant suffering and morbidity if not adequately treated. Paracetamol and ibuprofen are commonly used analgesics, but it remains unknown if either one or the combination of both is superior for pain control.To investigate the analgesic effect of paracetamol, ibuprofen and the combination of both in the treatment of soft tissue injury in an ED, and the side effect profile of these drugs.Double-blind, double dummy, placebo-controlled randomised controlled trial. 782 adult patients presenting with soft tissue injury without obvious fractures attending the ED of a university hospital in the New Territories of Hong Kong were recruited. Patients were randomised using a random number table into three parallel arms of paracetamol only, ibuprofen only and a combination of paracetamol and ibuprofen in a 1:1:1 ratio. The primary outcome measure was pain score at rest and on activity in the first 2 hours and first 3 days. Data was analysed on an intention to treat basis.There was no statistically significant difference in pain score in the initial two hours between the three groups, and no clinically significant difference in pain score in the first three days.There was no difference in analgesic effects or side effects observed using oral paracetamol, ibuprofen or a combination of both in patients with mild to moderate pain after soft tissue injuries attending the ED.The study is registered with ClinicalTrials.gov (no. NCT00528658.

  6. Oral paracetamol and/or ibuprofen for treating pain after soft tissue injuries: Single centre double-blind, randomised controlled clinical trial.

    Science.gov (United States)

    Hung, Kevin K C; Graham, Colin A; Lo, Ronson S L; Leung, Yuk Ki; Leung, Ling Yan; Man, S Y; Woo, W K; Cattermole, Giles N; Rainer, Timothy H

    2018-01-01

    Soft tissue injuries commonly present to the emergency department (ED), often with acute pain. They cause significant suffering and morbidity if not adequately treated. Paracetamol and ibuprofen are commonly used analgesics, but it remains unknown if either one or the combination of both is superior for pain control. To investigate the analgesic effect of paracetamol, ibuprofen and the combination of both in the treatment of soft tissue injury in an ED, and the side effect profile of these drugs. Double-blind, double dummy, placebo-controlled randomised controlled trial. 782 adult patients presenting with soft tissue injury without obvious fractures attending the ED of a university hospital in the New Territories of Hong Kong were recruited. Patients were randomised using a random number table into three parallel arms of paracetamol only, ibuprofen only and a combination of paracetamol and ibuprofen in a 1:1:1 ratio. The primary outcome measure was pain score at rest and on activity in the first 2 hours and first 3 days. Data was analysed on an intention to treat basis. There was no statistically significant difference in pain score in the initial two hours between the three groups, and no clinically significant difference in pain score in the first three days. There was no difference in analgesic effects or side effects observed using oral paracetamol, ibuprofen or a combination of both in patients with mild to moderate pain after soft tissue injuries attending the ED. The study is registered with ClinicalTrials.gov (no. NCT00528658).

  7. Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, Q; Snyder, J; Wang, C; Guceri, S; Sun, W [Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA (United States); Timmer, M; Hammer, J, E-mail: sunwei@drexel.edu [Advanced Technologies and Regenerative Medicine, Somerville, NJ (United States)

    2011-09-15

    In the field of biofabrication, tissue engineering and regenerative medicine, there are many methodologies to fabricate a building block (scaffold) which is unique to the target tissue or organ that facilitates cell growth, attachment, proliferation and/or differentiation. Currently, there are many techniques that fabricate three-dimensional scaffolds; however, there are advantages, limitations and specific tissue focuses of each fabrication technique. The focus of this initiative is to utilize an existing technique and expand the library of biomaterials which can be utilized to fabricate three-dimensional scaffolds rather than focusing on a new fabrication technique. An expanded library of biomaterials will enable the precision extrusion deposition (PED) device to construct three-dimensional scaffolds with enhanced biological, chemical and mechanical cues that will benefit tissue generation. Computer-aided motion and extrusion drive the PED to precisely fabricate micro-scaled scaffolds with biologically inspired, porosity, interconnectivity and internal and external architectures. The high printing resolution, precision and controllability of the PED allow for closer mimicry of tissues and organs. The PED expands its library of biopolymers by introducing an assisting cooling (AC) device which increases the working extrusion temperature from 120 to 250 deg. C. This paper investigates the PED with the integrated AC's capabilities to fabricate three-dimensional scaffolds that support cell growth, attachment and proliferation. Studies carried out in this paper utilized a biopolymer whose melting point is established to be 200 deg. C. This polymer was selected to illustrate the newly developed device's ability to fabricate three-dimensional scaffolds from a new library of biopolymers. Three-dimensional scaffolds fabricated with the integrated AC device should illustrate structural integrity and ability to support cell attachment and proliferation.

  8. ORIGINAL ARTICLES Staphylococcus aureus skin and soft-tissue ...

    African Journals Online (AJOL)

    (MRSA) has become a key pathogen in skin and soft-tissue infections. (SSTIs). The emergence of ..... SSTI isolates; (iii) improved hospital infection control guidelines and practices to prevent .... So exposed in the field. And he'll never run off ...

  9. Fabrication of three-dimensional micro-nanofiber structures by a novel solution blow spinning device

    Directory of Open Access Journals (Sweden)

    Feng Liang

    2017-02-01

    Full Text Available The fabrication of three-dimensional scaffolds has attracted more attention in tissue engineering. The purpose of this study is to explore a new method for the fabrication of three-dimensional micro-nanofiber structures by combining solution blow spinning and rotating collector. In this study, we successfully fabricated fibers with a minimum diameter of 200 nm and a three-dimensional structure with a maximum porosity of 89.9%. At the same time, the influence of various parameters such as the solvent volatility, the shape of the collector, the feed rate of the solution and the applied gas pressure were studied. It is found that solvent volatility has large effect on the formation of the three-dimensional shape of the structure. The shape of the collector affects the porosity and fiber distribution of the three-dimensional structure. The fiber diameter and fiber uniformity can be controlled by adjusting the solution feed rate and the applied gas pressure. It is feasible to fabricate high-quality three-dimensional micro-nanofiber structure by this new method, which has great potential in tissue engineering.

  10. Rationalisation and Validation of an Acrylamide-Free Procedure in Three-Dimensional Histological Imaging

    Science.gov (United States)

    Lai, Hei Ming; Liu, Alan King Lun; Ng, Wai-Lung; DeFelice, John; Lee, Wing Sang; Li, Heng; Li, Wen; Ng, Ho Man; Chang, Raymond Chuen-Chung; Lin, Bin; Wu, Wutian; Gentleman, Steve M.

    2016-01-01

    Three-dimensional visualization of intact tissues is now being achieved by turning tissues transparent. CLARITY is a unique tissue clearing technique, which features the use of detergents to remove lipids from fixed tissues to achieve optical transparency. To preserve tissue integrity, an acrylamide-based hydrogel has been proposed to embed the tissue. In this study, we examined the rationale behind the use of acrylamide in CLARITY, and presented evidence to suggest that the omission of acrylamide-hydrogel embedding in CLARITY does not alter the preservation of tissue morphology and molecular information in fixed tissues. We therefore propose a novel and simplified workflow for formaldehyde-fixed tissue clearing, which will facilitate the laboratory implementation of this technique. Furthermore, we have investigated the basic tissue clearing process in detail and have highlighted some areas for targeted improvement of technologies essential for the emerging subject of three-dimensional histology. PMID:27359336

  11. Diffusion-weighted imaging for the cellularity assessment and matrix characterization of soft tissue tumour.

    Science.gov (United States)

    Robba, Tiziana; Chianca, Vito; Albano, Domenico; Clementi, Valeria; Piana, Raimondo; Linari, Alessandra; Comandone, Alessandro; Regis, Guido; Stratta, Maurizio; Faletti, Carlo; Borrè, Alda

    2017-11-01

    To evaluate whether apparent diffusion coefficient (ADC) of diffusion-weighted imaging (DWI) is able to investigate the histological features of soft tissue tumours. We reviewed MRIs of soft tissue tumours performed from 2012 to 2015 to calculate the average ADCs. We included 46 patients (27 male; mean age: 57 years, range 12-85 years) with histologically proven soft tissue tumours (10 benign, 2 intermediate 34 malignant) grouped into eight tumour type classes. An experienced pathologist assigned a semi-quantitative cellularity score (very high, high, medium and low) and tumour grading. The t test, ANOVA and linear regression were used to correlate ADC with clinicopathological data. Approximate receiver operating characteristic curves were created to predict possible uses of ADC to differentiate benign from malignant tumours. There was a significant difference (p < 0.01) in ADCs between these three groups excluding myxoid sarcomas. A significant difference was also evident between the tumour type classes (p < 0.001), grade II and III myxoid lesions (p < 0.05), tumour grading classes (p < 0.001) and cellularity scores classes (p < 0.001), with the lowest ADCs in the very high cellularity. While the linear regression analysis showed a significant relationship between ADC and tumour cellularity (r = 0.590, p ≤ 0.05) and grading (r = 0.437, p ≤ 0.05), no significant relationship was found with age, gender, tumour size and histological subtype. An optimal cut-off ADC value of 1.45 × 10 -3 mm 2 /s with 76.8% accuracy was found to differentiate benign from malignant tumours. DWI may offer adjunctive information about soft tissue tumours, but its clinical role is still to be defined.

  12. Predictors of favorable soft tissue profile outcomes following Class II Twin-block treatment.

    Science.gov (United States)

    Kim, Ji-Eun; Mah, Su-Jung; Kim, Tae-Woo; Kim, Su-Jung; Park, Ki-Ho; Kang, Yoon-Goo

    2018-01-01

    The aim of this study was to determine cephalometric factors that help predict favorable soft-tissue profile outcomes following treatment with the Class II Twin-block appliance. Pre- and post-treatment lateral cephalograms of 45 patients treated with the Class II Twin-block appliance were retrospectively analyzed. Profile silhouettes were drawn from the cephalograms and evaluated by three orthodontists in order to determine the extent of improvement. Samples were divided into a favorable group (upper 30% of visual analogue scale [VAS] scores, n = 14) and an unfavorable group (lower 30% of VAS scores, n = 14). Skeletal and soft-tissue measurements were performed on the cephalograms and an intergroup comparison was conducted. An independent t -test revealed that the following pre-treatment values were lower in the favorable group compared to the unfavorable group: lower incisor to mandibular plane angle, lower incisor to pogonion distance, point A-nasion-point B angle, sella-nasion line (SN) to maxillary plane angle, SN to mandibular plane angle, gonial angle, and symphysis inclination. The favorable group had a larger incisor inclination to occlusal plane. Moreover, the favorable group showed larger post-treatment changes in gonial angle, B point projection, and pogonion projection than did the unfavorable group. Class II malocclusion patients with a low divergent skeletal pattern and reduced lower incisor protrusions are likely to show more improvement in soft-tissue profile outcomes following Class II Twin-block treatment.

  13. Trochanteric Soft Tissue Thickness and Hip Fracture in Older Men

    OpenAIRE

    Nielson, Carrie M.; Bouxsein, Mary L.; Freitas, Sinara S.; Ensrud, Kristine E.; Orwoll, Eric S.

    2009-01-01

    Background: Greater thickness of the tissue extending laterally from the greater trochanter has been associated with a lower risk of hip fracture in women. The effect of trochanteric soft tissue thickness on the risk of incident hip fracture has not been evaluated in men.

  14. Simultaneous characterization of pancreatic stellate cells and other pancreatic components within three-dimensional tissue environment during chronic pancreatitis

    Science.gov (United States)

    Hu, Wenyan; Fu, Ling

    2013-05-01

    Pancreatic stellate cells (PSCs) and other pancreatic components that play a critical role in exocrine pancreatic diseases are generally identified separately by conventional studies, which provide indirect links between these components. Here, nonlinear optical microscopy was evaluated for simultaneous characterization of these components within a three-dimensional (3-D) tissue environment, primarily based on multichannel detection of intrinsic optical emissions and cell morphology. Fresh rat pancreatic tissues harvested at 1 day, 7 days, and 28 days after induction of chronic pancreatitis were imaged, respectively. PSCs, inflammatory cells, blood vessels, and collagen fibers were identified simultaneously. The PSCs at day 1 of chronic pancreatitis showed significant enlargement compared with those in normal pancreas (ppancreatic components coincidently within 3-D pancreatic tissues. It is a prospect for intravital observation of dynamic events under natural physiological conditions, and might help uncover the key mechanisms of exocrine pancreatic diseases, leading to more effective treatments.

  15. Photoacoustic imaging in both soft and hard biological tissue

    International Nuclear Information System (INIS)

    Li, T; Dewhurst, R J

    2010-01-01

    To date, most Photoacoustic (PA) imaging results have been from soft biotissues. In this study, a PA imaging system with a near-infrared pulsed laser source has been applied to obtain 2-D and 3-D images from both soft tissue and post-mortem dental samples. Imaging results showed that the PA technique has the potential to image human oral disease, such as early-stage teeth decay. For non-invasive photoacoustic imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. Several simulations based on the thermoelastic effect have been applied to predict initial temperature and pressure fields within a tooth sample. Predicted initial temperature and pressure rises are below corresponding safety limits.

  16. Prevalence of Malignant Soft Tissue Tumors inExtremities: An Epidemiological Study in Syria

    Directory of Open Access Journals (Sweden)

    Habib Reshadi

    2014-06-01

    Full Text Available Background:   Although the majority of soft tissue masses are benign, it is important to consider malignancy in differential diagnoses. Because most soft tissue sarcomas present as a painless mass, clinicians must watch for signs suggestive of malignancy, including large size, rapid growth, and site deep into the deep fascia.The purpose of this study was to determine the relative prevalence according to sex and age, site of tumor, skeletal distribution, and treatment (surgery, chemotherapy and radiotherapy before and after surgery, and ascertain the relative frequency of these tumors in specific anatomic sites and age groups based on pathological studies. Methods: A total of 308 patients, with a musculoskeletal tumor were evaluated retrospectively. All of the patients enrolled into this study were referred to the Beirouni Hospital of Damascus University with a proven diagnosis of alignant soft tissue tumors from the beginning of January 2008 until the end of 2010. The prevalence of the malignant soft tissue tumors in these patients was analyzed. For purposes of analysis, all lesions were placed in 1 of 9 categories: hand and wrist, forearm, humorous (arm, proximal limb girdle (axilla and shoulder, foot and ankle, thigh, hip and buttocks region, trunk, and other lesions. Age and sex also were recorded. Results: Malignant tumors consisted of seven diagnostic categories: malignant fibrous histiocytoma (23%, liposarcoma (22%, rhabdomyosarcoma (9%, leiomyosarcoma (8%, malignant schwannoma (5%, dermatofibrosarcoma protuberans (5%, synovial sarcoma (10%, fibrosarcoma (13%, extraskeletal chondrosarcoma (1%, and extraskeletal Ewing sarcoma (4%. Conclusions: Despite the multitude of pathologic possibilities, most malignant soft-tissue tumors are classified into a small number of diagnoses. These may be further defined when the site of the lesion and the age of the patient are considered. Knowledge of tumor prevalence will assist radiologists in

  17. Prevalence of Malignant Soft Tissue Tumors inExtremities: An Epidemiological Study in Syria

    Directory of Open Access Journals (Sweden)

    Habib Reshadi

    2014-06-01

    Full Text Available Background:   Although the majority of soft tissue masses are benign, it is important to consider malignancy in differential diagnoses. Because most soft tissue sarcomas present as a painless mass, clinicians must watch for signs suggestive of malignancy, including large size, rapid growth, and site deep into the deep fascia.The purpose of this study was to determine the relative prevalence according to sex and age, site of tumor, skeletal distribution, and treatment (surgery, chemotherapy and radiotherapy before and after surgery, and ascertain the relative frequency of these tumors in specific anatomic sites and age groups based on pathological studies. Methods: A total of 308 patients, with a musculoskeletal tumor were evaluated retrospectively. All of the patients enrolled into this study were referred to the Beirouni Hospital of Damascus University with a proven diagnosis of alignant soft tissue tumors from the beginning of January 2008 until the end of 2010. The prevalence of the malignant soft tissue tumors in these patients was analyzed. For purposes of analysis, all lesions were placed in 1 of 9 categories: hand and wrist, forearm, humorous (arm, proximal limb girdle (axilla and shoulder, foot and ankle, thigh, hip and buttocks region, trunk, and other lesions. Age and sex also were recorded. Results: Malignant tumors consisted of seven diagnostic categories: malignant fibrous histiocytoma (23%, liposarcoma (22%, rhabdomyosarcoma (9%, leiomyosarcoma (8%, malignant schwannoma (5%, dermatofibrosarcoma protuberans (5%, synovial sarcoma (10%, fibrosarcoma (13%, extraskeletal chondrosarcoma (1%, and extraskeletal Ewing sarcoma (4%. Conclusions: Despite the multitude of pathologic possibilities, most malignant soft-tissue tumors are classified into a small number of diagnoses. These may be further defined when the site of the lesion and the age of the patient are considered. Knowledge of tumor prevalence will assist radiologists in

  18. Soft tissue recurrence of giant cell tumor of the bone: Prevalence and radiographic features

    Directory of Open Access Journals (Sweden)

    Leilei Xu

    2017-11-01

    Full Text Available Aim: Recurrence of giant cell tumor of bone (GCTB in the soft tissue is rarely seen in the clinical practice. This study aims to determine the prevalence of soft tissue recurrence of GCTB, and to characterize its radiographic features. Methods: A total of 291 patients treated by intralesional curettage for histologically diagnosed GCTB were reviewed. 6 patients were identified to have the recurrence of GCTB in the soft tissue, all of whom had undergone marginal resection of the lesion. Based on the x-ray, CT and MRI imaging, the radiographic features of soft tissue recurrence were classified into 3 types. Type I was defined as soft tissue recurrence with peripheral ossification, type II was defined as soft tissue recurrence with central ossification, and type III was defined as pure soft tissue recurrence without ossification. Demographic data including period of recurrence and follow-up duration after the second surgery were recorded for these 6 patients. Musculoskeletal Tumor Society (MSTS scoring system was used to evaluate functional outcomes. Results: The overall recurrence rate was 2.1% (6/291. The mean interval between initial surgery and recurrence was 11.3 ± 4.1 months (range, 5–17. The recurrence lesions were located in the thigh of 2 patients, in the forearm of 2 patients and in the leg of the other 2 patients. According to the classification system mentioned above, 2 patients were classified with type I, 1 as type II and 3 as type III. After the marginal excision surgery, all patients were consistently followed up for a mean period of 13.4 ± 5.3 months (range, 6–19, with no recurrence observed at the final visit. All the patients were satisfied with the surgical outcome. According to the MSTS scale, the mean postoperative functional score was 28.0 ± 1.2 (range, 26–29. Conclusions: The classification of soft tissue recurrence of GCTB may be helpful for the surgeon to select the appropriate imaging procedure to

  19. Soft tissue angiofibroma: Clinicopathologic, immunohistochemical and molecular analysis of 14 cases.

    Science.gov (United States)

    Bekers, Elise M; Groenen, Patricia J T A; Verdijk, Marian A J; Raaijmakers-van Geloof, Winny L; Roepman, Paul; Vink, Robert; Gilhuijs, Nathalie D B; van Gorp, Joost M; Bovée, Judith V M G; Creytens, David H; Flanagan, Adrienne M; Suurmeijer, Albert J H; Mentzel, Thomas; Arbajian, Elsa; Flucke, Uta

    2017-10-01

    Soft tissue angiofibroma is rare and has characteristic histomorphological and genetic features. For diagnostic purposes, there are no specific antibodies available. Fourteen lesions (6 females, 8 males; age range 7-67 years) of the lower extremities (12) and trunk (2) were investigated by immunohistochemistry, including for the first time NCOA2. NCOA2 was also tested in a control group of other spindle cell lesions. The known fusion-genes (AHRR-NCOA2 and GTF2I-NCOA2) were examined using RT-PCR in order to evaluate their diagnostic value. Cases in which no fusion gene was detected were additionally analysed by RNA sequencing. All cases tested showed nuclear expression of NCOA2. However, this was not specific since other spindle cell neoplasms also expressed this marker in a high percentage of cases. Other variably positive markers were EMA, SMA, desmin and CD34. STAT6 was negative in the cases tested. By RT-PCR for the most frequently observed fusions, an AHRR-NCOA2 fusion transcript was found in 9/14 cases. GTF2I-NCOA2 was not detected in the remaining cases (n = 3). RNA sequencing revealed three additional positive cases; two harbored a AHRR-NCOA2 fusion and one case a novel GAB1-ABL1 fusion. Two cases failed molecular analysis due to poor RNA quality. In conclusion, the AHRR-NCOA2 fusion is a frequent finding in soft tissue angiofibroma, while GTF2I-NCOA2 seems to be a rare genetic event. For the first time, we report a GAB1-ABL1 fusion in a soft tissue angiofibroma of a child. Nuclear expression of NCOA2 is not discriminating when compared with other spindle cell neoplasms. © 2017 Wiley Periodicals, Inc.

  20. Pitfalls in soft tissue sarcoma imaging: chronic expanding hematomas.

    Science.gov (United States)

    Jahed, Kiarash; Khazai, Behnaz; Umpierrez, Monica; Subhawong, Ty K; Singer, Adam D

    2018-01-01

    Solid or nodular enhancement is typical of soft tissue sarcomas although high grade soft tissue sarcomas and those with internal hemorrhage often appear heterogeneous with areas of nonenhancement and solid or nodular enhancement. These MRI findings often prompt an orthopedic oncology referral, a biopsy or surgery. However, not all masses with these imaging findings are malignant. We report the multimodality imaging findings of two surgically proven chronic expanding hematomas (CEH) with imaging features that mimicked sarcomas. A third case of nonenhancing CEH of the lower extremity is also presented as a comparison. It is important that in the correct clinical scenario with typical imaging findings, the differential diagnosis of a chronic expanding hematoma be included in the workup of these patients. An image-guided biopsy of nodular tissue within such masses that proves to be negative for malignancy should not necessarily be considered discordant. A correct diagnosis may prevent a morbid unnecessary surgery and may indicate the need for a conservative noninvasive follow-up with imaging.

  1. Three-dimensional bioprinting of thick vascularized tissues

    Science.gov (United States)

    Kolesky, David B.; Homan, Kimberly A.; Skylar-Scott, Mark A.; Lewis, Jennifer A.

    2016-03-01

    The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tissues that only survive for short durations. To improve their physiological relevance, we report a method for bioprinting 3D cell-laden, vascularized tissues that exceed 1 cm in thickness and can be perfused on chip for long time periods (>6 wk). Specifically, we integrate parenchyma, stroma, and endothelium into a single thick tissue by coprinting multiple inks composed of human mesenchymal stem cells (hMSCs) and human neonatal dermal fibroblasts (hNDFs) within a customized extracellular matrix alongside embedded vasculature, which is subsequently lined with human umbilical vein endothelial cells (HUVECs). These thick vascularized tissues are actively perfused with growth factors to differentiate hMSCs toward an osteogenic lineage in situ. This longitudinal study of emergent biological phenomena in complex microenvironments represents a foundational step in human tissue generation.

  2. Detection of EWS/FLI-1 fusion in non-Ewing soft tissue tumors.

    Science.gov (United States)

    Trancău, I O; Huică, R; Surcel, M; Munteanu, A; Ursaciuc, C

    2015-01-01

    EWS/FLI-1 fusion mainly appears in Ewing's sarcoma or the primitive neuroectodermal tumors and represents a genomic marker for these tumors. However, it can appear with lower frequency in other soft tissue tumors. The paper investigates the presence of EWS/FLI-1 fusion in clinically diagnosed sarcoma belonging to different non-Ewing connective tissue tumors in order to search for a possible new biomarker valuable for investigators. 20 patients with soft tissue tumors, who underwent surgery, were tested. Intra-operative samples of normal and tumor tissue were collected for histopathological diagnosis and genetics determinations. The patients' RNA from tumor and normal peritumoral tissue was extracted and EWS/FLI-1 fusion screened by quantitative real-time PCR. The relative expression of the fusion in the tumor sample was compared to the similar expression in normal tissue. The amplification in the threshold zone was shown by 5 samples (25%): 2 clear cell sarcoma, 1 fibrosarcoma, 1 malignant tumor of nerve sheath, 1 metastatic adenocarcinoma. We differentiated between the unspecific amplification and concluded that these are weak positive results. Genomic investigation may establish the tumor malignancy and its possible affiliation earlier than histopathology. It can support the screening of EWS/FLI-1 fusion in a larger variety of clinically diagnosed soft tissue tumors.

  3. Ischiogluteal bursitis mimicking soft-tissue metastasis from a renal cell carcinoma

    International Nuclear Information System (INIS)

    Voelk, M.; Gmeinwieser, J.; Manke, C.; Strotzer, M.; Hanika, H.

    1998-01-01

    We report a case of ischiogluteal bursitis mimicking a soft-tissue metastasis from a renal cell carcinoma. A 66-year-old woman suffered from pain over the left buttock 6 months after she was operated on for renal cell carcinoma of the left kidney. CT of the abdomen and pelvis revealed a tumor-like lesion adjacent to the left os ischii, which was suspected to be a soft-tissue metastasis. Percutaneous biopsy revealed no evidence of malignancy, but the histopathological diagnosis of chronic bursitis. (orig.)

  4. Preliminary experience using dynamic MRI at 3.0 Tesla for evaluation of soft tissue tumors.

    Science.gov (United States)

    Park, Michael Yong; Jee, Won-Hee; Kim, Sun Ki; Lee, So-Yeon; Jung, Joon-Yong

    2013-01-01

    We aimed to evaluate the use of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) at 3.0 T for differentiating the benign from malignant soft tissue tumors. Also we aimed to assess whether the shorter length of DCE-MRI protocols are adequate, and to evaluate the effect of temporal resolution. Dynamic contrast-enhanced magnetic resonance imaging, at 3.0 T with a 1 second temporal resolution in 13 patients with pathologically confirmed soft tissue tumors, was analyzed. Visual assessment of time-signal curves, subtraction images, maximal relative enhancement at the first (maximal peak enhancement [Emax]/1) and second (Emax/2) minutes, Emax, steepest slope calculated by using various time intervals (5, 30, 60 seconds), and the start of dynamic enhancement were analyzed. The 13 tumors were comprised of seven benign and six malignant soft tissue neoplasms. Washout on time-signal curves was seen on three (50%) malignant tumors and one (14%) benign one. The most discriminating DCE-MRI parameter was the steepest slope calculated, by using at 5-second intervals, followed by Emax/1 and Emax/2. All of the steepest slope values occurred within 2 minutes of the dynamic study. Start of dynamic enhancement did not show a significant difference, but no malignant tumor rendered a value greater than 14 seconds. The steepest slope and early relative enhancement have the potential for differentiating benign from malignant soft tissue tumors. Short-length rather than long-length DCE-MRI protocol may be adequate for our purpose. The steepest slope parameters require a short temporal resolution, while maximal peak enhancement parameter may be more optimal for a longer temporal resolution.

  5. Three-dimensional CT endoscopic images of the larynx. Clinical application of helical CT

    International Nuclear Information System (INIS)

    Yumoto, Eiji; Sanuki, Tetsuji; Yasuhara, Yoshifumi; Ochi, Takashi

    1998-01-01

    Twenty-seven patients with several laryngeal ailments underwent helical computed tomography (CT) on 37 occasions. Ten of these 27 patients suffered from unilateral vocal fold paralysis (UVFP). Three-dimensional (3D) images of the laryngeal lumen viewed from various angles were produced for all sets of CT volumetric data, except for three which contained excessive motion artifacts. The present paper examined whether 3D endoscopic images could offer useful diagnostic and therapeutic information about UVFP. The 3D endoscopic images viewed from the tracheal side and the hemilaryngeal images viewed from the opposite side could delineate the vocal folds, ventricular fold and ventricle three-dimensionally. Atrophy and hypotonic changes to the vocal fold and expansion of the ventricle on the affected side were clearly shown. The 3D endoscopic images accurately showed the phonosurgical effects on the laryngeal structures. The 3D endoscopic images could be produced even when the vocal folds could not be observed with conventional endoscopy due to their overadduction. Multiplanar reconstruction (MPR) images in the coronal plane were reconstructed at a right angle to the glottic axis when the whole larynx was deviated. In addition, coronal MPR images showed a better resolution among the different layers of the vocal fold soft tissue than X-ray tomography. In conclusion, 3D endoscopic images combined with coronal MPR images can provide useful diagnostic an therapeutic information about UVFP, although motion artifacts may occur. (author)

  6. Optically-tracked handheld fluorescence imaging platform for monitoring skin response in the management of soft tissue sarcoma

    Science.gov (United States)

    Chamma, Emilie; Qiu, Jimmy; Lindvere-Teene, Liis; Blackmore, Kristina M.; Majeed, Safa; Weersink, Robert; Dickie, Colleen I.; Griffin, Anthony M.; Wunder, Jay S.; Ferguson, Peter C.; DaCosta, Ralph S.

    2015-07-01

    Standard clinical management of extremity soft tissue sarcomas includes surgery with radiation therapy. Wound complications (WCs) arising from treatment may occur due to bacterial infection and tissue breakdown. The ability to detect changes in these parameters during treatment may lead to earlier interventions that mitigate WCs. We describe the use of a new system composed of an autofluorescence imaging device and an optical three-dimensional tracking system to detect and coregister the presence of bacteria with radiation doses. The imaging device visualized erythema using white light and detected bacterial autofluorescence using 405-nm excitation light. Its position was tracked relative to the patient using IR reflective spheres and registration to the computed tomography coordinates. Image coregistration software was developed to spatially overlay radiation treatment plans and dose distributions on the white light and autofluorescence images of the surgical site. We describe the technology, its use in the operating room, and standard operating procedures, as well as demonstrate technical feasibility and safety intraoperatively. This new clinical tool may help identify patients at greater risk of developing WCs and investigate correlations between radiation dose, skin response, and changes in bacterial load as biomarkers associated with WCs.

  7. Use of a gentamicin-impregnated collagen sheet (Collatamp(®)) in the management of major soft tissue complications in pediatric cochlear implants.

    Science.gov (United States)

    Benito-González, Fernando; Benito, Jose; Sánchez, Luis Alberto Guardado; Estevez Alonso, Santiago; Muñoz Herrera, Angel; Batuecas-Caletrio, Angel

    2014-09-01

    The objective was to report the effectiveness of salvage treatment in soft tissue infection around cochlear implants with an absorbable gentamicin collagen sheet and a periosteum and skin rotation flaps. Three patients with cochlear implant and persistent surrounding soft tissue infection are included. All of them underwent antibiotic treatment prior to surgery without any response. In this study preoperative and postoperative audiograms were practiced. Surgical excision of infectious skin and a periosteum and skin rotation flaps were performed. The cochlear implant was refixed in the temporal bone and a gentamicin-impregnated collagen sheet was located covering the cochlear implant. headings In all patients with soft tissue infection around the cochlear implant, infection was completely resolved. It was not necessary to remove the device in any case. The use of an absorbable gentamicin-impregnated collagen sheet is not described for the management of soft tissue complications in pediatric cochlear implant patients. The local application of high concentrations of antibiotic administered by this sheet may be effective against resistant bacteria and, in conjunction with surgery, may resolve this type of complications.

  8. Platelet-Rich Fibrin and Soft Tissue Wound Healing: A Systematic Review.

    Science.gov (United States)

    Miron, Richard J; Fujioka-Kobayashi, Masako; Bishara, Mark; Zhang, Yufeng; Hernandez, Maria; Choukroun, Joseph

    2017-02-01

    The growing multidisciplinary field of tissue engineering aims at predictably regenerating, enhancing, or replacing damaged or missing tissues for a variety of conditions caused by trauma, disease, and old age. One area of research that has gained tremendous awareness in recent years is that of platelet-rich fibrin (PRF), which has been utilized across a wide variety of medical fields for the regeneration of soft tissues. This systematic review gathered all the currently available in vitro, in vivo, and clinical literature utilizing PRF for soft tissue regeneration, augmentation, and/or wound healing. In total, 164 publications met the original search criteria, with a total of 48 publications meeting inclusion criteria (kappa score = 94%). These studies were divided into 7 in vitro, 11 in vivo, and 31 clinical studies. In summary, 6 out of 7 (85.7%) and 11 out of 11 (100%) of the in vitro and in vivo studies, respectively, demonstrated a statistically significant advantage for combining PRF to their regenerative therapies. Out of the remaining 31 clinical studies, a total of 8 reported the effects of PRF in a randomized clinical trial, with 5 additional studies (13 total) reporting appropriate controls. In those clinical studies, 9 out of the 13 studies (69.2%) demonstrated a statistically relevant positive outcome for the primary endpoints measured. In total, 18 studies (58% of clinical studies) reported positive wound-healing events associated with the use of PRF, despite using controls. Furthermore, 27 of the 31 clinical studies (87%) supported the use of PRF for soft tissue regeneration and wound healing for a variety of procedures in medicine and dentistry. In conclusion, the results from the present systematic review highlight the positive effects of PRF on wound healing after regenerative therapy for the management of various soft tissue defects found in medicine and dentistry.

  9. Angular photogrammetric analysis of the soft-tissue facial profile of Indian adults

    Directory of Open Access Journals (Sweden)

    K Saravana Pandian

    2018-01-01

    Full Text Available Introduction: Soft-tissue analysis has become an important component of orthodontic diagnosis and treatment planning. Photographic evaluation of an orthodontic patient is a very close representation of the appearance of the person. The previously established norms for soft-tissue analysis will vary for different ethnic groups. Thus, there is a need to develop soft-tissue facial profile norms pertaining to Indian ethnic groups. Aim and Objectives: The aim of this study is to establish the angular photogrammetric standards of soft-tissue facial profile for Indian males and females and also to compare sexual dimorphism present between them. Materials and Methods: The lateral profile photographs of 300 random participants (150 males and 150 females between ages 18 and 25 years were taken and analyzed using FACAD tracing software. Inclusion criteria were angles Class I molar occlusion with acceptable crowding and proclination, normal growth and development with well-aligned dental arches, and full complements of permanent teeth irrespective of third molar status. This study was conducted in Indian population, and samples were taken from various cities across India. Descriptive statistical analysis was carried out, and sexual dimorphism was evaluated by Student's t-test between males and females. Results: The results of the present study showed statistically significant (P < 0.05 gender difference in 5 parameters out of 12 parameters in Indian population. Conclusion: In the present study, soft-tissue facial measurements were established by means of photogrammetric analysis to facilitate orthodontists to carry out more quantitative evaluation and make disciplined decisions. The mean values obtained can be used for comparison with records of participants with the same characteristics by following this photogrammetric technique.

  10. Radiological evaluation of the fetal face using three-dimensional ultrasound imaging

    Directory of Open Access Journals (Sweden)

    Bäumler M

    2012-12-01

    Full Text Available Marcel Bäumler,1–3 Michèle Bigorre,1,4 Jean-Michel Faure1,51CHU Montpellier, Centre de Compétence des Fentes Faciales, Hôpital Lapeyronie, Montpellier, 2Clinique du Parc, Imagerie de la Femme, Castelnau-le-Lez, 3Cabinet de Radiologie du Trident, Lunel, 4CHU Service de Chirurgie Plastique Pédiatrique, Hôpital Lapeyronie, Montpellier, 5CHU Montpellier, Service de Gynécologie-Obstétrique, Hôpital Arnaud de Villeneuve, Montpellier, FranceAbstract: This paper reviews screening and three-dimensional diagnostic ultrasound imaging of the fetal face. The different techniques available for analyzing biometric and morphological items of the profile, eyes, ears, lips, and hard and soft palate are commented on and briefly compared with the respective bi-dimensional techniques. The available literature supports the use of three-dimensional ultrasound in difficult prenatal diagnostic conditions because of its diagnostic accuracy, enabling improved safety of perinatal care. Globally, a marked increase has been observed in the accuracy of three-dimensional ultrasound in comparison with the bi-dimensional approach. Because there is no consensus about the performance of the different three-dimensional techniques, future studies are needed in order to compare them and to find the best technique for analysis of each of the respective facial elements. Universal prenatal standards may integrate these potential new findings in the future. At this time, the existing guidelines for prenatal facial screening should not be changed.Keywords: prenatal three-dimensional ultrasound, prenatal screening, prenatal diagnosis, cleft lip and palate, fetal profile, retrognathism

  11. Soft tissue deformation estimation by spatio-temporal Kalman filter finite element method.

    Science.gov (United States)

    Yarahmadian, Mehran; Zhong, Yongmin; Gu, Chengfan; Shin, Jaehyun

    2018-01-01

    Soft tissue modeling plays an important role in the development of surgical training simulators as well as in robot-assisted minimally invasive surgeries. It has been known that while the traditional Finite Element Method (FEM) promises the accurate modeling of soft tissue deformation, it still suffers from a slow computational process. This paper presents a Kalman filter finite element method to model soft tissue deformation in real time without sacrificing the traditional FEM accuracy. The proposed method employs the FEM equilibrium equation and formulates it as a filtering process to estimate soft tissue behavior using real-time measurement data. The model is temporally discretized using the Newmark method and further formulated as the system state equation. Simulation results demonstrate that the computational time of KF-FEM is approximately 10 times shorter than the traditional FEM and it is still as accurate as the traditional FEM. The normalized root-mean-square error of the proposed KF-FEM in reference to the traditional FEM is computed as 0.0116. It is concluded that the proposed method significantly improves the computational performance of the traditional FEM without sacrificing FEM accuracy. The proposed method also filters noises involved in system state and measurement data.

  12. Cost-Effectiveness Analysis of Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy for Preoperative Treatment of Extremity Soft Tissue Sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Richard, Patrick, E-mail: patrjr@uw.edu [Department of Radiation Oncology, University of Washington, Seattle, Washington (United States); Phillips, Mark; Smith, Wade [Department of Radiation Oncology, University of Washington, Seattle, Washington (United States); Davidson, Darin [Department of Orthopedic Surgery, University of Washington, Seattle, Washington (United States); Kim, Edward; Kane, Gabrielle [Department of Radiation Oncology, University of Washington, Seattle, Washington (United States)

    2016-07-01

    Purpose: Create a cost-effectiveness model comparing preoperative intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3DCRT) for extremity soft tissue sarcomas. Methods and Materials: Input parameters included 5-year local recurrence rates, rates of acute wound adverse events, and chronic toxicities (edema, fracture, joint stiffness, and fibrosis). Health-state utilities were used to calculate quality-adjusted life years (QALYs). Overall treatment costs per QALY or incremental cost-effectiveness ratio (ICER) were calculated. Roll-back analysis was performed using average costs and utilities to determine the baseline preferred radiation technique. One-way, 2-way, and probabilistic sensitivity analyses (PSA) were performed for input parameters with the largest impact on the ICER. Results: Overall treatment costs were $17,515.58 for 3DCRT compared with $22,920.51 for IMRT. The effectiveness was higher for IMRT (3.68 QALYs) than for 3DCRT (3.35 QALYs). The baseline ICER for IMRT was $16,842.75/QALY, making it the preferable treatment. The ICER was most sensitive to the probability of local recurrence, upfront radiation costs, local recurrence costs, certain utilities (no toxicity/no recurrence, grade 1 toxicity/no local recurrence, grade 4 toxicity/no local recurrence), and life expectancy. Dominance patterns emerged when the cost of 3DCRT exceeded $15,532.05 (IMRT dominates) or the life expectancy was under 1.68 years (3DCRT dominates). Furthermore, preference patterns changed based on the rate of local recurrence (threshold: 13%). The PSA results demonstrated that IMRT was the preferred cost-effective technique for 64% of trials compared with 36% for 3DCRT. Conclusions: Based on our model, IMRT is the preferred technique by lowering rates of local recurrence, severe toxicities, and improving QALYs. From a third-party payer perspective, IMRT should be a supported approach for extremity soft tissue sarcomas.

  13. Cost-Effectiveness Analysis of Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy for Preoperative Treatment of Extremity Soft Tissue Sarcomas

    International Nuclear Information System (INIS)

    Richard, Patrick; Phillips, Mark; Smith, Wade; Davidson, Darin; Kim, Edward; Kane, Gabrielle

    2016-01-01

    Purpose: Create a cost-effectiveness model comparing preoperative intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3DCRT) for extremity soft tissue sarcomas. Methods and Materials: Input parameters included 5-year local recurrence rates, rates of acute wound adverse events, and chronic toxicities (edema, fracture, joint stiffness, and fibrosis). Health-state utilities were used to calculate quality-adjusted life years (QALYs). Overall treatment costs per QALY or incremental cost-effectiveness ratio (ICER) were calculated. Roll-back analysis was performed using average costs and utilities to determine the baseline preferred radiation technique. One-way, 2-way, and probabilistic sensitivity analyses (PSA) were performed for input parameters with the largest impact on the ICER. Results: Overall treatment costs were $17,515.58 for 3DCRT compared with $22,920.51 for IMRT. The effectiveness was higher for IMRT (3.68 QALYs) than for 3DCRT (3.35 QALYs). The baseline ICER for IMRT was $16,842.75/QALY, making it the preferable treatment. The ICER was most sensitive to the probability of local recurrence, upfront radiation costs, local recurrence costs, certain utilities (no toxicity/no recurrence, grade 1 toxicity/no local recurrence, grade 4 toxicity/no local recurrence), and life expectancy. Dominance patterns emerged when the cost of 3DCRT exceeded $15,532.05 (IMRT dominates) or the life expectancy was under 1.68 years (3DCRT dominates). Furthermore, preference patterns changed based on the rate of local recurrence (threshold: 13%). The PSA results demonstrated that IMRT was the preferred cost-effective technique for 64% of trials compared with 36% for 3DCRT. Conclusions: Based on our model, IMRT is the preferred technique by lowering rates of local recurrence, severe toxicities, and improving QALYs. From a third-party payer perspective, IMRT should be a supported approach for extremity soft tissue sarcomas.

  14. [Real-time PCR in rapid diagnosis of Aeromonas hydrophila necrotizing soft tissue infections].

    Science.gov (United States)

    Kohayagawa, Yoshitaka; Izumi, Yoko; Ushita, Misuzu; Niinou, Norio; Koshizaki, Masayuki; Yamamori, Yuji; Kaneko, Sakae; Fukushima, Hiroshi

    2009-11-01

    We report a case of rapidly progressive necrotizing soft tissue infection and sepsis followed by a patient's death. We suspected Vibrio vulnificus infection because the patient's underlying disease was cirrhosis and the course extremely rapid. No microbe had been detected at death. We extracted DNA from a blood culture bottle. SYBR green I real-time PCR was conducted but could not detect V. vulnificus vvh in the DNA sample. Aeromonas hydrophila was cultured and identified in blood and necrotized tissue samples. Real-time PCR was conducted to detect A. hydrophila ahh1, AHCYTOEN and aerA in the DNA sample extracted from the blood culture bottle and an isolated necrotized tissue strain, but only ahh1 was positive. High-mortality in necrotizing soft tissue infections makes it is crucial to quickly detect V. vulnificus and A. hydrophila. We found real-time PCR for vvh, ahh1, AHCYTOEN, and aerA useful in detecting V. vulnificus and A. hydrophila in necrotizing soft tissue infections.

  15. A Novel Nonlinear Parameter Estimation Method of Soft Tissues

    Directory of Open Access Journals (Sweden)

    Qianqian Tong

    2017-12-01

    Full Text Available The elastic parameters of soft tissues are important for medical diagnosis and virtual surgery simulation. In this study, we propose a novel nonlinear parameter estimation method for soft tissues. Firstly, an in-house data acquisition platform was used to obtain external forces and their corresponding deformation values. To provide highly precise data for estimating nonlinear parameters, the measured forces were corrected using the constructed weighted combination forecasting model based on a support vector machine (WCFM_SVM. Secondly, a tetrahedral finite element parameter estimation model was established to describe the physical characteristics of soft tissues, using the substitution parameters of Young’s modulus and Poisson’s ratio to avoid solving complicated nonlinear problems. To improve the robustness of our model and avoid poor local minima, the initial parameters solved by a linear finite element model were introduced into the parameter estimation model. Finally, a self-adapting Levenberg–Marquardt (LM algorithm was presented, which is capable of adaptively adjusting iterative parameters to solve the established parameter estimation model. The maximum absolute error of our WCFM_SVM model was less than 0.03 Newton, resulting in more accurate forces in comparison with other correction models tested. The maximum absolute error between the calculated and measured nodal displacements was less than 1.5 mm, demonstrating that our nonlinear parameters are precise.

  16. [Application advances of three-dimensional bioprinting in burn and plastic surgery field].

    Science.gov (United States)

    Li, R B; Li, M X; Guo, G H; Zhang, H Y

    2017-10-20

    Three-dimensional bioprinting is one of the latest and fastest growing technologies in the medical field. It has been implemented to print part of the transplantable tissues and organs, such as skin, ear, and bone. This paper introduces the application status, challenges, and application prospect of three-dimensional bioprinting in burn and plastic surgery field.

  17. [Microbiological diagnosis of infections of the skin and soft tissues].

    Science.gov (United States)

    Burillo, Almudena; Moreno, Antonio; Salas, Carlos

    2007-11-01

    Skin and soft tissue infections are often seen in clinical practice, yet their microbiological diagnosis is among the most complex of laboratory tasks. The diagnosis of a skin and a soft tissue infection is generally based on clinical criteria and not microbiological results. A microbiological diagnosis is reserved for cases in which the etiology of infection is required, e.g., when the infection is particularly severe, when less common microorganisms are suspected as the causative agent (e.g. in immunocompromised patients), when response to antimicrobial treatment is poor, or when a longstanding wound does not heal within a reasonable period of time. We report the indications, sampling and processing techniques, and interpretation criteria for various culture types, including quantitative cultures from biopsy or tissue specimens and semiquantitative and qualitative cultures performed on all types of samples. For non-invasive samples taken from open wounds, application of the Q index to Gram stains is a cost-effective way to standardize sample quality assessment and interpretation of the pathogenic involvement of the different microorganisms isolated from cultures. All these issues are covered in the SEIMC microbiological procedure number 22: Diagnóstico microbiológico de las infecciones de piel y tejidos blandos (Microbiological diagnosis of infections of the skin and soft tissues) (2nd ed., 2006, www.seimc.org/protocolos/microbiologia).

  18. Detection of radiographically occult-ankle fractures. Positive predictive value of post-traumatic soft-tissue swelling

    International Nuclear Information System (INIS)

    Kumar, M.; Caruana, E.

    2000-01-01

    The objective of this study was to assess the value of soft-tissue swelling on plain radiographs as a predictor of radiographically occult fracture, after acute ankle injury (trauma). Patients with acute ankle trauma and plain radiographic evidence of soft-tissue swelling were included in this study. Patients were excluded if ankle trauma was sustained more than 48 hours previously or if fracture was visible on plain radiographs. All subjects (n=25) underwent computed tomography (CT) of the ankle in sagittal and coronal planes. Size of soft-tissue swelling was measured from initial Antero-posterior (AP) radiographs. The subjects in the study were placed into two groups according to whether a fracture was identified on CT or not. The results identified that those subjects without a fracture demonstrated by CT, had a soft-tissue swelling of less than 12.6 mm, while those with over 17.1mm swelling, showed a fracture on CT. Twelve patients (48 per cent) had radiographically occult fractures identified with CT. Fracture sites included: Talus/Talar Dome (n=9), posterior or lateral malleolos (n=2), distal tibia/fibula (n=1). CT detected significant soft-tissue injuries in six patients (24 per cent), composed of damaged anterior talo-fibular ligament (n=4), torn flexor tendons (n=1), and damaged fibular calcaneal ligament (n=1). One patient also showed gas in the talar dome. This study concludes that presence of a large soft-tissue swelling on plain radiographs after acute ankle trauma suggests an underlying fracture. A soft-tissue swelling of >15 mm is a reasonable threshold to prompt further imaging. Helical computed tomography provides good visualisation of subtle bone injuries and may detect clinically important soft-tissue injuries. While the study has a small sample, there is clear evidence that there is a trend worth investigating. Future research will seek to investigate a larger sample. Copyright (1999) Australian Institute of Radiography

  19. Risk factors for pedicled flap necrosis in hand soft tissue reconstruction: a multivariate logistic regression analysis.

    Science.gov (United States)

    Gong, Xu; Cui, Jianli; Jiang, Ziping; Lu, Laijin; Li, Xiucun

    2018-03-01

    Few clinical retrospective studies have reported the risk factors of pedicled flap necrosis in hand soft tissue reconstruction. The aim of this study was to identify non-technical risk factors associated with pedicled flap perioperative necrosis in hand soft tissue reconstruction via a multivariate logistic regression analysis. For patients with hand soft tissue reconstruction, we carefully reviewed hospital records and identified 163 patients who met the inclusion criteria. The characteristics of these patients, flap transfer procedures and postoperative complications were recorded. Eleven predictors were identified. The correlations between pedicled flap necrosis and risk factors were analysed using a logistic regression model. Of 163 skin flaps, 125 flaps survived completely without any complications. The pedicled flap necrosis rate in hands was 11.04%, which included partial flap necrosis (7.36%) and total flap necrosis (3.68%). Soft tissue defects in fingers were noted in 68.10% of all cases. The logistic regression analysis indicated that the soft tissue defect site (P = 0.046, odds ratio (OR) = 0.079, confidence interval (CI) (0.006, 0.959)), flap size (P = 0.020, OR = 1.024, CI (1.004, 1.045)) and postoperative wound infection (P < 0.001, OR = 17.407, CI (3.821, 79.303)) were statistically significant risk factors for pedicled flap necrosis of the hand. Soft tissue defect site, flap size and postoperative wound infection were risk factors associated with pedicled flap necrosis in hand soft tissue defect reconstruction. © 2017 Royal Australasian College of Surgeons.

  20. Ischiogluteal bursitis mimicking soft-tissue metastasis from a renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Voelk, M.; Gmeinwieser, J.; Manke, C.; Strotzer, M. [Department of Radiology, University Hospital, Regensburg (Germany); Hanika, H. [Department of Urology, St. Josef Hospital, Regensburg (Germany)

    1998-09-01

    We report a case of ischiogluteal bursitis mimicking a soft-tissue metastasis from a renal cell carcinoma. A 66-year-old woman suffered from pain over the left buttock 6 months after she was operated on for renal cell carcinoma of the left kidney. CT of the abdomen and pelvis revealed a tumor-like lesion adjacent to the left os ischii, which was suspected to be a soft-tissue metastasis. Percutaneous biopsy revealed no evidence of malignancy, but the histopathological diagnosis of chronic bursitis. (orig.) With 2 figs., 8 refs.

  1. CMG2 Expression Is an Independent Prognostic Factor for Soft Tissue Sarcoma Patients

    Directory of Open Access Journals (Sweden)

    Thomas Greither

    2017-12-01

    Full Text Available The capillary morphogenesis gene 2 (CMG2, also known as the anthrax toxin receptor 2 (ANTXR2, is a transmembrane protein putatively involved in extracellular matrix (ECM adhesion and tissue remodeling. CMG2 promotes endothelial cell proliferation and exhibits angiogenic properties. Its downregulation is associated with a worsened survival of breast carcinoma patients. Aim of this study was to analyze the CMG2 mRNA and protein expression in soft tissue sarcoma and their association with patient outcome. CMG2 mRNA was measured in 121 tumor samples of soft tissue sarcoma patients using quantitative real-time PCR. CMG2 protein was evaluated in 52 tumor samples by ELISA. CMG2 mRNA was significantly correlated with the corresponding CMG2 protein expression (rs = 0.31; p = 0.027. CMG2 mRNA expression was associated with the mRNA expressions of several ECM and tissue remodeling enzymes, among them CD26 and components of the uPA system. Low CMG2 mRNA expression was correlated with a worsened patients’ disease-specific survival in Kaplan-Meier analyses (mean patient survival was 25 vs. 96 months; p = 0.013, especially in high-stage tumors. A decreased CMG2 expression is a negative prognostic factor for soft tissue sarcoma patients. CMG2 may be an interesting candidate gene for the further exploration of soft tissue sarcoma genesis and progression.

  2. CMG2 Expression Is an Independent Prognostic Factor for Soft Tissue Sarcoma Patients.

    Science.gov (United States)

    Greither, Thomas; Wedler, Alice; Rot, Swetlana; Keßler, Jacqueline; Kehlen, Astrid; Holzhausen, Hans-Jürgen; Bache, Matthias; Würl, Peter; Taubert, Helge; Kappler, Matthias

    2017-12-07

    The capillary morphogenesis gene 2 (CMG2), also known as the anthrax toxin receptor 2 (ANTXR2), is a transmembrane protein putatively involved in extracellular matrix (ECM) adhesion and tissue remodeling. CMG2 promotes endothelial cell proliferation and exhibits angiogenic properties. Its downregulation is associated with a worsened survival of breast carcinoma patients. Aim of this study was to analyze the CMG2 mRNA and protein expression in soft tissue sarcoma and their association with patient outcome. CMG2 mRNA was measured in 121 tumor samples of soft tissue sarcoma patients using quantitative real-time PCR. CMG2 protein was evaluated in 52 tumor samples by ELISA. CMG2 mRNA was significantly correlated with the corresponding CMG2 protein expression (r s = 0.31; p = 0.027). CMG2 mRNA expression was associated with the mRNA expressions of several ECM and tissue remodeling enzymes, among them CD26 and components of the uPA system. Low CMG2 mRNA expression was correlated with a worsened patients' disease-specific survival in Kaplan-Meier analyses (mean patient survival was 25 vs. 96 months; p = 0.013), especially in high-stage tumors. A decreased CMG2 expression is a negative prognostic factor for soft tissue sarcoma patients. CMG2 may be an interesting candidate gene for the further exploration of soft tissue sarcoma genesis and progression.

  3. Accuracy of three-dimensional seismic ground response analysis in time domain using nonlinear numerical simulations

    Science.gov (United States)

    Liang, Fayun; Chen, Haibing; Huang, Maosong

    2017-07-01

    To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.

  4. A rate-jump method for characterization of soft tissues using nanoindentation techniques

    KAUST Repository

    Tang, Bin

    2012-01-01

    The biomechanical properties of soft tissues play an important role in their normal physiological and physical function, and may possibly relate to certain diseases. The advent of nanomechanical testing techniques, such as atomic force microscopy (AFM), nano-indentation and optical tweezers, enables the nano/micro-mechanical properties of soft tissues to be investigated, but in spite of the fact that biological tissues are highly viscoelastic, traditional elastic contact theory has been routinely used to analyze experimental data. In this article, a novel rate-jump protocol for treating viscoelasticity in nanomechanical data analysis is described. © 2012 The Royal Society of Chemistry.

  5. ultrasound reflecting the morphological properties in soft tissue

    DEFF Research Database (Denmark)

    Lorentzen, Torben; Larsen, Torben; Court-Payen, Michel

    2014-01-01

    Ultrasound (US) is an image modality providing the examiner with real-time images which reflect the morphological properties in soft tissue. Different types of transducers are used for different kind of exams. US is cheap, fast, and safe. US is widely used in abdominal imaging including obstetrics...

  6. Soft Tissue Sarcomas In Children And Adolescents

    International Nuclear Information System (INIS)

    Bajciova, V.

    2008-01-01

    Soft tissue sarcomas are rare tumors, they may occur at any age. It is heterogenous group of different histology types, different biology and different clinical behavior. Different treatment strategy is used for children and adults. Adolescents with sarcomas could be managed by both pediatric and medical oncologists. Decision regarding location of treatment should be based on the best patient interest. (author)

  7. Temperature dependence of postmortem MR quantification for soft tissue discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Zech, Wolf-Dieter; Schwendener, Nicole; Jackowski, Christian [University of Bern, From the Institute of Forensic Medicine, Bern (Switzerland); Persson, Anders; Warntjes, Marcel J. [University of Linkoeping, The Center for Medical Image Science and Visualization (CMIV), Linkoeping (Sweden)

    2015-08-15

    To investigate and correct the temperature dependence of postmortem MR quantification used for soft tissue characterization and differentiation in thoraco-abdominal organs. Thirty-five postmortem short axis cardiac 3-T MR examinations were quantified using a quantification sequence. Liver, spleen, left ventricular myocardium, pectoralis muscle and subcutaneous fat were analysed in cardiac short axis images to obtain mean T1, T2 and PD tissue values. The core body temperature was measured using a rectally inserted thermometer. The tissue-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. In a 3D plot comprising the combined data of T1, T2 and PD, different organs/tissues could be well differentiated from each other. The quantitative values were influenced by the temperature. T1 in particular exhibited strong temperature dependence. The correction of quantitative values to a temperature of 37 C resulted in better tissue discrimination. Postmortem MR quantification is feasible for soft tissue discrimination and characterization of thoraco-abdominal organs. This provides a base for computer-aided diagnosis and detection of tissue lesions. The temperature dependence of the T1 values challenges postmortem MR quantification. Equations to correct for the temperature dependence are provided. (orig.)

  8. Temperature dependence of postmortem MR quantification for soft tissue discrimination

    International Nuclear Information System (INIS)

    Zech, Wolf-Dieter; Schwendener, Nicole; Jackowski, Christian; Persson, Anders; Warntjes, Marcel J.

    2015-01-01

    To investigate and correct the temperature dependence of postmortem MR quantification used for soft tissue characterization and differentiation in thoraco-abdominal organs. Thirty-five postmortem short axis cardiac 3-T MR examinations were quantified using a quantification sequence. Liver, spleen, left ventricular myocardium, pectoralis muscle and subcutaneous fat were analysed in cardiac short axis images to obtain mean T1, T2 and PD tissue values. The core body temperature was measured using a rectally inserted thermometer. The tissue-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. In a 3D plot comprising the combined data of T1, T2 and PD, different organs/tissues could be well differentiated from each other. The quantitative values were influenced by the temperature. T1 in particular exhibited strong temperature dependence. The correction of quantitative values to a temperature of 37 C resulted in better tissue discrimination. Postmortem MR quantification is feasible for soft tissue discrimination and characterization of thoraco-abdominal organs. This provides a base for computer-aided diagnosis and detection of tissue lesions. The temperature dependence of the T1 values challenges postmortem MR quantification. Equations to correct for the temperature dependence are provided. (orig.)

  9. Hormonal regulation of epithelial organization in a three-dimensional breast tissue culture model.

    Science.gov (United States)

    Speroni, Lucia; Whitt, Gregory S; Xylas, Joanna; Quinn, Kyle P; Jondeau-Cabaton, Adeline; Barnes, Clifford; Georgakoudi, Irene; Sonnenschein, Carlos; Soto, Ana M

    2014-01-01

    The establishment of hormone target breast cells in the 1970's resulted in suitable models for the study of hormone control of cell proliferation and gene expression using two-dimensional (2D) cultures. However, to study mammogenesis and breast tumor development in vitro, cells must be able to organize in three-dimensional (3D) structures like in the tissue. We now report the development of a hormone-sensitive 3D culture model for the study of mammogenesis and neoplastic development. Hormone-sensitive T47D breast cancer cells respond to estradiol in a dose-dependent manner by forming complex epithelial structures. Treatment with the synthetic progestagen promegestone, in the presence of estradiol, results in flat epithelial structures that display cytoplasmic projections, a phenomenon reported to precede side-branching. Additionally, as in the mammary gland, treatment with prolactin in the presence of estradiol induces budding structures. These changes in epithelial organization are accompanied by collagen remodeling. Collagen is the major acellular component of the breast stroma and an important player in tumor development and progression. Quantitative analysis of second harmonic generation of collagen fibers revealed that collagen density was more variable surrounding budding and irregularly shaped structures when compared to more regular structures; suggesting that fiber organization in the former is more anisotropic than in the latter. In sum, this new 3D model recapitulates morphogenetic events modulated by mammogenic hormones in the breast, and is suitable for the evaluation of therapeutic agents.

  10. Soft Tissue Closure of Grafted Extraction Sockets in the Anterior Maxilla: A Modified Palatal Pedicle Connective Tissue Flap Technique.

    Science.gov (United States)

    El Chaar, Edgard; Oshman, Sarah; Cicero, Giuseppe; Castano, Alejandro; Dinoi, Cinzia; Soltani, Leila; Lee, Yoonjung Nicole

    Localized ridge resorption, the consequence of socket collapse, following tooth extraction in the anterior maxilla can adversely affect esthetics, function, and future implant placement. Immediate grafting of extraction sockets may help preserve natural ridge contours, but a lack of available soft tissue can compromise the final esthetic outcome. The presented modified rotated palatal pedicle connective tissue flap is a useful technique for simultaneous soft tissue coverage and augmentation of grafted sockets to improve esthetic outcome. This article delineates its advantages through the presentation of a four-case series using this new technique.

  11. Mammary-type myofibroblastoma of soft tissue

    Directory of Open Access Journals (Sweden)

    Nebojsa Arsenovic

    2011-01-01

    Full Text Available A 40-year-old woman presented with a 1 year history of a painless, subcutaneous lump on the right buttock. Clinical examination showed an approximately 6 cm large subcutaneous mass covered by apparently normal-looking skin. No inguinal lymphadenopathy was found. The mass was excised with the clinical diagnosis of fibroma. Histologically, the lesion was consistent with mammary-type myofibroblastoma of soft tissue, a very rare, benign mesenchymal neoplasm with myofibroblastic differentiation. After surgical excision she was free of recurrence over a period of 8 months. This article also challenges the theory that suggests the origin of this tumor to be from the embryonic mammary tissue, adding another case of a site other than the milk lines.

  12. Accuracy and reliability of facial soft tissue depth measurements using cone beam computer tomography

    NARCIS (Netherlands)

    Fourie, Zacharias; Damstra, Janalt; Gerrits, Pieter; Ren, Yijin

    2010-01-01

    It is important to have accurate and reliable measurements of soft tissue thickness for specific landmarks of the face and scalp when producing a facial reconstruction. In the past several methods have been created to measure facial soft tissue thickness (FSTT) in cadavers and in the living. The

  13. Three-dimensional Organotypic Cultures of Vestibular and Auditory Sensory Organs.

    Science.gov (United States)

    Gnedeva, Ksenia; Hudspeth, A J; Segil, Neil

    2018-06-01

    The sensory organs of the inner ear are challenging to study in mammals due to their inaccessibility to experimental manipulation and optical observation. Moreover, although existing culture techniques allow biochemical perturbations, these methods do not provide a means to study the effects of mechanical force and tissue stiffness during development of the inner ear sensory organs. Here we describe a method for three-dimensional organotypic culture of the intact murine utricle and cochlea that overcomes these limitations. The technique for adjustment of a three-dimensional matrix stiffness described here permits manipulation of the elastic force opposing tissue growth. This method can therefore be used to study the role of mechanical forces during inner ear development. Additionally, the cultures permit virus-mediated gene delivery, which can be used for gain- and loss-of-function experiments. This culture method preserves innate hair cells and supporting cells and serves as a potentially superior alternative to the traditional two-dimensional culture of vestibular and auditory sensory organs.

  14. Age-related changes in dynamic compressive properties of trochanteric soft tissues over the hip.

    Science.gov (United States)

    Choi, W J; Russell, C M; Tsai, C M; Arzanpour, S; Robinovitch, S N

    2015-02-26

    Hip fracture risk increases dramatically with age, and 90% of fractures are due to falls. During a fall on the hip, the soft tissues overlying the hip region (skin, fat, and muscle) act as shock absorbers to absorb energy and reduce the peak force applied to the underlying bone. We conducted dynamic indentation experiments with young women (aged 19-30; n=17) and older women (aged 65-81; n=17) to test the hypothesis that changes occur with age in the stiffness and damping properties of these tissues. Tissue stiffness and damping were derived from experiments where subjects lay sideways on a bed with the greater trochanter contacting a 3.8cm diameter indenter, which applied sinusoidal compression between 5 to 30Hz with a peak-to-peak amplitude of 1mm. Soft tissue thickness was measured using ultrasound. On average, stiffness was 2.9-fold smaller in older than young women (5.7 versus 16.8kN/m, p=0.0005) and damping was 3.5-fold smaller in older than young women (81 versus 282Ns/m, p=0.001). Neither parameter associated with soft tissue thickness. Our results indicate substantial age-related reductions in the stiffness and damping of soft tissues over the hip region, which likely reduce their capacity to absorb and dissipate energy (before "bottoming out") during a fall. Strategies such as wearable hip protectors or compliant flooringmay compensate for age-related reductions in the shock-absorbing properties of soft tissues and decrease the injury potential of falls. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A review of medical robotics for minimally invasive soft tissue surgery.

    Science.gov (United States)

    Dogangil, G; Davies, B L; Rodriguez y Baena, F

    2010-01-01

    This paper provides an overview of recent trends and developments in medical robotics for minimally invasive soft tissue surgery, with a view to highlight some of the issues posed and solutions proposed in the literature. The paper includes a thorough review of the literature, which focuses on soft tissue surgical robots developed and published in the last five years (between 2004 and 2008) in indexed journals and conference proceedings. Only surgical systems were considered; imaging and diagnostic devices were excluded from the review. The systems included in this paper are classified according to the following surgical specialties: neurosurgery; eye surgery and ear, nose, and throat (ENT); general, thoracic, and cardiac surgery; gastrointestinal and colorectal surgery; and urologic surgery. The systems are also cross-classified according to their engineering design and robotics technology, which is included in tabular form at the end of the paper. The review concludes with an overview of the field, along with some statistical considerations about the size, geographical spread, and impact of medical robotics for soft tissue surgery today.

  16. Magnetic resonance imaging of intraoral hard and soft tissues using an intraoral coil and FLASH sequences

    Energy Technology Data Exchange (ETDEWEB)

    Fluegge, Tabea; Eisenbeiss, Anne-Kathrin; Schmelzeisen, Rainer; Nelson, Katja [University Medical Center Freiburg, Department of Oral and Maxillofacial Surgery, Freiburg (Germany); Hoevener, Jan-Bernd; Ludwig, Ute; Hennig, Juergen [University Medical Center Freiburg, Medical Physics, Department of Radiology, Freiburg (Germany); Spittau, Bjoern [Albert Ludwig University of Freiburg, Institute of Anatomy and Cell Biology, Freiburg (Germany)

    2016-12-15

    To ascertain the feasibility of MRI as a non-ionizing protocol for routine dentomaxillofacial diagnostic imaging. Wireless coils were used for MRI of intraoral hard and soft tissues. FLASH MRI was applied in vivo with a mandible voxel size of 250 x 250 x 500 μm{sup 3}, FOV of 64 x 64 x 28 mm{sup 3} and acquisition time of 3:57 min and with a maxilla voxel size of 350 μm{sup 3} and FOV of 34 cm{sup 3} in 6:40 min. Ex vivo imaging was performed in 4:38 min, with a resolution of 200 μm{sup 3} and FOV of 36.5 cm{sup 3}. Cone beam (CB) CT of the mandible and subjects were acquired. MRI was compared to CBCT and histological sections. Deviations were calculated with intraclass correlation coefficient (ICC) and coefficient of variation (c{sub v}). A high congruence between CBCT, MRI and specimens was demonstrated. Hard and soft tissues including dental pulp, periodontium, gingiva, cancellous bone and mandibular canal contents were adequately displayed with MRI. Imaging of select intraoral tissues was achieved using custom MRI protocols with an easily applicable intraoral coil in a clinically acceptable acquisition time. Comparison with CBCT and histological sections helped demonstrate dimensional accuracy of the MR images. The course of the mandibular canal was accurately displayed with CBCT and MRI. (orig.)

  17. Magnetic resonance imaging of intraoral hard and soft tissues using an intraoral coil and FLASH sequences

    International Nuclear Information System (INIS)

    Fluegge, Tabea; Eisenbeiss, Anne-Kathrin; Schmelzeisen, Rainer; Nelson, Katja; Hoevener, Jan-Bernd; Ludwig, Ute; Hennig, Juergen; Spittau, Bjoern

    2016-01-01

    To ascertain the feasibility of MRI as a non-ionizing protocol for routine dentomaxillofacial diagnostic imaging. Wireless coils were used for MRI of intraoral hard and soft tissues. FLASH MRI was applied in vivo with a mandible voxel size of 250 x 250 x 500 μm 3 , FOV of 64 x 64 x 28 mm 3 and acquisition time of 3:57 min and with a maxilla voxel size of 350 μm 3 and FOV of 34 cm 3 in 6:40 min. Ex vivo imaging was performed in 4:38 min, with a resolution of 200 μm 3 and FOV of 36.5 cm 3 . Cone beam (CB) CT of the mandible and subjects were acquired. MRI was compared to CBCT and histological sections. Deviations were calculated with intraclass correlation coefficient (ICC) and coefficient of variation (c v ). A high congruence between CBCT, MRI and specimens was demonstrated. Hard and soft tissues including dental pulp, periodontium, gingiva, cancellous bone and mandibular canal contents were adequately displayed with MRI. Imaging of select intraoral tissues was achieved using custom MRI protocols with an easily applicable intraoral coil in a clinically acceptable acquisition time. Comparison with CBCT and histological sections helped demonstrate dimensional accuracy of the MR images. The course of the mandibular canal was accurately displayed with CBCT and MRI. (orig.)

  18. New Therapeutic Targets in Soft Tissue Sarcoma

    Science.gov (United States)

    Demicco, Elizabeth G; Maki, Robert G; Lev, Dina C.; Lazar, Alexander J

    2012-01-01

    Soft tissue sarcomas are an uncommon and diverse group of more than 50 mesenchymal malignancies. The pathogenesis of many of these is poorly understood, but others have begun to reveal the secrets of their inner workings. With considerable effort over recent years, soft tissue sarcomas have increasingly been classified on the basis of underlying molecular alterations. In turn, this has allowed the development and application of targeted agents in several specific, molecularly defined, sarcoma subtypes. This review will focus the rationale for targeted therapy in sarcoma, with emphasis on the relevance of specific molecular factors and pathways in both translocation-associated sarcomas and in genetically complex tumors. In addition, we will address some of the early successes in sarcoma targeted therapy as well as a few challenges and disappointments in this field. Finally we will discuss several possible opportunities represented by poorly understood, but potentially promising new therapeutic targets, as well as several novel biologic agents currently in preclinical and early phase I/II trials. This will provide the reader with context for understanding the current state this field and a sense of where it may be headed in the coming years. PMID:22498582

  19. Optimising Aesthetic Reconstruction of Scalp Soft Tissue by an Algorithm Based on Defect Size and Location.

    Science.gov (United States)

    Ooi, Adrian Sh; Kanapathy, Muholan; Ong, Yee Siang; Tan, Kok Chai; Tan, Bien Keem

    2015-11-01

    Scalp soft tissue defects are common and result from a variety of causes. Reconstructive methods should maximise cosmetic outcomes by maintaining hair-bearing tissue and aesthetic hairlines. This article outlines an algorithm based on a diverse clinical case series to optimise scalp soft tissue coverage. A retrospective analysis of scalp soft tissue reconstruction cases performed at the Singapore General Hospital between January 2004 and December 2013 was conducted. Forty-one patients were included in this study. The majority of defects aesthetic outcome while minimising complications and repeat procedures.

  20. Influence of microbial biofilms on the preservation of primary soft tissue in fossil and extant archosaurs.

    Directory of Open Access Journals (Sweden)

    Joseph E Peterson

    Full Text Available BACKGROUND: Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time. METHODOLOGY/PRINCIPAL FINDINGS: This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Based on these analyses, we highlight a mechanism whereby this bound organic matter may be preserved. CONCLUSIONS/SIGNIFICANCE: Results of the study indicate that the crystallization of microbial biofilms on decomposing organic matter within vertebrate bone in early taphonomic stages may contribute to the preservation of primary soft tissues deeper in the bone structure.

  1. Reversal of soft-tissue local anesthesia with phentolamine mesylate in adolescents and adults.

    Science.gov (United States)

    Hersh, Elliot V; Moore, Paul A; Papas, Athena S; Goodson, J Max; Navalta, Laura A; Rogy, Siegfried; Rutherford, Bruce; Yagiela, John A

    2008-08-01

    The authors conducted two multicenter, randomized, double-blinded, controlled Phase III clinical trials to study the efficacy and safety of phentolamine mesylate (PM) in shortening the duration and burden of soft-tissue anesthesia. The study involved 484 subjects who received one of four commercially available local anesthetic solutions containing vasoconstrictors for restorative or scaling procedures. On completion of the dental procedure, subjects randomly received a PM or a sham injection (an injection in which a needle does not penetrate the soft tissue) in the same site as the local anesthetic injection. The investigators measured the duration of soft-tissue anesthesia by using standardized lip- and tongue-tapping procedures every five minutes for five hours. They also evaluated functional measures and subject-perceived altered function, sensation, appearance and safety. Median recovery times in the lower lip and tongue for subjects in the PM group were 70 minutes and 60 minutes, respectively. Median recovery times in the lower lip and tongue for subjects in the sham group were 155 minutes and 125 minutes, respectively. Upper lip median recovery times were 50 minutes for subjects in the PM group and 133 minutes for subjects in the sham group. These differences were significant (P < .0001). Recovery from actual functional deficits and subject-perceived altered function, sensation and appearance also showed significant differences between the PM and the sham groups. PM was efficacious and safe in reducing the duration of local anesthetic- induced soft-tissue numbness and its associated functional deficits. Clinicians can use PM to accelerate reversal of soft-tissue anesthesia and the associated functional deficits.

  2. The pitfalls of ultrasonography in the evaluation of soft tissue masses

    International Nuclear Information System (INIS)

    Kwok, Henry CK.; Pinto, Clinton H.; Doyle, Anthony J.

    2012-01-01

    Ultrasonography is associated with a high error rate in the evaluation of soft tissue masses. The purposes of this study were to examine the nature of the diagnostic errors and to identify areas in which reporting could be improved. Patients who had soft tissue tumours and received ultrasonography during a 10-year period (1999–2009) were identified from a local tumour registry. The sonographic and pathological diagnoses were categorised as either ‘benign’ or ‘non-benign’. The accuracy of ultrasonography was assessed by correlating the sonographic with the pathological diagnostic categories. Recommendations from radiologists, where offered, were assessed for their appropriateness in the context of the pathological diagnosis. One hundred seventy-five patients received ultrasonography, of which 60 had ‘non-benign’ lesions and 115 had ‘benign’ lesions. Ultrasonography correctly diagnosed 35 and incorrectly diagnosed seven of the 60 ‘non-benign’ cases, and did not suggest a diagnosis in 18 cases. Most of the diagnostic errors related to misdiagnosing soft tissue tumours as haematomas (four out of seven). Recommendations for further management were offered by the radiologists in 144 cases, of which 52 had ‘non-benign’ pathology. There were eight ‘non-benign’ cases where no recommendation was offered, and the sonographic diagnosis was either incorrect or unavailable. Ultrasonography lacks accuracy in the evaluation of soft tissue masses. Ongoing education is required to improve awareness of the limitations with its use. These limitations should be highlighted to the referrers, especially those who do not have specific training in this area.

  3. A methodological approach to assessing alveolar ridge preservation procedures in humans: soft tissue profile.

    Science.gov (United States)

    Vanhoutte, Vanessa; Rompen, Eric; Lecloux, Geoffrey; Rues, Stefan; Schmitter, Marc; Lambert, France

    2014-03-01

    The aesthetic results of implant restoration in the anterior maxilla are particularly related to the soft tissue profile. Although socket preservation techniques appear to reduce bone remodelling after tooth extraction, there is still few investigations assessing the external soft tissue profile after such procedures. The goal of this study was to describe an accurate technique to evaluate soft tissue contour changes after performing socket preservation procedures. The secondary objective was to apply the newly developed measuring method to a specific socket preservation using a "saddled" connective tissue graft combined with the insertion of slowly resorbable biomaterials into the socket. A total of 14 patients needing tooth replacement in the aesthetic region were included to receive a socket preservation procedure using a connective tissue graft. Impressions were taken before the tooth extraction (baseline) and at 2, 4, and 12 weeks after the procedure. The corresponding plaster casts were scanned, and the evolution of the soft tissue profile in relation to the baseline situation was assessed using imaging software. The measuring technique allowed assessing the soft tissue profiles accurately at different levels of the alveolar process. The insertion of a saddled connective tissue appeared to compensate for the horizontal and vertical bone remodelling after a socket preservation procedure in most regions of the alveolar crest. After 12 weeks, the only significant change was located in the more cervical and central region of the alveolar process and reached a median drop of 0.62 mm from baseline. Within the limitations of this study, we found that a saddled connective tissue graft combined with a socket preservation procedure could almost completely counteract the bone remodelling in terms of the external soft tissue profile. The minor changes found in the cervical region might disappear with the emergence profile of the prosthodontic components. The described

  4. Three-dimensional spheroid cell culture of umbilical cord tissue-derived mesenchymal stromal cells leads to enhanced paracrine induction of wound healing.

    Science.gov (United States)

    Santos, Jorge M; Camões, Sérgio P; Filipe, Elysse; Cipriano, Madalena; Barcia, Rita N; Filipe, Mariana; Teixeira, Mariana; Simões, Sandra; Gaspar, Manuela; Mosqueira, Diogo; Nascimento, Diana S; Pinto-do-Ó, Perpétua; Cruz, Pedro; Cruz, Helder; Castro, Matilde; Miranda, Joana P

    2015-05-09

    The secretion of trophic factors by mesenchymal stromal cells has gained increased interest given the benefits it may bring to the treatment of a variety of traumatic injuries such as skin wounds. Herein, we report on a three-dimensional culture-based method to improve the paracrine activity of a specific population of umbilical cord tissue-derived mesenchymal stromal cells (UCX®) towards the application of conditioned medium for the treatment of cutaneous wounds. A UCX® three-dimensional culture model was developed and characterized with respect to spheroid formation, cell phenotype and cell viability. The secretion by UCX® spheroids of extracellular matrix proteins and trophic factors involved in the wound-healing process was analysed. The skin regenerative potential of UCX® three-dimensional culture-derived conditioned medium (CM3D) was also assessed in vitro and in vivo against UCX® two-dimensional culture-derived conditioned medium (CM2D) using scratch and tubulogenesis assays and a rat wound splinting model, respectively. UCX® spheroids kept in our three-dimensional system remained viable and multipotent and secreted considerable amounts of vascular endothelial growth factor A, which was undetected in two-dimensional cultures, and higher amounts of matrix metalloproteinase-2, matrix metalloproteinase-9, hepatocyte growth factor, transforming growth factor β1, granulocyte-colony stimulating factor, fibroblast growth factor 2 and interleukin-6, when compared to CM2D. Furthermore, CM3D significantly enhanced elastin production and migration of keratinocytes and fibroblasts in vitro. In turn, tubulogenesis assays revealed increased capillary maturation in the presence of CM3D, as seen by a significant increase in capillary thickness and length when compared to CM2D, and increased branching points and capillary number when compared to basal medium. Finally, CM3D-treated wounds presented signs of faster and better resolution when compared to untreated and CM

  5. Phase-Contrast Hounsfield Units of Fixated and Non-Fixated Soft-Tissue Samples

    Science.gov (United States)

    Willner, Marian; Fior, Gabriel; Marschner, Mathias; Birnbacher, Lorenz; Schock, Jonathan; Braun, Christian; Fingerle, Alexander A.; Noël, Peter B.; Rummeny, Ernst J.; Pfeiffer, Franz; Herzen, Julia

    2015-01-01

    X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of imaging results. Thus far, the experimental values of few tissue types have been reported; these values have been determined from fixated tissue samples. This study presents phase-contrast Hounsfield units for various types of non-fixated human soft tissues. A large variety of tissue specimens ranging from adipose, muscle and connective tissues to liver, kidney and pancreas tissues were imaged by a grating interferometer with a rotating-anode X-ray tube and a photon-counting detector. Furthermore, we investigated the effects of formalin fixation on the quantitative phase-contrast imaging results. PMID:26322638

  6. Phosphorus MRS study in bone and soft-tissue tumors

    International Nuclear Information System (INIS)

    Du Xiangke; Jiang Baoguo

    2000-01-01

    Objective: To study the metabolite changes in bone and soft-tissue tumors using phosphorus MRS for better understanding of the phospholipid metabolite and energy metabolite of tumors, which will provide more information for clinical diagnosis and therapy. Methods: Phosphorus MRS and MRI were performed in 14 bone and soft-tissue tumor patients (benign 6, malignant 8) and 19 healthy volunteers at 2.0 T. The areas under the peak of various metabolite in spectra were measured. The ratios of the other metabolite related to β-ATP, ATP, and Pcr were calculated. Intracellular pH was calculated according to the chemical shift change of Pi relative to Pcr. Results: The ratio of PME/β-ATP, PME/ATP, Pcr/PME in both benign and malignant group, intracellular pH in malignant group and LEP/Pcr in benign group were higher than that of the normal group significantly (P < 0.01). the ratios of Pi/Pcr in benign and malignant group, PDE/ATP, PDE/β-ATP, LET/Pcr, Pi/β-ATP in malignant group and LET/β-ATP in benign group were significantly different from that of the normal group (P < 0.05). Between benign and malignant tumors group, the ratios of Pcr/PME and Intracellular pH were different significantly (P < 0.05). Conclusion: The in vivo phosphorus MRS can non-invasively find abnormal phospholipid metabolite, energy metabolite and pH changes in bone and soft tissue tumors

  7. Chronic consumption of fructose rich soft drinks alters tissue lipids of rats

    Directory of Open Access Journals (Sweden)

    Botezelli Jose D

    2010-06-01

    Full Text Available Abstract Background Fructose-based diets are apparently related to the occurrence of several metabolic dysfunctions, but the effects of the consumption of high amounts of fructose on body tissues have not been well described. The aim of this study was to analyze the general characteristics and the lipid content of different tissues of rats after chronic ingestion of a fructose rich soft drink. Methods Forty-five Wistar rats were used. The rats were divided into three groups (n = 15 and allowed to consume water (C, light Coca Cola ® (L or regular Coca Cola® (R as the sole source of liquids for eight weeks. Results The R group presented significantly higher daily liquid intake and significantly lower food intake than the C and L groups. Moreover, relative to the C and L groups, the R group showed higher triglyceride concentrations in the serum and liver. However, the L group animals presented lower values of serum triglycerides and cholesterol than controls. Conclusions Based on the results, it can be concluded that daily ingestion of a large amount of fructose- rich soft drink resulted in unfavorable alterations to the lipid profile of the rats.

  8. Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation.

    Science.gov (United States)

    Demirci, Nagehan; Tönük, Ergin

    2014-01-01

    During the last decades, derivatives and integrals of non-integer orders are being more commonly used for the description of constitutive behavior of various viscoelastic materials including soft biological tissues. Compared to integer order constitutive relations, non-integer order viscoelastic material models of soft biological tissues are capable of capturing a wider range of viscoelastic behavior obtained from experiments. Although integer order models may yield comparably accurate results, non-integer order material models have less number of parameters to be identified in addition to description of an intermediate material that can monotonically and continuously be adjusted in between an ideal elastic solid and an ideal viscous fluid. In this work, starting with some preliminaries on non-integer (fractional) calculus, the "spring-pot", (intermediate mechanical element between a solid and a fluid), non-integer order three element (Zener) solid model, finally a user-defined large strain non-integer order viscoelastic constitutive model was constructed to be used in finite element simulations. Using the constitutive equation developed, by utilizing inverse finite element method and in vivo indentation experiments, soft tissue material identification was performed. The results indicate that material coefficients obtained from relaxation experiments, when optimized with creep experimental data could simulate relaxation, creep and cyclic loading and unloading experiments accurately. Non-integer calculus viscoelastic constitutive models, having physical interpretation and modeling experimental data accurately is a good alternative to classical phenomenological viscoelastic constitutive equations.

  9. A new ChainMail approach for real-time soft tissue simulation.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2016-07-03

    This paper presents a new ChainMail method for real-time soft tissue simulation. This method enables the use of different material properties for chain elements to accommodate various materials. Based on the ChainMail bounding region, a new time-saving scheme is developed to improve computational efficiency for isotropic materials. The proposed method also conserves volume and strain energy. Experimental results demonstrate that the proposed ChainMail method can not only accommodate isotropic, anisotropic and heterogeneous materials but also model incompressibility and relaxation behaviors of soft tissues. Further, the proposed method can achieve real-time computational performance.

  10. Roentgenographic studies on the soft tissue profile

    International Nuclear Information System (INIS)

    Park, Tae Won; Ahn, Hyung Kyu

    1971-01-01

    Modern orthodontics implies not only occlusal excellence, but also the positioning of teeth to produce optimal facial harmony for the individual patients. Several methods have been used in the study of facial height, width and depth were made from living subjects. These methods, however, complicate to control the subjects, therefore many investigators have used profile cephalometric technics. Practically, cephalometric technics were used in orthodontic treatment, maxillo-facial surgery and anthropometric studies. Author was studied to investigate the normal standards of soft tissue profile in Korean adolescences. The subjects consisted of 53 males and 54 females from 17 to 22 years of age and with normal occlusion and acceptable profile. Aluminum filter was designed to obtain both hard and soft tissue structures on a single film. Eight profile landmarks were plotted and drawn on the tracings of all cephalograms and eighteen depth, height an d angles were measured from each landmarks of the cephalograms. The following conclusions were obtained from this studies; 1. Total facial convexity was 170.75 in males and females samples and lower facial and labiomandibular convexity were each of 141.44, 171.05. 2. Maxillary and mandibular sulcus angulations were 137.61, 129.52 and upper and lower lip inclinations were each of 12 3.26 and 49.56 in male and females. 3. Soft tissue depth of several points were as follows; Subnasale 18.74 mm in males and 16.65 mm in females Pogonion 13.40 mm in males and 13.07 mm in females upper lip 14.06 mm in males and 11.91 mm in females lower lip 15.46 mm, 13.63 in males and females 4. The protrusion of nose were 16.28 mm in males and 15.56 mm in females 5. The vertical length of upper and lower lips were 25.67 mm, 52.96 mm and the lip posture was indicated 93.43 per cent (closed state) in centric occlusions.

  11. Isotropic three-dimensional fast spin-echo Cube magnetic resonance dacryocystography: comparison with the three-dimensional fast-recovery fast spin-echo technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Chen, Lang; Wang, Qiu-Xia; Zhu, Wen-Zhen; Luo, Xin; Peng, Li [Huazhong University of Science and Technology, Department of Radiology, Tongji Hospital, Wuhan (China); Liu, Rong [Huazhong University of Science and Technology, Department of Ophthalmology, Tongji Hospital, Wuhan (China); Xiong, Wei [GE Healthcare China Wuhan Office, Wuhan (China)

    2015-04-01

    Three-dimensional fast spin-echo Cube (3D-FSE-Cube) uses modulated refocusing flip angles and autocalibrates two dimensional (2D)-accelerated parallel and nonlinear view ordering to produce high-quality volumetric image sets with high-spatial resolution. Furthermore, 3D-FSE-Cube with topical instillation of fluid can also be used for magnetic resonance dacryocystography (MRD) with good soft tissue contrast. The purpose of this study was to evaluate the technical quality and visualization of the lacrimal drainage system (LDS) when using the 3D-FSE-Cube sequence and the 3D fast-recovery fast spin-echo (FRFSE) sequence. In total, 75 patients with primary LDS outflow impairment or postsurgical recurrent epiphora underwent 3D-FSE-Cube MRD and 3D-FRFSE MRD at 3.0 T after topical administration of compound sodium chloride eye drops. Two radiologists graded the images from either of the two sequences in a blinded fashion, and appropriate statistical tests were used to assess differences in technical quality, visibility of ductal segments, and number of segments visualized per LDS. Obstructions were confirmed in 90 of the 150 LDSs assessed. The technical quality of 3D-FSE-Cube MRD and 3D-FRFSE MRD was statistically equivalent (P = 0.871). However, compared with 3D-FRFSE MRD, 3D-FSE-Cube MRD improved the overall visibility and the visibility of the upper drainage segments in normal and obstructed LDSs (P < 0.001). There was a corresponding increase in the number of segments visualized per LDS in both groups (P < 0.001). Compared with 3D-FRFSE MRD, 3D-FSE-Cube MRD potentially improves the visibility of the LDS. (orig.)

  12. Artery Soft-Tissue Modelling for Stent Implant Training System

    Directory of Open Access Journals (Sweden)

    Giovanni Aloisio

    2004-08-01

    Full Text Available Virtual reality technology can be utilised to provide new systematic training methods for surgical procedures. Our aim is to build a simulator that allows medical students to practice the coronary stent implant procedure and avoids exposing patients to risks. The designed simulation system consists of a virtual environment and a haptic interface, in order to provide both the visualization of the coronary arteries and the tactile and force feedback generated during the interactions of the surgical instruments in the virtual environment. Since the arteries are soft tissues, their shape may change during an operation; for this reason physical modelling of the organs is necessary to render their behaviour under the influence of surgeon's instruments. The idea is to define a model that computes the displacement of the tissue versus time; from the displacement it is possible to calculate the response of the tissue to the surgical tool external stimuli. Information about tools displacements and tissue responses are also used to graphically model the artery wall and virtual surgical instrument deformations generated as a consequence of their coming into contact. In order to obtain a realistic simulation, the Finite Element Method has been used to model the soft tissues of the artery, using linear elasticity to reduce computational time and speed up interaction rates.

  13. A novel laparoscopic grasper with two parallel jaws capable of extracting the mechanical behaviour of soft tissues.

    Science.gov (United States)

    Nazarynasab, Dariush; Farahmand, Farzam; Mirbagheri, Alireza; Afshari, Elnaz

    2017-07-01

    Data related to force-deformation behaviour of soft tissue plays an important role in medical/surgical applications such as realistically modelling mechanical behaviour of soft tissue as well as minimally invasive surgery (MIS) and medical diagnosis. While the mechanical behaviour of soft tissue is very complex due to its different constitutive components, some issues increase its complexity like behavioural changes between the live and dead tissues. Indeed, an adequate quantitative description of mechanical behaviour of soft tissues requires high quality in vivo experimental data to be obtained and analysed. This paper describes a novel laparoscopic grasper with two parallel jaws capable of obtaining compressive force-deformation data related to mechanical behaviour of soft tissues. This new laparoscopic grasper includes four sections as mechanical hardware, sensory part, electrical/electronical part and data storage part. By considering a unique design for mechanical hardware, data recording conditions will be close to unconfined-compression-test conditions; so obtained data can be properly used in extracting the mechanical behaviour of soft tissues. Also, the other distinguishing feature of this new system is its applicability during different laparoscopic surgeries and subsequently obtaining in vivo data. However, more preclinical examinations are needed to evaluate the practicality of the novel laparoscopic grasper with two parallel jaws.

  14. Soft tissue thin-plate spline analysis of pre-pubertal Korean and European-Americans with untreated Angle's Class III malocclusions.

    Science.gov (United States)

    Singh, G D; McNamara, J A; Lozanoff, S

    1999-01-01

    The purpose of this study was to assess soft tissue facial matrices in subjects of diverse ethnic origins with underlying dentoskeletal malocclusions. Pre-treatment lateral cephalographs of 71 Korean and 70 European-American children aged between 5 and 11 years with Angle's Class III malocclusions were traced, and 12 homologous, soft tissue landmarks digitized. Comparing mean Korean and European-American Class III soft tissue profiles, Procrustes analysis established statistical difference (P thin-plate spline analysis indicated that both affine and non-affine transformations contribute towards the total spline (deformation) of the averaged Class III soft tissue configurations. For non-affine transformations, partial warp (PW) 8 had the highest magnitude, indicating large-scale deformations visualized as labio-mental protrusion, predominantly. In addition, PW9, PW4, and PW5 also had high magnitudes, demonstrating labio-mental vertical compression and antero-posterior compression of the lower labio-mental soft tissues. Thus, Korean children with Class III malocclusions demonstrate antero-posterior and vertical deformations of the labio-mental soft tissue complex with respect to their European-American counterparts. Morphological heterogeneity of the soft tissue integument in subjects of diverse ethnic origin may obscure the underlying skeletal morphology, but the soft tissue integument appears to have minimal ontogenetic association with Class III malocclusions.

  15. Ischiofemoral space on MRI in an asymptomatic population: Normative width measurements and soft tissue signal variations

    International Nuclear Information System (INIS)

    Maras Oezdemir, Zeynep; Goermeli, Cemile Ayse; Sagir Kahraman, Ayseguel; Aydingoez, Uestuen

    2015-01-01

    To make normative width measurements of the ischiofemoral (IF) space in an asymptomatic population and to record soft tissue MRI signal variations within the IF space in order to determine whether such variations are associated with IF space dimensions. Normative width measurements of the IF space were prospectively made in 418 hips on 1.5 T MR images of 209 asymptomatic volunteers. Quantitative and qualitative assessments of the IF soft tissues including the quadratus femoris (QF) muscle were also made. The mean IF space width was 2.56 ± 0.75 cm (right, 2.60 ± 0.75 cm; left, 2.53 ± 0.75 cm). Soft tissue MRI signal abnormalities were present within the IF space in 19 (9.1 %) of 209 volunteers. Soft tissue abnormalities within the IF space included oedema (3/209, 1.4 %) of the QF and/or surrounding soft tissue, and only fatty infiltration (16/209, 7.7 %) of the QF. Bilateral IF spaces are asymmetrical in asymptomatic persons. There is ≥10 % of width difference between right and left IF spaces in approximately half of asymptomatic individuals. Fatty infiltration and oedema can be present at the IF space in a small portion of the asymptomatic population, who also have narrower IF spaces than those without soft tissue MRI signal abnormalities. (orig.)

  16. Impact of timing on soft tissue augmentation during implant treatment: A systematic review and meta-analysis.

    Science.gov (United States)

    Lin, Cho-Ying; Chen, Zhaozhao; Pan, Whei-Lin; Wang, Hom-Lay

    2018-05-01

    To achieve a predictable esthetic and functional outcome, soft tissue augmentation has become popular in implant treatment. The aim of this systematic review and meta-analysis was to assess the influence of different timing for soft tissue augmentation during implant treatment on soft tissue conditions and its stability. Electronic and manual searches for articles written in English up to September 2017 were performed by two independent reviewers. Human clinical studies with the purpose of evaluating outcomes (at least 3-month follow-up) of autogenous soft tissue graft for augmentation during implant treatment, either simultaneous or after implant placement (staged), were included. Cumulative changes of keratinized tissue width (KTW), soft tissue thickness (STT), and mid-buccal mucosal recession (MR) data were analyzed with a random-effects model to compare the postoperative outcomes. Twenty-nine human studies (eight randomized clinical trials, six cohort studies, and 15 case series) that met the inclusion criteria were included. For the overall data, the weighted mean STT gain (1 year after surgery) was 1.03 mm (95% CI: 0.78-1.29 mm), among which the simultaneous group was 1.12 mm (95% CI: 0.75-1.49 mm) and staged group (3-6 months after implant placement) was 0.95 mm (95% CI: 0.58-1.31 mm). There was no statistically significant difference in KTW and MR between 3 months and more than 3 months after surgery. This review revealed that the stability of soft tissue, in terms of KTW and mid-buccal MR, can be obtained 3 months after surgery. There is no difference between simultaneous and staged soft tissue augmentation during implant treatment, and both procedures significantly enhance KTW and STT. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Three-dimensional CaP/gelatin lattice scaffolds with integrated osteoinductive surface topographies for bone tissue engineering

    International Nuclear Information System (INIS)

    Nadeem, Danish; Su, Bo; Smith, Carol-Anne; Dalby, Matthew J; Dominic Meek, R M; Lin, Sien; Li, Gang

    2015-01-01

    Surface topography is known to influence stem cells and has been widely used as physical stimuli to modulate cellular behaviour including adhesion, proliferation and differentiation on 2D surfaces. Integration of well-defined surface topography into three-dimensional (3D) scaffolds for tissue engineering would be useful to direct the cell fate for intended applications. Technical challenges are remaining as how to fabricate such 3D scaffolds with controlled surface topography from a range of biodegradable and biocompatible materials. In this paper, a novel fabrication process using computer numerically controlled machining and lamination is reported to make 3D calcium phosphate/gelatin composite scaffolds with integrated surface micropatterns that are introduced by embossing prior to machining. Geometric analysis shows that this method is versatile and can be used to make a wide range of lattices with porosities that meet the basic requirements for bone tissue engineering. Both in vitro and in vivo studies show that micropatterned composite scaffolds with surfaces comprising 40 μm pits and 50 μm grooves were optimal for improved osteogenesis. The results have demonstrated the potential of a novel fabrication process for producing cell-instructive scaffolds with designed surface topographies to induce specific tissue regeneration. (paper)

  18. Bone and soft tissue sarcomas during pregnancy: A narrative review of the literature

    Directory of Open Access Journals (Sweden)

    George Zarkavelis

    2016-07-01

    Full Text Available Bone or soft tissue sarcomas are rarely diagnosed during pregnancy. Until today 137 well documented cases have been reported in the English literature between 1963 and 2014. Thirty-eight pregnant mothers were diagnosed with osteosarcoma, Ewing’s sarcoma or chondrosarcoma, whereas 95 other cases of soft tissue sarcomas of various types have been documented. We present the clinical picture and therapeutic management of this coexistence.

  19. Soft tissue artifact in canine kinematic gait analysis

    NARCIS (Netherlands)

    Schwencke, M.; Smolders, L.A.; Bergknut, N.; Gustas, P.; Meij, B.P.; Hazewinkel, H.A.W.

    2012-01-01

    Vet Surg. 2012 Oct;41(7):829-37. doi: 10.1111/j.1532-950X.2012.01021.x. Soft tissue artifact in canine kinematic gait analysis. Schwencke M, Smolders LA, Bergknut N, Gustås P, Meij BP, Hazewinkel HA. Source Department of Clinical Sciences of Companion Animals,, Faculty of Veterinary Medicine,

  20. Apical polarity in three-dimensional culture systems: where to now?

    Energy Technology Data Exchange (ETDEWEB)

    Inman, J.L.; Bissell, Mina

    2010-01-21

    Delineation of the mechanisms that establish and maintain the polarity of epithelial tissues is essential to understanding morphogenesis, tissue specificity and cancer. Three-dimensional culture assays provide a useful platform for dissecting these processes but, as discussed in a recent study in BMC Biology on the culture of mammary gland epithelial cells, multiple parameters that influence the model must be taken into account.